Sable, Rushikesh; Jois, Seetharama
2015-06-23
Blocking protein-protein interactions (PPI) using small molecules or peptides modulates biochemical pathways and has therapeutic significance. PPI inhibition for designing drug-like molecules is a new area that has been explored extensively during the last decade. Considering the number of available PPI inhibitor databases and the limited number of 3D structures available for proteins, docking and scoring methods play a major role in designing PPI inhibitors as well as stabilizers. Docking methods are used in the design of PPI inhibitors at several stages of finding a lead compound, including modeling the protein complex, screening for hot spots on the protein-protein interaction interface and screening small molecules or peptides that bind to the PPI interface. There are three major challenges to the use of docking on the relatively flat surfaces of PPI. In this review we will provide some examples of the use of docking in PPI inhibitor design as well as its limitations. The combination of experimental and docking methods with improved scoring function has thus far resulted in few success stories of PPI inhibitors for therapeutic purposes. Docking algorithms used for PPI are in the early stages, however, and as more data are available docking will become a highly promising area in the design of PPI inhibitors or stabilizers.
Small-molecule ligand docking into comparative models with Rosetta
Combs, Steven A; DeLuca, Samuel L; DeLuca, Stephanie H; Lemmon, Gordon H; Nannemann, David P; Nguyen, Elizabeth D; Willis, Jordan R; Sheehan, Jonathan H; Meiler, Jens
2017-01-01
Structure-based drug design is frequently used to accelerate the development of small-molecule therapeutics. Although substantial progress has been made in X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy, the availability of high-resolution structures is limited owing to the frequent inability to crystallize or obtain sufficient NMR restraints for large or flexible proteins. Computational methods can be used to both predict unknown protein structures and model ligand interactions when experimental data are unavailable. This paper describes a comprehensive and detailed protocol using the Rosetta modeling suite to dock small-molecule ligands into comparative models. In the protocol presented here, we review the comparative modeling process, including sequence alignment, threading and loop building. Next, we cover docking a small-molecule ligand into the protein comparative model. In addition, we discuss criteria that can improve ligand docking into comparative models. Finally, and importantly, we present a strategy for assessing model quality. The entire protocol is presented on a single example selected solely for didactic purposes. The results are therefore not representative and do not replace benchmarks published elsewhere. We also provide an additional tutorial so that the user can gain hands-on experience in using Rosetta. The protocol should take 5–7 h, with additional time allocated for computer generation of models. PMID:23744289
FlexAID: Revisiting Docking on Non-Native-Complex Structures.
Gaudreault, Francis; Najmanovich, Rafael J
2015-07-27
Small-molecule protein docking is an essential tool in drug design and to understand molecular recognition. In the present work we introduce FlexAID, a small-molecule docking algorithm that accounts for target side-chain flexibility and utilizes a soft scoring function, i.e. one that is not highly dependent on specific geometric criteria, based on surface complementarity. The pairwise energy parameters were derived from a large dataset of true positive poses and negative decoys from the PDBbind database through an iterative process using Monte Carlo simulations. The prediction of binding poses is tested using the widely used Astex dataset as well as the HAP2 dataset, while performance in virtual screening is evaluated using a subset of the DUD dataset. We compare FlexAID to AutoDock Vina, FlexX, and rDock in an extensive number of scenarios to understand the strengths and limitations of the different programs as well as to reported results for Glide, GOLD, and DOCK6 where applicable. The most relevant among these scenarios is that of docking on flexible non-native-complex structures where as is the case in reality, the target conformation in the bound form is not known a priori. We demonstrate that FlexAID, unlike other programs, is robust against increasing structural variability. FlexAID obtains equivalent sampling success as GOLD and performs better than AutoDock Vina or FlexX in all scenarios against non-native-complex structures. FlexAID is better than rDock when there is at least one critical side-chain movement required upon ligand binding. In virtual screening, FlexAID results are lower on average than those of AutoDock Vina and rDock. The higher accuracy in flexible targets where critical movements are required, intuitive PyMOL-integrated graphical user interface and free source code as well as precompiled executables for Windows, Linux, and Mac OS make FlexAID a welcome addition to the arsenal of existing small-molecule protein docking methods.
Comparative evaluation of several docking tools for docking small molecule ligands to DC-SIGN.
Jug, Gregor; Anderluh, Marko; Tomašič, Tihomir
2015-06-01
Five docking tools, namely AutoDock, FRED, CDOCKER, FlexX and GOLD, have been critically examined, with the aim of selecting those most appropriate for use as docking tools for docking molecules to the lectin dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN). This lectin has been selected for its rather non-druggable binding site, which enables complex interactions that guide the binding of the core monosaccharide. Since optimal orientation is crucial for forming coordination bonds, it was important to assess whether the selected docking tools could reproduce the optimal binding conformation for several oligosaccharides that are known to bind DC-SIGN. Our results show that even widely used docking programs have certain limitations when faced with a rather shallow and featureless binding site, as is the case of DC-SIGN. The FRED docking software (OpenEye Scientific Software, Inc.) was found to score as the best tool for docking ligands to DC-SIGN. The performance of FRED was further assessed on another lectin, Langerin. We have demonstrated that this validated docking protocol could be used for docking to other lectins similar to DC-SIGN.
Docking and scoring in virtual screening for drug discovery: methods and applications.
Kitchen, Douglas B; Decornez, Hélène; Furr, John R; Bajorath, Jürgen
2004-11-01
Computational approaches that 'dock' small molecules into the structures of macromolecular targets and 'score' their potential complementarity to binding sites are widely used in hit identification and lead optimization. Indeed, there are now a number of drugs whose development was heavily influenced by or based on structure-based design and screening strategies, such as HIV protease inhibitors. Nevertheless, there remain significant challenges in the application of these approaches, in particular in relation to current scoring schemes. Here, we review key concepts and specific features of small-molecule-protein docking methods, highlight selected applications and discuss recent advances that aim to address the acknowledged limitations of established approaches.
Park, Hahnbeom; Bradley, Philip; Greisen, Per; Liu, Yuan; Mulligan, Vikram Khipple; Kim, David E.; Baker, David; DiMaio, Frank
2017-01-01
Most biomolecular modeling energy functions for structure prediction, sequence design, and molecular docking, have been parameterized using existing macromolecular structural data; this contrasts molecular mechanics force fields which are largely optimized using small-molecule data. In this study, we describe an integrated method that enables optimization of a biomolecular modeling energy function simultaneously against small-molecule thermodynamic data and high-resolution macromolecular structural data. We use this approach to develop a next-generation Rosetta energy function that utilizes a new anisotropic implicit solvation model, and an improved electrostatics and Lennard-Jones model, illustrating how energy functions can be considerably improved in their ability to describe large-scale energy landscapes by incorporating both small-molecule and macromolecule data. The energy function improves performance in a wide range of protein structure prediction challenges, including monomeric structure prediction, protein-protein and protein-ligand docking, protein sequence design, and prediction of the free energy changes by mutation, while reasonably recapitulating small-molecule thermodynamic properties. PMID:27766851
LigandRNA: computational predictor of RNA–ligand interactions
Philips, Anna; Milanowska, Kaja; Łach, Grzegorz; Bujnicki, Janusz M.
2013-01-01
RNA molecules have recently become attractive as potential drug targets due to the increased awareness of their importance in key biological processes. The increase of the number of experimentally determined RNA 3D structures enabled structure-based searches for small molecules that can specifically bind to defined sites in RNA molecules, thereby blocking or otherwise modulating their function. However, as of yet, computational methods for structure-based docking of small molecule ligands to RNA molecules are not as well established as analogous methods for protein-ligand docking. This motivated us to create LigandRNA, a scoring function for the prediction of RNA–small molecule interactions. Our method employs a grid-based algorithm and a knowledge-based potential derived from ligand-binding sites in the experimentally solved RNA–ligand complexes. As an input, LigandRNA takes an RNA receptor file and a file with ligand poses. As an output, it returns a ranking of the poses according to their score. The predictive power of LigandRNA favorably compares to five other publicly available methods. We found that the combination of LigandRNA and Dock6 into a “meta-predictor” leads to further improvement in the identification of near-native ligand poses. The LigandRNA program is available free of charge as a web server at http://ligandrna.genesilico.pl. PMID:24145824
FPGA acceleration of rigid-molecule docking codes
Sukhwani, B.; Herbordt, M.C.
2011-01-01
Modelling the interactions of biological molecules, or docking, is critical both to understanding basic life processes and to designing new drugs. The field programmable gate array (FPGA) based acceleration of a recently developed, complex, production docking code is described. The authors found that it is necessary to extend their previous three-dimensional (3D) correlation structure in several ways, most significantly to support simultaneous computation of several correlation functions. The result for small-molecule docking is a 100-fold speed-up of a section of the code that represents over 95% of the original run-time. An additional 2% is accelerated through a previously described method, yielding a total acceleration of 36× over a single core and 10× over a quad-core. This approach is found to be an ideal complement to graphics processing unit (GPU) based docking, which excels in the protein–protein domain. PMID:21857870
A cross docking pipeline for improving pose prediction and virtual screening performance
NASA Astrophysics Data System (ADS)
Kumar, Ashutosh; Zhang, Kam Y. J.
2018-01-01
Pose prediction and virtual screening performance of a molecular docking method depend on the choice of protein structures used for docking. Multiple structures for a target protein are often used to take into account the receptor flexibility and problems associated with a single receptor structure. However, the use of multiple receptor structures is computationally expensive when docking a large library of small molecules. Here, we propose a new cross-docking pipeline suitable to dock a large library of molecules while taking advantage of multiple target protein structures. Our method involves the selection of a suitable receptor for each ligand in a screening library utilizing ligand 3D shape similarity with crystallographic ligands. We have prospectively evaluated our method in D3R Grand Challenge 2 and demonstrated that our cross-docking pipeline can achieve similar or better performance than using either single or multiple-receptor structures. Moreover, our method displayed not only decent pose prediction performance but also better virtual screening performance over several other methods.
Machine learning and docking models for Mycobacterium tuberculosis topoisomerase I.
Ekins, Sean; Godbole, Adwait Anand; Kéri, György; Orfi, Lászlo; Pato, János; Bhat, Rajeshwari Subray; Verma, Rinkee; Bradley, Erin K; Nagaraja, Valakunja
2017-03-01
There is a shortage of compounds that are directed towards new targets apart from those targeted by the FDA approved drugs used against Mycobacterium tuberculosis. Topoisomerase I (Mttopo I) is an essential mycobacterial enzyme and a promising target in this regard. However, it suffers from a shortage of known inhibitors. We have previously used computational approaches such as homology modeling and docking to propose 38 FDA approved drugs for testing and identified several active molecules. To follow on from this, we now describe the in vitro testing of a library of 639 compounds. These data were used to create machine learning models for Mttopo I which were further validated. The combined Mttopo I Bayesian model had a 5 fold cross validation receiver operator characteristic of 0.74 and sensitivity, specificity and concordance values above 0.76 and was used to select commercially available compounds for testing in vitro. The recently described crystal structure of Mttopo I was also compared with the previously described homology model and then used to dock the Mttopo I actives norclomipramine and imipramine. In summary, we describe our efforts to identify small molecule inhibitors of Mttopo I using a combination of machine learning modeling and docking studies in conjunction with screening of the selected molecules for enzyme inhibition. We demonstrate the experimental inhibition of Mttopo I by small molecule inhibitors and show that the enzyme can be readily targeted for lead molecule development. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhang, Changsheng; Tang, Bo; Wang, Qian; Lai, Luhua
2014-10-01
Target structure-based virtual screening, which employs protein-small molecule docking to identify potential ligands, has been widely used in small-molecule drug discovery. In the present study, we used a protein-protein docking program to identify proteins that bind to a specific target protein. In the testing phase, an all-to-all protein-protein docking run on a large dataset was performed. The three-dimensional rigid docking program SDOCK was used to examine protein-protein docking on all protein pairs in the dataset. Both the binding affinity and features of the binding energy landscape were considered in the scoring function in order to distinguish positive binding pairs from negative binding pairs. Thus, the lowest docking score, the average Z-score, and convergency of the low-score solutions were incorporated in the analysis. The hybrid scoring function was optimized in the all-to-all docking test. The docking method and the hybrid scoring function were then used to screen for proteins that bind to tumor necrosis factor-α (TNFα), which is a well-known therapeutic target for rheumatoid arthritis and other autoimmune diseases. A protein library containing 677 proteins was used for the screen. Proteins with scores among the top 20% were further examined. Sixteen proteins from the top-ranking 67 proteins were selected for experimental study. Two of these proteins showed significant binding to TNFα in an in vitro binding study. The results of the present study demonstrate the power and potential application of protein-protein docking for the discovery of novel binding proteins for specific protein targets. © 2014 Wiley Periodicals, Inc.
Molecular docking based screening of compounds against VP40 from Ebola virus.
M Alam El-Din, Hanaa; A Loutfy, Samah; Fathy, Nasra; H Elberry, Mostafa; M Mayla, Ahmed; Kassem, Sara; Naqvi, Asif
2016-01-01
Ebola virus causes severe and often fatal hemorrhagic fevers in humans. The 2014 Ebola epidemic affected multiple countries. The virus matrix protein (VP40) plays a central role in virus assembly and budding. Since there is no FDA-approved vaccine or medicine against Ebola viral infection, discovering new compounds with different binding patterns against it is required. Therefore, we aim to identify small molecules that target the Arg 134 RNA binding and active site of VP40 protein. 1800 molecules were retrieved from PubChem compound database based on Structure Similarity and Conformers of pyrimidine-2, 4-dione. Molecular docking approach using Lamarckian Genetic Algorithm was carried out to find the potent inhibitors for VP40 based on calculated ligand-protein pairwise interaction energies. The grid maps representing the protein were calculated using auto grid and grid size was set to 60*60*60 points with grid spacing of 0.375 Ǻ. Ten independent docking runs were carried out for each ligand and results were clustered according to the 1.0 Ǻ RMSD criteria. The post-docking analysis showed that binding energies ranged from -8.87 to 0.6 Kcal/mol. We report 7 molecules, which showed promising ADMET results, LD-50, as well as H-bond interaction in the binding pocket. The small molecules discovered could act as potential inhibitors for VP40 and could interfere with virus assembly and budding process.
Molecular docking based screening of compounds against VP40 from Ebola virus
M Alam El-Din, Hanaa; A. Loutfy, Samah; Fathy, Nasra; H Elberry, Mostafa; M Mayla, Ahmed; Kassem, Sara; Naqvi, Asif
2016-01-01
Ebola virus causes severe and often fatal hemorrhagic fevers in humans. The 2014 Ebola epidemic affected multiple countries. The virus matrix protein (VP40) plays a central role in virus assembly and budding. Since there is no FDA-approved vaccine or medicine against Ebola viral infection, discovering new compounds with different binding patterns against it is required. Therefore, we aim to identify small molecules that target the Arg 134 RNA binding and active site of VP40 protein. 1800 molecules were retrieved from PubChem compound database based on Structure Similarity and Conformers of pyrimidine-2, 4-dione. Molecular docking approach using Lamarckian Genetic Algorithm was carried out to find the potent inhibitors for VP40 based on calculated ligand-protein pairwise interaction energies. The grid maps representing the protein were calculated using auto grid and grid size was set to 60*60*60 points with grid spacing of 0.375 Ǻ. Ten independent docking runs were carried out for each ligand and results were clustered according to the 1.0 Ǻ RMSD criteria. The post-docking analysis showed that binding energies ranged from -8.87 to 0.6 Kcal/mol. We report 7 molecules, which showed promising ADMET results, LD-50, as well as H-bond interaction in the binding pocket. The small molecules discovered could act as potential inhibitors for VP40 and could interfere with virus assembly and budding process. PMID:28149054
Hu, Xiao; Maffucci, Irene; Contini, Alessandro
2018-05-13
The inclusion of direct effects mediated by water during the ligand-receptor recognition is a hot-topic of modern computational chemistry applied to drug discovery and development. Docking or virtual screening with explicit hydration is still debatable, despite the successful cases that have been presented in the last years. Indeed, how to select the water molecules that will be included in the docking process or how the included waters should be treated remain open questions. In this review, we will discuss some of the most recent methods that can be used in computational drug discovery and drug development when the effect of a single water, or of a small network of interacting waters, needs to be explicitly considered. Here, we analyse software to aid the selection, or to predict the position, of water molecules that are going to be explicitly considered in later docking studies. We also present software and protocols able to efficiently treat flexible water molecules during docking, including examples of applications. Finally, we discuss methods based on molecular dynamics simulations that can be used to integrate docking studies or to reliably and efficiently compute binding energies of ligands in presence of interfacial or bridging water molecules. Software applications aiding the design of new drugs that exploit water molecules, either as displaceable residues or as bridges to the receptor, are constantly being developed. Although further validation is needed, workflows that explicitly consider water will probably become a standard for computational drug discovery soon. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Fully Flexible Docking of Medium Sized Ligand Libraries with RosettaLigand
DeLuca, Samuel; Khar, Karen; Meiler, Jens
2015-01-01
RosettaLigand has been successfully used to predict binding poses in protein-small molecule complexes. However, the RosettaLigand docking protocol is comparatively slow in identifying an initial starting pose for the small molecule (ligand) making it unfeasible for use in virtual High Throughput Screening (vHTS). To overcome this limitation, we developed a new sampling approach for placing the ligand in the protein binding site during the initial ‘low-resolution’ docking step. It combines the translational and rotational adjustments to the ligand pose in a single transformation step. The new algorithm is both more accurate and more time-efficient. The docking success rate is improved by 10–15% in a benchmark set of 43 protein/ligand complexes, reducing the number of models that typically need to be generated from 1000 to 150. The average time to generate a model is reduced from 50 seconds to 10 seconds. As a result we observe an effective 30-fold speed increase, making RosettaLigand appropriate for docking medium sized ligand libraries. We demonstrate that this improved initial placement of the ligand is critical for successful prediction of an accurate binding position in the ‘high-resolution’ full atom refinement step. PMID:26207742
Moretti, Rocco; Lyskov, Sergey; Das, Rhiju; Meiler, Jens; Gray, Jeffrey J
2018-01-01
The Rosetta molecular modeling software package provides a large number of experimentally validated tools for modeling and designing proteins, nucleic acids, and other biopolymers, with new protocols being added continually. While freely available to academic users, external usage is limited by the need for expertise in the Unix command line environment. To make Rosetta protocols available to a wider audience, we previously created a web server called Rosetta Online Server that Includes Everyone (ROSIE), which provides a common environment for hosting web-accessible Rosetta protocols. Here we describe a simplification of the ROSIE protocol specification format, one that permits easier implementation of Rosetta protocols. Whereas the previous format required creating multiple separate files in different locations, the new format allows specification of the protocol in a single file. This new, simplified protocol specification has more than doubled the number of Rosetta protocols available under ROSIE. These new applications include pK a determination, lipid accessibility calculation, ribonucleic acid redesign, protein-protein docking, protein-small molecule docking, symmetric docking, antibody docking, cyclic toxin docking, critical binding peptide determination, and mapping small molecule binding sites. ROSIE is freely available to academic users at http://rosie.rosettacommons.org. © 2017 The Protein Society.
Therrien, Eric; Weill, Nathanael; Tomberg, Anna; Corbeil, Christopher R; Lee, Devin; Moitessier, Nicolas
2014-11-24
The use of predictive computational methods in the drug discovery process is in a state of continual growth. Over the last two decades, an increasingly large number of docking tools have been developed to identify hits or optimize lead molecules through in-silico screening of chemical libraries to proteins. In recent years, the focus has been on implementing protein flexibility and water molecules. Our efforts led to the development of Fitted first reported in 2007 and further developed since then. In this study, we wished to evaluate the impact of protein flexibility and occurrence of water molecules on the accuracy of the Fitted docking program to discriminate active compounds from inactive compounds in virtual screening (VS) campaigns. For this purpose, a total of 171 proteins cocrystallized with small molecules representing 40 unique enzymes and receptors as well as sets of known ligands and decoys were selected from the Protein Data Bank (PDB) and the Directory of Useful Decoys (DUD), respectively. This study revealed that implementing displaceable crystallographic or computationally placed particle water molecules and protein flexibility can improve the enrichment in active compounds. In addition, an informed decision based on library diversity or research objectives (hit discovery vs lead optimization) on which implementation to use may lead to significant improvements.
DOVIS 2.0: an efficient and easy to use parallel virtual screening tool based on AutoDock 4.0.
Jiang, Xiaohui; Kumar, Kamal; Hu, Xin; Wallqvist, Anders; Reifman, Jaques
2008-09-08
Small-molecule docking is an important tool in studying receptor-ligand interactions and in identifying potential drug candidates. Previously, we developed a software tool (DOVIS) to perform large-scale virtual screening of small molecules in parallel on Linux clusters, using AutoDock 3.05 as the docking engine. DOVIS enables the seamless screening of millions of compounds on high-performance computing platforms. In this paper, we report significant advances in the software implementation of DOVIS 2.0, including enhanced screening capability, improved file system efficiency, and extended usability. To keep DOVIS up-to-date, we upgraded the software's docking engine to the more accurate AutoDock 4.0 code. We developed a new parallelization scheme to improve runtime efficiency and modified the AutoDock code to reduce excessive file operations during large-scale virtual screening jobs. We also implemented an algorithm to output docked ligands in an industry standard format, sd-file format, which can be easily interfaced with other modeling programs. Finally, we constructed a wrapper-script interface to enable automatic rescoring of docked ligands by arbitrarily selected third-party scoring programs. The significance of the new DOVIS 2.0 software compared with the previous version lies in its improved performance and usability. The new version makes the computation highly efficient by automating load balancing, significantly reducing excessive file operations by more than 95%, providing outputs that conform to industry standard sd-file format, and providing a general wrapper-script interface for rescoring of docked ligands. The new DOVIS 2.0 package is freely available to the public under the GNU General Public License.
NASA Astrophysics Data System (ADS)
Rosenfeld, Robin J.; Goodsell, David S.; Musah, Rabi A.; Morris, Garrett M.; Goodin, David B.; Olson, Arthur J.
2003-08-01
The W191G cavity of cytochrome c peroxidase is useful as a model system for introducing small molecule oxidation in an artificially created cavity. A set of small, cyclic, organic cations was previously shown to bind in the buried, solvent-filled pocket created by the W191G mutation. We docked these ligands and a set of non-binders in the W191G cavity using AutoDock 3.0. For the ligands, we compared docking predictions with experimentally determined binding energies and X-ray crystal structure complexes. For the ligands, predicted binding energies differed from measured values by ± 0.8 kcal/mol. For most ligands, the docking simulation clearly predicted a single binding mode that matched the crystallographic binding mode within 1.0 Å RMSD. For 2 ligands, where the docking procedure yielded an ambiguous result, solutions matching the crystallographic result could be obtained by including an additional crystallographically observed water molecule in the protein model. For the remaining 2 ligands, docking indicated multiple binding modes, consistent with the original electron density, suggesting disordered binding of these ligands. Visual inspection of the atomic affinity grid maps used in docking calculations revealed two patches of high affinity for hydrogen bond donating groups. Multiple solutions are predicted as these two sites compete for polar hydrogens in the ligand during the docking simulation. Ligands could be distinguished, to some extent, from non-binders using a combination of two trends: predicted binding energy and level of clustering. In summary, AutoDock 3.0 appears to be useful in predicting key structural and energetic features of ligand binding in the W191G cavity.
DOCKSCORE: a webserver for ranking protein-protein docked poses.
Malhotra, Sony; Mathew, Oommen K; Sowdhamini, Ramanathan
2015-04-24
Proteins interact with a variety of other molecules such as nucleic acids, small molecules and other proteins inside the cell. Structure-determination of protein-protein complexes is challenging due to several reasons such as the large molecular weights of these macromolecular complexes, their dynamic nature, difficulty in purification and sample preparation. Computational docking permits an early understanding of the feasibility and mode of protein-protein interactions. However, docking algorithms propose a number of solutions and it is a challenging task to select the native or near native pose(s) from this pool. DockScore is an objective scoring scheme that can be used to rank protein-protein docked poses. It considers several interface parameters, namely, surface area, evolutionary conservation, hydrophobicity, short contacts and spatial clustering at the interface for scoring. We have implemented DockScore in form of a webserver for its use by the scientific community. DockScore webserver can be employed, subsequent to docking, to perform scoring of the docked solutions, starting from multiple poses as inputs. The results, on scores and ranks for all the poses, can be downloaded as a csv file and graphical view of the interface of best ranking poses is possible. The webserver for DockScore is made freely available for the scientific community at: http://caps.ncbs.res.in/dockscore/ .
NASA Astrophysics Data System (ADS)
Nurhidayah, E. S.; Ivansyah, A. L.; Martoprawiro, M. A.; Zulfikar, M. A.
2018-05-01
A molecular docking study, using molecular mechanics calculations with Arguslab, was used to help predict the enantioseparation of some guest molecules of chiral carboxylic acid derivatives by heptakis-2,6-di-O-methyl-β-cyclodextrin (DIMEB) and heptakis-2,3,6-tri-O-methyl-β-cyclodextrin (TRIMEB) as host molecules. The small differences in the binding free energy values (ΔΔG) obtained from Arguslab did not indicate any significant enantioseparation. From the molecular docking simulation results, it is predicted that in the case of DIMEB as host molecule, R-enantiomer of Etodolac, Fenoprofen, Indoprofen, Ketorolac, and Naproxen will be eluted first than S-enantiomer; However, S-enantiomer of Carprofen, Flurbiprofen, Ketoprofen, Pirprofen, Proglumide, Sulindac, Surprofen, and Zaltoprofen will be eluted first than R-enantiomer by DIMEB as host molecule. When TRIMEB is used as a host molecule, R-enantiomer of Carprofen, Flurbiprofen, Indoprofen, Ketoprofen, Naproxen, Pirprofen, and Surprofen will be eluted first than S-enantiomer; However, S-enantiomer of Etodolac, Fenoprofen, Ketorolac, Proglumide, Sulindac and Zaltoprofen will be eluted first than R-enantiomer by TRIMEB as host molecule.
Methods to enable the design of bioactive small molecules targeting RNA
Disney, Matthew D.; Yildirim, Ilyas; Childs-Disney, Jessica L.
2014-01-01
RNA is an immensely important target for small molecule therapeutics or chemical probes of function. However, methods that identify, annotate, and optimize RNA-small molecule interactions that could enable the design of compounds that modulate RNA function are in their infancies. This review describes recent approaches that have been developed to understand and optimize RNA motif-small molecule interactions, including Structure-Activity Relationships Through Sequencing (StARTS), quantitative structure-activity relationships (QSAR), chemical similarity searching, structure-based design and docking, and molecular dynamics (MD) simulations. Case studies described include the design of small molecules targeting RNA expansions, the bacterial A-site, viral RNAs, and telomerase RNA. These approaches can be combined to afford a synergistic method to exploit the myriad of RNA targets in the transcriptome. PMID:24357181
Methods to enable the design of bioactive small molecules targeting RNA.
Disney, Matthew D; Yildirim, Ilyas; Childs-Disney, Jessica L
2014-02-21
RNA is an immensely important target for small molecule therapeutics or chemical probes of function. However, methods that identify, annotate, and optimize RNA-small molecule interactions that could enable the design of compounds that modulate RNA function are in their infancies. This review describes recent approaches that have been developed to understand and optimize RNA motif-small molecule interactions, including structure-activity relationships through sequencing (StARTS), quantitative structure-activity relationships (QSAR), chemical similarity searching, structure-based design and docking, and molecular dynamics (MD) simulations. Case studies described include the design of small molecules targeting RNA expansions, the bacterial A-site, viral RNAs, and telomerase RNA. These approaches can be combined to afford a synergistic method to exploit the myriad of RNA targets in the transcriptome.
Electrostatics in protein–protein docking
Heifetz, Alexander; Katchalski-Katzir, Ephraim; Eisenstein, Miriam
2002-01-01
A novel geometric-electrostatic docking algorithm is presented, which tests and quantifies the electrostatic complementarity of the molecular surfaces together with the shape complementarity. We represent each molecule to be docked as a grid of complex numbers, storing information regarding the shape of the molecule in the real part and information regarding the electrostatic character of the molecule in the imaginary part. The electrostatic descriptors are derived from the electrostatic potential of the molecule. Thus, the electrostatic character of the molecule is represented as patches of positive, neutral, or negative values. The potential for each molecule is calculated only once and stored as potential spheres adequate for exhaustive rotation/translation scans. The geometric-electrostatic docking algorithm is applied to 17 systems, starting form the structures of the unbound molecules. The results—in terms of the complementarity scores of the nearly correct solutions, their ranking in the lists of sorted solutions, and their statistical uniqueness—are compared with those of geometric docking, showing that the inclusion of electrostatic complementarity in docking is very important, in particular in docking of unbound structures. Based on our results, we formulate several "good electrostatic docking rules": The geometric-electrostatic docking procedure is more successful than geometric docking when the potential patches are large and when the potential extends away from the molecular surface and protrudes into the solvent. In contrast, geometric docking is recommended when the electrostatic potential around the molecules to be docked appears homogenous, that is, with a similar sign all around the molecule. PMID:11847280
In silico screening for Plasmodium falciparum enoyl-ACP reductase inhibitors
NASA Astrophysics Data System (ADS)
Lindert, Steffen; Tallorin, Lorillee; Nguyen, Quynh G.; Burkart, Michael D.; McCammon, J. Andrew
2015-01-01
The need for novel therapeutics against Plasmodium falciparum is urgent due to recent emergence of multi-drug resistant malaria parasites. Since fatty acids are essential for both the liver and blood stages of the malarial parasite, targeting fatty acid biosynthesis is a promising strategy for combatting P. falciparum. We present a combined computational and experimental study to identify novel inhibitors of enoyl-acyl carrier protein reductase ( PfENR) in the fatty acid biosynthesis pathway. A small-molecule database from ChemBridge was docked into three distinct PfENR crystal structures that provide multiple receptor conformations. Two different docking algorithms were used to generate a consensus score in order to rank possible small molecule hits. Our studies led to the identification of five low-micromolar pyrimidine dione inhibitors of PfENR.
Zhang, Baixia; He, Shuaibing; Lv, Chenyang; Zhang, Yanling; Wang, Yun
2018-01-01
The identification of bioactive components in traditional Chinese medicine (TCM) is an important part of the TCM material foundation research. Recently, molecular docking technology has been extensively used for the identification of TCM bioactive components. However, target proteins that are used in molecular docking may not be the actual TCM target. For this reason, the bioactive components would likely be omitted or incorrect. To address this problem, this study proposed the GEPSI method that identified the target proteins of TCM based on the similarity of gene expression profiles. The similarity of the gene expression profiles affected by TCM and small molecular drugs was calculated. The pharmacological action of TCM may be similar to that of small molecule drugs that have a high similarity score. Indeed, the target proteins of the small molecule drugs could be considered TCM targets. Thus, we identified the bioactive components of a TCM by molecular docking and verified the reliability of this method by a literature investigation. Using the target proteins that TCM actually affected as targets, the identification of the bioactive components was more accurate. This study provides a fast and effective method for the identification of TCM bioactive components.
Zhang, Baixia; He, Shuaibing; Lv, Chenyang; Zhang, Yanling
2018-01-01
The identification of bioactive components in traditional Chinese medicine (TCM) is an important part of the TCM material foundation research. Recently, molecular docking technology has been extensively used for the identification of TCM bioactive components. However, target proteins that are used in molecular docking may not be the actual TCM target. For this reason, the bioactive components would likely be omitted or incorrect. To address this problem, this study proposed the GEPSI method that identified the target proteins of TCM based on the similarity of gene expression profiles. The similarity of the gene expression profiles affected by TCM and small molecular drugs was calculated. The pharmacological action of TCM may be similar to that of small molecule drugs that have a high similarity score. Indeed, the target proteins of the small molecule drugs could be considered TCM targets. Thus, we identified the bioactive components of a TCM by molecular docking and verified the reliability of this method by a literature investigation. Using the target proteins that TCM actually affected as targets, the identification of the bioactive components was more accurate. This study provides a fast and effective method for the identification of TCM bioactive components. PMID:29692857
ZINC: A Free Tool to Discover Chemistry for Biology
2012-01-01
ZINC is a free public resource for ligand discovery. The database contains over twenty million commercially available molecules in biologically relevant representations that may be downloaded in popular ready-to-dock formats and subsets. The Web site also enables searches by structure, biological activity, physical property, vendor, catalog number, name, and CAS number. Small custom subsets may be created, edited, shared, docked, downloaded, and conveyed to a vendor for purchase. The database is maintained and curated for a high purchasing success rate and is freely available at zinc.docking.org. PMID:22587354
Testing inhomogeneous solvation theory in structure-based ligand discovery.
Balius, Trent E; Fischer, Marcus; Stein, Reed M; Adler, Thomas B; Nguyen, Crystal N; Cruz, Anthony; Gilson, Michael K; Kurtzman, Tom; Shoichet, Brian K
2017-08-15
Binding-site water is often displaced upon ligand recognition, but is commonly neglected in structure-based ligand discovery. Inhomogeneous solvation theory (IST) has become popular for treating this effect, but it has not been tested in controlled experiments at atomic resolution. To do so, we turned to a grid-based version of this method, GIST, readily implemented in molecular docking. Whereas the term only improves docking modestly in retrospective ligand enrichment, it could be added without disrupting performance. We thus turned to prospective docking of large libraries to investigate GIST's impact on ligand discovery, geometry, and water structure in a model cavity site well-suited to exploring these terms. Although top-ranked docked molecules with and without the GIST term often overlapped, many ligands were meaningfully prioritized or deprioritized; some of these were selected for testing. Experimentally, 13/14 molecules prioritized by GIST did bind, whereas none of the molecules that it deprioritized were observed to bind. Nine crystal complexes were determined. In six, the ligand geometry corresponded to that predicted by GIST, for one of these the pose without the GIST term was wrong, and three crystallographic poses differed from both predictions. Notably, in one structure, an ordered water molecule with a high GIST displacement penalty was observed to stay in place. Inclusion of this water-displacement term can substantially improve the hit rates and ligand geometries from docking screens, although the magnitude of its effects can be small and its impact in drug binding sites merits further controlled studies.
QuickVina: accelerating AutoDock Vina using gradient-based heuristics for global optimization.
Handoko, Stephanus Daniel; Ouyang, Xuchang; Su, Chinh Tran To; Kwoh, Chee Keong; Ong, Yew Soon
2012-01-01
Predicting binding between macromolecule and small molecule is a crucial phase in the field of rational drug design. AutoDock Vina, one of the most widely used docking software released in 2009, uses an empirical scoring function to evaluate the binding affinity between the molecules and employs the iterated local search global optimizer for global optimization, achieving a significantly improved speed and better accuracy of the binding mode prediction compared its predecessor, AutoDock 4. In this paper, we propose further improvement in the local search algorithm of Vina by heuristically preventing some intermediate points from undergoing local search. Our improved version of Vina-dubbed QVina-achieved a maximum acceleration of about 25 times with the average speed-up of 8.34 times compared to the original Vina when tested on a set of 231 protein-ligand complexes while maintaining the optimal scores mostly identical. Using our heuristics, larger number of different ligands can be quickly screened against a given receptor within the same time frame.
Gupta, Krishna Kant; Sethi, Guneswar; Jayaraman, Manikandan
2016-01-01
It is well reported that exhaled CO 2 and skin odour from human being assist female mosquitoes to locate human host. Basically, the receptors for this activity are expressed in cpA neurons. In both Aedes aegypti and Anopheles gambiae, this CO 2-sensitive olfactory neuron detects myriad number of chemicals present in human skin. Therefore, manipulation of gustatory receptors housing these neurons may serve as important targets for behavioural intervention. The study was aimed towards virtual screening of small molecules in the analyzed conserved active site residues of gustatory receptor and molecular dynamics simulation study of optimum protein-ligand complex to identify a suitable lead molecule for distracting host-seeking behaviour of mosquitoes. The conserved residue analysis of gustatory receptor (GR) of Ae. aegypti and An. gambiae was performed. The structure of GR protein from Ae. aegypti was modeled and validated, and then molecular docking was performed to screen 2903 small molecules against the predicted active residues of GR. Further, simulation studies were also carried out to prove protein-ligand stability. The glutamine 154 residue of GR was found to be highly conserved in Ae. aegypti and An. gambiae. Docking results indicated that the dodecanoic acid, 1,2,3-propanetriyl ester (dynasan 112) was interacting with this residue, as it showed better LibDock score than previously reported ethyl acetate used as mosquito repellant. Simulation studies indicated the structural instability of GR protein in docked form with dynasan 112 suggesting its involvement in structural changes. Based on the interaction energies and stability, this compound has been proposed to be used in mosquitoes' repellant. A novel effective odorant acting as inhibitor of GR is proposed based on its stability, docking score, interactions and RMSD, considering ethyl pyruvate as a standard inhibitor. Host preference and host-seeking ability of mosquito vectors play key roles in disease transmission, a clear understanding of these aspects is essential for preventing the spread of the disease.
"Soft docking": matching of molecular surface cubes.
Jiang, F; Kim, S H
1991-05-05
Molecular recognition is achieved through the complementarity of molecular surface structures and energetics with, most commonly, associated minor conformational changes. This complementarity can take many forms: charge-charge interaction, hydrogen bonding, van der Waals' interaction, and the size and shape of surfaces. We describe a method that exploits these features to predict the sites of interactions between two cognate molecules given their three-dimensional structures. We have developed a "cube representation" of molecular surface and volume which enables us not only to design a simple algorithm for a six-dimensional search but also to allow implicitly the effects of the conformational changes caused by complex formation. The present molecular docking procedure may be divided into two stages. The first is the selection of a population of complexes by geometric "soft docking", in which surface structures of two interacting molecules are matched with each other, allowing minor conformational changes implicitly, on the basis of complementarity in size and shape, close packing, and the absence of steric hindrance. The second is a screening process to identify a subpopulation with many favorable energetic interactions between the buried surface areas. Once the size of the subpopulation is small, one may further screen to find the correct complex based on other criteria or constraints obtained from biochemical, genetic, and theoretical studies, including visual inspection. We have tested the present method in two ways. First is a control test in which we docked the components of a molecular complex of known crystal structure available in the Protein Data Bank (PDB). Two molecular complexes were used: (1) a ternary complex of dihydrofolate reductase, NADPH and methotrexate (3DFR in PDB) and (2) a binary complex of trypsin and trypsin inhibitor (2PTC in PDB). The components of each complex were taken apart at an arbitrary relative orientation and then docked together again. The results show that the geometric docking alone is sufficient to determine the correct docking solutions in these ideal cases, and that the cube representation of the molecules does not degrade the docking process in the search for the correct solution. The second is the more realistic experiment in which we docked the crystal structures of uncomplexed molecules and then compared the structures of docked complexes with the crystal structures of the corresponding complexes. This is to test the capability of our method in accommodating the effects of the conformational changes in the binding sites of the molecules in docking.(ABSTRACT TRUNCATED AT 400 WORDS)
Sivan, Sree Kanth; Vangala, Radhika; Manga, Vijjulatha
2013-08-01
Induced fit molecular docking studies were performed on BMS-806 derivatives reported as small molecule inhibitors of HIV-1 gp120-CD4 binding. Comprehensive study of protein-ligand interactions guided in identification and design of novel symmetrical N,N'-disubstituted urea and thiourea as HIV-1 gp120-CD4 binding inhibitors. These molecules were synthesized in aqueous medium using microwave irradiation. Synthesized molecules were screened for their inhibitory ability by HIV-1 gp120-CD4 capture enzyme-linked immunosorbent assay (ELISA). Designed compounds were found to inhibit HIV-1 gp120-CD4 binding in micromolar (0.013-0.247 μM) concentrations. Copyright © 2013 Elsevier Ltd. All rights reserved.
jMetalCpp: optimizing molecular docking problems with a C++ metaheuristic framework.
López-Camacho, Esteban; García Godoy, María Jesús; Nebro, Antonio J; Aldana-Montes, José F
2014-02-01
Molecular docking is a method for structure-based drug design and structural molecular biology, which attempts to predict the position and orientation of a small molecule (ligand) in relation to a protein (receptor) to produce a stable complex with a minimum binding energy. One of the most widely used software packages for this purpose is AutoDock, which incorporates three metaheuristic techniques. We propose the integration of AutoDock with jMetalCpp, an optimization framework, thereby providing both single- and multi-objective algorithms that can be used to effectively solve docking problems. The resulting combination of AutoDock + jMetalCpp allows users of the former to easily use the metaheuristics provided by the latter. In this way, biologists have at their disposal a richer set of optimization techniques than those already provided in AutoDock. Moreover, designers of metaheuristic techniques can use molecular docking for case studies, which can lead to more efficient algorithms oriented to solving the target problems. jMetalCpp software adapted to AutoDock is freely available as a C++ source code at http://khaos.uma.es/AutodockjMetal/.
A Computational Approach to Finding Novel Targets for Existing Drugs
Li, Yvonne Y.; An, Jianghong; Jones, Steven J. M.
2011-01-01
Repositioning existing drugs for new therapeutic uses is an efficient approach to drug discovery. We have developed a computational drug repositioning pipeline to perform large-scale molecular docking of small molecule drugs against protein drug targets, in order to map the drug-target interaction space and find novel interactions. Our method emphasizes removing false positive interaction predictions using criteria from known interaction docking, consensus scoring, and specificity. In all, our database contains 252 human protein drug targets that we classify as reliable-for-docking as well as 4621 approved and experimental small molecule drugs from DrugBank. These were cross-docked, then filtered through stringent scoring criteria to select top drug-target interactions. In particular, we used MAPK14 and the kinase inhibitor BIM-8 as examples where our stringent thresholds enriched the predicted drug-target interactions with known interactions up to 20 times compared to standard score thresholds. We validated nilotinib as a potent MAPK14 inhibitor in vitro (IC50 40 nM), suggesting a potential use for this drug in treating inflammatory diseases. The published literature indicated experimental evidence for 31 of the top predicted interactions, highlighting the promising nature of our approach. Novel interactions discovered may lead to the drug being repositioned as a therapeutic treatment for its off-target's associated disease, added insight into the drug's mechanism of action, and added insight into the drug's side effects. PMID:21909252
NASA Astrophysics Data System (ADS)
Lalit, Manisha; Gangwal, Rahul P.; Dhoke, Gaurao V.; Damre, Mangesh V.; Khandelwal, Kanchan; Sangamwar, Abhay T.
2013-10-01
A combined pharmacophore modelling, 3D-QSAR and molecular docking approach was employed to reveal structural and chemical features essential for the development of small molecules as LRH-1 agonists. The best HypoGen pharmacophore hypothesis (Hypo1) consists of one hydrogen-bond donor (HBD), two general hydrophobic (H), one hydrophobic aromatic (HYAr) and one hydrophobic aliphatic (HYA) feature. It has exhibited high correlation coefficient of 0.927, cost difference of 85.178 bit and low RMS value of 1.411. This pharmacophore hypothesis was cross-validated using test set, decoy set and Cat-Scramble methodology. Subsequently, validated pharmacophore hypothesis was used in the screening of small chemical databases. Further, 3D-QSAR models were developed based on the alignment obtained using substructure alignment. The best CoMFA and CoMSIA model has exhibited excellent rncv2 values of 0.991 and 0.987, and rcv2 values of 0.767 and 0.703, respectively. CoMFA predicted rpred2 of 0.87 and CoMSIA predicted rpred2 of 0.78 showed that the predicted values were in good agreement with the experimental values. Molecular docking analysis reveals that π-π interaction with His390 and hydrogen bond interaction with His390/Arg393 is essential for LRH-1 agonistic activity. The results from pharmacophore modelling, 3D-QSAR and molecular docking are complementary to each other and could serve as a powerful tool for the discovery of potent small molecules as LRH-1 agonists.
Liu, Zekun; Zhao, Junpeng; Li, Weichen; Shen, Li; Huang, Shengbo; Tang, Jingjing; Duan, Jie; Fang, Fang; Huang, Yuelong; Chang, Haiyan; Chen, Ze; Zhang, Ran
2016-01-01
The Influenza A virus is a great threat for human health, while various subtypes of the virus made it difficult to develop drugs. With the development of state-of-art computational chemistry, computational molecular docking could serve as a virtual screen of potential leading compound. In this study, we performed molecular docking for influenza A H1N1 (A/PR/8/34) with small molecules such as quercetin and chlorogenic acid, which were derived from traditional Chinese medicine. The results showed that these small molecules have strong binding abilities with neuraminidase from H1N1 (A/PR/8/34). Further details showed that the structural features of the molecules might be helpful for further drug design and development. The experiments in vitro, in vivo have validated the anti-influenza effect of quercetin and chlorogenic acid, which indicating comparable protection effects as zanamivir. Taken together, it was proposed that chlorogenic acid and quercetin could be employed as the effective lead compounds for anti-influenza A H1N1. PMID:26754609
NASA Astrophysics Data System (ADS)
Liu, Zekun; Zhao, Junpeng; Li, Weichen; Shen, Li; Huang, Shengbo; Tang, Jingjing; Duan, Jie; Fang, Fang; Huang, Yuelong; Chang, Haiyan; Chen, Ze; Zhang, Ran
2016-01-01
The Influenza A virus is a great threat for human health, while various subtypes of the virus made it difficult to develop drugs. With the development of state-of-art computational chemistry, computational molecular docking could serve as a virtual screen of potential leading compound. In this study, we performed molecular docking for influenza A H1N1 (A/PR/8/34) with small molecules such as quercetin and chlorogenic acid, which were derived from traditional Chinese medicine. The results showed that these small molecules have strong binding abilities with neuraminidase from H1N1 (A/PR/8/34). Further details showed that the structural features of the molecules might be helpful for further drug design and development. The experiments in vitro, in vivo have validated the anti-influenza effect of quercetin and chlorogenic acid, which indicating comparable protection effects as zanamivir. Taken together, it was proposed that chlorogenic acid and quercetin could be employed as the effective lead compounds for anti-influenza A H1N1.
Bai, Qifeng; Shao, Yonghua; Pan, Dabo; Zhang, Yang; Liu, Huanxiang; Yao, Xiaojun
2014-01-01
We designed a program called MolGridCal that can be used to screen small molecule database in grid computing on basis of JPPF grid environment. Based on MolGridCal program, we proposed an integrated strategy for virtual screening and binding mode investigation by combining molecular docking, molecular dynamics (MD) simulations and free energy calculations. To test the effectiveness of MolGridCal, we screened potential ligands for β2 adrenergic receptor (β2AR) from a database containing 50,000 small molecules. MolGridCal can not only send tasks to the grid server automatically, but also can distribute tasks using the screensaver function. As for the results of virtual screening, the known agonist BI-167107 of β2AR is ranked among the top 2% of the screened candidates, indicating MolGridCal program can give reasonable results. To further study the binding mode and refine the results of MolGridCal, more accurate docking and scoring methods are used to estimate the binding affinity for the top three molecules (agonist BI-167107, neutral antagonist alprenolol and inverse agonist ICI 118,551). The results indicate agonist BI-167107 has the best binding affinity. MD simulation and free energy calculation are employed to investigate the dynamic interaction mechanism between the ligands and β2AR. The results show that the agonist BI-167107 also has the lowest binding free energy. This study can provide a new way to perform virtual screening effectively through integrating molecular docking based on grid computing, MD simulations and free energy calculations. The source codes of MolGridCal are freely available at http://molgridcal.codeplex.com. PMID:25229694
Discovery of External Modulators of the Fe-Fe Hydrogenase Enzyme in Clostridium acetobutylicum
2015-02-01
I-TASSER (orange) with the experimental structure ( PDB ID: 1FEH, blue) ................5 Fig. 4 Putative docking site 1 of Fd (blue) to Fe-only...dock small molecules to a homologous structure of the C. acet. HydA from Clostridium pasteurianum (C. past.; protein data bank [ PDB ] id: 1FEH1) (Fig. 2...Agreement among these models was excellent, as well as agreement with the C. past. crystal structure ( PDB id: 1FEH1). Alignment and comparison with the
Molecular docking study, synthesis and biological evaluation of Schiff bases as Hsp90 inhibitors.
Dutta Gupta, Sayan; Snigdha, D; Mazaira, Gisela I; Galigniana, Mario D; Subrahmanyam, C V S; Gowrishankar, N L; Raghavendra, N M
2014-04-01
Heat shock protein 90 (Hsp90) is an emerging attractive target for the discovery of novel cancer therapeutic agents. Docking methods are powerful in silico tools for lead generation and optimization. In our mission to rationally develop novel effective small molecules against Hsp90, we predicted the potency of our designed compounds by Sybyl surflex Geom X docking method. The results of the above studies revealed that Schiff bases derived from 2,4-dihydroxy benzaldehyde/5-chloro-2,4-dihydroxy benzaldehyde demonstrated effective binding with the protein. Subsequently, a few of them were synthesized (1-10) and characterized by IR, (1)HNMR and mass spectral analysis. The synthesized molecules were evaluated for their potential to suppress Hsp90 ATPase activity by Malachite green assay. The anticancer studies were performed by 3-(4,5-dimethythiazol- 2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay method. The software generated results was in satisfactory agreement with the evaluated biological activity. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Aliebrahimi, Shima; Montasser Kouhsari, Shideh; Ostad, Seyed Nasser; Arab, Seyed Shahriar; Karami, Leila
2018-06-01
c-Met receptor tyrosine kinase is a proto-oncogene whose aberrant activation is attributed to a lower rate of survival in most cancers. Natural product-derived inhibitors known as "fourth generation inhibitors" constitute more than 60% of anticancer drugs. Furthermore, consensus docking approach has recently been introduced to augment docking accuracy and reduce false positives during a virtual screening. In order to obtain novel small-molecule Met inhibitors, consensus docking approach was performed using Autodock Vina and Autodock 4.2 to virtual screen Naturally Occurring Plant-based Anti-cancer Compound-Activity-Target database against active and inactive conformation of c-Met kinase domain structure. Two hit molecules that were in line with drug-likeness criteria, desired docking score, and binding pose were subjected to molecular dynamics simulations to elucidate intermolecular contacts in protein-ligand complexes. Analysis of molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area studies showed that ZINC08234189 is a plausible inhibitor for the active state of c-Met, whereas ZINC03871891 may be more effective toward active c-Met kinase domain compared to the inactive form due to higher binding energy. Our analysis showed that both the hit molecules formed hydrogen bonds with key residues of the hinge region (P1158, M1160) in the active form, which is a hallmark of kinase domain inhibitors. Considering the pivotal role of HGF/c-Met signaling in carcinogenesis, our results propose ZINC08234189 and ZINC03871891 as the therapeutic options to surmount Met-dependent cancers.
Investigation of glucose binding sites on insulin.
Zoete, Vincent; Meuwly, Markus; Karplus, Martin
2004-05-15
Possible insulin binding sites for D-glucose have been investigated theoretically by docking and molecular dynamics (MD) simulations. Two different docking programs for small molecules were used; Multiple Copy Simultaneous Search (MCSS) and Solvation Energy for Exhaustive Docking (SEED) programs. The configurations resulting from the MCSS search were evaluated with a scoring function developed to estimate the binding free energy. SEED calculations were performed using various values for the dielectric constant of the solute. It is found that scores emphasizing non-polar interactions gave a preferential binding site in agreement with that inferred from recent fluorescence and NMR NOESY experiments. The calculated binding affinity of -1.4 to -3.5 kcal/mol is within the measured range of -2.0 +/- 0.5 kcal/mol. The validity of the binding site is suggested by the dynamical stability of the bound glucose when examined with MD simulations with explicit solvent. Alternative binding sites were found in the simulations and their relative stabilities were estimated. The motions of the bound glucose during molecular dynamics simulations are correlated with the motions of the insulin side chains that are in contact with it and with larger scale insulin motions. These results raise the question of whether glucose binding to insulin could play a role in its activity. The results establish the complementarity of molecular dynamics simulations and normal mode analyses with the search for binding sites proposed with small molecule docking programs. Copyright 2004 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Zavodszky, Maria I.; Sanschagrin, Paul C.; Kuhn, Leslie A.; Korde, Rajesh S.
2002-12-01
For the successful identification and docking of new ligands to a protein target by virtual screening, the essential features of the protein and ligand surfaces must be captured and distilled in an efficient representation. Since the running time for docking increases exponentially with the number of points representing the protein and each ligand candidate, it is important to place these points where the best interactions can be made between the protein and the ligand. This definition of favorable points of interaction can also guide protein structure-based ligand design, which typically focuses on which chemical groups provide the most energetically favorable contacts. In this paper, we present an alternative method of protein template and ligand interaction point design that identifies the most favorable points for making hydrophobic and hydrogen-bond interactions by using a knowledge base. The knowledge-based protein and ligand representations have been incorporated in version 2.0 of SLIDE and resulted in dockings closer to the crystal structure orientations when screening a set of 57 known thrombin and glutathione S-transferase (GST) ligands against the apo structures of these proteins. There was also improved scoring enrichment of the dockings, meaning better differentiation between the chemically diverse known ligands and a ˜15,000-molecule dataset of randomly-chosen small organic molecules. This approach for identifying the most important points of interaction between proteins and their ligands can equally well be used in other docking and design techniques. While much recent effort has focused on improving scoring functions for protein-ligand docking, our results indicate that improving the representation of the chemistry of proteins and their ligands is another avenue that can lead to significant improvements in the identification, docking, and scoring of ligands.
Ouyang, Liang; Cai, Haoyang; Liu, Bo
2016-01-01
Autophagy (macroautophagy) is well known as an evolutionarily conserved lysosomal degradation process for long-lived proteins and damaged organelles. Recently, accumulating evidence has revealed a series of small-molecule compounds that may activate or inhibit autophagy for therapeutic potential on human diseases. However, targeting autophagy for drug discovery still remains in its infancy. In this study, we developed a webserver called Autophagic Compound-Target Prediction (ACTP) (http://actp.liu-lab.com/) that could predict autophagic targets and relevant pathways for a given compound. The flexible docking of submitted small-molecule compound (s) to potential autophagic targets could be performed by backend reverse docking. The webpage would return structure-based scores and relevant pathways for each predicted target. Thus, these results provide a basis for the rapid prediction of potential targets/pathways of possible autophagy-activating or autophagy-inhibiting compounds without labor-intensive experiments. Moreover, ACTP will be helpful to shed light on identifying more novel autophagy-activating or autophagy-inhibiting compounds for future therapeutic implications. PMID:26824420
Small molecule inhibitors of mesotrypsin from a structure-based docking screen
Kayode, Olumide; Huang, Zunnan; Soares, Alexei S.; ...
2017-05-02
PRSS3/mesotrypsin is an atypical isoform of trypsin, the upregulation of which has been implicated in promoting tumor progression. To date there are no mesotrypsin-selective pharmacological inhibitors which could serve as tools for deciphering the pathological role of this enzyme, and could potentially form the basis for novel therapeutic strategies targeting mesotrypsin. A virtual screen of the Natural Product Database (NPD) and Food and Drug Administration (FDA) approved Drug Database was conducted by high-throughput molecular docking utilizing crystal structures of mesotrypsin. Twelve high-scoring compounds were selected for testing based on lowest free energy docking scores, interaction with key mesotrypsin active sitemore » residues, and commercial availability. Diminazene (C1D22956468), along with two similar compounds presenting the bis-benzamidine substructure, was validated as a competitive inhibitor of mesotrypsin and other human trypsin isoforms. Diminazene is the most potent small molecule inhibitor of mesotrypsin reported to date with an inhibitory constant (K i) of 3.6±0.3 pM. Diminazene was subsequently co-crystalized with mesotrypsin and the crystal structure was solved and refined to 1.25 Å resolution. This high resolution crystal structure can now offer a foundation for structure-guided efforts to develop novel and potentially more selective mesotrypsin inhibitors based on similar molecular substructures.« less
Small molecule inhibitors of mesotrypsin from a structure-based docking screen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kayode, Olumide; Huang, Zunnan; Soares, Alexei S.
PRSS3/mesotrypsin is an atypical isoform of trypsin, the upregulation of which has been implicated in promoting tumor progression. To date there are no mesotrypsin-selective pharmacological inhibitors which could serve as tools for deciphering the pathological role of this enzyme, and could potentially form the basis for novel therapeutic strategies targeting mesotrypsin. A virtual screen of the Natural Product Database (NPD) and Food and Drug Administration (FDA) approved Drug Database was conducted by high-throughput molecular docking utilizing crystal structures of mesotrypsin. Twelve high-scoring compounds were selected for testing based on lowest free energy docking scores, interaction with key mesotrypsin active sitemore » residues, and commercial availability. Diminazene (C1D22956468), along with two similar compounds presenting the bis-benzamidine substructure, was validated as a competitive inhibitor of mesotrypsin and other human trypsin isoforms. Diminazene is the most potent small molecule inhibitor of mesotrypsin reported to date with an inhibitory constant (K i) of 3.6±0.3 pM. Diminazene was subsequently co-crystalized with mesotrypsin and the crystal structure was solved and refined to 1.25 Å resolution. This high resolution crystal structure can now offer a foundation for structure-guided efforts to develop novel and potentially more selective mesotrypsin inhibitors based on similar molecular substructures.« less
NASA Astrophysics Data System (ADS)
Kadukova, Maria; Grudinin, Sergei
2018-01-01
The 2016 D3R Grand Challenge 2 provided an opportunity to test multiple protein-ligand docking protocols on a set of ligands bound to farnesoid X receptor that has many available experimental structures. We participated in the Stage 1 of the Challenge devoted to the docking pose predictions, with the mean RMSD value of our submission poses of 2.9 Å. Here we present a thorough analysis of our docking predictions made with AutoDock Vina and the Convex-PL rescoring potential by reproducing our submission protocol and running a series of additional molecular docking experiments. We conclude that a correct receptor structure, or more precisely, the structure of the binding pocket, plays the crucial role in the success of our docking studies. We have also noticed the important role of a local ligand geometry, which seems to be not well discussed in literature. We succeed to improve our results up to the mean RMSD value of 2.15-2.33 Å dependent on the models of the ligands, if docking these to all available homologous receptors. Overall, for docking of ligands of diverse chemical series we suggest to perform docking of each of the ligands to a set of multiple receptors that are homologous to the target.
Molecular Docking Studies of Flavonoids Derivatives on the Flavonoid 3- O-Glucosyltransferase.
Harsa, Alexandra M; Harsa, Teodora E; Diudea, Mircea V; Janezic, Dusanka
2015-01-01
A study of 30 flavonoid derivatives, taken from PubChem database and docked on flavonoid 3-O-glucosyltransferase 3HBF, next submitted to a QSAR study, performed within a hypermolecule frame, to model their LD50 values, is reported. The initial set of molecules was split into a training set and the test set (taken from the best scored molecules in the docking test); the predicted LD50 values, computed on similarity clusters, built up for each of the molecules of the test set, surpassed in accuracy the best model. The binding energies to 3HBF protein, provided by the docking step, are not related to the LD50 of these flavonoids, more protein targets are to be investigated in this respect. However, the docking step was useful in choosing the test set of molecules.
Computational Optimization and Characterization of Molecularly Imprinted Polymers
NASA Astrophysics Data System (ADS)
Terracina, Jacob J.
Molecularly imprinted polymers (MIPs) are a class of materials containing sites capable of selectively binding to the imprinted target molecule. Computational chemistry techniques were used to study the effect of different fabrication parameters (the monomer-to-target ratios, pre-polymerization solvent, temperature, and pH) on the formation of the MIP binding sites. Imprinted binding sites were built in silico for the purposes of better characterizing the receptor - ligand interactions. Chiefly, the sites were characterized with respect to their selectivities and the heterogeneity between sites. First, a series of two-step molecular mechanics (MM) and quantum mechanics (QM) computational optimizations of monomer -- target systems was used to determine optimal monomer-to-target ratios for the MIPs. Imidazole- and xanthine-derived target molecules were studied. The investigation included both small-scale models (one-target) and larger scale models (five-targets). The optimal ratios differed between the small and larger scales. For the larger models containing multiple targets, binding-site surface area analysis was used to evaluate the heterogeneity of the sites. The more fully surrounded sites had greater binding energies. Molecular docking was then used to measure the selectivities of the QM-optimized binding sites by comparing the binding energies of the imprinted target to that of a structural analogue. Selectivity was also shown to improve as binding sites become more fully encased by the monomers. For internal sites, docking consistently showed selectivity favoring the molecules that had been imprinted via QM geometry optimizations. The computationally imprinted sites were shown to exhibit size-, shape-, and polarity-based selectivity. This represented a novel approach to investigate the selectivity and heterogeneity of imprinted polymer binding sites, by applying the rapid orientation screening of MM docking to the highly accurate QM-optimized geometries. Next, we sought to computationally construct and investigate binding sites for their enantioselectivity. Again, a two-step MM [special characters removed] QM optimization scheme was used to "computationally imprint" chiral molecules. Using docking techniques, the imprinted binding sites were shown to exhibit an enantioselective preference for the imprinted molecule over its enantiomer. Docking of structurally similar chiral molecules showed that the sites computationally imprinted with R- or S-tBOC-tyrosine were able to differentiate between R- and S-forms of other tyrosine derivatives. The cross-enantioselectivity did not hold for chiral molecules that did not share the tyrosine H-bonding functional group orientations. Further analysis of the individual monomer - target interactions within the binding site led us to conclude that H-bonding functional groups that are located immediately next to the target's chiral center, and therefore spatially fixed relative to the chiral center, will have a stronger contribution to the enantioselectivity of the site than those groups separated from the chiral center by two or more rotatable bonds. These models were the first computationally imprinted binding sites to exhibit this enantioselective preference for the imprinted target molecules. Finally, molecular dynamics (MD) was used to quantify H-bonding interactions between target molecules, monomers, and solvents representative of the pre-polymerization matrix. It was found that both target dimerization and solvent interference decrease the number of monomer - target H-bonds present. Systems were optimized via simulated annealing to create binding sites that were then subjected to molecular docking analysis. Docking showed that the presence of solvent had a detrimental effect on the sensitivity and selectivity of the sites, and that solvents with more H-bonding capabilities were more disruptive to the binding properties of the site. Dynamic simulations also showed that increasing the temperature of the solution can significantly decrease the number of H-bonds formed between the targets and monomers. It is believed that the monomer - target complexes formed within the pre-polymerization matrix are translated into the selective binding cavities formed during polymerization. Elucidating the nature of these interactions in silico improves our understanding of MIPs, ultimately allowing for more optimized sensing materials.
Lungu, Claudiu N; Diudea, Mircea V; Putz, Mihai V
2017-06-27
Docking-i.e., interaction of a small molecule (ligand) with a proteic structure (receptor)-represents the ground of drug action mechanism of the vast majority of bioactive chemicals. Ligand and receptor accommodate their geometry and energy, within this interaction, in the benefit of receptor-ligand complex. In an induced fit docking, the structure of ligand is most susceptible to changes in topology and energy, comparative to the receptor. These changes can be described by manifold hypersurfaces, in terms of polynomial discriminant and Laplacian operator. Such topological surfaces were represented for each MraY (phospho-MurNAc-pentapeptide translocase) inhibitor, studied before and after docking with MraY. Binding affinities of all ligands were calculated by this procedure. For each ligand, Laplacian and polynomial discriminant were correlated with the ligand minimum inhibitory concentration (MIC) retrieved from literature. It was observed that MIC is correlated with Laplacian and polynomial discriminant.
Structure-Based Virtual Screening of Commercially Available Compound Libraries.
Kireev, Dmitri
2016-01-01
Virtual screening (VS) is an efficient hit-finding tool. Its distinctive strength is that it allows one to screen compound libraries that are not available in the lab. Moreover, structure-based (SB) VS also enables an understanding of how the hit compounds bind the protein target, thus laying ground work for the rational hit-to-lead progression. SBVS requires a very limited experimental effort and is particularly well suited for academic labs and small biotech companies that, unlike pharmaceutical companies, do not have physical access to quality small-molecule libraries. Here, we describe SBVS of commercial compound libraries for Mer kinase inhibitors. The screening protocol relies on the docking algorithm Glide complemented by a post-docking filter based on structural protein-ligand interaction fingerprints (SPLIF).
Zhou, Yuchen; McGillick, Brian E.; Teng, Yu-Han Gary; ...
2016-07-18
Botulinum neurotoxins (BoNT) are among the most poisonous substances known, and of the 7 serotypes (A–G) identified thus far at least 4 can cause death in humans. Here, the goal of this work was identification of inhibitors that specifically target the light chain catalytic site of the highly pathogenic but lesser-studied E serotype (BoNT/E). Large-scale computational screening, employing the program DOCK, was used to perform atomic-level docking of 1.4 million small molecules to prioritize those making favorable interactions with the BoNT/E site. In particular, ‘footprint similarity’ (FPS) scoring was used to identify compounds that could potentially mimic features on themore » known substrate tetrapeptide RIME. Among 92 compounds purchased and experimentally tested, compound C562-1101 emerged as the most promising hit with an apparent IC 50 value three-fold more potent than that of the first reported BoNT/E small molecule inhibitor NSC-77053. Additional analysis showed the predicted binding pose of C562-1101 was geometrically and energetically stable over an ensemble of structures generated by molecular dynamic simulations and that many of the intended interactions seen with RIME were maintained. Finally, several analogs were also computationally designed and predicted to have further molecular mimicry thereby demonstrating the potential utility of footprint-based scoring protocols to help guide hit refinement.« less
Zhou, Yuchen; McGillick, Brian E; Teng, Yu-Han Gary; Haranahalli, Krupanandan; Ojima, Iwao; Swaminathan, Subramanyam; Rizzo, Robert C
2016-10-15
Botulinum neurotoxins (BoNT) are among the most poisonous substances known, and of the 7 serotypes (A-G) identified thus far at least 4 can cause death in humans. The goal of this work was identification of inhibitors that specifically target the light chain catalytic site of the highly pathogenic but lesser-studied E serotype (BoNT/E). Large-scale computational screening, employing the program DOCK, was used to perform atomic-level docking of 1.4 million small molecules to prioritize those making favorable interactions with the BoNT/E site. In particular, 'footprint similarity' (FPS) scoring was used to identify compounds that could potentially mimic features on the known substrate tetrapeptide RIME. Among 92 compounds purchased and experimentally tested, compound C562-1101 emerged as the most promising hit with an apparent IC 50 value three-fold more potent than that of the first reported BoNT/E small molecule inhibitor NSC-77053. Additional analysis showed the predicted binding pose of C562-1101 was geometrically and energetically stable over an ensemble of structures generated by molecular dynamic simulations and that many of the intended interactions seen with RIME were maintained. Several analogs were also computationally designed and predicted to have further molecular mimicry thereby demonstrating the potential utility of footprint-based scoring protocols to help guide hit refinement. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yuchen; McGillick, Brian E.; Teng, Yu-Han Gary
Botulinum neurotoxins (BoNT) are among the most poisonous substances known, and of the 7 serotypes (A–G) identified thus far at least 4 can cause death in humans. Here, the goal of this work was identification of inhibitors that specifically target the light chain catalytic site of the highly pathogenic but lesser-studied E serotype (BoNT/E). Large-scale computational screening, employing the program DOCK, was used to perform atomic-level docking of 1.4 million small molecules to prioritize those making favorable interactions with the BoNT/E site. In particular, ‘footprint similarity’ (FPS) scoring was used to identify compounds that could potentially mimic features on themore » known substrate tetrapeptide RIME. Among 92 compounds purchased and experimentally tested, compound C562-1101 emerged as the most promising hit with an apparent IC 50 value three-fold more potent than that of the first reported BoNT/E small molecule inhibitor NSC-77053. Additional analysis showed the predicted binding pose of C562-1101 was geometrically and energetically stable over an ensemble of structures generated by molecular dynamic simulations and that many of the intended interactions seen with RIME were maintained. Finally, several analogs were also computationally designed and predicted to have further molecular mimicry thereby demonstrating the potential utility of footprint-based scoring protocols to help guide hit refinement.« less
Uehara, Shota; Tanaka, Shigenori
2016-11-23
Water plays a significant role in the binding process between protein and ligand. However, the thermodynamics of water molecules are often underestimated, or even ignored, in protein-ligand docking. Usually, the free energies of active-site water molecules are substantially different from those of waters in the bulk region. The binding of a ligand to a protein causes a displacement of these waters from an active site to bulk, and this displacement process substantially contributes to the free energy change of protein-ligand binding. The free energy of active-site water molecules can be calculated by grid inhomogeneous solvation theory (GIST), using molecular dynamics (MD) and the trajectory of a target protein and water molecules. Here, we show a case study of the combination of GIST and a docking program and discuss the effectiveness of the displacing gain of unfavorable water in protein-ligand docking. We combined the GIST-based desolvation function with the scoring function of AutoDock4, which is called AutoDock-GIST. The proposed scoring function was assessed employing 51 ligands of coagulation factor Xa (FXa), and results showed that both scoring accuracy and docking success rate were improved. We also evaluated virtual screening performance of AutoDock-GIST using FXa ligands in the directory of useful decoys-enhanced (DUD-E), thus finding that the displacing gain of unfavorable water is effective for a successful docking campaign.
Molecular Docking for Prediction and Interpretation of Adverse Drug Reactions.
Luo, Heng; Fokoue-Nkoutche, Achille; Singh, Nalini; Yang, Lun; Hu, Jianying; Zhang, Ping
2018-05-23
Adverse drug reactions (ADRs) present a major burden for patients and the healthcare industry. Various computational methods have been developed to predict ADRs for drug molecules. However, many of these methods require experimental or surveillance data and cannot be used when only structural information is available. We collected 1,231 small molecule drugs and 600 human proteins and utilized molecular docking to generate binding features among them. We developed machine learning models that use these docking features to make predictions for 1,533 ADRs. These models obtain an overall area under the receiver operating characteristic curve (AUROC) of 0.843 and an overall area under the precision-recall curve (AUPR) of 0.395, outperforming seven structural fingerprint-based prediction models. Using the method, we predicted skin striae for fluticasone propionate, dermatitis acneiform for mometasone, and decreased libido for irinotecan, as demonstrations. Furthermore, we analyzed the top binding proteins associated with some of the ADRs, which can help to understand and/or generate hypotheses for underlying mechanisms of ADRs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
DOVIS: an implementation for high-throughput virtual screening using AutoDock.
Zhang, Shuxing; Kumar, Kamal; Jiang, Xiaohui; Wallqvist, Anders; Reifman, Jaques
2008-02-27
Molecular-docking-based virtual screening is an important tool in drug discovery that is used to significantly reduce the number of possible chemical compounds to be investigated. In addition to the selection of a sound docking strategy with appropriate scoring functions, another technical challenge is to in silico screen millions of compounds in a reasonable time. To meet this challenge, it is necessary to use high performance computing (HPC) platforms and techniques. However, the development of an integrated HPC system that makes efficient use of its elements is not trivial. We have developed an application termed DOVIS that uses AutoDock (version 3) as the docking engine and runs in parallel on a Linux cluster. DOVIS can efficiently dock large numbers (millions) of small molecules (ligands) to a receptor, screening 500 to 1,000 compounds per processor per day. Furthermore, in DOVIS, the docking session is fully integrated and automated in that the inputs are specified via a graphical user interface, the calculations are fully integrated with a Linux cluster queuing system for parallel processing, and the results can be visualized and queried. DOVIS removes most of the complexities and organizational problems associated with large-scale high-throughput virtual screening, and provides a convenient and efficient solution for AutoDock users to use this software in a Linux cluster platform.
Ramirez, Ursula D; Nikonova, Anna S; Liu, Hanqing; Pecherskaya, Anna; Lawrence, Sarah H; Serebriiskii, Ilya G; Zhou, Yan; Robinson, Matthew K; Einarson, Margret B; Golemis, Erica A; Jaffe, Eileen K
2015-05-28
Overexpression or mutation of the epidermal growth factor receptor (EGFR) potently enhances the growth of many solid tumors. Tumor cells frequently display resistance to mechanistically-distinct EGFR-directed therapeutic agents, making it valuable to develop therapeutics that work by additional mechanisms. Current EGFR-targeting therapeutics include antibodies targeting the extracellular domains, and small molecules inhibiting the intracellular kinase domain. Recent studies have identified a novel prone extracellular tetrameric EGFR configuration, which we identify as a potential target for drug discovery. Our focus is on the prone EGFR tetramer, which contains a novel protein-protein interface involving extracellular domain III. This EGFR tetramer is computationally targeted for stabilization by small molecule ligand binding. This study performed virtual screening of a Life Chemicals, Inc. small molecule library of 345,232 drug-like compounds against a molecular dynamics simulation of protein-protein interfaces distinct to the novel tetramer. One hundred nine chemically diverse candidate molecules were selected and evaluated using a cell-based high-content imaging screen that directly assessed induced internalization of the EGFR effector protein Grb2. Positive hits were further evaluated for influence on phosphorylation of EGFR and its effector ERK1/2. Fourteen hit compounds affected internalization of Grb2, an adaptor responsive to EGFR activation. Most hits had limited effect on cell viability, and minimally influenced EGFR and ERK1/2 phosphorylation. Docked hit compound poses generally include Arg270 or neighboring residues, which are also involved in binding the effective therapeutic cetuximab, guiding further chemical optimization. These data suggest that the EGFR tetrameric configuration offers a novel cancer drug target.
Capture-SELEX: Selection of DNA Aptamers for Aminoglycoside Antibiotics
2012-01-01
Small organic molecules are challenging targets for an aptamer selection using the SELEX technology (SELEX—Systematic Evolution of Ligans by EXponential enrichment). Often they are not suitable for immobilization on solid surfaces, which is a common procedure in known aptamer selection methods. The Capture-SELEX procedure allows the selection of DNA aptamers for solute targets. A special SELEX library was constructed with the aim to immobilize this library on magnetic beads or other surfaces. For this purpose a docking sequence was incorporated into the random region of the library enabling hybridization to a complementary oligo fixed on magnetic beads. Oligonucleotides of the library which exhibit high affinity to the target and a secondary structure fitting to the target are released from the beads for binding to the target during the aptamer selection process. The oligonucleotides of these binding complexes were amplified, purified, and immobilized via the docking sequence to the magnetic beads as the starting point of the following selection round. Based on this Capture-SELEX procedure, the successful DNA aptamer selection for the aminoglycoside antibiotic kanamycin A as a small molecule target is described. PMID:23326761
DARC 2.0: Improved Docking and Virtual Screening at Protein Interaction Sites
Gowthaman, Ragul; Lyskov, Sergey; Karanicolas, John
2015-01-01
Over the past decade, protein-protein interactions have emerged as attractive but challenging targets for therapeutic intervention using small molecules. Due to the relatively flat surfaces that typify protein interaction sites, modern virtual screening tools developed for optimal performance against “traditional” protein targets perform less well when applied instead at protein interaction sites. Previously, we described a docking method specifically catered to the shallow binding modes characteristic of small-molecule inhibitors of protein interaction sites. This method, called DARC (Docking Approach using Ray Casting), operates by comparing the topography of the protein surface when “viewed” from a vantage point inside the protein against the topography of a bound ligand when “viewed” from the same vantage point. Here, we present five key enhancements to DARC. First, we use multiple vantage points to more accurately determine protein-ligand surface complementarity. Second, we describe a new scheme for rapidly determining optimal weights in the DARC scoring function. Third, we incorporate sampling of ligand conformers “on-the-fly” during docking. Fourth, we move beyond simple shape complementarity and introduce a term in the scoring function to capture electrostatic complementarity. Finally, we adjust the control flow in our GPU implementation of DARC to achieve greater speedup of these calculations. At each step of this study, we evaluate the performance of DARC in a “pose recapitulation” experiment: predicting the binding mode of 25 inhibitors each solved in complex with its distinct target protein (a protein interaction site). Whereas the previous version of DARC docked only one of these inhibitors to within 2 Å RMSD of its position in the crystal structure, the newer version achieves this level of accuracy for 12 of the 25 complexes, corresponding to a statistically significant performance improvement (p < 0.001). Collectively then, we find that the five enhancements described here – which together make up DARC 2.0 – lead to dramatically improved speed and performance relative to the original DARC method. PMID:26181386
Schumann, Marcel; Armen, Roger S
2013-05-30
Molecular docking of small-molecules is an important procedure for computer-aided drug design. Modeling receptor side chain flexibility is often important or even crucial, as it allows the receptor to adopt new conformations as induced by ligand binding. However, the accurate and efficient incorporation of receptor side chain flexibility has proven to be a challenge due to the huge computational complexity required to adequately address this problem. Here we describe a new docking approach with a very fast, graph-based optimization algorithm for assignment of the near-optimal set of residue rotamers. We extensively validate our approach using the 40 DUD target benchmarks commonly used to assess virtual screening performance and demonstrate a large improvement using the developed side chain optimization over rigid receptor docking (average ROC AUC of 0.693 vs. 0.623). Compared to numerous benchmarks, the overall performance is better than nearly all other commonly used procedures. Furthermore, we provide a detailed analysis of the level of receptor flexibility observed in docking results for different classes of residues and elucidate potential avenues for further improvement. Copyright © 2013 Wiley Periodicals, Inc.
Suzuki, Yoshiyuki
2017-05-01
Predicting susceptibility of various species to a virus assists assessment of risk of interspecies transmission. Evaluation of receptor functionality may be useful in screening for susceptibility. In this study, docking simulation was conducted for measles virus hemagglutinin (MV-H) and immunoglobulin-like variable domain of signaling lymphocyte activation molecule (SLAM-V). It was observed that the docking scores for MV-H and SLAM-V correlated with the activity of SLAM as an MV receptor. These results suggest that the receptor functionality may be predicted from the docking scores of virion surface proteins and cellular receptor molecules. © 2017 The Societies and John Wiley & Sons Australia, Ltd.
Identification of novel target sites and an inhibitor of the dengue virus E protein.
Yennamalli, Ragothaman; Subbarao, Naidu; Kampmann, Thorsten; McGeary, Ross P; Young, Paul R; Kobe, Bostjan
2009-06-01
Dengue and related flaviviruses represent a significant global health threat. The envelope glycoprotein E mediates virus attachment to a host cell and the subsequent fusion of viral and host cell membranes. The fusion process is driven by conformational changes in the E protein and is an essential step in the virus life cycle. In this study, we analyzed the pre-fusion and post-fusion structures of the dengue virus E protein to identify potential novel sites that could bind small molecules, which could interfere with the conformational transitions that mediate the fusion process. We used an in silico virtual screening approach combining three different docking algorithms (DOCK, GOLD and FlexX) to identify compounds that are likely to bind to these sites. Seven structurally diverse molecules were selected to test experimentally for inhibition of dengue virus propagation. The best compound showed an IC(50) in the micromolar range against dengue virus type 2.
Identification of novel target sites and an inhibitor of the dengue virus E protein
NASA Astrophysics Data System (ADS)
Yennamalli, Ragothaman; Subbarao, Naidu; Kampmann, Thorsten; McGeary, Ross P.; Young, Paul R.; Kobe, Bostjan
2009-06-01
Dengue and related flaviviruses represent a significant global health threat. The envelope glycoprotein E mediates virus attachment to a host cell and the subsequent fusion of viral and host cell membranes. The fusion process is driven by conformational changes in the E protein and is an essential step in the virus life cycle. In this study, we analyzed the pre-fusion and post-fusion structures of the dengue virus E protein to identify potential novel sites that could bind small molecules, which could interfere with the conformational transitions that mediate the fusion process. We used an in silico virtual screening approach combining three different docking algorithms (DOCK, GOLD and FlexX) to identify compounds that are likely to bind to these sites. Seven structurally diverse molecules were selected to test experimentally for inhibition of dengue virus propagation. The best compound showed an IC50 in the micromolar range against dengue virus type 2.
Medicinal Chemistry Projects Requiring Imaginative Structure-Based Drug Design Methods.
Moitessier, Nicolas; Pottel, Joshua; Therrien, Eric; Englebienne, Pablo; Liu, Zhaomin; Tomberg, Anna; Corbeil, Christopher R
2016-09-20
Computational methods for docking small molecules to proteins are prominent in drug discovery. There are hundreds, if not thousands, of documented examples-and several pertinent cases within our research program. Fifteen years ago, our first docking-guided drug design project yielded nanomolar metalloproteinase inhibitors and illustrated the potential of structure-based drug design. Subsequent applications of docking programs to the design of integrin antagonists, BACE-1 inhibitors, and aminoglycosides binding to bacterial RNA demonstrated that available docking programs needed significant improvement. At that time, docking programs primarily considered flexible ligands and rigid proteins. We demonstrated that accounting for protein flexibility, employing displaceable water molecules, and using ligand-based pharmacophores improved the docking accuracy of existing methods-enabling the design of bioactive molecules. The success prompted the development of our own program, Fitted, implementing all of these aspects. The primary motivation has always been to respond to the needs of drug design studies; the majority of the concepts behind the evolution of Fitted are rooted in medicinal chemistry projects and collaborations. Several examples follow: (1) Searching for HDAC inhibitors led us to develop methods considering drug-zinc coordination and its effect on the pKa of surrounding residues. (2) Targeting covalent prolyl oligopeptidase (POP) inhibitors prompted an update to Fitted to identify reactive groups and form bonds with a given residue (e.g., a catalytic residue) when the geometry allows it. Fitted-the first fully automated covalent docking program-was successfully applied to the discovery of four new classes of covalent POP inhibitors. As a result, efficient stereoselective syntheses of a few screening hits were prioritized rather than synthesizing large chemical libraries-yielding nanomolar inhibitors. (3) In order to study the metabolism of POP inhibitors by cytochrome P450 enzymes (CYPs)-for toxicology studies-the program Impacts was derived from Fitted and helped us to reveal a complex metabolism with unforeseen stereocenter isomerizations. These efforts, combined with those of other docking software developers, have strengthened our understanding of the complex drug-protein binding process while providing the medicinal chemistry community with useful tools that have led to drug discoveries. In this Account, we describe our contributions over the past 15 years-within their historical context-to the design of drug candidates, including BACE-1 inhibitors, POP covalent inhibitors, G-quadruplex binders, and aminoglycosides binding to nucleic acids. We also remark the necessary developments of docking programs, specifically Fitted, that enabled structure-based design to flourish and yielded multiple fruitful, rational medicinal chemistry campaigns.
