DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Christine M.
2015-08-01
Recent attention in the chemical community has been focused on the energy efficient and environmentally benign conversion of abundant small molecules (CO2, H2O, etc.) to useful liquid fuels. This project addresses these goals by examining fundamental aspects of catalyst design to ultimately access small molecule activation processes under mild conditions. Specifically, Thomas and coworkers have targetted heterobimetallic complexes that feature metal centers with vastly different electronic properties, dictated both by their respective positions on the periodic table and their coordination environment. Unlike homobimetallic complexes featuring identical or similar metals, the bonds between metals in early/late heterobimetallics are more polarized, withmore » the more electron-rich late metal center donating electron density to the more electron-deficient early metal center. While metal-metal bonds pose an interesting strategy for storing redox equivalents and stabilizing reactive metal fragments, the polar character of metal-metal bonds in heterobimetallic complexes renders these molecules ideally poised to react with small molecule substrates via cleavage of energy-rich single and double bonds. In addition, metal-metal interactions have been shown to dramatically affect redox potentials and promote multielectron redox activity, suggesting that metal-metal interactions may provide a mechanism to tune redox potentials and access substrate reduction/activation at mild overpotentials. This research project has provided a better fundamental understanding of how interactions between transition metals can be used as a strategy to promote and/or control chemical transformations related to the clean production of fuels. While this project focused on the study of homogeneous systems, it is anticipated that the broad conclusions drawn from these investigations will be applicable to heterogeneous catalysis as well, particularly on heterogeneous processes that occur at interfaces in multicomponent systems.« less
Chemodynamics of aquatic metal complexes: from small ligands to colloids.
Van Leeuwen, Herman P; Buffle, Jacques
2009-10-01
Recent progress in understanding the formation/dissociation kinetics of aquatic metal complexes with complexants in different size ranges is evaluated and put in perspective, with suggestions for further studies. The elementary steps in the Eigen mechanism, i.e., diffusion and dehydration of the metal ion, are reviewed and further developed. The (de)protonation of both the ligand and the coordinating metal ion is reconsidered in terms of the consequences for dehydration rates and stabilities of the various outer-sphere complexes. In the nanoparticulate size range, special attention is given to the case of fulvic ligands, for which the impact of electrostatic interactions is especially large. In complexation with colloidal ligands (hard, soft, and combination thereof) the diffusive transport of metal ions is generally a slower step than in the case of complexation with small ligands in a homogeneous solution. The ensuing consequences for the chemodynamics of colloidal complexes are discussed in detail and placed in a generic framework, encompassing the complete range of ligand sizes.
Mayers, Matthew Z.; Berkelbach, Timothy C.; Hybertsen, Mark S.; ...
2015-10-09
Ground-state diffusion Monte Carlo is used to investigate the binding energies and intercarrier radial probability distributions of excitons, trions, and biexcitons in a variety of two-dimensional transition-metal dichalcogenide materials. We compare these results to approximate variational calculations, as well as to analogous Monte Carlo calculations performed with simplified carrier interaction potentials. Our results highlight the successes and failures of approximate approaches as well as the physical features that determine the stability of small carrier complexes in monolayer transition-metal dichalcogenide materials. In conclusion, we discuss points of agreement and disagreement with recent experiments.
Isoelectric focusing of small non-covalent metal species from plants.
Köster, Jessica; Hayen, Heiko; von Wirén, Nicolaus; Weber, Günther
2011-03-01
IEF is known as a powerful electrophoretic separation technique for amphoteric molecules, in particular for proteins. The objective of the present work is to prove the suitability of IEF also for the separation of small, non-covalent metal species. Investigations are performed with copper-glutathione complexes, with the synthetic ligand ethylenediamine-N,N'-bis(o-hydroxyphenyl)acetic acid (EDDHA) and respective metal complexes (Fe, Ga, Al, Ni, Zn), and with the phytosiderophore 2'-deoxymugineic acid (DMA) and its ferric complex. It is shown that ethylenediamine-N,N'-bis(o-hydroxyphenyl)acetic acid and DMA species are stable during preparative scale IEF, whereas copper-glutathione dissociates considerably. It is also shown that preparative scale IEF can be applied successfully to isolate ferric DMA from real plant samples, and that multidimensional separations are possible by combining preparative scale IEF with subsequent HPLC-MS analysis. Focusing of free ligands and respective metal complexes with di- and trivalent metals results in different pIs, but CIEF is usually needed for a reliable estimation of pI values. Limitations of the proposed methods (preparative IEF and CIEF) and consequences of the results with respect to metal speciation in plants are discussed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nuclear reactor cooling system decontamination reagent regeneration. [PWR; BWR
Anstine, L.D.; James, D.B.; Melaika, E.A.; Peterson, J.P. Jr.
1980-06-06
An improved method for decontaminating the coolant system of water-cooled nuclear power reactors and for regenerating the decontamination solution is described. A small amount of one or more weak-acid organic complexing agents is added to the reactor coolant, and the pH is adjusted to form a decontamination solution which is circulated throughout the coolant system to dissolve metal oxides from the interior surfaces and complex the resulting metal ions and radionuclide ions. The coolant containing the complexed metal ions and radionuclide ions is passed through a strong-base anion exchange resin bed which has been presaturated with a solution containing the complexing agents in the same ratio and having the same pH as the decontamination solution. As the decontamination solution passes through the resin bed, metal-complexed anions are exchanged for the metal-ion-free anions on the bed, while metal-ion-free anions in the solution pass through the bed, thus removing the metal ions and regenerating the decontamination solution.
Nuclear reactor cooling system decontamination reagent regeneration
Anstine, Larry D.; James, Dean B.; Melaika, Edward A.; Peterson, Jr., John P.
1985-01-01
An improved method for decontaminating the coolant system of water-cooled nuclear power reactors and for regenerating the decontamination solution. A small amount of one or more weak-acid organic complexing agents is added to the reactor coolant, and the pH is adjusted to form a decontamination solution which is circulated throughout the coolant system to dissolve metal oxides from the interior surfaces and complex the resulting metal ions and radionuclide ions. The coolant containing the complexed metal ions and radionuclide ions is passed through a strong-base anion exchange resin bed which has been presaturated with a solution containing the complexing agents in the same ratio and having the same pH as the decontamination solution. As the decontamination solution passes through the resin bed, metal-complexed anions are exchanged for the metal-ion-free anions on the bed, while metal-ion-free anions in the solution pass through the bed, thus removing the metal ions and regenerating the decontamination solution.
Speciation of Cu and Zn in drainage water from agricultural soils.
Aldrich, Annette P; Kistler, David; Sigg, Laura
2002-11-15
Inputs of copper and zinc from agricultural soils into the aquatic system were investigated in this study, because of their heavy agricultural usage as feed additives and components of fertilizers and fungicides. As the mobility and bioavailability of these metals are affected by their speciation, the lipophilic, colloidal and organic fractions were determined in drainage water from a loamy and a humic soil treated with fungicides or manure. This study therefore investigates the impact of agricultural activity on a natural environment and furthers our understanding of the mobility of metals in agricultural soils and aquatic pollution in rural areas. Marked increases in the total dissolved metal concentrations were observed in the drainage water during rain events with up to 0.3 microM Cu and 0.26 microM Zn depending on the intensity of the rainfall and soil type. The mobile metal fractions were of a small molecular size (<10 kD) and mainly hydrophilic. Lipophilic complexes originating from a dithiocarbamate (DTC) fungicide could not be observed in the drainage water; however, small amounts of lipophilic metal complexes may be of natural origin. Cu was organically complexed to > 99.9% by abundant organic ligands (log K 10.5-11.0). About 50% of dissolved Zn were electrochemically labile, and the other 50% were complexed by strong organic ligands (log K 8.2-8.6). Therefore very little free metal species were found suggesting a low bioavailability of these metals in the drainage water even at elevated metal concentrations.
Intracellular Bioinorganic Chemistry and Cross Talk Among Different -Omics.
Mendola, Diego La; Giacomelli, Chiara; Rizzarelli, Enrico
2016-01-01
The description of the cell life needs not only the knowledge of its genome and proteome, but also of the location of the metal ions and their different complex species in the subcellular compartments, that is of metallome. The cross-talk among these players of the omics' world secures the cellular homeostasis by means of a complex network, the alteration of which may give rise to many diseases. Copper and zinc ions levels regulate protein expression and metal-responsive transcription factors and in many pathologies metal dyshomeostasis induces to aberrant expression of different factors. microRNAs, a class of a small non-coding RNA molecules, act as RNA silencing and post-transcriptional regulators of gene expression contributing also to metal regulatory activity. The aim of the present review is to present how metals dyshomeostasis can be cause of diseases, involving different and specific metal chaperones, metal transporters, metalloproteins, small molecules and metal-sensing transcription factors. Two distinct classes of pathologies, cancer and osteoarthritis, are discussed starting from the metallostasis (metal homeostasis) and turning up to miRNAs regulation. The understanding of post-translational regulation, driven by metal ions sensing, may help to identify more specific targets and drugs to pathologies in which metal ions are involved.
Zhao, Jiong-Peng; Hu, Bo-Wen; Lloret, Francesc; Tao, Jun; Yang, Qian; Zhang, Xiao-Feng; Bu, Xian-He
2010-11-15
By changing template cation but introducing trivalent iron ions in the known niccolite structural metal formate frameworks, three complexes formulated [NH(2)(CH(3))(2)][Fe(III)M(II)(HCOO)(6)] (M = Fe for 1, Mn for 2, and Co for 3) were synthesized and magnetically characterized. The variation in the compositions of the complexes leads to three different complexes: mixed-valent complex 1, heterometallic but with the same spin state complex 2, and heterometallic heterospin complex 3. The magnetic behaviors are closely related to the divalent metal ions used. Complex 1 exhibits negative magnetization assigned as Néel N-Type ferrimagnet, with an asymmetric magnetization reversal in the hysteresis loop, and complex 2 is an antiferromagnet with small spin canting (α(canting) ≈ 0.06° and T(canting) = 35 K), while complex 3 is a ferrimagnet with T(N) = 32 K.
NASA Astrophysics Data System (ADS)
Oliveira, Vytor; Cremer, Dieter
2017-08-01
Utilizing all-electron Dirac-exact relativistic calculations with the Normalized Elimination of the Small Component (NESC) method and the local vibrational mode approach, the transition from metal-halide to metal halogen bonding is determined for Au-complexes interacting with halogen-donors. The local stretching force constants of the metal-halogen interactions reveal a smooth transition from weak non-covalent halogen bonding to non-classical 3-center-4-electron bonding and finally covalent metal-halide bonding. The strongest halogen bonds are found for dialkylaurates interacting with Cl2 or FCl. Differing trends in the intrinsic halogen-metal bond strength, the binding energy, and the electrostatic potential are explained.
Shen, Laifa; Yu, Le; Yu, Xin-Yao; Zhang, Xiaogang; Lou, Xiong Wen David
2015-02-02
Despite the significant advancement in preparing metal oxide hollow structures, most approaches rely on template-based multistep procedures for tailoring the interior structure. In this work, we develop a new generally applicable strategy toward the synthesis of mixed-metal-oxide complex hollow spheres. Starting with metal glycerate solid spheres, we show that subsequent thermal annealing in air leads to the formation of complex hollow spheres of the resulting metal oxide. We demonstrate the concept by synthesizing highly uniform NiCo2O4 hollow spheres with a complex interior structure. With the small primary building nanoparticles, high structural integrity, complex interior architectures, and enlarged surface area, these unique NiCo2O4 hollow spheres exhibit superior electrochemical performances as advanced electrode materials for both lithium-ion batteries and supercapacitors. This approach can be an efficient self-templated strategy for the preparation of mixed-metal-oxide hollow spheres with complex interior structures and functionalities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Lichtenberg, Dennis L.
During this period some important breakthroughs were accomplished in understanding the relationships between molecular ionization energies and bond energies in transition metal complexes, in understanding the electronic factors of carbon-hydrogen bond activation by transition metals, in characterizing small molecule bonding interactions with transition metals, and in investigating intermolecular interactions in thin films of transition metal complexes. The formal relationship between measured molecular ionization energies and thermodynamic bond dissociation energies was developed into a single equation which unifies the treatment of covalent bonds, ionic bonds, and partially ionic bonds. The relationship was used to clarify the fundamental thermodynamic information relating to metal-hydrogen, metal-alkyl, and metal-metal bond energies. The ionization energies were also used to correlate the rates of carbonyl substitution reactions of (eta(sup 5)-C5H4X)Rh(CO)2 complexes, and to reveal the factors that control the stability of the transition state. The investigations of the fundamental interactions of C-H sigma and sigma* orbitals metals were continued with study of eta(sup 3)-1-methylallyl metal complexes. Direct observation and measurement of the stabilization energy provided by the agostic interaction of the C-H bond with the metal was obtained. The ability to observe the electronic effects of intermolecular interactions by comparing the ionizations of metal complexes in the gas phase with the ionizations of thin solid organometallic films prepared in ultra-high vacuum was established. Most significantly, the scanning tunneling microscope imaging of these thin films was accomplished.
Transition of a small-bipolaron gas to a Fröhlich polaron in a deformable lattice
NASA Astrophysics Data System (ADS)
Hettiarachchi, Gayan Prasad; Muhid, Mohd Nazlan Mohd; Hamdan, Halimaton
2018-04-01
The electronic properties of guest Cs atoms in a deformable lattice are investigated at various densities n . Low values of n show optical absorptions of small bipolarons. At intermediate n values, new bands appear in the midinfrared (MIR) and high-frequency regions, which coexist with the small bipolaron bands. With a further increase in n , the small bipolaron bands become less discernible and subsequently disappear, resulting in the appearance of a Drude component superimposed on a MIR sideband suggesting a phase transition to a polaronic metal. In this itinerant phase, an approximately twofold mass enhancement is observed. This continuous transition of a gas of small bipolarons to a polaronic metal characterized by a Fröhlich polaron reveals an important part of the complex phase diagram of the metal-insulator transition in a deformable lattice.
NASA Astrophysics Data System (ADS)
Liu, Boyang; Shao, Yingfeng; Xiang, Xin; Zhang, Fuhua; Yan, Shengchang; Li, Wenge
2017-08-01
Various carbon encapsulated nanocrystals, including MnS and MnO, Cr2O3, MoO2, Fe7S8 and Fe3O4, and ZrO2, are prepared in one step and in situ by a simple and highly efficient synthesis approach. The nanocrystals have an equiaxed morphology and a median size smaller than 30 nm. Tens and hundreds of these nanocrystals are entirely encapsulated by a wormlike amorphous carbon shell. The formation of a core-shell structure depends on the strongly exothermic reaction of metal π-complexes with ammonium persulfate in an autoclave at below 200 °C. During the oxidation process, the generated significant amounts of heat will destroy the molecular structure of the metal π-complex and cleave the ligands into small carbon fragments, which further transform into an amorphous carbon shell. The central metal atoms are oxidized to metal oxide/sulfide nanocrystals. The formation of a core-shell structure is independent of the numbers of ligands and carbon atoms as well as the metal types, implying that any metal π-complex can serve as a precursor and that various carbon encapsulated nanocrystals can be synthesized by this method.
Lessons from isolable nickel(I) precursor complexes for small molecule activation.
Yao, Shenglai; Driess, Matthias
2012-02-21
Small-molecule activation by transition metals is essential to numerous organic transformations, both biological and industrial. Creating useful metal-mediated activation systems often depends on stabilizing the metal with uncommon low oxidation states and low coordination numbers. This provides a redox-active metal center with vacant coordination sites well suited for interacting with small molecules. Monovalent nickel species, with their d(9) electronic configuration, are moderately strong one-electron reducing agents that are synthetically attractive if they can be isolated. They represent suitable reagents for closing the knowledge gap in nickel-mediated activation of small molecules. Recently, the first strikingly stable dinuclear β-diketiminate nickel(I) precursor complexes were synthesized, proving to be suitable promoters for small-molecule binding and activation. They have led to many unprecedented nickel complexes bearing activated small molecules in different reduction stages. In this Account, we describe selected achievements in the activation of nitrous oxide (N(2)O), O(2), the heavier chalcogens (S, Se, and Te), and white phosphorus (P(4)) through this β-diketiminatonickel(I) precursor species. We emphasize the reductive activation of O(2), owing to its promise in oxidation processes. The one-electron-reduced O(2) activation product, that is, the corresponding β-diketiminato-supported Ni-O(2) complex, is a genuine superoxonickel(II) complex, representing an important intermediate in the early stages of O(2) activation. It selectively acts as an oxygen-atom transfer agent, hydrogen-atom scavenger, or both towards exogenous organic substrates to yield oxidation products. The one-electron reduction of the superoxonickel(II) moiety was examined by using elemental potassium, β-diketiminatozinc(II) chloride, and β-diketiminatoiron(I) complexes, affording the first heterobimetallic complexes featuring a [NiO(2)M] subunit (M is K, Zn, or Fe). Through density functional theory (DFT) calculations, the geometric and electronic structures of these complexes were established and their distinctive reactivity, including the unprecedented monooxygenase-like activity of a bis(μ-oxo)nickel-iron complex, was studied. The studies have further led to other heterobimetallic complexes containing a [NiO(2)M] core, which are useful for understanding the influence of the heterometal on structure-reactivity relationships. The activation of N(2)O led directly to the hydrogen-atom abstraction product bis(μ-hydroxo)nickel(II) species and prevented isolation of any intermediate. In contrast, the activation of elemental S, Se, and Te with the same nickel(I) reagent furnished activation products with superchalcogenido E(2)(-) (E is S, Se, or Te) and dichalcogenido E(2)(2-) ligand in different activation stages. The isolable supersulfidonickel(II) subunit may serve as a versatile building block for the synthesis of heterobimetallic disulfidonickel(II) complexes with a [NiS(2)M] core. In the case of white phosphorus, the P(4) molecule has been coordinated to the nickel(I) center of dinuclear β-diketiminatonickel(I) precursor complexes; however, the whole P(4) subunit is a weaker electron acceptor than the dichalcogen ligands E(2), thus remaining unreduced. This P(4) binding mode is rare and could open new doors for subsequent functionalization of P(4). Our advances in understanding how these small molecules are bound to a nickel(I) center and are activated for further transformation offer promise for designing new catalysts. These nickel-containing complexes offer exceptional potential for nickel-mediated transformations of organic molecules and as model compounds for mimicking active sites of nickel-containing metalloenzymes.
Stable singlet carbenes as mimics for transition metal centers
Martin, David; Soleilhavoup, Michele
2011-01-01
This perspective summarizes recent results, which demonstrate that stable carbenes can activate small molecules (CO, H2, NH3 and P4) and stabilize highly reactive intermediates (main group elements in the zero oxidation state and paramagnetic species). These two tasks were previously exclusive for transition metal complexes. PMID:21743834
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, K.J.; Lee, L.; Mabbott, G.A.
1983-03-30
The electrochemistry of a series of mixed-metal bimetallic complexes of the type B/sub 5/MLM'B'/sub 5/, where B/sub 5/M = (CNN)/sub 5/Fe/sup II/ or (NH/sub 3/)/sub 5/Ru/sup II/, L = pyrazine, 4,4'-bipyridine, or 4-cyanopyridine, M'B'/sub 5/ = Rh/sup III/(NH/sub 3/)/sub 5/ or Co/sup III/(CN)/sub 5/, is reported. The bimetallic complexes all have metal-to-ligand charge-transfer (MLCT) bands associated with the M-B unit (d/sub ..pi../M ..-->.. p/sub ..pi../*L). The effect of the remote metal center, M'B'/sub 5/, is to function as a Lewis acid, shifting the MLCT maximum to lower energy and shifting the M/sup III///sup II/ reduction potential more positive with respectmore » to free B/sub 5/ML. The remote metal influence is attenuated by longer bridging ligands and by reduced ..pi..-overlap. A comparison of the electrochemical data of the mixed-valence Fe(II)/Fe(III) and Ru(II)/Ru(III) complexes to the mixed-metal Fe(II)/Co(III) and Ru(II)/Rh(III) complexes has enabled a quantitative measure of the stabilization due to electron delocalization in the mixed-valence complexes. The results show that electron delocalization is greater for the ruthenium complexes than for the iron complexes, is a small contributor to the total stabilization of the mixed-valence state, and even in ruthenium drops off rapidly as the length of the bridge increases.« less
Multipoint molecular recognition within a calix[6]arene funnel complex
Coquière, David; de la Lande, Aurélien; Martí, Sergio; Parisel, Olivier; Prangé, Thierry; Reinaud, Olivia
2009-01-01
A multipoint recognition system based on a calix[6]arene is described. The calixarene core is decorated on alternating aromatic subunits by 3 imidazole arms at the small rim and 3 aniline groups at the large rim. This substitution pattern projects the aniline nitrogens toward each other when Zn(II) binds at the Tris-imidazole site or when a proton binds at an aniline. The XRD structure of the monoprotonated complex having an acetonitrile molecule bound to Zn(II) in the cavity revealed a constrained geometry at the metal center reminiscent of an entatic state. Computer modeling suggests that the aniline groups behave as a tritopic monobasic site in which only 1 aniline unit is protonated and interacts with the other 2 through strong hydrogen bonding. The metal complex selectively binds a monoprotonated diamine vs. a monoamine through multipoint recognition: coordination to the metal ion at the small rim, hydrogen bonding to the calix-oxygen core, CH/π interaction within the cavity's aromatic walls, and H-bonding to the anilines at the large rim. PMID:19237564
Photoactivatable metal complexes: from theory to applications in biotechnology and medicine.
Smith, Nichola A; Sadler, Peter J
2013-07-28
This short review highlights some of the exciting new experimental and theoretical developments in the field of photoactivatable metal complexes and their applications in biotechnology and medicine. The examples chosen are based on some of the presentations at the Royal Society Discussion Meeting in June 2012, many of which are featured in more detail in other articles in this issue. This is a young field. Even the photochemistry of well-known systems such as metal-carbonyl complexes is still being elucidated. Striking are the recent developments in theory and computation (e.g. time-dependent density functional theory) and in ultrafast-pulsed radiation techniques which allow photochemical reactions to be followed and their mechanisms to be revealed on picosecond/nanosecond time scales. Not only do some metal complexes (e.g. those of Ru and Ir) possess favourable emission properties which allow functional imaging of cells and tissues (e.g. DNA interactions), but metal complexes can also provide spatially controlled photorelease of bioactive small molecules (e.g. CO and NO)--a novel strategy for site-directed therapy. This extends to cancer therapy, where metal-based precursors offer the prospect of generating excited-state drugs with new mechanisms of action that complement and augment those of current organic photosensitizers.
Interactions of platinum metals and their complexes in biological systems.
LeRoy, A F
1975-01-01
Platinum-metal oxidation catalysts are to be introduced in exhaust systems of many 1975 model-year automobiles in the U.S. to meet Clean Air Act standards. Small quantities of finely divided catalyst have been found issuing from prototype systems; platinum and palladium compounds may be found also. Although platinum exhibits a remarkable resistance to oxidation and chemical attack, it reacts chemically under some conditions producing coordination complex compounds. Palladium reacts more readily than platinum. Some platinum-metal complexes interact with biological systems as bacteriostatic, bacteriocidal, viricidal, and immunosuppressive agents. Workers chronically exposed to platinum complexes often develop asthma-like respiratory distress and skin reactions called platinosis. Platinum complexes used alone and in combination therapy with other drugs have recently emerged as effective agents in cancer chemotherapy. Understanding toxic and favorable interactions of metal species with living organisms requires basic information on quantities and chemical characteristics of complexes at trace concentrations in biological materials. Some basic chemical kinetic and thermodynamic data are presented to characterize the chemical behavior of the complex cis-[Pt(NH3)2Cl2] used therapeutically. A brief discussion of platinum at manogram levels in biological tissue is discussed. PMID:50943
Bang, Suhee; Lee, Yong -Min; Hong, Seungwoo; ...
2014-09-14
Redox-inactive metal ions that function as Lewis acids play pivotal roles in modulating the reactivity of oxygen-containing metal complexes and metalloenzymes, such as the oxygen-evolving complex in photosystem II and its small-molecule mimics. Here we report the synthesis and characterization of non-haem iron(III)–peroxo complexes that bind redox-inactive metal ions, (TMC)FeIII–(μ,η 2:η 2-O 2)–M n+ (M n+ = Sr 2+, Ca 2+, Zn 2+, Lu 3+, Y 3+ and Sc 3+; TMC, 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane). We demonstrate that the Ca 2+ and Sr 2+ complexes showed similar electrochemical properties and reactivities in one-electron oxidation or reduction reactions. However, the properties and reactivities ofmore » complexes formed with stronger Lewis acidities were found to be markedly different. In conclusion, complexes that contain Ca 2+ or Sr 2+ ions were oxidized by an electron acceptor to release O 2, whereas the release of O 2 did not occur for complexes that bind stronger Lewis acids. Furthermore, we discuss these results in the light of the functional role of the Ca 2+ ion in the oxidation of water to dioxygen by the oxygen-evolving complex.« less
Bang, Suhee; Lee, Yong-Min; Hong, Seungwoo; Cho, Kyung-Bin; Nishida, Yusuke; Seo, Mi Sook; Sarangi, Ritimukta; Fukuzumi, Shunichi; Nam, Wonwoo
2014-01-01
Redox-inactive metal ions that function as Lewis acids play pivotal roles in modulating the reactivity of oxygen-containing metal complexes and metalloenzymes, such as the oxygen-evolving complex in photosystem II and its small-molecule mimics. Here we report the synthesis and characterization of non-haem iron(III)–peroxo complexes that bind redox-inactive metal ions, (TMC)FeIII–(μ,η2:η2-O2)–Mn+ (Mn+ = Sr2+, Ca2+, Zn2+, Lu3+, Y3+ and Sc3+; TMC, 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane). We demonstrate that the Ca2+ and Sr2+ complexes showed similar electrochemical properties and reactivities in one-electron oxidation or reduction reactions. However, the properties and reactivities of complexes formed with stronger Lewis acidities were found to be markedly different. Complexes that contain Ca2+ or Sr2+ ions were oxidized by an electron acceptor to release O2, whereas the release of O2 did not occur for complexes that bind stronger Lewis acids. We discuss these results in the light of the functional role of the Ca2+ ion in the oxidation of water to dioxygen by the oxygen-evolving complex. PMID:25242490
Savelieff, Masha G; DeToma, Alaina S; Derrick, Jeffrey S; Lim, Mi Hee
2014-08-19
The development of a cure for Alzheimer's disease (AD) has been impeded by an inability to pinpoint the root cause of this disorder. Although numerous potential pathological factors have been indicated, acting either individually or mutually, the molecular mechanisms leading to disease onset and progression have not been clear. Amyloid-β (Aβ), generated from proteolytic processing of the amyloid precursor protein (APP), and its aggregated forms, particularly oligomers, are suggested as key pathological features in AD-affected brains. Historically, highly concentrated metals are found colocalized within Aβ plaques. Metal binding to Aβ (metal-Aβ) generates/stabilizes potentially toxic Aβ oligomers, and produces reactive oxygen species (ROS) in vitro (redox active metal ions; plausible contribution to oxidative stress). Consequently, clarification of the relationship between Aβ, metal ions, and toxicity, including oxidative stress via metal-Aβ, can lead to a deeper understanding of AD development. To probe the involvement of metal-Aβ in AD pathogenesis, rationally designed and naturally occurring molecules have been examined as chemical tools to target metal-Aβ species, modulate the interaction between the metal and Aβ, and subsequently redirect their aggregation into nontoxic, off-pathway unstructured aggregates. These ligands are also capable of attenuating the generation of redox active metal-Aβ-induced ROS to mitigate oxidative stress. One rational design concept, the incorporation approach, installs a metal binding site into a framework known to interact with Aβ. This approach affords compounds with the simultaneous ability to chelate metal ions and interact with Aβ. Natural products capable of Aβ interaction have been investigated for their influence on metal-induced Aβ aggregation and have inspired the construction of synthetic analogues. Systematic studies of these synthetic or natural molecules could uncover relationships between chemical structures, metal/Aβ/metal-Aβ interactions, and inhibition of Aβ/metal-Aβ reactivity (i.e., aggregation modes of Aβ/metal-Aβ; associated ROS production), suggesting mechanisms to refine the design strategy. Interdisciplinary investigations have demonstrated that the designed molecules and natural products control the aggregation pathways of metal-Aβ species transforming their size/conformation distribution. The aptitude of these molecules to impact metal-Aβ aggregation pathways, either via inhibition of Aβ aggregate formation, most importantly of oligomers, or disaggregation of preformed fibrils, could originate from their formation of complexes with metal-Aβ. Potentially, these molecules could direct metal-Aβ size/conformational states into alternative nontoxic unstructured oligomers, and control the geometry at the Aβ-ligated metal center for limited ROS formation to lessen the overall toxicity induced by metal-Aβ. Complexation between small molecules and Aβ/metal-Aβ has been observed by nuclear magnetic resonance spectroscopy (NMR) and ion mobility-mass spectrometry (IM-MS) pointing to molecular level interactions, validating the design strategy. In addition, these molecules exhibit other attractive properties, such as antioxidant capacity, prevention of ROS production, potential blood-brain barrier (BBB) permeability, and reduction of Aβ-/metal-Aβ-induced cytotoxicity, making them desirable tools for unraveling AD complexity. In this Account, we summarize the recent development of small molecules, via both rational design and the selection and modification of natural products, as tools for investigating metal-Aβ complexes, to advance our understanding of their relation to AD pathology.
Printing of metallic 3D micro-objects by laser induced forward transfer.
Zenou, Michael; Kotler, Zvi
2016-01-25
Digital printing of 3D metal micro-structures by laser induced forward transfer under ambient conditions is reviewed. Recent progress has allowed drop on demand transfer of molten, femto-liter, metal droplets with a high jetting directionality. Such small volume droplets solidify instantly, on a nanosecond time scale, as they touch the substrate. This fast solidification limits their lateral spreading and allows the fabrication of high aspect ratio and complex 3D metal structures. Several examples of micron-scale resolution metal objects printed using this method are presented and discussed.
2016-07-06
The work reported in this paper is a part of on-going studies to clarify how and to what extent soil electromagnetic properties affect the...metallic sphere buried in a non-conducting soil half-space with frequency-dependent complex magnetic susceptibility. The sphere is chosen as a simple...prototype for the small metal parts in low-metal landmines, while soil with dispersive magnetic susceptibility is a good model for some soils that are
Infrared Spectroscopy of Metal Ion Complexes: Models for Metal Ligand Interactions and Solvation
NASA Astrophysics Data System (ADS)
Duncan, Michael
2006-03-01
Weakly bound complexes of the form M^+-Lx (M=Fe, Ni, Co, etc.; L=CO2, C2H2, H2O, benzene, N2) are prepared in supersonic molecular beams by laser vaporization in a pulsed-nozzle cluster source. These species are mass analyzed and size-selected in a reflectron time-of-flight mass spectrometer. Clusters are photodissociated at infrared wavelengths with a Nd:YAG pumped infrared optical parametric oscillator/amplifier (OPO/OPA) laser or with a tunable infrared free-electron laser. M^+-(CO2)x complexes absorb near the free CO2 asymmetric stretch near 2349 cm-1 but with an interesting size dependent variation in the resonances. Small clusters have blue-shifted resonances, while larger complexes have additional bands due to surface CO2 molecules not attached to the metal. M^+(C2H2)n complexes absorb near the C-H stretches in acetylene, but resonances in metal complexes are red-shifted with repect to the isolated molecule. Ni^+ and Co^+ complexes with acetylene undergo intracluster cyclization reactions to form cyclobutadiene. Transition metal water complexes are studied in the O-H stretch region, and partial rotational structure can be measured. M^+(benzene) and M^+(benzene)2 ions (M=V, Ti, Al) represent half-sandwich and sandwich species, whose spectra are measured near the free benzene modes. These new IR spectra and their assignments will be discussed as well as other new IR spectra for similar complexes.
Jami-Alahmadi, Yasaman; Fridgen, Travis D
2016-01-21
M(Pro2-H)(+) complexes were electrosprayed and isolated in an FTICR cell where their unimolecular chemistries and structures were explored using SORI-CID and IRMPD spectroscopy. These experiments were augmented by computational methods such as electronic structure, simulated annealing, and atoms in molecules (AIM) calculations. The unimolecular chemistries of the larger metal cation (Ca(2+), Sr(2+) and Ba(2+)) complexes predominantly involve loss of neutral proline whereas the complexes involving the smaller Mg(2+) and transition metal dications tend to lose small neutral molecules such as water and carbon dioxide. Interestingly, all complexes involving transition metal dications except for Cu(Pro2-H)(+) lose H2 upon collisional or IRMPD activation. IRMPD spectroscopy shows that the intact proline in the transition metal complexes and Cu(Pro2-H)(+) is predominantly canonical (charge solvated) while for the Ca(2+), Sr(2+), and Ba(2+) complexes, proline is in its zwitterionic form. The IRMPD spectra for both Mg(Pro2-H)(+) and Mn(Pro2-H)(+) are concluded to have contributions from both charge-solvated and canonical structures.
Trace Metal-Humic Complexes in Natural Waters: Insights From Speciation Experiments
NASA Astrophysics Data System (ADS)
Stern, J. C.; Salters, V.; Sonke, J.
2006-12-01
The DOM cycle is intimately linked to the cycling and bioavailability of trace metals in aqueous environments. The presence or absence of DOM in the water column can determined whether trace elements will be present in limited quantities as a nutrient, or in surplus quantities as a toxicant. Humic substances (HS), which represent the refractory products of DOM degradation, strongly affect the speciation of trace metals in natural waters. To simulate metal-HS interactions in nature, experiments must be carried out using trace metal concentrations. Sensitive detection systems such as ICP-MS make working with small (nanomolar) concentrations possible. Capillary electrophoresis coupled with ICP-MS (CE-ICP-MS) has recently been identified as a rapid and accurate method to separate metal species and calculate conditional binding constants (log K_c) of metal-humic complexes. CE-ICP-MS was used to measure partitioning of metals between humic substances and a competing ligand (EDTA) and calculate binding constants of rare earth element (REE) and Th, Hf, and Zr-humic complexes at pH 3.5-8 and ionic strength of 0.1. Equilibrium dialysis ligand exchange (EDLE) experiments to validate the CE-ICP-MS method were performed to separate the metal-HS and metal-EDTA species by partitioning due to size exclusion via diffusion through a 1000 Da membrane. CE-ICP-MS experiments were also conducted to compare binding constants of REE with humic substances of various origin, including soil, peat, and aquatic DOM. Results of our experiments show an increase in log K_c with decrease in ionic radius for REE-humic complexes (the lanthanide contraction effect). Conditional binding constants of tetravalent metal-humic complexes were found to be several orders of magnitude higher than REE-humic complexes, indicating that tetravalent metals have a very strong affinity for humic substances. Because thorium is often used as a proxy for the tetravalent actinides, Th-HS binding constants can allow us to assess the importance of tetravalent actinide-humic complexes in groundwater transport from nuclear repositories. Our results suggest that tetravalent actinide-humic complexes couild be more important to account for in predictive speciation models than previously thought.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hye Sun; Department of Materials Science and Engineering, Yonsei University, Seoul 120-749; Kim, Won Hee
2012-01-15
Highly ordered mesoporous silica nanoparticles with tunable morphology and pore-size are prepared by the use of a transition metal-chelating surfactant micelle complex using Co{sup 2+}, Ni{sup 2+}, Cu{sup 2+}, and Zn{sup 2+} ions. These metal ions formed a metal-P123 micelle complex in an aqueous solution, while the metal ions are chelated to the hydrophilic domain such as the poly(ethylene oxide) group of a P123 surfactant. The different complexation abilities of the utilized transition metal ions play an important role in determining the formation of nano-sized ordered MSNs due to the different stabilization constant of the metal-P123 complex. Consequently, from amore » particle length of 1700 nm in the original mesoporous silica materials, the particle length of ordered MSNs through the metal-chelating P123 micelle templates can be reduced to a range of 180-800 nm. Furthermore, the variation of pore size shows a slight change from 8.8 to 6.6 nm. In particular, the Cu{sup 2+}-chelated MSNs show only decreased particle size to 180 nm. The stability constants for the metal-P123 complex are calculated on the basis of molar conductance measurements in order to elucidate the formation mechanism of MSNs by the metal-chelating P123 complex templates. In addition, solid-state {sup 29}Si, {sup 13}C-NMR and ICP-OES measurements are used for quantitative characterization reveal that the utilized metal ions affect only the formation of a metal-P123 complex in a micelle as a template. - Graphical abstract: Metal-chelating surfactant micelle templates support a simple and facile preparations of size-tunable ordered MSNs. Black-Small-Square Highlights: Black-Right-Pointing-Pointer Facile preparation of mesoporous silica nanoparticles (MSNs) was achieved by metal-chelating surfactant micelle complex using Co{sup 2+}, Ni{sup 2+}, Cu{sup 2+}, and Zn{sup 2+} ions. Black-Right-Pointing-Pointer Different complexation of metal ions plays an important role in determining the formation of nano-sized ordered MSNs. Black-Right-Pointing-Pointer Systematic characterization of the synthesized materials was achieved by solid-state {sup 29}Si and {sup 13}C-NMR techniques, BET, FT-IR, and XPS. Black-Right-Pointing-Pointer Stability constants for the metal-P123 complex are calculated on the basis of molar conductance measurements in order to elucidate the formation mechanism.« less
Metal clusters and nanoparticles in dielectric matrices: Formation and optical properties
NASA Astrophysics Data System (ADS)
Gladskikh, I. A.; Vartanyan, T. A.
2016-12-01
The optical properties of thin dielectric films with metal inclusions and their dependence on thermal and laser annealing are studied experimentally. Metal clusters (Ag, Au, and Cu) in dielectric materials (Al2O3 and SiO2) are obtained by simultaneous vacuum deposition of metal and dielectric on the surface of a corresponding dielectric substrate (sapphire and quartz). It is shown that, depending on the deposited dielectric material, on the weight ratio of deposited metal and dielectric, and on the subsequent thermal treatment, one can obtain different metal structures, from clusters with a small number of atoms to complex dendritic plasmonic structures.
PROCESS FOR TREATING VOLATILE METAL FLUORIDES
Rudge, A.J.; Lowe, A.J.
1957-10-01
This patent relates to the purification of uranium hexafluoride, made by reacting the metal or its tetrafluoride with fluorine, from the frequently contained traces of hydrofluoric acid. According to the present process, UF/sub 6/ containing as an impurity a small amount of hydrofluoric acid, is treated to remove such impurity by contact with an anhydrous alkali metal fluoride such as sodium fluoride. In this way a non-volatile complex containing hydrofluoric acid and the alkali metal fluoride is formed, and the volatile UF /sub 6/ may then be removed by distillation.
Emergence of complex chemistry on an organic monolayer.
Prins, Leonard J
2015-07-21
In many origin-of-life scenarios, inorganic materials, such as FeS or mineral clays, play an important role owing to their ability to concentrate and select small organic molecules on their surface and facilitate their chemical transformations into new molecules. However, considering that life is made up of organic matter, at a certain stage during the evolution the role of the inorganic material must have been taken over by organic molecules. How this exactly happened is unclear, and, indeed, a big gap separates the rudimentary level of organization involving inorganic materials and the complex organization of cells, which are the building blocks of life. Over the past years, we have extensively studied the interaction of small molecules with monolayer-protected gold nanoparticles (Au NPs) for the purpose of developing innovative sensing and catalytic systems. During the course of these studies, we realized that the functional role of this system is very similar to that typically attributed to inorganic surfaces in the early stages of life, with the important being difference that the functional properties (molecular recognition, catalysis, signaling, adaptation) originate entirely from the organic monolayer rather than the inorganic support. This led us to the proposition that this system may serve as a model that illustrates how the important role of inorganic surfaces in dictating chemical processes in the early stages of life may have been taken over by organic matter. Here, we reframe our previously obtained results in the context of the origin-of-life question. The following functional roles of Au NPs will be discussed: the ability to concentrate small molecules and create different local populations, the ability to catalyze the chemical transformation of bound molecules, and, finally, the ability to install rudimentary signaling pathways and display primitive adaptive behavior. In particular, we will show that many of the functional properties of the system originate from two features: the presence of metal ions that are complexed in the organic monolayer and the multivalent nature of the system. Complexed metal ions play an important role in determining the affinity and selectivity of the interaction with small molecules, but serve also as regulatory elements for determining how many molecules are bound simultaneously. Importantly, neighboring metal ion complexes also create catalytic pockets in which two metal ions cooperatively catalyze the cleavage of an RNA-model compound. The multivalent nature of the system permits multiple noncovalent interactions with small molecules that enhances the affinity, but is also at the basis of simple signal transduction pathways and adaptive behavior.
Supported cluster catalysts synthesized to be small, simple, selective, and stable
Guan, Erjia; Fang, Chia-Yu; Yang, Dong; ...
2018-01-01
Molecular metal complexes on supports have drawn wide attention as catalysts offering new properties and opportunities for precise synthesis to make uniform catalytic species that can be understood in depth.
Recycle of radioactive scrap metal from the Oak Ridge Gaseous Diffusion Plant (K-25 Site)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meehan, R.W.
1997-02-01
The scale of the metal available for reuse at the plant includes 22 million pounds of Ni, 17 million pounds of Al, 47 million pounds of copper, and 835 million pounds of steels. In addition there is a wide range of industrial equipment and other items of value. The author describes small bench scale and pilot plant scale efforts made at treating metal for decontamination and fabrication into cast stock or specialized containers for reuse within the DOE complex or release. These projects show that much of the material can be cleaned or chemically decontaminated to a level where itmore » can be free released to various markets. Of the remaining metals, much of it can be cast into products which can be absorbed within the DOE complex.« less
Reaction pathways in atomistic models of thin film growth
NASA Astrophysics Data System (ADS)
Lloyd, Adam L.; Zhou, Ying; Yu, Miao; Scott, Chris; Smith, Roger; Kenny, Steven D.
2017-10-01
The atomistic processes that form the basis of thin film growth often involve complex multi-atom movements of atoms or groups of atoms on or close to the surface of a substrate. These transitions and their pathways are often difficult to predict in advance. By using an adaptive kinetic Monte Carlo (AKMC) approach, many complex mechanisms can be identified so that the growth processes can be understood and ultimately controlled. Here the AKMC technique is briefly described along with some special adaptions that can speed up the simulations when, for example, the transition barriers are small. Examples are given of such complex processes that occur in different material systems especially for the growth of metals and metallic oxides.
Mellone, Irene; Bertini, Federica; Gonsalvi, Luca; Guerriero, Antonella; Peruzzini, Maurizio
2015-01-01
Recent developments in the coordination chemistry and applications of Ru-triphos [triphos = 1,1,1-tris-(diphenylphosphinomethyl)ethane] systems are reviewed, highlighting their role as active and selective homogenous catalysts for small molecule activation, biomass conversions and in carbon dioxide utilization-related processes.
Fu, Chien-Ping; Lirio, Stephen; Liu, Wan-Ling; Lin, Chia-Her; Huang, Hsi-Ya
2015-08-12
A 3D metal-organic framework (MOF) nanomaterial as matrix for surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) and tandem mass spectrometry (MS/MS) was developed for the analysis of complex biomolecules. Unlike other nanoparticle matrices, this MOF nanomaterial does not need chemical modification prior to use. An exceptional signal reproducibility as well as very low background interferences in analyzing mono-/di-saccharides, peptides and complex starch digests demonstrate its high potential for biomolecule assays, especially for small molecules. Copyright © 2015 Elsevier B.V. All rights reserved.
Electromagnetic Resonances of Metallic Bodies.
1997-06-01
complex objects. MOM creates a discrete model of the object by dividing the object into electrically small charge and current segments referred to as the...distribution is unlimited ELECROMAGNETIC RESONANCES OF METALLIC BODIES William A. Lintz Lieutenant, United States Navy B.E.E., Villanova University, 1992...Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN ELECTRICAL ENGINEERING from the NAVAL POSTGRADUATE SCHOOL June
NASA Astrophysics Data System (ADS)
Spoelstra, Paul; Djakow, Eugen; Homberg, Werner
2017-10-01
The production of complex organic shapes in sheet metals is gaining more importance in the food industry due to increasing functional and hygienic demands. Hence it is necessary to produce parts with complex geometries promoting cleanability and general sanitation leading to improvement of food safety. In this context, and especially when stainless steel has to be formed into highly complex geometries while maintaining desired surface properties, it is inevitable that alternative manufacturing processes will need to be used which meet these requirements. Rubber pad forming offers high potential when it comes to shaping complex parts with excellent surface quality, with virtually no tool marks and scratches. Especially in cases where only small series are to be produced, rubber pad forming processes offers both technological and economic advantages. Due to the flexible punch, variation in metal thickness can be used with the same forming tool. The investments to set-up Rubber pad forming is low in comparison to conventional sheet metal forming processes. The process facilitates production of shallow sheet metal parts with complex contours and bends. Different bending sequences in a multiple tool set-up can also be conducted. The planned contribution thus describes a brief overview of the rubber pad technology. It shows the prototype rubber pad forming machine which can be used to perform complex part geometries made from stainless steel (1.4301). Based on an analysis of the already existing systems and new machines for rubber pad forming processes, together with their process properties, influencing variables and areas of application, some relevant parts for the food industry are presented.
NASA Astrophysics Data System (ADS)
Fitzsimmons, J. N.; Parker, C.; Sherrell, R. M.
2016-02-01
The physicochemical speciation of trace metals in seawater influences their cycling as essential micronutrients for microorganisms or as tracers of anthropogenic influences on the marine environment. While chemical speciation affects lability, the size of metal complexes influences their ability to be accessed biologically and also influences their fate in the aggregation pathway to marine particles. In this study, we show that multiple trace metals in shelf and open ocean waters off northern California (IRN-BRU cruise, July 2014) have colloidal-sized components. Colloidal fractions were operationally defined using two ultrafiltration methods: a 0.02 µm Anopore membrane and a 10 kDa ( 0.003 µm) cross flow filtration (CFF) system. Together these two methods distinguished small (0.003 - 0.02 µm) and large (0.02 µm - 0.2 µm) colloids. As has been found previously for seawater in other ocean regimes, dissolved Fe had a broad size distribution with 50% soluble (<10 kDa) complexes and both small and large colloidal species. Dissolved Mn had no measurable colloidal component, consistent with its predicted chemical speciation as free Mn(II). Dissolved Cu, which like Fe is thought to be nearly fully organically bound in seawater, was only 25% colloidal, and these colloids were all small. Surprisingly Cd, Ni, and Pb also showed colloidal components (8-20%, 25-40%, and 10-50%) despite their hypothesized low organic speciation. Zn and Pb were nearly completely sorbed onto the Anopore membrane, making CFF the only viable ultrafiltration method for those elements. Zn suffered incomplete recovery ( 50-75%) through the CFF system but showed 30-85% colloidal contribution; thus, verifying a Zn colloidal phase with these methods is challenging. Conclusions will reveal links between the physical and chemical speciation for these metals and what role these metal colloids might have on trace metal exchange between the ocean margin and offshore waters.
Sun, Dengrong; Ye, Lin; Sun, Fangxiang; García, Hermenegildo; Li, Zhaohui
2017-05-01
Calcination of the mixed-metal species Co/Ni-MOF-74 leads to the formation of carbon-coated Co x Ni 1-x @Co y Ni 1-y O with a metal core diameter of ∼3.2 nm and a metal oxide shell thickness of ∼2.4 nm embedded uniformly in the ligand-derived carbon matrix. The close proximity of Co and Ni in the mixed-metal Co/Ni-MOF-74 promotes the metal alloying and the formation of a solid solution of metal oxide during the calcination process. The presence of the tightly coated carbon shell prohibits particle agglomeration and stabilizes the Co x Ni 1-x @Co y Ni 1-y O nanoparticles in small size. The Co x Ni 1-x @Co y Ni 1-y O@C derived from Co/Ni-MOF-74 nanocomposites show superior performance for the oxygen evolution reaction (OER). The use of mixed-metal MOFs as precursors represents a powerful strategy for the fabrication of metal alloy@metal oxide solid solution nanoparticles in small size. This method also holds great promise in the development of multifunctional carbon-coated complex core-shell metal/metal oxides owing to the diversified MOF structures and their flexible chemistry.
NASA Astrophysics Data System (ADS)
Joshi, Ravi
2017-10-01
Copper (Cu) and manganese (Mn) ions are catalytic centers, in complexed form, in scavenging and dismutation process of superoxide radicals anion (O2.-) by superoxide dismutase enzyme. In the present work, fast reaction kinetics and mechanism of scavenging and dismutation of O2.- by Cu2+, Mn2+ and their complexes formed with some natural ligands have been studied using pulse radiolysis technique. Catechol, gentisic acid, tetrahydroxyquinone, tyrosine, tryptophan, embelin and bilirubin have been used as low molecular weight natural ligands for Cu2+ and Mn2+ to understand superoxide radical scavenging and dismutation reactions. These complexes have been found to be efficient scavengers of O2.- (k 107-109 M-1 s-1). The effects of nature of metal ion and ligand, and stoichiometry of complex on scavenging reaction rate constants are reported. Higher scavenging rate constants have been observed with complexes of: (1) Cu2+ as compared to Mn2+, and (2) at [ligand]/[metal] ratio of one as compared to two. A clear evidence of O2.- dismutation by free metal ions and some of the complexes has been observed. The study suggests that complexes of Cu2+ and Mn2+ with small natural ligands can also act as SOD mimics.
Vibrational energy transfer dynamics in ruthenium polypyridine transition metal complexes.
Fedoseeva, Marina; Delor, Milan; Parker, Simon C; Sazanovich, Igor V; Towrie, Michael; Parker, Anthony W; Weinstein, Julia A
2015-01-21
Understanding the dynamics of the initial stages of vibrational energy transfer in transition metal complexes is a challenging fundamental question which is also of crucial importance for many applications, such as improving the performance of solar devices or photocatalysis. The present study investigates vibrational energy transport in the ground and the electronic excited state of Ru(4,4'-(COOEt)2-2,2-bpy)2(NCS)2, a close relative of the efficient "N3" dye used in dye-sensitized solar cells. Using the emerging technique of ultrafast two-dimensional infrared spectroscopy, we show that, similarly to other transition-metal complexes, the central Ru heavy atom acts as a "bottleneck" making the energy transfer from small ligands with high energy vibrational stretching frequencies less favorable and thereby affecting the efficiency of vibrational energy flow in the complex. Comparison of the vibrational relaxation times in the electronic ground and excited state of Ru(4,4'-(COOEt)2-2,2-bpy)2(NCS)2 shows that it is dramatically faster in the latter. We propose to explain this observation by the intramolecular electrostatic interactions between the thiocyanate group and partially oxidised Ru metal center, which increase the degree of vibrational coupling between CN and Ru-N modes in the excited state thus reducing structural and thermodynamic barriers that slow down vibrational relaxation and energy transport in the electronic ground state. As a very similar behavior was earlier observed in another transition-metal complex, Re(4,4'-(COOEt)2-2,2'-bpy)(CO)3Cl, we suggest that this effect in vibrational energy dynamics might be common for transition-metal complexes with heavy central atoms.
High-Density Terminal Box for Testing Wire Harness
NASA Technical Reports Server (NTRS)
Pierce, W. B.; Collins, W. G.
1982-01-01
Compact terminal box provides access to complex wiring harnesses for testing. Box accommodates more than twice as many wires as previous boxes. Box takes in wires via cable connectors and distributes them to contacts on box face. Instead of separate insulated jacks in metal face panel, box uses pairs of small military-standard metal sockets in precision-drilled plastic panel. Shorting plug provides continuity for wires when not being tested.
UWB tomosynthesis of objects in mediums with metal inclusions
NASA Astrophysics Data System (ADS)
Yakubov, V. P.; Shipilov, S. E.; Sukhanov, D. Ya; Minin, I. V.; Minin, O. V.
2017-08-01
Radiowave tomography of dielectric objects containing metal inclusions is a rather complex problem, since the scattering of waves by dielectric inhomogeneities occurs against the background of substantially stronger reflections from metal parts, even if they are geometrically small. The arising features of obtaining a tomogram in such conditions, including overcoming of disguising by reinforcing ribbons and the appearance of locational shadows at different depths, are discussed in the paper. Herewith principled importance to achieve high focusing of UWB radiation by tomosynthesis is noted on the basis of direct experimental data.
Zhang, Hong; Liu, Xuewen; He, Xiaojun; Liu, Ying; Tan, Lifeng
2014-11-01
There is renewed interest in investigating triple helices because these novel structures have been implicated as a possible means of controlling cellular processes by endogenous or exogenous mechanisms. Due to the Hoogsteen base pairing, triple helices are, however, thermodynamically less stable than the corresponding duplexes. The poor stability of triple helices limits their practical applications under physiological conditions. In contrast to DNA triple helices, small molecules stabilizing RNA triple helices at present are less well established. Furthermore, most of these studies are limited to organic compounds and, to a far lesser extent, to metal complexes. In this work, two Ru(II) complexes, [Ru(bpy)2(btip)](2+) (Ru1) and [Ru(phen)2(btip)](2+) (Ru2), have been synthesized and characterized. The binding properties of the two metal complexes with the triple RNA poly(U)˙poly(A)*poly(U) were studied by various biophysical and density functional theory methods. The main results obtained here suggest that the slight binding difference in Ru1 and Ru2 may be attributed to the planarity of the intercalative ligand and the LUMO level of Ru(II) complexes. This study further advances our knowledge on the triplex RNA-binding by metal complexes, particularly Ru(II) complexes.
Focused Research Group in Correlated Electron and Complex Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ziqiang
While the remarkable physical properties of correlated and complex electronic materials hold great promise for technological applications, one of the key values of the research in this field is its profound impact on fundamental physics. The transition metal oxides, pnictides, and chalcogenides play a key role and occupy an especially important place in this field. The basic reason is that the outer shell of transition metals contains the atomic d-orbitals that have small spatial extent, but not too small to behave as localized orbtials. These d-electrons therefore have a small wave function overlap in a solid, e.g. in an octahedralmore » environment, and form energy bands that are relatively narrow and on the scale of the short-range intra-atomic Coulomb repulsion (Hubbard U). In this intermediate correlation regime lies the challenge of the many-body physics responsible for new and unconventional physical properties. The study of correlated electron and complex materials represents both the challenge and the vitality of condensed matter and materials physics and often demands close collaborations among theoretical and experimental groups with complementary techniques. Our team has a track record and a long-term research goal of studying the unusual complexities and emergent behaviors in the charge, spin, and orbital sectors of the transition metal compounds in order to gain basic knowledge of the quantum electronic states of matter. During the funding period of this grant, the team continued their close collaborations between theory, angle-resolved photoemission spectroscopy, and scanning tunneling microscopy and made significant progress and contributions to the field of iron-based superconductors, copper-oxide high-temperature superconductors, triangular lattice transition metal oxide cobaltates, strontium ruthenates, spin orbital coupled iridates, as well as topological insulators and other topological quantum states of matter. These results include both new discoveries and the resolution to outstanding and unresolved issues. It should be emphasized that the DOE funding provided the crucial support for the close and meaningful collaborations of the focused research group that go far beyond simply putting the research papers from each group together. Indeed, the majority of the publications involved multiple PIs and collaborations between theory and experiments.« less
Zwitterionic Group VIII transition metal initiators supported by olefin ligands
Bazan, Guillermo C [Goleta, CA; Chen, Yaofeng [Shanghai, CN
2011-10-25
A zwitterionic Group VIII transition metal complex containing the simple and relatively small 3-(arylimino)-but-1-en-2-olato ligand that catalyzes the formation of polypropylene and high molecular weight polyethylene. A novel feature of this catalyst is that the active species is stabilized by a chelated olefin adduct. The present invention also provides methods of polymerizing olefin monomers using zwitterionic catalysts, particularly polypropylene and high molecular weight polyethylene.
Johnstone, Timothy C; Nolan, Elizabeth M
2017-10-25
Enterobactin is a secondary metabolite produced by Enterobacteriaceae for acquiring iron, an essential metal nutrient. The biosynthesis and utilization of enterobactin permits many Gram-negative bacteria to thrive in environments where low soluble iron concentrations would otherwise preclude survival. Despite extensive work carried out on this celebrated molecule since its discovery over 40 years ago, the ferric enterobactin complex has eluded crystallographic structural characterization. We report the successful growth of single crystals containing ferric enterobactin using racemic crystallization, a method that involves cocrystallization of a chiral molecule with its mirror image. The structures of ferric enterobactin and ferric enantioenterobactin obtained in this work provide a definitive assignment of the stereochemistry at the metal center and reveal secondary coordination sphere interactions. The structures were employed in computational investigations of the interactions of these complexes with two enterobactin-binding proteins, which illuminate the influence of metal-centered chirality on these interactions. This work highlights the utility of small-molecule racemic crystallography for obtaining elusive structures of coordination complexes.
About complex refractive index of black Si
NASA Astrophysics Data System (ADS)
Pinčík, Emil; Brunner, Robert; Kobayashi, Hikaru; Mikula, Milan
2017-12-01
The paper deals with the complex refractive index in the IR light region of two types of samples (i) as prepared black silicon, and (ii) thermally oxidized black silicon (BSi) nano-crystalline specimens produced both by the surface structure chemical transfer method using catalytic Ag evaporated spots (as prepared sample) and by the catalytic Pt catalytic mesh (thermally oxidized sample). We present, compare, and discuss the values of the IR complex refractive index obtained by calculation using the Kramers-Krönig transformation. Results indicate that small differences between optical properties of as prepared black Si and thermally oxidized BSi are given by: (i) - oxidation procedure, (ii) - thickness of the formed black Si layer, mainly, not by utilization of different catalytic metals, and by iii) the different thickness. Contamination of the surface by different catalytic metals contributes almost equally to the calculated values of the corresponding complex refractive index.
Electron Spectroscopy: Ultraviolet and X-Ray Excitation.
ERIC Educational Resources Information Center
Baker, A. D.; And Others
1980-01-01
Reviews recent growth in electron spectroscopy (54 papers cited). Emphasizes advances in instrumentation and interpretation (52); photoionization, cross-sections and angular distributions (22); studies of atoms and small molecules (35); transition, lanthanide and actinide metal complexes (50); organometallic (12) and inorganic compounds (2);…
Differential-Coil Eddy-Current Material Sorter
NASA Technical Reports Server (NTRS)
Nummelin, J.; Buckley, D.
1985-01-01
Small metal or other electrically conductive parts of same shape but different composition quickly sorted with differential-coil eddy-current sorter. Developed to distinguish between turbine blades of different alloys, hardnesses, and residual stress, sorter generally applicable to parts of simple and complex shape.
NASA Astrophysics Data System (ADS)
Andersson, K. Kristoffer; Barra, Anne-Laure
2002-04-01
Low temperature electron paramagnetic resonance (EPR) spectroscopy with frequencies between 95 and 345 GHz and magnetic fields up to 12 T have been used to study radicals and metal sites in proteins and small inorganic model complexes. We have studied radicals, Fe, Cu and Mn containing proteins. For S=1/2 systems, the high frequency method can resolve the g-value anisotropy. It was used in mouse ribonucleotide reductase (RNR) to show the presence of a hydrogen bond to the tyrosyl radical oxygen. At 285 GHz the type 2 Cu(II) signal in the complex enzyme laccase is clearly resolved from the Hg(II) containing laccase peroxide adduct. For simple metal sites, the systems over S=1/2 can be described by the spin Hamiltonian: HS= BgS+ D[ Sz2- S( S+1)/3+ E/ D ( Sx2- Sy2)]. From the high frequency EPR the D-value can be determined directly by, (I) shifts of geff for half-integer spin systems with large D-values as observed at 345 GHz on an Fe(II)NOEDTA complex, which is best described as S=3/2 system with D=11.5 cm -1, E=0.1 cm -1 and gx= gy= gz=2.0; (II) measuring the outermost signal, for systems with small D values, distant of (2 S-1)*∣ D∣ from the center of the spectrum as observed in S=5/2 Fe(III)EDTA. In Mn(II) substituted mouse RNR R2 protein the weakly interacting Mn(II) at X-band could be observed as decoupled Mn(II) at 285 GHz.
Solid-State Additive Manufacturing for Heat Exchangers
NASA Astrophysics Data System (ADS)
Norfolk, Mark; Johnson, Hilary
2015-03-01
Energy densities in devices are increasing across many industries including power generation, high power electronics, manufacturing, and automotive. Increasingly, there is a need for very high efficiency thermal management devices that can pull heat out of a small area at higher and higher rates. Metal additive manufacturing (AM) technologies have the promise of creating parts with complex internal geometries required for integral thermal management. However, this goal has not been met due to constraints in fusion-based metal 3D printers. This work presents a new strategy for metal AM of heat exchangers using an ultrasonic sheet lamination approach.
Macrocyclic metal complexes for metalloenzyme mimicry and sensor development.
Joshi, Tanmaya; Graham, Bim; Spiccia, Leone
2015-08-18
Examples of proteins that incorporate one or more metal ions within their structure are found within a broad range of classes, including oxidases, oxidoreductases, reductases, proteases, proton transport proteins, electron transfer/transport proteins, storage proteins, lyases, rusticyanins, metallochaperones, sporulation proteins, hydrolases, endopeptidases, luminescent proteins, iron transport proteins, oxygen storage/transport proteins, calcium binding proteins, and monooxygenases. The metal coordination environment therein is often generated from residues inherent to the protein, small exogenous molecules (e.g., aqua ligands) and/or macrocyclic porphyrin units found, for example, in hemoglobin, myoglobin, cytochrome C, cytochrome C oxidase, and vitamin B12. Thus, there continues to be considerable interest in employing macrocyclic metal complexes to construct low-molecular weight models for metallobiosites that mirror essential features of the coordination environment of a bound metal ion without inclusion of the surrounding protein framework. Herein, we review and appraise our research exploring the application of the metal complexes formed by two macrocyclic ligands, 1,4,7-triazacyclononane (tacn) and 1,4,7,10-tetraazacyclododecane (cyclen), and their derivatives in biological inorganic chemistry. Taking advantage of the kinetic inertness and thermodynamic stability of their metal complexes, these macrocyclic scaffolds have been employed in the development of models that aid the understanding of metal ion-binding natural systems, and complexes with potential applications in biomolecule sensing, diagnosis, and therapy. In particular, the focus has been on "coordinatively unsaturated" metal complexes that incorporate a kinetically inert and stable metal-ligand moiety, but which also contain one or more weakly bound ligands, allowing for the reversible binding of guest molecules via the formation and dissociation of coordinate bonds. With regards to mimicking metallobiosites, examples are presented from our work on tacn-based complexes developed as simplified structural models for multimetallic enzyme sites. In particular, structural comparisons are made between multinuclear copper(II) complexes formed by such ligands and multicopper enzymes featuring type-2 and type-3 copper centers, such as ascorbate oxidase (AO) and laccase (Lc). Likewise, with the aid of relevant examples, we highlight the importance of cooperativity between either multiple metal centers or a metal center and a proximal auxiliary unit appended to the macrocyclic ligand in achieving efficient phosphate ester cleavage. Finally, the critical importance of the Zn(II)-imido and Zn(II)-phosphate interactions in Zn-cyclen-based systems for delivering highly sensitive electrochemical and fluorescent chemosensors is also showcased. The Account additionally highlights some of the factors that limit the performance of these synthetic nucleases and the practical application of the biosensors, and then identifies some avenues for the development of more effective macrocyclic constructs in the future.
Structures and physical properties of gaseous metal cationized biological ions.
Burt, Michael B; Fridgen, Travis D
2012-01-01
Metal chelation can alter the activity of free biomolecules by modifying their structures or stabilizing higher energy tautomers. In recent years, mass spectrometric techniques have been used to investigate the effects of metal complexation with proteins, nucleobases and nucleotides, where small conformational changes can have significant physiological consequences. In particular, infrared multiple photon dissociation spectroscopy has emerged as an important tool for determining the structure and reactivity of gas-phase ions. Unlike other mass spectrometric approaches, this method is able to directly resolve structural isomers using characteristic vibrational signatures. Other activation and dissociation methods, such as blackbody infrared radiative dissociation or collision-induced dissociation can also reveal information about the thermochemistry and dissociative pathways of these biological ions. This information can then be used to provide information about the structures of the ionic complexes under study. In this article, we review the use of gas-phase techniques in characterizing metal-bound biomolecules. Particular attention will be given to our own contributions, which detail the ability of metal cations to disrupt nucleobase pairs, direct the self-assembly of nucleobase clusters and stabilize non-canonical isomers of amino acids.
Friedly, J.C.; Kent, D.B.; Davis, J.A.
2002-01-01
Reactive transport simulations were conducted to model chemical reactions between metal - EDTA (ethylenediaminetetraacetic acid) complexes during transport in a mildly acidic quartz - sand aquifer. Simulations were compared with the results of small-scale tracer tests wherein nickel-, zinc-, and calcium - EDTA complexes and free EDTA were injected into three distinct chemical zones of a plume of sewage-contaminated groundwater. One zone had a large mass of adsorbed, sewage-derived zinc; one zone had a large mass of adsorbed manganese resulting from mildly reducing conditions created bythe sewage plume; and one zone had significantly less adsorbed manganese and negligible zinc background. The chemical model assumed that the dissolution of iron(III) from metal - hydroxypolymer coatings on the aquifer sediments by the metal - EDTA complexes was kinetically restricted. All other reactions, including metal - EDTA complexation, zinc and manganese adsorption, and aluminum hydroxide dissolution were assumed to reach equilibrium on the time scale of transport; equilibrium constants were either taken from the literature or determined independently in the laboratory. A single iron(III) dissolution rate constant was used to fit the breakthrough curves observed in the zone with negligible zinc background. Simulation results agreed well with the experimental data in all three zones, which included temporal moments derived from breakthrough curves at different distances downgradient from the injections and spatial moments calculated from synoptic samplings conducted at different times. Results show that the tracer cloud was near equilibrium with respect to Fe in the sediment after 11 m of transport in the Zn-contaminated region but remained far from equilibrium in the other two zones. Sensitivity studies showed that the relative rate of iron(III) dissolution by the different metal - EDTA complexes was less important than the fact that these reactions are rate controlled. Results suggest that the published solubility for ferrihydrite reasonably approximates the Fe solubility of the hydroxypolymer coatings on the sediments. Aluminum may be somewhat more soluble than represented by the equilibrium constant for gibbsite, and its dissolution may be rate controlled when reacting with Ca - EDTA complexes.
Metallicity-dependent kinematics and morphology of the Milky Way bulge
NASA Astrophysics Data System (ADS)
Athanassoula, E.; Rodionov, S. A.; Prantzos, N.
2017-05-01
We use N-body chemo-dynamic simulations to study the coupling between morphology, kinematics and metallicity of the bar/bulge region of our Galaxy. We make qualitative comparisons of our results with available observations and find very good agreement. We conclude that this region is complex, since it comprises several stellar components with different properties - I.e. a boxy/peanut bulge, thin and thick disc components, and, to lesser extents, a disky pseudo-bulge, a stellar halo and a small classical bulge - all cohabiting in dynamical equilibrium. Our models show strong links between kinematics and metallicity, or morphology and metallicity, as already suggested by a number of recent observations. We discuss and explain these links.
NASA Astrophysics Data System (ADS)
Dinu, M. I.
2017-11-01
The article described the complexation of metal ions with humus substances in natural waters (small lakes). Humus substances as the major biochemical components of natural water have a significant impact on the forms and migration of metals and the toxicity of natural objects. This article presents the results of large-scale chemical experiments: the study of the structural features (zonal aspects) of humus substances extracted from soil and water natural climatic zones (more than 300 objects) in Russia (European Russia and West Siberia); the influence of structural features on the physic-chemical parameters of humus acids and, in particular, on their complexing ability. The functional specifics of humus matter extracted from soils is estimated using spectrometric techniques. The conditional stability constants for Fe(III), Cu(II), Pb(II), Cd(II), Zn(II), Ni(II), Co(II), Mn(II), Cr(III), Ca(II), Mg(II), Sr(II), and Al(III) are experimentally determined with the electrochemical, spectroscopic analysis methods. The activities of metals are classified according to their affinity to humus compounds in soils and water. The determined conditional stability constants of the complexes are tested by model experiments, and it is demonstrated that Fe and Al ions have higher conditional stability constants than the ions of alkali earth metals, Pb, Cu, and Zn. Furthermore, the influence of aluminium ions and iron on the complexation of copper and lead as well as the influence of lead and copper on complexation of cobalt and nickel have been identified. The metal forms in a large number of lakes are calculated basing on the experiments’ results. The main chemical mechanisms of the distribution of metals by forms in the water of the lakes in European Russia and West Siberia are described.
Zeglis, Brian M.; Pierre, Valérie C.; Kaiser, Jens T.; Barton, Jacqueline K.
2009-01-01
Two crystal structures are determined for Δ-Rh(bpy)2(chrysi)3+ (chrysi = 5,6-chrysenequinone diimine) bound to the oligonucleotide duplex 5′-CGGAAATTACCG-3′ containing two adenosine-adenosine mismatches (italics) through metalloinsertion. Diffraction quality crystals with two different space groups (P3221 and P43212) were obtained under very similar crystallization conditions. In both structures, the bulky rhodium complex inserts into the two mismatched sites from the minor groove side, ejecting the mismatched bases into the major groove. The conformational changes are localized to the mismatched site; the metal complex replaces the mismatched base pair without an increase in base pair rise. The expansive metal complex is accommodated in the duplex by a slight opening in the phosphodiester backbone; all sugars retain a C2′-endo puckering, and flanking base pairs neither stretch nor shear. The structures differ, however, in that in one of the structures, an additional metal complex is bound by intercalation from the major groove at the central 5′-AT-3′ step. We conclude that this additional metal complex is intercalated into this central step because of crystal packing forces. The structures described here of Δ-Rh(bpy)2(chrysi)3+ bound to thermodynamically destabilized AA mismatches share critical features with binding by metalloinsertion in two other oligonucleotides containing different single base mismatches. These results underscore the generality of the metalloinsertion as a new mode of non-covalent binding by small molecules with a DNA duplex. PMID:19374348
Molecular metal catalysts on supports: organometallic chemistry meets surface science.
Serna, Pedro; Gates, Bruce C
2014-08-19
Recent advances in the synthesis and characterization of small, essentially molecular metal complexes and metal clusters on support surfaces have brought new insights to catalysis and point the way to systematic catalyst design. We summarize recent work unraveling effects of key design variables of site-isolated catalysts: the metal, metal nuclearity, support, and other ligands on the metals, also considering catalysts with separate, complementary functions on supports. The catalysts were synthesized with the goal of structural simplicity and uniformity to facilitate incisive characterization. Thus, they are essentially molecular species bonded to porous supports chosen for their high degree of uniformity; the supports are crystalline aluminosilicates (zeolites) and MgO. The catalytic species are synthesized in reactions of organometallic precursors with the support surfaces; the precursors include M(L)2(acetylacetonate)1-2, with M = Ru, Rh, Ir, or Au and the ligands L = C2H4, CO, or CH3. Os3(CO)12 and Ir4(CO)12 are used as precursors of supported metal clusters, and some such catalysts are made by ship-in-a-bottle syntheses to trap the clusters in zeolite cages. The simplicity and uniformity of the supported catalysts facilitate precise structure determinations, even in reactive atmospheres and during catalysis. The methods of characterizing catalysts in reactive atmospheres include infrared (IR), extended X-ray absorption fine structure (EXAFS), X-ray absorption near edge structure (XANES), and nuclear magnetic resonance (NMR) spectroscopies, and complementary methods include density functional theory and atomic-resolution aberration-corrected scanning transmission electron microscopy for imaging of individual metal atoms. IR, NMR, XANES, and microscopy data demonstrate the high degrees of uniformity of well-prepared supported species. The characterizations determine the compositions of surface metal complexes and clusters, including the ligands and the metal-support bonding and structure, which identify the supports as ligands with electron-donor properties that influence reactivity and catalysis. Each of the catalyst design variables has been varied independently, illustrated by mononuclear and tetranuclear iridium on zeolite HY and on MgO and by isostructural rhodium and iridium (diethylene or dicarbonyl) complexes on these supports. The data provide examples resolving the roles of the catalyst design variables and place the catalysis science on a firm foundation of organometallic chemistry linked with surface science. Supported molecular catalysts offer the advantages of characterization in the absence of solvents and with surface-science methods that do not require ultrahigh vacuum. Families of supported metal complexes have been made by replacement of ligands with others from the gas phase. Spectroscopically identified catalytic reaction intermediates help to elucidate catalyst performance and guide design. The methods are illustrated for supported complexes and clusters of rhodium, iridium, osmium, and gold used to catalyze reactions of small molecules that facilitate identification of the ligands present during catalysis: alkene dimerization and hydrogenation, H-D exchange in the reaction of H2 with D2, and CO oxidation. The approach is illustrated with the discovery of a highly active and selective MgO-supported rhodium carbonyl dimer catalyst for hydrogenation of 1,3-butadiene to give butenes.
NASA Astrophysics Data System (ADS)
Kim, Jueun; Kang, Youngjong; Lee, Jaejong
2018-06-01
We show that high crystallinity and charge transporting gain can be obtained in a noble donor–acceptor system (CT complex) composed of organic complex: tetrathiafulvalene–2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (TTF–F4TCNQ). The complex is small-gap organic metallic or semiconductor (less than 1 eV), and we predict having a high conductivity. We perform an approach to fabricate organic CT complex with high crystallinity by eutectic melting method. Our process is simple and shows crystal growth with improved crystallinity when combined with soft-lithography.
Martin, David P; Blachly, Patrick G; Marts, Amy R; Woodruff, Tessa M; de Oliveira, César A F; McCammon, J Andrew; Tierney, David L; Cohen, Seth M
2014-04-09
The binding of three closely related chelators: 5-hydroxy-2-methyl-4H-pyran-4-thione (allothiomaltol, ATM), 3-hydroxy-2-methyl-4H-pyran-4-thione (thiomaltol, TM), and 3-hydroxy-4H-pyran-4-thione (thiopyromeconic acid, TPMA) to the active site of human carbonic anhydrase II (hCAII) has been investigated. Two of these ligands display a monodentate mode of coordination to the active site Zn(2+) ion in hCAII that is not recapitulated in model complexes of the enzyme active site. This unprecedented binding mode in the hCAII-thiomaltol complex has been characterized by both X-ray crystallography and X-ray spectroscopy. In addition, the steric restrictions of the active site force the ligands into a 'flattened' mode of coordination compared with inorganic model complexes. This change in geometry has been shown by density functional computations to significantly decrease the strength of the metal-ligand binding. Collectively, these data demonstrate that the mode of binding by small metal-binding groups can be significantly influenced by the protein active site. Diminishing the strength of the metal-ligand bond results in unconventional modes of metal coordination not found in typical coordination compounds or even carefully engineered active site models, and understanding these effects is critical to the rational design of inhibitors that target clinically relevant metalloproteins.
