Sample records for small molecules present

  1. Structure-guided Discovery of Dual-recognition Chemibodies.

    PubMed

    Cheng, Alan C; Doherty, Elizabeth M; Johnstone, Sheree; DiMauro, Erin F; Dao, Jennifer; Luthra, Abhinav; Ye, Jay; Tang, Jie; Nixey, Thomas; Min, Xiaoshan; Tagari, Philip; Miranda, Les P; Wang, Zhulun

    2018-05-15

    Small molecules and antibodies each have advantages and limitations as therapeutics. Here, we present for the first time to our knowledge, the structure-guided design of "chemibodies" as small molecule-antibody hybrids that offer dual recognition of a single target by both a small molecule and an antibody, using DPP-IV enzyme as a proof of concept study. Biochemical characterization demonstrates that the chemibodies present superior DPP-IV inhibition compared to either small molecule or antibody component alone. We validated our design by successfully solving a co-crystal structure of a chemibody in complex with DPP-IV, confirming specific binding of the small molecule portion at the interior catalytic site and the Fab portion at the protein surface. The discovery of chemibodies presents considerable potential for novel therapeutics that harness the power of both small molecule and antibody modalities to achieve superior specificity, potency, and pharmacokinetic properties.

  2. X-ray characterization of solid small molecule organic materials

    DOEpatents

    Billinge, Simon; Shankland, Kenneth; Shankland, Norman; Florence, Alastair

    2014-06-10

    The present invention provides, inter alia, methods of characterizing a small molecule organic material, e.g., a drug or a drug product. This method includes subjecting the solid small molecule organic material to x-ray total scattering analysis at a short wavelength, collecting data generated thereby, and mathematically transforming the data to provide a refined set of data.

  3. Group specific internal standard technology (GSIST) for simultaneous identification and quantification of small molecules

    DOEpatents

    Adamec, Jiri; Yang, Wen-Chu; Regnier, Fred E

    2014-01-14

    Reagents and methods are provided that permit simultaneous analysis of multiple diverse small molecule analytes present in a complex mixture. Samples are labeled with chemically identical but isotopically distince forms of the labeling reagent, and analyzed using mass spectrometry. A single reagent simultaneously derivatizes multiple small molecule analytes having different reactive functional groups.

  4. Morphological study on small molecule acceptor-based organic solar cells with efficiencies beyond 7% (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Ma, Wei; Yan, He

    2015-10-01

    Despite the essential role of fullerenes in achieving best-performance organic solar cells (OSCs), fullerene acceptors have several drawbacks including poor light absorption, high-cost production and purification. For this reason, small molecule acceptor (SMA)-based OSCs have attracted much attention due to the easy tunability of electronic and optical properties of SMA materials. In this study, polymers with temperature dependent aggregation behaviors are combined with various small molecule acceptor materials, which lead to impressive power conversion efficiencies of up to 7.3%. The morphological and aggregation properties of the polymer:small molecule blends are studied in details. It is found that the temperature-dependent aggregation behavior of polymers allows for the processing of the polymer solutions at moderately elevated temperature, and more importantly, controlled aggregation and strong crystallization of the polymer during the film cooling and drying process. This results in a well-controlled and near-ideal polymer:small molecule morphology that is controlled by polymer aggregation during warm casting and thus insensitive to the choice of small molecules. As a result, several cases of highly efficient (PCE between 6-7.3%) SMA OSCs are achieved. The second part of this presentation will describe the morphology of a new small molecule acceptor with a unique 3D structure. The relationship between molecular structure and morphology is revealed.

  5. Small molecule annotation for the Protein Data Bank

    PubMed Central

    Sen, Sanchayita; Young, Jasmine; Berrisford, John M.; Chen, Minyu; Conroy, Matthew J.; Dutta, Shuchismita; Di Costanzo, Luigi; Gao, Guanghua; Ghosh, Sutapa; Hudson, Brian P.; Igarashi, Reiko; Kengaku, Yumiko; Liang, Yuhe; Peisach, Ezra; Persikova, Irina; Mukhopadhyay, Abhik; Narayanan, Buvaneswari Coimbatore; Sahni, Gaurav; Sato, Junko; Sekharan, Monica; Shao, Chenghua; Tan, Lihua; Zhuravleva, Marina A.

    2014-01-01

    The Protein Data Bank (PDB) is the single global repository for three-dimensional structures of biological macromolecules and their complexes, and its more than 100 000 structures contain more than 20 000 distinct ligands or small molecules bound to proteins and nucleic acids. Information about these small molecules and their interactions with proteins and nucleic acids is crucial for our understanding of biochemical processes and vital for structure-based drug design. Small molecules present in a deposited structure may be attached to a polymer or may occur as a separate, non-covalently linked ligand. During curation of a newly deposited structure by wwPDB annotation staff, each molecule is cross-referenced to the PDB Chemical Component Dictionary (CCD). If the molecule is new to the PDB, a dictionary description is created for it. The information about all small molecule components found in the PDB is distributed via the ftp archive as an external reference file. Small molecule annotation in the PDB also includes information about ligand-binding sites and about covalent and other linkages between ligands and macromolecules. During the remediation of the peptide-like antibiotics and inhibitors present in the PDB archive in 2011, it became clear that additional annotation was required for consistent representation of these molecules, which are quite often composed of several sequential subcomponents including modified amino acids and other chemical groups. The connectivity information of the modified amino acids is necessary for correct representation of these biologically interesting molecules. The combined information is made available via a new resource called the Biologically Interesting molecules Reference Dictionary, which is complementary to the CCD and is now routinely used for annotation of peptide-like antibiotics and inhibitors. PMID:25425036

  6. Small molecule annotation for the Protein Data Bank.

    PubMed

    Sen, Sanchayita; Young, Jasmine; Berrisford, John M; Chen, Minyu; Conroy, Matthew J; Dutta, Shuchismita; Di Costanzo, Luigi; Gao, Guanghua; Ghosh, Sutapa; Hudson, Brian P; Igarashi, Reiko; Kengaku, Yumiko; Liang, Yuhe; Peisach, Ezra; Persikova, Irina; Mukhopadhyay, Abhik; Narayanan, Buvaneswari Coimbatore; Sahni, Gaurav; Sato, Junko; Sekharan, Monica; Shao, Chenghua; Tan, Lihua; Zhuravleva, Marina A

    2014-01-01

    The Protein Data Bank (PDB) is the single global repository for three-dimensional structures of biological macromolecules and their complexes, and its more than 100,000 structures contain more than 20,000 distinct ligands or small molecules bound to proteins and nucleic acids. Information about these small molecules and their interactions with proteins and nucleic acids is crucial for our understanding of biochemical processes and vital for structure-based drug design. Small molecules present in a deposited structure may be attached to a polymer or may occur as a separate, non-covalently linked ligand. During curation of a newly deposited structure by wwPDB annotation staff, each molecule is cross-referenced to the PDB Chemical Component Dictionary (CCD). If the molecule is new to the PDB, a dictionary description is created for it. The information about all small molecule components found in the PDB is distributed via the ftp archive as an external reference file. Small molecule annotation in the PDB also includes information about ligand-binding sites and about covalent and other linkages between ligands and macromolecules. During the remediation of the peptide-like antibiotics and inhibitors present in the PDB archive in 2011, it became clear that additional annotation was required for consistent representation of these molecules, which are quite often composed of several sequential subcomponents including modified amino acids and other chemical groups. The connectivity information of the modified amino acids is necessary for correct representation of these biologically interesting molecules. The combined information is made available via a new resource called the Biologically Interesting molecules Reference Dictionary, which is complementary to the CCD and is now routinely used for annotation of peptide-like antibiotics and inhibitors. © The Author(s) 2014. Published by Oxford University Press.

  7. Methodologies for Studying B. subtilis Biofilms as a Model for Characterizing Small Molecule Biofilm Inhibitors.

    PubMed

    Bucher, Tabitha; Kartvelishvily, Elena; Kolodkin-Gal, Ilana

    2016-10-09

    This work assesses different methodologies to study the impact of small molecule biofilm inhibitors, such as D-amino acids, on the development and resilience of Bacillus subtilis biofilms. First, methods are presented that select for small molecule inhibitors with biofilm-specific targets in order to separate the effect of the small molecule inhibitors on planktonic growth from their effect on biofilm formation. Next, we focus on how inoculation conditions affect the sensitivity of multicellular, floating B. subtilis cultures to small molecule inhibitors. The results suggest that discrepancies in the reported effects of such inhibitors such as D-amino acids are due to inconsistent pre-culture conditions. Furthermore, a recently developed protocol is described for evaluating the contribution of small molecule treatments towards biofilm resistance to antibacterial substances. Lastly, scanning electron microscopy (SEM) techniques are presented to analyze the three-dimensional spatial arrangement of cells and their surrounding extracellular matrix in a B. subtilis biofilm. SEM facilitates insight into the three-dimensional biofilm architecture and the matrix texture. A combination of the methods described here can greatly assist the study of biofilm development in the presence and absence of biofilm inhibitors, and shed light on the mechanism of action of these inhibitors.

  8. A Prospective Method to Guide Small Molecule Drug Design

    ERIC Educational Resources Information Center

    Johnson, Alan T.

    2015-01-01

    At present, small molecule drug design follows a retrospective path when considering what analogs are to be made around a current hit or lead molecule with the focus often on identifying a compound with higher intrinsic potency. What this approach overlooks is the simultaneous need to also improve the physicochemical (PC) and pharmacokinetic (PK)…

  9. Antibody-Mediated Small Molecule Detection Using Programmable DNA-Switches.

    PubMed

    Rossetti, Marianna; Ippodrino, Rudy; Marini, Bruna; Palleschi, Giuseppe; Porchetta, Alessandro

    2018-06-13

    The development of rapid, cost-effective, and single-step methods for the detection of small molecules is crucial for improving the quality and efficiency of many applications ranging from life science to environmental analysis. Unfortunately, current methodologies still require multiple complex, time-consuming washing and incubation steps, which limit their applicability. In this work we present a competitive DNA-based platform that makes use of both programmable DNA-switches and antibodies to detect small target molecules. The strategy exploits both the advantages of proximity-based methods and structure-switching DNA-probes. The platform is modular and versatile and it can potentially be applied for the detection of any small target molecule that can be conjugated to a nucleic acid sequence. Here the rational design of programmable DNA-switches is discussed, and the sensitive, rapid, and single-step detection of different environmentally relevant small target molecules is demonstrated.

  10. Large scale nanoparticle screening for small molecule analysis in laser desorption ionization mass spectrometry

    DOE PAGES

    Yagnik, Gargey B.; Hansen, Rebecca L.; Korte, Andrew R.; ...

    2016-08-30

    Nanoparticles (NPs) have been suggested as efficient matrixes for small molecule profiling and imaging by laser-desorption ionization mass spectrometry (LDI-MS), but so far there has been no systematic study comparing different NPs in the analysis of various classes of small molecules. Here, we present a large scale screening of 13 NPs for the analysis of two dozen small metabolite molecules. Many NPs showed much higher LDI efficiency than organic matrixes in positive mode and some NPs showed comparable efficiencies for selected analytes in negative mode. Our results suggest that a thermally driven desorption process is a key factor for metalmore » oxide NPs, but chemical interactions are also very important, especially for other NPs. Furthermore, the screening results provide a useful guideline for the selection of NPs in the LDI-MS analysis of small molecules.« less

  11. Large scale nanoparticle screening for small molecule analysis in laser desorption ionization mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yagnik, Gargey B.; Hansen, Rebecca L.; Korte, Andrew R.

    Nanoparticles (NPs) have been suggested as efficient matrixes for small molecule profiling and imaging by laser-desorption ionization mass spectrometry (LDI-MS), but so far there has been no systematic study comparing different NPs in the analysis of various classes of small molecules. Here, we present a large scale screening of 13 NPs for the analysis of two dozen small metabolite molecules. Many NPs showed much higher LDI efficiency than organic matrixes in positive mode and some NPs showed comparable efficiencies for selected analytes in negative mode. Our results suggest that a thermally driven desorption process is a key factor for metalmore » oxide NPs, but chemical interactions are also very important, especially for other NPs. Furthermore, the screening results provide a useful guideline for the selection of NPs in the LDI-MS analysis of small molecules.« less

  12. Quantitative analysis of small molecule-nucleic acid interactions with a biosensor surface and surface plasmon resonance detection.

    PubMed

    Liu, Yang; Wilson, W David

    2010-01-01

    Surface plasmon resonance (SPR) technology with biosensor surfaces has become a widely-used tool for the study of nucleic acid interactions without any labeling requirements. The method provides simultaneous kinetic and equilibrium characterization of the interactions of biomolecules as well as small molecule-biopolymer binding. SPR monitors molecular interactions in real time and provides significant advantages over optical or calorimetic methods for systems with strong binding coupled to small spectroscopic signals and/or reaction heats. A detailed and practical guide for nucleic acid interaction analysis using SPR-biosensor methods is presented. Details of the SPR technology and basic fundamentals are described with recommendations on the preparation of the SPR instrument, sensor chips, and samples, as well as extensive information on experimental design, quantitative and qualitative data analysis and presentation. A specific example of the interaction of a minor-groove-binding agent with DNA is evaluated by both kinetic and steady-state SPR methods to illustrate the technique. Since the molecules that bind cooperatively to specific DNA sequences are attractive for many applications, a cooperative small molecule-DNA interaction is also presented.

  13. Characterizing protein domain associations by Small-molecule ligand binding

    PubMed Central

    Li, Qingliang; Cheng, Tiejun; Wang, Yanli; Bryant, Stephen H.

    2012-01-01

    Background Protein domains are evolutionarily conserved building blocks for protein structure and function, which are conventionally identified based on protein sequence or structure similarity. Small molecule binding domains are of great importance for the recognition of small molecules in biological systems and drug development. Many small molecules, including drugs, have been increasingly identified to bind to multiple targets, leading to promiscuous interactions with protein domains. Thus, a large scale characterization of the protein domains and their associations with respect to small-molecule binding is of particular interest to system biology research, drug target identification, as well as drug repurposing. Methods We compiled a collection of 13,822 physical interactions of small molecules and protein domains derived from the Protein Data Bank (PDB) structures. Based on the chemical similarity of these small molecules, we characterized pairwise associations of the protein domains and further investigated their global associations from a network point of view. Results We found that protein domains, despite lack of similarity in sequence and structure, were comprehensively associated through binding the same or similar small-molecule ligands. Moreover, we identified modules in the domain network that consisted of closely related protein domains by sharing similar biochemical mechanisms, being involved in relevant biological pathways, or being regulated by the same cognate cofactors. Conclusions A novel protein domain relationship was identified in the context of small-molecule binding, which is complementary to those identified by traditional sequence-based or structure-based approaches. The protein domain network constructed in the present study provides a novel perspective for chemogenomic study and network pharmacology, as well as target identification for drug repurposing. PMID:23745168

  14. Harnessing Connectivity in a Large-Scale Small-Molecule Sensitivity Dataset.

    PubMed

    Seashore-Ludlow, Brinton; Rees, Matthew G; Cheah, Jaime H; Cokol, Murat; Price, Edmund V; Coletti, Matthew E; Jones, Victor; Bodycombe, Nicole E; Soule, Christian K; Gould, Joshua; Alexander, Benjamin; Li, Ava; Montgomery, Philip; Wawer, Mathias J; Kuru, Nurdan; Kotz, Joanne D; Hon, C Suk-Yee; Munoz, Benito; Liefeld, Ted; Dančík, Vlado; Bittker, Joshua A; Palmer, Michelle; Bradner, James E; Shamji, Alykhan F; Clemons, Paul A; Schreiber, Stuart L

    2015-11-01

    Identifying genetic alterations that prime a cancer cell to respond to a particular therapeutic agent can facilitate the development of precision cancer medicines. Cancer cell-line (CCL) profiling of small-molecule sensitivity has emerged as an unbiased method to assess the relationships between genetic or cellular features of CCLs and small-molecule response. Here, we developed annotated cluster multidimensional enrichment analysis to explore the associations between groups of small molecules and groups of CCLs in a new, quantitative sensitivity dataset. This analysis reveals insights into small-molecule mechanisms of action, and genomic features that associate with CCL response to small-molecule treatment. We are able to recapitulate known relationships between FDA-approved therapies and cancer dependencies and to uncover new relationships, including for KRAS-mutant cancers and neuroblastoma. To enable the cancer community to explore these data, and to generate novel hypotheses, we created an updated version of the Cancer Therapeutic Response Portal (CTRP v2). We present the largest CCL sensitivity dataset yet available, and an analysis method integrating information from multiple CCLs and multiple small molecules to identify CCL response predictors robustly. We updated the CTRP to enable the cancer research community to leverage these data and analyses. ©2015 American Association for Cancer Research.

  15. Inhibiting prolyl isomerase activity by hybrid organic-inorganic molecules containing rhodium(II) fragments.

    PubMed

    Coughlin, Jane M; Kundu, Rituparna; Cooper, Julian C; Ball, Zachary T

    2014-11-15

    A small molecule containing a rhodium(II) tetracarboxylate fragment is shown to be a potent inhibitor of the prolyl isomerase FKBP12. The use of small molecules conjugates of rhodium(II) is presented as a general strategy for developing new protein inhibitors based on distinct structural and sequence features of the enzyme active site. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Conformational analysis by intersection: CONAN.

    PubMed

    Smellie, Andrew; Stanton, Robert; Henne, Randy; Teig, Steve

    2003-01-15

    As high throughput techniques in chemical synthesis and screening improve, more demands are placed on computer assisted design and virtual screening. Many of these computational methods require one or more three-dimensional conformations for molecules, creating a demand for a conformational analysis tool that can rapidly and robustly cover the low-energy conformational spaces of small molecules. A new algorithm of intersection is presented here, which quickly generates (on average <0.5 seconds/stereoisomer) a complete description of the low energy conformational space of a small molecule. The molecule is first decomposed into nonoverlapping nodes N (usually rings) and overlapping paths P with conformations (N and P) generated in an offline process. In a second step the node and path data are combined to form distinct conformers of the molecule. Finally, heuristics are applied after intersection to generate a small representative collection of conformations that span the conformational space. In a study of approximately 97,000 randomly selected molecules from the MDDR, results are presented that explore these conformations and their ability to cover low-energy conformational space. Copyright 2002 Wiley Periodicals, Inc. J Comput Chem 24: 10-20, 2003

  17. Membrane Fusion Induced by Small Molecules and Ions

    PubMed Central

    Mondal Roy, Sutapa; Sarkar, Munna

    2011-01-01

    Membrane fusion is a key event in many biological processes. These processes are controlled by various fusogenic agents of which proteins and peptides from the principal group. The fusion process is characterized by three major steps, namely, inter membrane contact, lipid mixing forming the intermediate step, pore opening and finally mixing of inner contents of the cells/vesicles. These steps are governed by energy barriers, which need to be overcome to complete fusion. Structural reorganization of big molecules like proteins/peptides, supplies the required driving force to overcome the energy barrier of the different intermediate steps. Small molecules/ions do not share this advantage. Hence fusion induced by small molecules/ions is expected to be different from that induced by proteins/peptides. Although several reviews exist on membrane fusion, no recent review is devoted solely to small moleculs/ions induced membrane fusion. Here we intend to present, how a variety of small molecules/ions act as independent fusogens. The detailed mechanism of some are well understood but for many it is still an unanswered question. Clearer understanding of how a particular small molecule can control fusion will open up a vista to use these moleucles instead of proteins/peptides to induce fusion both in vivo and in vitro fusion processes. PMID:21660306

  18. Reprogramming Bacteria to Seek and Destroy Small Molecules (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallivan, Justin

    2012-03-21

    Justin Gallivan, of Emory University presents a talk titled "Reprogramming Bacteria to Seek and Destroy Small Molecules" at the JGI User 7th Annual Genomics of Energy & Environment Meeting on March 21, 2012 in Walnut Creek, CA.

  19. Reprogramming Bacteria to Seek and Destroy Small Molecules (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema

    Gallivan, Justin

    2018-05-01

    Justin Gallivan, of Emory University presents a talk titled "Reprogramming Bacteria to Seek and Destroy Small Molecules" at the JGI User 7th Annual Genomics of Energy & Environment Meeting on March 21, 2012 in Walnut Creek, CA.

  20. [Effect of annealing temperature on the crystallization and spectroscopic response of a small-molecule semiconductor doped in polymer film].

    PubMed

    Yin, Ming; Zhang, Xin-Ping; Liu, Hong-Mei

    2012-11-01

    The crystallization properties of the perylene (EPPTC) molecules doped in the solid film of the derivative of polyfluorene (F8BT) at different annealing temperatures, as well as the consequently induced spectroscopic response of the exciplex emission in the heterojunction structures, were studied in the present paper. Experimental results showed that the phase separation between the small and the polymer molecules in the blend film is enhanced with increasing the annealing temperature, which leads to the crystallization of the EPPTC molecules due to the strong pi-pi stacking. The size of the crystal phase increases with increasing the annealing temperature. However, this process weakens the mechanisms of the heterojunction configuration, thus, the total interfacial area between the small and the polymer molecules and the amount of exciplex are reduced significantly in the blend film. Meanwhile, the energy transfer from the polymer to the small molecules is also reduced. As a result, the emission from the exciplex becomes weaker with increasing the annealing temperature, whereas the stronger emission from the polymer molecules and from the crystal phase of the small molecules can be observed. These experimental results are very important for understanding and tailoring the organic heterojunction structures. Furthermore, this provides photophysics for improving the performance of photovoltaic or solar cell devices.

  1. Inkjet-Printed Small-Molecule Organic Light-Emitting Diodes: Halogen-Free Inks, Printing Optimization, and Large-Area Patterning.

    PubMed

    Zhou, Lu; Yang, Lei; Yu, Mengjie; Jiang, Yi; Liu, Cheng-Fang; Lai, Wen-Yong; Huang, Wei

    2017-11-22

    Manufacturing small-molecule organic light-emitting diodes (OLEDs) via inkjet printing is rather attractive for realizing high-efficiency and long-life-span devices, yet it is challenging. In this paper, we present our efforts on systematical investigation and optimization of the ink properties and the printing process to enable facile inkjet printing of conjugated light-emitting small molecules. Various factors on influencing the inkjet-printed film quality during the droplet generation, the ink spreading on the substrates, and its solidification processes have been systematically investigated and optimized. Consequently, halogen-free inks have been developed and large-area patterning inkjet printing on flexible substrates with efficient blue emission has been successfully demonstrated. Moreover, OLEDs manufactured by inkjet printing the light-emitting small molecules manifested superior performance as compared with their corresponding spin-cast counterparts.

  2. Screening small-molecule compound microarrays for protein ligands without fluorescence labeling with a high-throughput scanning microscope.