De Paris, Renata; Frantz, Fábio A.; Norberto de Souza, Osmar; Ruiz, Duncan D. A.
2013-01-01
Molecular docking simulations of fully flexible protein receptor (FFR) models are coming of age. In our studies, an FFR model is represented by a series of different conformations derived from a molecular dynamic simulation trajectory of the receptor. For each conformation in the FFR model, a docking simulation is executed and analyzed. An important challenge is to perform virtual screening of millions of ligands using an FFR model in a sequential mode since it can become computationally very demanding. In this paper, we propose a cloud-based web environment, called web Flexible Receptor Docking Workflow (wFReDoW), which reduces the CPU time in the molecular docking simulations of FFR models to small molecules. It is based on the new workflow data pattern called self-adaptive multiple instances (P-SaMIs) and on a middleware built on Amazon EC2 instances. P-SaMI reduces the number of molecular docking simulations while the middleware speeds up the docking experiments using a High Performance Computing (HPC) environment on the cloud. The experimental results show a reduction in the total elapsed time of docking experiments and the quality of the new reduced receptor models produced by discarding the nonpromising conformations from an FFR model ruled by the P-SaMI data pattern. PMID:23691504
Yang, Hongqin; Liu, Jiuyang; Huang, Yanmei; Gao, Rui; Tang, Bin; Li, Shanshan; He, Jiawei; Li, Hui
2017-03-30
Alisertib (MLN8237) is an orally administered inhibitor of Aurora A kinase. This small-molecule inhibitor is under clinical or pre-clinical phase for the treatment of advanced malignancies. The present study provides a detailed characterization of the interaction of MLN8237 with a drug transport protein called human serum albumin (HSA). STD and WaterLOGSY nuclear magnetic resonance (NMR)-binding studies were conducted first to confirm the binding of MLN8237 to HSA. In the ligand orientation assay, the binding sites of MLN8237 were validated through two site-specific spy molecules (warfarin sodium and ibuprofen, which are two known site-selective probes) by using STD and WaterLOGSY NMR competition techniques. These competition experiments demonstrate that both spy molecules do not compete with MLN8237 for the specific binding site. The AutoDock-based blind docking study recognizes the hydrophobic subdomain IB of the protein as the probable binding site for MLN8237. Thermodynamic investigations by isothermal titration calorimetry (ITC) reveal that the non-covalent interaction between MLN8237 and HSA (binding constant was approximately 10 5 M -1 ) is driven mainly by favorable entropy and unfavorable enthalpy. In addition, synchronous fluorescence, circular dichroism (CD), and 3D fluorescence spectroscopy suggest that MLN8237 may induce conformational changes in HSA.
Yang, Hongqin; Liu, Jiuyang; Huang, Yanmei; Gao, Rui; Tang, Bin; Li, Shanshan; He, Jiawei; Li, Hui
2017-01-01
Alisertib (MLN8237) is an orally administered inhibitor of Aurora A kinase. This small-molecule inhibitor is under clinical or pre-clinical phase for the treatment of advanced malignancies. The present study provides a detailed characterization of the interaction of MLN8237 with a drug transport protein called human serum albumin (HSA). STD and WaterLOGSY nuclear magnetic resonance (NMR)-binding studies were conducted first to confirm the binding of MLN8237 to HSA. In the ligand orientation assay, the binding sites of MLN8237 were validated through two site-specific spy molecules (warfarin sodium and ibuprofen, which are two known site-selective probes) by using STD and WaterLOGSY NMR competition techniques. These competition experiments demonstrate that both spy molecules do not compete with MLN8237 for the specific binding site. The AutoDock-based blind docking study recognizes the hydrophobic subdomain IB of the protein as the probable binding site for MLN8237. Thermodynamic investigations by isothermal titration calorimetry (ITC) reveal that the non-covalent interaction between MLN8237 and HSA (binding constant was approximately 105 M−1) is driven mainly by favorable entropy and unfavorable enthalpy. In addition, synchronous fluorescence, circular dichroism (CD), and 3D fluorescence spectroscopy suggest that MLN8237 may induce conformational changes in HSA. PMID:28358124
NASA Astrophysics Data System (ADS)
Yang, Hongqin; Liu, Jiuyang; Huang, Yanmei; Gao, Rui; Tang, Bin; Li, Shanshan; He, Jiawei; Li, Hui
2017-03-01
Alisertib (MLN8237) is an orally administered inhibitor of Aurora A kinase. This small-molecule inhibitor is under clinical or pre-clinical phase for the treatment of advanced malignancies. The present study provides a detailed characterization of the interaction of MLN8237 with a drug transport protein called human serum albumin (HSA). STD and WaterLOGSY nuclear magnetic resonance (NMR)-binding studies were conducted first to confirm the binding of MLN8237 to HSA. In the ligand orientation assay, the binding sites of MLN8237 were validated through two site-specific spy molecules (warfarin sodium and ibuprofen, which are two known site-selective probes) by using STD and WaterLOGSY NMR competition techniques. These competition experiments demonstrate that both spy molecules do not compete with MLN8237 for the specific binding site. The AutoDock-based blind docking study recognizes the hydrophobic subdomain IB of the protein as the probable binding site for MLN8237. Thermodynamic investigations by isothermal titration calorimetry (ITC) reveal that the non-covalent interaction between MLN8237 and HSA (binding constant was approximately 105 M-1) is driven mainly by favorable entropy and unfavorable enthalpy. In addition, synchronous fluorescence, circular dichroism (CD), and 3D fluorescence spectroscopy suggest that MLN8237 may induce conformational changes in HSA.
Lee, Hui Sun; Jo, Sunhwan; Lim, Hyun-Suk; Im, Wonpil
2012-07-23
Molecular docking is widely used to obtain binding modes and binding affinities of a molecule to a given target protein. Despite considerable efforts, however, prediction of both properties by docking remains challenging mainly due to protein's structural flexibility and inaccuracy of scoring functions. Here, an integrated approach has been developed to improve the accuracy of binding mode and affinity prediction and tested for small molecule MDM2 and MDMX antagonists. In this approach, initial candidate models selected from docking are subjected to equilibration MD simulations to further filter the models. Free energy perturbation molecular dynamics (FEP/MD) simulations are then applied to the filtered ligand models to enhance the ability in predicting the near-native ligand conformation. The calculated binding free energies for MDM2 complexes are overestimated compared to experimental measurements mainly due to the difficulties in sampling highly flexible apo-MDM2. Nonetheless, the FEP/MD binding free energy calculations are more promising for discriminating binders from nonbinders than docking scores. In particular, the comparison between the MDM2 and MDMX results suggests that apo-MDMX has lower flexibility than apo-MDM2. In addition, the FEP/MD calculations provide detailed information on the different energetic contributions to ligand binding, leading to a better understanding of the sensitivity and specificity of protein-ligand interactions.
Patel, Shivani; Modi, Palmi; Chhabria, Mahesh
2018-05-01
Caspase-1 is a key endoprotease responsible for the post-translational processing of pro-inflammatory cytokines IL-1β, 18 & 33. Excessive secretion of IL-1β leads to numerous inflammatory and autoimmune diseases. Thus caspase-1 inhibition would be considered as an important therapeutic strategy for development of newer anti-inflammatory agents. Here we have employed an integrated virtual screening by combining pharmacophore mapping and docking to identify small molecules as caspase-1 inhibitors. The ligand based 3D pharmacophore model was generated having the essential structural features of (HBA, HY & RA) using a data set of 27 compounds. A validated pharmacophore hypothesis (Hypo 1) was used to screen ZINC and Minimaybridge chemical databases. The retrieved virtual hits were filtered by ADMET properties and molecular docking analysis. Subsequently, the cross-docking study was also carried out using crystal structure of caspase-1, 3, 7 and 8 to identify the key residual interaction for specific caspase-1 inhibition. Finally, the best mapped and top scored (ZINC00885612, ZINC72003647, BTB04175 and BTB04410) molecules were subjected to molecular dynamics simulation for accessing the dynamic structure of protein after ligand binding. This study identifies the most promising hits, which can be leads for the development of novel caspase-1 inhibitors as anti-inflammatory agents. Copyright © 2018 Elsevier Inc. All rights reserved.
Discovery of Novel MDR-Mycobacterium tuberculosis Inhibitor by New FRIGATE Computational Screen
Vértessy, Beáta; Pütter, Vera; Grolmusz, Vince; Schade, Markus
2011-01-01
With 1.6 million casualties annually and 2 billion people being infected, tuberculosis is still one of the most pressing healthcare challenges. Here we report on the new computational docking algorithm FRIGATE which unites continuous local optimization techniques (conjugate gradient method) with an inherently discrete computational approach in forcefield computation, resulting in equal or better scoring accuracies than several benchmark docking programs. By utilizing FRIGATE for a virtual screen of the ZINC library against the Mycobacterium tuberculosis (Mtb) enzyme antigen 85C, we identified novel small molecule inhibitors of multiple drug-resistant Mtb, which bind in vitro to the catalytic site of antigen 85C. PMID:22164290
Rapid and accurate prediction and scoring of water molecules in protein binding sites.
Ross, Gregory A; Morris, Garrett M; Biggin, Philip C
2012-01-01
Water plays a critical role in ligand-protein interactions. However, it is still challenging to predict accurately not only where water molecules prefer to bind, but also which of those water molecules might be displaceable. The latter is often seen as a route to optimizing affinity of potential drug candidates. Using a protocol we call WaterDock, we show that the freely available AutoDock Vina tool can be used to predict accurately the binding sites of water molecules. WaterDock was validated using data from X-ray crystallography, neutron diffraction and molecular dynamics simulations and correctly predicted 97% of the water molecules in the test set. In addition, we combined data-mining, heuristic and machine learning techniques to develop probabilistic water molecule classifiers. When applied to WaterDock predictions in the Astex Diverse Set of protein ligand complexes, we could identify whether a water molecule was conserved or displaced to an accuracy of 75%. A second model predicted whether water molecules were displaced by polar groups or by non-polar groups to an accuracy of 80%. These results should prove useful for anyone wishing to undertake rational design of new compounds where the displacement of water molecules is being considered as a route to improved affinity.
Evaluation of protein docking predictions using Hex 3.1 in CAPRI rounds 1 and 2.
Ritchie, David W
2003-07-01
This article describes and reviews our efforts using Hex 3.1 to predict the docking modes of the seven target protein-protein complexes presented in the CAPRI (Critical Assessment of Predicted Interactions) blind docking trial. For each target, the structure of at least one of the docking partners was given in its unbound form, and several of the targets involved large multimeric structures (e.g., Lactobacillus HPr kinase, hemagglutinin, bovine rotavirus VP6). Here we describe several enhancements to our original spherical polar Fourier docking correlation algorithm. For example, a novel surface sphere smothering algorithm is introduced to generate multiple local coordinate systems around the surface of a large receptor molecule, which may be used to define a small number of initial ligand-docking orientations distributed over the receptor surface. High-resolution spherical polar docking correlations are performed over the resulting receptor surface patches, and candidate docking solutions are refined by using a novel soft molecular mechanics energy minimization procedure. Overall, this approach identified two good solutions at rank 5 or less for two of the seven CAPRI complexes. Subsequent analysis of our results shows that Hex 3.1 is able to place good solutions within a list of
Differential targeting of Gbetagamma-subunit signaling with small molecules.
Bonacci, Tabetha M; Mathews, Jennifer L; Yuan, Chujun; Lehmann, David M; Malik, Sundeep; Wu, Dianqing; Font, Jose L; Bidlack, Jean M; Smrcka, Alan V
2006-04-21
G protein betagamma subunits have potential as a target for therapeutic treatment of a number of diseases. We performed virtual docking of a small-molecule library to a site on Gbetagamma subunits that mediates protein interactions. We hypothesized that differential targeting of this surface could allow for selective modulation of Gbetagamma subunit functions. Several compounds bound to Gbetagamma subunits with affinities from 0.1 to 60 muM and selectively modulated functional Gbetagamma-protein-protein interactions in vitro, chemotactic peptide signaling pathways in HL-60 leukocytes, and opioid receptor-dependent analgesia in vivo. These data demonstrate an approach for modulation of G protein-coupled receptor signaling that may represent an important therapeutic strategy.
Yadava, Umesh; Shukla, Bindesh Kumar; Roychoudhury, Mihir; Kumar, Devesh
2015-04-01
Amoebiasis, a worldwide explosive epidemic, caused by the gastrointestinal anaerobic protozoan parasite Entamoeba histolytica, infects the large intestine and, in advance stages, liver, kidney, brain and lung. Metronidazole (MNZ)-the first line medicament against amoebiasis-is potentially carcinogenic to humans and shows significant side-effects. Pyrazolo[3,4-d]pyrimidine compounds have been reported to demonstrate antiamoebic activity. In silico molecular docking simulations on nine pyrazolo[3,4-d]pyrimidine molecules without linkers (molecules 1-9) and nine pyrazolo[3,4-d]pyrimidine molecules with a trimethylene linker (molecules 10-18) along with the reference drug metronidazole (MNZ) were conducted using the modules of the programs Glide-SP, Glide-XP and Autodock with O-acetyl-L-serine sulfhydrylase (OASS) enzyme-a promising target for inhibiting the growth of Entamoeba histolytica. Docking simulations using Glide-SP demonstrate good agreement with reported biological activities of molecules 1-9 and indicate that molecules 2 and 4 may act as potential high affinity inhibitors. Trimethylene linker molecules show improved binding affinities among which molecules 15 and 16 supersede. MD simulations on the best docked poses of molecules 2, 4, 15, 16 and MNZ were carried out for 20 ns using DESMOND. It was observed that the docking complexes of molecules 4, 15 and MNZ remain stable in aqueous conditions and do not undergo noticeable fluctuations during the course of the dynamics. Relative binding free energy calculations of the ligands with the enzyme were executed on the best docked poses using the molecular mechanics generalized Born surface area (MM-GBSA) approach, which show good agreement with the reported biological activities.
Malhotra, Sony; Sankar, Kannan; Sowdhamini, Ramanathan
2014-01-01
Interactions at the molecular level in the cellular environment play a very crucial role in maintaining the physiological functioning of the cell. These molecular interactions exist at varied levels viz. protein-protein interactions, protein-nucleic acid interactions or protein-small molecules interactions. Presently in the field, these interactions and their mechanisms mark intensively studied areas. Molecular interactions can also be studied computationally using the approach named as Molecular Docking. Molecular docking employs search algorithms to predict the possible conformations for interacting partners and then calculates interaction energies. However, docking proposes number of solutions as different docked poses and hence offers a serious challenge to identify the native (or near native) structures from the pool of these docked poses. Here, we propose a rigorous scoring scheme called DockScore which can be used to rank the docked poses and identify the best docked pose out of many as proposed by docking algorithm employed. The scoring identifies the optimal interactions between the two protein partners utilising various features of the putative interface like area, short contacts, conservation, spatial clustering and the presence of positively charged and hydrophobic residues. DockScore was first trained on a set of 30 protein-protein complexes to determine the weights for different parameters. Subsequently, we tested the scoring scheme on 30 different protein-protein complexes and native or near-native structure were assigned the top rank from a pool of docked poses in 26 of the tested cases. We tested the ability of DockScore to discriminate likely dimer interactions that differ substantially within a homologous family and also demonstrate that DOCKSCORE can distinguish correct pose for all 10 recent CAPRI targets. PMID:24498255
Malhotra, Sony; Sankar, Kannan; Sowdhamini, Ramanathan
2014-01-01
Interactions at the molecular level in the cellular environment play a very crucial role in maintaining the physiological functioning of the cell. These molecular interactions exist at varied levels viz. protein-protein interactions, protein-nucleic acid interactions or protein-small molecules interactions. Presently in the field, these interactions and their mechanisms mark intensively studied areas. Molecular interactions can also be studied computationally using the approach named as Molecular Docking. Molecular docking employs search algorithms to predict the possible conformations for interacting partners and then calculates interaction energies. However, docking proposes number of solutions as different docked poses and hence offers a serious challenge to identify the native (or near native) structures from the pool of these docked poses. Here, we propose a rigorous scoring scheme called DockScore which can be used to rank the docked poses and identify the best docked pose out of many as proposed by docking algorithm employed. The scoring identifies the optimal interactions between the two protein partners utilising various features of the putative interface like area, short contacts, conservation, spatial clustering and the presence of positively charged and hydrophobic residues. DockScore was first trained on a set of 30 protein-protein complexes to determine the weights for different parameters. Subsequently, we tested the scoring scheme on 30 different protein-protein complexes and native or near-native structure were assigned the top rank from a pool of docked poses in 26 of the tested cases. We tested the ability of DockScore to discriminate likely dimer interactions that differ substantially within a homologous family and also demonstrate that DOCKSCORE can distinguish correct pose for all 10 recent CAPRI targets.
Binding mode prediction and MD/MMPBSA-based free energy ranking for agonists of REV-ERBα/NCoR.
Westermaier, Yvonne; Ruiz-Carmona, Sergio; Theret, Isabelle; Perron-Sierra, Françoise; Poissonnet, Guillaume; Dacquet, Catherine; Boutin, Jean A; Ducrot, Pierre; Barril, Xavier
2017-08-01
The knowledge of the free energy of binding of small molecules to a macromolecular target is crucial in drug design as is the ability to predict the functional consequences of binding. We highlight how a molecular dynamics (MD)-based approach can be used to predict the free energy of small molecules, and to provide priorities for the synthesis and the validation via in vitro tests. Here, we study the dynamics and energetics of the nuclear receptor REV-ERBα with its co-repressor NCoR and 35 novel agonists. Our in silico approach combines molecular docking, molecular dynamics (MD), solvent-accessible surface area (SASA) and molecular mechanics poisson boltzmann surface area (MMPBSA) calculations. While docking yielded initial hints on the binding modes, their stability was assessed by MD. The SASA calculations revealed that the presence of the ligand led to a higher exposure of hydrophobic REV-ERB residues for NCoR recruitment. MMPBSA was very successful in ranking ligands by potency in a retrospective and prospective manner. Particularly, the prospective MMPBSA ranking-based validations for four compounds, three predicted to be active and one weakly active, were confirmed experimentally.
2015-01-01
False negative docking outcomes for highly symmetric molecules are a barrier to the accurate evaluation of docking programs, scoring functions, and protocols. This work describes an implementation of a symmetry-corrected root-mean-square deviation (RMSD) method into the program DOCK based on the Hungarian algorithm for solving the minimum assignment problem, which dynamically assigns atom correspondence in molecules with symmetry. The algorithm adds only a trivial amount of computation time to the RMSD calculations and is shown to increase the reported overall docking success rate by approximately 5% when tested over 1043 receptor–ligand systems. For some families of protein systems the results are even more dramatic, with success rate increases up to 16.7%. Several additional applications of the method are also presented including as a pairwise similarity metric to compare molecules during de novo design, as a scoring function to rank-order virtual screening results, and for the analysis of trajectories from molecular dynamics simulation. The new method, including source code, is available to registered users of DOCK6 (http://dock.compbio.ucsf.edu). PMID:24410429
Uehara, Shota; Tanaka, Shigenori
2017-04-24
Protein flexibility is a major hurdle in current structure-based virtual screening (VS). In spite of the recent advances in high-performance computing, protein-ligand docking methods still demand tremendous computational cost to take into account the full degree of protein flexibility. In this context, ensemble docking has proven its utility and efficiency for VS studies, but it still needs a rational and efficient method to select and/or generate multiple protein conformations. Molecular dynamics (MD) simulations are useful to produce distinct protein conformations without abundant experimental structures. In this study, we present a novel strategy that makes use of cosolvent-based molecular dynamics (CMD) simulations for ensemble docking. By mixing small organic molecules into a solvent, CMD can stimulate dynamic protein motions and induce partial conformational changes of binding pocket residues appropriate for the binding of diverse ligands. The present method has been applied to six diverse target proteins and assessed by VS experiments using many actives and decoys of DEKOIS 2.0. The simulation results have revealed that the CMD is beneficial for ensemble docking. Utilizing cosolvent simulation allows the generation of druggable protein conformations, improving the VS performance compared with the use of a single experimental structure or ensemble docking by standard MD with pure water as the solvent.
Kathiravan, G; Sureban, Sripathi M; Sree, Harsha N; Bhuvaneshwari, V; Kramony, Evelin
2012-12-01
Extraction and investigation of TAXOL from Pestalotiopsis breviseta (Sacc.) using protein docking, which is a computational technique that samples conformations of small molecules in protein-binding sites. Scoring functions are used to assess which of these conformations best complements the protein binding site and active site prediction. Coelomycetous fungi P. breviseta (Sacc.) Steyaert was screened for the production of TAXOL, an anticancer drug. TAXOL PRODUCTION WAS CONFIRMED BY THE FOLLOWING METHODS: Ultraviolet (UV) spectroscopic analysis, Infrared analysis, High performance liquid chromatography analysis (HPLC), and Liquid chromatography mass spectrum (LC-MASS). TAXOL produced by the fungi was compared with authentic TAXOL, and protein docking studies were performed. The BCL2 protein of human origin showed a higher affinity toward the compound paclitaxel. It has the binding energy value of -13.0061 (KJ/Mol) with four hydrogen bonds.
Kathiravan, G.; Sureban, Sripathi M.; Sree, Harsha N.; Bhuvaneshwari, V.; Kramony, Evelin
2012-01-01
Background: Extraction and investigation of TAXOL from Pestalotiopsis breviseta (Sacc.) using protein docking, which is a computational technique that samples conformations of small molecules in protein-binding sites. Scoring functions are used to assess which of these conformations best complements the protein binding site and active site prediction. Materials and Methods: Coelomycetous fungi P. breviseta (Sacc.) Steyaert was screened for the production of TAXOL, an anticancer drug. Results: TAXOL production was confirmed by the following methods: Ultraviolet (UV) spectroscopic analysis, Infrared analysis, High performance liquid chromatography analysis (HPLC), and Liquid chromatography mass spectrum (LC-MASS). TAXOL produced by the fungi was compared with authentic TAXOL, and protein docking studies were performed. Conclusion: The BCL2 protein of human origin showed a higher affinity toward the compound paclitaxel. It has the binding energy value of −13.0061 (KJ/Mol) with four hydrogen bonds. PMID:24808664
Meduru, Harika; Wang, Yeng-Tseng; Tsai, Jeffrey J. P.; Chen, Yu-Ching
2016-01-01
Dipeptidyl peptidase-4 (DPP-4) is the vital enzyme that is responsible for inactivating intestinal peptides glucagon like peptide-1 (GLP-1) and Gastric inhibitory polypeptide (GIP), which stimulates a decline in blood glucose levels. The aim of this study was to explore the inhibition activity of small molecule inhibitors to DPP-4 following a computational strategy based on docking studies and molecular dynamics simulations. The thorough docking protocol we applied allowed us to derive good correlation parameters between the predicted binding affinities (pKi) of the DPP-4 inhibitors and the experimental activity values (pIC50). Based on molecular docking receptor-ligand interactions, pharmacophore generation was carried out in order to identify the binding modes of structurally diverse compounds in the receptor active site. Consideration of the permanence and flexibility of DPP-4 inhibitor complexes by means of molecular dynamics (MD) simulation specified that the inhibitors maintained the binding mode observed in the docking study. The present study helps generate new information for further structural optimization and can influence the development of new DPP-4 inhibitors discoveries in the treatment of type-2 diabetes. PMID:27304951
Meduru, Harika; Wang, Yeng-Tseng; Tsai, Jeffrey J P; Chen, Yu-Ching
2016-06-13
Dipeptidyl peptidase-4 (DPP-4) is the vital enzyme that is responsible for inactivating intestinal peptides glucagon like peptide-1 (GLP-1) and Gastric inhibitory polypeptide (GIP), which stimulates a decline in blood glucose levels. The aim of this study was to explore the inhibition activity of small molecule inhibitors to DPP-4 following a computational strategy based on docking studies and molecular dynamics simulations. The thorough docking protocol we applied allowed us to derive good correlation parameters between the predicted binding affinities (pKi) of the DPP-4 inhibitors and the experimental activity values (pIC50). Based on molecular docking receptor-ligand interactions, pharmacophore generation was carried out in order to identify the binding modes of structurally diverse compounds in the receptor active site. Consideration of the permanence and flexibility of DPP-4 inhibitor complexes by means of molecular dynamics (MD) simulation specified that the inhibitors maintained the binding mode observed in the docking study. The present study helps generate new information for further structural optimization and can influence the development of new DPP-4 inhibitors discoveries in the treatment of type-2 diabetes.
Targeting Mycobacterium tuberculosis Topoisomerase I by Small-Molecule Inhibitors
Godbole, Adwait Anand; Ahmed, Wareed; Bhat, Rajeshwari Subray; Bradley, Erin K.; Ekins, Sean
2014-01-01
We describe inhibition of Mycobacterium tuberculosis topoisomerase I (MttopoI), an essential mycobacterial enzyme, by two related compounds, imipramine and norclomipramine, of which imipramine is clinically used as an antidepressant. These molecules showed growth inhibition of both Mycobacterium smegmatis and M. tuberculosis cells. The mechanism of action of these two molecules was investigated by analyzing the individual steps of the topoisomerase I (topoI) reaction cycle. The compounds stimulated cleavage, thereby perturbing the cleavage-religation equilibrium. Consequently, these molecules inhibited the growth of the cells overexpressing topoI at a low MIC. Docking of the molecules on the MttopoI model suggested that they bind near the metal binding site of the enzyme. The DNA relaxation activity of the metal binding mutants harboring mutations in the DxDxE motif was differentially affected by the molecules, suggesting that the metal coordinating residues contribute to the interaction of the enzyme with the drug. Taken together, the results highlight the potential of these small molecules, which poison the M. tuberculosis and M. smegmatis topoisomerase I, as leads for the development of improved molecules to combat mycobacterial infections. Moreover, targeting metal coordination in topoisomerases might be a general strategy to develop new lead molecules. PMID:25534741
NASA Astrophysics Data System (ADS)
Banavath, Hemanth Naick; Sharma, Om Prakash; Kumar, Muthuvel Suresh; Baskaran, R.
2014-11-01
BCR-ABL tyrosine kinase plays a major role in the pathogenesis of chronic myeloid leukemia (CML) and is a proven target for drug development. Currently available drugs in the market are effective against CML; however, side-effects and drug-resistant mutations in BCR-ABL limit their full potential. Using high throughput virtual screening approach, we have screened several small molecule databases and docked against wild-type and drug resistant T315I mutant BCR-ABL. Drugs that are currently available, such as imatinib and ponatinib, were also docked against BCR-ABL protein to set a cutoff value for our screening. Selected lead compounds were further evaluated for chemical reactivity employing density functional theory approach, all selected ligands shows HLG value > 0.09900 and the binding free energy between protein-ligand complex interactions obtained was rescored using MM-GBSA. The selected compounds showed least ΔG score -71.53 KJ/mol to maximum -126.71 KJ/mol in both wild type and drug resistant T315I mutant BCR-ABL. Following which, the stability of the docking complexes were evaluated by molecular dynamics simulation (MD) using GROMACS4.5.5. Results uncovered seven lead molecules, designated with Drug-Bank and PubChem ids as DB07107, DB06977, ST013616, DB04200, ST007180 ST019342, and DB01172, which shows docking scores higher than imatinib and ponatinib.
ForceGen 3D structure and conformer generation: from small lead-like molecules to macrocyclic drugs
NASA Astrophysics Data System (ADS)
Cleves, Ann E.; Jain, Ajay N.
2017-05-01
We introduce the ForceGen method for 3D structure generation and conformer elaboration of drug-like small molecules. ForceGen is novel, avoiding use of distance geometry, molecular templates, or simulation-oriented stochastic sampling. The method is primarily driven by the molecular force field, implemented using an extension of MMFF94s and a partial charge estimator based on electronegativity-equalization. The force field is coupled to algorithms for direct sampling of realistic physical movements made by small molecules. Results are presented on a standard benchmark from the Cambridge Crystallographic Database of 480 drug-like small molecules, including full structure generation from SMILES strings. Reproduction of protein-bound crystallographic ligand poses is demonstrated on four carefully curated data sets: the ConfGen Set (667 ligands), the PINC cross-docking benchmark (1062 ligands), a large set of macrocyclic ligands (182 total with typical ring sizes of 12-23 atoms), and a commonly used benchmark for evaluating macrocycle conformer generation (30 ligands total). Results compare favorably to alternative methods, and performance on macrocyclic compounds approaches that observed on non-macrocycles while yielding a roughly 100-fold speed improvement over alternative MD-based methods with comparable performance.
GREEN: A program package for docking studies in rational drug design
NASA Astrophysics Data System (ADS)
Tomioka, Nobuo; Itai, Akiko
1994-08-01
A program package, GREEN, has been developed that enables docking studies between ligand molecules and a protein molecule. Based on the structure of the protein molecule, the physical and chemical environment of the ligand-binding site is expressed as three-dimensional grid-point data. The grid-point data are used for the real-time evaluation of the protein-ligand interaction energy, as well as for the graphical representation of the binding-site environment. The interactive docking operation is facilitated by various built-in functions, such as energy minimization, energy contribution analysis and logging of the manipulation trajectory. Interactive modeling functions are incorporated for designing new ligand molecules while considering the binding-site environment and the protein-ligand interaction. As an example of the application of GREEN, a docking study is presented on the complex between trypsin and a synthetic trypsin inhibitor. The program package will be useful for rational drug design, based on the 3D structure of the target protein.
Differential Targeting of Gβγ-Subunit Signaling with Small Molecules
NASA Astrophysics Data System (ADS)
Bonacci, Tabetha M.; Mathews, Jennifer L.; Yuan, Chujun; Lehmann, David M.; Malik, Sundeep; Wu, Dianqing; Font, Jose L.; Bidlack, Jean M.; Smrcka, Alan V.
2006-04-01
G protein βγ subunits have potential as a target for therapeutic treatment of a number of diseases. We performed virtual docking of a small-molecule library to a site on Gβγ subunits that mediates protein interactions. We hypothesized that differential targeting of this surface could allow for selective modulation of Gβγ subunit functions. Several compounds bound to Gβγ subunits with affinities from 0.1 to 60 μM and selectively modulated functional Gβγ-protein-protein interactions in vitro, chemotactic peptide signaling pathways in HL-60 leukocytes, and opioid receptor-dependent analgesia in vivo. These data demonstrate an approach for modulation of G protein-coupled receptor signaling that may represent an important therapeutic strategy.
Structure-guided fragment-based in silico drug design of dengue protease inhibitors.
Knehans, Tim; Schüller, Andreas; Doan, Danny N; Nacro, Kassoum; Hill, Jeffrey; Güntert, Peter; Madhusudhan, M S; Weil, Tanja; Vasudevan, Subhash G
2011-03-01
An in silico fragment-based drug design approach was devised and applied towards the identification of small molecule inhibitors of the dengue virus (DENV) NS2B-NS3 protease. Currently, no DENV protease co-crystal structure with bound inhibitor and fully formed substrate binding site is available. Therefore a homology model of DENV NS2B-NS3 protease was generated employing a multiple template spatial restraints method and used for structure-based design. A library of molecular fragments was derived from the ZINC screening database with help of the retrosynthetic combinatorial analysis procedure (RECAP). 150,000 molecular fragments were docked to the DENV protease homology model and the docking poses were rescored using a target-specific scoring function. High scoring fragments were assembled to small molecule candidates by an implicit linking cascade. The cascade included substructure searching and structural filters focusing on interactions with the S1 and S2 pockets of the protease. The chemical space adjacent to the promising candidates was further explored by neighborhood searching. A total of 23 compounds were tested experimentally and two compounds were discovered to inhibit dengue protease (IC(50) = 7.7 μM and 37.9 μM, respectively) and the related West Nile virus protease (IC(50) = 6.3 μM and 39.0 μM, respectively). This study demonstrates the successful application of a structure-guided fragment-based in silico drug design approach for dengue protease inhibitors providing straightforward hit generation using a combination of homology modeling, fragment docking, chemical similarity and structural filters.
Structure-guided fragment-based in silico drug design of dengue protease inhibitors
NASA Astrophysics Data System (ADS)
Knehans, Tim; Schüller, Andreas; Doan, Danny N.; Nacro, Kassoum; Hill, Jeffrey; Güntert, Peter; Madhusudhan, M. S.; Weil, Tanja; Vasudevan, Subhash G.
2011-03-01
An in silico fragment-based drug design approach was devised and applied towards the identification of small molecule inhibitors of the dengue virus (DENV) NS2B-NS3 protease. Currently, no DENV protease co-crystal structure with bound inhibitor and fully formed substrate binding site is available. Therefore a homology model of DENV NS2B-NS3 protease was generated employing a multiple template spatial restraints method and used for structure-based design. A library of molecular fragments was derived from the ZINC screening database with help of the retrosynthetic combinatorial analysis procedure (RECAP). 150,000 molecular fragments were docked to the DENV protease homology model and the docking poses were rescored using a target-specific scoring function. High scoring fragments were assembled to small molecule candidates by an implicit linking cascade. The cascade included substructure searching and structural filters focusing on interactions with the S1 and S2 pockets of the protease. The chemical space adjacent to the promising candidates was further explored by neighborhood searching. A total of 23 compounds were tested experimentally and two compounds were discovered to inhibit dengue protease (IC50 = 7.7 μM and 37.9 μM, respectively) and the related West Nile virus protease (IC50 = 6.3 μM and 39.0 μM, respectively). This study demonstrates the successful application of a structure-guided fragment-based in silico drug design approach for dengue protease inhibitors providing straightforward hit generation using a combination of homology modeling, fragment docking, chemical similarity and structural filters.
GeauxDock: Accelerating Structure-Based Virtual Screening with Heterogeneous Computing
Fang, Ye; Ding, Yun; Feinstein, Wei P.; Koppelman, David M.; Moreno, Juana; Jarrell, Mark; Ramanujam, J.; Brylinski, Michal
2016-01-01
Computational modeling of drug binding to proteins is an integral component of direct drug design. Particularly, structure-based virtual screening is often used to perform large-scale modeling of putative associations between small organic molecules and their pharmacologically relevant protein targets. Because of a large number of drug candidates to be evaluated, an accurate and fast docking engine is a critical element of virtual screening. Consequently, highly optimized docking codes are of paramount importance for the effectiveness of virtual screening methods. In this communication, we describe the implementation, tuning and performance characteristics of GeauxDock, a recently developed molecular docking program. GeauxDock is built upon the Monte Carlo algorithm and features a novel scoring function combining physics-based energy terms with statistical and knowledge-based potentials. Developed specifically for heterogeneous computing platforms, the current version of GeauxDock can be deployed on modern, multi-core Central Processing Units (CPUs) as well as massively parallel accelerators, Intel Xeon Phi and NVIDIA Graphics Processing Unit (GPU). First, we carried out a thorough performance tuning of the high-level framework and the docking kernel to produce a fast serial code, which was then ported to shared-memory multi-core CPUs yielding a near-ideal scaling. Further, using Xeon Phi gives 1.9× performance improvement over a dual 10-core Xeon CPU, whereas the best GPU accelerator, GeForce GTX 980, achieves a speedup as high as 3.5×. On that account, GeauxDock can take advantage of modern heterogeneous architectures to considerably accelerate structure-based virtual screening applications. GeauxDock is open-sourced and publicly available at www.brylinski.org/geauxdock and https://figshare.com/articles/geauxdock_tar_gz/3205249. PMID:27420300
GeauxDock: Accelerating Structure-Based Virtual Screening with Heterogeneous Computing.
Fang, Ye; Ding, Yun; Feinstein, Wei P; Koppelman, David M; Moreno, Juana; Jarrell, Mark; Ramanujam, J; Brylinski, Michal
2016-01-01
Computational modeling of drug binding to proteins is an integral component of direct drug design. Particularly, structure-based virtual screening is often used to perform large-scale modeling of putative associations between small organic molecules and their pharmacologically relevant protein targets. Because of a large number of drug candidates to be evaluated, an accurate and fast docking engine is a critical element of virtual screening. Consequently, highly optimized docking codes are of paramount importance for the effectiveness of virtual screening methods. In this communication, we describe the implementation, tuning and performance characteristics of GeauxDock, a recently developed molecular docking program. GeauxDock is built upon the Monte Carlo algorithm and features a novel scoring function combining physics-based energy terms with statistical and knowledge-based potentials. Developed specifically for heterogeneous computing platforms, the current version of GeauxDock can be deployed on modern, multi-core Central Processing Units (CPUs) as well as massively parallel accelerators, Intel Xeon Phi and NVIDIA Graphics Processing Unit (GPU). First, we carried out a thorough performance tuning of the high-level framework and the docking kernel to produce a fast serial code, which was then ported to shared-memory multi-core CPUs yielding a near-ideal scaling. Further, using Xeon Phi gives 1.9× performance improvement over a dual 10-core Xeon CPU, whereas the best GPU accelerator, GeForce GTX 980, achieves a speedup as high as 3.5×. On that account, GeauxDock can take advantage of modern heterogeneous architectures to considerably accelerate structure-based virtual screening applications. GeauxDock is open-sourced and publicly available at www.brylinski.org/geauxdock and https://figshare.com/articles/geauxdock_tar_gz/3205249.
Yao, Chenxi; Wang, Tao; Zhang, Buqing; He, Dacheng; Na, Na; Ouyang, Jin
2015-11-01
The interaction between bioactive small molecule ligands and proteins is one of the important research areas in proteomics. Herein, a simple and rapid method is established to screen small ligands that bind to proteins. We designed an agarose slide to immobilize different proteins. The protein microarrays were allowed to interact with different small ligands, and after washing, the microarrays were screened by desorption electrospray ionization mass spectrometry (DESI MS). This method can be applied to screen specific protein binding ligands and was shown for seven proteins and 34 known ligands for these proteins. In addition, a high-throughput screening was achieved, with the analysis requiring approximately 4 s for one sample spot. We then applied this method to determine the binding between the important protein matrix metalloproteinase-9 (MMP-9) and 88 small compounds. The molecular docking results confirmed the MS results, demonstrating that this method is suitable for the rapid and accurate screening of ligands binding to proteins. Graphical Abstract ᅟ.
Xu, Xianjin; Qiu, Liming; Yan, Chengfei; Ma, Zhiwei; Grinter, Sam Z; Zou, Xiaoqin
2017-03-01
Protein-protein interactions are either through direct contacts between two binding partners or mediated by structural waters. Both direct contacts and water-mediated interactions are crucial to the formation of a protein-protein complex. During the recent CAPRI rounds, a novel parallel searching strategy for predicting water-mediated interactions is introduced into our protein-protein docking method, MDockPP. Briefly, a FFT-based docking algorithm is employed in generating putative binding modes, and an iteratively derived statistical potential-based scoring function, ITScorePP, in conjunction with biological information is used to assess and rank the binding modes. Up to 10 binding modes are selected as the initial protein-protein complex structures for MD simulations in explicit solvent. Water molecules near the interface are clustered based on the snapshots extracted from independent equilibrated trajectories. Then, protein-ligand docking is employed for a parallel search for water molecules near the protein-protein interface. The water molecules generated by ligand docking and the clustered water molecules generated by MD simulations are merged, referred to as the predicted structural water molecules. Here, we report the performance of this protocol for CAPRI rounds 28-29 and 31-35 containing 20 valid docking targets and 11 scoring targets. In the docking experiments, we predicted correct binding modes for nine targets, including one high-accuracy, two medium-accuracy, and six acceptable predictions. Regarding the two targets for the prediction of water-mediated interactions, we achieved models ranked as "excellent" in accordance with the CAPRI evaluation criteria; one of these two targets is considered as a difficult target for structural water prediction. Proteins 2017; 85:424-434. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Wang, Nanyi; Wang, Lirong; Xie, Xiang-Qun
2017-11-27
Molecular docking is widely applied to computer-aided drug design and has become relatively mature in the recent decades. Application of docking in modeling varies from single lead compound optimization to large-scale virtual screening. The performance of molecular docking is highly dependent on the protein structures selected. It is especially challenging for large-scale target prediction research when multiple structures are available for a single target. Therefore, we have established ProSelection, a docking preferred-protein selection algorithm, in order to generate the proper structure subset(s). By the ProSelection algorithm, protein structures of "weak selectors" are filtered out whereas structures of "strong selectors" are kept. Specifically, the structure which has a good statistical performance of distinguishing active ligands from inactive ligands is defined as a strong selector. In this study, 249 protein structures of 14 autophagy-related targets are investigated. Surflex-dock was used as the docking engine to distinguish active and inactive compounds against these protein structures. Both t test and Mann-Whitney U test were used to distinguish the strong from the weak selectors based on the normality of the docking score distribution. The suggested docking score threshold for active ligands (SDA) was generated for each strong selector structure according to the receiver operating characteristic (ROC) curve. The performance of ProSelection was further validated by predicting the potential off-targets of 43 U.S. Federal Drug Administration approved small molecule antineoplastic drugs. Overall, ProSelection will accelerate the computational work in protein structure selection and could be a useful tool for molecular docking, target prediction, and protein-chemical database establishment research.
The simulation study of protein-protein interfaces based on the 4-helix bundle structure
NASA Astrophysics Data System (ADS)
Fukuda, Masaki; Komatsu, Yu; Morikawa, Ryota; Miyakawa, Takeshi; Takasu, Masako; Akanuma, Satoshi; Yamagishi, Akihiko
2013-02-01
Docking of two protein molecules is induced by intermolecular interactions. Our purposes in this study are: designing binding interfaces on the two proteins, which specifically interact to each other; and inducing intermolecular interactions between the two proteins by mixing them. A 4-helix bundle structure was chosen as a scaffold on which binding interfaces were created. Based on this scaffold, we designed binding interfaces involving charged and nonpolar amino acid residues. We performed molecular dynamics (MD) simulation to identify suitable amino acid residues for the interfaces. We chose YciF protein as the scaffold for the protein-protein docking simulation. We observed the structure of two YciF protein molecules (I and II), and we calculated the distance between centroids (center of gravity) of the interfaces' surface planes of the molecules I and II. We found that the docking of the two protein molecules can be controlled by the number of hydrophobic and charged amino acid residues involved in the interfaces. Existence of six hydrophobic and five charged amino acid residues within an interface were most suitable for the protein-protein docking.
Hadianawala, Murtuza; Mahapatra, Amarjyoti Das; Yadav, Jitender K; Datta, Bhaskar
2018-02-26
Designed multi-target ligand (DML) is an emerging strategy for the development of new drugs and involves the engagement of multiple targets with the same moiety. In the context of NSAIDs it has been suggested that targeting the thromboxane prostanoid (TP) receptor along with cyclooxygenase-2 (COX-2) may help to overcome cardiovascular (CVS) complications associated with COXIBs. In the present work, azaisoflavones were studied for their COX-2 and TP receptor binding activities using structure based drug design (SBDD) techniques. Flavonoids were selected as a starting point based on their known COX-2 inhibitory and TP receptor antagonist activity. Iterative design and docking studies resulted in the evolution of a new class scaffold replacing the benzopyran-4-one ring of flavonoids with quinolin-4-one. The docking and binding parameters of these new compounds are found to be promising in comparison to those of selective COX-2 inhibitors, such as SC-558 and celecoxib. Owing to the lack of structural information, a model for the TP receptor was generated using a threading base alignment method with loop optimization performed using an ab initio method. The model generated was validated against known antagonists for TP receptor using docking/MMGBSA. Finally, the molecules that were designed for selective COX-2 inhibition were docked into the active site of the TP receptor. Iterative structural modifications and docking on these molecules generated a series which displays optimum docking scores and binding interaction for both targets. Molecular dynamics studies on a known TP receptor antagonist and a designed molecule show that both molecules remain in contact with protein throughout the simulation and interact in similar binding modes. Graphical abstract ᅟ.
Karthigeyan, Dhanasekaran; Siddhanta, Soumik; Kishore, Annavarapu Hari; Perumal, Sathya S R R; Ågren, Hans; Sudevan, Surabhi; Bhat, Akshay V; Balasubramanyam, Karanam; Subbegowda, Rangappa Kanchugarakoppal; Kundu, Tapas K; Narayana, Chandrabhas
2014-07-22
We demonstrate the use of surface-enhanced Raman spectroscopy (SERS) as an excellent tool for identifying the binding site of small molecules on a therapeutically important protein. As an example, we show the specific binding of the common antihypertension drug felodipine to the oncogenic Aurora A kinase protein via hydrogen bonding interactions with Tyr-212 residue to specifically inhibit its activity. Based on SERS studies, molecular docking, molecular dynamics simulation, biochemical assays, and point mutation-based validation, we demonstrate the surface-binding mode of this molecule in two similar hydrophobic pockets in the Aurora A kinase. These binding pockets comprise the same unique hydrophobic patches that may aid in distinguishing human Aurora A versus human Aurora B kinase in vivo. The application of SERS to identify the specific interactions between small molecules and therapeutically important proteins by differentiating competitive and noncompetitive inhibition demonstrates its ability as a complementary technique. We also present felodipine as a specific inhibitor for oncogenic Aurora A kinase. Felodipine retards the rate of tumor progression in a xenografted nude mice model. This study reveals a potential surface pocket that may be useful for developing small molecules by selectively targeting the Aurora family kinases.
Covalent Docking of Large Libraries for the Discovery of Chemical Probes
London, Nir; Miller, Rand M.; Krishnan, Shyam; Uchida, Kenji; Irwin, John J.; Eidam, Oliv; Gibold, Lucie; Cimermančič, Peter; Bonnet, Richard; Shoichet, Brian K.; Taunton, Jack
2014-01-01
Chemical probes that form a covalent bond with a protein target often show enhanced selectivity, potency, and utility for biological studies. Despite these advantages, protein-reactive compounds are usually avoided in high-throughput screening campaigns. Here we describe a general method (DOCKovalent) for screening large virtual libraries of electrophilic small molecules. We apply this method prospectively to discover reversible covalent fragments that target distinct protein nucleophiles, including the catalytic serine of AmpC β-lactamase and noncatalytic cysteines in RSK2, MSK1, and JAK3 kinases. We identify submicromolar to low-nanomolar hits with high ligand efficiency, cellular activity and selectivity, including the first reported reversible covalent inhibitors of JAK3. Crystal structures of inhibitor complexes with AmpC and RSK2 confirm the docking predictions and guide further optimization. As covalent virtual screening may have broad utility for the rapid discovery of chemical probes, we have made the method freely available through an automated web server (http://covalent.docking.org). PMID:25344815
Covalent docking of large libraries for the discovery of chemical probes.
London, Nir; Miller, Rand M; Krishnan, Shyam; Uchida, Kenji; Irwin, John J; Eidam, Oliv; Gibold, Lucie; Cimermančič, Peter; Bonnet, Richard; Shoichet, Brian K; Taunton, Jack
2014-12-01
Chemical probes that form a covalent bond with a protein target often show enhanced selectivity, potency and utility for biological studies. Despite these advantages, protein-reactive compounds are usually avoided in high-throughput screening campaigns. Here we describe a general method (DOCKovalent) for screening large virtual libraries of electrophilic small molecules. We apply this method prospectively to discover reversible covalent fragments that target distinct protein nucleophiles, including the catalytic serine of AmpC β-lactamase and noncatalytic cysteines in RSK2, MSK1 and JAK3 kinases. We identify submicromolar to low-nanomolar hits with high ligand efficiency, cellular activity and selectivity, including what are to our knowledge the first reported reversible covalent inhibitors of JAK3. Crystal structures of inhibitor complexes with AmpC and RSK2 confirm the docking predictions and guide further optimization. As covalent virtual screening may have broad utility for the rapid discovery of chemical probes, we have made the method freely available through an automated web server (http://covalent.docking.org/).
Diudea, Mircea V.; Putz, Mihai V.
2017-01-01
Docking—i.e., interaction of a small molecule (ligand) with a proteic structure (receptor)—represents the ground of drug action mechanism of the vast majority of bioactive chemicals. Ligand and receptor accommodate their geometry and energy, within this interaction, in the benefit of receptor–ligand complex. In an induced fit docking, the structure of ligand is most susceptible to changes in topology and energy, comparative to the receptor. These changes can be described by manifold hypersurfaces, in terms of polynomial discriminant and Laplacian operator. Such topological surfaces were represented for each MraY (phospho-MurNAc-pentapeptide translocase) inhibitor, studied before and after docking with MraY. Binding affinities of all ligands were calculated by this procedure. For each ligand, Laplacian and polynomial discriminant were correlated with the ligand minimum inhibitory concentration (MIC) retrieved from literature. It was observed that MIC is correlated with Laplacian and polynomial discriminant. PMID:28653980
Neumann, Susanne; Huang, Wenwei; Titus, Steve; Krause, Gerd; Kleinau, Gunnar; Alberobello, Anna Teresa; Zheng, Wei; Southall, Noel T.; Inglese, James; Austin, Christopher P.; Celi, Francesco S.; Gavrilova, Oksana; Thomas, Craig J.; Raaka, Bruce M.; Gershengorn, Marvin C.
2009-01-01
Seven-transmembrane-spanning receptors (7TMRs) are prominent drug targets. However, small-molecule ligands for 7-transmembrane-spanning receptors for which the natural ligands are large, heterodimeric glycoprotein hormones, like thyroid-stimulating hormone (TSH; thyrotropin), have only recently been reported, and none are approved for human use. We have used quantitative high-throughput screening to identify a small-molecule TSH receptor (TSHR) agonist that was modified to produce a second agonist with increased potency. We show that these agonists are highly selective for human TSHR versus other glycoprotein hormone receptors and interact with the receptor's serpentine domain. A binding pocket within the transmembrane domain was defined by docking into a TSHR homology model and was supported by site-directed mutagenesis. In primary cultures of human thyrocytes, both TSH and the agonists increase mRNA levels for thyroglobulin, thyroperoxidase, sodium iodide symporter, and deiodinase type 2, and deiodinase type 2 enzyme activity. Moreover, oral administration of the agonist stimulated thyroid function in mice, resulting in increased serum thyroxine and thyroidal radioiodide uptake. Thus, we discovered a small molecule that activates human TSHR in vitro, is orally active in mice, and could be a lead for development of drugs to use in place of recombinant human TSH in patients with thyroid cancer. PMID:19592511
Kant, Vishnu; Vijayakumar, Saravanan; Sahoo, Ganesh Chandra; Chaudhery, Shailendra S; Das, Pradeep
2018-02-07
OASS is a specific enzyme that helps Leishmania parasite to survive the oxidative stress condition in human macrophages. SAT C-terminal peptides in several organisms, including Leishmania, were reported to inhibit or reduce the activity of OASS. Small peptide and small molecules mimicking the SAT C-terminal residues are designed and tested for the inhibition of OASS in different organisms. Hence, in this study, all the possible tetra-peptide combinations were designed and screened based on the docking ability with Leishmania donovani OASS (Ld-OASS). The top ranked peptides were further validated for the stability using 50 ns molecular dynamic simulation. In order to identify the better binding capability of the peptides, the top peptides complexed with Ld-OASS were also subjected to molecular dynamic simulation. The docking and simulation results favored the peptide EWSI to possess greater advantage than previously reported peptide (DWSI) in binding with Ld-OASS active site. Also, screening of non-peptide inhibitor of Asinex Biodesign library based on the shape similarity of EWSI and DWSI was performed. The top similar molecules of each peptides were docked on to Ld-OASS active site and subsequently simulated for 20 ns. The results suggested that the ligand that shares high shape similarity with EWSI possess better binding capability than the ligand that shares high shape similarity with DWSI. This study revealed that the tetra-peptide EWSI had marginal advantage over DWSI in binding with Ld-OASS, thereby providing basis for defining a pharmacophoric scaffold for the design of peptidomimetic inhibitors as well as non-peptide inhibitors of Ld-OASS.
Ligand- and receptor-based docking with LiBELa
NASA Astrophysics Data System (ADS)
dos Santos Muniz, Heloisa; Nascimento, Alessandro S.
2015-08-01
Methodologies on molecular docking are constantly improving. The problem consists on finding an optimal interplay between the computational cost and a satisfactory physical description of ligand-receptor interaction. In pursuit of an advance in current methods we developed a mixed docking approach combining ligand- and receptor-based strategies in a docking engine, where tridimensional descriptors for shape and charge distribution of a reference ligand guide the initial placement of the docking molecule and an interaction energy-based global minimization follows. This hybrid docking was evaluated with soft-core and force field potentials taking into account ligand pose and scoring. Our approach was found to be competitive to a purely receptor-based dock resulting in improved logAUC values when evaluated with DUD and DUD-E. Furthermore, the smoothed potential as evaluated here, was not advantageous when ligand binding poses were compared to experimentally determined conformations. In conclusion we show that a combination of ligand- and receptor-based strategy docking with a force field energy model results in good reproduction of binding poses and enrichment of active molecules against decoys. This strategy is implemented in our tool, LiBELa, available to the scientific community.
Identification of DNA primase inhibitors via a combined fragment-based and virtual screening
NASA Astrophysics Data System (ADS)
Ilic, Stefan; Akabayov, Sabine R.; Arthanari, Haribabu; Wagner, Gerhard; Richardson, Charles C.; Akabayov, Barak
2016-11-01
The structural differences between bacterial and human primases render the former an excellent target for drug design. Here we describe a technique for selecting small molecule inhibitors of the activity of T7 DNA primase, an ideal model for bacterial primases due to their common structural and functional features. Using NMR screening, fragment molecules that bind T7 primase were identified and then exploited in virtual filtration to select larger molecules from the ZINC database. The molecules were docked to the primase active site using the available primase crystal structure and ranked based on their predicted binding energies to identify the best candidates for functional and structural investigations. Biochemical assays revealed that some of the molecules inhibit T7 primase-dependent DNA replication. The binding mechanism was delineated via NMR spectroscopy. Our approach, which combines fragment based and virtual screening, is rapid and cost effective and can be applied to other targets.
Machine learning in computational docking.
Khamis, Mohamed A; Gomaa, Walid; Ahmed, Walaa F
2015-03-01
The objective of this paper is to highlight the state-of-the-art machine learning (ML) techniques in computational docking. The use of smart computational methods in the life cycle of drug design is relatively a recent development that has gained much popularity and interest over the last few years. Central to this methodology is the notion of computational docking which is the process of predicting the best pose (orientation + conformation) of a small molecule (drug candidate) when bound to a target larger receptor molecule (protein) in order to form a stable complex molecule. In computational docking, a large number of binding poses are evaluated and ranked using a scoring function. The scoring function is a mathematical predictive model that produces a score that represents the binding free energy, and hence the stability, of the resulting complex molecule. Generally, such a function should produce a set of plausible ligands ranked according to their binding stability along with their binding poses. In more practical terms, an effective scoring function should produce promising drug candidates which can then be synthesized and physically screened using high throughput screening process. Therefore, the key to computer-aided drug design is the design of an efficient highly accurate scoring function (using ML techniques). The methods presented in this paper are specifically based on ML techniques. Despite many traditional techniques have been proposed, the performance was generally poor. Only in the last few years started the application of the ML technology in the design of scoring functions; and the results have been very promising. The ML-based techniques are based on various molecular features extracted from the abundance of protein-ligand information in the public molecular databases, e.g., protein data bank bind (PDBbind). In this paper, we present this paradigm shift elaborating on the main constituent elements of the ML approach to molecular docking along with the state-of-the-art research in this area. For instance, the best random forest (RF)-based scoring function on PDBbind v2007 achieves a Pearson correlation coefficient between the predicted and experimentally determined binding affinities of 0.803 while the best conventional scoring function achieves 0.644. The best RF-based ranking power ranks the ligands correctly based on their experimentally determined binding affinities with accuracy 62.5% and identifies the top binding ligand with accuracy 78.1%. We conclude with open questions and potential future research directions that can be pursued in smart computational docking; using molecular features of different nature (geometrical, energy terms, pharmacophore), advanced ML techniques (e.g., deep learning), combining more than one ML models. Copyright © 2015 Elsevier B.V. All rights reserved.
Quéméner, Agnès; Maillasson, Mike; Arzel, Laurence; Sicard, Benoit; Vomiandry, Romy; Mortier, Erwan; Dubreuil, Didier; Jacques, Yannick; Lebreton, Jacques; Mathé-Allainmat, Monique
2017-07-27
Interleukin (IL)-15 is a pleiotropic cytokine, which is structurally close to IL-2 and shares with it the IL-2 β and γ receptor (R) subunits. By promoting the activation and proliferation of NK, NK-T, and CD8+ T cells, IL-15 plays important roles in innate and adaptative immunity. Moreover, the association of high levels of IL-15 expression with inflammatory and autoimmune diseases has led to the development of various antagonistic approaches targeting IL-15. This study is an original approach aimed at discovering small-molecule inhibitors impeding IL-15/IL-15R interaction. A pharmacophore and docking-based virtual screening of compound libraries led to the selection of 240 high-scoring compounds, 36 of which were found to bind IL-15, to inhibit the binding of IL-15 to the IL-2Rβ chain or the proliferation of IL-15-dependent cells or both. One of them was selected as a hit and optimized by a structure-activity relationship approach, leading to the first small-molecule IL-15 inhibitor with sub-micromolar activity.
Foglieni, Chiara; Pagano, Katiuscia; Lessi, Marco; Bugatti, Antonella; Moroni, Elisabetta; Pinessi, Denise; Resovi, Andrea; Ribatti, Domenico; Bertini, Sabrina; Ragona, Laura; Bellina, Fabio; Rusnati, Marco; Colombo, Giorgio; Taraboletti, Giulia
2016-01-01
The FGFs/FGFRs system is a recognized actionable target for therapeutic approaches aimed at inhibiting tumor growth, angiogenesis, metastasis, and resistance to therapy. We previously identified a non-peptidic compound (SM27) that retains the structural and functional properties of the FGF2-binding sequence of thrombospondin-1 (TSP-1), a major endogenous inhibitor of angiogenesis. Here we identified new small molecule inhibitors of FGF2 based on the initial lead. A similarity-based screening of small molecule libraries, followed by docking calculations and experimental studies, allowed selecting 7 bi-naphthalenic compounds that bound FGF2 inhibiting its binding to both heparan sulfate proteoglycans and FGFR-1. The compounds inhibit FGF2 activity in in vitro and ex vivo models of angiogenesis, with improved potency over SM27. Comparative analysis of the selected hits, complemented by NMR and biochemical analysis of 4 newly synthesized functionalized phenylamino-substituted naphthalenes, allowed identifying the minimal stereochemical requirements to improve the design of naphthalene sulfonates as FGF2 inhibitors. PMID:27000667
Bichutskiy, Vadim Y.; Colman, Richard; Brachmann, Rainer K.; Lathrop, Richard H.
2006-01-01
Complex problems in life science research give rise to multidisciplinary collaboration, and hence, to the need for heterogeneous database integration. The tumor suppressor p53 is mutated in close to 50% of human cancers, and a small drug-like molecule with the ability to restore native function to cancerous p53 mutants is a long-held medical goal of cancer treatment. The Cancer Research DataBase (CRDB) was designed in support of a project to find such small molecules. As a cancer informatics project, the CRDB involved small molecule data, computational docking results, functional assays, and protein structure data. As an example of the hybrid strategy for data integration, it combined the mediation and data warehousing approaches. This paper uses the CRDB to illustrate the hybrid strategy as a viable approach to heterogeneous data integration in biomedicine, and provides a design method for those considering similar systems. More efficient data sharing implies increased productivity, and, hopefully, improved chances of success in cancer research. (Code and database schemas are freely downloadable, http://www.igb.uci.edu/research/research.html.) PMID:19458771
Virtual Screening with AutoDock: Theory and Practice
Cosconati, Sandro; Forli, Stefano; Perryman, Alex L.; Harris, Rodney; Goodsell, David S.; Olson, Arthur J.
2011-01-01
Importance to the field Virtual screening is a computer-based technique for identifying promising compounds to bind to a target molecule of known structure. Given the rapidly increasing number of protein and nucleic acid structures, virtual screening continues to grow as an effective method for the discovery of new inhibitors and drug molecules. Areas covered in this review We describe virtual screening methods that are available in the AutoDock suite of programs, and several of our successes in using AutoDock virtual screening in pharmaceutical lead discovery. What the reader will gain A general overview of the challenges of virtual screening is presented, along with the tools available in the AutoDock suite of programs for addressing these challenges. Take home message Virtual screening is an effective tool for the discovery of compounds for use as leads in drug discovery, and the free, open source program AutoDock is an effective tool for virtual screening. PMID:21532931
PoLi: A Virtual Screening Pipeline Based On Template Pocket And Ligand Similarity
Roy, Ambrish; Srinivasan, Bharath; Skolnick, Jeffrey
2015-01-01
Often in pharmaceutical research, the goal is to identify small molecules that can interact with and appropriately modify the biological behavior of a new protein target. Unfortunately, most proteins lack both known structures and small molecule binders, prerequisites of many virtual screening, VS, approaches. For such proteins, ligand homology modeling, LHM, that copies ligands from homologous and perhaps evolutionarily distant template proteins, has been shown to be a powerful VS approach to identify possible binding ligands. However, if we want to target a specific pocket for which there is no homologous holo template protein structure, then LHM will not work. To address this issue, in a new pocket based approach, PoLi, we generalize LHM by exploiting the fact that the number of distinct small molecule ligand binding pockets in proteins is small. PoLi identifies similar ligand binding pockets in a holo-template protein library, selectively copies relevant parts of template ligands and uses them for VS. In practice, PoLi is a hybrid structure and ligand based VS algorithm that integrates 2D fingerprint-based and 3D shape-based similarity metrics for improved virtual screening performance. On standard DUD and DUD-E benchmark databases, using modeled receptor structures, PoLi achieves an average enrichment factor of 13.4 and 9.6 respectively, in the top 1% of the screened library. In contrast, traditional docking based VS using AutoDock Vina and homology-based VS using FINDSITEfilt have an average enrichment of 1.6 (3.0) and 9.0 (7.9) on the DUD (DUD-E) sets respectively. Experimental validation of PoLi predictions on dihydrofolate reductase, DHFR, using differential scanning fluorimetry, DSF, identifies multiple ligands with diverse molecular scaffolds, thus demonstrating the advantage of PoLi over current state-of-the-art VS methods. PMID:26225536
Hu, Wenbing; Liu, Jianan; Luo, Qun; Han, Yumiao; Wu, Kui; Lv, Shuang; Xiong, Shaoxiang; Wang, Fuyi
2011-05-30
Hydrogen/deuterium exchange mass spectrometry (H/DX MS) has become a powerful tool to investigate protein-protein and protein-ligand interactions, but it is still challenging to localize the interaction regions/sites of ligands with pepsin-resistant proteins such as lipocalins. β-Lactoglobulin (BLG), a member of the lipocalin family, can bind a variety of small hydrophobic molecules including retinols, retinoic acids, and long linear fatty acids. However, whether the binding site of linear molecules locates in the external groove or internal cavity of BLG is controversial. In this study we used H/DX MS combined with docking simulation to localize the interaction sites of a tested ligand, sodium dodecyl sulfate (SDS), binding to BLG. H/DX MS results indicated that SDS can bind to both the external and the internal sites in BLG. However, neither of the sites is saturated with SDS, allowing a dynamic ligand exchange to occur between the sites at equilibrium state. Docking studies revealed that SDS forms H-bonds with Lys69 in the internal site and Lys138 and Lys141 in the external site in BLG via the sulfate group, and interacts with the hydrophobic residues valine, leucine, isoleucine and methionine within both of the sites via its hydrocarbon tail, stabilizing the BLG-SDS complex. Copyright © 2011 John Wiley & Sons, Ltd.
Structural dynamics of catalytic RNA highlighted by fluorescence resonance energy transfer.
Walter, N G
2001-09-01
RNA performs a multitude of essential cellular functions involving the maintenance, transfer, and processing of genetic information. The reason probably is twofold: (a) Life started as a prebiotic RNA World, in which RNA served as the genetic information carrier and catalyzed all chemical reactions required for its proliferation and (b) some of the RNA World functions were conserved throughout evolution because neither DNA nor protein is as adept in fulfilling them. A particular advantage of RNA is its high propensity to form alternative structures as required in subsequent steps of a reaction pathway. Here I describe fluorescence resonance energy transfer (FRET) as a method to monitor a crucial conformational transition on the reaction pathway of the hairpin ribozyme, a small catalytic RNA motif from a self-replicating plant virus satellite RNA and well-studied paradigm of RNA folding. Steady-state FRET measurements in solution allow one to measure the kinetics and requirements of docking of its two independently folding domains; time-resolved FRET reveals the relative thermodynamic stability of the undocked (extended, inactive) and docked (active) ribozyme conformations; while single-molecule FRET experiments will highlight the dynamics of RNA at the individual molecule level. Similar domain docking events are expected to be at the heart of many biological functions of RNA, and the described FRET techniques promise to be adaptable to most of the involved RNA systems. Copyright 2001 Academic Press.
Itteboina, Ramesh; Ballu, Srilata; Sivan, Sree Kanth; Manga, Vijjulatha
2016-10-01
Janus kinase 1 (JAK 1) plays a critical role in initiating responses to cytokines by the JAK-signal transducer and activator of transcription (JAK-STAT). This controls survival, proliferation and differentiation of a variety of cells. Docking, 3D quantitative structure activity relationship (3D-QSAR) and molecular dynamics (MD) studies were performed on a series of Imidazo-pyrrolopyridine derivatives reported as JAK 1 inhibitors. QSAR model was generated using 30 molecules in the training set; developed model showed good statistical reliability, which is evident from r 2 ncv and r 2 loo values. The predictive ability of this model was determined using a test set of 13 molecules that gave acceptable predictive correlation (r 2 Pred ) values. Finally, molecular dynamics simulation was performed to validate docking results and MM/GBSA calculations. This facilitated us to compare binding free energies of cocrystal ligand and newly designed molecule R1. The good concordance between the docking results and CoMFA/CoMSIA contour maps afforded obliging clues for the rational modification of molecules to design more potent JAK 1 inhibitors. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ramírez, David; Caballero, Julio
2018-04-28
Molecular docking is the most frequently used computational method for studying the interactions between organic molecules and biological macromolecules. In this context, docking allows predicting the preferred pose of a ligand inside a receptor binding site. However, the selection of the “best” solution is not a trivial task, despite the widely accepted selection criterion that the best pose corresponds to the best energy score. Here, several rigid-target docking methods were evaluated on the same dataset with respect to their ability to reproduce crystallographic binding orientations, to test if the best energy score is a reliable criterion for selecting the best solution. For this, two experiments were performed: (A) to reconstruct the ligand-receptor complex by performing docking of the ligand in its own crystal structure receptor (defined as self-docking), and (B) to reconstruct the ligand-receptor complex by performing docking of the ligand in a crystal structure receptor that contains other ligand (defined as cross-docking). Root-mean square deviation (RMSD) was used to evaluate how different the obtained docking orientation is from the corresponding co-crystallized pose of the same ligand molecule. We found that docking score function is capable of predicting crystallographic binding orientations, but the best ranked solution according to the docking energy is not always the pose that reproduces the experimental binding orientation. This happened when self-docking was achieved, but it was critical in cross-docking. Taking into account that docking is typically used with predictive purposes, during cross-docking experiments, our results indicate that the best energy score is not a reliable criterion to select the best solution in common docking applications. It is strongly recommended to choose the best docking solution according to the scoring function along with additional structural criteria described for analogue ligands to assure the selection of a correct docking solution.
Rothan, Hussin A.; Amini, Elham; Faraj, Fadihl L.; Golpich, Mojtaba; Teoh, Teow Chong; Gholami, Khadijeh; Yusof, Rohana
2017-01-01
N-methyl-D-aspartate receptors (NMDAR) play a central role in epileptogensis and NMDAR antagonists have been shown to have antiepileptic effects in animals and humans. Despite significant progress in the development of antiepileptic therapies over the previous 3 decades, a need still exists for novel therapies. We screened an in-house library of small molecules targeting the NMDA receptor. A novel indolyl compound, 2-(1,1-Dimethyl-1,3-dihydro-benzo[e]indol-2-ylidene)-malonaldehyde, (DDBM) showed the best binding with the NMDA receptor and computational docking data showed that DDBM antagonised the binding sites of the NMDA receptor at lower docking energies compared to other molecules. Using a rat electroconvulsive shock (ECS) model of epilepsy we showed that DDBM decreased seizure duration and improved the histological outcomes. Our data show for the first time that indolyls like DDBM have robust anticonvulsive activity and have the potential to be developed as novel anticonvulsants. PMID:28358047
Ravindran, Rekha; Sharma, Nitika; Roy, Sujata; Thakur, Ashoke R; Ganesh, Subhadra; Kumar, Sriram; Devi, Jamuna; Rajkumar, Johanna
2015-01-01
Withania somnifera commonly known as Ashwagandha in India is used in many herbal formulations to treat various cardiovascular diseases. The key metabolite of this plant, Withaferin A was analyzed for its molecular mechanism through docking studies on different targets of cardiovascular disease. Six receptor proteins associated with cardiovascular disease were selected and interaction studies were performed with Withaferin A using AutoDock Vina. CORINA was used to model the small molecules and HBAT to compute the hydrogen bonding. Among the six targets, β1- adrenergic receptors, HMG-CoA and Angiotensinogen-converting enzyme showed significant interaction with Withaferin A. Pharmacophore modeling was done using PharmaGist to understand the pharmacophoric potential of Withaferin A. Clustering of Withaferin A with different existing drug molecules for cardiovascular disease was performed with ChemMine based on structural similarity and physicochemical properties. The ability of natural active component, Withaferin A to interact with different receptors associated with cardiovascular disease was elucidated with various modeling techniques. These studies conclusively revealed Withaferin A as a potent lead compound against multiple targets associated with cardiovascular disease.
Suthar, Sharad Kumar; Bansal, Sumit; Narkhede, Niteen; Guleria, Manju; Alex, Angel Treasa; Joseph, Alex
2017-01-01
The enzyme tyrosinase regulates melanogenesis and skin hyperpigmentation by converting L-3,4-dihydroxyphenylalanine (L-DOPA) into dopaquinone, a key step in the melanin biosynthesis. The present work deals with design and synthesis of various oxindole-based chalcones as monophenolase and diphenolase activity inhibitors of tyrosinase. Among the screened compounds, 4-hydroxy-3-methoxybenzylidene moiety bearing chalcone (7) prepared by one pot reaction of oxindole and vanillin displayed the highest activity against tyrosinase with IC 50 s of 63.37 and 59.71 µM in monophenolase and diphenolase activity assays, respectively. In molecular docking studies, chalcone 7 also showed the highest binding affinity towards the enzyme tyrosinase while exhibiting the lowest estimated free energy of binding, among all the ligands docked.
Chakraborty, Sandeep
2014-01-01
The ability to accurately and effectively predict the interaction between proteins and small drug-like compounds has long intrigued researchers for pedagogic, humanitarian and economic reasons. Protein docking methods (AutoDock, GOLD, DOCK, FlexX and Glide to name a few) rank a large number of possible conformations of protein-ligand complexes using fast algorithms. Previously, it has been shown that structural congruence leading to the same enzymatic function necessitates the congruence of electrostatic properties (CLASP). The current work presents a methodology for docking a ligand into a target protein, provided that there is at least one known holoenzyme with ligand bound - DOCLASP (Docking using CLASP). The contact points of the ligand in the holoenzyme defines a motif, which is used to query the target enzyme using CLASP. If there are significant matches, the holoenzyme and the target protein are superimposed based on congruent atoms. The same linear and rotational transformations are also applied to the ligand, thus creating a unified coordinate framework having the holoenzyme, the ligand and the target enzyme. In the current work, the dipeptidyl peptidase-IV inhibitor vildagliptin was docked to the PI-PLC structure complexed with myo-inositol using DOCLASP. Also, corroboration of the docking of phenylthiourea to the modelled structure of polyphenol oxidase (JrPPO1) from walnut is provided based on the subsequently solved structure of JrPPO1 (PDBid:5CE9). Analysis of the binding of the antitrypanosomial drug suramin to nine non-homologous proteins in the PDB database shows a diverse set of binding motifs, and multiple binding sites in the phospholipase A2-likeproteins from the Bothrops genus of pitvipers. The conformational changes in the suramin molecule on binding highlights the challenges in docking flexible ligands into an already 'plastic' binding site. Thus, DOCLASP presents a method for 'soft docking' ligands to proteins with low computational requirements.
Discovery and study of novel protein tyrosine phosphatase 1B inhibitors
NASA Astrophysics Data System (ADS)
Zhang, Qian; Chen, Xi; Feng, Changgen
2017-10-01
Protein tyrosine phosphatase 1B (PTP1B) is considered to be a target for therapy of type II diabetes and obesity. So it is of great significance to take advantage of a computer aided drug design protocol involving the structured-based virtual screening with docking simulations for fast searching small molecule PTP1B inhibitors. Based on optimized complex structure of PTP1B bound with specific inhibitor of IX1, structured-based virtual screening against a library of natural products containing 35308 molecules, which was constructed based on Traditional Chinese Medicine database@ Taiwan (TCM database@ Taiwan), was conducted to determine the occurrence of PTP1B inhibitors using the Lubbock module and CDOCKER module from Discovery Studio 3.1 software package. The results were further filtered by predictive ADME simulation and predictive toxic simulation. As a result, 2 good drug-like molecules, namely para-benzoquinone compound 1 and Clavepictine analogue 2 were identified ultimately with the dock score of original inhibitor (IX1) and the receptor as a threshold. Binding model analyses revealed that these two candidate compounds have good interactions with PTP1B. The PTP1B inhibitory activity of compound 2 hasn't been reported before. The optimized compound 2 has higher scores and deserves further study.
Small Molecule Docking from Theoretical Structural Models
NASA Astrophysics Data System (ADS)
Novoa, Eva Maria; de Pouplana, Lluis Ribas; Orozco, Modesto
Structural approaches to rational drug design rely on the basic assumption that pharmacological activity requires, as necessary but not sufficient condition, the binding of a drug to one or several cellular targets, proteins in most cases. The traditional paradigm assumes that drugs that interact only with a single cellular target are specific and accordingly have little secondary effects, while promiscuous molecules are more likely to generate undesirable side effects. However, current examples indicate that often efficient drugs are able to interact with several biological targets [1] and in fact some dirty drugs, such as chlorpromazine, dextromethorphan, and ibogaine exhibit desired pharmacological properties [2]. These considerations highlight the tremendous difficulty of designing small molecules that both have satisfactory ADME properties and the ability of interacting with a limited set of target proteins with a high affinity, avoiding at the same time undesirable interactions with other proteins. In this complex and challenging scenario, computer simulations emerge as the basic tool to guide medicinal chemists during the drug discovery process.
Elucidation of the Hsp90 C-terminal Inhibitor Binding Site
Matts, Robert L.; Dixit, Anshuman; Peterson, Laura B.; Sun, Liang; Voruganti, Sudhakar; Kalyanaraman, Palgunan; Hartson, Steve D.; Verkhivker, Gennady M.; Blagg, Brian S. J.
2011-01-01
The Hsp90 chaperone machine is required for the folding, activation and/or stabilization of more than 50 proteins directly related to malignant progression. Hsp90 contains small molecule binding sites at both its N- and C-terminal domains, however, limited structural and biochemical data regarding the C-terminal binding site is available. In this report, the small molecule binding site in the Hsp90 C-terminal domain was revealed by protease fingerprinting and photoaffinity labeling utilizing LC-MS/MS. The identified site was characterized by generation of a homology model for hHsp90α using the SAXS open structure of HtpG and docking the bioactive conformation of NB into the generated model. The resulting model for the bioactive conformation of NB bound to Hsp90α is presented herein. PMID:21548602
Pérez, Germán M; Salomón, Luis A; Montero-Cabrera, Luis A; de la Vega, José M García; Mascini, Marcello
2016-05-01
A novel heuristic using an iterative select-and-purge strategy is proposed. It combines statistical techniques for sampling and classification by rigid molecular docking through an inverse virtual screening scheme. This approach aims to the de novo discovery of short peptides that may act as docking receptors for small target molecules when there are no data available about known association complexes between them. The algorithm performs an unbiased stochastic exploration of the sample space, acting as a binary classifier when analyzing the entire peptides population. It uses a novel and effective criterion for weighting the likelihood of a given peptide to form an association complex with a particular ligand molecule based on amino acid sequences. The exploratory analysis relies on chemical information of peptides composition, sequence patterns, and association free energies (docking scores) in order to converge to those peptides forming the association complexes with higher affinities. Statistical estimations support these results providing an association probability by improving predictions accuracy even in cases where only a fraction of all possible combinations are sampled. False positives/false negatives ratio was also improved with this method. A simple rigid-body docking approach together with the proper information about amino acid sequences was used. The methodology was applied in a retrospective docking study to all 8000 possible tripeptide combinations using the 20 natural amino acids, screened against a training set of 77 different ligands with diverse functional groups. Afterward, all tripeptides were screened against a test set of 82 ligands, also containing different functional groups. Results show that our integrated methodology is capable of finding a representative group of the top-scoring tripeptides. The associated probability of identifying the best receptor or a group of the top-ranked receptors is more than double and about 10 times higher, respectively, when compared to classical random sampling methods.
NASA Astrophysics Data System (ADS)
Mohamed Asath, R.; Premkumar, R.; Mathavan, T.; Milton Franklin Benial, A.
2017-09-01
Potential energy surface scan was performed and the most stable molecular structure of the N,N-di-tert-butoxycarbonyl (Boc)-2-amino pyridine (DBAP) molecule was predicted. The most stable molecular structure of the molecule was optimized using B3LYP method with cc-pVTZ basis set. Anticancer activity of the DBAP molecule was evaluated by molecular docking analysis. The structural parameters and vibrational wavenumbers were calculated for the optimized molecular structure. The experimental and theoretical wavenumbers were assigned and compared. Ultraviolet-Visible spectrum was simulated and validated experimentally. The molecular electrostatic potential surface was simulated and Fukui function calculations were also carried out to investigate the reactive nature of the DBAP molecule. The natural bond orbital analysis was also performed to probe the intramolecular interactions and confirm the bioactivity of the DBAP molecule. The molecular docking analysis reveals the better inhibitory nature of the DBAP molecule against the epidermal growth factor receptor (EGFR) protein which causes lung cancer. Hence, the present study unveils the structural and bioactive nature of the title molecule. The DBAP molecule was identified as a potential inhibitor against the lung cancer which may be useful in further development of drug designing in the treatment of lung cancer.
Patil, Rohan; Das, Suranjana; Stanley, Ashley; Yadav, Lumbani; Sudhakar, Akulapalli; Varma, Ashok K
2010-08-16
Weak intermolecular interactions such as hydrogen bonding and hydrophobic interactions are key players in stabilizing energetically-favored ligands, in an open conformational environment of protein structures. However, it is still poorly understood how the binding parameters associated with these interactions facilitate a drug-lead to recognize a specific target and improve drugs efficacy. To understand this, comprehensive analysis of hydrophobic interactions, hydrogen bonding and binding affinity have been analyzed at the interface of c-Src and c-Abl kinases and 4-amino substituted 1H-pyrazolo [3, 4-d] pyrimidine compounds. In-silico docking studies were performed, using Discovery Studio software modules LigandFit, CDOCKER and ZDOCK, to investigate the role of ligand binding affinity at the hydrophobic pocket of c-Src and c-Abl kinase. Hydrophobic and hydrogen bonding interactions of docked molecules were compared using LigPlot program. Furthermore, 3D-QSAR and MFA calculations were scrutinized to quantify the role of weak interactions in binding affinity and drug efficacy. The in-silico method has enabled us to reveal that a multi-targeted small molecule binds with low affinity to its respective targets. But its binding affinity can be altered by integrating the conformationally favored functional groups at the active site of the ligand-target interface. Docking studies of 4-amino-substituted molecules at the bioactive cascade of the c-Src and c-Abl have concluded that 3D structural folding at the protein-ligand groove is also a hallmark for molecular recognition of multi-targeted compounds and for predicting their biological activity. The results presented here demonstrate that hydrogen bonding and optimized hydrophobic interactions both stabilize the ligands at the target site, and help alter binding affinity and drug efficacy.
Stanley, Ashley; Yadav, Lumbani; Sudhakar, Akulapalli; Varma, Ashok K.
2010-01-01
Background Weak intermolecular interactions such as hydrogen bonding and hydrophobic interactions are key players in stabilizing energetically-favored ligands, in an open conformational environment of protein structures. However, it is still poorly understood how the binding parameters associated with these interactions facilitate a drug-lead to recognize a specific target and improve drugs efficacy. To understand this, comprehensive analysis of hydrophobic interactions, hydrogen bonding and binding affinity have been analyzed at the interface of c-Src and c-Abl kinases and 4-amino substituted 1H-pyrazolo [3, 4-d] pyrimidine compounds. Methodology In-silico docking studies were performed, using Discovery Studio software modules LigandFit, CDOCKER and ZDOCK, to investigate the role of ligand binding affinity at the hydrophobic pocket of c-Src and c-Abl kinase. Hydrophobic and hydrogen bonding interactions of docked molecules were compared using LigPlot program. Furthermore, 3D-QSAR and MFA calculations were scrutinized to quantify the role of weak interactions in binding affinity and drug efficacy. Conclusions The in-silico method has enabled us to reveal that a multi-targeted small molecule binds with low affinity to its respective targets. But its binding affinity can be altered by integrating the conformationally favored functional groups at the active site of the ligand-target interface. Docking studies of 4-amino-substituted molecules at the bioactive cascade of the c-Src and c-Abl have concluded that 3D structural folding at the protein-ligand groove is also a hallmark for molecular recognition of multi-targeted compounds and for predicting their biological activity. The results presented here demonstrate that hydrogen bonding and optimized hydrophobic interactions both stabilize the ligands at the target site, and help alter binding affinity and drug efficacy. PMID:20808434
Jayadeepa, R M; Ray, Ankita; Naik, Dhaval; Sanyal, Debendra Nath; Shah, Disha
2014-01-01
Plants and their natural components sophisticated with the cornerstone of traditional conventional medicinal system throughout the globe for many years and extend to furnish mankind with latest remedies. Natural Products act as lead molecules for the synthesis of various potent drugs. In the current research a study is conducted on herbal small molecule and their potential binding chemical affinity to the effect or molecules of major diseases such as pancreatic cancer. Clinical studies demonstrate correlation between Cyclin- Dependent Kinase 4 (CDK4) and malignant progression of Pancreatic Cancer. Using Bioruby Gem's we were able to analyze better characteristics of the target protein. VegaZZ and NAMD were used to minimize the energy of the target protein. Therefore identification of effective, well- tolerated targets was analyzed. Further the target protein was subjected to docking with the anti cancer inhibitors which represents a rational chemo preventive strategy using AutoDock Vina. Later using the dock score top ranked phytochemicals were analyzed for Toxicity Analysis. Using the BioRuby gem we were able to measure the distance between the amino acid. Various R scripting libraries were used to hunt the best leads, as in this case the phytochemicals. Phytochemicals such as Wedelolactones and Catechin were analyzed computationally. This study has presented the various effects of naturally occurring anti pancreatic cancer compounds Catechin, Wedelolactones that inhibits Cyclin Dependent Kinase 4. The study results reveal that compounds use less binding energy to CDK4 and inhibit its activity. Future investigation of other various wet lab studies such as cell line studies will confirm results of these two herbal chemical formulations potential ones for treating Pancreatic Cancer.