Robust Design of Sheet Metal Forming Process Based on Kriging Metamodel
NASA Astrophysics Data System (ADS)
Xie, Yanmin
2011-08-01
Nowadays, sheet metal forming processes design is not a trivial task due to the complex issues to be taken into account (conflicting design goals, complex shapes forming and so on). Optimization methods have also been widely applied in sheet metal forming. Therefore, proper design methods to reduce time and costs have to be developed mostly based on computer aided procedures. At the same time, the existence of variations during manufacturing processes significantly may influence final product quality, rendering non-robust optimal solutions. In this paper, a small size of design of experiments is conducted to investigate how a stochastic behavior of noise factors affects drawing quality. The finite element software (LS_DYNA) is used to simulate the complex sheet metal stamping processes. The Kriging metamodel is adopted to map the relation between input process parameters and part quality. Robust design models for sheet metal forming process integrate adaptive importance sampling with Kriging model, in order to minimize impact of the variations and achieve reliable process parameters. In the adaptive sample, an improved criterion is used to provide direction in which additional training samples can be added to better the Kriging model. Nonlinear functions as test functions and a square stamping example (NUMISHEET'93) are employed to verify the proposed method. Final results indicate application feasibility of the aforesaid method proposed for multi-response robust design.
Particulate matter (PM) is a complex mixture of extremely small particles and liquid droplets made up of a number of components including elemental carbon, organic chemicals, metals, acids (such as nitrates and sulfates), and soil and dust particles. Epidemiological studies con...
Pauling, Linus
1977-01-01
A general theory of the structure of complexes of the transition metals is developed on the basis of the enneacovalence of the metals and the requirements of the electroneutrality principle. An extra orbital may be provided through the small but not negligible amount of f and g character of spd bond orbitals, and an extra electron or electron pair may be accepted in this orbital for a single metal or a cluster to neutralize the positive electric charge resulting from the partial ionic character of the bonds with ligands, such as the carbonyl group. Examples of cluster compounds of cobalt, ruthenium, rhodium, osmium, and gold are discussed. PMID:16592470
Pauling, L
1977-12-01
A general theory of the structure of complexes of the transition metals is developed on the basis of the enneacovalence of the metals and the requirements of the electroneutrality principle. An extra orbital may be provided through the small but not negligible amount of f and g character of spd bond orbitals, and an extra electron or electron pair may be accepted in this orbital for a single metal or a cluster to neutralize the positive electric charge resulting from the partial ionic character of the bonds with ligands, such as the carbonyl group. Examples of cluster compounds of cobalt, ruthenium, rhodium, osmium, and gold are discussed.
Lagopati, Nefeli; Tsilibary, Effie C.
2017-01-01
In this minireview, we refer to recent results as far as the Platelet Activating Factor (PAF) inhibitors are concerned. At first, results of organic compounds (natural and synthetic ones and specific and nonspecific) as inhibitors of PAF are reported. Emphasis is given on recent results about a new class of the so-called metal-based inhibitors of PAF. A small library of 30 metal complexes has been thus created; their anti-inflammatory activity has been further evaluated owing to their inhibitory effect against PAF in washed rabbit platelets (WRPs). In addition, emphasis has also been placed on the identification of preliminary structure-activity relationships for the different classes of metal-based inhibitors. PMID:28458618
Kent, D.B.; Davis, J.A.; Anderson, L.C.D.; Rea, B.A.; Coston, J.A.
2002-01-01
Adsorption, complexation, and dissolution reactions strongly influenced the transport of metal ions complexed with ethylenediaminetetraacetic acid (EDTA) in a predominantly quartz-sand aquifer during two tracer tests conducted under mildly reducing conditions at pH 5.8 to 6.1. In tracer test M89, EDTA complexes of zinc (Zn) and nickel (Ni), along with excess free EDTA, were injected such that the lower portion of the tracer cloud traveled through a region with adsorbed manganese (Mn) and the upper portion of the tracer cloud traveled through a region with adsorbed Zn. In tracer test S89, Ni- and Zn-EDTA complexes, along with excess EDTA complexed with calcium (Ca), were injected into a region with adsorbed Mn. The only discernable chemical reaction between Ni-EDTA and the sediments was a small degree of reversible adsorption leading to minor retardation. In the absence of adsorbed Zn, the injected Zn was displaced from EDTA complexes by iron(III) [Fe(III)] dissolved from the sediments. Displacement of Zn by Fe(III) on EDTA became increasingly thermodynamically favorable with decreasing total EDTA concentration. The reaction was slow compared to the time-scale of transport. Free EDTA rapidly dissolved aluminum (Al) from the sediments, which was subsequently displaced slowly by Fe. In the portion of tracer cloud M89 that traveled through the region contaminated with adsorbed Zn, little displacement of Zn complexed with EDTA was observed, and Al was rapidly displaced from EDTA by Zn desorbed from the sediments, in agreement with equilibrium calculations. In tracer test S89, desorption of Mn dominated over the more thermodynamically favorable dissolution of Al oxyhydroxides. Comparison with results from M89 suggests that dissolution of Al oxyhydroxides in coatings on these sediment grains by Ca-EDTA was rate-limited whereas that by free EDTA reached equilibrium on the time-scale of transport. Rates of desorption are much faster than rates of dissolution of Fe oxyhydroxides from sediment-grain surfaces and, therefore, adsorbed metal ions can strongly influence the speciation of ligands like EDTA in soils and sediments, especially over small temporal and spatial scales. Copyright ?? 2002 Elsevier Science Ltd.
Metal-directed design of supramolecular protein assemblies
Bailey, Jake B.; Subramanian, Rohit H.; Churchfield, Lewis A.
2016-01-01
Owing to their central roles in cellular signaling, construction, and biochemistry, protein-protein interactions (PPIs) and protein self-assembly have become a major focus of molecular design and synthetic biology. In order to circumvent the complexity of constructing extensive non-covalent interfaces, which are typically involved in natural PPIs and protein self-assembly, we have developed two design strategies, Metal-Directed Protein Self-Assembly (MDPSA) and Metal-Templated Interface Redesign (MeTIR). These strategies, inspired by both the proposed evolutionary roles of metals and their prevalence in natural PPIs, take advantage of the favorable properties of metal coordination (bonding strength, directionality, and reversibility) to guide protein self-assembly with minimal design and engineering. Using a small, monomeric protein (cytochrome cb562) as a model building block, we employed MDPSA and MeTIR to create a diverse array of functional supramolecular architectures which range from structurally tunable oligomers to metalloprotein complexes that can properly self-assemble in living cells into novel metalloenzymes. The design principles and strategies outlined herein should be readily applicable to other protein systems with the goal of creating new PPIs and protein assemblies with structures and functions not yet produced by natural evolution. PMID:27586336
Nachbar, Markus; El Deeb, Sami; Mozafari, Mona; Alhazmi, Hassan A; Preu, Lutz; Redweik, Sabine; Lehmann, Wolf Dieter; Wätzig, Hermann
2016-03-01
Strong, sequence-specific gas-phase bindings between proline-rich peptides and alkaline earth metal ions in nanoESI-MS experiments were reported by Lehmann et al. (Rapid Commun. Mass Spectrom. 2006, 20, 2404-2410), however its relevance for physiological-like aqueous phase is uncertain. Therefore, the complexes should also be studied in aqueous solution and the relevance of the MS method for binding studies be evaluated. A mobility shift ACE method was used for determining the binding between the small peptide GAPAGPLIVPY and various metal ions in aqueous solution. The findings were compared to the MS results and further explained using computational methods. While the MS data showed a strong alkaline earth ion binding, the ACE results showed nonsignificant binding. The proposed vacuum state complex also decomposed during a molecular dynamic simulation in aqueous solution. This study shows that the formed stable peptide-metal ion adducts in the gas phase by ESI-MS does not imply the existence of analogous adducts in the aqueous phase. Comparing peptide-metal ion interaction under the gaseous MS and aqueous ACE conditions showed huge difference in binding behavior. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sindlinger, Christian P; Lawrence, Samuel R; Acharya, Shravan; Ohlin, C André; Stasch, Andreas
2017-12-12
The salt metathesis reaction of the sterically demanding bis(iminophosphoranyl)methanide alkali metal complexes LM (L - = HC(Ph 2 P[double bond, length as m-dash]NDip) 2 - , Dip = 2,6- i Pr 2 C 6 H 3 ; M = Li, Na, K) with "GaI", InBr or TlBr afforded the monomeric group 13 metal(i) complexes LE:, E = Ga (1), In (2) and Tl (3) in moderate yields, and small quantities of LGaI 2 4 in the case of Ga, respectively. The molecular structures of LE: 1-3 from X-ray single crystal diffraction show them to contain puckered six-membered rings with N,N'-chelating methanide ligands and two-coordinated metal(i) centres. Reduction reactions of LAlI 2 5, prepared by iodination of LAlMe 2 , were not successful and no aluminium(i) congener could be prepared so far. DFT studies on LE:, E = Al-Tl, were carried out and support the formulation as an anionic, N,N'-chelating methanide ligand coordinating to group 13 metal(i) cations. The HOMOs of the molecules for E = Al-In show a dominant contribution from a metal-based lone pair that is high in s-character.
Development of Temperature Sensitive Paints for the Detection of Small Temperature Differences
NASA Technical Reports Server (NTRS)
Oglesby, Donald M.; Upchurch, Billy T.; Sealey, Bradley S.; Leighty, Bradley D.; Burkett, Cecil G., Jr.; Jalali, Amir
1997-01-01
Temperature sensitive paints (TSP s) have recently been used to detect small temperature differences on aerodynamic model surfaces. These types of applications impose stringent performance requirements on a paint system. The TSP s must operate over a broad temperature range, must be physically robust (cannot chip or peel), must be polishable to at least the smoothness of the model surface, and must have sufficient sensitivity to detect small temperature differences. TSP coatings based on the use of metal complexes in polymer binders were developed at NASA Langley Research Center which meet most of the requirements for detection of small temperature differences under severe environmental conditions.
Tsuzuki, Seiji; Kubota, Keigo; Matsumoto, Hajime
2013-12-19
Stable geometries and stabilization energies (Eform) of the alkali metal complexes with bis(fluorosulfonyl)amide, (fluorosulfonyl)(trifluoromethylslufonyl)amide and bis(trifluoromethylsulfonyl)amide (FSA(-), FTA(-) and TFSA(-)) were studied by ab initio molecular orbital calculations. The FSA(-) complexes prefer the bidentate structures in which two oxygen atoms of two SO2 groups have contact with the metal cation. The FTA(-) and TFSA(-) complexes with Li(+) and Na(+) prefer the bidentate structures, while the FTA(-) and TFSA(-) complexes with Cs(+) prefer tridentate structures in which the metal cation has contact with two oxygen atoms of an SO2 group and one oxygen atom of another SO2 group. The two structures are nearly isoenergetic in the FTA(-) and TFSA(-) complexes with K(+) and Rb(+). The magnitude of Eform depends on the alkali metal cation significantly. The Eform calculated for the most stable TFSA(-) complexes with Li(+), Na(+), K(+), Rb(+) and Cs(+) cations at the MP2/6-311G** level are -137.2, -110.5, -101.1, -89.6, and -84.1 kcal/mol, respectively. The viscosity and ionic conductivity of the alkali TFSA molten salts have strong correlation with the magnitude of the attraction. The viscosity increases and the ionic conductivity decreases with the increase of the attraction. The melting points of the alkali TFSA and alkali BETA molten salts also have correlation with the magnitude of the Eform, which strongly suggests that the magnitude of the attraction play important roles in determining the melting points of these molten salts. The anion dependence of the Eform calculated for the complexes is small (less than 2.9 kcal/mol). This shows that the magnitude of the attraction is not the cause of the low melting points of alkali FTA molten salts compared with those of corresponding alkali TFSA molten salts. The electrostatic interactions are the major source of the attraction in the complexes. The electrostatic energies for the most stable TFSA(-) complexes with the five alkali metal cations are -140.3, -119.4, -104.1, -96.9, and -91.1 kcal/mol, respectively. The induction interactions also contribute to the attraction. In particular, the induction interactions are large in the Li(+) complexes. The induction energies for the five complexes are -46.6, -25.2, -17.5, -13.3, and -10.4 kcal/mol, respectively.
Investigation on the innovative impact hydroforming technology
NASA Astrophysics Data System (ADS)
Lihui, Lang; Shaohua, Wang; Chunlei, Yang
2013-05-01
Hydroforming has a rapid development recently which has good forming quality and less cost. However, it still cannot meet the requirements of forming complex parts with small features just like convex tables, or bars which are widely employed in automotive and aircraft industries. The impact hydroforming technology means the most features are formed by hydroforming and the small features are rapidly reshaped by high intensity impact energy in a very short time after the traditional hydroforming. The impact pressure rises to the peak in 10ms which belongs to dynamic loading. In this paper, impact hydroforming process is proposed. The generation and transmission of impact hydroforming energy and impact shock wave were studied and simulated. The deformation process of the metal disks under the dynamic impact loading condition presented impact hydroforming is an effective technology to form complex parts with small features.
Micronutrient metal speciation is controlled by competitive organic chelation in grassland soils
Boiteau, Rene M.; Shaw, Jared B.; Pasa-Tolic, Ljiljana; ...
2018-03-08
Many elements are scarcely soluble in aqueous conditions found in high pH environments, such as calcareous grassland soils, unless complexed to strong binding organic ligands. To overcome this limitation, some plants and microbes produce chelators that solubilize micronutrient metals such as Fe, Ni, Cu, and Zn from mineral phases. These complexes are taken up by organisms via specific membrane receptors, thereby differentially impacting the bioavailability of these metals to the plant and microbial community. Although the importance of these chelation strategies for individual organisms has been well established, little is known about which pathways coexist within rhizosphere microbiomes or howmore » they interact and compete for metal binding. Identifying these metallophores within natural ecosystems has remained a formidable analytical challenge due to the vast diversity of compounds and poorly defined metabolic processes in complex soil matrices. Herein, we employed recently developed liquid chromatography (LC) mass spectrometry (MS) methods to characterize the speciation of water-soluble dissolved trace elements (Fe, Ni, Cu, and Zn) of soils from native tallgrass prairies in Kansas and Iowa. Both plant and fungal metallophores were identified, revealing compound-specific patterns of chelation to biologically essential metals. Numerous metabolites typically implicated in plant Fe acquisition and homeostasis, including mugineic acids, deoxymugineic acid, nicotianamine, and hydroxynicotianamines, dominated the speciation of divalent metals such as Ni, Cu, and Zn (2–90 pmol/g soil). In contrast, the fungal siderophore ferricrocin was specific for trivalent Fe (7–32 pmol/g soil). These results define biochemical pathways that underpin the regulation of metals in the grassland rhizosphere. They also raise new questions about the competition of these compounds for metal binding and their bioavailability to different members of the rhizosphere population. In conclusion, small structural modifications result in significant differences in metal ligand selectivity, and likely impact metal uptake within the rhizosphere of grassland soils.« less
Micronutrient metal speciation is controlled by competitive organic chelation in grassland soils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boiteau, Rene M.; Shaw, Jared B.; Pasa-Tolic, Ljiljana
Many elements are scarcely soluble in aqueous conditions found in high pH environments, such as calcareous grassland soils, unless complexed to strong binding organic ligands. To overcome this limitation, some plants and microbes produce chelators that solubilize micronutrient metals such as Fe, Ni, Cu, and Zn from mineral phases. These complexes are taken up by organisms via specific membrane receptors, thereby differentially impacting the bioavailability of these metals to the plant and microbial community. Although the importance of these chelation strategies for individual organisms has been well established, little is known about which pathways coexist within rhizosphere microbiomes or howmore » they interact and compete for metal binding. Identifying these metallo-organic species within natural ecosystems has remained a formidable analytical challenge due to the vast diversity of compounds and poorly defined metabolic processes in complex soil matrix. Herein, we employed recently developed liquid chromatography (LC) mass spectrometry (MS) methods to characterize the speciation of water-soluble dissolved trace elements (Fe, Ni, Cu, and Zn) from Kansas Prairie soil. Both plant and fungal chelators were identified, revealing compound-specific patterns of chelation to biologically essential metals. Numerous metabolites typically implicated in plant iron acquisition and homeostasis, including mugineic acids, deoxymugineic acid, nicotianamine, and hydroxynicotianamine, dominated the speciation of divalent metals such as Ni, Cu, and Zn (2-57 pmol / g soil). In contrast, the fungal siderophore ferricrocine bound comparatively more trivalent Fe (9pmol / g soil). These results define biochemical pathways that underpin the regulation of metals in the grassland rhizosphere. They also raise new questions about the competition of these compounds for metal binding and their bioavailability to different members of the rhizosphere population. Even small structural differences result in significant differences in their environmental metal speciation, and likely impact metal uptake within the rhizosphere of calcareous soils.« less
Micronutrient metal speciation is controlled by competitive organic chelation in grassland soils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boiteau, Rene M.; Shaw, Jared B.; Pasa-Tolic, Ljiljana
Many elements are scarcely soluble in aqueous conditions found in high pH environments, such as calcareous grassland soils, unless complexed to strong binding organic ligands. To overcome this limitation, some plants and microbes produce chelators that solubilize micronutrient metals such as Fe, Ni, Cu, and Zn from mineral phases. These complexes are taken up by organisms via specific membrane receptors, thereby differentially impacting the bioavailability of these metals to the plant and microbial community. Although the importance of these chelation strategies for individual organisms has been well established, little is known about which pathways coexist within rhizosphere microbiomes or howmore » they interact and compete for metal binding. Identifying these metallophores within natural ecosystems has remained a formidable analytical challenge due to the vast diversity of compounds and poorly defined metabolic processes in complex soil matrices. Herein, we employed recently developed liquid chromatography (LC) mass spectrometry (MS) methods to characterize the speciation of water-soluble dissolved trace elements (Fe, Ni, Cu, and Zn) of soils from native tallgrass prairies in Kansas and Iowa. Both plant and fungal metallophores were identified, revealing compound-specific patterns of chelation to biologically essential metals. Numerous metabolites typically implicated in plant Fe acquisition and homeostasis, including mugineic acids, deoxymugineic acid, nicotianamine, and hydroxynicotianamines, dominated the speciation of divalent metals such as Ni, Cu, and Zn (2–90 pmol/g soil). In contrast, the fungal siderophore ferricrocin was specific for trivalent Fe (7–32 pmol/g soil). These results define biochemical pathways that underpin the regulation of metals in the grassland rhizosphere. They also raise new questions about the competition of these compounds for metal binding and their bioavailability to different members of the rhizosphere population. In conclusion, small structural modifications result in significant differences in metal ligand selectivity, and likely impact metal uptake within the rhizosphere of grassland soils.« less
NASA Astrophysics Data System (ADS)
Motta, M.
2017-12-01
(Abstract only) WD1145 is a 17th magnitude white dwarf star 570 light years away in Virgo that was discovered to have a disintegrating planetoid in close orbit by Andrew Vanderburg, a graduate student at Harvard CfA, while data mining the elucidate the nature of its rather bizarre transit light curves. I obtained multiple observations of WD1145 over the course of a year, and found a series of complex transit light curves that could only be interpreted as a ring complex or torus in close orbit around WD1145. Combined with data from other amateur astronomers, professional observations, and satellite data, it became clear that WD1145 has a small planetoid in close orbit at the Roche limit and is breaking apart, forming a ring of debris material that is then raining down on the white dwarf. The surface of the star is "polluted" by heavy metals, determined by spectroscopic data. Given that in the intense gravitational field of a white dwarf any heavy metals could not for long last on the surface, this confirms that we are tracking in real time the destruction of a small planet by its host star.
Forrest, Sebastian J K; Clifton, Jamie; Fey, Natalie; Pringle, Paul G; Sparkes, Hazel A; Wass, Duncan F
2015-02-09
A Lewis basic platinum(0)-CO complex supported by a diphosphine ligand and B(C6 F5 )3 act cooperatively, in a manner reminiscent of a frustrated Lewis pair, to activate small molecules such as hydrogen, CO2 , and ethene. This cooperative Lewis pair facilitates the coupling of CO and ethene in a new way. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Feature based Weld-Deposition for Additive Manufacturing of Complex Shapes
NASA Astrophysics Data System (ADS)
Panchagnula, Jayaprakash Sharma; Simhambhatla, Suryakumar
2018-06-01
Fabricating functional metal parts using Additive Manufacturing (AM) is a leading trend. However, realizing overhanging features has been a challenge due to the lack of support mechanism for metals. Powder-bed fusion techniques like, Selective Laser Sintering (SLS) employ easily-breakable-scaffolds made of the same material to realize the overhangs. However, the same approach is not extendible to deposition processes like laser or arc based direct energy deposition processes. Although it is possible to realize small overhangs by exploiting the inherent overhanging capability of the process or by blinding some small features like holes, the same cannot be extended for more complex geometries. The current work presents a novel approach for realizing complex overhanging features without the need of support structures. This is possible by using higher order kinematics and suitably aligning the overhang with the deposition direction. Feature based non-uniform slicing and non-uniform area-filling are some vital concepts required in realizing the same and are briefly discussed here. This method can be used to fabricate and/or repair fully dense and functional components for various engineering applications. Although this approach has been implemented for weld-deposition based system, the same can be extended to any other direct energy deposition processes also.
Equeenuddin, Sk Md; Pattnaik, Binaya Kumar
2017-10-01
The Sukinda ultramafic complex in Odisha has the largest chromite reserve in India. Sediment derived from ultramafic rocks has been enriched with various metals. Further, mining activities enhance the influx of metals into sediment by dumping mine overburden and tailings in the open area. Metal concentration in sediment is found in order of Cr Total (Cr) > Mn > Ni > Co > Zn > Cu with average concentration 26,778 mg/kg, 3098 mg/kg, 1813 mg/kg, 184 mg/kg, 116 mg/kg and 44 mg/kg respectively. Concentration of Cr(VI) varies from 5.25 to 26.47 mg/L with an average of 12.27 mg/L. Based on various pollution indices, it is confirmed that the area is severely contaminated. Nano-scale goethite, kaolinite, clinochlore and chromite have been identified and have high concentration of Cr, Co and Ni. Goethite has shown maximum metal retention potential as deciphered by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). The HAADF-STEM mapping and principal component analysis indicate that Cr and Co mostly derived from chromite whereas Ni and Zn are derived from serpentine. Later, these metals co-precipitate and/or adsorbed onto the goethite and clay minerals. Fractionation study of metals confirms that Cu is the most mobile element followed by Zn. However, at low pH condition Ni is mobilized and likely to be bioavailable. Though Cr mostly occurs in residual fraction but as its concentration is very high, a small proportion of exchangeable fraction contributes significantly in terms of its bioavailability. Thus bioavailable Cr can pose severe threat to the environment in the Sukinda ultramafic complex. Copyright © 2017 Elsevier Ltd. All rights reserved.
1983-11-01
constants ket are presented for the one-electron electroreduction of various Co1]:I(NH3)5X complexes bound to mercury, platinum, and gold surfaces...electroreduction of various Co^^(NH)X complexes bound to mercury, platinum, and gold surfaces via either small inorganic or extended organic ligands X. t...platinum, gold , and copper, to enable values of ke* to be obtained for the one-electron reduction of the surface-Douna_redox center.2.3 These
Minor metals and renewable energy—Diversifying America’s energy sources
Singerling, Sheryl A.; Nassar, Nedal T.
2017-08-16
Solar photovoltaic (PV) and wind turbine technologies are projected to make up an increasing proportion of electricity generation capacity in the United States in the coming decades. By 2050, they will account for 36 percent (or 566 gigawatts) of capacity compared with about 11 percent (or 118 gigawatts) in 2016 (fig. 1; EIA, 2017). There are several different types of commercial solar PV and wind turbine technologies, and each type makes use of different minor metals. “Minor metal” is the term used for metals for which world production is small compared with the more widely produced base metals, and they are often produced as byproducts of the mining or processing of base metals. Minor metals used in renewable energy technologies often have complex supply chains, are often produced primarily outside of the United States, and are also used in many other applications. A larger amount of minor metals will be needed in the future to support the projected increases in solar PV and wind energy production capacity (Nassar and others, 2016).
Wu, Bin; Chen, Keyang; Deng, Yuchen; Chen, Jian; Liu, Chengjie; Cheng, Rongshi; Chen, Dongzhong
2015-02-23
A series of meta-substituted fatty acid octaester derivatives and their transition-metal complexes of meso- tetraphenyl porphyrins (TPP-8OOCR, with R = C(n-1)H(2n-1), n = 8, 12, or 16) have been prepared through very simple synthesis protocols. The thermotropic phase behavior and the liquid crystalline (LC) organization structures of the synthesized porphyrin derivatives were systematically investigated by a combination of differential scanning calorimetry (DSC), polarized optical microscopy (POM), and variable-temperature small-angle X-ray scattering/wide-angle X-ray scattering (SAXS/WAXS) techniques. The shorter octanoic acid ester substituted porphyrin (C8-TPP) did not show liquid crystallinity and its metal porphyrins exhibited an uncommon columnar mesophase. The lauric acid octaester (C12-TPP) and the palmitic acid octaester (C16-TPP) series porphyrins generated hexagonal columnar mesophase Colh. Moreover, the metal porphyrins C12-TPPM and C16-TPPM with M = Zn, Cu, or Ni, exhibited well-organized Colh mesophases of broad LC temperature ranges increasing in the order of TPPNi
Kumari, Sudesh; Roudjane, Mourad; Hewage, Dilrukshi; Liu, Yang; Yang, Dong-Sheng
2013-04-28
Cerium, praseodymium, and neodymium complexes of 1,3,5,7-cyclooctatetraene (COT) complexes were produced in a laser-vaporization metal cluster source and studied by pulsed-field ionization zero electron kinetic energy spectroscopy and quantum chemical calculations. The computations included the second-order Møller-Plesset perturbation theory, the coupled cluster method with single, double, and perturbative triple excitations, and the state-average complete active space self-consistent field method. The spectrum of each complex exhibits multiple band systems and is assigned to ionization of several low-energy electronic states of the neutral complex. This observation is different from previous studies of M(COT) (M = Sc, Y, La, and Gd), for which a single band system was observed. The presence of the multiple low-energy electronic states is caused by the splitting of the partially filled lanthanide 4f orbitals in the ligand field, and the number of the low-energy states increases rapidly with increasing number of the metal 4f electrons. On the other hand, the 4f electrons have a small effect on the geometries and vibrational frequencies of these lanthanide complexes.
Griffiths, Stewart K.; Nilson, Robert H.; Hruby, Jill M.
2002-01-01
An apparatus and procedure for performing microfabrication of detailed metal structures by electroforming metal deposits within small cavities. Two primary areas of application are: the LIGA process which manufactures complex three-dimensional metal parts and the damascene process used for electroplating line and via interconnections of microelectronic devices. A porous electrode held in contact or in close proximity with a plating substrate or mold top to ensure one-dimensional and uniform current flow into all mold cavities is used. Electrolyte is pumped over the exposed surface of the porous electrode to ensure uniform ion concentrations at this external surface. The porous electrode prevents electrolyte circulation within individual mold cavities, avoiding preferential enhancement of ion transport in cavities having favorable geometries. Both current flow and ion transport are one-dimensional and identical in all mold cavities, so all metal deposits grow at the same rate eliminating nonuniformities of the prior art.
Tocheva, Elitza I; Eltis, Lindsay D; Murphy, Michael E P
2008-04-15
The interaction of copper-containing dissimilatory nitrite reductase from Alcaligenes faecalis S-6 ( AfNiR) with each of five small molecules was studied using crystallography and steady-state kinetics. Structural studies revealed that each small molecule interacted with the oxidized catalytic type 2 copper of AfNiR. Three small molecules (formate, acetate and nitrate) mimic the substrate by having at least two oxygen atoms for bidentate coordination to the type 2 copper atom. These three anions bound to the copper ion in the same asymmetric, bidentate manner as nitrite. Consistent with their weak inhibition of the enzyme ( K i >50 mM), the Cu-O distances in these AfNiR-inhibitor complexes were approximately 0.15 A longer than that observed in the AfNiR-nitrite complex. The binding mode of each inhibitor is determined in part by steric interactions with the side chain of active site residue Ile257. Moreover, the side chain of Asp98, a conserved residue that hydrogen bonds to type 2 copper-bound nitrite and nitric oxide, was either disordered or pointed away from the inhibitors. Acetate and formate inhibited AfNiR in a mixed fashion, consistent with the occurrence of second acetate binding site in the AfNiR-acetate complex that occludes access to the type 2 copper. A fourth small molecule, nitrous oxide, bound to the oxidized metal in a side-on fashion reminiscent of nitric oxide to the reduced copper. Nevertheless, nitrous oxide bound at a farther distance from the metal. The fifth small molecule, azide, inhibited the reduction of nitrite by AfNiR most strongly ( K ic = 2.0 +/- 0.1 mM). This ligand bound to the type 2 copper center end-on with a Cu-N c distance of approximately 2 A, and was the only inhibitor to form a hydrogen bond with Asp98. Overall, the data substantiate the roles of Asp98 and Ile257 in discriminating substrate from other small anions.
NASA Astrophysics Data System (ADS)
Pinchuk, P.; Pinchuk, A. O.
2016-09-01
Hamaker-Lifshitz constants are used to calculate van der Waals interaction forces between small particles in solution. Typically, these constants are size-independent and material specific. According to the Lifshitz theory, the Hamaker-Lifshitz constants can be calculated by taking integrals that include the dielectric permittivity, as a function of frequency, of the interacting particles and the medium around particles. The dielectric permittivity of interacting metal nanoparticles can be calculated using the free-electron Drude model for metals. For bulk metals, the Drude model does is size independent. However, the conducting electrons in small metal nanoparticles exhibit surface scattering, which changes the complex dielectric permittivity function. Additionally, the Drude model can be modified to include temperature dependence. That is, an increase in temperature leads to thermal volume expansion and increased phonon population, which affect the scattering rate of the electrons and the plasma frequency. Both of these terms contribute significantly to the Drude model for the dielectric permittivity of the particles. In this work, we show theoretically that scattering of the free conducting electrons inside noble metal nanoparticles with the size of 1 - 50 nm leads to size-dependent dielectric permittivity and Hamaker-Lifshitz constants. In addition, we calculate numerically the Hamaker-Lifshitz constants for a variety of temperatures. The results of the study might be of interest for understanding colloidal stability of metal nanoparticles.
Metal ion complex formation in small lakes of the Western Siberian Arctic zone
NASA Astrophysics Data System (ADS)
Kremleva, Tatiana; Dinu, Marina
2017-04-01
The paper is based on joint investigation of the Tyumen State University (Russia, Tyumen) and the Geochemistry and Analytical Chemistry Vernadsky Institute of Russian Academy of Sciences (Moscow, Russia) during 2012-2014 period. It presents the results of research of chemical composition of about 70 small lakes located in the area of tundra and northern taiga of West Siberia (Russia, Yamal-Nenets and Khanty-Mansi Autonomous Districts of the Tyumen region). The investigation includes determination of different parameters of natural water samples: • content of trace elements (Al, Fe, Mn, Cr, Cu, Ni, Zn, Cd, Co, Pb, etc., total more than 60 elements) by emission method with an inductively coupled plasma (ICP-MS) using mass spektrometrometre Element 2 equipment; • content of inorganic and total carbon (TIC and TC) by elemental analysis and the difference between the total and inorganic carbon gives the organic carbon content (TOC); • pH value by potentiometric method; • content of basic ions (Na+, Ca2+, K+, Mg2+, NH4+, Cl-, SO42-, NO3-, PO43-) by ion chromatography. Determination of the chemical composition of samples was conducted in the accredited laboratory according to standard procedures with regular quality control of results. Heavy metals in natural waters can exist in various forms: free (hydrated) ions bound in complexes with organic or inorganic ligands, as well as in the form of suspensions. The form of metal existence has a significant influence on their availability to transport in aquatic organisms. Metal ions associated in stable complexes with organic substances are considered less toxic. From the previous investigations state that the most stable complexes are ligands with organic ions Fe3+, Al3+. The main conclusion of the present research states that if the total content of aluminum, iron and manganese ions (meq/dm3) is equal to or greater than the concentration of dissolved organic carbon (TOC, mg/dm3) in lakes water other heavy metals will be predominantly in free, ionic or bound form with inorganic ligands. This state means paradox consequence that the increase of dissolved Fe content will lead to toxicity rise of other elements having less affinity to organic material. For surface waters of Western Siberian Arctic zone this situation is quite common. The total concentration of iron and aluminum ions in most lakes of tundra and northern taiga zones is approximately equal to water complexing ability. From the other side humic substances participation in inactivation of other more toxic metals (Cu, Pb, Cd, Cr, Ni et al.) will be poor. Arctic part of Western Siberia undergoes significant anthropogenic load due to extensive oil and gas recovery in this zone. Surface waters of Western Siberia are characterized by high natural content of iron, aluminum and copper ions and anthropogenic load of heavy metals makes the situation more serious.
Label-free liquid crystal biosensor based on specific oligonucleotide probes for heavy metal ions.
Yang, Shengyuan; Wu, Chao; Tan, Hui; Wu, Yan; Liao, Shuzhen; Wu, Zhaoyang; Shen, Guoli; Yu, Ruqin
2013-01-02
In this study, to enhance the capability of metal ions disturbing the orientation of liquid crystals (LCs), we designed a new label-free LC biosensor for the highly selective and sensitive detection of heavy metal ions. This strategy makes use of the target-induced DNA conformational change to enhance the disruption of target molecules for the orientation of LC leading to an amplified optical signal. The Hg(2+) ion, which possesses a unique property to bind specifically to two DNA thymine (T) bases, is used as a model heavy metal ion. In the presence of Hg(2+), the specific oligonucleotide probes form a conformational reorganization of the oligonucleotide probes from hairpin structure to duplex-like complexes. The duplex-like complexes are then bound on the triethoxysilylbutyraldehyde/N,N-dimethyl-N-octadecyl (3-aminopropyl) trimethoxysilyl chloride (TEA/DMOAP)-coated substrate modified with capture probes, which can greatly distort the orientational profile of LC, making the optical image of LC cell birefringent as a result. The optical signal of LC sensor has a visible change at the Hg(2+) concentration of low to 0.1 nM, showing good detection sensitivity. The cost-effective LC sensing method can translate the concentration signal of heavy metal ions in solution into the presence of DNA duplexes and is expected to be a sensitive detection platform for heavy metal ions and other small molecule monitors.
Size-dependent Hamaker constants for silver and gold nanoparticles
NASA Astrophysics Data System (ADS)
Pinchuk, Pavlo; Jiang, Ke
2015-08-01
Hamaker-Lifshitz constants are material specific constants that are used to calculate van der Waals interaction forces between small particles in solution. Typically, these constants are size-independent and material specific. According to the Lifshitz theory, the Hamaker-Lifshitz constants can be calculated by taking integrals that include the dielectric permittivity, as a function of frequency, of the interacting particles and the medium around particles. The dielectric permittivity of interacting metal nanoparticles can be calculated using the Drude model, which is based on the assumption of motion of free conducting electrons. For bulk metals, the Drude model does not predict any sizedependence of the dielectric permittivity. However, the conducting electrons in small noble metal nanoparticles (R ~ 10nm) exhibit surface scattering, which changes the complex permittivity function. In this work, we show theoretically that scattering of the free conducting electrons inside silver and gold nanoparticles with the size of 1 - 50 nm leads to size-dependent dielectric permittivity and Hamaker-Lifshitz constants. We calculate numerically the Hamaker-Lifshitz constants for silver and gold nanoparticles with different diameters. The results of the study might be of interests for understanding colloidal stability of metal nanoparticles.
The mineral resources of the Sierra Nevada de Santa Marta, Columbia (Zone I)
Tschanz, Charles McFarland; Jimeno V., Andres; Cruz, Jaime B.
1970-01-01
The Sierra Nevada de Santa Maria on the north coast of Colombia is an isolated triangular mountain area that reaches altitudes of almost 19,000 feet. The exceedingly complex geology is shown on the 1:200,000 geologic map. Despite five major periods of granitic intrusion, three major periods of metamorphism, and extensive volcanic eruptions, metallic deposits are small and widely scattered. Sulfide deposits of significant economic value appear to be absent. Many small copper deposits, of chalcocite, cuprite, malachite, and azurite are found in epidotized rock in Mesozoic redbeds and intercalated volcanic rocks, but their economic potential is very small. Deposits of other common base metals appear to be absent. The most important metallic deposits may prove to be unusual bimineralic apatite-ilmenite deposits associated with gneissic anorthosite. The known magnetite deposits are too small to be exploited commercially. Primary gold deposits have not been identified and the placer deposits are uneconomic and very small. The largest and most important deposits are nonmetallic. Enormous reserves of limestone are suitable for cement manufacture and some high-purity limestone is suitable for the most exacting chemical uses. Small deposits of talc-tremolite could be exploited locally for ceramic use. The important noncoking bituminous coal deposits in the Cerrej6n area are excluded from this study. Other nonmetallic resources include igneous dimension stone in a variety of colors and textures, and agricultural dolomite. There probably are important undeveloped ground water resources on the slopes of the wide Rancheria and Cesar valleys, which separate the Sierra Nevada from the Serrania de Persia.
Material flow analysis of scarce metals: sources, functions, end-uses and aspects for future supply.
Peiró, Laura Talens; Méndez, Gara Villalba; Ayres, Robert U
2013-03-19
A number of metals that are now important to the electronic industry (and others) will become much more important in the future if current trends in technology continue. Most of these metals are byproducts (or hitch-hikers) of a small number of important industrial metals (attractors). By definition, the metals in the hitch-hiker group are not mined by themselves, and thus their production is limited by the demand for the major attractors. This article presents a material flow analysis (MFA) of the complex inter-relationships between these groups of metals. First, it surveys the main sources of geologically scarce (byproduct) metals currently considered critical by one or other of several recent studies. This is followed by a detailed survey of their major functions and the quantities contained in intermediate and end-products. The purpose is to identify the sectors and products where those metals are used and stocked and thus potentially available for future recycling. It concludes with a discussion of the limitations of possible substitution and barriers to recycling.
Singh, Rajesh; Bishnoi, Narsi R; Kirrolia, Anita; Kumar, Rajender
2013-01-01
In this study Pseudomonas aeruginosa a metal tolerant strain was not only applied for heavy metal removal but also to the solublization performance of the precipitated metal ions during effluent treatment. The synergistic effect of the isolate and Fe(0) enhanced the metal removal potential to 72.97% and 87.63% for Cr(VI) and cadmium, respectively. The decrease in cadmium ion removal to 43.65% (aeration+stirring reactors), 21.33% (aerated reactors), and 18.95% (without aerated+without stirring) with an increase in incubation period not only indicate the presence of soluble less toxic complexes, but also help in exploration of the balancing potential for valuable metal recovery. A relatively best fit and significant values of the correlation coefficient 0.912, 0.959, and 0.9314 for mixed effluent (Paint Industry effluent+CETP Wazirpur, effluent), CETP, Wazirpur, and control effluents, respectively, indicating first-order formulation and provide a reasonable description of COD kinetic data. Copyright © 2012 Elsevier Ltd. All rights reserved.
Kim, Yun-Hwa; Lee, Changyun; Kim, Seog K; Jeoung, Sae Chae
2014-06-01
The effects of the central metal ion on complex formation between meso-tetrakis(N-methylpyridium-4-yl)porphyrin (TMPyP) and the thrombin-binding aptamer G-quadruplex, 5'G2T2G2TGTG2T2G2, were examined in this study. The central metal ions were vanadium and zinc. At a [porphyrin]/[G-quadruplex] ratio of less than one, the absorption and CD spectra were unaffected by the mixing ratio for all three porphyrins, suggesting that the binding mode is homogeneous. Relatively small changes in the absorption spectrum when forming the complexes with the G-quadruplex, the positive CD signal, and the large accessibility of the I(-) quencher, suggested that all these porphyrins are not intercalated between the G-quartet. Stabilization of the G-quadruplex by ZnTMPyP was most effective. The effect of VOTMPyP on G-quadruplex stabilization was moderate, whereas TMPyP slightly destabilized G-quadruplex. From this observation, the involvement of the ligation of one G-quartet component to the central metal ion in G-quadruplex stabilization by metallo-TMPyP is suggested. Copyright © 2014 Elsevier B.V. All rights reserved.
Quantitative 3D evolution of colloidal nanoparticle oxidation in solution
Sun, Yugang; Zuo, Xiaobing; Sankaranarayanan, Subramanian K. R. S.; ...
2017-04-21
Real-time tracking three-dimensional (3D) evolution of colloidal nanoparticles in solution is essential for understanding complex mechanisms involved in nanoparticle growth and transformation. We simultaneously use time-resolved small-angle and wide-angle x-ray scattering to monitor oxidation of highly uniform colloidal iron nanoparticles, enabling the reconstruction of intermediate 3D morphologies of the nanoparticles with a spatial resolution of ~5 Å. The in-situ probing combined with large-scale reactive molecular dynamics simulations reveals the transformational details from the solid metal nanoparticles to hollow metal oxide nanoshells via nanoscale Kirkendall process, for example, coalescence of voids upon their growth, reversing of mass diffusion direction depending onmore » crystallinity, and so forth. In conclusion, our results highlight the complex interplay between defect chemistry and defect dynamics in determining nanoparticle transformation and formation.« less
Quantitative 3D evolution of colloidal nanoparticle oxidation in solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yugang; Zuo, Xiaobing; Sankaranarayanan, Subramanian K. R. S.
Real-time tracking three-dimensional (3D) evolution of colloidal nanoparticles in solution is essential for understanding complex mechanisms involved in nanoparticle growth and transformation. We simultaneously use time-resolved small-angle and wide-angle x-ray scattering to monitor oxidation of highly uniform colloidal iron nanoparticles, enabling the reconstruction of intermediate 3D morphologies of the nanoparticles with a spatial resolution of ~5 Å. The in-situ probing combined with large-scale reactive molecular dynamics simulations reveals the transformational details from the solid metal nanoparticles to hollow metal oxide nanoshells via nanoscale Kirkendall process, for example, coalescence of voids upon their growth, reversing of mass diffusion direction depending onmore » crystallinity, and so forth. In conclusion, our results highlight the complex interplay between defect chemistry and defect dynamics in determining nanoparticle transformation and formation.« less
Kulesza, Pawel J; Pieta, Izabela S; Rutkowska, Iwona A; Wadas, Anna; Marks, Diana; Klak, Karolina; Stobinski, Leszek; Cox, James A
2013-11-01
Different approaches to enhancement of electrocatalytic activity of noble metal nanoparticles during oxidation of small organic molecules (namely potential fuels for low-temperature fuel cells such as methanol, ethanol and formic acid) are described. A physical approach to the increase of activity of catalytic nanoparticles (e.g. platinum or palladium) involves nanostructuring to obtain highly dispersed systems of high surface area. Recently, the feasibility of enhancing activity of noble metal systems through the formation of bimetallic (e.g. PtRu, PtSn, and PdAu) or even more complex (e.g. PtRuW, PtRuSn) alloys has been demonstrated. In addition to possible changes in the electronic properties of alloys, specific interactions between metals as well as chemical reactivity of the added components have been postulated. We address and emphasize here the possibility of utilization of noble metal and alloyed nanoparticles supported on robust but reactive high surface area metal oxides (e.g. WO 3 , MoO 3 , TiO 2 , ZrO 2 , V 2 O 5 , and CeO 2 ) in oxidative electrocatalysis. This paper concerns the way in which certain inorganic oxides and oxo species can act effectively as supports for noble metal nanoparticles or their alloys during electrocatalytic oxidation of hydrogen and representative organic fuels. Among important issues are possible changes in the morphology and dispersion, as well as specific interactions leading to the improved chemisorptive and catalytic properties in addition to the feasibility of long time operation of the discussed systems.
Kulesza, Pawel J.; Pieta, Izabela S.; Rutkowska, Iwona A.; Wadas, Anna; Marks, Diana; Klak, Karolina; Stobinski, Leszek; Cox, James A.
2013-01-01
Different approaches to enhancement of electrocatalytic activity of noble metal nanoparticles during oxidation of small organic molecules (namely potential fuels for low-temperature fuel cells such as methanol, ethanol and formic acid) are described. A physical approach to the increase of activity of catalytic nanoparticles (e.g. platinum or palladium) involves nanostructuring to obtain highly dispersed systems of high surface area. Recently, the feasibility of enhancing activity of noble metal systems through the formation of bimetallic (e.g. PtRu, PtSn, and PdAu) or even more complex (e.g. PtRuW, PtRuSn) alloys has been demonstrated. In addition to possible changes in the electronic properties of alloys, specific interactions between metals as well as chemical reactivity of the added components have been postulated. We address and emphasize here the possibility of utilization of noble metal and alloyed nanoparticles supported on robust but reactive high surface area metal oxides (e.g. WO3, MoO3, TiO2, ZrO2, V2O5, and CeO2) in oxidative electrocatalysis. This paper concerns the way in which certain inorganic oxides and oxo species can act effectively as supports for noble metal nanoparticles or their alloys during electrocatalytic oxidation of hydrogen and representative organic fuels. Among important issues are possible changes in the morphology and dispersion, as well as specific interactions leading to the improved chemisorptive and catalytic properties in addition to the feasibility of long time operation of the discussed systems. PMID:24443590
Small and large particle limits of single scattering albedo for homogeneous, spherical particles
NASA Astrophysics Data System (ADS)
Moosmüller, H.; Sorensen, C. M.
2018-01-01
The aerosol single scattering albedo (SSA) is the dominant intensive particle parameter determining aerosols direct radiative forcing. For homogeneous spherical particles and a complex refractive index independent of wavelength, the SSA is solely dependent on size parameter (ratio of particle circumference and wavelength) and complex refractive index of the particle. Here, we explore this dependency for the small and large particle limits with size parameters much smaller and much larger than one. We show that in the small particle limit of Rayleigh scattering, a novel, generalized size parameter can be introduced that unifies the SSA dependence on particle size parameter independent of complex refractive index. In the large particle limit, SSA decreases with increasing product of imaginary part of the refractive index and size parameter, another generalized parameter, until this product becomes about one, then stays fairly constant until the imaginary part of the refractive index becomes comparable with the real part minus one. Beyond this point, particles start to acquire metallic character and SSA quickly increases with the imaginary part of the refractive index and approaches one.
Jašíková, Lucie; Roithová, Jana
2018-03-07
Infrared multiphoton dissociation (IRMPD) spectroscopy is commonly used to determine the structure of isolated, mass-selected ions in the gas phase. This method has been widely used since it became available at free-electron laser (FEL) user facilities. Thus, in this Minireview, we examine the use of IRMPD/FEL spectroscopy for investigating ions derived from small molecules, metal complexes, organometallic compounds and biorelevant ions. Furthermore, we outline new applications of IRMPD spectroscopy to study biomolecules. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effect of alkali ions (Na+, K+, Cs+) on reaction mechanism of CZTS nano-particles synthesis
NASA Astrophysics Data System (ADS)
Kumar, Suresh; Altosaar, Mare; Grossberg, Maarja; Mikli, Valdek
2018-04-01
The control of morphology, elemental composition and phase composition of Cu2ZnSnS4 (CZTS) nano-crystals depends on the control of complex formation and surface stabilization of nano-particles in solution-based synthesis in oleylamine. At temperatures ≥280 °C, the control of nano-crystal's morphology and homogenous growth is difficult because of fast poly-nuclear growth occurring at higher temperatures. In the present work the effect of oleylamine complex formation with different alkali ions (Na+, K+ and Cs+) on nano-crystals growth at synthesis temperature of 280 °C was studied. It was found that nano-powders synthesized in the presence of Na+ and K+ ions showed the formation of crystals of different sizes - small nano-particles (18 nm-30 nm), large aggregated crystals (few nm to 1 μm) and large single crystals (1 μm - 4 μm). The presence of Cs+ ions in the nano-powder synthesis in oleylamine-metal precursor-CsOH solution promoted growth of nano-crystals of homogenous size. It is proposed that the formed oleylamine-Cs complexes a) enhance the formation and stabilization of oleylamine-metal (Cu, Zn and Sn) complexes before the injection of sulphur precursor into the oleylamine-metal precursor solution and b) after addition of sulphur stabilize the fast nucleated nano-particles and promote diffusion limited growth.
Indenylmetal Catalysis in Organic Synthesis.
Trost, Barry M; Ryan, Michael C
2017-03-06
Synthetic organic chemists have a long-standing appreciation for transition metal cyclopentadienyl complexes, of which many have been used as catalysts for organic transformations. Much less well known are the contributions of the benzo-fused relative of the cyclopentadienyl ligand, the indenyl ligand, whose unique properties have in many cases imparted differential reactivity in catalytic processes toward the synthesis of small molecules. In this Review, we present examples of indenylmetal complexes in catalysis and compare their reactivity to their cyclopentadienyl analogues, wherever possible. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Motta, Mario
2017-06-01
WD1145 is a 17th magnitude white dwarf star 570 light years away in Virgo, that was discovered to have a disintegrating planetoid in close orbit by Andrew Vanderburg a graduate student at Harvard CFA, while data mining the Kepler 2 mission. He contacted me to obtain transit data to elucidate the nature of its rather bizarre transit light curves. I obtained multiple observations of WD1145 over the course of a year, and found a series of complex transit light curves that could only be interpreted as a ring complex or torus in close orbit around WD1145. Combined with data from other amateur astronomers, professional observations, and satellite data it became clear that WD1145 has a small planetoid in close orbit at the Roche limit and is breaking apart forming a ring of debris material that is then raining down on the white dwarf. The surface of the star is "polluted" by heavy metals by spectroscopic data. Given that in the intense gravitational field of a white dwarf any heavy metals could not for long last on the surface, this confirms that we are tracking in real time the destruction of a small planet by its host star.
NASA Astrophysics Data System (ADS)
Smyslov, R. Yu; Ezdakova, K. V.; Kopitsa, G. P.; Khripunov, A. K.; Bugrov, A. N.; Tkachenko, A. A.; Angelov, B.; Pipich, V.; Szekely, N. K.; Baranchikov, A. E.; Latysheva, E.; Chetverikov, Yu O.; Haramus, V.
2017-05-01
Scanning electron microscopy, ultra-small-angle neutron scattering (USANS), small-angle neutron and X-ray scattering (SANS and SAXS), as well as low-temperature nitrogen adsorption, were used in the studies of micro- and mesostructure of polymer matrix prepared from air-dry preliminarily disintegrated cellulose nano-gel film (synthesized by Gluconacetobacter xylinus) and the composites based on this bacterial cellulose. The composites included ZrO2 nanoparticles, Tb3+ in the form of low molecular weight salt and of metal-polymer complex with poly(vinylpyrrolydone)-poly(methacryloyl-o-aminobenzoic acid) copolymer. The combined analysis of the data obtained allowed revealing three levels of fractal organization in mesostructure of G. xylinus cellulose and its composites. It was shown that both the composition and an aggregation state of dopants have a significant impact on the structural characteristics of the organic-inorganic composites. The composites containing Tb3+ ions demonstrate efficient luminescence; its intensity is an order of magnitude higher in the case of the composites with the metal-polymer complex. It was found that there is the optimal content of ZrO2 nanoparticles in composites resulting in increased Tb3+ luminescence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Amrish, E-mail: amrish99@gmail.com; Kaur, Sandeep, E-mail: sipusukhn@gmail.com; Mudahar, Isha, E-mail: isha@pbi.ac.in
We have investigated the structural and electronic properties of carbon nanotube with small fullerene halves C{sub n} (n ≤ 40) which are covalently bonded to the side wall of an armchair single wall carbon nanotube (SWCNT) using first principle method based on density functional theory. The fullerene size results in weak bonding between fullerene halves and carbon nanotube (CNT). Further, it was found that the C-C bond distance that attaches the fullerene half and CNT is of the order of 1.60 Å. The calculated binding energies indicate the stability of the complexes formed. The HOMO-LUMO gaps and electron density ofmore » state plots points towards the metallicity of the complex formed. Our calculations on charge transfer reveal that very small amount of charge is transferred from CNT to fullerene halves.« less
NASA Astrophysics Data System (ADS)
Tabrizi, Leila; Chiniforoshan, Hossein; McArdle, Patrick
2015-02-01
The interaction of Cd(II) with the non-steroidal anti-inflammatory drug diclofenac sodium (Dic) leads to the formation of the complex [Cd2(L)41.5(MeOH)2(H2O)]n(L = Dic), 1, which has been isolated and structurally characterized by X-ray crystallography. Diclofenac sodium and its metal complex 1 have also been evaluated for antiproliferative activity in vitro against the cells of three human cancer cell lines, MCF-7 (breast cancer cell line), T24 (bladder cancer cell line), A-549 (non-small cell lung carcinoma), and a mouse fibroblast L-929 cell line. The results of cytotoxic activity in vitro expressed as IC50 values indicated the diclofenac sodium and cadmium chloride are non active or less active than the metal complex of diclofenac (1). Complex 1 was also found to be a more potent cytotoxic agent against T-24 and MCF-7 cancer cell lines than the prevalent benchmark metallodrug, cisplatin, under the same experimental conditions. The superoxide dismutase activity was measured by Fridovich test which showed that complex 1 shows a low value in comparison with Cu complexes. The binding properties of this complex to biomolecules, bovine or human serum albumin, are presented and evaluated. Antibacterial and growth inhibitory activity is also higher than that of the parent ligand compound.
Photodynamic killing of cancer cells by a Platinum(II) complex with cyclometallating ligand
NASA Astrophysics Data System (ADS)
Doherty, Rachel E.; Sazanovich, Igor V.; McKenzie, Luke K.; Stasheuski, Alexander S.; Coyle, Rachel; Baggaley, Elizabeth; Bottomley, Sarah; Weinstein, Julia A.; Bryant, Helen E.
2016-03-01
Photodynamic therapy that uses photosensitizers which only become toxic upon light-irradiation provides a strong alternative to conventional cancer treatment due to its ability to selectively target tumour material without affecting healthy tissue. Transition metal complexes are highly promising PDT agents due to intense visible light absorption, yet the majority are toxic even without light. This study introduces a small, photostable, charge-neutral platinum-based compound, Pt(II) 2,6-dipyrido-4-methyl-benzenechloride, complex 1, as a photosensitizer, which works under visible light. Activation of the new photosensitizer at low concentrations (0.1-1 μM) by comparatively low dose of 405 nm light (3.6 J cm-2) causes significant cell death of cervical, colorectal and bladder cancer cell lines, and, importantly, a cisplatin resistant cell line EJ-R. The photo-index of the complex is 8. We demonstrate that complex 1 induces irreversible DNA single strand breaks following irradiation, and that oxygen is essential for the photoinduced action. Neither light, nor compound alone led to cell death. The key advantages of the new drug include a remarkably fast accumulation time (diffusion-controlled, minutes), and photostability. This study demonstrates a highly promising new agent for photodynamic therapy, and attracts attention to photostable metal complexes as viable alternatives to conventional chemotherapeutics, such as cisplatin.
Fanning, Ann-Marie; Plush, Sally E; Gunnlaugsson, Thorfinnur
2015-05-28
A series of tetra-substituted 'pseudo' dipeptide ligands of cyclen (1,4,7,10,-tetraazacyclododecane) and a tri-substituted 3'-pyridine ligand of cyclen, and the corresponding lanthanide(III) complexes were synthesised and characterised as metallo-ribonuclease mimics. All complexes were shown to promote hydrolysis of the phosphodiester bond of 2-hydroxypropyl-4-nitrophenyl phosphate (HPNP, τ1/2 = 5.87 × 10(3) h), a well known RNA mimic. The La(III) and Eu(III) tri-substituted 3'-pyridine lanthanide(III) complexes being the most efficient in promoting such hydrolysis at pH 7.4 and at 37 °C; with τ1/2 = 1.67 h for La(III) and 1.74 h for Eu(III). The series was developed to provide the opportunity to investigate the consequences of altering the lanthanide(III) ion, coordination ability and hydrophobicity of a metallo-cavity on the rate of hydrolysis using the model phosphodiester, HPNP, at 37 °C. To further provide information on the role that the log Ka of the metal bound water plays in phosphodiester hydrolysis the protonation constants and the metal ion stability constants of both a tri and tetra-substituted 3'pyridine complex were determined. Our results highlighted several key features for the design of lanthanide(III) ribonucelase mimics; the presence of two metal bound water molecules are vital for pH dependent rate constants for Eu(III) complexes, optimal pH activity approximating physiological pH (∼7.4) may be achieved if the log Ka values for both MLOH and ML(OH)2 species occur in this region, small changes to hydrophobicity within the metallo cavity influence the rate of hydrolysis greatly and an amide adjacent to the metal ion capable of forming hydrogen bonds with the substrate is required for achieving fast hydrolysis.
Bottom-up nanoconstruction by the welding of individual metallic nanoobjects using nanoscale solder.
Peng, Yong; Cullis, Tony; Inkson, Beverley
2009-01-01
We report that individual metallic nanowires and nanoobjects can be assembled and welded together into complex nanostructures and conductive circuits by a new nanoscale electrical welding technique using nanovolumes of metal solder. At the weld sites, nanoscale volumes of a chosen metal are deposited using a sacrificial nanowire, which ensures that the nanoobjects to be bonded retain their structural integrity. We demonstrate by welding both similar and dissimilar materials that the use of nanoscale solder is clean, controllable, and reliable and ensures both mechanically strong and electrically conductive contacts. Nanoscale weld resistances of just 20Omega are achieved by using Sn solder. Precise engineering of nanowelds by this technique, including the chemical flexibility of the nanowire solder, and high spatial resolution of the nanowelding method, should result in research applications including fabrication of nanosensors and nanoelectronics constructed from a small number of nanoobjects, and repair of interconnects and failed nanoscale electronics.
NASA Astrophysics Data System (ADS)
Kupka, Teobald
1997-12-01
IR studies were preformed to determine possible transition metal ion binding sites of penicillin. the observed changes in spectral position and shape of characteristic IR bands of cloxacillin in the presence of transition metal ions (both in solutions and in the solid state) indicate formation of M-L complexes with engagement of -COO - and/or -CONH- functional groups. The small shift of νCO towards higher frequencies rules out direct M-L interaction via β-lactam carbonyl. PM3 calculations on simple model compounds (substituted formamide, cyclic ketones, lactams and substituted monocyclic β-lactams) have been performed. All structures were fully optimized and the calculated bond lengths, angles, heats of formation and CO stretching frequencies were discussed to determine the β-lactam binding sites and to explain its susceptibility towards nucleophilic attack (hydrolysis in vitro) and biological activity. The relative changes of calculated values were critically compared with available experimental data and same correlation between structural parameters and in vivo activity was shown.
Flip chip bumping technology—Status and update
NASA Astrophysics Data System (ADS)
Juergen Wolf, M.; Engelmann, Gunter; Dietrich, Lothar; Reichl, Herbert
2006-09-01
Flip chip technology is a key driver for new complex system architectures and high-density packaging, e.g. sensor or pixel devices. Bumped wafers/dice as key elements become very important in terms of general availability at low cost, high yield and quality level. Today, different materials, e.g. Au, Ni, AuSn, SnAg, SnAgCu, SnCu, etc., are used for flip chip interconnects and different bumping approaches are available. Electroplating is the technology of choice for high-yield wafer bumping for small bump sizes and pitches. Lead-free solder bumps require an increase in knowledge in the field of under bump metallization (UBM) and the interaction of bump and substrate metallization, the formation and growth of intermetallic compounds (IMCs) during liquid- and solid-phase reactions. Results of a new bi-layer UBM of Ni-Cu which is especially designed for small-sized lead-free solder bumps will be discussed.
Li, Anding; Zhang, Yan; Zhou, Beihai; Xin, Kailing; Gu, Yingnan; Xu, Weijie; Tian, Jie
2018-05-21
The molecular weight of dissolved organic matter (DOM) is one of the essential factors controlling the properties of metal complexes. A continuous ultrafiltration experiment was designed to study the properties of Cu complexes with different molecular weights in a river before and after eutrophication. The results showed that the concentration of DOM increased from 26.47 to 38.20 mg/L during the eutrophication process, however, DOM was still dominated by the small molecular weight fraction before and after eutrophication. The amount of Cu-DOM complexes increased with the increasing of molecular weight, however, the amounts of DOM-Cu complexes before eutrophication were higher than those after eutrophication. This is because DOM contained more -COOH and -OH before eutrophication and these functional groups are the active sites complexed with Cu.
NASA Astrophysics Data System (ADS)
Roca, Núria; Rodríguez-Bocanegra, Javier; Bech, Jaume
2017-04-01
Polluted soils by heavy metals are characterized to present great concentrations of these pollutants. Ure wrote the following in 1996: "For understanding the chemistry of the heavy metals in their interaction with other soil components such as the clay minerals, organic matter and the soil solution, or to assess their mobility and retention as well as their availability to plants, the usual approach is to use selective chemical extraction". However, nowadays to assess the bioconcentration factor of plants in phytoremediation, the pseudototal or total concentration has been used. Strong mineral acids attack part of the silicate soil matrix and as consequence part of the heavy metals obtained are included in the structures of the mineral fraction. A different approach may, therefore, be more productive in the study of phytoremediation and the use of extractants, as EDTA or DTPA, can perhaps best be exploited by considering them in their role of bioconcentration factor. Moreover, EDTA and DTPA, which form strong complexes with many metals, can extract also organically complex metals. Properties of the soils collected in mining areas presented great variability, as they depend on materials where soils were developed, the complex mixture of heterogeneous wastes and the mining age. In the case of Caroline Mine in Hualgayoc (Perú), the mining is relatively modern and the available fraction of heavy metals of mine soils is low. The small available fraction concentration is due partly to both a few developed soil structure and low organic matter content. The only exception was the copper, with ranging from 1.2 to 36.2 % of total soil fraction. All plant species that were investigated in previous studies have a good ability to transport potential hazardous elements from the roots to the shoots and they have the ability to accumulate more than 1000 mg•kg-1 of heavy metals in the shoots. However, the bioconcentration factor was smaller than one for all the studied plants in every polluted site. The small bioconcentration values are due partly to both the large metal burdens of the mine soils and the fact that here the total concentration and not the extractable soil fraction concentration of the elements was used. When available fraction was used, the bioconcentration factor with DTPA was greater than one in all cases. The elevated Pb and Zn bioconcentration factor (>100) could be a good measure of the high capacity of these native plants to accumulate metals. The soils of the ancient Espinosa mine in Catalonia (Spain) presented great available concentrations of Cu, Pb and Zn and represent more than 50% of the total fraction in almost every polluted studied site. Therefore, the use of the bioconcentration factor doesn't show a relevant difference between total or extractable fraction because of the elevated extractable fraction of the total content. Therefore, the bioconcentration factor calculated with extractable fraction could be a good measure of plant capacity to accumulate metals.
NASA Astrophysics Data System (ADS)
Kochańczyk, Tomasz; Nowakowski, Michał; Wojewska, Dominika; Kocyła, Anna; Ejchart, Andrzej; Koźmiński, Wiktor; Krężel, Artur
2016-11-01
The binding of metal ions at the interface of protein complexes presents a unique and poorly understood mechanism of molecular assembly. A remarkable example is the Rad50 zinc hook domain, which is highly conserved and facilitates the Zn2+-mediated homodimerization of Rad50 proteins. Here, we present a detailed analysis of the structural and thermodynamic effects governing the formation and stability (logK12 = 20.74) of this evolutionarily conserved protein assembly. We have dissected the determinants of the stability contributed by the small β-hairpin of the domain surrounding the zinc binding motif and the coiled-coiled regions using peptides of various lengths from 4 to 45 amino acid residues, alanine substitutions and peptide bond-to-ester perturbations. In the studied series of peptides, an >650 000-fold increase of the formation constant of the dimeric complex arises from favorable enthalpy because of the increased acidity of the cysteine thiols in metal-free form and the structural properties of the dimer. The dependence of the enthalpy on the domain fragment length is partially compensated by the entropic penalty of domain folding, indicating enthalpy-entropy compensation. This study facilitates understanding of the metal-mediated protein-protein interactions in which the metal ion is critical for the tight association of protein subunits.
Kochańczyk, Tomasz; Nowakowski, Michał; Wojewska, Dominika; Kocyła, Anna; Ejchart, Andrzej; Koźmiński, Wiktor; Krężel, Artur
2016-01-01
The binding of metal ions at the interface of protein complexes presents a unique and poorly understood mechanism of molecular assembly. A remarkable example is the Rad50 zinc hook domain, which is highly conserved and facilitates the Zn2+-mediated homodimerization of Rad50 proteins. Here, we present a detailed analysis of the structural and thermodynamic effects governing the formation and stability (logK12 = 20.74) of this evolutionarily conserved protein assembly. We have dissected the determinants of the stability contributed by the small β-hairpin of the domain surrounding the zinc binding motif and the coiled-coiled regions using peptides of various lengths from 4 to 45 amino acid residues, alanine substitutions and peptide bond-to-ester perturbations. In the studied series of peptides, an >650 000-fold increase of the formation constant of the dimeric complex arises from favorable enthalpy because of the increased acidity of the cysteine thiols in metal-free form and the structural properties of the dimer. The dependence of the enthalpy on the domain fragment length is partially compensated by the entropic penalty of domain folding, indicating enthalpy-entropy compensation. This study facilitates understanding of the metal-mediated protein-protein interactions in which the metal ion is critical for the tight association of protein subunits. PMID:27808280
Mack, C L; Wilhelmi, B; Duncan, J R; Burgess, J E
2011-01-01
The process of platinum group metal (PGM) refining can be up to 99.99% efficient at best, and although it may seem small, the amount of valuable metal lost to waste streams is appreciable enough to warrant recovery. The method currently used to remove entrained metal ions from refinery wastewaters, chemical precipitation, is not effective for selective recovery of PGMs. The yeast Saccharomyces cerevisiae has been found capable of sorbing numerous precious and base metals, and is a cheap and abundant source of biomass. In this investigation, S. cerevisiae was immobilised using polyethyleneimine and glutaraldehyde to produce a suitable sorbent, capable of high platinum uptake (150-170 mg/g) at low pH (<2). The sorption mechanism was found to be a chemical reaction, which made effective desorption impossible. When applied to PGM refinery wastewater, two key wastewater characteristics limited the success of the sorption process; high inorganic ion content and complex speciation of the platinum ions. The results proved the concept principle of platinum recovery by immobilised yeast biosorption and indicated that a more detailed understanding of the platinum speciation within the wastewater is required before biosorption can be applied. Overall, the sorption of platinum by the S. cerevisiae sorbent was demonstrated to be highly effective in principle, but the complexity of the wastewater requires that pretreatment steps be taken before the successful application of this process to industrial wastewater.
Mandal, Arundhoti; Singha, Monisha; Addy, Partha Sarathi; Basak, Amit
2017-10-13
The MALDI-based mass spectrometry, over the last three decades, has become an important analytical tool. It is a gentle ionization technique, usually applicable to detect and characterize analytes with high molecular weights like proteins and other macromolecules. The earlier difficulty of detection of analytes with low molecular weights like small organic molecules and metal ion complexes with this technique arose due to the cluster of peaks in the low molecular weight region generated from the matrix. To detect such molecules and metal ion complexes, a four-prong strategy has been developed. These include use of alternate matrix materials, employment of new surface materials that require no matrix, use of metabolites that directly absorb the laser light, and the laser-absorbing label-assisted LDI-MS (popularly known as LALDI-MS). This review will highlight the developments with all these strategies with a special emphasis on LALDI-MS. © 2017 Wiley Periodicals, Inc.
Three Dimensional Microfabrication On Thick Film Photoresist Mandrels
NASA Astrophysics Data System (ADS)
Salmre, William
1984-05-01
Small, three-dimensional structures are fabricated by the use of thick film photoresist mandrels as substrates for electoforming or other deposition techniques. Novel methods have been developed for the sculpting of the resist to desired shapes. These techniques rely heavily on the use of glass or other substrates coated with layers of metal. The metal serves both as a photomask and as a conductor of electricity. Commercially available chrome-on-glass photomasks are convenient for this purpose although other substrates have also been used. By controlling the thickness and light transmission of the metal layer, the amount of exposure of the resist can also be controlled to produce the desired shapes in the resist. For even more complex mandrels the resist can be exposed from both sides using self-aligned photomasks.
Prochowicz, Daniel; Kornowicz, Arkadiusz; Lewiński, Janusz
2017-11-22
Readily available cyclodextrins (CDs) with an inherent hydrophobic internal cavity and hydrophilic external surface are macrocyclic entities that display a combination of molecular recognition and complexation properties with vital implications for host-guest supramolecular chemistry. While the host-guest chemistry of CDs has been widely recognized and led to their exploitation in a variety of important functions over the last five decades, these naturally occurring macrocyclic systems have emerged only recently as promising macrocyclic molecules to fabricate environmentally benign functional nanomaterials. This review surveys the development in the field paying special attention to the synthesis and emerging uses of various unmodified CD-metal complexes and CD-inorganic nanoparticle systems and identifies possible future directions. The association of a hydrophobic cavity of CDs with metal ions or various inorganic nanoparticles is a very appealing strategy for controlling the inorganic subunits properties in the very competitive water environment. In this review we provide the most prominent examples of unmodified CDs' inclusion complexes with organometallic guests and update the research in this field from the past decade. We discuss also the coordination flexibility of native CDs to metal ions in CD-based metal complexes and summarize the progress in the synthesis and characterization of CD-metal complexes and their use in catalysis and sensing as well as construction of molecular magnets. Then we provide a comprehensive overview of emerging applications of native CDs in materials science and nanotechnology. Remarkably, in the past few years CDs have appeared as attractive building units for the synthesis of carbohydrate metal-organic frameworks (CD-MOFs) in a combination of alkali-metal cations. The preparation of this new class of highly porous materials and their applications in the separation of small molecules, the loading of drug molecules, as well as efficient host templates in the construction of nanomaterials with the desired functionality, including the first-in-class devices including sensors and memristors, are highlighted. Finally, CDs as well-known "green" molecular hosts have also been used as ideal functional molecules to improve the solubility, stability, and bioavailability of inorganic nanoparticles. In this regard, we demonstrate various strategies for the preparation of native CDs-modified inorganic nanomaterials such as metal, metal oxide, and semiconductor and magnetic nanoparticles, aiming to take advantage of both the controlled properties of the inorganic core and the controlled properties of the coating molecules. The functionalization of a CD hydrophobic cavity with an inorganic nanoparticle is very prospective for the development of novel catalytic systems and new tools for highly selective and sensitive sensing platforms for various targets.
Synthesis of branched metal nanostructures with controlled architecture and composition
NASA Astrophysics Data System (ADS)
Ortiz, Nancy
On account of their small size, metal nanoparticles are proven to be outstanding catalysts for numerous chemical transformations and represent promising platforms for applications in the fields of electronics, chemical sensing, medicine, and beyond. Many properties of metal nanoparticles are size-dependent and can be further manipulated through their shape and architecture (e.g., spherical vs. branched). Achieving morphology control of nanoparticles through solution-based techniques has proven challenging due to limited knowledge of morphology development in nanosyntheses. To overcome these complications, a systematic examination of the local ligand environment of metal precursors on nanostructure formation was undertaken to evaluate its contribution to nanoparticle nucleation rate and subsequent growth processes. Specifically, this thesis will provide evidence from ex situ studies---Transmission Electron Microscopy (TEM) and UV-visible spectroscopy (UV-Vis)---that support the hypothesis that strongly coordinated ligands delay burst-like nucleation to generate spherical metal nanoparticles and ligands with intermediate binding affinity regulate the gradual reduction of metal precursors to promote aggregated assembly of nanodendrites. These ex situ studies were coupled with a new in situ perspective, providing detailed understanding of metal precursor transformation, its direct relation to nanoparticle morphology development, and the ligand influence towards the formation of structurally complex metal nanostructures, using in situ synchrotron X-ray Diffraction (XRD) and Ultra Small-Angle X-ray Scattering (USAXS). The principles extracted from the study of monometallic nanostructure formation were also found to be generally applicable to the synthesis of bimetallic nanostructures, e.g., Pd-Pt architectures, with either core-shell or alloyed structures that were readily achieved by ligand selection. These outcomes provide a direct connection between fundamental principles of coordination chemistry and nanoparticle formation, with a stronger foundation for the predictive synthesis of future nanomaterials with controllable structural features.
R. Sam Williams; Stan Lebow; Patricia Lebow
2003-01-01
Wood pressure-treated with chromated copper arsenate (CCA) wood preservative is commonly used for outdoor construction. Oxides of arsenic, copper, and chromium are bound in the wood by a complex series of chemical reactions, but a small percentage of these compounds are gradually released by leaching and weathering. Recent studies suggest that the release of these...
Sriskandakumar, Thamayanthy; Petzold, Holm; Bruijnincx, Pieter C A; Habtemariam, Abraha; Sadler, Peter J; Kennepohl, Pierre
2009-09-23
Thiolate ligand oxygenation is believed to activate cytotoxic half-sandwich [(eta(6)-arene)Ru(en)(SR)](+) complexes toward DNA binding. We have made detailed comparisons of the nature of the Ru-S bond in the parent thiolato complexes and mono- (sulfenato) and bis- (sulfinato) oxygenated species including the influence of substituents on the sulfur and arene. Sulfur K-edge XAS indicates that S(3p) donation into the Ru(4d) manifold depends strongly on the oxidation state of the sulfur atom, whereas Ru K-edge data suggest little change at the metal center. DFT results are in agreement with the experimental data and allow a more detailed analysis of the electronic contributions to the Ru-S bond. Overall, the total ligand charge donation to the metal center remains essentially unchanged upon ligand oxygenation, but the origin of the donation differs markedly. In sulfenato complexes, the terminal oxo group makes a large contribution to charge donation and even small electronic changes in the thiolato complexes are amplified upon ligand oxygenation, an observation which carries direct implications for the biological activity of this family of complexes. Details of Ru-S bonding in the mono-oxygenated complexes suggest that these should be most susceptible to ligand exchange, yet only if protonation of the terminal oxo group can occur. The potential consequences of these results for biological activation are discussed.