    PubMed

    Fei, Yiyan; Landry, James P; Sun, Yungshin; Zhu, Xiangdong; Wang, Xiaobing; Luo, Juntao; Wu, Chun-Yi; Lam, Kit S

    2010-01-01

    We describe a high-throughput scanning optical microscope for detecting small-molecule compound microarrays on functionalized glass slides. It is based on measurements of oblique-incidence reflectivity difference and employs a combination of a y-scan galvometer mirror and an x-scan translation stage with an effective field of view of 2 cm x 4 cm. Such a field of view can accommodate a printed small-molecule compound microarray with as many as 10,000 to 20,000 targets. The scanning microscope is capable of measuring kinetics as well as endpoints of protein-ligand reactions simultaneously. We present the experimental results on solution-phase protein reactions with small-molecule compound microarrays synthesized from one-bead, one-compound combinatorial chemistry and immobilized on a streptavidin-functionalized glass slide.

  3. Screening small-molecule compound microarrays for protein ligands without fluorescence labeling with a high-throughput scanning microscope

    PubMed Central

    Fei, Yiyan; Landry, James P.; Sun, Yungshin; Zhu, Xiangdong; Wang, Xiaobing; Luo, Juntao; Wu, Chun-Yi; Lam, Kit S.

    2010-01-01

    We describe a high-throughput scanning optical microscope for detecting small-molecule compound microarrays on functionalized glass slides. It is based on measurements of oblique-incidence reflectivity difference and employs a combination of a y-scan galvometer mirror and an x-scan translation stage with an effective field of view of 2 cm×4 cm. Such a field of view can accommodate a printed small-molecule compound microarray with as many as 10,000 to 20,000 targets. The scanning microscope is capable of measuring kinetics as well as endpoints of protein-ligand reactions simultaneously. We present the experimental results on solution-phase protein reactions with small-molecule compound microarrays synthesized from one-bead, one-compound combinatorial chemistry and immobilized on a streptavidin-functionalized glass slide. PMID:20210464

  4. Coevolution of T-cell receptors with MHC and non-MHC ligands

    PubMed Central

    Castro, Caitlin C.; Luoma, Adrienne M.; Adams, Erin J.

    2015-01-01

    Summary The structure and amino acid diversity of the T-cell receptor (TCR), similar in nature to that of Fab portions of antibodies, would suggest these proteins have a nearly infinite capacity to recognize antigen. Yet all currently defined native T cells expressing an α and β chain in their TCR can only sense antigen when presented in the context of a major histocompatibility complex (MHC) molecule. This MHC molecule can be one of many that exist in vertebrates, presenting small peptide fragments, lipid molecules, or small molecule metabolites. Here we review the pattern of TCR recognition of MHC molecules throughout a broad sampling of species and T-cell lineages and also touch upon T cells that do not appear to require MHC presentation for their surveillance function. We review the diversity of MHC molecules and information on the corresponding T-cell lineages identified in divergent species. We also discuss TCRs with structural domains unlike that of conventional TCRs of mouse and human. By presenting this broad view of TCR sequence, structure, domain organization, and function, we seek to explore how this receptor has evolved across time and been selected for alternative antigen-recognition capabilities in divergent lineages. PMID:26284470

  5. Affinity modulation of small-molecule ligands by borrowing endogenous protein surfaces

    PubMed Central

    Briesewitz, Roger; Ray, Gregory T.; Wandless, Thomas J.; Crabtree, Gerald R.

    1999-01-01

    A general strategy is described for improving the binding properties of small-molecule ligands to protein targets. A bifunctional molecule is created by chemically linking a ligand of interest to another small molecule that binds tightly to a second protein. When the ligand of interest is presented to the target protein by the second protein, additional protein–protein interactions outside of the ligand-binding sites serve either to increase or decrease the affinity of the binding event. We have applied this approach to an intractable target, the SH2 domain, and demonstrate a 3-fold enhancement over the natural peptide. This approach provides a way to modulate the potency and specificity of biologically active compounds. PMID:10051576

  6. Small-molecule ligand docking into comparative models with Rosetta

    PubMed Central

    Combs, Steven A; DeLuca, Samuel L; DeLuca, Stephanie H; Lemmon, Gordon H; Nannemann, David P; Nguyen, Elizabeth D; Willis, Jordan R; Sheehan, Jonathan H; Meiler, Jens

    2017-01-01

    Structure-based drug design is frequently used to accelerate the development of small-molecule therapeutics. Although substantial progress has been made in X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy, the availability of high-resolution structures is limited owing to the frequent inability to crystallize or obtain sufficient NMR restraints for large or flexible proteins. Computational methods can be used to both predict unknown protein structures and model ligand interactions when experimental data are unavailable. This paper describes a comprehensive and detailed protocol using the Rosetta modeling suite to dock small-molecule ligands into comparative models. In the protocol presented here, we review the comparative modeling process, including sequence alignment, threading and loop building. Next, we cover docking a small-molecule ligand into the protein comparative model. In addition, we discuss criteria that can improve ligand docking into comparative models. Finally, and importantly, we present a strategy for assessing model quality. The entire protocol is presented on a single example selected solely for didactic purposes. The results are therefore not representative and do not replace benchmarks published elsewhere. We also provide an additional tutorial so that the user can gain hands-on experience in using Rosetta. The protocol should take 5–7 h, with additional time allocated for computer generation of models. PMID:23744289

  7. Incorporation of ionic liquid into porous polymer monoliths to enhance the separation of small molecules in reversed-phase high-performance liquid chromatography.

    PubMed

    Wang, Jiafei; Bai, Ligai; Wei, Zhen; Qin, Junxiao; Ma, Yamin; Liu, Haiyan

    2015-06-01

    An ionic liquid was incorporated into the porous polymer monoliths to afford stationary phases with enhanced chromatographic performance for small molecules in reversed-phase high-performance liquid chromatography. The effect of the ionic liquid in the polymerization mixture on the performance of the monoliths was studied in detail. While monoliths without ionic liquid exhibited poor resolution and low efficiency, the addition of ionic liquid to the polymerization mixture provides highly increased resolution and high efficiency. The chromatographic performances of the monoliths were demonstrated by the separations of various small molecules including aromatic hydrocarbons, isomers, and homologues using a binary polar mobile phase. The present column efficiency reached 27 000 plates/m, which showed that the ionic liquid monoliths are alternative stationary phases in the separation of small molecules by high-performance liquid chromatography. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Cheminformatics-aided discovery of small-molecule Protein-Protein Interaction (PPI) dual inhibitors of Tumor Necrosis Factor (TNF) and Receptor Activator of NF-κB Ligand (RANKL).

    PubMed

    Melagraki, Georgia; Ntougkos, Evangelos; Rinotas, Vagelis; Papaneophytou, Christos; Leonis, Georgios; Mavromoustakos, Thomas; Kontopidis, George; Douni, Eleni; Afantitis, Antreas; Kollias, George

    2017-04-01

    We present an in silico drug discovery pipeline developed and applied for the identification and virtual screening of small-molecule Protein-Protein Interaction (PPI) compounds that act as dual inhibitors of TNF and RANKL through the trimerization interface. The cheminformatics part of the pipeline was developed by combining structure-based with ligand-based modeling using the largest available set of known TNF inhibitors in the literature (2481 small molecules). To facilitate virtual screening, the consensus predictive model was made freely available at: http://enalos.insilicotox.com/TNFPubChem/. We thus generated a priority list of nine small molecules as candidates for direct TNF function inhibition. In vitro evaluation of these compounds led to the selection of two small molecules that act as potent direct inhibitors of TNF function, with IC50 values comparable to those of a previously-described direct inhibitor (SPD304), but with significantly reduced toxicity. These molecules were also identified as RANKL inhibitors and validated in vitro with respect to this second functionality. Direct binding of the two compounds was confirmed both for TNF and RANKL, as well as their ability to inhibit the biologically-active trimer forms. Molecular dynamics calculations were also carried out for the two small molecules in each protein to offer additional insight into the interactions that govern TNF and RANKL complex formation. To our knowledge, these compounds, namely T8 and T23, constitute the second and third published examples of dual small-molecule direct function inhibitors of TNF and RANKL, and could serve as lead compounds for the development of novel treatments for inflammatory and autoimmune diseases.

  9. Persistence length of collagen molecules based on nonlocal viscoelastic model.

    PubMed

    Ghavanloo, Esmaeal

    2017-12-01

    Persistence length is one of the most interesting properties of a molecular chain, which is used to describe the stiffness of a molecule. The experimentally measured values of the persistence length of the collagen molecule are widely scattered from 14 to 180 nm. Therefore, an alternative approach is highly desirable to predict the persistence length of a molecule and also to explain the experimental results. In this paper, a nonlocal viscoelastic model is developed to obtain the persistence length of the collagen molecules in solvent. A new explicit formula is proposed for the persistence length of the molecule with the consideration of the small-scale effect, viscoelastic properties of the molecule, loading frequency, and viscosity of the solvent. The presented model indicates that there exists a range of molecule lengths in which the persistence length strongly depends on the frequency and spatial mode of applied loads, small-scale effect, and viscoelastic properties of the collagen.

  10. Concentration-related response potentiometric titrations to study the interaction of small molecules with large biomolecules.

    PubMed

    Hamidi-Asl, Ezat; Daems, Devin; De Wael, Karolien; Van Camp, Guy; Nagels, Luc J

    2014-12-16

    In the present paper, the utility of a special potentiometric titration approach for recognition and calculation of biomolecule/small-molecule interactions is reported. This approach is fast, sensitive, reproducible, and inexpensive in comparison to the other methods for the determination of the association constant values (Ka) and the interaction energies (ΔG). The potentiometric titration measurement is based on the use of a classical polymeric membrane indicator electrode in a solution of the small-molecule ligand. The biomolecule is used as a titrant. The potential is measured versus a reference electrode and transformed into a concentration-related signal over the entire concentration interval, also at low concentrations, where the millivolt (y-axis) versus log canalyte (x-axis) potentiometric calibration curve is not linear. In the procedure, Ka is calculated for the interaction of cocaine with a cocaine binding aptamer and with an anticocaine antibody. To study the selectivity and cross-reactivity, other oligonucleotides and aptamers are tested, as well as other small ligand molecules such as tetrakis(4-chlorophenyl)borate, metergoline, lidocaine, and bromhexine. The calculated Ka compared favorably to the value reported in the literature using surface plasmon resonance. The potentiometric titration approach called "concentration-related response potentiometry" is used to study molecular interaction for seven macromolecular target molecules and four small-molecule ligands.

  11. Design strategy for photoinduced electron transfer-based small-molecule fluorescent probes of biomacromolecules.

    PubMed

    Zhang, Wei; Ma, Zhao; Du, Lupei; Li, Minyong

    2014-06-07

    As the cardinal support of innumerable biological processes, biomacromolecules such as proteins, nucleic acids and polysaccharides are of importance to living systems. The key to understanding biological processes is to realize the role of these biomacromolecules in thte localization, distribution, conformation and interaction with other molecules. With the current development and adaptation of fluorescent technologies in biomedical and pharmaceutical fields, the fluorescence imaging (FLI) approach of using small-molecule fluorescent probes is becoming an up-to-the-minute method for the detection and monitoring of these imperative biomolecules in life sciences. However, conventional small-molecule fluorescent probes may provide undesirable results because of their intrinsic deficiencies such as low signal-to-noise ratio (SNR) and false-positive errors. Recently, small-molecule fluorescent probes with a photoinduced electron transfer (PET) "on/off" switch for biomacromolecules have been thoroughly considered. When recognized by the biomacromolecules, these probes turn on/off the PET switch and change the fluorescence intensity to present a high SNR result. It should be emphasized that these PET-based fluorescent probes could be advantageous for understanding the pathogenesis of various diseases caused by abnormal expression of biomacromolecules. The discussion of this successful strategy involved in this review will be a valuable guide for the further development of new PET-based small-molecule fluorescent probes for biomacromolecules.

  12. In Situ Oxidation Synthesis of p-Type Composite with Narrow-Bandgap Small Organic Molecule Coating on Single-Walled Carbon Nanotube: Flexible Film and Thermoelectric Performance.

    PubMed

    Gao, Caiyan; Chen, Guangming

    2018-03-01

    Although composites of organic polymers or n-type small molecule/carbon nanotube (CNT) have achieved significant advances in thermoelectric (TE) applications, p-type TE composites of small organic molecules as thick surface coating layers on the surfaces of inorganic nanoparticles still remain a great challenge. Taking advantage of in situ oxidation reaction of thieno[3,4-b]pyrazine (TP) into TP di-N-oxide (TPNO) on single-walled CNT (SWCNT) surface, a novel synthesis strategy is proposed to achieve flexible films of TE composites with narrow-bandgap (1.19 eV) small molecule coating on SWCNT surface. The TE performance can be effectively enhanced and conveniently tuned by poly(sodium-p-styrenesulfonate) content, TPNO/SWCNT mass ratio, and posttreatment by various polar solvents. The maximum of the composite power factor at room temperature is 29.4 ± 1.0 µW m -1 K -2 . The work presents a way to achieve flexible films of p-type small organic molecule/inorganic composites with clear surface coating morphology for TE application. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. DBDA as a Novel Matrix for the Analyses of Small Molecules and Quantification of Fatty Acids by Negative Ion MALDI-TOF MS.

    PubMed

    Ling, Ling; Li, Ying; Wang, Sheng; Guo, Liming; Xiao, Chunsheng; Chen, Xuesi; Guo, Xinhua

    2018-04-01

    Matrix interference ions in low mass range has always been a concern when using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to analyze small molecules (<500 Da). In this work, a novel matrix, N1,N4-dibenzylidenebenzene-1,4-diamine (DBDA) was synthesized for the analyses of small molecules by negative ion MALDI-TOF MS. Notably, only neat ions ([M-H] - ) of fatty acids without matrix interference appeared in the mass spectra and the limit of detection (LOD) reached 0.3 fmol. DBDA also has great performance towards other small molecules such as amino acids, peptides, and nucleotide. Furthermore, with this novel matrix, the free fatty acids in serum were quantitatively analyzed based on the correlation curves with correlation coefficient of 0.99. In addition, UV-Vis experiments and molecular orbital calculations were performed to explore mechanism about DBDA used as matrix in the negative ion mode. The present work shows that the DBDA matrix is a highly sensitive matrix with few interference ions for analysis of small molecules. Meanwhile, DBDA is able to precisely quantify the fatty acids in real biological samples. Graphical Abstract ᅟ.

  14. High-throughput identification and rational design of synergistic small-molecule pairs for combating and bypassing antibiotic resistance.

    PubMed

    Wambaugh, Morgan A; Shakya, Viplendra P S; Lewis, Adam J; Mulvey, Matthew A; Brown, Jessica C S

    2017-06-01

    Antibiotic-resistant infections kill approximately 23,000 people and cost $20,000,000,000 each year in the United States alone despite the widespread use of small-molecule antimicrobial combination therapy. Antibiotic combinations typically have an additive effect: the efficacy of the combination matches the sum of the efficacies of each antibiotic when used alone. Small molecules can also act synergistically when the efficacy of the combination is greater than the additive efficacy. However, synergistic combinations are rare and have been historically difficult to identify. High-throughput identification of synergistic pairs is limited by the scale of potential combinations: a modest collection of 1,000 small molecules involves 1 million pairwise combinations. Here, we describe a high-throughput method for rapid identification of synergistic small-molecule pairs, the overlap2 method (O2M). O2M extracts patterns from chemical-genetic datasets, which are created when a collection of mutants is grown in the presence of hundreds of different small molecules, producing a precise set of phenotypes induced by each small molecule across the mutant set. The identification of mutants that show the same phenotype when treated with known synergistic molecules allows us to pinpoint additional molecule combinations that also act synergistically. As a proof of concept, we focus on combinations with the antibiotics trimethoprim and sulfamethizole, which had been standard treatment against urinary tract infections until widespread resistance decreased efficacy. Using O2M, we screened a library of 2,000 small molecules and identified several that synergize with the antibiotic trimethoprim and/or sulfamethizole. The most potent of these synergistic interactions is with the antiviral drug azidothymidine (AZT). We then demonstrate that understanding the molecular mechanism underlying small-molecule synergistic interactions allows the rational design of additional combinations that bypass drug resistance. Trimethoprim and sulfamethizole are both folate biosynthesis inhibitors. We find that this activity disrupts nucleotide homeostasis, which blocks DNA replication in the presence of AZT. Building on these data, we show that other small molecules that disrupt nucleotide homeostasis through other mechanisms (hydroxyurea and floxuridine) also act synergistically with AZT. These novel combinations inhibit the growth and virulence of trimethoprim-resistant clinical Escherichia coli and Klebsiella pneumoniae isolates, suggesting that they may be able to be rapidly advanced into clinical use. In sum, we present a generalizable method to screen for novel synergistic combinations, to identify particular mechanisms resulting in synergy, and to use the mechanistic knowledge to rationally design new combinations that bypass drug resistance.

  15. High-throughput identification and rational design of synergistic small-molecule pairs for combating and bypassing antibiotic resistance

    PubMed Central

    Lewis, Adam J.; Mulvey, Matthew A.

    2017-01-01

    Antibiotic-resistant infections kill approximately 23,000 people and cost $20,000,000,000 each year in the United States alone despite the widespread use of small-molecule antimicrobial combination therapy. Antibiotic combinations typically have an additive effect: the efficacy of the combination matches the sum of the efficacies of each antibiotic when used alone. Small molecules can also act synergistically when the efficacy of the combination is greater than the additive efficacy. However, synergistic combinations are rare and have been historically difficult to identify. High-throughput identification of synergistic pairs is limited by the scale of potential combinations: a modest collection of 1,000 small molecules involves 1 million pairwise combinations. Here, we describe a high-throughput method for rapid identification of synergistic small-molecule pairs, the overlap2 method (O2M). O2M extracts patterns from chemical-genetic datasets, which are created when a collection of mutants is grown in the presence of hundreds of different small molecules, producing a precise set of phenotypes induced by each small molecule across the mutant set. The identification of mutants that show the same phenotype when treated with known synergistic molecules allows us to pinpoint additional molecule combinations that also act synergistically. As a proof of concept, we focus on combinations with the antibiotics trimethoprim and sulfamethizole, which had been standard treatment against urinary tract infections until widespread resistance decreased efficacy. Using O2M, we screened a library of 2,000 small molecules and identified several that synergize with the antibiotic trimethoprim and/or sulfamethizole. The most potent of these synergistic interactions is with the antiviral drug azidothymidine (AZT). We then demonstrate that understanding the molecular mechanism underlying small-molecule synergistic interactions allows the rational design of additional combinations that bypass drug resistance. Trimethoprim and sulfamethizole are both folate biosynthesis inhibitors. We find that this activity disrupts nucleotide homeostasis, which blocks DNA replication in the presence of AZT. Building on these data, we show that other small molecules that disrupt nucleotide homeostasis through other mechanisms (hydroxyurea and floxuridine) also act synergistically with AZT. These novel combinations inhibit the growth and virulence of trimethoprim-resistant clinical Escherichia coli and Klebsiella pneumoniae isolates, suggesting that they may be able to be rapidly advanced into clinical use. In sum, we present a generalizable method to screen for novel synergistic combinations, to identify particular mechanisms resulting in synergy, and to use the mechanistic knowledge to rationally design new combinations that bypass drug resistance. PMID:28632788

  16. Raman Optical Activity of Biological Molecules

    NASA Astrophysics Data System (ADS)

    Blanch, Ewan W.; Barron, Laurence D.

    Now an incisive probe of biomolecular structure, Raman optical activity (ROA) measures a small difference in Raman scattering from chiral molecules in right- and left-circularly polarized light. As ROA spectra measure vibrational optical activity, they contain highly informative band structures sensitive to the secondary and tertiary structures of proteins, nucleic acids, viruses and carbohydrates as well as the absolute configurations of small molecules. In this review we present a survey of recent studies on biomolecular structure and dynamics using ROA and also a discussion of future applications of this powerful new technique in biomedical research.

  17. Biomedical application of MALDI mass spectrometry for small-molecule analysis.

    PubMed

    van Kampen, Jeroen J A; Burgers, Peter C; de Groot, Ronald; Gruters, Rob A; Luider, Theo M

    2011-01-01

    Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is an emerging analytical tool for the analysis of molecules with molar masses below 1,000 Da; that is, small molecules. This technique offers rapid analysis, high sensitivity, low sample consumption, a relative high tolerance towards salts and buffers, and the possibility to store sample on the target plate. The successful application of the technique is, however, hampered by low molecular weight (LMW) matrix-derived interference signals and by poor reproducibility of signal intensities during quantitative analyses. In this review, we focus on the biomedical application of MALDI-MS for the analysis of small molecules and discuss its favorable properties and its challenges as well as strategies to improve the performance of the technique. Furthermore, practical aspects and applications are presented. © 2010 Wiley Periodicals, Inc.

  18. Directed Chemical Evolution with an Outsized Genetic Code

    PubMed Central

    Krusemark, Casey J.; Tilmans, Nicolas P.; Brown, Patrick O.; Harbury, Pehr B.

    2016-01-01

    The first demonstration that macromolecules could be evolved in a test tube was reported twenty-five years ago. That breakthrough meant that billions of years of chance discovery and refinement could be compressed into a few weeks, and provided a powerful tool that now dominates all aspects of protein engineering. A challenge has been to extend this scientific advance into synthetic chemical space: to enable the directed evolution of abiotic molecules. The problem has been tackled in many ways. These include expanding the natural genetic code to include unnatural amino acids, engineering polyketide and polypeptide synthases to produce novel products, and tagging combinatorial chemistry libraries with DNA. Importantly, there is still no small-molecule analog of directed protein evolution, i.e. a substantiated approach for optimizing complex (≥ 10^9 diversity) populations of synthetic small molecules over successive generations. We present a key advance towards this goal: a tool for genetically-programmed synthesis of small-molecule libraries from large chemical alphabets. The approach accommodates alphabets that are one to two orders of magnitude larger than any in Nature, and facilitates evolution within the chemical spaces they create. This is critical for small molecules, which are built up from numerous and highly varied chemical fragments. We report a proof-of-concept chemical evolution experiment utilizing an outsized genetic code, and demonstrate that fitness traits can be passed from an initial small-molecule population through to the great-grandchildren of that population. The results establish the practical feasibility of engineering synthetic small molecules through accelerated evolution. PMID:27508294

  19. Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Benoit, Danielle S. W.; Schwartz, Michael P.; Durney, Andrew R.; Anseth, Kristi S.

    2008-10-01

    Cell-matrix interactions have critical roles in regeneration, development and disease. The work presented here demonstrates that encapsulated human mesenchymal stem cells (hMSCs) can be induced to differentiate down osteogenic and adipogenic pathways by controlling their three-dimensional environment using tethered small-molecule chemical functional groups. Hydrogels were formed using sufficiently low concentrations of tether molecules to maintain constant physical characteristics, encapsulation of hMSCs in three dimensions prevented changes in cell morphology, and hMSCs were shown to differentiate in normal growth media, indicating that the small-molecule functional groups induced differentiation. To our knowledge, this is the first example where synthetic matrices are shown to control induction of multiple hMSC lineages purely through interactions with small-molecule chemical functional groups tethered to the hydrogel material. Strategies using simple chemistry to control complex biological processes would be particularly powerful as they could make production of therapeutic materials simpler, cheaper and more easily controlled.