Scoring ligand similarity in structure-based virtual screening.
Zavodszky, Maria I; Rohatgi, Anjali; Van Voorst, Jeffrey R; Yan, Honggao; Kuhn, Leslie A
2009-01-01
Scoring to identify high-affinity compounds remains a challenge in virtual screening. On one hand, protein-ligand scoring focuses on weighting favorable and unfavorable interactions between the two molecules. Ligand-based scoring, on the other hand, focuses on how well the shape and chemistry of each ligand candidate overlay on a three-dimensional reference ligand. Our hypothesis is that a hybrid approach, using ligand-based scoring to rank dockings selected by protein-ligand scoring, can ensure that high-ranking molecules mimic the shape and chemistry of a known ligand while also complementing the binding site. Results from applying this approach to screen nearly 70 000 National Cancer Institute (NCI) compounds for thrombin inhibitors tend to support the hypothesis. EON ligand-based ranking of docked molecules yielded the majority (4/5) of newly discovered, low to mid-micromolar inhibitors from a panel of 27 assayed compounds, whereas ranking docked compounds by protein-ligand scoring alone resulted in one new inhibitor. Since the results depend on the choice of scoring function, an analysis of properties was performed on the top-scoring docked compounds according to five different protein-ligand scoring functions, plus EON scoring using three different reference compounds. The results indicate that the choice of scoring function, even among scoring functions measuring the same types of interactions, can have an unexpectedly large effect on which compounds are chosen from screening. Furthermore, there was almost no overlap between the top-scoring compounds from protein-ligand versus ligand-based scoring, indicating the two approaches provide complementary information. Matchprint analysis, a new addition to the SLIDE (Screening Ligands by Induced-fit Docking, Efficiently) screening toolset, facilitated comparison of docked molecules' interactions with those of known inhibitors. The majority of interactions conserved among top-scoring compounds for a given scoring function, and from the different scoring functions, proved to be conserved interactions in known inhibitors. This was particularly true in the S1 pocket, which was occupied by all the docked compounds. (c) 2009 John Wiley & Sons, Ltd.
Assessing the binding of cholinesterase inhibitors by docking and molecular dynamics studies.
Ali, M Rejwan; Sadoqi, Mostafa; Møller, Simon G; Boutajangout, Allal; Mezei, Mihaly
2017-09-01
In this report we assessed by docking and molecular dynamics the binding mechanisms of three FDA-approved Alzheimer drugs, inhibitors of the enzyme acetylcholinesterase (AChE): donepezil, galantamine and rivastigmine. Dockings by the softwares Autodock-Vina, PatchDock and Plant reproduced the docked conformations of the inhibitor-enzyme complexes within 2Å of RMSD of the X-ray structure. Free-energy scores show strong affinity of the inhibitors for the enzyme binding pocket. Three independent Molecular Dynamics simulation runs indicated general stability of donepezil, galantamine and rivastigmine in their respective enzyme binding pocket (also referred to as gorge) as well as the tendency to form hydrogen bonds with the water molecules. The binding of rivastigmine in the Torpedo California AChE binding pocket is interesting as it eventually undergoes carbamylation and breaks apart according to the X-ray structure of the complex. Similarity search in the ZINC database and targeted docking on the gorge region of the AChE enzyme gave new putative inhibitor molecules with high predicted binding affinity, suitable for potential biophysical and biological assessments. Copyright © 2017 Elsevier Inc. All rights reserved.
Laurin, Mélanie; Dumouchel, Annie; Fukui, Yoshinori; Côté, Jean-François
2013-01-01
Podocytes are specialized kidney cells that form the kidney filtration barrier through the connection of their foot processes. Nephrin and Neph family transmembrane molecules at the surface of podocytes interconnect to form a unique type of cell-cell junction, the slit diaphragm, which acts as a molecular sieve. The cytoplasmic tails of Nephrin and Neph mediate cytoskeletal rearrangement that contributes to the maintenance of the filtration barrier. Nephrin and Neph1 orthologs are essential to regulate cell-cell adhesion and Rac-dependent actin rearrangement during Drosophila myoblast fusion. We hypothesized here that molecules regulating myoblast fusion in Drosophila could contribute to signaling downstream of Nephrin and Neph1 in podocytes. We found that Nephrin engagement promoted recruitment of the Rac exchange factor Dock1 to the membrane. Furthermore, Nephrin overexpression led to lamellipodia formation that could be blocked by inhibiting Rac1 activity. We generated in vivo mouse models to investigate whether Dock1 and Dock5 contribute to the formation and maintenance of the kidney filtration barrier. Our results indicate that while Dock1 and Dock5 are expressed in podocytes, their functions are not essential for the development of the glomerular filtration barrier. Furthermore, mice lacking Dock1 were not protected from LPS-induced podocyte effacement. Our data suggest that Dock1 and Dock5 are not the important exchange factors regulating Rac activity during the establishment and maintenance of the glomerular barrier. PMID:24365888
2014-07-01
coordinates of the EscN protein (Zarivach et al., 2007) were downloaded in pdb file format from the Research Collaboratory for Structural Biology...catalytic activity. Two structurally related compounds were observed to adopt extended conformations in the active-site cleft and essentially...adopt a very compact conformation that occupied only one side of the cleft. Our goal was to determine the three-dimensional structures of the
Computational insights into the interaction of small molecule inhibitors with HRI kinase domain.
Palrecha, Sourabh; Lakade, Dushant; Kulkarni, Abhijeet; Pal, Jayanta K; Joshi, Manali
2018-05-07
The Heme-Regulated Inhibitor (HRI) kinase regulates globin synthesis in a heme-dependent manner in reticulocytes and erythroid cells in bone marrow. Inhibitors of HRI have been proposed to lead to an increased amount of haemoglobin, benefitting anaemia patients. A series of indeno[1,2-c]pyrazoles were discovered to be the first known in vitro inhibitors of HRI. However, the structural mechanism of inhibition is yet to be understood. The aim of this study was to unravel the binding mechanism of these inhibitors using molecular dynamic simulations and docking. The docking scores were observed to correlate well with experimentally determined pIC 50 values. The inhibitors were observed to bind in the ATP-binding site forming hydrogen bonds with the hinge region and van der Waals interactions with non-polar residues in the binding site. Further, quantitative structure-activity relationship (QSAR) studies were performed to correlate the structural features of the inhibitors with their biological activity. The developed QSAR models were found to be statistically significant in terms of internal and external predictabilities. The presence of chlorine atoms and the hydroxymethyl groups were found to correlate with higher activity. The identified binding modes and the descriptors can support future rational identification of more potent and selective small molecule inhibitors for this kinase which are of therapeutic importance in the context of various human pathological disorders.
Design and synthesis of small molecule agonists of EphA2 receptor.
Petty, Aaron; Idippily, Nethrie; Bobba, Viharika; Geldenhuys, Werner J; Zhong, Bo; Su, Bin; Wang, Bingcheng
2018-01-01
Ligand-independent activation of EphA2 receptor kinase promotes cancer metastasis and invasion. Activating EphA2 receptor tyrosine kinase with small molecule agonist is a novel strategy to treat EphA2 overexpressing cancer. In this study, we performed a lead optimization of a small molecule Doxazosin that was identified as an EphA2 receptor agonist. 33 new analogs were developed and evaluated; a structure-activity relationship was summarized based on the EphA2 activation of these derivatives. Two new derivative compounds 24 and 27 showed much improved activity compared to Doxazosin. Compound 24 possesses a bulky amide moiety, and compound 27 has a dimeric structure that is very different to the parental compound. Compound 27 with a twelve-carbon linker of the dimer activated the kinase and induced receptor internalization and cell death with the best potency. Another dimer with a six-carbon linker has significantly reduced potency compared to the dimer with a longer linker, suggesting that the length of the linker is critical for the activity of the dimeric agonist. To explore the receptor binding characteristics of the new molecules, we applied a docking study to examine how the small molecule binds to the EphA2 receptor. The results reveal that compounds 24 and 27 form more hydrogen bonds to EphA2 than Doxazosin, suggesting that they may have higher binding affinity to the receptor. Published by Elsevier Masson SAS.
Markowitz, Joseph; Chen, Ijen; Gitti, Rossi; Baldisseri, Donna M; Pan, Yongping; Udan, Ryan; Carrier, France; MacKerell, Alexander D; Weber, David J
2004-10-07
The binding of S100B to p53 down-regulates wild-type p53 tumor suppressor activity in cancer cells such as malignant melanoma, so a search for small molecules that bind S100B and prevent S100B-p53 complex formation was undertaken. Chemical databases were computationally searched for potential inhibitors of S100B, and 60 compounds were selected for testing on the basis of energy scoring, commercial availability, and chemical similarity clustering. Seven of these compounds bound to S100B as determined by steady state fluorescence spectroscopy (1.0 microM < or = K(D) < or = 120 microM) and five inhibited the growth of primary malignant melanoma cells (C8146A) at comparable concentrations (1.0 microM < or = IC(50) < or = 50 microM). Additionally, saturation transfer difference (STD) NMR experiments confirmed binding and qualitatively identified protons from the small molecule at the small molecule-S100B interface. Heteronuclear single quantum coherence (HSQC) NMR titrations indicate that these compounds interact with the p53 binding site on S100B. An NMR-docked model of one such inhibitor, pentamidine, bound to Ca(2+)-loaded S100B was calculated using intermolecular NOE data between S100B and the drug, and indicates that pentamidine binds into the p53 binding site on S100B defined by helices 3 and 4 and loop 2 (termed the hinge region).
Sulimov, Alexey V; Kutov, Danil C; Katkova, Ekaterina V; Ilin, Ivan S; Sulimov, Vladimir B
2017-11-01
Discovery of new inhibitors of the protein associated with a given disease is the initial and most important stage of the whole process of the rational development of new pharmaceutical substances. New inhibitors block the active site of the target protein and the disease is cured. Computer-aided molecular modeling can considerably increase effectiveness of new inhibitors development. Reliable predictions of the target protein inhibition by a small molecule, ligand, is defined by the accuracy of docking programs. Such programs position a ligand in the target protein and estimate the protein-ligand binding energy. Positioning accuracy of modern docking programs is satisfactory. However, the accuracy of binding energy calculations is too low to predict good inhibitors. For effective application of docking programs to new inhibitors development the accuracy of binding energy calculations should be higher than 1kcal/mol. Reasons of limited accuracy of modern docking programs are discussed. One of the most important aspects limiting this accuracy is imperfection of protein-ligand energy calculations. Results of supercomputer validation of several force fields and quantum-chemical methods for docking are presented. The validation was performed by quasi-docking as follows. First, the low energy minima spectra of 16 protein-ligand complexes were found by exhaustive minima search in the MMFF94 force field. Second, energies of the lowest 8192 minima are recalculated with CHARMM force field and PM6-D3H4X and PM7 quantum-chemical methods for each complex. The analysis of minima energies reveals the docking positioning accuracies of the PM7 and PM6-D3H4X quantum-chemical methods and the CHARMM force field are close to one another and they are better than the positioning accuracy of the MMFF94 force field. Copyright © 2017 Elsevier Inc. All rights reserved.
Kuca, Kamil; Karasova, Jana Zdarova; Soukup, Ondrej; Kassa, Jiri; Novotna, Eva; Sepsova, Vendula; Horova, Anna; Pejchal, Jaroslav; Hrabinova, Martina; Vodakova, Eva; Jun, Daniel; Nepovimova, Eugenie; Valis, Martin; Musilek, Kamil
2018-01-01
Background Intoxication by nerve agents could be prevented by using small acetylcholinesterase inhibitors (eg, pyridostigmine) for potentially exposed personnel. However, the serious side effects of currently used drugs led to research of novel potent molecules for prophylaxis of organophosphorus intoxication. Methods The molecular design, molecular docking, chemical synthesis, in vitro methods (enzyme inhibition, cytotoxicity, and nicotinic receptors modulation), and in vivo methods (acute toxicity and prophylactic effect) were used to study bispyridinium, bisquinolinium, bisisoquinolinium, and pyridinium-quinolinium/isoquinolinium molecules presented in this study. Results The studied molecules showed non-competitive inhibitory ability towards human acetylcholinesterase in vitro that was further confirmed by molecular modelling studies. Several compounds were selected for further studies. First, their cytotoxicity, nicotinic receptors modulation, and acute toxicity (lethal dose for 50% of laboratory animals [LD50]; mice and rats) were tested to evaluate their safety with promising results. Furthermore, their blood levels were measured to select the appropriate time for prophylactic administration. Finally, the protective ratio of selected compounds against soman-induced toxicity was determined when selected compounds were found similarly potent or only slightly better to standard pyridostigmine. Conclusion The presented small bisquaternary molecules did not show overall benefit in prophylaxis of soman-induced in vivo toxicity. PMID:29563775
NASA Astrophysics Data System (ADS)
Thangsunan, Patcharapong; Kittiwachana, Sila; Meepowpan, Puttinan; Kungwan, Nawee; Prangkio, Panchika; Hannongbua, Supa; Suree, Nuttee
2016-06-01
Improving performance of scoring functions for drug docking simulations is a challenging task in the modern discovery pipeline. Among various ways to enhance the efficiency of scoring function, tuning of energetic component approach is an attractive option that provides better predictions. Herein we present the first development of rapid and simple tuning models for predicting and scoring inhibitory activity of investigated ligands docked into catalytic core domain structures of HIV-1 integrase (IN) enzyme. We developed the models using all energetic terms obtained from flexible ligand-rigid receptor dockings by AutoDock4, followed by a data analysis using either partial least squares (PLS) or self-organizing maps (SOMs). The models were established using 66 and 64 ligands of mercaptobenzenesulfonamides for the PLS-based and the SOMs-based inhibitory activity predictions, respectively. The models were then evaluated for their predictability quality using closely related test compounds, as well as five different unrelated inhibitor test sets. Weighting constants for each energy term were also optimized, thus customizing the scoring function for this specific target protein. Root-mean-square error (RMSE) values between the predicted and the experimental inhibitory activities were determined to be <1 (i.e. within a magnitude of a single log scale of actual IC50 values). Hence, we propose that, as a pre-functional assay screening step, AutoDock4 docking in combination with these subsequent rapid weighted energy tuning methods via PLS and SOMs analyses is a viable approach to predict the potential inhibitory activity and to discriminate among small drug-like molecules to target a specific protein of interest.
Demirezer, Lütfiye Ömür; Gürbüz, Perihan; Kelicen Uğur, Emine Pelin; Bodur, Mine; Özenver, Nadire; Uz, Ayse; Güvenalp, Zühal
2015-01-01
To evaluate acetylcholinesterase (AChE) inhibitory activity and antioxidant capacity of the major molecule from Salvia sp., rosmarinic acid, as a drug candidate molecule for treatment of Alzheimer disease (AD). The AChE inhibitory activity of different extracts from Salvia trichoclada, Salvia verticillata, and Salvia fruticosa was determined by the Ellman and isolated guinea pig ileum methods, and the antioxidant capacity was determined with DPPH. The AChE inhibitory activity of the major molecule rosmarinic acid was determined by in silico docking and isolated guinea pig ileum methods. The methanol extract of Salvia trichoclada showed the highest inhibition on AChE. The same extract and rosmarinic acid showed significant contraction responses on isolated guinea pig ileum. All the extracts and rosmarinic acid showed high radical scavenging capacities. Docking results of rosmarinic acid showed high affinity to the selected target, AChE. In this study in vitro and ex vivo studies and in silico docking research of rosmarinic acid were used simultaneously for the first time. Rosmarinic acid showed promising results in all the methods tested.
Comparative docking and CoMFA analysis of curcumine derivatives as HIV-1 integrase inhibitors.
Gupta, Pawan; Garg, Prabha; Roy, Nilanjan
2011-08-01
The docking studies and comparative molecular field analysis (CoMFA) were performed on highly active molecules of curcumine derivatives against 3' processing activity of HIV-1 integrase (IN) enzyme. The optimum CoMFA model was selected with statistically significant cross-validated r(2) value of 0.815 and non-cross validated r (2) value of 0.99. The common pharmacophore of highly active molecules was used for screening of HIV-1 IN inhibitors. The high contribution of polar interactions in pharmacophore mapping is well supported by docking and CoMFA results. The results of docking, CoMFA, and pharmacophore mapping give structural insights as well as important binding features of curcumine derivatives as HIV-1 IN inhibitors which can provide guidance for the rational design of novel HIV-1 IN inhibitors.
Parikh, Hardik I; Kellogg, Glen E
2014-06-01
Characterizing the nature of interaction between proteins that have not been experimentally cocrystallized requires a computational docking approach that can successfully predict the spatial conformation adopted in the complex. In this work, the Hydropathic INTeractions (HINT) force field model was used for scoring docked models in a data set of 30 high-resolution crystallographically characterized "dry" protein-protein complexes and was shown to reliably identify native-like models. However, most current protein-protein docking algorithms fail to explicitly account for water molecules involved in bridging interactions that mediate and stabilize the association of the protein partners, so we used HINT to illuminate the physical and chemical properties of bridging waters and account for their energetic stabilizing contributions. The HINT water Relevance metric identified the "truly" bridging waters at the 30 protein-protein interfaces and we utilized them in "solvated" docking by manually inserting them into the input files for the rigid body ZDOCK program. By accounting for these interfacial waters, a statistically significant improvement of ∼24% in the average hit-count within the top-10 predictions the protein-protein dataset was seen, compared to standard "dry" docking. The results also show scoring improvement, with medium and high accuracy models ranking much better than incorrect ones. These improvements can be attributed to the physical presence of water molecules that alter surface properties and better represent native shape and hydropathic complementarity between interacting partners, with concomitantly more accurate native-like structure predictions. © 2013 Wiley Periodicals, Inc.
Sweeney, Noreena L.; Lipker, Lauren; Hanson, Alicia M.; Bohl, Chris J.; Engel, Katie E.; Kalous, Kelsey S.; Stemper, Mary E.; Sem, Daniel S.; Schwan, William R.
2017-01-01
The thioredoxin/thioredoxin reductase system (Trx/TrxR) is an attractive drug target because of its involvement in a number of important physiological processes, from DNA synthesis to regulating signal transduction. This study describes the finding of pyrazolone compounds that are active against Staphylococcus aureus. Initially, the project was focused on discovering small molecules that may have antibacterial properties targeting the Mycobacterium tuberculosis thioredoxin reductase. This led to the discovery of a pyrazolone scaffold-containing compound series that showed bactericidal capability against S. aureus strains, including drug-resistant clinical isolates. The findings support continued development of the pyrazolone compounds as potential anti-S. aureus antibiotics. PMID:28134858
Srinivasan, Pappu; Kumar, Sivakumar Prasanth; Karthikeyan, Muthusamy; Jeyakanthan, Jeyaram; Jasrai, Yogesh T; Pandya, Himanshu A; Rawal, Rakesh M; Patel, Saumya K
2011-01-01
Crimean-Congo hemorrhagic fever virus (CCHFV), the fatal human pathogen is transmitted to humans by tick bite, or exposure to infected blood or tissues of infected livestock. The CCHFV genome consists of three RNA segments namely, S, M, and L. The unusual large viral L protein has an ovarian tumor (OTU) protease domain located in the N terminus. It is likely that the protein may be autoproteolytically cleaved to generate the active virus L polymerase with additional functions. Identification of the epitope regions of the virus is important for the diagnosis, phylogeny studies, and drug discovery. Early diagnosis and treatment of CCHF infection is critical to the survival of patients and the control of the disease. In this study, we undertook different in silico approaches using molecular docking and immunoinformatics tools to predict epitopes which can be helpful for vaccine designing. Small molecule ligands against OTU domain and protein-protein interaction between a viral and a host protein have been studied using docking tools.
RosettaScripts: a scripting language interface to the Rosetta macromolecular modeling suite.
Fleishman, Sarel J; Leaver-Fay, Andrew; Corn, Jacob E; Strauch, Eva-Maria; Khare, Sagar D; Koga, Nobuyasu; Ashworth, Justin; Murphy, Paul; Richter, Florian; Lemmon, Gordon; Meiler, Jens; Baker, David
2011-01-01
Macromolecular modeling and design are increasingly useful in basic research, biotechnology, and teaching. However, the absence of a user-friendly modeling framework that provides access to a wide range of modeling capabilities is hampering the wider adoption of computational methods by non-experts. RosettaScripts is an XML-like language for specifying modeling tasks in the Rosetta framework. RosettaScripts provides access to protocol-level functionalities, such as rigid-body docking and sequence redesign, and allows fast testing and deployment of complex protocols without need for modifying or recompiling the underlying C++ code. We illustrate these capabilities with RosettaScripts protocols for the stabilization of proteins, the generation of computationally constrained libraries for experimental selection of higher-affinity binding proteins, loop remodeling, small-molecule ligand docking, design of ligand-binding proteins, and specificity redesign in DNA-binding proteins.
Virtual High-Throughput Screening for Matrix Metalloproteinase Inhibitors.
Choi, Jun Yong; Fuerst, Rita
2017-01-01
Structure-based virtual screening (SBVS) is a common method for the fast identification of hit structures at the beginning of a medicinal chemistry program in drug discovery. The SBVS, described in this manuscript, is focused on finding small molecule hits that can be further utilized as a starting point for the development of inhibitors of matrix metalloproteinase 13 (MMP-13) via structure-based molecular design. We intended to identify a set of structurally diverse hits, which occupy all subsites (S1'-S3', S2, and S3) centering the zinc containing binding site of MMP-13, by the virtual screening of a chemical library comprising more than ten million commercially available compounds. In total, 23 compounds were found as potential MMP-13 inhibitors using Glide docking followed by the analysis of the structural interaction fingerprints (SIFt) of the docked structures.
Di Marino, Daniele; Oteri, Francesco; della Rocca, Blasco Morozzo; D'Annessa, Ilda; Falconi, Mattia
2012-06-01
The mitochondrial adenosine diphosphate/adenosine triphosphate (ADP/ATP) carrier-AAC-was crystallized in complex with its specific inhibitor carboxyatractyloside (CATR). The protein consists of a six-transmembrane helix bundle that defines the nucleotide translocation pathway, which is closed towards the matrix side due to sharp kinks in the odd-numbered helices. In this paper, we describe the interaction between the matrix side of the AAC transporter and the ATP(4-) molecule using carrier structures obtained through classical molecular dynamics simulation (MD) and a protein-ligand docking procedure. Fifteen structures were extracted from a previously published MD trajectory through clustering analysis, and 50 docking runs were carried out for each carrier conformation, for a total of 750 runs ("MD docking"). The results were compared to those from 750 docking runs performed on the X-ray structure ("X docking"). The docking procedure indicated the presence of a single interaction site in the X-ray structure that was conserved in the structures extracted from the MD trajectory. MD docking showed the presence of a second binding site that was not found in the X docking. The interaction strategy between the AAC transporter and the ATP(4-) molecule was analyzed by investigating the composition and 3D arrangement of the interaction pockets, together with the orientations of the substrate inside them. A relationship between sequence repeats and the ATP(4-) binding sites in the AAC carrier structure is proposed.
Fatima, Sabiha; Jatavath, Mohan Babu; Bathini, Raju; Sivan, Sree Kanth; Manga, Vijjulatha
2014-10-01
Poly(ADP-ribose) polymerase-1 (PARP-1) functions as a DNA damage sensor and signaling molecule. It plays a vital role in the repair of DNA strand breaks induced by radiation and chemotherapeutic drugs; inhibitors of this enzyme have the potential to improve cancer chemotherapy or radiotherapy. Three-dimensional quantitative structure activity relationship (3D QSAR) models were developed using comparative molecular field analysis, comparative molecular similarity indices analysis and docking studies. A set of 88 molecules were docked into the active site of six X-ray crystal structures of poly(ADP-ribose)polymerase-1 (PARP-1), by a procedure called multiple receptor conformation docking (MRCD), in order to improve the 3D QSAR models through the analysis of binding conformations. The docked poses were clustered to obtain the best receptor binding conformation. These dock poses from clustering were used for 3D QSAR analysis. Based on MRCD and QSAR information, some key features have been identified that explain the observed variance in the activity. Two receptor-based QSAR models were generated; these models showed good internal and external statistical reliability that is evident from the [Formula: see text], [Formula: see text] and [Formula: see text]. The identified key features enabled us to design new PARP-1 inhibitors.
Mechanism of Inhibition of Cholesteryl Ester Transfer Protein by Small Molecule Inhibitors.
Chirasani, Venkat R; Sankar, Revathi; Senapati, Sanjib
2016-08-25
Cholesteryl ester transfer protein (CETP) facilitates the bidirectional exchange of cholesteryl esters and triglycerides between high-density lipoproteins and low- or very low-density lipoproteins. Recent studies have shown that the impairment of lipid exchange processes of CETP can be an effective strategy for the treatment of cardiovascular diseases (CVDs). Understanding the molecular mechanism of CETP inhibition has, therefore, attracted tremendous attention in recent past. In this study, we explored the detailed mechanism of CETP inhibition by a series of recently reported small molecule inhibitors that are currently under preclinical testing. Our results from molecular dynamics simulations and protein-ligand docking studies suggest that the hydrophobic interactions between the CETP core tunnel residues and inhibitor moieties play a pivotal role, and physical occlusion of the CETP tunnel by these small molecules is the primary mechanism of CETP inhibition. Interestingly, bound inhibitors were found to increase the plasticity of CETP, which was explained by principal component analysis that showed a larger space of sampling of CETP C-domain due to inhibitor binding. The atomic-level details presented here could help accelerate the structure-based drug-discovery processes targeting CETP for CVD therapeutics.
NASA Astrophysics Data System (ADS)
Li, Lanlan; Wei, Wei; Jia, Wen-Juan; Zhu, Yongchang; Zhang, Yan; Chen, Jiang-Huai; Tian, Jiaqi; Liu, Huanxiang; He, Yong-Xing; Yao, Xiaojun
2017-12-01
Conformational conversion of the normal cellular prion protein, PrPC, into the misfolded isoform, PrPSc, is considered to be a central event in the development of fatal neurodegenerative diseases. Stabilization of prion protein at the normal cellular form (PrPC) with small molecules is a rational and efficient strategy for treatment of prion related diseases. However, few compounds have been identified as potent prion inhibitors by binding to the normal conformation of prion. In this work, to rational screening of inhibitors capable of stabilizing cellular form of prion protein, multiple approaches combining docking-based virtual screening, steady-state fluorescence quenching, surface plasmon resonance and thioflavin T fluorescence assay were used to discover new compounds interrupting PrPC to PrPSc conversion. Compound 3253-0207 that can bind to PrPC with micromolar affinity and inhibit prion fibrillation was identified from small molecule databases. Molecular dynamics simulation indicated that compound 3253-0207 can bind to the hotspot residues in the binding pocket composed by β1, β2 and α2, which are significant structure moieties in conversion from PrPC to PrPSc.
Computational multiscale modeling in protein--ligand docking.
Taufer, Michela; Armen, Roger; Chen, Jianhan; Teller, Patricia; Brooks, Charles
2009-01-01
In biological systems, the binding of small molecule ligands to proteins is a crucial process for almost every aspect of biochemistry and molecular biology. Enzymes are proteins that function by catalyzing specific biochemical reactions that convert reactants into products. Complex organisms are typically composed of cells in which thousands of enzymes participate in complex and interconnected biochemical pathways. Some enzymes serve as sequential steps in specific pathways (such as energy metabolism), while others function to regulate entire pathways and cellular functions [1]. Small molecule ligands can be designed to bind to a specific enzyme and inhibit the biochemical reaction. Inhibiting the activity of key enzymes may result in the entire biochemical pathways being turned on or off [2], [3]. Many small molecule drugs marketed today function in this generic way as enzyme inhibitors. If research identifies a specific enzyme as being crucial to the progress of disease, then this enzyme may be targeted with an inhibitor, which may slow down or reverse the progress of disease. In this way, enzymes are targeted from specific pathogens (e.g., virus, bacteria, fungi) for infectious diseases [4], [5], and human enzymes are targeted for noninfectious diseases such as cardiovascular disease, cancer, diabetes, and neurodegenerative diseases [6].
Computational Selection of Inhibitors of A-beta Aggregation and Neuronal Toxicity
Chen, Deliang; Martin, Zane S.; Soto, Claudio; Schein, Catherine H.
2009-01-01
Alzheimer’s Disease (AD) is characterized by the cerebral accumulation of misfolded and aggregated amyloid-β protein (Aβ). Disease symptoms can be alleviated, in vitro and in vivo, by “β-sheet breaker” pentapeptides that reduce plaque volume. However the peptide nature of these compounds, made them biologically unstable and unable to penetrate membranes with high efficiency. The main goal of this study was to use computational methods to identify small molecule mimetics with better drug-like properties. For this purpose, the docked conformations of the active peptides were used to identify compounds with similar activities. A series of related β-sheet breaker peptides were docked to solid state NMR structures of a fibrillar form of Aβ. The lowest energy conformations of the active peptides were used to design three dimensional (3D)-pharmacophores, suitable for screening the NCI database with Unity. Small molecular weight compounds with physicochemical features in a conformation similar to the active peptides were selected, ranked by docking solubility parameters. Of 16 diverse compounds selected for experimental screening, 2 prevented and reversed Aβ aggregation at 2–3 μM concentration, as measured by Thioflavin T (ThT) fluorescence and ELISA assays. They also prevented the toxic effects of aggregated Aβ on neuroblastoma cells. Their low molecular weight and aqueous solubility makes them promising lead compounds for treating AD. PMID:19540126
Design and synthesis of inositolphosphoglycan putative insulin mediators.
López-Prados, Javier; Cuevas, Félix; Reichardt, Niels-Christian; de Paz, José-Luis; Morales, Ezequiel Q; Martín-Lomas, Manuel
2005-03-07
The binding modes of a series of molecules, containing the glucosamine (1-->6) myo-inositol structural motif, into the ATP binding site of the catalytic subunit of cAMP-dependent protein kinase (PKA) have been analysed using molecular docking. These calculations predict that the presence of a phosphate group at the non-reducing end in pseudodisaccharide and pseudotrisaccharide structures properly orientate the molecule into the binding site and that pseudotrisaccharide structures present the best shape complementarity. Therefore, pseudodisaccharides and pseudotrisaccharides have been synthesised from common intermediates using effective synthetic strategies. On the basis of this synthetic chemistry, the feasibility of constructing small pseudotrisaccharide libraries on solid-phase using the same intermediates has been explored. The results from the biological evaluation of these molecules provide additional support to an insulin-mediated signalling system which involves the intermediacy of inositolphosphoglycans as putative insulin mediators.
NASA Astrophysics Data System (ADS)
Saravanan, R. R.; Seshadri, S.; Gunasekaran, S.; Mendoza-Meroño, R.; Garcia-Granda, S.
2015-03-01
Conformational analysis, X-ray crystallographic, FT-IR, FT-Raman, DFT, MEP and molecular docking studies on 1-(1-(3-methoxyphenyl) ethylidene) thiosemicarbazide (MPET) are investigated. From conformational analysis the examination of the positions of a molecule taken and the energy changes is observed. The docking studies of the ligand MPET with target protein showed that this is a good molecule which docks well with target related to HMG-CoA. Hence MPET can be considered for developing into a potent anti-cholesterol drug. MEP assists in optimization of electrostatic interactions between the protein and the ligand. The MEP surface displays the molecular shape, size and electrostatic potential values. The optimized geometry of the compound was calculated from the DFT-B3LYP gradient calculations employing 6-31G (d, p) basis set and calculated vibrational frequencies are evaluated via comparison with experimental values.
WScore: A Flexible and Accurate Treatment of Explicit Water Molecules in Ligand-Receptor Docking.
Murphy, Robert B; Repasky, Matthew P; Greenwood, Jeremy R; Tubert-Brohman, Ivan; Jerome, Steven; Annabhimoju, Ramakrishna; Boyles, Nicholas A; Schmitz, Christopher D; Abel, Robert; Farid, Ramy; Friesner, Richard A
2016-05-12
We have developed a new methodology for protein-ligand docking and scoring, WScore, incorporating a flexible description of explicit water molecules. The locations and thermodynamics of the waters are derived from a WaterMap molecular dynamics simulation. The water structure is employed to provide an atomic level description of ligand and protein desolvation. WScore also contains a detailed model for localized ligand and protein strain energy and integrates an MM-GBSA scoring component with these terms to assess delocalized strain of the complex. Ensemble docking is used to take into account induced fit effects on the receptor conformation, and protein reorganization free energies are assigned via fitting to experimental data. The performance of the method is evaluated for pose prediction, rank ordering of self-docked complexes, and enrichment in virtual screening, using a large data set of PDB complexes and compared with the Glide SP and Glide XP models; significant improvements are obtained.
Zhu, Ming-Li; Wang, Cui-Yue; Xu, Cheng-Mian; Bi, Wei-Ping; ZHou, Xiu-Ying
2017-03-05
BACKGROUND Colorectal adenocarcinoma is the second leading cause of cancer-related death in the world. The stage of the disease is related to the survival of the patient, and in early phases surgery is the main modality of treatment. The main aim of modern medicinal chemistry is to synthesize small molecules via drug designing, especially by targeting tumor cells. MATERIAL AND METHODS A new series of 19 compounds containing benzothiazole and thiazole were designed. Molecular docking studies were performed on the designed series of molecules. Compounds showing good binding affinity towards the EGFR receptor were selected for synthetic studies. Characterization of the synthesized compounds was done by FTIR, 1HNMR, Mass and C, H, N, analysis. RESULTS The anticancer evaluation of the synthesized compounds was done at NIC, USA at a single dose against colon cancer cell lines HCT 116, HCT15, and HC 29. The active compounds were further evaluated for the 5-dose testing. Compounds were designed by using docking analysis. To ascertain the interaction of EGFR tyrosine kinase binding, energy calculation was used. CONCLUSIONS The results of the present study indicate that the designed compounds show good activity against colon cancer cell lines, which may be further studied to design new potential molecules.
The role of water molecules in computational drug design.
de Beer, Stephanie B A; Vermeulen, Nico P E; Oostenbrink, Chris
2010-01-01
Although water molecules are small and only consist of two different atom types, they play various roles in cellular systems. This review discusses their influence on the binding process between biomacromolecular targets and small molecule ligands and how this influence can be modeled in computational drug design approaches. Both the structure and the thermodynamics of active site waters will be discussed as these influence the binding process significantly. Structurally conserved waters cannot always be determined experimentally and if observed, it is not clear if they will be replaced upon ligand binding, even if sufficient space is available. Methods to predict the presence of water in protein-ligand complexes will be reviewed. Subsequently, we will discuss methods to include water in computational drug research. Either as an additional factor in automated docking experiments, or explicitly in detailed molecular dynamics simulations, the effect of water on the quality of the simulations is significant, but not easily predicted. The most detailed calculations involve estimates of the free energy contribution of water molecules to protein-ligand complexes. These calculations are computationally demanding, but give insight in the versatility and importance of water in ligand binding.
Identifying the binding mode of a molecular scaffold
NASA Astrophysics Data System (ADS)
Chema, Doron; Eren, Doron; Yayon, Avner; Goldblum, Amiram; Zaliani, Andrea
2004-01-01
We describe a method for docking of a scaffold-based series and present its advantages over docking of individual ligands, for determining the binding mode of a molecular scaffold in a binding site. The method has been applied to eight different scaffolds of protein kinase inhibitors (PKI). A single analog of each of these eight scaffolds was previously crystallized with different protein kinases. We have used FlexX to dock a set of molecules that share the same scaffold, rather than docking a single molecule. The main mode of binding is determined by the mode of binding of the largest cluster among the docked molecules that share a scaffold. Clustering is based on our `nearest single neighbor' method [J. Chem. Inf. Comput. Sci., 43 (2003) 208-217]. Additional criteria are applied in those cases in which more than one significant binding mode is found. Using the proposed method, most of the crystallographic binding modes of these scaffolds were reconstructed. Alternative modes, that have not been detected yet by experiments, could also be identified. The method was applied to predict the binding mode of an additional molecular scaffold that was not yet reported and the predicted binding mode has been found to be very similar to experimental results for a closely related scaffold. We suggest that this approach be used as a virtual screening tool for scaffold-based design processes.
Itteboina, Ramesh; Ballu, Srilata; Sivan, Sree Kanth; Manga, Vijjulatha
2017-10-01
Janus kinase 1 (JAK 1) belongs to the JAK family of intracellular nonreceptor tyrosine kinase. JAK-signal transducer and activator of transcription (JAK-STAT) pathway mediate signaling by cytokines, which control survival, proliferation and differentiation of a variety of cells. Three-dimensional quantitative structure activity relationship (3 D-QSAR), molecular docking and molecular dynamics (MD) methods was carried out on a dataset of Janus kinase 1(JAK 1) inhibitors. Ligands were constructed and docked into the active site of protein using GLIDE 5.6. Best docked poses were selected after analysis for further 3 D-QSAR analysis using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methodology. Employing 60 molecules in the training set, 3 D-QSAR models were generate that showed good statistical reliability, which is clearly observed in terms of r 2 ncv and q 2 loo values. The predictive ability of these models was determined using a test set of 25 molecules that gave acceptable predictive correlation (r 2 Pred ) values. The key amino acid residues were identified by means of molecular docking, and the stability and rationality of the derived molecular conformations were also validated by MD simulation. The good consonance between the docking results and CoMFA/CoMSIA contour maps provides helpful clues about the reasonable modification of molecules in order to design more efficient JAK 1 inhibitors. The developed models are expected to provide some directives for further synthesis of highly effective JAK 1 inhibitors.
Xiaodan, Chen; Xiurong, Zhan; Xinyu, Wu; Chunyan, Zhao; Wanghong, Zhao
2015-04-01
The aim of this study is to analyze the three-dimensional crystal structure of SMU.2055 protein, a putative acetyltransferase from the major caries pathogen Streptococcus mutans (S. mutans). The design and selection of the structure-based small molecule inhibitors are also studied. The three-dimensional crystal structure of SMU.2055 protein was obtained by structural genomics research methods of gene cloning and expression, protein purification with Ni²⁺-chelating affinity chromatography, crystal screening, and X-ray diffraction data collection. An inhibitor virtual model matching with its target protein structure was set up using computer-aided drug design methods, virtual screening and fine docking, and Libdock and Autodock procedures. The crystal of SMU.2055 protein was obtained, and its three-dimensional crystal structure was analyzed. This crystal was diffracted to a resolution of 0.23 nm. It belongs to orthorhombic space group C222(1), with unit cell parameters of a = 9.20 nm, b = 9.46 nm, and c = 19.39 nm. The asymmetric unit contained four molecules, with a solvent content of 56.7%. Moreover, five small molecule compounds, whose structure matched with that of the target protein in high degree, were designed and selected. Protein crystallography research of S. mutans SMU.2055 helps to understand the structures and functions of proteins from S. mutans at the atomic level. These five compounds may be considered as effective inhibitors to SMU.2055. The virtual model of small molecule inhibitors we built will lay a foundation to the anticaries research based on the crystal structure of proteins.
Sivan, Sree Kanth; Manga, Vijjulatha
2012-02-01
Multiple receptors conformation docking (MRCD) and clustering of dock poses allows seamless incorporation of receptor binding conformation of the molecules on wide range of ligands with varied structural scaffold. The accuracy of the approach was tested on a set of 120 cyclic urea molecules having HIV-1 protease inhibitory activity using 12 high resolution X-ray crystal structures and one NMR resolved conformation of HIV-1 protease extracted from protein data bank. A cross validation was performed on 25 non-cyclic urea HIV-1 protease inhibitor having varied structures. The comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) models were generated using 60 molecules in the training set by applying leave one out cross validation method, r (loo) (2) values of 0.598 and 0.674 for CoMFA and CoMSIA respectively and non-cross validated regression coefficient r(2) values of 0.983 and 0.985 were obtained for CoMFA and CoMSIA respectively. The predictive ability of these models was determined using a test set of 60 cyclic urea molecules that gave predictive correlation (r (pred) (2) ) of 0.684 and 0.64 respectively for CoMFA and CoMSIA indicating good internal predictive ability. Based on this information 25 non-cyclic urea molecules were taken as a test set to check the external predictive ability of these models. This gave remarkable out come with r (pred) (2) of 0.61 and 0.53 for CoMFA and CoMSIA respectively. The results invariably show that this method is useful for performing 3D QSAR analysis on molecules having different structural motifs.
Prabhudeva, Malledevarapura Gurumurthy; Bharath, Srinivasan; Kumar, Achutha Dileep; Naveen, Shivalingegowda; Lokanath, Neratur Krishnappagowda; Mylarappa, Bantaganahalli Ningappa; Kumar, Kariyappa Ajay
2017-08-01
Oxidative-stress induces inflammatory diseases and infections caused by drug-resistant microbial strains are on the rise necessitating the discovery of novel small-molecules for intervention therapy. The current study presents an effective and new green protocol for the synthesis of thiophene-appended pyrazoles through 3+2 annulations method. Chalcones 3(a-g) were prepared from 5-chloro-2-acetylthiophene and aromatic aldehydes by Claisen-Schmidt approach. The reaction of chalcones 3(a-g) with phenylhydrazine hydrochlorides 4(a-b) in acetic acid (30%) medium and also with freshly prepared citrus extract medium under reflux conditions produced the thiophene appended pyrazoles 5(a-l) in moderate yields. Structures of synthesized new pyrazoles were confirmed by spectral studies, elemental analysis and single crystal X-ray diffraction studies. Further, preliminary assessment of the anti-inflammatory properties of the compounds showed that, amongst the series, compounds 5d, 5e and 5l have excellent anti-inflammatory activities. Further, compounds 5c, 5d, 5g, and 5i exhibited excellent DPPH radical scavenging abilities in comparison with the standard ascorbic acid. Furthermore, using detailed structural modeling and docking efforts, combined with preliminary SAR, we show possible structural and chemical features on both the small-molecules and the protein that might contribute to the binding and inhibition. Copyright © 2017 Elsevier Inc. All rights reserved.
Shah, Parag P.; Myers, Michael C.; Beavers, Mary Pat; Purvis, Jeremy E.; Jing, Huiyan; Grieser, Heather J.; Sharlow, Elizabeth R.; Napper, Andrew D.; Huryn, Donna M.; Cooperman, Barry S.; Smith, Amos B.; Diamond, Scott L.
2008-01-01
A novel small molecule thiocarbazate (PubChem SID 26681509), a potent inhibitor of human cathepsin L (EC 3.4.22.15) with an IC50 of 56 nM, was developed following a 57,821 compound screen of the NIH Molecular Libraries Small Molecule Repository. After a 4 hr preincubation with cathepsin L, this compound became even more potent, demonstrating an IC50 of 1.0 nM. The thiocarbazate was determined to be a slow-binding and slowly reversible competitive inhibitor. Through a transient kinetic analysis for single-step reversibility, inhibition rate constants were kon = 24,000 M-1s-1 and koff = 2.2 × 10-5 s-1 (Ki = 0.89 nM). Molecular docking studies were undertaken using the experimentally-derived X-ray crystal structure of papain/CLIK-148 (1cvz.pdb). These studies revealed critical hydrogen bonding patterns of the thiocarbazate with key active site residues in papain. The thiocarbazate displayed 7- to 151-fold greater selectivity toward cathepsin L than papain and cathepsins B, K, V, and S with no activity against cathepsin G. The inhibitor demonstrated a lack of toxicity in human aortic endothelial cells and zebrafish. Additionally, the thiocarbazate inhibited in vitro propagation of malaria parasite Plasmodium falciparum with an IC50 of 15.4 μM and inhibited Leishmania major with an IC50 of 12.5 μM. PMID:18403718
Gowthaman, Ragul; Miller, Sven A; Rogers, Steven; Khowsathit, Jittasak; Lan, Lan; Bai, Nan; Johnson, David K; Liu, Chunjing; Xu, Liang; Anbanandam, Asokan; Aubé, Jeffrey; Roy, Anuradha; Karanicolas, John
2016-05-12
Protein-protein interactions represent an exciting and challenging target class for therapeutic intervention using small molecules. Protein interaction sites are often devoid of the deep surface pockets presented by "traditional" drug targets, and crystal structures reveal that inhibitors typically engage these sites using very shallow binding modes. As a consequence, modern virtual screening tools developed to identify inhibitors of traditional drug targets do not perform as well when they are instead deployed at protein interaction sites. To address the need for novel inhibitors of important protein interactions, here we introduce an alternate docking strategy specifically designed for this regime. Our method, termed DARC (Docking Approach using Ray-Casting), matches the topography of a surface pocket "observed" from within the protein to the topography "observed" when viewing a potential ligand from the same vantage point. We applied DARC to carry out a virtual screen against the protein interaction site of human antiapoptotic protein Mcl-1 and found that four of the top-scoring 21 compounds showed clear inhibition in a biochemical assay. The Ki values for these compounds ranged from 1.2 to 21 μM, and each had ligand efficiency comparable to promising small-molecule inhibitors of other protein-protein interactions. These hit compounds do not resemble the natural (protein) binding partner of Mcl-1, nor do they resemble any known inhibitors of Mcl-1. Our results thus demonstrate the utility of DARC for identifying novel inhibitors of protein-protein interactions.
Soler, Miguel A; de Marco, Ario; Fortuna, Sara
2016-10-10
Nanobodies (VHHs) have proved to be valuable substitutes of conventional antibodies for molecular recognition. Their small size represents a precious advantage for rational mutagenesis based on modelling. Here we address the problem of predicting how Camelidae nanobody sequences can tolerate mutations by developing a simulation protocol based on all-atom molecular dynamics and whole-molecule docking. The method was tested on two sets of nanobodies characterized experimentally for their biophysical features. One set contained point mutations introduced to humanize a wild type sequence, in the second the CDRs were swapped between single-domain frameworks with Camelidae and human hallmarks. The method resulted in accurate scoring approaches to predict experimental yields and enabled to identify the structural modifications induced by mutations. This work is a promising tool for the in silico development of single-domain antibodies and opens the opportunity to customize single functional domains of larger macromolecules.
NASA Astrophysics Data System (ADS)
Soler, Miguel A.; De Marco, Ario; Fortuna, Sara
2016-10-01
Nanobodies (VHHs) have proved to be valuable substitutes of conventional antibodies for molecular recognition. Their small size represents a precious advantage for rational mutagenesis based on modelling. Here we address the problem of predicting how Camelidae nanobody sequences can tolerate mutations by developing a simulation protocol based on all-atom molecular dynamics and whole-molecule docking. The method was tested on two sets of nanobodies characterized experimentally for their biophysical features. One set contained point mutations introduced to humanize a wild type sequence, in the second the CDRs were swapped between single-domain frameworks with Camelidae and human hallmarks. The method resulted in accurate scoring approaches to predict experimental yields and enabled to identify the structural modifications induced by mutations. This work is a promising tool for the in silico development of single-domain antibodies and opens the opportunity to customize single functional domains of larger macromolecules.
NASA Astrophysics Data System (ADS)
Patil, Sachin P.; Pacitti, Michael F.; Gilroy, Kevin S.; Ruggiero, John C.; Griffin, Jonathan D.; Butera, Joseph J.; Notarfrancesco, Joseph M.; Tran, Shawn; Stoddart, John W.
2015-02-01
The inhibition of tumor suppressor p53 protein due to its direct interaction with oncogenic murine double minute 2 (MDM2) protein, plays a central role in almost 50 % of all human tumor cells. Therefore, pharmacological inhibition of the p53-binding pocket on MDM2, leading to p53 activation, presents an important therapeutic target against these cancers expressing wild-type p53. In this context, the present study utilized an integrated virtual and experimental screening approach to screen a database of approved drugs for potential p53-MDM2 interaction inhibitors. Specifically, using an ensemble rigid-receptor docking approach with four MDM2 protein crystal structures, six drug molecules were identified as possible p53-MDM2 inhibitors. These drug molecules were then subjected to further molecular modeling investigation through flexible-receptor docking followed by Prime/MM-GBSA binding energy analysis. These studies identified fluspirilene, an approved antipsychotic drug, as a top hit with MDM2 binding mode and energy similar to that of a native MDM2 crystal ligand. The molecular dynamics simulations suggested stable binding of fluspirilene to the p53-binding pocket on MDM2 protein. The experimental testing of fluspirilene showed significant growth inhibition of human colon tumor cells in a p53-dependent manner. Fluspirilene also inhibited growth of several other human tumor cell lines in the NCI60 cell line panel. Taken together, these computational and experimental data suggest a potentially novel role of fluspirilene in inhibiting the p53-MDM2 interaction. It is noteworthy here that fluspirilene has a long history of safe human use, thus presenting immediate clinical potential as a cancer therapeutic. Furthermore, fluspirilene could also serve as a structurally-novel lead molecule for the development of more potent, small-molecule p53-MDM2 inhibitors against several types of cancer. Importantly, the combined computational and experimental screening protocol presented in this study may also prove useful for screening other commercially-available compound databases for identification of novel, small molecule p53-MDM2 inhibitors.
Computational Approaches for Designing Protein/Inhibitor Complexes and Membrane Protein Variants
NASA Astrophysics Data System (ADS)
Vijayendran, Krishna Gajan
Drug discovery of small-molecule protein inhibitors is a vast enterprise that involves several scientific disciplines (i.e. genomics, cell biology, x-ray crystallography, chemistry, computer science, statistics), with each discipline focusing on a particular aspect of the process. In this thesis, I use computational and experimental approaches to explore the most fundamental aspect of drug discovery: the molecular interactions of small-molecules inhibitors with proteins. In Part I (Chapters I and II), I describe how computational docking approaches can be used to identify structurally diverse molecules that can inhibit multiple protein targets in the brain. I illustrate this approach using the examples of microtubule-stabilizing agents and inhibitors of cyclooxygenase(COX)-I and 5-lipoxygenase (5-LOX). In Part II (Chapters III and IV), I focus on membrane proteins, which are notoriously difficult to work with due to their low natural abundances, low yields for heterologous over expression, and propensities toward aggregation. I describe a general approach for designing water-soluble variants of membrane proteins, for the purpose of developing cell-free, label-free, detergent-free, solution-phase studies of protein structure and small-molecule binding. I illustrate this approach through the design of a water-soluble variant of the membrane protein Smoothened, wsSMO. This wsSMO stands to serve as a first-step towards developing membrane protein analogs of this important signaling protein and drug target.
Ligand-biased ensemble receptor docking (LigBEnD): a hybrid ligand/receptor structure-based approach
NASA Astrophysics Data System (ADS)
Lam, Polo C.-H.; Abagyan, Ruben; Totrov, Maxim
2018-01-01
Ligand docking to flexible protein molecules can be efficiently carried out through ensemble docking to multiple protein conformations, either from experimental X-ray structures or from in silico simulations. The success of ensemble docking often requires the careful selection of complementary protein conformations, through docking and scoring of known co-crystallized ligands. False positives, in which a ligand in a wrong pose achieves a better docking score than that of native pose, arise as additional protein conformations are added. In the current study, we developed a new ligand-biased ensemble receptor docking method and composite scoring function which combine the use of ligand-based atomic property field (APF) method with receptor structure-based docking. This method helps us to correctly dock 30 out of 36 ligands presented by the D3R docking challenge. For the six mis-docked ligands, the cognate receptor structures prove to be too different from the 40 available experimental Pocketome conformations used for docking and could be identified only by receptor sampling beyond experimentally explored conformational subspace.
GENIUS In Silico Screening Technology for HCV Drug Discovery.
Patil, Vaishali M; Masand, Neeraj; Gupta, Satya P
2016-01-01
The various reported in silico screening protocols such as molecular docking are associated with various drawbacks as well as benefits. In molecular docking, on interaction with ligand, the protein or receptor molecule gets activated by adopting conformational changes. These conformational changes cannot be utilized to predict the 3D structure of a protein-ligand complex from unbound protein conformations rigid docking, which necessitates the demand for understanding protein flexibility. Therefore, efficiency and accuracy of docking should be achieved and various available/developed protocols may be adopted. One such protocol is GENIUS induced-fit docking and it is used effectively for the development of anti-HCV NS3-4A serine protease inhibitors. The present review elaborates the GENIUS docking protocol along with its benefits and drawbacks.
Seniya, Chandrabhan; Khan, Ghulam Jilani; Uchadia, Kuldeep
2014-01-01
Cholinesterase inhibitors (ChE-Is) are the standard for the therapy of AD associated disorders and are the only class of approved drugs by the Food and Drug Administration (FDA). Additionally, acetylcholinesterase (AChE) is the target for many Alzheimer's dementia drugs which block the function of AChE but have some side effects. Therefore, in this paper, an attempt was made to elucidate cholinesterase inhibition potential of secondary metabolite from Cannabis plant which has negligible or no side effect. Molecular docking of 500 herbal compounds, against AChE, was performed using Autodock 4.2 as per the standard protocols. Molecular dynamics simulations have also been carried out to check stability of binding complex in water for 1000 ps. Our molecular docking and simulation have predicted high binding affinity of secondary metabolite (C28H34N2O6) to AChE. Further, molecular dynamics simulations for 1000 ps suggest that ligand interaction with the residues Asp72, Tyr70-121-334, and Phe288 of AChE, all of which fall under active site/subsite or binding pocket, might be critical for the inhibitory activity of AChE. This approach might be helpful to understand the selectivity of the given drug molecule in the treatment of Alzheimer's disease. The study provides evidence for consideration of C28H34N2O6 as a valuable small ligand molecule in treatment and prevention of AD associated disorders and further in vitro and in vivo investigations may prove its therapeutic potential.
Seniya, Chandrabhan; Khan, Ghulam Jilani; Uchadia, Kuldeep
2014-01-01
Cholinesterase inhibitors (ChE-Is) are the standard for the therapy of AD associated disorders and are the only class of approved drugs by the Food and Drug Administration (FDA). Additionally, acetylcholinesterase (AChE) is the target for many Alzheimer's dementia drugs which block the function of AChE but have some side effects. Therefore, in this paper, an attempt was made to elucidate cholinesterase inhibition potential of secondary metabolite from Cannabis plant which has negligible or no side effect. Molecular docking of 500 herbal compounds, against AChE, was performed using Autodock 4.2 as per the standard protocols. Molecular dynamics simulations have also been carried out to check stability of binding complex in water for 1000 ps. Our molecular docking and simulation have predicted high binding affinity of secondary metabolite (C28H34N2O6) to AChE. Further, molecular dynamics simulations for 1000 ps suggest that ligand interaction with the residues Asp72, Tyr70-121-334, and Phe288 of AChE, all of which fall under active site/subsite or binding pocket, might be critical for the inhibitory activity of AChE. This approach might be helpful to understand the selectivity of the given drug molecule in the treatment of Alzheimer's disease. The study provides evidence for consideration of C28H34N2O6 as a valuable small ligand molecule in treatment and prevention of AD associated disorders and further in vitro and in vivo investigations may prove its therapeutic potential. PMID:25054066
Roberts, Victoria A.; Pique, Michael E.; Hsu, Simon; Li, Sheng; Slupphaug, Geir; Rambo, Robert P.; Jamison, Jonathan W.; Liu, Tong; Lee, Jun H.; Tainer, John A.; Ten Eyck, Lynn F.; Woods, Virgil L.
2012-01-01
X-ray crystallography provides excellent structural data on protein–DNA interfaces, but crystallographic complexes typically contain only small fragments of large DNA molecules. We present a new approach that can use longer DNA substrates and reveal new protein–DNA interactions even in extensively studied systems. Our approach combines rigid-body computational docking with hydrogen/deuterium exchange mass spectrometry (DXMS). DXMS identifies solvent-exposed protein surfaces; docking is used to create a 3-dimensional model of the protein–DNA interaction. We investigated the enzyme uracil-DNA glycosylase (UNG), which detects and cleaves uracil from DNA. UNG was incubated with a 30 bp DNA fragment containing a single uracil, giving the complex with the abasic DNA product. Compared with free UNG, the UNG–DNA complex showed increased solvent protection at the UNG active site and at two regions outside the active site: residues 210–220 and 251–264. Computational docking also identified these two DNA-binding surfaces, but neither shows DNA contact in UNG–DNA crystallographic structures. Our results can be explained by separation of the two DNA strands on one side of the active site. These non-sequence-specific DNA-binding surfaces may aid local uracil search, contribute to binding the abasic DNA product and help present the DNA product to APE-1, the next enzyme on the DNA-repair pathway. PMID:22492624
Structurally distinct toxicity inhibitors bind at common loci on β-amyloid fibril
Keshet, Ben; Gray, Jeffrey J; Good, Theresa A
2010-01-01
The accumulation of aggregated β-Amyloid (Aβ) in the brain is a hallmark of Alzheimer's disease and is thought to play a role in the neurotoxicity associated with the disease. The mechanism by which Aβ aggregates induce toxicity is uncertain. Nonetheless, several small molecules have been found to interact with Aβ fibrils and to prevent their toxicity. In this paper we studied the binding of these known toxicity inhibitors to Aβ fibrils, as a means to explore surfaces or loci on Aβ aggregates that may be significant in the mechanism of action of these inhibitors. We believe knowledge of these binding loci will provide insight into surfaces on the Aβ fibrils important in Aβ biological activity. The program DOCK was used to computationally dock the inhibitors to an Aβ fibril. The inhibitors docked at two shared binding loci, near Lys28 and at the C-termini near Asn27 and Val39. The docking predictions were experimentally verified using lysine specific chemical modifications and Aβ fibrils mutated at Asn27. We found that both Congo red and Myricetin, despite being structurally different, bound at the same two sites. Additionally, our data suggests that three additional Aβ toxicity inhibitors may also bind in one of the sites. Identification of these common binding loci provides targets on the Aβ fibril surface that can be tested in the future for their role in Aβ biological activity. PMID:20882638
NASA Astrophysics Data System (ADS)
Dai, Duoqian; Zhou, Lu; Zhu, Xiaohong; You, Rong; Zhong, Liangliang
2017-06-01
MutT homolog 1 (MTH1), a nudix phosphohydrolase enzyme participates in the process of repairing of DNA damage by hydrolyzing oxidized deoxy-ribonucleoside triphosphate in cancer cells, is regarded as a potential target for anticancer therapy. In order to seek for promising inhibitor of MTH1, structured-based pharmacophore and 3D-QSAR pharmacophore hypotheses combine with the ADMET analysis and Lipinski's rule of five were used for screening the public molecules libraries (Asinex, Ibscreen and Natural). Then molecular docking studies were performed on screened hits via various docking programs (Glide SP, GOLD and Glide XP), five molecules with three scaffolds were picked out as potential inhibitors against MTH1. Eventually, 20 ns molecular dynamics simulation was implemented on the potential inhibitors. The RMSD (Root Mean Square Deviation) values were used to illustrate bind stability between potential molecules and MTH1. Therefore, the five hits may be considered as promising MTH1 inhibitors by all above studies.
Kaipa, Balasankara Reddy; Shao, Huanjie; Schäfer, Gritt; Trinkewitz, Tatjana; Groth, Verena; Liu, Jianqi; Beck, Lothar; Bogdan, Sven; Abmayr, Susan M; Önel, Susanne-Filiz
2013-01-01
The formation of the larval body wall musculature of Drosophila depends on the asymmetric fusion of two myoblast types, founder cells (FCs) and fusion-competent myoblasts (FCMs). Recent studies have established an essential function of Arp2/3-based actin polymerization during myoblast fusion, formation of a dense actin focus at the site of fusion in FCMs, and a thin sheath of actin in FCs and/or growing muscles. The formation of these actin structures depends on recognition and adhesion of myoblasts that is mediated by cell surface receptors of the immunoglobulin superfamily. However, the connection of the cell surface receptors with Arp2/3-based actin polymerization is poorly understood. To date only the SH2-SH3 adaptor protein Crk has been suggested to link cell adhesion with Arp2/3-based actin polymerization in FCMs. Here, we propose that the SH2-SH3 adaptor protein Dock, like Crk, links cell adhesion with actin polymerization. We show that Dock is expressed in FCs and FCMs and colocalizes with the cell adhesion proteins Sns and Duf at cell-cell contact points. Biochemical data in this study indicate that different domains of Dock are involved in binding the cell adhesion molecules Duf, Rst, Sns and Hbs. We emphasize the importance of these interactions by quantifying the enhanced myoblast fusion defects in duf dock, sns dock and hbs dock double mutants. Additionally, we show that Dock interacts biochemically and genetically with Drosophila Scar, Vrp1 and WASp. Based on these data, we propose that Dock links cell adhesion in FCs and FCMs with either Scar- or Vrp1-WASp-dependent Arp2/3 activation.
Johnson, Jennifer L; He, Jing; Ramadass, Mahalakshmi; Pestonjamasp, Kersi; Kiosses, William B; Zhang, Jinzhong; Catz, Sergio D
2016-02-12
The small GTPase Rab11 and its effectors control trafficking of recycling endosomes, receptor replenishment and the up-regulation of adhesion and adaptor molecules at the plasma membrane. Despite recent advances in the understanding of Rab11-regulated mechanisms, the final steps mediating docking and fusion of Rab11-positive vesicles at the plasma membrane are not fully understood. Munc13-4 is a docking factor proposed to regulate fusion through interactions with SNAREs. In hematopoietic cells, including neutrophils, Munc13-4 regulates exocytosis in a Rab27a-dependent manner, but its possible regulation of other GTPases has not been explored in detail. Here, we show that Munc13-4 binds to Rab11 and regulates the trafficking of Rab11-containing vesicles. Using a novel Time-resolved Fluorescence Resonance Energy Transfer (TR-FRET) assay, we demonstrate that Munc13-4 binds to Rab11a but not to dominant negative Rab11a. Immunoprecipitation analysis confirmed the specificity of the interaction between Munc13-4 and Rab11, and super-resolution microscopy studies support the interaction of endogenous Munc13-4 with Rab11 at the single molecule level in neutrophils. Vesicular dynamic analysis shows the common spatio-temporal distribution of Munc13-4 and Rab11, while expression of a calcium binding-deficient mutant of Munc13-4 significantly affected Rab11 trafficking. Munc13-4-deficient neutrophils showed normal endocytosis, but the trafficking, up-regulation, and retention of Rab11-positive vesicles at the plasma membrane was significantly impaired. This correlated with deficient NADPH oxidase activation at the plasma membrane in response to Rab11 interference. Our data demonstrate that Munc13-4 is a Rab11-binding partner that regulates the final steps of Rab11-positive vesicle docking at the plasma membrane. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Ganguly, Aniruddha; Paul, Bijan Kumar; Ghosh, Soumen; Dalapati, Sasanka; Guchhait, Nikhil
2014-05-14
The present work demonstrates a detailed characterization of the interaction of a potential chloride channel blocker, 9-methyl anthroate (9-MA), with a model transport protein, Bovine Serum Albumin (BSA). The modulated photophysical properties of the emissive drug molecule within the microheterogeneous bio-environment of the protein have been exploited spectroscopically to monitor the probe-protein binding interaction. Apart from evaluating the binding constant, the probable location of the neutral molecule within the protein cavity (subdomain IB) is explored by an AutoDock-based blind docking simulation. The absence of the Red-Edge Effect has been corroborated by the enhanced lifetime of the probe, being substantially greater than the solvent reorientation time. A dip-and-rise characteristic of the rotational relaxation profile of the drug within the protein has been argued to originate from a significant difference in the lifetime as well as amplitude of the free and protein-bound drug molecule. Unfolding of the protein in the presence of the drug molecule has been probed by the decrease of the α-helical content, obtained via circular dichroism (CD) spectroscopy, which is also supported by the gradual loss of the esterase activity of the protein in the presence of the drug molecule.
2017-01-01
Computational screening is a method to prioritize small-molecule compounds based on the structural and biochemical attributes built from ligand and target information. Previously, we have developed a scalable virtual screening workflow to identify novel multitarget kinase/bromodomain inhibitors. In the current study, we identified several novel N-[3-(2-oxo-pyrrolidinyl)phenyl]-benzenesulfonamide derivatives that scored highly in our ensemble docking protocol. We quantified the binding affinity of these compounds for BRD4(BD1) biochemically and generated cocrystal structures, which were deposited in the Protein Data Bank. As the docking poses obtained in the virtual screening pipeline did not align with the experimental cocrystal structures, we evaluated the predictions of their precise binding modes by performing molecular dynamics (MD) simulations. The MD simulations closely reproduced the experimentally observed protein–ligand cocrystal binding conformations and interactions for all compounds. These results suggest a computational workflow to generate experimental-quality protein–ligand binding models, overcoming limitations of docking results due to receptor flexibility and incomplete sampling, as a useful starting point for the structure-based lead optimization of novel BRD4(BD1) inhibitors. PMID:28884163
[Virtual screening of anti-angiogenesis flavonoids from Sophora flavescens].
Chen, Xi-Xin; Liu, Yi; Huang, Rong; Zhao, Lin-Lin; Chen, Lei; Wang, Shu-Mei
2017-03-01
Angiogenesis is a dynamic, multi-step process. It is known that about 70 diseases are related to angiogenesis. Both the experimental and the literature reports showed that Sophora flavescens inhibit angiogenesis significantly, but the material basis and the mechanism of action have not been clear. In this study, molecular docking was used for screening of anti-angiogenesis flavonoids from the roots of S. flavescens. One handred and twenty-six flavonoids selected from S. flavescens were screened in the docking ligand database with six targets(VEGF-a,TEK,KDR,Flt1,FGFR1 and FGFR2) as the receptors. In addition, the small-molecule approved drugs of targets from DrugBank database were set as a reference with minimum score of each target's approved drugs as threshold. The LibDock module in Discovery Studio 2.5 (DS2.5) software was applied to screen the compounds. As a result, 37 compounds were screened out that their scores were higher than the minimum score of approved drugs as well as being in the top of 10%. At last the mechanism of flavonoids anti-angiogenesis was preliminarily revealed, which provided a new method for the development of angiogenesis inhibitor drugs. Copyright© by the Chinese Pharmaceutical Association.
Vibrational spectroscopic, molecular docking and quantum chemical studies on 6-aminonicotinamide
NASA Astrophysics Data System (ADS)
Mohamed Asath, R.; Premkumar, S.; Mathavan, T.; Milton Franklin Benial, A.
2017-04-01
The most stable molecular structure of 6-aminonicotinamide (ANA) molecule was predicted by conformational analysis and vibrational spectral analysis was carried out by experimental and theoretical methods. The calculated and experimentally observed vibrational frequencies were assigned and compared. The π→π* electronic transition of the molecule was predicted by theoretically calculated ultraviolet-visible spectra in gas and liquid phase and further validated experimentally using ethanol as a solvent. Frontier molecular orbitals analysis was carried out to probe the reactive nature of the ANA molecule and further the site selectivity to specific chemical reactions were effectively analyzed by Fukui function calculation. The molecular electrostatic potential surface was simulated to confirm the reactive sites of the molecule. The natural bond orbital analysis was also performed to understand the intra molecular interactions, which confirms the bioactivity of the ANA molecule. Neuroprotective nature of the ANA molecule was analyzed by molecular docking analysis and the ANA molecule was identified as a good inhibitor against Alzheimer's disease.
NASA Astrophysics Data System (ADS)
Sakkiah, Sugunadevi; Thangapandian, Sundarapandian; John, Shalini; Lee, Keun Woo
2011-01-01
This study was performed to find the selective chemical features for Aurora kinase-B inhibitors using the potent methods like Hip-Hop, virtual screening, homology modeling, molecular dynamics and docking. The best hypothesis, Hypo1 was validated toward a wide range of test set containing the selective inhibitors of Aurora kinase-B. Homology modeling and molecular dynamics studies were carried out to perform the molecular docking studies. The best hypothesis Hypo1 was used as a 3D query to screen the chemical databases. The screened molecules from the databases were sorted based on ADME and drug like properties. The selective hit compounds were docked and the hydrogen bond interactions with the critical amino acids present in Aurora kinase-B were compared with the chemical features present in the Hypo1. Finally, we suggest that the chemical features present in the Hypo1 are vital for a molecule to inhibit the Aurora kinase-B activity.
Harini, K.; Sowdhamini, Ramanathan
2015-01-01
Olfactory receptors (ORs) belong to the class A G-Protein Coupled Receptor superfamily of proteins. Unlike G-Protein Coupled Receptors, ORs exhibit a combinatorial response to odors/ligands. ORs display an affinity towards a range of odor molecules rather than binding to a specific set of ligands and conversely a single odorant molecule may bind to a number of olfactory receptors with varying affinities. The diversity in odor recognition is linked to the highly variable transmembrane domains of these receptors. The purpose of this study is to decode the odor-olfactory receptor interactions using in silico docking studies. In this study, a ligand (odor molecules) dataset of 125 molecules was used to carry out in silico docking using the GLIDE docking tool (SCHRODINGER Inc Pvt LTD). Previous studies, with smaller datasets of ligands, have shown that orthologous olfactory receptors respond to similarly-tuned ligands, but are dramatically different in their efficacy and potency. Ligand docking results were applied on homologous pairs (with varying sequence identity) of ORs from human and mouse genomes and ligand binding residues and the ligand profile differed among such related olfactory receptor sequences. This study revealed that homologous sequences with high sequence identity need not bind to the same/ similar ligand with a given affinity. A ligand profile has been obtained for each of the 20 receptors in this analysis which will be useful for expression and mutation studies on these receptors. PMID:26221959
Innovations in biomedical nanoengineering: nanowell array biosensor.
Seo, YoungTae; Jeong, Sunil; Lee, JuKyung; Choi, Hak Soo; Kim, Jonghan; Lee, HeaYeon
2018-01-01
Nanostructured biosensors have pioneered biomedical engineering by providing highly sensitive analyses of biomolecules. The nanowell array (NWA)-based biosensing platform is particularly innovative, where the small size of NWs within the array permits extremely profound sensing of a small quantity of biomolecules. Undoubtedly, the NWA geometry of a gently-sloped vertical wall is critical for selective docking of specific proteins without capillary resistances, and nanoprocessing has contributed to the fabrication of NWA electrodes on gold substrate such as molding process, e-beam lithography, and krypton-fluoride (KrF) stepper semiconductor method. The Lee group at the Mara Nanotech has established this NW-based biosensing technology during the past two decades by engineering highly sensitive electrochemical sensors and providing a broad range of detection methods from large molecules (e.g., cells or proteins) to small molecules (e.g., DNA and RNA). Nanosized gold dots in the NWA enhance the detection of electrochemical biosensing to the range of zeptomoles in precision against the complementary target DNA molecules. In this review, we discuss recent innovations in biomedical nanoengineering with a specific focus on novel NWA-based biosensors. We also describe our continuous efforts in achieving a label-free detection without non-specific binding while maintaining the activity and stability of immobilized biomolecules. This research can lay the foundation of a new platform for biomedical nanoengineering systems.
Innovations in biomedical nanoengineering: nanowell array biosensor
NASA Astrophysics Data System (ADS)
Seo, YoungTae; Jeong, Sunil; Lee, JuKyung; Choi, Hak Soo; Kim, Jonghan; Lee, HeaYeon
2018-04-01
Nanostructured biosensors have pioneered biomedical engineering by providing highly sensitive analyses of biomolecules. The nanowell array (NWA)-based biosensing platform is particularly innovative, where the small size of NWs within the array permits extremely profound sensing of a small quantity of biomolecules. Undoubtedly, the NWA geometry of a gently-sloped vertical wall is critical for selective docking of specific proteins without capillary resistances, and nanoprocessing has contributed to the fabrication of NWA electrodes on gold substrate such as molding process, e-beam lithography, and krypton-fluoride (KrF) stepper semiconductor method. The Lee group at the Mara Nanotech has established this NW-based biosensing technology during the past two decades by engineering highly sensitive electrochemical sensors and providing a broad range of detection methods from large molecules (e.g., cells or proteins) to small molecules (e.g., DNA and RNA). Nanosized gold dots in the NWA enhance the detection of electrochemical biosensing to the range of zeptomoles in precision against the complementary target DNA molecules. In this review, we discuss recent innovations in biomedical nanoengineering with a specific focus on novel NWA-based biosensors. We also describe our continuous efforts in achieving a label-free detection without non-specific binding while maintaining the activity and stability of immobilized biomolecules. This research can lay the foundation of a new platform for biomedical nanoengineering systems.
Sirisha, Gandreddi V D; Vijaya Rachel, K; Zaveri, Kunal; Yarla, Nagendra Sastry; Kiranmayi, P; Ganash, Magdah; Alkreathy, Huda Mohammad; Rajeh, Nisreen; Ashraf, Ghulam Md
2018-07-15
Therapeutic value of allelochemicals in inflammatory disorders and the potential drug targets need to be elucidated to alleviate tissue and vascular injury. Natural anti-inflammatory agents are known to cause minimal adverse effects. Presence of different secondary metabolites (allelochemicals), protease inhibitors like soap nut trypsin inhibitor (SNTI) from Sapindus trifoliatus and allied compounds from natural sources cannot be blithely ignored as natural therapeutics. In the present study, SNTI, a prospective protease inhibitor isolated from the seeds of Sapindus trifoliatus were subjected to docking against three isoforms of Phospholipase A 2 (PLA 2 ) molecules of the inflammatory pathways which are localized in the membrane, cytosol and pancreas. Eleven ligand molecules were selected from Sapindus trifoliatus and docked against membrane, cytosolic and pancreatic PLA 2 . Cytosolic PLA 2 showed a strong inhibition by Kampferol, a secondary metabolite from seed endosperm of Sapindus trifoliatus. SNTI showed best interaction with membrane PLA 2 in both in silico as well as in in vitro studies. SNTI showed IC 50 value of 29.02 μM in in vitro assay. Docking interaction profiles and in vitro studies validate selected molecules from Sapindus trifoliatus as immunomodulators and can mollify inflammatory responses. Copyright © 2018 Elsevier B.V. All rights reserved.
Antony, Priya; Vijayan, Ranjit
2015-01-01
Hyperglycemia in diabetic patients results in a diverse range of complications such as diabetic retinopathy, neuropathy, nephropathy and cardiovascular diseases. The role of aldose reductase (AR), the key enzyme in the polyol pathway, in these complications is well established. Due to notable side-effects of several drugs, phytochemicals as an alternative has gained considerable importance for the treatment of several ailments. In order to evaluate the inhibitory effects of dietary spices on AR, a collection of phytochemicals were identified from Zingiber officinale (ginger), Curcuma longa (turmeric) Allium sativum (garlic) and Trigonella foenum graecum (fenugreek). Molecular docking was performed for lead identification and molecular dynamics simulations were performed to study the dynamic behaviour of these protein-ligand interactions. Gingerenones A, B and C, lariciresinol, quercetin and calebin A from these spices exhibited high docking score, binding affinity and sustained protein-ligand interactions. Rescoring of protein ligand interactions at the end of MD simulations produced binding scores that were better than the initially docked conformations. Docking results, ligand interactions and ADMET properties of these molecules were significantly better than commercially available AR inhibitors like epalrestat, sorbinil and ranirestat. Thus, these natural molecules could be potent AR inhibitors.
Antony, Priya; Vijayan, Ranjit
2015-01-01
Hyperglycemia in diabetic patients results in a diverse range of complications such as diabetic retinopathy, neuropathy, nephropathy and cardiovascular diseases. The role of aldose reductase (AR), the key enzyme in the polyol pathway, in these complications is well established. Due to notable side-effects of several drugs, phytochemicals as an alternative has gained considerable importance for the treatment of several ailments. In order to evaluate the inhibitory effects of dietary spices on AR, a collection of phytochemicals were identified from Zingiber officinale (ginger), Curcuma longa (turmeric) Allium sativum (garlic) and Trigonella foenum graecum (fenugreek). Molecular docking was performed for lead identification and molecular dynamics simulations were performed to study the dynamic behaviour of these protein-ligand interactions. Gingerenones A, B and C, lariciresinol, quercetin and calebin A from these spices exhibited high docking score, binding affinity and sustained protein-ligand interactions. Rescoring of protein ligand interactions at the end of MD simulations produced binding scores that were better than the initially docked conformations. Docking results, ligand interactions and ADMET properties of these molecules were significantly better than commercially available AR inhibitors like epalrestat, sorbinil and ranirestat. Thus, these natural molecules could be potent AR inhibitors. PMID:26384019
A common feature pharmacophore for FDA-approved drugs inhibiting the Ebola virus.
Ekins, Sean; Freundlich, Joel S; Coffee, Megan
2014-01-01
We are currently faced with a global infectious disease crisis which has been anticipated for decades. While many promising biotherapeutics are being tested, the search for a small molecule has yet to deliver an approved drug or therapeutic for the Ebola or similar filoviruses that cause haemorrhagic fever. Two recent high throughput screens published in 2013 did however identify several hits that progressed to animal studies that are FDA approved drugs used for other indications. The current computational analysis uses these molecules from two different structural classes to construct a common features pharmacophore. This ligand-based pharmacophore implicates a possible common target or mechanism that could be further explored. A recent structure based design project yielded nine co-crystal structures of pyrrolidinone inhibitors bound to the viral protein 35 (VP35). When receptor-ligand pharmacophores based on the analogs of these molecules and the protein structures were constructed, the molecular features partially overlapped with the common features of solely ligand-based pharmacophore models based on FDA approved drugs. These previously identified FDA approved drugs with activity against Ebola were therefore docked into this protein. The antimalarials chloroquine and amodiaquine docked favorably in VP35. We propose that these drugs identified to date as inhibitors of the Ebola virus may be targeting VP35. These computational models may provide preliminary insights into the molecular features that are responsible for their activity against Ebola virus in vitro and in vivo and we propose that this hypothesis could be readily tested.
A common feature pharmacophore for FDA-approved drugs inhibiting the Ebola virus
Ekins, Sean; Freundlich, Joel S.; Coffee, Megan
2014-01-01
We are currently faced with a global infectious disease crisis which has been anticipated for decades. While many promising biotherapeutics are being tested, the search for a small molecule has yet to deliver an approved drug or therapeutic for the Ebola or similar filoviruses that cause haemorrhagic fever. Two recent high throughput screens published in 2013 did however identify several hits that progressed to animal studies that are FDA approved drugs used for other indications. The current computational analysis uses these molecules from two different structural classes to construct a common features pharmacophore. This ligand-based pharmacophore implicates a possible common target or mechanism that could be further explored. A recent structure based design project yielded nine co-crystal structures of pyrrolidinone inhibitors bound to the viral protein 35 (VP35). When receptor-ligand pharmacophores based on the analogs of these molecules and the protein structures were constructed, the molecular features partially overlapped with the common features of solely ligand-based pharmacophore models based on FDA approved drugs. These previously identified FDA approved drugs with activity against Ebola were therefore docked into this protein. The antimalarials chloroquine and amodiaquine docked favorably in VP35. We propose that these drugs identified to date as inhibitors of the Ebola virus may be targeting VP35. These computational models may provide preliminary insights into the molecular features that are responsible for their activity against Ebola virus in vitro and in vivo and we propose that this hypothesis could be readily tested. PMID:25653841
Discovery of Novel GPVI Receptor Antagonists by Structure-Based Repurposing
Taylor, Lewis; Vasudevan, Sridhar R.; Jones, Chris I.; Gibbins, Jonathan M.; Churchill, Grant C.; Campbell, R. Duncan; Coxon, Carmen H.
2014-01-01
Inappropriate platelet aggregation creates a cardiovascular risk that is largely managed with thienopyridines and aspirin. Although effective, these drugs carry risks of increased bleeding and drug ‘resistance’, underpinning a drive for new antiplatelet agents. To discover such drugs, one strategy is to identify a suitable druggable target and then find small molecules that modulate it. A good and unexploited target is the platelet collagen receptor, GPVI, which promotes thrombus formation. To identify inhibitors of GPVI that are safe and bioavailable, we docked a FDA-approved drug library into the GPVI collagen-binding site in silico. We now report that losartan and cinanserin inhibit GPVI-mediated platelet activation in a selective, competitive and dose-dependent manner. This mechanism of action likely underpins the cardioprotective effects of losartan that could not be ascribed to its antihypertensive effects. We have, therefore, identified small molecule inhibitors of GPVI-mediated platelet activation, and also demonstrated the utility of structure-based repurposing. PMID:24971515
Naringenin and quercetin--potential anti-HCV agents for NS2 protease targets.