NASA Astrophysics Data System (ADS)
Andersen, A.; Govind, N.; Laskin, A.
2017-12-01
Mineral surfaces have been implicated as potential protectors of soil organic matter (SOM) against decomposition and ultimate mineralization to small molecules which can provide nutrients for plants and soil microbes and can also contribute to the Earth's elemental cycles. SOM is a complex mixture of organic molecules of biological origin at varying degrees of decomposition and can, itself, self-assemble in such a way as to expose some biomolecule types to biotic and abiotic attack while protecting other biomolecule types. The organization of SOM and SOM with mineral surfaces and solvated metal ions is driven by an interplay of van der Waals and electrostatic interactions leading to partitioning of hydrophilic (e.g. sugars) and hydrophobic (e.g., lipids) SOM components that can be bridged with amphiphilic molecules (e.g., proteins). Classical molecular dynamics simulations can shed light on assemblies of organic molecules alone or complexation with mineral surfaces. The role of chemical reactions is also an important consideration in potential chemical changes of the organic species such as oxidation/reduction, degradation, chemisorption to mineral surfaces, and complexation with solvated metal ions to form organometallic systems. For the study of chemical reactivity, quantum chemistry methods can be employed and combined with structural insight provided by classical MD simulations. Moreover, quantum chemistry can also simulate spectroscopic signatures based on chemical structure and is a valuable tool in interpreting spectra from, notably, x-ray absorption spectroscopy (XAS). In this presentation, we will discuss our classical MD and quantum chemistry findings on a model SOM system interacting with mineral surfaces and solvated metal ions.
Lewis, G.W. Jr.; Rhodes, D.E.
1957-11-01
An improved method for extracting uranium from aqueous solutions by solvent extraction is presented. A difficulty encountered in solvent extraction operations using an organic extractant (e.g., tributyl phosphate dissolved in kerosene or carbon tetrachloride) is that emulsions sometimes form, and phase separation is difficult or impossible. This difficulty is overcome by dissolving the organic extractant in a molten wax which is a solid at operating temperatures. After cooling, the wax which now contains the extractant, is broken into small particles (preferably flakes) and this wax complex'' is used to contact the uranium bearing solutions and extract the metal therefrom. Microcrystalline petroleum wax and certain ethylene polymers have been found suitable for this purpose.
Wai, Chien M.; Hunt, Fred H.; Smart, Neil G.; Lin, Yuehe
2000-01-01
A method for dissociating metal-ligand complexes in a supercritical fluid by treating the metal-ligand complex with heat and/or reducing or oxidizing agents is described. Once the metal-ligand complex is dissociated, the resulting metal and/or metal oxide form fine particles of substantially uniform size. In preferred embodiments, the solvent is supercritical carbon dioxide and the ligand is a .beta.-diketone such as hexafluoroacetylacetone or dibutyldiacetate. In other preferred embodiments, the metals in the metal-ligand complex are copper, silver, gold, tungsten, titanium, tantalum, tin, or mixtures thereof. In preferred embodiments, the reducing agent is hydrogen. The method provides an efficient process for dissociating metal-ligand complexes and produces easily-collected metal particles free from hydrocarbon solvent impurities. The ligand and the supercritical fluid can be regenerated to provide an economic, efficient process.
40 CFR 721.4596 - Diazo substituted carbomonocyclic metal complex.
Code of Federal Regulations, 2010 CFR
2010-07-01
... metal complex. 721.4596 Section 721.4596 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4596 Diazo substituted carbomonocyclic metal complex. (a) Chemical... as a diazo substituted carbomonocyclic metal complex (PMN P-94-1039) is subject to reporting under...
40 CFR 721.4596 - Diazo substituted carbomonocyclic metal complex.
Code of Federal Regulations, 2011 CFR
2011-07-01
... metal complex. 721.4596 Section 721.4596 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4596 Diazo substituted carbomonocyclic metal complex. (a) Chemical... as a diazo substituted carbomonocyclic metal complex (PMN P-94-1039) is subject to reporting under...
Midbond basis functions for weakly bound complexes
NASA Astrophysics Data System (ADS)
Shaw, Robert A.; Hill, J. Grant
2018-06-01
Weakly bound systems present a difficult problem for conventional atom-centred basis sets due to large separations, necessitating the use of large, computationally expensive bases. This can be remedied by placing a small number of functions in the region between molecules in the complex. We present compact sets of optimised midbond functions for a range of complexes involving noble gases, alkali metals and small molecules for use in high accuracy coupled -cluster calculations, along with a more robust procedure for their optimisation. It is shown that excellent results are possible with double-zeta quality orbital basis sets when a few midbond functions are added, improving both the interaction energy and the equilibrium bond lengths of a series of noble gas dimers by 47% and 8%, respectively. When used in conjunction with explicitly correlated methods, near complete basis set limit accuracy is readily achievable at a fraction of the cost that using a large basis would entail. General purpose auxiliary sets are developed to allow explicitly correlated midbond function studies to be carried out, making it feasible to perform very high accuracy calculations on weakly bound complexes.
Krause, Mary E; Glass, Amanda M; Jackson, Timothy A; Laurence, Jennifer S
2013-01-07
The unique metal abstracting peptide asparagine-cysteine-cysteine (NCC) binds nickel in a square planar 2N:2S geometry and acts as a mimic of the enzyme nickel superoxide dismutase (Ni-SOD). The Ni-NCC tripeptide complex undergoes rapid, site-specific chiral inversion to dld-NCC in the presence of oxygen. Superoxide scavenging activity increases proportionally with the degree of chiral inversion. Characterization of the NCC sequence within longer peptides with absorption, circular dichroism (CD), and magnetic CD (MCD) spectroscopies and mass spectrometry (MS) shows that the geometry of metal coordination is maintained, though the electronic properties of the complex are varied to a small extent because of bis-amide, rather than amine/amide, coordination. In addition, both Ni-tripeptide and Ni-pentapeptide complexes have charges of -2. This study demonstrates that the chiral inversion chemistry does not occur when NCC is embedded in a longer polypeptide sequence. Nonetheless, the superoxide scavenging reactivity of the embedded Ni-NCC module is similar to that of the chirally inverted tripeptide complex, which is consistent with a minor change in the reduction potential for the Ni-pentapeptide complex. Together, this suggests that the charge of the complex could affect the SOD activity as much as a change in the primary coordination sphere. In Ni-NCC and other Ni-SOD mimics, changes in chirality, superoxide scavenging activity, and oxidation of the peptide itself all depend on the presence of dioxygen or its reduced derivatives (e.g., superoxide), and the extent to which each of these distinct reactions occurs is ruled by electronic and steric effects that emenate from the organization of ligands around the metal center.
Zhang, Shouwei; Gao, Huihui; Li, Jiaxing; Huang, Yongshun; Alsaedi, Ahmed; Hayat, Tasawar; Xu, Xijin; Wang, Xiangke
2017-01-05
Metal silicates have attracted extensive interests due to their unique structure and promising properties in adsorption and catalysis. However, their applications were hampered by the complex and expensive synthesis. In this paper, three-dimensional (3D) hierarchical flower-like metal silicate, including magnesium silicate, zinc silicate, nickel silicate and cobalt silicate, were for the first time prepared by using rice husks as a sustainable silicon source. The flower-like morphology, interconnected ultrathin nanosheets structure and high specific surface area endowed them with versatile applications. Magnesium silicate was used as an adsorbent with the maximum adsorption capacities of 557.9, 381.3, and 482.8mg/g for Pb 2+ , tetracycline (TC), and UO 2 2+ , respectively. Ni nanoparticles/silica (Ni NPs/SiO 2 ) exhibited high catalytic activity and good stability for 4-nitrophenol (4-NP) reduction within only ∼160s, which can be attributed to the ultra-small particle size (∼6.8nm), good dispersion and high loading capacity of Ni NPs. Considering the abundance and renewability of rice husks, metal silicate with complex architecture can be easily produced at a large scale and become a sustainable and reliable resource for multifunctional applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Frustration across the periodic table: heterolytic cleavage of dihydrogen by metal complexes.
Bullock, R Morris; Chambers, Geoffrey M
2017-08-28
This perspective examines frustrated Lewis pairs (FLPs) in the context of heterolytic cleavage of H 2 by transition metal complexes, with an emphasis on molecular complexes bearing an intramolecular Lewis base. FLPs have traditionally been associated with main group compounds, yet many reactions of transition metal complexes support a broader classification of FLPs that includes certain types of transition metal complexes with reactivity resembling main group-based FLPs. This article surveys transition metal complexes that heterolytically cleave H 2 , which vary in the degree that the Lewis pairs within these systems interact. Many of the examples include complexes bearing a pendant amine functioning as the base with the metal functioning as the hydride acceptor. Consideration of transition metal compounds in the context of FLPs can inspire new innovations and improvements in transition metal catalysis.This article is part of the themed issue 'Frustrated Lewis pair chemistry'. © 2017 The Author(s).
The electronic structure of d{sup 6} metal-acetylides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renshaw, S.K.; Uplinger, A.B.; Bullock, R.M.
1997-12-31
Gas-phase ultraviolet photoelectron spectroscopy has been used to investigate the electronic structure and bonding interactions of d{sup 6} piano-stool metal-acetylides of the general formulas CpML{sub 2}C{triple_bond} C-R [M = Ru, L = PMe{sub 3}, R = H, Me, {sup t}Bu, C{sub 6}H{sub 5}] and CpML{sub 2}C{triple_bond}C-p-C{sub 6}H{sub 4}-NO{sub 2} [M = Fe, Ru, L = CO; M = Ru, L = PMe{sub 3}]. Previous studies of analogous CpFe(CO){sub 2}C{triple_bond}C-R complexes found that the filled-filled interaction between the metal d electrons and the acetylide {pi} bond electrons dominates the shift of the first valence ionizations, and that backbonding of the metalmore » d electrons into the acetylide {pi}* orbitals is very small. It is found here that the change to the second row transition metal and the substitution of phosphines for the carbonyls makes the metal more electron rich, but does not change the basic description of the metal interaction with the acetylide.« less
High-density Two-Dimensional Small Polaron Gas in a Delta-Doped Mott Insulator
Ouellette, Daniel G.; Moetakef, Pouya; Cain, Tyler A.; Zhang, Jack Y.; Stemmer, Susanne; Emin, David; Allen, S. James
2013-01-01
Heterointerfaces in complex oxide systems open new arenas in which to test models of strongly correlated material, explore the role of dimensionality in metal-insulator-transitions (MITs) and small polaron formation. Close to the quantum critical point Mott MITs depend on band filling controlled by random disordered substitutional doping. Delta-doped Mott insulators are potentially free of random disorder and introduce a new arena in which to explore the effect of electron correlations and dimensionality. Epitaxial films of the prototypical Mott insulator GdTiO3 are delta-doped by substituting a single (GdO)+1 plane with a monolayer of charge neutral SrO to produce a two-dimensional system with high planar doping density. Unlike metallic SrTiO3 quantum wells in GdTiO3 the single SrO delta-doped layer exhibits thermally activated DC and optical conductivity that agree in a quantitative manner with predictions of small polaron transport but with an extremely high two-dimensional density of polarons, ~7 × 1014 cm−2. PMID:24257578
Metal Complexation in Xylem Fluid 1
White, Michael C.; Chaney, Rufus L.; Decker, A. Morris
1981-01-01
The capacity of ligands in xylem fluid to form metal complexes was tested with a series of in vitro experiments using paper electrophoresis and radiographs. The xylem fluid was collected hourly for 8 hours from soybean (Glycine max L. Merr.) and tomato (Lycopersicon esculentum Mill.) plants grown in normal and Zn-phytotoxic nutrient solutions. Metal complexation was assayed by anodic or reduced cathodic movement of radionuclides (63Ni, 65Zn, 109Cd, 54Mn) that were presumed to have formed negatively charged complexes. Electrophoretic migration of Ni, Zn, Cd, and Mn added to xylem exudate and spotted on KCl- or KNO3-wetted paper showed that stable Ni, Zn, and Cd metal complexes were formed by exudate ligands. No anodic Mn complexes were observed in this test system. Solution pH, plant species, exudate collection time, and Zn phytotoxicity all affected the amount of metal complex formed in exudate. As the pH increased, there was increased anodic metal movement. Soybean exudate generally bound more of each metal than did tomato exudate. Metal binding usually decreased with increasing exudate collection time, and less metal was bound by the high-Zn exudate. Ni, Zn, Cd, and Mn in exudate added to exudate-wetted paper demonstrated the effect of ligand concentration on stable metal complex formation. Complexes for each metal were demonstratable with this method. Cathodic metal movement increased with time of exudate collection, and it was greater in the high-Zn exudate than in the normal-Zn exudate. A model study illustrated the effect of ligand concentration on metal complex stability in the electrophoretic field. Higher ligand (citric acid) concentrations increased the stability for all metals tested. Images PMID:16661666
Rashid, Sadia; Shen, Chensi; Yang, Jing; Liu, Jianshe; Li, Jing
2018-04-01
Chitosan-metal complexes have been widely studied in wastewater treatment, but there are still various factors in complex preparation which are collectively responsible for improving the adsorption capacity need to be further studied. Thus, this study investigates the factors affecting the adsorption ability of chitosan-metal complex adsorbents, including various kinds of metal centers, different metal salts and crosslinking degree. The results show that the chitosan-Fe(III) complex prepared by sulfate salts exhibited the best adsorption efficiency (100%) for various dyes in very short time duration (10min), and its maximum adsorption capacity achieved 349.22mg/g. The anion of the metal salt which was used in preparation played an important role to enhance the adsorption ability of chitosan-metal complex. SO 4 2- ions not only had the effect of crosslinking through electrostatic interaction with amine group of chitosan polymer, but also could facilitate the chelation of metal ions with chitosan polymer during the synthesis process. Additionally, the pH sensitivity and the sensitivity of ionic environment for chitosan-metal complex were analyzed. We hope that these factors affecting the adsorption of the chitosan-metal complex can help not only in optimizing its use but also in designing new chitosan-metal based complexes. Copyright © 2017. Published by Elsevier B.V.
40 CFR 721.10104 - Halophosphate mixed metal complex (generic).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Halophosphate mixed metal complex... Specific Chemical Substances § 721.10104 Halophosphate mixed metal complex (generic). (a) Chemical... as halophosphate mixed metal complex (PMN P-04-254) is subject to reporting under this section for...
40 CFR 721.10104 - Halophosphate mixed metal complex (generic).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halophosphate mixed metal complex... Specific Chemical Substances § 721.10104 Halophosphate mixed metal complex (generic). (a) Chemical... as halophosphate mixed metal complex (PMN P-04-254) is subject to reporting under this section for...
40 CFR 721.10104 - Halophosphate mixed metal complex (generic).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Halophosphate mixed metal complex... Specific Chemical Substances § 721.10104 Halophosphate mixed metal complex (generic). (a) Chemical... as halophosphate mixed metal complex (PMN P-04-254) is subject to reporting under this section for...
40 CFR 721.10104 - Halophosphate mixed metal complex (generic).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Halophosphate mixed metal complex... Specific Chemical Substances § 721.10104 Halophosphate mixed metal complex (generic). (a) Chemical... as halophosphate mixed metal complex (PMN P-04-254) is subject to reporting under this section for...
40 CFR 721.10104 - Halophosphate mixed metal complex (generic).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Halophosphate mixed metal complex... Specific Chemical Substances § 721.10104 Halophosphate mixed metal complex (generic). (a) Chemical... as halophosphate mixed metal complex (PMN P-04-254) is subject to reporting under this section for...
Organometallic Palladium Reagents for Cysteine Bioconjugation
Vinogradova, Ekaterina V.; Zhang, Chi; Spokoyny, Alexander M.; Pentelute, Bradley L.; Buchwald, Stephen L.
2015-01-01
Transition-metal based reactions have found wide use in organic synthesis and are used frequently to functionalize small molecules.1,2 However, there are very few reports of using transition-metal based reactions to modify complex biomolecules3,4, which is due to the need for stringent reaction conditions (for example, aqueous media, low temperature, and mild pH) and the existence of multiple, reactive functional groups found in biopolymers. Here we report that palladium(II) complexes can be used for efficient and highly selective cysteine conjugation reactions. The bioconjugation reaction is rapid and robust under a range of biocompatible reaction conditions. The straightforward synthesis of the palladium reagents from diverse and easily accessible aryl halide and trifluoromethanesulfonate precursors makes the method highly practical, providing access to a large structural space for protein modification. The resulting aryl bioconjugates are stable towards acids, bases, oxidants, and external thiol nucleophiles. The broad utility of the new bioconjugation platform was further corroborated by the synthesis of new classes of stapled peptides and antibody-drug conjugates. These palladium complexes show potential as a new set of benchtop reagents for diverse bioconjugation applications. PMID:26511579
Novel thermoelectric properties of complex transition-metal oxides.
Terasaki, Ichiro; Iwakawa, Manabu; Nakano, Tomohito; Tsukuda, Akira; Kobayashi, Wataru
2010-01-28
We report how the thermopower of complex transition-metal oxides is susceptible to small changes in material parameters. In the A-site ordered perovskite oxide R(2/3)Cu(3)Ti(3.6)Ru(0.4)O(12), the thermopower changes from 15 to -100 microV K(-1) at 300 K in going from R = La to Er. We associate this with the hybridization between Cu 3d and Ru 4d electrons, which depends on R. For stronger hybridization, the Cu 3d electrons become more itinerant leading to positive thermopower. In the A-site ordered perovskite cobalt oxide Sr(3)YCo(4)O(10.5), the spin state of the Co(3+) ions determines the magnitude of the thermopower, where partial isovalent substitution (Ca for Sr and Rh for Co) enhances the thermopower whilst keeping the resistivity intact. These substitutions stabilize the low spin state of the Co(3+) ions, which affects the thermopower through the entropy of the background for the carriers. We propose that the control of the magnetism plays a pivotal role in determining the thermopower in a certain class of complex oxides.
40 CFR 721.4594 - Substituted azo metal complex dye.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted azo metal complex dye. 721... Substances § 721.4594 Substituted azo metal complex dye. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a substituted azo metal complex...
40 CFR 721.4594 - Substituted azo metal complex dye.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Substituted azo metal complex dye. 721... Substances § 721.4594 Substituted azo metal complex dye. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a substituted azo metal complex...
Process for the enhanced capture of heavy metal emissions
Biswas, Pratim; Wu, Chang-Yu
2001-01-01
This invention is directed to a process for forming a sorbent-metal complex. The process includes oxidizing a sorbent precursor and contacting the sorbent precursor with a metallic species. The process further includes chemically reacting the sorbent precursor and the metallic species, thereby forming a sorbent-metal complex. In one particular aspect of the invention, at least a portion of the sorbent precursor is transformed into sorbent particles during the oxidation step. These sorbent particles then are contacted with the metallic species and chemically reacted with the metallic species, thereby forming a sorbent-metal complex. Another aspect of the invention is directed to a process for forming a sorbent metal complex in a combustion system. The process includes introducing a sorbent precursor into a combustion system and subjecting the sorbent precursor to an elevated temperature sufficient to oxidize the sorbent precursor and transform the sorbent precursor into sorbent particles. The process further includes contacting the sorbent particles with a metallic species and exposing the sorbent particles and the metallic species to a complex-forming temperature whereby the metallic species reacts with the sorbent particles thereby forming a sorbent-metal complex under UV irradiation.
Biotinylated Rh(III) complexes in engineered streptavidin for accelerated asymmetric C-H activation.
Hyster, Todd K; Knörr, Livia; Ward, Thomas R; Rovis, Tomislav
2012-10-26
Enzymes provide an exquisitely tailored chiral environment to foster high catalytic activities and selectivities, but their native structures are optimized for very specific biochemical transformations. Designing a protein to accommodate a non-native transition metal complex can broaden the scope of enzymatic transformations while raising the activity and selectivity of small-molecule catalysis. Here, we report the creation of a bifunctional artificial metalloenzyme in which a glutamic acid or aspartic acid residue engineered into streptavidin acts in concert with a docked biotinylated rhodium(III) complex to enable catalytic asymmetric carbon-hydrogen (C-H) activation. The coupling of benzamides and alkenes to access dihydroisoquinolones proceeds with up to nearly a 100-fold rate acceleration compared with the activity of the isolated rhodium complex and enantiomeric ratios as high as 93:7.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tu, Xiongying; Latham, John A.; Klema, Valerie J.
PqqB is an enzyme involved in the biosynthesis of pyrroloquinoline quinone and a distal member of the metallo-β-lactamase (MBL) superfamily. PqqB lacks two residues in the conserved signature motif HxHxDH that makes up the key metal-chelating elements that can bind up to two metal ions at the active site of MBLs and other members of its superfamily. Here, we report crystal structures of PqqB bound to Mn2+, Mg2+, Cu2+, and Zn2+. These structures demonstrate that PqqB can still bind metal ions at the canonical MBL active site. The fact that PqqB can adapt its side chains to chelate a widemore » spectrum of metal ions with different coordination features on a uniform main chain scaffold demonstrates its metal-binding plasticity. This plasticity may provide insights into the structural basis of promiscuous activities found in ensembles of metal complexes within this superfamily. Furthermore, PqqB belongs to a small subclass of MBLs that contain an additional CxCxxC motif that binds a structural Zn2+. Our data support a key role for this motif in dimerization.« less
Umadevi, Deivasigamani; Narahari Sastry, G
2015-11-11
Graphane has emerged as a two-dimensional hydrocarbon with interesting physical properties and potential applications. Understanding the interaction of graphane with various molecules and ions is crucial to appreciate its potential applications. We investigated the interaction of nucleobases, aminoacids, saturated and unsaturated heterocycles, small molecules, metal ions and onium ions with graphane by using density functional theory calculations. The preferred orientations of these molecules and ions on the graphane surface have been analysed. The binding energies of graphane with these molecules have been compared with the corresponding binding energies of graphene. Our results reveal that graphane forms stable complexes with all the molecules and ions yet showing lesser binding affinity when compared to graphene. As an exemption, the preferential strong binding of H2O with graphane than graphene reveals the fact that graphane is more hydrophilic than graphene. Charge transfer between graphane and the molecules and ions have been found to be an important factor in determining the binding strength of the complexes. The effect of the interaction of these molecules and ions on the HOMO-LUMO energy gap of graphane has also been investigated.
The role of metals in carcinogenesis: biochemistry and metabolism.
Jennette, K W
1981-01-01
The oxyanions of vanadium, chromium, molybdenum, arsenic, and selenium are stable forms of these elements in high oxidation states which cross cell membranes using the normal phosphate and/or sulfate transport systems of the cell. Once inside the cell, these oxyanions may sulfuryl transfer reactions. Often the oxyanions serve as alternate enzyme substrates but form ester products which are hydrolytically unstable compared with the sulfate and phosphate esters and, therefore, decompose readily in aqueous solution. Arsenite and selenite are capable of reacting with sulfhydryl groups in proteins. Some cells are able to metabolize redox active oxyanions to forms of the elements in other stable oxidation states. Specific enzymes may be involved in the metabolic processes. The metabolites of these elements may form complexes with small molecules, proteins and nucleic acids which inhibit their ability to function properly. The divalent ions of beryllium, manganese, cobalt, nickel, cadmium, mercury, and lead are stable forms of these elements which may mimic essential divalent ions such as magnesium, calcium, iron, copper, or zinc. These ions may complex small molecules, enzymes, and nucleic acids in such a way that the normal activity of these species is altered. Free radicals may be produced in the presence of these metal ions which damage critical cellular molecules. PMID:7023933
Data-Driven High-Throughput Prediction of the 3D Structure of Small Molecules: Review and Progress
Andronico, Alessio; Randall, Arlo; Benz, Ryan W.; Baldi, Pierre
2011-01-01
Accurate prediction of the 3D structure of small molecules is essential in order to understand their physical, chemical, and biological properties including how they interact with other molecules. Here we survey the field of high-throughput methods for 3D structure prediction and set up new target specifications for the next generation of methods. We then introduce COSMOS, a novel data-driven prediction method that utilizes libraries of fragment and torsion angle parameters. We illustrate COSMOS using parameters extracted from the Cambridge Structural Database (CSD) by analyzing their distribution and then evaluating the system’s performance in terms of speed, coverage, and accuracy. Results show that COSMOS represents a significant improvement when compared to the state-of-the-art, particularly in terms of coverage of complex molecular structures, including metal-organics. COSMOS can predict structures for 96.4% of the molecules in the CSD [99.6% organic, 94.6% metal-organic] whereas the widely used commercial method CORINA predicts structures for 68.5% [98.5% organic, 51.6% metal-organic]. On the common subset of molecules predicted by both methods COSMOS makes predictions with an average speed per molecule of 0.15s [0.10s organic, 0.21s metal-organic], and an average RMSD of 1.57Å [1.26Å organic, 1.90Å metal-organic], and CORINA makes predictions with an average speed per molecule of 0.13s [0.18s organic, 0.08s metal-organic], and an average RMSD of 1.60Å [1.13Å organic, 2.11Å metal-organic]. COSMOS is available through the ChemDB chemoinformatics web portal at: http://cdb.ics.uci.edu/. PMID:21417267
40 CFR 721.4680 - Metal salts of complex inorganic oxyacids (generic name).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Metal salts of complex inorganic... New Uses for Specific Chemical Substances § 721.4680 Metal salts of complex inorganic oxyacids... substances identified generically as metal salts of complex inorganic oxyacids (PMNs P-89-576 and P-89-577...
Sung, Joo Hyun; Oh, Inbo; Kim, Ahra; Lee, Jiho; Sim, Chang Sun; Yoo, Cheolin; Park, Sang Jin; Kim, Geun Bae; Kim, Yangho
2018-01-29
Industrial pollution may affect the heavy metal body burden of people living near industrial complexes. We determined the average concentrations of atmospheric heavy metals in areas close to and distant from industrial complexes in Korea, and the body concentrations of these heavy metals in residents living near and distant from these facilities. The atmospheric data of heavy metals (lead and cadmium) were from the Regional Air Monitoring Network in Ulsan. We recruited 1,148 participants, 872 who lived near an industrial complex ("exposed" group) and 276 who lived distant from industrial complexes ("non-exposed" group), and measured their concentrations of blood lead, urinary cadmium, and urinary total mercury. The results showed that atmospheric and human concentrations of heavy metals were higher in areas near industrial complexes. In addition, residents living near industrial complexes had higher individual and combined concentrations (cadmium + lead + mercury) of heavy metals. We conclude that residents living near industrial complexes are exposed to high concentrations of heavy metals, and should be carefully monitored. © 2018 The Korean Academy of Medical Sciences.
2017-01-01
Background Industrial pollution may affect the heavy metal body burden of people living near industrial complexes. We determined the average concentrations of atmospheric heavy metals in areas close to and distant from industrial complexes in Korea, and the body concentrations of these heavy metals in residents living near and distant from these facilities. Methods The atmospheric data of heavy metals (lead and cadmium) were from the Regional Air Monitoring Network in Ulsan. We recruited 1,148 participants, 872 who lived near an industrial complex (“exposed” group) and 276 who lived distant from industrial complexes (“non-exposed” group), and measured their concentrations of blood lead, urinary cadmium, and urinary total mercury. Results The results showed that atmospheric and human concentrations of heavy metals were higher in areas near industrial complexes. In addition, residents living near industrial complexes had higher individual and combined concentrations (cadmium + lead + mercury) of heavy metals. Conclusion We conclude that residents living near industrial complexes are exposed to high concentrations of heavy metals, and should be carefully monitored. PMID:29349943
Exploring simulated early star formation in the context of the ultrafaint dwarf galaxies
NASA Astrophysics Data System (ADS)
Corlies, Lauren; Johnston, Kathryn V.; Wise, John H.
2018-04-01
Ultrafaint dwarf galaxies (UFDs) are typically assumed to have simple, stellar populations with star formation ending at reionization. Yet as the observations of these galaxies continue to improve, their star formation histories (SFHs) are revealed to be more complicated than previously thought. In this paper, we study how star formation, chemical enrichment, and mixing proceed in small, dark matter haloes at early times using a high-resolution, cosmological, hydrodynamical simulation. The goals are to inform the future use of analytic models and to explore observable properties of the simulated haloes in the context of UFD data. Specifically, we look at analytic approaches that might inform metal enrichment within and beyond small galaxies in the early Universe. We find that simple assumptions for modelling the extent of supernova-driven winds agree with the simulation on average, whereas inhomogeneous mixing and gas flows have a large effect on the spread in simulated stellar metallicities. In the context of the UFDs, this work demonstrates that simulations can form haloes with a complex SFH and a large spread in the metallicity distribution function within a few hundred Myr in the early Universe. In particular, bursty and continuous star formation are seen in the simulation and both scenarios have been argued from the data. Spreads in the simulated metallicities, however, remain too narrow and too metal-rich when compared to the UFDs. Future work is needed to help reduce these discrepancies and advance our interpretation of the data.
Zhang, Yu; Cai, Xiyun; Lang, Xianming; Qiao, Xianliang; Li, Xuehua; Chen, Jingwen
2012-07-01
Co-contamination of ligand-like antibiotics (e.g., tetracyclines and quinolones) and heavy metals prevails in the environment, and thus the complexation between them is involved in environmental risks of antibiotics. To understand toxicological significance of the complex, effects of metal coordination on antibiotics' toxicity were investigated. The complexation of two antibiotics, oxytetracycline and ciprofloxacin, with three heavy metals, copper, zinc, and cadmium, was verified by spectroscopic techniques. The antibiotics bound metals via multiple coordination sites and rendered a mixture of various complexation speciations. Toxicity analysis indicated that metal coordination did modify the toxicity of the antibiotics and that antibiotic, metal, and their complex acted primarily as concentration addition. Comparison of EC(50) values revealed that the complex commonly was highest toxic and predominately correlated in toxicity to the mixture. Finally, environmental scenario analysis demonstrated that ignoring complexation would improperly classify environmental risks of the antibiotics. Copyright © 2012 Elsevier Ltd. All rights reserved.
Metal complexes of quinolone antibiotics and their applications: an update.
Uivarosi, Valentina
2013-09-11
Quinolones are synthetic broad-spectrum antibiotics with good oral absorption and excellent bioavailability. Due to the chemical functions found on their nucleus (a carboxylic acid function at the 3-position, and in most cases a basic piperazinyl ring (or another N-heterocycle) at the 7-position, and a carbonyl oxygen atom at the 4-position) quinolones bind metal ions forming complexes in which they can act as bidentate, as unidentate and as bridging ligand, respectively. In the polymeric complexes in solid state, multiple modes of coordination are simultaneously possible. In strongly acidic conditions, quinolone molecules possessing a basic side nucleus are protonated and appear as cations in the ionic complexes. Interaction with metal ions has some important consequences for the solubility, pharmacokinetics and bioavailability of quinolones, and is also involved in the mechanism of action of these bactericidal agents. Many metal complexes with equal or enhanced antimicrobial activity compared to the parent quinolones were obtained. New strategies in the design of metal complexes of quinolones have led to compounds with anticancer activity. Analytical applications of complexation with metal ions were oriented toward two main directions: determination of quinolones based on complexation with metal ions or, reversely, determination of metal ions based on complexation with quinolones.
Torres Martin de Rosales, Rafael; Faiella, Marina; Farquhar, Erik; Que, Lawrence; Andreozzi, Concetta; Pavone, Vincenzo; Maglio, Ornella; Nastri, Flavia
2010-01-01
The design, synthesis, and metal-binding properties of DF3, a new de novo designed di-iron protein model are described (“DF” represents due ferri, Italian for “two iron,” “di-iron”). DF3 is the latest member of the DF family of synthetic proteins. They consist of helix–loop–helix hairpins, designed to dimerize and form an antiparallel four-helix bundle that encompasses a metal-binding site similar to those of non-heme carboxylate-bridged di-iron proteins. Unlike previous DF proteins, DF3 is highly soluble in water (up to 3 mM) and forms stable complexes with several metal ions (Zn, Co, and Mn), with the desired secondary structure and the expected stoichiometry of two ions per protein. UV–vis studies of Co(II) and Fe(III) complexes confirm a metal-binding environment similar to previous di-Co(II)- and di-Fe(III)-DF proteins, including the presence of a µ-oxo-di-Fe(III) unit. Interestingly, UV–vis, EPR, and resonance Raman studies suggest the interaction of a tyro-sine adjacent to the di-Fe(III) center. The design of DF3 was aimed at increasing the accessibility of small molecules to the active site of the four-helix bundle. Indeed, binding of azide to the di-Fe(III) site demonstrates a more accessible metal site compared with previous DFs. In fact, fitting of the binding curve to the Hill equation allows us to quantify a 150% accessibility enhancement, with respect to DF2. All these results represent a significant step towards the development of a functional synthetic DF metalloprotein. PMID:20225070
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-09-01
Previous research has revealed that the catalytic performance of metal/zeolite catalysts can be significantly modified by exposing the catalyst precursor to H[sub 2]O vapor during the period after calcination, but before reduction. For bimetallic PdCo/NaY catalysts used for CO hydrogenation, the selectivity was changed from predominant production of oxygenates to predominant production of higher hydrocarbons. For Pt/H-mordenite catalysts, this water treatment has been reported to improve the alkane isomerization activity. Although it is certain that Lewis sites are transformed to Bronsted sites by reaction with H[sub 2]O, the activity of the catalyst is affected most when the water is addedmore » after calcination, when the noble metal is present as ligand-free ions. This observation led to the hypothesis that complexation of transition metal ions with water might be instrumental for the observed effects. In zeolites containing cages, such as Y, the formation of metal-ligand complex ions appears to incite their migration from small to large cages. In cageless zeolites such as mordenite, however, it is not clear, a priori, whether hydration of transition metal ions will increase or decrease their reducibility and whether it will ultimately result in higher or lower metal dispersion. The authors have therefore undertaken research to clarify these issues. Palladium supported in H-mordenite (Pd/HMor) or Na-mordenite (Pd/Na-Mor) has been tested using methylcyclopentane as a probe reaction; temperature-programmed reduction (TPR), desorption (TPD), and extended X-ray absorption fine structure (EXAFS) spectroscopy have been used to characterize the effects of water treatment on the samples.« less
Study on the Control of Cleanliness for X90 Pipeline in the Secondary Refining Process
NASA Astrophysics Data System (ADS)
Chu, Ren Sheng; Liu, Jin Gang; Li, Zhan Jun
X90 pipeline steel requires ultra low for sulfur content and gas content in the smelting process. The secondary refining process is very important for X90 pipeline in smelting process and the control of cleanliness is the key for the secondary refining process in the steelmaking process for Pretreatment of hot metal → LD → LF refining → RH refining → Calcium treatment → CC. In the current paper, the cleanliness control method of secondary refining was analyzed for the evolution of non-metallic inclusions in the secondary refining prcess and related changes for composition in steel. The size, composition and the type of the non-metallic inclusions were analyzed by aspex explorer automated scanning electron microscope in X90 pipeline samples for 20mm * 25mm * 25mm by the line cutting. The results show that the number of non-metallic inclusions in steel decrease from the beginning of the LF refining to the RH refining. In the composition of the Non-metallic inclusions, the initial non-metallic inclusions of alumina is converted to two comple-type non-metallic inclusions. Most of them, the non-metallic inclusions were composed by the calcium aluminate and CaS. The others are that the spinel is the core, peripheral parcels calcium aluminate nonmetallic inclusions for complex-type non-metallic inclusions. For the size of the non-metallic inclusions, the non-metallic inclusions for size larger than 100µm is converted to 5 20µm based small size non-metallic inclusions. While the S content of the steel decreased from 0.012% to 0.0012% or less, Al content is kept at between 0.025% to 0.035% and the quality for the casting slab satisfies the requirement of the steel. The ratings for various types of the non-metallic inclusions are 1.5 or less. The control strategy for the inclusions in 90 pipeline is small size, diffuse distribution and little amount of the deformation after rolling. On the contrary, the specific chemical composition of the inclusions is not important, single component in the inclusions is better.
Nanoplasmonic sensing of metal-halide complex formation and the electric double layer capacitor.
Dahlin, Andreas B; Zahn, Raphael; Vörös, Janos
2012-04-07
Many nanotechnological devices are based on implementing electrochemistry with plasmonic nanostructures, but these systems are challenging to understand. We present a detailed study of the influence of electrochemical potentials on plasmon resonances, in the absence of surface coatings and redox active molecules, by synchronized voltammetry and spectroscopy. The experiments are performed on gold nanodisks and nanohole arrays in thin gold films, which are fabricated by improved methods. New insights are provided by high resolution spectroscopy and variable scan rates. Furthermore, we introduce new analytical models in order to understand the spectral changes quantitatively. In contrast to most previous literature, we find that the plasmonic signal is caused almost entirely by the formation of ionic complexes on the metal surface, most likely gold chloride in this study. The refractometric sensing effect from the ions in the electric double layer can be fully neglected, and the charging of the metal gives a surprisingly small effect for these systems. Our conclusions are consistent for both localized nanoparticle plasmons and propagating surface plasmons. We consider the results in this work especially important in the context of combined electrochemical and optical sensors. This journal is © The Royal Society of Chemistry 2012
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caspers, Nicole L.; Han, Seungil; Rajamohan, Francis
2016-10-27
Crystals of phosphorylated JAK1 kinase domain were initially generated in complex with nucleotide (ADP) and magnesium. The tightly bound Mg 2+-ADP at the ATP-binding site proved recalcitrant to ligand displacement. Addition of a molar excess of EDTA helped to dislodge the divalent metal ion, promoting the release of ADP and allowing facile exchange with ATP-competitive small-molecule ligands. Many kinases require the presence of a stabilizing ligand in the ATP site for crystallization. This procedure could be useful for developing co-crystallization systems with an exchangeable ligand to enable structure-based drug design of other protein kinases.
Stability Analysis of Flow Induced by the Traveling Magnetic Field
NASA Technical Reports Server (NTRS)
Mazuruk, Konstantin
2003-01-01
Re-circulating flow in molten metal columns can be conveniently induced by the axisymmetric traveling magnetic field. A number of applications can benefit from this technique, such as mixing under microgravity environment, or.crysta1 growth from metallic melts. For small magnetic field excitations, the flow is laminar and stationary. As the imposed field increases, a more complex flow will set up in the cylindrical column. Conditions for stable laminar flow are of importance for practical applications. In this work, a linear stability analysis is performed in order to determine the onset of the bifurcation in the system. Here the analysis is restricted to the axisymmetric modes and the low-frequency regime.
Stability Analysis of Flow Induced by the Traveling Magnetic Field
NASA Technical Reports Server (NTRS)
Mazuruk, Konstantin
2003-01-01
Re-circulating flow in molten metal columns can be conveniently induced by the axisymmetric traveling magnetic field. A number of applications can benefit from this technique, such as mixing under microgravity environment, or crysta1 growth from metallic melts. For small magnetic field excitations, the flow is laminar and stationary. As the imposed field increases, a more complex flow will set up in the cylindrical column. Conditions for stable laminar flow are of importance for practical applications. In this work, a linear stability analysis is performed in order to determine the onset of the bifurcation in the system. Here the analysis is restricted to the axisymmetric modes and the low-frequency regime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plessow, Philipp N.; Bajdich, Michal; Greene, Joshua
The formation of thin oxide films on metal supports is an important phenomenon, especially in the context of strong metal support interaction (SMSI). Computational predictions of the stability of these films are hampered by their structural complexity and a varying lattice mismatch with different supports. In this study, we report a large combination of supports and ultrathin oxide films studied with density functional theory (DFT). Trends in stability are investigated through a descriptor-based analysis. Since the studied films are bound to the support exclusively through metal–metal interaction, the adsorption energy of the oxide-constituting metal atom can be expected to bemore » a reasonable descriptor for the stability of the overlayers. If the same supercell is used for all supports, the overlayers experience different amounts of stress. Using supercells with small lattice mismatch for each system leads to significantly improved scaling relations for the stability of the overlayers. Finally, this approach works well for the studied systems and therefore allows the descriptor-based exploration of the thermodynamic stability of supported thin oxide layers.« less
Methylocystis strain SB2 materials and methods
Semrau, Jeremy D; Gallagher, Warren; Yoon, Sukhwan; Im, Jeongdae; DiSpririto, Alan A; Lee, Sung-Woo; Hartsel, Scott; McEllistrem, Marcus T
2014-01-14
The present disclosures provides isolated or purified compounds, each of which bind to a metal atom. Generally, the compounds are small in size (e.g., molecular weight of less than about 1 kDa) and peptidic in nature, inasmuch as the compounds comprise amino acids. In some embodiments, the compound comprises a structure of Formula I; M.sub.1-P.sub.1-M.sub.2-P.sub.2 wherein each of P.sub.1 and P.sub.2 is a peptide comprising at least two amino acids, M.sub.1 is a first metal binding moiety comprising a substituted imidazolone ring, M.sub.2 is a second metal binding moiety comprising a substituted oxazolone ring, and wherein M.sub.1 and M.sub.2 bind to a single metal atom. Also provided are related complexes, conjugates, cells which synthesize the compounds of the present disclosures, substantially homogenous cultures thereof, kits and compositions, and methods of making or using the materials of the present disclosures.
Cellular manganese content is developmentally regulated in human dopaminergic neurons
NASA Astrophysics Data System (ADS)
Kumar, Kevin K.; Lowe, Edward W., Jr.; Aboud, Asad A.; Neely, M. Diana; Redha, Rey; Bauer, Joshua A.; Odak, Mihir; Weaver, C. David; Meiler, Jens; Aschner, Michael; Bowman, Aaron B.
2014-10-01
Manganese (Mn) is both an essential biological cofactor and neurotoxicant. Disruption of Mn biology in the basal ganglia has been implicated in the pathogenesis of neurodegenerative disorders, such as parkinsonism and Huntington's disease. Handling of other essential metals (e.g. iron and zinc) occurs via complex intracellular signaling networks that link metal detection and transport systems. However, beyond several non-selective transporters, little is known about the intracellular processes regulating neuronal Mn homeostasis. We hypothesized that small molecules that modulate intracellular Mn could provide insight into cell-level Mn regulatory mechanisms. We performed a high throughput screen of 40,167 small molecules for modifiers of cellular Mn content in a mouse striatal neuron cell line. Following stringent validation assays and chemical informatics, we obtained a chemical `toolbox' of 41 small molecules with diverse structure-activity relationships that can alter intracellular Mn levels under biologically relevant Mn exposures. We utilized this toolbox to test for differential regulation of Mn handling in human floor-plate lineage dopaminergic neurons, a lineage especially vulnerable to environmental Mn exposure. We report differential Mn accumulation between developmental stages and stage-specific differences in the Mn-altering activity of individual small molecules. This work demonstrates cell-level regulation of Mn content across neuronal differentiation.
jMetalCpp: optimizing molecular docking problems with a C++ metaheuristic framework.
López-Camacho, Esteban; García Godoy, María Jesús; Nebro, Antonio J; Aldana-Montes, José F
2014-02-01
Molecular docking is a method for structure-based drug design and structural molecular biology, which attempts to predict the position and orientation of a small molecule (ligand) in relation to a protein (receptor) to produce a stable complex with a minimum binding energy. One of the most widely used software packages for this purpose is AutoDock, which incorporates three metaheuristic techniques. We propose the integration of AutoDock with jMetalCpp, an optimization framework, thereby providing both single- and multi-objective algorithms that can be used to effectively solve docking problems. The resulting combination of AutoDock + jMetalCpp allows users of the former to easily use the metaheuristics provided by the latter. In this way, biologists have at their disposal a richer set of optimization techniques than those already provided in AutoDock. Moreover, designers of metaheuristic techniques can use molecular docking for case studies, which can lead to more efficient algorithms oriented to solving the target problems. jMetalCpp software adapted to AutoDock is freely available as a C++ source code at http://khaos.uma.es/AutodockjMetal/.
Wang, Xuyang; Wang, Ranran; Wu, Qiang; Zhang, Xiaohua; Yang, Zhaohui; Guo, Jun; Chen, Muzi; Tang, Minghua; Cheng, Yajun; Chu, Haibin
2016-07-08
In this paper crystalline noble metallic nanorods including Au and Ag with sub-10 nm diameter, are encapsulated within prealigned and open-ended multiwall carbon nanotubes (MWCNTs) through an electrodeposition method. As the external surface of CNTs has been insulated by the epoxy the CNT channel becomes the only path for the mass transport as well as the nanoreactor for the metal deposition. Highly crystallized Au and Ag2O nanorods parallel to the radial direction of CNTs are confirmed by high-resolution transmission electron microscopy, energy dispersive x-ray spectroscopy and x-ray powder diffraction spectroscopy. The Ag2O nanorods are formed by air oxidation on the Ag metals and show a single crystalline structure with (111) planes. The Au nanorods exhibit a complex crystalline structure including twin-crystal and lattice dislocation with (111) and (200) planes. These crystalline noble metallic nanostructures may have important applications for nanocatalysts for fuel cells as well as nanoelectronic and nanophotonic devices. This method is deemed to benefit the precise deposition of other crystalline nanostructures inside CNTs with a small diameter.
NASA Astrophysics Data System (ADS)
Wang, Xuyang; Wang, Ranran; Wu, Qiang; Zhang, Xiaohua; Yang, Zhaohui; Guo, Jun; Chen, Muzi; Tang, Minghua; Cheng, Yajun; Chu, Haibin
2016-07-01
In this paper crystalline noble metallic nanorods including Au and Ag with sub-10 nm diameter, are encapsulated within prealigned and open-ended multiwall carbon nanotubes (MWCNTs) through an electrodeposition method. As the external surface of CNTs has been insulated by the epoxy the CNT channel becomes the only path for the mass transport as well as the nanoreactor for the metal deposition. Highly crystallized Au and Ag2O nanorods parallel to the radial direction of CNTs are confirmed by high-resolution transmission electron microscopy, energy dispersive x-ray spectroscopy and x-ray powder diffraction spectroscopy. The Ag2O nanorods are formed by air oxidation on the Ag metals and show a single crystalline structure with (111) planes. The Au nanorods exhibit a complex crystalline structure including twin-crystal and lattice dislocation with (111) and (200) planes. These crystalline noble metallic nanostructures may have important applications for nanocatalysts for fuel cells as well as nanoelectronic and nanophotonic devices. This method is deemed to benefit the precise deposition of other crystalline nanostructures inside CNTs with a small diameter.
Smith, Jayden A; Collins, J Grant; Patterson, Bradley T; Keene, F Richard
2004-05-07
The binding of the three stereoisomers (DeltaDelta-, LambdaLambda- and DeltaLambda-) of the dinuclear ruthenium(II) complex [[Ru(Me2bpy)2]2(mu-bpm)]4+ [Me2bpy = 4,4'-dimethyl-2,2'-bipyridine; bpm = 2,2'-bipyrimidine] to a tridecanucleotide containing a single adenine bulge has been studied by 1H NMR spectroscopy. The addition of the DeltaDelta-isomer to d(CCGAGAATTCCGG)2 induced significant chemical shift changes for the base and sugar resonances of the residues at the bulge site (G3A4G5/C11C10), whereas small shifts were observed upon addition of the enantiomeric LambdaLambda-form. NOESY spectra of the tridecanucleotide bound with the DeltaDelta-isomer revealed intermolecular NOE's between the metal complex and the nucleotide residues at the bulge site, while only weak NOE's were observed to terminal residues to the LambdaLambda-form. Competitive binding studies were performed where both enantiomers were simultaneously added to the tridecanucleotide, and for all ratios of the two stereoisomers the DeltaDelta-isomer remained selectively bound at the bulge site with the LambdaLambda-enantiomer localised at the terminal regions of the tridecanucleotide. The meso-diastereoisomer (DeltaLambda) was found to bind to the tridecanucleotide with characteristics intermediate between the DeltaDelta- and LambdaLambda-enantiomers of the rac form. Two distinct sets of metal complex resonances were observed, with one set having essentially the same shift as the free metal complex, whilst the other set of resonances exhibited significant shifts. The NOE data indicated that the meso-diastereoisomer does not bind as selectively as the DeltaDelta-isomer, with NOE's observed to a greater number of nucleotide residues compared to the DeltaDelta-form. This study provides a rare example of total enantioselectivity in the binding of an inert transition metal complex to DNA, produced by the shape recognition of both ruthenium(II) centres.
Dissolution of Fe(III) (hydr) oxides by metal-EDTA complexes
NASA Astrophysics Data System (ADS)
Ngwack, Bernd; Sigg, Laura
1997-03-01
The dissolution of Fe(III)(hydr)oxides (goethite and hydrous ferric oxide) by metal-EDTA complexes occurs by ligand-promoted dissolution. The process is initiated by the adsorption of metal-EDTA complexes to the surface and is followed by the dissociation of the complex at the surface and the release of Fe(III)EDTA into solution. The dissolution rate is decreased to a great extent if EDTA is complexed by metals in comparison to the uncomplexed EDTA. The rate decreases in the order EDTA CaEDTA ≫ PbEDTA > ZnEDTA > CuEDTA > Co(II)EDTA > NiEDTA. Two different rate-limiting steps determine the dissolution process: (1) detachment of Fe(III) from the oxide-structure and (2) dissociation of the metal-EDTA complexes. In the case of goethite, step 1 is slower than step 2 and the dissolution rates by various metals are similar. In the case of hydrous ferric oxide, step 2 is rate-limiting and the effect of the complexed metal is very pronounced.
Sobha, S; Mahalakshmi, R; Raman, N
2012-06-15
A series of Cu(II), Ni(II) and Zn(II) complexes of the type ML have been synthesized with Schiff bases derived from o-acetoacetotoluidide, 2-hydroxybenzaldehyde and o-phenylenediamine/1,4-diaminobutane. The complexes are insoluble in common organic solvents but soluble in DMF and DMSO. The measured molar conductance values in DMSO indicate that the complexes are non-electrolytic in nature. All the six metal complexes have been fully characterized with the help of elemental analyses, molecular weights, molar conductance values, magnetic moments and spectroscopic data. The analytical data helped to elucidate the structure of the metal complexes. The Schiff bases are found to act as tetradentate ligands using N(2)O(2) donor set of atoms leading to a square-planar geometry for the complexes around all the metal ions. The binding properties of metal complexes with DNA were investigated by absorption spectra, viscosity measurements and cyclic voltammetry. Detailed analysis reveals that the metal complexes intercalate into the DNA base stack as intercalators. All the metal complexes cleave the pUC19 DNA in presence of H(2)O(2.) The Schiff bases and their complexes have been screened for their antibacterial activity against five bacterial strains (Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus epidermidis, Klebsiella pneumoniae) by disk diffusion method. All the metal complexes have potent biocidal activity than the free ligands. Copyright © 2012 Elsevier B.V. All rights reserved.
Ultrastructure Processing of Advanced Materials.
1992-11-01
alkoxide) involving the sodium and the other metal [e.g., NaZr 2(OR)9]. The use of anhydrous ammonia usually solves this problem. MCIX + xNH 3 + xROH - M...the formation of pentacoordinate silicic acid complexes with hydroxide and fluoride ions, as well as neutral adducts with hydrogen fluoride, ammonia ...stable than that for any other small neutral adduct such as water, ammonia , and hydrogen chloride. Elimination of water is much easier by internal
Bashan, Anat; Yonath, Ada
2009-01-01
Crystallography of ribosomes, the universal cell nucleoprotein assemblies facilitating the translation of the genetic-code into proteins, met with severe problems owing to their large size, complex structure, inherent flexibility and high conformational variability. For the case of the small ribosomal subunit, which caused extreme difficulties, post crystallization treatment by minute amounts of a heteropolytungstate cluster allowed structure determination at atomic resolution. This cluster played a dual role in ribosomal crystallography: providing anomalous phasing power and dramatically increased the resolution, by stabilization of a selected functional conformation. Thus, four out of the fourteen clusters that bind to each of the crystallized small subunits are attached to a specific ribosomal protein in a fashion that may control a significant component of the subunit internal flexibility, by “gluing” symmetrical related subunits. Here we highlight basic issues in the relationship between metal ions and macromolecules and present common traits controlling in the interactions between polymetalates and various macromolecules, which may be extended towards the exploitation of polymetalates for therapeutical treatment. PMID:19915655
Advances in Fatigue and Fracture Mechanics Analyses for Metallic Aircraft Structures
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.
2000-01-01
This paper reviews some of the advances that have been made in stress analyses of cracked aircraft components, in the understanding of the fatigue and fatigue-crack growth process, and in the prediction of residual strength of complex aircraft structures with widespread fatigue damage. Finite-element analyses of cracked metallic structures are now used to determine accurate stress-intensity factors for cracks at structural details. Observations of small-crack behavior at open and rivet-loaded holes and the development of small-crack theory has lead to the prediction of stress-life behavior for components with stress concentrations under aircraft spectrum loading. Fatigue-crack growth under simulated aircraft spectra can now be predicted with the crack-closure concept. Residual strength of cracked panels with severe out-of-plane deformations (buckling) in the presence of stiffeners and multiple-site damage can be predicted with advanced elastic-plastic finite-element analyses and the critical crack-tip-opening angle (CTOA) fracture criterion. These advances are helping to assure continued safety of aircraft structures.
Frustration across the periodic table: heterolytic cleavage of dihydrogen by metal complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bullock, R. Morris; Chambers, Geoffrey M.
2017-07-24
This Perspective examines the field of Frustrated Lewis Pairs (FLPs) in the context of transition metal mediated heterolytic cleavage of H2, with a particular emphasis on molecular complexes bearing an intramolecular Lewis base. FLPs have traditionally been associated with group compounds, yet many transition metal reactions support a broader classification of FLPs to include certain types of transition metal complexes with reactivity resembling main group based FLPs. This article surveys transition metal complexes that heterolytically cleave H2, which vary in the degree that the Lewis pairs within these systems interact. Particular attention is focused on complexes bearing a pendant aminemore » function as the base. Consideration of transition metal compounds in the context of FLPs can inspire new innovations and improvements in transition metal catalysis.« less
Process for the displacement of cyanide ions from metal-cyanide complexes
Smith, Barbara F.; Robinson, Thomas W.
1997-01-01
The present invention relates to water-soluble polymers and the use of such water-soluble polymers in a process for the displacement of the cyanide ions from the metal ions within metal-cyanide complexes. The process waste streams can include metal-cyanide containing electroplating waste streams, mining leach waste streams, mineral processing waste streams, and related metal-cyanide containing waste streams. The metal ions of interest are metals that give very strong complexes with cyanide, mostly iron, nickel, and copper. The physical separation of the water-soluble polymer-metal complex from the cyanide ions can be accomplished through the use of ultrafiltration. Once the metal-cyanide complex is disrupted, the freed cyanide ions can be recovered for reuse or destroyed using available oxidative processes rendering the cyanide nonhazardous. The metal ions are released from the polymer, using dilute acid, metal ion oxidation state adjustment, or competing chelating agents, and collected and recovered or disposed of by appropriate waste management techniques. The water-soluble polymer can then be recycled. Preferred water-soluble polymers include polyethyleneimine and polyethyleneimine having a catechol or hydroxamate group.
Zhao, Hongwei; Nan, Tiegui; Tan, Guiyu; Gao, Wei; Cao, Zhen; Sun, Shuo; Li, Zhaohu; Li, Qing X; Wang, Baomin
2011-09-19
Availability of highly sensitive assays for metal ions can help monitor and manage the environmental and food contamination. In the present study, a monoclonal antibody against Copper(II)-ethylenediaminetetraacetic acid was used to develop two sensitive ELISAs for Cu(II) analysis. Cobalt(II)-EDTA-BSA was the coating antigen in a heterologous indirect competitive ELISA (hicELISA), whereas Co(II)-EDTA-BSA-horseradish peroxidase (HRP) was the enzyme tracer in a heterologous direct competitive ELISA (hdcELISA). Both ELISAs were validated for detecting the content of Cu(II) in environmental waters. The ELISA data agreed well with those from graphite furnace atomic absorption spectroscopy. The methods of developing the Cu(II) hicELISA and hdcELISA are potentially applicable for developing ELISAs for other metals. The chelator-protein complexes such as EDTA-BSA and EDTA-BSA-HRP can form a suite of metal complexes having the consistent hapten density, location and orientation on the conjugates except the difference of the metal core, which can be used as ideal reagents to investigate the relationship between assay sensitivity and antibody affinities for the haptens and the analytes. The strategy of conjugating a haptenated protein directly with HRP can reduce the loss of HRP activity during the conjugation reaction and thus can be applicable for the development of ELISAs for small molecules. Copyright © 2011. Published by Elsevier B.V.
Siderophore production and facilitated uptake of iron plutonium in p. putida.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boukhalfa, H.; Lack, J. G.; Reilly, S. D.
2003-01-01
Bioremediation is a very attractive alternative for restoration of contaminated soil and ground water . This is particularly true for radionuclide contamination, which tends to be low in concentration and distributed over large surface areas . Microorganisms, through their natural metabolism, produce a large variety of organic molecules of different size and functionality . These molecules interact with contaminants present in the microbe's environment . Through these interactions bio-molecules can solubilize, oxidize, reduce or precipitate major metal contaminant in soils and ground water . We are studying these interaction for actinides and common soil subsurface bacteria . One focus hasmore » been on siderophores, small molecules that have great affinity for hard metal ions, and their potential to affect the distribution and mobility of actinide contaminants . The metal siderophores assembly can be recognized and taken up by micro-organisms through their interference with their iron uptake system . The first step in the active iron transport consists of Fe(III)-siderophore recognition by membrane receptors, which requires specific stereo orientation of the Fe(III)-siderophore complex . Recent investigations have shown that siderophores can form strong complexes with a large variety of toxic metals and may mediate their introduction inside the cell . We have previously shown that a Puhydroxamate siderophore assembly is recognized and taken up by the Microbacterium flavescens (JG-9). However, it is not clear if Pu-siderophore assemblies of other siderophores are also recognized.« less
NASA Astrophysics Data System (ADS)
Kohler, Martin; Leary, Julie A.
1997-03-01
Doubly charged metal(II)-complexes of [alpha] 1-3, [alpha] 1-6 mannotriose and the conserved trimannosyl core pentasaccharide as well as doubly charged complexes of Co(II), Mn(II), Ca(II) and Sr(II) with acetonitrile generated by electrospray ionization were studied by low energy collision induced dissociation (CID). Two main fragmentation pathways were observed for the metal(II)-oligosaccharide complexes. Regardless of the coordinating metal, loss of a neutral dehydrohexose residue (162 Da) from the doubly charged precursor ion is observed, forming a doubly charged product ion. However, if the oligosaccharide is coordinated to Co(II) or Mn(II), loss of a dehydroxyhexose cation is also observed. Investigation of the low mass region of the mass spectra of the metal coordinated oligosaccharides revealed intense signals corresponding to [metal(II) + (CH3CN)n2+ (where n = 1-6) species which were being formed by the metal(II) ions and the acetonitrile present in the sample. Analysis of these metal(II)-acetonitrile complexes provided further insight into the processes occurring upon low energy CID of doubly charged metal complexes. The metal(II)-acetonitrile system showed neutral loss and ligand cleavage as observed with the oligosaccharide complexes, as well as a series of six different dissociation mechanisms, most notable among them reduction from [metal(II) + (CH3CN)n2+ to the bare [metal(I)]+ species by electron transfer. Depending on the metal and collision gas chosen, one observes electron transfer from the ligand to the metal, electron transfer from the collision gas to the metal, proton transfer between ligands, heterolytic cleavage of the ligands, reactive collisions and loss of neutral ligands.
NASA Astrophysics Data System (ADS)
Wang, Hongming; Yang, Chuanlu; Zhang, Zhihong; Wang, Meishan; Han, Keli
2006-06-01
The ground-state geometries, electronic structures and vibrational frequencies of metal corrolazine complexes, CzM (M = Mn, Co, Ni and Fe) have been studied using B3LYP/6-311g(d) method. The molecular geometries are sensitive to the species of the metal, and the bond length of the M sbnd N is increase with the metal atom radii. The ground-state electronic structures indicate that there are strong interactions between d of the metal fragments and the corrolazine fragments. The calculations also indicate that the CzNi is the stabilest among the four metal corrolazine complexes. Vibrational frequencies of these metal corrolazine complexes were also calculated and were assigned to the local coordinates of the corrolazine ring, which reveals the some common feature of the molecular vibrations of the metal corrolazine complexes as four-coordination metallocorrolazines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, C. Michael; Prieto, Amy L.
2017-02-08
The Elliott group has long been supported by DOE for studies of cobalt(II/III) trisbypiridine (DTB) mediator complexes in dye sensitized solar cells. Previous work demonstrated that Co(II/III) chemistry is sensitive to the environment, showing unprecedented electrode-surface and electrolyte dependant voltammetry. In electrolytes that have large lipophilic cations, voltammetry of the [Co(DTB) 3] 2+/3+ couple is nearly Nernstian in appearance on nominally oxide-free metal surfaces. In contrast, on semiconductor electrodes in electrolytes with small, hard cations such as Li +, the electron transfer rates are so slow that it is difficult to measure any Faradaic current even at overpotentials of ±1more » V. These studies are of direct relevance to the operation of cobalt-based mediators in solar cells. The research has also shown that these mediators are compatible with copper phenantroline based dyes, in contrast to I - due to the insolubility of CuI.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freiderich, John W.; Burn, Adam G.; Martin, Leigh R.
The equilibrium constants for [NpO 2M∙] 4+ (M = Al 3+, In 3+, Sc 3+, Fe 3+) in μ = 10 M nitric acid and [NpO 2∙Ga] 4+ in μ = 10 M hydrochloric acid media have been determined. The trend in the interaction strength follows: Fe 3+ > Sc 3+ In 3+ > Ga 3+ Al 3+. These equilibrium constants are compared to those of previously reported values for NpO 2 + complexes with Cr 3+ and Rh 3+ within the literature. Thermodynamic parameters and bonding modes are discussed, with density functional theory and natural bond orbital analysis indicatingmore » that the NpO 2 + dioxocation acts as a -donor with transition-metal cations and a sigma donor with group 13 cations. The small changes in electron-donating ability is modulated by the overlap with the coordinating metal ion's valence atomic orbitals.« less
Reduction of N2 by supported tungsten clusters gives a model of the process by nitrogenase
Murakami, Junichi; Yamaguchi, Wataru
2012-01-01
Metalloenzymes catalyze difficult chemical reactions under mild conditions. Mimicking their functions is a challenging task and it has been investigated using homogeneous systems containing metal complexes. The nitrogenase that converts N2 to NH3 under mild conditions is one of such enzymes. Efforts to realize the biological function have continued for more than four decades, which has resulted in several reports of reduction of N2, ligated to metal complexes in solutions, to NH3 by protonation under mild conditions. Here, we show that seemingly distinct supported small tungsten clusters in a dry environment reduce N2 under mild conditions like the nitrogenase. N2 is reduced to NH3 via N2H4 by addition of neutral H atoms, which agrees with the mechanism recently proposed for the N2 reduction on the active site of nitrogenase. The process on the supported clusters gives a model of the biological N2 reduction. PMID:22586517
Freiderich, John W.; Burn, Adam G.; Martin, Leigh R.; ...
2017-04-14
The equilibrium constants for [NpO 2M∙] 4+ (M = Al 3+, In 3+, Sc 3+, Fe 3+) in μ = 10 M nitric acid and [NpO 2∙Ga] 4+ in μ = 10 M hydrochloric acid media have been determined. The trend in the interaction strength follows: Fe 3+ > Sc 3+ In 3+ > Ga 3+ Al 3+. These equilibrium constants are compared to those of previously reported values for NpO 2 + complexes with Cr 3+ and Rh 3+ within the literature. Thermodynamic parameters and bonding modes are discussed, with density functional theory and natural bond orbital analysis indicatingmore » that the NpO 2 + dioxocation acts as a -donor with transition-metal cations and a sigma donor with group 13 cations. The small changes in electron-donating ability is modulated by the overlap with the coordinating metal ion's valence atomic orbitals.« less
Synthesis of platinum nanowire networks using a soft template.
Song, Yujiang; Garcia, Robert M; Dorin, Rachel M; Wang, Haorong; Qiu, Yan; Coker, Eric N; Steen, William A; Miller, James E; Shelnutt, John A
2007-12-01
Platinum nanowire networks have been synthesized by chemical reduction of a platinum complex using sodium borohydride in the presence of a soft template formed by cetyltrimethylammonium bromide in a two-phase water-chloroform system. The interconnected polycrystalline nanowires possess the highest surface area (53 +/- 1 m2/g) and electroactive surface area (32.4 +/- 3.6 m2/g) reported for unsupported platinum nanomaterials; the high surface area results from the small average diameter of the nanowires (2.2 nm) and the 2-10 nm pores determined by nitrogen adsorption measurements. Synthetic control over the network was achieved simply by varying the stirring rate and reagent concentrations, in some cases leading to other types of nanostructures including wormlike platinum nanoparticles. Similarly, substitution of a palladium complex for platinum gives palladium nanowire networks. A mechanism of formation of the metal nanowire networks is proposed based on confined metal growth within a soft template consisting of a network of swollen inverse wormlike micelles.
Extracting metal ions with diphosphonic acid, or derivative thereof
Horwitz, Earl P.; Gatrone, Ralph C.; Nash, Kenneth L.
1994-01-01
Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulphur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described.
Extracting metal ions with diphosphonic acid, or derivative thereof
Horwitz, E.P.; Gatrone, R.C.; Nash, K.L.
1994-07-26
Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulfur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described. 1 fig.
How metalliferous brines line Mexican epithermal veins with silver
Wilkinson, Jamie J.; Simmons, Stuart F.; Stoffell, Barry
2013-01-01
We determined the composition of ~30-m.y.-old solutions extracted from fluid inclusions in one of the world's largest and richest silver ore deposits at Fresnillo, Mexico. Silver concentrations average 14 ppm and have a maximum of 27 ppm. The highest silver, lead and zinc concentrations correlate with salinity, consistent with transport by chloro-complexes and confirming the importance of brines in ore formation. The temporal distribution of these fluids within the veins suggests mineralization occurred episodically when they were injected into a fracture system dominated by low salinity, metal-poor fluids. Mass balance shows that a modest volume of brine, most likely of magmatic origin, is sufficient to supply the metal found in large Mexican silver deposits. The results suggest that ancient epithermal ore-forming events may involve fluid packets not captured in modern geothermal sampling and that giant ore deposits can form rapidly from small volumes of metal-rich fluid. PMID:23792776
1984-05-02
the syntheses of dinuclear and trinuclear complexes employing metal -alkylidyne or -alkylidene fragments.8 Reaction 1 also has a parallel with the...1 0 which was previously examined. The mixed metal complex is undoubtedly disordered with respect to the disposition of molybdenum and tungsten atoms...than for the analogous Mo3 complex suggests greater metal - metal overlap and possibly stronger bonding interactions in the W3 complex which would not
Nanoparticle assisted laser desorption/ionization mass spectrometry for small molecule analytes.
Abdelhamid, Hani Nasser
2018-03-01
Nanoparticle assisted laser desorption/ionization mass spectrometry (NPs-ALDI-MS) shows remarkable characteristics and has a promising future in terms of real sample analysis. The incorporation of NPs can advance several methods including surface assisted LDI-MS, and surface enhanced LDI-MS. These methods have advanced the detection of many thermally labile and nonvolatile biomolecules. Nanoparticles circumvent the drawbacks of conventional organic matrices for the analysis of small molecules. In most cases, NPs offer a clear background without interfering peaks, absence of fragmentation of thermally labile molecules, and allow the ionization of species with weak noncovalent interactions. Furthermore, an enhancement in sensitivity and selectivity can be achieved. NPs enable straightforward analysis of target species in a complex sample. This review (with 239 refs.) covers the progress made in laser-based mass spectrometry in combination with the use of metallic NPs (such as AuNPs, AgNPs, PtNPs, and PdNPs), NPs consisting of oxides and chalcogenides, silicon-based NPs, carbon-based nanomaterials, quantum dots, and metal-organic frameworks. Graphical abstract An overview is given on nanomaterials for use in surface-assisted laser desorption/ionization mass spectrometry of small molecules.
Size, speciation and lability of NOM-metal complexes in hyperalkaline cave dripwater
NASA Astrophysics Data System (ADS)
Hartland, Adam; Fairchild, Ian J.; Lead, Jamie R.; Zhang, Hao; Baalousha, Mohammed
2011-12-01
Transport of trace metals by natural organic matter (NOM) is potentially an important vector for trace metal incorporation in secondary cave precipitates [speleothems], yet little is known about the size distribution, speciation and metal binding properties of NOM in cave dripwaters. A hyperalkaline cave environment (ca. pH 11) was selected to provide information on colloid-metal interactions in cave waters, and to address the lack of high-pH data in natural systems in general. Colloidal (1 nm-1 μm) NOM in hyperalkaline cave dripwater from Poole's Cavern, UK, was characterised by flow field-flow fractionation (FlFFF) coupled to UV and fluorescence detectors and transmission electron microscopy (TEM) coupled to X-ray energy-dispersive spectroscopy (X-EDS); trace-metal lability was examined by diffusive gradients in thin films (DGT). Colloidal aggregates and small particulates (>1 μm) imaged by TEM were morphologically heterogeneous with qualitative elemental compositions (X-EDS spectra; n = 41) consistent with NOM aggregates containing aluminosilicates, and iron and titanium oxides. Globular organic colloids, with diameters between ca. 1 and 10 nm were the most numerous colloidal class and exhibited high UV-absorbance (254 nm) and fluorescence intensity (320:400 nm excitation: emission) in optical regions characteristic of humic-like compounds. Metal binding with humic substances was modelled using the WHAM 6.1 (model VI) and visual MINTEQ 3.0 (NICA-Donnan) speciation codes. At pH 11, both models predicted dominant humic binding of Cu (ca. 100%) and minimal binding of Ni and Co (ca. <1-7%). A DGT depletion experiment (7 days duration) with the hyperalkaline dripwater showed that the available proportion of each metal was much lower than its total concentration. Metal availability for DGT in the initial stages (24 h) was consistent with weaker binding of alkaline earth metals by humic substances (Ba > Sr > V > Cu > Ni > Co), compared to the transition metals. Integrated over the entire experiment, the DGT-available proportion of transition metals (Ni > Cu & V >> Co) differed greatly from the expected hierarchy from WHAM and MINTEQ, indicating unusually strong complexation of Co. Total metal concentrations of Cu, Ni, and Co in raw and filtered PE1 dripwater samples ( n = 53) were well correlated (Cu vs. Ni, R2 = 0.8; Cu vs. Co, R2 = 0.5) and were strongly reduced (> ca. 50%) by filtration at ca. 100 and 1 nm, indicating a common colloidal association. Our results demonstrate that soil-derived colloids reach speleothems, despite transport through a karst zone with potential for adsorption, and that NOM is a dominant complexant of trace metals in high pH speleothem-forming groundwaters.
NASA Technical Reports Server (NTRS)
Francis, A. J.; Dodge, C. J.
1993-01-01
A process has been developed at Brookhaven National Laboratory (BNL) for the removal of metals and radionuclides from contaminated materials, soils, and waste sites. In this process, citric acid, a naturally occurring organic complexing agent, is used to extract metals such as Ba, Cd, Cr, Ni, Zn, and radionuclides Co, Sr, Th, and U from solid wastes by formation of water soluble, metal-citrate complexes. Citric acid forms different types of complexes with the transition metals and actinides, and may involve formation of a bidentate, tridentate, binuclear, or polynuclear complex species. The extract containing radionuclide/metal complex is then subjected to microbiological degradation followed by photochemical degradation under aerobic conditions. Several metal citrate complexes are biodegraded, and the metals are recovered in a concentrated form with the bacterial biomass. Uranium forms binuclear complex with citric acid and is not biodegraded. The supernatant containing uranium citrate complex is separated and upon exposure to light, undergoes rapid degradation resulting in the formation of an insoluble, stable polymeric form of uranium. Uranium is recovered as a precipitate (polyuranate) in a concentrated form for recycling or for appropriate disposal. This treatment process, unlike others which use caustic reagents, does not create additional hazardous wastes for disposal and causes little damage to soil which can then be returned to normal use.
NASA Astrophysics Data System (ADS)
Abdel-Monem, Yasser K.; Abouel-Enein, Saeyda A.; El-Seady, Safa M.
2018-01-01
Multidentate Schiff base (H2L) ligand results from condensation of 5-aminouracil and 2-benzoyl pyridine and its metal chloride (Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Pd(II), Fe(III), Cr(III), Ru(III), Zr(IV) and Hf(IV)) complexes were prepared. The structural features of the ligand and its metal complexes were confirmed by elemental analyses, spectroscopic methods (IR, UV-Vis, 1H NMR, mass), magnetic moment measurements and thermal studies. The data refer to the ligand coordinates with metal ions in a neutral form and shows different modes of chelation toward the metal atom. All complexes have octahedral skeleton structure, tetrahedrally Mn(II), Ni(II), trigonalbipyramidal Co(II) and square planner Pd(II). Thermal decomposition of complexes as well as the interaction of different types of solvent of crystallization are assigned by thermogravimetric analysis. Molecular modeling of prepared complexes were investigated to study the expected anticancer activities of the prepared complexes. All metal complexes have no interaction except the complexes of Pd(II), Fe(III) and Mn(II).
Study of distorted octahedral structure in 3d transition metal complexes using XAFS
NASA Astrophysics Data System (ADS)
Gaur, A.; Nitin Nair, N.; Shrivastava, B. D.; Das, B. K.; Chakrabortty, Monideepa; Jha, S. N.; Bhattacharyya, D.
2018-01-01
Distortion in octahedral structure of 3d transition metal complexes (Mn, Fe, Co, Ni, Cu, Zn) has been studied using XAFS showing divergent nature of Cu complex. EXAFS analysis showed elongated metal-oxygen bonds for Cu complex leading to more distorted structure. Derivative XANES spectrum at Cu K-edge exhibits splitting of main edge which is correlated to elongated Cu-O bond length. Using these coordination geometry around metal centers, theoretical XANES spectra have been generated and features observed have been correlated to the corresponding metals p-DOS. It has been shown that distorted octahedral field in Cu complex is responsible for splitting of p-DOS.