  20. Small-Molecule Binding Aptamers: Selection Strategies, Characterization, and Applications

    PubMed Central

    Ruscito, Annamaria; DeRosa, Maria C.

    2016-01-01

    Aptamers are single-stranded, synthetic oligonucleotides that fold into 3-dimensional shapes capable of binding non-covalently with high affinity and specificity to a target molecule. They are generated via an in vitro process known as the Systematic Evolution of Ligands by EXponential enrichment, from which candidates are screened and characterized, and then used in various applications. These applications range from therapeutic uses to biosensors for target detection. Aptamers for small molecule targets such as toxins, antibiotics, molecular markers, drugs, and heavy metals will be the focus of this review. Their accurate detection is needed for the protection and wellbeing of humans and animals. However, the small molecular weights of these targets, including the drastic size difference between the target and the oligonucleotides, make it challenging to select, characterize, and apply aptamers for their detection. Thus, recent (since 2012) notable advances in small molecule aptamers, which have overcome some of these challenges, are presented here, while defining challenges that still exist are discussed. PMID:27242994

  1. Discovery of potent and selective small-molecule PAR-2 agonists.

    PubMed

    Seitzberg, Jimmi Gerner; Knapp, Anne Eeg; Lund, Birgitte Winther; Mandrup Bertozzi, Sine; Currier, Erika A; Ma, Jian-Nong; Sherbukhin, Vladimir; Burstein, Ethan S; Olsson, Roger

    2008-09-25

    Proteinase activated receptor-2 plays a crucial role in a wide variety of conditions with a strong inflammatory component. We present the discovery and characterization of two structurally different, potent, selective, and metabolically stable small-molecule PAR-2 agonists. These ligands may be useful as pharmacological tools for elucidating the complex physiological role of the PAR-2 receptors as well as for the development of PAR-2 antagonists.

  2. NMR structure calculation for all small molecule ligands and non-standard residues from the PDB Chemical Component Dictionary.

    PubMed

    Yilmaz, Emel Maden; Güntert, Peter

    2015-09-01

    An algorithm, CYLIB, is presented for converting molecular topology descriptions from the PDB Chemical Component Dictionary into CYANA residue library entries. The CYANA structure calculation algorithm uses torsion angle molecular dynamics for the efficient computation of three-dimensional structures from NMR-derived restraints. For this, the molecules have to be represented in torsion angle space with rotations around covalent single bonds as the only degrees of freedom. The molecule must be given a tree structure of torsion angles connecting rigid units composed of one or several atoms with fixed relative positions. Setting up CYANA residue library entries therefore involves, besides straightforward format conversion, the non-trivial step of defining a suitable tree structure of torsion angles, and to re-order the atoms in a way that is compatible with this tree structure. This can be done manually for small numbers of ligands but the process is time-consuming and error-prone. An automated method is necessary in order to handle the large number of different potential ligand molecules to be studied in drug design projects. Here, we present an algorithm for this purpose, and show that CYANA structure calculations can be performed with almost all small molecule ligands and non-standard amino acid residues in the PDB Chemical Component Dictionary.

  3. Functional porous composites by blending with solution-processable molecular pores.

    PubMed

    Jiang, S; Chen, L; Briggs, M E; Hasell, T; Cooper, A I

    2016-05-25

    We present a simple method for rendering non-porous materials porous by solution co-processing with organic cage molecules. This method can be used both for small functional molecules and for polymers, thus creating porous composites by molecular blending, rather than the more traditional approach of supporting functional molecules on pre-frabricated porous supports.

  4. Engineered kinesin motor proteins amenable to small-molecule inhibition

    PubMed Central

    Engelke, Martin F.; Winding, Michael; Yue, Yang; Shastry, Shankar; Teloni, Federico; Reddy, Sanjay; Blasius, T. Lynne; Soppina, Pushpanjali; Hancock, William O.; Gelfand, Vladimir I.; Verhey, Kristen J.

    2016-01-01

    The human genome encodes 45 kinesin motor proteins that drive cell division, cell motility, intracellular trafficking and ciliary function. Determining the cellular function of each kinesin would benefit from specific small-molecule inhibitors. However, screens have yielded only a few specific inhibitors. Here we present a novel chemical-genetic approach to engineer kinesin motors that can carry out the function of the wild-type motor yet can also be efficiently inhibited by small, cell-permeable molecules. Using kinesin-1 as a prototype, we develop two independent strategies to generate inhibitable motors, and characterize the resulting inhibition in single-molecule assays and in cells. We further apply these two strategies to create analogously inhibitable kinesin-3 motors. These inhibitable motors will be of great utility to study the functions of specific kinesins in a dynamic manner in cells and animals. Furthermore, these strategies can be used to generate inhibitable versions of any motor protein of interest. PMID:27045608

  5. Detecting ordered small molecule drug aggregates in live macrophages: a multi-parameter microscope image data acquisition and analysis strategy

    PubMed Central

    Rzeczycki, Phillip; Yoon, Gi Sang; Keswani, Rahul K.; Sud, Sudha; Stringer, Kathleen A.; Rosania, Gus R.

    2017-01-01

    Following prolonged administration, certain orally bioavailable but poorly soluble small molecule drugs are prone to precipitate out and form crystal-like drug inclusions (CLDIs) within the cells of living organisms. In this research, we present a quantitative multi-parameter imaging platform for measuring the fluorescence and polarization diattenuation signals of cells harboring intracellular CLDIs. To validate the imaging system, the FDA-approved drug clofazimine (CFZ) was used as a model compound. Our results demonstrated that a quantitative multi-parameter microscopy image analysis platform can be used to study drug sequestering macrophages, and to detect the formation of ordered molecular aggregates formed by poorly soluble small molecule drugs in animals. PMID:28270989

  6. Detecting ordered small molecule drug aggregates in live macrophages: a multi-parameter microscope image data acquisition and analysis strategy.

    PubMed

    Rzeczycki, Phillip; Yoon, Gi Sang; Keswani, Rahul K; Sud, Sudha; Stringer, Kathleen A; Rosania, Gus R

    2017-02-01

    Following prolonged administration, certain orally bioavailable but poorly soluble small molecule drugs are prone to precipitate out and form crystal-like drug inclusions (CLDIs) within the cells of living organisms. In this research, we present a quantitative multi-parameter imaging platform for measuring the fluorescence and polarization diattenuation signals of cells harboring intracellular CLDIs. To validate the imaging system, the FDA-approved drug clofazimine (CFZ) was used as a model compound. Our results demonstrated that a quantitative multi-parameter microscopy image analysis platform can be used to study drug sequestering macrophages, and to detect the formation of ordered molecular aggregates formed by poorly soluble small molecule drugs in animals.

  7. DBDA as a Novel Matrix for the Analyses of Small Molecules and Quantification of Fatty Acids by Negative Ion MALDI-TOF MS

    NASA Astrophysics Data System (ADS)

    Ling, Ling; Li, Ying; Wang, Sheng; Guo, Liming; Xiao, Chunsheng; Chen, Xuesi; Guo, Xinhua

    2018-01-01

    Matrix interference ions in low mass range has always been a concern when using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to analyze small molecules (<500 Da). In this work, a novel matrix, N1,N4-dibenzylidenebenzene-1,4-diamine (DBDA) was synthesized for the analyses of small molecules by negative ion MALDI-TOF MS. Notably, only neat ions ([M-H]-) of fatty acids without matrix interference appeared in the mass spectra and the limit of detection (LOD) reached 0.3 fmol. DBDA also has great performance towards other small molecules such as amino acids, peptides, and nucleotide. Furthermore, with this novel matrix, the free fatty acids in serum were quantitatively analyzed based on the correlation curves with correlation coefficient of 0.99. In addition, UV-Vis experiments and molecular orbital calculations were performed to explore mechanism about DBDA used as matrix in the negative ion mode. The present work shows that the DBDA matrix is a highly sensitive matrix with few interference ions for analysis of small molecules. Meanwhile, DBDA is able to precisely quantify the fatty acids in real biological samples. [Figure not available: see fulltext.

  8. Novel Inhibitors of Protein-Protein Interaction for Prostate Cancer Therapy

    DTIC Science & Technology

    2012-04-01

    34. 4. Basu HS, Thompson TA, Church DR, Clower CC, Mehraein-Ghomi F, Amlong CA, Martin CT, Woster PM, Lindstrom MJ, Wilding G. A small molecule...present data on drug-like small molecule inhibitors of the AR-JunD interaction that initiates this ROS-generating pathway in PCa. A novel high throughput...average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data

  9. Elucidation of Proton-Assisted Fluxionality in Transition-Metal Oxide Clusters

    NASA Astrophysics Data System (ADS)

    Ramabhadran, Raghunath O.; Mayhall, Nicholas J.; Becher, Edwin L. Becher, Iii; Chowdhury, Arefin; Raghavachari, Krishnan

    2012-06-01

    The phenomenon of fluxionality in the reactions of transition-metal oxide clusters provides many opportunities in various industrial and catalytic processes. We present an electronic structure investigation of the fluxionality pathways when anionic W3O6- and Mo3O6- clusters react with three small molecules - water, ammonia and hydrogen sulfide. The presentation features a detailed understanding of (a) how the fluxionality pathway occurs and (b) the various factors that affect the fluxionality pathway - such as the metal, different spin-states and the nature of the non-metal in the reacting small molecule.

  10. Large-Scale Validation of Mixed-Solvent Simulations to Assess Hotspots at Protein-Protein Interaction Interfaces.

    PubMed

    Ghanakota, Phani; van Vlijmen, Herman; Sherman, Woody; Beuming, Thijs

    2018-04-23

    The ability to target protein-protein interactions (PPIs) with small molecule inhibitors offers great promise in expanding the druggable target space and addressing a broad range of untreated diseases. However, due to their nature and function of interacting with protein partners, PPI interfaces tend to extend over large surfaces without the typical pockets of enzymes and receptors. These features present unique challenges for small molecule inhibitor design. As such, determining whether a particular PPI of interest could be pursued with a small molecule discovery strategy requires an understanding of the characteristics of the PPI interface and whether it has hotspots that can be leveraged by small molecules to achieve desired potency. Here, we assess the ability of mixed-solvent molecular dynamic (MSMD) simulations to detect hotspots at PPI interfaces. MSMD simulations using three cosolvents (acetonitrile, isopropanol, and pyrimidine) were performed on a large test set of 21 PPI targets that have been experimentally validated by small molecule inhibitors. We compare MSMD, which includes explicit solvent and full protein flexibility, to a simpler approach that does not include dynamics or explicit solvent (SiteMap) and find that MSMD simulations reveal additional information about the characteristics of these targets and the ability for small molecules to inhibit the PPI interface. In the few cases were MSMD simulations did not detect hotspots, we explore the shortcomings of this technique and propose future improvements. Finally, using Interleukin-2 as an example, we highlight the advantage of the MSMD approach for detecting transient cryptic druggable pockets that exists at PPI interfaces.

  11. Potential interstellar noble gas molecules: ArOH+ and NeOH+ rovibrational analysis from quantum chemical quartic force fields

    NASA Astrophysics Data System (ADS)

    Theis, Riley A.; Fortenberry, Ryan C.

    2016-03-01

    The discovery of ArH+ in the interstellar medium has shown that noble gas chemistry may be of more chemical significance than previously believed. The present work extends the known chemistry of small noble gas molecules to NeOH+ and ArOH+. Besides their respective neonium and argonium diatomic cation cousins, these hydroxyl cation molecules are the most stable small noble gas molecules analyzed of late. ArOH+ is once again more stable than the neon cation, but both are well-behaved enough for a complete quartic force field analysis of their rovibrational properties. The Ar-O bond in ArOH+ , for instance, is roughly three-quarters of the strength of the Ar-H bond in ArH+ highlighting the rigidity of this system. The rotational constants, geometries, and vibrational frequencies for both molecules and their various isotopologues are computed from ab initio quantum chemical theory at high-level, and it is shown that these cations may form in regions where peroxy or weakly-bound alcohols may be present. The resulting data should be of significant assistance for the laboratory or observational analysis of these potential interstellar molecules.

  12. Oligo-branched peptides for tumor targeting: from magic bullets to magic forks.

    PubMed

    Falciani, Chiara; Pini, Alessandro; Bracci, Luisa

    2009-02-01

    Selective targeting of tumor cells is the final goal of research and drug discovery for cancer diagnosis, imaging and therapy. After the invention of hybridoma technology, the concept of magic bullet was introduced into the field of oncology, referring to selective killing of tumor cells, by specific antibodies. More recently, small molecules and peptides have also been proposed as selective targeting agents. We analyze the state of the art of tumor-selective agents that are presently available and tested in clinical settings. A novel approach based on 'armed' oligo-branched peptides as tumor targeting agents, is discussed and compared with existing tumor-selective therapies mediated by antibodies, small molecules or monomeric peptides. Oligo-branched peptides could be novel drugs that combine the advantages of antibodies and small molecules.

  13. MARS: bringing the automation of small-molecule bioanalytical sample preparations to a new frontier.

    PubMed

    Li, Ming; Chou, Judy; Jing, Jing; Xu, Hui; Costa, Aldo; Caputo, Robin; Mikkilineni, Rajesh; Flannelly-King, Shane; Rohde, Ellen; Gan, Lawrence; Klunk, Lewis; Yang, Liyu

    2012-06-01

    In recent years, there has been a growing interest in automating small-molecule bioanalytical sample preparations specifically using the Hamilton MicroLab(®) STAR liquid-handling platform. In the most extensive work reported thus far, multiple small-molecule sample preparation assay types (protein precipitation extraction, SPE and liquid-liquid extraction) have been integrated into a suite that is composed of graphical user interfaces and Hamilton scripts. Using that suite, bioanalytical scientists have been able to automate various sample preparation methods to a great extent. However, there are still areas that could benefit from further automation, specifically, the full integration of analytical standard and QC sample preparation with study sample extraction in one continuous run, real-time 2D barcode scanning on the Hamilton deck and direct Laboratory Information Management System database connectivity. We developed a new small-molecule sample-preparation automation system that improves in all of the aforementioned areas. The improved system presented herein further streamlines the bioanalytical workflow, simplifies batch run design, reduces analyst intervention and eliminates sample-handling error.

  14. The fabrication of small molecule organic light-emitting diode pixels by laser-induced forward transfer

    NASA Astrophysics Data System (ADS)

    Shaw-Stewart, J. R. H.; Mattle, T.; Lippert, T. K.; Nagel, M.; Nüesch, F. A.; Wokaun, A.

    2013-01-01

    Laser-induced forward transfer (LIFT) is a versatile organic light-emitting diode (OLED) pixel deposition process, but has hitherto been applied exclusively to polymeric materials. Here, a modified LIFT process has been used to fabricate small molecule Alq3 organic light-emitting diodes (SMOLEDs). Small molecule thin films are considerably more mechanically brittle than polymeric thin films, which posed significant challenges for LIFT of these materials. The LIFT process presented here uses a polymeric dynamic release layer, a reduced environmental pressure, and a well-defined receiver-donor gap. The Alq3 pixels demonstrate good morphology and functionality, even when compared to conventionally fabricated OLEDs. The Alq3 SMOLED pixel performances show a significant amount of fluence dependence, not observed with polymerical OLED pixels made in previous studies. A layer of tetrabutyl ammonium hydroxide has been deposited on top of the aluminium cathode, as part of the donor substrate, to improve electron injection to the Alq3, by over 600%. These results demonstrate that this variant of LIFT is applicable for the deposition of functional small molecule OLEDs as well as polymeric OLEDs.

  15. Eleventh international symposium on radiopharmaceutical chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This document contains abstracts of papers which were presented at the Eleventh International Symposium on Radiopharmaceutical Chemistry. Sessions included: radiopharmaceuticals for the dopaminergic system, strategies for the production and use of labelled reactive small molecules, radiopharmaceuticals for measuring metabolism, radiopharmaceuticals for the serotonin and sigma receptor systems, labelled probes for molecular biology applications, radiopharmaceuticals for receptor systems, radiopharmaceuticals utilizing coordination chemistry, radiolabelled antibodies, radiolabelling methods for small molecules, analytical techniques in radiopharmaceutical chemistry, and analytical techniques in radiopharmaceutical chemistry.

  16. Observing and understanding the ultrafast photochemistry in small molecules: applications to sunscreens.

    PubMed

    Baker, Lewis A; Stavros, Vasilios G

    2016-09-01

    In this review, we discuss the importance of biological and artificial photoprotection against overexposure to harmful ultraviolet radiation. Transient electronic and transient vibrational absorption spectroscopies are highlighted as important tools in understanding the energy transfer in small molecules, with a focus on the application to commercial sunscreens with representative examples given. Oxybenzone, a common ingredient in commercial sunscreens and sinapoyl malate, a biological sunscreen in plant leaves are presented as case studies.

  17. Data-driven high-throughput prediction of the 3-D structure of small molecules: review and progress. A response to the letter by the Cambridge Crystallographic Data Centre.

    PubMed

    Baldi, Pierre

    2011-12-27

    A response is presented to sentiments expressed in "Data-Driven High-Throughput Prediction of the 3-D Structure of Small Molecules: Review and Progress. A Response from The Cambridge Crystallographic Data Centre", recently published in the Journal of Chemical Information and Modeling, (1) which may give readers a misleading impression regarding significant impediments to scientific research posed by the CCDC.

  18. Ab initio calculation of hyperfine splitting constants of molecules

    NASA Astrophysics Data System (ADS)

    Ohta, K.; Nakatsuji, H.; Hirao, K.; Yonezawa, T.

    1980-08-01

    Hyperfine splitting (hfs) constants of molecules, methyl, ethyl, vinyl, allyl, cyclopropyl, formyl, O3-, NH2, NO2, and NF2 radicals have been calculated by the pseudo-orbital (PO) theory, the unrestricted HF (UHF), projected UHF (PUHF) and single excitation (SE) CI theories. The pseudo-orbital (PO) theory is based on the symmetry-adapted-cluster (SAC) expansion proposed previously. Several contractions of the Gaussian basis sets of double-zeta accuracy have been examined. The UHF results were consistently too large to compare with experiments and the PUHF results were too small. For molecules studied here, the PO theory and SECI theory gave relatively close results. They were in fair agreement with experiments. The first-order spin-polarization self-consistency effect, which was shown to be important for atoms, is relatively small for the molecules. The present result also shows an importance of eliminating orbital-transformation dependence from conventional first-order perturbation calculations. The present calculations have explained well several important variations in the experimental hfs constants.

  19. Small-angle X-ray scattering probe of intermolecular interaction in red blood cells

    NASA Astrophysics Data System (ADS)

    Liu, Guan-Fen; Wang, We-Jia; Xu, Jia-Hua; Dong, Yu-Hui

    2015-03-01

    With high concentrations of hemoglobin (Hb) in red blood cells, self-interactions among these molecules could increase the propensities of their polymerization and aggregation. In the present work, high concentration Hb in solution and red blood cells were analyzed by small-angle X-ray scattering. Calculation of the effective structure factor indicates that the interaction of Hb molecules is the same when they are crowded together in both the cell and physiological saline. The Hb molecules stay individual without the formation of aggregates and clusters in cells. Supported by National Basic Research Program of China (2009CB918600) and National Natural Science Foundation of China (10979005)

  20. Recent advances in small molecule OLED-on-silicon microdisplays

    NASA Astrophysics Data System (ADS)

    Ghosh, Amalkumar P.; Ali, Tariq A.; Khayrullin, Ilyas; Vazan, Fridrich; Prache, Olivier F.; Wacyk, Ihor

    2009-08-01

    High resolution OLED-on-silicon microdisplay technology is unique and challenging since it requires very small subpixel dimensions (~ 2-5 microns). eMagin's OLED microdisplay is based on white top emitter architecture using small molecule organic materials. The devices are fabricated using high Tg materials. The devices are hermetically sealed with vacuum deposited thin film layers. LCD-type color filters are patterned using photolithography methods to generate primary R, G, B colors. Results of recent improvements in the OLED-on-silicon microdisplay technology, with emphasis on efficiencies, lifetimes, grey scale and CIE color coordinates for SVGA and SXGA resolution microdisplays is presented.

  1. Salting Constants of Small Organic Molecules in Aerosol-Relevant Salts and Application to Aerosol Formation in the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Waxman, E.; Carlton, A. M. G.; Ziemann, P. J.; Volkamer, R. M.

    2014-12-01

    Secondary organic aerosol (SOA) formation from small water-soluble molecules such as glyoxal and methyl glyoxal is a topic of emerging interest. Results from recent field campaigns, e.g. Waxman et al. (2013, GRL) and Knote et al. (2014, ACP), show that these molecules can form significant SOA mass as a result of 'salting-in'. Salting-in happens when a molecule's solubility increases with salt concentration and salting-out is the reverse. Salting effects modify the solubility exponentially with increasing salt concentration, and thus the effective Henry's law constant can strongly modify partitioning, and multiphase chemical reaction rates in aerosol water. Moreover, the solubility in aerosol water cannot easily inferred based on the solubility in cloud water, as the salting effects could change the solubility by a factor of 104 or more. In this work, we have devised and applied a novel experimental setup to measure salting constants using an ion trap mass spectrometer. We focus on small, water soluble molecules like methyl glyoxal and similar compounds and measure salting constants for aerosol-relevant salts including ammonium sulfate, ammonium nitrate, and sodium chloride. The Setschenow salting-constant values are then used to parameterize the effects of salting in CMAQ. We present a series of sensitivity studies of the effects that inorganic aerosols have on the SOA formation from small soluble molecules in the southeastern United States.

  2. Molecular targets for small-molecule modulators of circadian clocks

    PubMed Central

    He, Baokun; Chen, Zheng

    2016-01-01

    Background Circadian clocks are endogenous timing systems that regulate various aspects of mammalian metabolism, physiology and behavior. Traditional chronotherapy refers to the administration of drugs in a defined circadian time window to achieve optimal pharmacokinetic and therapeutic efficacies. In recent years, substantial efforts have been dedicated to developing novel small-molecule modulators of circadian clocks. Methods Here, we review the recent progress in the identification of molecular targets of small-molecule clock modulators and their efficacies in clock-related disorders. Specifically, we examine the clock components and regulatory factors as possible molecular targets of small molecules, and we review several key clock-related disorders as promising venues for testing the preventive/therapeutic efficacies of these small molecules. Finally, we also discuss circadian regulation of drug metabolism. Results Small molecules can modulate the period, phase and/or amplitude of the circadian cycle. Core clock proteins, nuclear hormone receptors, and clock-related kinases and other epigenetic regulators are promising molecular targets for small molecules. Through these targets small molecules exert protective effects against clock-related disorders including the metabolic syndrome, immune disorders, sleep disorders and cancer. Small molecules can also modulate circadian drug metabolism and response to existing therapeutics. Conclusion Small-molecule clock modulators target clock components or diverse cellular pathways that functionally impinge upon the clock. Target identification of new small-molecule modulators will deepen our understanding of key regulatory nodes in the circadian network. Studies of clock modulators will facilitate their therapeutic applications, alone or in combination, for clock-related diseases. PMID:26750111

  3. Vibronic coupling simulations for linear and nonlinear optical processes: Simulation results

    NASA Astrophysics Data System (ADS)

    Silverstein, Daniel W.; Jensen, Lasse

    2012-02-01

    A vibronic coupling model based on time-dependent wavepacket approach is applied to simulate linear optical processes, such as one-photon absorbance and resonance Raman scattering, and nonlinear optical processes, such as two-photon absorbance and resonance hyper-Raman scattering, on a series of small molecules. Simulations employing both the long-range corrected approach in density functional theory and coupled cluster are compared and also examined based on available experimental data. Although many of the small molecules are prone to anharmonicity in their potential energy surfaces, the harmonic approach performs adequately. A detailed discussion of the non-Condon effects is illustrated by the molecules presented in this work. Linear and nonlinear Raman scattering simulations allow for the quantification of interference between the Franck-Condon and Herzberg-Teller terms for different molecules.