Lulu, S Sajitha; Thabitha, A; Vino, S; Priya, A Mohana; Rout, Madhusmita
2016-01-01
Nonstructural proteins of hepatitis C virus had drawn much attention for the scientific fraternity in drug discovery due to its important role in the disease. 3D structure of the protein was predicted using molecular modelling protocol. Docking studies of 10 medicinal plant compounds and three drugs available in the market (control) with NS2 protease were employed by using rigid docking approach of AutoDock 4.2. Among the molecules tested for docking study, naringenin and quercetin revealed minimum binding energy of - 7.97 and - 7.95 kcal/mol with NS2 protease. All the ligands were docked deeply within the binding pocket region of the protein. The docking study results showed that these compounds are potential inhibitors of the target; and also all these docked compounds have good inhibition constant, vdW+Hbond+desolv energy with best RMSD value.
Computer Aided Drug Design: Success and Limitations.
Baig, Mohammad Hassan; Ahmad, Khurshid; Roy, Sudeep; Ashraf, Jalaluddin Mohammad; Adil, Mohd; Siddiqui, Mohammad Haris; Khan, Saif; Kamal, Mohammad Amjad; Provazník, Ivo; Choi, Inho
2016-01-01
Over the last few decades, computer-aided drug design has emerged as a powerful technique playing a crucial role in the development of new drug molecules. Structure-based drug design and ligand-based drug design are two methods commonly used in computer-aided drug design. In this article, we discuss the theory behind both methods, as well as their successful applications and limitations. To accomplish this, we reviewed structure based and ligand based virtual screening processes. Molecular dynamics simulation, which has become one of the most influential tool for prediction of the conformation of small molecules and changes in their conformation within the biological target, has also been taken into account. Finally, we discuss the principles and concepts of molecular docking, pharmacophores and other methods used in computer-aided drug design.
Predicting bioactive conformations and binding modes of macrocycles
NASA Astrophysics Data System (ADS)
Anighoro, Andrew; de la Vega de León, Antonio; Bajorath, Jürgen
2016-10-01
Macrocyclic compounds experience increasing interest in drug discovery. It is often thought that these large and chemically complex molecules provide promising candidates to address difficult targets and interfere with protein-protein interactions. From a computational viewpoint, these molecules are difficult to treat. For example, flexible docking of macrocyclic compounds is hindered by the limited ability of current docking approaches to optimize conformations of extended ring systems for pose prediction. Herein, we report predictions of bioactive conformations of macrocycles using conformational search and binding modes using docking. Conformational ensembles generated using specialized search technique of about 70 % of the tested macrocycles contained accurate bioactive conformations. However, these conformations were difficult to identify on the basis of conformational energies. Moreover, docking calculations with limited ligand flexibility starting from individual low energy conformations rarely yielded highly accurate binding modes. In about 40 % of the test cases, binding modes were approximated with reasonable accuracy. However, when conformational ensembles were subjected to rigid body docking, an increase in meaningful binding mode predictions to more than 50 % of the test cases was observed. Electrostatic effects did not contribute to these predictions in a positive or negative manner. Rather, achieving shape complementarity at macrocycle-target interfaces was a decisive factor. In summary, a combined computational protocol using pre-computed conformational ensembles of macrocycles as a starting point for docking shows promise in modeling binding modes of macrocyclic compounds.
Knowledge-Based Methods To Train and Optimize Virtual Screening Ensembles
2016-01-01
Ensemble docking can be a successful virtual screening technique that addresses the innate conformational heterogeneity of macromolecular drug targets. Yet, lacking a method to identify a subset of conformational states that effectively segregates active and inactive small molecules, ensemble docking may result in the recommendation of a large number of false positives. Here, three knowledge-based methods that construct structural ensembles for virtual screening are presented. Each method selects ensembles by optimizing an objective function calculated using the receiver operating characteristic (ROC) curve: either the area under the ROC curve (AUC) or a ROC enrichment factor (EF). As the number of receptor conformations, N, becomes large, the methods differ in their asymptotic scaling. Given a set of small molecules with known activities and a collection of target conformations, the most resource intense method is guaranteed to find the optimal ensemble but scales as O(2N). A recursive approximation to the optimal solution scales as O(N2), and a more severe approximation leads to a faster method that scales linearly, O(N). The techniques are generally applicable to any system, and we demonstrate their effectiveness on the androgen nuclear hormone receptor (AR), cyclin-dependent kinase 2 (CDK2), and the peroxisome proliferator-activated receptor δ (PPAR-δ) drug targets. Conformations that consisted of a crystal structure and molecular dynamics simulation cluster centroids were used to form AR and CDK2 ensembles. Multiple available crystal structures were used to form PPAR-δ ensembles. For each target, we show that the three methods perform similarly to one another on both the training and test sets. PMID:27097522
Molecular Docking Study on Galantamine Derivatives as Cholinesterase Inhibitors.
Atanasova, Mariyana; Yordanov, Nikola; Dimitrov, Ivan; Berkov, Strahil; Doytchinova, Irini
2015-06-01
A training set of 22 synthetic galantamine derivatives binding to acetylcholinesterase was docked by GOLD and the protocol was optimized in terms of scoring function, rigidity/flexibility of the binding site, presence/absence of a water molecule inside and radius of the binding site. A moderate correlation was found between the affinities of compounds expressed as pIC50 values and their docking scores. The optimized docking protocol was validated by an external test set of 11 natural galantamine derivatives and the correlation coefficient between the docking scores and the pIC50 values was 0.800. The derived relationship was used to analyze the interactions between galantamine derivatives and AChE. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Babaoglu, Kerim; Simeonov, Anton; Irwin, John J.; Nelson, Michael E.; Feng, Brian; Thomas, Craig J.; Cancian, Laura; Costi, M. Paola; Maltby, David A.; Jadhav, Ajit; Inglese, James; Austin, Christopher P.; Shoichet, Brian K.
2009-01-01
High-throughput screening (HTS) is widely used in drug discovery. Especially for screens of unbiased libraries, false positives can dominate “hit lists”; their origins are much debated. Here we determine the mechanism of every active hit from a screen of 70,563 unbiased molecules against β-lactamase using quantitative HTS (qHTS). Of the 1274 initial inhibitors, 95% were detergent-sensitive and were classified as aggregators. Among the 70 remaining were 25 potent, covalent-acting β-lactams. Mass spectra, counter-screens, and crystallography identified 12 as promiscuous covalent inhibitors. The remaining 33 were either aggregators or irreproducible. No specific reversible inhibitors were found. We turned to molecular docking to prioritize molecules from the same library for testing at higher concentrations. Of 16 tested, 2 were modest inhibitors. Subsequent X-ray structures corresponded to the docking prediction. Analog synthesis improved affinity to 8 µM. These results suggest that it may be the physical behavior of organic molecules, not their reactivity, that accounts for most screening artifacts. Structure-based methods may prioritize weak-but-novel chemotypes in unbiased library screens. PMID:18333608
Molecular docking and 3D-QSAR studies on inhibitors of DNA damage signaling enzyme human PARP-1.
Fatima, Sabiha; Bathini, Raju; Sivan, Sree Kanth; Manga, Vijjulatha
2012-08-01
Poly (ADP-ribose) polymerase-1 (PARP-1) operates in a DNA damage signaling network. Molecular docking and three dimensional-quantitative structure activity relationship (3D-QSAR) studies were performed on human PARP-1 inhibitors. Docked conformation obtained for each molecule was used as such for 3D-QSAR analysis. Molecules were divided into a training set and a test set randomly in four different ways, partial least square analysis was performed to obtain QSAR models using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). Derived models showed good statistical reliability that is evident from their r², q²(loo) and r²(pred) values. To obtain a consensus for predictive ability from all the models, average regression coefficient r²(avg) was calculated. CoMFA and CoMSIA models showed a value of 0.930 and 0.936, respectively. Information obtained from the best 3D-QSAR model was applied for optimization of lead molecule and design of novel potential inhibitors.
Structurally distinct toxicity inhibitors bind at common loci on β-amyloid fibril.
Keshet, Ben; Gray, Jeffrey J; Good, Theresa A
2010-12-01
The accumulation of aggregated β-Amyloid (Aβ) in the brain is a hallmark of Alzheimer's disease and is thought to play a role in the neurotoxicity associated with the disease. The mechanism by which Aβ aggregates induce toxicity is uncertain. Nonetheless, several small molecules have been found to interact with Aβ fibrils and to prevent their toxicity. In this paper we studied the binding of these known toxicity inhibitors to Aβ fibrils, as a means to explore surfaces or loci on Aβ aggregates that may be significant in the mechanism of action of these inhibitors. We believe knowledge of these binding loci will provide insight into surfaces on the Aβ fibrils important in Aβ biological activity. The program DOCK was used to computationally dock the inhibitors to an Aβ fibril. The inhibitors docked at two shared binding loci, near Lys28 and at the C-termini near Asn27 and Val39. The docking predictions were experimentally verified using lysine specific chemical modifications and Aβ fibrils mutated at Asn27. We found that both Congo red and Myricetin, despite being structurally different, bound at the same two sites. Additionally, our data suggests that three additional Aβ toxicity inhibitors may also bind in one of the sites. Identification of these common binding loci provides targets on the Aβ fibril surface that can be tested in the future for their role in Aβ biological activity. Copyright © 2010 The Protein Society.
Yang, Hongqin; Huang, Yanmei; He, Jiawei; Li, Shanshan; Tang, Bin; Li, Hui
2016-09-15
In this study, lafutidine (LAF) was used as a model compound to investigate the binding mechanism between antiulcer drugs and human serum albumin (HSA) through various techniques, including STD-NMR, WaterLOGSY-NMR, (1)H NMR relaxation times, tr-NOESY, molecule docking calculation, FT-IR spectroscopy, and CD spectroscopy. The analyses of STD-NMR, which derived relative STD (%) intensities, and WaterLOGSY-NMR, determined that LAF bound to HSA. In particular, the pyridyl group of LAF was in close contact with HSA binding pocket, whereas furyl group had a secondary binding. Competitive STD-NMR and WaterLOGSY-NMR experiments, with warifarin and ibuprofen as site-selective probes, indicated that LAF preferentially bound to site II in the hydrophobic subdomains IIIA of HSA. The bound conformation of LAF at the HSA binding site was further elucidated by transferred NOE effect (tr-NOESY) experiment. Relaxation experiments provided quantitative information about the relationship between the affinity and structure of LAF. The molecule docking simulations conducted with AutoDock and the restraints derived from STD results led to three-dimensional models that were consistent with the NMR spectroscopic data. The presence of hydrophobic forces and hydrogen interactions was also determined. Additionally, FT-IR and CD spectroscopies showed that LAF induced secondary structure changes of HSA. Copyright © 2016 Elsevier Inc. All rights reserved.
Molecular docking study, synthesis and biological evaluation of Mannich bases as Hsp90 inhibitors.
Gupta, Sayan Dutta; Bommaka, Manish Kumar; Mazaira, Gisela I; Galigniana, Mario D; Subrahmanyam, Chavali Venkata Satya; Gowrishankar, Naryanasamy Lachmana; Raghavendra, Nulgumnalli Manjunathaiah
2015-09-01
The ubiquitously expressed heat shock protein 90 is an encouraging target for the development of novel anticancer agents. In a program directed towards uncovering novel chemical scaffolds against Hsp90, we performed molecular docking studies using Tripos-Sybyl drug designing software by including the required conserved water molecules. The results of the docking studies predicted Mannich bases derived from 2,4-dihydroxy acetophenone/5-chloro 2,4-dihydroxy acetophenone as potential Hsp90 inhibitors. Subsequently, a few of them were synthesized (1-6) and characterized by IR, (1)H NMR, (13)C NMR and mass spectral analysis. The synthesized Mannich compounds were evaluated for their potential to suppress Hsp90 ATPase activity by the colorimetric Malachite green assay. Subsequently, the molecules were screened for their antiproilferative effect against PC3 pancreatic carcinoma cells by adopting the 3-(4,5-dimethythiazol- 2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay method. The activity profile of the identified derivatives correlated well with their docking results. Copyright © 2015 Elsevier B.V. All rights reserved.
Shafique, Shagufta; Rashid, Sajid
2017-03-01
The critical role of βTrCP1 in cancer development makes it a discerning target for the development of small drug like molecules. Currently, no inhibitor exists that is able to target its substrate binding site. Through molecular docking and dynamics simulation assays, we explored the comparative binding pattern of βTrCP1-WD40 domain with ACV and its phospho-derivatives (ACVMP, ACVDP and ACVTP). Consequently, through principal component analysis, βTrCP1-ACVTP was found to be more stable complex by obscuring a reduced conformational space than other systems. Thus based on the residual contribution and hydrogen bonding pattern, ACVTP was considered as a noteworthy inhibitor which demarcated binding in the cleft formed by βTrCP1-WD40 specific β-propeller. The outcomes of this study may provide a platform for rational design of specific and potent inhibitor against βTrCP1, with special emphasis on anticancer activity. Copyright © 2016 Elsevier Inc. All rights reserved.
Protocols for Molecular Modeling with Rosetta3 and RosettaScripts
2016-01-01
Previously, we published an article providing an overview of the Rosetta suite of biomacromolecular modeling software and a series of step-by-step tutorials [Kaufmann, K. W., et al. (2010) Biochemistry 49, 2987–2998]. The overwhelming positive response to this publication we received motivates us to here share the next iteration of these tutorials that feature de novo folding, comparative modeling, loop construction, protein docking, small molecule docking, and protein design. This updated and expanded set of tutorials is needed, as since 2010 Rosetta has been fully redesigned into an object-oriented protein modeling program Rosetta3. Notable improvements include a substantially improved energy function, an XML-like language termed “RosettaScripts” for flexibly specifying modeling task, new analysis tools, the addition of the TopologyBroker to control conformational sampling, and support for multiple templates in comparative modeling. Rosetta’s ability to model systems with symmetric proteins, membrane proteins, noncanonical amino acids, and RNA has also been greatly expanded and improved. PMID:27490953
Novel hits for acetylcholinesterase inhibition derived by docking-based screening on ZINC database.
Doytchinova, Irini; Atanasova, Mariyana; Valkova, Iva; Stavrakov, Georgi; Philipova, Irena; Zhivkova, Zvetanka; Zheleva-Dimitrova, Dimitrina; Konstantinov, Spiro; Dimitrov, Ivan
2018-12-01
The inhibition of the enzyme acetylcholinesterase (AChE) increases the levels of the neurotransmitter acetylcholine and symptomatically improves the affected cognitive function. In the present study, we searched for novel AChE inhibitors by docking-based virtual screening of the standard lead-like set of ZINC database containing more than 6 million small molecules using GOLD software. The top 10 best-scored hits were tested in vitro for AChE affinity, neurotoxicity, GIT and BBB permeability. The main pharmacokinetic parameters like volume of distribution, free fraction in plasma, total clearance, and half-life were predicted by previously derived models. Nine of the compounds bind to the enzyme with affinities from 0.517 to 0.735 µM, eight of them are non-toxic. All hits permeate GIT and BBB and bind extensively to plasma proteins. Most of them are low-clearance compounds. In total, seven of the 10 hits are promising for further lead optimisation. These are structures with ZINC IDs: 00220177, 44455618, 66142300, 71804814, 72065926, 96007907, and 97159977.
Hameed, Abdul; Khan, Khalid Mohammed; Zehra, Syeda Tazeen; Ahmed, Ramasa; Shafiq, Zahid; Bakht, Syeda Mahwish; Yaqub, Muhammad; Hussain, Mazhar; de la Vega de León, Antonio; Furtmann, Norbert; Bajorath, Jürgen; Shad, Hazoor Ahmad; Tahir, Muhammad Nawaz; Iqbal, Jamshed
2015-08-01
Urease is an important enzyme which breaks urea into ammonia and carbon dioxide during metabolic processes. However, an elevated activity of urease causes various complications of clinical importance. The inhibition of urease activity with small molecules as inhibitors is an effective strategy for therapeutic intervention. Herein, we have synthesized a series of 19 benzofurane linked N-phenyl semithiocarbazones (3a-3s). All the compounds were screened for enzyme inhibitor activity against Jack bean urease. The synthesized N-phenyl thiosemicarbazones had varying activity levels with IC50 values between 0.077 ± 0.001 and 24.04 ± 0.14 μM compared to standard inhibitor, thiourea (IC50 = 21 ± 0.11 μM). The activities of these compounds may be due to their close resemblance of thiourea. A docking study with Jack bean urease (PDB ID: 4H9M) revealed possible binding modes of N-phenyl thiosemicarbazones. Copyright © 2015 Elsevier Inc. All rights reserved.
Evaluation of a novel virtual screening strategy using receptor decoy binding sites.
Patel, Hershna; Kukol, Andreas
2016-08-23
Virtual screening is used in biomedical research to predict the binding affinity of a large set of small organic molecules to protein receptor targets. This report shows the development and evaluation of a novel yet straightforward attempt to improve this ranking in receptor-based molecular docking using a receptor-decoy strategy. This strategy includes defining a decoy binding site on the receptor and adjusting the ranking of the true binding-site virtual screen based on the decoy-site screen. The results show that by docking against a receptor-decoy site with Autodock Vina, improved Receiver Operator Characteristic Enrichment (ROCE) was achieved for 5 out of fifteen receptor targets investigated, when up to 15 % of a decoy site rank list was considered. No improved enrichment was seen for 7 targets, while for 3 targets the ROCE was reduced. The extent to which this strategy can effectively improve ligand prediction is dependent on the target receptor investigated.
Kesharwani, Rajesh Kumar; Singh, Durg Vijay; Misra, Krishna
2013-01-01
Cysteine proteases (falcipains), a papain-family of enzymes of Plasmodium falciparum, are responsible for haemoglobin degradation and thus necessary for its survival during asexual life cycle phase inside the human red blood cells while remaining non-functional for the human body. Therefore, these can act as potential targets for designing antimalarial drugs. The P. falciparum cysteine proteases, falcipain-II and falcipain- III are the enzymes which initiate the haemoglobin degradation, therefore, have been selected as targets. In the present study, we have designed new leupeptin analogues and subjected to virtual screening using Glide at the active site cavity of falcipain-II and falcipain-III to select the best docked analogues on the basis of Glide score and also compare with the result of AutoDock. The proposed analogues can be synthesized and tested in vivo as future potent antimalarial drugs. Protein falcipain-II and falcipain-III together with bounds inhibitors epoxysuccinate E64 (E64) and leupeptin respectively were retrieved from protein data bank (PDB) and latter leupeptin was used as lead molecule to design new analogues by using Ligbuilder software and refined the molecules on the basis of Lipinski rule of five and fitness score parameters. All the designed leupeptin analogues were screened via docking simulation at the active site cavity of falcipain-II and falcipain-III by using Glide software and AutoDock. The 104 new leupeptin-based antimalarial ligands were designed using structure-based drug designing approach with the help of Ligbuilder and subjected for virtual screening via docking simulation method against falcipain-II and falcipain-III receptor proteins. The Glide docking results suggest that the ligands namely result_037 shows good binding and other two, result_044 and result_042 show nearly similar binding than naturally occurring PDB bound ligand E64 against falcipain-II and in case of falcipain-III, 15 designed leupeptin analogues having better binding affinity compared to the PDB bound inhibitor of falcipain-III. The docking simulation results of falcipain-III with designed leupeptin analogues using Glide compared with AutoDock and find 80% similarity as better binder than leupeptin. These results further highlight new leupeptin analogues as promising future inhibitors for chemotherapeutic prevention of malaria. The result of Glide for falcipain-III has been compared with the result of AutoDock and finds very less differences in their order of binding affinity. Although there are no extra hydrogen bonds, however, equal number of hydrogen bonds with variable strength as compared to leupeptin along with the enhanced hydrophobic and electrostatic interactions in case of analogues supports our study that it holds the ligand molecules strongly within the receptor. The comparative e-pharmacophoric study also suggests and supports our predictions regarding the minimum features required in ligand molecule to behave as falcipain- III inhibitors and is also helpful in screening the large database as future antimalarial inhibitors.
PTools: an opensource molecular docking library
Saladin, Adrien; Fiorucci, Sébastien; Poulain, Pierre; Prévost, Chantal; Zacharias, Martin
2009-01-01
Background Macromolecular docking is a challenging field of bioinformatics. Developing new algorithms is a slow process generally involving routine tasks that should be found in a robust library and not programmed from scratch for every new software application. Results We present an object-oriented Python/C++ library to help the development of new docking methods. This library contains low-level routines like PDB-format manipulation functions as well as high-level tools for docking and analyzing results. We also illustrate the ease of use of this library with the detailed implementation of a 3-body docking procedure. Conclusion The PTools library can handle molecules at coarse-grained or atomic resolution and allows users to rapidly develop new software. The library is already in use for protein-protein and protein-DNA docking with the ATTRACT program and for simulation analysis. This library is freely available under the GNU GPL license, together with detailed documentation. PMID:19409097
PTools: an opensource molecular docking library.
Saladin, Adrien; Fiorucci, Sébastien; Poulain, Pierre; Prévost, Chantal; Zacharias, Martin
2009-05-01
Macromolecular docking is a challenging field of bioinformatics. Developing new algorithms is a slow process generally involving routine tasks that should be found in a robust library and not programmed from scratch for every new software application. We present an object-oriented Python/C++ library to help the development of new docking methods. This library contains low-level routines like PDB-format manipulation functions as well as high-level tools for docking and analyzing results. We also illustrate the ease of use of this library with the detailed implementation of a 3-body docking procedure. The PTools library can handle molecules at coarse-grained or atomic resolution and allows users to rapidly develop new software. The library is already in use for protein-protein and protein-DNA docking with the ATTRACT program and for simulation analysis. This library is freely available under the GNU GPL license, together with detailed documentation.
NASA Astrophysics Data System (ADS)
Asath, R. Mohamed; Rekha, T. N.; Premkumar, S.; Mathavan, T.; Benial, A. Milton Franklin
2016-12-01
Conformational analysis was carried out for N-(5-aminopyridin-2-yl)acetamide (APA) molecule. The most stable, optimized structure was predicted by the density functional theory calculations using the B3LYP functional with cc-pVQZ basis set. The optimized structural parameters and vibrational frequencies were calculated. The experimental and theoretical vibrational frequencies were assigned and compared. Ultraviolet-visible spectrum was simulated and validated experimentally. The molecular electrostatic potential surface was simulated. Frontier molecular orbitals and related molecular properties were computed, which reveals that the higher molecular reactivity and stability of the APA molecule and further density of states spectrum was simulated. The natural bond orbital analysis was also performed to confirm the bioactivity of the APA molecule. Antidiabetic activity was studied based on the molecular docking analysis and the APA molecule was identified that it can act as a good inhibitor against diabetic nephropathy.
Velazquez, Hector A; Riccardi, Demian; Xiao, Zhousheng; Quarles, Leigh Darryl; Yates, Charless Ryan; Baudry, Jerome; Smith, Jeremy C
2018-02-01
Ensemble docking is now commonly used in early-stage in silico drug discovery and can be used to attack difficult problems such as finding lead compounds which can disrupt protein-protein interactions. We give an example of this methodology here, as applied to fibroblast growth factor 23 (FGF23), a protein hormone that is responsible for regulating phosphate homeostasis. The first small-molecule antagonists of FGF23 were recently discovered by combining ensemble docking with extensive experimental target validation data (Science Signaling, 9, 2016, ra113). Here, we provide a detailed account of how ensemble-based high-throughput virtual screening was used to identify the antagonist compounds discovered in reference (Science Signaling, 9, 2016, ra113). Moreover, we perform further calculations, redocking those antagonist compounds identified in reference (Science Signaling, 9, 2016, ra113) that performed well on drug-likeness filters, to predict possible binding regions. These predicted binding modes are rescored with the molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) approach to calculate the most likely binding site. Our findings suggest that the antagonist compounds antagonize FGF23 through the disruption of protein-protein interactions between FGF23 and fibroblast growth factor receptor (FGFR). © 2017 John Wiley & Sons A/S.
Hot-spot analysis for drug discovery targeting protein-protein interactions.
Rosell, Mireia; Fernández-Recio, Juan
2018-04-01
Protein-protein interactions are important for biological processes and pathological situations, and are attractive targets for drug discovery. However, rational drug design targeting protein-protein interactions is still highly challenging. Hot-spot residues are seen as the best option to target such interactions, but their identification requires detailed structural and energetic characterization, which is only available for a tiny fraction of protein interactions. Areas covered: In this review, the authors cover a variety of computational methods that have been reported for the energetic analysis of protein-protein interfaces in search of hot-spots, and the structural modeling of protein-protein complexes by docking. This can help to rationalize the discovery of small-molecule inhibitors of protein-protein interfaces of therapeutic interest. Computational analysis and docking can help to locate the interface, molecular dynamics can be used to find suitable cavities, and hot-spot predictions can focus the search for inhibitors of protein-protein interactions. Expert opinion: A major difficulty for applying rational drug design methods to protein-protein interactions is that in the majority of cases the complex structure is not available. Fortunately, computational docking can complement experimental data. An interesting aspect to explore in the future is the integration of these strategies for targeting PPIs with large-scale mutational analysis.
Ding, Lina; Wang, Zhi-Zheng; Sun, Xu-Dong; Yang, Jing; Ma, Chao-Ya; Li, Wen; Liu, Hong-Min
2017-08-01
Recently, Histone Lysine Specific Demethylase 1 (LSD1) was regarded as a promising anticancer target for the novel drug discovery. And several small molecules as LSD1 inhibitors in different structures have been reported. In this work, we carried out a molecular modeling study on the 6-aryl-5-cyano-pyrimidine fragment LSD1 inhibitors using three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking and molecular dynamics simulations. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were used to generate 3D-QSAR models. The results show that the best CoMFA model has q 2 =0.802, r 2 ncv =0.979, and the best CoMSIA model has q 2 =0.799, r 2 ncv =0.982. The electrostatic, hydrophobic and H-bond donor fields play important roles in the models. Molecular docking studies predict the binding mode and the interactions between the ligand and the receptor protein. Molecular dynamics simulations results reveal that the complex of the ligand and the receptor protein are stable at 300K. All the results can provide us more useful information for our further drug design. Copyright © 2017. Published by Elsevier Ltd.
Ramamoorthy, Divya; Turos, Edward; Guida, Wayne C
2013-05-24
FabH (Fatty acid biosynthesis, enzyme H, also referred to as β-ketoacyl-ACP-synthase III) is a key condensing enzyme in the type II fatty acid synthesis (FAS) system. The FAS pathway in bacteria is essential for growth and survival and vastly differs from the human FAS pathway. Enzymes involved in this pathway have arisen as promising biomolecular targets for discovery of new antibacterial drugs. However, currently there are no clinical drugs that selectively target FabH, and known inhibitors of FabH all act within the active site. FabH exerts its catalytic function as a dimer, which could potentially be exploited in developing new strategies for inhibitor design. The aim of this study was to elucidate structural details of the dimer interface region by means of computational modeling, including molecular dynamics (MD) simulations, in order to derive information for the structure-based design of new FabH inhibitors. The dimer interface region was analyzed by MD simulations, trajectory snapshots were collected for further analyses, and docking studies were performed with potential small molecule disruptors. Alanine mutation and docking studies strongly suggest that the dimer interface could be a potential target for anti-infection drug discovery.
Discovery and Validation of a New Class of Small Molecule Toll-Like Receptor 4 (TLR4) Inhibitors
Neal, Matthew D.; Jia, Hongpeng; Eyer, Benjamin; Good, Misty; Guerriero, Christopher J.; Sodhi, Chhinder P.; Afrazi, Amin; Prindle, Thomas; Ma, Congrong; Branca, Maria; Ozolek, John; Brodsky, Jeffrey L.; Wipf, Peter; Hackam, David J.
2013-01-01
Many inflammatory diseases may be linked to pathologically elevated signaling via the receptor for lipopolysaccharide (LPS), toll-like receptor 4 (TLR4). There has thus been great interest in the discovery of TLR4 inhibitors as potential anti-inflammatory agents. Recently, the structure of TLR4 bound to the inhibitor E5564 was solved, raising the possibility that novel TLR4 inhibitors that target the E5564-binding domain could be designed. We utilized a similarity search algorithm in conjunction with a limited screening approach of small molecule libraries to identify compounds that bind to the E5564 site and inhibit TLR4. Our lead compound, C34, is a 2-acetamidopyranoside (MW 389) with the formula C17H27NO9, which inhibited TLR4 in enterocytes and macrophages in vitro, and reduced systemic inflammation in mouse models of endotoxemia and necrotizing enterocolitis. Molecular docking of C34 to the hydrophobic internal pocket of the TLR4 co-receptor MD-2 demonstrated a tight fit, embedding the pyran ring deep inside the pocket. Strikingly, C34 inhibited LPS signaling ex-vivo in human ileum that was resected from infants with necrotizing enterocolitis. These findings identify C34 and the β-anomeric cyclohexyl analog C35 as novel leads for small molecule TLR4 inhibitors that have potential therapeutic benefit for TLR4-mediated inflammatory diseases. PMID:23776545
NASA Astrophysics Data System (ADS)
Suresh, D. M.; Amalanathan, M.; Hubert Joe, I.; Bena Jothy, V.; Diao, Yun-Peng
2014-09-01
The molecular structure, vibrational analysis and molecular docking analysis of the 3-Methyl-1,4-dioxo-1,4-dihydronaphthalen-2-yl 4-aminobenzoate (MDDNAB) molecule have been carried out using FT-IR and FT-Raman spectroscopic techniques and DFT method. The equilibrium geometry, harmonic vibrational wave numbers, various bonding features have been computed using density functional method. The calculated molecular geometry has been compared with experimental data. The detailed interpretation of the vibrational spectra has been carried out by using VEDA program. The hyper-conjugative interactions and charge delocalization have been analyzed using natural bond orbital (NBO) analysis. The simulated FT-IR and FT-Raman spectra satisfactorily coincide with the experimental spectra. The PES and charge analysis have been made. The molecular docking was done to identify the binding energy and the Hydrogen bonding with the cancer protein molecule.
Ahmed, Bilal; Ali Ashfaq, Usman; Usman Mirza, Muhammad
2018-05-01
Obesity is the worst health risk worldwide, which is linked to a number of diseases. Pancreatic lipase is considered as an affective cause of obesity and can be a major target for controlling the obesity. The present study was designed to find out best phytochemicals against pancreatic lipase through molecular docking combined with molecular dynamics (MD) simulation. For this purpose, a total of 3770 phytochemicals were docked against pancreatic lipase and ranked them on the basis of binding affinity. Finally, 10 molecules (Kushenol K, Rosmarinic acid, Reserpic acid, Munjistin, Leachianone G, Cephamycin C, Arctigenin, 3-O-acetylpadmatin, Geniposide and Obtusin) were selected that showed strong bonding with the pancreatic lipase. MD simulations were performed on top five compounds using AMBER16. The simulated complexes revealed stability and ligands remained inside the binding pocket. This study concluded that these finalised molecules can be used as drug candidate to control obesity.
NASA Astrophysics Data System (ADS)
Therasa Alphonsa, A.; Loganathan, C.; Athavan Alias Anand, S.; Kabilan, S.
2017-02-01
The compound (E)-1-(benzo [d] [1, 3] dioxol-6-yl)-3-(6-methoxy naphthalen-2-yl) prop-2-en-1-one (AKN) was synthesized and characterized by FT-IR, NMR, and UV-Vis spectrometer. The optimized molecular geometry, bond lengths, bond angles, atomic charges, harmonic vibrational wave numbers and intensities of vibrational bonds of the title compound have been investigated by Time dependent- Density Functional Theory (TD-DFT) using a standard B3LYP method with 6-31 G (d, p) basis set available in the Gaussian 09W package. 1H and 13C NMR chemical shifts of the molecule were calculated using Gauge-independent atomic orbital method (GIAO). Experimental excitation energies of the molecules were matched with the theoretically calculated energies. The atomic charge distributions of the various atoms present in the AKN were obtained by Mulliken charge population analysis. The Molecular Electrostatic Potential (MEP) analysis reveals the sites for electrophilic attack and nucleophilic reactions in the molecule. The difference between the observed and scaled frequencies was small. The HOMO to LUMO transition implies an electron density transfer. The intramolecular contacts have been interpreted using Natural Bond Orbital (NBO) analysis. The calculation results were applied to simulate spectra of the title compound, which show excellent agreement with observed spectra. To provide information about the interactions between human cytochrome protein and the novel compound theoretically, docking studies were carried out using Schrödinger software.
Molecular dynamics guided development of indole based dual inhibitors of EGFR (T790M) and c-MET.
Singh, Pankaj Kumar; Silakari, Om
2018-04-25
Secondary acquired mutation in EGFR, i.e. EGFR T790M and amplification of c-MET form the two key components of resistant NSCLC. Thus, previously published pharmacophore models of EGFR T790M and c-MET were utilized to screen an in-house database. On the basis of fitness score, indole-pyrimidine scaffold was selected for further evaluation. Derivatives of indole-pyrimidine scaffold with variedly substituted aryl substitutions were sketched and then docked in both the targets. These docked complexes were then subjected to molecular dynamic simulations, to study the stability of the complexes and evaluate orientations of the designed molecules in the catalytic domain of the selected kinases. Afterwards, the complexes were subjected to MM-GBSA calculation, to study the effect of substitutions on binding affinity of double mutant EGFR towards these small molecules. Finally, the designed molecules were synthesized and evaluated for their inhibitory potential against both the kinases using in vitro experiments. Additionally, the compounds were also evaluated against EGFR (L858R) to determine their selectivity towards double mutant, resistant kinase [EGFR (T790M)]. Compound 7a and 7c were found to be possess nanomolar range inhibitory (IC 50 ) potential against EGFR (T790M), 7 h showed good inhibitory potential against c-MET with IC 50 value of 0.101 µM. Overall, this work is one of the earliest report of compounds having significant dual inhibitory potential against secondary acquired EGFR and cMET, with IC 50 values in nanomolar range. Copyright © 2018 Elsevier Inc. All rights reserved.
Structure-based prediction of free energy changes of binding of PTP1B inhibitors
NASA Astrophysics Data System (ADS)
Wang, Jing; Ling Chan, Shek; Ramnarayan, Kal
2003-08-01
The goals were (1) to understand the driving forces in the binding of small molecule inhibitors to the active site of PTP1B and (2) to develop a molecular mechanics-based empirical free energy function for compound potency prediction. A set of compounds with known activities was docked onto the active site. The related energy components and molecular surface areas were calculated. The bridging water molecules were identified and their contributions were considered. Linear relationships were explored between the above terms and the binding free energies of compounds derived based on experimental inhibition constants. We found that minimally three terms are required to give rise to a good correlation (0.86) with predictive power in five-group cross-validation test (q2 = 0.70). The dominant terms are the electrostatic energy and non-electrostatic energy stemming from the intra- and intermolecular interactions of solutes and from those of bridging water molecules in complexes.
The Molecular Determinants of Small-Molecule Ligand Binding at P2X Receptors
Pasqualetto, Gaia; Brancale, Andrea; Young, Mark T.
2018-01-01
P2X receptors are trimeric eukaryotic ATP-gated cation channels. Extracellular ATP—their physiological ligand—is released as a neurotransmitter and in conditions of cell damage such as inflammation, and substantial evidence implicates P2X receptors in diseases including neuropathic pain, cancer, and arthritis. In 2009, the first P2X crystal structure, Danio rerio P2X4 in the apo- state, was published, and this was followed in 2012 by the ATP-bound structure. These structures transformed our understanding of the conformational changes induced by ATP binding and the mechanism of ligand specificity, and enabled homology modeling of mammalian P2X receptors for ligand docking and rational design of receptor modulators. P2X receptors are attractive drug targets, and a wide array of potent, subtype-selective modulators (mostly antagonists) have been developed. In 2016, crystal structures of human P2X3 in complex with the competitive antagonists TNP-ATP and A-317491, and Ailuropoda melanoleuca P2X7 in complex with a series of allosteric antagonists were published, giving fascinating insights into the mechanism of channel antagonism. In this article we not only summarize current understanding of small-molecule modulator binding at P2X receptors, but also use this information in combination with previously published structure-function data and molecular docking experiments, to hypothesize a role for the dorsal fin loop region in differential ATP potency, and describe novel, testable binding conformations for both the semi-selective synthetic P2X7 agonist 2′-(3′)-O-(4-benzoyl)benzoyl ATP (BzATP), and the P2X4-selective positive allosteric modulator ivermectin. We find that the distal benzoyl group of BzATP lies in close proximity to Lys-127, a residue previously implicated in BzATP binding to P2X7, potentially explaining the increased potency of BzATP at rat P2X7 receptors. We also present molecular docking of ivermectin to rat P2X4 receptors, illustrating a plausible binding conformation between the first and second transmembrane domains which not only tallies with previous mutagenesis studies, but would also likely have the effect of stabilizing the open channel structure, consistent with the mode of action of this positive allosteric modulator. From our docking simulations and analysis of sequence homology we propose a series of mutations likely to confer ivermectin sensitivity to human P2X1. PMID:29456508
New cholinesterase inhibitors from Garcinia atroviridis.
Tan, Wen-Nee; Khairuddean, Melati; Wong, Keng-Chong; Khaw, Kooi-Yeong; Vikneswaran, Murugaiyah
2014-09-01
A triflavanone, Garcineflavanone A (1) and a biflavonol, Garcineflavonol A (2) have been isolated from the stem bark of Garcinia atroviridis (Clusiaceae), collected in Peninsular Malaysia. Their structures were established using one and two-dimensional NMR, UV, IR and mass spectrometry and evaluated in vitro for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes inhibitory activity. Molecular docking studies of the isolated compounds were performed using docking procedure of AutoDock to disclose the binding interaction and orientation of these molecules into the active site gorge. Copyright © 2014 Elsevier B.V. All rights reserved.
Mohan, Jasna Jagan; Narayan, Prashanth; Padmanabhan, Renjini Ambika; Joseph, Selin; Kumar, Pradeep G; Laloraya, Malini
2018-07-01
Dedicator of cytokinesis (DOCK 180) involved in cytoskeletal reorganization is primarily a cytosolic molecule. It is recently shown to be nuclear in HeLa cells but its nuclear function is not known. The spatiotemporal distribution of DOCK180 in uterus was studied in uterine cytoplasmic and nuclear compartments during the "window of implantation." The functional significance of nuclear DOCK180 was explored by homology modeling, co-immunoprecipitation assays, and mass spectrometric analysis. Dock180's role in early pregnancy was ascertained by Dock 180 silencing and subsequent quantitative real-time PCR and Western blotting analysis. Our study shows a nuclear DOCK180 in the uterus during "window of implantation." Estrogen and progesterone mediate expression and nuclear translocation of DOCK180. The nuclear function of DOCK180 is attributed to its ability to import autoimmune regulator (AIRE) into the nucleus. Silencing of Dock180 inhibited AIRE nuclear shuttling which influenced its downstream targets, thereby affecting decidualization with AIRE and HOXA-10 as the major players as well as lack of implantation site formation due to impact on angiogenesis-associated genes. DOCK180 has an indispensable role in pregnancy establishment as knocking down Dock180 abrogates pregnancy by a consolidated impact on decidualization and angiogenesis by regulating AIRE nuclear entry. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Moeder, Katelyn E.; Ho, Chris M. W.; Zimmerman, Maxwell I.; Frederick, Thomas E.; Bowman, Gregory R.
2017-01-01
Allosteric drugs, which bind to proteins in regions other than their main ligand-binding or active sites, make it possible to target proteins considered “undruggable” and to develop new therapies that circumvent existing resistance. Despite growing interest in allosteric drug discovery, rational design is limited by a lack of sufficient structural information about alternative binding sites in proteins. Previously, we used Markov State Models (MSMs) to identify such “cryptic pockets,” and here we describe a method for identifying compounds that bind in these cryptic pockets and modulate enzyme activity. Experimental tests validate our approach by revealing both an inhibitor and two activators of TEM β-lactamase (TEM). To identify hits, a library of compounds is first virtually screened against either the crystal structure of a known cryptic pocket or an ensemble of structures containing the same cryptic pocket that is extracted from an MSM. Hit compounds are then screened experimentally and characterized kinetically in individual assays. We identify three hits, one inhibitor and two activators, demonstrating that screening for binding to allosteric sites can result in both positive and negative modulation. The hit compounds have modest effects on TEM activity, but all have higher affinities than previously identified inhibitors, which bind the same cryptic pocket but were found, by chance, via a computational screen targeting the active site. Site-directed mutagenesis of key contact residues predicted by the docking models is used to confirm that the compounds bind in the cryptic pocket as intended. Because hit compounds are identified from docking against both the crystal structure and structures from the MSM, this platform should prove suitable for many proteins, particularly targets whose crystal structures lack obvious druggable pockets, and for identifying both inhibitory and activating small-molecule modulators. PMID:28570708
Ballante, Flavio; Marshall, Garland R
2016-01-25
Molecular docking is a widely used technique in drug design to predict the binding pose of a candidate compound in a defined therapeutic target. Numerous docking protocols are available, each characterized by different search methods and scoring functions, thus providing variable predictive capability on a same ligand-protein system. To validate a docking protocol, it is necessary to determine a priori the ability to reproduce the experimental binding pose (i.e., by determining the docking accuracy (DA)) in order to select the most appropriate docking procedure and thus estimate the rate of success in docking novel compounds. As common docking programs use generally different root-mean-square deviation (RMSD) formulas, scoring functions, and format results, it is both difficult and time-consuming to consistently determine and compare their predictive capabilities in order to identify the best protocol to use for the target of interest and to extrapolate the binding poses (i.e., best-docked (BD), best-cluster (BC), and best-fit (BF) poses) when applying a given docking program over thousands/millions of molecules during virtual screening. To reduce this difficulty, two new procedures called Clusterizer and DockAccessor have been developed and implemented for use with some common and "free-for-academics" programs such as AutoDock4, AutoDock4(Zn), AutoDock Vina, DOCK, MpSDockZn, PLANTS, and Surflex-Dock to automatically extrapolate BD, BC, and BF poses as well as to perform consistent cluster and DA analyses. Clusterizer and DockAccessor (code available over the Internet) represent two novel tools to collect computationally determined poses and detect the most predictive docking approach. Herein an application to human lysine deacetylase (hKDAC) inhibitors is illustrated.
Yellapu, Nanda Kumar; Kilaru, Ravendra Babu; Chamarthi, Nagaraju; Pvgk, Sarma; Matcha, Bhaskar
2017-06-01
Glucokinase (GK) is a potential therapeutic target of type 2 diabetes and GK activators (GKAs) represent a promising class of small organic molecules which enhance GK activity. Based on the configuration and conformation of the allosteric site of GK, we have designed a novel class of amino phosphonate derivatives in order to develop potent GKAs. The QSAR model developed using numerous descriptors revealed its potential with the best effective statistical values of RMSE=1.52 and r 2 =0.30. Moreover, application of this model on the present test set GKAs proved to be worthy to predict their activities as a better linear relationship was observed with RMSE=0.14 and r 2 =0.88. ADME studies and Lipinski filters encouraged them as safer therapeutics. The molecular dynamics and docking studies against the GK allosteric site revealed that all GKAs bind with best affinities and the complexes are strengthened by H-bonding, phosphonate salt bridges, hydrophobic and arene cat ionic interactions. Finally, in vitro evaluation with human liver GK revealed their potential to increase the GK activity by different folds. The results from QSAR, ADME, molecular docking and in vitro assays strongly suggested that the present molecules could be used as effective and safer therapeutics to control and manage type 2 diabetes. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Gianti, Eleonora; Messick, Troy E.; Lieberman, Paul M.; Zauhar, Randy J.
2016-04-01
The Epstein-Barr Nuclear Antigen 1 (EBNA1) is a critical protein encoded by the Epstein-Barr Virus (EBV). During latent infection, EBNA1 is essential for DNA replication and transcription initiation of viral and cellular genes and is necessary to immortalize primary B-lymphocytes. Nonetheless, the concept of EBNA1 as drug target is novel. Two EBNA1 crystal structures are publicly available and the first small-molecule EBNA1 inhibitors were recently discovered. However, no systematic studies have been reported on the structural details of EBNA1 "druggable" binding sites. We conducted computational identification and structural characterization of EBNA1 binding pockets, likely to accommodate ligand molecules (i.e. "druggable" binding sites). Then, we validated our predictions by docking against a set of compounds previously tested in vitro for EBNA1 inhibition (PubChem AID-2381). Finally, we supported assessments of pocket druggability by performing induced fit docking and molecular dynamics simulations paired with binding affinity predictions by Molecular Mechanics Generalized Born Surface Area calculations for a number of hits belonging to druggable binding sites. Our results establish EBNA1 as a target for drug discovery, and provide the computational evidence that active AID-2381 hits disrupt EBNA1:DNA binding upon interacting at individual sites. Lastly, structural properties of top scoring hits are proposed to support the rational design of the next generation of EBNA1 inhibitors.
Bresso, E; Leroux, V; Urban, M; Hammond-Kosack, K E; Maigret, B; Martins, N F
2016-07-01
Fusarium head blight (FHB) is one of the most destructive diseases of wheat and other cereals worldwide. During infection, the Fusarium fungi produce mycotoxins that represent a high risk to human and animal health. Developing small-molecule inhibitors to specifically reduce mycotoxin levels would be highly beneficial since current treatments unspecifically target the Fusarium pathogen. Culmorin possesses a well-known important synergistically virulence role among mycotoxins, and longiborneol synthase appears to be a key enzyme for its synthesis, thus making longiborneol synthase a particularly interesting target. This study aims to discover potent and less toxic agrochemicals against FHB. These compounds would hamper culmorin synthesis by inhibiting longiborneol synthase. In order to select starting molecules for further investigation, we have conducted a structure-based virtual screening investigation. A longiborneol synthase structural model is first built using homology modeling, followed by molecular dynamics simulations that provided the required input for a protein-ligand ensemble docking procedure. From this strategy, the three most interesting compounds (hits) were selected among the 25 top-ranked docked compounds from a library of 15,000 drug-like compounds. These putative inhibitors of longiborneol synthase provide a sound starting point for further studies involving molecular modeling coupled to biochemical experiments. This process could eventually lead to the development of novel approaches to reduce mycotoxin contamination in harvested grain.
NASA Astrophysics Data System (ADS)
Sepehri, Bakhtyar; Ghavami, Raouf
2017-02-01
In this research, molecular docking and CoMFA were used to determine interactions of α, β-unsaturated carbonyl-based compounds and oxime analogs with P-glycoprotein and prediction of their activity. Molecular docking study shown these molecules establish strong Van der Waals interactions with side chain of PHE-332, PHE-728 and PHE-974. Based on the effect of component numbers on squared correlation coefficient for cross validation tests (including leave-one-out and leave-many-out), CoMFA models with five components were built to predict pIC50 of molecules in seven cancer cell lines (including Panc-1 (pancreas cancer cell line), PaCa-2 (pancreatic carcinoma cell line), MCF-7 (breast cancer cell line), A-549 (epithelial), HT-29 (colon cancer cell line), H-460 (lung cancer cell line), PC-3 (prostate cancer cell line)). R2 values for training and test sets were in the range of 0.94-0.97 and 0.84 to 0.92, respectively, and for LOO and LMO cross validation test, q2 values were in the range of 0.75-0.82 and 0.65 to 0.73, respectively. Based on molecular docking results and extracted steric and electrostatic contour maps for CoMFA models, four new molecules with higher activity with respect to the most active compound in data set were designed.
Energy minimization on manifolds for docking flexible molecules
Mirzaei, Hanieh; Zarbafian, Shahrooz; Villar, Elizabeth; Mottarella, Scott; Beglov, Dmitri; Vajda, Sandor; Paschalidis, Ioannis Ch.; Vakili, Pirooz; Kozakov, Dima
2015-01-01
In this paper we extend a recently introduced rigid body minimization algorithm, defined on manifolds, to the problem of minimizing the energy of interacting flexible molecules. The goal is to integrate moving the ligand in six dimensional rotational/translational space with internal rotations around rotatable bonds within the two molecules. We show that adding rotational degrees of freedom to the rigid moves of the ligand results in an overall optimization search space that is a manifold to which our manifold optimization approach can be extended. The effectiveness of the method is shown for three different docking problems of increasing complexity. First we minimize the energy of fragment-size ligands with a single rotatable bond as part of a protein mapping method developed for the identification of binding hot spots. Second, we consider energy minimization for docking a flexible ligand to a rigid protein receptor, an approach frequently used in existing methods. In the third problem we account for flexibility in both the ligand and the receptor. Results show that minimization using the manifold optimization algorithm is substantially more efficient than minimization using a traditional all-atom optimization algorithm while producing solutions of comparable quality. In addition to the specific problems considered, the method is general enough to be used in a large class of applications such as docking multidomain proteins with flexible hinges. The code is available under open source license (at http://cluspro.bu.edu/Code/Code_Rigtree.tar), and with minimal effort can be incorporated into any molecular modeling package. PMID:26478722
NASA Astrophysics Data System (ADS)
Aouidate, Adnane; Ghaleb, Adib; Ghamali, Mounir; Chtita, Samir; Choukrad, M'barek; Sbai, Abdelouahid; Bouachrine, Mohammed; Lakhlifi, Tahar
2017-07-01
A series of nineteen DHFR inhibitors was studied based on the combination of two computational techniques namely, three-dimensional quantitative structure activity relationship (3D-QSAR) and molecular docking. The comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) were developed using 19 molecules having pIC50 ranging from 9.244 to 5.839. The best CoMFA and CoMSIA models show conventional determination coefficients R2 of 0.96 and 0.93 as well as the Leave One Out cross-validation determination coefficients Q2 of 0.64 and 0.72, respectively. The predictive ability of those models was evaluated by the external validation using a test set of five compounds with predicted determination coefficients R2test of 0.92 and 0.94, respectively. The binding mode between this kind of compounds and the DHFR enzyme in addition to the key amino acid residues were explored by molecular docking simulation. Contour maps and molecular docking identified that the R1 and R2 natures at the pyrazole moiety are the important features for the optimization of the binding affinity to the DHFR receptor. According to the good concordance between the CoMFA/CoMSIA contour maps and docking results, the obtained information was explored to design novel molecules.
Sivan, Sree Kanth; Manga, Vijjulatha
2010-06-01
Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are allosteric inhibitors of the HIV-1 reverse transcriptase. Recently a series of Triazolinone and Pyridazinone were reported as potent inhibitors of HIV-1 wild type reverse transcriptase. In the present study, docking and 3D quantitative structure activity relationship (3D QSAR) studies involving comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were performed on 31 molecules. Ligands were built and minimized using Tripos force field and applying Gasteiger-Hückel charges. These ligands were docked into protein active site using GLIDE 4.0. The docked poses were analyzed; the best docked poses were selected and aligned. CoMFA and CoMSIA fields were calculated using SYBYL6.9. The molecules were divided into training set and test set, a PLS analysis was performed and QSAR models were generated. The model showed good statistical reliability which is evident from the r2 nv, q2 loo and r2 pred values. The CoMFA model provides the most significant correlation of steric and electrostatic fields with biological activities. The CoMSIA model provides a correlation of steric, electrostatic, acceptor and hydrophobic fields with biological activities. The information rendered by 3D QSAR model initiated us to optimize the lead and design new potential inhibitors.
NASA Astrophysics Data System (ADS)
Li, Nan; Yang, Yong; He, Kangmin; Zhang, Fayun; Zhao, Libo; Zhou, Wei; Yuan, Jinghe; Liang, Wei; Fang, Xiaohong
2016-09-01
Smad3 is an intracellular protein that plays a key role in propagating transforming growth factor β (TGF-β) signals from cell membrane to nucleus. However whether the transient process of Smad3 activation occurs on cell membrane and how it is regulated remains elusive. Using advanced live-cell single-molecule fluorescence microscopy to image and track fluorescent protein-labeled Smad3, we observed and quantified, for the first time, the dynamics of individual Smad3 molecules docking to and activation on the cell membrane. It was found that Smad3 docked to cell membrane in both unstimulated and stimulated cells, but with different diffusion rates and dissociation kinetics. The change in its membrane docking dynamics can be used to study the activation of Smad3. Our results reveal that Smad3 binds with type I TGF-β receptor (TRI) even in unstimulated cells. Its activation is regulated by TRI phosphorylation but independent of receptor endocytosis. This study offers new information on TGF-β/Smad signaling, as well as a new approach to investigate the activation of intracellular signaling proteins for a better understanding of their functions in signal transduction.
Shaik, Thokhir B; Hussaini, S M Ali; Nayak, V Lakshma; Sucharitha, M Lakshmi; Malik, M Shaheer; Kamal, Ahmed
2017-06-01
Based on our previous results and literature precedence, a series of 2-anilinopyridinyl-benzothiazole Schiff bases were rationally designed by performing molecular modeling experiments on some selected molecules. The binding energies of the docked molecules were better than the E7010, and the Schiff base with trimethoxy group on benzothiazole moiety, 4y was the best. This was followed by the synthesis of a series of the designed molecules by a convenient synthetic route and evaluation of their anticancer potential. Most of the compounds have shown significant growth inhibition against the tested cell lines and the compound 4y exhibited good antiproliferative activity with a GI 50 value of 3.8µM specifically against the cell line DU145. In agreement with the docking results, 4y exerted cytotoxicity by the disruption of the microtubule dynamics by inhibiting tubulin polymerization via effective binding into colchicine domain, comparable to E7010. Detailed binding modes of 4y with colchicine binding site of tubulin were studied by molecular docking. Furthermore, 4y induced apoptosis as evidenced by biological studies like mitochondrial membrane potential, caspase-3, and Annexin V-FITC assays. Copyright © 2017 Elsevier Ltd. All rights reserved.
Muda, Marco; Worby, Carolyn A; Simonson-Leff, Nancy; Clemens, James C; Dixon, Jack E
2002-08-15
Despite the wealth of information generated by genome-sequencing projects, the identification of in vivo substrates of specific protein kinases and phosphatases is hampered by the large number of candidate enzymes, overlapping enzyme specificity and sequence similarity. In the present study, we demonstrate the power of RNA interference (RNAi) to dissect signal transduction cascades involving specific kinases and phosphatases. RNAi is used to identify the cellular tyrosine kinases upstream of the phosphorylation of Down-Syndrome cell-adhesion molecule (Dscam), a novel cell-surface molecule of the immunoglobulin-fibronectin super family, which has been shown to be important for axonal path-finding in Drosophila. Tyrosine phosphorylation of Dscam recruits the Src homology 2 domain of the adaptor protein Dock to the receptor. Dock, the ortho- logue of mammalian Nck, is also essential for correct axonal path-finding in Drosophila. We further determined that Dock is tyrosine-phosphorylated in vivo and identified DPTP61F as the protein tyrosine phosphatase responsible for maintaining Dock in its non-phosphorylated state. The present study illustrates the versatility of RNAi in the identification of the physiological substrates for protein kinases and phosphatases.
Ballu, Srilata; Itteboina, Ramesh; Sivan, Sree Kanth; Manga, Vijjulatha
2018-04-01
Staphylococcus aureus is a gram positive bacterium. It is the leading cause of skin and respiratory infections, osteomyelitis, Ritter's disease, endocarditis, and bacteraemia in the developed world. We employed combined studies of 3D QSAR, molecular docking which are validated by molecular dynamics simulations and in silico ADME prediction have been performed on Isothiazoloquinolones inhibitors against methicillin resistance Staphylococcus aureus. Three-dimensional quantitative structure-activity relationship (3D-QSAR) study was applied using comparative molecular field analysis (CoMFA) with Q 2 of 0.578, R 2 of 0.988, and comparative molecular similarity indices analysis (CoMSIA) with Q 2 of 0.554, R 2 of 0.975. The predictive ability of these model was determined using a test set of molecules that gave acceptable predictive correlation (r 2 Pred) values 0.55 and 0.57 of CoMFA and CoMSIA respectively. Docking, simulations were employed to position the inhibitors into protein active site to find out the most probable binding mode and most reliable conformations. Developed models and Docking methods provide guidance to design molecules with enhanced activity. Copyright © 2017 Elsevier Ltd. All rights reserved.
TSH Receptor Signaling Abrogation by a Novel Small Molecule
Latif, Rauf; Realubit, Ronald B.; Karan, Charles; Mezei, Mihaly; Davies, Terry F.
2016-01-01
Pathological activation of the thyroid-stimulating hormone receptor (TSHR) is caused by thyroid-stimulating antibodies in patients with Graves’ disease (GD) or by somatic and rare genomic mutations that enhance constitutive activation of the receptor influencing both G protein and non-G protein signaling. Potential selective small molecule antagonists represent novel therapeutic compounds for abrogation of such abnormal TSHR signaling. In this study, we describe the identification and in vitro characterization of a novel small molecule antagonist by high-throughput screening (HTS). The identification of the TSHR antagonist was performed using a transcription-based TSH-inhibition bioassay. TSHR-expressing CHO cells, which also expressed a luciferase-tagged CRE response element, were optimized using bovine TSH as the activator, in a 384 well plate format, which had a Z score of 0.3–0.6. Using this HTS assay, we screened a diverse library of ~80,000 compounds at a final concentration of 16.7 μM. The selection criteria for a positive hit were based on a mean signal threshold of ≥50% inhibition of control TSH stimulation. The screening resulted in 450 positive hits giving a hit ratio of 0.56%. A secondary confirmation screen against TSH and forskolin – a post receptor activator of adenylyl cyclase – confirmed one TSHR-specific candidate antagonist molecule (named VA-K-14). This lead molecule had an IC50 of 12.3 μM and a unique chemical structure. A parallel analysis for cell viability indicated that the lead inhibitor was non-cytotoxic at its effective concentrations. In silico docking studies performed using a TSHR transmembrane model showed the hydrophobic contact locations and the possible mode of inhibition of TSHR signaling. Furthermore, this molecule was capable of inhibiting TSHR stimulation by GD patient sera and monoclonal-stimulating TSHR antibodies. In conclusion, we report the identification of a novel small molecule TSHR inhibitor, which has the potential to be developed as a therapeutic antagonist for abrogation of TSHR signaling by TSHR autoantibodies in GD. PMID:27729899
Milk caseins as useful vehicle for delivery of dipyridamole drug.
Dezhampanah, Hamid; Esmaili, Masoomeh; Hasani, Leila
2018-05-01
The interaction of bovine milk α- and β-caseins as an efficient drug carrier system with Dipyridamole (DIP) was investigated using spectroscopy and molecular docking studies at different temperatures (20-37 °C). FTIR, CD, and fluorescence spectroscopy methods demonstrated that α- and β-caseins interact with DIP molecule mainly via hydrophobic and hydrophilic interactions and change in secondary structure of α- and β-caseins. DIP showed a higher quenching efficiency and binding constant of α-casein than β-casein. There was only one binding site for DIP and it was located on the surface of the protein molecule. The thermodynamic parameters of calculation showed that the binding process occurs spontaneously and demonstrated that α- and β-caseins provide very good binding and entrapment to DIP via hydrogen bonds, Van der Waals forces, and hydrophobic interactions. Fluorescence resonance energy transfer, synchronous fluorescence spectroscopy, and docking study showed that DIP binds to the Trp residues of α- and β-casein molecules with short distances. Docking study showed that DIP molecule made several hydrogen bonds and van der Waals interactions with α- and β-caseins. The study of cell culture and micellar solubility of DIP demonstrated α- and β-caseins relatively the same helping in delivery of DIP. Milk α- and β-caseins are considered as a useful vehicle for the solublization and stabilization of DIP in aqueous solution at natural pH.
SuperSweet—a resource on natural and artificial sweetening agents
Ahmed, Jessica; Preissner, Saskia; Dunkel, Mathias; Worth, Catherine L.; Eckert, Andreas; Preissner, Robert
2011-01-01
A vast number of sweet tasting molecules are known, encompassing small compounds, carbohydrates, d-amino acids and large proteins. Carbohydrates play a particularly big role in human diet. The replacement of sugars in food with artificial sweeteners is common and is a general approach to prevent cavities, obesity and associated diseases such as diabetes and hyperlipidemia. Knowledge about the molecular basis of taste may reveal new strategies to overcome diet-induced diseases. In this context, the design of safe, low-calorie sweeteners is particularly important. Here, we provide a comprehensive collection of carbohydrates, artificial sweeteners and other sweet tasting agents like proteins and peptides. Additionally, structural information and properties such as number of calories, therapeutic annotations and a sweetness-index are stored in SuperSweet. Currently, the database consists of more than 8000 sweet molecules. Moreover, the database provides a modeled 3D structure of the sweet taste receptor and binding poses of the small sweet molecules. These binding poses provide hints for the design of new sweeteners. A user-friendly graphical interface allows similarity searching, visualization of docked sweeteners into the receptor etc. A sweetener classification tree and browsing features allow quick requests to be made to the database. The database is freely available at: http://bioinformatics.charite.de/sweet/. PMID:20952410
SuperSweet--a resource on natural and artificial sweetening agents.
Ahmed, Jessica; Preissner, Saskia; Dunkel, Mathias; Worth, Catherine L; Eckert, Andreas; Preissner, Robert
2011-01-01
A vast number of sweet tasting molecules are known, encompassing small compounds, carbohydrates, d-amino acids and large proteins. Carbohydrates play a particularly big role in human diet. The replacement of sugars in food with artificial sweeteners is common and is a general approach to prevent cavities, obesity and associated diseases such as diabetes and hyperlipidemia. Knowledge about the molecular basis of taste may reveal new strategies to overcome diet-induced diseases. In this context, the design of safe, low-calorie sweeteners is particularly important. Here, we provide a comprehensive collection of carbohydrates, artificial sweeteners and other sweet tasting agents like proteins and peptides. Additionally, structural information and properties such as number of calories, therapeutic annotations and a sweetness-index are stored in SuperSweet. Currently, the database consists of more than 8000 sweet molecules. Moreover, the database provides a modeled 3D structure of the sweet taste receptor and binding poses of the small sweet molecules. These binding poses provide hints for the design of new sweeteners. A user-friendly graphical interface allows similarity searching, visualization of docked sweeteners into the receptor etc. A sweetener classification tree and browsing features allow quick requests to be made to the database. The database is freely available at: http://bioinformatics.charite.de/sweet/.
ConsDock: A new program for the consensus analysis of protein-ligand interactions.
Paul, Nicodème; Rognan, Didier
2002-06-01
Protein-based virtual screening of chemical libraries is a powerful technique for identifying new molecules that may interact with a macromolecular target of interest. Because of docking and scoring limitations, it is more difficult to apply as a lead optimization method because it requires that the docking/scoring tool is able to propose as few solutions as possible and all of them with a very good accuracy for both the protein-bound orientation and the conformation of the ligand. In the present study, we present a consensus docking approach (ConsDock) that takes advantage of three widely used docking tools (Dock, FlexX, and Gold). The consensus analysis of all possible poses generated by several docking tools is performed sequentially in four steps: (i) hierarchical clustering of all poses generated by a docking tool into families represented by a leader; (ii) definition of all consensus pairs from leaders generated by different docking programs; (iii) clustering of consensus pairs into classes, represented by a mean structure; and (iv) ranking the different means starting from the most populated class of consensus pairs. When applied to a test set of 100 protein-ligand complexes from the Protein Data Bank, ConsDock significantly outperforms single docking with respect to the docking accuracy of the top-ranked pose. In 60% of the cases investigated here, ConsDock was able to rank as top solution a pose within 2 A RMSD of the X-ray structure. It can be applied as a postprocessing filter to either single- or multiple-docking programs to prioritize three-dimensional guided lead optimization from the most likely docking solution. Copyright 2002 Wiley-Liss, Inc.
Dawood, Shazia; Zarina, Shamshad; Bano, Samina
2014-09-01
Tryptophan 2, 3-dioxygenase (TDO) a heme containing enzyme found in mammalian liver is responsible for tryptophan (Trp) catabolism. Trp is an essential amino acid that is degraded in to N-formylkynurenine by the action of TDO. The protein ligand interaction plays a significant role in structural based drug designing. The current study illustrates the binding of established antidepressants (ADs) against TDO enzyme using in-silico docking studies. For this purpose, Fluoxetine, Paroxetine, Sertraline, Fluvoxamine, Seproxetine, Citalopram, Moclobamide, Hyperforin and Amoxepine were selected. In-silico docking studies were carried out using Molegro Virtual Docker (MVD) software. Docking results show that all ADs fit well in the active site of TDO moreover Hyperforin and Paroxetine exhibited high docking scores of -152.484k cal/mol and -139.706k cal/mol, respectively. It is concluded that Hyperforin and Paroxetine are possible lead molecules because of their high docking scores as compared to other ADs examined. Therefore, these two ADs stand as potent inhibitors of TDO enzyme.
Sant'Anna, Ricardo; Gallego, Pablo; Robinson, Lei Z.; Pereira-Henriques, Alda; Ferreira, Nelson; Pinheiro, Francisca; Esperante, Sebastian; Pallares, Irantzu; Huertas, Oscar; Rosário Almeida, Maria; Reixach, Natàlia; Insa, Raul; Velazquez-Campoy, Adrian; Reverter, David; Reig, Núria; Ventura, Salvador
2016-01-01
Transthyretin (TTR) is a plasma homotetrameric protein implicated in fatal systemic amyloidoses. TTR tetramer dissociation precedes pathological TTR aggregation. Native state stabilizers are promising drugs to treat TTR amyloidoses. Here we repurpose tolcapone, an FDA-approved molecule for Parkinson's disease, as a potent TTR aggregation inhibitor. Tolcapone binds specifically to TTR in human plasma, stabilizes the native tetramer in vivo in mice and humans and inhibits TTR cytotoxicity. Crystal structures of tolcapone bound to wild-type TTR and to the V122I cardiomyopathy-associated variant show that it docks better into the TTR T4 pocket than tafamidis, so far the only drug on the market to treat TTR amyloidoses. These data indicate that tolcapone, already in clinical trials for familial amyloid polyneuropathy, is a strong candidate for therapeutic intervention in these diseases, including those affecting the central nervous system, for which no small-molecule therapy exists. PMID:26902880
Quantifying Intrinsic Specificity: A Potential Complement to Affinity in Drug Screening
NASA Astrophysics Data System (ADS)
Wang, Jin; Zheng, Xiliang; Yang, Yongliang; Drueckhammer, Dale; Yang, Wei; Verkhivker, Gennardy; Wang, Erkang
2007-11-01
We report here the investigation of a novel description of specificity in protein-ligand binding based on energy landscape theory. We define a new term, intrinsic specificity ratio (ISR), which describes the level of discrimination in binding free energies of the native basin for a protein-ligand complex from the weaker binding states of the same ligand. We discuss the relationship between the intrinsic specificity we defined here and the conventional definition of specificity. In a docking study of molecules with the enzyme COX-2, we demonstrate a statistical correspondence between ISR value and geometrical shapes of the small molecules binding to COX-2. We further observe that the known selective (nonselective) inhibitors of COX-2 have higher (lower) ISR values. We suggest that intrinsic specificity ratio may be a useful new criterion and a complement to affinity in drug screening and in searching for potential drug lead compounds.
Chemical and protein structural basis for biological crosstalk between PPAR α and COX enzymes
NASA Astrophysics Data System (ADS)
Cleves, Ann E.; Jain, Ajay N.
2015-02-01
We have previously validated a probabilistic framework that combined computational approaches for predicting the biological activities of small molecule drugs. Molecule comparison methods included molecular structural similarity metrics and similarity computed from lexical analysis of text in drug package inserts. Here we present an analysis of novel drug/target predictions, focusing on those that were not obvious based on known pharmacological crosstalk. Considering those cases where the predicted target was an enzyme with known 3D structure allowed incorporation of information from molecular docking and protein binding pocket similarity in addition to ligand-based comparisons. Taken together, the combination of orthogonal information sources led to investigation of a surprising predicted relationship between a transcription factor and an enzyme, specifically, PPAR α and the cyclooxygenase enzymes. These predictions were confirmed by direct biochemical experiments which validate the approach and show for the first time that PPAR α agonists are cyclooxygenase inhibitors.
Ligand solvation in molecular docking.
Shoichet, B K; Leach, A R; Kuntz, I D
1999-01-01
Solvation plays an important role in ligand-protein association and has a strong impact on comparisons of binding energies for dissimilar molecules. When databases of such molecules are screened for complementarity to receptors of known structure, as often occurs in structure-based inhibitor discovery, failure to consider ligand solvation often leads to putative ligands that are too highly charged or too large. To correct for the different charge states and sizes of the ligands, we calculated electrostatic and non-polar solvation free energies for molecules in a widely used molecular database, the Available Chemicals Directory (ACD). A modified Born equation treatment was used to calculate the electrostatic component of ligand solvation. The non-polar component of ligand solvation was calculated based on the surface area of the ligand and parameters derived from the hydration energies of apolar ligands. These solvation energies were subtracted from the ligand-receptor interaction energies. We tested the usefulness of these corrections by screening the ACD for molecules that complemented three proteins of known structure, using a molecular docking program. Correcting for ligand solvation improved the rankings of known ligands and discriminated against molecules with inappropriate charge states and sizes.
DockBench as docking selector tool: the lesson learned from D3R Grand Challenge 2015
NASA Astrophysics Data System (ADS)
Salmaso, Veronica; Sturlese, Mattia; Cuzzolin, Alberto; Moro, Stefano
2016-09-01
Structure-based drug design (SBDD) has matured within the last two decades as a valuable tool for the optimization of low molecular weight lead compounds to highly potent drugs. The key step in SBDD requires knowledge of the three-dimensional structure of the target-ligand complex, which is usually determined by X-ray crystallography. In the absence of structural information for the complex, SBDD relies on the generation of plausible molecular docking models. However, molecular docking protocols suffer from inaccuracies in the description of the interaction energies between the ligand and the target molecule, and often fail in the prediction of the correct binding mode. In this context, the appropriate selection of the most accurate docking protocol is absolutely relevant for the final molecular docking result, even if addressing this point is absolutely not a trivial task. D3R Grand Challenge 2015 has represented a precious opportunity to test the performance of DockBench, an integrate informatics platform to automatically compare RMDS-based molecular docking performances of different docking/scoring methods. The overall performance resulted in the blind prediction are encouraging in particular for the pose prediction task, in which several complex were predicted with a sufficient accuracy for medicinal chemistry purposes.
DockBench as docking selector tool: the lesson learned from D3R Grand Challenge 2015.
Salmaso, Veronica; Sturlese, Mattia; Cuzzolin, Alberto; Moro, Stefano
2016-09-01
Structure-based drug design (SBDD) has matured within the last two decades as a valuable tool for the optimization of low molecular weight lead compounds to highly potent drugs. The key step in SBDD requires knowledge of the three-dimensional structure of the target-ligand complex, which is usually determined by X-ray crystallography. In the absence of structural information for the complex, SBDD relies on the generation of plausible molecular docking models. However, molecular docking protocols suffer from inaccuracies in the description of the interaction energies between the ligand and the target molecule, and often fail in the prediction of the correct binding mode. In this context, the appropriate selection of the most accurate docking protocol is absolutely relevant for the final molecular docking result, even if addressing this point is absolutely not a trivial task. D3R Grand Challenge 2015 has represented a precious opportunity to test the performance of DockBench, an integrate informatics platform to automatically compare RMDS-based molecular docking performances of different docking/scoring methods. The overall performance resulted in the blind prediction are encouraging in particular for the pose prediction task, in which several complex were predicted with a sufficient accuracy for medicinal chemistry purposes.
Baig, Noorullah; Singh, Rajnish Prakash; Chander, Subhash; Jha, Prabhat Nath; Murugesan, Sankaranarayanan; Sah, Ajay K
2015-12-01
Six amino acid derived N-glycoconjugates of d-glucose were synthesized, characterized and tested for antibacterial activity against G(+)ve (Bacillus cereus) as well as G(-)ve (Escherichia coli and Klebsiella pneumoniae) bacterial strains. All the tested compounds exhibited moderate to good antibacterial activity against these bacterial strains. The results were compared with the antibacterial activity of standard drug Chloramphenicol, where results of A5 (Tryptophan derived glycoconjugates) against E. coli and A4 (Isoleucine derived glycoconjugates) against K. pneumoniae bacterial strains are comparable with the standard drug molecule. In silico docking studies were also performed in order to understand the mode of action and binding interactions of these molecules. The docking studies revealed that, occupation of compound A5 at the ATP binding site of subunit GyrB (DNA gyrase, PDB ID: 3TTZ) via hydrophobic and hydrogen bonding interactions may be the reason for its significant in vitro antibacterial activity. Copyright © 2015 Elsevier Inc. All rights reserved.
Daneial, Betty; Joseph, Jacob Paul Vazhappilly; Ramakrishna, Guruprasad
2017-01-01
Focal adhesion kinase (FAK) plays a primary role in regulating the activity of many signaling molecules. Increased FAK expression has been associated in a series of cellular processes like cell migration and survival. FAK inhibition by an anti cancer agent is critical. Therefore, it is of interest to identify, modify, design, improve and develop molecules to inhibit FAK. Solanesol is known to have inhibitory activity towards FAK. However, the molecular principles of its binding with FAK is unknown. Solanesol is a highly flexible ligand (25 rotatable bonds). Hence, ligand-protein docking was completed using AutoDock with a modified contact based scoring function. The FAK-solanesol complex model was further energy minimized and simulated in GROMOS96 (53a6) force field followed by post simulation analysis such as Root mean square deviation (RMSD), root mean square fluctuations (RMSF) and solvent accessible surface area (SASA) calculations to explain solanesol-FAK binding. PMID:29081606
Suresh, D M; Amalanathan, M; Joe, I Hubert; Jothy, V Bena; Diao, Yun-Peng
2014-09-15
The molecular structure, vibrational analysis and molecular docking analysis of the 3-Methyl-1,4-dioxo-1,4-dihydronaphthalen-2-yl 4-aminobenzoate (MDDNAB) molecule have been carried out using FT-IR and FT-Raman spectroscopic techniques and DFT method. The equilibrium geometry, harmonic vibrational wave numbers, various bonding features have been computed using density functional method. The calculated molecular geometry has been compared with experimental data. The detailed interpretation of the vibrational spectra has been carried out by using VEDA program. The hyper-conjugative interactions and charge delocalization have been analyzed using natural bond orbital (NBO) analysis. The simulated FT-IR and FT-Raman spectra satisfactorily coincide with the experimental spectra. The PES and charge analysis have been made. The molecular docking was done to identify the binding energy and the Hydrogen bonding with the cancer protein molecule. Copyright © 2014 Elsevier B.V. All rights reserved.
Daneial, Betty; Joseph, Jacob Paul Vazhappilly; Ramakrishna, Guruprasad
2017-01-01
Focal adhesion kinase (FAK) plays a primary role in regulating the activity of many signaling molecules. Increased FAK expression has been associated in a series of cellular processes like cell migration and survival. FAK inhibition by an anti cancer agent is critical. Therefore, it is of interest to identify, modify, design, improve and develop molecules to inhibit FAK. Solanesol is known to have inhibitory activity towards FAK. However, the molecular principles of its binding with FAK is unknown. Solanesol is a highly flexible ligand (25 rotatable bonds). Hence, ligand-protein docking was completed using AutoDock with a modified contact based scoring function. The FAK-solanesol complex model was further energy minimized and simulated in GROMOS96 (53a6) force field followed by post simulation analysis such as Root mean square deviation (RMSD), root mean square fluctuations (RMSF) and solvent accessible surface area (SASA) calculations to explain solanesol-FAK binding.
Chaput, Ludovic; Martinez-Sanz, Juan; Quiniou, Eric; Rigolet, Pascal; Saettel, Nicolas; Mouawad, Liliane
2016-01-01
In drug design, one may be confronted to the problem of finding hits for targets for which no small inhibiting molecules are known and only low-throughput experiments are available (like ITC or NMR studies), two common difficulties encountered in a typical academic setting. Using a virtual screening strategy like docking can alleviate some of the problems and save a considerable amount of time by selecting only top-ranking molecules, but only if the method is very efficient, i.e. when a good proportion of actives are found in the 1-10 % best ranked molecules. The use of several programs (in our study, Gold, Surflex, FlexX and Glide were considered) shows a divergence of the results, which presents a difficulty in guiding the experiments. To overcome this divergence and increase the yield of the virtual screening, we created the standard deviation consensus (SDC) and variable SDC (vSDC) methods, consisting of the intersection of molecule sets from several virtual screening programs, based on the standard deviations of their ranking distributions. SDC allowed us to find hits for two new protein targets by testing only 9 and 11 small molecules from a chemical library of circa 15,000 compounds. Furthermore, vSDC, when applied to the 102 proteins of the DUD-E benchmarking database, succeeded in finding more hits than any of the four isolated programs for 13-60 % of the targets. In addition, when only 10 molecules of each of the 102 chemical libraries were considered, vSDC performed better in the number of hits found, with an improvement of 6-24 % over the 10 best-ranked molecules given by the individual docking programs.Graphical abstractIn drug design, for a given target and a given chemical library, the results obtained with different virtual screening programs are divergent. So how to rationally guide the experimental tests, especially when only a few number of experiments can be made? The variable Standard Deviation Consensus (vSDC) method was developed to answer this issue. Left panel the vSDC principle consists of intersecting molecule sets, chosen on the basis of the standard deviations of their ranking distributions, obtained from various virtual screening programs. In this study Glide, Gold, FlexX and Surflex were used and tested on the 102 targets of the DUD-E database. Right panel Comparison of the average percentage of hits found with vSDC and each of the four programs, when only 10 molecules from each of the 102 chemical libraries of the DUD-E database were considered. On average, vSDC was capable of finding 38 % of the findable hits, against 34 % for Glide, 32 % for Gold, 16 % for FlexX and 14 % for Surflex, showing that with vSDC, it was possible to overcome the unpredictability of the virtual screening results and to improve them.
ARCADE small-scale docking mechanism for micro-satellites
NASA Astrophysics Data System (ADS)
Boesso, A.; Francesconi, A.
2013-05-01
The development of on-orbit autonomous rendezvous and docking (ARD) capabilities represents a key point for a number of appealing mission scenarios that include activities of on-orbit servicing, automated assembly of modular structures and active debris removal. As of today, especially in the field of micro-satellites ARD, many fundamental technologies are still missing or require further developments and micro-gravity testing. In this framework, the University of Padova, Centre of Studies and Activities for Space (CISAS), developed the Autonomous Rendezvous Control and Docking Experiment (ARCADE), a technology demonstrator intended to fly aboard a BEXUS stratospheric balloon. The goal was to design, build and test, in critical environment conditions, a proximity relative navigation system, a custom-made reaction wheel and a small-size docking mechanism. The ARCADE docking mechanism was designed against a comprehensive set of requirements and it can be classified as small-scale, central, gender mating and unpressurized. The large use of commercial components makes it low-cost and simple to be manufactured. Last, it features a good tolerance to off-nominal docking conditions and a by-design soft docking capability. The final design was extensively verified to be compliant with its requirements by means of numerical simulations and physical testing. In detail, the dynamic behaviour of the mechanism in both nominal and off-nominal conditions was assessed with the multibody dynamics analysis software MD ADAMS 2010 and functional tests were carried out within the fully integrated ARCADE experiment to ensure the docking system efficacy and to highlight possible issues. The most relevant results of the study will be presented and discussed in conclusion to this paper.
Identification of sumoylation activating enzyme 1 inhibitors by structure-based virtual screening.
Kumar, Ashutosh; Ito, Akihiro; Hirohama, Mikako; Yoshida, Minoru; Zhang, Kam Y J
2013-04-22
SUMO activating enzyme 1 (SUMO E1) is responsible for the activation of SUMO in the first step of the sumoylation cascade. SUMO E1 is linked to many human diseases including cancer, thus making it a potential therapeutic target. There are few reported SUMO E1 inhibitors including several natural products. To identify small molecule inhibitors of SUMO E1 with better drug-like properties for potential therapeutic studies, we have used structure-based virtual screening to identify hits from the Maybridge small molecule library for biological assay. Our virtual screening protocol involves fast docking of the entire small molecule library with rigid protein and ligands followed by redocking of top hits using a method that incorporates both ligand and protein flexibility. Subsequently, the top-ranking compounds were prioritized using the molecular dynamics simulation-based binding free energy calculation. Out of 24 compounds that were acquired and tested using in vitro sumoylation assay, four of them showed more than 85% inhibition of sumoylation with the most active compound showing an IC50 of 14.4 μM. A similarity search with the most active compound in the ZINC database has identified three more compounds with improved potency. These compounds share a common phenyl urea scaffold and have been confirmed to inhibit SUMO E1 by in vitro SUMO-1 thioester bond formation assay. Our study suggests that these phenyl urea compounds could be used as a starting point for the development of novel therapeutic agents.
Martínez, José Mario; Martínez, Leandro
2003-05-01
Molecular Dynamics is a powerful methodology for the comprehension at molecular level of many chemical and biochemical systems. The theories and techniques developed for structural and thermodynamic analyses are well established, and many software packages are available. However, designing starting configurations for dynamics can be cumbersome. Easily generated regular lattices can be used when simple liquids or mixtures are studied. However, for complex mixtures, polymer solutions or solid adsorbed liquids (for example) this approach is inefficient, and it turns out to be very hard to obtain an adequate coordinate file. In this article, the problem of obtaining an adequate initial configuration is treated as a "packing" problem and solved by an optimization procedure. The initial configuration is chosen in such a way that the minimum distance between atoms of different molecules is greater than a fixed tolerance. The optimization uses a well-known algorithm for box-constrained minimization. Applications are given for biomolecule solvation, many-component mixtures, and interfaces. This approach can reduce the work of designing starting configurations from days or weeks to few minutes or hours, in an automated fashion. Packing optimization is also shown to be a powerful methodology for space search in docking of small ligands to proteins. This is demonstrated by docking of the thyroid hormone to its nuclear receptor. Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 24: 819-825, 2003
Hameed, Abdul; Zehra, Syeda T; Shah, Syed J A; Khan, Khalid M; Alharthy, Rima D; Furtmann, Norbert; Bajorath, Jürgen; Tahir, Muhammad N; Iqbal, Jamshed
2015-11-01
Cholinesterases, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), have a role in cholinergic deficit which evidently leads to Alzheimer's disease (AD). Inhibition of cholinesterases with small molecules is an attractive strategy in AD therapy. This study demonstrates synthesis of pyrido[2,3-b]pyrazines (6a-6q) series, their inhibitory activities against both cholinesterases, AChE and BChE, and molecular docking studies. The bioactivities data of pyrido[2,3-b]pyrazines showed 3-(3'-nitrophenyl)pyrido[2,3-b]pyrazine 6n a potent dual inhibitor among the series against both AChE and BChE with IC50 values of 0.466 ± 0.121 and 1.89 ± 0.05 μm, respectively. The analogues 3-(3'-methylphenyl)pyrido[2,3-b]pyrazine 6c and 3-(3'-fluorophenyl)pyrido[2,3-b]pyrazine 6f were found to be selective inhibition for BChE with IC50 values of 0.583 ± 0.052 μm and AChE with IC50 value of 0.899 ± 0.10 μm, respectively. Molecular docking studies of the active compounds suggested the putative binding modes with cholinesterases. The potent compounds among the series could potentially serves as good leads for the development of new cholinesterase inhibitors. © 2015 John Wiley & Sons A/S.