Ostapowicz, Thomas G; Fryzuk, Michael D
2015-03-02
The anionic dihydride complex [Cp2TaH2](-) was synthesized as a well-defined molecular species by deprotonation of Cp2TaH3 while different solubilizing agents, such as [2.2.2]cryptand and 18-crown-6, were applied to encapsulate the alkali-metal counterion. The ion pairs were characterized by multiple spectroscopic methods as well as X-ray crystallography, revealing varying degrees of interaction between the hydride ligands of the anion and the respective countercation in solution and in the solid state. The [Cp2TaH2](-) complex anion shows slow exchange of the hydride ligands when kept under a D2 atmosphere, but a very fast reaction is observed when [Cp2TaH2](-) is reacted with CO2, from which Cp2TaH(CO) is obtained as the tantalum-containing reaction product, along with inorganic salts. Furthermore, [Cp2TaH2](-) can act as a synthon in heterobimetallic coupling reactions with transition-metal halide complexes. Thus, the heterobimetallic complexes Cp2Ta(μ-H)2Rh(dippp) and Cp2Ta(μ-H)2Ru(H)(CO)(P(i)Pr3)2 were synthesized and characterized by various spectroscopies and via single-crystal X-ray diffraction. The new hydride bridged tantalum-rhodium heterobimetallic complex is cleaved under a CO atmosphere to yield mononuclear species and slowly exchanges protons and hydride ligands when exposed to D2 gas.
Metal ion influence on eumelanin fluorescence and structure.
Sutter, Jens-Uwe; Birch, David J S
2014-04-10
Melanin has long been thought to have an unworkably weak and complex fluorescence, but here we study its intrinsic fluorescence in order to demonstrate how metal ions can be used to control the rate of formation, constituents and structure of eumelanin formed from the well-known laboratory auto-oxidation of 3,4-dihydroxy-L-phenylalanine (L-DOPA). The effect on eumelanin absorption and fluorescence of a range of solvated metal ions is reported including Cu, Zn, Ni, Na and K. Monovalent cations and Zn have little effect, but the effect of transition metal cations can be considerable. For example, at pH 10, copper ions are shown to accelerate the onset of eumelanin formation, but not the rate of formation once it commences, and simplify the usual complex structure and intrinsic fluorescence of eumelanin in a way that is consistent with an increased abundance of 5,5-dihydroxyindole-2-carboxylic acid (DHICA). The presence of a dominant 6 ns fluorescence decay time at 480 nm, when excited at 450 nm describes a distinct photophysical species, which we tentatively assign to small oligomers. Copper is well-known to normally quench fluorescence, but increasing amounts of copper surprisingly leads to an increase in the fluorescence decay time of eumelanin, while reducing the fluorescence intensity, suggesting copper modification of the excited state. Such results have bearing on diverse areas. The most accepted morphology for melanin is that of a graphite-like sheet structure, and one which readily binds metal ions, an interaction that is thought to have an important, though as yet unclear bearing on several areas of medicine including neurology. There is also increasing interest in bio-mimicry by preparing and labelling sheet structures with metal ions for new electronic and photonic materials.
Metal ion influence on eumelanin fluorescence and structure
NASA Astrophysics Data System (ADS)
Sutter, Jens-Uwe; Birch, David J. S.
2014-06-01
Melanin has long been thought to have an unworkably weak and complex fluorescence, but here we study its intrinsic fluorescence in order to demonstrate how metal ions can be used to control the rate of formation, constituents and structure of eumelanin formed from the well-known laboratory auto-oxidation of 3,4-dihydroxy-L-phenylalanine (L-DOPA). The effect on eumelanin absorption and fluorescence of a range of solvated metal ions is reported including Cu, Zn, Ni, Na and K. Monovalent cations and Zn have little effect, but the effect of transition metal cations can be considerable. For example, at pH 10, copper ions are shown to accelerate the onset of eumelanin formation, but not the rate of formation once it commences, and simplify the usual complex structure and intrinsic fluorescence of eumelanin in a way that is consistent with an increased abundance of 5,5-dihydroxyindole-2-carboxylic acid (DHICA). The presence of a dominant 6 ns fluorescence decay time at 480 nm, when excited at 450 nm describes a distinct photophysical species, which we tentatively assign to small oligomers. Copper is well-known to normally quench fluorescence, but increasing amounts of copper surprisingly leads to an increase in the fluorescence decay time of eumelanin, while reducing the fluorescence intensity, suggesting copper modification of the excited state. Such results have bearing on diverse areas. The most accepted morphology for melanin is that of a graphite-like sheet structure, and one which readily binds metal ions, an interaction that is thought to have an important, though as yet unclear bearing on several areas of medicine including neurology. There is also increasing interest in bio-mimicry by preparing and labelling sheet structures with metal ions for new electronic and photonic materials.
Patient movement characteristics and the impact on CBCT image quality and interpretability.
Spin-Neto, Rubens; Costa, Cláudio; Salgado, Daniela Mra; Zambrana, Nataly Rm; Gotfredsen, Erik; Wenzel, Ann
2018-01-01
To assess the impact of patient movement characteristics and metal/radiopaque materials in the field-of-view (FOV) on CBCT image quality and interpretability. 162 CBCT examinations were performed in 134 consecutive (i.e. prospective data collection) patients (age average: 27.2 years; range: 9-73). An accelerometer-gyroscope system registered patient's head position during examination. The threshold for movement definition was set at ≥0.5-mm movement distance based on accelerometer-gyroscope recording. Movement complexity was defined as uniplanar/multiplanar. Three observers scored independently: presence of stripe (i.e. streak) artefacts (absent/"enamel stripes"/"metal stripes"/"movement stripes"), overall unsharpness (absent/present) and image interpretability (interpretable/not interpretable). Kappa statistics assessed interobserver agreement. χ 2 tests analysed whether movement distance, movement complexity and metal/radiopaque material in the FOV affected image quality and image interpretability. Relevant risk factors (p ≤ 0.20) were entered into a multivariate logistic regression analysis with "not interpretable" as the outcome. Interobserver agreement for image interpretability was good (average = 0.65). Movement distance and presence of metal/radiopaque materials significantly affected image quality and interpretability. There were 22-28 cases, in which the observers stated the image was not interpretable. Small movements (i.e. <3 mm) did not significantly affect image interpretability. For movements ≥ 3 mm, the risk that a case was scored as "not interpretable" was significantly (p ≤ 0.05) increased [OR 3.2-11.3; 95% CI (0.70-65.47)]. Metal/radiopaque material was also a significant (p ≤ 0.05) risk factor (OR 3.61-5.05). Patient movement ≥3 mm and metal/radiopaque material in the FOV significantly affected CBCT image quality and interpretability.
Self-assembly of discrete metal complexes in aqueous solution via block copolypeptide amphiphiles.
Kuroiwa, Keita; Masaki, Yoshitaka; Koga, Yuko; Deming, Timothy J
2013-01-21
The integration of discrete metal complexes has been attracting significant interest due to the potential of these materials for soft metal-metal interactions and supramolecular assembly. Additionally, block copolypeptide amphiphiles have been investigated concerning their capacity for self-assembly into structures such as nanoparticles, nanosheets and nanofibers. In this study, we combined these two concepts by investigating the self-assembly of discrete metal complexes in aqueous solution using block copolypeptides. Normally, discrete metal complexes such as [Au(CN)(2)]-, when molecularly dispersed in water, cannot interact with one another. Our results demonstrated, however, that the addition of block copolypeptide amphiphiles such as K(183)L(19) to [Au(CN)(2)]- solutions induced one-dimensional integration of the discrete metal complex, resulting in photoluminescence originating from multinuclear complexes with metal-metal interactions. Transmission electron microscopy (TEM) showed a fibrous nanostructure with lengths and widths of approximately 100 and 20 nm, respectively, which grew to form advanced nanoarchitectures, including those resembling the weave patterns of Waraji (traditional Japanese straw sandals). This concept of combining block copolypeptide amphiphiles with discrete coordination compounds allows the design of flexible and functional supramolecular coordination systems in water.
Evaluation of the tratment of metal-EDTA complexes using Ti0{sub 2} photocatalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madden, T.; Datyte, A.K.; Prairie, M.R.
1996-03-01
This study has demonstrated the feasibility of TiO{sub 2} photocatalysis to treat EDTA and several metal-EDTA complexes that can be found in industrial wastewaters. For the EDTA complexes of metals capable of photodeposition, such as Cu and Pb, certain reaction conditions were shown to facilitate the simultaneous complex degradation and photodeposition of these metals onto the catalyst. With metals that do not easily photodeposit, such as Ni and Cd, it is shown that the complex degradation is still facilitated, and can enhance other metals removal processes after photocatalytic treatment. Because the treatment of these metal-EDTA complexes typically requires special measures,more » there may exist situations where TiO{sub 2} photocatalysis could actually be the preferred method of treatment. However, its use should be compared economically to other more established advanced oxidation technologies. This necessity is demonstrated in the economic comparison to ozone treatment for EDTA degradation alone, where ozone treatment appears to be the clear choice in this application.« less
Determination of stability constants of aminoglycoside antibiotics with their metal complexes
NASA Astrophysics Data System (ADS)
Tiwow, Vanny M. A.
2014-03-01
One group of aminoglycoside antibiotics contains aminosugars. The aminosugar neomycin B with its derivate product neamine (2-Deoxy-4-0-(2,6-diamino-2,6-dideoxy-α-D-glucopyranosyl)-D-Streptamine) was identified as a free ligands and metal complexes. In particular, the stability constants of metal complexes by potentiometric titration techniques were investigated. Our previous study had determined the acid dissociation constants of these aminosugars with few metal complexes in fair depth. In this work, the complexation of two pyridine-containing amino alcohols and an amino sugar (neamine) have been measured potentiometrically. For instance, the stability constant of copper(II) complexation were determine and the model system generated an excellent fit. Stability constants with several metals have been determined and will be reported.
Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission
Lakowicz, Joseph R.
2009-01-01
Metallic particles and surfaces display diverse and complex optical properties. Examples include the intense colors of noble metal colloids, surface plasmon resonance absorption by thin metal films, and quenching of excited fluorophores near the metal surfaces. Recently, the interactions of fluorophores with metallic particles and surfaces (metals) have been used to obtain increased fluorescence intensities, to develop assays based on fluorescence quenching by gold colloids, and to obtain directional radiation from fluorophores near thin metal films. For metal-enhanced fluorescence it is difficult to predict whether a particular metal structure, such as a colloid, fractal, or continuous surface, will quench or enhance fluorescence. In the present report we suggest how the effects of metals on fluorescence can be explained using a simple concept, based on radiating plasmons (RPs). The underlying physics may be complex but the concept is simple to understand. According to the RP model, the emission or quenching of a fluorophore near the metal can be predicted from the optical properties of the metal structures as calculated from electrodynamics, Mie theory, and/or Maxwell’s equations. For example, according to Mie theory and the size and shape of the particle, the extinction of metal colloids can be due to either absorption or scattering. Incident energy is dissipated by absorption. Far-field radiation is created by scattering. Based on our model small colloids are expected to quench fluorescence because absorption is dominant over scattering. Larger colloids are expected to enhance fluorescence because the scattering component is dominant over absorption. The ability of a metal’s surface to absorb or reflect light is due to wavenumber matching requirements at the metal–sample interface. Wavenumber matching considerations can also be used to predict whether fluorophores at a given distance from a continuous planar surface will be emitted or quenched. These considerations suggest that the so called “lossy surface waves” which quench fluorescence are due to induced electron oscillations which cannot radiate to the far-field because wavevector matching is not possible. We suggest that the energy from the fluorophores thought to be lost by lossy surface waves can be recovered as emission by adjustment of the sample to allow wavevector matching. The RP model provides a rational approach for designing fluorophore–metal configurations with the desired emissive properties and a basis for nanophotonic fluorophore technology. PMID:15691498
Culcu, Gursu; Iovan, Diana A; Krogman, Jeremy P; Wilding, Matthew J T; Bezpalko, Mark W; Foxman, Bruce M; Thomas, Christine M
2017-07-19
Heterometallic multiple bonds between niobium and other transition metals have not been reported to date, likely owing to the highly reactive nature of low-valent niobium centers. Herein, a C 3 -symmetric tris(phosphinoamide) ligand framework is used to construct a Nb/Fe heterobimetallic complex Cl-Nb( i PrNPPh 2 ) 3 Fe-Br (2), which features a Fe→Nb dative bond with a metal-metal distance of 2.4269(4) Å. Reduction of 2 in the presence of PMe 3 affords Nb( i PrNPPh 2 ) 3 Fe-PMe 3 (6), a compound with an unusual trigonal pyramidal geometry at a Nb III center, a Nb≡Fe triple bond, and the shortest bond distance (2.1446(8) Å) ever reported between Nb and any other transition metal. Complex 6 is thermally unstable and degrades via P-N bond cleavage to form a Nb V ═NR imide complex, i PrN═Nb( i PrNPPh 2 ) 3 Fe-PMe 3 (9). The heterobimetallic complexes i PrN═Nb( i PrNPPh 2 ) 3 Fe-Br (8) and 9 are independently synthesized, revealing that the strongly π-bonding imido functionality prevents significant metal-metal interactions. The 57 Fe Mössbauer spectra of 2, 6, 8, and 9 show a clear trend in isomer shift (δ), with a decrease in δ as metal-metal interactions become stronger and the Fe center is reduced. The electronic structure and metal-metal bonding of 2, 6, 8, and 9 are explored through computational studies, and cyclic voltammetry is used to better understand the effect of metal-metal interaction in early/late heterobimetallic complexes on the redox properties of the two metals involved.
Tsednee, Munkhtsetseg; Huang, Yu-Chen; Chen, Yet-Ran; Yeh, Kuo-Chen
2016-01-01
Electrospray ionization-mass spectrometry (ESI-MS) is used to analyze metal species in a variety of samples. Here, we describe an application for identifying metal species by tandem mass spectrometry (ESI-MS/MS) with the release of free metals from the corresponding metal–ligand complexes. The MS/MS data were used to elucidate the possible fragmentation pathways of different metal–deoxymugineic acid (–DMA) and metal–nicotianamine (–NA) complexes and select the product ions with highest abundance that may be useful for quantitative multiple reaction monitoring. This method can be used for identifying different metal–ligand complexes, especially for metal species whose mass spectra peaks are clustered close together. Different metal–DMA/NA complexes were simultaneously identified under different physiological pH conditions with this method. We further demonstrated the application of the technique for different plant samples and with different MS instruments. PMID:27240899
Petasis, Doros T; Hendrich, Michael P
2015-01-01
Electron paramagnetic resonance (EPR) spectroscopy has long been a primary method for characterization of paramagnetic centers in materials and biological complexes. Transition metals in biological complexes have valence d-orbitals that largely define the chemistry of the metal centers. EPR spectra are distinctive for metal type, oxidation state, protein environment, substrates, and inhibitors. The study of many metal centers in proteins, enzymes, and biomimetic complexes has led to the development of a systematic methodology for quantitative interpretation of EPR spectra from a wide array of metal containing complexes. The methodology is now contained in the computer program SpinCount. SpinCount allows simulation of EPR spectra from any sample containing multiple species composed of one or two metals in any spin state. The simulations are quantitative, thus allowing determination of all species concentrations in a sample directly from spectra. This chapter will focus on applications to transition metals in biological systems using EPR spectra from multiple microwave frequencies and modes. © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wieczorek, Piotr
The use of capillary electrophoresis for enantiomer separation and optical purity determination is presented. The contents start with basic information about the nature of stereoizomers and the mechanism of enantioseparation using capillary electrophoresis techniques. The molecules to be separated show identical chemical structure and electrochemical behavior. Therefore, the chiral recognition of enantiomers is possible only by bonding to chiral selector and the separation based on very small differences in complexation energies of diastereomer complexes formed. This method is useful for this purpose due to the fact that different compounds can be used as chiral selectors. The mostly used chiral selectors like cyclodextrins, crown ethers, chiral surfactants, macrocyclic antibiotics, transition metal complexes, natural, and synthetic polymers and their application for this purpose is also discussed. Finally, examples of practical applications of electromigration techniques for enantiomers separation and determination are presented.
Soft X-ray spectroscopy of transition metal compounds: a theoretical perspective
NASA Astrophysics Data System (ADS)
Bokarev, S. I.; Hilal, R.; Aziz, S. G.; Kühn, O.
2017-01-01
To date, X-ray spectroscopy has become a routine tool that can reveal highly local and element-specific information on the electronic structure of atoms in complex environments. Here, we report on the development of an efficient and versatile theoretical methodology for the treatment of soft X-ray spectra of transition metal compounds based on the multi-configurational self-consistent field electronic structure theory. A special focus is put on the L-edge photon-in/photon-out and photon-in/electron-out processes, i.e. X-ray absorption, resonant inelastic scattering, partial fluorescence yield, and photoelectron spectroscopy, all treated on the same theoretical footing. The investigated systems range from small prototypical coordination compounds and catalysts to aggregates of biomolecules.
Xia, Tianjiao; Qi, Yu; Liu, Jing; Qi, Zhichong; Chen, Wei; Wiesner, Mark R
2017-01-17
Transport of negatively charged nanoparticles in porous media is largely affected by cations. To date, little is known about how cations of the same valence may affect nanoparticle transport differently. We observed that the effects of cations on the transport of graphene oxide (GO) and sulfide-reduced GO (RGO) in saturated quartz sand obeyed the Hofmeister series; that is, transport-inhibition effects of alkali metal ions followed the order of Na + < K + < Cs + , and those of alkaline earth metal ions followed the order of Mg 2+ < Ca 2+ < Ba 2+ . With batch adsorption experiments and microscopic data, we verified that cations having large ionic radii (and thus being weakly hydrated) interacted with quartz sand and GO and RGO more strongly than did cations of small ionic radii. In particular, the monovalent Cs + and divalent Ca 2+ and Ba 2+ , which can form inner-sphere complexes, resulted in very significant deposition of GO and RGO via cation bridging between quartz sand and GO and RGO, and possibly via enhanced straining, due to the enhanced aggregation of GO and RGO from cation bridging. The existence of the Hofmeister effects was further corroborated with the interesting observation that cation bridging was more significant for RGO, which contained greater amounts of carboxyl and phenolic groups (i.e., metal-complexing moieties) than did GO. The findings further demonstrate that transport of nanoparticles is controlled by the complex interplay between nanoparticle surface functionalities and solution chemistry constituents.
Ravi, Mudavath; Chennam, Kishan Prasad; Ushaiah, B; Eslavath, Ravi Kumar; Perugu, Shyam; Ajumeera, Rajanna; Devi, Ch Sarala
2015-09-01
The focus of the present work is on the design, synthesis, characterization, DNA-interaction, photo-cleavage, radical scavenging, in-vitro cytotoxicity, antimicrobial, docking and kinetic studies of Cu (II), Cd (II), Ce (IV) and Zr (IV) metal complexes of an imine derivative, 3 - (1 - (6 - methoxybenzo [d] thiazol - 2 - ylimino) ethyl) - 6 - methyl - 3H - pyran - 2, 4 - dione. The investigation of metal ligand interactions for the determination of composition of metal complexes, corresponding kinetic studies and antioxidant activity in solution was carried out by spectrophotometric methods. The synthesized metal complexes were characterized by EDX analysis, Mass, IR, (1)H-NMR, (13)C-NMR and UV-Visible spectra. DNA binding studies of metal complexes with Calf thymus (CT) DNA were carried out at room temperature by employing UV-Vis electron absorption, fluorescence emission and viscosity measurement techniques. The results revealed that these complexes interact with DNA through intercalation. The results of in vitro antibacterial studies showed the enhanced activity of chelating agent in metal chelated form and thus inferring scope for further development of new therapeutic drugs. Cell viability experiments indicated that all complexes showed significant dose dependent cytotoxicity in selected cell lines. The molecular modeling and docking studies were carried out with energy minimized structures of metal complexes to identify the receptor to metal interactions.
Mahmood, Talat; Bibi, Yasmeen; Zafar, Raana; Wahab, Aneela; Mahmood, Iffat; Arshad, Nuzhat; Sherwani, Sikandar Khan
2015-03-01
β-sitosterol is a naturally occurring plant sterol (phytosterol) present in many fruits and vegetables. Scientific research has proven that β-sitosterol is helpful in maintaining the proper functioning of our body. Previously we described the complexation of β-sitosterol with trace metals (Mahmood et al., 2013). Trace metals after the formation of complex unable to absorb in the body and hence eliminated out from the body thus reducing metal toxicity (Marsha, 1996). The present article describes the complexation of μ-sitosterol with Palladium (Pd) metal. Palladium is a toxic metal and due to polluted and hazardous environment traces of this metal can be transferred into the body, which is harmful for human health. Our aim is to make Pd-sterol complex so that this toxic metal (Pd) does not absorb in the body and hence excreted out from the body in the complex form. In order to form this complex μ-sitosterol (Ib) is reacted with Tris (dibenzylideneacetone) dipalladium or [Pd(2) (DBA)(3)] (Ia) in 2:1 ratio in an inert atmosphere and dimethylformamid (DMF) added as a solvent. The resulting complex [Pd(2) (DBA)(3).(β-sitosterol) (Ic) was identified by various spectroscopic techniques such as IR, Mass and (1)H-NMR. This new organo metallic complex (Ic) also showed significant antibacterial and antifungal activity. The present work revealed that Pd-sterol complex does not only reduce metal toxicity but also helpful in minimizing bacterial and fungal infections present in the body. Our research also concluded that we must take plenty of fruits and vegetables in our diet so that natural plant sterol such as β-sitosterol can enhance our defense mechanism and maintain other functions of our body.
NASA Astrophysics Data System (ADS)
Daravath, Sreenu; Kumar, Marri Pradeep; Rambabu, Aveli; Vamsikrishna, Narendrula; Ganji, Nirmala; Shivaraj
2017-09-01
Two novel Schiff bases, L1 = (2-benzo[d]thiazol-6-ylimino)methyl)-4,6-dichlorophenol), L2 = (1-benzo[d]thiazol-6-ylimino)methyl)-6-bromo-4-chlorophenol) and their bivalent transition metal complexes [M(L1)2] and [M(L2)2], where M = Cu(II), Co(II) and Ni(II) were synthesized and characterized by elemental analysis, NMR, IR, UV-visible, mass, magnetic moments, ESR, TGA, SEM, EDX and powder XRD. Based on the experimental data a square planar geometry around the metal ion is assigned to all the complexes (1a-2c). The interaction of synthesized metal complexes with calf thymus DNA was explored using UV-visible absorption spectra, fluorescence and viscosity measurements. The experimental evidence indicated that all the metal complexes strongly bound to CT-DNA through an intercalation mode. DNA cleavage experiments of metal(II) complexes with supercoiled pBR322 DNA have also been explored by gel electrophoresis in the presence of H2O2 as well as UV light, and it is found that the Cu(II) complexes cleaved DNA more effectively compared to Co(II), Ni(II) complexes. In addition, the ligands and their metal complexes were screened for antimicrobial activity and it is found that all the metal complexes were more potent than free ligands.
Reactions catalyzed by haloporphyrins
Ellis, P.E. Jr.; Lyons, J.E.
1996-02-06
The invention provides novel methods for the oxidation of hydrocarbons with oxygen-containing gas to form hydroxy-group containing compounds and for the decomposition of hydroperoxides to form hydroxy-group containing compounds. The catalysts used in the methods of the invention comprise transition metal complexes of a porphyrin ring having 1 to 12 halogen substituents on the porphyrin ring, at least one of said halogens being in a meso position and/or the catalyst containing no aryl group in a meso position. The catalyst compositions are prepared by halogenating a transition metal complex of a porphyrin. In one embodiment, a complex of a porphyrin with a metal whose porphyrin complexes are not active for oxidation of alkanes is halogenated, thereby to obtain a haloporphyrin complex of that metal, the metal is removed from the haloporphyrin complex to obtain the free base form of the haloporphyrin, and a metal such as iron whose porphyrin complexes are active for oxidation of alkanes and for the decomposition of alkyl hydroperoxides is complexed with the free base to obtain an active catalyst for oxidation of alkanes and decomposition of alkyl hydroperoxides.
Haloporphyrins and their preparation and use as catalysts
Ellis, Jr., Paul E.; Lyons, James E.
1997-01-01
The invention provides novel catalyst compositions, useful in the oxidation of hydrocarbons with air or oxygen to form hydroxy-group containing compounds and in the decomposition of hydroperoxides to form hydroxy-group containing compounds. The catalysts comprise transition metal complexes of a porphyrin ring having 1 to 12 halogen substituents on the porphyrin ring, at least one of said halogens being in a meso position and/or the catalyst containing no aryl group in a meso position. The compositions are prepared by halogenating a transition metal complex of a porphyrin. In one embodiment, a complex of a porphyrin with a metal whose porphyrin complexes are not active for oxidation of hydrocarbons is halogenated, thereby to obtain a haloporphyrin complex of that metal, the metal is removed from the haloporphyrin complex to obtain the free base form of the haloporphyrin, and a metal such as iron whose porphyrin complexes are active for oxidation of hydrocarbons and for the decomposition of alkyl hydroperoxides is complexed with the free base to obtain an active catalyst for oxidation of hydrocarbons and decomposition of alkyl hydroperoxides.
Reactions catalyzed by haloporphyrins
Ellis, Jr., Paul E.; Lyons, James E.
1996-01-01
The invention provides novel methods for the oxidation of hydrocarbons with oxygen-containing gas to form hydroxy-group containing compounds and for the decomposition of hydroperoxides to form hydroxygroup containing compounds. The catalysts used in the methods of the invention comprise transition metal complexes of a porphyrin ring having 1 to 12 halogen substituents on the porphyrin ring, at least one of said halogens being in a meso position and/or the catalyst containing no aryl group in a meso position. The catalyst compositions are prepared by halogenating a transition metal complex of a porphyrin. In one embodiment, a complex of a porphyrin with a metal whose porphyrin complexes are not active for oxidation of alkanes is halogenated, thereby to obtain a haloporphyrin complex of that metal, the metal is removed from the haloporphyrin complex to obtain the free base form of the haloporphyrin, and a metal such as iron whose porphyrin complexes are active for oxidation of alkanes and for the decomposition of alkyl hydroperoxides is complexed with the free base to obtain an active catalyst for oxidation of alkanes and decomposition of alkyl hydroperoxides.
Haloporphyrins and their preparation and use as catalysts
Ellis, P.E. Jr.; Lyons, J.E.
1997-09-02
The invention provides novel catalyst compositions, useful in the oxidation of hydrocarbons with air or oxygen to form hydroxy-group containing compounds and in the decomposition of hydroperoxides to form hydroxy-group containing compounds. The catalysts comprise transition metal complexes of a porphyrin ring having 1 to 12 halogen substituents on the porphyrin ring, at least one of said halogens being in a meso position and/or the catalyst containing no aryl group in a meso position. The compositions are prepared by halogenating a transition metal complex of a porphyrin. In one embodiment, a complex of a porphyrin with a metal whose porphyrin complexes are not active for oxidation of hydrocarbons is halogenated, thereby to obtain a haloporphyrin complex of that metal, the metal is removed from the haloporphyrin complex to obtain the free base form of the haloporphyrin, and a metal such as iron whose porphyrin complexes are active for oxidation of hydrocarbons and for the decomposition of alkyl hydroperoxides is complexed with the free base to obtain an active catalyst for oxidation of hydrocarbons and decomposition of alkyl hydroperoxides.
Lakatos, Béla; Szentmihályi, Klára; Vinkler, Péter; Balla, József; Balla, György
2004-06-20
The role of essential nutrient metal ions (Mg, Fe, Cu, Zn, Mn and Co) often deficient in our foodstuffs, although vitally essential in the function of the human organism as well as the different reasons for these deficiencies both in foods and in the human body have been studied. The most frequent nutritional disease is iron deficient anaemia. Inorganic salts, artificial synthetic monomer organic metal complexes of high stability or organic polymer complexes of high molecular mass are unsatisfactory for supplementation to the human body, owing to poor absorption, low availability and/or harmful side effects. In contrast, we have recently found that mixed metal complexes of oligo/polygalacturonic acids with medium molecular weight prepared from natural pectin of plant origin are efficient for oral supplementation. Sufficient absorption of essential metal ions from metal oligo/polygalacturonate mixed complexes with polynuclear innersphere structure is due to the high ionselectivity and medium stability values. Metal oligo/polygalacturonate mixed complexes contain all deficient essential metal ions in adequate amounts and ratios for higher bioavailability of metal ions and optimal vital function. Therefore, by oral administration of these complexes, metal ion homeostasis and optimal interactions with vitamins and hormones can be ensured. Prelatent or latent macroelement Mg deficiency can often be observed among clinical or ambulance patients. Latent or manifest mesoelement iron deficiency is the most common, however, the occurrence of microelement copper, zinc, manganese and cobalt latent deficiencies is not seldom either. Supplementation studies utilizing essential metal oligo/polygalacturonate complexes led to satisfactory outcome without harmful side effects.
NASA Astrophysics Data System (ADS)
Shafaatian, Bita; Soleymanpour, Ahmad; Kholghi Oskouei, Nasim; Notash, Behrouz; Rezvani, Seyyed Ahmad
2014-07-01
A new unsymmetrical tridentate Schiff base ligand was derived from the 1:1 M condensation of ortho-vanillin with 2-mercaptoethylamine. Nickel and palladium complexes were obtained by the reaction of the tridentate Schiff base ligand with nickel(II) acetate tetrahydrate and palladium(II) acetate in 2:1 M ratio. In nickel and palladium complexes the ligand was coordinated to metals via the imine N and enolic O atoms. The S groups of Schiff bases were not coordinated to the metals and S-S coupling was occured. The complexes have been found to possess 1:2 Metal:Ligand stoichiometry and the molar conductance data revealed that the metal complexes were non-electrolytes. The complexes exhibited octahedral coordination geometry. The emission spectra of the ligand and its complexes were studied in methanol. Electrochemical properties of the ligand and its metal complexes were investigated in the CH3CN solvent at the 100 mV s-1 scan rate. The ligand and metal complexes showed both reversible and quasi-reversible processes at this scan rate. The Schiff base and its complexes have been characterized by IR, 1H NMR, UV/Vis, elemental analyses and conductometry. The crystal structure of nickel complex has been determined by single crystal X-ray diffraction.
Williams, Neil J; Gan, Wei; Reibenspies, Joseph H; Hancock, Robert D
2009-02-16
The idea is examined that steric crowding in ligands can lead to diminution of the chelation enhanced fluorescence (CHEF) effect in complexes of the small Zn(II) ion as compared to the larger Cd(II) ion. Steric crowding is less severe for the larger ion and for the smaller Zn(II) ion leads to Zn-N bond length distortion, which allows some quenching of fluorescence by the photoinduced electron transfer (PET) mechanism. Some metal ion complexing properties of the ligand tris(2-quinolylmethyl)amine (TQA) are presented in support of the idea that more sterically efficient ligands, which lead to less M-N bond length distortion with the small Zn(II) ion, will lead to a greater CHEF effect with Zn(II) than Cd(II). The structures of [Zn(TQA)H(2)O](ClO(4))(2).1.5 H(2)O (1), ([Pb(TQA)(NO(3))(2)].C(2)H(5)OH) (2), ([Ag(TQA)(ClO(4))]) (3), and (TQA).C(2)H(5)OH (4) are reported. In 1, the Zn(II) is 5-coordinate, with four N-donors from the ligand and a water molecule making up the coordination sphere. The Zn-N bonds are all of normal length, showing that the level of steric crowding in 1 is not sufficient to cause significant Zn-N bond length distortion. This leads to the observation that, as expected, the CHEF effect in the Zn(II)/TQA complex is much stronger than that in the Cd(II)/TQA complex, in contrast to similar but more sterically crowded ligands, where the CHEF effect is stronger in the Cd(II) complex. The CHEF effect for TQA with the metal ions examined varies as Zn(II) > Cd(II) > Ni(II) > Pb(II) > Hg(II) > Cu(II). The structure of 2 shows an 8-coordinate Pb(II), with evidence of a stereochemically active lone pair, and normal Pb-N bond lengths. In 3, the Ag(I) is 5-coordinate, with four N-donors from the TQA and an oxygen from the perchlorate. The Ag(I) shows no distortion toward linear 2-coordinate geometry, and the Ag-N bonds fall slightly into the upper range for Ag-N bonds in 5-coordinate complexes. The structure of 4 shows the TQA ligand to be involved in pi-stacking between quinolyl groups from adjacent TQA molecules. Formation constants determined by UV-visible spectroscopy are reported in 0.1 M NaClO(4) at 25 degrees C for TQA with Zn(II), Cd(II), and Pb(II). When compared with other similar ligands, one sees that, as the level of steric crowding increases, the stability decreases most with the small Zn(II) ion and least with the large Pb(II) ion. This is in accordance with the idea that TQA has a moderate level of steric crowding and that steric crowding increases for TQA analogs tris(2-pyridylmethyl)amine (TPyA) < TQA < tris(6-methyl-2-pyridyl)amine (TMPyA).
Novel Dialkylamino Derivatives of Phosphorus and Silicon.
1987-10-19
Metal Carbonyl Complexes ," Inorg. Chem. 1985, 24, 3136-3139. (7) King, R. B., Fu, W.-K.; Holt, E. M. "The Synthesis of Heterobimetallic Complexes from...Carbonyl Complexes of Diisopropylaminohalophosphines and their Application for the Synthesis of Novel Bimetallic Complexes ," presented by W.-K. Fu at the...necessary and identify by block number) FIELD -GROUP SUB-GROUP Phosphorus /Metal Complexes Silicon Dialkylamino Metal Carbonyls Boron Cyclopolyphosphinesl
NASA Astrophysics Data System (ADS)
Prapaipong, Panjai; Shock, Everett L.; Koretsky, Carla M.
1999-10-01
By combining results from regression and correlation methods, standard state thermodynamic properties for aqueous complexes between metal cations and divalent organic acid ligands (oxalate, malonate, succinate, glutarate, and adipate) are evaluated and applied to geochemical processes. Regression of experimental standard-state equilibrium constants with the revised Helgeson-Kirkham-Flowers (HKF) equation of state yields standard partial molal entropies (S¯°) of aqueous metal-organic complexes, which allow determination of thermodynamic properties of the complexes at elevated temperatures. In cases where S¯° is not available from either regression or calorimetric measurement, the values of S¯° can be estimated from a linear correlation between standard partial molal entropies of association (ΔS¯°r) and standard partial molal entropies of aqueous cations (S¯°M). The correlation is independent of cation charge, which makes it possible to predict S¯° for complexes between divalent organic acids and numerous metal cations. Similarly, correlations between standard Gibbs free energies of association of metal-organic complexes (ΔḠ°r) and Gibbs free energies of formation (ΔḠ°f) for divalent metal cations allow estimates of standard-state equilibrium constants where experimental data are not available. These correlations are found to be a function of ligand structure and cation charge. Predicted equilibrium constants for dicarboxylate complexes of numerous cations were included with those for inorganic and other organic complexes to study the effects of dicarboxylate complexes on the speciation of metals and organic acids in oil-field brines. Relatively low concentrations of oxalic and malonic acids affect the speciation of cations more than similar concentrations of succinic, glutaric, and adipic acids. However, the extent to which metal-dicarboxylate complexes contribute to the speciation of dissolved metals depends on the type of dicarboxylic acid ligand; relative concentration of inorganic, mono-, and dicarboxylate ligands; and the type of metal cation. As an example, in the same solution, dicarboxylic acids have a greater influence on the speciation of Fe+2 and Mg+2 than on the speciation of Zn+2 and Mn+2.
Membrane extraction with thermodynamically unstable diphosphonic acid derivatives
Horwitz, Earl Philip; Gatrone, Ralph Carl; Nash, Kenneth LaVerne
1997-01-01
Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulphur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described.
Bagramyan, K; Trchounian, A
2003-11-01
Formate hydrogen lyase from Escherichia coli is a membrane-bound complex that oxidizes formic acid to carbon dioxide and molecular hydrogen. Under anaerobic growth conditions and fermentation of sugars (glucose), it exists in two forms. One form is constituted by formate dehydrogenase H and hydrogenase 3, and the other one is the same formate dehydrogenase and hydrogenase 4; the presence of small protein subunits, carriers of electrons, is also probable. Other proteins may also be involved in formation of the enzyme complex, which requires the presence of metal (nickel-cobalt). Its formation also depends on the external pH and the presence of formate. Activity of both forms requires F(0)F(1)-ATPase; this explains dependence of the complex functioning on proton-motive force. It is also possible that the formate hydrogen lyase complex will exhibit its own proton-translocating function.
Youn, Il Seung; Kim, Dong Young; Singh, N Jiten; Park, Sung Woo; Youn, Jihee; Kim, Kwang S
2012-01-10
Structures of neutral metal-dibenzene complexes, M(C6H6)2 (M = Sc-Zn), are investigated by using Møller-Plesset second order perturbation theory (MP2). The benzene molecules change their conformation and shape upon complexation with the transition metals. We find two types of structures: (i) stacked forms for early transition metal complexes and (ii) distorted forms for late transition metal ones. The benzene molecules and the metal atom are bound together by δ bonds which originate from the interaction of π-MOs and d orbitals. The binding energy shows a maximum for Cr(C6H6)2, which obeys the 18-electron rule. It is noticeable that Mn(C6H6)2, a 19-electron complex, manages to have a stacked structure with an excess electron delocalized. For other late transition metal complexes having more than 19 electrons, the benzene molecules are bent or stray away from each other to reduce the electron density around a metal atom. For the early transition metals, the M(C6H6) complexes are found to be more weakly bound than M(C6H6)2. This is because the M(C6H6) complexes do not have enough electrons to satisfy the 18-electron rule, and so the M(C6H6)2 complexes generally tend to have tighter binding with a shorter benzene-metal length than the M(C6H6) complexes, which is quite unusual. The present results could provide a possible explanation of why on the Ni surface graphene tends to grow in a few layers, while on the Cu surface the weak interaction between the copper surface and graphene allows for the formation of a single layer of graphene, in agreement with chemical vapor deposition experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lichtenberger, D.L.; Jatcko, M.E.
1992-02-05
Photoelectron spectroscopy is used to study the electronic structure of molybdenum carbonyl complexes that contain diphosphine ligands bound to the metal through only one of the two phosphorus atoms. Photoelectron spectra are reported for Mo(CO)[sub 5]DMPE and Mo(CO)[sub 5]DMPM and compared to the spectra of Mo(CO)[sub 5]PMe[sub 3] and the corresponding free phosphine and diphosphine ligands (PMe[sub 3] is trimethylphosphine, DMPE is 1,2-bis(dimethylphosphino)ethane, and DMPM is bis(dimethylphosphino)methane). The energy splittings between the d[sup 6] metal-based ionizations of these complexes indicate that the [pi]-back-bonding ability is the same for each of these phosphine ligands and is relatively small, about 25% thatmore » of carbon monoxide. The metal-based ionizations shift only slightly to lower binding energy from the PMe[sub 3] to the DMPE to the DMPM complex due to a slightly increasing negative charge potential at the metal along this series. This would normally be interpreted as slightly increasing [sigma]-donor strength in the order PMe[sub 3] < DMPE < DMPM. However, the difference between the ionization energy of the coordinated lone pair (CLP) of the phosphine and the ionization energy of the lone pair of the free ligand indicates an opposite trend in [sigma]-donor strength with PMe[sub 3] (1.28 eV) > DMPE (1.27 eV) > DMPM (1.23 eV). The shift of the uncoordinated phosphine lone-pair ionization (ULP) of the monocoordinated diphosphine complexes, which is affected primarily by charge potential effects, reveals that the important factor is a transfer of negative charge from the uncoordinated end of the phosphine through the alkyl linkage to the coordinated phosphine. Aside from these subtle details of charge distribution, the primary conclusion is that the diphosphine ligands, DMPE and DMPM, have [sigma]-donor and [pi]-acceptor strengths extremely similar to those of PMe[sub 3].« less
DOE R&D Accomplishments Database
Cram, D. J.
1982-09-15
The overall objective of this research is to design, synthesize, and evaluate cyclic and polycyclic host organic compounds for the abilities to complex and lipophilize guest metal ions, their complexes, and their clusters. Host organic compounds consist of strategically placed solvating, coordinating, and ion-pairing sites tied together by covalent bonds through hydrocarbon units around cavities shaped to be occupied by guest metal ions, or by metal ions plus their ligands. Specificity in complexation is sought by matching the following properties of host and guest: cavity and metal ion sizes; geometric arrangements of binding sites; numbers of binding sites; characters of binding sites; and valences. The hope is to synthesize new classes of compounds useful in the separation of metal ions, their complexes, and their clusters.
Energetic lanthanide complexes: coordination chemistry and explosives applications
NASA Astrophysics Data System (ADS)
Manner, V. W.; Barker, B. J.; Sanders, V. E.; Laintz, K. E.; Scott, B. L.; Preston, D. N.; Sandstrom, M.; Reardon, B. L.
2014-05-01
Metals are generally added to organic molecular explosives in a heterogeneous composite to improve overall heat and energy release. In order to avoid creating a mixture that can vary in homogeneity, energetic organic molecules can be directly bonded to high molecular weight metals, forming a single metal complex with Angstrom-scale separation between the metal and the explosive. To probe the relationship between the structural properties of metal complexes and explosive performance, a new series of energetic lanthanide complexes has been prepared using energetic ligands such as NTO (5-nitro-2,4-dihydro-1,2,4-triazole-3-one). These are the first examples of lanthanide NTO complexes where no water is coordinated to the metal, demonstrating novel control of the coordination environment. The complexes have been characterized by X-ray crystallography, NMR and IR spectroscopies, photoluminescence, and sensitivity testing. The structural and energetic properties are discussed in the context of enhanced blast effects and detection. Cheetah calculations have been performed to fine-tune physical properties, creating a systematic method for producing explosives with 'tailor made' characteristics. These new complexes will be benchmarks for further study in the field of metalized high explosives.
Energetic Lanthanide Complexes: Coordination Chemistry and Explosives Applications
NASA Astrophysics Data System (ADS)
Manner, Virginia; Barker, Beau; Sanders, Eric; Laintz, Kenneth; Scott, Brian; Preston, Daniel; Sandstrom, Mary; Reardon, Bettina
2013-06-01
Metals are generally added to organic molecular explosives in a heterogeneous composite to improve overall heat and energy release. In order to avoid creating a mixture that can vary in homogeneity, energetic organic molecules can be directly bonded to high molecular weight metals, forming a single metal complex with Angstrom-scale separation between the metal and the explosive. To probe the relationship between the structural properties of metal complexes and explosive performance, a new series of energetic lanthanide complexes has been prepared using energetic ligands such as NTO (5-nitro-2,4-dihydro-1,2,4-triazole-3-one). These are the first examples of lanthanide NTO complexes where no water is coordinated to the metal, demonstrating novel control of the coordination environment. The complexes have been characterized by X-ray crystallography, NMR and IR spectroscopies, photoluminescence, and sensitivity testing. The structural and energetic properties are discussed in the context of enhanced blast effects and detection. Cheetah calculations have been performed to fine-tune physical properties, creating a systematic method for producing explosives with ``tailor made'' characteristics. These new complexes will be benchmarks for further study in the field of metalized high explosives.
Elius Hossain, Md; Mahmudul Hasan, Md; Halim, M E; Ehsan, M Q; Halim, Mohammad A
2015-03-05
Some transition metal complexes of phenylalanine of general formula [M(C9H10NO2)2]; where M=Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) are prepared in aqueous medium and characterized by spectroscopic, thermo-gravimetric (TG) and magnetic susceptibility analysis. Density functional theory (DFT) has been employed calculating the equilibrium geometries and vibrational frequencies of those complexes at B3LYP level of theory using 6-31G(d) and SDD basis sets. In addition, frontier molecular orbital and time-dependent density functional theory (TD-DFT) calculations are performed with CAM-B3LYP/6-31+G(d,p) and B3LYP/SDD level of theories. Thermo-gravimetric analysis confirms the composition of the complexes by comparing the experimental and calculated data for C, H, N and metals. Experimental and computed IR results predict a significant change in vibrational frequencies of metal-phenylalanine complexes compared to free ligand. DFT calculation confirms that Mn, Co, Ni and Cu complexes form square planar structure whereas Zn adopts distorted tetrahedral geometry. The metal-oxygen bonds in the optimized geometry of all complexes are shorter compared to the metal-nitrogen bonds which is consistent with a previous study. Cation-binding energy, enthalpy and Gibbs free energy indicates that these complexes are thermodynamically stable. UV-vis and TD-DFT studies reveal that these complexes demonstrate representative metal-to-ligand charge transfer (MLCT) and d-d transitions bands. TG analysis and IR spectra of the metal complexes strongly support the absence of water in crystallization. Magnetic susceptibility data of the complexes exhibits that all except Zn(II) complex are high spin paramagnetic. Copyright © 2014 Elsevier B.V. All rights reserved.
Covered self-expandable metal stents for benign biliary tract diseases.
Baron, Todd H
2011-05-01
Benign biliary diseases are often managed endoscopically using plastic stents. Benign biliary strictures (BBS) respond to placement of multiple large-bore plastic stents, though requiring multiple procedures to place stents, and to exchange stents to prevent and/or treat stent occlusion. Bile leaks close using plastic stents, which divert bile away from the leak into the duodenum. Covered self-expandable metal stents (CSEMS), intended for palliation of malignant biliary obstruction, have been used to treat benign biliary diseases. Advantages include small predeployment and large postexpansion diameters. Lack of imbedding of the metal into the bile duct wall enables removability. For strictures, one CSEMS is inserted without need for dilation and remains in place for up to 6 months. Successful removal has been reported in all cases. Long-term stricture resolution is achieved in up to 92%. Adverse events include migration and new stricture formation. For treatment of complex bile leaks, the covering and large diameter allow successful closure in nearly all cases. Other uses of CSEMS include treatment of postsphincterotomy bleeding and closure of perforations. CSEMS show promise for treatment of BBS and complex biliary leaks. Successful resolution can be achieved in the majority of patients with the advantage of fewer procedures, which offsets their higher cost.
Nitrogen vacancy complexes in nitrogen irradiated metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veen, A. van; Westerduin, K.T.; Schut, H.
1996-12-31
Gas desorption and positron annihilation techniques have been employed to study the evolution of nitrogen associated defects in nitrogen irradiated metals: Fe, Ni, Mo and W. Nitrogen in these metals has a rather high affinity to vacancy type defects. The results obtained for low irradiation dose show that substitutional nitrogen (NV; with V = vacancy) is formed. The nitrogen vacancy complex dissociates at temperatures ranging from 350 K for Ni to 900 K for Mo and 1,100 K for W. At high doses defects are formed which can be characterized as nitrogen saturated vacancy clusters. These defect, as observed bymore » helium probing, disappear during annealing for nickel at 800 K, and for Mo at 1,100 K. The direct observation of the desorbing nitrogen for nickel and molybdenum reveals a very fast desorption transient at the dissociation temperature of the clusters. This is the characteristic desorption transient of a small nitride cluster, e.g., by shrinkage with constant rate. For iron the nitrogen desorption is more complicated because of a general background that continuously rises with temperature. With the positron beam technique depth information was obtained for defects in iron and the defect character could be established with the help of the information provided on annihilation with conduction and core electrons of the defect trapped positrons.« less
ERIC Educational Resources Information Center
Ibanez, Jorge G.; And Others
1988-01-01
Describes experiments in which students prepare in situ soluble complexes of metal ions with different ligands and observe and estimate the change in formal potential that the ion undergoes upon complexation. Discusses student formation and analysis of soluble complexes of two different metal ions with the same ligand. (CW)
Cryochemical method for forming spherical metal oxide particles from metal salt solutions
Tinkle, M.C.
1973-12-01
A method is described of preparing small metal oxide spheres cryochemically utilizing metal salts (e.g., nitrates) that cannot readily be dried and calcined without loss of sphericity of the particles. Such metal salts are cryochemically formed into small spheres, partially or completely converted to an insoluble salt, and dried and calcined. (Official Gazette)
NASA Astrophysics Data System (ADS)
Sargent, Andrew Landman
Approximate molecular orbital and ab initio quantum chemical techniques are used to investigate the electronic structure, bonding and reactivity of several transition metal inorganic and organometallic complexes. Modest-sized basis sets are developed for the second-row transition metal atoms and are designed for use in geometry optimizations of inorganic and organometallic complexes incorporating these atoms. The basis sets produce optimized equilibrium geometries which are slightly better than those produced with standard 3-21G basis sets, and which are significantly better than those produced with effective core potential basis sets. Linear semibridging carbonyl ligands in heterobimetallic complexes which contain a coordinatively unsaturated late transition metal center are found to accept electron density from, rather than donate electron density to, these centers. Only when the secondary metal center is a coordinatively unsaturated early transition metal center does the semibridging ligand donate electron density to this center. Large holes in the d shell around the metal center are more prominent and prevalent in early than in late transition metal centers, and the importance of filling in these holes outweighs the importance of mitigating the charge imbalance due to the dative metal-metal interaction. Semibridging thiocarbonyl ligands are more effective donors of electron density than the carbonyl ligands since the occupied donor orbitals of pi symmetry are higher in energy. The stereoselectivity of H_2 addition to d^8 square-planar transition metal complexes is controlled by the interactions between the ligands in the plane of addition and the concentrations of electronic charge around the metal center as the complex evolves from a four-coordinate to a six-coordinate species. Electron -withdrawing ligands help stabilize the five-coordinate species while strong electron donor ligands contribute only to the destabilizing repulsive interactions. The relative thermodynamic stabilities of the final complexes can be predicted based on the relative orientations of the strongest sigma-donor ligands.
Metal adsorption onto bacterial surfaces: development of a predictive approach
NASA Astrophysics Data System (ADS)
Fein, Jeremy B.; Martin, Aaron M.; Wightman, Peter G.
2001-12-01
Aqueous metal cation adsorption onto bacterial surfaces can be successfully modeled by means of a surface complexation approach. However, relatively few stability constants for metal-bacterial surface complexes have been measured. In order to determine the bacterial adsorption behavior of cations that have not been studied in the laboratory, predictive techniques are required that enable estimation of the stability constants of bacterial surface complexes. In this study, we use a linear free-energy approach to compare previously measured stability constants for Bacillus subtilis metal-carboxyl surface complexes with aqueous metal-organic acid anion stability constants. The organic acids that we consider are acetic, oxalic, citric, and tiron. We add to this limited data set by conducting metal adsorption experiments onto Bacillus subtilis, determining bacterial surface stability constants for Co, Nd, Ni, Sr, and Zn. The adsorption behavior of each of the metals studied here was described well by considering metal-carboxyl bacterial surface complexation only, except for the Zn adsorption behavior, which required carboxyl and phosphoryl complexation to obtain a suitable fit to the data. The best correlation between bacterial carboxyl surface complexes and aqueous organic acid anion stability constants was obtained by means of metal-acetate aqueous complexes, with a linear correlation coefficient of 0.97. This correlation applies only to unhydrolyzed aqueous cations and only to carboxyl binding of those cations, and it does not predict the binding behavior under conditions where metal binding to other bacterial surface site types occurs. However, the relationship derived in this study permits estimation of the carboxyl site adsorption behavior of a wide range of aqueous metal cations for which there is an absence of experimental data. This technique, coupled with the observation of similar adsorption behaviors across bacterial species (Yee and Fein, 2001), enables estimation of the effects of bacterial adsorption on metal mobilities for a large number of environmental and geologic applications.
Blood trace metals in a sporadic amyotrophic lateral sclerosis geographical cluster.
De Benedetti, Stefano; Lucchini, Giorgio; Del Bò, Cristian; Deon, Valeria; Marocchi, Alessandro; Penco, Silvana; Lunetta, Christian; Gianazza, Elisabetta; Bonomi, Francesco; Iametti, Stefania
2017-06-01
Amyotrophic lateral sclerosis (ALS) is a fatal disorder with unknown etiology, in which genetic and environmental factors interplay to determine the onset and the course of the disease. Exposure to toxic metals has been proposed to be involved in the etiology of the disease either through a direct damage or by promoting oxidative stress. In this study we evaluated the concentration of a panel of metals in serum and whole blood of a small group of sporadic patients, all living in a defined geographical area, for which acid mine drainage has been reported. ALS prevalence in this area is higher than in the rest of Italy. Results were analyzed with software based on artificial neural networks. High concentrations of metals (in particular Se, Mn and Al) were associated with the disease group. Arsenic serum concentration resulted lower in ALS patients, but it positively correlated with disease duration. Comet assay was performed to evaluate endogenous DNA damage that resulted not different between patients and controls. Up to now only few studies considered geographically well-defined clusters of ALS patients. Common geographical origin among patients and controls gave us the chance to perform metallomic investigations under comparable conditions of environmental exposure. Elaboration of these data with software based on machine learning processes has the potential to be extremely useful to gain a comprehensive view of the complex interactions eventually leading to disease, even in a small number of subjects.
Assigning Oxidation States to Some Metal Dioxygen Complexes of Biological Interest.
ERIC Educational Resources Information Center
Summerville, David A.; And Others
1979-01-01
The bonding of dioxygen in metal-dioxygen complexes is discussed, paying particular attention to the problems encountered in assigning conventional oxidation numbers to both the metal center and coordinated dioxygen. Complexes of iron, cobalt, chromium, and manganese are considered. (BB)
Metal complex-based electron-transfer mediators in dye-sensitized solar cells
Elliott, C. Michael; Sapp, Shawn A.; Bignozzi, Carlo Alberto; Contado, Cristiano; Caramori, Stefano
2006-03-28
This present invention provides a metal-ligand complex and methods for using and preparing the same. In particular, the metal-ligand complex of the present invention is of the formula: L.sub.a-M-X.sub.b where L, M, X, a, and b are those define herein. The metal-ligand complexes of the present invention are useful in a variety of applications including as electron-transfer mediators in dye-sensitized solar cells and related photoelectrochromic devices.
Hancock, Robert D; Bartolotti, Libero J
2005-10-03
A prediction of the formation constants (log K1) for complexes of metal ions with a single NH3 ligand in aqueous solution, using quantum mechanical calculations, is reported. DeltaG values at 298 K in the gas phase for eq 1 (DeltaG(DFT)) were calculated for 34 metal ions using density functional theory (DFT), with the expectation that these would correlate with the free energy of complex formation in aqueous solution (DeltaG(aq)). [M(H2O)6]n+(g) + NH(3)(g) = [M(H2O)5NH3]n+(g) + H2O(g) (eq 1). The DeltaG(aq) values include the effects of complex changes in solvation on complex formation, which are not included in eq 1. It was anticipated that such changes in solvation would be constant or vary systematically with changes in the log K(1) value for different metal ions; therefore, simple correlations between DeltaG(DFT) and DeltaG(aq) were sought. The bulk of the log K1(NH3) values used to calculate DeltaG(aq) were not experimental, but estimated previously (Hancock 1978, 1980) from a variety of empirical correlations. Separate linear correlations between DeltaG(DFT) and DeltaG(aq) for metal ions of different charges (M2+, M3+, and M4+) were found. In plots of DeltaG(DFT) versus DeltaG(aq), the slopes ranged from 2.201 for M2+ ions down to 1.076 for M4+ ions, with intercepts increasing from M2+ to M4+ ions. Two separate correlations occurred for the M3+ ions, which appeared to correspond to small metal ions with a coordination number (CN) of 6 and to large metal ions with a higher CN in the vicinity of 7-9. The good correlation coefficients (R) in the range of 0.97-0.99 for all these separate correlations suggest that the approach used here may be the basis for future predictions of aqueous phase chemistry that would otherwise be experimentally inaccessible. Thus, the log K1(NH3) value for the transuranic Lr3+, which has a half-life of 3.6 h in its most stable isotope, is predicted to be 1.46. These calculations should also lead to a greater insight into the factors governing complex formation in aqueous solution. All of the above DFT calculations involved corrections for scalar relativistic effects (RE). Au has been described (Koltsoyannis 1997) as a "relativistic element". The chief effect of RE for group 11 ions is to favor linear coordination geometry and greatly increase covalence in the M-L bond. The correlation for M+ ions (H+, Cu+, Ag+, Au+) involved the preferred linear coordination of the [M(H2O)2]+ complexes, so that the DFT calculations of DeltaG for the gas-phase reaction in eq 2 were carried out for M = H+, Cu+, Ag+, and Au+. [M(H2O)2]+(g) + NH3(g) = [M(H2O)NH3]+(g) + H2O(g) (eq 2). Additional DFT calculations for eq 2 were carried out omitting corrections for RE. These indicated, in the absence of RE, virtually no change in the log K1(NH3) value for H+, a small decrease for Cu+, and a larger decrease for Ag+. There would, however, be a very large decrease in the log K1(NH3) value for Au(I) from 9.8 (RE included) to 1.6 (RE omitted). These results suggest that much of "soft" acid behavior in aqueous solution in the hard and soft acid-base classification of Pearson may be the result of RE in the elements close to Au in the periodic table.
NASA Astrophysics Data System (ADS)
Jabeen, Muafia; Ahmad, Sajjad; Shahid, Khadija; Sadiq, Abdul; Rashid, Umer
2018-03-01
In the current research work,eleven metal complexes were synthesized from the hydrazide derivative of ursolic acid. Metal complexes of tin, antimony and iron were synthesized and characterized by FT-IR and NMR spectroscopy. The antibacterial and antioxidant activities were performed for these complexes, which revealed that the metal complexes synthesized are more potent than their parent compounds. We observed that antioxidant activity showed by triphenyltin complex was significant and least activity have been shown by antimony trichloride complex.The synthesized metal complexes were then evaluated against two Gram-negative and two Gram-positive bacterial strains. Triphenyl tin complex emerged as potent antibacterial agent with MIC value of 8 μg/ml each against Shigellaspp, S. typhi and S. aureus. While, the MIC value againstS. pneumoniae is 4 μg/ml.Computational docking studies were carried out on molecular targets to interpret the results of antioxidant and antibacterial activities. Based on the results, it may be inferred that the metal complexes of ursolic acid are more active as compared to the parent drug and may be proved for some other pharmacological potential by further analysis.
Credit BG. View west of Test Stand "D" complex, with ...
Credit BG. View west of Test Stand "D" complex, with ends of Dd (left) and Dy (right) station ejectors in view. Steam piping from accumulator (sphere) to ejectors is apparent; long horizontal loops in the pipes permit expansion and contraction without special joints. The small platform straddling the Dd ejector (near the accumulator) was originally constructed for a "Hyprox" steam generator which supplied steam to the Dd ejector before the accumulator and Dy stand were built. Note ejectors on top of interstage condenser in Test Stand "D" tower. Metal shed in far right background is for storage - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bortinger, A.
1977-01-01
Chiral polymer-supported metal complexes were catalytically active in the hydroformylation of prochiral olefins, but they induced only small optical activity. All the optical rotations in 2-phenylpropanal, obtained by the hydroformylation of styrene, were positive. In studies of asymmetric hydroformylation with homogeneous catalysts, no correlation was found between the optical inductions and ligand structure. Polymer-supported platinum catalysts having similar structure to their homogeneous counterparts showed the same high selectivity toward the formation of straight-chain aldehyde (89-95%) as the homogeneous catalysts in the hydroformylation of 1-hexene. Aldehyde yields were low (up to 45%); no reduction to alcohol occurred.
Methods of selectively incorporating metals onto substrates
Ernst; Richard D. , Eyring; Edward M. , Turpin; Gregory C. , Dunn; Brian C.
2008-09-30
A method for forming multi-metallic sites on a substrate is disclosed and described. A substrate including active groups such as hydroxyl can be reacted with a pretarget metal complex. The target metal attached to the active group can then be reacted with a secondary metal complex such that an oxidation-reduction (redox) reaction occurs to form a multi-metallic species. The substrate can be a highly porous material such as aerogels, xerogels, zeolites, and similar materials. Additional metal complexes can be reacted to increase catalyst loading or control co-catalyst content. The resulting compounds can be oxidized to form oxides or reduced to form metals in the ground state which are suitable for practical use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oguchi, Masahiro, E-mail: oguchi.masahiro@nies.go.jp; Sakanakura, Hirofumi, E-mail: sakanakura@nies.go.jp; Terazono, Atsushi, E-mail: terazono@nies.go.jp
2012-01-15
Highlights: Black-Right-Pointing-Pointer The fate of 55 metals during shredding and separation of WEEE was investigated. Black-Right-Pointing-Pointer Most metals were mainly distributed to the small-grain fraction. Black-Right-Pointing-Pointer Much of metals in WEEE being treated as municipal waste in Japan end up in landfills. Black-Right-Pointing-Pointer Pre-sorting of small digital products reduces metals to be landfilled at some level. Black-Right-Pointing-Pointer Consideration of metal recovery from other middle-sized WEEE is still important. - Abstract: In Japan, waste electrical and electronic equipment (WEEE) that is not covered by the recycling laws are treated as municipal solid waste. A part of common metals are recovered duringmore » the treatment; however, other metals are rarely recovered and their destinations are not clear. This study investigated the distribution ratios and substance flows of 55 metals contained in WEEE during municipal waste treatment using shredding and separation techniques at a Japanese municipal waste treatment plant. The results revealed that more than half of Cu and most of Al contained in WEEE end up in landfills or dissipate under the current municipal waste treatment system. Among the other metals contained in WEEE, at least 70% of the mass was distributed to the small-grain fraction through the shredding and separation and is to be landfilled. Most kinds of metals were concentrated several fold in the small-grain fraction through the process and therefore the small-grain fraction may be a next target for recovery of metals in terms of both metal content and amount. Separate collection and pre-sorting of small digital products can work as effective way for reducing precious metals and less common metals to be landfilled to some extent; however, much of the total masses of those metals would still end up in landfills and it is also important to consider how to recover and utilize metals contained in other WEEE such as audio/video equipment.« less
NASA Astrophysics Data System (ADS)
Szabó, László; Herman, Krisztian; Mircescu, Nicoleta Elena; Tódor, István Szabolcs; Simon, Botond Lorand; Boitor, Radu Alex; Leopold, Nicolae; Chiş, Vasile
2014-09-01
In recent years, surface-enhanced Raman scattering (SERS) has become an increasingly viable method for the detection of metal ions, evidenced by the existing studies on metal complexes. In this study, 1,5-diphenylcarbazide (DPC) and its Ca(II), Mn(II), Fe(III) and Cu(II) complexes were investigated by FTIR/ATR, FT-Raman and surface-enhanced Raman spectroscopies. The hybrid B3LYP exchange-correlation functional was used for the molecular geometry optimizations, molecular electrostatic potential (MEP) distribution and vibrational frequencies calculations of the DPC molecule and its complexes. Based on experimental and theoretical data, we were able to accurately identify unique and representative features for each DPC-metal complex, features that enable the detection of said metal complexes in millimolar concentrations.
Application of Δ- and λ-isomerism of octahedral metal complexes for inducing chiral nematic phases.
Sato, Hisako; Yamagishi, Akihiko
2009-11-20
The Delta- and Lambda-isomerism of octahedral metal complexes is employed as a source of chirality for inducing chiral nematic phases. By applying a wide range of chiral metal complexes as a dopant, it has been found that tris(beta-diketonato)metal(III) complexes exhibit an extremely high value of helical twisting power. The mechanism of induction of the chiral nematic phase is postulated on the basis of a surface chirality model. The strategy for designing an efficient dopant is described, together with the results using a number of examples of Co(III), Cr(III) and Ru(III) complexes with C(2) symmetry. The development of photo-responsive dopants to achieve the photo-induced structural change of liquid crystal by use of photo-isomerization of chiral metal complexes is also described.
Application of Δ- and Λ-Isomerism of Octahedral Metal Complexes for Inducing Chiral Nematic Phases
Sato, Hisako; Yamagishi, Akihiko
2009-01-01
The Δ- and Λ-isomerism of octahedral metal complexes is employed as a source of chirality for inducing chiral nematic phases. By applying a wide range of chiral metal complexes as a dopant, it has been found that tris(β-diketonato)metal(III) complexes exhibit an extremely high value of helical twisting power. The mechanism of induction of the chiral nematic phase is postulated on the basis of a surface chirality model. The strategy for designing an efficient dopant is described, together with the results using a number of examples of Co(III), Cr(III) and Ru(III) complexes with C2 symmetry. The development of photo-responsive dopants to achieve the photo-induced structural change of liquid crystal by use of photo-isomerization of chiral metal complexes is also described. PMID:20057959
Synthesis, spectral studies and biological evaluation of 2-aminonicotinic acid metal complexes
NASA Astrophysics Data System (ADS)
Nawaz, Muhammad; Abbasi, Muhammad Waseem; Hisaindee, Soleiman; Zaki, Muhammad Javed; Abbas, Hira Fatima; Mengting, Hu; Ahmed, M. Arif
2016-05-01
We synthesized 2-aminonicotinic acid (2-ANA) complexes with metals such as Co(II), Fe(III), Ni(II), Mn(II), Zn(II), Ag(I),Cr(III), Cd(II) and Cu(II) in aqueous media. The complexes were characterized and elucidated using FT-IR, UV-Vis, a fluorescence spectrophotometer and thermo gravimetric analysis (TGA). TGA data showed that the stoichiometry of complexes was 1:2 metal/ligand except for Ag(I) and Mn(II) where the ratio was 1:1. The metal complexes showed varied antibacterial, fungicidal and nematicidal activities. The silver and zinc complexes showed highest activity against Bacillus subtilis and Bacillus licheniformis respectively. Fusarium oxysporum was highly susceptible to nickel and copper complexes whereas Macrophomina phaseolina was completely inert to the complexes. The silver and cadmium complexes were effective against the root-knot nematode Meloidogyne javanica.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, J.; Kostic, N.M.
1988-07-27
This study introduces binuclear transition-metal complexes as reagents for selective covalent cross-linking of proteins. Incubation of horse cytochrome c (designated cyt) with Rh{sub 2}(OAc){sub 4} under mild conditions yields the diprotein complex, Rh{sub 2}(OAc){sub 4}(cyt){sub 2}, whose composition is established by size-exclusion chromatography, uv-vis spectroscopy, and {sup 1}H NMR spectroscopy. The protein molecules are coordinated to the Rh atoms via the imidazole (Im) rings of their His 33 residues, as shown by uv difference and {sup 1}H NMR spectroscopy, by the pH effect on the complex formation, and by the control experiments with tuna cytochrome c. The diprotein complex ismore » stable under ordinary conditions, and yet it can be cleaved, and the native protein recovered, by treatment with a suitable strong nucleophile. Spectroscopic and electrochemical measurements show that the structural and redox properties of cytochrome c are not perturbed significantly by cross-linking. Comparison between Rh{sub 2}(OAc){sub 4}(Im){sub 2} and Rh{sub 2}(OAc){sub 4}(cyt){sub 2} shows that the complex containing small ligands is not an entirely realistic model of the complex containing proteins. In particular, the enhanced stability of the latter toward hydrolysis may be due to steric bulk of the protein ligands and to hydrogen bonds that amino acid side chains may form with the inorganic link. Some of the findings of this study may pertain to the mechanism of antitumor action of the Rh{sub 2}(RCOO){sub 4} complexes. 86 refs., 2 tabs.« less
Sakthivel, A.; Rajasekaran, K.
2007-01-01
New N2O2 donor type Schiff base has been designed and synthesized by condensing acetoacetanilido-4-aminoantipyrine with 2-aminobenzoic acid in ethanol. Solid metal complexes of the Schiff base with Cu(II), Ni(II), Co(II), Mn(II), Zn(II), VO(IV), Hg(II) and Cd(II) metal ions were synthesized and characterized by elemental analyses, magnetic susceptibility, molar conduction, fast atom bombardment (FAB) mass, IR, UV-Vis, and 1H NMR spectral studies. The data show that the complexes have the composition of ML type. The UV-Vis. and magnetic susceptibility data of the complexes suggest a square-planar geometry around the central metal ion except VO(IV) complex which has square-pyramidal geometry. The in vitro antifungal activities of the compounds were tested against fungi such as Aspergillus niger, Aspergillus flavus, Rhizopus stolonifer, Candida albicans, Rhizoctonia bataicola and Trichoderma harizanum. All the metal complexes showed stronger antifungal activities than the free ligand. The minimum inhibitory concentrations (MIC) of the metal complexes were found in the range of 10~31 µg/ml. PMID:24015086
On the existence of free and metal complexed sulfide in the Arabian Sea and its oxygen minimum zone
NASA Astrophysics Data System (ADS)
Theberge, Stephen M.; Luther, George W.; Farrenkopf, Anna M.
Free hydrogen sulfide was not detected in the oxygen minimum zone (OMZ) of the Arabian Sea during legs D1 (September 1992) and D3 (October-November 1992) of the Netherlands Indian Ocean Programme (NIOP). However, sulfide complexed to metals was detected by cathodic stripping square wave voltammetry at 2 nM or less throughout the water column. A slight increase in sulfide was measured in the OMZ relative to the surface waters and may be related to sulfur release from organic matter during decomposition. Sulfide complexes are of two general types at low concentrations of metal and sulfide. First, metals such as Mn, Fe, Co and Ni form complexes with bisulfide ion (HS -) that are kinetically labile to dissociation and are reactive. Second, metals such as Cu and Zn form multinuclear complexes with sulfide (S 2-) that are kinetically inert to dissociation; thus, they are less reactive than free (bi)sulfide and the labile metal bisulfide complexes. Zinc and copper sulfide complexes are important in allowing hydrogen sulfide to persist in seawater which contains measurable oxygen.
Solubility enhancement of seven metal contaminants using carboxymethyl-β-cyclodextrin (CMCD)
NASA Astrophysics Data System (ADS)
Skold, Magnus E.; Thyne, Geoffrey D.; Drexler, John W.; McCray, John E.
2009-07-01
Carboxymethyl-β-cyclodextrin (CMCD) has been suggested as a complexing agent for remediation of sites co-contaminated with metals and organic pollutants. As part of an attempt to construct a geochemical complexation model for metal-CMCD interactions, conditional formation constants for the complexes between CMCD and 7 metal ions (Ba, Ca, Cd, Ni, Pb, Sr, and Zn) are estimated from experimental data. Stable metal concentrations were reached after approximately 1 day and estimated logarithmic conditional formation constants range from - 3.2 to - 5.1 with confidence intervals within ± 0.08 log units. Experiments performed at 10 °C and 25 °C show that temperature affects the solubility of the metal salts but the strength of CMCD-metal complexes are not affected by this temperature variation. The conditional stability constants and complexation model presented in this work can be used to screen CMCD as a potential remediation agent for clean-up of contaminated soil and groundwater.
Wang, Joanna Shaofen; Chiu, Kong-Hwa
2006-03-01
The objective of this work is to track the amount of metal complexes distributed in the extraction cell, collection vial, and tubing used in supercritical fluid extraction (SFE) systems after progressive removal of metal ions in supercritical carbon dioxide (SC-CO2). Sodium diethyldithiocarbamate (NaDDC) and dibutylammonium dibutyldithiocarbamate (DBDC) ligands were used to form complexes with Cd, Cu, Pb, and Zn and CO(2)/5% methanol as a supercritical fluid. The mass balance of metal complexes were obtained before and after extraction, and metals in different locations in the system were flushed out using an organic solvent and nitric acid (HNO3). These results infer that the stability constant (beta) of the metal-ligand complex has a strong correlation with SFE. Because of the composition of the stainless-steel cell, Fe, Cr, and Ni or other trace elements in the cell might interfere with the mass balance of metal complexes in SFE due to an exchange mechanism taking place between the cell and the sample.
Electrokinetic treatment of an agricultural soil contaminated with heavy metals.
Figueroa, Arylein; Cameselle, Claudio; Gouveia, Susana; Hansen, Henrik K
2016-07-28
The high organic matter content in agricultural soils tends to complex and retain contaminants such as heavy metals. Electrokinetic remediation was tested in an agricultural soil contaminated with Co(+2), Zn(+2), Cd(+2), Cu(+2), Cr(VI), Pb(+2) and Hg(+2). The unenhanced electrokinetic treatment was not able to remove heavy metals from the soil due to the formation of precipitates in the alkaline environment in the soil section close to the cathode. Moreover, the interaction between metals and organic matter probably limited metal transportation under the effect of the electric field. Citric acid and ethylenediaminetetraacetic acid (EDTA) were used in the catholyte as complexing agents in order to enhance the extractability and removal of heavy metals from soil. These complexing agents formed negatively charged complexes that migrated towards the anode. The acid front electrogenerated at the anode favored the dissolution of heavy metals that were transported towards the cathode. The combined effect of the soil pH and the complexing agents resulted in the accumulation of heavy metals in the center of the soil specimen.
Trends in the thermodynamic stability of ultrathin supported oxide films
Plessow, Philipp N.; Bajdich, Michal; Greene, Joshua; ...
2016-05-05
The formation of thin oxide films on metal supports is an important phenomenon, especially in the context of strong metal support interaction (SMSI). Computational predictions of the stability of these films are hampered by their structural complexity and a varying lattice mismatch with different supports. In this study, we report a large combination of supports and ultrathin oxide films studied with density functional theory (DFT). Trends in stability are investigated through a descriptor-based analysis. Since the studied films are bound to the support exclusively through metal–metal interaction, the adsorption energy of the oxide-constituting metal atom can be expected to bemore » a reasonable descriptor for the stability of the overlayers. If the same supercell is used for all supports, the overlayers experience different amounts of stress. Using supercells with small lattice mismatch for each system leads to significantly improved scaling relations for the stability of the overlayers. Finally, this approach works well for the studied systems and therefore allows the descriptor-based exploration of the thermodynamic stability of supported thin oxide layers.« less
Hydrogen Supply System for Small PEM Fuel Cell Stacks
1997-07-01
a trivalent metal capable of forming complex hydrides such as Al or B. m is the valence of Z and n is the valence of X For example, let X be chlorine...been taken, the reactor is opened into a fume hood. After the reactor reaches atmospheric pressure, it is re-pressurized with nitrogen and bled again...into the fume hood to remove the remaining vapors before it is opened. After the fumes have dissipated, the endcap is loosened and removed. The spent
Membrane extraction with thermodynamically unstable diphosphonic acid derivatives
Horwitz, E.P.; Gatrone, R.C.; Nash, K.L.
1997-10-14
Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulphur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described. 1 fig.
Lilga, Michael A.; Hallen, Richard T.
1990-01-01
The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately .pi.-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancilliary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H.sub.2 from mixed gas streams such as the produce gas from coal gasification processes.
Lilga, M.A.; Hallen, R.T.
1991-10-15
The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately [pi]-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancillary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H[sub 2] from mixed gas streams such as the product gas from coal gasification processes. 3 figures.
Lilga, M.A.; Hallen, R.T.