  4. Ligand-regulated peptide aptamers.

    PubMed

    Miller, Russell A

    2009-01-01

    The peptide aptamer approach employs high-throughput selection to identify members of a randomized peptide library displayed from a scaffold protein by virtue of their interaction with a target molecule. Extending this approach, we have developed a peptide aptamer scaffold protein that can impart small-molecule control over the aptamer-target interaction. This ligand-regulated peptide (LiRP) scaffold, consisting of the protein domains FKBP12, FRB, and GST, binds to the cell-permeable small-molecule rapamycin and the binding of this molecule can prevent the interaction of the randomizable linker region connecting FKBP12 with FRB. Here we present a detailed protocol for the creation of a peptide aptamer plasmid library, selection of peptide aptamers using the LiRP scaffold in a yeast two-hybrid system, and the screening of those peptide aptamers for a ligand-regulated interaction.

  5. Recent advances in developing small molecules targeting RNA.

    PubMed

    Guan, Lirui; Disney, Matthew D

    2012-01-20

    RNAs are underexploited targets for small molecule drugs or chemical probes of function. This may be due, in part, to a fundamental lack of understanding of the types of small molecules that bind RNA specifically and the types of RNA motifs that specifically bind small molecules. In this review, we describe recent advances in the development and design of small molecules that bind to RNA and modulate function that aim to fill this void.

  6. Remote detection of explosives using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Fulton, Jack

    2011-05-01

    Stand-off detection of potentially hazardous small molecules at distances that allow the user to be safe has many applications, including explosives and chemical threats. The Naval Surface Warfare Center, Crane Division, with EYZtek, Inc. of Ohio, developed a prototype stand-off, eye-safe Raman spectrometer. With a stand-off distance greater than twenty meters and scanning optics, this system has the potential of addressing particularly difficult challenges in small molecule detection. An overview of the system design and desired application space is presented.

  7. Improved Dye Stability in Single-Molecule Fluorescence Experiments

    NASA Astrophysics Data System (ADS)

    EcheverrÍa Aitken, Colin; Marshall, R. Andrew; Pugi, Joseph D.

    Complex biological systems challenge existing single-molecule methods. In particular, dye stability limits observation time in singlemolecule fluorescence applications. Current approaches to improving dye performance involve the addition of enzymatic oxygen scavenging systems and small molecule additives. We present an enzymatic oxygen scavenging system that improves dye stability in single-molecule experiments. Compared to the currently-employed glucose-oxidase/catalase system, the protocatechuate-3,4-dioxygenase system achieves lower dissolved oxygen concentration and stabilizes single Cy3, Cy5, and Alexa488 fluorophores. Moreover, this system possesses none of the limitations associated with the glucose oxidase/catalase system. We also tested the effects of small molecule additives in this system. Biological reducing agents significantly destabilize the Cy5 fluorophore as a function of reducing potential. In contrast, anti-oxidants stabilize the Cy3 and Alexa488 fluorophores. We recommend use of the protocatechuate-3,4,-dioxygenase system with antioxidant additives, and in the absence of biological reducing agents. This system should have wide application to single-molecule fluorescence experiments.

  8. Development of small bisquaternary cholinesterase inhibitors as drugs for pre-treatment of nerve agent poisonings

    PubMed Central

    Kuca, Kamil; Karasova, Jana Zdarova; Soukup, Ondrej; Kassa, Jiri; Novotna, Eva; Sepsova, Vendula; Horova, Anna; Pejchal, Jaroslav; Hrabinova, Martina; Vodakova, Eva; Jun, Daniel; Nepovimova, Eugenie; Valis, Martin; Musilek, Kamil

    2018-01-01

    Background Intoxication by nerve agents could be prevented by using small acetylcholinesterase inhibitors (eg, pyridostigmine) for potentially exposed personnel. However, the serious side effects of currently used drugs led to research of novel potent molecules for prophylaxis of organophosphorus intoxication. Methods The molecular design, molecular docking, chemical synthesis, in vitro methods (enzyme inhibition, cytotoxicity, and nicotinic receptors modulation), and in vivo methods (acute toxicity and prophylactic effect) were used to study bispyridinium, bisquinolinium, bisisoquinolinium, and pyridinium-quinolinium/isoquinolinium molecules presented in this study. Results The studied molecules showed non-competitive inhibitory ability towards human acetylcholinesterase in vitro that was further confirmed by molecular modelling studies. Several compounds were selected for further studies. First, their cytotoxicity, nicotinic receptors modulation, and acute toxicity (lethal dose for 50% of laboratory animals [LD50]; mice and rats) were tested to evaluate their safety with promising results. Furthermore, their blood levels were measured to select the appropriate time for prophylactic administration. Finally, the protective ratio of selected compounds against soman-induced toxicity was determined when selected compounds were found similarly potent or only slightly better to standard pyridostigmine. Conclusion The presented small bisquaternary molecules did not show overall benefit in prophylaxis of soman-induced in vivo toxicity. PMID:29563775

  9. A small molecule inhibitor for ATPase activity of Hsp70 and Hsc70 enhances the immune response to protein antigens

    NASA Astrophysics Data System (ADS)

    Baek, Kyung-Hwa; Zhang, Haiying; Lee, Bo Ryeong; Kwon, Young-Guen; Ha, Sang-Jun; Shin, Injae

    2015-12-01

    The ATPase activities of Hsp70 and Hsc70 are known to be responsible for regulation of various biological processes. However, little is known about the roles of Hsp70 and Hsc70 in modulation of immune responses to antigens. In the present study, we investigated the effect of apoptozole (Az), a small molecule inhibitor of Hsp70 and Hsc70, on immune responses to protein antigens. The results show that mice administered with both protein antigen and Az produce more antibodies than those treated with antigen alone, showing that Az enhances immune responses to administered antigens. Treatment of mice with Az elicits production of antibodies with a high IgG2c/IgG1 ratio and stimulates the release of Th1 and Th2-type cytokines, suggesting that Az activates the Th1 and Th2 immune responses. The observations made in the present study suggest that inhibition of Hsp70 and Hsc70 activities could be a novel strategy designing small molecule-based adjuvants in protein vaccines.

  10. Clustering of water molecules in ultramicroporous carbon: In-situ small-angle neutron scattering

    DOE PAGES

    Bahadur, Jitendra; Contescu, Cristian I.; Rai, Durgesh K.; ...

    2016-10-19

    The adsorption of water is central to most of the applications of microporous carbon as adsorbent material. We report early kinetics of water adsorption in the microporous carbon using in-situ small-angle neutron scattering. It is observed that adsorption of water occurs via cluster formation of molecules. Interestingly, the cluster size remains constant throughout the adsorption process whereas number density of clusters increases with time. The role of surface chemistry of microporous carbon on the early kinetics of adsorption process was also investigated. Lastly, the present study provides direct experimental evidence for cluster assisted adsorption of water molecules in microporous carbonmore » (Do-Do model).« less

  11. Reaction-based small-molecule fluorescent probes for chemoselective bioimaging

    PubMed Central

    Chan, Jefferson; Dodani, Sheel C.; Chang, Christopher J.

    2014-01-01

    The dynamic chemical diversity of elements, ions and molecules that form the basis of life offers both a challenge and an opportunity for study. Small-molecule fluorescent probes can make use of selective, bioorthogonal chemistries to report on specific analytes in cells and in more complex biological specimens. These probes offer powerful reagents to interrogate the physiology and pathology of reactive chemical species in their native environments with minimal perturbation to living systems. This Review presents a survey of tools and tactics for using such probes to detect biologically important chemical analytes. We highlight design criteria for effective chemical tools for use in biological applications as well as gaps for future exploration. PMID:23174976

  12. Improving the efficiency of branch-and-bound complete-search NMR assignment using the symmetry of molecules and spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernal, Andrés; Patiny, Luc; Castillo, Andrés M.

    2015-02-21

    Nuclear magnetic resonance (NMR) assignment of small molecules is presented as a typical example of a combinatorial optimization problem in chemical physics. Three strategies that help improve the efficiency of solution search by the branch and bound method are presented: 1. reduction of the size of the solution space by resort to a condensed structure formula, wherein symmetric nuclei are grouped together; 2. partitioning of the solution space based on symmetry, that becomes the basis for an efficient branching procedure; and 3. a criterion of selection of input restrictions that leads to increased gaps between branches and thus faster pruningmore » of non-viable solutions. Although the examples chosen to illustrate this work focus on small-molecule NMR assignment, the results are generic and might help solving other combinatorial optimization problems.« less

  13. Sub-lethal activity of small molecules from natural sources and their synthetic derivatives against biofilm forming nosocomial pathogens.

    PubMed

    Villa, Federica; Villa, Stefania; Gelain, Arianna; Cappitelli, Francesca

    2013-01-01

    Nowadays, the patient safety is seriously jeopardized by the emergence and spread of nosocomial pathogens in the form of biofilm that is resistant to traditional and affordable antimicrobials. Although advances in organic synthesis have extended the lifetime of classic antibiotics through synthetic modifications, the search of innovative antibiofilm compounds from natural sources can provide new templates, novel targets and unique mechanisms that should have advantages over known antimicrobial agents. Testing sub-lethal concentrations of crude extracts and/or isolated compounds from plants and microorganisms is critical to acting on mechanisms subtler than the killing activity, e.g. those influencing the multicellular behavior, offering an elegant way to develop novel antimicrobial-free antibiofilm strategies. Herein we discussed the search and biological activity of small molecules from natural sources and their synthetic derivatives able to modulate biofilm genesis of nosocomial pathogens through non-microbicidal mechanisms (sub-lethal concentrations). The present work offers an overview about the approaches applied to the discovery of lead small molecules including a) conventional drug design methods like screening of chemical compounds obtained from nature and b) computer- aided drug design approaches. Finally, a classification (not exhaustive but representative) based on the natural origin of small molecules and their synthetic derivatives was reported. The information presented in this review should be of interest to a broad range of disciplines and represents an effort to summarize experimental research and advances in this field.

  14. Interspecies scaling and prediction of human clearance: comparison of small- and macro-molecule drugs

    PubMed Central

    Huh, Yeamin; Smith, David E.; Feng, Meihau Rose

    2014-01-01

    Human clearance prediction for small- and macro-molecule drugs was evaluated and compared using various scaling methods and statistical analysis.Human clearance is generally well predicted using single or multiple species simple allometry for macro- and small-molecule drugs excreted renally.The prediction error is higher for hepatically eliminated small-molecules using single or multiple species simple allometry scaling, and it appears that the prediction error is mainly associated with drugs with low hepatic extraction ratio (Eh). The error in human clearance prediction for hepatically eliminated small-molecules was reduced using scaling methods with a correction of maximum life span (MLP) or brain weight (BRW).Human clearance of both small- and macro-molecule drugs is well predicted using the monkey liver blood flow method. Predictions using liver blood flow from other species did not work as well, especially for the small-molecule drugs. PMID:21892879

  15. ForceGen 3D structure and conformer generation: from small lead-like molecules to macrocyclic drugs

    NASA Astrophysics Data System (ADS)

    Cleves, Ann E.; Jain, Ajay N.

    2017-05-01

    We introduce the ForceGen method for 3D structure generation and conformer elaboration of drug-like small molecules. ForceGen is novel, avoiding use of distance geometry, molecular templates, or simulation-oriented stochastic sampling. The method is primarily driven by the molecular force field, implemented using an extension of MMFF94s and a partial charge estimator based on electronegativity-equalization. The force field is coupled to algorithms for direct sampling of realistic physical movements made by small molecules. Results are presented on a standard benchmark from the Cambridge Crystallographic Database of 480 drug-like small molecules, including full structure generation from SMILES strings. Reproduction of protein-bound crystallographic ligand poses is demonstrated on four carefully curated data sets: the ConfGen Set (667 ligands), the PINC cross-docking benchmark (1062 ligands), a large set of macrocyclic ligands (182 total with typical ring sizes of 12-23 atoms), and a commonly used benchmark for evaluating macrocycle conformer generation (30 ligands total). Results compare favorably to alternative methods, and performance on macrocyclic compounds approaches that observed on non-macrocycles while yielding a roughly 100-fold speed improvement over alternative MD-based methods with comparable performance.

  16. Expedient construction of small molecule macroarrays via sequential palladium- and copper-mediated reactions and their ex situ biological testing.

    PubMed

    Frei, Reto; Breitbach, Anthony S; Blackwell, Helen E

    2012-05-01

    We report the highly efficient syntheses of a series of focused libraries in the small molecule macroarray format using Suzuki-Miyaura and copper-catalyzed azide-alkyne cycloaddition (or "click") reactions. The libraries were based on stilbene and triazole scaffolds, which are known to have a broad range of biological activities, including quorum-sensing (QS) modulation in bacteria. The library products were generated in parallel on the macroarray in extremely short reaction times (~10-20 min) and isolated in excellent purities. Biological testing of one macroarray library post-cleavage (ex situ) revealed several potent agonists of the QS receptor, LuxR, in Vibrio fischeri. These synthetic agonists, in contrast to others that we have reported, were only active in the presence of the native QS signal in V. fischeri, which is suggestive of a different mode of activity. Notably, the results presented herein showcase the ready compatibility of the macroarray platform with chemical reactions that are commonly utilized in small molecule probe and drug discovery today. As such, this work serves to expand the utility of the small molecule macroarray as a rapid and operationally straightforward approach toward the synthesis and screening of bioactive agents.

  17. 1,5-Diaminonaphthalene hydrochloride assisted laser desorption/ionization mass spectrometry imaging of small molecules in tissues following focal cerebral ischemia.

    PubMed

    Liu, Huihui; Chen, Rui; Wang, Jiyun; Chen, Suming; Xiong, Caiqiao; Wang, Jianing; Hou, Jian; He, Qing; Zhang, Ning; Nie, Zongxiu; Mao, Lanqun

    2014-10-21

    A sensitive analytical technique for visualizing small endogenous molecules simultaneously is of great significance for clearly elucidating metabolic mechanisms during pathological progression. In the present study, 1,5-naphthalenediamine (1,5-DAN) hydrochloride was prepared for matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) of small molecules in liver, brain, and kidneys from mice. Furthermore, 1,5-DAN hydrochloride assisted LDI MSI of small molecules in brain tissue of rats subjected to middle cerebral artery occlusion (MCAO) was carried out to investigate the altered metabolic pathways and mechanisms underlying the development of ischemic brain damage. Our results suggested that the newly prepared matrix possessed brilliant features including low cost, strong ultraviolet absorption, high salt tolerance capacity, and fewer background signals especially in the low mass range (typically m/z < 500), which permitted us to visualize the spatial distribution of a broad range of small molecule metabolites including metal ions, amino acids, carboxylic acids, nucleotide derivatives, peptide, and lipids simultaneously. Nineteen endogenous metabolites involved in metabolic networks such as ATP metabolism, tricarboxylic acid (TCA) cycle, glutamate-glutamine cycle, and malate-aspartate shuttle, together with metal ions and phospholipids as well as antioxidants underwent relatively obvious changes after 24 h of MCAO. The results were highly consistent with the data obtained by MRM MS analysis. These findings highlighted the promising potential of the organic salt matrix for application in the field of biomedical research.

  18. Using the QCM Biosensor-Based T7 Phage Display Combined with Bioinformatics Analysis for Target Identification of Bioactive Small Molecule.

    PubMed

    Takakusagi, Yoichi; Takakusagi, Kaori; Sugawara, Fumio; Sakaguchi, Kengo

    2018-01-01

    Identification of target proteins that directly bind to bioactive small molecule is of great interest in terms of clarifying the mode of action of the small molecule as well as elucidating the biological phenomena at the molecular level. Of the experimental technologies available, T7 phage display allows comprehensive screening of small molecule-recognizing amino acid sequence from the peptide libraries displayed on the T7 phage capsid. Here, we describe the T7 phage display strategy that is combined with quartz-crystal microbalance (QCM) biosensor for affinity selection platform and bioinformatics analysis for small molecule-recognizing short peptides. This method dramatically enhances efficacy and throughput of the screening for small molecule-recognizing amino acid sequences without repeated rounds of selection. Subsequent execution of bioinformatics programs allows combinatorial and comprehensive target protein discovery of small molecules with its binding site, regardless of protein sample insolubility, instability, or inaccessibility of the fixed small molecules to internally located binding site on larger target proteins when conventional proteomics approaches are used.

  19. Facilities for small-molecule crystallography at synchrotron sources.

    PubMed

    Barnett, Sarah A; Nowell, Harriott; Warren, Mark R; Wilcox, Andrian; Allan, David R

    2016-01-01

    Although macromolecular crystallography is a widely supported technique at synchrotron radiation facilities throughout the world, there are, in comparison, only very few beamlines dedicated to small-molecule crystallography. This limited provision is despite the increasing demand for beamtime from the chemical crystallography community and the ever greater overlap between systems that can be classed as either small macromolecules or large small molecules. In this article, a very brief overview of beamlines that support small-molecule single-crystal diffraction techniques will be given along with a more detailed description of beamline I19, a dedicated facility for small-molecule crystallography at Diamond Light Source.

  20. Systems Based Study of the Therapeutic Potential of Small Charged Molecules for the Inhibition of IL-1 Mediated Cartilage Degradation

    PubMed Central

    Kar, Saptarshi; Smith, David W.; Gardiner, Bruce S.; Grodzinsky, Alan J.

    2016-01-01

    Inflammatory cytokines are key drivers of cartilage degradation in post-traumatic osteoarthritis. Cartilage degradation mediated by these inflammatory cytokines has been extensively investigated using in vitro experimental systems. Based on one such study, we have developed a computational model to quantitatively assess the impact of charged small molecules intended to inhibit IL-1 mediated cartilage degradation. We primarily focus on the simplest possible computational model of small molecular interaction with the IL-1 system—direct binding of the small molecule to the active site on the IL-1 molecule itself. We first use the model to explore the uptake and release kinetics of the small molecule inhibitor by cartilage tissue. Our results show that negatively charged small molecules are excluded from the negatively charged cartilage tissue and have uptake kinetics in the order of hours. In contrast, the positively charged small molecules are drawn into the cartilage with uptake and release timescales ranging from hours to days. Using our calibrated computational model, we subsequently explore the effect of small molecule charge and binding constant on the rate of cartilage degradation. The results from this analysis indicate that the small molecules are most effective in inhibiting cartilage degradation if they are either positively charged and/or bind strongly to IL-1α, or both. Furthermore, our results showed that the cartilage structural homeostasis can be restored by the small molecule if administered within six days following initial tissue exposure to IL-1α. We finally extended the scope of the computational model by simulating the competitive inhibition of cartilage degradation by the small molecule. Results from this model show that small molecules are more efficient in inhibiting cartilage degradation by binding directly to IL-1α rather than binding to IL-1α receptors. The results from this study can be used as a template for the design and development of more pharmacologically effective osteoarthritis drugs, and to investigate possible therapeutic options. PMID:27977731

  1. Array Formatting of the Heat-Transfer Method (HTM) for the Detection of Small Organic Molecules by Molecularly Imprinted Polymers

    PubMed Central

    Wackers, Gideon; Vandenryt, Thijs; Cornelis, Peter; Kellens, Evelien; Thoelen, Ronald; De Ceuninck, Ward; Losada-Pérez, Patricia; van Grinsven, Bart; Peeters, Marloes; Wagner, Patrick

    2014-01-01

    In this work we present the first steps towards a molecularly imprinted polymer (MIP)-based biomimetic sensor array for the detection of small organic molecules via the heat-transfer method (HTM). HTM relies on the change in thermal resistance upon binding of the target molecule to the MIP-type receptor. A flow-through sensor cell was developed, which is segmented into four quadrants with a volume of 2.5 μL each, allowing four measurements to be done simultaneously on a single substrate. Verification measurements were conducted, in which all quadrants received a uniform treatment and all four channels exhibited a similar response. Subsequently, measurements were performed in quadrants, which were functionalized with different MIP particles. Each of these quadrants was exposed to the same buffer solution, spiked with different molecules, according to the MIP under analysis. With the flow cell design we could discriminate between similar small organic molecules and observed no significant cross-selectivity. Therefore, the MIP array sensor platform with HTM as a readout technique, has the potential to become a low-cost analysis tool for bioanalytical applications. PMID:24955945

  2. A Method for Selecting Structure-switching Aptamers Applied to a Colorimetric Gold Nanoparticle Assay

    PubMed Central

    Martin, Jennifer A.; Smith, Joshua E.; Warren, Mercedes; Chávez, Jorge L.; Hagen, Joshua A.; Kelley-Loughnane, Nancy

    2015-01-01

    Small molecules provide rich targets for biosensing applications due to their physiological implications as biomarkers of various aspects of human health and performance. Nucleic acid aptamers have been increasingly applied as recognition elements on biosensor platforms, but selecting aptamers toward small molecule targets requires special design considerations. This work describes modification and critical steps of a method designed to select structure-switching aptamers to small molecule targets. Binding sequences from a DNA library hybridized to complementary DNA capture probes on magnetic beads are separated from nonbinders via a target-induced change in conformation. This method is advantageous because sequences binding the support matrix (beads) will not be further amplified, and it does not require immobilization of the target molecule. However, the melting temperature of the capture probe and library is kept at or slightly above RT, such that sequences that dehybridize based on thermodynamics will also be present in the supernatant solution. This effectively limits the partitioning efficiency (ability to separate target binding sequences from nonbinders), and therefore many selection rounds will be required to remove background sequences. The reported method differs from previous structure-switching aptamer selections due to implementation of negative selection steps, simplified enrichment monitoring, and extension of the length of the capture probe following selection enrichment to provide enhanced stringency. The selected structure-switching aptamers are advantageous in a gold nanoparticle assay platform that reports the presence of a target molecule by the conformational change of the aptamer. The gold nanoparticle assay was applied because it provides a simple, rapid colorimetric readout that is beneficial in a clinical or deployed environment. Design and optimization considerations are presented for the assay as proof-of-principle work in buffer to provide a foundation for further extension of the work toward small molecule biosensing in physiological fluids. PMID:25870978

  3. Computational mass spectrometry for small molecules

    PubMed Central

    2013-01-01

    The identification of small molecules from mass spectrometry (MS) data remains a major challenge in the interpretation of MS data. This review covers the computational aspects of identifying small molecules, from the identification of a compound searching a reference spectral library, to the structural elucidation of unknowns. In detail, we describe the basic principles and pitfalls of searching mass spectral reference libraries. Determining the molecular formula of the compound can serve as a basis for subsequent structural elucidation; consequently, we cover different methods for molecular formula identification, focussing on isotope pattern analysis. We then discuss automated methods to deal with mass spectra of compounds that are not present in spectral libraries, and provide an insight into de novo analysis of fragmentation spectra using fragmentation trees. In addition, this review shortly covers the reconstruction of metabolic networks using MS data. Finally, we list available software for different steps of the analysis pipeline. PMID:23453222

  4. Metabolon, Inc.

    PubMed

    Ryals, John; Lawton, Kay; Stevens, Daniel; Milburn, Michael

    2007-07-01

    Metabolon is an emerging technology company developing proprietary analytical methods and software for biomarker discovery using metabolomics. The company's aim is to measure all small molecules (<1500 Da) in a biological sample. These small-molecule compounds include biochemicals of cellular metabolism and xenobiotics from diet and environment. Our proprietary mLIMStrade mark system contains advanced metabolomic software and automated data-processing tools that use a variety of data-analysis and quality-control algorithms to convert raw mass-spectrometry data to identified, quantitated compounds. Metabolon's primary focus is a fee-for-service business that exploits this technology for pharmaceutical and biotechnology companies, with additional clients in the consumer goods, cosmetics and agricultural industries. Fee-for-service studies are often collaborations with groups that employ a variety of technologies for biomarker discovery. Metabolon's goal is to develop technology that will automatically analyze any sample for the small-molecule components present and become a standard technology for applications in health and related sciences.