2013-01-01
Background Herpes viruses are important human pathogens that can cause mild to severe lifelong infections with high morbidity. They remain latent in the host cells and can cause recurrent infections that might prove fatal. These viruses are known to infect the host cells by causing the fusion of viral and host cell membrane proteins. Fusion is achieved with the help of conserved fusion machinery components, glycoproteins gB, heterodimer gH-gL complex along with other non-conserved components. Whereas, another important glycoprotein gD without which viral entry to the cell is not possible, acts as a co-activator for the gB-gH-gL complex formation. Thus, this complex formation interface is the most promising drug target for the development of novel anti-herpes drug candidates. In the present study, we propose a model for binding of gH-gL to gB glycoprotein leading from pre to post conformational changes during gB-gH-gL complex formation and reported the key residues involved in this binding activity along with possible binding site locations. To validate the drug targetability of our proposed binding site, we have repositioned some of the most promising in vitro, in vivo validated anti-herpes molecules onto the proposed binding site of gH-gL complex in a computational approach. Methods Hex 6.3 standalone software was used for protein-protein docking studies. Arguslab 4.0.1 and Accelrys® Discovery Studio 3.1 Visualizer softwares were used for semi-flexible docking studies and visualizing the interactions respectively. Protein receptors and ethno compounds were retrieved from Protein Data Bank (PDB) and Pubchem databases respectively. Lipinski’s Filter, Osiris Property Explorer and Lazar online servers were used to check the pharmaceutical fidelity of the drug candidates. Results Through protein-protein docking studies, it was identified that the amino acid residues VAL342, GLU347, SER349, TYR355, SER388, ASN395, HIS398 and ALA387 of gH-gL complex play an active role in its binding activity with gB. Semi flexible docking analysis of the most promising in vitro, in vivo validated anti-herpes molecules targeting the above mentioned key residues of gH-gL complex showed that all the analyzed ethno medicinal compounds have successfully docked into the proposed binding site of gH-gL glycoprotein with binding energy range between -10.4 to -6.4 K.cal./mol. Conclusions Successful repositioning of the analyzed compounds onto the proposed binding site confirms the drug targetability of gH-gL complex. Based on the free binding energy and pharmacological properties, we propose (3-chloro phenyl) methyl-3,4,5 trihydroxybenzoate as worth a small ethno medicinal lead molecule for further development as potent anti-herpes drug candidate targeting gB-gH-gL complex formation interface. PMID:23587166
In silico analysis of Pycnoporus cinnabarinus laccase active site with toxic industrial dyes.
Prasad, Nirmal K; Vindal, Vaibhav; Narayana, Siva Lakshmi; Ramakrishna, V; Kunal, Swaraj Priyaranjan; Srinivas, M
2012-05-01
Laccases belong to multicopper oxidases, a widespread class of enzymes implicated in many oxidative functions in various industrial oxidative processes like production of fine chemicals to bioremediation of contaminated soil and water. In order to understand the mechanisms of substrate binding and interaction between substrates and Pycnoporus cinnabarinus laccase, a homology model was generated. The resulted model was further validated and used for docking studies with toxic industrial dyes- acid blue 74, reactive black 5 and reactive blue 19. Interactions of chemical mediators with the laccase was also examined. The docking analysis showed that the active site always cannot accommodate the dye molecules, due to constricted nature of the active site pocket and steric hindrance of the residues whereas mediators are relatively small and can easily be accommodated into the active site pocket, which, thereafter leads to the productive binding. The binding properties of these compounds along with identification of critical active site residues can be used for further site-directed mutagenesis experiments in order to identify their role in activity and substrate specificity, ultimately leading to improved mutants for degradation of these toxic compounds.
An efficient and accurate molecular alignment and docking technique using ab initio quality scoring
Füsti-Molnár, László; Merz, Kenneth M.
2008-01-01
An accurate and efficient molecular alignment technique is presented based on first principle electronic structure calculations. This new scheme maximizes quantum similarity matrices in the relative orientation of the molecules and uses Fourier transform techniques for two purposes. First, building up the numerical representation of true ab initio electronic densities and their Coulomb potentials is accelerated by the previously described Fourier transform Coulomb method. Second, the Fourier convolution technique is applied for accelerating optimizations in the translational coordinates. In order to avoid any interpolation error, the necessary analytical formulas are derived for the transformation of the ab initio wavefunctions in rotational coordinates. The results of our first implementation for a small test set are analyzed in detail and compared with published results of the literature. A new way of refinement of existing shape based alignments is also proposed by using Fourier convolutions of ab initio or other approximate electron densities. This new alignment technique is generally applicable for overlap, Coulomb, kinetic energy, etc., quantum similarity measures and can be extended to a genuine docking solution with ab initio scoring. PMID:18624561
Pathania, Shivalika; Randhawa, Vinay; Bagler, Ganesh
2013-01-01
Aldose Reductase (AR) is implicated in the development of secondary complications of diabetes, providing an interesting target for therapeutic intervention. Extracts of Rauvolfia serpentina, a medicinal plant endemic to the Himalayan mountain range, have been known to be effective in alleviating diabetes and its complications. In this study, we aim to prospect for novel plant-derived inhibitors from R. serpentina and to understand structural basis of their interactions. An extensive library of R. serpentina molecules was compiled and computationally screened for inhibitory action against AR. The stability of complexes, with docked leads, was verified using molecular dynamics simulations. Two structurally distinct plant-derived leads were identified as inhibitors: indobine and indobinine. Further, using these two leads as templates, 16 more leads were identified through ligand-based screening of their structural analogs, from a small molecules database. Thus, we obtained plant-derived indole alkaloids, and their structural analogs, as potential AR inhibitors from a manually curated dataset of R. serpentina molecules. Indole alkaloids reported herein, as a novel structural class unreported hitherto, may provide better insights for designing potential AR inhibitors with improved efficacy and fewer side effects. PMID:23613832
Pathania, Shivalika; Randhawa, Vinay; Bagler, Ganesh
2013-01-01
Aldose Reductase (AR) is implicated in the development of secondary complications of diabetes, providing an interesting target for therapeutic intervention. Extracts of Rauvolfia serpentina, a medicinal plant endemic to the Himalayan mountain range, have been known to be effective in alleviating diabetes and its complications. In this study, we aim to prospect for novel plant-derived inhibitors from R. serpentina and to understand structural basis of their interactions. An extensive library of R. serpentina molecules was compiled and computationally screened for inhibitory action against AR. The stability of complexes, with docked leads, was verified using molecular dynamics simulations. Two structurally distinct plant-derived leads were identified as inhibitors: indobine and indobinine. Further, using these two leads as templates, 16 more leads were identified through ligand-based screening of their structural analogs, from a small molecules database. Thus, we obtained plant-derived indole alkaloids, and their structural analogs, as potential AR inhibitors from a manually curated dataset of R. serpentina molecules. Indole alkaloids reported herein, as a novel structural class unreported hitherto, may provide better insights for designing potential AR inhibitors with improved efficacy and fewer side effects.
Virtual Screening of Novel Glucosamine-6-Phosphate Synthase Inhibitors.
Lather, Amit; Sharma, Sunil; Khatkar, Anurag
2018-01-01
Infections caused by microorganisms are the major cause of death today. The tremendous and improper use of antimicrobial agents leads to antimicrobial resistance. Various currently available antimicrobial drugs are inadequate to control the infections and lead to various adverse drug reactions. Efforts based on computer-aided drug design (CADD) can excavate a large number of databases to generate new, potent hits and minimize the requirement of time as well as money for the discovery of newer antimicrobials. Pharmaceutical sciences also have made development with advances in drug designing concepts. The current research article focuses on the study of various G-6-P synthase inhibitors from literature cited molecular database. Docking analysis was conducted and ADMET data of various molecules was evaluated by Schrodinger Glide and PreADMET software, respectively. Here, the results presented efficacy of various inhibitors towards enzyme G-6-P synthase. Docking scores, binding energy and ADMET data of various molecules showed good inhibitory potential toward G-6-P synthase as compared to standard antibiotics. This novel antimicrobial drug target G-6-P synthase has not so extensively been explored for its application in antimicrobial therapy, so the work done so far proved highly essential. This article has helped the drug researchers and scientists to intensively explore about this wonderful antimicrobial drug target. The Schrodinger, Inc. (New York, USA) software was utilized to carry out the computational calculations and docking studies. The hardware configuration was Intel® core (TM) i5-4210U CPU @ 2.40GHz, RAM memory 4.0 GB under 64-bit window operating system. The ADMET data was calculated by using the PreADMET tool (PreADMET ver. 2.0). All the computational work was completed in the Laboratory for Enzyme Inhibition Studies, Department of Pharmaceutical Sciences, M.D. University, Rohtak, INDIA. Molecular docking studies were carried out to identify the binding affinities and interaction between the inhibitors and the target proteins (G-6-P synthase) by using Glide software (Schrodinger Inc. U.S.A.-Maestro version 10.2). Grid-based Ligand Docking with Energetic (Glide) is one of the most accurate docking softwares available for ligand-protein, protein-protein binding studies. A library of hundreds of available ligands was docked against targeted proteins G-6-P synthase having PDB ID 1moq. Results of docking are shown in Table 1 and Table 2. Results of G-6-P synthase docking showed that some compounds were found to have comparable docking score and binding energy (kj/mol) as compared to standard antibiotics. Many of the ligands showed hydrogen bond interaction, hydrophobic interactions, electrostatic interactions, ionic interactions and π- π stacking with the various amino acid residues in the binding pockets of G-6-P synthase. The docking study estimated free energy of binding, binding pose andglide score and all these parameters provide a promising tool for the discovery of new potent natural inhibitors of G-6-P synthase. These G-6-P synthase inhibitors could further be used as antimicrobials. Here, a detailed binding analysis and new insights of inhibitors from various classes of molecules were docked in binding cavity of G-6-P synthase. ADME and toxicity prediction of these compounds will further accentuate us to study these compounds in vivo. This information will possibly present further expansion of effective antimicrobials against several microbial infections. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
McCullough, Christopher; Neumann, Terrence S.; Gone, Jayapal Reddy; He, Zhengjie; Herrild, Christian; Wondergem, Julie; Pandey, Rajesh K.; Donaldson, William A.; Sem, Daniel S.
2014-01-01
Various estrogen analogs were synthesized and tested for binding to human ERα using a fluorescence polarization displacement assay. Binding affinity and orientation were also predicted using docking calculations. Docking was able to accurately predict relative binding affinity and orientation for estradiol, but only if a tightly bound water molecule bridging Arg394/Glu353 is present. Di-hydroxyl compounds sometimes bind in two orientations, which are flipped in terms of relative positioning of their hydroxyl groups. Di-hydroxyl compounds were predicted to bind with their aliphatic hydroxyl group interacting with His524 in ERα. One nonsteroid-based dihdroxyl compound was 1000-fold specific for ERβ over ERα, and was also 25-fold specific for agonist ERβ versus antagonist activity. Docking predictions suggest this specificity may be due to interaction of the aliphatic hydroxyl with His475 in the agonist form of ERβ, versus with Thr299 in the antagonist form. But, the presence of this aliphatic hydroxyl is not required in all compounds, since mono-hydroxyl (phenolic) compounds bind ERα with high affinity, via hydroxyl hydrogen bonding interactions with the ERα Arg394/Glu353/water triad, and van der Waals interactions with the rest of the molecule. PMID:24315190
Kumar, B V S Suneel; Kotla, Rohith; Buddiga, Revanth; Roy, Jyoti; Singh, Sardar Shamshair; Gundla, Rambabu; Ravikumar, Muttineni; Sarma, Jagarlapudi A R P
2011-01-01
Structure and ligand based pharmacophore modeling and docking studies carried out using diversified set of c-Jun N-terminal kinase-3 (JNK3) inhibitors are presented in this paper. Ligand based pharmacophore model (LBPM) was developed for 106 inhibitors of JNK3 using a training set of 21 compounds to reveal structural and chemical features necessary for these molecules to inhibit JNK3. Hypo1 consisted of two hydrogen bond acceptors (HBA), one hydrogen bond donor (HBD), and a hydrophobic (HY) feature with a correlation coefficient (r²) of 0.950. This pharmacophore model was validated using test set containing 85 inhibitors and had a good r² of 0.846. All the molecules were docked using Glide software and interestingly, all the docked conformations showed hydrogen bond interactions with important hinge region amino acids (Gln155 and Met149)and these interactions were compared with Hypo1 features. The results of ligand based pharmacophore model (LBPM)and docking studies are validated each other. The structure based pharmacophore model (SBPM) studies have identified additional features, two hydrogen bond donors and one hydrogen bond acceptor. The combination of these methodologies is useful in designing ideal pharmacophore which provides a powerful tool for the discovery of novel and selective JNK3 inhibitors.
Abreu, Rui Mv; Froufe, Hugo Jc; Queiroz, Maria João Rp; Ferreira, Isabel Cfr
2010-10-28
Virtual screening of small molecules using molecular docking has become an important tool in drug discovery. However, large scale virtual screening is time demanding and usually requires dedicated computer clusters. There are a number of software tools that perform virtual screening using AutoDock4 but they require access to dedicated Linux computer clusters. Also no software is available for performing virtual screening with Vina using computer clusters. In this paper we present MOLA, an easy-to-use graphical user interface tool that automates parallel virtual screening using AutoDock4 and/or Vina in bootable non-dedicated computer clusters. MOLA automates several tasks including: ligand preparation, parallel AutoDock4/Vina jobs distribution and result analysis. When the virtual screening project finishes, an open-office spreadsheet file opens with the ligands ranked by binding energy and distance to the active site. All results files can automatically be recorded on an USB-flash drive or on the hard-disk drive using VirtualBox. MOLA works inside a customized Live CD GNU/Linux operating system, developed by us, that bypass the original operating system installed on the computers used in the cluster. This operating system boots from a CD on the master node and then clusters other computers as slave nodes via ethernet connections. MOLA is an ideal virtual screening tool for non-experienced users, with a limited number of multi-platform heterogeneous computers available and no access to dedicated Linux computer clusters. When a virtual screening project finishes, the computers can just be restarted to their original operating system. The originality of MOLA lies on the fact that, any platform-independent computer available can he added to the cluster, without ever using the computer hard-disk drive and without interfering with the installed operating system. With a cluster of 10 processors, and a potential maximum speed-up of 10x, the parallel algorithm of MOLA performed with a speed-up of 8,64× using AutoDock4 and 8,60× using Vina.
NASA Astrophysics Data System (ADS)
El-Azab, Adel S.; Mary, Y. Sheena; Abdel-Aziz, Alaa A. M.; Miniyar, Pankaj B.; Armaković, Stevan; Armaković, Sanja J.
2018-03-01
The Fourier transform infrared spectra of the compounds 2-(5-phenyl-1,3,4-oxadiazol-2-yl)pyrazine (PHOXPY), 2-(5-styryl-1,3,4-oxadiazol-2-yl)pyrazine (STOXPY) and 2-(5-(furan-2-yl)-1,3,4-oxadiazol-2-yl)pyrazine (FUOXPY) have been recorded and the wavenumbers are computed at the density functional theory level. The assignments of all the fundamental bands of each molecule are made using potential energy distribution. The computed values of dipole moment, polarizability and hyperpolarizability values indicate that the title molecules exhibit NLO properties. The HOMO and LUMO energies demonstrate the chemical stability of the molecules and NBO analysis is made to study the stability of molecules arising from hyper conjugative interactions and charge delocalization. Detailed computational analysis and spectroscopic characterization has been performed for three newly synthesized oxadiazole derivatives. Obtained computational and experimental results have been mutually compared in order to understand the influence of structural parts specific for each derivative. From the MIC determination, MTb H37Rv was found to be sensitive to compounds, PHOXPY, STOXPY and FUOXPY. The results obtained from anti-TB activity are more promising as the compounds were found to be more potent than reference standards, streptomycin and pyrazinamide. Efforts were made in order to predict both global and local reactive properties of the title oxadiazole derivatives, including their sensitivity towards autoxidation mechanism and influence of water. The results obtained from anti-TB activity are more promising for the title compounds. Interaction with representative protein Pterindeaminase inhibitor asricin A was also investigated using the molecular docking procedure. The docked ligands form stable complexes with the receptor ricin A and the docking results suggest that these compounds can be developed as new anti-cancer drugs.
In-Silico Analysis of Amotosalen Hydrochloride Binding to CD-61 of Platelets.
Chaudhary, Hammad Tufail
2016-11-01
To determine the docking of Amotosalen hydrochloride (AH) at CD-61 of platelets, and to suggest the cause of bleeding in AH treated platelets transfusion. Descriptive study. Medical College, Taif University, Taif, Saudi Arabia, from October 2014 to May 2015. The study was carried out in-silico. PDB (protein data bank) code of Tirofiban bound to CD-61 was 2vdm. CD-61 was docked with Tirofiban using online docking tools, i.e. Patchdock and Firedock. Then, Amotosalen hydrochloride and CD-61 were also docked. Best docking poses to active sites of 2vdm were found. Ligplot of interactions of ligands and CD-61 were obtained. Then comparison of hydrogen bonds, hydrogen bond lengths, and hydrophobic bonds of 2vdm molecule and best poses of docking results were done. Patchdock and Firedock results of best poses were also analysed using SPSS version 16. More amino acids were involved in hydrogen and hydrophobic bonds in Patchdock and Firedock docking of Amotosalen hydrochloride with CD-61 than Patchdock and Firedock docking of CD-61 with Tirofiban. The binding energy was more in latter than former. Amotosalen hydrochloride binds to the active site of CD-61 with weaker binding force. Haemorrhage seen in Amotosalen hydrochloride-treated platelets might be due to binding of Amotosalen hydrochloride to CD-61.
Fu, Junjie; Xia, Amy; Dai, Yao; Qi, Xin
2016-01-01
Discovering molecules capable of binding to HIV trans-activation responsive region (TAR) RNA thereby disrupting its interaction with Tat protein is an attractive strategy for developing novel antiviral drugs. Computational docking is considered as a useful tool for predicting binding affinity and conducting virtual screening. Although great progress in predicting protein-ligand interactions has been achieved in the past few decades, modeling RNA-ligand interactions is still largely unexplored due to the highly flexible nature of RNA. In this work, we performed molecular docking study with HIV TAR RNA using previously identified cyclic peptide L22 and its analogues with varying affinities toward HIV-1 TAR RNA. Furthermore, sarcosine scan was conducted to generate derivatives of CGP64222, a peptide-peptoid hybrid with inhibitory activity on Tat/TAR RNA interaction. Each compound was docked using CDOCKER, Surflex-Dock and FlexiDock to compare the effectiveness of each method. It was found that FlexiDock energy values correlated well with the experimental Kd values and could be used to predict the affinity of the ligands toward HIV-1 TAR RNA with a superior accuracy. Our results based on comparative analysis of different docking methods in RNA-ligand modeling will facilitate the structure-based discovery of HIV TAR RNA ligands for antiviral therapy.
NASA Astrophysics Data System (ADS)
Malikanti, Ramesh; Vadija, Rajender; Veeravarapu, Hymavathi; Mustyala, Kiran Kumar; Malkhed, Vasavi; Vuruputuri, Uma
2017-12-01
Tuberculosis (Tb) is one of the major health challenges for the global scientific community. The 3-hydroxy butyryl-CoA dehydrogenase (Fad B2) protein belongs to 3-hydroxyl acetyl-CoA dehydrogenase family, which plays a key role in the fatty acid metabolism and β-oxidation in the cell membrane of Mycobacterium tuberculosis (Mtb). In the present study the Fad B2 protein is targeted for the identification of potential drug candidates for tuberculosis. The 3D model of the target protein Fad B2, was generated using homology modeling approach and was validated. The plausible binding site of the Fad B2 protein was identified from computational binding pocket prediction tools, which ranges from ASN120 to VAL150 amino acid residues. Virtual screening was carried out with the databases, Ligand box UOS and hit definder, at the binding site region. 133 docked complex structures were generated as an output. The identified ligands show good glide scores and glide energies. All the ligand molecules contain benzyl amine pharmacophore in common, which show specific and selective binding interactions with the SER122 and ASN146 residues of the Fad B2 protein. The ADME properties of all the ligand molecules were observed to be within the acceptable range. It is suggested from the result of the present study that the docked molecular structures with a benzyl amine pharmacophore act as potential ligands for Fad B2 protein binding and as leads in Tb drug discovery.
Replica Exchange Improves Sampling in Low-Resolution Docking Stage of RosettaDock
Zhang, Zhe; Lange, Oliver F.
2013-01-01
Many protein-protein docking protocols are based on a shotgun approach, in which thousands of independent random-start trajectories minimize the rigid-body degrees of freedom. Another strategy is enumerative sampling as used in ZDOCK. Here, we introduce an alternative strategy, ReplicaDock, using a small number of long trajectories of temperature replica exchange. We compare replica exchange sampling as low-resolution stage of RosettaDock with RosettaDock's original shotgun sampling as well as with ZDOCK. A benchmark of 30 complexes starting from structures of the unbound binding partners shows improved performance for ReplicaDock and ZDOCK when compared to shotgun sampling at equal or less computational expense. ReplicaDock and ZDOCK consistently reach lower energies and generate significantly more near-native conformations than shotgun sampling. Accordingly, they both improve typical metrics of prediction quality of complex structures after refinement. Additionally, the refined ReplicaDock ensembles reach significantly lower interface energies and many previously hidden features of the docking energy landscape become visible when ReplicaDock is applied. PMID:24009670
Sakkiah, Sugunadevi; Thangapandian, Sundarapandian; Lee, Keun Woo
2012-07-01
Aldose reductase 2 (ALR2), which catalyzes the reduction of glucose to sorbitol using NADP as a cofactor, has been implicated in the etiology of secondary complications of diabetes. A pharmacophore model, Hypo1, was built based on 26 compounds with known ALR2-inhibiting activity values. Hypo1 contains important chemical features required for an ALR2 inhibitor, and demonstrates good predictive ability by having a high correlation coefficient (0.95) as well as the highest cost difference (128.44) and the lowest RMS deviation (1.02) among the ten pharmacophore models examined. Hypo1 was further validated by Fisher's randomization method (95%), test set (r = 0.91), and the decoy set shows the goodness of fit (0.70). Furthermore, during virtual screening, Hypo1 was used as a 3D query to screen the NCI database, and the hit leads were sorted by applying Lipinski's rule of five and ADME properties. The best-fitting leads were subjected to docking to identify a suitable orientation at the ALR2 active site. The molecule that showed the strongest interactions with the critical amino acids was used in molecular dynamics simulations to calculate its binding affinity to the candidate molecules. Thus, Hypo1 describes the key structure-activity relationship along with the estimated activities of ALR2 inhibitors. The hit molecules were searched against PubChem to find similar molecules with new scaffolds. Finally, four molecules were found to satisfy all of the chemical features and the geometric constraints of Hypo1, as well as to show good dock scores, PLPs and PMFs. Thus, we believe that Hypo1 facilitates the selection of novel scaffolds for ALR2, allowing new classes of ALR2 inhibitors to be designed.
NASA Astrophysics Data System (ADS)
Faucci, Maria Teresa; Melani, Fabrizio; Mura, Paola
2002-06-01
Molecular modeling was used to investigate factors influencing complex formation between cyclodextrins and guest molecules and predict their stability through a theoretical model based on the search for a correlation between experimental stability constants ( Ks) and some theoretical parameters describing complexation (docking energy, host-guest contact surfaces, intermolecular interaction fields) calculated from complex structures at a minimum conformational energy, obtained through stochastic methods based on molecular dynamic simulations. Naproxen, ibuprofen, ketoprofen and ibuproxam were used as model drug molecules. Multiple Regression Analysis allowed identification of the significant factors for the complex stability. A mathematical model ( r=0.897) related log Ks with complex docking energy and lipophilic molecular fields of cyclodextrin and drug.
NASA Astrophysics Data System (ADS)
Islam, Md. Maidul; Pandya, Prateek; Chowdhury, Sebanti Roy; Kumar, Surat; Kumar, Gopinatha Suresh
2008-11-01
The interaction of two natural protoberberine plant alkaloids berberine and palmatine with tRNA phe was studied using various biophysical techniques and molecular modeling and the data were compared with the binding of the classical DNA intercalator, ethidium. Circular dichroic studies revealed that the tRNA conformation was moderately perturbed on binding of the alkaloids. The cooperative binding of both the alkaloids and ethidium to tRNA was revealed from absorbance and fluorescence studies. Fluorescence quenching studies advanced a conclusion that while berberine and palmatine are partially intercalated, ethidium is fully intercalated on the tRNA molecule. The binding of the alkaloids as well as ethidium stabilized the tRNA melting, and the binding constant evaluated from the averaged optical melting temperature data was in agreement with fluorescence spectral-binding data. Differential scanning calorimetry revealed that the tRNA melting showed three close transitions that were affected on binding of these small molecules. Molecular docking calculations performed showed the preferred regions of binding of these small molecules on the tRNA. Taken together, the results suggest that the binding of the alkaloids berberine and palmatine on the tRNA structure appears to be mostly by partial intercalation while ethidium intercalates fully on the tRNA. These results further advance our knowledge on the molecular aspects on the interaction of these alkaloids to tRNA.
Does your model weigh the same as a Duck?
NASA Astrophysics Data System (ADS)
Jain, Ajay N.; Cleves, Ann E.
2012-01-01
Computer-aided drug design is a mature field by some measures, and it has produced notable successes that underpin the study of interactions between small molecules and living systems. However, unlike a truly mature field, fallacies of logic lie at the heart of the arguments in support of major lines of research on methodology and validation thereof. Two particularly pernicious ones are cum hoc ergo propter hoc (with this, therefore because of this) and confirmation bias (seeking evidence that is confirmatory of the hypothesis at hand). These fallacies will be discussed in the context of off-target predictive modeling, QSAR, molecular similarity computations, and docking. Examples will be shown that avoid these problems.
Ou-Yang, Si-sheng; Lu, Jun-yan; Kong, Xiang-qian; Liang, Zhong-jie; Luo, Cheng; Jiang, Hualiang
2012-01-01
Computational drug discovery is an effective strategy for accelerating and economizing drug discovery and development process. Because of the dramatic increase in the availability of biological macromolecule and small molecule information, the applicability of computational drug discovery has been extended and broadly applied to nearly every stage in the drug discovery and development workflow, including target identification and validation, lead discovery and optimization and preclinical tests. Over the past decades, computational drug discovery methods such as molecular docking, pharmacophore modeling and mapping, de novo design, molecular similarity calculation and sequence-based virtual screening have been greatly improved. In this review, we present an overview of these important computational methods, platforms and successful applications in this field. PMID:22922346
Xia, Bing; Mamonov, Artem; Leysen, Seppe; Allen, Karen N; Strelkov, Sergei V; Paschalidis, Ioannis Ch; Vajda, Sandor; Kozakov, Dima
2015-07-30
The protein-protein docking server ClusPro is used by thousands of laboratories, and models built by the server have been reported in over 300 publications. Although the structures generated by the docking include near-native ones for many proteins, selecting the best model is difficult due to the uncertainty in scoring. Small angle X-ray scattering (SAXS) is an experimental technique for obtaining low resolution structural information in solution. While not sufficient on its own to uniquely predict complex structures, accounting for SAXS data improves the ranking of models and facilitates the identification of the most accurate structure. Although SAXS profiles are currently available only for a small number of complexes, due to its simplicity the method is becoming increasingly popular. Since combining docking with SAXS experiments will provide a viable strategy for fairly high-throughput determination of protein complex structures, the option of using SAXS restraints is added to the ClusPro server. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Sukhorukov, Alexey Yu; Nirvanappa, Anilkumar C; Swamy, Jagadish; Ioffe, Sema L; Nanjunda Swamy, Shivananju; Basappa; Rangappa, Kanchugarakoppal S
2014-08-01
Thirteen 2-oxazine-based small molecules were synthesized targeting 5-lipoxygenase (LOX), and acetylcholinesterase (AChE). The test revealed that the newly synthesized compounds had potent inhibition towards both 5-LOX and AChE in lower micro molar concentration. Among the tested compounds, the most active compound, 2-[(2-acetyl-6,6-dimethyl-4-phenyl-5,6-dihydro-2H-1,2-oxazin-3-yl)methyl]-1H-isoindole-1,3(2H)-dione (2a) showed inhibitory activity towards 5-LOX and AChE with an IC50 values of 1.88, and 2.5 μM, respectively. Further, the in silico molecular docking studies revealed that the compound 2a bound to the catalytic domain of AChE strongly with a highest CDOCKER score of -1.18 kcal/mol when compared to other compounds of the same series. Additionally, 2a showed a good lipophilicity (logP=2.66), suggesting a potential ability to penetrate the blood-brain-barrier. These initial pharmacological data revealed that the compound 2a could serve as a drug-seed in developing anti-Alzheimer's agents. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lee, Hyun; Mittal, Anuradha; Patel, Kavankumar; Gatuz, Joseph L; Truong, Lena; Torres, Jaime; Mulhearn, Debbie C; Johnson, Michael E
2014-01-01
We have used a combination of virtual screening (VS) and high-throughput screening (HTS) techniques to identify novel, non-peptidic small molecule inhibitors against human SARS-CoV 3CLpro. A structure-based VS approach integrating docking and pharmacophore based methods was employed to computationally screen 621,000 compounds from the ZINC library. The screening protocol was validated using known 3CLpro inhibitors and was optimized for speed, improved selectivity, and for accommodating receptor flexibility. Subsequently, a fluorescence-based enzymatic HTS assay was developed and optimized to experimentally screen approximately 41,000 compounds from four structurally diverse libraries chosen mainly based on the VS results. False positives from initial HTS hits were eliminated by a secondary orthogonal binding analysis using surface plasmon resonance (SPR). The campaign identified a reversible small molecule inhibitor exhibiting mixed-type inhibition with a K(i) value of 11.1 μM. Together, these results validate our protocols as suitable approaches to screen virtual and chemical libraries, and the newly identified compound reported in our study represents a promising structural scaffold to pursue for further SARS-CoV 3CLpro inhibitor development. Copyright © 2013. Published by Elsevier Ltd.
Omer, Ankur; Singh, Poonam
2017-05-01
A serious challenge in cancer treatment is to reposition the activity of various already known drug candidates against cancer. There is a need to rewrite and systematically analyze the detailed mechanistic aspect of cellular networks to gain insight into the novel role played by various molecules. Most Human Immunodeficiency Virus infection-associated cancers are caused by oncogenic viruses like Human Papilloma Viruses and Epstein-Bar Virus. As the onset of AIDS-associated cancers marks the severity of AIDS, there might be possible interconnections between the targets and mechanism of both the diseases. We have explored the possibility of certain antiviral compounds to act against major AIDS-associated cancers: Kaposi's Sarcoma, Non-Hodgkin Lymphoma, and Cervical Cancer with the help of systems pharmacology approach that includes screening for targets and molecules through the construction of a series of drug-target and drug-target-diseases network. Two molecules (Calanolide A and Chaetochromin B) and the target "HRAS" were finally screened with the help of molecular docking and molecular dynamics simulation. The results provide novel antiviral molecules against HRAS target to treat AIDS defining cancers and an insight for understanding the pharmacological, therapeutic aspects of similar unexplored molecules against various cancers.
NASA Astrophysics Data System (ADS)
Abraham, Christina Susan; Prasana, Johanan Christian; Muthu, S.; Rizwana B, Fathima; Raja, M.
2018-05-01
The research exploration will comprise of investigating the molecular structure, vibrational assignments, bonding and anti-bonding nature, nonlinear optical, electronic and thermodynamic nature of the molecule. The research is conducted at two levels: First level employs the spectroscopic techniques - FT-IR, FT-Raman and UV-Vis characterizing techniques; at second level the data attained experimentally is analyzed through theoretical methods using and Density Function Theories which involves the basic principle of solving the Schrodinger equation for many body systems. A comparison is drawn between the two levels and discussed. The probability of the title molecule being bio-active theoretically proved by the electrophilicity index leads to further property analyzes of the molecule. The target molecule is found to fit well with Centromere associated protein inhibitor using molecular docking techniques. Higher basis set 6-311++G(d,p) is used to attain results more concurrent to the experimental data. The results of the organic amine 2, 4 Dibromoaniline is analyzed and discussed.
NASA Astrophysics Data System (ADS)
Gianti, Eleonora
Computer-Aided Drug Design (CADD) has deservedly gained increasing popularity in modern drug discovery (Schneider, G.; Fechner, U. 2005), whether applied to academic basic research or the pharmaceutical industry pipeline. In this work, after reviewing theoretical advancements in CADD, we integrated novel and stateof- the-art methods to assist in the design of small-molecule inhibitors of current cancer drug targets, specifically: Androgen Receptor (AR), a nuclear hormone receptor required for carcinogenesis of Prostate Cancer (PCa); Signal Transducer and Activator of Transcription 5 (STAT5), implicated in PCa progression; and Epstein-Barr Nuclear Antigen-1 (EBNA1), essential to the Epstein Barr Virus (EBV) during latent infections. Androgen Receptor. With the aim of generating binding mode hypotheses for a class (Handratta, V.D. et al. 2005) of dual AR/CYP17 inhibitors (CYP17 is a key enzyme for androgens biosynthesis and therefore implicated in PCa development), we successfully implemented a receptor-based computational strategy based on flexible receptor docking (Gianti, E.; Zauhar, R.J. 2012). Then, with the ultimate goal of identifying novel AR binders, we performed Virtual Screening (VS) by Fragment-Based Shape Signatures, an improved version of the original method developed in our Laboratory (Zauhar, R.J. et al. 2003), and we used the results to fully assess the high-level performance of this innovative tool in computational chemistry. STAT5. The SRC Homology 2 (SH2) domain of STAT5 is responsible for phospho-peptide recognition and activation. As a keystone of Structure-Based Drug Design (SBDD), we characterized key residues responsible for binding. We also generated a model of STAT5 receptor bound to a phospho-peptide ligand, which was validated by docking publicly known STAT5 inhibitors. Then, we performed Shape Signatures- and docking-based VS of the ZINC database (zinc.docking.org), followed by Molecular Mechanics Generalized Born Surface Area (MMGBSA) simulations, paired with Principal Component Analysis (PCA) of top-scoring hits to identify novel lead molecules likely to be active against STAT5. EBNA1 is the only viral protein consistently expressed in the many EBV-associated tumors, and is required for viral genome maintenance during latent infection. To immediately assist SBDD, we computationally identified "druggable" binding sites of EBNA1, and our predictions were later confirmed by experimental evidence (The Wistar Institute proprietary data).
Zhang, Miao; Pascal, John M.; Schumann, Marcel; Armen, Roger S.; Zhang, Ji-fang
2012-01-01
Small- and intermediate-conductance Ca2+-activated potassium channels, activated by Ca2+-bound calmodulin, play an important role in regulating membrane excitability. These channels are also linked to clinical abnormalities. A tremendous amount of effort has been devoted to developing small molecule compounds targeting these channels. However, these compounds often suffer from low potency and lack of selectivity, hindering their potentials for clinical use. A key contributing factor is the lack of knowledge of the binding site(s) for these compounds. Here we demonstrate by X-ray crystallography that the binding pocket for the compounds of the 1-EBIO class is located at the calmodulin-channel interface. We show that, based on structure data and molecular docking, mutations of the channel can effectively change the potency of these compounds. Our results provide insight into the molecular nature of the binding pocket and its contribution to the potency and selectivity of the compounds of the 1-EBIO class. PMID:22929778
Zhang, Miao; Pascal, John M; Schumann, Marcel; Armen, Roger S; Zhang, Ji-Fang
2012-01-01
Small- and intermediate-conductance Ca(2+)-activated potassium channels, activated by Ca(2+)-bound calmodulin, have an important role in regulating membrane excitability. These channels are also linked to clinical abnormalities. A tremendous amount of effort has been devoted to developing small molecule compounds targeting these channels. However, these compounds often suffer from low potency and lack of selectivity, hindering their potential for clinical use. A key contributing factor is the lack of knowledge of the binding site(s) for these compounds. Here we demonstrate by X-ray crystallography that the binding pocket for the compounds of the 1-ethyl-2-benzimidazolinone (1-EBIO) class is located at the calmodulin-channel interface. We show that, based on structure data and molecular docking, mutations of the channel can effectively change the potency of these compounds. Our results provide insight into the molecular nature of the binding pocket and its contribution to the potency and selectivity of the compounds of the 1-EBIO class.
NASA Astrophysics Data System (ADS)
Dezhampanah, Hamid; Esmaili, Masoomeh; Khorshidi, Alireza
2017-05-01
The interaction of bis(indolyl)methane with bovine milk β-casein was investigated using spectroscopy and molecular docking studies at different temperatures (25-37 °C). The circular dichroism and Fourier transform infrared spectroscopic data demonstrated that β-casein interacts with BIM molecule mainly via both the hydrophobic and hydrophilic interactions with a minor change in the secondary structure of β-casein. The fluorescence quenching measurements revealed that the presence of a single binding site on β-casein for BIM with the binding constant value of ∼104 M-1. The negative values of entropy and enthalpy changes confirm the predominate role of hydrogen binding and van der Waals interactions in the binding process. Fӧrster energy transfer measurement suggested that the distance between bound BIM and Trp residue is higher than the respective critical distance. Hence, the static quenching is more likely responsible for the fluorescence quenching rather than the mechanism of non-radiative. Docking study showed that BIM molecule forms three hydrogen bonds and several van der Waals contacts with β-casein.
AutoDockFR: Advances in Protein-Ligand Docking with Explicitly Specified Binding Site Flexibility
Ravindranath, Pradeep Anand; Forli, Stefano; Goodsell, David S.; Olson, Arthur J.; Sanner, Michel F.
2015-01-01
Automated docking of drug-like molecules into receptors is an essential tool in structure-based drug design. While modeling receptor flexibility is important for correctly predicting ligand binding, it still remains challenging. This work focuses on an approach in which receptor flexibility is modeled by explicitly specifying a set of receptor side-chains a-priori. The challenges of this approach include the: 1) exponential growth of the search space, demanding more efficient search methods; and 2) increased number of false positives, calling for scoring functions tailored for flexible receptor docking. We present AutoDockFR–AutoDock for Flexible Receptors (ADFR), a new docking engine based on the AutoDock4 scoring function, which addresses the aforementioned challenges with a new Genetic Algorithm (GA) and customized scoring function. We validate ADFR using the Astex Diverse Set, demonstrating an increase in efficiency and reliability of its GA over the one implemented in AutoDock4. We demonstrate greatly increased success rates when cross-docking ligands into apo receptors that require side-chain conformational changes for ligand binding. These cross-docking experiments are based on two datasets: 1) SEQ17 –a receptor diversity set containing 17 pairs of apo-holo structures; and 2) CDK2 –a ligand diversity set composed of one CDK2 apo structure and 52 known bound inhibitors. We show that, when cross-docking ligands into the apo conformation of the receptors with up to 14 flexible side-chains, ADFR reports more correctly cross-docked ligands than AutoDock Vina on both datasets with solutions found for 70.6% vs. 35.3% systems on SEQ17, and 76.9% vs. 61.5% on CDK2. ADFR also outperforms AutoDock Vina in number of top ranking solutions on both datasets. Furthermore, we show that correctly docked CDK2 complexes re-create on average 79.8% of all pairwise atomic interactions between the ligand and moving receptor atoms in the holo complexes. Finally, we show that down-weighting the receptor internal energy improves the ranking of correctly docked poses and that runtime for AutoDockFR scales linearly when side-chain flexibility is added. PMID:26629955
2013-01-01
Background HIV-1 Nef is a viral accessory protein critical for AIDS progression. Nef lacks intrinsic catalytic activity and binds multiple host cell signaling proteins, including Hck and other Src-family tyrosine kinases. Nef binding induces constitutive Hck activation that may contribute to HIV pathogenesis by promoting viral infectivity, replication and downregulation of cell-surface MHC-I molecules. In this study, we developed a yeast-based phenotypic screen to identify small molecules that inhibit the Nef-Hck complex. Results Nef-Hck interaction was faithfully reconstituted in yeast cells, resulting in kinase activation and growth arrest. Yeast cells expressing the Nef-Hck complex were used to screen a library of small heterocyclic compounds for their ability to rescue growth inhibition. The screen identified a dihydrobenzo-1,4-dioxin-substituted analog of 2-quinoxalinyl-3-aminobenzene-sulfonamide (DQBS) as a potent inhibitor of Nef-dependent HIV-1 replication and MHC-I downregulation in T-cells. Docking studies predicted direct binding of DQBS to Nef which was confirmed in differential scanning fluorimetry assays with recombinant purified Nef protein. DQBS also potently inhibited the replication of HIV-1 NL4-3 chimeras expressing Nef alleles representative of all M-group HIV-1 clades. Conclusions Our findings demonstrate the utility of a yeast-based growth reversion assay for the identification of small molecule Nef antagonists. Inhibitors of Nef function discovered with this assay, such as DQBS, may complement the activity of current antiretroviral therapies by enabling immune recognition of HIV-infected cells through the rescue of cell surface MHC-I. PMID:24229420
NASA Astrophysics Data System (ADS)
Rajamanikandan, Sundaraj; Srinivasan, Pappu
2017-03-01
Bacteria communicate with one another using extracellular signaling molecules called auto-inducers (AHLs), a process termed as quorum sensing. The quorum sensing process allows bacteria to regulate various physiological activities. In this regard, quorum sensing master regulator LuxR from Vibrio harveyi represents an attractive therapeutic target for the development of novel anti-quorum sensing agents. Eventhough the binding of AHL complex with LuxR is evidenced in earlier reports, but their mode of binding is not clearly determined. Therefore, in the present work, molecular docking, in silico mutational studies, molecular dynamics simulations and free energy calculations were performed to understand the selectivity of AHL into the binding site of LuxR. The results revealed that Asn133 and Gln137 residues play a crucial role in recognizing AHL more effectively into the binding site of LuxR with good binding free energy. In addition to that, the carbonyl group presents in the lactone ring and amide group of AHL plays a vital role in the formation of hydrogen bond interactions with the protein. Further, structure based virtual screening was performed using ChemBridge database to screen potent lead molecules against LuxR. 4-benzyl-2-pyrrolidinone and N-[2(1-cyclohexen-1-yl) enthyl]-N'(2-ethoxyphenyl) were selected based on dock score, binding affinity and mode of interactions with the receptor. Furthermore, binding free energy, density functional theory and ADME prediction were performed to rank the lead molecules. Thus, the identified lead molecules can be used for the development of anti-quorum sensing drugs.
Diagnosis and therapy of oral squamous cell carcinoma.
Konkimalla, V Badireenath; Suhas, Venkatramana Laxminarayana; Chandra, Nagasuma R; Gebhart, Erich; Efferth, Thomas
2007-03-01
Oral squamous cell carcinoma ranks among the top ten most common cancers worldwide. Despite the success in diagnosis and therapy during the past 30 years, oral squamous cell carcinoma still belongs to the tumor types with a very unfavorable prognosis. In an effort to identify genomic alterations with prognostic relevance, we applied the comparative genomic hybridization technique on oral squamous cell carcinoma. The tumors exhibited from five up to 47 DNA copy number alterations, indicating a considerable degree of genomic imbalance. Out of 35 tumors, 19 showed a gain of chromosome band 7p12. Genomic imbalances were investigated by hierarchical cluster analysis and clustered image mapping to investigate whether genomic profiles correlate with clinical data. Results of the present investigation show that profiling of genomic imbalances in general, and especially of the epidermal growth factor receptor (EGFR) on 7p12, may be suitable as prognostic factors. In order to identify small-molecule inhibitors for EGFR, we established a database of 531 natural compounds derived from medicinal plants used in traditional Chinese medicine. Candidate compounds were identified by correlation analysis using the Kendall tau-test of IC50 values of tumor cell lines and microarray-based EGFR mRNA expression. Further validation was performed by molecular docking studies using the AutoDock program with the crystal structure of EGFR tyrosine kinase domain as docking template. We estimate these results will be a further step toward the ultimate goal of individualized, patient-adapted tumor treatment based on tumor molecular profiling.
Adekoya, Olayiwola A; Willassen, Nils-Peder; Sylte, Ingebrigt
2005-04-01
Thermolysin is a zinc-metalloendopeptidase secreted by the gram-positive thermophilic bacterium Bacillus thermoproteolyticus. Thermolysin belongs to the gluzinicin family of enzymes, which is selectively inhibited by Steptomyces metalloproteinase inhibitor (SMPI). Very little is known about the interaction between SMPI and thermolysin. Knowledge about the protein-protein interactions is very important for designing new thermolysin inhibitors with possible industrial or pharmaceutical applications. In the present study, two binding modes between SMPI and thermolysin were studied by 2300 picoseconds (ps) of comparative molecular dynamics (MD) simulations and calculation of the free energy of binding using the molecular mechanics-Poisson-Boltmann surface area (MM/PBSA) method. One of the positions, the 'horizontal arrow head docking' (HAHD) was similar to the previously proposed binding mode by Tate et al. (Tate, S., Ohno, A., Seeram, S. S., Hiraga, K., Oda, K., and Kainosho, M. J. Mol. Biol. 282, 435-446 (1998)). The other position, the 'vertical arrow head docking' (VAHD) was obtained by a manual docking guided by the shape and charge distribution of SMPI and the binding pocket of thermolysin. The calculations showed that SMPI had stronger interactions with thermolysin in the VAHD than in the HAHD complex, and the VAHD complex was considered more realistic than the HAHD complex. SMPI interacted with thermolysin not only at the active site but had auxiliary binding sites contributing to proper interactions. The VAHD complex can be used for designing small molecule inhibitors mimicking the SMPI-thermolysin binding interfaces.
Ran, Yan; Pei, Heying; Shao, Mingfeng; Chen, Lijuan
2016-02-01
Type 2 diabetes (T2D) is classified as a major metabolic disorder, which has affected approximately 194 million people worldwide. DPP-IV inhibitors as a new therapy have shown several advantages over traditional antidiabetic drugs. Based on the similar binding modes of Alogliptin and Linagliptin, molecular operation was conducted via combining pharmacophore hybridization with structural optimization between the two market drugs and racemic compounds 40 and 43 were reported as DPP-IV inhibitors in our previous studies. But the majority of DPP-IV inhibitors have developed into a small molecule with certain conformation; in this study, we described the synthesis, biological evaluation, and molecular docking of corresponding enantiomers of compounds 40 and 43. The most potent inhibitor is (R)-40 (IC50 = 23.5 nm, F = 74.67%, T1/2 = 4 h), which exhibited moderate antihyperglycemic activity as compared to the standard antidiabetic drug Linagliptin in OGTT. In addition, compound (R)-40 effectively improved the pathological state of DIO mice. Molecular docking studies clarified the favorable binding affinity between compound (R)-40 and DPP-IV active site. Thus, compound (R)-40 would be entitled to further development as a drug candidate on the basis of the suitable pharmacokinetic (PK) and desirable pharmacodynamic (PD) profiles. © 2015 John Wiley & Sons A/S.
Potential interaction of natural dietary bioactive compounds with COX-2.
Maldonado-Rojas, Wilson; Olivero-Verbel, Jesus
2011-09-01
Bioactive natural products present in the diet play an important role in several biological processes, and many have been involved in the alleviation and control of inflammation-related diseases. These actions have been linked to both gene expression modulation of pro-inflammatory enzymes, such as cyclooxygenase 2 (COX-2), and to an action involving a direct inhibitory binding on this protein. In this study, several food-related compounds with known gene regulatory action on inflammation have been examined in silico as COX-2 ligands, utilizing AutoDock Vina, GOLD and Surflex-Dock (SYBYL) as docking protocols. Curcumin and all-trans retinoic acid presented the maximum absolute AutoDock Vina-derived binding affinities (9.3 kcal/mol), but genistein, apigenin, cyanidin, kaempferol, and docosahexaenoic acid, were close to this value. AutoDock Vina affinities and GOLD scores for several known COX-2 inhibitors significatively correlated with reported median inhibitory concentrations (R² = 0.462, P < 0.001 and R² = 0.238, P = 0.029, respectively), supporting the computational reliability of the predictions made by our docking simulations. Moreover, docking analysis insinuate the synergistic action of curcumin on celecoxib-induced inhibition of COX-2 may occur allosterically, as this natural compound docks to a place different from the inhibitor binding site. These results suggest that the anti-inflammatory properties of some food-derived molecules could be the result of their direct binding capabilities to COX-2, and this process can be modeled using protein-ligand docking methodologies. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kavitha, T.; Velraj, G.
2017-08-01
The molecular structure of 1-(2, 5-Dichloro-4-Sulfophenyl)-3-Methyl-5-Pyrazolone (DSMP) was optimized using DFT/B3LYP/6-31++G(d,p) level and its corresponding experimental as well as theoretical FT-IR, FT-Raman vibrational frequencies and UV-Vis spectral analysis were carried out. The vibrational assignments and total energy distributions of each vibration were presented with the aid of Veda 4xx software. The molecular electrostatic potential, HOMO-LUMO energies, global and local reactivity descriptors and natural bond orbitals were analyzed in order to find the most possible reactive sites of the molecule and it was found that DSMP molecule possess enhanced nucleophilic activity. One of the common known COX2 inhibitor, celecoxib (CXB) was also found to exhibit similar reactivity properties and hence DSMP was also expected to inhibit COX enzymes. In order to detect the COX inhibition nature of DSMP, molecular docking analysis was carried out with the help of Autodock software. For that, the optimized structure was in turn used for docking DSMP with COX enzymes. The binding energy scores and inhibitory constant values reveal that the DSMP molecule possess good binding affinity and low inhibition constant towards COX2 enzyme and hence it can be used as an anti-inflammatory drug after carrying out necessary biological tests.
Covalent docking of selected boron-based serine beta-lactamase inhibitors
NASA Astrophysics Data System (ADS)
Sgrignani, Jacopo; Novati, Beatrice; Colombo, Giorgio; Grazioso, Giovanni
2015-05-01
AmpC β-lactamase is a hydrolytic enzyme conferring resistance to β-lactam antibiotics in multiple Gram-negative bacteria. Therefore, identification of non-β-lactam compounds able to inhibit the enzyme is crucial for the development of novel antibacterial therapies. In general, AmpC inhibitors have to engage the highly solvent-exposed catalytic site of the enzyme. Therefore, understanding the implications of ligand-protein induced-fit and water-mediated interactions behind the inhibitor-enzyme recognition process is fundamental for undertaking structure-based drug design process. Here, we focus on boronic acids, a promising class of beta-lactamase covalent inhibitors. First, we optimized a docking protocol able to reproduce the experimentally determined binding mode of AmpC inhibitors bearing a boronic group. This goal was pursued (1) performing rigid and flexible docking calculations aiming to establish the role of the side chain conformations; and (2) investigating the role of specific water molecules in shaping the enzyme active site and mediating ligand protein interactions. Our calculations showed that some water molecules, conserved in the majority of the considered X-ray structures, are needed to correctly predict the binding pose of known covalent AmpC inhibitors. On this basis, we formalized our findings in a docking and scoring protocol that could be useful for the structure-based design of new boronic acid AmpC inhibitors.
Vyas, V K; Qureshi, G; Ghate, M; Patel, H; Dalai, S
2016-06-01
Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) catalyses the fourth reaction of de novo pyrimidine biosynthesis in parasites, and represents an important target for the treatment of malaria. In this study, we describe pharmacophore-based virtual screening combined with docking study and biological evaluation as a rational strategy for identification of novel hits as antimalarial agents. Pharmacophore models were established from known PfDHODH inhibitors using the GALAHAD module with IC50 values ranging from 0.033 μM to 142 μM. The best pharmacophore model consisted of three hydrogen bond acceptor, one hydrogen bond donor and one hydrophobic features. The pharmacophore models were validated through receiver operating characteristic and Günere-Henry scoring methods. The best pharmacophore model as a 3D search query was searched against the IBS database. Several compounds with different structures (scaffolds) were retrieved as hit molecules. Among these compounds, those with a QFIT value of more than 81 were docked in the PfDHODH enzyme to further explore the binding modes of these compounds. In silico pharmacokinetic and toxicities were predicted for the best docked molecules. Finally, the identified hits were evaluated in vivo for their antimalarial activity in a parasite inhibition assay. The hits reported here showed good potential to become novel antimalarial agents.
Shi, Zheng; Yu, Tian; Sun, Rong; Wang, Shan; Chen, Xiao-Qian; Cheng, Li-Jia; Liu, Rong
2016-01-01
Human epidermal growth factor receptor-2 (HER2) is a trans-membrane receptor like protein, and aberrant signaling of HER2 is implicated in many human cancers, such as ovarian cancer, gastric cancer, and prostate cancer, most notably breast cancer. Moreover, it has been in the spotlight in the recent years as a promising new target for therapy of breast cancer. Since virtual screening has become an integral part of the drug discovery process, it is of great significant to identify novel HER2 inhibitors by structure-based virtual screening. In this study, we carried out a series of elegant bioinformatics approaches, such as virtual screening and molecular dynamics (MD) simulations to identify HER2 inhibitors from Food and Drug Administration-approved small molecule drug as potential "new use" drugs. Molecular docking identified top 10 potential drugs which showed spectrum affinity to HER2. Moreover, MD simulations suggested that ZINC08214629 (Nonoxynol-9) and ZINC03830276 (Benzonatate) might exert potential inhibitory effects against HER2-targeted anti-breast cancer therapeutics. Together, our findings may provide successful application of virtual screening studies in the lead discovery process, and suggest that our discovered small molecules could be effective HER2 inhibitor candidates for further study. A series of elegant bioinformatics approaches, including virtual screening and molecular dynamics (MD) simulations were took advantage to identify human epidermal growth factor receptor-2 (HER2) inhibitors. Molecular docking recognized top 10 candidate compounds, which showed spectrum affinity to HER2. Further, MD simulations suggested that ZINC08214629 (Nonoxynol-9) and ZINC03830276 (Benzonatate) in candidate compounds were identified as potential "new use" drugs against HER2-targeted anti-breast cancer therapeutics. Abbreviations used: HER2: Human epidermal growth factor receptor-2, FDA: Food and Drug Administration, PDB: Protein Database Bank, RMSDs: Root mean square deviations, SPC: Single point charge, PME: Particle mesh Ewald, NVT: Constant volume, NPT: Constant pressure, RMSF: Root-mean-square fluctuation.
Johnson, David K.; Karanicolas, John
2016-01-01
Protein-protein interactions play important roles in virtually all cellular processes, making them enticing targets for modulation by small-molecule therapeutics: specific examples have been well validated in diseases ranging from cancer and autoimmune disorders, to bacterial and viral infections. Despite several notable successes, however, overall these remain a very challenging target class. Protein interaction sites are especially challenging for computational approaches, because the target protein surface often undergoes a conformational change to enable ligand binding: this confounds traditional approaches for virtual screening. Through previous studies, we demonstrated that biased “pocket optimization” simulations could be used to build collections of low-energy pocket-containing conformations, starting from an unbound protein structure. Here, we demonstrate that these pockets can further be used to identify ligands that complement the protein surface. To do so, we first build from a given pocket its “exemplar”: a perfect, but non-physical, pseudo-ligand that would optimally match the shape and chemical features of the pocket. In our previous studies, we used these exemplars to quantitatively compare protein surface pockets to one another. Here, we now introduce this exemplar as a template for pharmacophore-based screening of chemical libraries. Through a series of benchmark experiments, we demonstrate that this approach exhibits comparable performance as traditional docking methods for identifying known inhibitors acting at protein interaction sites. However, because this approach is predicated on ligand/exemplar overlays, and thus does not require explicit calculation of protein-ligand interactions, exemplar screening provides a tremendous speed advantage over docking: 6 million compounds can be screened in about 15 minutes on a single 16-core, dual-GPU computer. The extreme speed at which large compound libraries can be traversed easily enables screening against a “pocket-optimized” ensemble of protein conformations, which in turn facilitates identification of more diverse classes of active compounds for a given protein target. PMID:26726827
Quantum.Ligand.Dock: protein-ligand docking with quantum entanglement refinement on a GPU system.
Kantardjiev, Alexander A
2012-07-01
Quantum.Ligand.Dock (protein-ligand docking with graphic processing unit (GPU) quantum entanglement refinement on a GPU system) is an original modern method for in silico prediction of protein-ligand interactions via high-performance docking code. The main flavour of our approach is a combination of fast search with a special account for overlooked physical interactions. On the one hand, we take care of self-consistency and proton equilibria mutual effects of docking partners. On the other hand, Quantum.Ligand.Dock is the the only docking server offering such a subtle supplement to protein docking algorithms as quantum entanglement contributions. The motivation for development and proposition of the method to the community hinges upon two arguments-the fundamental importance of quantum entanglement contribution in molecular interaction and the realistic possibility to implement it by the availability of supercomputing power. The implementation of sophisticated quantum methods is made possible by parallelization at several bottlenecks on a GPU supercomputer. The high-performance implementation will be of use for large-scale virtual screening projects, structural bioinformatics, systems biology and fundamental research in understanding protein-ligand recognition. The design of the interface is focused on feasibility and ease of use. Protein and ligand molecule structures are supposed to be submitted as atomic coordinate files in PDB format. A customization section is offered for addition of user-specified charges, extra ionogenic groups with intrinsic pK(a) values or fixed ions. Final predicted complexes are ranked according to obtained scores and provided in PDB format as well as interactive visualization in a molecular viewer. Quantum.Ligand.Dock server can be accessed at http://87.116.85.141/LigandDock.html.
Ulahannan, Rajeev T; Panicker, C Yohannan; Varghese, Hema Tresa; Musiol, Robert; Jampilek, Josef; Van Alsenoy, Christian; War, Javeed Ahmad; Al-Saadi, Abdulaziz A
2015-01-01
FT-IR and FT-Raman spectra of (2E)-N-(4-chloro-2-oxo-1,2-dihydroquinolin-3-yl)-3-phenylprop-2-enamide were recorded and analyzed experimentally and theoretically. The synthesis, (1)H NMR and PES scan results are also discussed. Nonlinear optical behavior of the examined molecule was investigated by the determination of first hyperpolarizability. The calculated HOMO and LUMO energies show the chemical activity of the molecule. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. From the MEP it is evident that the negative charge covers the carbonyl group and the positive region is over the NH group. The calculated geometrical parameters (SDD) are in agreement with that of similar derivatives. Molecular docking simulations against targets from Mycobacterium tuberculosis are reported and the results suggest that the compound might exhibit inhibitory activity against PknB. Copyright © 2015 Elsevier B.V. All rights reserved.
Gueto, Carlos; Torres, Juan; Vivas-Reyes, Ricardo
2009-09-01
Aromatase, the enzyme responsible for estrogen biosynthesis, is an attractive target in the treatment of hormone-dependent breast cancer. In this manuscript, the structure-based drug design approach of sulfonanilide analogues as potential selective aromatase expression regulators (SAERs) is described. Receptor-independent CoMFA (Comparative Molecular Field Analysis) maps were employed for generating a pseudocavity for LeapFrog calculation. A robust model, using 45 and 10 molecules in the training and test sets, respectively, was developed producing statistically significant results with cross-validated and conventional correlation coefficients of 0.656 and 0.956, respectively. This model was used to predict the activity of newly proposed molecules as SAERs candidates being two magnitude orders more potent than the previously reported compounds. Also in the present study, the computational blind docking method using eHiTS is tested on molecules study group and COX-2 enzyme. Future perspectives of the method in the screening of SAERs candidates with no COX-2 inhibitory activity are discussed.
NASA Astrophysics Data System (ADS)
Benzon, K. B.; Sheena, Mary Y.; Panicker, C. Yohannan; Armaković, Stevan; Armaković, Sanja J.; Pradhan, Kiran; Nanda, Ashis Kumar; Van Alsenoy, C.
2017-02-01
In this work we have investigated in details the spectroscopic and reactive properties of newly synthesized imidazole derivative, namely the 1-hydroxy-2-(4-hydroxyphenyl)-4,5-dimethyl-imidazole 3-oxide (HHPDI). FT-IR and NMR spectra were measured and compared with theoretically obtained data provided by calculations of potential energy distribution and chemical shifts, respectively. Insight into the global reactivity properties has been obtained by analysis of frontier molecular orbitals, while local reactivity properties have been investigated by analysis of charge distribution, ionization energies and Fukui functions. NBO analysis was also employed to understand the stability of molecule, while hyperpolarizability has been calculated in order to assess the nonlinear optical properties of title molecule. Sensitivity towards autoxidation and hydrolysis mechanisms has been investigated by calculations of bond dissociation energies and radial distribution functions, respectively. Molecular docking study was also performed, in order to determine the pharmaceutical potential of the investigated molecule.
NASA Astrophysics Data System (ADS)
Resmi, K. S.; Mary, Y. Sheena; Varghese, Hema Tresa; Panicker, C. Yohannan; Pakosińska-Parys, Magdalena; Alsenoy, C. Van
2015-10-01
The optimized molecular structure, vibrational frequencies, corresponding vibrational assignments of the title compound have been investigated experimentally and theoretically. The HOMO and LUMO analysis is used to determine the charge transfer within the molecule. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analysed using NBO analysis. The hyperpolarisability calculation reveals the present material has a reasonably good propensity for nonlinear optical activity. Due to the different potential biological activity of the title compound, molecular docking study is also reported and the compound might exhibit inhibitory activity against human M2 muscarinic acetylcholine receptor.
Sanam, Ramadevi; Vadivelan, S; Tajne, Sunita; Narasu, Lakshmi; Rambabu, G; Jagarlapudi, Sarma A R P
2009-12-01
The best ZAP-70 inhibitor model consists of four-pharmacophore features, (1) one hydrogen bond acceptor, (2) one hydrogen bond donor (3) one hydrophobic aliphatic and (4) one hydrophobic aromatic features. This model was validated against 110 known ZAP-70 inhibitors with a correlation of 0.902 as well as enrichment factor of 1.61 against a maximum value of 2. This model picked 4094 hits from a database of 238,819 molecules while 358 molecules were indicated as highly active. Subsequently, docking studies were performed on the hits and novel series of potent leads were suggested based on the interactions energy between ZAP-70 and the putative inhibitors which validated not only the virtual screening potential of the model but also identified the possible new Chemotypes.
NASA Astrophysics Data System (ADS)
Novinec, Marko; Korenč, Matevž; Caflisch, Amedeo; Ranganathan, Rama; Lenarčič, Brigita; Baici, Antonio
2014-02-01
Allosteric modifiers have the potential to fine-tune enzyme activity. Therefore, targeting allosteric sites is gaining increasing recognition as a strategy in drug design. Here we report the use of computational methods for the discovery of the first small-molecule allosteric inhibitor of the collagenolytic cysteine peptidase cathepsin K, a major target for the treatment of osteoporosis. The molecule NSC13345 is identified by high-throughput docking of compound libraries to surface sites on the peptidase that are connected to the active site by an evolutionarily conserved network of residues (protein sector). The crystal structure of the complex shows that NSC13345 binds to a novel allosteric site on cathepsin K. The compound acts as a hyperbolic mixed modifier in the presence of a synthetic substrate, it completely inhibits collagen degradation and has good selectivity for cathepsin K over related enzymes. Altogether, these properties qualify our methodology and NSC13345 as promising candidates for allosteric drug design.
Allosteric ligands for the pharmacologically dark receptors GPR68 and GPR65
Huang, Xi-Ping; Karpiak, Joel; Kroeze, Wesley K.; Zhu, Hu; Chen, Xin; Moy, Sheryl S.; Saddoris, Kara A.; Nikolova, Viktoriya; Farrell, Martilias S.; Wang, Sheng; Mangano, Thomas J.; Deshpande, Deepak A.; Jiang, Alice; Penn, Raymond B.; Jin, Jian; Koller, Beverly H.; Kenakin, Terry; Shoichet, Brian K.; Roth, Bryan L.
2016-01-01
At least 120 non-olfactory G protein-coupled receptors in the human genome are ”orphans” for which endogenous ligands are unknown, and many have no selective ligands, hindering elucidation of their biological functions and clinical relevance. Among these is GPR68, a proton receptor that lacks small molecule modulators for probing its biology. Yeast-based screens against GPR68 identified the benzodiazepine drug lorazepam as a non-selective GPR68 positive allosteric modulator. Over 3000 GPR68 homology models were refined to recognize lorazepam in a putative allosteric site. Docking 3.1 million molecules predicted new GPR68 modulators many of which were confirmed in functional assays. One potent GPR68 modulator—ogerin– suppressed recall in fear conditioning in wild-type, but not in GPR68 knockout mice. The same approach led to the discovery of allosteric agonists and negative allosteric modulators for GPR65. Combining physical and structure-based screening may be broadly useful for ligand discovery for understudied and orphan GPCRs. PMID:26550826
Luo, Heng; Zhang, Ping; Cao, Xi Hang; Du, Dizheng; Ye, Hao; Huang, Hui; Li, Can; Qin, Shengying; Wan, Chunling; Shi, Leming; He, Lin; Yang, Lun
2016-11-02
The cost of developing a new drug has increased sharply over the past years. To ensure a reasonable return-on-investment, it is useful for drug discovery researchers in both industry and academia to identify all the possible indications for early pipeline molecules. For the first time, we propose the term computational "drug candidate positioning" or "drug positioning", to describe the above process. It is distinct from drug repositioning, which identifies new uses for existing drugs and maximizes their value. Since many therapeutic effects are mediated by unexpected drug-protein interactions, it is reasonable to analyze the chemical-protein interactome (CPI) profiles to predict indications. Here we introduce the server DPDR-CPI, which can make real-time predictions based only on the structure of the small molecule. When a user submits a molecule, the server will dock it across 611 human proteins, generating a CPI profile of features that can be used for predictions. It can suggest the likelihood of relevance of the input molecule towards ~1,000 human diseases with top predictions listed. DPDR-CPI achieved an overall AUROC of 0.78 during 10-fold cross-validations and AUROC of 0.76 for the independent validation. The server is freely accessible via http://cpi.bio-x.cn/dpdr/.
Comparison of computational methods to model DNA minor groove binders.
Srivastava, Hemant Kumar; Chourasia, Mukesh; Kumar, Devesh; Sastry, G Narahari
2011-03-28
There has been a profound interest in designing small molecules that interact in sequence-selective fashion with DNA minor grooves. However, most in silico approaches have not been parametrized for DNA ligand interaction. In this regard, a systematic computational analysis of 57 available PDB structures of noncovalent DNA minor groove binders has been undertaken. The study starts with a rigorous benchmarking of GOLD, GLIDE, CDOCKER, and AUTODOCK docking protocols followed by developing QSSR models and finally molecular dynamics simulations. In GOLD and GLIDE, the orientation of the best score pose is closer to the lowest rmsd pose, and the deviation in the conformation of various poses is also smaller compared to other docking protocols. Efficient QSSR models were developed with constitutional, topological, and quantum chemical descriptors on the basis of B3LYP/6-31G* optimized geometries, and with this ΔT(m) values of 46 ligands were predicted. Molecular dynamics simulations of the 14 DNA-ligand complexes with Amber 8.0 show that the complexes are stable in aqueous conditions and do not undergo noticeable fluctuations during the 5 ns production run, with respect to their initial placement in the minor groove region.
Morini, Gabriella; Bassoli, Angela; Temussi, Piero A
2005-08-25
The sweet taste receptor, a heterodimeric G protein coupled receptor (GPCR) protein, formed by the T1R2 and T1R3 subunits, recognizes several sweet compounds including carbohydrates, amino acids, peptides, proteins, and synthetic sweeteners. Its similarity with the metabotropic glutamate mGluR1 receptor allowed us to build homology models. All possible dimers formed by combinations of the human T1R2 and T1R3 subunits, modeled on the A (closed) or B (open) chains of the extracellular ligand binding domain of the mGluR1 template, yield four ligand binding sites for low-molecular-weight sweeteners. These sites were probed by docking a set of molecules representative of all classes of sweet compounds and calculating the free energy of ligand binding. These sites are not easily accessible to sweet proteins, but docking experiments in silico showed that sweet proteins can bind to a secondary site without entering the deep cleft. Our models account for many experimental observations on the tastes of sweeteners, including sweetness synergy, and can help to design new sweeteners.
NASA Astrophysics Data System (ADS)
Hitzenberger, Manuel; Schuster, Daniela; Hofer, Thomas S.
2017-10-01
Erroneous activation of the Hedgehog pathway has been linked to a great amount of cancerous diseases and therefore a large number of studies aiming at its inhibition have been carried out. One leverage point for novel therapeutic strategies targeting the proteins involved, is the prevention of complex formation between the extracellular signaling protein Sonic Hedgehog and the transmembrane protein Patched 1. In 2009 robotnikinin, a small molecule capable of binding to and inhibiting the activity of Sonic Hedgehog has been identified, however in the absence of X-ray structures of the Sonic Hedgehog-robotnikinin complex, the binding mode of this inhibitor remains unknown. In order to aid with the identification of novel Sonic Hedgehog inhibitors, the presented investigation elucidates the binding mode of robotnikinin by performing an extensive docking study, including subsequent molecular mechanical as well as quantum mechanical/molecular mechanical molecular dynamics simulations. The attained configurations enabled the identification of a number of key protein-ligand interactions, aiding complex formation and providing stabilizing contributions to the binding of the ligand. The predicted structure of the Sonic Hedgehog-robotnikinin complex is provided via a PDB file as supplementary material and can be used for further reference.
Fiore, Julie L.; Kraemer, Benedikt; Koberling, Felix; Edmann, Rainer; Nesbitt, David J.
2010-01-01
RNA folding thermodynamics are crucial for structure prediction, which requires characterization of both enthalpic and entropic contributions of tertiary motifs to conformational stability. We explore the temperature dependence of RNA folding due to the ubiquitous GAAA tetraloop–receptor docking interaction, exploiting immobilized and freely diffusing single-molecule fluorescence resonance energy transfer (smFRET) methods. The equilibrium constant for intramolecular docking is obtained as a function of temperature (T = 21–47 °C), from which a van’t Hoff analysis yields the enthalpy (ΔH°) and entropy (ΔS°) of docking. Tetraloop–receptor docking is significantly exothermic and entropically unfavorable in 1 mM MgCl2 and 100 mM NaCl, with excellent agreement between immobilized (ΔH° = −17.4 ± 1.6 kcal/mol, and ΔS° = −56.2 ± 5.4 cal mol−1 K−1) and freely diffusing (ΔH° = −17.2 ± 1.6 kcal/mol, and ΔS° = −55.9 ± 5.2 cal mol−1 K−1) species. Kinetic heterogeneity in the tetraloop–receptor construct is unaffected over the temperature range investigated, indicating a large energy barrier for interconversion between the actively docking and nondocking subpopulations. Formation of the tetraloop–receptor interaction can account for ~60% of the ΔH° and ΔS° of P4–P6 domain folding in the Tetrahymena ribozyme, suggesting that it may act as a thermodynamic clamp for the domain. Comparison of the isolated tetraloop–receptor and other tertiary folding thermodynamics supports a theme that enthalpy- versus entropy-driven folding is determined by the number of hydrogen bonding and base stacking interactions. PMID:19186984
Hydrogen bond docking preference in furans: Osbnd H ⋯ π vs. Osbnd H ⋯ O
NASA Astrophysics Data System (ADS)
Jiang, Xiaotong; Tsona, Narcisse T.; Tang, Shanshan; Du, Lin
2018-02-01
The docking sites of hydrogen bonds in complexes formed between 2,2,2-trifluoroethanol (TFE), furan (Fu), and 2-methyl furan (MF) have been investigated. Using density functional theory (DFT) calculations, gas phase and matrix isolation FTIR spectroscopies, the strengths of Osbnd H ⋯ O and Osbnd H ⋯ π hydrogen bonds in the complexes were compared to find the docking preference. Calculations suggest that the hydrogen bond donor, TFE, is more likely to dock onto the oxygen atom of the aromatic furans ring, and consequently, the Osbnd H ⋯ O type hydrogen bond is relatively stronger than the Osbnd H ⋯ π type. The FTIR spectrum in the OH-stretching fundamental range obtained at room temperatures has been compared with that obtained at extremely low temperatures in the matrix. The fundamental and the red shifts of OH-stretching vibrations were observed in both FTIR spectra, confirming the formation of hydrogen bonded complexes. By assessing the ability of furan and MF to participate in the formation of Osbnd H ⋯ O hydrogen bond, the effect of ring methylation has been highlighted. From the calculated geometric and thermodynamic parameters as well as the frequency shift of the OH-stretching vibrations in complexes, TFE-MF is found to be more stable than TFE-Fu, which suggests that the strength of the Osbnd H ⋯ O hydrogen bond in TFE-MF originates from the high activity of the furan molecule caused by the methylation of the aromatic ring. The present study furthers the knowledge of docking preference in heteroaromatic molecules and is helpful to understand the nature of intermolecular interactions between hydrogen bond donors and acceptors, including both electron-deficient atoms and π cloud.
Chan, Ho Yin; Lankevich, Vladimir; Vekilov, Peter G.; Lubchenko, Vassiliy
2012-01-01
Toward quantitative description of protein aggregation, we develop a computationally efficient method to evaluate the potential of mean force between two folded protein molecules that allows for complete sampling of their mutual orientation. Our model is valid at moderate ionic strengths and accounts for the actual charge distribution on the surface of the molecules, the dielectric discontinuity at the protein-solvent interface, and the possibility of protonation or deprotonation of surface residues induced by the electric field due to the other protein molecule. We apply the model to the protein lysozyme, whose solutions exhibit both mesoscopic clusters of protein-rich liquid and liquid-liquid separation; the former requires that protein form complexes with typical lifetimes of approximately milliseconds. We find the electrostatic repulsion is typically lower than the prediction of the Derjaguin-Landau-Verwey-Overbeek theory. The Coulomb interaction in the lowest-energy docking configuration is nonrepulsive, despite the high positive charge on the molecules. Typical docking configurations barely involve protonation or deprotonation of surface residues. The obtained potential of mean force between folded lysozyme molecules is consistent with the location of the liquid-liquid coexistence, but produces dimers that are too short-lived for clusters to exist, suggesting lysozyme undergoes conformational changes during cluster formation. PMID:22768950
Game Theoretic Approach to Post-Docked Satellite Control
NASA Technical Reports Server (NTRS)
Hiramatsu, Takashi; Fitz-Coy, Norman G.
2007-01-01
This paper studies the interaction between two satellites after docking. In order to maintain the docked state with uncertainty in the motion of the target vehicle, a game theoretic controller with Stackelberg strategy to minimize the interaction between the satellites is considered. The small perturbation approximation leads to LQ differential game scheme, which is validated to address the docking interactions between a service vehicle and a target vehicle. The open-loop solution are compared with Nash strategy, and it is shown that less control efforts are obtained with Stackelberg strategy.
Du, Ran-Feng; Zhang, Xiao-Hua; Ye, Xiao-Tong; Yu, Wen-Kang; Wang, Yun
2016-07-01
Dampness evil is the source of all diseases, which is easy to cause disease and promote aging, while aging could also promote the occurence and development of diseases. In this paper, the relationship between the dampness evil and aging would be discussed, to find the anti-aging active ingredients in traditional Chinese medicine (TCM), and analyze the anti-aging mechanism of dampness eliminating drug. Molecular docking technology was used, with aging-related mammalian target of rapamycin as the docking receptors, and chemical components of Fuling, Sangzhi, Mugua, Yiyiren and Houpo as the docking molecules, to preliminarily screen the anti-aging active ingredients in dampness eliminating drug. Through the comparison with active drugs already on the market (temsirolimus and everolimus), 12 kinds of potential anti-aging active ingredients were found, but their drug gability still needs further study. The docking results showed that various components in the dampness eliminating drug can play anti-aging activities by acting on mammalian target of rapamycin. This result provides a new thought and direction for the method of delaying aging by eliminating dampness. Copyright© by the Chinese Pharmaceutical Association.
NASA Astrophysics Data System (ADS)
R. S., Sai Murali; R. S., Sai Siddhardha; Rajesh Babu, D.; Venketesh, S.; Basavaraju, R.; Nageswara Rao, G.
2017-06-01
The present study brings out the interaction between vasicine, an alkaloid and Adhatoda vasica Nees with double stranded DNA. The physico-chemical interaction between small molecules and nucleic acids is a major area of focus in screening drugs against various cancers. Molecular probing in our study using Molecular Operating Environment (MOE) has revealed interaction of vasicine with DNA double helix. Here we report the interaction of vasicine with Calf thymus DNA. We present for the first time the results obtained from UV-visible, fluorescence spectroscopic and differential scanning calorimetric techniques that suggest a moderate to strong electrostatic, hydrophobic and van der Waals interactions mediating the DNA binding properties of vasicine, leading to disruption of DNA secondary structure.
Espinoza-Fonseca, L Michel
2005-01-01
Background The use of low-molecular-weight, non-peptidic molecules that disrupt the interaction between the p53 tumor suppressor and its negative regulator MDM2 has provided a promising alternative for the treatment of different types of cancer. Among these compounds, RITA (reactivation of p53 and induction of tumor cell apoptosis) has been shown to be effective in the selective induction of apoptosis, and this effect is due to its binding to the p53 tumor suppressor. Since biological systems are highly dynamic and MDM2 may bind to different regions of p53, new alternatives should be explored. On this basis, the computational "blind docking" approach was employed in this study to see whether RITA would bind to MDM2. Results It was observed that RITA binds to the MDM2 p53 transactivation domain-binding cleft. Thus, RITA can be used as a lead compound for designing improved "multi-target" drugs. This novel strategy could provide enormous benefits to enable effective anti-cancer strategies. Conclusion This study has demonstrated that a single molecule can target at least two different proteins related to the same disease. PMID:16174299
Is, Yusuf Serhat; Durdagi, Serdar; Aksoydan, Busecan; Yurtsever, Mine
2018-05-07
Monoamine oxidase (MAO) enzymes MAO-A and MAO-B play a critical role in the metabolism of monoamine neurotransmitters. Hence, MAO inhibitors are very important for the treatment of several neurodegenerative diseases such as Parkinson's disease (PD), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS). In this study, 256 750 molecules from Otava Green Chemical Collection were virtually screened for their binding activities as MAO-B inhibitors. Two hit molecules were identified after applying different filters such as high docking scores and selectivity to MAO-B, desired pharmacokinetic profile predictions with binary quantitative structure-activity relationship (QSAR) models. Therapeutic activity prediction as well as pharmacokinetic and toxicity profiles were investigated using MetaCore/MetaDrug platform which is based on a manually curated database of molecular interactions, molecular pathways, gene-disease associations, chemical metabolism, and toxicity information. Particular therapeutic activity and toxic effect predictions are based on the ChemTree ability to correlate structural descriptors to that property using recursive partitioning algorithm. Molecular dynamics (MD) simulations were also performed to make more detailed assessments beyond docking studies. All these calculations were made not only to determine if studied molecules possess the potential to be a MAO-B inhibitor but also to find out whether they carry MAO-B selectivity versus MAO-A. The evaluation of docking results and pharmacokinetic profile predictions together with the MD simulations enabled us to identify one hit molecule (ligand 1, Otava ID: 3463218) which displayed higher selectivity toward MAO-B than a positive control selegiline which is a commercially used drug for PD therapeutic purposes.
Sharma, Ranu; Panigrahi, Priyabrata; Suresh, C.G.
2014-01-01
Flavonoids are a class of plant secondary metabolites that act as storage molecules, chemical messengers, as well as participate in homeostasis and defense processes. They possess pharmaceutical properties important for cancer treatment such as antioxidant and anti-tumor activities. The drug-related properties of flavonoids can be improved by glycosylation. The enzymes glycosyltransferases (GTs) glycosylate acceptor molecules in a regiospecific manner with the help of nucleotide sugar donor molecules. Several plant GTs have been characterized and their amino acid sequences determined. However, three-dimensional structures of only a few are reported. Here, phylogenetic analysis using amino acid sequences have identified a group of GTs with the same regiospecific activity. The structures of these closely related GTs were modeled using homologous GT structures. Their substrate binding sites were elaborated by docking flavonoid acceptor and UDP-sugar donor molecules in the modeled structures. Eight regions near the acceptor binding site in the N- and C- terminal domain of GTs have been identified that bind and specifically glycosylate the 3-OH group of acceptor flavonoids. Similarly, a conserved motif in the C-terminal domain is known to bind a sugar donor substrate. In certain GTs, the substitution of a specific glutamine by histidine in this domain changes the preference of sugar from glucose to galactose as a result of changed pattern of interactions. The molecular modeling, docking, and molecular dynamics simulation studies have revealed the chemical and topological features of the binding site and thus provided insights into the basis of acceptor and donor recognition by GTs. PMID:24667893
Modi, Palmi; Patel, Shivani; Chhabria, Mahesh T
2018-05-04
The InhA inhibitors play key role in mycolic acid synthesis by preventing the fatty acid biosynthesis pathway. In this present article, Pharmacophore modelling and molecular docking study followed by in silico virtual screening could be considered as effective strategy to identify newer enoyl-ACP reductase inhibitors. Pyrrolidine carboxamide derivatives were opted to generate pharmacophore models using HypoGen algorithm in Discovery studio 2.1. Further it was employed to screen Zinc and Minimaybridge databases to identify and design newer potent hit molecules. The retrieved newer hits were further evaluated for their drug likeliness and docked against enoyl acyl carrier protein reductase. Here, novel pyrazolo[1,5-a]pyrimidine analogues were designed and synthesized with good yields. Structural elucidation of synthesized final molecules was perform through IR, MASS, 1 H-NMR, 13 C-NMR spectroscopy and further tested for its in vitro anti-tubercular activity against H37Rv strain using Microplate Alamar blue assay (MABA) method. Most of the synthesized compounds displayed strong anti-tubercular activities. Further, these potent compounds were gauged for MDR-TB, XDR-TB and cytotoxic study.