1990-08-28
The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately [pi]-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancillary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H[sub 2] from mixed gas streams such as the producer gas from coal gasification processes. 3 figs.
Lilga, Michael A.; Hallen, Richard T.
1991-01-01
The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately .pi.-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancilliary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H.sub.2 from mixed gas streams such as the product gas from coal gasification processes.
Multiheteromacrocycles that Complex Metal Ions. Sixth Progress Report, 1 May 1979-30 April 1980
DOE R&D Accomplishments Database
Cram, D. J.
1980-01-15
Objective is to design synthesize, and evaluate cyclic and polycyclic host organic compounds for their abilities to complex and lipophilize guest metal ions, their complexes, and their clusters. Host organic compounds consist of strategically placed solvating, coordinating, and ion-pairing sites tied together by covalent bonds through hydrocarbon units around cavities shaped to be occupied by guest metal ions or by metal ions plus their ligands. Specificity in complexation is sought by matching the following properties of host and guest: cavity and metal ion sizes; geometric arrangements of binding sites; number of binding sites; character of binding sites; and valences. During this period, hemispherands based on an aryloxy or cyclic urea unit, spherands based on aryloxyl units only, and their complexes with alkali metals and alkaline earths were investigated. An attempt to separate {sup 6}Li and {sup 7}Li by gel permeation chromatography of lithiospherium chloride failed. (DLC)
Drug Delivery Systems For Anti-Cancer Active Complexes of Some Coinage Metals.
Zhang, Ming; Saint-Germain, Camille; He, Guiling; Sun, Raymond Wai-Yin
2018-02-12
Although cisplatin and a number of platinum complexes have widely been used for the treatment of neoplasia, patients receiving these treatments have frequently suffered from their severe toxic side effects, the development of resistance with consequent relapse. In the recent decades, numerous complexes of coinage metals including that of gold, copper and silver have been reported to display promising in vitro and/or in vivo anti-cancer activities as well as potent activities towards cisplatin-resistant tumors. Nevertheless, the medical development of these metal complexes has been hampered by their instability in aqueous solutions and the nonspecific binding in biological systems. One of the approaches to overcome these problems is to design and develop adequate drug delivery systems (DDSs) for the transport of these complexes. By functionalization, encapsulation or formulation of the metal complexes, several types of DDSs have been reported to improve the desired pharmacological profile of the metal complexes, improving their overall stability, bioavailability, anti-cancer activity and reducing their toxicity towards normal cells. In this review, we summarized the recent findings for different DDSs for various anti- cancer active complexes of some coinage metals. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, XS; Michaelis, VK; Ong, TC
The controllable synthesis of well-ordered layered materials with specific nanoarchitecture poses a grand challenge in materials chemistry. Here the solvothermal synthesis of two structurally analogous 5-coordinate organosilicate complexes through a novel transesterification mechanism is reported. Since the polycrystalline nature of the intrinsic hypervalent Si complex thwarts the endeavor in determining its structure, a novel strategy concerning the elegant addition of a small fraction of B species as an effective crystal growth mediator and a sacrificial agent is proposed to directly prepare diffraction-quality single crystals without disrupting the intrinsic elemental type. In the determined crystal structure, two monomeric primary building unitsmore » (PBUs) self-assemble into a dimeric asymmetric secondary BU via strong Na+O2- ionic bonds. The designed one-pot synthesis is straightforward, robust, and efficient, leading to a well-ordered (10)-parallel layered Si complex with its principal interlayers intercalated with extensive van der Waals gaps in spite of the presence of substantial Na+ counter-ions as a result of unique atomic arrangement in its structure. However, upon fast pyrolysis, followed by acid leaching, both complexes are converted into two SiO2 composites bearing BET surface areas of 163.3 and 254.7m(2)g(-1) for the pyrolyzed intrinsic and B-assisted Si complexes, respectively. The transesterification methodology merely involving alcoholysis but without any hydrolysis side reaction is designed to have generalized applicability for use in synthesizing new layered metal-organic compounds with tailored PBUs and corresponding metal oxide particles with hierarchical porosity.« less
Influence of complex impurity centres on radiation damage in wide-gap metal oxides
NASA Astrophysics Data System (ADS)
Lushchik, A.; Lushchik, Ch.; Popov, A. I.; Schwartz, K.; Shablonin, E.; Vasil'chenko, E.
2016-05-01
Different mechanisms of radiation damage of wide-gap metal oxides as well as a dual influence of impurity ions on the efficiency of radiation damage have been considered on the example of binary ionic MgO and complex ionic-covalent Lu3Al5O12 single crystals. Particular emphasis has been placed on irradiation with ∼2 GeV heavy ions (197Au, 209Bi, 238U, fluence of 1012 ions/cm2) providing extremely high density of electronic excitations within ion tracks. Besides knock-out mechanism for Frenkel pair formation, the additional mechanism through the collapse of mobile discrete breathers at certain lattice places (e.g., complex impurity centres) leads to the creation of complex defects that involve a large number of host atoms. The experimental manifestations of the radiation creation of intrinsic and impurity antisite defects (Lu|Al or Ce|Al - a heavy ion in a wrong cation site) have been detected in LuAG and LuAG:Ce3+ single crystals. Light doping of LuAG causes a small enhancement of radiation resistance, while pair impurity centres (for instance, Ce|Lu-Ce|Al or Cr3+-Cr3+ in MgO) are formed with a rise of impurity concentration. These complex impurity centres as well as radiation-induced intrinsic antisite defects (Lu|Al strongly interacting with Lu in a regular site) tentatively serve as the places for breathers collapse, thus decreasing the material resistance against dense irradiation.
A rhodium(III)-based inhibitor of autotaxin with antiproliferative activity.
Kang, Tian-Shu; Wang, Wanhe; Zhong, Hai-Jing; Liang, Jia-Xin; Ko, Chung-Nga; Lu, Jin-Jian; Chen, Xiu-Ping; Ma, Dik-Lung; Leung, Chung-Hang
2017-02-01
Cancer of the skin is by far the most common of all cancers. Melanoma accounts for only about 1% of skin cancers but causes a large majority of skin cancer deaths. Autotaxin (ATX), also known as ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2), regulates physiological and pathological functions of lysophosphatidic acid (LPA), and is thus an important therapeutic target. We synthesized ten metal-based complexes and a novel cyclometalated rhodium(III) complex 1 was identified as an ATX enzymatic inhibitor using multiple methods, including ATX enzymatic assay, thermal shift assay, western immunoblotting and so on. Protein thermal shift assays showed that 1 increased the melting temperature (T m ) of ATX by 3.5°C. 1 also reduced ATX-LPA mediated downstream survival signal pathway proteins such as ERK and AKT, and inhibited the activation of the transcription factor nuclear factor κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3). 1 also exhibited strong anti-proliferative activity against A2058 melanoma cells (IC 50 =0.58μM). Structure-activity relationship indicated that both the rhodium(III) center and the auxiliary ligands of complex 1 are important for bioactivity. 1 represents a promising scaffold for the development of small-molecule ATX inhibitors for anti-tumor applications. To our knowledge, complex 1 is the first metal-based ATX inhibitor reported to date. Rhodium complexes will have the increased attention in therapeutic and bioanalytical applications. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Neelakantan, M. A.; Rusalraj, F.; Dharmaraja, J.; Johnsonraja, S.; Jeyakumar, T.; Sankaranarayana Pillai, M.
2008-12-01
Metal complexes are synthesized with Schiff bases derived from o-phthalaldehyde (opa) and amino acids viz., glycine (gly) L-alanine (ala), L-phenylalanine (pal). Metal ions coordinate in a tetradentate or hexadentate manner with these N 2O 2 donor ligands, which are characterized by elemental analysis, molar conductance, magnetic moments, IR, electronic, 1H NMR and EPR spectral studies. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). Based on EPR studies, spin-Hamiltonian and bonding parameters have been calculated. The g-values calculated for copper complexes at 300 K and in frozen DMSO (77 K) indicate the presence of the unpaired electron in the d orbital. The evaluated metal-ligand bonding parameters showed strong in-plane σ- and π-bonding. X-ray diffraction (XRD) and scanning electron micrography (SEM) analysis provide the crystalline nature and the morphology of the metal complexes. The cyclic voltammograms of the Cu(II)/Mn(II)/VO(II) complexes investigated in DMSO solution exhibit metal centered electroactivity in the potential range -1.5 to +1.5 V. The electrochemical data obtained for Cu(II) complexes explains the change of structural arrangement of the ligand around Cu(II) ions. The biological activity of the complexes has been tested on eight bacteria and three fungi. Cu(II) and Ni(II) complexes show an increased activity in comparison to the controls. The metal complexes of opapal Schiff base were evaluated for their DNA cleaving activities with calf-thymus DNA (CT DNA) under aerobic conditions. Cu(II) and VO(II) complexes show more pronounced activity in presence of the oxidant.
Toxicity assessment of heavy metal mixtures by Lemna minor L.
Horvat, Tea; Vidaković-Cifrek, Zeljka; Orescanin, Visnja; Tkalec, Mirta; Pevalek-Kozlina, Branka
2007-10-01
The discharge of untreated electroplating wastewaters directly into the environment is a certain source of heavy metals in surface waters. Even though heavy metal discharge is regulated by environmental laws many small-scale electroplating facilities do not apply adequate protective measures. Electroplating wastewaters contain large amounts of various heavy metals (the composition depending on the facility) and the pH value often bellow 2. Such pollution diminishes the biodiversity of aquatic ecosystems and also endangers human health. The aim of our study was to observe/measure the toxic effects induced by a mixture of seven heavy metals on a bioindicator species Lemna minor L. Since artificial laboratory metal mixtures cannot entirely predict behaviour of metal mixtures nor provide us with informations relating to the specific conditions in the realistic environment we have used an actual electroplating wastewater sample discharged from a small electroplating facility. In order to obtain three more samples with the same composition of heavy metals but at different concentrations, the original electroplating wastewater sample has undergone a purification process. The purification process used was developed by Orescanin et al. [Orescanin V, Mikelić L, Lulić S, Nad K, Rubcić M, Pavlović G. Purification of electroplating wastewaters utilizing waste by-product ferrous sulphate and wood fly ash. J Environ Sci Health A 2004; 39 (9): 2437-2446.] in order to remove the heavy metals and adjust the pH value to acceptable values for discharge into the environment. Studies involving plants and multielemental waters are very rare because of the difficulty in explaining interactions of the combined toxicities. Regardless of the complexity in interpretation, Lemna bioassay can be efficiently used to assess combined effects of multimetal samples. Such realistic samples should not be avoided because they can provide us with a wide range of information which can help explain many different interactions of metals on plant growth and metabolism. In this study we have primarily evaluated classical toxicity endpoints (relative growth rate, Nfronds/Ncolonies ratio, dry to fresh weight ratio and frond area) and measured guaiacol peroxidase (GPX) activity as early indicator of oxidative stress. Also, we have measured metal accumulation in plants treated with waste ash water sample with EDXRF analysis and have used toxic unit (TU) approach to predict which metal will contribute the most to the general toxicity of the tested samples.
NASA Astrophysics Data System (ADS)
Shafaatian, Bita; Ozbakzaei, Zahra; Notash, Behrouz; Rezvani, S. Ahmad
2015-04-01
A series of new bimetallic complexes of nickel(II) and vanadium(IV) have been synthesized by the reaction of the new double bidentate Schiff base ligands with nickel acetate and vanadyl acetylacetonate in 1:1 M ratio. In nickel and also vanadyl complexes the ligands were coordinated to the metals via the imine N and enolic O atoms. The complexes have been found to possess 1:1 metals to ligands stoichiometry and the molar conductance data revealed that the metal complexes were non-electrolytes. The nickel and vanadyl complexes exhibited distorted square planar and square pyramidal coordination geometries, respectively. The emission spectra of the ligands and their complexes were studied in methanol. Electrochemical properties of the ligands and their metal complexes were also investigated in DMSO solvent at 150 mV s-1 scan rate. The ligands and metal complexes showed both quasi-reversible and irreversible processes at this scan rate. The Schiff bases and their complexes have been characterized by FT-IR, 1H NMR, UV/Vis spectroscopies, elemental analysis and conductometry. The crystal structure of the nickel complex has been determined by single crystal X-ray diffraction.
Biodegradation of CuTETA, an effluent by-product in mineral processing.
Cushing, Alexander M L; Kelebek, Sadan; Yue, Siqing; Ramsay, Juliana A
2018-04-13
Polyamines such as triethylenetetramine (TETA) and other amine chelators are used in mineral processing applications. Formation of heavy metal complexes of these reagents as a by-product in effluent water is a recent environmental concern. In this study, Paecilomyces sp. was enriched from soil on TETA as the sole source of carbon and nitrogen and was found to degrade > 96 and 90% CuTETA complexes at initial concentrations of 0.32 and 0.79 mM respectively, following 96-h incubation. After destabilization, most of the copper (> 78%) was complexed extracellularly and the rest was associated with the cell. Mass spectroscopy results provided confirmation that copper re-complexed with small, extracellular, and organic molecules. There are no reports in the literature that Paecilomyces or any other organism can grow on TETA or CuTETA. This study is the first to show that biological destabilization of CuTETA complexes in mineral processing effluents is feasible.
Influence of metal ions on flavonoid protection against asbestos-induced cell injury.
Kostyuk, V A; Potapovich, A I; Vladykovskaya, E N; Korkina, L G; Afanas'ev, I B
2001-01-01
Influence of metal ions (Fe2+, Fe3+, Cu2+, Zn2+) on the protective effect of rutin, dihydroquercetin, and green tea epicatechins against in vitro asbestos-induced cell injury was studied. Metals have been found to increase the capacity of rutin and dihydroquercetin to protect peritoneal macrophages against chrysotile asbestos-induced injury. The data presented here show that this effect is due to the formation of flavonoid metal complexes, which turned out to be more effective radical scavengers than uncomplexed flavonoids. At the same time epicatechins and their metal complexes have similar antiradical properties and protective capacities against the asbestos induced injury of macrophages. Metal complexes of all flavonoids were found to be considerably more potent than parent flavonoids in protecting red blood cells against asbestos-induced injury. It was also found that the metal complexes of all flavonoids were absorbed by chrysotile asbestos fibers considerably better than uncomplexed compounds and probably for this reason flavonoid metal complexes have better protective properties against asbestos induced hemolysis. Thus, the results of the present study show that flavonoid metal complexes may be effective therapy for the inflammatory response associated with the inhalation of asbestos fiber. The advantage of their application could be the strong increase in ROS scavenging by flavonoids and finally a better cell protection under the conditions of cellular oxidative stress.
Tunable plasmon resonances in anisotropic metal nanostructures
NASA Astrophysics Data System (ADS)
Penninkhof, J. J.
2006-09-01
Coherent oscillations of free electrons in a metal, localized in a small volume or at an interface between a metal and a dielectric medium, have attracted a lot of attention in the past decades. These so-called surface plasmons have special optical properties that can be used in many applications ranging from optoelectronics to sensing of small quantities of molecules. One of the key issues is that electromagnetic energy can be confined to a relatively small volume close to the metal surface. This field enhancement and the resonance frequency strongly depend on the shape and size of the metal structures. In this thesis, several fabrication methods to create these metal structures on the nanometer to micrometer scale are presented. The optical properties are studied with a special emphasis on the effect of shape anisotropy. Self-assembled 2D colloidal crystals are used as mask to fabricate arrays of metal triangles on a substrate. One of the limitations of this nanosphere lithography technique is that the size of the holes in the colloidal mask (through which the metal is evaporated) is determined by the size of the colloids in the mask. The masks, however, can be modified by use of MeV ion beams and/or wet-chemical growth of a thin layer of silica, resulting in a reduced hole size. Arbitrary symmetry and spacing can be obtained by use of optical tweezers and angle-resolved metal deposition. In contrast to pure metals, amorphous materials like silica are known to show anisotropic plastic deformation at constant volume when subject to MeV ion irradiation. Gold cores embedded in a silica matrix, however, show an elongation along the direction of the ion beam, whereas silver cores rather disintegrate. Silver nanocrystals in an ion-exchanged soda-lime glass redistribute themselves in arrays along the ion beam direction. The optical extinction becomes polarization-dependent, with red- and blue-shifts of the plasmon resonances for polarizations longitudinal and transverse to the arrays, respectively. The band splitting is attributed to near-field electromagnetic plasmon coupling within the arrays. Finite difference time domain simulations indicate that the combination of particle center-to-center spacing and diameter, rather than inter-particle spacing alone, is the key parameter determining the coupling strength. The resonant electric field is concentrated in the very small gaps between the particles in the array. With the MeV ion beam technique, it is possible to fabricate large substrates with relatively monodisperse oblate ellipsoidal silica-core/metal-shell colloids, with the short axis aligned in the direction of the ion beam. The optical extinction of these particles, is a complex function of the core radius and the shell thickness, due to a competition between phase retardation effects and the coupling between the surface plasmons at the inner and outer surfaces of the shell. After deformation, the extinction is angle- and polarization-dependent. Calculations indicate that large Au-shell particles can sustain cavity modes, for which the electric field is enhanced in almost the full volume of the dielectric core. The resonance frequency is sensitive to the size, shape and dielectric constant of the core, and the polarization direction.
Synthesis and Reactivity of Tripodal Complexes Containing Pendant Bases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blacquiere, Johanna M.; Pegis, Michael L.; Raugei, Simone
2014-09-02
The synthesis of a new tripodal ligand family is reported, with tertiary-amine groups in the second-coordination sphere. The ligands are tris(amido)amine derivatives, with the pendant amines attached via a peptide coupling strategy. They were designed to be used in new catalysts for the oxygen reduction reaction (ORR), in which the pendant acid/base group could improve catalyst performance. Two members of the new ligand family were each metallated with Co(II) and Zn(II) to afford trigonal monopyramidal complexes. Reaction of the cobalt complexes, [Co(L)]-, with dioxygen reversibly generates a small amount of a Co(III)-superoxo species, which was characterized by EPR. Protonation ofmore » the zinc complex Zn[N{CH2CH2NC(O)CH2N(CH2Ph)2}3)-– ([Zn(TNBn)]-) with one equivalent of acid occurs with displacement and dissociation of an amide ligand. Addition of excess acid to the any of the complexes [M(L)]- results in complete proteolysis and formation of the ligands H3L. This decomposition limits the use of these complexes as catalysts for the ORR. An alternative ligand with two pyridyl arms was also prepared but could not be metallated. These studies highlight the importance of stability of the primary-coordination sphere of ORR electrocatalysts to both oxidative and acidic conditions. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.« less
Li, Xiansen; Michaelis, Vladimir K.; Ong, Ta-Chung; Smith, Stacey J.; Griffin, Robert G.; Wang, Evelyn N.
2014-01-01
The controllable synthesis of well-ordered layered materials with specific nanoarchitecture poses a grand challenge in materials chemistry. We report the solvothermal synthesis of two structurally analogous 5-coordinate organosilicate complexes via a novel transesterification mechanism. Since the polycrystalline nature of the intrinsic hypervalent Si complex thwarts the endeavor in determining its structure, a novel strategy concerning the elegant addition of a small fraction of B species as an effective crystal growth mediator and a sacrificial agent is proposed to directly prepare diffraction-quality single crystals without disrupting the intrinsic elemental type. In the determined crystal structure, two monomeric primary building units (PBUs) self-assemble into a dimeric asymmetric secondary BU via strong Na+-O2− ionic bonds. The designed one-pot synthesis is straightforward, robust, and efficient, leading to a well-ordered (10ī)-parallel layered Si complex with its principal interlayers intercalated with extensive van der Waals gaps in spite of the presence of substantial Na+ counterions as a result of unique atomic arrangement in its structure. On the other hand, upon fast pyrolysis, followed by acid leaching, both complexes are converted into two SiO2 composites bearing BET surface areas of 163.3 and 254.7 m2 g−1 for the pyrolyzed intrinsic and B-assisted Si complexes, respectively. The transesterification methodology merely involving alcoholysis but without any hydrolysis side reaction is designed to have generalized applicability for use in synthesizing new layered metal-organic compounds with tailored PBUs and corresponding metal oxide particles with hierarchical porosity. PMID:24737615
Tonietto, Alessandra Emanuele; Lombardi, Ana Teresa; Choueri, Rodrigo Brasil; Vieira, Armando Augusto Henriques
2015-10-01
This research aimed at evaluating cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) speciation in water samples as well as determining water quality parameters (alkalinity, chlorophyll a, chloride, conductivity, dissolved organic carbon, dissolved oxygen, inorganic carbon, nitrate, pH, total suspended solids, and water temperature) in a eutrophic reservoir. This was performed through calculation of free metal ions using the chemical equilibrium software MINEQL+ 4.61, determination of labile, dissolved, and total metal concentrations via differential pulse anodic stripping voltammetry, and determination of complexed metal by the difference between the total concentration of dissolved and labile metal. Additionally, ligand complexation capacities (CC), such as the strength of the association of metals-ligands (logK'ML) and ligand concentrations (C L) were calculated via Ruzic's linearization method. Water samples were taken in winter and summer, and the results showed that for total and dissolved metals, Zn > Cu > Pb > Cd concentration. In general, higher concentrations of Cu and Zn remained complexed with the dissolved fraction, while Pb was mostly complexed with particulate materials. Chemical equilibrium modeling (MINEQL+) showed that Zn(2+) and Cd(2+) dominated the labile species, while Cu and Pb were complexed with carbonates. Zinc was a unique metal for which a direct relation between dissolved species with labile and complexed forms was obtained. The CC for ligands indicated a higher C L for Cu, followed by Pb, Zn, and Cd in decreasing amounts. Nevertheless, the strength of the association of all metals and their respective ligands was similar. Factor analysis with principal component analysis as the extraction procedure confirmed seasonal effects on water quality parameters and metal speciation. Total, dissolved, and complexed Cu and total, dissolved, complexed, and labile Pb species were all higher in winter, whereas in summer, Zn was mostly present in the complexed form. A high degree of deterioration of the reservoir was confirmed by the results of this study.
Metal–organic complexation in the marine environment
Luther, George W; Rozan, Timothy F; Witter, Amy; Lewis, Brent
2001-01-01
We discuss the voltammetric methods that are used to assess metal–organic complexation in seawater. These consist of titration methods using anodic stripping voltammetry (ASV) and cathodic stripping voltammetry competitive ligand experiments (CSV-CLE). These approaches and a kinetic approach using CSV-CLE give similar information on the amount of excess ligand to metal in a sample and the conditional metal ligand stability constant for the excess ligand bound to the metal. CSV-CLE data using different ligands to measure Fe(III) organic complexes are similar. All these methods give conditional stability constants for which the side reaction coefficient for the metal can be corrected but not that for the ligand. Another approach, pseudovoltammetry, provides information on the actual metal–ligand complex(es) in a sample by doing ASV experiments where the deposition potential is varied more negatively in order to destroy the metal–ligand complex. This latter approach gives concentration information on each actual ligand bound to the metal as well as the thermodynamic stability constant of each complex in solution when compared to known metal–ligand complexes. In this case the side reaction coefficients for the metal and ligand are corrected. Thus, this method may not give identical information to the titration methods because the excess ligand in the sample may not be identical to some of the actual ligands binding the metal in the sample. PMID:16759421
Infrared Spectroscopic Analysis of Linkage Isomerism in Metal-Thiocyanate Complexes
ERIC Educational Resources Information Center
Baer, Carl; Pike, Jay
2010-01-01
We developed an experiment suitable for an advanced inorganic chemistry laboratory that utilizes a cooperative learning environment, which allows students to develop an empirical method of determining the bonding mode of a series of unknown metal-thiocyanate complexes. Students synthesize the metal-thiocyanate complexes and obtain the FT-IR…
Water-in-Supercritical CO2 Microemulsion Stabilized by a Metal Complex.
Luo, Tian; Zhang, Jianling; Tan, Xiuniang; Liu, Chengcheng; Wu, Tianbin; Li, Wei; Sang, Xinxin; Han, Buxing; Li, Zhihong; Mo, Guang; Xing, Xueqing; Wu, Zhonghua
2016-10-17
Herein we propose for the first time the utilization of a metal complex for forming water-in-supercritical CO 2 (scCO 2 ) microemulsions. The water solubility in the metal-complex-stabilized microemulsion is significantly improved compared with the conventional water-in-scCO 2 microemulsions stabilized by hydrocarbons. Such a microemulsion provides a promising route for the in situ CO 2 reduction catalyzed by a metal complex at the water/scCO 2 interface. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Morozzi, G; Cenci, G
1978-12-01
The toxic effect of the metal ions of cadmium, zinc, nickel and mercury and their tetracyanide salt complexes, on the activated sludge not previously acclimated, has been studied. The evaluation of the effect was carried out using both the Warburg and TTC-method. The results obtained have shown that the toxicity of the cadmium and zinc complexes is higher than that of the corresponding metals, while the toxicity of Ni(CN)4(2-) is lower than that of the corresponding metals. No differences have been found between the effect of mercury and the corresponding tetracyanide complex. From the data obtained it appears that it is not possible to generalize about the biological effect of complexation with the CN- group, but it should be stated that, generally, there are substantial differences between metals and their cyanide complexes as far as toxicity for activated sludge is concerned.
Synthesis, spectral studies and biological evaluation of 2-aminonicotinic acid metal complexes.
Nawaz, Muhammad; Abbasi, Muhammad Waseem; Hisaindee, Soleiman; Zaki, Muhammad Javed; Abbas, Hira Fatima; Mengting, Hu; Ahmed, M Arif
2016-05-15
We synthesized 2-aminonicotinic acid (2-ANA) complexes with metals such as Co(II), Fe(III), Ni(II), Mn(II), Zn(II), Ag(I),Cr(III), Cd(II) and Cu(II) in aqueous media. The complexes were characterized and elucidated using FT-IR, UV-Vis, a fluorescence spectrophotometer and thermo gravimetric analysis (TGA). TGA data showed that the stoichiometry of complexes was 1:2 metal/ligand except for Ag(I) and Mn(II) where the ratio was 1:1. The metal complexes showed varied antibacterial, fungicidal and nematicidal activities. The silver and zinc complexes showed highest activity against Bacillus subtilis and Bacillus licheniformis respectively. Fusarium oxysporum was highly susceptible to nickel and copper complexes whereas Macrophomina phaseolina was completely inert to the complexes. The silver and cadmium complexes were effective against the root-knot nematode Meloidogyne javanica. Copyright © 2016 Elsevier B.V. All rights reserved.
Antimalarial and antimicrobial activities of 8-Aminoquinoline-Uracils metal complexes
Phopin, Kamonrat; Sinthupoom, Nujarin; Treeratanapiboon, Lertyot; Kunwittaya, Sarun; Prachayasittikul, Supaluk; Ruchirawat, Somsak; Prachayasittikul, Virapong
2016-01-01
8-Aminoquinoline (8AQ) derivatives have been reported to have antimalarial, anticancer, and antioxidant activities. This study investigated the potency of 8AQ-5-substituted (iodo and nitro) uracils metal (Mn, Cu, Ni) complexes (1-6) as antimalarial and antimicrobial agents. Interestingly, all of these metal complexes (1-6) showed fair antimalarial activities. Moreover, Cu complexes 2 (8AQ-Cu-5Iu) and 5 (8AQ-Cu-5Nu) exerted antimicrobial activities against Gram-negative bacteria including P. shigelloides and S. dysenteriae. The results reveal application of 8AQ and its metal complexes as potential compounds to be further developed as novel antimalarial and antibacterial agents. PMID:27103894
Antimalarial and antimicrobial activities of 8-Aminoquinoline-Uracils metal complexes.
Phopin, Kamonrat; Sinthupoom, Nujarin; Treeratanapiboon, Lertyot; Kunwittaya, Sarun; Prachayasittikul, Supaluk; Ruchirawat, Somsak; Prachayasittikul, Virapong
2016-01-01
8-Aminoquinoline (8AQ) derivatives have been reported to have antimalarial, anticancer, and antioxidant activities. This study investigated the potency of 8AQ-5-substituted (iodo and nitro) uracils metal (Mn, Cu, Ni) complexes (1-6) as antimalarial and antimicrobial agents. Interestingly, all of these metal complexes (1-6) showed fair antimalarial activities. Moreover, Cu complexes 2 (8AQ-Cu-5Iu) and 5 (8AQ-Cu-5Nu) exerted antimicrobial activities against Gram-negative bacteria including P. shigelloides and S. dysenteriae. The results reveal application of 8AQ and its metal complexes as potential compounds to be further developed as novel antimalarial and antibacterial agents.
NASA Astrophysics Data System (ADS)
Muench, Falk; Oezaslan, Mehtap; Svoboda, Ingrid; Ensinger, Wolfgang
2015-10-01
We present new electroless palladium plating reactions, which can be applied to complex-shaped substrates and lead to homogeneous, dense and conformal palladium films consisting of small nanoparticles. Notably, autocatalytic and surface-selective metal deposition could be achieved on a wide range of materials without sensitization and activation pretreatments. This provides a facile and competitive route to directly deposit well-defined palladium nanofilms on e.g. carbon, paper, polymers or glass substrates. The reactions proceed at mild conditions and are based on easily accessible chemicals (reducing agent: hydrazine; metal source: PdCl2; ligands: ethylenediaminetetraacetic acid (EDTA), acetylacetone). Additionally, the water-soluble capping agent 4-dimethylaminopyridine (DMAP) is employed to increase the bath stability, to ensure the formation of small particles and to improve the film conformity. The great potential of the outlined reactions for micro- and nanofabrication is demonstrated by coating an ion-track etched polycarbonate membrane with a uniform Pd film of approximately 20 nm thickness. The as-prepared membrane is then employed as a highly miniaturized flow reactor, using the reduction of 4-nitrophenol with NaBH4 as a model reaction.
N-heterocyclic carbene gold(I) and silver(I) complexes bearing functional groups for bio-conjugation
Garner, Mary E.; Niu, Weijia; Chen, Xigao; Ghiviriga, Ion; Tan, Weihong; Veige, Adam S.
2015-01-01
This work describes several synthetic approaches to append organic functional groups to gold and silver N-heterocyclic carbene (NHC) complexes suitable for applications in biomolecule conjugation. Carboxylate appended NHC ligands (3) lead to unstable AuI complexes that convert into bis-NHC species (4). A benzyl protected carboxylate NHC-AuI complex 2 was synthesized but deprotection to produce the carboxylic acid functionality could not be achieved. A small library of new alkyne functionalized NHC proligands were synthesized and used for subsequent silver and gold metalation reactions. The alkyne appended NHC gold complex 13 readily react with benzyl azide in a copper catalyzed azide-alkyne cycloaddition reaction to form the triazole appended NHC gold complex 14. Cell cytotoxicity studies were performed on DLD-1 (colorectal adenocarcinoma), Hep-G2 (hepatocellular carcinoma), MCF-7 (breast adenocarcinoma), CCRF-CEM (human T-Cell leukemia), and HEK (human embryonic kidney). Complete spectroscopic characterization of the ligands and complexes was achieved using 1H and 13C NMR, gHMBC, ESI-MS, and combustion analysis. PMID:25490699
Role of metal oxides in chemical evolution
NASA Astrophysics Data System (ADS)
Kamaluddin
2013-06-01
Steps of chemical evolution have been designated as formation of biomonomers followed by their polymerization and then to modify in an organized structure leading to the formation of first living cell. Formation of small molecules like amino acids, organic bases, sugar etc. could have occurred in the reducing atmosphere of the primitive Earth. Polymerization of these small molecules could have required some catalyst. In addition to clay, role of metal ions and metal complexes as prebiotic catalyst in the synthesis and polymerization of biomonomers cannot be ruled out. Metal oxides are important constituents of Earth crust and that of other planets. These oxides might have adsorbed organic molecules and catalyzed the condensation processes, which may have led to the formation of first living cell. Different studies were performed in order to investigate the role of metal oxides (especially oxides of iron and manganese) in chemical evolution. Iron oxides (goethite, akaganeite and hematite) as well as manganese oxides (MnO, Mn2O3, Mn3O4 and MnO2) were synthesized and their characterization was done using IR, powder XRD, FE-SEM and TEM. Role of above oxides was studied in the adsorption of ribose nucleotides, formation of nucleobases from formamide and oligomerization of amino acids. Above oxides of iron and manganese were found to have good adsorption affinity towards ribose nucleotides, high catalytic activity in the formation of several nucleobases from formamide and oligomerization of glycine and alanine. Characterization of products was performed using UV, IR, HPLC and ESI-MS techniques. Presence of hematite-water system on Mars has been suggested to be a positive indicator in the chemical evolution on Mars.
Malcolmson, Steven J.; Meek, Simon J.; Zhugralin, Adil R.
2012-01-01
Chiral olefin metathesis catalysts enable chemists to access enantiomerically enriched small molecules with high efficiency; synthesis schemes involving such complexes can be substantially more concise than those that would involve enantiomerically pure substrates and achiral Mo alkylidenes or Ru-based carbenes. The scope of research towards design and development of chiral catalysts is not limited to discovery of complexes that are merely the chiral versions of the related achiral variants. A chiral olefin metathesis catalyst, in addition to furnishing products of high enantiomeric purity, can offer levels of efficiency, product selectivity and/or olefin stereoselectivity that are unavailable through the achiral variants. Such positive attributes of chiral catalysts (whether utilized in racemic or enantiomerically enriched form) should be considered as general, applicable to other classes of transformations. PMID:19967680
Yoo, Jong-Chan; Lee, Chadol; Lee, Jeung-Sun; Baek, Kitae
2017-01-15
Chemical extraction and oxidation processes to clean up heavy metals and hydrocarbon from soil have a higher remediation efficiency and take less time than other remediation processes. In batch extraction/oxidation process, 3% hydrogen peroxide (H 2 O 2 ) and 0.1 M ethylenediaminetetraacetic acid (EDTA) could remove approximately 70% of the petroleum and 60% of the Cu and Pb in the soil, respectively. In particular, petroleum was effectively oxidized by H 2 O 2 without addition of any catalysts through dissolution of Fe oxides in natural soils. Furthermore, heavy metals bound to Fe-Mn oxyhydroxides could be extracted by metal-EDTA as well as Fe-EDTA complexation due to the high affinity of EDTA for metals. However, the strong binding of Fe-EDTA inhibited the oxidation of petroleum in the extraction-oxidation sequential process because Fe was removed during the extraction process with EDTA. The oxidation-extraction sequential process did not significantly enhance the extraction of heavy metals from soil, because a small portion of heavy metals remained bound to organic matter. Overall, simultaneous application of oxidation and extraction processes resulted in highly efficient removal of both contaminants; this approach can be used to remove co-contaminants from soil in a short amount of time at a reasonable cost. Copyright © 2016 Elsevier Ltd. All rights reserved.
Karlshøj, Stefanie; Amarandi, Roxana Maria; Larsen, Olav; Daugvilaite, Viktorija; Steen, Anne; Brvar, Matjaž; Pui, Aurel; Frimurer, Thomas Michael; Ulven, Trond; Rosenkilde, Mette Marie
2016-12-23
The small molecule metal ion chelators bipyridine and terpyridine complexed with Zn 2+ (ZnBip and ZnTerp) act as CCR5 agonists and strong positive allosteric modulators of CCL3 binding to CCR5, weak modulators of CCL4 binding, and competitors for CCL5 binding. Here we describe their binding site using computational modeling, binding, and functional studies on WT and mutated CCR5. The metal ion Zn 2+ is anchored to the chemokine receptor-conserved Glu-283 VII:06/7.39 Both chelators interact with aromatic residues in the transmembrane receptor domain. The additional pyridine ring of ZnTerp binds deeply in the major binding pocket and, in contrast to ZnBip, interacts directly with the Trp-248 VI:13/6.48 microswitch, contributing to its 8-fold higher potency. The impact of Trp-248 was further confirmed by ZnClTerp, a chloro-substituted version of ZnTerp that showed no inherent agonism but maintained positive allosteric modulation of CCL3 binding. Despite a similar overall binding mode of all three metal ion chelator complexes, the pyridine ring of ZnClTerp blocks the conformational switch of Trp-248 required for receptor activation, thereby explaining its lack of activity. Importantly, ZnClTerp becomes agonist to the same extent as ZnTerp upon Ala mutation of Ile-116 III:16/3.40 , a residue that constrains the Trp-248 microswitch in its inactive conformation. Binding studies with 125 I-CCL3 revealed an allosteric interface between the chemokine and the small molecule binding site, including residues Tyr-37 I:07/1.39 , Trp-86 II:20/2.60 , and Phe-109 III:09/3.33 The small molecules and CCL3 approach this interface from opposite directions, with some residues being mutually exploited. This study provides new insight into the molecular mechanism of CCR5 activation and paves the way for future allosteric drugs for chemokine receptors. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
The pressure tunning Raman and IR spectral studies on the multinuclear metal carbyne complexes
NASA Astrophysics Data System (ADS)
Xu, Zhenhua; Butler, Ian S.; Mayr, Andreas
2005-03-01
The Raman and infrared (IR) spectra of four tungsten metal carbyne complexes I, II, IV and V [Cl(CO) 2(L)W tbnd CC 6H 4sbnd (C tbnd CC 6H 4) nsbnd N tbnd C sbnd ] 2M (L = TMEDA, n = 0, M = PdI 2 or ReCl(CO) 3; L = DPPE, n = 1, M = PdI 2 or ReCl(CO) 3) were studied at high external pressure. Their pressure-induced phase transitions were observed near 20 kbar (complexes I), 15 kbar (complexes II), 25 kbar (complex IV) and 30 kbar (complex V). The pressure-induced phase transition likely is first order in complex I and the pressure-induced phase transitions of complexes II, IV and V are mostly second order. The pressure sensitivities d ν/d p of ν(W tbnd C) are high in the low-pressure phase area and very low in the high-pressure phase area due to the pressure strengthening π back-bonding from metal W to π * orbital of C tbnd O in fragment Cl(CO) 2(L)W tbnd C. The pressure strengthening metal π back-bonding from metal Re or Pd to π * orbital of C tbnd O or C tbnd N also happened to both of central metal centers of NCPd(I 2)CN in complex I and NCReCl(CO) 3CN in complex II.
NASA Astrophysics Data System (ADS)
Fakheri, Hamideh; Tayyari, Sayyed Faramarz; Heravi, Mohammad Momen; Morsali, Ali
2017-12-01
Theoretical quantum chemistry calculations were used to assign the observed vibrational band frequencies of Be, Mg, Ca, Sr, and Ba acetylacetonates complexes. Density functional theory (DFT) calculations have been carried out at the B3LYP level, using LanL2DZ, def2SVP, and mixed, GenECP, (def2SVP for metal ions and 6-311++G** for all other atoms) basis sets. The B3LYP level, with mixed basis sets, was utilized for calculations of vibrational frequencies, IR intensity, and Raman activity. Analysis of the vibrational spectra indicates that there are several bands which could almost be assigned mainly to the metal-oxygen vibrations. The strongest Raman band in this region could be used as a measure of the stability of the complex. The effects of central metal on the bond orders and charge distributions in alkaline earth metal acetylacetonates were studied by the Natural Bond Orbital (NBO) method for fully optimized compounds. Optimization were performed at the B3LYP/6-311++G** level for the lighter alkaline earth metal complexes (Be, Mg, and Ca acetylacetonates) while the B3LYP level, using LanL2DZ (extrabasis, d and f on oxygen and metal atoms), def2SVP and mixed (def2SVP on metal ions and 6-311++G** for all other atoms) basis sets for all understudy complexes. Calculations indicate that the covalence nature of metal-oxygen bonds considerably decreases from Be to Ba complexes. The nature of metal-oxygen bond was further studied by using Atoms In Molecules (AIM) analysis. The topological parameters, Wiberg bond orders, natural charges of O and metal ions, and also some vibrational band frequencies were correlated with the stability constants of understudy complexes.
Luminescent Organometallic Nanomaterials with Aggregation-Induced Emission.
Shu, Tong; Wang, Jianxing; Su, Lei; Zhang, Xueji
2018-07-04
Recent researches in metal nanoclusters (NCs) have prompted their promising practical applications in biomedical fields as novel inorganic luminophores. More recently, to further improve the photoluminescence (PL) performance of NCs, the aggregation-induced emission (AIE) effect has been introduced to develop highly luminescent metal NCs and metal complex materials. In this review, we start our discussion from recent progresses on AIE materials developments. Then, we address our understandings on the PL properties of thiolated metal NCs. Subsequently, we link thiolated metal NCs with AIE effect. We also highlight some recent advances in synthesizing the AIE-type metal complex nanomaterials. We finally discuss visions and directions for future development of AIE-type metal complex nanomaterials.
Allylic amination reactivity of Ni, Pd, and Pt heterobimetallic and monometallic complexes.
Carlsen, Ryan W; Ess, Daniel H
2016-06-14
Transition metal heterobimetallic complexes with dative metal-metal interactions have the potential for novel fast reactivity. There are few studies that both compare the reactivity of different metal centers in heterobimetallic complexes and compare bimetallic reactivity to monometallic reactivity. Here we report density-functional calculations that show the reactivity of [Cl2Ti(N(t)BuPPh2)2M(II)(η(3)-methallyl)] heterobimetallic complexes for allylic amination follows M = Ni > Pd > Pt. This reactivity trend was not anticipated since the amine addition transition state involves M(II) to M(0) reduction and this could disadvantage Ni. Comparison of heterobimetallic complexes to the corresponding monometallic (CH2)2(N(t)BuPPh2)2M(II)(η(3)-methallyl) complexes reveals that this reactivity trend is due to the bimetallic interaction and that the bimetallic interaction significantly lowers the barrier height for amine addition by >10 kcal mol(-1). The impact of the early transition metal center on the amination addition barrier height depends on the late transition metal center. The lowest barrier heights for this reaction occur when late and early transition metal centers are from the same periodic table row.
Liu, Kexi; Lei, Yinkai; Wang, Guofeng
2013-11-28
Oxygen adsorption energy is directly relevant to the catalytic activity of electrocatalysts for oxygen reduction reaction (ORR). In this study, we established the correlation between the O2 adsorption energy and the electronic structure of transition metal macrocyclic complexes which exhibit activity for ORR. To this end, we have predicted the molecular and electronic structures of a series of transition metal macrocyclic complexes with planar N4 chelation, as well as the molecular and electronic structures for the O2 adsorption on these macrocyclic molecules, using the density functional theory calculation method. We found that the calculated adsorption energy of O2 on the transition metal macrocyclic complexes was linearly related to the average position (relative to the lowest unoccupied molecular orbital of the macrocyclic complexes) of the non-bonding d orbitals (d(z(2)), d(xy), d(xz), and d(yz)) which belong to the central transition metal atom. Importantly, our results suggest that varying the energy level of the non-bonding d orbitals through changing the central transition metal atom and/or peripheral ligand groups could be an effective way to tuning their O2 adsorption energy for enhancing the ORR activity of transition metal macrocyclic complex catalysts.
Biomedical Applications of Organometal-Peptide Conjugates
NASA Astrophysics Data System (ADS)
Metzler-Nolte, Nils
Peptides are well suited as targeting vectors for the directed delivery of metal-based drugs or probes for biomedical investigations. This chapter describes synthetic strategies for the preparation of conjugates of medically interesting peptides with covalently bound metal complexes. Peptides that were used include neuropeptides (enkephalin, neuropeptide Y, neurotensin), uptake peptides (TAT and poly-Arg), and intracellular localization sequences. To these peptides, a whole variety of transition metal complexes has been attached in recent years by solid-phase peptide synthesis (SPPS) techniques. The metal complex can be attached to the peptide on the resin as part of the SPPS scheme. Alternatively, the metal complex may be attached to the peptide as a postsynthetic modification. Advantages as well as disadvantages for either strategy are discussed. Biomedical applications include radiopharmaceutical applications, anticancer and antibacterial activity, metal-peptide conjugates as targeted CO-releasing molecules, and metal-peptide conjugates in biosensor applications.
Richland five-year O2 R and D Program. Integrated site operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1966-07-11
The technical feasibility of using an electrolytic reduction process to reduce metal scrap and oxide to usable uranium metal is being studied. The incentives for using electrolytic reduction at Richland may be summarized as follows: (1) reduce the unit and total costs of producing plutonium; (2) increase the flexibility of the Richland reactors for producing isotopes, particularly U-236; and (3) simplify the present fuel cycle complex. The scope of the mission is limited to the evaluation of hollow extruded I and E cores, the evaluation of electro-reduced uranium, an investigation of the solution rate of UO{sub 2} in the electrolyte,more » and small-scale irradiations of UO{sub 2} fuels in the N and K Reactors. Progress during FY 1966 is summarized.« less
DFT study of the interaction between DOTA chelator and competitive alkali metal ions.
Frimpong, E; Skelton, A A; Honarparvar, B
2017-09-01
1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetracetic acid (DOTA) is an important chelator for radiolabeling of pharmaceuticals. The ability of alkali metals found in the body to complex with DOTA and compete with radio metal ions can alter the radiolabeling process. Non-covalent interactions between DOTA complexed with alkali metals Li + , Na + , K + and Rb + , are investigated with density functional theory using B3LYP and ωB97XD functionals. Conformational possibilities of DOTA were explored with a varying number of carboxylic pendant arms of DOTA in close proximity to the ions. It is found that the case in which four arms of DOTA are interacting with ions is more stable than other conformations. The objective of this study is to explore the electronic structure properties upon complexation of alkali metals Li + Na + , K + and Rb + with a DOTA chelator. Interaction energies, relaxation energies, entropies, Gibbs free energies and enthalpies show that the stability of DOTA, complexed with alkali metals decreases down the group of the periodic table. Implicit water solvation affects the complexation of DOTA-ions leading to decreases in the stability of the complexes. NBO analysis through the natural population charges and the second order perturbation theory, revealed a charge transfer between DOTA and alkali metals. Conceptual DFT-based properties such as HOMO/LUMO energies, ΔE HOMO-LUMO and chemical hardness and softness indicated a decrease in the chemical stability of DOTA-alkali metal complexes down the alkali metal series. This study serves as a guide to researchers in the field of organometallic chelators, particularly, radiopharmaceuticals in finding the efficient optimal match between chelators and various metal ions. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chandra, Sulekh; Gupta, Lokesh Kumar; Sangeetika
2005-11-01
The complexation of new mixed thia-aza-oxa macrocycle viz., 2,12-dithio-5,9,14,18-tetraoxo-7,16-dithia-1,3,4,10,11,13-hexaazacyclooctadecane containing thiosemicarba-zone unit with a series of transition metals Co(II), Ni(II) and Cu(II) has been investigated, by different spectroscopic techniques. The structural features of the ligand have been studied by EI-mass, 1H NMR and IR spectral techniques. Elemental analyses, magnetic moment susceptibility, molar conductance, IR, electronic, and EPR spectral studies characterized the complexes. Electronic absorption and IR spectra of the complexes indicate octahedral geometry for chloro, nitrato, thiocyanato or acetato complexes. The dimeric and neutral nature of the sulphato complexes are confirmed from magnetic susceptibility and low conductance values. Electronic spectra suggests square-planar geometry for all sulphato complexes. The redox behaviour was studied by cyclic voltammetry, show metal-centered reduction processes for all complexes. The complexes of copper show both oxidation and reduction process. The redox potentials depend on the conformation of central atom in the macrocyclic complexes. Newly synthesized macrocyclic ligand and its transition metal complexes show markedly growth inhibitory activity against pathogenic bacterias and plant pathogenic fungi under study. Most of the complexes have higher activity than that of the metal free ligand.
Findlay, James A; McAdam, C John; Sutton, Joshua J; Preston, Dan; Gordon, Keith C; Crowley, James D
2018-04-02
The self-assembly of ligands of different geometries with metal ions gives rise to metallosupramolecular architectures of differing structural types. The rotational flexibility of ferrocene allows for conformational diversity, and, as such, self-assembly processes with 1,1'-disubstituted ferrocene ligands could lead to a variety of interesting architectures. Herein, we report a small family of three bis-bidentate 1,1'-disubstituted ferrocene ligands, functionalized with either 2,2'-bipyridine or 2-pyridyl-1,2,3-triazole chelating units. The self-assembly of these ligands with the (usually) four-coordinate, diamagnetic metal ions Cu(I), Ag(I), and Pd(II) was examined using a range of techniques including 1 H and DOSY NMR spectroscopies, high-resolution electrospray ionization mass spectrometry, X-ray crystallography, and density functional theory calculations. Additionally, the electrochemical properties of these redox-active metallosupramolecular assemblies were examined using cyclic voltammetry and differential pulse voltammetry. The copper(I) complexes of the 1,1'-disubstituted ferrocene ligands were found to be coordination polymers, while the silver(I) and palladium(II) complexes formed discrete [1 + 1] or [2 + 2] metallomacrocyclic architectures.
NASA Astrophysics Data System (ADS)
Masoud, Mamdouh S.; Ali, Alaa E.; Elasala, Gehan S.; Kolkaila, Sherif A.
2018-03-01
Synthesis, physicochemical characterization and thermal analysis of ceftazidime complexes with transition metals (Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II)) were discussed. It's obtained that ceftazidime act as bidentate ligand. From magnetic measurement and spectral data, octahedral structures were proposed for all complexes except for cobalt, nickel and mercury had tetrahedral structural. Hyper chemistry program confirmed binding sites of ceftazidime. Ceftazidime complexes show higher activity than ceftazidime for some strains. From TG and DTA curves the thermal decomposition mechanisms of ceftazidime and their metal complexes were suggested. The thermal decomposition of the complexes ended with the formation of metal oxides as a final product except in case of Hg complex.
Structural analysis of the coordination of dinitrogen to transition metal complexes.
Peigné, Benjamin; Aullón, Gabriel
2015-06-01
Transition-metal complexes show a wide variety of coordination modes for the nitrogen molecule. A structural database study has been undertaken for dinitrogen complexes, and geometrical parameters around the L(n)M-N2 unit are retrieved from the Cambridge Structural Database. These data were classified in families of compounds, according to metal properties, to determine the degree of lengthening for the dinitrogen bonding. The importance of the nature of the metal center, such as coordination number and electronic configuration, is reported. Our study reveals poor activation by coordination of dinitrogen in mononuclear complexes, always having end-on coordination. However, partial weakening of nitrogen-nitrogen bonding is found for end-on binuclear complexes, whereas side-on complexes can be completely activated.
NASA Astrophysics Data System (ADS)
Mori, Wasuke; Sato, Tomohiko; Ohmura, Tesushi; Nozaki Kato, Chika; Takei, Tohru
2005-08-01
Copper(II) terephthalate is the first transition metal complex found capable of adsorbing gases. This complex has opened the new field of adsorbent complex chemistry. It is recognized as the lead complex in the construction of microporous complexes. This specific system has been expanded to a systematic series of derivatives of other isomorphous transition metals, molybdenum(II), ruthenium(II, III), and rhodium(II). These complexes with open frameworks are widely recognized as very useful materials for applications to catalysis, separation at molecular level, and gas storage.
NASA Astrophysics Data System (ADS)
Hartland, Adam; Fairchild, Ian J.; Müller, Wolfgang; Dominguez-Villar, David
2014-03-01
We report the first quantitative study of the capture of colloidal natural organic matter (NOM) and NOM-complexed trace metals (V, Co, Cu, Ni) in speleothems. This study combines published NOM-metal dripwater speciation measurements with high-resolution laser ablation ICPMS (LA-ICPMS) and sub-annual stable isotope ratio (δ18O and δ13C), fluorescence and total organic carbon (TOC) analyses of a fast-growing hyperalkaline stalagmite (pH ˜11) from Poole’s Cavern, Derbyshire UK, which formed between 1997 and 2008 AD. We suggest that the findings reported here elucidate trace element variations arising from colloidal transport and calcite precipitation rate changes observed in multiple, natural speleothems deposited at ca. pH 7-8. We find that NOM-metal(aq) complexes on the boundary between colloidal and dissolved (˜1 nm diameter) show an annual cyclicity which is inversely correlated with the alkaline earth metals and is explained by calcite precipitation rate changes (as recorded by kinetically-fractionated stable isotopes). This relates to the strength of the NOM-metal complexation reaction, resulting in very strongly bound metals (Co in this system) essentially recording NOM co-precipitation (ternary complexation). More specifically, empirical partition coefficient (Kd) values between surface-reactive metals (V, Co, Cu, Ni) [expressed as ratio of trace element to Ca ratios in calcite and in solution] arise from variations in the ‘free’ fraction of total metal in aqueous solution (fm). Hence, differences in the preservation of each metal in calcite can be explained quantitatively by their complexation behaviour with aqueous NOM. Differences between inorganic Kd values and field measurements for metal partitioning into calcite occur where [free metal] ≪ [total metal] due to complexation reactions between metals and organic ligands (and potentially inorganic colloids). It follows that where fm ≈ 0, apparent inorganic Kd app values are also ≈0, but the true partition coefficient (Kd actual) is significantly higher. Importantly, the Kd of NOM-metal complexes [organic carbon-metal ratio) approaches 1 for the most stable aqueous complexes, as is shown here for Co, but has values of 24-150 for V, Ni and Cu. This implies that ternary surface complexation (metal-ligand co-adsorption) can occur (as for NOM-Co), but is the exception rather than the rule. We also demonstrate the potential for trace metals to record information on NOM composition as expressed through changing NOM-metal complexation patterns in dripwaters. Therefore, a suite of trace metals in stalagmites show variations clearly attributable to changes in organic ligand concentration and composition, and which potentially reflect the state of overlying surface ecosystems. The heterogeneous speciation and size distribution of aqueous NOM and metals (Lead and Wilkinson, 2006; Aiken et al., 2011). The variability in NOM-metal transport in caves that arises from the interaction between infiltration, flow routing, and the hydrodynamic properties of the fine colloids and particulates (Hartland et al., 2012). Variable dissociation kinetics through time as a function of (a) (Hartland et al., 2011). The surface charge of calcite and the availability of CaCO3 lattice sites as well as increased incidence of crystallographic defects with implications for incorporation of a range of trace species (Fairchild and Treble, 2009; Fairchild and Hartland, 2010). Thus, incorporation in speleothem calcite with consistent surface site properties will be determined by: The size and composition (i.e. hydrophilicity/hydrophobicity) of the NOM ligand, affecting adsorption and stability at the calcite surface. The lability (i.e. exchangeability) of the complexed metal and its binding affinity for the calcite surface. The concentration of aqueous complexes. Given the complexities, a partitioning approach to the problem is appropriate as a first approximation rather than a precise description. This study seeks to make the first quantitative connection between the organic and inorganic compositions of speleothems and thus determine the potential for speleothems to encode fluctuations in colloid-facilitated trace metal transport in karst aquifers. Recent findings of direct relevance to the present studyThe conjugate dripwater (PE1) to the stalagmite studied here (PC-08-1) was characterised in June 2009 using an array of complementary techniques, in which the size, speciation and lability of NOM-metal complexes was characterised (Hartland et al., 2011), where lability is defined as the capacity for complexes to dissociate in the context of the on-going interfacial process at the stalagmite surface. In PE1 dripwater, the most stable aqueous complexes were formed between Co and the finest, low molecular weight component of the NOM spectrum (Hartland et al., 2011). Speciation experiments demonstrated that Co was essentially non-exchangeable (free metal (fm) = <0.05), being retained in aqueous complexes, whilst Cu, Ni and V were all predominantly bound by NOM (fm = 0.2-0.3).In contrast, Sr and Ba were freely exchangeable between the solution and solid phase (Hartland et al., 2011) and Mg was absent, presumably due to the poor solubility of Mg(OH)2 at hyperalkaline pH (Ksp = 1.5 × 10-11): Mg2+(aq)+2OH-(aq)↔Mg( On the other hand, the transition metals were not lost as insoluble hydroxides (Hartland et al., 2012), despite having lower solubility than Mg (e.g. Cu(OH)2Ksp = 2.2 × 10-20); and this is consistent with the dominant role of NOM in solubilising and transporting the transition metals in this system (Hartland et al., 2011).The transport of metals by complexes with NOM in PE1 dripwater through the hydrological year was studied by Hartland et al. (2012). This study had two findings of direct relevance to the study of trace metal variations in the conjugate PC-08-1 stalagmite: Complexes between metals and the smallest, low-molecular weight fraction of NOM showed an attenuated delivery in dripwaters consistent with the non-conservative behaviour of analogous tracers in fractured-rock studies due to diffusion into micro-fractures. This mode of transport was termed ‘low-flux’ and was the dominant mode of transport for Co and V. Complexes between metals and coarse colloids (>100 nm) and particulates (>1000 nm) showed a rapid responsiveness to infiltration events. This was termed the ‘high-flux’ mode of NOM-metal transport and was interpreted as being dominantly fracture-fed. This mode of transport was dominated by Cu, Zn and Ni. The ‘high-flux’ vs ‘low-flux’ interplay of trace metal transport is summarised in Fig. 1.The PC-08-1 stalagmite studied here was deposited following the removal of stalagmite PC-97-1 studied by Baker et al. (1999b) and which grew under the PE1 drip point between 1927 and 1997. Both the PC-97-1 stalagmite and its regrowth (PC-08-1) are characterised by annual lamina couplets consisting of a porous pale layer and a dense fluorescent layer. Fluorescence in the PC-97-1 stalagmite displayed a marked sinusoidal pattern with 10% of laminae exhibiting a double band structure (Baker et al., 1999b).
Melha, Khlood Abou
2008-04-01
The Schiff base ligand, oxalyl [( 2 - hydroxybenzylidene) hydrazone] [corrected].H(2)L, and its Cu(II), Ni(II), Co(II), UO(2)(VI) and Fe(III) complexes were prepared and tested as antibacterial agents. The Schiff base acts as a dibasic tetra- or hexadentate ligand with metal cations in molar ratio 1:1 or 2:1 (M:L) to yield either mono- or binuclear complexes, respectively. The ligand and its metal complexes were characterized by elemental analyses, IR, (1)H NMR, Mass, and UV-Visible spectra and the magnetic moments and electrical conductance of the complexes were also determined. For binuclear complexes, the magnetic moments are quite low compared to the calculated value for two metal ions complexes and this shows antiferromagnetic interactions between the two adjacent metal ions. The ligand and its metal complexes were tested against a Gram + ve bacteria (Staphylococcus aureus), a Gram -ve bacteria (Escherichia coli), and a fungi (Candida albicans). The tested compounds exhibited high antibacterial activities.
Rellán-Alvarez, Rubén; Abadía, Javier; Alvarez-Fernández, Ana
2008-05-01
Nicotianamine (NA) is considered as a key element in plant metal homeostasis. This non-proteinogenic amino acid has an optimal structure for chelation of metal ions, with six functional groups that allow octahedral coordination. The ability to chelate metals by NA is largely dependent on the pK of the resulting complex and the pH of the solution, with most metals being chelated at neutral or basic pH values. In silico calculations using pKa and pK values have predicted the occurrence of metal-NA complexes in plant fluids, but the use of soft ionization techniques (e.g. electrospray), together with high-resolution mass spectrometers (e.g. time-of-flight mass detector), can offer direct and metal-specific information on the speciation of NA in solution. We have used direct infusion electrospray ionization mass spectrometry (time-of-flight) ESI-MS(TOF) to study the complexation of Mn, Fe(II), Fe(III), Ni, Cu by NA. The pH dependence of the metal-NA complexes in ESI-MS was compared to that predicted in silico. Possible exchange reactions that may occur between Fe-NA and other metal micronutrients as Zn and Cu, as well as between Fe-NA and citrate, another possible Fe ligand candidate in plants, were studied at pH 5.5 and 7.5, values typical of the plant xylem and phloem saps. Metal-NA complexes were generally observed in the ESI-MS experiments at a pH value approximately 1-2 units lower than that predicted in silico, and this difference could be only partially explained by the estimated error, approximately 0.3 pH units, associated with measuring pH in organic solvent-containing solutions. Iron-NA complexes are less likely to participate in ligand- and metal-exchange reactions at pH 7.5 than at pH 5.5. Results support that NA may be the ligand chelating Fe at pH values usually found in phloem sap, whereas in the xylem sap NA is not likely to be involved in Fe transport, conversely to what occurs with other metals such as Cu and Ni. Some considerations that need to be addressed when studying metal complexes in plant compartments by ESI-MS are also discussed.
Ahmed, Riyadh M.; Yousif, Enaam I.; Al-Jeboori, Mohamad J.
2013-01-01
New monomeric cobalt and cadmium complexes with Schiff-bases, namely, N′-[(E)-(3-hydroxy-4-methoxyphenyl)methylidene]furan-2-carbohydrazide (L1) and N′-[(E)-(3-hydroxy-4-methoxyphenyl)methylidene]thiophene-2-carbohydrazide (L2) are reported. Schiff-base ligands L1 and L2 were derived from condensation of 3-hydroxy-4-methoxybenzaldehyde (iso-vanillin) with furan-2-carboxylic acid hydrazide and thiophene-2-carboxylic acid hydrazide, respectively. Complexes of the general formula [M(L)2]Cl2 (where M = Co(II) or Cd(II), L = L1 or L2) have been obtained from the reaction of the corresponding metal chloride with the ligands. The ligands and their metal complexes were characterised by spectroscopic methods (FTIR, UV-Vis, 1H, and 13C NMR spectra), elemental analysis, metal content, magnetic measurement, and conductance. These studies revealed the formation of four-coordinate complexes in which the geometry about metal ion is tetrahedral. Biological activity of the ligands and their metal complexes against gram positive bacterial strain Bacillus (G+) and gram negative bacteria Pseudomonas (G−) revealed that the metal complexes become less resistive to the microbial activities as compared to the free ligands. PMID:24027449
Influence of Humic Acid Complexation with Metal Ions on Extracellular Electron Transfer Activity.
Zhou, Shungui; Chen, Shanshan; Yuan, Yong; Lu, Qin
2015-11-23
Humic acids (HAs) can act as electron shuttles and mediate biogeochemical cycles, thereby influencing the transformation of nutrients and environmental pollutants. HAs commonly complex with metals in the environment, but few studies have focused on how these metals affect the roles of HAs in extracellular electron transfer (EET). In this study, HA-metal (HA-M) complexes (HA-Fe, HA-Cu, and HA-Al) were prepared and characterized. The electron shuttle capacities of HA-M complexes were experimentally evaluated through microbial Fe(III) reduction, biocurrent generation, and microbial azoreduction. The results show that the electron shuttle capacities of HAs were enhanced after complexation with Fe but were weakened when using Cu or Al. Density functional theory calculations were performed to explore the structural geometry of the HA-M complexes and revealed the best binding sites of the HAs to metals and the varied charge transfer rate constants (k). The EET activity of the HA-M complexes were in the order HA-Fe > HA-Cu > HA-Al. These findings have important implications for biogeochemical redox processes given the ubiquitous nature of both HAs and various metals in the environment.
NASA Astrophysics Data System (ADS)
David, Laurent; Amara, Patricia; Field, Martin J.; Major, François
2002-08-01
Although techniques for the simulation of biomolecules, such as proteins and RNAs, have greatly advanced in the last decade, modeling complexes of biomolecules with metal ions remains problematic. Precise calculations can be done with quantum mechanical methods but these are prohibitive for systems the size of macromolecules. More qualitative modeling can be done with molecular mechanical potentials but the parametrization of force fields for metals is often difficult, particularly if the bonding between the metal and the groups in its coordination shell has significant covalent character. In this paper we present a method for deriving bond and bond-angle parameters for metal complexes from experimental bond and bond-angle distributions obtained from the Cambridge Structural Database. In conjunction with this method, we also introduce a non-standard energy term of gaussian form that allows us to obtain a stable description of the coordination about a metal center during a simulation. The method was evaluated on Fe(II)-porphyrin complexes, on simple Cu(II) ion complexes and a number of complexes of the Pb(II) ion.
Computational design of a homotrimeric metalloprotein with a trisbipyridyl core
Mills, Jeremy H.; Sheffler, William; Ener, Maraia E.; ...
2016-12-08
Metal-chelating heteroaryl small molecules have found widespread use as building blocks for coordination-driven, self-assembling nanostructures. The metal-chelating noncanonical amino acid (2,2'-bipyridin-5yl)alanine (Bpy-ala) could, in principle, be used to nucleate specific metalloprotein assemblies if introduced into proteins such that one assembly had much lower free energy than all alternatives. Here in this paper, we describe the use of the Rosetta computational methodology to design a self-assembling homotrimeric protein with [Fe(Bpy-ala) 3] 2+ complexes at the interface between monomers. X-ray crystallographic analysis of the homotrimer showed that the design process had near-atomic-level accuracy: The all-atom rmsd between the design model and crystalmore » structure for the residues at the protein interface is ~1.4 Å. These results demonstrate that computational protein design together with genetically encoded noncanonical amino acids can be used to drive formation of precisely specified metal-mediated protein assemblies that could find use in a wide range of photophysical applications.« less
Computational design of a homotrimeric metalloprotein with a trisbipyridyl core
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mills, Jeremy H.; Sheffler, William; Ener, Maraia E.
Metal-chelating heteroaryl small molecules have found widespread use as building blocks for coordination-driven, self-assembling nanostructures. The metal-chelating noncanonical amino acid (2,2'-bipyridin-5yl)alanine (Bpy-ala) could, in principle, be used to nucleate specific metalloprotein assemblies if introduced into proteins such that one assembly had much lower free energy than all alternatives. Here in this paper, we describe the use of the Rosetta computational methodology to design a self-assembling homotrimeric protein with [Fe(Bpy-ala) 3] 2+ complexes at the interface between monomers. X-ray crystallographic analysis of the homotrimer showed that the design process had near-atomic-level accuracy: The all-atom rmsd between the design model and crystalmore » structure for the residues at the protein interface is ~1.4 Å. These results demonstrate that computational protein design together with genetically encoded noncanonical amino acids can be used to drive formation of precisely specified metal-mediated protein assemblies that could find use in a wide range of photophysical applications.« less
Addressing individual metal ion centers in supramolecules by STS
NASA Astrophysics Data System (ADS)
Alam, M. S.; Ako, A. M.; Ruben, M.; Thompson, L. K.; Lehn, J.-M.
2005-03-01
As the information of STM measurements arises from electronic structure, separating information on the topography is not straightforward for complex molecules. Scanning tunneling spectroscopy (STS) measurements give information about the molecular energy levels, which are next to the molecules Fermi level. Using a home built STM working under ambient conditions, we succeeded to combine high resolution topography mapping with simultaneous current-voltage characteristics (STS) measurements on single molecules deposited on highly oriented pyrolytic graphite surfaces. We present our recent results on grid-type molecules [Co4L4] (L=4,6-bis(2',2''-bipyridyl-6-yl)pyrimidine) and [Mn9L6] (L=2POAP-2H) as well as on ring-shaped Fe ion chains [Fe6Cl6L6] (L=1-Ecosyliminodiethanol). Small, regular molecule clusters as well as separated single molecules were observed. We found a rather large contrast at the expected location of the metal centers in our molecules, i.e. the location of the individual metal ions in their organic matrix is directly addressable by STS.
NASA Astrophysics Data System (ADS)
McManus, Jesse R.; Yu, Weiting; Salciccioli, Michael; Vlachos, Dionisios G.; Chen, Jingguang G.; Vohs, John M.
2012-12-01
Molecules derived from cellulosic biomass, such as glucose, represent an important renewable feedstock for the production of hydrogen and hydrocarbon-based fuels and chemicals. Development of efficient catalysts for their reformation into useful products is needed; however, this requires a detailed understanding of their adsorption and reaction on catalytically active transition metal surfaces. In this paper we demonstrate that the standard surface science techniques routinely used to characterize the reaction of small molecules on metals are also amenable for use in studying the adsorption and reaction of complex biomass-derivatives on single crystal metal surfaces. In particular, Temperature Programmed Desorption (TPD) and High Resolution Electron Energy Loss Spectroscopy (HREELS) combined with Density Functional Theory (DFT) calculations were used to elucidate the adsorption configuration of D-glucose and glycolaldehye on Pt(111). Both molecules were found to adsorb in an η1 aldehyde configuration partially validating the use of simple, functionally-equivalent model compounds for surface studies of cellulosic oxygenates.
NASA Astrophysics Data System (ADS)
Neyman, K. M.; Rösch, N.
1993-11-01
First principles density functional cluster investigations of adsorption at the (001) surface of pure and doped magnesium oxide are carried out to characterize and compare the interaction of CO molecules with main group (Mg 2+) and d metal (Co 2+, Ni 2+, Cu 2+) surface cationic centers of the ionic substrate. The geometry of the adsorption complexes, the binding mechanism and spectroscopic manifestations of the surface species are analyzed. Special attention is payed to vibrational frequencies and intensities. The calculations qualitatively reproduce observed trends in the adsorption-induced frequency shifts for the series of the surface aggregates Mg 5cCO→Ni 5cCO→CO 5cCO and the corresponding change of the infrared intensities of the CO vibrational mode. For the transition metal impurity sites these results are rationalized in terms of a small, but notable Md πCOπ interaction.
Gervais, Christel; Jones, Cameron; Bonhomme, Christian; Laurencin, Danielle
2017-03-01
With the increasing number of organocalcium and organomagnesium complexes under development, there is a real need to be able to characterize in detail their local environment in order to fully rationalize their reactivity. For crystalline structures, in cases when diffraction techniques are insufficient, additional local spectroscopies like 25 Mg and 43 Ca solid-state NMR may provide valuable information to help fully establish the local environment of the metal ions. In this current work, a prospective DFT investigation on crystalline magnesium and calcium complexes involving low-coordination numbers and N-bearing organic ligands was carried out, in which the 25 Mg and 43 Ca NMR parameters [isotropic chemical shift, chemical shift anisotropy (CSA) and quadrupolar parameters] were calculated for each structure. The analysis of the calculated parameters in relation to the local environment of the metal ions revealed that they are highly sensitive to very small changes in geometry/distances, and hence that they could be used to assist in the refinement of crystal structures. Moreover, such calculations provide a guideline as to how the NMR measurements will need to be performed, revealing that these will be very challenging.
Schiff bases in medicinal chemistry: a patent review (2010-2015).
Hameed, Abdul; Al-Rashida, Mariya; Uroos, Maliha; Abid Ali, Syed; Khan, Khalid Mohammed
2017-01-01
Schiff bases are synthetically accessible and structurally diverse compounds, typically obtained by facile condensation between an aldehyde, or a ketone with primary amines. Schiff bases contain an azomethine (-C = N-) linkage that stitches together two or more biologically active aromatic/heterocyclic scaffolds to form various molecular hybrids with interesting biological properties. Schiff bases are versatile metal complexing agents and have been known to coordinate all metals to form stable metal complexes with vast therapeutic applications. Areas covered: This review aims to provide a comprehensive overview of the various patented therapeutic applications of Schiff bases and their metal complexes from 2010 to 2015. Expert opinion: Schiff bases are a popular class of compounds with interesting biological properties. Schiff bases are also versatile metal complexing ligands and have been used to coordinate almost all d-block metals as well as lanthanides. Therapeutically, Schiff bases and their metal complexes have been reported to exhibit a wide range of biological activities such as antibacterial including antimycobacterial, antifungal, antiviral, antimalarial, antiinflammatory, antioxidant, pesticidal, cytotoxic, enzyme inhibitory, and anticancer including DNA damage.
Water-soluble polymers for recovery of metal ions from aqueous streams
Smith, Barbara F.; Robison, Thomas W.
1998-01-01
A process of selectively separating a target metal contained in an aqueous solution by contacting the aqueous solution containing a target metal with an aqueous solution including a water-soluble polymer capable of binding with the target metal for sufficient time whereby a water-soluble polymer-target metal complex is formed, and, separating the solution including the water-soluble polymer-target metal complex from the solution is disclosed.
Arčon, Iztok; Paganelli, Stefano; Piccolo, Oreste; Gallo, Michele; Vogel-Mikuš, Katarina; Baldi, Franco
2015-09-01
Klebsiella oxytoca BAS-10 ferments citrate to acetic acid and CO2, and secretes a specific exopolysaccharide (EPS), which is able to bind different metallic species. These biomaterials may be used for different biotechnological purposes, including applications as innovative green biogenerated catalysts. In production of biogenerated Pd species, the Fe(III) as ferric citrate is added to anaerobic culture of K. oxytoca BAS-10, in the presence of palladium species, to increase the EPS secretion and improve Pd-EPS yield. In this process, bi-metallic (FePd-EPS) biomaterials were produced for the first time. The morphology of bi-metallic EPS, and the chemical state of the two metals in the FePd-EPS, are investigated by transmission electron microscopy, Fourier transform infra-red spectroscopy, micro-X-ray fluorescence, and X-ray absorption spectroscopy methods (XANES and EXAFS), and compared with mono-metallic Pd-EPS and Fe-EPS complexes. Iron in FePd-EPS is in the mineralized form of iron oxides/hydroxides, predominantly in the form of Fe(3+), with a small amount of Fe(2+) in the structure, most probably a mixture of different nano-crystalline iron oxides and hydroxides, as in mono-metallic Fe-EPS. Palladium is found as Pd(0) in the form of metallic nanoparticles with face-centred cubic structure in both bi-metallic (FePd-EPS) and mono-metallic (Pd-EPS) species. In bi-metallic species, Pd and Fe nanoparticles agglomerate in larger clusters, but they remain spatially separated. The catalytic ability of bi-metallic species (FePd-EPS) in a hydrodechlorination reaction is improved in comparison with mono-metallic Pd-EPS.
Gatus, Mark R D; Bhadbhade, Mohan; Messerle, Barbara A
2017-10-24
Two highly versatile xanthene scaffolds containing pairs of heteroditopic ligands were found to be capable of accommodating a range of transition metal ions, including Au(i), Ir(i), Ir(iii), Rh(i), and Ru(ii) to generate an array of heterobimetallic complexes. The metal complexes were fully characterised and proved to be stable in the solid and solution state, with no observed metal-metal scrambling. Heterobimetallic complexes containing the Rh(i)/Ir(i) combinations were tested as catalysts for the two-step dihydroalkoxylation reaction of alkynediols and sequential hydroamination/hydrosilylation reaction of alkynamines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, C.B.