  5. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor

    PubMed Central

    Wu, Chia-Yung; Roybal, Kole T.; Puchner, Elias M.; Onuffer, James; Lim, Wendell A.

    2016-01-01

    There is growing promise in using engineered cells as therapeutic agents. For example, synthetic Chimeric Antigen Receptors (CARs) can redirect T cells to recognize and eliminate tumor cells expressing specific antigens. Despite promising clinical results, excessive activity and poor control over such engineered T cells can cause severe toxicities. We present the design of “ON-switch” CARs that enable small molecule-control over T cell therapeutic functions, while still retaining antigen specificity. In these split receptors, antigen binding and intracellular signaling components only assemble in the presence of a heterodimerizing small molecule. This titratable pharmacologic regulation could allow physicians to precisely control the timing, location, and dosage of T cell activity, thereby mitigating toxicity. This work illustrates the potential of combining cellular engineering with orthogonal chemical tools to yield safer therapeutic cells that tightly integrate both cell autonomous recognition and user control. PMID:26405231

  6. The colibactin warhead crosslinks DNA

    NASA Astrophysics Data System (ADS)

    Vizcaino, Maria I.; Crawford, Jason M.

    2015-05-01

    Members of the human microbiota are increasingly being correlated to human health and disease states, but the majority of the underlying microbial metabolites that regulate host-microbe interactions remain largely unexplored. Select strains of Escherichia coli present in the human colon have been linked to the initiation of inflammation-induced colorectal cancer through an unknown small-molecule-mediated process. The responsible non-ribosomal peptide-polyketide hybrid pathway encodes ‘colibactin’, which belongs to a largely uncharacterized family of small molecules. Genotoxic small molecules from this pathway that are capable of initiating cancer formation have remained elusive due to their high instability. Guided by metabolomic analyses, here we employ a combination of NMR spectroscopy and bioinformatics-guided isotopic labelling studies to characterize the colibactin warhead, an unprecedented substituted spirobicyclic structure. The warhead crosslinks duplex DNA in vitro, providing direct experimental evidence for colibactin's DNA-damaging activity. The data support unexpected models for both colibactin biosynthesis and its mode of action.

  7. Inhibition of Protein-Protein Interactions and Signaling by Small Molecules

    NASA Astrophysics Data System (ADS)

    Freire, Ernesto

    2010-03-01

    Protein-protein interactions are at the core of cell signaling pathways as well as many bacterial and viral infection processes. As such, they define critical targets for drug development against diseases such as cancer, arthritis, obesity, AIDS and many others. Until now, the clinical inhibition of protein-protein interactions and signaling has been accomplished with the use of antibodies or soluble versions of receptor molecules. Small molecule replacements of these therapeutic agents have been extremely difficult to develop; either the necessary potency has been hard to achieve or the expected biological effect has not been obtained. In this presentation, we show that a rigorous thermodynamic approach that combines differential scanning calorimetry (DSC) and isothermal titration calorimetry (ITC) provides a unique platform for the identification and optimization of small molecular weight inhibitors of protein-protein interactions. Recent advances in the development of cell entry inhibitors of HIV-1 using this approach will be discussed.

  8. Antibody-enabled small-molecule drug discovery.

    PubMed

    Lawson, Alastair D G

    2012-06-29

    Although antibody-based therapeutics have become firmly established as medicines for serious diseases, the value of antibodies as tools in the early stages of small-molecule drug discovery is only beginning to be realized. In particular, antibodies may provide information to reduce risk in small-molecule drug discovery by enabling the validation of targets and by providing insights into the design of small-molecule screening assays. Moreover, antibodies can act as guides in the quest for small molecules that have the ability to modulate protein-protein interactions, which have traditionally only been considered to be tractable targets for biological drugs. The development of small molecules that have similar therapeutic effects to current biologics has the potential to benefit a broader range of patients at earlier stages of disease.

  9. Sequence-Specific Affinity Chromatography of Bacterial Small Regulatory RNA-Binding Proteins from Bacterial Cells.

    PubMed

    Gans, Jonathan; Osborne, Jonathan; Cheng, Juliet; Djapgne, Louise; Oglesby-Sherrouse, Amanda G

    2018-01-01

    Bacterial small RNA molecules (sRNAs) are increasingly recognized as central regulators of bacterial stress responses and pathogenesis. In many cases, RNA-binding proteins are critical for the stability and function of sRNAs. Previous studies have adopted strategies to genetically tag an sRNA of interest, allowing isolation of RNA-protein complexes from cells. Here we present a sequence-specific affinity purification protocol that requires no prior genetic manipulation of bacterial cells, allowing isolation of RNA-binding proteins bound to native RNA molecules.

  10. Small Molecule Chemical Probes of MicroRNA Function

    PubMed Central

    Velagapudi, Sai Pradeep; Vummidi, Balayeshwanth R.; Disney, Matthew D.

    2015-01-01

    MicroRNAs (miRNAs) are small, non-coding RNAs that control protein expression. Aberrant miRNA expression has been linked to various human diseases, and thus miRNAs have been explored as diagnostic markers and therapeutic targets. Although it is challenging to target RNA with small molecules in general, there have been successful campaigns that have identified small molecule modulators of miRNA function by targeting various pathways. For example, small molecules that modulate transcription and target nuclease processing sites in miRNA precursors have been identified. Herein, we describe challenges in developing chemical probes that target miRNAs and highlight aspects of miRNA cellular biology elucidated by using small molecule chemical probes. We expect that this area will expand dramatically in the near future as strides are made to understand small molecule recognition of RNA from a fundamental perspective. PMID:25500006

  11. Medium-Bandgap Small-Molecule Donors Compatible with Both Fullerene and Nonfullerene Acceptors.

    PubMed

    Huo, Yong; Yan, Cenqi; Kan, Bin; Liu, Xiao-Fei; Chen, Li-Chuan; Hu, Chen-Xia; Lau, Tsz-Ki; Lu, Xinhui; Sun, Chun-Lin; Shao, Xiangfeng; Chen, Yongsheng; Zhan, Xiaowei; Zhang, Hao-Li

    2018-03-21

    Much effort has been devoted to the development of new donor materials for small-molecule organic solar cells due to their inherent advantages of well-defined molecular weight, easy purification, and good reproducibility in photovoltaic performance. Herein, we report two small-molecule donors that are compatible with both fullerene and nonfullerene acceptors. Both molecules consist of an (E)-1,2-di(thiophen-2-yl)ethane-substituted (TVT-substituted) benzo[1,2-b:4,5-b']dithiophene (BDT) as the central unit, and two rhodanine units as the terminal electron-withdrawing groups. The central units are modified with either alkyl side chains (DRBDT-TVT) or alkylthio side chains (DRBDT-STVT). Both molecules exhibit a medium bandgap with complementary absorption and proper energy level offset with typical acceptors like PC 71 BM and IDIC. The optimized devices show a decent power conversion efficiency (PCE) of 6.87% for small-molecule organic solar cells and 6.63% for nonfullerene all small-molecule organic solar cells. Our results reveal that rationally designed medium-bandgap small-molecule donors can be applied in high-performance small-molecule organic solar cells with different types of acceptors.

  12. Inforna 2.0: A Platform for the Sequence-Based Design of Small Molecules Targeting Structured RNAs.

    PubMed

    Disney, Matthew D; Winkelsas, Audrey M; Velagapudi, Sai Pradeep; Southern, Mark; Fallahi, Mohammad; Childs-Disney, Jessica L

    2016-06-17

    The development of small molecules that target RNA is challenging yet, if successful, could advance the development of chemical probes to study RNA function or precision therapeutics to treat RNA-mediated disease. Previously, we described Inforna, an approach that can mine motifs (secondary structures) within target RNAs, which is deduced from the RNA sequence, and compare them to a database of known RNA motif-small molecule binding partners. Output generated by Inforna includes the motif found in both the database and the desired RNA target, lead small molecules for that target, and other related meta-data. Lead small molecules can then be tested for binding and affecting cellular (dys)function. Herein, we describe Inforna 2.0, which incorporates all known RNA motif-small molecule binding partners reported in the scientific literature, a chemical similarity searching feature, and an improved user interface and is freely available via an online web server. By incorporation of interactions identified by other laboratories, the database has been doubled, containing 1936 RNA motif-small molecule interactions, including 244 unique small molecules and 1331 motifs. Interestingly, chemotype analysis of the compounds that bind RNA in the database reveals features in small molecule chemotypes that are privileged for binding. Further, this updated database expanded the number of cellular RNAs to which lead compounds can be identified.

  13. Mapping the Small Molecule Interactome by Mass Spectrometry.

    PubMed

    Flaxman, Hope A; Woo, Christina M

    2018-01-16

    Mapping small molecule interactions throughout the proteome provides the critical structural basis for functional analysis of their impact on biochemistry. However, translation of mass spectrometry-based proteomics methods to directly profile the interaction between a small molecule and the whole proteome is challenging because of the substoichiometric nature of many interactions, the diversity of covalent and noncovalent interactions involved, and the subsequent computational complexity associated with their spectral assignment. Recent advances in chemical proteomics have begun fill this gap to provide a structural basis for the breadth of small molecule-protein interactions in the whole proteome. Innovations enabling direct characterization of the small molecule interactome include faster, more sensitive instrumentation coupled to chemical conjugation, enrichment, and labeling methods that facilitate detection and assignment. These methods have started to measure molecular interaction hotspots due to inherent differences in local amino acid reactivity and binding affinity throughout the proteome. Measurement of the small molecule interactome is producing structural insights and methods for probing and engineering protein biochemistry. Direct structural characterization of the small molecule interactome is a rapidly emerging area pushing new frontiers in biochemistry at the interface of small molecules and the proteome.

  14. Size-independent neural networks based first-principles method for accurate prediction of heat of formation of fuels

    NASA Astrophysics Data System (ADS)

    Yang, GuanYa; Wu, Jiang; Chen, ShuGuang; Zhou, WeiJun; Sun, Jian; Chen, GuanHua

    2018-06-01

    Neural network-based first-principles method for predicting heat of formation (HOF) was previously demonstrated to be able to achieve chemical accuracy in a broad spectrum of target molecules [L. H. Hu et al., J. Chem. Phys. 119, 11501 (2003)]. However, its accuracy deteriorates with the increase in molecular size. A closer inspection reveals a systematic correlation between the prediction error and the molecular size, which appears correctable by further statistical analysis, calling for a more sophisticated machine learning algorithm. Despite the apparent difference between simple and complex molecules, all the essential physical information is already present in a carefully selected set of small molecule representatives. A model that can capture the fundamental physics would be able to predict large and complex molecules from information extracted only from a small molecules database. To this end, a size-independent, multi-step multi-variable linear regression-neural network-B3LYP method is developed in this work, which successfully improves the overall prediction accuracy by training with smaller molecules only. And in particular, the calculation errors for larger molecules are drastically reduced to the same magnitudes as those of the smaller molecules. Specifically, the method is based on a 164-molecule database that consists of molecules made of hydrogen and carbon elements. 4 molecular descriptors were selected to encode molecule's characteristics, among which raw HOF calculated from B3LYP and the molecular size are also included. Upon the size-independent machine learning correction, the mean absolute deviation (MAD) of the B3LYP/6-311+G(3df,2p)-calculated HOF is reduced from 16.58 to 1.43 kcal/mol and from 17.33 to 1.69 kcal/mol for the training and testing sets (small molecules), respectively. Furthermore, the MAD of the testing set (large molecules) is reduced from 28.75 to 1.67 kcal/mol.

  15. Influence of the adsorption geometry of PTCDA on Ag(111) on the tip-molecule forces in non-contact atomic force microscopy.

    PubMed

    Langewisch, Gernot; Falter, Jens; Schirmeisen, André; Fuchs, Harald

    2014-01-01

    Perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) adsorbed on a metal surface is a prototypical organic-anorganic interface. In the past, scanning tunneling microscopy and scanning tunneling spectroscopy studies of PTCDA adsorbed on Ag(111) have revealed differences in the electronic structure of the molecules depending on their adsorption geometry. In the work presented here, high-resolution 3D force spectroscopy measurements at cryogenic temperatures were performed on a surface area that contained a complete PTCDA unit cell with the two possible geometries. At small tip-molecule separations, deviations in the tip-sample forces were found between the two molecule orientations. These deviations can be explained by a different electron density in both cases. This result demonstrates the capability of 3D force spectroscopy to detect even small effects in the electronic properties of organic adsorbates.

  16. Small interfering ribonucleic acid induces liquid-to-ripple phase transformation in a phospholipid membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choubey, Amit; Nomura, Ken-ichi; Kalia, Rajiv K.

    Small interfering ribonucleic acid (siRNA) molecules play a pivotal role in silencing gene expression via the RNA interference mechanism. A key limitation to the widespread implementation of siRNA therapeutics is the difficulty of delivering siRNA-based drugs to cells. Here, we examine changes in the structure and dynamics of a dipalmitoylphosphatidylcholine bilayer in the presence of a siRNA molecule and mechanical barriers to siRNA transfection in the bilayer. Our all-atom molecular dynamics simulation shows that siRNA induces a liquid crystalline-to-ripple phase transformation in the bilayer. The ripple phase consists of a major region of non-interdigitated and a minor region of interdigitatedmore » lipid molecules with an intervening kink. In the ripple phase, hydrocarbon chains of lipid molecules have large compressive stresses, which present a considerable barrier to siRNA transfection.« less

  17. Small molecule chemical probes of microRNA function.

    PubMed

    Velagapudi, Sai Pradeep; Vummidi, Balayeshwanth R; Disney, Matthew D

    2015-02-01

    MicroRNAs (miRNAs) are small, non-coding RNAs that control protein expression. Aberrant miRNA expression has been linked to various human diseases, and thus miRNAs have been explored as diagnostic markers and therapeutic targets. Although it is challenging to target RNA with small molecules in general, there have been successful campaigns that have identified small molecule modulators of miRNA function by targeting various pathways. For example, small molecules that modulate transcription and target nuclease processing sites in miRNA precursors have been identified. Herein, we describe challenges in developing chemical probes that target miRNAs and highlight aspects of miRNA cellular biology elucidated by using small molecule chemical probes. We expect that this area will expand dramatically in the near future as progress is made in understanding small molecule recognition of RNA. Copyright © 2014. Published by Elsevier Ltd.

  18. Multifunctional and biologically active matrices from multicomponent polymeric solutions

    NASA Technical Reports Server (NTRS)

    Kiick, Kristi L. (Inventor); Yamaguchi, Nori (Inventor); Rabolt, John (Inventor); Casper, Cheryl (Inventor)

    2012-01-01

    A functionalized electrospun matrix for the controlled-release of biologically active agents, such as growth factors, is presented. The functionalized matrix comprises a matrix polymer, a compatibilizing polymer and a biomolecule or other small functioning molecule. In certain aspects the electrospun polymer fibers comprise at least one biologically active molecule functionalized with low molecular weight heparin.

  19. Stable cellular models of nuclear receptor PXR for high-throughput evaluation of small molecules.

    PubMed

    Negi, Seema; Singh, Shashi Kala; Kumar, Sanjay; Kumar, Subodh; Tyagi, Rakesh K

    2018-06-19

    Pregnane & Xenobiotic Receptor (PXR) is one of the 48 members of the ligand-modulated transcription factors belonging to nuclear receptor superfamily. Though PXR is now well-established as a 'xenosensor', regulating the central detoxification and drug metabolizing machinery, it has also emerged as a key player in several metabolic disorders. This makes PXR attractive to both, researchers and pharmaceutical industry since clinical success of small drug molecules can be pre-evaluated on PXR platform. At the early stages of drug discovery, cell-based assays are used for high-throughput screening of small molecules. The future success or failure of a drug can be predicted by this approach saving expensive resources and time. In view of this, we have developed human liver cell line-based, dual-level screening and validation protocol on PXR platform having application to assess small molecules. We have generated two different stably transfected cell lines, (i) a stable promoter-reporter cell line (HepXREM) expressing PXR and a commonly used CYP3A4 promoter-reporter i.e. XREM-luciferase; and (ii) two stable cell lines integrated with proximal PXR-promoter-reporter (Hepx-1096/+43 and Hepx-497/+43). Employing HepXREM, Hepx-1096/+43 and Hepx-497/+43 stable cell lines > 25 anti-cancer herbal drug ingredients were screened for examining their modulatory effects on a) PXR transcriptional activity and, b) PXR-promoter activity. In conclusion, the present report provides a convenient and economical, dual-level screening system to facilitate the identification of superior therapeutic small molecules. Copyright © 2018. Published by Elsevier Ltd.

  20. Defining RNA-Small Molecule Affinity Landscapes Enables Design of a Small Molecule Inhibitor of an Oncogenic Noncoding RNA.

    PubMed

    Velagapudi, Sai Pradeep; Luo, Yiling; Tran, Tuan; Haniff, Hafeez S; Nakai, Yoshio; Fallahi, Mohammad; Martinez, Gustavo J; Childs-Disney, Jessica L; Disney, Matthew D

    2017-03-22

    RNA drug targets are pervasive in cells, but methods to design small molecules that target them are sparse. Herein, we report a general approach to score the affinity and selectivity of RNA motif-small molecule interactions identified via selection. Named High Throughput Structure-Activity Relationships Through Sequencing (HiT-StARTS), HiT-StARTS is statistical in nature and compares input nucleic acid sequences to selected library members that bind a ligand via high throughput sequencing. The approach allowed facile definition of the fitness landscape of hundreds of thousands of RNA motif-small molecule binding partners. These results were mined against folded RNAs in the human transcriptome and identified an avid interaction between a small molecule and the Dicer nuclease-processing site in the oncogenic microRNA (miR)-18a hairpin precursor, which is a member of the miR-17-92 cluster. Application of the small molecule, Targapremir-18a, to prostate cancer cells inhibited production of miR-18a from the cluster, de-repressed serine/threonine protein kinase 4 protein (STK4), and triggered apoptosis. Profiling the cellular targets of Targapremir-18a via Chemical Cross-Linking and Isolation by Pull Down (Chem-CLIP), a covalent small molecule-RNA cellular profiling approach, and other studies showed specific binding of the compound to the miR-18a precursor, revealing broadly applicable factors that govern small molecule drugging of noncoding RNAs.

  1. Mechanical oscillatory behavior of a C60 fullerene tunneling through open carbon nanocones

    NASA Astrophysics Data System (ADS)

    Sadeghi, F.; Ansari, R.

    2017-07-01

    This paper deals with the mechanical oscillatory behavior of a C60 fullerene inside open carbon nanocones (CNCs). The fullerene molecule is assumed to enter the nanocone through its small end or wide end. Following our previously published study, semi-analytical expressions for the evaluation of vdW interactions are presented which facilitate obtaining a formula for oscillation frequency. The equation of motion is numerically solved to attain the time histories of separation distance and velocity of the fullerene molecule. Based on the conservation of the mechanical energy law, a new semi-analytical formula is also derived to accurately evaluate the oscillation frequency of the system. With respect to the present formulation, a detailed parametric study is conducted to gain an insight into the effects of both geometrical parameters (small-end radius, wide-end radius and vertex angle of nanocone) and initial conditions (initial separation distance and initial velocity) on the oscillatory behavior of C60 fullerene-open CNC oscillators. For given geometrical parameters and initial conditions, it is shown that higher oscillation frequencies can be achieved when the fullerene molecule enters the open nanocone through its small end.

  2. PPDMs-a resource for mapping small molecule bioactivities from ChEMBL to Pfam-A protein domains.

    PubMed

    Kruger, Felix A; Gaulton, Anna; Nowotka, Michal; Overington, John P

    2015-03-01

    PPDMs is a resource that maps small molecule bioactivities to protein domains from the Pfam-A collection of protein families. Small molecule bioactivities mapped to protein domains add important precision to approaches that use protein sequence searches alignments to assist applications in computational drug discovery and systems and chemical biology. We have previously proposed a mapping heuristic for a subset of bioactivities stored in ChEMBL with the Pfam-A domain most likely to mediate small molecule binding. We have since refined this mapping using a manual procedure. Here, we present a resource that provides up-to-date mappings and the possibility to review assigned mappings as well as to participate in their assignment and curation. We also describe how mappings provided through the PPDMs resource are made accessible through the main schema of the ChEMBL database. The PPDMs resource and curation interface is available at https://www.ebi.ac.uk/chembl/research/ppdms/pfam_maps. The source-code for PPDMs is available under the Apache license at https://github.com/chembl/pfam_maps. Source code is available at https://github.com/chembl/pfam_map_loader to demonstrate the integration process with the main schema of ChEMBL. © The Author 2014. Published by Oxford University Press.

  3. Targeting Cullin–RING E3 ubiquitin ligases for drug discovery: structure, assembly and small-molecule modulation

    PubMed Central

    Bulatov, Emil; Ciulli, Alessio

    2015-01-01

    In the last decade, the ubiquitin–proteasome system has emerged as a valid target for the development of novel therapeutics. E3 ubiquitin ligases are particularly attractive targets because they confer substrate specificity on the ubiquitin system. CRLs [Cullin–RING (really interesting new gene) E3 ubiquitin ligases] draw particular attention, being the largest family of E3s. The CRLs assemble into functional multisubunit complexes using a repertoire of substrate receptors, adaptors, Cullin scaffolds and RING-box proteins. Drug discovery targeting CRLs is growing in importance due to mounting evidence pointing to significant roles of these enzymes in diverse biological processes and human diseases, including cancer, where CRLs and their substrates often function as tumour suppressors or oncogenes. In the present review, we provide an account of the assembly and structure of CRL complexes, and outline the current state of the field in terms of available knowledge of small-molecule inhibitors and modulators of CRL activity. A comprehensive overview of the reported crystal structures of CRL subunits, components and full-size complexes, alone or with bound small molecules and substrate peptides, is included. This information is providing increasing opportunities to aid the rational structure-based design of chemical probes and potential small-molecule therapeutics targeting CRLs. PMID:25886174

  4. Small Molecule Inhibitors of AI-2 Signaling in Bacteria: State-of-the-Art and Future Perspectives for Anti-Quorum Sensing Agents

    PubMed Central

    Guo, Min; Gamby, Sonja; Zheng, Yue; Sintim, Herman O.