Cappel, Daniel; Wahlström, Rickard; Brenk, Ruth; Sotriffer, Christoph A
2011-10-24
The model binding site of the cytochrome c peroxidase (CCP) W191G mutant is used to investigate the structural and dynamic properties of the water network at the buried cavity using computational methods supported by crystallographic analysis. In particular, the differences of the hydration pattern between the uncomplexed state and various complexed forms are analyzed as well as the differences between five complexes of CCP W191G with structurally closely related ligands. The ability of docking programs to correctly handle the water molecules in these systems is studied in detail. It is found that fully automated prediction of water replacement or retention upon docking works well if some additional preselection is carried out but not necessarily if the entire water network in the cavity is used as input. On the other hand, molecular interaction fields for water calculated from static crystal structures and hydration density maps obtained from molecular dynamics simulations agree very well with crystallographically observed water positions. For one complex, the docking and MD results sensitively depend on the quality of the starting structure, and agreement is obtained only after redetermination of the crystal structure and refinement at higher resolution.
LaBute, Montiago X; Zhang, Xiaohua; Lenderman, Jason; Bennion, Brian J; Wong, Sergio E; Lightstone, Felice C
2014-01-01
Late-stage or post-market identification of adverse drug reactions (ADRs) is a significant public health issue and a source of major economic liability for drug development. Thus, reliable in silico screening of drug candidates for possible ADRs would be advantageous. In this work, we introduce a computational approach that predicts ADRs by combining the results of molecular docking and leverages known ADR information from DrugBank and SIDER. We employed a recently parallelized version of AutoDock Vina (VinaLC) to dock 906 small molecule drugs to a virtual panel of 409 DrugBank protein targets. L1-regularized logistic regression models were trained on the resulting docking scores of a 560 compound subset from the initial 906 compounds to predict 85 side effects, grouped into 10 ADR phenotype groups. Only 21% (87 out of 409) of the drug-protein binding features involve known targets of the drug subset, providing a significant probe of off-target effects. As a control, associations of this drug subset with the 555 annotated targets of these compounds, as reported in DrugBank, were used as features to train a separate group of models. The Vina off-target models and the DrugBank on-target models yielded comparable median area-under-the-receiver-operating-characteristic-curves (AUCs) during 10-fold cross-validation (0.60-0.69 and 0.61-0.74, respectively). Evidence was found in the PubMed literature to support several putative ADR-protein associations identified by our analysis. Among them, several associations between neoplasm-related ADRs and known tumor suppressor and tumor invasiveness marker proteins were found. A dual role for interstitial collagenase in both neoplasms and aneurysm formation was also identified. These associations all involve off-target proteins and could not have been found using available drug/on-target interaction data. This study illustrates a path forward to comprehensive ADR virtual screening that can potentially scale with increasing number of CPUs to tens of thousands of protein targets and millions of potential drug candidates.
Structure-Based Predictions of Activity Cliffs
Husby, Jarmila; Bottegoni, Giovanni; Kufareva, Irina; Abagyan, Ruben; Cavalli, Andrea
2015-01-01
In drug discovery, it is generally accepted that neighboring molecules in a given descriptors' space display similar activities. However, even in regions that provide strong predictability, structurally similar molecules can occasionally display large differences in potency. In QSAR jargon, these discontinuities in the activity landscape are known as ‘activity cliffs’. In this study, we assessed the reliability of ligand docking and virtual ligand screening schemes in predicting activity cliffs. We performed our calculations on a diverse, independently collected database of cliff-forming co-crystals. Starting from ideal situations, which allowed us to establish our baseline, we progressively moved toward simulating more realistic scenarios. Ensemble- and template-docking achieved a significant level of accuracy, suggesting that, despite the well-known limitations of empirical scoring schemes, activity cliffs can be accurately predicted by advanced structure-based methods. PMID:25918827
3D-QSAR modeling and molecular docking studies on a series of 2,5 disubstituted 1,3,4-oxadiazoles
NASA Astrophysics Data System (ADS)
Ghaleb, Adib; Aouidate, Adnane; Ghamali, Mounir; Sbai, Abdelouahid; Bouachrine, Mohammed; Lakhlifi, Tahar
2017-10-01
3D-QSAR (comparative molecular field analysis (CoMFA)) and comparative molecular similarity indices analysis (CoMSIA) were performed on novel 2,5 disubstituted 1,3,4-oxadiazoles analogues as anti-fungal agents. The CoMFA and CoMSIA models using 13 compounds in the training set gives Q2 values of 0.52 and 0.51 respectively, while R2 values of 0.92. The adapted alignment method with the suitable parameters resulted in reliable models. The contour maps produced by the CoMFA and CoMSIA models were employed to determine a three-dimensional quantitative structure-activity relationship. Based on this study a set of new molecules with high predicted activities were designed. Surflex-docking confirmed the stability of predicted molecules in the receptor.
Kalva, Sukesh; Vadivelan, S; Sanam, Ramadevi; Jagarlapudi, Sarma ARP; Saleena, Lilly M
2012-01-01
In this study, chemical feature based pharmacophore models of MMP-1, MMP-8 and MMP-13 inhibitors have been developed with the aid of HypoGen module within Catalyst program package. In MMP-1 and MMP-13, all the compounds in the training set mapped HBA and RA, while in MMP-8, the training set mapped HBA and HY. These features revealed responsibility for the high molecular bioactivity, and this is further used as a three dimensional query to screen the knowledge based designed molecules. These pharmacophore models for collagenases picked up some potent and novel inhibitors. Subsequently, docking studies were performed for the potent molecules and novel hits were suggested for further studies based on the docking score and active site interactions in MMP-1, MMP-8 and MMP-13. PMID:22553386
β-secretase inhibitors for Alzheimer's disease: identification using pharmacoinformatics.
Islam, Md Ataul; Pillay, Tahir S
2018-02-01
In this study we searched for potential β-site amyloid precursor protein cleaving enzyme1 (BACE1) inhibitors using pharmacoinformatics. A large dataset containing 7155 known BACE1 inhibitors was evaluated for pharmacophore model generation. The final model (R = 0.950, RMSD = 1.094, Q 2 = 0.901, se = 0.332, [Formula: see text] = 0.901, [Formula: see text] = 0.756, sp = 0.468, [Formula: see text] = 0.667) was revealed with the importance of spatial arrangement of hydrogen bond acceptor and donor, hydrophobicity and aromatic ring features. The validated model was then used to search NCI and InterBioscreen databases for promising BACE1 inhibitors. The initial hits from both databases were sorted using a number of criteria and finally three molecules from each database were considered for further validation using molecular docking and molecular dynamics studies. Different protonation states of Asp32 and Asp228 dyad were analysed and best protonated form used for molecular docking study. Observation of the number of binding interactions in the molecular docking study supported the potential of these molecules being promising inhibitors. Values of RMSD, RMSF, Rg in molecular dynamics study and binding energies unquestionably explained that final screened molecules formed stable complexes inside the receptor cavity of BACE1. Hence, it can be concluded that the final screened six compounds may be potential therapeutic agents for Alzheimer's disease.
Golubovskaya, Vita; Palma, Nadia L.; Zheng, Min; Ho, Baotran; Magis, Andrew; Ostrov, David; Cance, William G.
2013-01-01
Focal Adhesion Kinase (FAK) is overexpressed in many types of tumors and plays an important role in survival. We developed a novel approach, targeting FAK-protein interactions by computer modeling and screening of NCI small molecule drug database. In this report we targeted FAK and Mdm-2 protein interaction to decrease tumor growth. By macromolecular modeling we found a model of FAK and Mdm-2 interaction and performed screening of >200,000 small molecule compounds from NCI database with drug-like characteristics, targeting the FAK-Mdm-2 interaction. We identified 5′-O-Tritylthymidine, called M13 compound that significantly decreased viability in different cancer cells. M13 was docked into the pocket of FAK and Mdm-2 interaction and was directly bound to the FAK-N terminal domain by ForteBio Octet assay. In addition, M13 compound affected FAK and Mdm-2 levels and decreased complex of FAK and Mdm-2 proteins in breast and colon cancer cells. M13 re-activated p53 activity inhibited by FAK with Mdm-2 promoter. M13 decreased viability, clonogenicity, increased detachment and apoptosis in a dose-dependent manner in BT474 breast and in HCT116 colon cancer cells in vitro. M13 decreased FAK, activated p53 and caspase-8 in both cell lines. In addition, M13 decreased breast and colon tumor growth in vivo. M13 activated p53 and decreased FAK in tumor samples consistent with decreased tumor growth. The data demonstrate a novel approach for targeting FAK and Mdm-2 protein interaction, provide a model of FAK and Mdm-2 interaction, identify M13 compound targeting this interaction and decreasing tumor growth that is critical for future targeted therapeutics. PMID:22292771
Manuvakhova, Marina S.; Johnson, Guyla G.; White, Misti C.; Ananthan, Subramaniam; Sosa, Melinda; Maddox, Clinton; McKellip, Sara; Rasmussen, Lynn; Wennerberg, Krister; Hobrath, Judith V.; White, E. Lucile; Maddry, Joseph A.; Grimaldi, Maurizio
2012-01-01
Neuronal noncytokine-dependent p50/p65 nuclear factor-κB (the primary NF-κB complex in the brain) activation has been shown to exert neuroprotective actions. Thus neuronal activation of NF-κB could represent a viable neuroprotective target. We have developed a cell-based assay able to detect NF-κB expression enhancement, and through its use we have identified small molecules able to up-regulate NF-κB expression and hence trigger its activation in neurons. We have successfully screened approximately 300,000 compounds and identified 1,647 active compounds. Cluster analysis of the structures within the hit population yielded 14 enriched chemical scaffolds. One high-potency and chemically attractive representative of each of these 14 scaffolds and four singleton structures were selected for follow-up. The experiments described here highlighted that seven compounds caused noncanonical long-lasting NF-κB activation in primary astrocytes. Molecular NF-κB docking experiments indicate that compounds could be modulating NF-κB-induced NF-κB expression via enhancement of NF-κB binding to its own promoter. Prototype compounds increased p65 expression in neurons and caused its nuclear translocation without affecting the inhibitor of NF-κB (I-κB). One of the prototypical compounds caused a large reduction of glutamate-induced neuronal death. In conclusion, we have provided evidence that we can use small molecules to activate p65 NF-κB expression in neurons in a cytokine receptor-independent manner, which results in both long-lasting p65 NF-κB translocation/activation and decreased glutamate neurotoxicity. PMID:21046675
Exploration of multiple Sortase A protein conformations in virtual screening
NASA Astrophysics Data System (ADS)
Gao, Chunxia; Uzelac, Ivana; Gottfries, Johan; Eriksson, Leif A.
2016-02-01
Methicillin resistant Staphylococcus aureus (MRSA) has become a major health concern which has brought about an urgent need for new therapeutic agents. As the S. aureus Sortase A (SrtA) enzyme contributes to the adherence of the bacteria to the host cells, inhibition thereof by small molecules could be employed as potential antivirulence agents, also towards resistant strains. Albeit several virtual docking SrtA campaigns have been reported, no strongly inhibitatory non-covalent binders have as yet emerged therefrom. In order to better understand the binding modes of small molecules, and the effect of different receptor structures employed in the screening, we herein report on an exploratory study employing 10 known binders and 500 decoys on 100 SrtA structures generated from regular or steered molecular dynamics simulations on four different SrtA crystal/NMR structures. The results suggest a correlation between the protein structural flexibility and the virtual screening performance, and confirm the noted immobilization of the β6/β7 loop upon substrate binding. The NMR structures reported appear to perform slightly better than the Xray-crystal structures, but the binding modes fluctuate tremendously, and it might be suspected that the catalytic site is not necessarily the preferred site of binding for some of the reported active compounds.
Exploration of multiple Sortase A protein conformations in virtual screening
Gao, Chunxia; Uzelac, Ivana; Gottfries, Johan; Eriksson, Leif A.
2016-01-01
Methicillin resistant Staphylococcus aureus (MRSA) has become a major health concern which has brought about an urgent need for new therapeutic agents. As the S. aureus Sortase A (SrtA) enzyme contributes to the adherence of the bacteria to the host cells, inhibition thereof by small molecules could be employed as potential antivirulence agents, also towards resistant strains. Albeit several virtual docking SrtA campaigns have been reported, no strongly inhibitatory non-covalent binders have as yet emerged therefrom. In order to better understand the binding modes of small molecules, and the effect of different receptor structures employed in the screening, we herein report on an exploratory study employing 10 known binders and 500 decoys on 100 SrtA structures generated from regular or steered molecular dynamics simulations on four different SrtA crystal/NMR structures. The results suggest a correlation between the protein structural flexibility and the virtual screening performance, and confirm the noted immobilization of the β6/β7 loop upon substrate binding. The NMR structures reported appear to perform slightly better than the Xray-crystal structures, but the binding modes fluctuate tremendously, and it might be suspected that the catalytic site is not necessarily the preferred site of binding for some of the reported active compounds. PMID:26846342
PyGOLD: a python based API for docking based virtual screening workflow generation.
Patel, Hitesh; Brinkjost, Tobias; Koch, Oliver
2017-08-15
Molecular docking is one of the successful approaches in structure based discovery and development of bioactive molecules in chemical biology and medicinal chemistry. Due to the huge amount of computational time that is still required, docking is often the last step in a virtual screening approach. Such screenings are set as workflows spanned over many steps, each aiming at different filtering task. These workflows can be automatized in large parts using python based toolkits except for docking using the docking software GOLD. However, within an automated virtual screening workflow it is not feasible to use the GUI in between every step to change the GOLD configuration file. Thus, a python module called PyGOLD was developed, to parse, edit and write the GOLD configuration file and to automate docking based virtual screening workflows. The latest version of PyGOLD, its documentation and example scripts are available at: http://www.ccb.tu-dortmund.de/koch or http://www.agkoch.de. PyGOLD is implemented in Python and can be imported as a standard python module without any further dependencies. oliver.koch@agkoch.de, oliver.koch@tu-dortmund.de. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Kurcinski, Mateusz; Jamroz, Michal; Blaszczyk, Maciej; Kolinski, Andrzej; Kmiecik, Sebastian
2015-01-01
Protein–peptide interactions play a key role in cell functions. Their structural characterization, though challenging, is important for the discovery of new drugs. The CABS-dock web server provides an interface for modeling protein–peptide interactions using a highly efficient protocol for the flexible docking of peptides to proteins. While other docking algorithms require pre-defined localization of the binding site, CABS-dock does not require such knowledge. Given a protein receptor structure and a peptide sequence (and starting from random conformations and positions of the peptide), CABS-dock performs simulation search for the binding site allowing for full flexibility of the peptide and small fluctuations of the receptor backbone. This protocol was extensively tested over the largest dataset of non-redundant protein–peptide interactions available to date (including bound and unbound docking cases). For over 80% of bound and unbound dataset cases, we obtained models with high or medium accuracy (sufficient for practical applications). Additionally, as optional features, CABS-dock can exclude user-selected binding modes from docking search or to increase the level of flexibility for chosen receptor fragments. CABS-dock is freely available as a web server at http://biocomp.chem.uw.edu.pl/CABSdock. PMID:25943545
Liu, Xiaofeng; Ouyang, Sisheng; Yu, Biao; Liu, Yabo; Huang, Kai; Gong, Jiayu; Zheng, Siyuan; Li, Zhihua; Li, Honglin; Jiang, Hualiang
2010-01-01
In silico drug target identification, which includes many distinct algorithms for finding disease genes and proteins, is the first step in the drug discovery pipeline. When the 3D structures of the targets are available, the problem of target identification is usually converted to finding the best interaction mode between the potential target candidates and small molecule probes. Pharmacophore, which is the spatial arrangement of features essential for a molecule to interact with a specific target receptor, is an alternative method for achieving this goal apart from molecular docking method. PharmMapper server is a freely accessed web server designed to identify potential target candidates for the given small molecules (drugs, natural products or other newly discovered compounds with unidentified binding targets) using pharmacophore mapping approach. PharmMapper hosts a large, in-house repertoire of pharmacophore database (namely PharmTargetDB) annotated from all the targets information in TargetBank, BindingDB, DrugBank and potential drug target database, including over 7000 receptor-based pharmacophore models (covering over 1500 drug targets information). PharmMapper automatically finds the best mapping poses of the query molecule against all the pharmacophore models in PharmTargetDB and lists the top N best-fitted hits with appropriate target annotations, as well as respective molecule’s aligned poses are presented. Benefited from the highly efficient and robust triangle hashing mapping method, PharmMapper bears high throughput ability and only costs 1 h averagely to screen the whole PharmTargetDB. The protocol was successful in finding the proper targets among the top 300 pharmacophore candidates in the retrospective benchmarking test of tamoxifen. PharmMapper is available at http://59.78.96.61/pharmmapper. PMID:20430828
ARCADE-R2 experiment on board BEXUS 17 stratospheric balloon
NASA Astrophysics Data System (ADS)
Barbetta, Marco; Boesso, Alessandro; Branz, Francesco; Carron, Andrea; Olivieri, Lorenzo; Prendin, Jacopo; Rodeghiero, Gabriele; Sansone, Francesco; Savioli, Livia; Spinello, Fabio; Francesconi, Alessandro
2015-09-01
This paper provides an overview of the ARCADE-R2 experiment, a technology demonstrator that aimed to prove the feasibility of small-scale satellite and/or aircraft systems with automatic (a) attitude determination, (b) control and (c) docking capabilities. The experiment embodies a simplified scenario in which an unmanned vehicle mock-up performs rendezvous and docking operations with a fixed complementary unit. The experiment is composed by a supporting structure, which holds a small vehicle with one translational and one rotational degree of freedom, and its fixed target. The dual system features three main custom subsystems: a relative infrared navigation sensor, an attitude control system based on a reaction wheel and a small-scale docking mechanism. The experiment bus is equipped with pressure and temperature sensors, and wind probes to monitor the external environmental conditions. The experiment flew on board the BEXUS 17 stratospheric balloon on October 10, 2013, where several navigation-control-docking sequences were executed and data on the external pressure, temperature, wind speed and direction were collected, characterizing the atmospheric loads applied to the vehicle. This paper describes the critical components of ARCADE-R2 as well as the main results obtained from the balloon flight.
Downey, Christopher D.; Fiore, Julie L.; Stoddard, Colby D.; Hodak, Jose H.; Nesbitt, David J.; Pardi, Arthur
2008-01-01
The GAAA tetraloop-receptor is a commonly occurring tertiary interaction motif in RNA. This motif usually occurs in combination with other tertiary interactions in complex RNA structures. Thus, it is difficult to measure directly the contribution that a single GAAA tetraloop-receptor interaction makes to the folding properties of an RNA. To investigate the kinetics and thermodynamics for the isolated interaction, a GAAA tetraloop domain and receptor domain were connected by a single-stranded A7 linker. Fluorescence resonance energy transfer (FRET) experiments were used to probe intramolecular docking of the GAAA tetraloop and receptor. Docking was induced using a variety of metal ions, where the charge of the ion was the most important factor in determining the concentration of the ion required to promote docking ([Co(NH3)63+] ≪ [Ca2+], [Mg2+], [Mn2+] ≪ [Na+], [K+]). Analysis of metal ion cooperativity yielded Hill coefficients of ≈ 2 for Na+- or K+-dependent docking versus ≈ 1 for the divalent ions and Co(NH3)63+. Ensemble stopped-flow FRET kinetic measurements yielded an apparent activation energy of 12.7 kcal/mol for GAAA tetraloop-receptor docking. RNA constructs with U7 and A14 single-stranded linkers were investigated by single-molecule and ensemble FRET techniques to determine how linker length and composition affect docking. These studies showed that the single-stranded region functions primarily as a flexible tether. Inhibition of docking by oligonucleotides complementary to the linker was also investigated. The influence of flexible versus rigid linkers on GAAA tetraloop-receptor docking is discussed. PMID:16533049
Influence of protonation, tautomeric, and stereoisomeric states on protein-ligand docking results.
ten Brink, Tim; Exner, Thomas E
2009-06-01
In this work, we present a systematical investigation of the influence of ligand protonation states, stereoisomers, and tautomers on results obtained with the two protein-ligand docking programs GOLD and PLANTS. These different states were generated with a fully automated tool, called SPORES (Structure PrOtonation and Recognition System). First, the most probable protonations, as defined by this rule based system, were compared to the ones stored in the well-known, manually revised CCDC/ASTEX data set. Then, to investigate the influence of the ligand protonation state on the docking results, different protonation states were created. Redocking and virtual screening experiments were conducted demonstrating that both docking programs have problems in identifying the correct protomer for each complex. Therefore, a preselection of plausible protomers or the improvement of the scoring functions concerning their ability to rank different molecules/states is needed. Additionally, ligand stereoisomers were tested for a subset of the CCDC/ASTEX set, showing similar problems regarding the ranking of these stereoisomers as the ranking of the protomers.
Computational study of some fluoroquinolones: Structural, spectral and docking investigations
NASA Astrophysics Data System (ADS)
Sayin, Koray; Karakaş, Duran; Kariper, Sultan Erkan; Sayin, Tuba Alagöz
2018-03-01
Quantum chemical calculations are performed over norfloxacin, tosufloxacin and levofloxacin. The most stable structures for each molecule are determined by thermodynamic parameters. Then the best level for calculations is determined by benchmark analysis. M062X/6-31 + G(d) level is used in calculations. IR, UV-VIS and NMR spectrum are calculated and examined in detail. Some quantum chemical parameters are calculated and the tendency of activity is recommended. Additionally, molecular docking calculations are performed between related compounds and a protein (ID: 2J9N).
Design, synthesis and DNA-binding study of some novel morpholine linked thiazolidinone derivatives
NASA Astrophysics Data System (ADS)
War, Javeed Ahmad; Srivastava, Santosh Kumar; Srivastava, Savitri Devi
2017-02-01
The emergence of multiple drug resistance amongst bacterial strains resulted in many clinical drugs to be ineffective. Being vulnerable to bacterial infections any lack in the development of new antimicrobial drugs could pose a serious threat to public health. Here we report design and synthesis of a novel class of morpholine linked thiazolidinone hybrid molecules. The compounds were characterized by FT-IR, NMR and HRMS techniques. Susceptibility tests showed that most of the synthesized molecules were highly active against multiple bacterial strains. Compound 3f displayed MIC values which were better than the standard drug for most of the tested strains. DNA being a well defined target for many antimicrobial drugs was probed as possible target for these synthetic molecules. DNA-binding study of 3f with sm-DNA was probed through UV-vis absorption, fluorescence quenching, gel electrophoresis and molecular docking techniques. The studies revealed that compound 3f has strong affinity towards DNA and binds at the minor groove. The docking studies revealed that the compound 3f shows preferential binding towards A/T residues.
Design, synthesis and DNA-binding study of some novel morpholine linked thiazolidinone derivatives.
War, Javeed Ahmad; Srivastava, Santosh Kumar; Srivastava, Savitri Devi
2017-02-15
The emergence of multiple drug resistance amongst bacterial strains resulted in many clinical drugs to be ineffective. Being vulnerable to bacterial infections any lack in the development of new antimicrobial drugs could pose a serious threat to public health. Here we report design and synthesis of a novel class of morpholine linked thiazolidinone hybrid molecules. The compounds were characterized by FT-IR, NMR and HRMS techniques. Susceptibility tests showed that most of the synthesized molecules were highly active against multiple bacterial strains. Compound 3f displayed MIC values which were better than the standard drug for most of the tested strains. DNA being a well defined target for many antimicrobial drugs was probed as possible target for these synthetic molecules. DNA-binding study of 3f with sm-DNA was probed through UV-vis absorption, fluorescence quenching, gel electrophoresis and molecular docking techniques. The studies revealed that compound 3f has strong affinity towards DNA and binds at the minor groove. The docking studies revealed that the compound 3f shows preferential binding towards A/T residues. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Uma Maheswari, J.; Muthu, S.; Sundius, Tom
2015-02-01
The Fourier transform infrared, FT-Raman, UV and NMR spectra of Ternelin have been recorded and analyzed. Harmonic vibrational frequencies have been investigated with the help of HF with 6-31G (d,p) and B3LYP with 6-31G (d,p) and LANL2DZ basis sets. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by GIAO method. The polarizability (α) and the first hyperpolarizability (β) values of the investigated molecule have been computed using DFT quantum mechanical calculations. Stability of the molecule arising from hyper conjugative interactions, and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The electron density-based local reactivity descriptors such as Fukui functions were calculated to explain the chemical selectivity or reactivity site in Ternelin. Finally the calculated results were compared to simulated infrared and Raman spectra of the title compound which show good agreement with observed spectra. Molecular docking studies have been carried out in the active site of Ternelin and reactivity with ONIOM was also investigated.
NASA Astrophysics Data System (ADS)
Singh, Ashok Kumar; Singh, Ravindra Kumar
2016-10-01
A new coumarin derivative 2-(2-mercaptophenylimino)-4-methyl-2H-chromen-7-ol (COMSB) was synthesized and characterized with the help of 1H,13C NMR, FT-IR, FT-Raman and mass spectrometry. All quantum calculations were performed at DFT level of theory using B3LYP functional and 6-31G (d,p) as basis set. The UV-Vis spectrum studied by TD-DFT theory, with a hybrid exchange-correlation functional using Coulomb-attenuating method (CAM-B3LYP) in solvent phase gives similar pattern of bands, at energies and is consistent with that of experimental findings. The detailed analysis of vibrational (IR and Raman) spectra and their assignments has been done by computing Potential Energy Distribution (PED) using Gar2ped. Intra-molecular interactions were analyzed by 'Atoms in molecule' (AIM) approach. Computed first static hyperpolarizability (β0 = 8.583 × 10-30 esu) indicates non-linear optical (NLO) response of the molecule. Molecular docking studies show that the title molecule may act as potential acetylcholine esterase (AChE) inhibitor.
NASA Astrophysics Data System (ADS)
Raja, M.; Raj Muhamed, R.; Muthu, S.; Suresh, M.
2017-08-01
The title compound, (E)-1-(5-bromo-2-hydroxybenzylidene)semicarbazide (15BHS) was synthesized and characterized by FT-IR, FT-Raman, UV, 1HNMR and 13CNMR spectral analysis. The optimized molecular geometry, the vibrational wavenumbers, the infrared intensities and the Raman scattering activities were calculated by using density functional theory(DFT) B3LYP method with 6-311++G(d,p) basis set. The detailed interpretation of the vibrational spectra has been carried out by VEDA program. The calculated HOMO and LUMO energies show that charge transfer within the molecule. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital analysis (NBO). The first order hyperpolarizability, Molecular electrostatic potential (MEP) and Fukui functions were also performed. To study the biological activity of the investigation molecule, molecular docking was done to identify the hydrogen bond lengths and binding energy with different antifungal proteins. The thermodynamic properties (heat capacity, entropy, and enthalpy) of the 15BHS at different temperatures have been calculated.
Power transformations improve interpolation of grids for molecular mechanics interaction energies.
Minh, David D L
2018-02-18
A common strategy for speeding up molecular docking calculations is to precompute nonbonded interaction energies between a receptor molecule and a set of three-dimensional grids. The grids are then interpolated to compute energies for ligand atoms in many different binding poses. Here, I evaluate a smoothing strategy of taking a power transformation of grid point energies and inverse transformation of the result from trilinear interpolation. For molecular docking poses from 85 protein-ligand complexes, this smoothing procedure leads to significant accuracy improvements, including an approximately twofold reduction in the root mean square error at a grid spacing of 0.4 Å and retaining the ability to rank docking poses even at a grid spacing of 0.7 Å. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Boppana, Kiran; Dubey, P K; Jagarlapudi, Sarma A R P; Vadivelan, S; Rambabu, G
2009-09-01
Monoamine Oxidase B interaction with known ligands was investigated using combined pharmacophore and structure based modeling approach. The docking results suggested that the pharmacophore and docking models are in good agreement and are used to identify the selective MAO-B inhibitors. The best model, Hypo2 consists of three pharmacophore features, i.e., one hydrogen bond acceptor, one hydrogen bond donor and one ring aromatic. The Hypo2 model was used to screen an in-house database of 80,000 molecules and have resulted in 5500 compounds. Docking studies were performed, subsequently, on the cluster representatives of 530 hits from 5500 compounds. Based on the structural novelty and selectivity index, we have suggested 15 selective MAO-B inhibitors for further synthesis and pharmacological screening.
Improving Docking Performance Using Negative Image-Based Rescoring.
Kurkinen, Sami T; Niinivehmas, Sanna; Ahinko, Mira; Lätti, Sakari; Pentikäinen, Olli T; Postila, Pekka A
2018-01-01
Despite the large computational costs of molecular docking, the default scoring functions are often unable to recognize the active hits from the inactive molecules in large-scale virtual screening experiments. Thus, even though a correct binding pose might be sampled during the docking, the active compound or its biologically relevant pose is not necessarily given high enough score to arouse the attention. Various rescoring and post-processing approaches have emerged for improving the docking performance. Here, it is shown that the very early enrichment (number of actives scored higher than 1% of the highest ranked decoys) can be improved on average 2.5-fold or even 8.7-fold by comparing the docking-based ligand conformers directly against the target protein's cavity shape and electrostatics. The similarity comparison of the conformers is performed without geometry optimization against the negative image of the target protein's ligand-binding cavity using the negative image-based (NIB) screening protocol. The viability of the NIB rescoring or the R-NiB, pioneered in this study, was tested with 11 target proteins using benchmark libraries. By focusing on the shape/electrostatics complementarity of the ligand-receptor association, the R-NiB is able to improve the early enrichment of docking essentially without adding to the computing cost. By implementing consensus scoring, in which the R-NiB and the original docking scoring are weighted for optimal outcome, the early enrichment is improved to a level that facilitates effective drug discovery. Moreover, the use of equal weight from the original docking scoring and the R-NiB scoring improves the yield in most cases.
Bolia, Ashini; Gerek, Z. Nevin; Ozkan, S. Banu
2016-01-01
Molecular docking serves as an important tool in modeling protein–ligand interactions. However, it is still challenging to incorporate overall receptor flexibility, especially backbone flexibility, in docking due to the large conformational space that needs to be sampled. To overcome this problem, we developed a novel flexible docking approach, BP-Dock (Backbone Perturbation-Dock) that can integrate both backbone and side chain conformational changes induced by ligand binding through a multi-scale approach. In the BP-Dock method, we mimic the nature of binding-induced events as a first-order approximation by perturbing the residues along the protein chain with a small Brownian kick one at a time. The response fluctuation profile of the chain upon these perturbations is computed using the perturbation response scanning method. These response fluctuation profiles are then used to generate binding-induced multiple receptor conformations for ensemble docking. To evaluate the performance of BP-Dock, we applied our approach on a large and diverse data set using unbound structures as receptors. We also compared the BP-Dock results with bound and unbound docking, where overall receptor flexibility was not taken into account. Our results highlight the importance of modeling backbone flexibility in docking for recapitulating the experimental binding affinities, especially when an unbound structure is used. With BP-Dock, we can generate a wide range of binding site conformations realized in nature even in the absence of a ligand that can help us to improve the accuracy of unbound docking. We expect that our fast and efficient flexible docking approach may further aid in our understanding of protein–ligand interactions as well as virtual screening of novel targets for rational drug design. PMID:24380381
Molecular docking of superantigens with class II major histocompatibility complex proteins.
Olson, M A; Cuff, L
1997-01-01
The molecular recognition of two superantigens with class II major histocompatibility complex molecules was simulated by using protein-protein docking. Superantigens studied were staphylococcal enterotoxin B (SEB) and toxic shock syndrome toxin-1 (TSST-1) in their crystallographic assemblies with HLA-DR1. Rigid-body docking was performed sampling configurational space of the interfacial surfaces by employing a strategy of partitioning the contact regions on HLA-DR1 into separate molecular recognition units. Scoring of docked conformations was based on an electrostatic continuum model evaluated with the finite-difference Poisson-Boltzmann method. Estimates of nonpolar contributions were derived from the buried molecular surface areas. We found for both superantigens that docking the HLA-DR1 surface complementary with the SEB and TSST-1 contact regions containing a homologous hydrophobic surface loop provided sufficient recognition for the reconstitution of native-like conformers exhibiting the highest-scoring free energies. For the SEB complex, the calculations were successful in reproducing the total association free energy. A comparison of the free-energy determinants of the conserved hydrophobic contact residue indicates functional similarity between the two proteins for this interface. Though both superantigens share a common global association mode, differences in binding topology distinguish the conformational specificities underlying recognition.
NASA Astrophysics Data System (ADS)
Jójárt, Balázs; Martinek, Tamás A.; Márki, Árpád
2005-05-01
Molecular docking and 3D-QSAR studies were performed to determine the binding mode for a series of benzoxazine oxytocin antagonists taken from the literature. Structural hypotheses were generated by docking the most active molecule to the rigid receptor by means of AutoDock 3.05. The cluster analysis yielded seven possible binding conformations. These structures were refined by using constrained simulated annealing, and the further ligands were aligned in the refined receptor by molecular docking. A good correlation was found between the estimated Δ G bind and the p K i values for complex F. The Connolly-surface analysis, CoMFA and CoMSIA models q CoMFA 2 = 0.653, q CoMSA 2 = 0.630 and r pred,CoMFA 2 = 0.852 , r pred,CoMSIA 2 = 0.815) confirmed the scoring function results. The structural features of the receptor-ligand complex and the CoMFA and CoMSIA fields are in closely connected. These results suggest that receptor-ligand complex F is the most likely binding hypothesis for the studied benzoxazine analogs.
Resident CAPS on dense-core vesicles docks and primes vesicles for fusion
Kabachinski, Greg; Kielar-Grevstad, D. Michelle; Zhang, Xingmin; James, Declan J.; Martin, Thomas F. J.
2016-01-01
The Ca2+-dependent exocytosis of dense-core vesicles in neuroendocrine cells requires a priming step during which SNARE protein complexes assemble. CAPS (aka CADPS) is one of several factors required for vesicle priming; however, the localization and dynamics of CAPS at sites of exocytosis in live neuroendocrine cells has not been determined. We imaged CAPS before, during, and after single-vesicle fusion events in PC12 cells by TIRF microscopy. In addition to being a resident on cytoplasmic dense-core vesicles, CAPS was present in clusters of approximately nine molecules near the plasma membrane that corresponded to docked/tethered vesicles. CAPS accompanied vesicles to the plasma membrane and was present at all vesicle exocytic events. The knockdown of CAPS by shRNA eliminated the VAMP-2–dependent docking and evoked exocytosis of fusion-competent vesicles. A CAPS(ΔC135) protein that does not localize to vesicles failed to rescue vesicle docking and evoked exocytosis in CAPS-depleted cells, showing that CAPS residence on vesicles is essential. Our results indicate that dense-core vesicles carry CAPS to sites of exocytosis, where CAPS promotes vesicle docking and fusion competence, probably by initiating SNARE complex assembly. PMID:26700319
Multiple ligand simultaneous docking: orchestrated dancing of ligands in binding sites of protein.
Li, Huameng; Li, Chenglong
2010-07-30
Present docking methodologies simulate only one single ligand at a time during docking process. In reality, the molecular recognition process always involves multiple molecular species. Typical protein-ligand interactions are, for example, substrate and cofactor in catalytic cycle; metal ion coordination together with ligand(s); and ligand binding with water molecules. To simulate the real molecular binding processes, we propose a novel multiple ligand simultaneous docking (MLSD) strategy, which can deal with all the above processes, vastly improving docking sampling and binding free energy scoring. The work also compares two search strategies: Lamarckian genetic algorithm and particle swarm optimization, which have respective advantages depending on the specific systems. The methodology proves robust through systematic testing against several diverse model systems: E. coli purine nucleoside phosphorylase (PNP) complex with two substrates, SHP2NSH2 complex with two peptides and Bcl-xL complex with ABT-737 fragments. In all cases, the final correct docking poses and relative binding free energies were obtained. In PNP case, the simulations also capture the binding intermediates and reveal the binding dynamics during the recognition processes, which are consistent with the proposed enzymatic mechanism. In the other two cases, conventional single-ligand docking fails due to energetic and dynamic coupling among ligands, whereas MLSD results in the correct binding modes. These three cases also represent potential applications in the areas of exploring enzymatic mechanism, interpreting noisy X-ray crystallographic maps, and aiding fragment-based drug design, respectively. 2010 Wiley Periodicals, Inc.
Identification of New Antifungal Compounds Targeting Thioredoxin Reductase of Paracoccidioides Genus
Abadio, Ana Karina Rodrigues; Kioshima, Erika Seki; Leroux, Vincent; Martins, Natalia Florêncio; Maigret, Bernard; Felipe, Maria Sueli Soares
2015-01-01
The prevalence of invasive fungal infections worldwide has increased in the last decades. The development of specific drugs targeting pathogenic fungi without producing collateral damage to mammalian cells is a daunting pharmacological challenge. Indeed, many of the toxicities and drug interactions observed with contemporary antifungal therapies can be attributed to “nonselective” interactions with enzymes or cell membrane systems found in mammalian host cells. A computer-aided screening strategy against the TRR1 protein of Paracoccidioides lutzii is presented here. Initially, a bank of commercially available compounds from Life Chemicals provider was docked to model by virtual screening simulations. The small molecules that interact with the model were ranked and, among the best hits, twelve compounds out of 3,000 commercially-available candidates were selected. These molecules were synthesized for validation and in vitro antifungal activity assays for Paracoccidioides lutzii and P. brasiliensis were performed. From 12 molecules tested, 3 harbor inhibitory activity in antifungal assays against the two pathogenic fungi. Corroborating these findings, the molecules have inhibitory activity against the purified recombinant enzyme TRR1 in biochemical assays. Therefore, a rational combination of molecular modeling simulations and virtual screening of new drugs has provided a cost-effective solution to an early-stage medicinal challenge. These results provide a promising technique to the development of new and innovative drugs. PMID:26569405
R S, Sai Murali; R S, Sai Siddhardha; D, Rajesh Babu; S, Venketesh; R, Basavaraju; G, Nageswara Rao
2017-06-05
The present study brings out the interaction between vasicine, an alkaloid and Adhatoda vasica Nees with double stranded DNA. The physico-chemical interaction between small molecules and nucleic acids is a major area of focus in screening drugs against various cancers. Molecular probing in our study using Molecular Operating Environment (MOE) has revealed interaction of vasicine with DNA double helix. Here we report the interaction of vasicine with Calf thymus DNA. We present for the first time the results obtained from UV-visible, fluorescence spectroscopic and differential scanning calorimetric techniques that suggest a moderate to strong electrostatic, hydrophobic and van der Waals interactions mediating the DNA binding properties of vasicine, leading to disruption of DNA secondary structure. Copyright © 2017 Elsevier B.V. All rights reserved.
Biotinylated Rh(III) complexes in engineered streptavidin for accelerated asymmetric C-H activation.
Hyster, Todd K; Knörr, Livia; Ward, Thomas R; Rovis, Tomislav
2012-10-26
Enzymes provide an exquisitely tailored chiral environment to foster high catalytic activities and selectivities, but their native structures are optimized for very specific biochemical transformations. Designing a protein to accommodate a non-native transition metal complex can broaden the scope of enzymatic transformations while raising the activity and selectivity of small-molecule catalysis. Here, we report the creation of a bifunctional artificial metalloenzyme in which a glutamic acid or aspartic acid residue engineered into streptavidin acts in concert with a docked biotinylated rhodium(III) complex to enable catalytic asymmetric carbon-hydrogen (C-H) activation. The coupling of benzamides and alkenes to access dihydroisoquinolones proceeds with up to nearly a 100-fold rate acceleration compared with the activity of the isolated rhodium complex and enantiomeric ratios as high as 93:7.
BiGGER: a new (soft) docking algorithm for predicting protein interactions.
Palma, P N; Krippahl, L; Wampler, J E; Moura, J J
2000-06-01
A new computationally efficient and automated "soft docking" algorithm is described to assist the prediction of the mode of binding between two proteins, using the three-dimensional structures of the unbound molecules. The method is implemented in a software package called BiGGER (Bimolecular Complex Generation with Global Evaluation and Ranking) and works in two sequential steps: first, the complete 6-dimensional binding spaces of both molecules is systematically searched. A population of candidate protein-protein docked geometries is thus generated and selected on the basis of the geometric complementarity and amino acid pairwise affinities between the two molecular surfaces. Most of the conformational changes observed during protein association are treated in an implicit way and test results are equally satisfactory, regardless of starting from the bound or the unbound forms of known structures of the interacting proteins. In contrast to other methods, the entire molecular surfaces are searched during the simulation, using absolutely no additional information regarding the binding sites. In a second step, an interaction scoring function is used to rank the putative docked structures. The function incorporates interaction terms that are thought to be relevant to the stabilization of protein complexes. These include: geometric complementarity of the surfaces, explicit electrostatic interactions, desolvation energy, and pairwise propensities of the amino acid side chains to contact across the molecular interface. The relative functional contribution of each of these interaction terms to the global scoring function has been empirically adjusted through a neural network optimizer using a learning set of 25 protein-protein complexes of known crystallographic structures. In 22 out of 25 protein-protein complexes tested, near-native docked geometries were found with C(alpha) RMS deviations < or =4.0 A from the experimental structures, of which 14 were found within the 20 top ranking solutions. The program works on widely available personal computers and takes 2 to 8 hours of CPU time to run any of the docking tests herein presented. Finally, the value and limitations of the method for the study of macromolecular interactions, not yet revealed by experimental techniques, are discussed.
Peddi, Saikiran Reddy; Sivan, Sree Kanth; Manga, Vijjulatha
2016-10-01
Anaplastic lymphoma kinase (ALK), a promising therapeutic target for treatment of human cancers, is a receptor tyrosine kinase that instigates the activation of several signal transduction pathways. In the present study, in silico methods have been employed in order to explore the structural features and functionalities of a series of tetracyclic derivatives displaying potent inhibitory activity toward ALK. Initially docking was performed using GLIDE 5.6 to probe the bioactive conformation of all the compounds and to understand the binding modes of inhibitors. The docking results revealed that ligand interaction with Met 1199 plays a crucial role in binding of inhibitors to ALK. Further to establish a robust 3D-QSAR model using CoMFA and CoMSIA methods, the whole dataset was divided into three splits. Model obtained from Split 3 showed high accuracy ([Formula: see text] of 0.700 and 0.682, [Formula: see text] of 0.971 and 0.974, [Formula: see text] of 0.673 and 0.811, respectively for CoMFA and CoMSIA). The key structural requirements for enhancing the inhibitory activity were derived from CoMFA and CoMSIA contours in combination with site map analysis. Substituting small electronegative groups at Position 8 by replacing either morpholine or piperidine rings and maintaining hydrophobic character at Position 9 in tetracyclic derivatives can enhance the inhibitory potential. Finally, we performed molecular dynamics simulations in order to investigate the stability of protein ligand interactions and MM/GBSA calculations to compare binding free energies of co-crystal ligand and newly designed molecule N1. Based on the coherence of outcome of various molecular modeling studies, a set of 11 new molecules having potential predicted inhibitory activity were designed.
Exploring Polypharmacology Using a ROCS-Based Target Fishing Approach
2012-01-01
target representatives. Target profiles were then generated for a given query molecule by computing maximal shape/ chemistry overlap between the query...molecule and the drug sets assigned to each protein target. The overlap was computed using the program ROCS (Rapid Overlay of Chemical Structures ). We...approaches in off-target prediction has been reviewed.9,10 Many structure -based target fishing (SBTF) approaches, such as INVDOCK11 and Target Fishing Dock
Kurcinski, Mateusz; Jamroz, Michal; Blaszczyk, Maciej; Kolinski, Andrzej; Kmiecik, Sebastian
2015-07-01
Protein-peptide interactions play a key role in cell functions. Their structural characterization, though challenging, is important for the discovery of new drugs. The CABS-dock web server provides an interface for modeling protein-peptide interactions using a highly efficient protocol for the flexible docking of peptides to proteins. While other docking algorithms require pre-defined localization of the binding site, CABS-dock does not require such knowledge. Given a protein receptor structure and a peptide sequence (and starting from random conformations and positions of the peptide), CABS-dock performs simulation search for the binding site allowing for full flexibility of the peptide and small fluctuations of the receptor backbone. This protocol was extensively tested over the largest dataset of non-redundant protein-peptide interactions available to date (including bound and unbound docking cases). For over 80% of bound and unbound dataset cases, we obtained models with high or medium accuracy (sufficient for practical applications). Additionally, as optional features, CABS-dock can exclude user-selected binding modes from docking search or to increase the level of flexibility for chosen receptor fragments. CABS-dock is freely available as a web server at http://biocomp.chem.uw.edu.pl/CABSdock. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Peng, Jiale; Li, Yaping; Zhou, Yeheng; Zhang, Li; Liu, Xingyong; Zuo, Zhili
2018-05-29
Gout is a common inflammatory arthritis caused by the deposition of urate crystals within joints. It is increasingly in prevalence during the past few decades as shown by the epidemiological survey results. Xanthine oxidase (XO) is a key enzyme to transfer hypoxanthine and xanthine to uric acid, whose overproduction leads to gout. Therefore, inhibiting the activity of xanthine oxidase is an important way to reduce the production of urate. In the study, in order to identify the potential natural products targeting XO, pharmacophore modeling was employed to filter databases. Here, two methods, pharmacophore based on ligand and pharmacophore based on receptor-ligand, were constructed by Discovery Studio. Then GOLD was used to refine the potential compounds with higher fitness scores. Finally, molecular docking and dynamics simulations were employed to analyze the interactions between compounds and protein. The best hypothesis was set as a 3D query to screen database, returning 785 and 297 compounds respectively. A merged set of the above 1082 molecules was subjected to molecular docking, which returned 144 hits with high-fitness scores. These molecules were clustered in four main kinds depending on different backbones. What is more, molecular docking showed that the representative compounds established key interactions with the amino acid residues in the protein, and the RMSD and RMSF of molecular dynamics results showed that these compounds can stabilize the protein. The information represented in the study confirmed previous reports. And it may assist to discover and design new backbones as potential XO inhibitors based on natural products.
Galvis-Pareja, David; Zapata-Torres, Gerald; Hidalgo, Jorge; Ayala, Pedro; Pedrozo, Zully; Ibarra, Cristián; Diaz-Araya, Guillermo; Hall, Andrew R; Vicencio, Jose Miguel; Nuñez-Vergara, Luis; Lavandero, Sergio
2014-08-15
Dihydropyridines are widely used for the treatment of several cardiac diseases due to their blocking activity on L-type Ca(2+) channels and their renowned antioxidant properties. We synthesized six novel dihydropyridine molecules and performed docking studies on the binding site of the L-type Ca(2+) channel. We used biochemical techniques on isolated adult rat cardiomyocytes to assess the efficacy of these molecules on their Ca(2+) channel-blocking activity and antioxidant properties. The Ca(2+) channel-blocking activity was evaluated by confocal microscopy on fluo-3AM loaded cardiomyocytes, as well as using patch clamp experiments. Antioxidant properties were evaluated by flow cytometry using the ROS sensitive dye 1,2,3 DHR. Our docking studies show that a novel compound with 3-OH substitution inserts into the active binding site of the L-type Ca(2+) channel previously described for nitrendipine. In biochemical assays, the novel meta-OH group in the aryl in C4 showed a high blocking effect on L-type Ca(2+) channel as opposed to para-substituted compounds. In the tests we performed, none of the molecules showed antioxidant properties. Only substitutions in C2, C3 and C5 of the aryl ring render dihydropyridine compounds with the capacity of blocking LTCC. Based on our docking studies, we postulate that the antioxidant activity requires a larger group than the meta-OH substitution in C2, C3 or C5 of the dihydropyridine ring. Copyright © 2014 Elsevier Inc. All rights reserved.
Karaca, Ezgi; Melquiond, Adrien S J; de Vries, Sjoerd J; Kastritis, Panagiotis L; Bonvin, Alexandre M J J
2010-08-01
Over the last years, large scale proteomics studies have generated a wealth of information of biomolecular complexes. Adding the structural dimension to the resulting interactomes represents a major challenge that classical structural experimental methods alone will have difficulties to confront. To meet this challenge, complementary modeling techniques such as docking are thus needed. Among the current docking methods, HADDOCK (High Ambiguity-Driven DOCKing) distinguishes itself from others by the use of experimental and/or bioinformatics data to drive the modeling process and has shown a strong performance in the critical assessment of prediction of interactions (CAPRI), a blind experiment for the prediction of interactions. Although most docking programs are limited to binary complexes, HADDOCK can deal with multiple molecules (up to six), a capability that will be required to build large macromolecular assemblies. We present here a novel web interface of HADDOCK that allows the user to dock up to six biomolecules simultaneously. This interface allows the inclusion of a large variety of both experimental and/or bioinformatics data and supports several types of cyclic and dihedral symmetries in the docking of multibody assemblies. The server was tested on a benchmark of six cases, containing five symmetric homo-oligomeric protein complexes and one symmetric protein-DNA complex. Our results reveal that, in the presence of either bioinformatics and/or experimental data, HADDOCK shows an excellent performance: in all cases, HADDOCK was able to generate good to high quality solutions and ranked them at the top, demonstrating its ability to model symmetric multicomponent assemblies. Docking methods can thus play an important role in adding the structural dimension to interactomes. However, although the current docking methodologies were successful for a vast range of cases, considering the variety and complexity of macromolecular assemblies, inclusion of some kind of experimental information (e.g. from mass spectrometry, nuclear magnetic resonance, cryoelectron microscopy, etc.) will remain highly desirable to obtain reliable results.
Virtual screening of cathepsin k inhibitors using docking and pharmacophore models.
Ravikumar, Muttineni; Pavan, S; Bairy, Santhosh; Pramod, A B; Sumakanth, M; Kishore, Madala; Sumithra, Tirunagaram
2008-07-01
Cathepsin K is a lysosomal cysteine protease that is highly and selectively expressed in osteoclasts, the cells which degrade bone during the continuous cycle of bone degradation and formation. Inhibition of cathepsin K represents a potential therapeutic approach for diseases characterized by excessive bone resorption such as osteoporosis. In order to elucidate the essential structural features for cathepsin K, a three-dimensional pharmacophore hypotheses were built on the basis of a set of known cathepsin K inhibitors selected from the literature using catalyst program. Several methods are used in validation of pharmacophore hypothesis were presented, and the fourth hypothesis (Hypo4) was considered to be the best pharmacophore hypothesis which has a correlation coefficient of 0.944 with training set and has high prediction of activity for a set of 30 test molecules with correlation of 0.909. The model (Hypo4) was then employed as 3D search query to screen the Maybridge database containing 59,000 compounds, to discover novel and highly potent ligands. For analyzing intermolecular interactions between protein and ligand, all the molecules were docked using Glide software. The result showed that the type and spatial location of chemical features encoded in the pharmacophore are in full agreement with the enzyme inhibitor interaction pattern identified from molecular docking.
Molecular oxygen migration through the xenon docking sites of human hemoglobin in the R-state.
Lepeshkevich, Sergei V; Gilevich, Syargey N; Parkhats, Marina V; Dzhagarov, Boris M
2016-09-01
A nanosecond laser flash-photolysis technique was used to study bimolecular and geminate molecular oxygen (O2) rebinding to tetrameric human hemoglobin and its isolated α and β chains in buffer solutions equilibrated with 1atm of air and up to 25atm of xenon. Xenon binding to the isolated α chains and to the α subunits within tetrameric hemoglobin was found to cause a decrease in the efficiency of O2 escape by a factor of ~1.30 and 3.3, respectively. A kinetic model for O2 dissociation, rebinding, and migration through two alternative pathways in the hemoglobin subunits was introduced and discussed. It was shown that, in the isolated α chains and α subunits within tetrameric hemoglobin, nearly one- and two-third escaping molecules of O2 leave the protein via xenon docking sites, respectively. The present experimental data support the idea that O2 molecule escapes from the β subunits mainly through the His(E7) gate, and show unambiguously that, in the α subunits, in addition to the direct E7 channel, there is at least one alternative escape route leading to the exterior via the xenon docking sites. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Khajeh, Masoumeh Ashrafi; Dehghan, Gholamreza; Dastmalchi, Siavoush; Shaghaghi, Masoomeh; Iranshahi, Mehrdad
2018-03-01
DNA is a major target for a number of anticancer substances. Interaction studies between small molecules and DNA are essential for rational drug designing to influence main biological processes and also introducing new probes for the assay of DNA. Tschimgine (TMG) is a monoterpene derivative with anticancer properties. In the present study we tried to elucidate the interaction of TMG with calf thymus DNA (CT-DNA) using different spectroscopic methods. UV-visible absorption spectrophotometry, fluorescence and circular dichroism (CD) spectroscopies as well as molecular docking study revealed formation of complex between TMG and CT-DNA. Binding constant (Kb) between TMG and DNA was 2.27 × 104 M- 1, that is comparable to groove binding agents. The fluorescence spectroscopic data revealed that the quenching mechanism of fluorescence of TMG by CT-DNA is static quenching. Thermodynamic parameters (ΔH < 0 and ΔS < 0) at different temperatures indicated that van der Waals forces and hydrogen bonds were involved in the binding process of TMG with CT-DNA. Competitive binding assay with methylene blue (MB) and Hoechst 33258 using fluorescence spectroscopy displayed that TMG possibly binds to the minor groove of CT-DNA. These observations were further confirmed by CD spectral analysis, viscosity measurements and molecular docking.
Zhao, Ming-Lang; Wang, Wang; Nie, Hu; Cao, Sha-Sha; Du, Lin-Fang
2018-05-06
Histone deacetylases (HDACs) play a significant role in the epigenetic mechanism by catalyzing deacetylation of lysine on histone in both animals and plants. HDACs involved in growth, development and response to stresses in plants. Arabidopsis thaliana histone deacetylase 14 (AtHDA14) is found to localize in the mitochondria and chloroplasts, and it involved in photosynthesis and melatonin biosynthesis. However, its mechanism of action was still unknowns so far. Therefore, in this study, we constructed AtHDA14 protein model using homology modeling method, validated using PROCHECK and presented using Ramachandran plots. We also performed virtual screening of AtHDA14 by docking with small molecule drugs and predicted their ADMET properties to select representative inhibitors. MD simulation for representative AtHDA14-ligand complexes was carried out to further research and reveal their stability and inhibition mechanism. Meanwhile, MM/PBSA method was utilized to obtain more valuable information about the residues energy contribution. Moreover, compared with four candidate inhibitors, we also found that compound 645533 and 6918837 might be a more potent AtHDA14 inhibitor than TSA (444732) and SAHA (5311). Therefore, compound 6445533 and 6918837 was anticipated to be a promising drug candidate for inhibition of AtHDA14. Copyright © 2018 Elsevier Ltd. All rights reserved.
Computer-aided identification of potential TYK2 inhibitors from drug database
NASA Astrophysics Data System (ADS)
Zhang, Wei; Li, Jianzong; Huang, Zhixin; Wang, Haiyang; Luo, Hao; Wang, Xin; Zhou, Nan; Wu, Chuanfang; Bao, Jinku
2016-10-01
TYK2 is a member of JAKs family protein tyrosine kinase activated in response to various cytokines. It plays a crucial role in transducing signals downstream of various cytokine receptors, which are involved in proinflammatory responses associated with immunological diseases. Thus, the study of selective TYK2 inhibitors is one of the most popular fields in anti-inflammation drug development. Herein, we adopted molecular docking, molecular dynamics simulation and MM-PBSA binding free energy calculation to screen potential TYK2-selective inhibitors from ZINC Drug Database. Finally, three small molecule drugs ZINC12503271 (Gemifloxacin), ZINC05844792 (Nebivolol) and ZINC00537805 (Glyburide) were selected as potential TYK2-selective inhibitors. Compared to known inhibitor 2,6-dichloro-N-{2-[(cyclopropylcarbonyl)amino]pyridin-4-yl}benzamide, these three candidates had better Grid score and Amber score from molecular docking and preferable results from binding free energy calculation as well. What's more, the ATP-binding site and A-loop motif had been identified to play key roles in TYK2-targeted inhibitor discovery. It is expected that our study will pave the way for the design of potent TYK2 inhibitors of new drugs to treat a wide variety of immunological diseases such as inflammatory diseases, multiple sclerosis, psoriasis inflammatory bowel disease (IBD) and so on.
In vitro biological evaluation of glyburide as potential inhibitor of collagenases.
Bodiga, Vijaya Lakshmi; Eda, Sasidhar Reddy; Chavali, Saishashank; Revur, Nagasaisreelekha Nagavalli; Zhang, Anita; Thokala, Sandhya; Bodiga, Sreedhar
2014-09-01
In tissues with upregulated MMP activity, MMP inhibition remains one of the key strategies. Potential inhibitors of MMPs have been tested for almost 30 years, but none have reached clinical utility due to bioavailability issues and adverse effects. This study utilized the approach of drug repurposing for exploring glyburide as a potential inhibitor against collagenases. In silico molecular docking studies were carried out to probe the interactions of glyburide with the active site Zn. Collagenase enzyme activity measurements and zymography analyses using conditioned medium from lung fibroblasts, rheumatoid synovial fibroblasts, and osteoblasts were carried out to confirm the inhibitory activity. Glyburide binds and interacts with the catalytic Zn residues of the collagenases, as evidenced by in silico molecular docking studies. Fluorescence enzyme activity measurements reveal that glyburide inhibits peptide substrate cleavage by all three collagenases in a dose-dependent manner. Collagen zymography studies validated inhibition of these collagenases by glyburide. These results identify glyburide as a potential inhibitor of collagenases and provide an insight into the mechanism of action of this small molecule. Thus, glyburide may offer additional advantages in diabetics, in controlling MMP activation and collagen degradation and could aid in the treatment of diseases with aberrant MMP activity. Copyright © 2014 Elsevier B.V. All rights reserved.
Shave, Steven; Auer, Manfred
2013-12-23
Combinatorial chemical libraries produced on solid support offer fast and cost-effective access to a large number of unique compounds. If such libraries are screened directly on-bead, the speed at which chemical space can be explored by chemists is much greater than that addressable using solution based synthesis and screening methods. Solution based screening has a large supporting body of software such as structure-based virtual screening tools which enable the prediction of protein-ligand complexes. Use of these techniques to predict the protein bound complexes of compounds synthesized on solid support neglects to take into account the conjugation site on the small molecule ligand. This may invalidate predicted binding modes, the linker may be clashing with protein atoms. We present CSBB-ConeExclusion, a methodology and computer program which provides a measure of the applicability of solution dockings to solid support. Output is given in the form of statistics for each docking pose, a unique 2D visualization method which can be used to determine applicability at a glance, and automatically generated PyMol scripts allowing visualization of protein atom incursion into a defined exclusion volume. CSBB-ConeExclusion is then exemplarically used to determine the optimum attachment point for a purine library targeting cyclin-dependent kinase 2 CDK2.
Chiappori, Federica; Merelli, Ivan; Milanesi, Luciano; Colombo, Giorgio; Morra, Giulia
2016-01-01
The Hsp70 is an allosterically regulated family of molecular chaperones. They consist of two structural domains, NBD and SBD, connected by a flexible linker. ATP hydrolysis at the NBD modulates substrate recognition at the SBD, while peptide binding at the SBD enhances ATP hydrolysis. In this study we apply Molecular Dynamics (MD) to elucidate the molecular determinants underlying the allosteric communication from the NBD to the SBD and back. We observe that local structural and dynamical modulation can be coupled to large-scale rearrangements, and that different combinations of ligands at NBD and SBD differently affect the SBD domain mobility. Substituting ADP with ATP in the NBD induces specific structural changes involving the linker and the two NBD lobes. Also, a SBD-bound peptide drives the linker docking by increasing the local dynamical coordination of its C-terminal end: a partially docked DnaK structure is achieved by combining ATP in the NBD and peptide in the SBD. We propose that the MD-based analysis of the inter domain dynamics and structure modulation could be used as a tool to computationally predict the allosteric behaviour and functional response of Hsp70 upon introducing mutations or binding small molecules, with potential applications for drug discovery. PMID:27025773
Modeling Structure and Dynamics of Protein Complexes with SAXS Profiles
Schneidman-Duhovny, Dina; Hammel, Michal
2018-01-01
Small-angle X-ray scattering (SAXS) is an increasingly common and useful technique for structural characterization of molecules in solution. A SAXS experiment determines the scattering intensity of a molecule as a function of spatial frequency, termed SAXS profile. SAXS profiles can be utilized in a variety of molecular modeling applications, such as comparing solution and crystal structures, structural characterization of flexible proteins, assembly of multi-protein complexes, and modeling of missing regions in the high-resolution structure. Here, we describe protocols for modeling atomic structures based on SAXS profiles. The first protocol is for comparing solution and crystal structures including modeling of missing regions and determination of the oligomeric state. The second protocol performs multi-state modeling by finding a set of conformations and their weights that fit the SAXS profile starting from a single-input structure. The third protocol is for protein-protein docking based on the SAXS profile of the complex. We describe the underlying software, followed by demonstrating their application on interleukin 33 (IL33) with its primary receptor ST2 and DNA ligase IV-XRCC4 complex. PMID:29605933
Nagatoishi, Satoru; Yamaguchi, Sou; Katoh, Etsuko; Kajita, Keita; Yokotagawa, Takane; Kanai, Satoru; Furuya, Toshio; Tsumoto, Kouhei
2018-05-01
19 F NMR has recently emerged as an efficient, sensitive tool for analyzing protein binding to small molecules, and surface plasmon resonance (SPR) is also a popular tool for this purpose. Herein a combination of 19 F NMR and SPR was used to find novel binders to the ATP-binding pocket of MAP kinase extracellular regulated kinase 2 (ERK2) by fragment screening with an original fluorinated-fragment library. The 19 F NMR screening yielded a high primary hit rate of binders to the ERK2 ATP-binding pocket compared with the rate for the SPR screening. Hit compounds were evaluated and categorized according to their ability to bind to different binding sites in the ATP-binding pocket. The binding manner was characterized by using isothermal titration calorimetry and docking simulation. Combining 19 F NMR with other biophysical methods allows the identification of multiple types of hit compounds, thereby increasing opportunities for drug design using preferred fragments. Copyright © 2018 Elsevier Ltd. All rights reserved.
Prospective virtual screening for novel p53-MDM2 inhibitors using ultrafast shape recognition
NASA Astrophysics Data System (ADS)
Patil, Sachin P.; Ballester, Pedro J.; Kerezsi, Cassidy R.
2014-02-01
The p53 protein, known as the guardian of genome, is mutated or deleted in approximately 50 % of human tumors. In the rest of the cancers, p53 is expressed in its wild-type form, but its function is inhibited by direct binding with the murine double minute 2 (MDM2) protein. Therefore, inhibition of the p53-MDM2 interaction, leading to the activation of tumor suppressor p53 protein presents a fundamentally novel therapeutic strategy against several types of cancers. The present study utilized ultrafast shape recognition (USR), a virtual screening technique based on ligand-receptor 3D shape complementarity, to screen DrugBank database for novel p53-MDM2 inhibitors. Specifically, using 3D shape of one of the most potent crystal ligands of MDM2, MI-63, as the query molecule, six compounds were identified as potential p53-MDM2 inhibitors. These six USR hits were then subjected to molecular modeling investigations through flexible receptor docking followed by comparative binding energy analysis. These studies suggested a potential role of the USR-selected molecules as p53-MDM2 inhibitors. This was further supported by experimental tests showing that the treatment of human colon tumor cells with the top USR hit, telmisartan, led to a dose-dependent cell growth inhibition in a p53-dependent manner. It is noteworthy that telmisartan has a long history of safe human use as an approved anti-hypertension drug and thus may present an immediate clinical potential as a cancer therapeutic. Furthermore, it could also serve as a structurally-novel lead molecule for the development of more potent, small-molecule p53-MDM2 inhibitors against variety of cancers. Importantly, the present study demonstrates that the adopted USR-based virtual screening protocol is a useful tool for hit identification in the domain of small molecule p53-MDM2 inhibitors.
Reddy, Pulakuntla Swetha; Lokhande, Kiran Bharat; Nagar, Shuchi; Reddy, Vaddi Damodara; Murthy, P Sushma; Swamy, K Venkateswara
2018-02-27
Gefitinib (lressa) is the most prescribed drug, highly effective to treat of non-small cell lung cancer; primarily it was considered targeted therapy is a kinase inhibitor. The non-small cell lung cancer caused by the mutation in the Epithelial Growth Factor Receptor (EGFR) gene, Iressa works by blocking the EGFR protein that helps the cancer cell growth. EGFR protein has lead to the development of anticancer therapeutics directed against EGFR inhibitor including Gefitinib for non-small cell lung cancer. To explore research on Gefitinib and its derivatives interaction with crystal structure EGFR to understand the better molecular insights interaction strategies. Molecular modeling of ligands (Gefitinib and its derivatives) was carried out by Avogadro software till atomic angle stable confirmation obtained. The partial charges for the ligands were assigned as per standard protocol for molecular docking. All docking simulations were performed with AutoDockVina. Virtual screening carried out based on binding energy and hydrogen bonding affinity. Molecular dynamics (MD) and Simulation EGFR was done using GROMACS 5.1.1 software to explore the interaction stability in a cell. The stable conformation for EGFR protein trajectories were captured at various time intervals 0-20ns. Few compounds screen based on high affinity as the inhibitor for EGFR may inhibit the cell cycle signalling in non-small cell lung cancer. These result suggested that a computer aided screening approach of a Gefitinib derivatives compounds with regard to their binding to EGFR for identifying novel drugs for the treatment of non-small cell lung cancer. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Zhou, Chao; Liu, LiJuan; Zhuang, Jing; Wei, JunYu; Zhang, TingTing; Gao, ChunDi; Liu, Cun; Li, HuaYao; Si, HongZong; Sun, ChangGang
2018-06-23
BACKGROUND The method of multiple targets overall control is increasingly used to predict the main active ingredient and potential target group of Chinese traditional medicines and to determine the mechanisms involved in their curative effects. Qingdai is the main traditional Chinese medicine used in the treatment of chronic myelogenous leukemia (CML), but the complex active ingredients and antitumor targets in treatment of CML have not been clearly defined in previous studies. MATERIAL AND METHODS We constructed a protein-protein interaction network diagram of CML with 638 nodes (proteins) and 1830 edges, based on the biological function of chronic myelocytic leukemia by use of Cytoscape, and we determined 19 key gene nodes in the CML molecule by network topological properties analysis in a data bank. Then, we used the Surflex-dock plugin in SYBYL7.3 docking and acquired the protein crystal structures of key genes involved in CML from the chemical composition of the traditional Chinese medicine Qingdai with key proteins in CML networks. RESULTS According to the score and the spatial structure, the pharmacodynamically active ingredients of Qingdai are Isdirubin, Isoindigo, N-phenyl-2-naphthylamine, and Isatin, among which Isdirubin is the most important. We further screened the most effective activity key protein structures of CML to find the best pharmacodynamically active ingredients of Qingdai, according to the binding interactions of the inhibitors at the catalytic site performed in best docking combinations. CONCLUSIONS The results suggest that Isdirubin plays a role in resistance to CML by altering the expressions of PIK3CA, MYC, JAK2, and TP53 target proteins. Network pharmacology and molecular docking technology can be used to search for possible reactive molecules in traditional chinese medicines (TCM) and to elucidate their molecular mechanisms.
Kilambi, Krishna Praneeth; Pacella, Michael S; Xu, Jianqing; Labonte, Jason W; Porter, Justin R; Muthu, Pravin; Drew, Kevin; Kuroda, Daisuke; Schueler-Furman, Ora; Bonneau, Richard; Gray, Jeffrey J
2013-12-01
Rounds 20-27 of the Critical Assessment of PRotein Interactions (CAPRI) provided a testing platform for computational methods designed to address a wide range of challenges. The diverse targets drove the creation of and new combinations of computational tools. In this study, RosettaDock and other novel Rosetta protocols were used to successfully predict four of the 10 blind targets. For example, for DNase domain of Colicin E2-Im2 immunity protein, RosettaDock and RosettaLigand were used to predict the positions of water molecules at the interface, recovering 46% of the native water-mediated contacts. For α-repeat Rep4-Rep2 and g-type lysozyme-PliG inhibitor complexes, homology models were built and standard and pH-sensitive docking algorithms were used to generate structures with interface RMSD values of 3.3 Å and 2.0 Å, respectively. A novel flexible sugar-protein docking protocol was also developed and used for structure prediction of the BT4661-heparin-like saccharide complex, recovering 71% of the native contacts. Challenges remain in the generation of accurate homology models for protein mutants and sampling during global docking. On proteins designed to bind influenza hemagglutinin, only about half of the mutations were identified that affect binding (T55: 54%; T56: 48%). The prediction of the structure of the xylanase complex involving homology modeling and multidomain docking pushed the limits of global conformational sampling and did not result in any successful prediction. The diversity of problems at hand requires computational algorithms to be versatile; the recent additions to the Rosetta suite expand the capabilities to encompass more biologically realistic docking problems. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Bollini, Mariela; Leal, Emilse S.; Adler, Natalia S.; Aucar, María G.; Fernández, Gabriela A.; Pascual, María J.; Merwaiss, Fernando; Alvarez, Diego E.; Cavasotto, Claudio N.
2018-03-01
Bovine viral diarrhea virus (BVDV) is a member of the genus Pestivirus within the family Flaviviridae. BVDV causes both acute and persistent infections in cattle, leading to substantial financial losses to the livestock industry each year. The global prevalence of persistent BVDV infection and the lack of a highly effective antiviral therapy have spurred intensive efforts to discover and develop novel anti-BVDV therapies in the pharmaceutical industry. Antiviral targeting of virus envelope proteins is an effective strategy for therapeutic intervention of viral infections. We performed prospective small-molecule high-throughput docking to identify molecules that likely bind to the region delimited by domains I and II of the envelope protein E2 of BVDV. Several structurally different compounds were purchased or synthesized, and assayed for antiviral activity against BVDV. Five of the selected compounds were active displaying IC50 values in the low- to mid-micromolar range. For these compounds, their possible binding determinants were characterized by molecular dynamics simulations. A common pattern of interactions between active molecules and aminoacid residues in the binding site in E2 was observed. These findings could offer a better understanding of the interaction of BVDV E2 with these inhibitors, as well as benefit the discovery of novel and more potent BVDV antivirals.
CSAR 2014: A Benchmark Exercise Using Unpublished Data from Pharma.
Carlson, Heather A; Smith, Richard D; Damm-Ganamet, Kelly L; Stuckey, Jeanne A; Ahmed, Aqeel; Convery, Maire A; Somers, Donald O; Kranz, Michael; Elkins, Patricia A; Cui, Guanglei; Peishoff, Catherine E; Lambert, Millard H; Dunbar, James B
2016-06-27
The 2014 CSAR Benchmark Exercise was the last community-wide exercise that was conducted by the group at the University of Michigan, Ann Arbor. For this event, GlaxoSmithKline (GSK) donated unpublished crystal structures and affinity data from in-house projects. Three targets were used: tRNA (m1G37) methyltransferase (TrmD), Spleen Tyrosine Kinase (SYK), and Factor Xa (FXa). A particularly strong feature of the GSK data is its large size, which lends greater statistical significance to comparisons between different methods. In Phase 1 of the CSAR 2014 Exercise, participants were given several protein-ligand complexes and asked to identify the one near-native pose from among 200 decoys provided by CSAR. Though decoys were requested by the community, we found that they complicated our analysis. We could not discern whether poor predictions were failures of the chosen method or an incompatibility between the participant's method and the setup protocol we used. This problem is inherent to decoys, and we strongly advise against their use. In Phase 2, participants had to dock and rank/score a set of small molecules given only the SMILES strings of the ligands and a protein structure with a different ligand bound. Overall, docking was a success for most participants, much better in Phase 2 than in Phase 1. However, scoring was a greater challenge. No particular approach to docking and scoring had an edge, and successful methods included empirical, knowledge-based, machine-learning, shape-fitting, and even those with solvation and entropy terms. Several groups were successful in ranking TrmD and/or SYK, but ranking FXa ligands was intractable for all participants. Methods that were able to dock well across all submitted systems include MDock,1 Glide-XP,2 PLANTS,3 Wilma,4 Gold,5 SMINA,6 Glide-XP2/PELE,7 FlexX,8 and MedusaDock.9 In fact, the submission based on Glide-XP2/PELE7 cross-docked all ligands to many crystal structures, and it was particularly impressive to see success across an ensemble of protein structures for multiple targets. For scoring/ranking, submissions that showed statistically significant achievement include MDock1 using ITScore1,10 with a flexible-ligand term,11 SMINA6 using Autodock-Vina,12,13 FlexX8 using HYDE,14 and Glide-XP2 using XP DockScore2 with and without ROCS15 shape similarity.16 Of course, these results are for only three protein targets, and many more systems need to be investigated to truly identify which approaches are more successful than others. Furthermore, our exercise is not a competition.
Naik Bukke, Arunkumar; Nazneen Hadi, Fathima; Babu, K Suresh; Shankar, P Chandramati
2018-08-01
This article contains data on in vitro cytotoxicity activity of chloroform, methanolic and water extracts of leaf and heartwood of Caesalpinia sappan L. a medicinal plant against Breast cancer (MCF-7) and Lung cancer (A-549) cells. This data shows that Brazilin A, a natural bioactive compound in heartwood of Caesalpinia sappan L. induced cell death in breast cancer (MCF-7) cells. The therapeutic property was further proved by docking the Brazilin A molecule against BCL-2 protein (an apoptotic inhibitor) using auto dock tools.
NASA Astrophysics Data System (ADS)
Sherlin, Y. Sheeba; Vijayakumar, T.; Roy, S. D. D.; Jayakumar, V. S.
2018-05-01
Molecular geometry of Parkinson's drug 2-(3,4-Dihydroxyphenyl)ethylamine hydrochloride (Dopamine, DA) has been evaluated and compared with experimental XRD data. Molecular docking and vibrational spectral analysis of DA have been carried out using FT-Raman and FT-IR spectra aided by Density Functional Theory at B3LYP/6-311++G(d,p). The present investigation deals with the analysis of structural and spectral features responsible for drug activities, nature of hydrogen bonding interactions of the molecule and the correlation of Parkinson's nature with its molecular structural features.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galvis-Pareja, David; Centro Estudios Moleculares de la Célula; Zapata-Torres, Gerald
2014-08-15
Rationale: Dihydropyridines are widely used for the treatment of several cardiac diseases due to their blocking activity on L-type Ca{sup 2+} channels and their renowned antioxidant properties. Methods: We synthesized six novel dihydropyridine molecules and performed docking studies on the binding site of the L-type Ca{sup 2+} channel. We used biochemical techniques on isolated adult rat cardiomyocytes to assess the efficacy of these molecules on their Ca{sup 2+} channel-blocking activity and antioxidant properties. The Ca{sup 2+} channel-blocking activity was evaluated by confocal microscopy on fluo-3AM loaded cardiomyocytes, as well as using patch clamp experiments. Antioxidant properties were evaluated by flowmore » cytometry using the ROS sensitive dye 1,2,3 DHR. Results: Our docking studies show that a novel compound with 3-OH substitution inserts into the active binding site of the L-type Ca{sup 2+} channel previously described for nitrendipine. In biochemical assays, the novel meta-OH group in the aryl in C4 showed a high blocking effect on L-type Ca{sup 2+} channel as opposed to para-substituted compounds. In the tests we performed, none of the molecules showed antioxidant properties. Conclusions: Only substitutions in C2, C3 and C5 of the aryl ring render dihydropyridine compounds with the capacity of blocking LTCC. Based on our docking studies, we postulate that the antioxidant activity requires a larger group than the meta-OH substitution in C2, C3 or C5 of the dihydropyridine ring. - Highlights: • Dihydropyridine (DHP) molecules are widely used in cardiovascular disease. • DHPs block Ca{sup 2+} entry through LTCC—some DHPs have antioxidant activity as well. • We synthesized 6 new DHPs and tested their Ca{sup 2+} blocking and antioxidant activities. • 3-Aryl meta-hydroxyl substitution strongly increases their Ca{sup 2+} blocking activity. • 3-Aryl meta-hydroxyl substitution did not affect the antioxidant properties.« less
Liu, Jianling; Liu, Mengmeng; Yao, Yao; Wang, Jinan; Li, Yan; Li, Guohui; Wang, Yonghua
2012-01-01
Chitinolytic β-N-acetyl-d-hexosaminidases, as a class of chitin hydrolysis enzyme in insects, are a potential species-specific target for developing environmentally-friendly pesticides. Until now, pesticides targeting chitinolytic β-N-acetyl-d-hexosaminidase have not been developed. This study demonstrates a combination of different theoretical methods for investigating the key structural features of this enzyme responsible for pesticide inhibition, thus allowing for the discovery of novel small molecule inhibitors. Firstly, based on the currently reported crystal structure of this protein (OfHex1.pdb), we conducted a pre-screening of a drug-like compound database with 8 × 106 compounds by using the expanded pesticide-likeness criteria, followed by docking-based screening, obtaining 5 top-ranked compounds with favorable docking conformation into OfHex1. Secondly, molecular docking and molecular dynamics simulations are performed for the five complexes and demonstrate that one main hydrophobic pocket formed by residues Trp424, Trp448 and Trp524, which is significant for stabilization of the ligand–receptor complex, and key residues Asp477 and Trp490, are respectively responsible for forming hydrogen-bonding and π–π stacking interactions with the ligands. Finally, the molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) analysis indicates that van der Waals interactions are the main driving force for the inhibitor binding that agrees with the fact that the binding pocket of OfHex1 is mainly composed of hydrophobic residues. These results suggest that screening the ZINC database can maximize the identification of potential OfHex1 inhibitors and the computational protocol will be valuable for screening potential inhibitors of the binding mode, which is useful for the future rational design of novel, potent OfHex1-specific pesticides. PMID:22605995
Joshi, Prashant; Gupta, Mehak; Vishwakarma, Ram A; Kumar, Ajay; Bharate, Sandip B
2017-06-01
Glycogen synthase kinase 3β (GSK-3β) is a widely investigated molecular target for numerous diseases including Alzheimer's disease, cancer, and diabetes mellitus. The present study was aimed to discover new scaffolds for GSK-3β inhibition, through protein structure-guided virtual screening approach. With the availability of large number of GSK-3β crystal structures with varying degree of RMSD in protein backbone and RMSF in side chain geometry, herein appropriate crystal structures were selected based on the characteristic ROC curve and percentage enrichment of actives. The validated docking protocol was employed to screen a library of 50,000 small molecules using molecular docking and binding affinity calculations. Based on the GLIDE docking score, Prime MMGB/SA binding affinity, and interaction pattern analysis, the top 50 ligands were selected for GSK-3β inhibition. (Z)-2-(3-chlorobenzylidene)-3,4-dihydro-N-(2-methoxyethyl)-3-oxo-2H-benzo[b][1,4]oxazine-6-carboxamide (F389-0663, 7) was identified as a potent inhibitor of GSK-3β with an IC 50 value of 1.6 μm. Further, GSK-3β inhibition activity was then investigated in cell-based assay. The treatment of neuroblastoma N2a cells with 12.5 μm of F389-0663 resulted in the significant increase in GSK-3β Ser9 levels, which is indicative of the GSK-3β inhibitory activity of a compound. The molecular dynamic simulations were carried out to understand the interactions of F389-0663 with GSK-3β protein. © 2016 John Wiley & Sons A/S.
Molecular modeling on porphyrin derivatives as β5 subunit inhibitor of 20S proteasome.
Arba, Muhammad; Nur-Hidayat, Andry; Ruslin; Yusuf, Muhammad; Sumarlin; Hertadi, Rukman; Wahyudi, Setyanto Tri; Surantaadmaja, Slamet Ibrahim; Tjahjono, Daryono H
2018-06-01
The ubiquitin-proteasome system plays an important role in protein quality control. Currently, inhibition of the proteasome has been validated as a promising approach in anticancer therapy. The 20S core particle of the proteasome harbors β5 subunit which is a crucial active site in proteolysis. Targeting proteasome β5 subunit which is responsible for the chymotrypsin-like activity of small molecules has been regarded as an important way for achieving therapeutics target. In the present study, a series of porphyrin derivatives bearing either pyridine or pyrazole rings as meso-substituents were designed and evaluated as an inhibitor for the β5 subunit of the proteasome by employing molecular docking and dynamics simulations. The molecular docking was performed with the help of AutoDock 4.2, while molecular dynamics simulation was done using AMBER 14. All compounds bound to the proteasome with similar binding modes, and each porphyrin-proteasome complex was stable during 30 ns MD simulation as indicated by root-mean-square-deviation (RMSD) value. An analysis on protein residue fluctuation of porphyrin binding demonstrates that in all complexes, porphyrin binding produces minor fluctuation on amino acid residues. The molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) free energy calculation shows that the binding affinities of mono-H 2 PyP, bis-H 2 PzP, and tetra-H 2 PyP were comparable with that of the potential inhibitor, HU10. It is noted that the electrostatic interaction increases with the number of meso-substituents, which was favourable for porphyrin binding. The present study shows that both electrostatic and van der Waals interaction are the main force which controls the interaction of porphyrin compounds with the proteasome. Copyright © 2018 Elsevier Ltd. All rights reserved.