1982-01-01
Progress in lasers is discussed. The subjects addressed include: excimer lasers, surface spectroscopy, modern laser spectroscopy, free electron lasers, cavities and propagation, lasers in medicine, X-ray and gamma ray lasers, laser spectroscopy of small molecules and clusters, optical bistability, excitons, nonlinear optics in the X-ray and gamma ray regions, collective atomic phenomena, tunable IR lasers, far IR/submillimeter lasers, and laser-assisted collisions. Also treated are: special applications, multiphoton processes in atoms and small molecules, nuclear pumped lasers, material processing and applications, polarization, high energy lasers, laser chemistry, IR molecular lasers, laser applications of collision and dissociation phenomena, solid state laser materials,more » phase conjugation, advances in laser technology for fusion, metal vapor lasers, picosecond phenomena, laser ranging and geodesy, and laser photochemistry of complex molecules.« less
Deacon, Glen B; Junk, Peter C; Moxey, Graeme J; Ruhlandt-Senge, Karin; St Prix, Courtney; Zuniga, Maria F
2009-01-01
Treatment of a rare earth metal (Ln) and a potential divalent rare earth metal (Ln') or an alkaline earth metal (Ae) with 2,6-diphenylphenol (HOdpp) at elevated temperatures (200-250 degrees C) afforded heterobimetallic aryloxo complexes, which were structurally characterised. A charge-separated species [(Ln'/Ae)(2)(Odpp)(3)][Ln(Odpp)(4)] was obtained for a range of metals, demonstrating the similarities between the chemistry of the divalent rare earth metals and the alkaline earth metals. The [(Ln'/Ae)(2)(Odpp)(3)](+) cation in the heterobimetallic structures is unusual in that it consists solely of bridging aryloxide ligands. A molecular heterobimetallic species [AeEu(Odpp)(4)] (Ae = Ca, Sr, Ba) was obtained by treating an alkaline earth metal and Eu metal with HOdpp at elevated temperatures. Similarly, [BaSr(Odpp)(4)] was prepared by treating Ba metal and Sr metal with HOdpp. Treatment of [Ba(2)(Odpp)(4)] with [Mg(Odpp)(2)(thf)(2)] in toluene afforded [Ba(2)(Odpp)(3)][Mg(Odpp)(3)(thf)]. Analogous solution-based syntheses were not possible for [(Ln'/Ae)(2)(Odpp)(3)][Ln(Odpp)(4)] complexes, for which the free-metal route was essential. As a result of the absence of additional donor ligands, the crystal structures of the heterobimetallic complexes feature extensive pi-Ph-metal interactions involving the pendant phenyl groups of the Odpp ligands, thus enabling the large electropositive metal atoms to attain coordination saturation. The charge-separated heterobimetallic species were purified by extraction with toluene/thf mixtures at ambient temperature (Ba-containing compounds) or by extraction with toluene under pressure above the boiling point of the solvent (other products). In donor solvents, heterobimetallic complexes other than those containing barium were found to fragment into homometallic species.
NASA Astrophysics Data System (ADS)
Mahendra Raj, K.; Vivekanand, B.; Nagesh, G. Y.; Mruthyunjayaswamy, B. H. M.
2014-02-01
A series of new binucleating Cu(II), Co(II), Ni(II) and Zn(II) complexes of bicompartmental ligands with ONO donor were synthesized. The ligands were obtained by the condensation of 3-chloro-6-substituted benzo[b]thiophene-2-carbohydrazides and 4,6-diacetylresorcinol. The synthesized ligands and their complexes were characterized by elemental analysis and various spectroscopic techniques. Elemental analysis, IR, 1H NMR, ESI-mass, UV-Visible, TG-DTA, magnetic measurements, molar conductance and powder-XRD data has been used to elucidate their structures. The bonding sites are the oxygen atom of amide carbonyl, azomethine nitrogen and phenolic oxygen for ligands 1 and 2. The binuclear nature of the complexes was confirmed by ESR spectral data. TG-DTA studies for some complexes showed the presence of coordinated water molecules and the final product is the metal oxide. All the complexes were investigated for their electrochemical activity, only the Cu(II) complexes showed the redox property. Cu(II) complexes were square planar, whereas Co(II), Ni(II) and Zn(II) complexes were octahedral. Powder-XRD pattern have been studied in order to test the degree of crystallinity of the complexes and unit cell calculations were made. In order to evaluate the effect of antimicrobial activity of metal ions upon chelation, both the ligands and their metal complexes were screened for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The results showed that the metal complexes were found to be more active than free ligands. The DNA cleaving capacities of all the complexes were analyzed by agarose gel electrophoresis method against supercoiled plasmid DNA. Among the compounds tested for antioxidant capacity, ligand 1 displayed excellent activity than its metal complexes.
Nagula, Narsimha; Kunche, Sudeepa; Jaheer, Mohmed; Mudavath, Ravi; Sivan, Sreekanth; Ch, Sarala Devi
2018-01-01
Some novel transition metal [Cu (II), Ni (II) and Co (II)] complexes of nalidixic acid hydrazone have been prepared and characterized by employing spectro-analytical techniques viz: elemental analysis, 1 H-NMR, Mass, UV-Vis, IR, TGA-DTA, SEM-EDX, ESR and Spectrophotometry studies. The HyperChem 7.5 software was used for geometry optimization of title compound in its molecular and ionic forms. Quantum mechanical parameters, contour maps of highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular orbitals (LUMO) and corresponding binding energy values were computed using semi empirical single point PM3 method. The stoichiometric equilibrium studies of metal complexes carried out spectrophotometrically using Job's continuous variation and mole ratio methods inferred formation of 1:2 (ML 2 ) metal complexes in respective systems. The title compound and its metal complexes screened for antibacterial and antifungal properties, exemplified improved activity in metal complexes. The studies of nuclease activity for the cleavage of CT- DNA and MTT assay for in vitro cytotoxic properties involving metal complexes exhibited high activity. In addition, the DNA binding properties of Cu (II), Ni (II) and Co (II) complexes investigated by electronic absorption and fluorescence measurements revealed their good binding ability and commended agreement of K b values obtained from both the techniques. Molecular docking studies were also performed to find the binding affinity of synthesized compounds with DNA (PDB ID: 1N37) and "Thymidine phosphorylase from E.coli" (PDB ID: 4EAF) protein targets.
Ammonia release method for depositing metal oxides
Silver, Gary L.; Martin, Frank S.
1994-12-13
A method of depositing metal oxides on substrates which is indifferent to the electrochemical properties of the substrates and which comprises forming ammine complexes containing metal ions and thereafter effecting removal of ammonia from the ammine complexes so as to permit slow precipitation and deposition of metal oxide on the substrates.
Craciun, Smaranda; Donald, Kelling J
2009-07-06
We examine the bonding possibilities of the bis(phenalenyl) MP(2) sandwich complexes of the divalent metals M = Be, Mg, Ca, Sr, Ba, Zn, Cd, and Hg, at the B3LYP level of theory. The outcome is an extraordinarily diverse class of low symmetry bis(phenalenyl)metal complexes in which bonding preferences and binding enthalpies differ dramatically. The lowest energy group 2 metal MP(2) complexes include an intriguing eta(1),eta(3) BeP(2) structure, and bent eta(6),eta(6) systems for M = Ca, Sr, and Ba. The group 12 bis(phenalenyl) complexes are thermodynamically unstable eta(1),eta(1) slip-sandwich structures. To better understand changes in the structural preferences going from the (eta(6),eta(6)) group 2 to the (eta(1),eta(1)) group 12 complexes, we explored the bonding in the bis(phenalenyl) complexes of transition metals with stable +2 oxidations states between Ca and Zn in period 4. The computed binding enthalpies are large and negative for nearly all of the minimum energy bis(phenalenyl) complexes of the group 2 and the transition metals; they are tiny for MgP(2), and are quite positive for the group 12 systems. The structural preferences and stability of the complexes is a subtle negotiation of several influences: the (un)availability of (n - 1)d and np, orbitals for bonding, the cost of the rehybridization at carbon sites in the phenalenyl rings in preparation for bonding to the metals, and the (P---P) interaction between the phenalenyl radicals.
Müller, Achim; Gouzerh, Pierre
2012-11-21
Following Nature's lessons, today chemists can cross the boundary of the small molecule world to construct multifunctional and highly complex molecular nano-objects up to protein size and even cell-like nanosystems showing responsive sensing. Impressive examples emerge from studies of the solutions of some oxoanions of the early transition metals especially under reducing conditions which enable the controlled linking of metal-oxide building blocks. The latter are available from constitutional dynamic libraries, thus providing the option to generate multifunctional unique nanoscale molecular systems with exquisite architectures, which even opens the way towards adaptive and evolutive (Darwinian) chemistry. The present review presents the first comprehensive report of current knowledge (including synthesis aspects not discussed before) regarding the related giant metal-oxide clusters mainly of the type {Mo(57)M'(6)} (M' = Fe(III), V(IV)) (torus structure), {M(72)M'(30)} (M = Mo, M' = V(IV), Cr(III), Fe(III), Mo(V)), {M(72)Mo(60)} (M = Mo, W) (Keplerates), {Mo(154)}, {Mo(176)}, {Mo(248)} ("big wheels"), and {Mo(368)} ("blue lemon") - all having the important transferable pentagonal {(M)M(5)} groups in common. These discoveries expanded the frontiers of inorganic chemistry to the mesoscopic world, while there is probably no collection of discrete inorganic compounds which offers such a versatile chemistry and the option to study new phenomena of interdisciplinary interest. The variety of different properties of the sphere- and wheel-type metal-oxide-based clusters can directly be related to their unique architectures: The spherical Keplerate-type capsules having 20 crown-ether-type pores and tunable internal functionalities allow the investigation of confined matter as well as that of sphere-surface-supramolecular and encapsulation chemistry - including related new aspects of the biologically important hydrophobic effects - but also of nanoscale ion transport and separation. The wheel-type molybdenum-oxide clusters exhibiting complex landscapes do not only have well-defined reaction sites but also show unprecedented adaptability regarding the integration of various kinds of matter. Applications in different fields, e.g. in materials science and catalysis including those in small spaces, investigated by several groups, are discussed while possible directions for future work are outlined.
Huh, Daniel N; Darago, Lucy E; Ziller, Joseph W; Evans, William J
2018-02-19
The utility of lithium compared to other alkali metals in generating Ln 2+ rare-earth metal complexes via reduction of Ln 3+ precursors in reactions abbreviated as LnA 3 /M (Ln = rare-earth metal; A = anionic ligand; M = alkali metal) is described. Lithium reduction of Cp' 3 Ln (Cp' = C 5 H 4 SiMe 3 ; Ln = Y, Tb, Dy, Ho) under Ar in the presence of 2.2.2-cryptand (crypt) forms new examples of crystallographically characterizable Ln 2+ complexes of these metals, [Li(crypt)][Cp' 3 Ln]. In each complex, lithium is found in an N 2 O 4 donor atom coordination geometry that is unusual for the cryptand ligand. Magnetic susceptibility data on these new examples of nontraditional divalent lanthanide complexes are consistent with 4f n 5d 1 electronic configurations. The Dy and Ho complexes have exceptionally high single-ion magnetic moments, 11.35 and 11.67 μ B , respectively. Lithium reduction of Cp' 3 Y under N 2 at -35 °C forms the Y 2+ complex (Cp' 3 Y) 1- , which reduces dinitrogen upon warming to room temperature to generate the (N 2 ) 2- complex [Cp' 2 Y(THF)] 2 (μ-η 2 :η 2 -N 2 ). These results provide insight on the factors that lead to reduced dinitrogen complexes and/or stable divalent lanthanide complexes as a function of the specific reducing agent and conditions.
Bistri, Olivia; Reinaud, Olivia
2015-03-14
Supramolecular chemistry in water is a very challenging research area. In biology, water is the universal solvent where transition metal ions play major roles in molecular recognition and catalysis. In enzymes, it participates in substrate binding and/or activation in the heart of a pocket defined by the folded protein. The association of a hydrophobic cavity with a transition metal ion is thus a very appealing strategy for controlling the metal ion properties in the very competitive water solvent. Various systems based on intrinsically water-soluble macrocyclic structures such as cyclodextrins, cucurbituryls, and metallo-cages have been reported. Others use calixarenes and resorcinarenes functionalized with hydrophilic substituents. One approach for connecting a metal complex to these cavities is to graft a ligand for metal ion binding at their edge. Early work with cyclodextrins has shown Michaelis-Menten like catalysis displaying enhanced kinetics and substrate-selectivity. Remarkable examples of regio- and stereo-selective transformation of substrates have been reported as well. Dynamic two-phase systems for transition metal catalysis have also been developed. They rely on either water-transfer of the metal complex through ligand embedment or synergistic coordination of a metal ion and substrate hosting. Another strategy consists in using metallo-cages, which provide a well-defined hydrophobic space, to stabilize metal complexes in water. When the cages can host simultaneously a substrate and a reactive metal complex, size- and regio-selective catalysis was obtained. Finally, construction of a polydentate coordination site closely interlocked with a calixarene or resorcinarene macrocycle has been shown to be a very fruitful strategy for obtaining metal complexes with remarkable hosting properties. For each of these systems, the synergism resulting from the biomimetic association of a hydrophobic cavity and a metal ion is discussed within the objective of developing new tools for either selective molecular recognition (with analytical perspectives) or performant catalysis, in water.
Humphries, T D; Sheppard, D A; Buckley, C E
2015-06-30
For homoleptic 18-electron complex hydrides, an inverse linear correlation has been established between the T-deuterium bond length (T = Fe, Co, Ni) and the average electronegativity of the metal countercations. This relationship can be further employed towards aiding structural solutions and predicting physical properties of novel complex transition metal hydrides.
Nadeem, Qaisar; Can, Daniel; Shen, Yunjun; Felber, Michael; Mahmood, Zaid; Alberto, Roger
2014-03-28
We describe the syntheses of half-sandwich complexes of the type [(η(5)-Cp(CONH-R))M(CO)3] with M = Re or (99m)Tc. The R group represents different tri-peptides (tpe) which display high binding affinities for oligopeptide transporters PEPT2. The (99m)Tc complexes were prepared directly from [(99m)Tc(OH2)3(CO)3](+) and Diels-Alder dimerized, cyclopentadienyl derivatized peptides in water. This approach corroborates the feasibility of metal-mediated retro Diels-Alder reactions for the preparation of not only small molecules but also peptides carrying a [(η(5)-Cp)(99m)Tc(CO)3] tag. We synthesized the Diels-Alder product [(HCpCONH-tpe)2] from Thiele's acid [(η(5)-HCpCOOH)2] via double peptide coupling. The Re-complexes [(η(5)-CpCONH-tpe)Re(CO)3] were obtained by attaching [(Cp-COOH)Re(CO)3] directly to the N-terminus of peptides as received from SPPS. The authenticity of the (99m)Tc-complexes is confirmed by chromatographic comparison with the corresponding rhenium complexes, fully characterized by spectroscopic techniques.
Analysis of Supercritical-Extracted Chelated Metal Ions From Mixed Organic-Inorganic Samples
NASA Technical Reports Server (NTRS)
Sinha, Mahadeva P. (Inventor)
1996-01-01
Organic and inorganic contaminants of an environmental sample are analyzed by the same GC-MS instrument by adding an oxidizing agent to the sample to oxidize metal or metal compounds to form metal ions. The metal ions are converted to chelate complexes and the chelate complexes are extracted into a supercritical fluid such as CO2. The metal chelate extract after flowing through a restrictor tube is directly injected into the ionization chamber of a mass spectrometer, preferably containing a refractory metal filament such as rhenium to fragment the complex to release metal ions which are detected. This provides a fast, economical method for the analysis of metal contaminants in a sample and can be automated. An organic extract of the sample in conventional or supercritical fluid solvents can be detected in the same mass spectrometer, preferably after separation in a supercritical fluid chromatograph.
NASA Technical Reports Server (NTRS)
Stern, Jennifer C.; Foustoukos, Dionysis I.; Sonke, Jeroen E.; Salters, Vincent J. M.
2014-01-01
The mobility of metals in soils and subsurface aquifers is strongly affected by sorption and complexation with dissolved organic matter, oxyhydroxides, clay minerals, and inorganic ligands. Humic substances (HS) are organic macromolecules with functional groups that have a strong affinity for binding metals, such as actinides. Thorium, often studied as an analog for tetravalent actinides, has also been shown to strongly associate with dissolved and colloidal HS in natural waters. The effects of HS on the mobilization dynamics of actinides are of particular interest in risk assessment of nuclear waste repositories. Here, we present conditional equilibrium binding constants (Kc, MHA) of thorium, hafnium, and zirconium-humic acid complexes from ligand competition experiments using capillary electrophoresis coupled with ICP-MS (CE- ICP-MS). Equilibrium dialysis ligand exchange (EDLE) experiments using size exclusion via a 1000 Damembrane were also performed to validate the CE-ICP-MS analysis. Experiments were performed at pH 3.5-7 with solutions containing one tetravalent metal (Th, Hf, or Zr), Elliot soil humic acid (EHA) or Pahokee peat humic acid (PHA), and EDTA. CE-ICP-MS and EDLE experiments yielded nearly identical binding constants for the metal- humic acid complexes, indicating that both methods are appropriate for examining metal speciation at conditions lower than neutral pH. We find that tetravalent metals form strong complexes with humic acids, with Kc, MHA several orders of magnitude above REE-humic complexes. Experiments were conducted at a range of dissolved HA concentrations to examine the effect of [HA]/[Th] molar ratio on Kc, MHA. At low metal loading conditions (i.e. elevated [HA]/[Th] ratios) the ThHA binding constant reached values that were not affected by the relative abundance of humic acid and thorium. The importance of [HA]/[Th] molar ratios on constraining the equilibrium of MHA complexation is apparent when our estimated Kc, MHA values attained at very low metal loading conditions are compared to existing literature data. Overall, experimental data suggest that the tetravalent transition metal/-actinide-humic acid complexation is important over a wide range of pH values, including mildly acidic conditions, and thus, these complexes should be included in speciation models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schijf, Johan; Christenson, Emily A.; Potter, Kailee J.
2015-07-01
The solution speciation in seawater of divalent trace metals (Cd, Cu, Ni, Pb, Zn) is dominated by strong, ostensibly metal-specific organic ligands that may play important roles in microbial metal acquisition and/or detoxification processes. We compare the effective stabilities of these metal-organic complexes to the stabilities of their complexes with a model siderophore, desferrioxamine B (DFOB). While metal-DFOB complexation has been studied in various dilute but often moderately coordinating media, for the purpose of this investigation we measured the stability constants in a non-coordinating background electrolyte at seawater ionic strength (0.7 M NaClO4). Potentiometric titrations of single metals (M) weremore » performed in the presence of ligand (L) at different M:L molar ratios, whereupon the stability constants of multiple complexes were simultaneously determined by non-linear regression of the titration curves with FITEQL, using the optimal binding mode for each metal. Cadmium, Ni, and Zn, like trivalent Fe, sequentially form a bi-, tetra-, and hexadentate complex with DFOB as pH increases, consistent with their coordination number of 6 and regular octahedral geometry. Copper has a Jahn-Teller-distorted square-bipyramidal geometry whereas the geometry of Pb is cryptic, involving a range of bond lengths. Supported by a thermodynamic argument, our data suggest that this impedes binding of the third hydroxamate group and that the hexadentate Cu-DFOB and Pb-DFOB complex identified in earlier reports may instead be a deprotonated tetradentate complex. Absence of the hexadentate complex promotes the formation of a dinuclear (bidentate-tetradentate) complex, M2HL2+, albeit not for Pb in 0.7 M NaCl, evidently due to extensive complexation with chloride. Stabilities of the hexadentate Ni-DFOB, Zn-DFOB, and the tetradentate Pb-DFOB complex are nearly equal, yet about 2 orders of magnitude higher and 4 orders of magnitude lower than those of the hexadentate Cd-DFOB and tetradentate Cu-DFOB complex, respectively. Linear free-energy relations defined by the rare earth elements are able to predict stabilities of the Cd, Zn, and one of the Pb complexes, but underestimate those of the Ni and Cu complexes. The comparison with metal-specific organic ligands detected in seawater yields fair agreement for three of the five metals, implying that they could be siderophore-like. The Cd- and Ni-specific ligands are much stronger and may contain quite different functional groups. Calculations with MINEQL incorporating our new stability constants indicate that very high DFOB concentrations would be required to match the extent of metal-organic complexation observed in seawater, however DFOB may well represent a much broader class of structurally related ligands.« less
Computational methods for prediction of RNA interactions with metal ions and small organic ligands.
Philips, Anna; Łach, Grzegorz; Bujnicki, Janusz M
2015-01-01
In the recent years, it has become clear that a wide range of regulatory functions in bacteria are performed by riboswitches--regions of mRNA that change their structure upon external stimuli. Riboswitches are therefore attractive targets for drug design, molecular engineering, and fundamental research on regulatory circuitry of living cells. Several mechanisms are known for riboswitches controlling gene expression, but most of them perform their roles by ligand binding. As with other macromolecules, knowledge of the 3D structure of riboswitches is crucial for the understanding of their function. The development of experimental methods allowed for investigation of RNA structure and its complexes with ligands (which are either riboswitches' substrates or inhibitors) and metal cations (which stabilize the structure and are also known to be riboswitches' inhibitors). The experimental probing of different states of riboswitches is however time consuming, costly, and difficult to resolve without theoretical support. The natural consequence is the use of computational methods at least for initial research, such as the prediction of putative binding sites of ligands or metal ions. Here, we present a review on such methods, with a special focus on knowledge-based methods developed in our laboratory: LigandRNA--a scoring function for the prediction of RNA-small molecule interactions and MetalionRNA--a predictor of metal ions-binding sites in RNA structures. Both programs are available free of charge as a Web servers, LigandRNA at http://ligandrna.genesilico.pl and MetalionRNA at http://metalionrna.genesilico.pl/. © 2015 Elsevier Inc. All rights reserved.
2016-01-01
Metal ion cofactors can alter the energetics and specificity of sequence specific protein–DNA interactions, but it is unknown if the underlying effects on structure and dynamics are local or dispersed throughout the protein–DNA complex. This work uses EcoRV endonuclease as a model, and catalytically inactive lanthanide ions, which replace the Mg2+ cofactor. Nuclear magnetic resonance (NMR) titrations indicate that four Lu3+ or two La3+ cations bind, and two new crystal structures confirm that Lu3+ binding is confined to the active sites. NMR spectra show that the metal-free EcoRV complex with cognate (GATATC) DNA is structurally distinct from the nonspecific complex, and that metal ion binding sites are not assembled in the nonspecific complex. NMR chemical shift perturbations were determined for 1H–15N amide resonances, for 1H–13C Ile-δ-CH3 resonances, and for stereospecifically assigned Leu-δ-CH3 and Val-γ-CH3 resonances. Many chemical shifts throughout the cognate complex are unperturbed, so metal binding does not induce major conformational changes. However, some large perturbations of amide and side chain methyl resonances occur as far as 34 Å from the metal ions. Concerted changes in specific residues imply that local effects of metal binding are propagated via a β-sheet and an α-helix. Both amide and methyl resonance perturbations indicate changes in the interface between subunits of the EcoRV homodimer. Bound metal ions also affect amide hydrogen exchange rates for distant residues, including a distant subdomain that contacts DNA phosphates and promotes DNA bending, showing that metal ions in the active sites, which relieve electrostatic repulsion between protein and DNA, cause changes in slow dynamics throughout the complex. PMID:27786446
NASA Astrophysics Data System (ADS)
Chandra, Sulekh; Gautam, Seema; Rajor, Hament Kumar; Bhatia, Rohit
2015-02-01
Novel Schiff's base ligand, benzil bis(5-amino-1,3,4-thiadiazole-2-thiol) was synthesized by the condensation of benzil and 5-amino-1,3,4-thiadiazole-2-thiol in 1:2 ratio. The structure of ligand was determined on the basis of elemental analyses, IR, 1H NMR, mass, and molecular modeling studies. Synthesized ligand behaved as tetradentate and coordinated to metal ion through sulfur atoms of thiol ring and nitrogen atoms of imine group. Ni(II), and Cu(II) complexes were synthesized with this nitrogen-sulfur donor (N2S2) ligand. Metal complexes were characterized by elemental analyses, molar conductance, magnetic susceptibility measurements, IR, electronic spectra, EPR, thermal, and molecular modeling studies. All the complexes showed molar conductance corresponding to non-electrolytic nature, expect [Ni(L)](NO3)2 complex, which was 1:2 electrolyte in nature. [Cu(L)(SO4)] complex may possessed square pyramidal geometry, [Ni(L)](NO3)2 complex tetrahedral and rest of the complexes six coordinated octahedral/tetragonal geometry. Newly synthesized ligand and its metal complexes were examined against the opportunistic pathogens. Results suggested that metal complexes were more biological sensitive than free ligand.
N-heterocyclic carbene metal complexes as bio-organometallic antimicrobial and anticancer drugs.
Patil, Siddappa A; Patil, Shivaputra A; Patil, Renukadevi; Keri, Rangappa S; Budagumpi, Srinivasa; Balakrishna, Geetha R; Tacke, Matthias
2015-01-01
Late transition metal complexes that bear N-heterocyclic carbene (NHC) ligands have seen a speedy growth in their use as both, metal-based drug candidates and potentially active homogeneous catalysts in a plethora of C-C and C-N bond forming reactions. This review article focuses on the recent developments and advances in preparation and characterization of NHC-metal complexes (metal: silver, gold, copper, palladium, nickel and ruthenium) and their biomedical applications. Their design, syntheses and characterization have been reviewed and correlated to their antimicrobial and anticancer efficacies. All these initial discoveries help validate the great potential of NHC-metal derivatives as a class of effective antimicrobial and anticancer agents.
NASA Astrophysics Data System (ADS)
Millot, R.; Desaulty, A. M.; Perret, S.; Bourrain, X.
2016-12-01
The goal of this study is to use multi-isotopic signature to track the pollution in surface waters, and to understand the complex processes causing the metals mobilization and transport in the environment. In the present study, we investigate waste water releases from a hospital water treatment plant and its potential impact in a small river basin near Orléans in France (Egoutier watershed: 15 km²and 5 km long). We decided to monitor this small watershed which is poorly urbanized in the Loire river basin. Its spring is located in a pristine area (forested area), while it is only impacted some kilometers further by the releases rich in metals coming from a hospital water treatment plant. A sampling of these liquid effluents as well as dissolved load and sediment from upstream to downstream was realized and their concentrations and isotopic data were determined. Isotopic ratios were measured using a MC-ICP-MS at BRGM, after a specific protocol of purification for each isotopic systematics. Lithium isotopic compositions are rather homogeneous in river waters along the main course of the stream. The waste water signal is very different from the natural background with significant heavy lithium contribution (high δ7Li). Lead isotopic compositions are rather homogenous in river waters and sediments with values close to geologic background. For Zn, the sediments with high concentrations and depleted isotopic compositions (low δ66Zn), typical of an anthropic pollution, are strongly impacted. The analyses of Cu isotopes in sediments show the impact of waster waters, but also isotopic fractionations due to redox processes in the watershed. To better understand these processes controlling the release of metals in water, sequential extractions on sediments are in progress under laboratory conditions and will provide important constraints for metal distribution in this river basin.
NASA Astrophysics Data System (ADS)
Grabchev, Ivo; Yordanova, Stanislava; Bosch, Paula; Vasileva-Tonkova, Evgenia; Kukeva, Rositsa; Stoyanov, Stanimir; Stoyanova, Radostina
2017-02-01
Two new 1,8-naphthalimide derivatives (NI1 and NI2) have been synthesized and characterized. The photophysical properties of the new compounds have been investigated in organic solvents of different polarity. It has been shown that both compounds are solvent depended. Cu(II) and Zn(II) complexes of NI2 were obtained and characterized by IR-NMR, fluorescence and EPR spectroscopy. The influence of different metal cations on the fluorescence intensity has been investigated in acetonitrile solution. Antimicrobial composite PLA-metal complexes materials have been obtained for the first time. Microbiological activity of both metal complexes has been investigated in vitro against different Gram-positive and Gram-negative bacteria and two yeasts. The various antimicrobial activities and the minimum inhibitory concentrations (MICs) of both complexes have been determined. The microbiological activity of composite materials PLA-metal complexes in thin polymeric film has also been investigated. The results suggest that the new metal complexes could find application in designing new antimicrobial preparations to control the spread of infections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prasad, R.L., E-mail: rlpjc@yahoo.co.in; Kushwaha, A.; Shrivastava, O.N.
2012-12-15
New heterobimetallic complexes [Cu{sub x}Ni{sub 1-x}(dadb){center_dot}yH{sub 2}O]{sub n} {l_brace}where dadb=2,5-Diamino-3,6-dichloro-1,4-benzoquinone (1); x=1 (2), 0.5 (4), 0.25 (5), 0.125 (6), 0.0625 (7) and 0 (3); y=2; n=degree of polymerization{r_brace} were synthesized and characterized. Heterobimetallic complexes show normal magnetic moments, whereas, monometallic complexes exhibit magnetic moments less than the value due to spin only. Thermo-gravimetric analysis shows that degradation of the ligand dadb moiety is being controlled by the electronic environment of the Cu(II) ions in preference over Ni(II) in heterobimetallic complexes. Existence of the mixed valency/non-integral oxidation states of copper and nickel metal ions in the complex 4 has been attributedmore » from magnetic moment and ESR spectral results. Solid state dc electrical conductivity of all the complexes was investigated. Monometallic complexes were found to be semiconductors, whereas heterobimetallic coordination polymer 4 was found to exhibit metallic behaviour. Existence of mixed valency/ non-integral oxidation state of metal ions seems to be responsible for the metallic behaviour. - Graphical abstract: Contrast to the semiconductor monometallic complexes 2 and 3, the heterobimetallic complex 4 exhibits metallic behaviour attributed to the mixed valency/non-integral oxidation state of the metal ions concluded from magnetic and ESR spectral studies. Highlights: Black-Right-Pointing-Pointer 1-D coordination compounds of the type Cu{sub x}Ni{sub 1-x}(dadb){center_dot}yH{sub 2}O were synthesized and characterized. Black-Right-Pointing-Pointer Thermal degradation of the complexes provides an indication of long range electronic communication between metal to ligand. Black-Right-Pointing-Pointer On inclusion of Ni(II) into 1-D coordination polymer of Cu(II). (a) Cu(II) and Ni(II) ions exhibit non-integral oxidation state. (b) resulting heterobimetallic complex 4 exhibits metallic behaviour at all temperature range of the present study whereas monometallic complexes are semiconductor.« less
Charge Transfer Between Quantum Dots and Peptide-Coupled Redox Complexes
2009-01-01
labeled with reactive metal complexes includ- ing a ruthenium chelate (Ru), a bis-bipyridine ruthe- nium chelate (ruthenium-bpy), and a ferrocene metal...of unconjugated QDs and the metal complex–labeled peptides immobilized on indium tin oxide (ITO) electrodes. The ruthenium and ferrocene peptide...Ag/AgCI E v s. N H E E v s. v ac uu m (e V ) Ruthenium Ferrocene Ruthenium-bpy DHLA QDs DHLA-PEG QDs Quantum dot Metal complex CB VB E0X of QDs Fe
NASA Astrophysics Data System (ADS)
Gan, Weibing
A systematic investigation was carried out to study the interactions between bitumen (or hexadecane) and minerals (quartz, kaolinite and illite) in aqueous solutions containing multivalent metal cations Ca2+, Mg2+ and Fe2+/Fe3+, in the absence and presence of organic complexing agents (oxalic acid, EDTA and citric acid). A range of experimental techniques, including coagulation measurement, visualization of bitumen-mineral attachment, metal ion adsorption measurement, zeta potential measurement, Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopic analyses, were employed in the investigation. Free energy changes of adsorption of metal cations on the minerals and bitumen were evaluated using the James & Healy thermodynamic model. Total interaction energies between the minerals and bitumen were calculated using classical DLVO theory. It was observed that while the tested minerals showed varying degrees of mutual-coagulation with bitumen (or hexadecane), the presence of the multivalent metal cations could prominently increase the mutual coagulation. It was also found that such enhancement of the mutual coagulation was only significant when the metal cations formed first-order hydroxyl complexes (such as CaOH +, MgOH+, etc.) or metal hydroxides (such as Fe(OH) 3, Mg(OH)2, etc.). Therefore, the increase of the bitumen-mineral mutual coagulation by the metal cations was strongly pH dependent. Organic complexing agents (oxalic acid, citric acid and EDTA) used in this study, citric acid in particular, significantly reduced or virtually eliminated the mutual coagulation between bitumen (or hexadecane) and minerals caused by metal cations Ca2+, Mg2+, Fe 2+ and Fe3+. Due to its ability to substantially lower the mutual coagulation between bitumen and mineral particles, citric acid was found the most effective in improving bitumen-mineral liberation in solutions containing the multivalent metal cations at pH 8--10. In small scale flotation experiments to recover the residual bitumen from Syncrude Froth Treatment Tailings, the addition of up to 2x10-3 mol/L citric acid improved the separation efficiency by 24 percentage points. The sequential additions of 1.5x10-3 mol/L citric acid and 30 mg/L polyacrylamide further increased the flotation separation efficiency, which was attributed to the improved liberation of bitumen from the minerals by the citric acid, and the flocculation of the liberated minerals fines by the polyacrylamide. The latter was expected to reduce the mechanical entrainment of the liberated mineral fines. Pretreatment of the Froth Treatment Tailings in an ultrasonic bath was also effective for bitumen liberation and recovery from the Froth Treatment Tailings. Through measurements of zeta potentials of the minerals and adsorption densities of the metal cations on mineral surfaces, coupled with speciation diagrams, it was shown that the multivalent metal cations functioned in the studied systems through three distinctly different mechanisms. These included electrical double layer compression by the metal cations; adsorption of the first-order metal hydroxyl species; and adsorption of the metal hydroxides on the mineral particles. Reversibility of adsorption and analyses by X-ray photoelectron spectroscopy (XPS) and attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) indicated that the adsorption of the first-order metal hydroxyl species on quartz and kaolinite was through electrostatic attraction, while that of metal hydroxides was possibly through chemisorption. It was also shown that classical DLVO theory could be used to describe and predict bitumen-mineral interactions with and without the presence of citric acid. The energy barriers for the interaction between bitumen and the minerals were greatly raised in the presence of citric acid, as a contribution to the repulsive electrical double layers interaction between bitumen droplets and mineral particles.
NASA Astrophysics Data System (ADS)
Neubauer, E.; Kammer, F. v. d.; Knorr, K.-H.; Pfeiffer, S.; Reichert, M.; Hofmann, T.
2012-04-01
Soils can act as a source of metals and natural organic matter (NOM) in runoff from catchments. Amounts and intensity of rainfall may influence NOM export from catchments. The presence of NOM and other colloids in water may not only enhance metal export, but also significantly change metal speciation. In this study, we investigated the response of metal-colloid associations to short-term discharge variations in the runoff from a small forested catchment (Lehstenbach, Bavaria, Germany). Here, the discharge from the catchment outlet responds within hours to rain events. Near-surface flow in organic-rich layers and peat soils has been identified to increase dissolved organic carbon (DOC) concentrations during stormwater runoff. Flow Field-Flow Fractionation coupled to ICP-MS (FlowFFF-ICPMS) is a high-resolution size separation technique which was used for the detection and quantification of colloids and associated metals. Colloid-associated metals, dissolved metals and metals associated with low-molecular weight organic ligands were also separated by filtration (0.2 µm) and ultrafiltration (1000 g/mol MWCO). During baseflow DOC concentration was <6 mg/L and the pH ranged between 4.6 and 5.0. The DOC concentration exported at a given discharge was subject to strong seasonal variation and depended on the water level before the discharge event. DOC concentrations were up to 8 fold higher during stormwater runoff compared to baseflow. The export of aluminum, arsenic, rare earth elements (REE) and uranium from the catchment increased during stormwater runoff showing a strong correlation with NOM concentrations. This result was supported by FlowFFF-ICPMS data revealing that NOM was the only colloid type available for metal complexation during all hydrological conditions. A clear temporal pattern in the association with the NOM was observed for most of the metals under study: During baseflow, 70-100% (Fe), 90% (Al), 60-100% (REE) and 80-85% (U) were associated with the NOM. During stormwater runoff, the dissolved species concentration and those associated with small organic ligands (<1000 g/mol) increased. The pH drop during the stormwater runoff (pH <4) is most likely the main factor for weaker metal-NOM binding. However, only 25 to 50% of the arsenic was associated with NOM, but no relation to discharge, or pH was exhibited. The results show that fluxes of most trace metals from the catchment are governed by NOM-colloids, even though substantial concentrations are dissolved or associated to low-molecular weight organic substances during stormwater runoff.
Production of small diameter high-temperature-strength refractory metal wires
NASA Technical Reports Server (NTRS)
Petrasek, D. W.; Signorelli, R. A.; King, G. W.
1973-01-01
Special thermomechanical techniques (schedules) have been developed to produce small diameter wire from three refractory metal alloys: colombian base alloy, tantalum base alloy, and tungsten base alloy. High strengths of these wires indicate their potential for contributing increased strength to metallic composites.
Katti, Kattesh V.; Prabhu, Kandikere R.; Gali, Hariprasad; Pillarsetty, Nagavara Kishore; Volkert, Wynn A.
2003-10-21
There is provided a method of labeling a biomolecule with a transition metal or radiometal in a site specific manner to produce a diagnostic or therapeutic pharmaceutical compound by synthesizing a P.sub.2 N.sub.2 -bifunctional chelating agent intermediate, complexing the intermediate with a radio metal or a transition metal, and covalently linking the resulting metal-complexed bifunctional chelating agent with a biomolecule in a site specific manner. Also provided is a method of synthesizing the --PR.sub.2 containing biomolecules by synthesizing a P.sub.2 N.sub.2 -bifunctional chelating agent intermediate, complexing the intermediate with a radiometal or a transition metal, and covalently linking the resulting radio metal-complexed bifunctional chelating agent with a biomolecule in a site specific manner. There is provided a therapeutic or diagnostic agent comprising a --PR.sub.2 containing biomolecule.
Development of peptoid-based ligands for the removal of cadmium from biological media
Knight, Abigail S.; Zhou, Effie Y.; Francis, Matthew B.
2015-05-14
Cadmium poisoning poses a serious health concern due to cadmium's increasing industrial use, yet there is currently no recommended treatment. The selective coordination of cadmium in a biological environment—i.e. in the presence of serum ions, small molecules, and proteins—is a difficult task. To address this challenge, a combinatorial library of peptoid-based ligands has been evaluated to identify structures that selectively bind to cadmium in human serum with minimal chelation of essential metal ions. Eighteen unique ligands were identified in this screening procedure, and the binding affinity of each was measured using metal titrations monitored by UV-vis spectroscopy. To evaluate themore » significance of each chelating moiety, sequence rearrangements and substitutions were examined. Analysis of a metal–ligand complex by NMR spectroscopy highlighted the importance of particular residues. Depletion experiments were performed in serum mimetics and human serum with exogenously added cadmium. These depletion experiments were used to compare and demonstrate the ability of these peptoids to remove cadmium from blood-like mixtures. In one of these depletion experiments, the peptoid sequence was able to deplete the cadmium to a level comparable to the reported acute toxicity limit. Evaluation of the metal selectivity in buffered solution and in human serum was performed to verify minimal off-target binding. These studies highlight a screening platform for the identification of metal–ligands that are capable of binding in a complex environment. They additionally demonstrate the potential utility of biologically-compatible ligands for the treatment of heavy metal poisoning.« less
Development of peptoid-based ligands for the removal of cadmium from biological media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knight, Abigail S.; Zhou, Effie Y.; Francis, Matthew B.
Cadmium poisoning poses a serious health concern due to cadmium's increasing industrial use, yet there is currently no recommended treatment. The selective coordination of cadmium in a biological environment—i.e. in the presence of serum ions, small molecules, and proteins—is a difficult task. To address this challenge, a combinatorial library of peptoid-based ligands has been evaluated to identify structures that selectively bind to cadmium in human serum with minimal chelation of essential metal ions. Eighteen unique ligands were identified in this screening procedure, and the binding affinity of each was measured using metal titrations monitored by UV-vis spectroscopy. To evaluate themore » significance of each chelating moiety, sequence rearrangements and substitutions were examined. Analysis of a metal–ligand complex by NMR spectroscopy highlighted the importance of particular residues. Depletion experiments were performed in serum mimetics and human serum with exogenously added cadmium. These depletion experiments were used to compare and demonstrate the ability of these peptoids to remove cadmium from blood-like mixtures. In one of these depletion experiments, the peptoid sequence was able to deplete the cadmium to a level comparable to the reported acute toxicity limit. Evaluation of the metal selectivity in buffered solution and in human serum was performed to verify minimal off-target binding. These studies highlight a screening platform for the identification of metal–ligands that are capable of binding in a complex environment. They additionally demonstrate the potential utility of biologically-compatible ligands for the treatment of heavy metal poisoning.« less
NASA Astrophysics Data System (ADS)
Jean-Marc, Custos; Christian, Moyne; Sterckeman, Thibault
2010-05-01
The context of this study is phytoextraction of soil trace metals such as Cd, Pb or Zn. Trace metal transfer from soil to plant depends on physical and chemical processes such as minerals alteration, transport, adsorption/desorption, reactions in solution and biological processes including the action of plant roots and of associated micro-flora. Complexation of metal ions by organic ligands is considered to play a role on the availability of trace metals for roots in particular in the event that synthetic ligands (EDTA, NTA, etc.) are added to the soil to increase the solubility of the contaminants. As this role is not clearly understood, we wanted to simulate it in order to quantify the effect of organic ligands on root uptake of trace metals and produce a tool which could help in optimizing the conditions of phytoextraction.We studied the effect of an aminocarboxilate ligand on the absorption of the metal ion by roots, both in hydroponic solution and in soil solution, for which we had to formalize the buffer power for the metal. We assumed that the hydrated metal ion is the only form which can be absorbed by the plants. Transport and reaction processes were modelled for a system made up of the metal M, a ligand L and the metal complex ML. The Tinker-Nye-Barber model was adapted to describe the transport of solutes M, L and ML in the soil and absorption of M by the roots. This allowed to represent the interactions between transport, chelating reactions, absorption of the solutes at the root surface, root growth with time, in order to simulate metal uptake by a whole root system.Several assumptions were tested such as i) absorption of the metal by an infinite sink and according to a Michaelis-Menten kinetics, solutes transport by diffusion with and without ii) mass flow and iii) soil buffer power for the ligand L. In hydroponic solution (without soil buffer power), ligands decreased the trace metal flux towards roots, as they reduced the concentration of hydrated metal ion. In soil, depending on the L/M ratio, the presence of metal complexes could increase the metal flux taken up by roots since the ligand desorbed the metal on soil solid phase while the complex dissociated and provided metal ions to the solution in the vicinity of the root.The model enabled to surround the conditions in which phytoextraction is thus optimized. In addition of complexation by organic ligands added to the soil, we expect to integrate complexation by roots organic exudates and by soil organic matter, as well as the competition of the metal ions with Ca2+ et H+.
Ammonia release method for depositing metal oxides
Silver, G.L.; Martin, F.S.
1994-12-13
A method is described for depositing metal oxides on substrates which is indifferent to the electrochemical properties of the substrates and which comprises forming ammine complexes containing metal ions and thereafter effecting removal of ammonia from the ammine complexes so as to permit slow precipitation and deposition of metal oxide on the substrates. 1 figure.
Synthesis and Properties of Ortho-Nitro-Fe Complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, A.; Mishra, Niyati; Sharma, R.
2011-07-15
Ortho-Nitro-Fe complex (Transition metal complex) has synthesized by chemical route method and properties of made complex has characterized by X-Ray diffraction (XRD), Moessbauer spectroscopy, Fourier transformation infra-red spectroscopy (FTIR) and X-Ray photoelectron spectroscopy (XPS). XRD analysis shows that sample is crystalline in nature and having particle size in the range of few nano meters. Moessbauer spectroscopy at room temperature shows the oxidation state of Iron (central metal ion) after complaxasion. FTIR spectra of the complex confirms the coordination of metal ion with ligand.
Why do high-redshift galaxies show diverse gas-phase metallicity gradients?
NASA Astrophysics Data System (ADS)
Ma, Xiangcheng; Hopkins, Philip F.; Feldmann, Robert; Torrey, Paul; Faucher-Giguère, Claude-André; Kereš, Dušan
2017-04-01
Recent spatially resolved observations of galaxies at z ˜ 0.6-3 reveal that high-redshift galaxies show complex kinematics and a broad distribution of gas-phase metallicity gradients. To understand these results, we use a suite of high-resolution cosmological zoom-in simulations from the Feedback in Realistic Environments project, which include physically motivated models of the multiphase interstellar medium, star formation and stellar feedback. Our simulations reproduce the observed diversity of kinematic properties and metallicity gradients, broadly consistent with observations at z ˜ 0-3. Strong negative metallicity gradients only appear in galaxies with a rotating disc, but not all rotationally supported galaxies have significant gradients. Strongly perturbed galaxies with little rotation always have flat gradients. The kinematic properties and metallicity gradient of a high-redshift galaxy can vary significantly on short time-scales, associated with starburst episodes. Feedback from a starburst can destroy the gas disc, drive strong outflows and flatten a pre-existing negative metallicity gradient. The time variability of a single galaxy is statistically similar to the entire simulated sample, indicating that the observed metallicity gradients in high-redshift galaxies reflect the instantaneous state of the galaxy rather than the accretion and growth history on cosmological time-scales. We find weak dependence of metallicity gradient on stellar mass and specific star formation rate (sSFR). Low-mass galaxies and galaxies with high sSFR tend to have flat gradients, likely due to the fact that feedback is more efficient in these galaxies. We argue that it is important to resolve feedback on small scales in order to produce the diverse metallicity gradients observed.
Effect of welding fume solubility on lung macrophage viability and function in vitro.
Antonini, J M; Lawryk, N J; Murthy, G G; Brain, J D
1999-11-26
It was shown previously that fumes generated from stainless steel (SS) welding induced more pneumotoxicity and were cleared from the lungs at a slower rate than fumes collected from mild steel (MS) welding. These differences in response may be attributed to the metal composition of SS and MS welding fumes. In this study, fumes with vastly different metal profiles were collected during gas metal arc (GMA) or flux-covered manual metal arc (MMA) welding using two different consumable electrodes, SS or MS. The collected samples were suspended in saline, incubated for 24 h at 37 degrees C, and centrifuged. The supernatant (soluble components) and pellets (insoluble particulates) were separated, and their effects on lung macrophage viability and the release of reactive oxygen species (ROS) by macrophages were examined in vitro. The soluble MMA-SS sample was shown to be the most cytotoxic to macrophages and to have the greatest effect on their function as compared to the GMA-SS and GMA-MS fumes. Neither the soluble nor insoluble forms of the GMA-MS sample had any marked effect on macrophage viability. The flux-covered MMA-SS fume was found to be much more water soluble as compared to either the GMA-SS or the GMA-MS fumes. The soluble fraction of the MMA-SS samples was comprised almost entirely of Cr. The small fraction of the GMA-MS sample that was soluble contained Mn with little Fe, while a more complex mixture was observed in the soluble portion of the GMA-SS sample, which contained Mn, Ni, Fe, Cr, and Cu. Data show that differences in the solubility of welding fumes influence the viability and ROS production of macrophages. The presence of soluble metals, such as Fe, Cr, Ni, Cu, and Mn, and the complexes formed by these different metals are likely important in the pulmonary responses observed after welding fume exposure.
Fabrication of carbon nanotube films from alkyne-transition metal complexes
Iyer, Vivekanantan S [Delft, NL; Vollhardt, K Peter C. [Oakland, CA
2007-08-28
A simple method for the production or synthesis of carbon nanotubes as free-standing films or nanotube mats by the thermal decomposition of transition metal complexed alkynes with aryl, alkyl, alkenyl, or alkynyl substituents. In particular, transition metal (e.g. Co, Ni, Fe, Mo) complexes of diarylacetylenes, e.g. diphenylacetylene, and solid mixtures of these complexes with suitable, additional carbon sources are heated in a vessel. More specifically, the heating of the transition metal complex is completed at a temperature between 400-800.degree. C. and more particularly 550-700.degree. C. for between 0.1 to 24 hours and more particularly 0.5-3 hours in a sealed vessel under a partial pressure of argon or helium.
Homo- and Heterometallic Bis(Pentafluorobenzoyl)Methanide Complexes of Copper(II) and Cobalt(II)
NASA Astrophysics Data System (ADS)
Crowder, Janell M.
beta-Diketones are well known to form metal complexes with practically every known metal and metalloid. Metal complexes of fluorinated beta-diketones generally exhibit increased volatility and thermal stability compared to the non-fluorinated analogues, and thus are used extensively in various chemical vapor deposition (CVD) processes for the deposition of metal, simple or mixed metal oxides, and fluorine-doped metal oxide thin films. Furthermore, the electron-withdrawing nature of the fluorinated ligand enhances the Lewis acidity of a coordinatively unsaturated metal center which facilitates additional coordination reactions. The physical and structural properties of fluorinated beta-diketonate complexes are discussed in Chapter 1 and a few key application examples are given. The focus of this work is the synthesis and single crystal X-ray structural characterization of unsolvated and coordinatively unsaturated metal complexes of bis(pentafluorobenzoyl)- methanide (L, C6F5COCHCOC 6F5-). In Chapter 2, we present the preparation and isolation of the unsolvated complex [Cu(L)2] in pure crystalline form for the first time. We subsequently investigated the reaction of unsolvated [Cu(L)2] with sodium hexafluoroacetylacetonate [Na(hfac)] in a solvent-free environment. This reaction allowed the isolation of the first heterometallic Na-Cu diketonate [Na2Cu2(L) 4(hfac)2] structurally characterized by single crystal X-ray crystallography. Thermal decomposition of [Na2Cu2(L) 4(hfac)2] was investigated for its potential application in MOCVD processes. In the final chapter, we present the first exploration of the anhydrous synthesis of Co(II) complexed with bis(pentafluorobenzoyl)methanide in order to produce a complex without ligated water. Single crystal X-ray crystallographic investigations revealed the isolation of the ethanol adduct, [Co2(L)4(C2H5OH)2], and following the removal of ethanol, a 1,4-dioxane adduct, [{Co 2(L)4}2(C4H8O2)]. In this work, we have provided the first investigation of the synthesis, isolation and single crystal X-ray structural characterization of unsolvated and coordinatively unsaturated Cu(II) and Co(II) complexes of bis(pentafluorobenzoyl)methanide ligand. These studies demonstrate how the electrophilicity of a coordinatively unsaturated metal complexed to highly-fluorinated â-diketone ligands can be utilized for the formation of new adducts or new and interesting heterometallic complexes. This body of work provides a basis upon which future research into unsolvated and unligated bis(pentafluorobenzoyl)methanide metal complexes can expand.
Borrok, David M; Fein, Jeremy B; Kulpa, Charles F
2004-11-01
To model the effects of bacterial metal adsorption in contaminated environments, results from metal adsorption experiments involving individual pure stains of bacteria must be extrapolated to systems in which potentially dozens of bacterial species are present. This extrapolation may be made easier because bacterial consortia from natural environments appear to exhibit similar metal binding properties. However, bacteria that thrive in highly perturbed contaminated environments may exhibit significantly different adsorptive behavior. Here we measure proton and Cd adsorption onto a range of bacterial consortia grown from heavily contaminated industrial wastes, groundwater, and soils. We model the results using a discrete site surface complexation approach to determine binding constants and site densities for each consortium. The results demonstrate that bacterial consortia from different contaminated environments exhibit a range of total site densities (approximately a 3-fold difference) and Cd-binding constants (approximately a 10-fold difference). These ranges for Cd binding constants may be small enough to suggest that bacteria-metal adsorption in contaminated environments can be described using relatively few "averaged" bacteria-metal binding constants (in conjunction with the necessary binding constants for competing surfaces and ligands). However, if additional precision is necessary, modeling parameters must be developed separately for each contaminated environment of interest.
NASA Astrophysics Data System (ADS)
Li, Gongyu; Yuan, Siming; Zheng, Shihui; Chen, Yuting; Zheng, Zhen; Liu, Yangzhong; Huang, Guangming
2017-12-01
Specific protein-metal interactions (PMIs) fulfill essential functions in cells and organic bodies, and activation of these functions in vivo are mostly modulated by the complex environmental factors, including pH value, small biomolecules, and salts. Specifically, the role of salts in promoting specific PMIs and their competition among various metals has remained untapped mainly due to the difficulty to distinguish nonspecific PMIs from specific PMIs by classic spectroscopic techniques. Herein, we report Hofmeister salts differentially promote the specific PMIs by combining nanoelectrospray ionization mass spectrometry and spectroscopic techniques (fluorescence measurement and circular dichroism). Furthermore, to explore the influence of salts in competitive binding between metalloproteins and various metals, we designed a series of competitive experiments and applied to a well-defined model system, the competitive binding of zinc (II) and arsenic (III) to holo-promyelocytic leukemia protein (PML). These experiments not only provided new insights at the molecular scale as complementary to previous NMR and spectroscopic results, but also deduced the relative binding ability between zinc finger proteins and metals at the molecular scale, which avoids the mass spectrometric titration-based determination of binding constants that is frequently affected and often degraded by variable solution conditions including salt contents. [Figure not available: see fulltext.
Surface Modification and Nanojunction Fabrication with Molecular Metal Wires
2014-02-17
Title: Transition Metal Complexes of a Super Rigid Anthyridine Ligand: Structural, Magnetic and DFT Studies. Transition metal complexes of iron ( II ...Compounds with Masked Diazonium Capping Groups (J. Organomet. Chem. 2013, 745, 93). (3) New Diruthenium( II ,III) Compounds Bearing Terminal Olefin Groups...2012, 36, 2340). (2) Synthesis , Structure, Magnetism, and Single Molecular Conductance of Linear Trinickel String Complexes with Sulfur-Containing
ERIC Educational Resources Information Center
Bo¨rgel, Jonas; Campbell, Michael G.; Ritter, Tobias
2016-01-01
The presentation of d-orbital splitting diagrams for square planar transition metal complexes in textbooks and educational materials is often inconsistent and therefore confusing for students. Here we provide a concise summary of the key features of orbital splitting diagrams for square planar complexes, which we propose may be used as an updated…
Electrolyte salts for nonaqueous electrolytes
Amine, Khalil; Zhang, Zhengcheng; Chen, Zonghai
2012-10-09
Metal complex salts may be used in lithium ion batteries. Such metal complex salts not only perform as an electrolyte salt in a lithium ion batteries with high solubility and conductivity, but also can act as redox shuttles that provide overcharge protection of individual cells in a battery pack and/or as electrolyte additives to provide other mechanisms to provide overcharge protection to lithium ion batteries. The metal complex salts have at least one aromatic ring. The aromatic moiety may be reversibly oxidized/reduced at a potential slightly higher than the working potential of the positive electrode in the lithium ion battery. The metal complex salts may also be known as overcharge protection salts.
Lindahl, Paul A; Moore, Michael J
2016-08-02
Iron, copper, zinc, manganese, cobalt, and molybdenum play important roles in mitochondrial biochemistry, serving to help catalyze reactions in numerous metalloenzymes. These metals are also found in labile "pools" within mitochondria. Although the composition and cellular function of these pools are largely unknown, they are thought to be comprised of nonproteinaceous low-molecular-mass (LMM) metal complexes. Many problems must be solved before these pools can be fully defined, especially problems stemming from the lability of such complexes. This lability arises from inherently weak coordinate bonds between ligands and metals. This is an advantage for catalysis and trafficking, but it makes characterization difficult. The most popular strategy for investigating such pools is to detect them using chelator probes with fluorescent properties that change upon metal coordination. Characterization is limited because of the inevitable destruction of the complexes during their detection. Moreover, probes likely react with more than one type of metal complex, confusing analyses. An alternative approach is to use liquid chromatography (LC) coupled with inductively coupled plasma mass spectrometry (ICP-MS). With help from a previous lab member, the authors recently developed an LC-ICP-MS approach to analyze LMM extracts from yeast and mammalian mitochondria. They detected several metal complexes, including Fe580, Fe1100, Fe1500, Cu5000, Zn1200, Zn1500, Mn1100, Mn2000, Co1200, Co1500, and Mo780 (numbers refer to approximate masses in daltons). Many of these may be used to metalate apo-metalloproteins as they fold inside the organelle. The LC-based approach also has challenges, e.g., in distinguishing artifactual metal complexes from endogenous ones, due to the fact that cells must be disrupted to form extracts before they are passed through chromatography columns prior to analysis. Ultimately, both approaches will be needed to characterize these intriguing complexes and to elucidate their roles in mitochondrial biochemistry.
Svanedal, Ida; Boija, Susanne; Norgren, Magnus; Edlund, Håkan
2014-06-10
The correlation between interaction parameters and ion flotation efficiency in mixtures of chelating surfactant metal complexes and different foaming agents was investigated. We have recently shown that chelating surfactant 2-dodecyldiethylenetriaminepentaacetic acid (4-C12-DTPA) forms strong coordination complexes with divalent metal ions, and this can be utilized in ion flotation. Interaction parameters for mixed micelles and mixed monolayer formation for Mg(2+) and Ni(2+) complexes with the chelating surfactant 4-C12-DTPA and different foaming agents were calculated by Rubingh's regular solution theory. Parameters for the calculations were extracted from surface tension measurements and NMR diffusometry. The effects of metal ion coordination on the interactions between 4-C12-DTPA and the foaming agents could be linked to a previously established difference in coordination chemistry between the examined metal ions. As can be expected from mixtures of amphoteric surfactants, the interactions were strongly pH-dependent. Strong correlation was found between interaction parameter β(σ) for mixed monolayer formation and the phase-transfer efficiency of Ni(2+) complexes with 4-C12-DTPA during flotation in a customized flotation cell. In a mixture of Cu(2+) and Zn(2+), the significant difference in conditional stability constants (log K) between the metal complexes was utilized to selectively recover the metal complex with the highest log K (Cu(2+)) by ion flotation. Flotation experiments in an excess concentration of metal ions confirmed the coordination of more than one metal ion to the headgroup of 4-C12-DTPA.
Highly-Sensitive Thin Film THz Detector Based on Edge Metal-Semiconductor-Metal Junction.
Jeon, Youngeun; Jung, Sungchul; Jin, Hanbyul; Mo, Kyuhyung; Kim, Kyung Rok; Park, Wook-Ki; Han, Seong-Tae; Park, Kibog
2017-12-04
Terahertz (THz) detectors have been extensively studied for various applications such as security, wireless communication, and medical imaging. In case of metal-insulator-metal (MIM) tunnel junction THz detector, a small junction area is desirable because the detector response time can be shortened by reducing it. An edge metal-semiconductor-metal (EMSM) junction has been developed with a small junction area controlled precisely by the thicknesses of metal and semiconductor films. The voltage response of the EMSM THz detector shows the clear dependence on the polarization angle of incident THz wave and the responsivity is found to be very high (~2,169 V/W) at 0.4 THz without any antenna and signal amplifier. The EMSM junction structure can be a new and efficient way of fabricating the nonlinear device THz detector with high cut-off frequency relying on extremely small junction area.
Oliva, Josep; De Pablo, Joan; Cortina, José-Luis; Cama, Jordi; Ayora, Carlos
2011-10-30
Apatite II™, a biogenic hydroxyapatite, was evaluated as a reactive material for heavy metal (Cd, Cu, Co, Ni and Hg) removal in passive treatments. Apatite II™ reacts with acid water by releasing phosphates that increase the pH up to 6.5-7.5, complexing and inducing metals to precipitate as metal phosphates. The evolution of the solution concentration of calcium, phosphate and metals together with SEM-EDS and XRD examinations were used to identify the retention mechanisms. SEM observation shows low-crystalline precipitate layers composed of P, O and M. Only in the case of Hg and Co were small amounts of crystalline phases detected. Solubility data values were used to predict the measured column experiment values and to support the removal process based on the dissolution of hydroxyapatite, the formation of metal-phosphate species in solution and the precipitation of metal phosphate. Cd(5)(PO(4))(3)OH(s), Cu(2)(PO(4))OH(s), Ni(3)(PO(4))(2)(s), Co(3)(PO(4))(2)8H(2)O(s) and Hg(3)(PO(4))(2)(s) are proposed as the possible mineral phases responsible for the removal processes. The results of the column experiments show that Apatite II™ is a suitable filling for permeable reactive barriers. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dhankar, Raksha P.; Rahatgaonkar, Anjali M.; Chorghade, Mukund S.; Tiwari, Ashutosh
2-oxo-4-phenyl-6-styryl-1,2,3,4-tetrahydro-pyrimidine-5-carboxylic acid (ADP) was complexed with acetates of Mn(II), Ni(II), Cu(II) and Zn(II). The structures of the ligand and its metal complexes were characterized by microanalysis, IR, NMR, UV-vis spectroscopy, magnetic susceptibility and TGA-DTA analyses. Octahedral and square planar geometries were suggested for the complexes in which the central metal ion coordinated with sbnd O donors of ligand and acetate ions. Each ligand binds the metal using carboxylate oxygens. The ligand and complexes were evaluated for their antimicrobial activities against different species of pathogenic bacteria and fungi. The present novel pyrimidine containing complexes could constitute a new group of antibacterial and antifungal agents.
Features of proteolytic properties of tetraphenylporphyrin complex with lanthanide group metals
NASA Astrophysics Data System (ADS)
Tobolkina, Elena A.; Skripnikova, Tatiana A.; Starikova, Anna A.; Shumilova, Galina I.; Pendin, Andrey A.
2018-01-01
Demetallation of metalloporphyrin molecules is one of the essential degradation reactions in photosynthesis. The effect of metalloporphyrin nature on removal of central metals from tetraphenylporphyrin complexes based on lanthanide group metals (Dy, Er, Lu, Ho) has been studied. pH values, at which the metal ions leave the metalloporphyrin complex were established using two-phase spectrophotometric titration with potentiometric pH-control. The pH values decrease with the increase of atomic numbers of lanthanide groups, as well as with increase of 4f-electrons. The reaction of an extra ligand exchange for the hydroxide ion was studied. For Dy-, Er- and Ho-tetraphenylporphyrin complexes one particle of extra ligand coordinates with one porphyrin complex. A complex with dimeric particles can be formed for the system of Lu-tetraphenylporphyrin. Constants of the ion exchange reactions were calculated.
NASA Astrophysics Data System (ADS)
Shock, Everetr L.; Koretsky, Carla M.
1995-04-01
Regression of standard state equilibrium constants with the revised Helgeson-Kirkham-Flowers (HKF) equation of state allows evaluation of standard partial molal entropies ( overlineSo) of aqueous metal-organic complexes involving monovalent organic acid ligands. These values of overlineSo provide the basis for correlations that can be used, together with correlation algorithms among standard partial molal properties of aqueous complexes and equation-of-state parameters, to estimate thermodynamic properties including equilibrium constants for complexes between aqueous metals and several monovalent organic acid ligands at the elevated pressures and temperatures of many geochemical processes which involve aqueous solutions. Data, parameters, and estimates are given for 270 formate, propanoate, n-butanoate, n-pentanoate, glycolate, lactate, glycinate, and alanate complexes, and a consistent algorithm is provided for making other estimates. Standard partial molal entropies of association ( Δ -Sro) for metal-monovalent organic acid ligand complexes fall into at least two groups dependent upon the type of functional groups present in the ligand. It is shown that isothermal correlations among equilibrium constants for complex formation are consistent with one another and with similar correlations for inorganic metal-ligand complexes. Additional correlations allow estimates of standard partial molal Gibbs free energies of association at 25°C and 1 bar which can be used in cases where no experimentally derived values are available.
NASA Astrophysics Data System (ADS)
Jing, Zhifeng; Qi, Rui; Liu, Chengwen; Ren, Pengyu
2017-10-01
The interactions between metal ions and proteins are ubiquitous in biology. The selective binding of metal ions has a variety of regulatory functions. Therefore, there is a need to understand the mechanism of protein-ion binding. The interactions involving metal ions are complicated in nature, where short-range charge-penetration, charge transfer, polarization, and many-body effects all contribute significantly, and a quantitative description of all these interactions is lacking. In addition, it is unclear how well current polarizable force fields can capture these energy terms and whether these polarization models are good enough to describe the many-body effects. In this work, two energy decomposition methods, absolutely localized molecular orbitals and symmetry-adapted perturbation theory, were utilized to study the interactions between Mg2+/Ca2+ and model compounds for amino acids. Comparison of individual interaction components revealed that while there are significant charge-penetration and charge-transfer effects in Ca complexes, these effects can be captured by the van der Waals (vdW) term in the AMOEBA force field. The electrostatic interaction in Mg complexes is well described by AMOEBA since the charge penetration is small, but the distance-dependent polarization energy is problematic. Many-body effects were shown to be important for protein-ion binding. In the absence of many-body effects, highly charged binding pockets will be over-stabilized, and the pockets will always favor Mg and thus lose selectivity. Therefore, many-body effects must be incorporated in the force field in order to predict the structure and energetics of metalloproteins. Also, the many-body effects of charge transfer in Ca complexes were found to be non-negligible. The absorption of charge-transfer energy into the additive vdW term was a main source of error for the AMOEBA many-body interaction energies.
Chemical Complexity in the Eu-enhanced Monometallic Globular NGC 5986
NASA Astrophysics Data System (ADS)
Johnson, Christian I.; Caldwell, Nelson; Rich, R. Michael; Mateo, Mario; Bailey, John I., III; Olszewski, Edward W.; Walker, Matthew G.
2017-06-01
NGC 5986 is a poorly studied but relatively massive Galactic globular cluster that shares several physical and morphological characteristics with “iron-complex” clusters known to exhibit significant metallicity and heavy-element dispersions. In order to determine whether NGC 5986 joins the iron-complex cluster class, we investigated the chemical composition of 25 red giant branch and asymptotic giant branch cluster stars using high-resolution spectra obtained with the Magellan-M2FS instrument. Cluster membership was verified using a combination of radial velocity and [Fe/H] measurements, and we found the cluster to have a mean heliocentric radial velocity of +99.76 km s-1 (σ = 7.44 km s-1). We derived a mean metallicity of [Fe/H] = -1.54 dex (σ = 0.08 dex), but the cluster’s small dispersion in [Fe/H] and low [La/Eu] abundance preclude it from being an iron-complex cluster. NGC 5986 has < [{Eu}/{Fe}]> =+0.76 {dex} (σ = 0.08 dex), which is among the highest ratios detected in a Galactic cluster, but the small [Eu/Fe] dispersion is puzzling because such high values near [Fe/H] ˜ -1.5 are typically only found in dwarf galaxies exhibiting large [Eu/Fe] variations. NGC 5986 exhibits classical globular cluster characteristics, such as uniformly enhanced [α/Fe] ratios, a small dispersion in Fe-peak abundances, and (anti)correlated light-element variations. Similar to NGC 2808, we find evidence that NGC 5986 may host at least four to five populations with distinct light-element compositions, and the presence of a clear Mg-Al anticorrelation along with an Al-Si correlation suggests that the cluster gas experienced processing at temperatures ≳65-70 MK. However, the current data do not support burning temperatures exceeding ˜100 MK. We find some evidence that the first- and second-generation stars in NGC 5986 may be fully spatially mixed, which could indicate that the cluster has lost a significant fraction of its original mass. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.
Montavon, G; Bouby, M; Huclier-Markai, S; Grambow, B; Geckeis, H; Rabung, T; Pashalidis, I; Amekraz, B; Moulin, C
2008-11-15
The trivalent metal ion (M(III)=Cm, Eu)/polyacrylic acid (PAA) system was studied in the pH range between 3 and 5.5 for a molar PAA-to-metal ratio above 1. The interaction was studied for a wide range of PAA (0.05 mg L(-1)-50 g L(-1)) and metal ion concentrations (2x10(-9)-10(-3) M). This work aimed at 3 goals (i) to determine the stoichiometry of M(III)-PAA complexes, (ii) to determine the number of complexed species and the local environment of the metal ion, and (iii) to quantify the reaction processes. Asymmetric flow-field-flow fractionation (AsFlFFF) coupled to ICP-MS evidenced that size distributions of Eu-PAA complexes and PAA were identical, suggesting that Eu bound to only one PAA chain. Time-resolved laser fluorescence spectroscopy (TRLFS) measurements performed with Eu and Cm showed a continuous shift of the spectra with increasing pH. The environment of complexed metal ions obviously changes with pH. Most probably, spectral variations arose from conformational changes within the M(III)-PAA complex due to pH variation. Complexation data describing the distribution of complexed and free metal ion were measured with Cm by TRLFS. They could be quantitatively described in the whole pH-range studied by considering the existence of only a single complexed species. This indicates that the slight changes in M(III) speciation with pH observed at the molecular level do not significantly affect the intrinsic binding constant. The interaction constant obtained from the modelling must be considered as a mean interaction constant.
NASA Astrophysics Data System (ADS)
Coutaud, Margot; Méheut, Merlin; Glatzel, Pieter; Pokrovski, Gleb S.; Viers, Jérôme; Rols, Jean-Luc; Pokrovsky, Oleg S.
2018-01-01
Despite the importance of phototrophic biofilms in metal cycling in freshwater systems, metal isotope fractionation linked to metal adsorption and uptake by biofilm remains very poorly constrained. Here, copper isotope fractionation by a mature phototrophic biofilm during Cu surface adsorption and incorporation was studied in batch reactor (BR) and open drip flow reactor (DFR) systems at ambient conditions. X-ray Absorption Spectroscopy (both Near Edge Structure, XANES, and Extended Fine Structure, EXAFS) at Cu K-edge of the biofilm after its interaction with Cu in BR experiments allowed characterizing the molecular structure of assimilated Cu and quantifying the degree of CuII to CuI reduction linked to Cu assimilation. For both BR and DFR experiments, Cu adsorption caused enrichment in heavy isotope at the surface of the biofilm relative to the aqueous solution, with an apparent enrichment factor for the adsorption process, ε65Cuads, of +1.1 ± 0.3‰. In contrast, the isotope enrichment factor during copper incorporation into the biofilm (ε65Cuinc) was highly variable, ranging from -0.6 to +0.8‰. This variability of the ε65Cuinc value was likely controlled by Cu cellular uptake via different transport pathways resulting in contrasting fractionation. Specifically, the CuII storage induced enrichment in heavy isotope, whereas the toxicity response of the biofilm to Cu exposure resulted in reduction of CuII to CuI, thus yielding the biofilm enrichment in light isotope. EXAFS analyses suggested that a major part of the Cu assimilated by the biofilm is bound to 5.1 ± 0.3 oxygen or nitrogen atoms, with a small proportion of Cu linked to sulfur atoms (NS < 0.6) of sulfhydryl groups. XANES analyses showed that the proportion of CuIIvs CuI, compared to the initial CuII/CuI ratio, decreased by 14% after the first hour of reaction and by 6% after 96 h of reaction. The value of ε65Cuinc of the biofilm exhibited a similar trend over time of exposure. Our study demonstrates the complexity of biological processes associated with live phototrophic biofilms, which produce large and contrasting isotope fractionations following rather small Cu redox and speciation changes during uptake, storage or release of the metal, i.e., favoring heavy isotopes during complexation with carboxylate ligands and light isotopes during reduction of CuII-O/N to CuI-sulfhydryl moieties.
NASA Astrophysics Data System (ADS)
Dror, I.; Ringering, K.; Yecheskel, Y.; Berkowitz, B.
2017-12-01
The mobility of indium and gallium in groundwater environments was studied via laboratory experiments using quartz sand as a porous medium. Indium and gallium are metals of very low abundance in the Earth's crust and, correspondingly, the biosphere is only adapted to very small concentrations of these elements. However, in modern semiconductor industries, both elements play a central role and are incorporated in devices of mass production such as smartphones and digital cameras. The resulting considerable increase in production, use and discharge of indium and gallium throughout the last two decades, with a continuous and fast increase in the near future, raises questions regarding the fate of both elements in the environment. However, the transport behavior of these two metals in soils and groundwater systems remains poorly understood to date. Because of the low solubility of both elements in aqueous solutions, trisodium citrate was used as a complexation agent to stabilize the solutions, enabling investigation of the transport of these metals at neutral pH. Column experiments showed different binding capacities for indium and gallium, where gallium is much more mobile compared to indium and both metals are substantially retarded in the column. Different affinities were also confirmed by examining sorption isotherms of indium and gallium in equilibrium batch systems. The effect of natural organic matter on the mobility of indium and gallium was also studied, by addition of humic acid. For both metals, the presence of humic acid affects the sorption dynamics: for indium, sorption is strongly inhibited leading to much higher mobility, whereas gallium showed a slightly higher sorption affinity and very similar mobility compared to the same setup without humic acid addition. However, in all cases, the binding capacity of gallium to quartz is much weaker than that of indium. These results are consistent with the assumption that indium and gallium form different types of complexes with organic ligands. It was further observed that the complexes of gallium appear to be more stable than those of indium.
1987-11-01
for various types of samples and acids. The system features PFA -closed vessels that will tolerate up to 100 psi, a Teflon-lined cavity that reduces...complexes. Selec- tivity is accomplished by masking agents and pH adjustment and sorption on a small XAD-4 resin column. Evaporation of solvent 119...same pH, Cr(VI) is selectively reduced to Cr(III) and accumulated by adsorption at -0.3 V versus SCE (Batley and Matousek 1980). 150. Sorption , ion
Anatomy of point-contact Andreev reflection spectroscopy from the experimental point of view
NASA Astrophysics Data System (ADS)
Naidyuk, Yu. G.; Gloos, K.
2018-04-01
We review applications of point-contact Andreev-reflection spectroscopy to study elemental superconductors, where theoretical conditions for the smallness of the point-contact size with respect to the characteristic lengths in the superconductor can be satisfied. We discuss existing theoretical models and identify new issues that have to be solved, especially when applying this method to investigate more complex superconductors. We will also demonstrate that some aspects of point-contact Andreev-reflection spectroscopy still need to be addressed even when investigating ordinary metals.
Dervos, Constantine T.; Paraskevas, Christos D.; Skafidas, Panayotis D.; Vassiliou, Panayota
2005-01-01
This work investigates the use of a specially designed cylindrical metal cell, in order to obtain complex permittivity and tanδ data of highly insulating High Voltage (HV) transformer oil samples. The data are obtained at a wide range of frequencies and operation temperatures to demonstrate the polarization phenomena and the thermally stimulated effects. Such complex permittivity measurements may be utilized as a criterion for the service life prediction of oil field electrical equipment (OFEE). Therefore, by one set of measurements on a small oil volume, data may be provided on the impending termination, or continuation of the transformer oil service life. The oil incorporating cell, attached to the appropriate measuring units, could be described as a complex permittivity sensor. In this work, the acquired dielectric data from a great number of operating distribution network power transformers were correlated to corresponding physicochemical ones to demonstrate the future potential employment of the proposed measuring technique.