    2013-01-01

    Bacteria respond to different small molecules that are produced by other neighboring bacteria. These molecules, called autoinducers, are classified as intraspecies (i.e., molecules produced and perceived by the same bacterial species) or interspecies (molecules that are produced and sensed between different bacterial species). AI-2 has been proposed as an interspecies autoinducer and has been shown to regulate different bacterial physiology as well as affect virulence factor production and biofilm formation in some bacteria, including bacteria of clinical relevance. Several groups have embarked on the development of small molecules that could be used to perturb AI-2 signaling in bacteria, with the ultimate goal that these molecules could be used to inhibit bacterial virulence and biofilm formation. Additionally, these molecules have the potential to be used in synthetic biology applications whereby these small molecules are used as inputs to switch on and off AI-2 receptors. In this review, we highlight the state-of-the-art in the development of small molecules that perturb AI-2 signaling in bacteria and offer our perspective on the future development and applications of these classes of molecules. PMID:23994835

  5. Molecular Volumes and the Stokes-Einstein Equation

    ERIC Educational Resources Information Center

    Edward, John T.

    1970-01-01

    Examines the limitations of the Stokes-Einstein equation as it applies to small solute molecules. Discusses molecular volume determinations by atomic increments, molecular models, molar volumes of solids and liquids, and molal volumes. Presents an empirical correction factor for the equation which applies to molecular radii as small as 2 angstrom…

  6. Circularly Polarized Luminescence from Simple Organic Molecules

    PubMed Central

    Sánchez-Carnerero, Esther M.; Agarrabeitia, Antonia R.; Moreno, Florencio; Maroto, Beatriz L.; Muller, Gilles; Ortiz, María J.

    2015-01-01

    This article aims to show the identity of “CPL-active simple organic molecules” as a new concept in Organic Chemistry due to the potential interest of these molecules, as availed by the exponentially growing number of research articles related to them. In particular, it describes and highlights the interest and difficulty in developing chiral simple (small and nonaggregated) organic molecules able to emit left- or right-circularly polarized light efficiently, the efforts realized up to now to reach this challenging objective, and the most significant milestones achieved to date. General guidelines for the preparation of these interesting molecules are also presented. PMID:26136234

  7. Solid harmonic wavelet scattering for predictions of molecule properties

    NASA Astrophysics Data System (ADS)

    Eickenberg, Michael; Exarchakis, Georgios; Hirn, Matthew; Mallat, Stéphane; Thiry, Louis

    2018-06-01

    We present a machine learning algorithm for the prediction of molecule properties inspired by ideas from density functional theory (DFT). Using Gaussian-type orbital functions, we create surrogate electronic densities of the molecule from which we compute invariant "solid harmonic scattering coefficients" that account for different types of interactions at different scales. Multilinear regressions of various physical properties of molecules are computed from these invariant coefficients. Numerical experiments show that these regressions have near state-of-the-art performance, even with relatively few training examples. Predictions over small sets of scattering coefficients can reach a DFT precision while being interpretable.

  8. Organic small molecule semiconducting chromophores for use in organic electronic devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welch, Gregory C.; Hoven, Corey V.; Nguyen, Thuc-Quyen

    Small organic molecule semi-conducting chromophores containing a pyridalthiadiazole, pyridaloxadiazole, or pyridaltriazole core structure are disclosed. Such compounds can be used in organic heterojunction devices, such as organic small molecule solar cells and transistors.

  9. Rational design of chemical genetic probes of RNA function and lead therapeutics targeting repeating transcripts.

    PubMed

    Disney, Matthew D

    2013-12-01

    RNA is an important yet vastly underexploited target for small molecule chemical probes or lead therapeutics. Small molecules have been used successfully to modulate the function of the bacterial ribosome, viral RNAs and riboswitches. These RNAs are either highly expressed or can be targeted using substrate mimicry, a mainstay in the design of enzyme inhibitors. However, most cellular RNAs are neither highly expressed nor have a lead small molecule inhibitor, a significant challenge for drug discovery efforts. Herein, I describe the design of small molecules targeting expanded repeating transcripts that cause myotonic muscular dystrophy (DM). These test cases illustrate the challenges of designing small molecules that target RNA and the advantages of targeting repeating transcripts. Lastly, I discuss how small molecules might be more advantageous than oligonucleotides for targeting RNA. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Advancing Biological Understanding and Therapeutics Discovery with Small Molecule Probes

    PubMed Central

    Schreiber, Stuart L.; Kotz, Joanne D.; Li, Min; Aubé, Jeffrey; Austin, Christopher P.; Reed, John C.; Rosen, Hugh; White, E. Lucile; Sklar, Larry A.; Lindsley, Craig W.; Alexander, Benjamin R.; Bittker, Joshua A.; Clemons, Paul A.; de Souza, Andrea; Foley, Michael A.; Palmer, Michelle; Shamji, Alykhan F.; Wawer, Mathias J.; McManus, Owen; Wu, Meng; Zou, Beiyan; Yu, Haibo; Golden, Jennifer E.; Schoenen, Frank J.; Simeonov, Anton; Jadhav, Ajit; Jackson, Michael R.; Pinkerton, Anthony B.; Chung, Thomas D.Y.; Griffin, Patrick R.; Cravatt, Benjamin F.; Hodder, Peter S.; Roush, William R.; Roberts, Edward; Chung, Dong-Hoon; Jonsson, Colleen B.; Noah, James W.; Severson, William E.; Ananthan, Subramaniam; Edwards, Bruce; Oprea, Tudor I.; Conn, P. Jeffrey; Hopkins, Corey R.; Wood, Michael R.; Stauffer, Shaun R.; Emmitte, Kyle A.

    2015-01-01

    Small-molecule probes can illuminate biological processes and aid in the assessment of emerging therapeutic targets by perturbing biological systems in a manner distinct from other experimental approaches. Despite the tremendous promise of chemical tools for investigating biology and disease, small-molecule probes were unavailable for most targets and pathways as recently as a decade ago. In 2005, the U.S. National Institutes of Health launched the decade-long Molecular Libraries Program with the intent of innovating in and broadening access to small-molecule science. This Perspective describes how novel small-molecule probes identified through the program are enabling the exploration of biological pathways and therapeutic hypotheses not otherwise testable. These experiences illustrate how small-molecule probes can help bridge the chasm between biological research and the development of medicines, but also highlight the need to innovate the science of therapeutic discovery. PMID:26046436

  11. High mobility high efficiency organic films based on pure organic materials

    DOEpatents

    Salzman, Rhonda F [Ann Arbor, MI; Forrest, Stephen R [Ann Arbor, MI

    2009-01-27

    A method of purifying small molecule organic material, performed as a series of operations beginning with a first sample of the organic small molecule material. The first step is to purify the organic small molecule material by thermal gradient sublimation. The second step is to test the purity of at least one sample from the purified organic small molecule material by spectroscopy. The third step is to repeat the first through third steps on the purified small molecule material if the spectroscopic testing reveals any peaks exceeding a threshold percentage of a magnitude of a characteristic peak of a target organic small molecule. The steps are performed at least twice. The threshold percentage is at most 10%. Preferably the threshold percentage is 5% and more preferably 2%. The threshold percentage may be selected based on the spectra of past samples that achieved target performance characteristics in finished devices.

  12. Introduction: MicroRNAs in human reproduction: small molecules with crucial regulatory roles.

    PubMed

    Imbar, Tal; Galliano, Daniela; Pellicer, Antonio; Laufer, Neri

    2014-06-01

    MicroRNAs constitute a large family of approximately 21-nucleotide-long, noncoding RNAs. They emerged more than 20 years ago as key posttranscriptional regulators of gene expression. The regulatory role of these small RNA molecules has recently begun to be explored in the human reproductive system. In this issue's Views and Reviews, the authors present the current knowledge regarding the involvement of microRNAs in several aspects of human reproduction and discuss its future implications for clinical practice. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  13. PdM (M = Pt, Au) bimetallic alloy nanowires with enhanced electrocatalytic activity for electro-oxidation of small molecules.

    PubMed

    Zhu, Chengzhou; Guo, Shaojun; Dong, Shaojun

    2012-05-02

    A facile and general method has been developed to synthesize well-defined PdPt and PdAu alloy nanowires, which exhibit significantly enhanced activity towards small molecules, such as ethanol, methanol, and glucose electro-oxidation in an alkaline medium. Considering the important role of one-dimensional alloy nanowires in electrocatalytic systems, the present Pd-based alloy nanostructures could offer a promising new class of advanced electrocatalysts for direct alcohol fuel cells and electrochemical sensors. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. An Introduction to Drug Discovery by Probing Protein-Substrate Interactions Using Saturation Transfer Difference-Nuclear Magnetic Resonance (STD-NMR)

    ERIC Educational Resources Information Center

    Guegan, Jean-Paul; Daniellou, Richard

    2012-01-01

    NMR spectroscopy is a powerful tool for characterizing and identifying molecules and nowadays is even used to characterize complex systems in biology. In the experiment presented here, students learned how to apply this modern technique to probe interactions between small molecules and proteins. With the use of simple organic synthesis, students…

  15. Electron Spin Relaxation: The Role of Spin-Orbit Coupling in Organic Semiconductors

    NASA Astrophysics Data System (ADS)

    Willis, M.; Nuccio, L.; Schulz, L.; Gillin, W.; Kreouzis, T.; Pratt, F.; Lord, J.; Heeney, M.; Fratini, S.; Bernhard, C.; Drew, A.

    2012-02-01

    Rapid development of organic materials has lead to their availability in commercial products. Until now, the spin degree of freedom has not generally been used in organic materials. As well as engineering difficulties, there are fundamental questions with respect to the electron spin relaxation (eSR) mechanisms in organic molecules. Muons used as a microscopic spin probe, localized to a single molecule, can access information needed to identify the relevant model for eSR. In this presentation I will introduce the ALC-MuSR technique describing how eSR can be extracted and the expected effects. I will show how the technique has been applied to small organic molecules such as the group III Quinolate series and functionalized molecules with a pentacene-like backbone. Lastly I will present the Z-number and temperature dependence in these organic molecules and show strong evidence for a spin-orbit based eSR mechanism.

  16. Proteoform-specific protein binding of small molecules in complex matrices

    USDA-ARS?s Scientific Manuscript database

    Characterizing the specific binding between protein targets and small molecules is critically important for drug discovery. Conventional assays require isolation and purification of small molecules from complex matrices through multistep chromatographic fractionation, which may alter their original ...

  17. Connecting synthetic chemistry decisions to cell and genome biology using small-molecule phenotypic profiling

    PubMed Central

    Wagner, Bridget K.; Clemons, Paul A.

    2009-01-01

    Discovering small-molecule modulators for thousands of gene products requires multiple stages of biological testing, specificity evaluation, and chemical optimization. Many cellular profiling methods, including cellular sensitivity, gene-expression, and cellular imaging, have emerged as methods to assess the functional consequences of biological perturbations. Cellular profiling methods applied to small-molecule science provide opportunities to use complex phenotypic information to prioritize and optimize small-molecule structures simultaneously against multiple biological endpoints. As throughput increases and cost decreases for such technologies, we see an emerging paradigm of using more information earlier in probe- and drug-discovery efforts. Moreover, increasing access to public datasets makes possible the construction of “virtual” profiles of small-molecule performance, even when multiplexed measurements were not performed or when multidimensional profiling was not the original intent. We review some key conceptual advances in small-molecule phenotypic profiling, emphasizing connections to other information, such as protein-binding measurements, genetic perturbations, and cell states. We argue that to maximally leverage these measurements in probe and drug discovery requires a fundamental connection to synthetic chemistry, allowing the consequences of synthetic decisions to be described in terms of changes in small-molecule profiles. Mining such data in the context of chemical structure and synthesis strategies can inform decisions about chemistry procurement and library development, leading to optimal small-molecule screening collections. PMID:19825513

  18. Small Molecule based Musculoskeletal Regenerative Engineering

    PubMed Central

    Lo, Kevin W.-H.; Jiang, Tao; Gagnon, Keith A.; Nelson, Clarke; Laurencin, Cato T.

    2014-01-01

    Clinicians and scientists working in the field of regenerative engineering are actively investigating a wide range of methods to promote musculoskeletal tissue regeneration. Small molecule-mediated tissue regeneration is emerging as a promising strategy for regenerating various musculoskeletal tissues and a large number of small molecule compounds have been recently discovered as potential bioactive molecules for musculoskeletal tissue repair and regeneration. In this review, we summarize the recent literature encompassing the past four years in the area of small bioactive molecule for promoting repair and regeneration of various musculoskeletal tissues including bone, muscle, cartilage, tendon, and nerve. PMID:24405851

  19. Improved ligand geometries in crystallographic refinement using AFITT in PHENIX

    DOE PAGES

    Janowski, Pawel A.; Moriarty, Nigel W.; Kelley, Brian P.; ...

    2016-08-31

    Modern crystal structure refinement programs rely on geometry restraints to overcome the challenge of a low data-to-parameter ratio. While the classical Engh and Huber restraints work well for standard amino-acid residues, the chemical complexity of small-molecule ligands presents a particular challenge. Most current approaches either limit ligand restraints to those that can be readily described in the Crystallographic Information File (CIF) format, thus sacrificing chemical flexibility and energetic accuracy, or they employ protocols that substantially lengthen the refinement time, potentially hindering rapid automated refinement workflows.PHENIX–AFITTrefinement uses a full molecular-mechanics force field for user-selected small-molecule ligands during refinement, eliminating the potentiallymore » difficult problem of finding or generating high-quality geometry restraints. It is fully integrated with a standard refinement protocol and requires practically no additional steps from the user, making it ideal for high-throughput workflows.PHENIX–AFITTrefinements also handle multiple ligands in a single model, alternate conformations and covalently bound ligands. Here, the results of combiningAFITTand thePHENIXsoftware suite on a data set of 189 protein–ligand PDB structures are presented. Refinements usingPHENIX–AFITTsignificantly reduce ligand conformational energy and lead to improved geometries without detriment to the fit to the experimental data. Finally, for the data presented,PHENIX–AFITTrefinements result in more chemically accurate models for small-molecule ligands.« less

  20. Identifying a Small Molecule Blocking Antigen Presentation in Autoimmune Thyroiditis.

    PubMed

    Li, Cheuk Wun; Menconi, Francesca; Osman, Roman; Mezei, Mihaly; Jacobson, Eric M; Concepcion, Erlinda; David, Chella S; Kastrinsky, David B; Ohlmeyer, Michael; Tomer, Yaron

    2016-02-19

    We previously showed that an HLA-DR variant containing arginine at position 74 of the DRβ1 chain (DRβ1-Arg74) is the specific HLA class II variant conferring risk for autoimmune thyroid diseases (AITD). We also identified 5 thyroglobulin (Tg) peptides that bound to DRβ1-Arg74. We hypothesized that blocking the binding of these peptides to DRβ1-Arg74 could block the continuous T-cell activation in thyroiditis needed to maintain the autoimmune response to the thyroid. The aim of the current study was to identify small molecules that can block T-cell activation by Tg peptides presented within DRβ1-Arg74 pockets. We screened a large and diverse library of compounds and identified one compound, cepharanthine that was able to block peptide binding to DRβ1-Arg74. We then showed that Tg.2098 is the dominant peptide when inducing experimental autoimmune thyroiditis (EAT) in NOD mice expressing human DRβ1-Arg74. Furthermore, cepharanthine blocked T-cell activation by thyroglobulin peptides, in particular Tg.2098 in mice that were induced with EAT. For the first time we identified a small molecule that can block Tg peptide binding and presentation to T-cells in autoimmune thyroiditis. If confirmed cepharanthine could potentially have a role in treating human AITD. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Defining RNA–Small Molecule Affinity Landscapes Enables Design of a Small Molecule Inhibitor of an Oncogenic Noncoding RNA

    PubMed Central

    2017-01-01

    RNA drug targets are pervasive in cells, but methods to design small molecules that target them are sparse. Herein, we report a general approach to score the affinity and selectivity of RNA motif–small molecule interactions identified via selection. Named High Throughput Structure–Activity Relationships Through Sequencing (HiT-StARTS), HiT-StARTS is statistical in nature and compares input nucleic acid sequences to selected library members that bind a ligand via high throughput sequencing. The approach allowed facile definition of the fitness landscape of hundreds of thousands of RNA motif–small molecule binding partners. These results were mined against folded RNAs in the human transcriptome and identified an avid interaction between a small molecule and the Dicer nuclease-processing site in the oncogenic microRNA (miR)-18a hairpin precursor, which is a member of the miR-17-92 cluster. Application of the small molecule, Targapremir-18a, to prostate cancer cells inhibited production of miR-18a from the cluster, de-repressed serine/threonine protein kinase 4 protein (STK4), and triggered apoptosis. Profiling the cellular targets of Targapremir-18a via Chemical Cross-Linking and Isolation by Pull Down (Chem-CLIP), a covalent small molecule–RNA cellular profiling approach, and other studies showed specific binding of the compound to the miR-18a precursor, revealing broadly applicable factors that govern small molecule drugging of noncoding RNAs. PMID:28386598

  2. Small Molecule Inhibition of Ligand-Stimulated RAGE-DIAPH1 Signal Transduction

    PubMed Central

    Manigrasso, Michaele B.; Pan, Jinhong; Rai, Vivek; Zhang, Jinghua; Reverdatto, Sergey; Quadri, Nosirudeen; DeVita, Robert J.; Ramasamy, Ravichandran; Shekhtman, Alexander; Schmidt, Ann Marie

    2016-01-01

    The receptor for advanced glycation endproducts (RAGE) binds diverse ligands linked to chronic inflammation and disease. NMR spectroscopy and x-ray crystallization studies of the extracellular domains of RAGE indicate that RAGE ligands bind by distinct charge- and hydrophobicity-dependent mechanisms. The cytoplasmic tail (ct) of RAGE is essential for RAGE ligand-mediated signal transduction and consequent modulation of gene expression and cellular properties. RAGE signaling requires interaction of ctRAGE with the intracellular effector, mammalian diaphanous 1 or DIAPH1. We screened a library of 58,000 small molecules and identified 13 small molecule competitive inhibitors of ctRAGE interaction with DIAPH1. These compounds, which exhibit in vitro and in vivo inhibition of RAGE-dependent molecular processes, present attractive molecular scaffolds for the development of therapeutics against RAGE-mediated diseases, such as those linked to diabetic complications, Alzheimer’s disease, and chronic inflammation, and provide support for the feasibility of inhibition of protein-protein interaction (PPI). PMID:26936329

  3. Small-Molecule Inhibitors of GSK-3: Structural Insights and Their Application to Alzheimer's Disease Models

    PubMed Central

    Kramer, Thomas; Schmidt, Boris; Lo Monte, Fabio

    2012-01-01

    The world health organization (WHO) estimated that 18 million people are struck by Alzheimer's disease (AD). The USA, France, Germany, and other countries launched major programmes targeting the identification of risk factors, the improvement of caretaking, and fundamental research aiming to postpone the onset of AD. The glycogen synthase kinase 3 (GSK-3) is implicated in multiple cellular processes and has been linked to the pathogenesis of several diseases including diabetes mellitus, cancer, and AD. Inhibition of GSK-3 leads to neuroprotective effects, decreased β-amyloid production, and a reduction in tau hyperphosphorylation, which are all associated with AD. Various classes of small molecule GSK-3 inhibitors have been published in patents and original publications. Herein, we present a comprehensive summary of small molecules reported to interact with GSK-3. We illustrate the interactions of the inhibitors with the active site. Furthermore, we refer to the biological characterisation in terms of activity and selectivity for GSK-3, elucidate in vivo studies and pre-/clinical trials. PMID:22888461

  4. Adsorption of Small Molecules at Water--Hexane and Water--Membrane Interfaces

    NASA Astrophysics Data System (ADS)

    Wilson, Michael A.

    1996-03-01

    The interaction of solutes with aqueous interfaces plays a significant role in a variety of physical processes, including general anesthesia and atmospheric chemistry. We present molecular dynamics results for the transfer of several small solutes across water liquid--vapor, water--hexane and water--GMO bilayer membrane interfaces. (A. Pohorille and M. A. Wilson, J. Chem. Phys. (in press, 1995).)^, (A. Pohorille, P. CIeplak, and M. A. Wilson, Chem. Phys. (in press, 1995).) The free energies of transferring small polar molecules across the interface exhibit fairly deep minima while those of nonpolar molecules do not. This is due to a balance between nonelectrostatic contributions --- primarily the work required to create a cavity large enough to accommodate the solute --- and the solute--solvent electrostatic interactions.^1 The surface excess of solute is calculated and compared with experimental results from the Gibbs adsorption isotherm. The interfacial solubilities correlate with measured anesthetic potencies of these compounds, implying that the binding sites for anesthetics are located near the water--membrane interface.

  5. EDULISS: a small-molecule database with data-mining and pharmacophore searching capabilities

    PubMed Central

    Hsin, Kun-Yi; Morgan, Hugh P.; Shave, Steven R.; Hinton, Andrew C.; Taylor, Paul; Walkinshaw, Malcolm D.