KiranKumar, Hulihalli N; RohitKumar, Heggodu G; Advirao, Gopal M
2018-01-01
Two new derivatives of pyrimido[4',5';4,5]thieno(2,3-b)quinoline (PTQ), 9-hydroxy-4-(3-diethylaminopropylamino)pyrimido[4',5';4,5]thieno(2,3-b)quinoline (Hydroxy-DPTQ) and 8-methoxy-4-(3-diethylaminopropylamino)pyrimido[4',5';4,5]thieno(2,3-b)quinoline (Methoxy-DPTQ) were synthesized and their DNA binding ability was analyzed using spectroscopy (UV-visible, fluorescence and circular dichroism), ethidium bromide dye displacement assay, melting temperature (T m ) analysis and computational docking studies. The hypochromism in UV-visible spectrum and increased fluorescence emission of Hydroxy-DPTQ and Methoxy-DPTQ in the presence of DNA suggested the molecule-DNA interaction. The association constants calculated from UV-visible and spectral titrations were of the order 10 4 to 10 6 M -1 . Circular dichroism studies corroborated the induced conformational changes in DNA upon addition of molecules. The change in the ellipticity was observed both in negative and positive peak of DNA, thus, suggesting the intercalation of molecules. The observed displacement of ethidium bromide from the DNA and increased T m , upon addition of DNA confirmed the intercalative mode of binding. This was further validated by computational docking, which showed clear intercalation of molecules into the d(GpC)-d(CpG) site of the receptor DNA. Anticancer activities of these molecules are evaluated by using MTT assay. Both molecules showed antiproliferative activity against all the three cancer cells studied, with Hydroxy-DPTQ being more potential molecule among the two. IC 50 value of Hydroxy-DPTQ and Methoxy-DPTQ were in the range of 3-5μM and 130-250μM, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.
Amala, Mathimaran; Rajamanikandan, Sundaraj; Prabhu, Dhamodharan; Surekha, Kanagarajan; Jeyakanthan, Jeyaraman
2018-02-06
Lymphatic filariasis is a debilitating vector borne parasitic disease that infects human lymphatic system by nematode Brugia malayi. Currently available anti-filarial drugs are effective only on the larval stages of parasite. So far, no effective drugs are available for humans to treat filarial infections. In this regard, aspartate semialdehyde dehydrogenase (ASDase) in lysine biosynthetic pathway from Wolbachia endosymbiont Brugia malayi represents an attractive therapeutic target for the development of novel anti-filarial agents. In this present study, molecular modeling combined with molecular dynamics simulations and structure-based virtual screening were performed to identify potent lead molecules against ASDase. Based on Glide score, toxicity profile, binding affinity and mode of interactions with the ASDase, five potent lead molecules were selected. The molecular docking and dynamics results revealed that the amino acid residues Arg103, Asn133, Cys134, Gln161, Ser164, Lys218, Arg239, His246, and Asn321 plays a crucial role in effective binding of Top leads into the active site of ASDase. The stability of the ASDase-lead complexes was confirmed by running the 30 ns molecular dynamics simulations. The pharmacokinetic properties of the identified lead molecules are in the acceptable range. Furthermore, density functional theory and binding free energy calculations were performed to rank the lead molecules. Thus, the identified lead molecules can be used for the development of anti-filarial agents to combat the pathogenecity of Brugia malayi.
Fan, Xueping; Labrador, Juan Pablo; Hing, Huey; Bashaw, Greg J
2003-09-25
Drosophila Roundabout (Robo) is the founding member of a conserved family of repulsive axon guidance receptors that respond to secreted Slit proteins. Here we present evidence that the SH3-SH2 adaptor protein Dreadlocks (Dock), the p21-activated serine-threonine kinase (Pak), and the Rac1/Rac2/Mtl small GTPases can function during Robo repulsion. Loss-of-function and genetic interaction experiments suggest that limiting the function of Dock, Pak, or Rac partially disrupts Robo repulsion. In addition, Dock can directly bind to Robo's cytoplasmic domain, and the association of Dock and Robo is enhanced by stimulation with Slit. Furthermore, Slit stimulation can recruit a complex of Dock and Pak to the Robo receptor and trigger an increase in Rac1 activity. These results provide a direct physical link between the Robo receptor and an important cytoskeletal regulatory protein complex and suggest that Rac can function in both attractive and repulsive axon guidance.
SH2 dependent autophosphorylation within the Tec family kinase Itk
Joseph, Raji E.; Severin, Andrew; Min, Lie; Fulton, D. Bruce; Andreotti, Amy H.
2009-01-01
The Tec family kinase, Itk, undergoes an in cis autophosphorylation on Y180 within its SH3 domain. Autophosphorylation of the Itk SH3 domain by the Itk kinase domain is strictly dependent on the presence of the intervening SH2 domain. A direct docking interaction between the Itk kinase and SH2 domains brings the Itk SH3 domain into the active site where Y180 is then phosphorylated. We now identify the residues on the surface of the Itk SH2 domain responsible for substrate docking and show that this SH2 surface mediates autophosphorylation in the full length Itk molecule. The canonical phospholigand binding site on the SH2 domain is not involved in substrate docking, instead the docking site consists of side chains from three loop regions (AB, EF and BG) and part of the βD strand. These results are extended into Btk, a Tec family kinase linked to the B cell deficiency X-linked agammaglobulinemia (XLA). Our results suggest that some XLA causing mutations might impair Btk phosphorylation. PMID:19523959
Dual role for DOCK7 in tangential migration of interneuron precursors in the postnatal forebrain.
Nakamuta, Shinichi; Yang, Yu-Ting; Wang, Chia-Lin; Gallo, Nicholas B; Yu, Jia-Ray; Tai, Yilin; Van Aelst, Linda
2017-12-04
Throughout life, stem cells in the ventricular-subventricular zone generate neuroblasts that migrate via the rostral migratory stream (RMS) to the olfactory bulb, where they differentiate into local interneurons. Although progress has been made toward identifying extracellular factors that guide the migration of these cells, little is known about the intracellular mechanisms that govern the dynamic reshaping of the neuroblasts' morphology required for their migration along the RMS. In this study, we identify DOCK7, a member of the DOCK180-family, as a molecule essential for tangential neuroblast migration in the postnatal mouse forebrain. DOCK7 regulates the migration of these cells by controlling both leading process (LP) extension and somal translocation via distinct pathways. It controls LP stability/growth via a Rac-dependent pathway, likely by modulating microtubule networks while also regulating F-actin remodeling at the cell rear to promote somal translocation via a previously unrecognized myosin phosphatase-RhoA-interacting protein-dependent pathway. The coordinated action of both pathways is required to ensure efficient neuroblast migration along the RMS. © 2017 Nakamuta et al.
Dual role for DOCK7 in tangential migration of interneuron precursors in the postnatal forebrain
Yang, Yu-Ting; Yu, Jia-Ray; Tai, Yilin
2017-01-01
Throughout life, stem cells in the ventricular–subventricular zone generate neuroblasts that migrate via the rostral migratory stream (RMS) to the olfactory bulb, where they differentiate into local interneurons. Although progress has been made toward identifying extracellular factors that guide the migration of these cells, little is known about the intracellular mechanisms that govern the dynamic reshaping of the neuroblasts’ morphology required for their migration along the RMS. In this study, we identify DOCK7, a member of the DOCK180-family, as a molecule essential for tangential neuroblast migration in the postnatal mouse forebrain. DOCK7 regulates the migration of these cells by controlling both leading process (LP) extension and somal translocation via distinct pathways. It controls LP stability/growth via a Rac-dependent pathway, likely by modulating microtubule networks while also regulating F-actin remodeling at the cell rear to promote somal translocation via a previously unrecognized myosin phosphatase–RhoA–interacting protein-dependent pathway. The coordinated action of both pathways is required to ensure efficient neuroblast migration along the RMS. PMID:29089377
Fu, Ying; Sun, Yi-Na; Yi, Ke-Han; Li, Ming-Qiang; Cao, Hai-Feng; Li, Jia-Zhong; Ye, Fei
2017-06-09
p -Hydroxyphenylpyruvate dioxygenase (HPPD) is not only the useful molecular target in treating life-threatening tyrosinemia type I, but also an important target for chemical herbicides. A combined in silico structure-based pharmacophore and molecular docking-based virtual screening were performed to identify novel potential HPPD inhibitors. The complex-based pharmacophore model (CBP) with 0.721 of ROC used for screening compounds showed remarkable ability to retrieve known active ligands from among decoy molecules. The ChemDiv database was screened using CBP-Hypo2 as a 3D query, and the best-fit hits subjected to molecular docking with two methods of LibDock and CDOCKER in Accelrys Discovery Studio 2.5 (DS 2.5) to discern interactions with key residues at the active site of HPPD. Four compounds with top rankings in the HipHop model and well-known binding model were finally chosen as lead compounds with potential inhibitory effects on the active site of target. The results provided powerful insight into the development of novel HPPD inhibitors herbicides using computational techniques.
SH2-dependent autophosphorylation within the Tec family kinase Itk.
Joseph, Raji E; Severin, Andrew; Min, Lie; Fulton, D Bruce; Andreotti, Amy H
2009-08-07
The Tec family kinase, Itk (interleukin-2 tyrosine kinase), undergoes an in cis autophosphorylation on Y180 within its Src homology 3 (SH3) domain. Autophosphorylation of the Itk SH3 domain by the Itk kinase domain is strictly dependent on the presence of the intervening Src homology 2 (SH2) domain. A direct docking interaction between the Itk kinase and SH2 domains brings the Itk SH3 domain into the active site where Y180 is then phosphorylated. We now identify the residues on the surface of the Itk SH2 domain responsible for substrate docking and show that this SH2 surface mediates autophosphorylation in the full-length Itk molecule. The canonical phospholigand binding site on the SH2 domain is not involved in substrate docking, instead the docking site consists of side chains from three loop regions (AB, EF and BG) and part of the betaD strand. These results are extended into Btk (Bruton's tyrosine kinase), a Tec family kinase linked to the B-cell deficiency X-linked agammaglobulinemia (XLA). Our results suggest that some XLA-causing mutations might impair Btk phosphorylation.
Molecular Docking of Enzyme Inhibitors: A Computational Tool for Structure-Based Drug Design
ERIC Educational Resources Information Center
Rudnitskaya, Aleksandra; Torok, Bela; Torok, Marianna
2010-01-01
Molecular docking is a frequently used method in structure-based rational drug design. It is used for evaluating the complex formation of small ligands with large biomolecules, predicting the strength of the bonding forces and finding the best geometrical arrangements. The major goal of this advanced undergraduate biochemistry laboratory exercise…
NASA Astrophysics Data System (ADS)
Leenaraj, D. R.; Manimaran, D.; Joe, I. Hubert
2016-11-01
Acemetacin is a non-opioid analgesic which belongs to the class, the non-steroidal anti-inflammatory drug. The bioactive conformer was identified through potential energy surface scan studies. Spectral features of acemetacin have been probed by the techniques of Fourier transform infrared, Raman and Nuclear magnetic resonance combined with density functional theory calculations at the B3LYP level with 6-311 + G(d,p) basis set. The detailed interpretation of vibrational spectral assignments has been carried out on the basis of potential energy distribution method. Geometrical parameters reveal that the carbonyl substitution in between chlorophenyl and indole ring leads to a significant loss of planarity. The red-shifted Cdbnd O stretching wavenumber describe the conjugation between N and O atoms. The shifted Csbnd H stretching wavenumbers of Osbnd CH3 and Osbnd CH2 groups depict the back-donation and induction effects. The substitution of halogen atoms on the title molecule influences the charge distribution and the geometrical parameters. Drug activity and binding affinity of halogen substitution in title molecule with target protein were undertaken by molecular docking study. This study enlightens the effects of bioefficiency due to the halogen substitution in the molecule.
Kiselyov, Alex S; Semenova, Marina N; Chernyshova, Natalya B; Leitao, Andrei; Samet, Alexandr V; Kislyi, Konstantine A; Raihstat, Mikhail M; Oprea, Tudor; Lemcke, Heiko; Lantow, Margaréta; Weiss, Dieter G; Ikizalp, Nazli N; Kuznetsov, Sergei A; Semenov, Victor V
2010-05-01
A series of novel 1,3,4-oxadiazole derivatives based on structural and electronic overlap with combretastatins have been designed and synthesized. Initially, we tested all new compounds in vivo using the phenotypic sea urchin embryo assay to yield a number of agents with anti-proliferative, anti-mitotic, and microtubule destabilizing activities. The experimental data led to identification of 1,3,4-oxadiazole derivatives with isothiazole (5-8) and phenyl (9-12) pharmacophores featuring activity profiles comparable to that of combretastatins, podophyllotoxin and nocodazole. Cytotoxic effects of the two lead molecules, namely 6 and 12, were further confirmed and evaluated by conventional assays with the A549 human cancer cell line including cell proliferation, cell cycle arrest at the G2/M phase, cellular microtubule distribution, and finally in vitro microtubule assembly with purified tubulin. The modeling results using 3D similarity (ROCS) and docking (FRED) correlated well with the observed activity of the molecules. Docking data suggested that the most potent molecules are likely to target the colchicine binding site. Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.
Computer-assisted identification of novel small molecule inhibitors targeting GLUT1
NASA Astrophysics Data System (ADS)
Wan, Zhining; Li, Xin; Sun, Rong; Li, Yuanyuan; Wang, Xiaoyun; Li, Xinru; Rong, Li; Shi, Zheng; Bao, Jinku
2015-12-01
Glucose transporters (GLUTs) are the main carriers of glucose that facilitate the diffusion of glucose in mammalian cells, especially GLUT1. Notably, GLUT1 is a rate-limiting transporter for glucose uptake, and its overexpression is a common characteristic in most cancers. Thus, the inhibition of GLUT1 by novel small compounds to lower glucose levels for cancer cells has become an emerging strategy. Herein, we employed high-throughput screening approaches to identify potential inhibitors against the sugar-binding site of GLUT1. Firstly, molecular docking screening was launched against the specs products, and three molecules (ZINC19909927, ZINC19908826, and ZINC19815451) were selected as candidate GLUT1 inhibitors for further analysis. Then, taking the initial ligand β-NG as a reference, molecular dynamic (MD) simulations and molecular mechanics/generalized born surface area (MM/GBSA) method were applied to evaluate the binding stability and affinity of the three candidates towards GLUT1. Finally, we found that ZINC19909927 might have the highest affinity to occupy the binding site of GLUT1. Meanwhile, energy decomposition analysis identified several residues located in substrate-binding site that might provide clues for future inhibitor discovery towards GLUT1. Taken together, these results in our study may provide valuable information for identifying new inhibitors targeting GLUT1-mediated glucose transport and metabolism for cancer therapeutics.
Discovery of Novel Nonactive Site Inhibitors of the Prothrombinase Enzyme Complex.
Kapoor, Karan; McGill, Nicole; Peterson, Cynthia B; Meyers, Harold V; Blackburn, Michael N; Baudry, Jerome
2016-03-28
The risk of serious bleeding is a major liability of anticoagulant drugs that are active-site competitive inhibitors targeting the Factor Xa (FXa) prothrombin (PT) binding site. The present work identifies several new classes of small molecule anticoagulants that can act as nonactive site inhibitors of the prothrombinase (PTase) complex composed of FXa and Factor Va (FVa). These new classes of anticoagulants were identified, using a novel agnostic computational approach to identify previously unrecognized binding pockets at the FXa-FVa interface. From about three million docking calculations of 281,128 compounds in a conformational ensemble of FXa heavy chains identified by molecular dynamics (MD) simulations, 97 compounds and their structural analogues were selected for experimental validation, through a series of inhibition assays. The compound selection was based on their predicted binding affinities to FXa and their ability to successfully bind to multiple protein conformations while showing selectivity for particular binding sites at the FXa/FVa interface. From these, thirty-one (31) compounds were experimentally identified as nonactive site inhibitors. Concentration-based assays further identified 10 compounds represented by four small-molecule families of inhibitors that achieve dose-independent partial inhibition of PTase activity in a nonactive site-dependent and self-limiting mechanism. Several compounds were identified for their ability to bind to protein conformations only seen during MD, highlighting the importance of accounting for protein flexibility in structure-based drug discovery approaches.
Grover, Sonam; Dhanjal, Jaspreet Kaur; Goyal, Sukriti; Grover, Abhinav; Sundar, Durai
2014-01-01
Interaction of the small peptide hormone glucagon with glucagon receptor (GCGR) stimulates the release of glucose from the hepatic cells during fasting; hence GCGR performs a significant function in glucose homeostasis. Inhibiting the interaction between glucagon and its receptor has been reported to control hepatic glucose overproduction and thus GCGR has evolved as an attractive therapeutic target for the treatment of type II diabetes mellitus. In the present study, a large library of natural compounds was screened against 7 transmembrane domain of GCGR to identify novel therapeutic molecules that can inhibit the binding of glucagon with GCGR. Molecular dynamics simulations were performed to study the dynamic behaviour of the docked complexes and the molecular interactions between the screened compounds and the ligand binding residues of GCGR were analysed in detail. The top scoring compounds were also compared with already documented GCGR inhibitors- MK-0893 and LY2409021 for their binding affinity and other ADME properties. Finally, we have reported two natural drug like compounds PIB and CAA which showed good binding affinity for GCGR and are potent inhibitor of its functional activity. This study contributes evidence for application of these compounds as prospective small ligand molecules against type II diabetes. Novel natural drug like inhibitors against the 7 transmembrane domain of GCGR have been identified which showed high binding affinity and potent inhibition of GCGR.
Dixon, Monica; Woodrick, Jordan; Gupta, Suhani; Karmahapatra, Soumendra Krishna; Devito, Stephen; Vasudevan, Sona; Dakshanamurthy, Sivanesan; Adhikari, Sanjay; Yenugonda, Venkata M.; Roy, Rabindra
2015-01-01
Interest in the mechanisms of DNA repair pathways, including the base excision repair (BER) pathway specifically, has heightened since these pathways have been shown to modulate important aspects of human disease. Modulation of the expression or activity of a particular BER enzyme, N-methylpurine DNA glycosylase (MPG), has been demonstrated to play a role in carcinogenesis and resistance to chemotherapy as well as neurodegenerative diseases, which has intensified the focus on studying MPG-related mechanisms of repair. A specific small molecule inhibitor for MPG activity would be a valuable biochemical tool for understanding these repair mechanisms. By screening several small molecule chemical libraries, we identified a natural polyphenolic compound, morin hydrate, which inhibits MPG activity specifically (IC50 = 2.6 µM). Detailed mechanism analysis showed that morin hydrate inhibited substrate DNA binding of MPG, and eventually the enzymatic activity of MPG. Computational docking studies with an x-ray derived MPG structure as well as comparison studies with other structurally-related flavanoids offer a rationale for the inhibitory activity of morin hydrate observed. The results of this study suggest that the morin hydrate could be an effective tool for studying MPG function and it is possible that morin hydrate and its derivatives could be utilized in future studies focused on the role of MPG in human disease. PMID:25650313
Choubey, Sanjay K; Prabhu, Dhamodharan; Nachiappan, Mutharasappan; Biswal, Jayshree; Jeyakanthan, Jeyaraman
2017-11-01
Type 2 diabetes is one of the biggest health challenges in the world and WHO projects it to be the 7th leading cause of death in 2030. It is a chronic condition affecting the way our body metabolizes sugar. Insulin resistance is high risk factor marked by expression of Lipoprotein Lipases and Peroxisome Proliferator-Activated Receptor that predisposes to type 2 diabetes. AMP-dependent protein kinase in AMPK signaling pathway is a central sensor of energy status. Deregulation of AMPK signaling leads to inflammation, oxidative stress, and deactivation of autophagy which are implicated in pathogenesis of insulin resistance. SIRT4 protein deactivates AMPK as well as directly inhibits insulin secretion. SIRT4 overexpression leads to dyslipidimeia, decreased fatty acid oxidation, and lipogenesis which are the characteristic features of insulin resistance promoting type 2 diabetes. This makes SIRT4 a novel therapeutic target to control type 2 diabetes. Virtual screening and molecular docking studies were performed to obtain potential ligands. To further optimize the geometry of protein-ligand complexes Quantum Polarized Ligand Docking was performed. Binding Free Energy was calculated for the top three ligand molecules. In view of exploring the stereoelectronic features of the ligand, density functional theory approach was implemented at B3LYP/6-31G* level. 30 ns MD simulation studies of the protein-ligand complexes were done. The present research work proposes ZINC12421989 as potential inhibitor of SIRT4 with docking score (-7.54 kcal/mol), docking energy (-51.34 kcal/mol), binding free energy (-70.21 kcal/mol), and comparatively low energy gap (-0.1786 eV) for HOMO and LUMO indicating reactivity of the lead molecule.
Mena-Ulecia, Karel; MacLeod-Carey, Desmond
2018-06-01
2-phenyl-benzotriazole xenobiotic compounds (PBTA-4, PBTA-6, PBTA-7 and PBTA-8) that were previously isolated and identified in waters of the Yodo river, in Japan (Nukaya et al., 2001; Ohe et al., 2004; Watanabe et al., 2001) were characterized as powerful pro-mutagens. In order to predict the activation mechanism of these pro-mutagens, we designed a computational biochemistry protocol, which includes, docking experiments, molecular dynamics simulations and free energy decomposition calculations to obtain information about the interaction of 2-phenyl-benzotriazole molecules into the active center of cytochrome P450-CYP1A1 (CYP1A1). Molecular docking calculations using AutoDock Vina software shows that PBTAs are proportionally oriented in the pocket of CYP1A1, establishing π-π stacking attractive interactions between the triazole group and the Phe224, as well as, the hydrogen bonds of the terminal NH 2 over the benzotriazole units with the Asn255 and Ser116 amino acids. Molecular dynamics simulations using NAMD package showed that these interactions are stable along 100.0 ns of trajectories. Into this context, free binding energy calculations employing the MM-GBSA approach, shows that some differences exists among the interaction of PBTAs with CYP1A1, regarding the solvation, electrostatic and van der Waals interaction energy components. These results suggest that PBTA molecules might be activated by CYP1A1. Thus, enhancing their mutagenicity when compared with the pro-mutagen parent species. Copyright © 2018 Elsevier Ltd. All rights reserved.
Tripathy, Swayansiddha; Azam, Mohammed Afzal; Jupudi, Srikanth; Sahu, Susanta Kumar
2017-10-11
FtsZ is an appealing target for the design of antimicrobial agent that can be used to defeat the multidrug-resistant bacterial pathogens. Pharmacophore modelling, molecular docking and molecular dynamics (MD) simulation studies were performed on a series of three-substituted benzamide derivatives. In the present study a five-featured pharmacophore model with one hydrogen bond acceptors, one hydrogen bond donors, one hydrophobic and two aromatic rings was developed using 97 molecules having MIC values ranging from .07 to 957 μM. A statistically significant 3D-QSAR model was obtained using this pharmacophore hypothesis with a good correlation coefficient (R 2 = .8319), cross validated coefficient (Q 2 = .6213) and a high Fisher ratio (F = 103.9) with three component PLS factor. A good correlation between experimental and predicted activity of the training (R 2 = .83) and test set (R 2 = .67) molecules were displayed by ADHRR.1682 model. The generated model was further validated by enrichment studies using the decoy test and MAE-based criteria to measure the efficiency of the model. The docking studies of all selected inhibitors in the active site of FtsZ protein showed crucial hydrogen bond interactions with Val 207, Asn 263, Leu 209, Gly 205 and Asn-299 residues. The binding free energies of these inhibitors were calculated by the molecular mechanics/generalized born surface area VSGB 2.0 method. Finally, a 15 ns MD simulation was done to confirm the stability of the 4DXD-ligand complex. On a wider scope, the prospect of present work provides insight in designing molecules with better selective FtsZ inhibitory potential.
An In-Silico Investigation of Phytochemicals as Antiviral Agents Against Dengue Fever.
Powers, Chelsea N; Setzer, William N
2016-01-01
A virtual screening analysis of our library of phytochemical structures with dengue virus protein targets has been carried out using a molecular docking approach. A total of 2194 plant-derived secondary metabolites have been docked. This molecule set comprised of 290 alkaloids (68 indole alkaloids, 153 isoquinoline alkaloids, 5 quinoline alkaloids, 13 piperidine alkaloids, 14 steroidal alkaloids, and 37 miscellaneous alkaloids), 678 terpenoids (47 monoterpenoids, 169 sesquiterpenoids, 265 diterpenoids, 81 steroids, and 96 triterpenoids), 20 aurones, 81 chalcones, 349 flavonoids, 120 isoflavonoids, 74 lignans, 58 stilbenoids, 169 miscellaneous polyphenolic compounds, 100 coumarins, 28 xanthones, 67 quinones, and 160 miscellaneous phytochemicals. Dengue virus protein targets examined included dengue virus protease (NS2B-NS3pro), helicase (NS3 helicase), methyltransferase (MTase), RNA-dependent RNA polymerase (RdRp), and the dengue virus envelope protein. Polyphenolic compounds, flavonoids, chalcones, and other phenolics were the most numerous of the strongly docking ligands for dengue virus protein targets.
Salmas, Ramin Ekhteiari; Mestanoglu, Mert; Unlu, Ayhan; Yurtsever, Mine; Durdagi, Serdar
2016-11-01
Mutated form (G52E) of diphtheria toxin (DT) CRM197 is an inactive and nontoxic enzyme. Here, we provided a molecular insight using comparative molecular dynamics (MD) simulations to clarify the influence of a single point mutation on overall protein and active-site loop. Post-processing MD analysis (i.e. stability, principal component analysis, hydrogen-bond occupancy, etc.) is carried out on both wild and mutated targets to investigate and to better understand the mechanistic differences of structural and dynamical properties on an atomic scale especially at nicotinamide adenine dinucleotide (NAD) binding site when a single mutation (G52E) happens at the DT. In addition, a docking simulation is performed for wild and mutated forms. The docking scoring analysis and docking poses results revealed that mutant form is not able to properly accommodate the NAD molecule.
Weisshaar, Marco; Cox, Robert; Morehouse, Zachary; Kumar Kyasa, Shiva; Yan, Dan; Oberacker, Phil; Mao, Shuli; Golden, Jennifer E; Lowen, Anice C; Natchus, Michael G; Plemper, Richard K
2016-08-15
Influenza A virus (IAV) infections cause major morbidity and mortality, generating an urgent need for novel antiviral therapeutics. We recently established a dual myxovirus high-throughput screening protocol that combines a fully replication-competent IAV-WSN strain and a respiratory syncytial virus reporter strain for the simultaneous identification of IAV-specific, paramyxovirus-specific, and broad-spectrum inhibitors. In the present study, this protocol was applied to a screening campaign to assess a diverse chemical library with over 142,000 entries. Focusing on IAV-specific hits, we obtained a hit rate of 0.03% after cytotoxicity testing and counterscreening. Three chemically distinct hit classes with nanomolar potency and favorable cytotoxicity profiles were selected. Time-of-addition, minigenome, and viral entry studies demonstrated that these classes block hemagglutinin (HA)-mediated membrane fusion. Antiviral activity extends to an isolate from the 2009 pandemic and, in one case, another group 1 subtype. Target identification through biolayer interferometry confirmed binding of all hit compounds to HA. Resistance profiling revealed two distinct escape mechanisms: primary resistance, associated with reduced compound binding, and secondary resistance, associated with unaltered binding. Secondary resistance was mediated, unusually, through two different pairs of cooperative mutations, each combining a mutation eliminating the membrane-proximal stalk N-glycan with a membrane-distal change in HA1 or HA2. Chemical synthesis of an analog library combined with in silico docking extracted a docking pose for the hit classes. Chemical interrogation spotlights IAV HA as a major druggable target for small-molecule inhibition. Our study identifies novel chemical scaffolds with high developmental potential, outlines diverse routes of IAV escape from entry inhibition, and establishes a path toward structure-aided lead development. This study is one of the first to apply a fully replication-competent third-generation IAV reporter strain to a large-scale high-throughput screen (HTS) drug discovery campaign, allowing multicycle infection and screening in physiologically relevant human respiratory cells. A large number of potential druggable targets was thus chemically interrogated, but mechanistic characterization, positive target identification, and resistance profiling demonstrated that three chemically promising and structurally distinct hit classes selected for further analysis all block HA-mediated membrane fusion. Viral escape from inhibition could be achieved through primary and secondary resistance mechanisms. In silico docking predicted compound binding to a microdomain located at the membrane-distal site of the prefusion HA stalk that was also previously suggested as a target site for chemically unrelated HA inhibitors. This study identifies an unexpected chemodominance of the HA stalk microdomain for small-molecule inhibitors in IAV inhibitor screening campaigns and highlights a novel mechanism of cooperative resistance to IAV entry blockers. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Weisshaar, Marco; Cox, Robert; Morehouse, Zachary; Kumar Kyasa, Shiva; Yan, Dan; Oberacker, Phil; Mao, Shuli; Lowen, Anice C.; Natchus, Michael G.
2016-01-01
ABSTRACT Influenza A virus (IAV) infections cause major morbidity and mortality, generating an urgent need for novel antiviral therapeutics. We recently established a dual myxovirus high-throughput screening protocol that combines a fully replication-competent IAV-WSN strain and a respiratory syncytial virus reporter strain for the simultaneous identification of IAV-specific, paramyxovirus-specific, and broad-spectrum inhibitors. In the present study, this protocol was applied to a screening campaign to assess a diverse chemical library with over 142,000 entries. Focusing on IAV-specific hits, we obtained a hit rate of 0.03% after cytotoxicity testing and counterscreening. Three chemically distinct hit classes with nanomolar potency and favorable cytotoxicity profiles were selected. Time-of-addition, minigenome, and viral entry studies demonstrated that these classes block hemagglutinin (HA)-mediated membrane fusion. Antiviral activity extends to an isolate from the 2009 pandemic and, in one case, another group 1 subtype. Target identification through biolayer interferometry confirmed binding of all hit compounds to HA. Resistance profiling revealed two distinct escape mechanisms: primary resistance, associated with reduced compound binding, and secondary resistance, associated with unaltered binding. Secondary resistance was mediated, unusually, through two different pairs of cooperative mutations, each combining a mutation eliminating the membrane-proximal stalk N-glycan with a membrane-distal change in HA1 or HA2. Chemical synthesis of an analog library combined with in silico docking extracted a docking pose for the hit classes. Chemical interrogation spotlights IAV HA as a major druggable target for small-molecule inhibition. Our study identifies novel chemical scaffolds with high developmental potential, outlines diverse routes of IAV escape from entry inhibition, and establishes a path toward structure-aided lead development. IMPORTANCE This study is one of the first to apply a fully replication-competent third-generation IAV reporter strain to a large-scale high-throughput screen (HTS) drug discovery campaign, allowing multicycle infection and screening in physiologically relevant human respiratory cells. A large number of potential druggable targets was thus chemically interrogated, but mechanistic characterization, positive target identification, and resistance profiling demonstrated that three chemically promising and structurally distinct hit classes selected for further analysis all block HA-mediated membrane fusion. Viral escape from inhibition could be achieved through primary and secondary resistance mechanisms. In silico docking predicted compound binding to a microdomain located at the membrane-distal site of the prefusion HA stalk that was also previously suggested as a target site for chemically unrelated HA inhibitors. This study identifies an unexpected chemodominance of the HA stalk microdomain for small-molecule inhibitors in IAV inhibitor screening campaigns and highlights a novel mechanism of cooperative resistance to IAV entry blockers. PMID:27252534
Sudhagar, S; Sathya, S; Anuradha, R; Gokulapriya, G; Geetharani, Y; Lakshmi, B S
2018-02-01
To examine the potential of ferulic acid and 4-vinylguaiacol for inhibiting epidermal growth factor receptor (EGFR) in human breast cancer cells in vitro. Ferulic acid and 4-vinylguaiacol limit the EGF (epidermal growth factor)-induced breast cancer proliferation and new DNA synthesis. Western blot analysis revealed both ferulic acid and 4-vinylguaiacol exhibit sustained inhibition of EGFR activation through down-regulation of Tyr 1068 autophosphorylation. Molecular docking analysis shows ferulic acid forming hydrogen bond interaction with Lys 745 and Met 793 whereas, 4-vinylguaiacol forms two hydrogen bonds with Phe 856 and exhibits stronger hydrophobic interactions with multiple amino acid residues at the EGFR kinase domain. Ferulic acid and 4-vinylguaiacol could serve as a potential structure for the development of new small molecule therapeutics against EGFR.
Ganai, Shabir Ahmad
2018-01-01
Histone deacetylase inhibitors, the small molecules modulating the biological activity of histone deacetylases are emerging as potent chemotherapeutic agents. Despite their considerable therapeutic benefits in disease models, the lack of isoform specificity culminates in debilitating off target effects, raising serious concerns regarding their applicability. This emphasizes the pressing and unmet medical need of designing isoform selective inhibitors for safe and effective anticancer therapy. Keeping these grim facts in view, the current article sheds light on structural basis of off-targeting. Furthermore, the article discusses extensively the role of in silico strategies such as Molecular Docking, Molecular Dynamics Simulation and Energetically-optimized structure based pharmacophore approach in designing on-target inhibitors against classical HDACs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Jayakumar, Jayanthi; Anishetty, Sharmila
2014-05-01
Chemotherapeutic resistance due to over expression of Inhibitor of Apoptosis Proteins (IAPs) XIAP, survivin and livin has been observed in various cancers. In the current study, Molecular Dynamics (MD) simulations were carried out for all three IAPs and a common ligand binding scaffold was identified. Further, a novel sequence based motif specific to these IAPs was designed. SMAC is an endogenous inhibitor of IAPs. Screening of ChemBank for compounds similar to lead SMAC-non-peptidomimetics yielded a cemadotin related compound NCIMech_000654. Cemadotin is a derivative of natural anti-tumor peptide dolastatin-15; hence these compounds were docked against all three IAPs. Based on our analysis, we propose that NCIMech_000654/dolastatin-15/cemadotin derivatives may be investigated for their potential in inhibiting XIAP, survivin and livin. Copyright © 2014 Elsevier Ltd. All rights reserved.
Pandey, Preeti; Verma, Vijay; Dhar, Suman Kumar; Gourinath, Samudrala
2018-01-11
The characteristic of interaction with various enzymes and processivity-promoting nature during DNA replication makes β-clamp an important drug target. Helicobacter pylori ( H. pylori ) have several unique features in DNA replication machinery that makes it different from other microorganisms. To find out whether difference in DNA replication proteins behavior accounts for any difference in drug response when compared to E. coli , in the present study, we have tested E. coli β-clamp inhibitor molecules against H. pylori β-clamp. Various approaches were used to test the binding of inhibitors to H. pylori β-clamp including docking, surface competition assay, complex structure determination, as well as antimicrobial assay. Out of five shortlisted inhibitor molecules on the basis of docking score, three molecules, 5-chloroisatin, carprofen, and 3,4-difluorobenzamide were co-crystallized with H. pylori β-clamp and the structures show that they bind at the protein-protein interaction site as expected. In vivo studies showed only two molecules, 5-chloroisatin, and 3,4-difluorobenzamide inhibited the growth of the pylori with MIC values in micro molar range, which is better than the inhibitory effect of the same drugs on E. coli . Therefore, the evaluation of such drugs against H. pylori may explore the possibility to use to generate species-specific pharmacophore for development of new drugs against H. pylori .
Peptide docking of HIV-1 p24 with single chain fragment variable (scFv) by CDOCKER algorithm
NASA Astrophysics Data System (ADS)
Karim, Hana Atiqah Abdul; Tayapiwatana, Chatchai; Nimmanpipug, Piyarat; Zain, Sharifuddin M.; Rahman, Noorsaadah Abdul; Lee, Vannajan Sanghiran
2014-10-01
In search for the important residues that might have involve in the binding interaction between the p24 caspid protein of HIV-1 fragment (MET68 - PRO90) with the single chain fragment variable (scFv) of FAB23.5, modern computational chemistry approach has been conducted and applied. The p24 fragment was initially taken out from the 1AFV protein molecule consisting of both light (VL) and heavy (VH) chains of FAB23.5 as well as the HIV-1 caspid protein. From there, the p24 (antigen) fragment was made to dock back into the protein pocket receptor (antibody) by using the CDOCKER algorithm to conduct the molecular docking process. The score calculated from the CDOCKER gave 15 possible docked poses with various docked ligand's positions, the interaction energy as well as the binding energy. The best docked pose that imitates the original antigen's position was determined and further processed to the In Situ minimization to obtain the residues interaction energy as well as to observe the hydrogen bonds interaction in the protein-peptide complex. Based on the results demonstrated, the specific residues in the complex that have shown immense lower interaction energies in the 5Å vicinity region from the peptide are from the heavy chain (VH:TYR105) and light chain (VL: ASN31, TYR32, and GLU97). Those residues play vital roles in the binding mechanism of Antibody-Antigen (Ab-Ag) complex of p24 with FAB23.5.
Kinetics of DNA-mediated docking reactions between vesicles tethered to supported lipid bilayers
Chan, Yee-Hung M.; Lenz, Peter; Boxer, Steven G.
2007-01-01
Membrane–membrane recognition and binding are crucial in many biological processes. We report an approach to studying the dynamics of such reactions by using DNA-tethered vesicles as a general scaffold for displaying membrane components. This system was used to characterize the docking reaction between two populations of tethered vesicles that display complementary DNA. Deposition of vesicles onto a supported lipid bilayer was performed by using a microfluidic device to prevent mixing of the vesicles in bulk during sample preparation. Once tethered onto the surface, vesicles mixed via two-dimensional diffusion. DNA-mediated docking of two reacting vesicles results in their colocalization after collision and their subsequent tandem motion. Individual docking events and population kinetics were observed via epifluorescence microscopy. A lattice-diffusion simulation was implemented to extract from experimental data the probability, Pdock, that a collision leads to docking. For individual vesicles displaying small numbers of docking DNA, Pdock shows a first-order relationship with copy number as well as a strong dependence on the DNA sequence. Both trends are explained by a model that includes both tethered vesicle diffusion on the supported bilayer and docking DNA diffusion over each vesicle's surface. These results provide the basis for the application of tethered vesicles to study other membrane reactions including protein-mediated docking and fusion. PMID:18025472
Yan, Guoyi; Hou, Manzhou; Luo, Jiang; Pu, Chunlan; Hou, Xueyan; Lan, Suke; Li, Rui
2018-02-01
Bromodomain is a recognition module in the signal transduction of acetylated histone. BRD4, one of the bromodomain members, is emerging as an attractive therapeutic target for several types of cancer. Therefore, in this study, an attempt has been made to screen compounds from an integrated database containing 5.5 million compounds for BRD4 inhibitors using pharmacophore-based virtual screening, molecular docking, and molecular dynamics simulations. As a result, two molecules of twelve hits were found to be active in bioactivity tests. Among the molecules, compound 5 exhibited potent anticancer activity, and the IC 50 values against human cancer cell lines MV4-11, A375, and HeLa were 4.2, 7.1, and 11.6 μm, respectively. After that, colony formation assay, cell cycle, apoptosis analysis, wound-healing migration assay, and Western blotting were carried out to learn the bioactivity of compound 5. © 2017 John Wiley & Sons A/S.
NASA Astrophysics Data System (ADS)
Arshad, Suhana; Pillai, Renjith Raveendran; Zainuri, Dian Alwani; Khalib, Nuridayanti Che; Razak, Ibrahim Abdul; Armaković, Stevan; Armaković, Sanja J.
2017-09-01
In the present study, single crystals of E)-3-(3,5-dichlorophenyl)-1-(4-fluorophenyl)prop-2-en-1-one, were prepared and structurally characterized by single crystal X-ray diffraction analysis. The molecular structure crystallized in monoclinic crystal system with P21/c space group. Sensitivity of the title molecule towards electrophilic attacks has been examined by calculations of average localized ionization energies (ALIE) and their mapping to electron density surface. Further determination of atoms that could be important reactive centres has been performed by calculations of Fukui functions. Sensitivity of title molecule towards autoxidation and hydrolysis mechanisms has been assessed by calculations of bond dissociation energies and radial distribution functions (RDF), respectively. Also, in order to explore possible binding mode of the title compound towards Dihydrofolate reductase enzyme, we have utilized in silico molecular docking to explore possible binding modes of the title compound with the DHFR enzyme.
Spectroscopic, quantum chemical calculation and molecular docking of dipfluzine
NASA Astrophysics Data System (ADS)
Srivastava, Karnica; Srivastava, Anubha; Tandon, Poonam; Sinha, Kirti; Wang, Jing
2016-12-01
Molecular structure and vibrational analysis of dipfluzine (C27H29FN2O) were presented using FT-IR and FT-Raman spectroscopy and quantum chemical calculations. The theoretical ground state geometry and electronic structure of dipfluzine are optimized by the DFT/B3LYP/6-311++G (d,p) method and compared with those of the crystal data. The 1D potential energy scan was performed by varying the dihedral angle using B3LYP functional at 6-31G(d,p) level of theory and thus the most stable conformer of the compound were determined. Molecular electrostatic potential surface (MEPS), frontier orbital analysis and electronic reactivity descriptor were used to predict the chemical reactivity of molecule. Energies of intra- and inter-molecular hydrogen bonds in molecule and their electronic aspects were investigated by natural bond orbital (NBO). To find out the anti-apoptotic activity of the title compound molecular docking studies have been performed against protein Fas.
High performance in silico virtual drug screening on many-core processors.
McIntosh-Smith, Simon; Price, James; Sessions, Richard B; Ibarra, Amaurys A
2015-05-01
Drug screening is an important part of the drug development pipeline for the pharmaceutical industry. Traditional, lab-based methods are increasingly being augmented with computational methods, ranging from simple molecular similarity searches through more complex pharmacophore matching to more computationally intensive approaches, such as molecular docking. The latter simulates the binding of drug molecules to their targets, typically protein molecules. In this work, we describe BUDE, the Bristol University Docking Engine, which has been ported to the OpenCL industry standard parallel programming language in order to exploit the performance of modern many-core processors. Our highly optimized OpenCL implementation of BUDE sustains 1.43 TFLOP/s on a single Nvidia GTX 680 GPU, or 46% of peak performance. BUDE also exploits OpenCL to deliver effective performance portability across a broad spectrum of different computer architectures from different vendors, including GPUs from Nvidia and AMD, Intel's Xeon Phi and multi-core CPUs with SIMD instruction sets.
High performance in silico virtual drug screening on many-core processors
Price, James; Sessions, Richard B; Ibarra, Amaurys A
2015-01-01
Drug screening is an important part of the drug development pipeline for the pharmaceutical industry. Traditional, lab-based methods are increasingly being augmented with computational methods, ranging from simple molecular similarity searches through more complex pharmacophore matching to more computationally intensive approaches, such as molecular docking. The latter simulates the binding of drug molecules to their targets, typically protein molecules. In this work, we describe BUDE, the Bristol University Docking Engine, which has been ported to the OpenCL industry standard parallel programming language in order to exploit the performance of modern many-core processors. Our highly optimized OpenCL implementation of BUDE sustains 1.43 TFLOP/s on a single Nvidia GTX 680 GPU, or 46% of peak performance. BUDE also exploits OpenCL to deliver effective performance portability across a broad spectrum of different computer architectures from different vendors, including GPUs from Nvidia and AMD, Intel’s Xeon Phi and multi-core CPUs with SIMD instruction sets. PMID:25972727
A method for fast energy estimation and visualization of protein-ligand interaction
NASA Astrophysics Data System (ADS)
Tomioka, Nobuo; Itai, Akiko; Iitaka, Yoichi
1987-10-01
A new computational and graphical method for facilitating ligand-protein docking studies is developed on a three-dimensional computer graphics display. Various physical and chemical properties inside the ligand binding pocket of a receptor protein, whose structure is elucidated by X-ray crystal analysis, are calculated on three-dimensional grid points and are stored in advance. By utilizing those tabulated data, it is possible to estimate the non-bonded and electrostatic interaction energy and the number of possible hydrogen bonds between protein and ligand molecules in real time during an interactive docking operation. The method also provides a comprehensive visualization of the local environment inside the binding pocket. With this method, it becomes easier to find a roughly stable geometry of ligand molecules, and one can therefore make a rapid survey of the binding capability of many drug candidates. The method will be useful for drug design as well as for the examination of protein-ligand interactions.
NASA Astrophysics Data System (ADS)
Park, Hwangseo; Lee, Hye Seon; Ku, Bonsu; Lee, Sang-Rae; Kim, Seung Jun
2017-08-01
Despite a wealth of persuasive evidence for the involvement of human small C-terminal domain phosphatase 1 (Scp1) in the impairment of neuronal differentiation and in Huntington's disease, small-molecule inhibitors of Scp1 have been rarely reported so far. This study aims to the discovery of both competitive and allosteric Scp1 inhibitors through the two-track virtual screening procedure. By virtue of the improvement of the scoring function by implementing a new molecular solvation energy term and by reoptimizing the atomic charges for the active-site Mg2+ ion cluster, we have been able to identify three allosteric and five competitive Scp1 inhibitors with low-micromolar inhibitory activity. Consistent with the results of kinetic studies on the inhibitory mechanisms, the allosteric inhibitors appear to be accommodated in the peripheral binding pocket through the hydrophobic interactions with the nonpolar residues whereas the competitive ones bind tightly in the active site with a direct coordination to the central Mg2+ ion. Some structural modifications to improve the biochemical potency of the newly identified inhibitors are proposed based on the binding modes estimated with docking simulations.
NASA Technical Reports Server (NTRS)
Pei, Jing; Murchison, Luke; BenShabat, Adam; Stewart, Victor; Rosenthal, James; Follman, Jacob; Branchy, Mark; Sellers, Drew; Elandt, Ryan; Elliott, Sawyer;
2017-01-01
Small spacecraft autonomous rendezvous and docking is an essential technology for future space structure assembly missions. A novel magnetic capture and latching mechanism is analyzed that allows for docking of two CubeSats without precise sensors and actuators. The proposed magnetic docking hardware not only provides the means to latch the CubeSats but it also significantly increases the likelihood of successful docking in the presence of relative attitude and position errors. The simplicity of the design allows it to be implemented on many CubeSat rendezvous missions. A CubeSat 3-DOF ground demonstration effort is on-going at NASA Langley Research Center that enables hardware-in-the loop testing of the autonomous approach and docking of a follower CubeSat to an identical leader CubeSat. The test setup consists of a 3 meter by 4 meter granite table and two nearly frictionless air bearing systems that support the two CubeSats. Four cold-gas on-off thrusters are used to translate the follower towards the leader, while a single reaction wheel is used to control the attitude of each CubeSat. An innovative modified pseudo inverse control allocation scheme was developed to address interactions between control effectors. The docking procedure requires relatively high actuator precision, a novel minimal impulse bit mitigation algorithm was developed to minimize the undesirable deadzone effects of the thrusters. Simulation of the ground demonstration shows that the Guidance, Navigation, and Control system along with the docking subsystem leads to successful docking under 3-sigma dispersions for all key system parameters. Extensive simulation and ground testing will provide sufficient confidence that the proposed docking mechanism along with the choosen suite of sensors and actuators will perform successful docking in the space environment.
Ahamed, T K Shameera; Muraleedharan, K
2017-12-01
In this study, ligand based comparative molecular field analysis (CoMFA) with five principal components was performed on class of 3', 4'-dihydroxyflavone derivatives for potent rat 5-LOX inhibitors. The percentage contributions in building of CoMFA model were 91.36% for steric field and 8.6% for electrostatic field. R 2 values for training and test sets were found to be 0.9320 and 0.8259, respectively. In case of LOO, LTO and LMO cross validation test, q 2 values were 0.6587, 0.6479 and 0.5547, respectively. These results indicate that the model has high statistical reliability and good predictive power. The extracted contour maps were used to identify the important regions where the modification was necessary to design a new molecule with improved activity. The study has developed a homology model for rat 5-LOX and recognized the key residues at the binding site. Docking of most active molecule to the binding site of 5-LOX confirmed the stability and rationality of CoMFA model. Based on molecular docking results and CoMFA contour plots, new inhibitors with higher activity with respect to the most active compound in data set were designed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Xia, Pu; Mou, Fei-Fei; Wang, Li-Wei
2012-01-01
Non-small-cell lung cancer (NSCLC) is a leading cause of cancer deaths worldwide. Crizotinib has been approved by the U.S. Food and Drug Administration for the treatment of patients with advanced NSCLC. However, understanding of mechanisms of action is still limited. In our studies, we confirmed crizotinib-induced apoptosis in A549 lung cancer cells. In order to assess mechanisms, small molecular docking technology was used as a preliminary simulation of signaling pathways. Interesting, our results of experiments were consistent with the results of computer simulation. This indicates that small molecular docking technology should find wide use for its reliability and convenience.
Ibrahim, Tamer M; Bauer, Matthias R; Boeckler, Frank M
2015-01-01
Structure-based virtual screening techniques can help to identify new lead structures and complement other screening approaches in drug discovery. Prior to docking, the data (protein crystal structures and ligands) should be prepared with great attention to molecular and chemical details. Using a subset of 18 diverse targets from the recently introduced DEKOIS 2.0 benchmark set library, we found differences in the virtual screening performance of two popular docking tools (GOLD and Glide) when employing two different commercial packages (e.g. MOE and Maestro) for preparing input data. We systematically investigated the possible factors that can be responsible for the found differences in selected sets. For the Angiotensin-I-converting enzyme dataset, preparation of the bioactive molecules clearly exerted the highest influence on VS performance compared to preparation of the decoys or the target structure. The major contributing factors were different protonation states, molecular flexibility, and differences in the input conformation (particularly for cyclic moieties) of bioactives. In addition, score normalization strategies eliminated the biased docking scores shown by GOLD (ChemPLP) for the larger bioactives and produced a better performance. Generalizing these normalization strategies on the 18 DEKOIS 2.0 sets, improved the performances for the majority of GOLD (ChemPLP) docking, while it showed detrimental performances for the majority of Glide (SP) docking. In conclusion, we exemplify herein possible issues particularly during the preparation stage of molecular data and demonstrate to which extent these issues can cause perturbations in the virtual screening performance. We provide insights into what problems can occur and should be avoided, when generating benchmarks to characterize the virtual screening performance. Particularly, careful selection of an appropriate molecular preparation setup for the bioactive set and the use of score normalization for docking with GOLD (ChemPLP) appear to have a great importance for the screening performance. For virtual screening campaigns, we recommend to invest time and effort into including alternative preparation workflows into the generation of the master library, even at the cost of including multiple representations of each molecule. Graphical AbstractUsing DEKOIS 2.0 benchmark sets in structure-based virtual screening to probe the impact of molecular preparation and score normalization.
Hoffer, Laurent; Renaud, Jean-Paul; Horvath, Dragos
2013-04-22
This paper describes the use and validation of S4MPLE in Fragment-Based Drug Design (FBDD)--a strategy to build drug-like ligands starting from small compounds called fragments. S4MPLE is a conformational sampling tool based on a hybrid genetic algorithm that is able to simulate one (conformer enumeration) or more molecules (docking). The goal of the current paper is to show that due to the judicious design of genetic operators, S4MPLE may be used without any specific adaptation as an in silico FBDD tool. Such fragment-to-lead evolution involves either growing of one or linking of several fragment-like binder(s). The native ability to specifically "dock" a substructure that is covalently anchored to its target (here, some prepositioned fragment formally part of the binding site) enables it to act like dedicated de novo builders and differentiates it from most classical docking tools, which may only cope with non-covalent interactions. Besides, S4MPLE may address growing/linking scenarios involving protein site flexibility, and it might also suggest "growth" moves by bridging the ligand to the site via water-mediated interactions if H2O molecules are simply appended to the input files. Therefore, the only development overhead required to build a virtual fragment→ligand growing/linking strategy based on S4MPLE were two chemoinformatics programs meant to provide a minimalistic management of the linker library. The first creates a duplicate-free library by fragmenting a compound database, whereas the second builds new compounds, attaching chemically compatible linkers to the starting fragments. S4MPLE is subsequently used to probe the optimal placement of the linkers within the binding site, with initial restraints on atoms from initial fragments, followed by an optimization of all kept poses after restraint removal. Ranking is mainly based on two criteria: force-field potential energy and RMSD shifts of the original fragment moieties. This strategy was applied to several examples from the FBDD literature with good results over several monitored criteria: ability to generate the optimized ligand (or close analogs), good ranking of analogs among decoy compounds, and accurate predictions of expected binding modes of reference ligands. Simulations included "classical" covalent growing/linking, more challenging ones involving binding site conformational changes, and growth with optional recognition of putatively favorable water-mediated interactions.
Sribalan, Rajendran; Banuppriya, Govindharasu; Kirubavathi, Maruthan; Jayachitra, A; Padmini, Vediappen
2016-12-01
A series of fifteen new chemical entities, 3-(pyridin-4-yl)-1H-pyrazole-5-carboxamide chalcones (6a-o), were synthesized as new hybrids with enriched biological activities compared to their parent molecules. The compounds were characterized by 1 H NMR, 13 C NMR, Mass and IR spectral studies. Their antibacterial, anti-inflammatory and antioxidant activities have been evaluated. These compounds showed moderate to good antibacterial, anti-inflammatory and antioxidant activities. The molecular docking analysis was performed with cyclooxygenase enzyme to ascertain the probable binding model. Copyright © 2016 Elsevier Ltd. All rights reserved.
Protein tyrosine phosphatases: Ligand interaction analysis and optimisation of virtual screening.
Ghattas, Mohammad A; Atatreh, Noor; Bichenkova, Elena V; Bryce, Richard A
2014-07-01
Docking-based virtual screening is an established component of structure-based drug discovery. Nevertheless, scoring and ranking of computationally docked ligand libraries still suffer from many false positives. Identifying optimal docking parameters for a target protein prior to virtual screening can improve experimental hit rates. Here, we examine protocols for virtual screening against the important but challenging class of drug target, protein tyrosine phosphatases. In this study, common interaction features were identified from analysis of protein-ligand binding geometries of more than 50 complexed phosphatase crystal structures. It was found that two interactions were consistently formed across all phosphatase inhibitors: (1) a polar contact with the conserved arginine residue, and (2) at least one interaction with the P-loop backbone amide. In order to investigate the significance of these features on phosphatase-ligand binding, a series of seeded virtual screening experiments were conducted on three phosphatase enzymes, PTP1B, Cdc25b and IF2. It was observed that when the conserved arginine and P-loop amide interactions were used as pharmacophoric constraints during docking, enrichment of the virtual screen significantly increased in the three studied phosphatases, by up to a factor of two in some cases. Additionally, the use of such pharmacophoric constraints considerably improved the ability of docking to predict the inhibitor's bound pose, decreasing RMSD to the crystallographic geometry by 43% on average. Constrained docking improved enrichment of screens against both open and closed conformations of PTP1B. Incorporation of an ordered water molecule in PTP1B screening was also found to generally improve enrichment. The knowledge-based computational strategies explored here can potentially inform structure-based design of new phosphatase inhibitors using docking-based virtual screening. Copyright © 2014 Elsevier Inc. All rights reserved.
Data Retrieved by ARCADE-R2 Experiment On Board the BEXUS-17 Balloon
NASA Astrophysics Data System (ADS)
Barbetta, M.; Branz, F.; Carron, A.; Olivieri, L.; Prendin, J.; Sansone, F.; Savioli, L.; Spinello, F.; Francesconi, A.
2015-09-01
The Autonomous Rendezvous, Control And Docking Experiment — Reflight 2 (ARCADE-R2) is a technology demonstrator aiming to prove automatic attitude determination and control, rendezvous and docking capabilities for small scale spacecraft and aircraft. The development of such capabilities could be fundamental to create, in the near future, fleets of cooperative, autonomous unmanned aerial vehicles for mapping, surveillance, inspection and remote observation of hazardous environments; small-class satellites could also benefit from the employment of docking systems to extend and reconfigure their mission profiles. ARCADE-R2 is designed to test these technologies on a stratospheric flight on board the BEXUS-17 balloon, allowing to demonstrate them in a harsh environment subjected to gusty winds and high pressure and temperature variations. In this paper, ARCADE-R2 architecture is introduced and the main results obtained from a stratospheric balloon flight are presented.
Vesicle Adhesion and Fusion Studied by Small-Angle X-Ray Scattering.
Komorowski, Karlo; Salditt, Annalena; Xu, Yihui; Yavuz, Halenur; Brennich, Martha; Jahn, Reinhard; Salditt, Tim
2018-04-24
We have studied the adhesion state (also denoted by docking state) of lipid vesicles as induced by the divalent ions Ca 2+ or Mg 2+ at well-controlled ion concentration, lipid composition, and charge density. The bilayer structure and the interbilayer distance in the docking state were analyzed by small-angle x-ray scattering. A strong adhesion state was observed for DOPC:DOPS vesicles, indicating like-charge attraction resulting from ion correlations. The observed interbilayer separations of ∼1.6 nm agree quantitatively with the predictions of electrostatics in the strong coupling regime. Although this phenomenon was observed when mixing anionic and zwitterionic (or neutral) lipids, pure anionic membranes (DOPS) with highest charge density σ resulted in a direct phase transition to a multilamellar state, which must be accompanied by rupture and fusion of vesicles. To extend the structural assay toward protein-controlled docking and fusion, we have characterized reconstituted N-ethylmaleimide-sensitive factor attachment protein receptors in controlled proteoliposome suspensions by small-angle x-ray scattering. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Jayadeepa, R M; Niveditha, M S
2012-01-01
It is estimated that by 2050 over 100 million people will be affected by the Parkinson's disease (PD). We propose various computational approaches to screen suitable candidate ligand with anti-Parkinson's activity from phytochemicals. Five different types of dopamine receptors have been identified in the brain, D1-D5. Dopamine receptor D3 was selected as the target receptor. The D3 receptor exists in areas of the brain outside the basal ganglia, such as the limbic system, and thus may play a role in the cognitive and emotional changes noted in Parkinson's disease. A ligand library of 100 molecules with anti-Parkinson's activity was collected from literature survey. Nature is the best combinatorial chemist and possibly has answers to all diseases of mankind. Failure of some synthetic drugs and its side effects have prompted many researches to go back to ancient healing methods which use herbal medicines to give relief. Hence, the candidate ligands with anti-Parkinson's were selected from herbal sources through literature survey. Lipinski rules were applied to screen the suitable molecules for the study, the resulting 88 molecules were energy minimized, and subjected to docking using Autodock Vina. The top eleven molecules were screened according to the docking score generated by Autodock Vina Commercial drug Ropinirole was computed similarly and was compared with the 11 phytochemicals score, the screened molecules were subjected to toxicity analysis and to verify toxic property of phytochemicals. R Programming was applied to remove the bias from the top eleven molecules. Using cluster analysis and Confusion Matrix two phytochemicals were computationally selected namely Rosmarinic acid and Gingkolide A for further studies on the disease Parkinson's.
Peng, Jian-long; Wang, Shi-jie; Geng, Jie-jie; Liu, Ji-de; Feng, Fei; Song, Fei; Li, Ling; Zhu, Ping; Jiang, Jian-li; Chen, Zhi-nan
2016-01-01
CD147, a type I transmembrane glycoprotein, is highly expressed in various cancer types and plays important roles in tumor progression, especially by promoting the motility and invasion of hepatocellular carcinoma (HCC) cells. These crucial roles make CD147 an attractive target for therapeutic intervention in HCC, but no small-molecule inhibitors of CD147 have been developed to date. To identify a candidate inhibitor, we used a pharmacophore model derived from the structure of CD147 to virtually screen over 300,000 compounds. The 100 highest-ranked compounds were subjected to biological assays, and the most potent one, dubbed AC-73 (ID number: AN-465/42834501), was studied further. We confirmed that AC-73 targeted CD147 and further demonstrated it can specifically disrupt CD147 dimerization. Moreover, molecular docking and mutagenesis experiments showed that the possible binding sites of AC-73 on CD147 included Glu64 and Glu73 in the N-terminal IgC2 domain, which two residues are located in the dimer interface of CD147. Functional assays revealed that AC-73 inhibited the motility and invasion of typical HCC cells, but not HCC cells that lacked the CD147 gene, demonstrating on-target action. Further, AC-73 reduced HCC metastasis by suppressing matrix metalloproteinase (MMP)-2 via down-regulation of the CD147/ERK1/2/signal transducer and activator of transcription 3 (STAT3) signaling pathway. Finally, AC-73 attenuated progression in an orthotopic nude mouse model of liver metastasis, suggesting that AC-73 or its derivatives have potential for use in HCC intervention. We conclude that the novel small-molecule inhibitor AC-73 inhibits HCC mobility and invasion, probably by disrupting CD147 dimerization and thereby mainly suppressing the CD147/ERK1/2/STAT3/MMP-2 pathways, which are crucial for cancer progression. PMID:26882566
Design, Synthesis, and Evaluation of Dihydrobenzo[cd]indole-6-sulfonamide as TNF-α Inhibitors.
Deng, Xiaobing; Zhang, Xiaoling; Tang, Bo; Liu, Hongbo; Shen, Qi; Liu, Ying; Lai, Luhua
2018-01-01
Tumor necrosis factor-α (TNF-α) plays a pivotal role in inflammatory response. Dysregulation of TNF can lead to a variety of disastrous pathological effects, including auto-inflammatory diseases. Antibodies that directly targeting TNF-α have been proven effective in suppressing symptoms of these disorders. Compared to protein drugs, small molecule drugs are normally orally available and less expensive. Till now, peptide and small molecule TNF-α inhibitors are still in the early stage of development, and much more efforts should be made. In a previously study, we reported a TNF-α inhibitor, EJMC-1 with modest activity. Here, we optimized this compound by shape screen and rational design. In the first round, we screened commercial compound library for EJMC-1 analogs based on shape similarity. Out of the 68 compounds tested, 20 compounds showed better binding affinity than EJMC-1 in the SPR competitive binding assay. These 20 compounds were tested in cell assay and the most potent compound was 2-oxo-N-phenyl-1,2-dihydrobenzo[ cd ]indole-6-sulfonamide ( S10 ) with an IC 50 of 14 μM, which was 2.2-fold stronger than EJMC-1 . Based on the docking analysis of S10 and EJMC-1 binding with TNF-α, in the second round, we designed S10 analogs, purchased seven of them, and synthesized seven new compounds. The best compound, 4e showed an IC 50 -value of 3 μM in cell assay, which was 14-fold stronger than EJMC-1 . 4e was among the most potent TNF-α organic compound inhibitors reported so far. Our study demonstrated that 2-oxo-N-phenyl-1,2-dihydrobenzo[ cd ]indole-6-sulfonamide analogs could be developed as potent TNF-α inhibitors. 4e can be further optimized for its activity and properties. Our study provides insights into designing small molecule inhibitors directly targeting TNF-α and for protein-protein interaction inhibitor design.
Grover, Prerna; Shi, Haibin; Baumgartner, Matthew; Camacho, Carlos J.; Smithgall, Thomas E.
2015-01-01
The ABL protein-tyrosine kinase regulates intracellular signaling pathways controlling diverse cellular processes and contributes to several forms of cancer. The kinase activity of ABL is repressed by intramolecular interactions involving its regulatory Ncap, SH3 and SH2 domains. Small molecules that allosterically regulate ABL kinase activity through its non-catalytic domains may represent selective probes of ABL function. Here we report a screening assay for chemical modulators of ABL kinase activity that target the regulatory interaction of the SH3 domain with the SH2-kinase linker. This fluorescence polarization (FP) assay is based on a purified recombinant ABL protein consisting of the N-cap, SH3 and SH2 domains plus the SH2-kinase linker (N32L protein) and a short fluorescein-labeled probe peptide that binds to the SH3 domain. In assay development experiments, we found that the probe peptide binds to the recombinant ABL N32L protein in vitro, producing a robust FP signal that can be competed with an excess of unlabeled peptide. The FP signal is not observed with control N32L proteins bearing either an inactivating mutation in the SH3 domain or enhanced SH3:linker interaction. A pilot screen of 1200 FDA-approved drugs identified four compounds that specifically reduced the FP signal by at least three standard deviations from the untreated controls. Secondary assays showed that one of these hit compounds, the antithrombotic drug dipyridamole, enhances ABL kinase activity in vitro to a greater extent than the previously described ABL agonist, DPH. Docking studies predicted that this compound binds to a pocket formed at the interface of the SH3 domain and the linker, suggesting that it activates ABL by disrupting this regulatory interaction. These results show that screening assays based on the non-catalytic domains of ABL can identify allosteric small molecule regulators of kinase function, providing a new approach to selective drug discovery for this important kinase system. PMID:26222440
Grover, Prerna; Shi, Haibin; Baumgartner, Matthew; Camacho, Carlos J; Smithgall, Thomas E
2015-01-01
The ABL protein-tyrosine kinase regulates intracellular signaling pathways controlling diverse cellular processes and contributes to several forms of cancer. The kinase activity of ABL is repressed by intramolecular interactions involving its regulatory Ncap, SH3 and SH2 domains. Small molecules that allosterically regulate ABL kinase activity through its non-catalytic domains may represent selective probes of ABL function. Here we report a screening assay for chemical modulators of ABL kinase activity that target the regulatory interaction of the SH3 domain with the SH2-kinase linker. This fluorescence polarization (FP) assay is based on a purified recombinant ABL protein consisting of the N-cap, SH3 and SH2 domains plus the SH2-kinase linker (N32L protein) and a short fluorescein-labeled probe peptide that binds to the SH3 domain. In assay development experiments, we found that the probe peptide binds to the recombinant ABL N32L protein in vitro, producing a robust FP signal that can be competed with an excess of unlabeled peptide. The FP signal is not observed with control N32L proteins bearing either an inactivating mutation in the SH3 domain or enhanced SH3:linker interaction. A pilot screen of 1200 FDA-approved drugs identified four compounds that specifically reduced the FP signal by at least three standard deviations from the untreated controls. Secondary assays showed that one of these hit compounds, the antithrombotic drug dipyridamole, enhances ABL kinase activity in vitro to a greater extent than the previously described ABL agonist, DPH. Docking studies predicted that this compound binds to a pocket formed at the interface of the SH3 domain and the linker, suggesting that it activates ABL by disrupting this regulatory interaction. These results show that screening assays based on the non-catalytic domains of ABL can identify allosteric small molecule regulators of kinase function, providing a new approach to selective drug discovery for this important kinase system.
Fu, Zhi-guang; Wang, Li; Cui, Hong-yong; Peng, Jian-long; Wang, Shi-jie; Geng, Jie-jie; Liu, Ji-de; Feng, Fei; Song, Fei; Li, Ling; Zhu, Ping; Jiang, Jian-li; Chen, Zhi-nan
2016-02-23
CD147, a type I transmembrane glycoprotein, is highly expressed in various cancer types and plays important roles in tumor progression, especially by promoting the motility and invasion of hepatocellular carcinoma (HCC) cells. These crucial roles make CD147 an attractive target for therapeutic intervention in HCC, but no small-molecule inhibitors of CD147 have been developed to date. To identify a candidate inhibitor, we used a pharmacophore model derived from the structure of CD147 to virtually screen over 300,000 compounds. The 100 highest-ranked compounds were subjected to biological assays, and the most potent one, dubbed AC-73 (ID number: AN-465/42834501), was studied further. We confirmed that AC-73 targeted CD147 and further demonstrated it can specifically disrupt CD147 dimerization. Moreover, molecular docking and mutagenesis experiments showed that the possible binding sites of AC-73 on CD147 included Glu64 and Glu73 in the N-terminal IgC2 domain, which two residues are located in the dimer interface of CD147. Functional assays revealed that AC-73 inhibited the motility and invasion of typical HCC cells, but not HCC cells that lacked the CD147 gene, demonstrating on-target action. Further, AC-73 reduced HCC metastasis by suppressing matrix metalloproteinase (MMP)-2 via down-regulation of the CD147/ERK1/2/signal transducer and activator of transcription 3 (STAT3) signaling pathway. Finally, AC-73 attenuated progression in an orthotopic nude mouse model of liver metastasis, suggesting that AC-73 or its derivatives have potential for use in HCC intervention. We conclude that the novel small-molecule inhibitor AC-73 inhibits HCC mobility and invasion, probably by disrupting CD147 dimerization and thereby mainly suppressing the CD147/ERK1/2/STAT3/MMP-2 pathways, which are crucial for cancer progression.
Design, Synthesis, and Evaluation of Dihydrobenzo[cd]indole-6-sulfonamide as TNF-alpha Inhibitors
NASA Astrophysics Data System (ADS)
Deng, Xiaobing; Zhang, Xiaoling; Tang, Bo; Liu, Hongbo; Shen, Qi; Liu, Ying; Lai, Luhua
2018-04-01
Tumor necrosis factor-α (TNF-α) plays a pivotal role in inflammatory response. Dysregulation of TNF can lead to a variety of disastrous pathological effects, including auto-inflammatory diseases. Antibodies that directly targeting TNF-α have been proven effective in suppressing symptoms of these disorders. Compared to protein drugs, small molecule drugs are normally orally available and less expensive. Till now, peptide and small molecule TNF-α inhibitors are still in the early stage of development, and much more efforts should be made. In a previously study, we reported a TNF-α inhibitor, EJMC-1 with modest activity. Here, we optimized this compound by shape screen and rational design. In the first round, we screened commercial compound library for EJMC-1 analogs based on shape similarity. Out of the 68 compounds tested, 20 compounds showed better binding affinity than EJMC-1 in the SPR competitive binding assay. These 20 compounds were tested in cell assay and the most potent compound was 2-oxo-N-phenyl-1,2-dihydrobenzo[cd]indole-6-sulfonamide (S10) with an IC50 of 14 M, which was 2.2-fold stronger than EJMC-1. Based on the docking analysis of S10 and EJMC-1 binding with TNF-α, in the second round, we designed S10 analogues, purchased 7 of them and synthesized 7 new compounds. The best compound, 4e showed an IC50 value of 3 M in cell assay, which was 14-fold stronger than EJMC-1. 4e was among the most potent TNF-α organic compound inhibitors reported so far. Our study demonstrated that 2-oxo-N-phenyl-1,2-dihydrobenzo[cd]indole-6-sulfonamide analogues could be developed as potent TNF-α inhibitors. 4e can be further optimized for its activity and properties. Our study provides insights into designing small molecule inhibitors directly targeting TNF-α and for protein-protein interaction inhibitor design.
Deng, Nanjie; Flynn, William F; Xia, Junchao; Vijayan, R S K; Zhang, Baofeng; He, Peng; Mentes, Ahmet; Gallicchio, Emilio; Levy, Ronald M
2016-09-01
We describe binding free energy calculations in the D3R Grand Challenge 2015 for blind prediction of the binding affinities of 180 ligands to Hsp90. The present D3R challenge was built around experimental datasets involving Heat shock protein (Hsp) 90, an ATP-dependent molecular chaperone which is an important anticancer drug target. The Hsp90 ATP binding site is known to be a challenging target for accurate calculations of ligand binding affinities because of the ligand-dependent conformational changes in the binding site, the presence of ordered waters and the broad chemical diversity of ligands that can bind at this site. Our primary focus here is to distinguish binders from nonbinders. Large scale absolute binding free energy calculations that cover over 3000 protein-ligand complexes were performed using the BEDAM method starting from docked structures generated by Glide docking. Although the ligand dataset in this study resembles an intermediate to late stage lead optimization project while the BEDAM method is mainly developed for early stage virtual screening of hit molecules, the BEDAM binding free energy scoring has resulted in a moderate enrichment of ligand screening against this challenging drug target. Results show that, using a statistical mechanics based free energy method like BEDAM starting from docked poses offers better enrichment than classical docking scoring functions and rescoring methods like Prime MM-GBSA for the Hsp90 data set in this blind challenge. Importantly, among the three methods tested here, only the mean value of the BEDAM binding free energy scores is able to separate the large group of binders from the small group of nonbinders with a gap of 2.4 kcal/mol. None of the three methods that we have tested provided accurate ranking of the affinities of the 147 active compounds. We discuss the possible sources of errors in the binding free energy calculations. The study suggests that BEDAM can be used strategically to discriminate binders from nonbinders in virtual screening and to more accurately predict the ligand binding modes prior to the more computationally expensive FEP calculations of binding affinity.
Szelag, Malgorzata; Czerwoniec, Anna; Wesoly, Joanna; Bluyssen, Hans A. R.
2015-01-01
Signal transducers and activators of transcription (STATs) facilitate action of cytokines, growth factors and pathogens. STAT activation is mediated by a highly conserved SH2 domain, which interacts with phosphotyrosine motifs for specific STAT-receptor contacts and STAT dimerization. The active dimers induce gene transcription in the nucleus by binding to a specific DNA-response element in the promoter of target genes. Abnormal activation of STAT signaling pathways is implicated in many human diseases, like cancer, inflammation and auto-immunity. Searches for STAT-targeting compounds, exploring the phosphotyrosine (pTyr)-SH2 interaction site, yielded many small molecules for STAT3 but sparsely for other STATs. However, many of these inhibitors seem not STAT3-specific, thereby questioning the present modeling and selection strategies of SH2 domain-based STAT inhibitors. We generated new 3D structure models for all human (h)STATs and developed a comparative in silico docking strategy to obtain further insight into STAT-SH2 cross-binding specificity of a selection of previously identified STAT3 inhibitors. Indeed, by primarily targeting the highly conserved pTyr-SH2 binding pocket the majority of these compounds exhibited similar binding affinity and tendency scores for all STATs. By comparative screening of a natural product library we provided initial proof for the possibility to identify STAT1 as well as STAT3-specific inhibitors, introducing the ‘STAT-comparative binding affinity value’ and ‘ligand binding pose variation’ as selection criteria. In silico screening of a multi-million clean leads (CL) compound library for binding of all STATs, likewise identified potential specific inhibitors for STAT1 and STAT3 after docking validation. Based on comparative virtual screening and docking validation, we developed a novel STAT inhibitor screening tool that allows identification of specific STAT1 and STAT3 inhibitory compounds. This could increase our understanding of the functional role of these STATs in different diseases and benefit the clinical need for more drugable STAT inhibitors with high specificity, potency and excellent bioavailability. PMID:25710482
NASA Astrophysics Data System (ADS)
Deng, Nanjie; Flynn, William F.; Xia, Junchao; Vijayan, R. S. K.; Zhang, Baofeng; He, Peng; Mentes, Ahmet; Gallicchio, Emilio; Levy, Ronald M.
2016-09-01
We describe binding free energy calculations in the D3R Grand Challenge 2015 for blind prediction of the binding affinities of 180 ligands to Hsp90. The present D3R challenge was built around experimental datasets involving Heat shock protein (Hsp) 90, an ATP-dependent molecular chaperone which is an important anticancer drug target. The Hsp90 ATP binding site is known to be a challenging target for accurate calculations of ligand binding affinities because of the ligand-dependent conformational changes in the binding site, the presence of ordered waters and the broad chemical diversity of ligands that can bind at this site. Our primary focus here is to distinguish binders from nonbinders. Large scale absolute binding free energy calculations that cover over 3000 protein-ligand complexes were performed using the BEDAM method starting from docked structures generated by Glide docking. Although the ligand dataset in this study resembles an intermediate to late stage lead optimization project while the BEDAM method is mainly developed for early stage virtual screening of hit molecules, the BEDAM binding free energy scoring has resulted in a moderate enrichment of ligand screening against this challenging drug target. Results show that, using a statistical mechanics based free energy method like BEDAM starting from docked poses offers better enrichment than classical docking scoring functions and rescoring methods like Prime MM-GBSA for the Hsp90 data set in this blind challenge. Importantly, among the three methods tested here, only the mean value of the BEDAM binding free energy scores is able to separate the large group of binders from the small group of nonbinders with a gap of 2.4 kcal/mol. None of the three methods that we have tested provided accurate ranking of the affinities of the 147 active compounds. We discuss the possible sources of errors in the binding free energy calculations. The study suggests that BEDAM can be used strategically to discriminate binders from nonbinders in virtual screening and to more accurately predict the ligand binding modes prior to the more computationally expensive FEP calculations of binding affinity.
Anti-Tumor Activity of a Novel HS-Mimetic-Vascular Endothelial Growth Factor Binding Small Molecule
Sugahara, Kazuyuki; Thimmaiah, Kuntebommanahalli N.; Bid, Hemant K.; Houghton, Peter J.; Rangappa, Kanchugarakoppal S.
2012-01-01
The angiogenic process is controlled by variety of factors of which the vascular endothelial growth factor (VEGF) pathway plays a major role. A series of heparan sulfate mimetic small molecules targeting VEGF/VEGFR pathway has been synthesized. Among them, compound 8 (2-butyl-5-chloro-3-(4-nitro-benzyl)-3H-imidazole-4-carbaldehyde) was identified as a significant binding molecule for the heparin-binding domain of VEGF, determined by high-throughput-surface plasmon resonance assay. The data predicted strong binding of compound 8 with VEGF which may prevent the binding of VEGF to its receptor. We compared the structure of compound 8 with heparan sulfate (HS), which have in common the functional ionic groups such as sulfate, nitro and carbaldehyde that can be located in similar positions of the disaccharide structure of HS. Molecular docking studies predicted that compound 8 binds at the heparin binding domain of VEGF through strong hydrogen bonding with Lys-30 and Gln-20 amino acid residues, and consistent with the prediction, compound 8 inhibited binding of VEGF to immobilized heparin. In vitro studies showed that compound 8 inhibits the VEGF-induced proliferation migration and tube formation of mouse vascular endothelial cells, and finally the invasion of a murine osteosarcoma cell line (LM8G7) which secrets high levels of VEGF. In vivo, these effects produce significant decrease of tumor burden in an experimental model of liver metastasis. Collectively, these data indicate that compound 8 may prevent tumor growth through a direct effect on tumor cell proliferation and by inhibition of endothelial cell migration and angiogenesis mediated by VEGF. In conclusion, compound 8 may normalize the tumor vasculature and microenvironment in tumors probably by inhibiting the binding of VEGF to its receptor. PMID:22916091
Kinetics and docking studies of a COX-2 inhibitor isolated from Terminalia bellerica fruits.
Reddy, Tamatam Chandramohan; Aparoy, Polamarasetty; Babu, Neela Kishore; Kumar, Kotha Anil; Kalangi, Suresh Kumar; Reddanna, Pallu
2010-10-01
Triphala is an Ayurvedic herbal formulation consisting of equal parts of three myrobalans: Terminalia chebula, Terminalia bellerica and Emblica officinalis. We recently reported that chebulagic acid (CA) isolated from Terminalia chebula is a potent COX-2/5-LOX dual inhibitor. In this study, compounds isolated from Terminalia bellerica were tested for inhibition against COX and 5-LOX. One of the fractionated compounds showed potent inhibition against COX enzymes with no inhibition against 5-LOX. It was identified as gallic acid (GA) by LC-MS, NMR and IR analyses. We report here the inhibitory effects of GA, with an IC(50) value of 74 nM against COX-2 and 1500 nM for COX-1, showing ≈20 fold preference towards COX-2. Further docking studies revealed that GA binds in the active site of COX-2 at the non-steroidal anti-inflammatory drug (NSAID) binding site. The carboxylate moiety of GA interacts with Arg120 and Glu524. Based on substrate dependent kinetics, GA was found to be a competitive inhibitor of both COX-1 and COX-2, with more affinity towards COX-2. Taken together, our studies indicate that GA is a selective inhibitor of COX-2. Being a small natural product with selective and reversible inhibition of COX-2, GA would form a lead molecule for developing potent anti-inflammatory drug candidates.
Performance of machine-learning scoring functions in structure-based virtual screening.
Wójcikowski, Maciej; Ballester, Pedro J; Siedlecki, Pawel
2017-04-25
Classical scoring functions have reached a plateau in their performance in virtual screening and binding affinity prediction. Recently, machine-learning scoring functions trained on protein-ligand complexes have shown great promise in small tailored studies. They have also raised controversy, specifically concerning model overfitting and applicability to novel targets. Here we provide a new ready-to-use scoring function (RF-Score-VS) trained on 15 426 active and 893 897 inactive molecules docked to a set of 102 targets. We use the full DUD-E data sets along with three docking tools, five classical and three machine-learning scoring functions for model building and performance assessment. Our results show RF-Score-VS can substantially improve virtual screening performance: RF-Score-VS top 1% provides 55.6% hit rate, whereas that of Vina only 16.2% (for smaller percent the difference is even more encouraging: RF-Score-VS top 0.1% achieves 88.6% hit rate for 27.5% using Vina). In addition, RF-Score-VS provides much better prediction of measured binding affinity than Vina (Pearson correlation of 0.56 and -0.18, respectively). Lastly, we test RF-Score-VS on an independent test set from the DEKOIS benchmark and observed comparable results. We provide full data sets to facilitate further research in this area (http://github.com/oddt/rfscorevs) as well as ready-to-use RF-Score-VS (http://github.com/oddt/rfscorevs_binary).
NASA Astrophysics Data System (ADS)
Sathish, M.; Meenakshi, G.; Xavier, S.; Sebastian, S.; Periandy, S.; Ahmad, NoorAisyah; Jamalis, Joazaizulfazli; Rosli, MohdMustaqim; Fun, Hoong-Kun
2018-07-01
The 3-(5-Bromo-2-thienyl)-1-(4-fluorophenyl)-3-acetyl-2-pyrazoline (2) (BTFA) was synthesized from condensation of thiophenechalcone (1) and hydrazine hydrate. The compound was characterized by FT-IR, 1H and 13C NMR. Crystal structure of this compound was determined using X-ray diffraction technique. The data of the geometry is compared with the optimized structure of the compound obtained using B3LYP functional with 6-311++G (d,p) basis set. The fundamental modes of vibrations are assigned using VEDA software with the PED assignments, and compared with data obtained from theoretical methods. The deviations are widely discussed and analyzed. The intermolecular interaction of the crystal structure was analyzed using Hirshfeld and fingerprint analysis. The chemical shift of the NMR for 13C and 1H are observed and computational data are computed using Gauge independent atomic orbital (GIAO) using B3LYP/6-311++G (d,p). The electronic and optical properties like absorption of wavelengths, excitation energy, dipole moment and frontier molecular orbital energies are computed with TD-SCF method using the above theoretical method. The antiviral nature of the molecule is also analyzed and the compound is docked in non-small cell lung cancer and human collapsin response mediator protein-1study exhibits its activity.