NASA Astrophysics Data System (ADS)
Shankarwar, Sunil G.; Nagolkar, Bhagwat B.; Shelke, Vinod A.; Chondhekar, Trimbak K.
2015-06-01
A series of metal complexes of Mn(II), Co(II), Ni(II), Cu(II), have been synthesized with newly synthesized biologically active macrocyclic ligand. The ligand was synthesized by condensation of β-diketone 1-(4-chlorophenyl)-3-(2-hydroxyphenyl)propane-1,3-dione and o-phenylene diamine. All the complexes were characterized by elemental analysis, molar conductivity, magnetic susceptibility, thermal analysis, X-ray diffraction, IR, 1H-NMR, UV-Vis spectroscopy and mass spectroscopy. From the analytical data, stoichiometry of the complexes was found to be 1:2 (metal:ligand). Thermal behavior (TG/DTA) and kinetic parameters suggest more ordered activated state in complex formation. All the complexes are of high spin type and six coordinated. On the basis of IR, electronic spectral studies and magnetic behavior, an octahedral geometry has been assigned to these complexes. The antibacterial and antifungal activities of the ligand and its metal complexes, has been screened in vitro against Staphylococcus aureus, Escherichia coli and Aspergillus niger, Trichoderma respectively.
NASA Astrophysics Data System (ADS)
Asadi, Mozaffar; Asadi, Zahra; Zarei, Leila; Sadi, Somaye Barzegar; Amirghofran, Zahra
2014-12-01
Metal Schiff-base complexes show biological activity but they are usually insoluble in water so four new water-soluble metal Schiff base complexes of Na2[M(5-SO3-1,2-salben]; (5-SO3-1,2-salben denoted N,N";-bis(5-sulphosalicyliden)-1,2-diaminobenzylamine and M = Mg, Mn, Cu, Zn) were synthesized and characterized. The formation constants of the metal complexes were determined by UV-Vis absorption spectroscopy. The interaction of these complexes with bovine serum albumin (BSA) was studied by fluorescence spectroscopy. Type of quenching, binding constants, number of binding sites and binding stoichiometries were determined by fluorescence quenching method. The results showed that the mentioned complexes strongly bound to BSA. Thermodynamic parameters indicated that hydrophobic association was the major binding force and that the interaction was entropy driven and enthalpically disfavoured. The displacement experiment showed that these complexes could bind to the subdomain IIA (site I) of albumin. Furthermore the synchronous fluorescence spectra showed that the microenvironment of the tryptophan residues was not apparently changed. Based on the Förster theory of non-radiation energy transfer, the distance between the donor (Trp residues) and the acceptor metal complexes was obtained. The growth inhibitory effect of complexes toward the K562 cancer cell line was measured.
Preparation of nanoporous metal foam from high nitrogen transition metal complexes
Tappan, Bryce C.; Huynh, My Hang V.; Hiskey, Michael A.; Son, Steven F.; Oschwald, David M.; Chavez, David E.; Naud, Darren L.
2006-11-28
Nanoporous metal foams are prepared by ignition of high nitrogen transition metal complexes. The ammonium salts of iron(III) tris[bi(tetrazolato)-amine], cobalt(III) tris(bi(tetrazolato)amine), and high nitrogen compounds of copper and silver were prepared as loose powders, pressed into pellets and wafers, and ignited under an inert atmosphere to form nanoporous metal foam monoliths having very high surface area and very low density.
Fe(+) chemical ionization of peptides.
Speir, J P; Gorman, G S; Amster, I J
1993-02-01
Laser-desorbed peptide neutral molecules were allowed to react with Fe(+) in a Fourier transform mass spectrometer, using the technique of laser desorption/chemical ionization. The Fe(+) ions are formed by laser ablation of a steel target, as well as by dissociative charge-exchange ionization of ferrocene with Ne(+). Prior to reaction with laser-desorbed peptide molecules, Fe(+) ions undergo 20-100 thermalizin collisions with xenon to reduce the population of excited-state metal ion species. The Fe(+) ions that have not experienced thermalizing collisions undergo charge exchange with peptide molecules. Iron ions that undergo thermalizing collisions before they are allowed to react with peptides are found to undergo charge exchange and to form adduct species [M + Fe(+)] and fragment ions that result from the loss of small, stable molecules, such as H2O, CO, and CO2, from the metal ion-peptide complex.
Lee, Jai-Sung; Choi, Joon-Phil; Lee, Geon-Yong
2013-01-01
This paper provides an overview on our recent investigations on the consolidation of hierarchy-structured nanopowder agglomerates and related applications to net-shaping nanopowder materials. Understanding the nanopowder agglomerate sintering (NAS) process is essential to processing of net-shaped nanopowder materials and components with small and complex shape. The key concept of the NAS process is to enhance material transport through controlling the powder interface volume of nanopowder agglomerates. Based upon this concept, we have suggested a new idea of full density processing for fabricating micro-powder injection molded part using metal nanopowder agglomerates produced by hydrogen reduction of metal oxide powders. Studies on the full density sintering of die compacted- and powder injection molded iron base nano-agglomerate powders are introduced and discussed in terms of densification process and microstructure. PMID:28788317
Heena; Kumar, Rajesh; Rani, Susheela; Malik, Ashok Kumar
2015-01-01
This study represents a new analytical high-performance liquid chromatography-fluorescence detector method for the determination of Al(III) as Al(III) complex with 8-hydroxyquinoline-5-sulfonic acid in a tap water sample and a coke sample. A micellar liquid chromatographic method is proposed for the determination of aluminum metal in the presence of cetyltrimethylammonium bromide, a cationic surfactant (0.05 M) used for the solubilization of the aluminum complex. The influence of pH and ligand concentration on the formation of the complex was studied by adding a small amount of 0.1 M sodium hydroxide. The metal chelate was detected at λEx 410 nm and λEm 510 nm. This method eliminates the need for addition of reagent or organic modifier to the mobile phase. The complex was analyzed using an Ascentis Express C18 column and a mobile phase consisting of acetonitrile, methanol and water (55 : 30 : 15). Under the optimized conditions, the linear range was 1-200 µg L(-1) and the limit of detection was 0.05 µg L(-1). The method showed a good detector response over the range of interest and was successfully applied for the determination of trace Al(III) in canned coke and water samples containing excess of Mg(II), Ca(II) and other matrices. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
A low-spin Fe(III) complex with 100-ps ligand-to-metal charge transfer photoluminescence
NASA Astrophysics Data System (ADS)
Chábera, Pavel; Liu, Yizhu; Prakash, Om; Thyrhaug, Erling; Nahhas, Amal El; Honarfar, Alireza; Essén, Sofia; Fredin, Lisa A.; Harlang, Tobias C. B.; Kjær, Kasper S.; Handrup, Karsten; Ericson, Fredric; Tatsuno, Hideyuki; Morgan, Kelsey; Schnadt, Joachim; Häggström, Lennart; Ericsson, Tore; Sobkowiak, Adam; Lidin, Sven; Huang, Ping; Styring, Stenbjörn; Uhlig, Jens; Bendix, Jesper; Lomoth, Reiner; Sundström, Villy; Persson, Petter; Wärnmark, Kenneth
2017-03-01
Transition-metal complexes are used as photosensitizers, in light-emitting diodes, for biosensing and in photocatalysis. A key feature in these applications is excitation from the ground state to a charge-transfer state; the long charge-transfer-state lifetimes typical for complexes of ruthenium and other precious metals are often essential to ensure high performance. There is much interest in replacing these scarce elements with Earth-abundant metals, with iron and copper being particularly attractive owing to their low cost and non-toxicity. But despite the exploration of innovative molecular designs, it remains a formidable scientific challenge to access Earth-abundant transition-metal complexes with long-lived charge-transfer excited states. No known iron complexes are considered photoluminescent at room temperature, and their rapid excited-state deactivation precludes their use as photosensitizers. Here we present the iron complex [Fe(btz)3]3+ (where btz is 3,3‧-dimethyl-1,1‧-bis(p-tolyl)-4,4‧-bis(1,2,3-triazol-5-ylidene)), and show that the superior σ-donor and π-acceptor electron properties of the ligand stabilize the excited state sufficiently to realize a long charge-transfer lifetime of 100 picoseconds (ps) and room-temperature photoluminescence. This species is a low-spin Fe(III) d5 complex, and emission occurs from a long-lived doublet ligand-to-metal charge-transfer (2LMCT) state that is rarely seen for transition-metal complexes. The absence of intersystem crossing, which often gives rise to large excited-state energy losses in transition-metal complexes, enables the observation of spin-allowed emission directly to the ground state and could be exploited as an increased driving force in photochemical reactions on surfaces. These findings suggest that appropriate design strategies can deliver new iron-based materials for use as light emitters and photosensitizers.
Metal-isonitrile adducts for preparing radionuclide complexes for labelling and imaging agents
Jones, Alun G.; Davison, Alan; Abrams, Michael J.
1987-01-01
A method for preparing a coordination complex of an isonitrile ligand and radionuclide such as Tc, Ru, Co, Pt, Fe, Os, Ir, W, Re, Cr, Mo, Mn, Ni, Rh, Pd, Nb and Ta is disclosed. The method comprises preparing a soluble metal adduct of said isonitrile ligand by admixing said ligand with a salt of a displaceable metal having a complete d-electron shell selected from the group consisting of Zn, Ga, Cd, In, Sn, Hg, Tl, Pb and Bi to form a soluble metal-isonitrile salt, and admixing said metal isonitrile salt with a salt comprising said radioactive metal in a suitable solvent to displace said displaceable metal with the radioactive metal thereby forming said coordination. The complex is useful as a diagnostic agent for labelling liposomes or vesicles, and selected living cells containing lipid membranes, such as blood clots, myocardial tissue, gall bladder tissue, etc.
Group transfer and electron transfer reactions of organometallic complexes
NASA Astrophysics Data System (ADS)
Atwood, Jim D.
During 1994, despite the disruptions, the authors have made progress in several aspects of their research on electron transfer reactions between organometallic complexes. This summary covers three areas that are relatively complete: (1) reactions between metal carbonyl anions and metal carbonyl halides, (2) reactions of hydrido- and alkyl-containing anions (RFe(CO)4(-) and RW(CO)5(-) with metal carbonyl cations; and (3) reactions of a seventeen-electron complex (Cp* Cr(CO)3*) with metal carbonyl derivatives. Two areas of examination that have just begun (possible carbene transfer and the possible role of metal carbonyl anions in carbon-hydrogen bond activation) will also be described.
VizieR Online Data Catalog: Abundances of M33 HII regions (Magrini+, 2010)
NASA Astrophysics Data System (ADS)
Magrini, L.; Stanghellini, L.; Corbelli, E.; Galli, D.; Villaver, E.
2009-11-01
We analyze the spatial distribution of metals in M33 using a new sample and literature data of HII regions, constraining a model of galactic chemical evolution with HII region and planetary nebula (PN) abundances. We consider chemical abundances of a new sample of HII regions complemented with previous literature data-sets. Supported by a uniform sample of nebular spectroscopic observations, we conclude that: i) the metallicity distribution in M33 is very complex, showing a central depression in metallicity probably due to observational bias; ii) the metallicity gradient in the disk of M33 has a slope of -0.037+/-0.009dex/kpc in the whole radial range up to ~8kpc, and -0.044+/-0.009dex/kpc excluding the central kpc; iii) there is a small evolution of the slope with time from the epoch of PN progenitor formation to the present-time. Description: Emission line fluxes, observed and dereddened of 33 HII regions are presented. Physical and chemical properties, such as electron temperatures and density, ionic and total chemical abundances of He, O, N, Ne, Ar, S, are derived. (3 data files).
Infrared Multiple Photon Dissociation Spectroscopy Of Metal Cluster-Adducts
NASA Astrophysics Data System (ADS)
Cox, D. M.; Kaldor, A.; Zakin, M. R.
1987-01-01
Recent development of the laser vaporization technique combined with mass-selective detection has made possible new studies of the fundamental chemical and physical properties of unsupported transition metal clusters as a function of the number of constituent atoms. A variety of experimental techniques have been developed in our laboratory to measure ionization threshold energies, magnetic moments, and gas phase reactivity of clusters. However, studies have so far been unable to determine the cluster structure or the chemical state of chemisorbed species on gas phase clusters. The application of infrared multiple photon dissociation IRMPD to obtain the IR absorption properties of metal cluster-adsorbate species in a molecular beam is described here. Specifically using a high power, pulsed CO2 laser as the infrared source, the IRMPD spectrum for methanol chemisorbed on small iron clusters is measured as a function of the number of both iron atoms and methanols in the complex for different methanol isotopes. Both the feasibility and potential utility of IRMPD for characterizing metal cluster-adsorbate interactions are demonstrated. The method is generally applicable to any cluster or cluster-adsorbate system dependent only upon the availability of appropriate high power infrared sources.
Shocked and Stressed, Metals Get Stronger
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hackel, L
2002-03-12
People who know their way around metalworking are no doubt familiar with peening--using a ball-peen hammer to pound a piece of metal into shape and strengthen it against fatigue failure. For the past 50 years, an industrialized equivalent has been shot peening, in which metal or ceramic beads as large as marbles or as small as salt and pepper grains pneumatically bombard a metal surface. Laser peening, a process based on a superior laser technology developed at Lawrence Livermore, replaces the hammer blows and streams of beads with short blasts of laser light. The end result is a piece ofmore » metal with significantly improved performance. Lawrence Livermore and Metal Improvement Company, Inc., won a coveted R and D 100 Award for their laser-peening process in 1998 (see S and TR, October 1998, pp. 12-13). Since that time, they've been developing uses for the technology with a number of industries, including automotive, medical, and aerospace. They've also developed an offshoot technique--laser peenmarking{trademark}--which provides a way to easily and clearly identify parts with a mark that is extremely difficult to counterfeit. Another outgrowth is a new peen-forming technology that allows complex contouring of problematic thick metal components such as the thick sections of large aircraft wings. There have also been spinback applications to the Department of Energy's programs for stockpile stewardship, fuel-efficient vehicles, and long-term nuclear waste storage.« less
The presentation entitled “Small Community and Household Water Systems Research on Removal of Metals and Pesticides from Drinking Water Sources” provides treatment alternatives for removal of metals and pesticides from surface and ground waters before human consumption. The pres...
Uchimiya, Minori; Bannon, Desmond I
2013-08-14
Biochar is often considered a strong heavy metal stabilizing agent. However, biochar in some cases had no effects on, or increased the soluble concentrations of, heavy metals in soil. The objective of this study was to determine the factors causing some biochars to stabilize and others to dissolve heavy metals in soil. Seven small arms range soils with known total organic carbon (TOC), cation exchange capacity, pH, and total Pb and Cu contents were first screened for soluble Pb and Cu concentrations. Over 2 weeks successive equilibrations using weak acid (pH 4.5 sulfuric acid) and acetate buffer (0.1 M at pH 4.9), Alaska soil containing disproportionately high (31.6%) TOC had nearly 100% residual (insoluble) Pb and Cu. This soil was then compared with sandy soils from Maryland containing significantly lower (0.5-2.0%) TOC in the presence of 10 wt % (i) plant biochar activated to increase the surface-bound carboxyl and phosphate ligands (PS450A), (ii) manure biochar enriched with soluble P (BL700), and (iii) unactivated plant biochars produced at 350 °C (CH350) and 700 °C (CH500) and by flash carbonization (corn). In weak acid, the pH was set by soil and biochar, and the biochars increasingly stabilized Pb with repeated extractions. In pH 4.9 acetate buffer, PS450A and BL700 stabilized Pb, and only PS450A stabilized Cu. Surface ligands of PS450A likely complexed and stabilized Pb and Cu even under acidic pH in the presence of competing acetate ligand. Oppositely, unactivated plant biochars (CH350, CH500, and corn) mobilized Pb and Cu in sandy soils; the putative mechanism is the formation of soluble complexes with biochar-borne dissolved organic carbon. In summary, unactivated plant biochars can inadvertently increase dissolved Pb and Cu concentrations of sandy, low TOC soils when used to stabilize other contaminants.
Chandra, Sulekh; Gautam, Seema; Rajor, Hament Kumar; Bhatia, Rohit
2015-02-25
Novel Schiff's base ligand, benzil bis(5-amino-1,3,4-thiadiazole-2-thiol) was synthesized by the condensation of benzil and 5-amino-1,3,4-thiadiazole-2-thiol in 1:2 ratio. The structure of ligand was determined on the basis of elemental analyses, IR, (1)H NMR, mass, and molecular modeling studies. Synthesized ligand behaved as tetradentate and coordinated to metal ion through sulfur atoms of thiol ring and nitrogen atoms of imine group. Ni(II), and Cu(II) complexes were synthesized with this nitrogen-sulfur donor (N2S2) ligand. Metal complexes were characterized by elemental analyses, molar conductance, magnetic susceptibility measurements, IR, electronic spectra, EPR, thermal, and molecular modeling studies. All the complexes showed molar conductance corresponding to non-electrolytic nature, expect [Ni(L)](NO3)2 complex, which was 1:2 electrolyte in nature. [Cu(L)(SO4)] complex may possessed square pyramidal geometry, [Ni(L)](NO3)2 complex tetrahedral and rest of the complexes six coordinated octahedral/tetragonal geometry. Newly synthesized ligand and its metal complexes were examined against the opportunistic pathogens. Results suggested that metal complexes were more biological sensitive than free ligand. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Badalyan, A. M.; Bakhturova, L. F.; Kaichev, V. V.; Polyakov, O. V.; Pchelyakov, O. P.; Smirnov, G. I.
2011-09-01
A new technique for depositing thin nanostructured layers on semiconductor and insulating substrates that is based on heterogeneous gas-phase synthesis from low-dimensional volatile metal complexes is suggested and tried out. Thin nanostructured copper layers are deposited on silicon and quartz substrates from low-dimensional formate complexes using a combined synthesis-mass transport process. It is found that copper in layers thus deposited is largely in a metal state (Cu0) and has the form of closely packed nanograins with a characteristic structure.
Fabrication of transparent ceramics using nanoparticles
Cherepy, Nerine J; Tillotson, Thomas M; Kuntz, Joshua D; Payne, Stephen A
2012-09-18
A method of fabrication of a transparent ceramic using nanoparticles synthesized via organic acid complexation-combustion includes providing metal salts, dissolving said metal salts to produce an aqueous salt solution, adding an organic chelating agent to produce a complexed-metal sol, heating said complexed-metal sol to produce a gel, drying said gel to produce a powder, combusting said powder to produce nano-particles, calcining said nano-particles to produce oxide nano-particles, forming said oxide nano-particles into a green body, and sintering said green body to produce the transparent ceramic.
Vanadium and nickel complexes in petroleum resid acid, base, and neutral fractions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pearson, C.D.; Green, J.D.
1993-01-01
Acid and base fractions from petroleum vacuum resids with no detectable (by visible spectrophotometry) quantities of porphyrinic Ni or V complexes were hydrotreated under various conditions to determine if significant amounts of porphyrinic metals were released, via disassociation or other means, upon hydrotreating. No significant quantities were observed, thereby indicating that nonporphyrinic metals were not simply associated, complexed or otherwise masked (in terms of visible spectrophotometric response) porphyrinic metal complexes. However, it is possible that hydrotreating was simply not effective in breaking up these associates and/or that some porphyrinic forms of metal were in fact released but were rapidly destroyedmore » by hydrotreating. In addition, three liquid chromatographic (LC) separation methods were sequentially applied to Cerro Negro (Orinoco belt Venezuelan heavy crude) >700[degree]C resid in an effort to separate and concentrate the metal complexes present. Nonaqueous ion exchange chromatography was used initially to separate the resid into acid, base and neutral types. Two concentrates containing 19,500 and 13,500 ppm total V, or an estimated 19 and 13 wt % V-containing compounds respectively, were obtained. The degree of enrichment of Ni compounds obtained was significantly lower. By visible spectrophotometry, using vanadyl etioporphyrin as a standard, each of the concentrates contained near a 1:1 ratio of porphyrinic:nonporphyrinic V complexes. Analogous separation behavior for porphyrinic versus nonporphyrinic metal forms was observed throughout much of the work, thereby suggesting that a comparable diversity of structures existed within each general class of metal compounds. The generally wide dispersion of both Ni and V over the LC separation scheme suggests a structural variety of metal complexes that is comparable to that observed for other heteroatoms (N, S, O) in petroleum.« less
Vanadium and nickel complexes in petroleum resid acid, base, and neutral fractions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pearson, C.D.; Green, J.D.
1993-01-01
Acid and base fractions from petroleum vacuum resids with no detectable (by visible spectrophotometry) quantities of porphyrinic Ni or V complexes were hydrotreated under various conditions to determine if significant amounts of porphyrinic metals were released, via disassociation or other means, upon hydrotreating. No significant quantities were observed, thereby indicating that nonporphyrinic metals were not simply associated, complexed or otherwise masked (in terms of visible spectrophotometric response) porphyrinic metal complexes. However, it is possible that hydrotreating was simply not effective in breaking up these associates and/or that some porphyrinic forms of metal were in fact released but were rapidly destroyedmore » by hydrotreating. In addition, three liquid chromatographic (LC) separation methods were sequentially applied to Cerro Negro (Orinoco belt Venezuelan heavy crude) >700{degree}C resid in an effort to separate and concentrate the metal complexes present. Nonaqueous ion exchange chromatography was used initially to separate the resid into acid, base and neutral types. Two concentrates containing 19,500 and 13,500 ppm total V, or an estimated 19 and 13 wt % V-containing compounds respectively, were obtained. The degree of enrichment of Ni compounds obtained was significantly lower. By visible spectrophotometry, using vanadyl etioporphyrin as a standard, each of the concentrates contained near a 1:1 ratio of porphyrinic:nonporphyrinic V complexes. Analogous separation behavior for porphyrinic versus nonporphyrinic metal forms was observed throughout much of the work, thereby suggesting that a comparable diversity of structures existed within each general class of metal compounds. The generally wide dispersion of both Ni and V over the LC separation scheme suggests a structural variety of metal complexes that is comparable to that observed for other heteroatoms (N, S, O) in petroleum.« less
Metal species involved in long distance metal transport in plants
Álvarez-Fernández, Ana; Díaz-Benito, Pablo; Abadía, Anunciación; López-Millán, Ana-Flor; Abadía, Javier
2014-01-01
The mechanisms plants use to transport metals from roots to shoots are not completely understood. It has long been proposed that organic molecules participate in metal translocation within the plant. However, until recently the identity of the complexes involved in the long-distance transport of metals could only be inferred by using indirect methods, such as analyzing separately the concentrations of metals and putative ligands and then using in silico chemical speciation software to predict metal species. Molecular biology approaches also have provided a breadth of information about putative metal ligands and metal complexes occurring in plant fluids. The new advances in analytical techniques based on mass spectrometry and the increased use of synchrotron X-ray spectroscopy have allowed for the identification of some metal-ligand species in plant fluids such as the xylem and phloem saps. Also, some proteins present in plant fluids can bind metals and a few studies have explored this possibility. This study reviews the analytical challenges researchers have to face to understand long-distance metal transport in plants as well as the recent advances in the identification of the ligand and metal-ligand complexes in plant fluids. PMID:24723928
Theoretical research program to study transition metal trimers and embedded clusters
NASA Technical Reports Server (NTRS)
Walch, S. P.
1984-01-01
Small transition metal clusters were studied at a high level of approximation, including all the valence electrons in the calculation and extensive electron correlation, in order to understand the electronic structure of these small metal clusters. By comparison of dimers, trimers, and possibly higher clusters, the information obtained was used to provide insights into the electronic structure of bulk transition metals. Small metal clusters are currently of considerable experimental interest and some information is becomming available both from matrix electron spin resonance studies and from gas phase spectroscopy. Collaboration between theorists and experimentalists is thus expected to be especially profitable at this time since there is some experimental information which can serve to guide the theoretical work.
Speciation of heavy metals in landfill leachate: a review.
Baun, Dorthe L; Christensen, Thomas H
2004-02-01
The literature was reviewed with respect to metal speciation methods in aquatic samples specifically emphasizing speciation of heavy metals in landfill leachate. Speciation here refers to physical fractionation (particulate, colloidal, dissolved), chemical fractionation (organic complexes, inorganic complexes, free metal ions), as well as computer-based thermodynamic models. Relatively few landfill leachate samples have been speciated in detail (less than 30) representing only a few landfills (less than 15). This suggests that our knowledge about metal species in landfill leachate still is indicative. In spite of the limited database and the different definitions of the dissolved fraction (< 0.45 microm or < 0.001 microm) the studies consistently show that colloids as well as organic and inorganic complexes are important for all heavy metals in landfill leachate. The free metal ion constitutes less than 30%, typically less than 10%, of the total metal concentration. This has significant implications for sampling, since no standardized procedures exist, and for assessing the content of metals in leachate in the context of its treatment, toxicity and migration in aquifers.
NASA Technical Reports Server (NTRS)
Beck, M.
1979-01-01
In approaching the extremely involved and complex problem of the origin of life, consideration of the coordination chemistry appeared not only as a possibility but as a necessity. The first model experiments appear to be promising because of prebiotic-type synthesis by means of transition-metal complexes. It is especially significant that in some instances various types of vitally important substances (nucleic bases, amino acids) are formed simultaneously. There is ground to hope that systematic studies in this field will clarify the role of transition-metal complexes in the organizatorial phase of chemical evolution. It is obvious that researchers working in the fields of the chemistry of cyano and carbonyl complexes, and of the catalytic effect of transition-metal complexes are best suited to study these aspects of the attractive and interesting problem of the origin of life.
NASA Astrophysics Data System (ADS)
Fraser, Roan; van Rooyen, Petrus H.; Landman, Marilé
2016-02-01
Bi- and trimetallic carbene complexes of group VI and VII transition metals (Cr, Mo, W, Mn and Re), with CpMn(CO)3 as the initial synthon, have been synthesised according to the classical Fischer methodology. Crystal structures of the novel carbene complexes with general formula [Mx(CO)y-1{C(OEt)(MnCp(CO)3)}], where x = 1 then y = 3 or 6; x = 2 then y = 10, of the complexes are reported. A density functional theory (DFT) study was undertaken to determine natural bonding orbitals (NBOs) and conformational as well as isomeric aspects of the polymetallic complexes. Application of the second-order perturbation theory (SOPT) of the natural bond orbital (NBO) method revealed stabilizing interactions between the methylene C-H bonds and the carbonyl ligands of the carbene metal moiety. These stabilization interactions show a linear decrease for the group VI metal carbene complexes down the group.
Synthesis, characterization, spectroscopic and antioxidation studies of Cu(II)-morin complex
NASA Astrophysics Data System (ADS)
Panhwar, Qadeer Khan; Memon, Shahabuddin; Bhanger, M. I.
2010-04-01
Complex formation between copper (II) sulfate and morin (3,5,7,2',4'-pentahydroxyflavone) have been studied in methanol. Structure of the complex was determined through various analytical techniques including UV-vis, IR, 1H NMR, thermal, gravimetric and elemental analyses. The stoichiometric ratio for the reaction between the flavonoid and the metal ion in methanol has been determined by Job's method and elemental analysis for metal content of complex by titration with EDTA, which confirm that morin forms a 1:1 metal:ligand complex. 1H NMR study reveals that, 3OH and 4CO groups of morin take part in complexation with a copper ion. Individual stress was given to the site of central ion and composition of the complex. Antioxidant activity of the complex was evaluated by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging method, which showed that the antioxidant activity of complexed morin has higher value as compared to the free morin. Moreover, it was observed that the metal complex is sufficiently stable as well as the data indicates the spontaneous formation of complex (-Δ G) that is exothermic in nature (-Δ H) and entropically unfavourable (-Δ S).
Fluorescence quenching near small metal nanoparticles.
Pustovit, V N; Shahbazyan, T V
2012-05-28
We develop a microscopic model for fluorescence of a molecule (or semiconductor quantum dot) near a small metal nanoparticle. When a molecule is situated close to metal surface, its fluorescence is quenched due to energy transfer to the metal. We perform quantum-mechanical calculations of energy transfer rates for nanometer-sized Au nanoparticles and find that nonlocal and quantum-size effects significantly enhance dissipation in metal as compared to those predicted by semiclassical electromagnetic models. However, the dependence of transfer rates on molecule's distance to metal nanoparticle surface, d, is significantly weaker than the d(-4) behavior for flat metal surface with a sharp boundary predicted by previous calculations within random phase approximation.
Chen, Jiayuan; Wu, Xiaofeng; Gong, Yan; Wang, Pengfei; Li, Wenhui; Mo, Shengpeng; Peng, Shengpan; Tan, Qiangqiang; Chen, Yunfa
2018-02-09
We present a general and facile synthesis strategy, on the basis of metal-ammine complex chemistry, for synthesizing hollow transition-metal oxides (Co 3 O 4 , NiO, CuO-Cu 2 O, and ZnO)/nitrogen-doped graphene hybrids, potentially applied in high-performance lithium-ion batteries. The oxygen-containing functional groups of graphene oxide play a prerequisite role in the formation of hollow transition-metal oxides on graphene nanosheets, and a significant hollowing process occurs only when forming metal (Co 2+ , Ni 2+ , Cu 2+ , or Zn 2+ )-ammine complex ions. Moreover, the hollowing process is well correlated with the complexing capacity between metal ions and NH 3 molecules. The significant hollowing process occurs for strong metal-ammine complex ions including Co 2+ , Ni 2+ , Cu 2+ , and Zn 2+ ions, and no hollow structures formed for weak and/or noncomplex Mn 2+ and Fe 3+ ions. Simultaneously, this novel strategy can also achieve the direct doping of nitrogen atoms into the graphene framework. The electrochemical performance of two typical hollow Co 3 O 4 or NiO/nitrogen-doped graphene hybrids was evaluated by their use as anodic materials. It was demonstrated that these unique nanostructured hybrids, in contrast with the bare counterparts, solid transition-metal oxides/nitrogen-doped graphene hybrids, perform with significantly improved specific capacity, superior rate capability, and excellent capacity retention. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Solar chemistry of metal complexes
NASA Astrophysics Data System (ADS)
Gray, H. B.; Maverick, A. W.
1981-12-01
Electronic excited states of certain transition metal complexes undergo oxidation-reduction reactions that store chemical energy. Such reactions have been extensively explored for mononuclear complexes. Two classes of polynuclear species exhibit similar properties, and these complexes are now being studied as possible homogeneous sensitizer-catalysts for hydrogen production from aqueous solutions.
NASA Astrophysics Data System (ADS)
Tyagi, Prateek; Tyagi, Monika; Agrawal, Swati; Chandra, Sulekh; Ojha, Himanshu; Pathak, Mallika
2017-01-01
Two novel Schiff base ligands H2L1 and H2L2 have been synthesized by condensation reaction of amine derivative of 1,2,4-triazole moiety with 2-hydroxy-4-methoxybenzaldehyde. Co(II), Ni(II), Cu(II) and Zn(II) of the synthesized Schiff bases were prepared by using a molar ratio of ligand:metal as 1:1. The structure of the Schiff bases and synthesized metal complexes were established by 1H NMR, UV-Vis, IR, Mass spectrometry and molar conductivity. The thermal stability of the complexes was study by TGA. Fluorescence quenching mechanism of metal complexes 1-4 show that Zn(II) and Cu(II) complex binds more strongly to BSA. In DFT studies the geometries of Schiff bases and metal complexes were fully optimized with respect to the energy using the 6-31 + g(d,p) basis set. The spectral data shows that the ligands behaves as binegative tridentate. On the basis of the spectral studies, TGA and DFT data an octahedral geometry has been assigned for Co(II), Ni(II), square planar for Cu(II) and tetrahedral for Zn(II) complexes. The anticancer activity were screened against human breast cancer cell line (MCF-7) and human hepatocellular liver carcinoma cell line (Hep-G2). Result indicates that metal complexes shows increase cytotoxicity in proliferation to cell lines as compared to free ligand.
Synthesis and antimalarial activity of metal complexes of cross-bridged tetraazamacrocyclic ligands.
Hubin, Timothy J; Amoyaw, Prince N-A; Roewe, Kimberly D; Simpson, Natalie C; Maples, Randall D; Carder Freeman, TaRynn N; Cain, Amy N; Le, Justin G; Archibald, Stephen J; Khan, Shabana I; Tekwani, Babu L; Khan, M O Faruk
2014-07-01
Using transition metals such as manganese(II), iron(II), cobalt(II), nickel(II), copper(II), and zinc(II), several new metal complexes of cross-bridged tetraazamacrocyclic chelators namely, cyclen- and cyclam-analogs with benzyl groups, were synthesized and screened for in vitro antimalarial activity against chloroquine-resistant (W2) and chloroquine-sensitive (D6) strains of Plasmodium falciparum. The metal-free chelators tested showed little or no antimalarial activity. All the metal complexes of the dibenzyl cross-bridged cyclam ligand exhibited potent antimalarial activity. The Mn(2+) complex of this ligand was the most potent with IC50s of 0.127 and 0.157μM against the chloroquine-sensitive (D6) and chloroquine-resistant (W2) P. falciparum strains, respectively. In general, the dibenzyl hydrophobic ligands showed better anti-malarial activity compared to the activity of monobenzyl ligands, potentially because of their higher lipophilicity and thus better cell penetration ability. The higher antimalarial activity displayed by the manganese complex for the cyclam ligand in comparison to that of the cyclen, correlates with the larger pocket of cyclam compared to that of cyclen which produces a more stable complex with the Mn(2+). Few of the Cu(2+) and Fe(2+) complexes also showed improvement in activity but Ni(2+), Co(2+) and Zn(2+) complexes did not show any improvement in activity upon the metal-free ligands for anti-malarial development. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Glasauer, S.; Weidler, P.; Fakra, S.; Tyliszczak, T.; Shuh, D.
2011-12-01
Carnotite minerals [X2(UO2)2(VO4)2]; X = K, Ca, Ba, Mn, Na, Cu or Pb] form the major ore of uranium in the Colorado Plateau. These deposits are highly oxidized and contain U(VI) and V(IV). The biotransformation of U(VI) bound in carnotite by bacteria during dissimilatory metal reduction presents a complex puzzle in mineral chemistry. Both U(VI) and V(V) can be respired by metal reducing bacteria, and the mineral structure can change depending on the associated counterion. We incubated anaerobic cultures of S. putrefaciens CN32 with natural carnotite minerals from southeastern Utah in a nutrient-limited defined medium. Strain CN32 is a gram negative bacterium and a terrestrial isolate from New Mexico. The mineral and metal transformations were compared to a system that contained similar concentrations of soluble U(VI) and V(V). Electron (SEM, TEM) microscopies and x-ray spectromicroscopy (STXM) were used in conjunction with XRD to track mineral changes, and bacterial survival was monitored throughout the incubations. Slow rates of metal reduction over 10 months for the treatment with carnotite minerals revealed distinct biotic and abiotic processes, providing insight on mineral transformation and bacteria-metal interactions. The bacteria existed as small flocs or individual cells attached to the mineral phase, but did not adsorb soluble U or V, and accumulated very little of the biominerals. Reduction of mineral V(V) necessarily led to a dismantling of the carnotite structure. Bioreduction of V(V) by CN32 contributed small but profound changes to the mineral system, resulting in new minerals. Abiotic cation exchange within the carnotite group minerals induced the rearrangement of the mineral structures, leading to further mineral transformation. In contrast, bacteria survival was poor for treatments with soluble U(VI) and V(V), although both metals were reduced completely and formed solid UO2 and VO2; we also detected V(III). For these treatments, the bacteria formed extensive biofilms or flocs that contained U and V in the exopolymer, but excluded these metals from the bacteria. This suggests a specific mechanism to inhibit metal sorption to cell wall components. The example illustrates the interplay between bacteria and minerals under conditions that model oligotrophic survival, and provides insight on U mobilization from common uranium ore minerals.
Bahl, Deepa; Athar, Fareeda; Soares, Milena Botelho Pereira; de Sá, Matheus Santos; Moreira, Diogo Rodrigo Magalhães; Srivastava, Rajendra Mohan; Leite, Ana Cristina Lima; Azam, Amir
2010-09-15
A useful concept for the rational design of antiparasitic drug candidates is the complexation of bioactive ligands with transition metals. In view of this, an investigation was conducted into a new set of metal complexes as potential antiplasmodium and antiamoebic agents, in order to examine the importance of metallic atoms, as well as the kind of sphere of co-ordination, in these biological properties. Four functionalized furyl-thiosemicarbazones (NT1-4) treated with divalent metals (Cu, Co, Pt, and Pd) to form the mononuclear metallic complexes of formula [M(L)2Cl2] or [M(L)Cl2] were examined. The pharmacological characterization, including assays against Plasmodium falciparum and Entamoeba histolytica, cytotoxicity to mammalian cells, and interaction with pBR 322 plasmid DNA was performed. Structure-activity relationship data revealed that the metallic complexation plays an essential role in antiprotozoal activity, rather than the simple presence of the ligand or metal alone. Important steps towards identification of novel antiplasmodium (NT1Cu, IC50 of 4.6 microM) and antiamoebic (NT2Pd, IC50 of 0.6 microM) drug prototypes were achieved. Of particular relevance to this work, these prototypes were able to reduce the proliferation of these parasites at concentrations that are not cytotoxic to mammalian cells. Copyright (c) 2010. Published by Elsevier Ltd.
Role of large thermal fluctuations and magnesium ions in t-RNA selectivity of the ribosome
Guo, Zuojun; Gibson, Meghan; Sitha, Sanyasi; Chu, Steven; Mohanty, Udayan
2011-01-01
The fidelity of translation selection begins with the base pairing of codon-anticodon complex between the m-RNA and tRNAs. Binding of cognate and near-cognate tRNAs induces 30S subunit of the ribosome to wrap around the ternary complex, EF-Tu(GTP)aa-tRNA. We have proposed that large thermal fluctuations play a crucial role in the selection process. To test this conjecture, we have developed a theoretical technique to determine the probability that the ternary complex, as a result of large thermal fluctuations, forms contacts leading to stabilization of the GTPase activated state. We argue that the configurational searches for such processes are in the tail end of the probability distribution and show that the probability for this event is localized around the most likely configuration. Small variations in the repositioning of cognate relative to near-cognate complexes lead to rate enhancement of the cognate complex. The binding energies of over a dozen unique site-bound magnesium structural motifs are investigated and provide insights into the nature of interaction of divalent metal ions with the ribosome. PMID:21368154
Neutralization by Metal Ions of the Toxicity of Sodium Selenide
Dauplais, Marc; Lazard, Myriam; Blanquet, Sylvain; Plateau, Pierre
2013-01-01
Inert metal-selenide colloids are found in animals. They are believed to afford cross-protection against the toxicities of both metals and selenocompounds. Here, the toxicities of metal salt and sodium selenide mixtures were systematically studied using the death rate of Saccharomyces cerevisiae cells as an indicator. In parallel, the abilities of these mixtures to produce colloids were assessed. Studied metal cations could be classified in three groups: (i) metal ions that protect cells against selenium toxicity and form insoluble colloids with selenide (Ag+, Cd2+, Cu2+, Hg2+, Pb2+ and Zn2+), (ii) metal ions which protect cells by producing insoluble metal-selenide complexes and by catalyzing hydrogen selenide oxidation in the presence of dioxygen (Co2+ and Ni2+) and, finally, (iii) metal ions which do not afford protection and do not interact (Ca2+, Mg2+, Mn2+) or weakly interact (Fe2+) with selenide under the assayed conditions. When occurring, the insoluble complexes formed from divalent metal ions and selenide contained equimolar amounts of metal and selenium atoms. With the monovalent silver ion, the complex contained two silver atoms per selenium atom. Next, because selenides are compounds prone to oxidation, the stabilities of the above colloids were evaluated under oxidizing conditions. 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB), the reduction of which can be optically followed, was used to promote selenide oxidation. Complexes with cadmium, copper, lead, mercury or silver resisted dissolution by DTNB treatment over several hours. With nickel and cobalt, partial oxidation by DTNB occurred. On the other hand, when starting from ZnSe or FeSe complexes, full decompositions were obtained within a few tens of minutes. The above properties possibly explain why ZnSe and FeSe nanoparticles were not detected in animals exposed to selenocompounds. PMID:23342137
Sensing with Superconducting Point Contacts
Nurbawono, Argo; Zhang, Chun
2012-01-01
Superconducting point contacts have been used for measuring magnetic polarizations, identifying magnetic impurities, electronic structures, and even the vibrational modes of small molecules. Due to intrinsically small energy scale in the subgap structures of the supercurrent determined by the size of the superconducting energy gap, superconductors provide ultrahigh sensitivities for high resolution spectroscopies. The so-called Andreev reflection process between normal metal and superconductor carries complex and rich information which can be utilized as powerful sensor when fully exploited. In this review, we would discuss recent experimental and theoretical developments in the supercurrent transport through superconducting point contacts and their relevance to sensing applications, and we would highlight their current issues and potentials. A true utilization of the method based on Andreev reflection analysis opens up possibilities for a new class of ultrasensitive sensors. PMID:22778630
Transition Metal Intercalators as Anticancer Agents—Recent Advances
Deo, Krishant M.; Pages, Benjamin J.; Ang, Dale L.; Gordon, Christopher P.; Aldrich-Wright, Janice R.
2016-01-01
The diverse anticancer utility of cisplatin has stimulated significant interest in the development of additional platinum-based therapies, resulting in several analogues receiving clinical approval worldwide. However, due to structural and mechanistic similarities, the effectiveness of platinum-based therapies is countered by severe side-effects, narrow spectrum of activity and the development of resistance. Nonetheless, metal complexes offer unique characteristics and exceptional versatility, with the ability to alter their pharmacology through facile modifications of geometry and coordination number. This has prompted the search for metal-based complexes with distinctly different structural motifs and non-covalent modes of binding with a primary aim of circumventing current clinical limitations. This review discusses recent advances in platinum and other transition metal-based complexes with mechanisms of action involving intercalation. This mode of DNA binding is distinct from cisplatin and its derivatives. The metals focused on in this review include Pt, Ru and Cu along with examples of Au, Ni, Zn and Fe complexes; these complexes are capable of DNA intercalation and are highly biologically active. PMID:27809241
Nesterenko, Ekaterina P; Nesterenko, Pavel N; Paull, Brett
2008-12-05
The retention and separation selectivity of inorganic anions and on-column derivatised negatively charged citrate or oxalate metal complexes on reversed-phase stationary phases dynamically coated with N-(dodecyl-N,N-dimethylammonio)undecanoate (DDMAU) has been investigated. The retention mechanism for the metal-citrate complexes was predominantly anion exchange, although the amphoteric/zwitterionic nature of the stationary phase coating undoubtedly also contributed to the unusual separation selectivity shown. A mixture of 10 inorganic anions and metal cations was achieved using a 20 cm monolithic DDMAU modified column and a 1 mM citrate eluent, pH 4.0, flow rate equal to 0.8 mL/min. Selectivity was found to be strongly pH dependent, allowing additional scope for manipulation of solute retention, and thus application to complex samples. This is illustrated with the analysis of an acidic mine drainage sample with a range of inorganic anions and transition metal cations, varying significantly in their concentrations levels.
Pereira, Regina M S; Andrades, Norma E D; Paulino, Niraldo; Sawaya, Alexandra C H F; Eberlin, Marcos N; Marcucci, Maria C; Favero, Giovani Marino; Novak, Estela Maria; Bydlowski, Sérgio Paulo
2007-07-09
The antioxidant activity of flavonoids is believed to increase when they are coordinated with transition metal ions. However, the literature on this subject is contradictory and the outcome seems to largely depend on the experimental conditions. In order to understand the contribution of the metal coordination and the type of interaction between a flavonoid and the metal ion, in this study a new metal complex of Cu (II) with naringin was synthesized and characterized by FT-IR, UV-VIS, mass spectrometry (ESI-MS/MS), elemental analysis and 1H-NMR. The results of these analyses indicate that the complex has a Cu (II) ion coordinated via positions 4 and 5 of the flavonoid. The antioxidant, anti-inflammatory and antimicrobial activities of this complex were studied and compared with the activity of free naringin. The Naringin-Cu (II) complex 1 showed higher antioxidant, anti-inflammatory and tumor cell cytotoxicity activities than free naringin without reducing cell viability.
The QSAR study of flavonoid-metal complexes scavenging rad OH free radical
NASA Astrophysics Data System (ADS)
Wang, Bo-chu; Qian, Jun-zhen; Fan, Ying; Tan, Jun
2014-10-01
Flavonoid-metal complexes have antioxidant activities. However, quantitative structure-activity relationships (QSAR) of flavonoid-metal complexes and their antioxidant activities has still not been tackled. On the basis of 21 structures of flavonoid-metal complexes and their antioxidant activities for scavenging rad OH free radical, we optimised their structures using Gaussian 03 software package and we subsequently calculated and chose 18 quantum chemistry descriptors such as dipole, charge and energy. Then we chose several quantum chemistry descriptors that are very important to the IC50 of flavonoid-metal complexes for scavenging rad OH free radical through method of stepwise linear regression, Meanwhile we obtained 4 new variables through the principal component analysis. Finally, we built the QSAR models based on those important quantum chemistry descriptors and the 4 new variables as the independent variables and the IC50 as the dependent variable using an Artificial Neural Network (ANN), and we validated the two models using experimental data. These results show that the two models in this paper are reliable and predictable.
Ferrari, Erika; Benassi, Rois; Sacchi, Stefania; Pignedoli, Francesca; Asti, Mattia; Saladini, Monica
2014-10-01
Curcuminoids represent new perspectives for the development of novel therapeutics for Alzheimer's disease (AD), one probable mechanism of action is related to their metal complexing ability. In this work we examined the metal complexing ability of substituted curcuminoids to propose new chelating molecules with biological properties comparable with curcumin but with improved stability as new potential AD therapeutic agents. The K2T derivatives originate from the insertion of a -CH2COOC(CH3)3 group on the central atom of the diketonic moiety of curcumin. They retain the diketo-ketoenol tautomerism which is solvent dependent. In aqueous solution the prevalent form is the diketo one but the addition of metal ion (Ga(3+), Cu(2+)) causes the dissociation of the enolic proton creating chelate complexes and shifting the tautomeric equilibrium towards the keto-enol form. The formation of metal complexes is followed by both NMR and UV-vis spectroscopy. The density functional theory (DFT) calculations on K2T21 complexes with Ga(3+) and Cu(2+) are performed and compared with those on curcumin complexes. [Ga(K2T21)2(H2O)2](+) was found more stable than curcumin one. Good agreement is detected between calculated and experimental (1)H and (13)C NMR data. The calculated OH bond dissociation energy (BDE) and the OH proton dissociation enthalpy (PDE), allowed to predict the radical scavenging ability of the metal ion complexed with K2T21, while the calculated electronic affinity (EA) and ionization potential (IP) represent yardsticks of antioxidant properties. Eventually theoretical calculations suggest that the proton-transfer-associated superoxide-scavenging activity is enhanced after binding metal ions, and that Ga(3+) complexes display possible superoxide dismutase (SOD)-like activity. Copyright © 2014 Elsevier Inc. All rights reserved.
The preparation and use of metal salen complexes derived from cyclobutane diamine
NASA Astrophysics Data System (ADS)
Patil, Smita
The helix is an important chiral motif in nature, there is increasing development in field of helical transition metal complexes and related supramolecular structures. Hence, the goals of this work are to apply the principles of helicity in order to produce metal complexes with predictable molecular shapes and to study their properties as asymmetric catalysts. Computational studies suggest that the (1R,2 R)-cyclobutyldiamine unit can produce highly twisted salen complexes with a large energy barrier between the M and P helical forms. To test this prediction, the tartrate salt of (1R,2R)-cyclobutyldiamine was synthesized and condensed with a series of saliclaldehydes to produce novel salen ligands. The salicylaldehydes chosen have extended phenanthryl or benz[a]anthryl sidearms to encourage formation of helical coordination complexes. These ligands were metallated with zinc, iron and manganese salts to produce salen metal complexes which were characterized by NMR analysis, high-resolution mass spectrometry, and IR spectroscopy. A second ligand type, neutral bis(pyridine-imine) has also been synthesized from (1R,2R)-cyclobutyldiamine and quinolylaldehydes. The synthesis of bis(pyridine-imine) ligands was conducted using greener method, solvent assisted grinding. These ligands, in-situ with nickel metal salts, showed good catalytic activity for asymmetric Diels-Alder reactions. The third ligand type studied was chiral acid-functionalized Schiff-base ligands. These were synthesized by the condensation of 3-formyl-5-methyl salicylic acid and (1R,2R)-cyclobutyldiamine. With this type of ligand, there is possibility of producing both mono and dinuclear metal complexes. In our studies, we were only able to synthesize mononuclear complexs. These were tested as catalysts for asymmetric direct Mannich-type reaction, but were found to be ineffective.
NASA Astrophysics Data System (ADS)
Gaur, A.; Klysubun, W.; Soni, Balram; Shrivastava, B. D.; Prasad, J.; Srivastava, K.
2016-10-01
X-ray absorption spectroscopy (XAS) is very useful in revealing the information about geometric and electronic structure of a transition-metal absorber and thus commonly used for determination of metal-ligand coordination. But XAFS analysis becomes difficult if differently coordinated metal centers are present in a system. In the present investigation, existence of distinct coordination geometries around metal centres have been studied by XAFS in a series of trimesic acid Cu(II) complexes. The complexes studied are: Cu3(tma)2(im)6 8H2O (1), Cu3(tma)2(mim)6 17H2O (2), Cu3(tma)2(tmen)3 8.5H2O (3), Cu3(tma) (pmd)3 6H2O (ClO4)3 (4) and Cu3(tma)2 3H2O (5). These complexes have not only Cu metal centres with different coordination but in complexes 1-3, there are multiple coordination geometries present around Cu centres. Using XANES spectra, different coordination geometries present in these complexes have been identified. The variation observed in the pre-edge features and edge features have been correlated with the distortion of the specific coordination environment around Cu centres in the complexes. XANES spectra have been calculated for the distinct metal centres present in the complexes by employing ab-initio calculations. These individual spectra have been used to resolve the spectral contribution of the Cu centres to the particular XANES features exhibited by the experimental spectra of the multinuclear complexes. Also, the variation in the 4p density of states have been calculated for the different Cu centres and then correlated with the features originated from corresponding coordination of Cu. Thus, these spectral features have been successfully utilized to detect the presence of the discrete metal centres in a system. The inferences about the coordination geometry have been supported by EXAFS analysis which has been used to determine the structural parameters for these complexes.
Sumathi, R. B.; Halli, M. B.
2014-01-01
A new Schiff base and a new series of Co(II), Ni(II), Cu(II), Cd(II), and Hg(II) complexes were synthesized by the condensation of naphthofuran-2-carbohydrazide and diacetylmonoxime. Metal complexes of the Schiff base were prepared from their chloride salts of Co(II), Ni(II), Cu(II), Cd(II), and Hg(II) in ethanol. The ligand along with its metal complexes have been characterized on the basis of analytical data, IR, electronic, mass, 1HNMR, ESR spectral data, thermal studies, magnetic susceptibility, and molar conductance measurements. The nonelectrolytic behaviour of the complexes was assessed from the measured low conductance data. The elemental analysis of the complexes confirm the stoichiometry of the type CuL2Cl2 and MLCl2 where M = Ni(II), Co(II), Cd(II), and Hg(II) and L = Schiff base. The redox property of the Cu(II) complex was investigated by electrochemical method using cyclic voltammetry. In the light of these results, Co(II), Ni(II), and Cu(II) complexes are assigned octahedral geometry, Cd(II), and Hg(II) complexes tetrahedral geometry. In order to evaluate the effect of metal ions upon chelation, both the ligand and its metal complexes were screened for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The DNA cleaving capacity of all the complexes was analysed by agarose gel electrophoresis method. PMID:24592203
Solvation Effect on Complexation of Alkali Metal Cations by a Calix[4]arene Ketone Derivative.
Požar, Josip; Nikšić-Franjić, Ivana; Cvetnić, Marija; Leko, Katarina; Cindro, Nikola; Pičuljan, Katarina; Borilović, Ivana; Frkanec, Leo; Tomišić, Vladislav
2017-09-14
The medium effect on the complexation of alkali metal cations with a calix[4]arene ketone derivative (L) was systematically examined in methanol, ethanol, N-methylformamide, N,N-dimethylformamide, dimethyl sulfoxide, and acetonitrile. In all solvents the binding of Na + cation by L was rather efficient, whereas the complexation of other alkali metal cations was observed only in methanol and acetonitrile. Complexation reactions were enthalpically controlled, while ligand dissolution was endothermic in all cases. A notable influence of the solvent on NaL + complex stability could be mainly attributed to the differences in complexation entropies. The higher NaL + stability in comparison to complexes with other alkali metal cations in acetonitrile was predominantly due to a more favorable complexation enthalpy. The 1 H NMR investigations revealed a relatively low affinity of the calixarene sodium complex for inclusion of the solvent molecule in the calixarene hydrophobic cavity, with the exception of acetonitrile. Differences in complex stabilities in the explored solvents, apart from N,N-dimethylformamide and acetonitrile, could be mostly explained by taking into account solely the cation and complex solvation. A considerable solvent effect on the complexation equilibria was proven to be due to an interesting interplay between the transfer enthalpies and entropies of the reactants and the complexes formed.
Molecular Speciation of Trace Metal Organic Complexes in the Pacific Ocean
NASA Astrophysics Data System (ADS)
Repeta, D.; Boiteau, R. M.; Bundy, R. M.; Babcock-Adams, L.
2017-12-01
Microbial production across approximately one third of the surface ocean is limited by extraordinarily low (picomolar) concentrations of dissolved iron, essentially all of which is complexed to strong organic ligands of unknown composition. Other biologically important trace metals (cobalt, copper, zinc, nickel) are also complexed to strong organic ligands, which again have not been extensively characterized. Nevertheless, organic ligands exert a strong influence on metal bioavailability and toxicity. For example, amendment experiments using commercially available siderophores, organic compounds synthesized by microbes to facilitate iron uptake, show these ligands can both facilitate or impede iron uptake depending on the siderophore composition and available uptake pathways. Over the past few years we have developed analytical techniques using high pressure liquid chromatography interfaced with inductively coupled plasma and electrospray ionization mass spectrometry to identify and quantify trace metal organic complexes in laboratory cultures of marine microbes and in seawater. We found siderophores to be widely distributed in the ocean, particularly in regions characterized by low iron concentrations. We also find chemically distinct complexes of copper, zinc, colbalt and nickel that we have yet to fully characterize. We will discuss some of our recent work on trace metal organic speciation in seawater and laboratory cultures, and outline future efforts to better understand the microbial cycling of trace metal organic complexes in the sea.
Lima, Carlos F R A C; Taveira, Ricardo J S; Costa, José C S; Fernandes, Ana M; Melo, André; Silva, Artur M S; Santos, Luís M N B F
2016-06-28
Tris(8-hydroxyquinolinate) metallic complexes, Mq3, are one of the most important classes of organic semiconductor materials. Herein, the nature of the chemical bond in Mq3 complexes and its implications on their molecular properties were investigated by a combined experimental and computational approach. Various Mq3 complexes, resulting from the alteration of the metal and substitution of the 8-hydroxyquinoline ligand in different positions, were prepared. The mer-/fac-isomerism in Mq3 was explored by FTIR and NMR spectroscopy, evidencing that, irrespective of the substituent, mer- and fac-are the most stable molecular configurations of Al(iii) and In(iii) complexes, respectively. The relative M-ligand bond dissociation energies were evaluated experimentally by electrospray ionization tandem mass spectrometry (ESI-MS-MS), showing a non-monotonous variation along the group (Al > In > Ga). The results reveal a strong covalent character in M-ligand bonding, which allows for through-ligand electron delocalization, and explain the preferred molecular structures of Mq3 complexes as resulting from the interplay between bonding and steric factors. The mer-isomer reduces intraligand repulsions, being preferred for smaller metals, while the fac-isomer is favoured for larger metals where stronger covalent M-ligand bonds can be formed due to more extensive through-ligand conjugation mediated by metal "d" orbitals.
Vollenweider, Pierre; Bernasconi, Petra; Gautschi, Hans-Peter; Menard, Terry; Frey, Beat; Günthardt-Goerg, Madeleine S
2011-01-01
The phytoextraction potential of plants for removing heavy metals from polluted soils is determined by their capacity to store contaminants in aboveground organs and complex them safely. In this study, the metal compartmentation, elemental composition of zinc deposits and zinc complexation within leaves from poplars grown on soil with mixed metal contamination was analysed combining several histochemical and microanalytical approaches. Zinc was the only heavy metal detected and was stored in several organelles in the form of globoid deposits showing β-metachromasy. It was associated to oxygen anions and different cations, noteworthy phosphorous. The deposit structure, elemental composition and element ratios indicated that zinc was chelated by phytic acid ligands. Maturation processes in vacuolar vs. cytoplasmic deposits were suggested by differences in size and amounts of complexed zinc. Hence, zinc complexation by phytate contributed to metal detoxification and accumulation in foliage but could not prevent toxicity reactions therein. Copyright © 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yohsin; Stang, P.J.; Arif, A.M.
1990-07-04
Heterobimetallic complexes containing asymmetric metal-metal bonds as well as homogeneous C-H bond activation by organometallic compounds are of considerable current interest largely because of their relevance to catalysis. Although coordination of an alkene to transition metal systems is generally considered a necessary activation step in many catalytic and stoichiometric organometallic reactions, little is known about alkene C-H bond activation of precomplexed olefin substrates. In this paper the authors report the first intermolecular example of olefin C-H activation by a second, different metal system of a precomplexed {pi}-ethylene transition-metal complex and the concomitant formation of a novel alkene-bridged heterobimetallic Ir-Pt complex.
Costentin, Cyrille; Savéant, Jean-Michel
2017-06-21
Modern energy challenges currently trigger an intense interest in catalysis of redox reactions-electrochemical and photochemical-particularly those involving small molecules such as water, hydrogen, oxygen, proton, carbon dioxide. A continuously increasing number of molecular catalysts of these reactions, mostly transition metal complexes, have been proposed, rendering necessary procedures for their rational benchmarking and fueling the quest for leading principles that could inspire the design of improved catalysts. The search of "volcano plots" correlating catalysis kinetics to the stability of the key intermediate is a popular approach to the question in catalysis by surface-active sites, with as foremost example the electrochemical reduction of aqueous proton on metal surfaces. We discussed here for the first time, on theoretical and experimental grounds, the pertinence of such an approach in the field of molecular catalysis. This is the occasion to insist on the virtue of careful mechanism assignments. Particular emphasis is put on the interest of expressing the catalysts' intrinsic kinetic properties by means of catalytic Tafel plots, which relate kinetics and overpotential. We also underscore that the principle and strategies put forward for the catalytic activation of the above-mentioned small molecules are general as illustrated by catalytic applications out of this particular field.
Nanoengineered capsules for selective SERS analysis of biological samples
NASA Astrophysics Data System (ADS)
You, Yil-Hwan; Schechinger, Monika; Locke, Andrea; Coté, Gerard; McShane, Mike
2018-02-01
Metal nanoparticles conjugated with DNA oligomers have been intensively studied for a variety of applications, including optical diagnostics. Assays based on aggregation of DNA-coated particles in proportion to the concentration of target analyte have not been widely adopted for clinical analysis, however, largely due to the nonspecific responses observed in complex biofluids. While sample pre-preparation such as dialysis is helpful to enable selective sensing, here we sought to prove that assay encapsulation in hollow microcapsules could remove this requirement and thereby facilitate more rapid analysis on complex samples. Gold nanoparticle-based assays were incorporated into capsules comprising polyelectrolyte multilayer (PEMs), and the response to small molecule targets and larger proteins were compared. Gold nanoparticles were able to selectively sense small Raman dyes (Rhodamine 6G) in the presence of large protein molecules (BSA) when encapsulated. A ratiometric based microRNA-17 sensing assay exhibited drastic reduction in response after encapsulation, with statistically-significant relative Raman intensity changes only at a microRNA-17 concentration of 10 nM compared to a range of 0-500 nM for the corresponding solution-phase response.
Applications of laser ultrasound NDT methods on composite structures in aerospace industry
NASA Astrophysics Data System (ADS)
Kalms, Michael; Focke, Oliver; v. Kopylow, Christoph
2008-09-01
Composite materials are used more and more in aircraft production. Main composite types are Carbon Fiber Reinforced Plastics (CFRP), Glass Fiber Reinforced Plastics (GFRP) and metal-aluminium laminates (e. g. Glass Fiber Aluminium Reinforced GLARE©). Typical parts made of CFRP material are flaps, vertical and horizontal tail planes, center wing boxes, rear pressure bulkheads, ribs and stringers. These composite parts require adequate nondestructive testing (NDT) methods. Flaws to be detected are delaminations and debondings, porosity and foreign body inclusion. Manual ultrasonic testing with single element transducers is still the most applied method for composite parts with small and medium size. The extension of the conventional ultrasound technique for nondestructive testing with the laser ultrasound method brings new possibilities into the production processes for example the inspection of complex CFRP-components and the possibilities of online observation under remote control. In this paper we describe the principle of laser ultrasound with respect to the demands of nondestructive testing especially of small complex CFRP and C/PPS parts. We report applications of laser-based ultrasound options with generated types of guided and bulk waves on modern aircraft materials.
NASA Astrophysics Data System (ADS)
Kleinnijenhuis, Anne J.; Mihalca, Romulus; Heeren, Ron M. A.; Heck, Albert J. R.
2006-07-01
Doubly protonated ions of the disulfide bond containing nonapeptide hormone oxytocin and oxytocin complexes with different transition metal ions, that have biological relevance under physiological conditions, were subjected to electron capture dissociation (ECD) to probe their structural features in the gas phase. Although, all the ECD spectra were strikingly different, typical ECD behavior was observed for complexes of the nonapeptide hormone oxytocin with Ni2+, Co2+ and Zn2+, i.e., abundant c/z' and a'/y backbone cleavages and ECD characteristic S-S and S-C bond cleavages were observed. We propose that, although in the oxytocin-transition metal ion complexes the metal ions serve as the main initial capture site, the captured electron is transferred to other sites in the complex to form a hydrogen radical, which drives the subsequent typical ECD fragmentations. The complex of oxytocin with Cu2+ displayed noticeably different ECD behavior. The fragment ions were similar to fragment ions typically observed with low-energy collision induced dissociation (CID). We propose that the electrons captured by the oxytocin-Cu2+ complex might be favorably involved in reducing the Cu2+ metal ion to Cu+. Subsequent energy redistribution would explain the observed low-energy CID-type fragmentations. Electron capture resulted also in quite different specific cleavage sites for the complexes of oxytocin with Ni2+, Co2+ and Zn2+. This is an indication for structural differences in these complexes possibly linked to their significantly different biological effects on oxytocin-receptor binding, and suggests that ECD may be used to study subtle structural differences in transition metal ion-peptide complexes.
Kong, Lingbing; Ganguly, Rakesh; Li, Yongxin
2015-01-01
The reactivity of a tricoordinate organoboron L2PhB: (L = oxazol-2-ylidene) 1 towards metal precursors and its coordination chemistry were comprehensively studied. While the boron center in 1 is reluctant to coordinate to the alkali metals in their trifluoromethanesulfonate salts (MOTf) (M = Li, Na, K), the unprecedented compound 2 containing two L2PhB: units linked by a cyclic Li(OTf)2Li spacer was obtained from the reaction of 1 with LiOTf. Treatment of 1 with group 9 metal complexes [MCl(COD)]2 (M = Rh, Ir) afforded the first zwitterionic rhodium(i)–boronium complex 3 and the iridium(iii)–borane complex 4, respectively. The reaction pathway may involve C–H activation followed by proton migration from the metals to the boron center, demonstrating the first example of the deprotonation of metal hydrides by a basic boron. In the reactions with coinage metals, 1 could act as a two-electron reducing agent towards the metal chlorides MCl (M = Cu, Ag, Au). Meanwhile, the reaction of 1 with gold chloride supported by a N-heterocyclic carbene (NHC) produced a heteroleptic cationic gold complex [(L2PhB)Au(NHC)]Cl (6) featuring both carbene and L2PhB: ligands on the gold atom. In contrast, an isolable gold chloride complex (L2PhB)AuCl (8) was obtained by direct complexation between 1 and triphenylphosphine-gold chloride via ligand exchange. X-ray diffraction analysis and computational studies revealed the nature of the B:→Au bonding interaction in complexes 6 and 8. Natural Population Analysis (NPA) and Natural Bond Orbital (NBO) analysis support the strong σ-donating property of the L2PhB: ligand. Moreover, preliminary studies showed that complex 8 can serve as an efficient precatalyst for the addition of X–H (X = N, O, C) to alkynes under ambient conditions, demonstrating the first application of a metal complex featuring a neutral boron-based ligand in catalysis. PMID:29308167
Synthesis of In2O3nanoparticles by thermal decomposition of a citrate gel precursor
NASA Astrophysics Data System (ADS)
Rey, J. F. Q.; Plivelic, T. S.; Rocha, R. A.; Tadokoro, S. K.; Torriani, I.; Muccillo, E. N. S.
2005-06-01
This paper describes the synthesis of indium oxide by a modified sol-gel method, and the study of thermal decomposition of the metal complex in air. The characterization of the intermediate as well as the final compounds was carried out by thermogravimetry, differential thermal analysis, Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, and small angle X-ray scattering. The results show that the indium complex decomposes to In2O3 with the formation of an intermediate compound. Nanoparticles of cubic In2O3 with crystallite sizes in the nanosize range were formed after calcination at temperatures up to 900°C. Calcined materials are characterized by a polydisperse distribution of spherical particles with sharp and smooth surfaces.
Frigerio, N.A.
1962-03-27
A process is given for preparing heavy metal phthalocyanines, sulfonated or not. The process comprises mixing an inorganic metal salt with dimethyl formamide or methyl sulfoxide; separating the metal complex formed from the solution; mixing the complex with an equimolar amount of sodium, potassium, lithium, magnesium, or beryllium sulfonated or unsulfonated phthalocyanine whereby heavy-metal phthalocyanine crystals are formed; and separating the crystals from the solution. Uranyl, thorium, lead, hafnium, and lanthanide rare earth phthalocyanines can be produced by the process. (AEC)
Ferraroni, Marta; Da Vela, Stefano; Kolvenbach, Boris A; Corvini, Philippe F X; Scozzafava, Andrea
2017-05-01
The crystal structure of hydroquinone 1,2-dioxygenase, a Fe(II) ring cleaving dioxygenase from Sphingomonas sp. strain TTNP3, which oxidizes a wide range of hydroquinones to the corresponding 4-hydroxymuconic semialdehydes, has been solved by Molecular Replacement, using the coordinates of PnpCD from Pseudomonas sp. strain WBC-3. The enzyme is a heterotetramer, constituted of two subunits α and two β of 19 and 38kDa, respectively. Both the two subunits fold as a cupin, but that of the small α subunit lacks a competent metal binding pocket. Two tetramers are present in the asymmetric unit. Each of the four β subunits in the asymmetric unit binds one Fe(II) ion. The iron ion in each β subunit is coordinated to three protein residues, His258, Glu264, and His305 and a water molecule. The crystal structures of the complexes with the substrate methylhydroquinone, obtained under anaerobic conditions, and with the inhibitors 4-hydroxybenzoate and 4-nitrophenol were also solved. The structures of the native enzyme and of the complexes present significant differences in the active site region compared to PnpCD, the other hydroquinone 1,2-dioxygenase of known structure, and in particular they show a different coordination at the metal center. Copyright © 2017 Elsevier B.V. All rights reserved.
Heavy ligand atom induced large magnetic anisotropy in Mn(ii) complexes.
Chowdhury, Sabyasachi Roy; Mishra, Sabyashachi
2017-06-28
In the search for single molecule magnets, metal ions are considered pivotal towards achieving large magnetic anisotropy barriers. In this context, the influence of ligands with heavy elements, showing large spin-orbit coupling, on magnetic anisotropy barriers was investigated using a series of Mn(ii)-based complexes, in which the metal ion did not have any orbital contribution. The mixing of metal and ligand orbitals was achieved by explicitly correlating the metal and ligand valence electrons with CASSCF calculations. The CASSCF wave functions were further used for evaluating spin-orbit coupling and zero-field splitting parameters for these complexes. For Mn(ii) complexes with heavy ligand atoms, such as Br and I, several interesting inter-state mixings occur via the spin-orbit operator, which results in large magnetic anisotropy in these Mn(ii) complexes.
Lo, Kenneth Kam-Wing
2015-12-15
Although the interactions of transition metal complexes with biological molecules have been extensively studied, the use of luminescent transition metal complexes as intracellular sensors and bioimaging reagents has not been a focus of research until recently. The main advantages of luminescent transition metal complexes are their high photostability, long-lived phosphorescence that allows time-resolved detection, and large Stokes shifts that can minimize the possible self-quenching effect. Also, by the use of transition metal complexes, the degree of cellular uptake can be readily determined using inductively coupled plasma mass spectrometry. For more than a decade, we have been interested in the development of luminescent transition metal complexes as covalent labels and noncovalent probes for biological molecules. We argue that many transition metal polypyridine complexes display triplet charge transfer ((3)CT) emission that is highly sensitive to the local environment of the complexes. Hence, the biological labeling and binding interactions can be readily reflected by changes in the photophysical properties of the complexes. In this laboratory, we have modified luminescent tricarbonylrhenium(I) and bis-cyclometalated iridium(III) polypyridine complexes of general formula [Re(bpy-R(1))(CO)3(py-R(2))](+) and [Ir(ppy-R(3))2(bpy-R(4))](+), respectively, with reactive functional groups and used them to label the amine and sulfhydryl groups of biomolecules such as oligonucleotides, amino acids, peptides, and proteins. Additionally, using a range of biological substrates such as biotin, estradiol, and indole, we have designed luminescent rhenium(I) and iridium(III) polypyridine complexes as noncovalent probes for biological receptors. The interesting results generated from these studies have prompted us to investigate the possible applications of luminescent transition metal complexes in intracellular systems. Thus, in the past few years, we have developed an interest in the cytotoxic activity, cellular uptake, and bioimaging applications of these complexes. Additionally, we and other research groups have demonstrated that many transition metal complexes have facile cellular uptake and organelle-localization properties and that their cytotoxic activity can be readily controlled. For example, complexes that can target the nucleus, nucleolus, mitochondria, lysosomes, endoplasmic reticulum, and Golgi apparatus have been identified. We anticipate that this selective localization property can be utilized in the development of intracellular sensors and bioimaging reagents. Thus, we have functionalized luminescent rhenium(I) and iridium(III) polypyridine complexes with various pendants, including molecule-binding moieties, sugar molecules, bioorthogonal functional groups, and polymeric chains such as poly(ethylene glycol) and polyethylenimine, and examined their potentials as biological reagents. This Account describes our design of luminescent rhenium(I) and iridium(III) polypyridine complexes and explains how they can serve as a new generation of biological reagents for diagnostic and therapeutic applications.
Soliman, Ahmed M; Zysman-Colman, Eli; Harvey, Pierre D
2015-04-01
Polymer 6, ([trans-Pt(PBu3 )2 (C≡C)2 ]-[Ir(dFMeppy)2 (N^N)](PF6 ))n , (([Pt]-[Ir](PF6 ))n ; N^N = 5,5'-disubstituted-2,2'-bipyridyl; dFMeppy = 2-(2,4-difluoro-phenyl)-5-methylpyridine) is prepared along with model compounds. These complexes are investigated by absorption and emission spectroscopy and their photophysical and electrochemical properties are measured and compared with their corresponding non fluorinated complexes. Density functional theory (DFT) and time-dependent DFT computations corroborate the nature of the excited state as being a hybrid between the metal-to-ligand charge transfer ((1,3) MLCT) for the trans-Pt(PBu3 )2 (C≡CAr)2 unit, [Pt] and the metal-to-ligand/ligand-to-ligand' charge transfer ((1,3) ML'CT/LL'CT) for [Ir] with L = dFMeppy. Overall, the fluorination of the phenylpyridine group expectedly does not change the nature of the excited state but desirably induces a small blue shift of the absorption and emission bands along a slight decrease in emission quantum yields and lifetimes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Costa, Dominique; Pradier, Claire-Marie; Tielens, Frederik; Savio, Letizia
2015-12-01
Understanding the bio-physical-chemical interactions at nanostructured biointerfaces and the assembly mechanisms of so-called hybrid nano-composites is nowadays a key issue for nanoscience in view of the many possible applications foreseen. The contribution of surface science in this field is noteworthy since, using a bottom-up approach, it allows the investigation of the fundamental processes at the basis of complex interfacial phenomena and thus it helps to unravel the elementary mechanisms governing them. Nowadays it is well demonstrated that a wide variety of different molecular assemblies can form upon adsorption of small biomolecules at surfaces. The geometry of such self-organized structures can often be tuned by a careful control of the experimental conditions during the deposition process. Indeed an impressive number of studies exists (both experimental and - to a lesser extent - theoretical), which demonstrates the ability of molecular self-assembly to create different structural motifs in a more or less predictable manner, by tuning the molecular building blocks as well as the metallic substrate. In this frame, amino acids and small peptides at surfaces are key, basic, systems to be studied. The amino acids structure is simple enough to serve as a model for the chemisorption of biofunctional molecules, but their adsorption at surfaces has applications in surface functionalization, in enantiospecific catalysis, biosensing, shape control of nanoparticles or in emerging fields such as "green" corrosion inhibition. In this paper we review the most recent advances in this field. We shall start from the adsorption of amino acids at metal surfaces and we will evolve then in the direction of more complex systems, in the light of the latest improvements of surface science techniques and of computational methods. On one side, we will focus on amino acids adsorption at oxide surfaces, on the other on peptide adsorption both at metal and oxide substrates. Particular attention will be drawn to the added value provided by the combination of several experimental surface science techniques and to the precious contribution of advanced complementary computational methods to resolve the details of systems of increased complexity. Finally, some hints on experiments performed in presence of water and then characterized in UHV and on the related theoretical work will be presented. This is a further step towards a better approximation of real biological systems. However, since the methods employed are often not typical of surface science, this topic is not developed in detail.