    2011-01-01

    We present the relational database EDULISS (EDinburgh University Ligand Selection System), which stores structural, physicochemical and pharmacophoric properties of small molecules. The database comprises a collection of over 4 million commercially available compounds from 28 different suppliers. A user-friendly web-based interface for EDULISS (available at http://eduliss.bch.ed.ac.uk/) has been established providing a number of data-mining possibilities. For each compound a single 3D conformer is stored along with over 1600 calculated descriptor values (molecular properties). A very efficient method for unique compound recognition, especially for a large scale database, is demonstrated by making use of small subgroups of the descriptors. Many of the shape and distance descriptors are held as pre-calculated bit strings permitting fast and efficient similarity and pharmacophore searches which can be used to identify families of related compounds for biological testing. Two ligand searching applications are given to demonstrate how EDULISS can be used to extract families of molecules with selected structural and biophysical features. PMID:21051336

  6. Circularly Polarized Luminescence from Simple Organic Molecules.

    PubMed

    Sánchez-Carnerero, Esther M; Agarrabeitia, Antonia R; Moreno, Florencio; Maroto, Beatriz L; Muller, Gilles; Ortiz, María J; de la Moya, Santiago

    2015-09-21

    This article aims to show the identity of "circularly polarized luminescent active simple organic molecules" as a new concept in organic chemistry due to the potential interest of these molecules, as availed by the exponentially growing number of research articles related to them. In particular, it describes and highlights the interest and difficulty in developing chiral simple (small and non-aggregated) organic molecules able to emit left- or right-circularly polarized light efficiently, the efforts realized up to now to reach this challenging objective, and the most significant milestones achieved to date. General guidelines for the preparation of these interesting molecules are also presented. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Studies of solution-processed organic light-emitting diodes and their materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hellerich, Emily

    2013-01-01

    A hitherto unexplored approach is presented in which a small molecule is used as a host to polymer guests in solution-processed OLEDs. We find that the small molecule host results in much more efficient devices than the often-used alternative polymer host when used for the guests presented. It is likely that nano- and microstructural differences between the hosts contribute to the improvements, which highlights some interesting characteristics that can help to better understand the nature of these mixtures. A number of the guests used in this study were newly synthesized benzobisoxazole-based copolymers. New organic copolymers are presented that are basedmore » on the chemical structure of benzobisoxazoles, which have been shown in the past to have good electron transporting properties. The novel concept in this publication pertains to a change in the direction of polymerization, also known as the conjugation pathway, which we show increases the emission efficiency. This work highlights a unique and useful property of organic semiconducting materials in that they can be synthesized to create the desired characteristics. Earlier work is described that kick-started in our research group the use of small molecules in solution-processed OLEDs. Originally these devices were to be used in magnetoresistance studies, but the project took a different path when the devices were more efficient than expected. The efficient use of small molecules in solution-processed OLEDs is highlighted, which at the time was not often the case. Also, the important observation of the effect of solvent choice on the resultant film is emphasized, with discussion of the likely cause of these effects. Microcavity OLEDs are introduced in which the transparent anode ITO is replaced with semi-transparent thin silver, which creates an optical cavity within the devices. The goal was to expand a previous work that created an on-chip spectrometer covering wavelengths 493 to 639 nm. In this case, a spin-coated mixed emitting layer (EML) is used, consisting of a polymer and a small molecule that both emit in the near UV and blue. The resulting combined spectra gives a wide band that can be used to create narrow microcavity emission peaks of 373 to 469 nm, depending on the device thickness (i.e. the cavity’s optical length). In the process of this effort, the mixed EML presented interesting complexities that we attempt to explain via simulation and morphology study.« less

  8. Chem Ed Compacts.

    ERIC Educational Resources Information Center

    Wolf, Walter A., Ed.

    1980-01-01

    Presents an illustration to demonstrate the smallness of molecules; also a derivation of a temperature scale (Fahrenheit/Celsius) interconversion equation by plotting temperatures of one scale against corresponding temperature of another. (CS)

  9. Understanding the Halogenation Effects in Diketopyrrolopyrrole-Based Small Molecule Photovoltaics.

    PubMed

    Sun, Shi-Xin; Huo, Yong; Li, Miao-Miao; Hu, Xiaowen; Zhang, Hai-Jun; Zhang, You-Wen; Zhang, You-Dan; Chen, Xiao-Long; Shi, Zi-Fa; Gong, Xiong; Chen, Yongsheng; Zhang, Hao-Li

    2015-09-16

    Two molecules containing a central diketopyrrolopyrrole and two oligothiophene units have been designed and synthesized. Comparisons between the molecules containing terminal F (FDPP) and Cl (CDPP) atoms allowed us to evaluate the effects of halogenation on the photovoltaic properties of the small molecule organic solar cells (OSCs). The OSCs devices employing FDPP:PC71BM films showed power conversion efficiencies up to 4.32%, suggesting that fluorination is an efficient method for constructing small molecules for OSCs.

  10. Features of Modularly Assembled Compounds That Impart Bioactivity Against an RNA Target

    PubMed Central

    Rzuczek, Suzanne G.; Gao, Yu; Tang, Zhen-Zhi; Thornton, Charles A.; Kodadek, Thomas; Disney, Matthew D.

    2013-01-01

    Transcriptomes provide a myriad of potential RNAs that could be the targets of therapeutics or chemical genetic probes of function. Cell permeable small molecules, however, generally do not exploit these targets, owing to the difficulty in the design of high affinity, specific small molecules targeting RNA. As part of a general program to study RNA function using small molecules, we designed bioactive, modularly assembled small molecules that target the non-coding expanded RNA repeat that causes myotonic dystrophy type 1 (DM1), r(CUG)exp. Herein, we present a rigorous study to elucidate features in modularly assembled compounds that afford bioactivity. Different modular assembly scaffolds were investigated including polyamines, α-peptides, β-peptides, and peptide tertiary amides (PTAs). Based on activity as assessed by improvement of DM1-associated defects, stability against proteases, cellular permeability, and toxicity, we discovered that constrained backbones, namely PTAs, are optimal. Notably, we determined that r(CUG)exp is the target of the optimal PTA in cellular models and that the optimal PTA improves DM1-associated defects in a mouse model. Biophysical analyses were employed to investigate potential sources of bioactivity. These investigations show that modularly assembled compounds have increased residence times on their targets and faster on rates than the RNA-binding modules from which they were derived and faster on rates than the protein that binds r(CUG)exp, the inactivation of which gives rise to DM1-associated defects. These studies provide information about features of small molecules that are programmable for targeting RNA, allowing for the facile optimization of therapeutics or chemical probes against other cellular RNA targets. PMID:24032410

  11. Features of modularly assembled compounds that impart bioactivity against an RNA target.

    PubMed

    Rzuczek, Suzanne G; Gao, Yu; Tang, Zhen-Zhi; Thornton, Charles A; Kodadek, Thomas; Disney, Matthew D

    2013-10-18

    Transcriptomes provide a myriad of potential RNAs that could be the targets of therapeutics or chemical genetic probes of function. Cell-permeable small molecules, however, generally do not exploit these targets, owing to the difficulty in the design of high affinity, specific small molecules targeting RNA. As part of a general program to study RNA function using small molecules, we designed bioactive, modularly assembled small molecules that target the noncoding expanded RNA repeat that causes myotonic dystrophy type 1 (DM1), r(CUG)(exp). Herein, we present a rigorous study to elucidate features in modularly assembled compounds that afford bioactivity. Different modular assembly scaffolds were investigated, including polyamines, α-peptides, β-peptides, and peptide tertiary amides (PTAs). On the basis of activity as assessed by improvement of DM1-associated defects, stability against proteases, cellular permeability, and toxicity, we discovered that constrained backbones, namely, PTAs, are optimal. Notably, we determined that r(CUG)(exp) is the target of the optimal PTA in cellular models and that the optimal PTA improves DM1-associated defects in a mouse model. Biophysical analyses were employed to investigate potential sources of bioactivity. These investigations show that modularly assembled compounds have increased residence times on their targets and faster on rates than the RNA-binding modules from which they were derived. Moreover, they have faster on rates than the protein that binds r(CUG)(exp), the inactivation of which gives rise to DM1-associated defects. These studies provide information about features of small molecules that are programmable for targeting RNA, allowing for the facile optimization of therapeutics or chemical probes against other cellular RNA targets.

  12. Privileged structures: efficient chemical "navigators" toward unexplored biologically relevant chemical spaces.

    PubMed

    Kim, Jonghoon; Kim, Heejun; Park, Seung Bum

    2014-10-22

    In the search for new therapeutic agents for currently incurable diseases, attention has turned to traditionally "undruggable" targets, and collections of drug-like small molecules with high diversity and quality have become a prerequisite for new breakthroughs. To generate such collections, the diversity-oriented synthesis (DOS) strategy was developed, which aims to populate new chemical space with drug-like compounds containing a high degree of molecular diversity. The resulting DOS-derived libraries have been of great value for the discovery of various bioactive small molecules and therapeutic agents, and thus DOS has emerged as an essential tool in chemical biology and drug discovery. However, the key challenge has become how to design and synthesize drug-like small-molecule libraries with improved biological relevancy as well as maximum molecular diversity. This Perspective presents the development of privileged substructure-based DOS (pDOS), an efficient strategy for the construction of polyheterocyclic compound libraries with high biological relevancy. We envisioned the specific interaction of drug-like small molecules with certain biopolymers via the incorporation of privileged substructures into polyheterocyclic core skeletons. The importance of privileged substructures such as benzopyran, pyrimidine, and oxopiperazine in rigid skeletons was clearly demonstrated through the discovery of bioactive small molecules and the subsequent identification of appropriate target biomolecule using a method called "fluorescence difference in two-dimensional gel electrophoresis". Focusing on examples of pDOS-derived bioactive compounds with exceptional specificity, we discuss the capability of privileged structures to serve as chemical "navigators" toward biologically relevant chemical spaces. We also provide an outlook on chemical biology research and drug discovery using biologically relevant compound libraries constructed by pDOS, biology-oriented synthesis, or natural product-inspired DOS.

  13. SERS and MD simulation studies of a kinase inhibitor demonstrate the emergence of a potential drug discovery tool.

    PubMed

    Karthigeyan, Dhanasekaran; Siddhanta, Soumik; Kishore, Annavarapu Hari; Perumal, Sathya S R R; Ågren, Hans; Sudevan, Surabhi; Bhat, Akshay V; Balasubramanyam, Karanam; Subbegowda, Rangappa Kanchugarakoppal; Kundu, Tapas K; Narayana, Chandrabhas

    2014-07-22

    We demonstrate the use of surface-enhanced Raman spectroscopy (SERS) as an excellent tool for identifying the binding site of small molecules on a therapeutically important protein. As an example, we show the specific binding of the common antihypertension drug felodipine to the oncogenic Aurora A kinase protein via hydrogen bonding interactions with Tyr-212 residue to specifically inhibit its activity. Based on SERS studies, molecular docking, molecular dynamics simulation, biochemical assays, and point mutation-based validation, we demonstrate the surface-binding mode of this molecule in two similar hydrophobic pockets in the Aurora A kinase. These binding pockets comprise the same unique hydrophobic patches that may aid in distinguishing human Aurora A versus human Aurora B kinase in vivo. The application of SERS to identify the specific interactions between small molecules and therapeutically important proteins by differentiating competitive and noncompetitive inhibition demonstrates its ability as a complementary technique. We also present felodipine as a specific inhibitor for oncogenic Aurora A kinase. Felodipine retards the rate of tumor progression in a xenografted nude mice model. This study reveals a potential surface pocket that may be useful for developing small molecules by selectively targeting the Aurora family kinases.

  14. A framework for multi-scale simulation of crystal growth in the presence of polymers.

    PubMed

    Mandal, Taraknath; Huang, Wenjun; Mecca, Jodi M; Getchell, Ashley; Porter, William W; Larson, Ronald G

    2017-03-01

    We present a multi-scale simulation method for modeling crystal growth in the presence of polymer excipients. The method includes a coarse-grained (CG) model for small molecules of known crystal structure whose force field is obtained using structural properties from atomistic simulations. This CG model is capable of stabilizing the molecular crystal structure and capturing the crystal growth from the melt for a wide range of small organic molecules, as demonstrated by application of our method to the molecules isoniazid, urea, sulfamethoxazole, prilocaine, oxcarbazepine, and phenytoin. This CG model can also be used to study the effect of additives, such as polymers, on the inhibition of crystal growth by polymers, as exemplified by our simulation of suppression of the rate of crystal growth of phenytoin, an active pharmaceutical ingredient (API), by a cellulose excipient, functionalized with acetate (Ac), hydroxy-propyl (Hp) and succinate (Su) groups. We show that the efficacy of the cellulosic polymers in slowing crystal growth of small molecules strongly depends on the functional group substitution on the cellulose backbone, with the acetate substituent group slowing crystal growth more than does the deprotonated succinate group, which we confirm by experimental drug supersaturation studies.

  15. How To Design a Successful p53-MDM2/X Interaction Inhibitor: A Thorough Overview Based on Crystal Structures.

    PubMed

    Estrada-Ortiz, Natalia; Neochoritis, Constantinos G; Dömling, Alexander

    2016-04-19

    A recent therapeutic strategy in oncology is based on blocking the protein-protein interaction between the murine double minute (MDM) homologues MDM2/X and the tumor-suppressor protein p53. Inhibiting the binding between wild-type (WT) p53 and its negative regulators MDM2 and/or MDMX has become an important target in oncology to restore the antitumor activity of p53, the so-called guardian of our genome. Interestingly, based on the multiple disclosed compound classes and structural analysis of small-molecule-MDM2 adducts, the p53-MDM2 complex is perhaps the best studied and most targeted protein-protein interaction. Several classes of small molecules have been identified as potent, selective, and efficient inhibitors of the p53-MDM2/X interaction, and many co-crystal structures with the protein are available. Herein we review the properties as well as preclinical and clinical studies of these small molecules and peptides, categorized by scaffold type. A particular emphasis is made on crystallographic structures and the observed binding modes of these compounds, including conserved water molecules present. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. ChemBank: a small-molecule screening and cheminformatics resource database.

    PubMed

    Seiler, Kathleen Petri; George, Gregory A; Happ, Mary Pat; Bodycombe, Nicole E; Carrinski, Hyman A; Norton, Stephanie; Brudz, Steve; Sullivan, John P; Muhlich, Jeremy; Serrano, Martin; Ferraiolo, Paul; Tolliday, Nicola J; Schreiber, Stuart L; Clemons, Paul A

    2008-01-01

    ChemBank (http://chembank.broad.harvard.edu/) is a public, web-based informatics environment developed through a collaboration between the Chemical Biology Program and Platform at the Broad Institute of Harvard and MIT. This knowledge environment includes freely available data derived from small molecules and small-molecule screens and resources for studying these data. ChemBank is unique among small-molecule databases in its dedication to the storage of raw screening data, its rigorous definition of screening experiments in terms of statistical hypothesis testing, and its metadata-based organization of screening experiments into projects involving collections of related assays. ChemBank stores an increasingly varied set of measurements derived from cells and other biological assay systems treated with small molecules. Analysis tools are available and are continuously being developed that allow the relationships between small molecules, cell measurements, and cell states to be studied. Currently, ChemBank stores information on hundreds of thousands of small molecules and hundreds of biomedically relevant assays that have been performed at the Broad Institute by collaborators from the worldwide research community. The goal of ChemBank is to provide life scientists unfettered access to biomedically relevant data and tools heretofore available primarily in the private sector.

  17. Ligand.Info small-molecule Meta-Database.

    PubMed

    von Grotthuss, Marcin; Koczyk, Grzegorz; Pas, Jakub; Wyrwicz, Lucjan S; Rychlewski, Leszek

    2004-12-01

    Ligand.Info is a compilation of various publicly available databases of small molecules. The total size of the Meta-Database is over 1 million entries. The compound records contain calculated three-dimensional coordinates and sometimes information about biological activity. Some molecules have information about FDA drug approving status or about anti-HIV activity. Meta-Database can be downloaded from the http://Ligand.Info web page. The database can also be screened using a Java-based tool. The tool can interactively cluster sets of molecules on the user side and automatically download similar molecules from the server. The application requires the Java Runtime Environment 1.4 or higher, which can be automatically downloaded from Sun Microsystems or Apple Computer and installed during the first use of Ligand.Info on desktop systems, which support Java (Ms Windows, Mac OS, Solaris, and Linux). The Ligand.Info Meta-Database can be used for virtual high-throughput screening of new potential drugs. Presented examples showed that using a known antiviral drug as query the system was able to find others antiviral drugs and inhibitors.

  18. N(2)O in small para-hydrogen clusters: Structures and energetics.

    PubMed

    Zhu, Hua; Xie, Daiqian

    2009-04-30

    We present the minimum-energy structures and energetics of clusters of the linear N(2)O molecule with small numbers of para-hydrogen molecules with pairwise additive potentials. Interaction energies of (p-H(2))-N(2)O and (p-H(2))-(p-H(2)) complexes were calculated by averaging the corresponding full-dimensional potentials over the H(2) angular coordinates. The averaged (p-H(2))-N(2)O potential has three minima corresponding to the T-shaped and the linear (p-H(2))-ONN and (p-H(2))-NNO structures. Optimization of the minimum-energy structures was performed using a Genetic Algorithm. It was found that p-H(2) molecules fill three solvation rings around the N(2)O axis, each of them containing up to five p-H(2) molecules, followed by accumulation of two p-H(2) molecules at the oxygen and nitrogen ends. The first solvation shell is completed at N = 17. The calculated chemical potential oscillates with cluster size up to the completed first solvation shell. These results are consistent with the available experimental measurements. (c) 2009 Wiley Periodicals, Inc.

  19. Analysis of the Gap Junction-dependent Transfer of miRNA with 3D-FRAP Microscopy.

    PubMed

    Lemcke, Heiko; Voronina, Natalia; Steinhoff, Gustav; David, Robert

    2017-06-19

    Small antisense RNAs, like miRNA and siRNA, play an important role in cellular physiology and pathology and, moreover, can be used as therapeutic agents in the treatment of several diseases. The development of new, innovative strategies for miRNA/siRNA therapy is based on an extensive knowledge of the underlying mechanisms. Recent data suggest that small RNAs are exchanged between cells in a gap junction-dependent manner, thereby inducing gene regulatory effects in the recipient cell. Molecular biological techniques and flow cytometric analysis are commonly used to study the intercellular exchange of miRNA. However, these methods do not provide high temporal resolution, which is necessary when studying the gap junctional flux of molecules. Therefore, to investigate the impact of miRNA/siRNA as intercellular signaling molecules, novel tools are needed that will allow for the analysis of these small RNAs at the cellular level. The present protocol describes the application of three-dimensional fluorescence recovery after photobleaching (3D-FRAP) microscopy to elucidating the gap junction-dependent exchange of miRNA molecules between cardiac cells. Importantly, this straightforward and non-invasive live-cell imaging approach allows for the visualization and quantification of the gap junctional shuttling of fluorescently labeled small RNAs in real time, with high spatio-temporal resolution. The data obtained by 3D-FRAP confirm a novel pathway of intercellular gene regulation, where small RNAs act as signaling molecules within the intercellular network.

  20. Increasing the Endoplasmic Reticulum Pool of the F508del Allele of the Cystic Fibrosis Transmembrane Conductance Regulator Leads to Greater Folding Correction by Small Molecule Therapeutics.

    PubMed

    Chung, W Joon; Goeckeler-Fried, Jennifer L; Havasi, Viktoria; Chiang, Annette; Rowe, Steven M; Plyler, Zackery E; Hong, Jeong S; Mazur, Marina; Piazza, Gary A; Keeton, Adam B; White, E Lucile; Rasmussen, Lynn; Weissman, Allan M; Denny, R Aldrin; Brodsky, Jeffrey L; Sorscher, Eric J

    2016-01-01

    Small molecules that correct the folding defects and enhance surface localization of the F508del mutation in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) comprise an important therapeutic strategy for cystic fibrosis lung disease. However, compounds that rescue the F508del mutant protein to wild type (WT) levels have not been identified. In this report, we consider obstacles to obtaining robust and therapeutically relevant levels of F508del CFTR. For example, markedly diminished steady state amounts of F508del CFTR compared to WT CFTR are present in recombinant bronchial epithelial cell lines, even when much higher levels of mutant transcript are present. In human primary airway cells, the paucity of Band B F508del is even more pronounced, although F508del and WT mRNA concentrations are comparable. Therefore, to augment levels of "repairable" F508del CFTR and identify small molecules that then correct this pool, we developed compound library screening protocols based on automated protein detection. First, cell-based imaging measurements were used to semi-quantitatively estimate distribution of F508del CFTR by high content analysis of two-dimensional images. We evaluated ~2,000 known bioactive compounds from the NIH Roadmap Molecular Libraries Small Molecule Repository in a pilot screen and identified agents that increase the F508del protein pool. Second, we analyzed ~10,000 compounds representing diverse chemical scaffolds for effects on total CFTR expression using a multi-plate fluorescence protocol and describe compounds that promote F508del maturation. Together, our findings demonstrate proof of principle that agents identified in this fashion can augment the level of endoplasmic reticulum (ER) resident "Band B" F508del CFTR suitable for pharmacologic correction. As further evidence in support of this strategy, PYR-41-a compound that inhibits the E1 ubiquitin activating enzyme-was shown to synergistically enhance F508del rescue by C18, a small molecule corrector. Our combined results indicate that increasing the levels of ER-localized CFTR available for repair provides a novel route to correct F508del CFTR.

  1. Harnessing Connectivity in a Large-Scale Small-Molecule Sensitivity Dataset | Office of Cancer Genomics

    Cancer.gov

    Identifying genetic alterations that prime a cancer cell to respond to a particular therapeutic agent can facilitate the development of precision cancer medicines. Cancer cell-line (CCL) profiling of small-molecule sensitivity has emerged as an unbiased method to assess the relationships between genetic or cellular features of CCLs and small-molecule response. Here, we developed annotated cluster multidimensional enrichment analysis to explore the associations between groups of small molecules and groups of CCLs in a new, quantitative sensitivity dataset.

  2. A Nonfullerene Small Molecule Acceptor with 3D Interlocking Geometry Enabling Efficient Organic Solar Cells.

    PubMed

    Lee, Jaewon; Singh, Ranbir; Sin, Dong Hun; Kim, Heung Gyu; Song, Kyu Chan; Cho, Kilwon

    2016-01-06

    A new 3D nonfullerene small-molecule acceptor is reported. The 3D interlocking geometry of the small-molecule acceptor enables uniform molecular conformation and strong intermolecular connectivity, facilitating favorable nanoscale phase separation and electron charge transfer. By employing both a novel polymer donor and a nonfullerene small-molecule acceptor in the solution-processed organic solar cells, a high-power conversion efficiency of close to 6% is demonstrated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A "roller-wheel" Pt-containing small molecule that outperforms its polymer analogs in organic solar cells

    DOE PAGES

    He, Wenhan; Wu, Qin; Livshits, Maksim Y.; ...

    2016-05-23

    A novel Pt-bisacetylide small molecule (Pt-SM) featuring “roller-wheel” geometry was synthesized and characterized. When compared with conventional Pt-containing polymers and small molecules having “dumbbell” shaped structures, Pt-SM displays enhanced crystallinity and intermolecular π–π interactions, as well as favorable panchromatic absorption behaviors. Furthermore, organic solar cells (OSCs) employing Pt-SM achieve power conversion efficiencies (PCEs) up to 5.9%, the highest reported so far for Pt-containing polymers and small molecules.

  4. A "roller-wheel" Pt-containing small molecule that outperforms its polymer analogs in organic solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Wenhan; Wu, Qin; Livshits, Maksim Y.

    A novel Pt-bisacetylide small molecule (Pt-SM) featuring “roller-wheel” geometry was synthesized and characterized. When compared with conventional Pt-containing polymers and small molecules having “dumbbell” shaped structures, Pt-SM displays enhanced crystallinity and intermolecular π–π interactions, as well as favorable panchromatic absorption behaviors. Furthermore, organic solar cells (OSCs) employing Pt-SM achieve power conversion efficiencies (PCEs) up to 5.9%, the highest reported so far for Pt-containing polymers and small molecules.

  5. Fast Rotational Diffusion of Water Molecules in a 2D Hydrogen Bond Network at Cryogenic Temperatures

    NASA Astrophysics Data System (ADS)

    Prisk, T. R.; Hoffmann, C.; Kolesnikov, A. I.; Mamontov, E.; Podlesnyak, A. A.; Wang, X.; Kent, P. R. C.; Anovitz, L. M.