Khajeh, Masoumeh Ashrafi; Dehghan, Gholamreza; Dastmalchi, Siavoush; Shaghaghi, Masoomeh; Iranshahi, Mehrdad
2018-03-05
DNA is a major target for a number of anticancer substances. Interaction studies between small molecules and DNA are essential for rational drug designing to influence main biological processes and also introducing new probes for the assay of DNA. Tschimgine (TMG) is a monoterpene derivative with anticancer properties. In the present study we tried to elucidate the interaction of TMG with calf thymus DNA (CT-DNA) using different spectroscopic methods. UV-visible absorption spectrophotometry, fluorescence and circular dichroism (CD) spectroscopies as well as molecular docking study revealed formation of complex between TMG and CT-DNA. Binding constant (K b ) between TMG and DNA was 2.27×10 4 M -1 , that is comparable to groove binding agents. The fluorescence spectroscopic data revealed that the quenching mechanism of fluorescence of TMG by CT-DNA is static quenching. Thermodynamic parameters (ΔH<0 and ΔS<0) at different temperatures indicated that van der Waals forces and hydrogen bonds were involved in the binding process of TMG with CT-DNA. Competitive binding assay with methylene blue (MB) and Hoechst 33258 using fluorescence spectroscopy displayed that TMG possibly binds to the minor groove of CT-DNA. These observations were further confirmed by CD spectral analysis, viscosity measurements and molecular docking. Copyright © 2017 Elsevier B.V. All rights reserved.
Bacalhau, Patrícia; San Juan, Amor A; Marques, Carolina S; Peixoto, Daniela; Goth, Albertino; Guarda, Cátia; Silva, Mara; Arantes, Sílvia; Caldeira, A Teresa; Martins, Rosário; Burke, Anthony J
2016-08-01
A library of isoquinolinone and azepanone derivatives were screened for both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activity. The strategy adopted included (a) in vitro biological assays, against eel AChE (EeAChE) and equine serum BuChE (EqBuChE) in order to determine the compounds IC50 and their dose-response activity, consolidated by (b) molecular docking studies to evaluate the docking poses and interatomic interactions in the case of the hit compounds, validated by STD-NMR studies. Compound (1f) was identified as one of these hits with an IC50 of 89.5μM for EeAChE and 153.8μM for EqBuChE, (2a) was identified as a second hit with an IC50 of 108.4μM (EeAChE) and 277.8μM (EqBuChE). In order to gain insights into the binding mode and principle active site interactions of these molecules, (R)-(1f) along with 3 other analogues (also as the R-enantiomer) were docked into both RhAChE and hBuChE models. Galantamine was used as the benchmark. The docking study was validated by performing an STD-NMR study of (1f) with EeAChE using galantamine as the benchmark. Copyright © 2016 Elsevier Inc. All rights reserved.
Mukherjee, Sudipto; Rizzo, Robert C.
2014-01-01
Scoring functions are a critically important component of computer-aided screening methods for the identification of lead compounds during early stages of drug discovery. Here, we present a new multi-grid implementation of the footprint similarity (FPS) scoring function that was recently developed in our laboratory which has proven useful for identification of compounds which bind to a protein on a per-residue basis in a way that resembles a known reference. The grid-based FPS method is much faster than its Cartesian-space counterpart which makes it computationally tractable for on-the-fly docking, virtual screening, or de novo design. In this work, we establish that: (i) relatively few grids can be used to accurately approximate Cartesian space footprint similarity, (ii) the method yields improved success over the standard DOCK energy function for pose identification across a large test set of experimental co-crystal structures, for crossdocking, and for database enrichment, and (iii) grid-based FPS scoring can be used to tailor construction of new molecules to have specific properties, as demonstrated in a series of test cases targeting the viral protein HIVgp41. The method will be made available in the program DOCK6. PMID:23436713
Ai, Yong; Wang, Shao-Teng; Sun, Ping-Hua; Song, Fa-Jun
2011-01-01
Aurora kinases have emerged as attractive targets for the design of anticancer drugs. 3D-QSAR (comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA)) and Surflex-docking studies were performed on a series of pyrrole-indoline-2-ones as Aurora A inhibitors. The CoMFA and CoMSIA models using 25 inhibitors in the training set gave r2cv values of 0.726 and 0.566, and r2 values of 0.972 and 0.984, respectively. The adapted alignment method with the suitable parameters resulted in reliable models. The contour maps produced by the CoMFA and CoMSIA models were employed to rationalize the key structural requirements responsible for the activity. Surflex-docking studies revealed that the sulfo group, secondary amine group on indolin-2-one, and carbonyl of 6,7-dihydro-1H-indol-4(5H)-one groups were significant for binding to the receptor, and some essential features were also identified. Based on the 3D-QSAR and docking results, a set of new molecules with high predicted activities were designed. PMID:21673910
Ai, Yong; Wang, Shao-Teng; Sun, Ping-Hua; Song, Fa-Jun
2011-01-01
Aurora kinases have emerged as attractive targets for the design of anticancer drugs. 3D-QSAR (comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA)) and Surflex-docking studies were performed on a series of pyrrole-indoline-2-ones as Aurora A inhibitors. The CoMFA and CoMSIA models using 25 inhibitors in the training set gave r(2) (cv) values of 0.726 and 0.566, and r(2) values of 0.972 and 0.984, respectively. The adapted alignment method with the suitable parameters resulted in reliable models. The contour maps produced by the CoMFA and CoMSIA models were employed to rationalize the key structural requirements responsible for the activity. Surflex-docking studies revealed that the sulfo group, secondary amine group on indolin-2-one, and carbonyl of 6,7-dihydro-1H-indol-4(5H)-one groups were significant for binding to the receptor, and some essential features were also identified. Based on the 3D-QSAR and docking results, a set of new molecules with high predicted activities were designed.
Multiple roles for the actin cytoskeleton during regulated exocytosis
Porat-Shliom, Natalie; Milberg, Oleg; Masedunskas, Andrius; Weigert, Roberto
2014-01-01
Regulated exocytosis is the main mechanism utilized by specialized secretory cells to deliver molecules to the cell surface by virtue of membranous containers (i.e. secretory vesicles). The process involves a series of highly coordinated and sequential steps, which include the biogenesis of the vesicles, their delivery to the cell periphery, their fusion with the plasma membrane and the release of their content into the extracellular space. Each of these steps is regulated by the actin cytoskeleton. In this review, we summarize the current knowledge regarding the involvement of actin and its associated molecules during each of the exocytic steps in vertebrates, and suggest that the overall role of the actin cytoskeleton during regulated exocytosis is linked to the architecture and the physiology of the secretory cells under examination. Specifically, in neurons, neuroendocrine, endocrine, and hematopoietic cells, which contain small secretory vesicles that undergo rapid exocytosis (on the order of milliseconds), the actin cytoskeleton plays a role in pre-fusion events, where it acts primarily as a functional barrier and facilitates docking. In exocrine and other secretory cells, which contain large secretory vesicles that undergo slow exocytosis (seconds to minutes), the actin cytoskeleton plays a role in post-fusion events, where it regulates the dynamics of the fusion pore, facilitates the integration of the vesicles into the plasma membrane, provides structural support, and promotes the expulsion of large cargo molecules. PMID:22986507
Jarvis, Michael F.
2013-01-01
The study of P2X receptors has long been handicapped by a poverty of small-molecule tools that serve as selective agonists and antagonists. There has been progress, particularly in the past 10 years, as cell-based high-throughput screening methods were applied, together with large chemical libraries. This has delivered some drug-like molecules in several chemical classes that selectively target P2X1, P2X3, or P2X7 receptors. Some of these are, or have been, in clinical trials for rheumatoid arthritis, pain, and cough. Current preclinical research programs are studying P2X receptor involvement in pain, inflammation, osteoporosis, multiple sclerosis, spinal cord injury, and bladder dysfunction. The determination of the atomic structure of P2X receptors in closed and open (ATP-bound) states by X-ray crystallography is now allowing new approaches by molecular modeling. This is supported by a large body of previous work using mutagenesis and functional expression, and is now being supplemented by molecular dynamic simulations and in silico ligand docking. These approaches should lead to P2X receptors soon taking their place alongside other ion channel proteins as therapeutically important drug targets. PMID:23253448
Accounting for receptor flexibility and enhanced sampling methods in computer-aided drug design.
Sinko, William; Lindert, Steffen; McCammon, J Andrew
2013-01-01
Protein flexibility plays a major role in biomolecular recognition. In many cases, it is not obvious how molecular structure will change upon association with other molecules. In proteins, these changes can be major, with large deviations in overall backbone structure, or they can be more subtle as in a side-chain rotation. Either way the algorithms that predict the favorability of biomolecular association require relatively accurate predictions of the bound structure to give an accurate assessment of the energy involved in association. Here, we review a number of techniques that have been proposed to accommodate receptor flexibility in the simulation of small molecules binding to protein receptors. We investigate modifications to standard rigid receptor docking algorithms and also explore enhanced sampling techniques, and the combination of free energy calculations and enhanced sampling techniques. The understanding and allowance for receptor flexibility are helping to make computer simulations of ligand protein binding more accurate. These developments may help improve the efficiency of drug discovery and development. Efficiency will be essential as we begin to see personalized medicine tailored to individual patients, which means specific drugs are needed for each patient's genetic makeup. © 2012 John Wiley & Sons A/S.
Binding-Site Assessment by Virtual Fragment Screening
Huang, Niu; Jacobson, Matthew P.
2010-01-01
The accurate prediction of protein druggability (propensity to bind high-affinity drug-like small molecules) would greatly benefit the fields of chemical genomics and drug discovery. We have developed a novel approach to quantitatively assess protein druggability by computationally screening a fragment-like compound library. In analogy to NMR-based fragment screening, we dock ∼11000 fragments against a given binding site and compute a computational hit rate based on the fraction of molecules that exceed an empirically chosen score cutoff. We perform a large-scale evaluation of the approach on four datasets, totaling 152 binding sites. We demonstrate that computed hit rates correlate with hit rates measured experimentally in a previously published NMR-based screening method. Secondly, we show that the in silico fragment screening method can be used to distinguish known druggable and non-druggable targets, including both enzymes and protein-protein interaction sites. Finally, we explore the sensitivity of the results to different receptor conformations, including flexible protein-protein interaction sites. Besides its original aim to assess druggability of different protein targets, this method could be used to identifying druggable conformations of flexible binding site for lead discovery, and suggesting strategies for growing or joining initial fragment hits to obtain more potent inhibitors. PMID:20404926
2017-01-01
Three series of biarylpyrazole imidazole and triazoles are described, which vary in the linker between the biaryl pyrazole and imidazole/triazole group. The imidazole and triazole series with the short −CH2– linker displayed promising antimycobacterial activity, with the imidazole–CH2– series (7) showing low MIC values (6.25–25 μg/mL), which was also influenced by lipophilicity. Extending the linker to −C(O)NH(CH2)2– resulted in a loss of antimycobacterial activity. The binding affinity of the compounds with CYP121A1 was determined by UV–visible optical titrations with KD values of 2.63, 35.6, and 290 μM, respectively, for the tightest binding compounds 7e, 8b, and 13d from their respective series. Both binding affinity assays and docking studies of the CYP121A1 inhibitors suggest type II indirect binding through interstitial water molecules, with key binding residues Thr77, Val78, Val82, Val83, Met86, Ser237, Gln385, and Arg386, comparable with the binding interactions observed with fluconazole and the natural substrate dicyclotyrosine. PMID:29185746
Rajamanikandan, Sundaraj; Jeyakanthan, Jeyaraman; Srinivasan, Pappu
2017-01-01
Quorum sensing (QS) plays an important role in the biofilm formation, production of virulence factors and stress responses in Vibrio harveyi. Therefore, interrupting QS is a possible approach to modulate bacterial behavior. In the present study, three docking protocols, such as Rigid Receptor Docking (RRD), Induced Fit Docking (IFD), and Quantum Polarized Ligand Docking (QPLD) were used to elucidate the binding mode of boronic acid derivatives into the binding pocket of LuxP protein in V. harveyi. Among the three docking protocols, IFD accurately predicted the correct binding mode of the studied inhibitors. Molecular dynamics (MD) simulations of the protein-ligand complexes indicates that the inter-molecular hydrogen bonds formed between the protein and ligand complex remains stable during the simulation time. Pharmacophore and shape-based virtual screening were performed to find selective and potent compounds from ChemBridge database. Five hit compounds were selected and subjected to IFD and MD simulations to validate the binding mode. In addition, enrichment calculation was performed to discriminate and separate active compounds from the inactive compounds. Based on the computational studies, the potent Bicyclo [2.2.1] hept-5-ene-2,3-dicarboxylic acid-2,6-dimethylpyridine 1-oxide (ChemBridge_5144368) was selected for in vitro assays. The compound exhibited dose dependent inhibition in bioluminescence and also inhibits biofilm formation in V. harveyi to the level of 64.25 %. The result from the study suggests that ChemBridge_5144368 could serve as an anti-quorum sensing molecule for V. harveyi.
Biochemical profiling in silico--predicting substrate specificities of large enzyme families.
Tyagi, Sadhna; Pleiss, Juergen
2006-06-25
A general high-throughput method for in silico biochemical profiling of enzyme families has been developed based on covalent docking of potential substrates into the binding sites of target enzymes. The method has been tested by systematically docking transition state--analogous intermediates of 12 substrates into the binding sites of 20 alpha/beta hydrolases from 15 homologous families. To evaluate the effect of side chain orientations to the docking results, 137 crystal structures were included in the analysis. A good substrate must fulfil two criteria: it must bind in a productive geometry with four hydrogen bonds between the substrate and the catalytic histidine and the oxyanion hole, and a high affinity of the enzyme-substrate complex as predicted by a high docking score. The modelling results in general reproduce experimental data on substrate specificity and stereoselectivity: the differences in substrate specificity of cholinesterases toward acetyl- and butyrylcholine, the changes of activity of lipases and esterases upon the size of the acid moieties, activity of lipases and esterases toward tertiary alcohols, and the stereopreference of lipases and esterases toward chiral secondary alcohols. Rigidity of the docking procedure was the major reason for false positive and false negative predictions, as the geometry of the complex and docking score may sensitively depend on the orientation of individual side chains. Therefore, appropriate structures have to be identified. In silico biochemical profiling provides a time efficient and cost saving protocol for virtual screening to identify the potential substrates of the members of large enzyme family from a library of molecules.
AnchorDock for Blind Flexible Docking of Peptides to Proteins.
Slutzki, Michal; Ben-Shimon, Avraham; Niv, Masha Y
2017-01-01
Due to increasing interest in peptides as signaling modulators and drug candidates, several methods for peptide docking to their target proteins are under active development. The "blind" docking problem, where the peptide-binding site on the protein surface is unknown, presents one of the current challenges in the field. AnchorDock protocol was developed by Ben-Shimon and Niv to address this challenge.This protocol narrows the docking search to the most relevant parts of the conformational space. This is achieved by pre-folding the free peptide and by computationally detecting anchoring spots on the surface of the unbound protein. Multiple flexible simulated annealing molecular dynamics (SAMD) simulations are subsequently carried out, starting from pre-folded peptide conformations, constrained to the various precomputed anchoring spots.Here, AnchorDock is demonstrated using two known protein-peptide complexes. A PDZ-peptide complex provides a relatively easy case due to the relatively small size of the protein, and a typical peptide conformation and binding region; a more challenging example is a complex between USP7 N-term and a p53-derived peptide, where the protein is larger, and the peptide conformation and a binding site are generally assumed to be unknown. AnchorDock returned native-like solutions ranked first and third for the PDZ and USP7 complexes, respectively. We describe the procedure step by step and discuss possible modifications where applicable.
NASA Astrophysics Data System (ADS)
Solomonov, Alexey V.; Shipitsyna, Maria K.; Vashurin, Arthur S.; Rumyantsev, Evgeniy V.; Timin, Alexander S.; Ivanov, Sergey P.
2016-11-01
An interaction between 5,10,15,20-tetrakis-(N-methyl-x-pyridyl)porphyrins, x = 2; 4 (TMPyPs) with bovine serum albumin (BSA) and its bilirubin (BR) complex was investigated by UV-Viz and fluorescence spectroscopy under imitated physiological conditions involving molecular docking studies. The parameters of forming intermolecular complexes (binding constants, quenching rate constants, quenching sphere radius etc.) were determined. It was showed that the interaction between proteins and TMPyPs occurs via static quenching of protein fluorescence and has predominantly hydrophobic and electrostatic character. It was revealed that obtained complexes are relatively stable, but in the case of TMPyP4 binding with proteins occurs better than TMPyP2. Nevertheless, both TMPyPs have better binding ability with free protein compared to BRBSA at the same time. The influence of TMPyPs on the conformational changes in protein molecules was studied using synchronous fluorescence spectroscopy. It was found that there is no competition of BR with TMPyPs for binging sites on protein molecule and BR displacement does not occur. Molecular docking calculations have showed that TMPyPs can bind with albumin via tryptophan residue in the hydrophilic binding site of protein molecule but it is not one possible interaction way.
NASA Astrophysics Data System (ADS)
Al-Alshaikh, Monirah A.; Mary Y, Sheena; Panicker, C. Yohannan; Attia, Mohamed I.; El-Emam, Ali A.; Alsenoy, C. Van
2016-04-01
The optimized molecular structure, vibrational wavenumbers, corresponding vibrational assignments of 3-(1H-imidazol-1-yl)-1-phenylpropan-1-one have been investigated theoretically and experimentally. The calculated geometrical parameters of the title compound are in agreement with the reported XRD data. The HOMO and LUMO analysis is used to determine the charge transfer within the molecule. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. Molecular electrostatic potential was performed by the DFT method and from the MEP plot, it is evident that the negative charge covers the carbonyl group and the nitrogen atom N3 of the imidazole ring and the positive region is over the remaining portions of the molecule. The first and second hyperpolarizabilities are calculated and the first hyperpolarizability of the title compound is 16.99 times that of standard NLO material urea and the title compound and its derivatives are good object for further studies in nonlinear optics. The docked ligand title compound forms a stable complex with plasmodium falciparum and gives a binding affinity value of -5.5 kcal/mol and the preliminary results suggest that the compound might exhibit antimalarial activity against plasmodium falciparum.
Li, Wenzhuo; Zhang, Song; Zhao, Yingying; Huang, Shuaiyu; Zhao, Jiangshan
2017-01-01
Ammoniated lignin, prepared through the Mannich reaction of lignin, has more advantages as a slow-release carrier of urea molecules than ammoxidized lignin and lignin. The advantages of the ammoniated lignin include its amine groups added and its high molecular mass kept as similar as that of lignin. Three organic molecules including guaiacyl, 2-hydroxybenzylamine and 5-carbamoylpentanoic acid are monomers respectively in lignin, ammoniated lignin and ammoxidized lignin. We studied the difference between the interactions of lignin, ammoniated lignin and ammoxidized lignin with respect to urea, based on radial distribution functions (RDFs) results from molecular dynamics (MD) simulations. Glass transition temperature (T g ) and solubility parameter (δ) of ammoniated and ammoxidized lignin have been calculated by MD simulations in the constant-temperature and constant-pressure ensemble (NPT). Molecular docking results showed the interaction sites of the urea onto the ammoniated and ammoxidized lignin and three different interaction modes were identified. Root mean square deviation (RMSD) values could indicate the mobilities of the urea molecule affected by the three different interaction modes. A series of MD simulations in the constant-temperature and constant-volume ensemble (NVT) helped us to calculate the diffusivity of urea which was affected by the content of urea in ammoniated and ammoxidized lignin. Copyright © 2016 Elsevier Inc. All rights reserved.
Development of an autonomous video rendezvous and docking system, phase 2
NASA Technical Reports Server (NTRS)
Tietz, J. C.; Richardson, T. E.
1983-01-01
The critical elements of an autonomous video rendezvous and docking system were built and used successfully in a physical laboratory simulation. The laboratory system demonstrated that a small, inexpensive electronic package and a flight computer of modest size can analyze television images to derive guidance information for spacecraft. In the ultimate application, the system would use a docking aid consisting of three flashing lights mounted on a passive target spacecraft. Television imagery of the docking aid would be processed aboard an active chase vehicle to derive relative positions and attitudes of the two spacecraft. The demonstration system used scale models of the target spacecraft with working docking aids. A television camera mounted on a 6 degree of freedom (DOF) simulator provided imagery of the target to simulate observations from the chase vehicle. A hardware video processor extracted statistics from the imagery, from which a computer quickly computed position and attitude. Computer software known as a Kalman filter derived velocity information from position measurements.
Lenselink, Eelke B; Beuming, Thijs; Sherman, Woody; van Vlijmen, Herman W T; IJzerman, Adriaan P
2014-06-23
A major challenge in structure-based virtual screening (VS) involves the treatment of explicit water molecules during docking in order to improve the enrichment of active compounds over decoys. Here we have investigated this in the context of the adenosine A2A receptor, where water molecules have previously been shown to be important for achieving high enrichment rates with docking, and where the positions of some binding site waters are known from a high-resolution crystal structure. The effect of these waters (both their presence and orientations) on VS enrichment was assessed using a carefully curated set of 299 high affinity A2A antagonists and 17,337 decoys. We show that including certain crystal waters greatly improves VS enrichment and that optimization of water hydrogen positions is needed in order to achieve the best results. We also show that waters derived from a molecular dynamics simulation - without any knowledge of crystallographic waters - can improve enrichments to a similar degree as the crystallographic waters, which makes this strategy applicable to structures without experimental knowledge of water positions. Finally, we used decision trees to select an ensemble of structures with different water molecule positions and orientations that outperforms any single structure with water molecules. The approach presented here is validated against independent test sets of A2A receptor antagonists and decoys from the literature. In general, this water optimization strategy could be applied to any target with waters-mediated protein-ligand interactions.
In-silico guided discovery of novel CCR9 antagonists
NASA Astrophysics Data System (ADS)
Zhang, Xin; Cross, Jason B.; Romero, Jan; Heifetz, Alexander; Humphries, Eric; Hall, Katie; Wu, Yuchuan; Stucka, Sabrina; Zhang, Jing; Chandonnet, Haoqun; Lippa, Blaise; Ryan, M. Dominic; Baber, J. Christian
2018-03-01
Antagonism of CCR9 is a promising mechanism for treatment of inflammatory bowel disease, including ulcerative colitis and Crohn's disease. There is limited experimental data on CCR9 and its ligands, complicating efforts to identify new small molecule antagonists. We present here results of a successful virtual screening and rational hit-to-lead campaign that led to the discovery and initial optimization of novel CCR9 antagonists. This work uses a novel data fusion strategy to integrate the output of multiple computational tools, such as 2D similarity search, shape similarity, pharmacophore searching, and molecular docking, as well as the identification and incorporation of privileged chemokine fragments. The application of various ranking strategies, which combined consensus and parallel selection methods to achieve a balance of enrichment and novelty, resulted in 198 virtual screening hits in total, with an overall hit rate of 18%. Several hits were developed into early leads through targeted synthesis and purchase of analogs.
Venkatesan, Santhosh K.; Dubey, Vikash Kumar
2012-01-01
Structure-based virtual screening of NCI Diversity set II compounds was performed to indentify novel inhibitor scaffolds of trypanothione reductase (TR) from Leishmania infantum. The top 50 ranked hits were clustered using the AuPoSOM tool. Majority of the top-ranked compounds were Tricyclic. Clustering of hits yielded four major clusters each comprising varying number of subclusters differing in their mode of binding and orientation in the active site. Moreover, for the first time, we report selected alkaloids and dibenzothiazepines as inhibitors of Leishmania infantum TR. The mode of binding observed among the clusters also potentiates the probable in vitro inhibition kinetics and aids in defining key interaction which might contribute to the inhibition of enzymatic reduction of T[S] 2. The method provides scope for automation and integration into the virtual screening process employing docking softwares, for clustering the small molecule inhibitors based upon protein-ligand interactions. PMID:22550471
New peptide deformylase inhibitors design, synthesis and pharmacokinetic assessment.
Lv, Fengping; Chen, Chen; Tang, Yang; Wei, Jianhai; Zhu, Tong; Hu, Wenhao
2016-08-01
The docking approach for the screening of designed small molecule ligands, led to the identification of a critical arginine residue in peptide deformylase for spiro cyclopropyl PDF inhibitor's extra hydrophobic binding, providing us a useful tool for searching more efficient PDF inhibitors to fight for horrifying antibiotics resistance. Further synthetic modification was undertaken to optimize the potency of amide compounds. To lower metabolic susceptibility and in turn reduce unwanted metabolic toxicity that was observed clinically, while retaining desired antibacterial activity, the use of azoles as amide bioisosteres had also been investigated. After the completion of chemical synthesis, all the compounds were evaluated through in vitro antibacterial activity assay, some of which were further subject to in vivo rat pharmacokinetic assessment. Those findings in this letter showed that spiro cyclopropyl proline N-formyl hydroxylamines, and especially the bioisosteric azoles, can represent a promising class of PDF inhibitors. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chien, Ellen Y.T.; Liu, Wei; Zhao, Qiang
Dopamine modulates movement, cognition, and emotion through activation of dopamine G protein-coupled receptors in the brain. The crystal structure of the human dopamine D3 receptor (D3R) in complex with the small molecule D2R/D3R-specific antagonist eticlopride reveals important features of the ligand binding pocket and extracellular loops. On the intracellular side of the receptor, a locked conformation of the ionic lock and two distinctly different conformations of intracellular loop 2 are observed. Docking of R-22, a D3R-selective antagonist, reveals an extracellular extension of the eticlopride binding site that comprises a second binding pocket for the aryl amide of R-22, which differsmore » between the highly homologous D2R and D3R. This difference provides direction to the design of D3R-selective agents for treating drug abuse and other neuropsychiatric indications.« less
Preliminary GN&C Design for the On-Orbit Autonomous Assembly of Nanosatellite Demonstration Mission
NASA Technical Reports Server (NTRS)
Pei, Jing; Walsh, Matt; Roithmayr, Carlos; Karlgaard, Chris; Peck, Mason; Murchison, Luke
2017-01-01
Small spacecraft autonomous rendezvous and docking (ARD) is an essential technology for future space structure assembly missions. The On-orbit Autonomous Assembly of Nanosatellites (OAAN) team at NASA Langley Research Center (LaRC) intends to demonstrate the technology to autonomously dock two nanosatellites to form an integrated system. The team has developed a novel magnetic capture and latching mechanism that allows for docking of two CubeSats without precise sensors and actuators. The proposed magnetic docking hardware not only provides the means to latch the CubeSats, but it also significantly increases the likelihood of successful docking in the presence of relative attitude and position errors. The simplicity of the design allows it to be implemented on many CubeSat rendezvous missions. Prior to demonstrating the docking subsystem capabilities on orbit, the GN&C subsystem should have a robust design such that it is capable of bringing the CubeSats from an arbitrary initial separation distance of as many as a few thousand kilometers down to a few meters. The main OAAN Mission can be separated into the following phases: 1) Launch, checkout, and drift, 2) Far-Field Rendezvous or Drift Recovery, 3) Proximity Operations, 4) Docking. This paper discusses the preliminary GN&C design and simulation results for each phase of the mission.
Novel pyrrolopyrimidines as Mps1/TTK kinase inhibitors for breast cancer.
Sugimoto, Yasuro; Sawant, Dwitiya B; Fisk, Harold A; Mao, Liguang; Li, Chenglong; Chettiar, Somsundaram; Li, Pui-Kai; Darby, Michael V; Brueggemeier, Robert W
2017-04-01
New targeted therapy approaches for certain subtypes of breast cancer, such as triple-negative breast cancers and other aggressive phenotypes, are desired. High levels of the mitotic checkpoint kinase Mps1/TTK have correlated with high histologic grade in breast cancer, suggesting a potential new therapeutic target for aggressive breast cancers (BC). Novel small molecules targeting Mps1 were designed by computer assisted docking analyses, and several candidate compounds were synthesized. These compounds were evaluated in anti-proliferative assays of a panel of 15 breast cancer cell lines and further examined for their ability to inhibit a variety of Mps1-dependent biological functions. The results indicate that the lead compounds have strong anti-proliferative potential through Mps1/TTK inhibition in both basal and luminal BC cell lines, exhibiting IC 50 values ranging from 0.05 to 1.0μM. In addition, the lead compounds 1 and 13 inhibit Mps1 kinase enzymatic activity with IC 50 values from 0.356μM to 0.809μM, and inhibited Mps1-associated cellular functions such as centrosome duplication and the spindle checkpoint in triple negative breast cancer cells. The most promising analog, compound 13, significantly decreased tumor growth in nude mice containing Cal-51 triple negative breast cancer cell xenografts. Using drug discovery technologies, computational modeling, medicinal chemistry, cell culture and in vivo assays, novel small molecule Mps1/TTK inhibitors have been identified as potential targeted therapies for breast cancers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Andrographolide derivatives inhibit guanine nucleotide exchange and abrogate oncogenic Ras function
Hocker, Harrison J.; Cho, Kwang-Jin; Chen, Chung-Ying K.; Rambahal, Nandini; Sagineedu, Sreenivasa Rao; Shaari, Khozirah; Stanslas, Johnson; Hancock, John F.; Gorfe, Alemayehu A.
2013-01-01
Aberrant signaling by oncogenic mutant rat sarcoma (Ras) proteins occurs in ∼15% of all human tumors, yet direct inhibition of Ras by small molecules has remained elusive. Recently, several small-molecule ligands have been discovered that directly bind Ras and inhibit its function by interfering with exchange factor binding. However, it is unclear whether, or how, these ligands could lead to drugs that act against constitutively active oncogenic mutant Ras. Using a dynamics-based pocket identification scheme, ensemble docking, and innovative cell-based assays, here we show that andrographolide (AGP)—a bicyclic diterpenoid lactone isolated from Andrographis paniculata—and its benzylidene derivatives bind to transient pockets on Kirsten-Ras (K-Ras) and inhibit GDP–GTP exchange. As expected for inhibitors of exchange factor binding, AGP derivatives reduced GTP loading of wild-type K-Ras in response to acute EGF stimulation with a concomitant reduction in MAPK activation. Remarkably, however, prolonged treatment with AGP derivatives also reduced GTP loading of, and signal transmission by, oncogenic mutant K-RasG12V. In sum, the combined analysis of our computational and cell biology results show that AGP derivatives directly bind Ras, block GDP–GTP exchange, and inhibit both wild-type and oncogenic K-Ras signaling. Importantly, our findings not only show that nucleotide exchange factors are required for oncogenic Ras signaling but also demonstrate that inhibiting nucleotide exchange is a valid approach to abrogating the function of oncogenic mutant Ras. PMID:23737504
Lungu, Claudiu N; Diudea, Mircea V
2018-01-01
Lipid II, a peptidoglycan, is a precursor in bacterial cell synthesis. It has both hydrophilic and lipophilic properties. The molecule translocates a bacterial membrane to deliver and incorporate "building blocks" from disaccharide-pentapeptide into the peptidoglican wall. Lipid II is a valid antibiotic target. A receptor binding pocket may be occupied by a ligand in various plausible conformations, among which only few ones are energetically related to a biological activity in the physiological efficiency domain. This paper reports the mapping of the conformational space of Lipid II in its interaction with Teixobactin and other Lipid II ligands. In order to study computationally the complex between Lipid II and ligands, a docking study was first carried on. Docking site was retrieved form literature. After docking, 5 ligand conformations and further 5 complexes (denoted 00 to 04) for each molecule were taken into account. For each structure, conformational studies were performed. Statistical analysis, conformational analysis and molecular dynamics based clustering were used to predict the potency of these compounds. A score for potency prediction was developed. Appling lipid II classification according to Lipid II conformational energy, a conformation of Teixobactin proved to be energetically favorable, followed by Oritravicin, Dalbavycin, Telvanicin, Teicoplamin and Vancomycin, respectively. Scoring of molecules according to cluster band and PCA produced the same result. Molecules classified according to standard deviations showed Dalbavycin as the most favorable conformation, followed by Teicoplamin, Telvanicin, Teixobactin, Oritravicin and Vancomycin, respectively. Total score showing best energetic efficiency of complex formation shows Teixobactin to have the best conformation (a score of 15 points) followed by Dalbavycin (14 points), Oritravicin (12v points), Telvanicin (10 points), Teicoplamin (9 points), Vancomycin (3 points). Statistical analysis of conformations can be used to predict the efficiency of ligand - target interaction and consecutively to find insight regarding ligand potency and postulate about favorable conformation of ligand and binding site. In this study it was shown that Teixobactin is more efficient in binding with Lipid II compared to Vancomycin, results confirmed by experimental data reported in literature. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Khan, Asifa; Sharma, Pooja; Khan, Feroz; Ajayakumar, P V; Shanker, Karuna; Samad, Abdul
2016-07-01
Andrographolide and neoandrographolide are major bioactive molecules of Andrographis paniculata, a well-known medicinal plant. These molecules exhibited varying degrees of anti-inflammatory and anticancer activities in-vitro and in-vivo. Role of begomovirus protein C2/TrAP in biosynthesis of andrographolide was identified through molecular modeling, docking and predicted results were substantiated by in vitro studies. Homology molecular modeling and molecular docking were performed to study the binding conformations and different bonding behaviors, in order to reveal the possible mechanism of action behind higher accumulation of andrographolide. It was concluded that C2/TrAP inhibit the activation of SNF1-Related Protein Kinase-1 (SnRK1) in terpenoid pathway and removes the negative regulation of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) by SnRK1, leading to higher accumulation of andrographolide and neoandrographolide in begomovirus infected plants. The binding site residues of SnRK1 docked with C2/TrAP were found to be associated with ATP binding site, substrate binding site and activation loop. Predicted results were also validated by HPTLC. This study provides important insights into understanding the role of viral protein in altering the regulation of biosynthesis of andrographolide and could be used in future research to develop biomimetic methods for increasing the production of such phytometabolites having anti-cancerous and anti-inflammatory properties. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
On-Orbit Autonomous Assembly from Nanosatellites
NASA Technical Reports Server (NTRS)
Murchison, Luke S.; Martinez, Andres; Petro, Andrew
2015-01-01
The On-Orbit Autonomous Assembly from Nanosatellites (OAAN) project will demonstrate autonomous control algorithms for rendezvous and docking maneuvers; low-power reconfigurable magnetic docking technology; and compact, lightweight and inexpensive precision relative navigation using carrier-phase differential (CD) GPS with a three-degree of freedom ground demonstration. CDGPS is a specific relative position determination method that measures the phase of the GPS carrier wave to yield relative position data accurate to.4 inch (1 centimeter). CDGPS is a technology commonly found in the surveying industry. The development and demonstration of these technologies will fill a current gap in the availability of proven autonomous rendezvous and docking systems for small satellites.
Cortactin promotes exosome secretion by controlling branched actin dynamics
Sinha, Seema; Hoshino, Daisuke; Hong, Nan Hyung; Seiki, Motoharu; Tyska, Matthew J.
2016-01-01
Exosomes are extracellular vesicles that influence cellular behavior and enhance cancer aggressiveness by carrying bioactive molecules. The mechanisms that regulate exosome secretion are poorly understood. Here, we show that the actin cytoskeletal regulatory protein cortactin promotes exosome secretion. Knockdown or overexpression of cortactin in cancer cells leads to a respective decrease or increase in exosome secretion, without altering exosome cargo content. Live-cell imaging revealed that cortactin controls both trafficking and plasma membrane docking of multivesicular late endosomes (MVEs). Regulation of exosome secretion by cortactin requires binding to the branched actin nucleating Arp2/3 complex and to actin filaments. Furthermore, cortactin, Rab27a, and coronin 1b coordinately control stability of cortical actin MVE docking sites and exosome secretion. Functionally, the addition of purified exosomes to cortactin-knockdown cells rescued defects of those cells in serum-independent growth and invasion. These data suggest a model in which cortactin promotes exosome secretion by stabilizing cortical actin-rich MVE docking sites. PMID:27402952
Cortactin promotes exosome secretion by controlling branched actin dynamics.
Sinha, Seema; Hoshino, Daisuke; Hong, Nan Hyung; Kirkbride, Kellye C; Grega-Larson, Nathan E; Seiki, Motoharu; Tyska, Matthew J; Weaver, Alissa M
2016-07-18
Exosomes are extracellular vesicles that influence cellular behavior and enhance cancer aggressiveness by carrying bioactive molecules. The mechanisms that regulate exosome secretion are poorly understood. Here, we show that the actin cytoskeletal regulatory protein cortactin promotes exosome secretion. Knockdown or overexpression of cortactin in cancer cells leads to a respective decrease or increase in exosome secretion, without altering exosome cargo content. Live-cell imaging revealed that cortactin controls both trafficking and plasma membrane docking of multivesicular late endosomes (MVEs). Regulation of exosome secretion by cortactin requires binding to the branched actin nucleating Arp2/3 complex and to actin filaments. Furthermore, cortactin, Rab27a, and coronin 1b coordinately control stability of cortical actin MVE docking sites and exosome secretion. Functionally, the addition of purified exosomes to cortactin-knockdown cells rescued defects of those cells in serum-independent growth and invasion. These data suggest a model in which cortactin promotes exosome secretion by stabilizing cortical actin-rich MVE docking sites. © 2016 Sinha et al.
NASA Astrophysics Data System (ADS)
Wang, Zhenya; Chang, Yiqun; Han, Yushui; Liu, Kangjia; Hou, Jinsong; Dai, Chengli; Zhai, Yuanhao; Guo, Jialiang; Sun, Pinghua; Lin, Jing; Chen, Weimin
2016-11-01
Mutation of isocitrate dehydrogenase 1 (IDH1) which is frequently found in certain cancers such as glioma, sarcoma and acute myeloid leukemia, has been proven to be a potent drug target for cancer therapy. In silico methodologies such as 3D-QSAR and molecular docking were performed to explore compounds with better mutant isocitrate dehydrogenase 1 (MIDH1) inhibitory activity using a series of 40 newly reported 1-hydroxypyridin-2-one compounds as MIDH1 inhibitors. The satisfactory CoMFA and CoMSIA models obtained after internal and external cross-validation gave q2 values of 0.691 and 0.535, r2 values of 0.984 and 0.936, respectively. 3D contour maps generated from CoMFA and CoMSIA along with the docking results provided information about the structural requirements for better MIDH1 inhibitory activity. Based on the structure-activity relationship, 17 new potent molecules with better predicted activity than the most active compound in the literature have been designed.
NASA Astrophysics Data System (ADS)
Kumar, Santosh; Kumar, Gaurav; Tripathi, Amit Kumar; Seena, Sahadevan; Koh, Joonseok
2018-04-01
Hybrid derivatives are a fascinating and challenging process in the area of drug discovery. Naphthalimide derivatives with modified norfloxacin moiety were designed and synthesized. Docking simulations were done to assess the interactions of the derivatives with the E. coli type II topoisomerases Gyrase B and ParE ATP-binding pocket by taking novobiocin as a standard molecule. Results suggested that the norfloxacin substituted naphthalimide derivatives indicate red-shift emission maxima when compared to 4-bromo 1,8-naphthalic anhydride. The molecular docking simulation study revealed that the derivatives have similar interaction but a different mode of binding with the gyrase B ATP-binding pocket as compare to novobiocin. However, they bound to ParE ATP-binding pocket similarly to novobiocin. The antibacterial property was confirmed with disc diffusion method. Our study indicated that the norfloxacin substituted naphthalimide novel derivatives have pronounced fluorescence, anti-topoisomerase activity, and antibacterial properties; therefore, they could be developed into new drug candidates.
An In-Silico Investigation of Phytochemicals as Antiviral Agents Against Dengue Fever
Powers, Chelsea N.; Setzer, William N.
2016-01-01
Abstract: A virtual screening analysis of our library of phytochemical structures with dengue virus protein targets has been carried out using a molecular docking approach. A total of 2194 plant-derived secondary metabolites have been docked. This molecule set comprised of 290 alkaloids (68 indole alkaloids, 153 isoquinoline alkaloids, 5 quinoline alkaloids, 13 piperidine alkaloids, 14 steroidal alkaloids, and 37 miscellaneous alkaloids), 678 terpenoids (47 monoterpenoids, 169 sesquiterpenoids, 265 diterpenoids, 81 steroids, and 96 triterpenoids), 20 aurones, 81 chalcones, 349 flavonoids, 120 isoflavonoids, 74 lignans, 58 stilbenoids, 169 miscellaneous polyphenolic compounds, 100 coumarins, 28 xanthones, 67 quinones, and 160 miscellaneous phytochemicals. Dengue virus protein targets examined included dengue virus protease (NS2B-NS3pro), helicase (NS3 helicase), methyltransferase (MTase), RNA-dependent RNA polymerase (RdRp), and the dengue virus envelope protein. Polyphenolic compounds, flavonoids, chalcones, and other phenolics were the most numerous of the strongly docking ligands for dengue virus protein targets. PMID:27151482
NASA Astrophysics Data System (ADS)
Ashok, Dongamanti; Gundu, Srinivas; Aamate, Vikas Kumar; Devulapally, Mohan Gandhi; Bathini, Raju; Manga, Vijjulatha
2018-04-01
The present study demonstrated the synthesis of new series of coumarin-1,2,3-triazole hybrids under microwave irradiation method. Several dimers of coumarin based 1,2,3-triazole derivatives were synthesized and their antimycobacterial and antimicrobial activities were investigated. The antimycobacterial activity screening results revealed that compounds 6i and 6j were the most active against Mycobacterium tuberculosis H37Rv strain. The active compounds were further evaluated for cytotoxicity with HEK cell lines and exhibited less % of inhibition. The same synthetic hybrids were evaluated for their antimicrobial activity against various bacterial strains and fungal strains and compounds 6e, 6h, 6i and 6j were found to be the most promising antimicrobial potent molecules. Furthermore, the active compounds against Mycobacterium tuberculosis were evaluated for their molecular docking studies against pantothenate synthetase (PS) enzyme of MTB and the docking results are in well agreement with the antitubercular evaluation results.
Zhang, Tian; Ma, Zhongyun; Wang, Linjun; Xi, Jinyang; Shuai, Zhigang
2014-01-01
Double-docking self-assembled monolayers (DDSAMs), namely self-assembled monolayers (SAMs) formed by molecules possessing two docking groups, provide great flexibility to tune the work function of metal electrodes and the tunnelling barrier between metal electrodes and the SAMs, and thus offer promising applications in both organic and molecular electronics. Based on the dispersion-corrected density functional theory (DFT) in comparison with conventional DFT, we carry out a systematic investigation on the dual configurations of a series of DDSAMs on an Au(111) surface. Through analysing the interface electronic structures, we obtain the relationship between single molecular properties and the SAM-induced work-function modification as well as the level alignment between the metal Fermi level and molecular frontier states. The two possible conformations of one type of DDSAM on a metal surface reveal a strong difference in the work-function modification and the electron/hole tunnelling barriers. Fermi-level pinning is found to be a key factor to understand the interface electronic properties. PMID:24615153
Flattop regulates basal body docking and positioning in mono- and multiciliated cells
Gegg, Moritz; Böttcher, Anika; Burtscher, Ingo; Hasenoeder, Stefan; Van Campenhout, Claude; Aichler, Michaela; Walch, Axel; Grant, Seth G N; Lickert, Heiko
2014-01-01
Planar cell polarity (PCP) regulates basal body (BB) docking and positioning during cilia formation, but the underlying mechanisms remain elusive. In this study, we investigate the uncharacterized gene Flattop (Fltp) that is transcriptionally activated during PCP acquisition in ciliated tissues. Fltp knock-out mice show BB docking and ciliogenesis defects in multiciliated lung cells. Furthermore, Fltp is necessary for kinocilium positioning in monociliated inner ear hair cells. In these cells, the core PCP molecule Dishevelled 2, the BB/spindle positioning protein Dlg3, and Fltp localize directly adjacent to the apical plasma membrane, physically interact and surround the BB at the interface of the microtubule and actin cytoskeleton. Dlg3 and Fltp knock-outs suggest that both cooperatively translate PCP cues for BB positioning in the inner ear. Taken together, the identification of novel BB/spindle positioning components as potential mediators of PCP signaling might have broader implications for other cell types, ciliary disease, and asymmetric cell division. DOI: http://dx.doi.org/10.7554/eLife.03842.001 PMID:25296022
3D-QSAR and molecular docking studies on HIV protease inhibitors
NASA Astrophysics Data System (ADS)
Tong, Jianbo; Wu, Yingji; Bai, Min; Zhan, Pei
2017-02-01
In order to well understand the chemical-biological interactions governing their activities toward HIV protease activity, QSAR models of 34 cyclic-urea derivatives with inhibitory HIV were developed. The quantitative structure activity relationship (QSAR) model was built by using comparative molecular similarity indices analysis (CoMSIA) technique. And the best CoMSIA model has rcv2, rncv2 values of 0.586 and 0.931 for cross-validated and non-cross-validated. The predictive ability of CoMSIA model was further validated by a test set of 7 compounds, giving rpred2 value of 0.973. Docking studies were used to find the actual conformations of chemicals in active site of HIV protease, as well as the binding mode pattern to the binding site in protease enzyme. The information provided by 3D-QSAR model and molecular docking may lead to a better understanding of the structural requirements of 34 cyclic-urea derivatives and help to design potential anti-HIV protease molecules.
Virtual screening studies to design potent CDK2-cyclin A inhibitors.
Vadivelan, S; Sinha, Barij Nayan; Irudayam, Sheeba Jem; Jagarlapudi, Sarma A R P
2007-01-01
The cell division cycle is controlled by cyclin-dependent kinases (CDK), which consist of a catalytic subunit (CDK1-CDK8) and a regulatory subunit (cyclin A-H). Pharmacophore analysis indicates that the best inhibitor model consists of (1) two hydrogen bond acceptors, (2) one hydrogen bond donor, and (3) one hydrophobic feature. The HypoRefine pharmacophore model gave an enrichment factor of 1.31 and goodness of fit score of 0.76. Docking studies were carried out to explore the structural requirements for the CDK2-cyclin A inhibitors and to construct highly predictive models for the design of new inhibitors. Docking studies demonstrate the important role of hydrogen bond and hydrophobic interactions in determining the inhibitor-receptor binding affinity. The validated pharmacophore model is further used for retrieving the most active hits/lead from a virtual library of molecules. Subsequently, docking studies were performed on the hits, and novel series of potent leads were suggested based on the interaction energy between CDK2-cyclin A and the putative inhibitors.
Islam, Md Ataul; Pillay, Tahir S
2017-08-01
In this study, we searched for potential DNA GyrB inhibitors using pharmacophore-based virtual screening followed by molecular docking and molecular dynamics simulation approaches. For this purpose, a set of 248 DNA GyrB inhibitors was collected from the literature and a well-validated pharmacophore model was generated. The best pharmacophore model explained that two each of hydrogen bond acceptors and hydrophobicity regions were critical for inhibition of DNA GyrB. Good statistical results of the pharmacophore model indicated that the model was robust in nature. Virtual screening of molecular databases revealed three molecules as potential antimycobacterial agents. The final screened promising compounds were evaluated in molecular docking and molecular dynamics simulation studies. In the molecular dynamics studies, RMSD and RMSF values undoubtedly explained that the screened compounds formed stable complexes with DNA GyrB. Therefore, it can be concluded that the compounds identified may have potential for the treatment of TB. © 2017 John Wiley & Sons A/S.
NASA Astrophysics Data System (ADS)
Zaheer-ul-Haq; Khan, Waqasuddin
2011-01-01
Class II major histocompatibility complex (MHC II) molecules as expressed by antigen-presenting cells are heterodimeric cell-surface glycoprotein receptors that are fundamental in initiating and propagating an immune response by presenting tumor-associated antigenic peptides to CD4+/TH cells. The loading efficiency of such peptides can be improved by small organic compounds (MHC Loading Enhancers—MLEs), that convert the non-receptive peptide conformation of MHC II to a peptide-receptive conformation. In a reversible reaction, these compounds open up the binding site of MHC II molecules by specific interactions with a yet undefined pocket. Here, we performed molecular docking and molecular dynamics simulation studies of adamantyl compounds on the predicted cavity around the P1 pocket of 2 allelic variants of HLA-DRs. The purpose was to investigate the suitability of adamantyl compounds as MLEs at the dimorphic β86 position. Docking studies revealed that besides numerous molecular interactions formed by the adamantyl compounds, Asnβ82, Tyrβ83, and Thrβ90 are the crucial amino acid residues that are characterized as the "sensors" of peptide loading. Molecular dynamics simulation studies exposed the dynamical structural changes that HLA-DRs adopted as a response to binding of 3-(1-adamantyl)-5-hydrazidocarbonyl-1H-pyrazole (AdCaPy). The conformations of AdCaPy complexed with the Glyβ86 HLA-DR allelic variant are well correlated with the stabilized form of peptide-loaded HLA-DRs, further confirming the role of AdCaPy as a MLE. Hydrogen bonding interaction analysis clearly demonstrated that after making suitable contacts with AdCaPy, HLA-DR changes its local conformation. However, AdCaPy complexed with HLA-DR having Valβ86 at the dimorphic position did not accommodate AdCaPy as MLE due to steric hindrance caused by the valine.
Identification of Conserved Water Sites in Protein Structures for Drug Design.
Jukič, Marko; Konc, Janez; Gobec, Stanislav; Janežič, Dušanka
2017-12-26
Identification of conserved waters in protein structures is a challenging task with applications in molecular docking and protein stability prediction. As an alternative to computationally demanding simulations of proteins in water, experimental cocrystallized waters in the Protein Data Bank (PDB) in combination with a local structure alignment algorithm can be used for reliable prediction of conserved water sites. We developed the ProBiS H2O approach based on the previously developed ProBiS algorithm, which enables identification of conserved water sites in proteins using experimental protein structures from the PDB or a set of custom protein structures available to the user. With a protein structure, a binding site, or an individual water molecule as a query, ProBiS H2O collects similar proteins from the PDB and performs local or binding site-specific superimpositions of the query structure with similar proteins using the ProBiS algorithm. It collects the experimental water molecules from the similar proteins and transposes them to the query protein. Transposed waters are clustered by their mutual proximity, which enables identification of discrete sites in the query protein with high water conservation. ProBiS H2O is a robust and fast new approach that uses existing experimental structural data to identify conserved water sites on the interfaces of protein complexes, for example protein-small molecule interfaces, and elsewhere on the protein structures. It has been successfully validated in several reported proteins in which conserved water molecules were found to play an important role in ligand binding with applications in drug design.
Yan, Su; Elmes, Matthew W; Tong, Simon; Hu, Kongzhen; Awwa, Monaf; Teng, Gary Y H; Jing, Yunrong; Freitag, Matthew; Gan, Qianwen; Clement, Timothy; Wei, Longfei; Sweeney, Joseph M; Joseph, Olivia M; Che, Joyce; Carbonetti, Gregory S; Wang, Liqun; Bogdan, Diane M; Falcone, Jerome; Smietalo, Norbert; Zhou, Yuchen; Ralph, Brian; Hsu, Hao-Chi; Li, Huilin; Rizzo, Robert C; Deutsch, Dale G; Kaczocha, Martin; Ojima, Iwao
2018-05-24
Fatty acid binding proteins (FABPs) serve as critical modulators of endocannabinoid signaling by facilitating the intracellular transport of anandamide and whose inhibition potentiates anandamide signaling. Our previous work has identified a novel small-molecule FABP inhibitor, α-truxillic acid 1-naphthyl monoester (SB-FI-26, 3) that has shown efficacy as an antinociceptive and anti-inflammatory agent in rodent models. In the present work, we have performed an extensive SAR study on a series of 3-analogs as novel FABP inhibitors based on computer-aided inhibitor drug design and docking analysis, chemical synthesis and biological evaluations. The prediction of binding affinity of these analogs to target FABP3, 5 and 7 isoforms was performed using the AutoDock 4.2 program, using the recently determined co-crystal structures of 3 with FABP5 and FABP7. The compounds with high docking scores were synthesized and evaluated for their activities using a fluorescence displacement assay against FABP3, 5 and 7. During lead optimization, compound 3l emerged as a promising compound with the Ki value of 0.21 μM for FABP 5, 4-fold more potent than 3 (Ki, 0.81 μM). Nine compounds exhibit similar or better binding affinity than 3, including compounds 4b (Ki, 0.55 μM) and 4e (Ki, 0.68 μM). Twelve compounds are selective for FABP5 and 7 with >10 μM Ki values for FABP3, indicating a safe profile to avoid potential cardiotoxicity concerns. Compounds 4f, 4j and 4k showed excellent selectivity for FABP5 and would serve as other new lead compounds. Compound 3a possessed high affinity and high selectivity for FABP7. Compounds with moderate to high affinity for FABP5 displayed antinociceptive effects in mice while compounds with low FABP5 affinity lacked in vivo efficacy. In vivo pain model studies in mice revealed that exceeding hydrophobicity significantly affects the efficacy. Thus, among the compounds with high affinity to FABP5 in vitro, the compounds with moderate hydrophobicity were identified as promising new lead compounds for the next round of optimization, including compounds 4b and 4j. For select cases, computational analysis of the observed SAR, especially the selectivity of new inhibitors to particular FABP isoforms, by comparing docking poses, interaction map, and docking energy scores has provided useful insights. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Shape Complementarity of Protein-Protein Complexes at Multiple Resolutions
Zhang, Qing; Sanner, Michel; Olson, Arthur J.
2010-01-01
Biological complexes typically exhibit intermolecular interfaces of high shape complementarity. Many computational docking approaches use this surface complementarity as a guide in the search for predicting the structures of protein-protein complexes. Proteins often undergo conformational changes in order to create a highly complementary interface when associating. These conformational changes are a major cause of failure for automated docking procedures when predicting binding modes between proteins using their unbound conformations. Low resolution surfaces in which high frequency geometric details are omitted have been used to address this problem. These smoothed, or blurred, surfaces are expected to minimize the differences between free and bound structures, especially those that are due to side chain conformations or small backbone deviations. In spite of the fact that this approach has been used in many docking protocols, there has yet to be a systematic study of the effects of such surface smoothing on the shape complementarity of the resulting interfaces. Here we investigate this question by computing shape complementarity of a set of 66 protein-protein complexes represented by multi-resolution blurred surfaces. Complexed and unbound structures are available for these protein-protein complexes. They are a subset of complexes from a non-redundant docking benchmark selected for rigidity (i.e. the proteins undergo limited conformational changes between their bound and unbound states). In this work we construct the surfaces by isocontouring a density map obtained by accumulating the densities of Gaussian functions placed at all atom centers of the molecule. The smoothness or resolution is specified by a Gaussian fall-off coefficient, termed “blobbyness”. Shape complementarity is quantified using a histogram of the shortest distances between two proteins' surface mesh vertices for both the crystallographic complexes and the complexes built using the protein structures in their unbound conformation. The histograms calculated for the bound complex structures demonstrate that medium resolution smoothing (blobbyness=−0.9) can reproduce about 88% of the shape complementarity of atomic resolution surfaces. Complexes formed from the free component structures show a partial loss of shape complementarity (more overlaps and gaps) with the atomic resolution surfaces. For surfaces smoothed to low resolution (blobbyness=−0.3), we find more consistency of shape complementarity between the complexed and free cases. To further reduce bad contacts without significantly impacting the good contacts we introduce another blurred surface, in which the Gaussian densities of flexible atoms are reduced. From these results we discuss the use of shape complementarity in protein-protein docking. PMID:18837463
NASA Astrophysics Data System (ADS)
Raja, M.; Raj Muhamed, R.; Muthu, S.; Suresh, M.; Muthu, K.
2017-02-01
The title compound, (E)-1-(3-bromobenzylidene)semicarbazide (3BSC) was synthesized and characterized by FT-IR, FT-Raman, UV, 1HNMR and 13CNMR spectral analysis. The optimized molecular geometry, the vibrational wavenumbers, the infrared intensities and the Raman scattering activities were calculated by using density functional theory (DFT) B3LYP method with 6-311++G(d,p) basis set. The calculated HOMO and LUMO energies show that charge transfer within the molecule. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital analysis (NBO). The hyperpolarizability calculation reveals the present material has a reasonably good propensity for nonlinear optical activity. Molecular electrostatic potential (MEP) and Fukui functions were also performed. The thermodynamic properties (heat capacity, entropy, and enthalpy) of the 3BSC at different temperatures have been calculated. The biological applications of 3BSC have been screened for its antimicrobial activity and found to exhibit antifungal and antibacterial effects. In addition, the Molecular docking was also performed for the different receptors.
NASA Astrophysics Data System (ADS)
Govindhan, M.; Viswanathan, V.; Karthikeyan, S.; Subramanian, K.; Velmurugan, D.
2017-08-01
Compound 1-(4-(6-fluorobenzo[d] isoxazol-3-yl) piperidin-1-yl)-2-(4-(hydroxymethyl)-1H-1, 2,3-triazol-1-yl) ethanone was synthesized in good yield by using click chemistry approach with 2-azido-1-(4-(6-flurobenzo[d]isooxazol-3-yl)piperidin-1-yl)ethanone as a starting material. The synthesized compound was characterized using IR, NMR and MS studies. Thermal stability of the compound was analyzed by using TGA and DSC technique. The single crystal XRD analysis was taken part, to confirm the structure of the compound. The intercontacts in the crystal structure are analyzed using Hirshfeld surfaces computational method. Cytotoxicity of the synthesized compound was evaluated and the results were reported. The binding analysis carried out between the newly synthesized molecule with human serum albumin using fluorescence spectroscopy technique to understand the pharmacokinetics nature of the compound for further biological application. The molecular docking studies were evaluated for the compound to elucidate insights of new molecules in carrier protein.
Collignon, Barbara; Schulz, Roland; Smith, Jeremy C; Baudry, Jerome
2011-04-30
A message passing interface (MPI)-based implementation (Autodock4.lga.MPI) of the grid-based docking program Autodock4 has been developed to allow simultaneous and independent docking of multiple compounds on up to thousands of central processing units (CPUs) using the Lamarkian genetic algorithm. The MPI version reads a single binary file containing precalculated grids that represent the protein-ligand interactions, i.e., van der Waals, electrostatic, and desolvation potentials, and needs only two input parameter files for the entire docking run. In comparison, the serial version of Autodock4 reads ASCII grid files and requires one parameter file per compound. The modifications performed result in significantly reduced input/output activity compared with the serial version. Autodock4.lga.MPI scales up to 8192 CPUs with a maximal overhead of 16.3%, of which two thirds is due to input/output operations and one third originates from MPI operations. The optimal docking strategy, which minimizes docking CPU time without lowering the quality of the database enrichments, comprises the docking of ligands preordered from the most to the least flexible and the assignment of the number of energy evaluations as a function of the number of rotatable bounds. In 24 h, on 8192 high-performance computing CPUs, the present MPI version would allow docking to a rigid protein of about 300K small flexible compounds or 11 million rigid compounds.
Identification of Novel Fusion Inhibitors of Influenza A Virus by Chemical Genetics
Lai, Kin Kui; Cheung, Nam Nam; Yang, Fang; Dai, Jun; Liu, Li; Chen, Zhiwei; Sze, Kong Hung; Chen, Honglin
2015-01-01
ABSTRACT A previous screening of more than 50,000 compounds led to the identification of a pool of bioactive small molecules with inhibitory effect on the influenza A virus. One of these compounds, now widely known as nucleozin, is a small molecule that targets the influenza A virus nucleoprotein. Here we identify and characterize two structurally different novel fusion inhibitors of the influenza A virus group 1 hemagglutinin (HA), FA-583 and FA-617, with low nanomolar activities. Escape mutants that are highly resistant to each of these compounds were generated, and both were found to carry mutations localized in close proximity to the B-loop of the hemagglutinin 2 protein, which plays a crucial role in the virion-host cell fusion process. Recombinant virus, generated through reverse genetics, confirmed the resistance phenotype. In addition, the proposed binding pockets predicted by molecular docking studies are in accordance with the resistance-bearing mutation sites. We show through mechanistic studies that FA-583 and FA-617 act as fusion inhibitors by prohibiting the low-pH-induced conformational change of hemagglutinin. Our study has offered concrete biological and mechanistic explorations for the strategic development of novel fusion inhibitors of influenza A viruses. IMPORTANCE Here we report two structurally distinctive novel fusion inhibitors of influenza A virus that act by interfering with the structural change of HA at acidic pH, a process necessary for successful entry of the virus. Mutational and molecular docking studies have identified their binding pockets situated in close proximity to the B-loop region of hemagglutinin 2. The reduced sensitivity of FA-583- or FA-617-associated mutants to another compound suggests a close proximity and even partial overlap of their binding sites on hemagglutinin. Amino acid sequence alignments and crystal structure analyses of group 1 and group 2 hemagglutinins have shed light on the possible binding mode of these two compounds. This report offers new lead compounds for the design of fusion inhibitors for influenza A viruses and further shows that analysis by forward chemical genetics is a highly effective approach for the identification of novel compounds that can perturb the infectivity of viruses and to probe new druggable targets or druggable domains in various viruses. PMID:26676787
Simhadri VSDNA, Nagesh; Muniappan, Muthuchamy; Kannan, Iyanar; Viswanathan, Subramanyam
2017-01-01
Background and Purpose: Soleshine is a polyherbal preparation established in the market for the treatment of cracks and tinea pedis, which is applied externally. This preparation is composed of the extracts of indigenous plants, namely Azadirachta indica, Lawsonia alba, and Shorea robusta, mixed with castor oil and sesame oil. In the present study, an attempt was made to identify the constituents of soleshine and identify some potential drug-like molecules that can inhibit important drug targets of the dermatophytes using molecular docking method. Materials and Methods: The active ingredients of polyherbal preparation were identified with the aid of gas chromatography-mass spectrometry (GC-MS). Two major compounds were selected based on the retention time and percentage of the area covered in the graph for docking study. The three-dimensional structures of 1,3-β-glucan synthase, chitinase, fungalysin, and lumazine synthase were derived by homology modelling using MODELLER software, version 9.0. The docking of the ligand and receptor was performed using iGEMDOCK and AutodockVina software. The physicochemical properties, lipophilicity, hydrophilicity, and drug likeness properties were obtained from the Swiss ADME online server tool. Results: The GC-MS analysis demonstrated the presence of different phytochemical compounds in the extract of polyherbal preparation. A total of 20 compounds were identified, among which 3,7-dimethyl-2,6-octadienaland 2-pentene-2-methyl were the major compounds. Regarding 3,7-dimethyl-2,6-octadienal, the covered area and height were 40.15% and 46.17%, respectively. These values were 31.90% and 23.33% for 2-pentene-2-methyl, respectively. These two major compounds had an excellent binding affinity and obeyed the rules for the drug likeness and lead likeness. Conclusion: As the findings indicated, the two major ingredients present in soleshine showed a good antifungal activity as they inhibited the enzymes responsible for the survival of fungal organism; furthermore, they were appropriate for the lead molecules. PMID:29707673
Simhadri Vsdna, Nagesh; Muniappan, Muthuchamy; Kannan, Iyanar; Viswanathan, Subramanyam
2017-12-01
Soleshine is a polyherbal preparation established in the market for the treatment of cracks and tinea pedis, which is applied externally. This preparation is composed of the extracts of indigenous plants, namely Azadirachta indica, Lawsonia alba, and Shorea robusta , mixed with castor oil and sesame oil. In the present study, an attempt was made to identify the constituents of soleshine and identify some potential drug-like molecules that can inhibit important drug targets of the dermatophytes using molecular docking method. The active ingredients of polyherbal preparation were identified with the aid of gas chromatography-mass spectrometry (GC-MS). Two major compounds were selected based on the retention time and percentage of the area covered in the graph for docking study. The three-dimensional structures of 1,3-β-glucan synthase, chitinase, fungalysin, and lumazine synthase were derived by homology modelling using MODELLER software, version 9.0. The docking of the ligand and receptor was performed using iGEMDOCK and AutodockVina software. The physicochemical properties, lipophilicity, hydrophilicity, and drug likeness properties were obtained from the Swiss ADME online server tool. The GC-MS analysis demonstrated the presence of different phytochemical compounds in the extract of polyherbal preparation. A total of 20 compounds were identified, among which 3,7-dimethyl-2,6-octadienaland 2-pentene-2-methyl were the major compounds. Regarding 3,7-dimethyl-2,6-octadienal, the covered area and height were 40.15% and 46.17%, respectively. These values were 31.90% and 23.33% for 2-pentene-2-methyl, respectively. These two major compounds had an excellent binding affinity and obeyed the rules for the drug likeness and lead likeness. As the findings indicated, the two major ingredients present in soleshine showed a good antifungal activity as they inhibited the enzymes responsible for the survival of fungal organism; furthermore, they were appropriate for the lead molecules.
Mizutani, Miho Yamada; Itai, Akiko
2004-09-23
A method of easily finding ligands, with a variety of core structures, for a given target macromolecule would greatly contribute to the rapid identification of novel lead compounds for drug development. We have developed an efficient method for discovering ligand candidates from a number of flexible compounds included in databases, when the three-dimensional (3D) structure of the drug target is available. The method, named ADAM&EVE, makes use of our automated docking method ADAM, which has already been reported. Like ADAM, ADAM&EVE takes account of the flexibility of each molecule in databases, by exploring the conformational space fully and continuously. Database screening has been made much faster than with ADAM through the tuning of parameters, so that computational screening of several hundred thousand compounds is possible in a practical time. Promising ligand candidates can be selected according to various criteria based on the docking results and characteristics of compounds. Furthermore, we have developed a new tool, EVE-MAKE, for automatically preparing the additional compound data necessary for flexible docking calculation, prior to 3D database screening. Among several successful cases of lead discovery by ADAM&EVE, the finding of novel acetylcholinesterase (AChE) inhibitors is presented here. We performed a virtual screening of about 160 000 commercially available compounds against the X-ray crystallographic structure of AChE. Among 114 compounds that could be purchased and assayed, 35 molecules with various core structures showed inhibitory activities with IC(50) values less than 100 microM. Thirteen compounds had IC(50) values between 0.5 and 10 microM, and almost all their core structures are very different from those of known inhibitors. The results demonstrate the effectiveness and validity of the ADAM&EVE approach and provide a starting point for development of novel drugs to treat Alzheimer's disease.
RHOG-DOCK1-RAC1 Signaling Axis Is Perturbed in DHEA-Induced Polycystic Ovary in Rat Model.
Ubba, Vaibhave; Soni, Upendra Kumar; Chadchan, Sangappa; Maurya, Vineet Kumar; Kumar, Vijay; Maurya, Ruchika; Chaturvedi, Himanshu; Singh, Rajender; Dwivedi, Anila; Jha, Rajesh Kumar
2017-05-01
The function of RHOG, a RAC1 activator, was explored in the ovary during ovarian follicular development and pathological conditions. With the help of immunoblotting and immunolocalization, we determined the expression and localization of RHOG in normal (estrous cycle) and polycystic ovaries using Sprague Dawley (SD) rat model. Employing polymerase chain reaction and flow cytometry, we analyzed the transcript and expression levels of downstream molecules of RHOG, DOCK1, and RAC1 in the polycystic ovarian syndrome (PCOS) ovary along with normal antral follicular theca and granulosa cells after dehydroepiandrosterone (DHEA) supplementation. The effect of RHOG knockdown on DOCK1, VAV, and RAC1 expression was evaluated in the human ovarian cells (SKOV3), theca cells, and granulosa cells from SD rats with the help of flow cytometry. Oocyte at secondary follicles along with stromal cells showed optimal expression of RHOG. Immunoblotting of RHOG revealed its maximum expression at diestrus and proestrus, which was downregulated at estrus stage. Mild immunostaining of RHOG was also present in the theca and granulosa cells of the secondary and antral follicles. Polycystic ovary exhibited weak immunostaining for RHOG and that was corroborated by immunoblotting-based investigations. RHOG effectors DOCK1 and ELMO1 were found reduced in the ovary in PCOS condition/DHEA. RHOG silencing reduced the expression of DOCK1 and RAC1 in the theca and granulosa cells from SD rat antral follicles and that was mirrored in the human ovarian cells. Collectively, RHOG can mediate signaling through downstream effectors DOCK1 and RAC1 during ovarian follicular development (theca and granulosa cells and oocyte), but DHEA downregulated them in the PCOS ovary.
Godet, Angélique N; Guergnon, Julien; Maire, Virginie; Croset, Amélie; Garcia, Alphonse
2010-04-01
Previous studies established that PP1 is a target for Bcl-2 proteins and an important regulator of apoptosis. The two distinct functional PP1 consensus docking motifs, R/Kx((0,1))V/IxF and FxxR/KxR/K, involved in PP1 binding and cell death were previously characterized in the BH1 and BH3 domains of some Bcl-2 proteins. In this study, we demonstrate that DPT-AIF(1), a peptide containing the AIF(562-571) sequence located in a c-terminal domain of AIF, is a new PP1 interacting and cell penetrating molecule. We also showed that DPT-AIF(1) provoked apoptosis in several human cell lines. Furthermore, DPT-APAF(1) a bi-partite cell penetrating peptide containing APAF-1(122-131), a non penetrating sequence from APAF-1 protein, linked to our previously described DPT-sh1 peptide shuttle, is also a PP1-interacting death molecule. Both AIF(562-571) and APAF-1(122-131) sequences contain a common R/Kx((0,1))V/IxFxxR/KxR/K motif, shared by several proteins involved in control of cell survival pathways. This motif combines the two distinct PP1c consensus docking motifs initially identified in some Bcl-2 proteins. Interestingly DPT-AIF(2) and DPT-APAF(2) that carry a F to A mutation within this combinatorial motif, no longer exhibited any PP1c binding or apoptotic effects. Moreover the F to A mutation in DPT-AIF(2) also suppressed cell penetration. These results indicate that the combinatorial PP1c docking motif R/Kx((0,1))V/IxFxxR/KxR/K, deduced from AIF(562-571) and APAF-1(122-131) sequences, is a new PP1c-dependent Apoptotic Signature. This motif is also a new tool for drug design that could be used to characterize potential anti-tumour molecules.
Berwanger, Anja; Eyrisch, Susanne; Schuster, Inge; Helms, Volkhard; Bernhardt, Rita
2010-02-01
Modulations of protein-protein interactions are a key step in regulating protein function, especially in networks. Modulators of these interactions are supposed to be candidates for the development of novel drugs. Here, we describe the role of the small, polycationic and highly abundant natural polyamines that could efficiently bind to charged spots at protein interfaces as modulators of such protein-protein interactions. Using the mitochondrial cytochrome P45011A1 (CYP11A1) electron transfer system as a model, we have analyzed the capability of putrescine, spermidine, and spermine at physiologically relevant concentrations to affect the protein-protein interactions between adrenodoxin reductase (AdR), adrenodoxin (Adx), and CYP11A1. The actions of polyamines on the individual components, on their association/dissociation, on electron transfer, and on substrate conversion were examined. These studies revealed modulating effects of polyamines on distinct interactions and on the entire system in a complex way. Modulation via changed protein-protein interactions appeared plausible from docking experiments that suggested favourable high-affinity binding sites of polyamines (spermine>spermidine>putrescine) at the AdR-Adx interface. Our findings imply for the first time that small endogenous compounds are capable of interfering with distinct components of transient protein complexes and might control protein functions by modulating electrostatic protein-protein interactions.
Docking and molecular dynamics simulation of quinone compounds with trypanocidal activity.
de Molfetta, Fábio Alberto; de Freitas, Renato Ferreira; da Silva, Albérico Borges Ferreira; Montanari, Carlos Alberto
2009-10-01
In this work, two different docking programs were used, AutoDock and FlexX, which use different types of scoring functions and searching methods. The docking poses of all quinone compounds studied stayed in the same region in the trypanothione reductase. This region is a hydrophobic pocket near to Phe396, Pro398 and Leu399 amino acid residues. The compounds studied displays a higher affinity in trypanothione reductase (TR) than glutathione reductase (GR), since only two out of 28 quinone compounds presented more favorable docking energy in the site of human enzyme. The interaction of quinone compounds with the TR enzyme is in agreement with other studies, which showed different binding sites from the ones formed by cysteines 52 and 58. To verify the results obtained by docking, we carried out a molecular dynamics simulation with the compounds that presented the highest and lowest docking energies. The results showed that the root mean square deviation (RMSD) between the initial and final pose were very small. In addition, the hydrogen bond pattern was conserved along the simulation. In the parasite enzyme, the amino acid residues Leu399, Met400 and Lys402 are replaced in the human enzyme by Met406, Tyr407 and Ala409, respectively. In view of the fact that Leu399 is an amino acid of the Z site, this difference could be explored to design selective inhibitors of TR.
Combined QSAR and molecule docking studies on predicting P-glycoprotein inhibitors
NASA Astrophysics Data System (ADS)
Tan, Wen; Mei, Hu; Chao, Li; Liu, Tengfei; Pan, Xianchao; Shu, Mao; Yang, Li
2013-12-01
P-glycoprotein (P-gp) is an ATP-binding cassette multidrug transporter. The over expression of P-gp leads to the development of multidrug resistance (MDR), which is a major obstacle to effective treatment of cancer. Thus, designing effective P-gp inhibitors has an extremely important role in the overcoming MDR. In this paper, both ligand-based quantitative structure-activity relationship (QSAR) and receptor-based molecular docking are used to predict P-gp inhibitors. The results show that each method achieves good prediction performance. According to the results of tenfold cross-validation, an optimal linear SVM model with only three descriptors is established on 857 training samples, of which the overall accuracy (Acc), sensitivity, specificity, and Matthews correlation coefficient are 0.840, 0.873, 0.813, and 0.683, respectively. The SVM model is further validated by 418 test samples with the overall Acc of 0.868. Based on a homology model of human P-gp established, Surflex-dock is also performed to give binding free energy-based evaluations with the overall accuracies of 0.823 for the test set. Furthermore, a consensus evaluation is also performed by using these two methods. Both QSAR and molecular docking studies indicate that molecular volume, hydrophobicity and aromaticity are three dominant factors influencing the inhibitory activities.
Olazarán-Santibáñez, Fabián; Bandyopadhyay, Debasish; Carranza-Rosales, Pilar; Rivera, Gildardo; Balderas-Rentería, Isaías
2017-06-06
In the battle against cancer discovery of new and novel chemotherapeutic agent demands extreme obligation. Development of anticancer compounds with higher potency and reduced side-effects is timely and challenging. A small series of fourteen diastereomeric β-lactams (seven pairs) were synthesized through multi-step process exploring [2+2] ketene-imine cycloaddition as the key step. Comparative stereochemical preferences were studied through computational docking and validated by in vitro evaluation. β-tubulin was considered as possible molecular target and in vitro anticancer evaluation was conducted against SiHa, B16F10, K562 and Chang cell lines. Caspase-3 activation assay and hematoxylin/eosin staining of the cells were also accomplished. Better docking scores of the cis- over the trans-β-lactams indicated favorable β-lactam-β-tubulin interactions in cis-geometry. In vitro (IC50) evaluation confirmed better anticancer activity of the cis-diastereoisomers. Apoptosis-induced cell death was supported by caspase-3 activation study. A cis-β-lactam [(±)-Cis-3-amino-1-phenyl-4-(p-tolyl) azetidin-2-one, 6C] was found to be more active (in vitro) than the marketed natural drug colchicine against SiHa and B16F10 (six times higher potency) cell lines. Reduced toxicity (compared to colchicine) in Chang cells confirmed better site-selectivity (accordingly less side-effects) of 6C than colchicine. Aside from 6C, most of the reported molecules demonstrated good to strong in vitro anticancer activity against SiHa and B16F10 cancer cell lines. Stereochemical preferences of the cis-β-lactams over their trans-counterparts, toward the molecular target β-tubulin, was confirmed by docking studies and in vitro anticancer evaluation. Apoptosis was identified as the cause of cell death. The lead 6C exhibited higher potency and selectivity than the marketed drug colchicine both in silico as well as in vitro.
Olazarán-Santibáñez, Fabián; Bandyopadhyay, Debasish; Carranza-Rosales, Pilar; Rivera, Gildardo; Balderas-Rentería, Isaías
2017-01-01
Purpose In the battle against cancer discovery of new and novel chemotherapeutic agent demands extreme obligation. Development of anticancer compounds with higher potency and reduced side-effects is timely and challenging. Experimental Design A small series of fourteen diastereomeric β-lactams (seven pairs) were synthesized through multi-step process exploring [2+2] ketene-imine cycloaddition as the key step. Comparative stereochemical preferences were studied through computational docking and validated by in vitro evaluation. β-tubulin was considered as possible molecular target and in vitro anticancer evaluation was conducted against SiHa, B16F10, K562 and Chang cell lines. Caspase-3 activation assay and hematoxylin/eosin staining of the cells were also accomplished. Results Better docking scores of the cis- over the trans-β-lactams indicated favorable β-lactam—β-tubulin interactions in cis-geometry. In vitro (IC50) evaluation confirmed better anticancer activity of the cis-diastereoisomers. Apoptosis-induced cell death was supported by caspase-3 activation study. A cis-β-lactam [(±)-Cis-3-amino-1-phenyl-4-(p-tolyl) azetidin-2-one, 6C] was found to be more active (in vitro) than the marketed natural drug colchicine against SiHa and B16F10 (six times higher potency) cell lines. Reduced toxicity (compared to colchicine) in Chang cells confirmed better site-selectivity (accordingly less side-effects) of 6C than colchicine. Aside from 6C, most of the reported molecules demonstrated good to strong in vitro anticancer activity against SiHa and B16F10 cancer cell lines. Conclusions Stereochemical preferences of the cis-β-lactams over their trans-counterparts, toward the molecular target β-tubulin, was confirmed by docking studies and in vitro anticancer evaluation. Apoptosis was identified as the cause of cell death. The lead 6C exhibited higher potency and selectivity than the marketed drug colchicine both in silico as well as in vitro. PMID:28562328
Sokkar, Pandian; Sathis, Vani; Ramachandran, Murugesan
2012-05-01
Hypoxia inducible factor-1 (HIF-1) is a bHLH-family transcription factor that controls genes involved in glycolysis, angiogenesis, migration, as well as invasion factors that are important for tumor progression and metastasis. HIF-1, a heterodimer of HIF-1α and HIF-1β, binds to the hypoxia responsive element (HRE) present in the promoter regions of hypoxia responsive genes, such as vascular endothelial growth factor (VEGF). Neither the structure of free HIF-1 nor that of its complex with HRE is available. Computational modeling of the transcription factor-DNA complex has always been challenging due to their inherent flexibility and large conformational space. The present study aims to model the interaction between the DNA-binding domain of HIF-1 and HRE. Experiments showed that rigid macromolecular docking programs (HEX and GRAMM-X) failed to predict the optimal dimerization of individually modeled HIF-1 subunits. Hence, the HIF-1 heterodimer was modeled based on the phosphate system positive regulatory protein (PHO4) homodimer. The duplex VEGF-DNA segment containing HRE with flanking nucleotides was modeled in the B form and equilibrated via molecular dynamics (MD) simulation. A rigid docking approach was used to predict the crude binding mode of HIF-1 dimer with HRE, in which the putative contacts were found to be present. An MD simulation (5 ns) of the HIF-1-HRE complex in explicit water was performed to account for its flexibility and to optimize its interactions. All of the conserved amino acid residues were found to play roles in the recognition of HRE. The present work, which sheds light on the recognition of HRE by HIF-1, could be beneficial in the design of peptide or small molecule therapeutics that can mimic HIF-1 and bind with the HRE sequence.
[Study on the interaction of doxycycline with human serum albumin].
Hu, Tao-Ying; Chen, Lin; Liu, Ying
2014-05-01
The present study was designed to investigate the interaction of doxycycline (DC) with human serum albumin (HSA) by the inner filter effects, displacement experiments and molecular docking methods, based on classic multi-spectroscopy. With fluorescence quenching method at 298 and 310 K, the binding constants Ka, were determined to be 2. 73 X 10(5) and 0. 74X 10(5) L mol-1, respectively, and there was one binding site between DC and HSA, indicating that the binding of DC to HSA was strong, and the quenching mechanism was a static quenching. The thermodynamic parameters (enthalpy change, AH and enthropy change, delta S) were calculated to be -83. 55 kJ mol-1 and -176. 31 J mol-1 K-1 via the Vant' Hoff equation, which indicated that the interaction of DC with HSA was driven mainly by hydrogen bonding and van der Waals forces. Based on the Föster's theory of non-radiation energy transfer, the specific binding distance between Trp-214 (acceptor) and DC (donor) was 4. 98 nm, which was similar to the result confirmed by molecular docking. Through displacement experiments, sub-domain IIA of HSA was assigned to possess the high-affinity binding site of DC. Three-dimensional fluorescence spectra indicated that the binding of DC to HSA induced the conformation change of HSA and increased the disclosure of some part of hydrophobic regions that had been buried before. The results of FTIR spectroscopy showed that DC bound to HSA led to the slight unfolding of the polypeptide chain of HSA. Furthermore, the binding details between DC and HSA were further confirmed by molecular docking methods, which revealed that DC was bound at sub-domain IIA through multiple interactions, such as hydrophobic effect, polar forces and pi-pi interactions. The experimental results provide theoretical basis and reliable data for the study of the interaction between small drug molecule and human serum albumin
Techniques for detumbling a disabled space base
NASA Technical Reports Server (NTRS)
Kaplan, M. H.
1973-01-01
Techniques and conceptual devices for carrying out detumbling operations are examined, and progress in the development of these concepts is discussed. Devices which reduce tumble to simple spin through active linear motion of a small mass are described, together with a Module for Automatic Dock and Detumble (MADD) that could perform an orbital transfer from the shuttle in order to track and dock at a preselected point on the distressed craft. Once docked, MADD could apply torques by firing thrustors to detumble the passive vehicle. Optimum combinations of mass-motion and external devices for various situation should be developed. The need for completely formulating the automatic control logic of MADD is also emphasized.