A Simple Method for Drawing Chiral Mononuclear Octahedral Metal Complexes
ERIC Educational Resources Information Center
Mohamadou, Aminou; Haudrechy, Arnaud
2008-01-01
Octahedral transition-metal complexes are involved in a number of reactions and octahedral coordination geometry, frequently observed for metallic centers, includes important topographical stereochemistry. Depending on the number and nature of different ligands, octahedral coordination units with at least two different monodentate ligands give…
Synthesis and Characterization of Heterobimetallic Iridium-Aluminum and Rhodium-Aluminum Complexes.
Brewster, Timothy P; Nguyen, Tan H; Li, Zhongjing; Eckenhoff, William T; Schley, Nathan D; DeYonker, Nathan J
2018-02-05
We demonstrate the synthesis and characterization of a new class of late-transition-metal-aluminum heterobimetallic complexes via a novel synthetic pathway. Complexes of this type are exceedingly rare. Joint experimental and theoretical data sheds light on the electronic effect of ligands containing aluminum moieties on late-transition-metal complexes.
Petit, Alban; Richard, Philippe; Cacelli, Ivo; Poli, Rinaldo
2006-01-11
Reductive elimination of methane from methyl hydride half-sandwich phosphane complexes of the Group 9 metals has been investigated by DFT calculations on the model system [CpM(PH(3))(CH(3))(H)] (M = Co, Rh, Ir). For each metal, the unsaturated product has a triplet ground state; thus, spin crossover occurs during the reaction. All relevant stationary points on the two potential energy surfaces (PES) and the minimum energy crossing point (MECP) were optimized. Spin crossover occurs very near the sigma-CH(4) complex local minimum for the Co system, whereas the heavier Rh and Ir systems remain in the singlet state until the CH(4) molecule is almost completely expelled from the metal coordination sphere. No local sigma-CH(4) minimum was found for the Ir system. The energetic profiles agree with the nonexistence of the Co(III) methyl hydride complex and with the greater thermal stability of the Ir complex relative to the Rh complex. Reductive elimination of methane from the related oxidized complexes [CpM(PH(3))(CH(3))(H)](+) (M = Rh, Ir) proceeds entirely on the spin doublet PES, because the 15-electron [CpM(PH(3))](+) products have a doublet ground state. This process is thermodynamically favored by about 25 kcal mol(-1) relative to the corresponding neutral system. It is essentially barrierless for the Rh system and has a relatively small barrier (ca. 7.5 kcal mol(-1)) for the Ir system. In both cases, the reaction involves a sigma-CH(4) intermediate. Reductive elimination of ethane from [CpM(PH(3))(CH(3))(2)](+) (M = Rh, Ir) shows a similar thermodynamic profile, but is kinetically quite different from methane elimination from [CpM(PH(3))(CH(3))(H)](+): the reductive elimination barrier is much greater and does not involve a sigma-complex intermediate. The large difference in the calculated activation barriers (ca. 12.0 and ca. 30.5 kcal mol(-1) for the Rh and Ir systems, respectively) agrees with the experimental observation, for related systems, of oxidatively induced ethane elimination when M = Rh, whereas the related Ir systems prefer to decompose by alternative pathways.
Metal oxide porous ceramic membranes with small pore sizes
Anderson, Marc A.; Xu, Qunyin
1992-01-01
A method is disclosed for the production of metal oxide ceramic membranes of very small pore size. The process is particularly useful in the creation of titanium and other transition metal oxide membranes. The method utilizes a sol-gel process in which the rate of particle formation is controlled by substituting a relatively large alcohol in the metal alkoxide and by limiting the available water. Stable, transparent metal oxide ceramic membranes are created having a narrow distribution of pore size, with the pore diameter being manipulable in the range of 5 to 40 Angstroms.
Metal oxide porous ceramic membranes with small pore sizes
Anderson, Marc A.; Xu, Qunyin
1991-01-01
A method is disclosed for the production of metal oxide ceramic membranes of very small pore size. The process is particularly useful in the creation of titanium and other transition metal oxide membranes. The method utilizes a sol-gel process in which the rate of particle formation is controlled by substituting a relatively large alcohol in the metal alkoxide and by limiting the available water. Stable, transparent metal oxide ceramic membranes are created having a narrow distribution of pore size, with the pore diameter being manipulable in the range of 5 to 40 Angstroms.
Electrochemical cell utilizing molten alkali metal electrode-reactant
Virkar, Anil V.; Miller, Gerald R.
1983-11-04
An improved electrochemical cell comprising an additive-modified molten alkali metal electrode-reactant and/or electrolyte is disclosed. Various electrochemical cells employing a molten alkali metal, e.g., sodium, electrode in contact with a cationically conductive ceramic membrane experience a lower resistance and a lower temperature coefficient of resistance whenever small amounts of selenium are present at the interface of the electrolyte and the molten alkali metal. Further, cells having small amounts of selenium present at the electrolyte-molten metal interface exhibit less degradation of the electrolyte under long term cycling conditions.
Adsorption and diffusion of Au atoms on the (001) surface of Ti, Zr, Hf, V, Nb, Ta, and Mo carbides.
Florez, Elizabeth; Viñes, Francesc; Rodriguez, Jose A; Illas, Francesc
2009-06-28
The adsorption of atomic Au on the (001) surface of TiC, ZrC, HfC, VC, NbC, TaC, and delta-MoC and the mechanism of diffusion of this adatom through the surface have been studied in terms of a periodic density functional theory based approach. In all the cases, the Au adsorption energies are in the range of 1.90-2.35 eV. The moderately large adsorption energies allow the Au diffusion before desorption could take place. For TiC(001), ZrC(001), and HfC(001), atomic Au is adsorbed directly on top of C atoms and diffusion takes place along the diagonal of the squares formed by M-C-M-C atoms with the transition state located above the hollow sites. For the rest of transition metal carbides the situation is less simple with the appearance of more than one stable adsorption site, as for NbC and TaC, of a small energy barrier for diffusion around the most stable adsorption site and of a more complex diffusion pathway. The small energy barrier for diffusion around the most stable site will result in a highly mobile Au species which could be observed in scanning tunnel microscope experiments. After depositing Au on metal-carbide surfaces, there is a noticeable charge transfer from the substrate to the adsorbed Au atom. The electronic perturbations on Au increase when going from TiC to ZrC or TaC. Our results indicate that metal carbides should be better supports for the chemical activation of Au than metal oxides.
Wu, Bing; Wilding, Matthew J T; Kuppuswamy, Subramaniam; Bezpalko, Mark W; Foxman, Bruce M; Thomas, Christine M
2016-12-05
To understand the metal-metal bonding and conformational flexibility of first-row transition metal heterobimetallic complexes, a series of heterobimetallic Ti/M and V/M complexes (M = Fe, Co, Ni, and Cu) have been investigated. The titanium tris(phosphinoamide) precursors ClTi(XylNP i Pr 2 ) 3 (1) and Ti(XylNP i Pr 2 ) 3 (2) have been used to synthesize Ti/Fe (3), Ti/Ni (4, 4 THF ), and Ti/Cu (5) heterobimetallic complexes. A series of V/M (M = Fe (7), Co (8), Ni (9), and Cu (10)) complexes have been generated starting from the vanadium tris(phosphinoamide) precursor V(XylNP i Pr 2 ) 3 (6). The new heterobimetallic complexes were characterized and studied by NMR spectroscopy, X-ray crystallography, electron paramagnetic resonance, and Mössbauer spectroscopy, where applicable, and computational methods (DFT). Compounds 3, 4 THF , 7, and 8 are C 3 -symmetric with three bridging phosphinoamide ligands, while compounds 9 and 10 adopt an asymmetric geometry with two bridging phosphinoamides and one phosphinoamide ligand bound η 2 to vanadium. Compounds 4 and 5, on the other hand, are asymmetric in the solid state but show evidence for fluxional behavior in solution. A correlation is established between conformational flexibility and metal-metal bond order, which has important implications for the future reactivity of these and other heterobimetallic molecules.
Boiocchi, Massimo; Fabbrizzi, Luigi; Garolfi, Mauro; Licchelli, Maurizio; Mosca, Lorenzo; Zanini, Cristina
2009-10-26
Copper(II) azacyclam complexes 3(2+) and 4(2+) were obtained through a metal-templated procedure involving the pertinent open-chain tetramine, formaldehyde and a phenylurea derivative as a locking fragment. Both metal complexes can establish interactions with anions through the metal centre and the amide NH group. Equilibrium studies in DMSO by a spectrophotometric titration technique were carried out to assess the affinity of 3(2+) and 4(2+) towards anions. While the NH group of an amide model compound and the metal centre of the plain Cu(II)(azacyclam)(2+) complex do not interact at all with anions, 3(2+) and 4(2+) establish strong interactions with oxo anions, profiting from a pronounced cooperative effect. In particular, 1) they form stable 1:1 and 1:2 complexes with H(2)PO(4) (-) ions in a stepwise mode with both hydrogen-bonding and metal-ligand interactions, and 2) in the presence of CH(3)COO(-), they undergo deprotonation of the amido NH group and thus profit from axial coordination of the partially negatively charged carbonyl oxygen atom in a scorpionate binding mode.
Infrared Multiple-Photon Dissociation spectroscopy of group II metal complexes with salicylate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan P. Dain; Gary Gresham; Gary S. Groenewold
2011-07-01
Ion-trap tandem mass spectrometry with collision-induced dissociation, and the combination of infrared multiple-photon dissociation (IRMPD) spectroscopy and density functional theory (DFT) calculations were used to characterize singly-charged, 1:1 complexes of Ca2+, Sr2+ and Ba2+ with salicylate. For each metal-salicylate complex, the CID pathways are: (a) elimination of CO2 and (b) formation of [MOH]+ where M=Ca2+, Sr2+ or Ba2+. DFT calculations predict three minima for the cation-salicylate complexes which differ in the mode of metal binding. In the first, the metal ion is coordinated by O atoms of the (neutral) phenol and carboxylate groups of salicylate. In the second, the cationmore » is coordinated by phenoxide and (neutral) carboxylic acid groups. The third mode involves coordination by the carboxylate group alone. The infrared spectrum for the metal-salicylate complexes contains a number of absorptions between 1000 – 1650 cm-1, and the best correlation between theoretical and experimental spectra for the structure that features coordination of the metal ion by phenoxide and the carbonyl group of the carboxylic acid group, consistent with calculated energies for the respective species.« less
Infrared multiple-photon dissociation spectroscopy of group II metal complexes with salicylate.
Dain, Ryan P; Gresham, Gary; Groenewold, Gary S; Steill, Jeffrey D; Oomens, Jos; van Stipdonk, Michael J
2011-07-15
Ion trap tandem mass spectrometry with collision-induced dissociation, and the combination of infrared multiple-photon dissociation (IRMPD) spectroscopy and density functional theory (DFT) calculations, were used to characterize singly charged, 1:1 complexes of Ca(2+), Sr(2+) and Ba(2+) with salicylate. For each metal-salicylate complex, the CID pathways are: (a) elimination of CO(2) and (b) formation of [MOH](+) where M = Ca(2+), Sr(2+) or Ba(2+). DFT calculations predict three minima for the cation-salicylate complexes which differ in the mode of metal binding. In the first, the metal ion is coordinated by O atoms of the (neutral) phenol and carboxylate groups of salicylate. In the second, the cation is coordinated by phenoxide and (neutral) carboxylic acid groups. The third mode involves coordination by the carboxylate group alone. The infrared spectrum for the metal-salicylate complexes contains a number of absorptions between 1000 and 1650 cm(-1), and the best correlation between theoretical and experimental spectra is found for the structure that features coordination of the metal ion by phenoxide and the carbonyl O of the carboxylic acid group, consistent with the calculated energies for the respective species. Copyright © 2011 John Wiley & Sons, Ltd.
Nicolay, Amélie; Tilley, T Don
2018-05-31
Metal-metal cooperation is integral to the function of many enzymes and materials, and model complexes hold enormous potential for providing insights into the capabilities of analogous multimetallic cores. However, the selective synthesis of heterobimetallic complexes still presents a significant challenge, especially for systems that hold the metals in close proximity and feature open or reactive coordination sites for both metals. To address this issue, a rigid, naphthyridine-based dinucleating ligand featuring distinct binding environments was synthesized. This ligand enables the selective synthesis of a series of MIICuI bimetallic complexes (M = Mn, Fe, Co, Ni, Cu, Zn), in which each metal center exclusively occupies its preferred binding pocket, from simple chloride salts. The precision of this selectivity is evident from cyclic voltammetry, ESI-MS and anomalous X-ray diffraction measurements. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Szcześniak, Dominik; Hoehn, Ross D.; Kais, Sabre
2018-05-01
The transition metal dichalcogenide (M X2 , where M =Mo , W and X =S , Se, Te) monolayers are of high interest for semiconducting applications at the nanoscale level; this interest is due to both their direct band gaps and high charge mobilities. In this regard, an in-depth understating of the related Schottky barrier heights, associated with the incorporation of M X2 sheets into novel low-dimensional metal-semiconductor junctions, is of crucial importance. Herein, we generate and provide analysis of the Schottky barrier heights behavior to account for the metal-induced gap states concept as its explanation. In particular, the present investigations concentrate on the estimation of the charge neutrality levels directly by employing the primary theoretical model, i.e., the cell-averaged Green's function formalism combined with the complex band structure technique. The results presented herein place charge neutrality levels in the vicinity of the midgap; this is in agreement with previous reports and analogous to the behavior of three-dimensional semiconductors. The calculated canonical Schottky barrier heights are also found to be in agreement with other computational and experimental values in cases where the difference between electronegativities of the semiconductor and metal contact is small. Moreover, the influence of the spin-orbit effects is herein considered and supports that Schottky barrier heights have metal-induced gap state-derived character, regardless whether spin-orbit coupling interactions are considered. The results presented within this report constitute a direct and vital verification of the importance of metal-induced gap states in explaining the behavior of observed Schottky barrier heights at M X2 -metal junctions.
Discovery and development of microporous metal carboxylates.
Mori, Wasuke; Sato, Tomohiko; Kato, Chika Nozaki; Takei, Tohru; Ohmura, Tetsushi
2005-01-01
We have found a form of copper(II) terephthalate that occluded an enormous amount of gases such as N2, Ar, O2, and Xe. Copper(II) terephthalate is the first metal complex found capable of adsorbing gases. This complex has opened a new field of adsorbent chemistry and is recognized as a leader in the construction of microporous metal complexes. In extending the route for the synthesis of microporous complexes, we obtained many new porous materials that are widely recognized as useful materials for applications in areas such as gas storage, molecular sieves, catalysis, inclusion complexes, and surface science. 2005 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.
Mechanics of metal-catecholate complexes: The roles of coordination state and metal types
Xu, Zhiping
2013-01-01
There have been growing evidences for the critical roles of metal-coordination complexes in defining structural and mechanical properties of unmineralized biological materials, including hardness, toughness, and abrasion resistance. Their dynamic (e.g. pH-responsive, self-healable, reversible) properties inspire promising applications of synthetic materials following this concept. However, mechanics of these coordination crosslinks, which lays the ground for predictive and rational material design, has not yet been well addressed. Here we present a first-principles study of representative coordination complexes between metals and catechols. The results show that these crosslinks offer stiffness and strength near a covalent bond, which strongly depend on the coordination state and type of metals. This dependence is discussed by analyzing the nature of bonding between metals and catechols. The responsive mechanics of metal-coordination is further mapped from the single-molecule level to a networked material. The results presented here provide fundamental understanding and principles for material selection in metal-coordination-based applications. PMID:24107799
Carbon quantum dots and a method of making the same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zidan, Ragaiy; Teprovich, Joseph A.; Washington, Aaron L.
The present invention is directed to a method of preparing a carbon quantum dot. The carbon quantum dot can be prepared from a carbon precursor, such as a fullerene, and a complex metal hydride. The present invention also discloses a carbon quantum dot made by reacting a carbon precursor with a complex metal hydride and a polymer containing a carbon quantum dot made by reacting a carbon precursor with a complex metal hydride.
Liu, Shu-Juan; Chen, Yang; Xu, Wen-Juan; Zhao, Qiang; Huang, Wei
2012-04-13
Polymers containing transition-metal complexes exhibit excellent optical and electronic properties, which are different from those of polymers with a pure organic skeleton and combine the advantages of both polymers and metal complexes. Hence, research about this class of polymers has attracted more and more interest in recent years. Up to now, a number of novel polymers containing transition-metal complexes have been exploited, and significant advances in their optical and electronic applications have been achieved. In this article, we summarize some new research trends in the applications of this important class of optoelectronic polymers, such as chemo/biosensors, electronic memory devices and photovoltaic devices. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DNA binding of supramolecular mixed-metal complexes
NASA Astrophysics Data System (ADS)
Swavey, Shawn; Williams, Rodd L.; Fang, Zhenglai; Milkevitch, Matthew; Brewer, Karen J.
2001-10-01
The high binding affinity of cisplatin toward DNA has led to its popularity as an anticancer agent. Due to cumulative drug resistance and toxic side effects, researchers are exploring related metallodrugs. Our approach involves the use of supramolecular complexes. These mixed-metal complexes incorporate a reactive platinum moiety bridged by a polyazine ligand to a light absorbing metal-based chromophore. The presence of the light absorber allows excitation of these systems, opening up the possibility of photoactivation. The use of a supramolecular design allows components of the assembly to be varied to enhance device function and light absorbing properties. Aspects of our molecular design process and results on the DNA binding properties for a number of these mixed-metal complexes will be discussed.
Photodissociation Studies of Metal-Containing Clusters and Complexes
NASA Astrophysics Data System (ADS)
Pilgrim, Jeffrey Scott
1995-01-01
There have been two major areas of investigation for researchers working with laser ablation in molecular beams. The first area is the study of weakly-bound complexes. These complexes are bound by electrostatic interactions. In the present study the weakly bound interactions of the rare gases with the magnesium ion are investigated with electronic spectroscopy. The second major area is the study of metal and metal-containing clusters. Examples of previous investigations are the alkali metal clusters and the fullerenes. The present investigation is on metal -carbon clusters. The so-called metallo-carbohedrenes and metal-carbon nanocrystals are studied. Resonance enhanced photodissociation spectroscopy is used to obtain electronic excitation spectra of the Mg^+-rare gas species in the ultraviolet region. This investigation is facilitated by a reflectron time-of-flight mass spectrometer. The interaction of the rare gas with the metal ion is attributed to a "solvation" of the atomic ion transition. Simple bonding arguments predict that the excited state is more bound than the ground state for these complexes. This will result in a shift of the complex vibronic origin to lower energy from the atomic ion transition. This is exactly what is observed in the experiment with progressively larger shifts for the heavier rare gases. The electronic excitation spectra allow the vibrational frequencies and anharmonicities for these complexes to be obtained for the excited state. In turn, the excited state bond dissociation energies can be determined. Finally, conservation of energy allows calculation of the ground state bond dissociation energies. In the metal-carbon systems the stability of the metallo-carbohedrene, met-car, stoichiometry is shown to extend into the transition period at least to the iron group. Photodissociation with a 532 nm laser causes a loss of metal atoms for met-cars formed with first row transition metals and a loss of metal-carbon units for met-cars formed from second-row transition metal atoms. Larger metal-carbon clusters are found to be face-centered-cubic nanocrystals. Photodissociation of these nanocrystals causes fragmentation into smaller nanocrystals. In addition, nanocrystals also dissociatively rearrange into the met -car structure. Two of the metal-carbon nanocrystals ( rm Ti_{14}C_{13 }^+ and rm V_{14 }C_{13}^+) fragment into the met-car with a trapped carbon atom.
Schenkeveld, W D C; Kimber, R L; Walter, M; Oburger, E; Puschenreiter, M; Kraemer, S M
2017-02-01
The efficiency of chelating ligands in mobilizing metals from soils and sediments is generally examined under conditions remote from those under which they are exuded or applied in the field. This may lead to incorrect estimations of the mobilizing efficiency. The aim of this study was to establish the influence of the soil solution ratio (SSR) and pre-equilibration with electrolyte solution on metal mobilization and metal displacement. For this purpose a series of interaction experiments with a calcareous clay soil and a biogenic chelating agent, the phytosiderophore 2'-deoxymugineic acid (DMA) were carried out. For a fixed ligand concentration, the SSR had a strong influence on metal mobilization and displacement. Metal complexation was faster at higher SSR. Reactive pools of metals that were predominantly mobilized at SSR 6 (in this case Cu), became depleted at SSR 0.1, whereas metals that were marginally mobilized at SSR 6, were dominantly mobilized at SSR 0.1 (in this case Fe), because of large soil reactive pools. For a fixed "amount of ligand"-to-"amount of soil"-ratio, metal complexation scaled linearly with the SSR. The efficiency of ligands in mobilizing metals under field conditions can be predicted with batch experiments, as long as the ligand-to-soil-ratio is matched. In most previously reported studies this criterion was not met. Equivalent metal-complex concentrations under field conditions can be back-calculated using adsorption isotherms for the respective metal-complexes. Drying and dry storage created labile pools of Fe, Cu and Zn, which were rapidly mobilized upon addition of DMA solution to dry soil. Pre-equilibration decreased these labile pools, leading to smaller concentrations of these metals during initial mobilization, but did not reduce the lag time between ligand addition and onset of microbial degradation of the metal-complexes. Hence SSR and pre-equilibration should be carefully considered when testing the metal mobilizing efficiency of chelating ligands. Copyright © 2016. Published by Elsevier B.V.
Determination of heavy metals and halogens in plastics from electric and electronic waste.
Dimitrakakis, Emmanouil; Janz, Alexander; Bilitewski, Bernd; Gidarakos, Evangelos
2009-10-01
The presence of hazardous substances and preparations in small waste electrical and electronic equipment (sWEEE) found in the residual household waste stream of the city of Dresden, Germany has been investigated. The content of sWEEE plastics in heavy metals and halogens is determined using handheld X-ray fluorescence analysis (HXRF), elemental analysis by means of atomic absorption spectrometry (AAS) and ion exchange chromatography (IEC). Mean value of results for heavy metals in samples (n=51) by AAS are 17.4 mg/kg for Pb, 5.7 mg/kg for Cd, 8.4 mg/kg for Cr. The mass fraction of an additive as shown by HXRF (n=161) can vary over a wide range. Precise deductions as regards sWEEE plastics content in hazardous substances and preparations cannot be made. Additional research would be expedient regarding the influence of hazardous substances to recycling processes, in particular regarding the contamination of clean fractions in the exit streams of a WEEE treatment plant. Suitable standards for calibrating HXRF for use on EEE plastics or complex electr(on)ic components do not exist and should be developed.
Plastic scintillators with high loading of one or more metal carboxylates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherepy, Nerine; Sanner, Robert Dean
According to one embodiment, a method includes incorporating a metal carboxylate complex into a polymeric matrix to form an optically transparent material. According to another embodiment, a material includes at least one metal carboxylate complex incorporated into a polymeric matrix, where the material is optically transparent.
A new metalation complex for organic synthesis and polymerization reactions
NASA Technical Reports Server (NTRS)
Hirshfield, S. M.
1971-01-01
Organometallic complex of N,N,N',N' tetramethyl ethylene diamine /TMEDA/ and lithium acts as metalation intermediate for controlled systhesis of aromatic organic compounds and polymer formation. Complex of TMEDA and lithium aids in preparation of various organic lithium compounds.
Spin-vibronic quantum dynamics for ultrafast excited-state processes.
Eng, Julien; Gourlaouen, Christophe; Gindensperger, Etienne; Daniel, Chantal
2015-03-17
Ultrafast intersystem crossing (ISC) processes coupled to nuclear relaxation and solvation dynamics play a central role in the photophysics and photochemistry of a wide range of transition metal complexes. These phenomena occurring within a few hundred femtoseconds are investigated experimentally by ultrafast picosecond and femtosecond transient absorption or luminescence spectroscopies, and optical laser pump-X-ray probe techniques using picosecond and femtosecond X-ray pulses. The interpretation of ultrafast structural changes, time-resolved spectra, quantum yields, and time scales of elementary processes or transient lifetimes needs robust theoretical tools combining state-of-the-art quantum chemistry and developments in quantum dynamics for solving the electronic and nuclear problems. Multimode molecular dynamics beyond the Born-Oppenheimer approximation has been successfully applied to many small polyatomic systems. Its application to large molecules containing a transition metal atom is still a challenge because of the nuclear dimensionality of the problem, the high density of electronic excited states, and the spin-orbit coupling effects. Rhenium(I) α-diimine carbonyl complexes, [Re(L)(CO)3(N,N)](n+) are thermally and photochemically robust and highly flexible synthetically. Structural variations of the N,N and L ligands affect the spectroscopy, the photophysics, and the photochemistry of these chromophores easily incorporated into a complex environment. Visible light absorption opens the route to a wide range of applications such as sensors, probes, or emissive labels for imaging biomolecules. Halide complexes [Re(X)(CO)3(bpy)] (X = Cl, Br, or I; bpy = 2,2'-bipyridine) exhibit complex electronic structure and large spin-orbit effects that do not correlate with the heavy atom effects. Indeed, the (1)MLCT → (3)MLCT intersystem crossing (ISC) kinetics is slower than in [Ru(bpy)3](2+) or [Fe(bpy)3](2+) despite the presence of a third-row transition metal. Counterintuitively, singlet excited-state lifetime increases on going from Cl (85 fs) to Br (128 fs) and to I (152 fs). Moreover, correlation between the Re-X stretching mode and the rate of ISC is observed. In this Account, we emphasize on the role of spin-vibronic coupling on the mechanism of ultrafast ISC put in evidence in [Re(Br)(CO)3(bpy)]. For this purpose, we have developed a model Hamiltonian for solving an 11 electronic excited states multimode problem including vibronic and SO coupling within the linear vibronic coupling (LVC) approximation and the assumption of harmonic potentials. The presence of a central metal atom coupled to rigid ligands, such as α-diimine, ensures nuclear motion of small amplitudes and a priori justifies the use of the LVC model. The simulation of the ultrafast dynamics by wavepacket propagations using the multiconfiguration time-dependent Hartree (MCTDH) method is based on density functional theory (DFT), and its time-dependent extension to excited states (TD-DFT) electronic structure data. We believe that the interplay between time-resolved experiments and these pioneering simulations covering the first picoseconds and including spin-vibronic coupling will promote a number of quantum dynamical studies that will contribute to a better understanding of ultrafast processes in a wide range of organic and inorganic chromophores easily incorporated in biosystems or supramolecular devices for specific functions.
NASA Astrophysics Data System (ADS)
El-Samanody, El-Sayed A.; Polis, Magdy W.; Emara, Esam M.
2017-09-01
A new series of biologically active Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes derived from the novel thiosemicarbazone ligand; (E)-N‧-(1-(4-aminophenyl)ethylidene)morpholine-4-carbothiohydrazide (HL) were synthesized. The mode of bonding of the ligand and the geometrical structures of its metal complexes were achieved by different analytical and spectral methods. The ligand coordinated with metal ions in a neutral bidentate fashion through the thione sulfur and azomethine nitrogen atoms. All metal complexes adopted octahedral geometry, except Cu(II) complexes (3, 6, 7) which have a square planar structure. The general thermal decomposition pathways of the ligand along with its metal complexes were explained. The thermal stability of the complexes is controlled by the number of outer and inner sphere water molecules, ionic radii and the steric hindrance. The activation thermodynamic parameters; (activation energy (E*), enthalpy of activation (ΔH*), entropy of activation (ΔS*) and Gibbs free energy (ΔG*)) along with order of reaction (n) were estimated from DTG curves. The ESR spectra of Cu(II) complexes indicated that (dx2-y2)1 is the ground state with covalence character of metal-ligand bonds. The molluscicidal and biochemical effects of the ligand and its Ni(II); Cu(II) complexes (2; 3, 5, 7) along with their combinations with metaldehyde were screened in vitro on the mucous gland of Eobania vermiculata. The tested compounds exhibited a significant toxicity against the tested animals and have almost the same toxic effect of metaldehyde which increases the mucous secretion of the snails and leads to death.
Platinated DNA oligonucleotides: new probes forming ultrastable conjugates with graphene oxide
NASA Astrophysics Data System (ADS)
Wang, Feng; Liu, Juewen
2014-05-01
Metal containing polymers have expanded the property of polymers by involving covalently associated metal complexes. DNA is a special block copolymer. While metal ions are known to influence DNA, little is explored on its polymer property when strong metal complexes are associated. In this work, we study cisplatin modified DNA as a new polymer and probe. Out of the complexes formed between cisplatin-A15, HAuCl4-A15, Hg2+-T15 and Ag+-C15, only the cisplatin adduct is stable under the denaturing gel electrophoresis condition. Each Pt-nucleobase bond gives a positive charge and thus makes DNA a zwitterionic polymer. This allows ultrafast adsorption of DNA by graphene oxide (GO) and the adsorbed complex is highly stable. Non-specific DNA, protein, surfactants and thiolated compounds cannot displace platinated DNA from GO, while non-modified DNA is easily displaced in most cases. The stable GO/DNA conjugate is further tested for surface hybridization. This is the first demonstration of using metallated DNA as a polymeric material for interfacing with nanoscale materials.Metal containing polymers have expanded the property of polymers by involving covalently associated metal complexes. DNA is a special block copolymer. While metal ions are known to influence DNA, little is explored on its polymer property when strong metal complexes are associated. In this work, we study cisplatin modified DNA as a new polymer and probe. Out of the complexes formed between cisplatin-A15, HAuCl4-A15, Hg2+-T15 and Ag+-C15, only the cisplatin adduct is stable under the denaturing gel electrophoresis condition. Each Pt-nucleobase bond gives a positive charge and thus makes DNA a zwitterionic polymer. This allows ultrafast adsorption of DNA by graphene oxide (GO) and the adsorbed complex is highly stable. Non-specific DNA, protein, surfactants and thiolated compounds cannot displace platinated DNA from GO, while non-modified DNA is easily displaced in most cases. The stable GO/DNA conjugate is further tested for surface hybridization. This is the first demonstration of using metallated DNA as a polymeric material for interfacing with nanoscale materials. Electronic supplementary information (ESI) available: Methods, additional gels, kinetics, mass spectrum. See DOI: 10.1039/c4nr00867g
Hedberg, Yolanda; Hedberg, Jonas; Liu, Yi; Wallinder, Inger Odnevall
2011-12-01
Iron, chromium, nickel, and manganese released from gas-atomized AISI 316L stainless steel powders (sized <45 and <4 μm) were investigated in artificial lysosomal fluid (ALF, pH 4.5) and in solutions of its individual inorganic and organic components to determine its most aggressive component, elucidate synergistic effects, and assess release mechanisms, in dependence of surface changes using atomic absorption spectroscopy, Raman, XPS, and voltammetry. Complexation is the main reason for metal release from 316L particles immersed in ALF. Iron was mainly released, while manganese was preferentially released as a consequence of the reduction of manganese oxide on the surface. These processes resulted in highly complexing media in a partial oxidation of trivalent chromium to hexavalent chromium on the surface. The extent of metal release was partially controlled by surface properties (e.g., availability of elements on the surface and structure of the outermost surface) and partially by the complexation capacity of the different metals with the complexing agents of the different media. In general, compared to the coarse powder (<45 μm), the fine (<4 μm) powder displayed significantly higher released amounts of metals per surface area, increased with increased solution complexation capacity, while less amounts of metals were released into non-complexing solutions. Due to the ferritic structure of lower solubility for nickel of the fine powder, more nickel was released into all solutions compared with the coarser powder.
NASA Astrophysics Data System (ADS)
Refat, Moamen S.; Sharshar, T.; Elsabawy, Khaled M.; Heiba, Zein K.
2013-09-01
Metal aspirinate complexes, M2(Asp)4, where M is Mg(II), Ca(II), Sr(II) or Ba(II) are formed by refluxed of aspirin (Asp) with divalent non-transition metal ions of group (II) and characterized by elemental analysis and spectroscopic measurements (infrared, electronic, 1H NMR, Raman, X-ray powder diffraction and scanning electron microscopy). Elemental analysis of the chelates suggests the stoichiometry is 1:2 (metal:ligand). Infrared spectra of the complexes agree with the coordination to the central metal atom through three donation sites of two oxygen atoms of bridge bidentate carboxylate group and oxygen atom of sbnd Cdbnd O of acetyl group. Infrared spectra coupled with the results of elemental analyzes suggested a distorted octahedral structure for the M(II) aspirinate complexes. Gamma irradiation was tested as a method for stabilization of aspirin as well as their complexes. The effect of gamma irradiation, with dose of 80 Gy, on the properties of aspirinate complexes was studied. The aspirinate chelates have been screened for their in vitro antibacterial activity against four bacteria, gram-positive (Bacillus subtilis and Staphylococcus aureus) and gram-negative (Escherichia coli and Pseudomonas aeruginosa) and two strains of fungus (Aspergillus flavus and Candida albicans). The metal chelates were shown to possess more antibacterial activity than the free aspirin chelate.
Application of dual-energy x-ray techniques for automated food container inspection
NASA Astrophysics Data System (ADS)
Shashishekhar, N.; Veselitza, D.
2016-02-01
Manufacturing for plastic food containers often results in small metal particles getting into the containers during the production process. Metal detectors are usually not sensitive enough to detect these metal particles (0.5 mm or lesser), especially when the containers are stacked in large sealed shipping packages; X-ray inspection of these packages provides a viable alternative. This paper presents the results of an investigation into dual-energy X-ray techniques for automated detection of small metal particles in plastic food container packages. The sample packages consist of sealed cardboard boxes containing stacks of food containers: plastic cups for food, and Styrofoam cups for noodles. The primary goal of the investigation was to automatically identify small metal particles down to 0.5 mm diameter in size or less, randomly located within the containers. The multiple container stacks in each box make it virtually impossible to reliably detect the particles with single-energy X-ray techniques either visually or with image processing. The stacks get overlaid in the X-ray image and create many indications almost identical in contrast and size to real metal particles. Dual-energy X-ray techniques were investigated and found to result in a clear separation of the metal particles from the food container stack-ups. Automated image analysis of the resulting images provides reliable detection of the small metal particles.
NASA Astrophysics Data System (ADS)
Hassan, Walid M. I.; Badawy, M. A.; Mohamed, Gehad G.; Moustafa, H.; Elramly, Salwa
2013-07-01
The binuclear complexes of 2-(3-amino-2-hydrazono-4-oxothiazolidin-5-yl) acetic acid ligand (HL) with Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) ions were prepared and their stoichiometry was determined by elemental analysis. The stereochemistry of the studied series of metal complexes was established by analyzing their infrared, 1H NMR spectra and the magnetic moment measurements. According to the elemental analysis data, the complexes were found to have the formulae [Fe2L(H2O)8]Cl5 and [M2L(H2O)8]Cl3 (M = Co(II), Ni(II), Cu(II) and Zn(II)). The present analyses demonstrate that all metal ions coordinated to the ligand via O(9), O(11), N(16) and N(18) atoms. Thermal decomposition studies of the ligand-metal complexes have been performed to verify the status of water molecules present in these metal complexes and their general decomposition pattern. Density Functional Theory (DFT) calculations at the B3LYP/6-31G* level of theory have been carried out to investigate the equilibrium geometry of the ligand and complexes. Moreover, charge density distribution, extent of distortion from regular geometry, dipole moment and orientation have been performed and discussed.
Slow Photoelectron Velocity-Map Imaging of Cryogenically Cooled Anions
NASA Astrophysics Data System (ADS)
Weichman, Marissa L.; Neumark, Daniel M.
2018-04-01
Slow photoelectron velocity-map imaging spectroscopy of cryogenically cooled anions (cryo-SEVI) is a powerful technique for elucidating the vibrational and electronic structure of neutral radicals, clusters, and reaction transition states. SEVI is a high-resolution variant of anion photoelectron spectroscopy based on photoelectron imaging that yields spectra with energy resolution as high as 1-2 cm‑1. The preparation of cryogenically cold anions largely eliminates hot bands and dramatically narrows the rotational envelopes of spectral features, enabling the acquisition of well-resolved photoelectron spectra for complex and spectroscopically challenging species. We review the basis and history of the SEVI method, including recent experimental developments that have improved its resolution and versatility. We then survey recent SEVI studies to demonstrate the utility of this technique in the spectroscopy of aromatic radicals, metal and metal oxide clusters, nonadiabatic interactions between excited states of small molecules, and transition states of benchmark bimolecular reactions.
A Springloaded Metal-Ligand Mesocate Allows Access to Trapped Intermediates of Self-Assembly.
Bogie, Paul M; Holloway, Lauren R; Lyon, Yana; Onishi, Nicole C; Beran, Gregory J O; Julian, Ryan R; Hooley, Richard J
2018-04-02
A strained, "springloaded" Fe 2 L 3 iminopyridine mesocate shows highly variable reactivity upon postassembly reaction with competitive diamines. The strained assembly is reactive toward transimination in minutes at ambient temperature and allows observation of kinetically trapped intermediates in the self-assembly pathway. When diamines are used that can only form less favored cage products upon full equilibration, trapped ML 3 fragments with pendant, "hanging" NH 2 groups are selectively formed instead. Slight variations in diamine structure have large effects on the product outcome: less rigid diamines convert the mesocate to more favored self-assembled cage complexes under mild conditions and allow observation of heterocomplex intermediates in the displacement pathway. The mesocate allows control of equilibrium processes and direction of product outcomes via small, iterative changes in added subcomponent structure and provides a method of accessing metal-ligand cage structures not normally observed in multicomponent Fe-iminopyridine self-assembly.
Chen, Xiangyang; Yang, Xinzheng
2016-10-01
Catalytic hydrogenation and dehydrogenation reactions are fundamentally important in chemical synthesis and industrial processes, as well as potential applications in the storage and conversion of renewable energy. Modern computational quantum chemistry has already become a powerful tool in understanding the structures and properties of compounds and elucidating mechanistic insights of chemical reactions, and therefore, holds great promise in the design of new catalysts. Herein, we review our computational studies on the catalytic hydrogenation of carbon dioxide and small organic carbonyl compounds, and on the dehydrogenation of amine-borane and alcohols with an emphasis on elucidating reaction mechanisms and predicting new catalytic reactions, and in return provide some general ideas for the design of high-efficiency, low-cost transition-metal complexes for hydrogenation and dehydrogenation reactions. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Heavy metal coordination chemistry in mercaptides and enzymes studied by TDPAC
NASA Astrophysics Data System (ADS)
Butz, T.
1993-03-01
Time differential perturbed angular correlation (TDPAC) studies of the coordination chemistry of the heavy metal atoms Cd and Hg via the nuclear quadrupole interaction are presented for the following systems; (i) mercury complexes with mercaptides, polymers with thiol groups, and ferrocenethiols. Mercury has a strong tendency to form linear or almost linear bonds with sulfur ligands. Evidence for 1,3-dithia-2-mercura[3]ferrocenophane formation is presented. (ii)111mCd-derivatives of the small electron transport proteins azurin, including a his 117gly mutant, and stellacyanin. The titration of the his 117gly mutant of azurin with imidazole was monitored in situ. (iii)111mCd- and199mHg-derivatives of the multi-Cu enzymes ascorbate oxidase and laccase. Reconstitution probabilities for Hg-reconstitution will be given as well as information on selective depletion and blocking of Cu-sites.
Focus tunable device actuator based on ionic polymer metal composite
NASA Astrophysics Data System (ADS)
Zhang, Yi-Wei; Su, Guo-Dung J.
2015-09-01
IPMC (Ionic Polymer Metallic Composite) is a kind of electroactive polymer (EAP) which is used as an actuator because of its low driving voltage and small size. The mechanism of IPMC actuator is due to the ionic diffusion when the voltage gradient is applied. In this paper, the complex IPMC fabrication such as Ag-IPMC be further developed in this paper. The comparison of response time and tip bending displacement of Pt-IPMC and Ag-IPMC will also be presented. We also use the optimized IPMC as the lens actuator integrated with curvilinear microlens array, and use the 3D printer to make a simple module and spring stable system. We also used modeling software, ANSYS Workbench, to confirm the effect of spring system. Finally, we successfully drive the lens system in 200μm stroke under 2.5V driving voltage within 1 seconds, and the resonant frequency is approximately 500 Hz.
Properties- and applications of quasicrystals and complex metallic alloys.
Dubois, Jean-Marie
2012-10-21
This article aims at an account of what is known about the potential for applications of quasicrystals and related compounds, the so-called family of Complex Metallic Alloys (CMAs‡). Attention is focused at aluminium-based CMAs, which comprise a large number of crystalline compounds and quasicrystals made of aluminium alloyed with transition metals (like Fe or Cu) or normal metals like Mg. Depending on composition, the structural complexity varies from a few atoms per unit cell up to thousands of atoms. Quasicrystals appear then as CMAs of ultimate complexity and exhibit a lattice that shows no periodicity anymore in the usual 3-dimensional space. Properties change dramatically with lattice complexity and turn the metal-type behaviour of simple Al-based crystals into a far more complex behaviour, with a fingerprint of semi-conductors that may be exploited in various applications, potential or realised. An account of the ones known to the author is given in the light of the relevant properties, namely light absorption, reduced adhesion and friction, heat insulation, reinforcement of composites for mechanical devices, and few more exotic ones. The role played by the search for applications of quasicrystals in the development of the field is briefly addressed in the concluding section.
Metal-metal bond lengths in complexes of transition metals.
Pauling, L
1976-12-01
In complexes of the transition metals containing clusters of metal atoms the cobalt-cobalt bond lengths are almost always within 1 pm of the single-bond value 246 pm given by the enneacovalent radius of cobalt, whereas most of the observed iron-iron bond lengths are significantly larger than the single-bond value 248 pm, the mean being 264 pm, which corresponds to a half-bond. A simple discussion of the structures of these complexes based on spd hybrid orbitals, the electroneutrality principle, and the partial ionic character of bonds between unlike atoms leads to the conclusion that resonance between single bonds and no-bonds would occur for iron and its congeners but not for cobalt and its congeners, explaining the difference in the bond lengths.
Peng, Deqian; Du, Gaixia; Zhang, Pengfei; Yao, Bo; Li, Xiaofang; Zhang, Shaowen
2016-06-01
The polymerization of ocimene has been first achieved by half-sandwich rare-earth metal dialkyl complexes in combination with activator and Al(i) Bu3 . The regio- and stereoselectivity in the ocimene polymerization can be controlled by tuning the cyclopentadienyl ligand and the central metal of the complex. The chiral cyclopentadienyl-ligated Sc complex 1 prepares syndiotactic cis-1,4-polyocimene (cis-1,4-selectivity up to 100%, rrrr = 100%), while the corresponding Lu, Y, and Dy complexes 2-4 and the achiral pentamethylcyclopentadienyl Sc, Lu, and Y complexes 5-7 afford isotactic trans-1,2-polyocimenes (trans-1,2-selectivity up to 100%, mm = 100%). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Activation of carbon-hydrogen bonds and dihydrogen by 1,2-CH-addition across metal-heteroatom bonds.
Webb, Joanna R; Burgess, Samantha A; Cundari, Thomas R; Gunnoe, T Brent
2013-12-28
The controlled conversion of hydrocarbons to functionalized products requires selective C-H bond cleavage. This perspective provides an overview of 1,2-CH-addition of hydrocarbons across d(0) transition metal imido complexes and compares and contrasts these to examples of analogous reactions that involve later transition metal amide, hydroxide and alkoxide complexes with d(6) and d(8) metals.
Handheld Delivery System for Modified Boron-Type Fire Extinguishment Agent
1993-11-01
was to develop and test a handheld portable delivery system for use with the modified boron-type fire extinguishing agent for metal fires . B...BACKGROUND A need exists for an extinguishing agent and accompanying delivery system that are effective against complex geometry metal fires . A modified...agent and its delivery system have proven effective against complex geometry metal fires containing up to 200 pounds of magnesium metal. Further
Method of stripping metals from organic solvents
Todd, Terry A [Aberdeen, ID; Law, Jack D [Pocatello, ID; Herbst, R Scott [Idaho Falls, ID; Romanovskiy, Valeriy N [St. Petersburg, RU; Smirnov, Igor V [St.-Petersburg, RU; Babain, Vasily A [St-Petersburg, RU; Esimantovski, Vyatcheslav M [St-Petersburg, RU
2009-02-24
A new method to strip metals from organic solvents in a manner that allows for the recycle of the stripping agent. The method utilizes carbonate solutions of organic amines with complexants, in low concentrations, to strip metals from organic solvents. The method allows for the distillation and reuse of organic amines. The concentrated metal/complexant fraction from distillation is more amenable to immobilization than solutions resulting from current practice.
NASA Astrophysics Data System (ADS)
Mehta, Jignasu P.; Bhatt, Prashant N.; Misra, Sudhindra N.
2003-02-01
The coordination chemistry of glutathione (reduced) GSH is of great importance as it acts as an excellent model system for the binding of metal ions. The GSH complexation with metal ions is involved in the toxicology of different metal ions. Its coordination behaviour for soft metal ions and hard metal ions is found different because of the structure of GSH and its different potential binding sites. We have studied two chemically dissimilar metal ions viz. Nd (III) being hard metal ion, which will prefer hard donor sites like carboxylic groups, and Zn (II) the soft metal ion more suited to peptide-NH and sulfhydryl groups. The absorption difference and comparative absorption spectroscopy involving 4f-4f transitions of the heterobimetallic complexation of GSH with Nd (III) and Zn (II) has been explored in aqueous and aquated organic solvents. The changes in the oscillator strengths of different 4f-4f bands and Judd-Ofelt intensity (Tλ) parameters determined experimentally is being used to investigate the complexation of GSH. The in vivo intracellular complexation of GSH with Ca (II) in presence of Zn (II) ion has been mimicked through Nd (III)-GSH-Zn (II) absorption spectral studies in vitro.
Mahmoud, W H; Mahmoud, N F; Mohamed, G G; El-Sonbati, A Z; El-Bindary, A A
2015-01-01
The coordination behavior of a series of transition metal ions named Cr(III), Fe(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) with a mono negative tridentate guaifenesin ligand (GFS) (OOO donation sites) and 1,10-phenanthroline (Phen) is reported. The metal complexes are characterized based on elemental analyses, IR, (1)H NMR, solid reflectance, magnetic moment, molar conductance, UV-vis spectral studies, mass spectroscopy, ESR, XRD and thermal analysis (TG and DTG). The ternary metal complexes were found to have the formulae of [M(GFS)(Phen)Cl]Cl·nH2O (M=Cr(III) (n=1) and Fe(III) (n=0)), [M(GFS)(Phen)Cl]·nH2O (M=Mn(II) (n=0), Zn(II) (n=0) and Cu(II) (n=3)) and [M(GFS)(Phen)(H2O)]Cl·nH2O (M=Co(II) (n=0), Ni(II) (n=0) and Cd(II) (n=4)). All the chelates are found to have octahedral geometrical structures. The ligand and its ternary chelates are subjected to thermal analyses (TG and DTG). The GFS ligand, in comparison to its ternary metal complexes also was screened for their antibacterial activity on gram positive bacteria (Bacillus subtilis and Staphylococcus aureus), gram negative bacteria (Escherichia coli and Neisseria gonorrhoeae) and for in vitro antifungal activity against (Candida albicans). The activity data show that the metal complexes have antibacterial and antifungal activity more than the parent GFS ligand. The complexes were also screened for its in vitro anticancer activity against the Breast cell line (MFC7) and the results obtained show that they exhibit a considerable anticancer activity. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Shasha; Zhao, Xiuming; Li, Yuanzuo; Zhao, Xiaohong; Chen, Maodu
2009-06-01
Density functional theory (DFT) and time-dependent DFT calculations have been performed to investigate the Raman scattering spectra of metal-molecule complex and metal-molecule-metal junction architectures interconnected with 4-aminothiophenol (PATP) molecule. The simulated profiles of normal Raman scattering (NRS) spectra for the two complexes (Ag2-PATP and PATP-Au2) and the two junctions (Ag2-PATP-Au2 and Au2-PATP-Ag2) are similar to each other, but exhibit obviously different Raman intensities. Due to the lager static polarizabilities of the two junctions, which directly influence the ground state chemical enhancement in NRS spectra, the calculated normal Raman intensities of them are stronger than those of two complexes by the factor of 102. We calculate preresonance Raman scattering (RRS) spectra with incident light at 1064 nm, which is much lower than the S1 electronic transition energy of complexes and junctions. Ag2-PATP-Au2 and Au2-PATP-Ag2 junctions yield higher Raman intensities than those of Ag2-PATP and PATP-Au2 complexes, especially for b2 modes. This effect is mainly attributed to charge transfer (CT) between the metal gap and the PAPT molecule which results in the occurrence of CT resonance enhancement. The calculated pre-RRS spectra strongly depend on the electronic transition state produced by new structures. With excitation at 514.5 nm, the calculated pre-RRS spectra of two complexes and two junctions are stronger than those of with excitation at 1064 nm. A charge difference densities methodology has been used to visually describe chemical enhancement mechanism of RRS spectrum. This methodology aims at visualizing intermolecular CT which provides direct evidence of the Herzberg-Teller mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Pei-Wei; Fox, M.A.
1994-06-22
Electrochemical, EPR, and spectroelectrochemical methods have been used to probe electronic coupling through a 1,2,4,5-tetrakis(diphenylphosphino)benzene bridging ligand connecting metal centers in several Ni-, Pd-, and Pt-containing dimetallic complexes. These dimetalated complexes showed weak intervalence charge transfer (IT) bands and slightly shifted redox potentials in comparison with their monometallic models. A Marcus-Hush analysis of the energies of the IT bands for the electrochemically generated mixed-valence heterodimetallic complexes (Ni{sup o}-Pd{sup II} and Ni{sup o}-Pt{sup II}, respectively) established the magnitude of intermetallic electronic coupling. The weak thermal coupling observed in these dimetalated complexes is consistent with the very low conductivities (10{sup {minus}8}-10{sup {minus}10}{omega}{supmore » -1} cm{sup {minus}1}) observed in the polymeric analogs of these complexes, namely, the newly prepared metal coordination polymers (M = Ni{sup II}, Pd{sup II}, Pt{sup II}) with 1,2,4,5-tetrakis(diphenylphosphino)benzene.« less
NASA Astrophysics Data System (ADS)
Hosny, Nasser M.; Hassan, Nader Y.; Mahmoud, Heba M.; Abdel-Rhman, Mohamed H.
2018-03-01
The ligand 2-isonicotinoyl-N-phenylhydrazine-1-carboxamide (H3L) and its metal complexes with Co(II), Ni(II), Cu(II) and Zn(II) acetates have been synthesized. The isolated compounds have been characterized by elemental analyses, FT-IR, 1H NMR, 13C NMR, ESR, mass, electronic spectra, electrical conductivity, effective magnetic moments and thermal analyses. The free organic ligand exists in the keto form, but in the metal complexes, it coordinates in the enol form. Four coordinated species were suggested for all the isolated metal complexes. The measured optical band gap values confirmed the presence of direct electronic transition and the semi-conductivity of the compounds. The ligand and its Zn(II) complex were examined as cytotoxic agent against HCT-116 and HePG-2. The ligand showed very strong cytotoxic effect against HePG-2, but moderate cytotoxicity against HCT-116. Zn(II) complex showed weak cytotoxicity against the two cell lines.
NASA Astrophysics Data System (ADS)
Singh, Th. David; Sumitra, Ch.; Yaiphaba, N.; Devi, H. Debecca; Devi, M. Indira; Singh, N. Rajmuhon
2005-04-01
The coordination chemistry of glutathione reduced (GSH) is of great importance as it acts as excellent model system for the binding of metal ions. The GSH complexation with metal ions is involved in the toxicology of different metal ions. Its coordination behaviour for soft metal ions and hard metal ions is found different because of the structure of GSH and its different potential binding sites. In our work we have studied two chemically dissimilar metal ions viz. Pr(III), which prefer hard donor site like carboxylic groups and Zn(II) the soft metal ion which prefer peptide-NH and sulphydryl groups. The absorption difference and comparative absorption spectroscopy involving 4f-4f transitions of the heterobimetallic Complexation of GSH with Pr(III) and Zn(II) has been explored in aqueous and aquated organic solvents. The variation in the energy parameters like Slater-Condon ( F K), Racah ( E K) and Lande ( ξ4f), Nephelauxetic parameter ( β) and bonding parameter ( b1/2) are computed to explain the nature of complexation.
Sundararajan, M L; Jeyakumar, T; Anandakumaran, J; Karpanai Selvan, B
2014-10-15
Metal complexes of Zn(II), Cd(II), Ni(II), Cu(II), Fe(III), Co(II), Mn(II) Hg(II), and Ag(I) have been synthesized from Schiff base ligand, prepared by the condensation of 3,4-(methylenedioxy)aniline and 5-bromo salicylaldehyde. All the compounds have been characterized by using elemental analysis, molar conductance, FT-IR, UV-Vis, (1)H NMR, (13)C NMR, mass spectra, powder XRD and thermal analysis (TG/DTA) technique. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). The FT-IR, (1)H NMR, (13)C NMR and UV-Vis spectral data suggest that the ligand coordinate to the metal atom by imino nitrogen and phenolic oxygen as bidentate manner. Mass spectral data further support the molecular mass of the compounds and their structure. Powder XRD indicates the crystalline state and morphology of the ligand and its metal complexes. The thermal behaviors of the complexes prove the presence of lattice as well as coordinated water molecules in the complexes. Melting point supports the thermal stability of all the compounds. The in vitro antimicrobial effects of the synthesized compounds were tested against five bacterial and three fungal species by well diffusion method. Antioxidant activities have also been performed for all the compounds. Metal complexes show more biological activity than the Schiff base. Copyright © 2014 Elsevier B.V. All rights reserved.
Chemistry in acetone complexes of metal dications: a remarkable ethylene production pathway.
Wu, Jianhua; Liu, Dan; Zhou, Jian-Ge; Hagelberg, Frank; Park, Sung Soo; Shvartsburg, Alexandre A
2007-06-07
Electrospray ionization can generate microsolvated multiply charged metal ions for various metals and ligands, allowing exploration of chemistry within such clusters. The finite size of these systems permits comparing experimental results with accurate calculations, creating a natural laboratory to research ion solvation. Mass spectrometry has provided much insight into the stability and dissociation of ligated metal cations. While solvated singly charged ions tend to shrink by ligand evaporation, solvated polycations below a certain size exhibit charge reduction and/or ligand fragmentation due to organometallic reactions. Here we investigate the acetone complexes of representative divalent metals (Ca, Mn, Co, Ni, and Cu), comparing the results of collision-induced dissociation with the predictions of density functional theory. As for other solvated dications, channels involving proton or electron transfer compete with ligand loss and become dominant for smaller complexes. The heterolytic C-C bond cleavage is common, like in DMSO and acetonitrile complexes. Of primary interest is the unanticipated neutral ethylene loss, found for all metals studied except Cu and particularly intense for Ca and Mn. We focus on understanding that process in the context of competing dissociation pathways, as a function of metal identity and number of ligands. According to first-principles modeling, ethylene elimination proceeds along a complex path involving two intermediates. These results suggest that chemistry in microsolvated multiply charged ions may still hold major surprises.
Our Galactic Neighbor Hosts Complex Organic Molecules
NASA Astrophysics Data System (ADS)
Hensley, Kerry
2018-03-01
For the first time, data from the Atacama Large Millimeter/submillimeter Array (ALMA) reveal the presence of methyl formate and dimethyl ether in a star-forming region outside our galaxy. This discovery has important implications for the formation and survival of complex organic compounds importantfor the formation of life in low-metallicity galaxies bothyoung and old.No Simple Picture of Complex Molecule FormationALMA, pictured here with the Magellanic Clouds above, has observed organic molecules in our Milky Way Galaxy and beyond. [ESO/C. Malin]Complex organic molecules (those with at least six atoms, one or more of which must be carbon) are the precursors to the building blocks of life. Knowing how and where complex organic molecules can form is a key part of understanding how life came to be on Earth and how it might arise elsewhere in the universe. From exoplanet atmospheres to interstellar space, complex organic molecules are ubiquitous in the Milky Way.In our galaxy, complex organic molecules are often found in the intense environments of hot cores clumps of dense molecular gas surrounding the sites of star formation. However, its not yet fully understood how the complex organic molecules found in hot cores come to be. One possibility is that the compounds condense onto cold dust grains long before the young stars begin heating their natal shrouds. Alternatively, they might assemble themselves from the hot, dense gas surrounding the blazing protostars.Composite infrared and optical image of the N 113 star-forming region in the LMC. The ALMA coverage is indicated by the gray line. Click to enlarge. [Sewio et al. 2018]Detecting Complexity, a Galaxy AwayUsing ALMA, a team of researchers led by Marta Sewio (NASA Goddard Space Flight Center) recently detected two complex organic molecules methyl formate and dimethyl ether for the first time in our neighboring galaxy, the Large Magellanic Cloud (LMC). Previous searches for organic molecules in the LMC detected small amounts of methanol, the parentmolecule of the two newly-discovered compounds. By revealing the spectral signatures of dimethyl ether and methyl formate, Sewio and collaboratorsfurther prove thatorganic chemistry is hard at work in hot cores in the LMC.This discovery is momentous because dwarf galaxies like theLMC tend to have a lower abundance of the heavy elements that make up complex organic molecules most importantly, oxygen, carbon, and nitrogen. Beyond lacking the raw materials necessary to create complex molecules, the gas of low-metallicity galaxies does a poorer job preventing the penetration of high-energy photons. The impinging photons warm dust grains, resulting in a lower probability of forming and maintaining complex organic molecules. Despite this, organic molecules appear to beable todevelop and persist which has exciting implications for organic chemistry in low-metallicity environments.ALMA observation of emission by methyl formate in a hot core in the LMC.[Adapted from Sewio et al. 2018]A Lens into the PastIn the early universe, before the budding galaxies have had time to upcycle their abundant hydrogen into heavier elements, organic chemistry is thought to proceed slowly or not at all. The discovery of complex organic molecules in a nearby low-metallicity galaxy upends this theory and propels us toward a better understanding of the organic chemistry in the early universe.CitationMarta Sewio et al 2018ApJL853L19. doi:10.3847/2041-8213/aaa079
Moon, Seok Joon; Kim, Jong Moon; Choi, Ji Youn; Kim, Seog K; Lee, Je Seung; Jang, Ho G
2005-05-01
The luminescence intensity of the Delta- and Lambda-enantiomer of [Ru(phen)2DPPZ]2+ ([Ru(phenanthroline)2 dipyrido[3,2-a:2',3'-c]phenazine]2+) complex enhanced upon binding to double stranded DNA, which has been known as "light switch effect". The enhancement of the luminescence required the intercalation of the large ligand between DNA base pairs. In this study, we report the enhancement in the luminescence intensity when the metal complexes bind to single stranded oligonucleotides, indicating that the "light switch effect" does not require intercalation of the large DPPZ ligand. Oligonucleotides may provide a hydrophobic cavity for the [Ru(phen)2DPPZ]2+ complex to prevent the quenching by the water molecule. In the cavity, the metal complex is in contact with DNA bases as is evidenced by the observation that the excited energy of the DNA bases transfer to the bound metal complex. However, the contact of the metal complex with DNA bases is different from the stacking of DPPZ in the intercalation pocket. In addition to the normal two luminescence lifetimes, a short lifetime in the range of 1-2 ns was found for both the delta- and lambda-enantiomer of [Ru(phen)2DPPZ]2+ when complexed with single stranded oligonucleotides, which may be assigned to the metal complex that is outside of the cavity, interacting with phosphate groups of DNA.
Control of cerium oxidation state through metal complex secondary structures
Levin, Jessica R.; Dorfner, Walter L.; Carroll, Patrick J.; ...
2015-08-11
A series of alkali metal cerium diphenylhydrazido complexes, M x(py) y[Ce(PhNNPh) 4], M = Li, Na, and K, x = 4 (Li and Na) or 5 (K), and y = 4 (Li), 8 (Na), or 7 (K), were synthesized to probe how a secondary coordination sphere would modulate electronic structures at a cerium cation. The resulting electronic structures of the heterobimetallic cerium diphenylhydrazido complexes were found to be strongly dependent on the identity of the alkali metal cations. When M = Li + or Na +, the cerium(III) starting material was oxidized with concomitant reduction of 1,2-diphenylhydrazine to aniline. Reductionmore » of 1,2-diphenylhydrazine was not observed when M = K +, and the complex remained in the cerium(III) oxidation state. Oxidation of the cerium(III) diphenylhydrazido complex to the Ce( IV) diphenylhydrazido one was achieved through a simple cation exchange reaction of the alkali metals. As a result, UV-Vis spectroscopy, FTIR spectroscopy, electrochemistry, magnetic susceptibility, and DFT studies were used to probe the oxidation state and the electronic changes that occurred at the metal centre.« less
Novel metals and metal complexes as platforms for cancer therapy.
Frezza, Michael; Hindo, Sarmad; Chen, Di; Davenport, Andrew; Schmitt, Sara; Tomco, Dajena; Dou, Q Ping
2010-06-01
Metals are essential cellular components selected by nature to function in several indispensable biochemical processes for living organisms. Metals are endowed with unique characteristics that include redox activity, variable coordination modes, and reactivity towards organic substrates. Due to their reactivity, metals are tightly regulated under normal conditions and aberrant metal ion concentrations are associated with various pathological disorders, including cancer. For these reasons, coordination complexes, either as drugs or prodrugs, become very attractive probes as potential anticancer agents. The use of metals and their salts for medicinal purposes, from iatrochemistry to modern day, has been present throughout human history. The discovery of cisplatin, cis-[Pt(II) (NH(3))(2)Cl(2)], was a defining moment which triggered the interest in platinum(II)- and other metal-containing complexes as potential novel anticancer drugs. Other interests in this field address concerns for uptake, toxicity, and resistance to metallodrugs. This review article highlights selected metals that have gained considerable interest in both the development and the treatment of cancer. For example, copper is enriched in various human cancer tissues and is a co-factor essential for tumor angiogenesis processes. However the use of copper-binding ligands to target tumor copper could provide a novel strategy for cancer selective treatment. The use of nonessential metals as probes to target molecular pathways as anticancer agents is also emphasized. Finally, based on the interface between molecular biology and bioinorganic chemistry the design of coordination complexes for cancer treatment is reviewed and design strategies and mechanisms of action are discussed.
Ueno, Takafumi; Abe, Satoshi; Koshiyama, Tomomi; Ohki, Takahiro; Hikage, Tatsuo; Watanabe, Yoshihito
2010-03-01
Metal-ion accumulation on protein surfaces is a crucial step in the initiation of small-metal clusters and the formation of inorganic materials in nature. This event is expected to control the nucleation, growth, and position of the materials. There remain many unknowns, as to how proteins affect the initial process at the atomic level, although multistep assembly processes of the materials formation by both native and model systems have been clarified at the macroscopic level. Herein the cooperative effects of amino acids and hydrogen bonds promoting metal accumulation reactions are clarified by using porous hen egg white lysozyme (HEWL) crystals containing Rh(III) ions, as model protein surfaces for the reactions. The experimental results reveal noteworthy implications for initiation of metal accumulation, which involve highly cooperative dynamics of amino acids and hydrogen bonds: i) Disruption of hydrogen bonds can induce conformational changes of amino-acid residues to capture Rh(III) ions. ii) Water molecules pre-organized by hydrogen bonds can stabilize Rh(III) coordination as aqua ligands. iii) Water molecules participating in hydrogen bonds with amino-acid residues can be replaced by Rh(III) ions to form polynuclear structures with the residues. iv) Rh(III) aqua complexes are retained on amino-acid residues through stabilizing hydrogen bonds even at low pH (approximately 2). These metal-protein interactions including hydrogen bonds may promote native metal accumulation reactions and also may be useful in the preparation of new inorganic materials that incorporate proteins.
NASA Astrophysics Data System (ADS)
Refat, Moamen S.; Moussa, Mohamed A. A.; Mohamed, Soha F.
2011-05-01
Riboflavin (RF) complexes of Mg(II), Ca(II), Sr(II) and Ba(II) were successfully synthesized. Structures of metal complexes obtained were confirmed and characterized by elemental analysis, molar conductance, and infrared spectra. DC electrical conductivity measurements indicated that the alkaline earth metal (II) complexes of RF ligand are non-electrolytes. Elemental analysis of chelates suggest that the metal(II) ligand ratio is 1:2 with structure formula as [M(RF) 2( X) 2]· nH 2O. Infrared assignments clearly show that RF ligand coordinated as a bidentate feature through azomethine nitrogen of pyrazine ring and C dbnd O of pyrimidine-2,4-dione. Thermal analyses of Mg(II), Ca(II), Sr(II) and Ba(II) complexes were investigated using (TG/DSC) under atmospheric nitrogen between 30 and 800 °C. The surface morphology of the complexes was studied by SEM. The electrical conductivities of RF and its metal complexes were also measured with DC electrical conductivity in the temperature range from room to 483 K.
NASA Astrophysics Data System (ADS)
Radha, V. P.; Jone Kirubavathy, S.; Chitra, S.
2018-08-01
Novel imidazoline based Schiff base ligands L1 and L2 were synthesized from o-phenylenediamine/o-aminophenol with creatinine. The ligands were complexed with Co(II) and Cu(II) by direct reaction with metal salts. The synthesized ligands and the metal complexes were characterized by elemental analysis, FT-IR, 1H NMR, mass, electronic, thermal analyses, conductivity and magnetic susceptibility measurements. The conductivity measurements showed the non-electrolytic nature of the complexes. The thermogravimetric analyses confirmed the presence of lattice and coordinated water molecules in the complexes. The DFT calculations were carried out at B3LYP/6-31G(d,p) level for the determination of the optimized structure of the ligands. The synthesized ligands and the metal complexes were screened for their antimicrobial activity against two gram positive bacteria (Staphylococcus aureus and Bacillus subtilis) and two gram negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and two fungal strains (Aspergillus niger and Candida albicans). The outcomes revealed that the metal complexes showed pronounced activity than the ligands.
Designed topology and site-selective metal composition in tetranuclear [MM'...M'M] linear complexes.
Barrios, Leoní A; Aguilà, David; Roubeau, Olivier; Gamez, Patrick; Ribas-Ariño, Jordi; Teat, Simon J; Aromí, Guillem
2009-10-26
The ligand 1,3-bis[3-oxo-3-(2-hydroxyphenyl)propionyl]benzene (H(4)L), designed to align transition metals into tetranuclear linear molecules, reacts with M(II) salts (M=Ni, Co, Cu) to yield complexes with the expected [MMMM] topology. The novel complexes [Co(4)L(2)(py)(6)] (2; py=pyridine) and [Na(py)(2)][Cu(4)L(2)(py)(4)](ClO(4)) (3) have been crystallographically characterised. The metal sites in complexes 2 and 3, together with previously characterised [Ni(4)L(2)(py)(6)] (1), favour different coordination geometries. These have been exploited for the deliberate synthesis of the heterometallic complex [Cu(2)Ni(2)L(2)(py)(6)] (4). Complexes 1, 2, 3 and 4 exhibit antiferromagnetic interactions between pairs of metals within each cluster, leading to S=0 spin ground states, except for the latter cluster, which features two quasi-independent S=1/2 moieties within the molecule. Complex 4 gathers the structural and physical conditions, thus allowing it to be considered as prototype of a two-qbit quantum gate.
NASA Astrophysics Data System (ADS)
Morgan, Sh. M.; El-Ghamaz, N. A.; Diab, M. A.
2018-05-01
Co(II) complexes (1-4) and Ni(II) complexes (5-8) were prepared and characterized by elemental analysis, IR spectra and thermal analysis data. Thermal decomposition of all complexes was discussed using thermogravimetric analysis. The dielectric properties and alternating current conductivity were investigated in the frequency range 0.1-100 kHz and temperature range 300-660 K. The thermal activation energies of electrical conductivity (ΔE1 and ΔE2) values for complexes were calculated and discussed. The values of ΔE1 and ΔE2 for complexes (1-8) were found to decrease with increasing the frequency. Ac electrical conductivity (σac) values increases with increasing temperatures and the values of σac for Co(II) complexes are greater than Ni(II) complexes. Co(II) complexes showed a higher conductivity than other Ni(II) complexes due to the higher crystallinity as confirmed by X-ray diffraction analysis.
Thorium Fuel Utilization Analysis on Small Long Life Reactor for Different Coolant Types
NASA Astrophysics Data System (ADS)
Permana, Sidik
2017-07-01
A small power reactor and long operation which can be deployed for less population and remote area has been proposed by the IAEA as a small and medium reactor (SMR) program. Beside uranium utilization, it can be used also thorium fuel resources for SMR as a part of optimalization of nuclear fuel as a “partner” fuel with uranium fuel. A small long-life reactor based on thorium fuel cycle for several reactor coolant types and several power output has been evaluated in the present study for 10 years period of reactor operation. Several key parameters are used to evaluate its effect to the reactor performances such as reactor criticality, excess reactivity, reactor burnup achievement and power density profile. Water-cooled types give higher criticality than liquid metal coolants. Liquid metal coolant for fast reactor system gives less criticality especially at beginning of cycle (BOC), which shows liquid metal coolant system obtains almost stable criticality condition. Liquid metal coolants are relatively less excess reactivity to maintain longer reactor operation than water coolants. In addition, liquid metal coolant gives higher achievable burnup than water coolant types as well as higher power density for liquid metal coolants.
Izquierdo, A; Carrasco, J
1981-05-01
Automatic thermometric titration was applied to some beta-aryl-alpha-mercaptopropenoic acids and the stoichiometry of their complexes with several metal ions was investigated. The heats of neutralization of the mercapto-acids with sodium hydroxide and the heats of their reaction with metal ions were calculated.
ERIC Educational Resources Information Center
Davis, Craig M.; Curran, Kelly A.
2007-01-01
Before taking an inorganic laboratory course few students have experience handling air-sensitive materials using Schlenk techniques. This exercise introduces them to techniques they will employ in later syntheses. The procedure involves the formation of anhydrous tetrahydrofuran complexes of transition-metal chlorides from metal-chloride hydrates;…
NASA Astrophysics Data System (ADS)
Brancolini, Giorgia; Di Felice, Rosa
2011-05-01
Novel DNA derivatives have been recently investigated in the pursuit of modified DNA duplexes to tune the electronic structure of DNA-based assemblies for nanotechnology applications. Size-expanded DNAs (e.g., xDNA) and metalated DNAs (M-DNA) may enhance stacking interactions and induce metallic conductivity, respectively. Here we explore possible ways of tailoring the DNA electronic structure by combining the aromatic size expansion with the metal-doping. We select the salient structures from our recent study on natural DNA pairs complexed with transition metal ions and consider the equivalent model configurations for xDNA pairs. We present the results of density functional theory electronic structure calculations of the metalated expanded base-pairs with various localized basis sets and exchange-correlation functionals. Implicit solvent and coordination water molecules are also included. Our results indicate that the effect of base expansion is largest in Ag-xGC complexes, while Cu-xGC complexes are the most promising candidates for nanowires with enhanced electron transfer and also for on-purpose modification of the DNA double-helix for signal detection.
Ruan, Chunhai; Huang, Hai; Rodgers, M T
2008-02-01
Threshold collision-induced dissociation techniques are employed to determine the bond dissociation energies (BDEs) of complexes of alkali metal cations to trimethyl phosphate, TMP. Endothermic loss of the intact TMP ligand is the only dissociation pathway observed for all complexes. Theoretical calculations at the B3LYP/6-31G* level of theory are used to determine the structures, vibrational frequencies, and rotational constants of neutral TMP and the M+(TMP) complexes. Theoretical BDEs are determined from single point energy calculations at the B3LYP/6-311+G(2d,2p) level using the B3LYP/6-31G* optimized geometries. The agreement between theory and experiment is reasonably good for all complexes except Li+(TMP). The absolute M+-(TMP) BDEs are found to decrease monotonically as the size of the alkali metal cation increases. No activated dissociation was observed for alkali metal cation binding to TMP. The binding of alkali metal cations to TMP is compared with that to acetone and methanol.
Takahashi, Hideyuki; Fujiki, Hironari; Yokoyama, Shun; Kai, Takayuki; Tohji, Kazuyuki
2018-01-01
To apply CuInSe2 (CIS)-based printable solar batteries; an aqueous phase synthesis method of Cu-In (CI) alloy nanoparticles is studied. Metal complexes in the original solution are restricted to homogenized species by utilizing calculations. For example; [(Cu2+)(ASP2−)2] [ASP: the “body (C4H5O4N)” of aspartic acid (C4H7O4N)] is predominant in the pH 6–13 region (CASP/CCu > 6); while In complexes can be restricted to [(In3+)(OH−)(EDTA4−)] (pH 10–12; CEDTA/CIn = 2) and/or [(In3+)(ASP2−)2] (pH 7–9; CASP/CIn = 5). These results indicate that the added amount of complex reagents should be determined by calculations and not the stoichiometric ratio. The reduction potential of homogenized metal complex is measured by cyclic voltammetry (CV) measurements and evaluated by Nernst’s equation using the overall stability constants. CuIn alloy nanoparticles with a small amount of byproduct (In nanoparticles) are successfully synthesized. The CI precursor films are spin-coated onto the substrate using a 2-propanol dispersion. Then the films are converted into CIS solar cells; which show a maximum conversion efficiency of 2.30%. The relationship between the open circuit potential; short circuit current density; and fill factor indicate that smoothing of the CIS films and improving the crystallinity and thickness increase the solar cell conversion efficiency. PMID:29642413
Zero Robotics at Kennedy Space Center Visitor Complex
2017-08-11
NASA Kennedy Space Center's Trent Smith conducts a quantum levitation demonstration, using liquid nitrogen, metal and a magnetic track, for students and their sponsors in the Center for Space Education at NASA’s Kennedy Space Center in Florida. Teams from across the state of Florida were gathered at Kennedy for the finals of the Zero Robotics Middle School Summer Program national championship. The five-week program allows rising sixth- through ninth-graders to write programs for small satellites called SPHERES (Synchronized, Position, Hold, Engage, Reorient, Experimental Satellites). Finalists saw their code tested aboard the International Space Station.
Photoredox Catalysis in Organic Chemistry
2016-01-01
In recent years, photoredox catalysis has come to the forefront in organic chemistry as a powerful strategy for the activation of small molecules. In a general sense, these approaches rely on the ability of metal complexes and organic dyes to convert visible light into chemical energy by engaging in single-electron transfer with organic substrates, thereby generating reactive intermediates. In this Perspective, we highlight the unique ability of photoredox catalysis to expedite the development of completely new reaction mechanisms, with particular emphasis placed on multicatalytic strategies that enable the construction of challenging carbon–carbon and carbon–heteroatom bonds. PMID:27477076