    2018-05-01

    Individual water molecules or small clusters of water molecules contained within microporous minerals present an extreme case of confinement where the local structure of hydrogen bond networks are dramatically altered from bulk water. In the zinc silicate hemimorphite, the water molecules form a two-dimensional hydrogen bond network with hydroxyl groups in the crystal framework. Here, we present a combined experimental and theoretical study of the structure and dynamics of water molecules within this network. The water molecules undergo a continuous phase transition in their orientational configuration analogous to a two-dimensional Ising model. The incoherent dynamic structure factor reveals two thermally activated relaxation processes, one on a subpicosecond timescale and another on a 10-100 ps timescale, between 70 and 130 K. The slow process is an in-plane reorientation of the water molecule involving the breaking of hydrogen bonds with a framework that, despite the low temperatures involved, is analogous to rotational diffusion of water molecules in the bulk liquid. The fast process is a localized motion of the water molecule with no apparent analogs among known bulk or confined phases of water.

  6. Fast Rotational Diffusion of Water Molecules in a 2D Hydrogen Bond Network at Cryogenic Temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prisk, Timothy; Hoffmann, Christina; Kolesnikov, Alexander I.

    Individual water molecules or small clusters of water molecules contained within microporous minerals present an extreme case of confinement where the local structure of hydrogen bond networks are dramatically altered from bulk water. In the zinc silicate hemimorphite, the water molecules form a two-dimensional hydrogen bond network with hydroxyl groups in the crystal framework. Here in this paper, we present a combined experimental and theoretical study of the structure and dynamics of water molecules within this network. The water molecules undergo a continuous phase transition in their orientational configuration analogous to a two-dimensional Ising model. The incoherent dynamic structure factormore » reveals two thermally activated relaxation processes, one on a subpicosecond timescale and another on a 10–100 ps timescale, between 70 and 130 K. The slow process is an in-plane reorientation of the water molecule involving the breaking of hydrogen bonds with a framework that, despite the low temperatures involved, is analogous to rotational diffusion of water molecules in the bulk liquid. The fast process is a localized motion of the water molecule with no apparent analogs among known bulk or confined phases of water.« less

  7. Fast Rotational Diffusion of Water Molecules in a 2D Hydrogen Bond Network at Cryogenic Temperatures

    DOE PAGES

    Prisk, Timothy; Hoffmann, Christina; Kolesnikov, Alexander I.; ...

    2018-05-09

    Individual water molecules or small clusters of water molecules contained within microporous minerals present an extreme case of confinement where the local structure of hydrogen bond networks are dramatically altered from bulk water. In the zinc silicate hemimorphite, the water molecules form a two-dimensional hydrogen bond network with hydroxyl groups in the crystal framework. Here in this paper, we present a combined experimental and theoretical study of the structure and dynamics of water molecules within this network. The water molecules undergo a continuous phase transition in their orientational configuration analogous to a two-dimensional Ising model. The incoherent dynamic structure factormore » reveals two thermally activated relaxation processes, one on a subpicosecond timescale and another on a 10–100 ps timescale, between 70 and 130 K. The slow process is an in-plane reorientation of the water molecule involving the breaking of hydrogen bonds with a framework that, despite the low temperatures involved, is analogous to rotational diffusion of water molecules in the bulk liquid. The fast process is a localized motion of the water molecule with no apparent analogs among known bulk or confined phases of water.« less

  8. Novel diamide-based inhibitors of IMPDH.

    PubMed

    Gu, Henry H; Iwanowicz, Edwin J; Guo, Junqing; Watterson, Scott H; Shen, Zhongqi; Pitts, William J; Dhar, T G Murali; Fleener, Catherine A; Rouleau, Katherine; Sherbina, N Z; Witmer, Mark; Tredup, Jeffrey; Hollenbaugh, Diane

    2002-05-06

    A series of novel amide-based small molecule inhibitors of inosine monophosphate dehydrogenase is described. The synthesis and the structure-activity relationships (SARs) derived from in vitro studies are presented.

  9. Towards a Pharmacophore for Amyloid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landau, Meytal; Sawaya, Michael R.; Faull, Kym F.

    2011-09-16

    Diagnosing and treating Alzheimer's and other diseases associated with amyloid fibers remains a great challenge despite intensive research. To aid in this effort, we present atomic structures of fiber-forming segments of proteins involved in Alzheimer's disease in complex with small molecule binders, determined by X-ray microcrystallography. The fiber-like complexes consist of pairs of {beta}-sheets, with small molecules binding between the sheets, roughly parallel to the fiber axis. The structures suggest that apolar molecules drift along the fiber, consistent with the observation of nonspecific binding to a variety of amyloid proteins. In contrast, negatively charged orange-G binds specifically to lysine sidemore » chains of adjacent sheets. These structures provide molecular frameworks for the design of diagnostics and drugs for protein aggregation diseases. The devastating and incurable dementia known as Alzheimer's disease affects the thinking, memory, and behavior of dozens of millions of people worldwide. Although amyloid fibers and oligomers of two proteins, tau and amyloid-{beta}, have been identified in association with this disease, the development of diagnostics and therapeutics has proceeded to date in a near vacuum of information about their structures. Here we report the first atomic structures of small molecules bound to amyloid. These are of the dye orange-G, the natural compound curcumin, and the Alzheimer's diagnostic compound DDNP bound to amyloid-like segments of tau and amyloid-{beta}. The structures reveal the molecular framework of small-molecule binding, within cylindrical cavities running along the {beta}-spines of the fibers. Negatively charged orange-G wedges into a specific binding site between two sheets of the fiber, combining apolar binding with electrostatic interactions, whereas uncharged compounds slide along the cavity. We observed that different amyloid polymorphs bind different small molecules, revealing that a cocktail of compounds may be required for future amyloid therapies. The structures described here start to define the amyloid pharmacophore, opening the way to structure-based design of improved diagnostics and therapeutics.« less

  10. A-π-D-π-A Electron-Donating Small Molecules for Solution-Processed Organic Solar Cells: A Review.

    PubMed

    Wang, Zhen; Zhu, Lingyun; Shuai, Zhigang; Wei, Zhixiang

    2017-11-01

    Organic solar cells based on semiconducting polymers and small molecules have attracted considerable attention in the last two decades. Moreover, the power conversion efficiencies for solution-processed solar cells containing A-π-D-π-A-type small molecules and fullerenes have reached 11%. However, the method for designing high-performance, photovoltaic small molecules still remains unclear. In this review, recent studies on A-π-D-π-A electron-donating small molecules for organic solar cells are introduced. Moreover, the relationships between molecular properties and device performances are summarized, from which inspiration for the future design of high performance organic solar cells may be obtained. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A general electrochemical method for label-free screening of protein–small molecule interactions†

    PubMed Central

    Cash, Kevin J.; Ricci, Francesco

    2010-01-01

    Here we report a versatile method by which the interaction between a protein and a small molecule, and the disruption of that interaction by competition with other small molecules, can be monitored electrochemically directly in complex sample matrices. PMID:19826675

  12. Toward Generalization of Iterative Small Molecule Synthesis

    PubMed Central

    Lehmann, Jonathan W.; Blair, Daniel J.; Burke, Martin D.

    2018-01-01

    Small molecules have extensive untapped potential to benefit society, but access to this potential is too often restricted by limitations inherent to the customized approach currently used to synthesize this class of chemical matter. In contrast, the “building block approach”, i.e., generalized iterative assembly of interchangeable parts, has now proven to be a highly efficient and flexible way to construct things ranging all the way from skyscrapers to macromolecules to artificial intelligence algorithms. The structural redundancy found in many small molecules suggests that they possess a similar capacity for generalized building block-based construction. It is also encouraging that many customized iterative synthesis methods have been developed that improve access to specific classes of small molecules. There has also been substantial recent progress toward the iterative assembly of many different types of small molecules, including complex natural products, pharmaceuticals, biological probes, and materials, using common building blocks and coupling chemistry. Collectively, these advances suggest that a generalized building block approach for small molecule synthesis may be within reach. PMID:29696152

  13. Using the gini coefficient to measure the chemical diversity of small-molecule libraries.

    PubMed

    Weidlich, Iwona E; Filippov, Igor V

    2016-08-15

    Modern databases of small organic molecules contain tens of millions of structures. The size of theoretically available chemistry is even larger. However, despite the large amount of chemical information, the "big data" moment for chemistry has not yet provided the corresponding payoff of cheaper computer-predicted medicine or robust machine-learning models for the determination of efficacy and toxicity. Here, we present a study of the diversity of chemical datasets using a measure that is commonly used in socioeconomic studies. We demonstrate the use of this diversity measure on several datasets that were constructed to contain various congeneric subsets of molecules as well as randomly selected molecules. We also apply our method to a number of well-known databases that are frequently used for structure-activity relationship modeling. Our results show the poor diversity of the common sources of potential lead compounds compared to actual known drugs. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Aspirin locally disrupts the liquid-ordered phase

    NASA Astrophysics Data System (ADS)

    Alsop, Richard J.; Himbert, Sebastian; Dhaliwal, Alexander; Schmalzl, Karin; Rheinstädter, Maikel C.

    2018-02-01

    Local structure and dynamics of lipid membranes play an important role in membrane function. The diffusion of small molecules, the curvature of lipids around a protein and the existence of cholesterol-rich lipid domains (rafts) are examples for the membrane to serve as a functional interface. The collective fluctuations of lipid tails, in particular, are relevant for diffusion of membrane constituents and small molecules in and across membranes, and for structure and formation of membrane domains. We studied the effect of aspirin (acetylsalicylic acid, ASA) on local structure and dynamics of membranes composed of dimyristoylphosphocholine (DMPC) and cholesterol. Aspirin is a common analgesic, but is also used in the treatment of cholesterol. Using coherent inelastic neutron scattering experiments and molecular dynamics (MD) simulations, we present evidence that ASA binds to liquid-ordered, raft-like domains and disturbs domain organization and dampens collective fluctuations. By hydrogen-bonding to lipid molecules, ASA forms `superfluid' complexes with lipid molecules that can organize laterally in superlattices and suppress cholesterol's ordering effect.

  15. Screening of Small Molecule Interactor Library by Using In-Cell NMR Spectroscopy (SMILI-NMR)

    PubMed Central

    Xie, Jingjing; Thapa, Rajiv; Reverdatto, Sergey; Burz, David S.; Shekhtman, Alexander

    2011-01-01

    We developed an in-cell NMR assay for screening small molecule interactor libraries (SMILI-NMR) for compounds capable of disrupting or enhancing specific interactions between two or more components of a biomolecular complex. The method relies on the formation of a well-defined biocomplex and utilizes in-cell NMR spectroscopy to identify the molecular surfaces involved in the interaction at atomic scale resolution. Changes in the interaction surface caused by a small molecule interfering with complex formation are used as a read-out of the assay. The in-cell nature of the experimental protocol insures that the small molecule is capable of penetrating the cell membrane and specifically engaging the target molecule(s). Utility of the method was demonstrated by screening a small dipeptide library against the FKBP–FRB protein complex involved in cell cycle arrest. The dipeptide identified by SMILI-NMR showed biological activity in a functional assay in yeast. PMID:19422228

  16. Molecular self-assembly for biological investigations and nanoscale lithography

    NASA Astrophysics Data System (ADS)

    Cheunkar, Sarawut

    Small, diffusible molecules when recognized by their binding partners, such as proteins and antibodies, trigger enzymatic activity, cell communication, and immune response. Progress in analytical methods enabling detection, characterization, and visualization of biological dynamics at the molecular level will advance our exploration of complex biological systems. In this dissertation, analytical platforms were fabricated to capture membrane-associated receptors, which are essential proteins in cell signaling pathways. The neurotransmitter serotonin and its biological precursor were immobilized on gold substrates coated with self-assembled monolayers (SAMs) of oligo(ethylene glycol)alkanethiols and their reactive derivatives. The SAM-coated substrates present the biologically selective affinity of immobilized molecules to target native membrane-associated receptors. These substrates were also tested for biospecificity using antibodies. In addition, small-molecule-functionalized platforms, expressing neurotransmitter pharmacophores, were employed to examine kinetic interactions between G-protein-coupled receptors and their associated neurotransmitters. The binding interactions were monitored using a quartz crystal microbalance equipped with liquid-flow injection. The interaction kinetics of G-protein-coupled serotonin 1A receptor and 5-hydroxytyptophan-functionalized surfaces were studied in a real-time, label-free environment. Key binding parameters, such as equilibrium dissociation constants, binding rate constants, and dissociative half-life, were extracted. These parameters are critical for understanding and comparing biomolecular interactions in modern biomedical research. By integrating self-assembly, surface functionalization, and nanofabrication, small-molecule microarrays were created for high-throughput screening. A hybrid soft-lithography, called microcontact insertion printing, was used to pattern small molecules at the dilute scales necessary for highly selective biorecognition. By carefully tuning the polar surface energy of polymeric stamps, problems associated with patterning hydrophilic tether molecules inserted into hydrophilic preformed SAMs are surmounted. The patterned substrates presenting neurotransmitter precursors selectively capture membrane-associated receptors. These advances provide new avenues for fabricating small-molecule arrays. Furthermore, a novel strategy based on a conventional microcontact printing, called chemical lift-off lithography, was invented to overcome the micrometer-scale resolution limits of molecular ink diffusion in soft lithography. Self-assembled monolayers of hydroxyl-terminated alkanethiols, preformed on gold substrates, were selectively removed by oxygen-plasma-treated polymeric stamps in a subtractive stamping process with high pattern fidelity. The covalent interactions formed at the stamp-substrate interface are believed to be responsible for removing not only alkanethiol molecules but also a monolayer of gold atoms from the substrates. A variety of high-resolution patterned features were fabricated, and stamps were cleaned and reused many times without feature deterioration. The remaining SAMs acted as resists for etching exposed gold features. Monolayer backfilling into lifted-off areas enabled patterned protein capture, and 40-nanometer chemical patterns were achieved.

  17. Interactions of quercetin, curcumin, epigallocatechin gallate and folic acid with gelatin.

    PubMed

    Yang, Tingting; Yang, Huiru; Fan, Yan; Li, Bafang; Hou, Hu

    2018-06-15

    Some small bioactive molecules from food show the potential health benefits, but with poor chemical stability and bioavailability. The interactions between small molecules and gelatin were investigated. Fluorescence experiments demonstrated that the bimolecular quenching constants (k q ) of complexes (gelatin-quercetin, gelatin-curcumin, gelatin-epigallocatechin gallate, gelatin-folic acid) were 3.7 × 10 12  L·mol -1 ·s -1 , 1.4 × 10 12  L·mol -1 ·s -1 , 2.7 × 10 12  L·mol -1 ·s -1 and 8.5 × 10 12  L·mol -1 ·s -1 , indicating that fluorescence quenching did not arise from a dynamical mechanism, but from gelatin-small molecules binding. Furthermore, the affinity with gelatin was ranked in the order of folic acid > quercetin > epigallocatechin gallate > curcumin. Fluorescence spectroscopy, ultraviolet and visible absorption spectroscopy, FTIR and circular dichroism showed that the interactions between small molecules and gelatin did not significantly alter the conformation and secondary structure of gelatin. Non-covalent interactions may result in the binding of gelatin with small molecules. The interactions were considered to be through two modes: (1) small molecules bound within the hydrophobic pockets of gelatin; (2) small molecules surrounded the gelatin molecule mainly through hydrogen bonds and hydrophobic interactions. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Plant Extract Synthesized PLA Nanoparticles for Controlled and Sustained Release of Quercetin: A Green Approach

    PubMed Central

    Yadav, Sudesh Kumar

    2012-01-01

    Background Green synthesis of metallic nanoparticles (NPs) has been extensively carried out by using plant extracts (PEs) which have property of stabilizers/ emulsifiers. To our knowledge, there is no comprehensive study on applying a green approach using PEs for fabrication of biodegradable PLA NPs. Conventional methods rely on molecules like polyvinyl alcohol, polyethylene glycol, D-alpha-tocopheryl poly(ethylene glycol 1000) succinate as stabilizers/emulsifiers for the synthesis of such biodegradable NPs which are known to be toxic. So, there is urgent need to look for stabilizers which are biogenic and non-toxic. The present study investigated use of PEs as stabilizers/emulsifiers for the fabrication of stable PLA NPs. Synthesized PLA NPs through this green process were explored for controlled release of the well known antioxidant molecule quercetin. Methodology/Principal Findings Stable PLA NPs were synthesized using leaf extracts of medicinally important plants like Syzygium cumini (1), Bauhinia variegata (2), Cedrus deodara (3), Lonicera japonica (4) and Eleaocarpus sphaericus (5). Small and uniformly distributed NPs in the size range 70±30 nm to 143±36 nm were formed with these PEs. To explore such NPs for drugs/ small molecules delivery, we have successfully encapsulated quercetin a lipophilic molecule on a most uniformly distributed PLA-4 NPs synthesized using Lonicera japonica leaf extract. Quercetin loaded PLA-4 NPs were observed for slow and sustained release of quercetin molecule. Conclusions This green approach based on PEs mediated synthesis of stable PLA NPs pave the way for encapsulating drug/small molecules, nutraceuticals and other bioactive ingredients for safer cellular uptake, biodistribution and targeted delivery. Hence, such PEs synthesized PLA NPs would be useful to enhance the therapeutic efficacy of encapsulated small molecules/drugs. Furthermore, different types of plants can be explored for the synthesis of PLA as well as other polymeric NPs of smaller size. PMID:22844443

  19. Strategies in the design of small-molecule fluorescent probes for peptidases.

    PubMed

    Chen, Laizhong; Li, Jing; Du, Lupei; Li, Minyong

    2014-11-01

    Peptidases, which can cleave specific peptide bonds in innumerable categories of substrates, usually present pivotal positions in protein activation, cell signaling and regulation as well as in the origination of amino acids for protein generation or application in other metabolic pathways. They are also involved in many pathological conditions, such as cancer, atherosclerosis, arthritis, and neurodegenerative disorders. This review article aims to conduct a wide-ranging survey on the development of small-molecule fluorescent probes for peptidases, as well as to realize the state of the art in the tailor-made probes for diverse types of peptidases. © 2014 Wiley Periodicals, Inc.

  20. Small Molecule-Induced Allosteric Activation of the Vibrio Cholerae RTX Cysteine Protease Domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lupardus, P.J.; Shen, A.; Bogyo, M.

    2009-05-19

    Vibrio cholerae RTX (repeats in toxin) is an actin-disrupting toxin that is autoprocessed by an internal cysteine protease domain (CPD). The RTX CPD is efficiently activated by the eukaryote-specific small molecule inositol hexakisphosphate (InsP{sub 6}), and we present the 2.1 angstrom structure of the RTX CPD in complex with InsP{sub 6}. InsP{sub 6} binds to a conserved basic cleft that is distant from the protease active site. Biochemical and kinetic analyses of CPD mutants indicate that InsP{sub 6} binding induces an allosteric switch that leads to the autoprocessing and intracellular release of toxin-effector domains.

  1. Selection and Biosensor Application of Aptamers for Small Molecules

    PubMed Central

    Pfeiffer, Franziska; Mayer, Günter

    2016-01-01

    Small molecules play a major role in the human body and as drugs, toxins, and chemicals. Tools to detect and quantify them are therefore in high demand. This review will give an overview about aptamers interacting with small molecules and their selection. We discuss the current state of the field, including advantages as well as problems associated with their use and possible solutions to tackle these. We then discuss different kinds of small molecule aptamer-based sensors described in literature and their applications, ranging from detecting drinking water contaminations to RNA imaging. PMID:27379229

  2. Methods to enable the design of bioactive small molecules targeting RNA

    PubMed Central

    Disney, Matthew D.; Yildirim, Ilyas; Childs-Disney, Jessica L.

    2014-01-01

    RNA is an immensely important target for small molecule therapeutics or chemical probes of function. However, methods that identify, annotate, and optimize RNA-small molecule interactions that could enable the design of compounds that modulate RNA function are in their infancies. This review describes recent approaches that have been developed to understand and optimize RNA motif-small molecule interactions, including Structure-Activity Relationships Through Sequencing (StARTS), quantitative structure-activity relationships (QSAR), chemical similarity searching, structure-based design and docking, and molecular dynamics (MD) simulations. Case studies described include the design of small molecules targeting RNA expansions, the bacterial A-site, viral RNAs, and telomerase RNA. These approaches can be combined to afford a synergistic method to exploit the myriad of RNA targets in the transcriptome. PMID:24357181

  3. Methods to enable the design of bioactive small molecules targeting RNA.

    PubMed

    Disney, Matthew D; Yildirim, Ilyas; Childs-Disney, Jessica L

    2014-02-21

    RNA is an immensely important target for small molecule therapeutics or chemical probes of function. However, methods that identify, annotate, and optimize RNA-small molecule interactions that could enable the design of compounds that modulate RNA function are in their infancies. This review describes recent approaches that have been developed to understand and optimize RNA motif-small molecule interactions, including structure-activity relationships through sequencing (StARTS), quantitative structure-activity relationships (QSAR), chemical similarity searching, structure-based design and docking, and molecular dynamics (MD) simulations. Case studies described include the design of small molecules targeting RNA expansions, the bacterial A-site, viral RNAs, and telomerase RNA. These approaches can be combined to afford a synergistic method to exploit the myriad of RNA targets in the transcriptome.

  4. Physical limits to biochemical signaling

    NASA Astrophysics Data System (ADS)

    Bialek, William; Setayeshgar, Sima

    2005-07-01

    Many crucial biological processes operate with surprisingly small numbers of molecules, and there is renewed interest in analyzing the impact of noise associated with these small numbers. Twenty-five years ago, Berg and Purcell showed that bacterial chemotaxis, where a single-celled organism must respond to small changes in concentration of chemicals outside the cell, is limited directly by molecule counting noise and that aspects of the bacteria's behavioral and computational strategies must be chosen to minimize the effects of this noise. Here, we revisit and generalize their arguments to estimate the physical limits to signaling processes within the cell and argue that recent experiments are consistent with performance approaching these limits. Author contributions: W.B. and S.S. designed research, performed research, and wrote the paper.†Present address: Department of Physics, Indiana University, Bloomington, IN 47405.

  5. Detection of kinetic change points in piece-wise linear single molecule motion

    NASA Astrophysics Data System (ADS)

    Hill, Flynn R.; van Oijen, Antoine M.; Duderstadt, Karl E.

    2018-03-01

    Single-molecule approaches present a powerful way to obtain detailed kinetic information at the molecular level. However, the identification of small rate changes is often hindered by the considerable noise present in such single-molecule kinetic data. We present a general method to detect such kinetic change points in trajectories of motion of processive single molecules having Gaussian noise, with a minimum number of parameters and without the need of an assumed kinetic model beyond piece-wise linearity of motion. Kinetic change points are detected using a likelihood ratio test in which the probability of no change is compared to the probability of a change occurring, given the experimental noise. A predetermined confidence interval minimizes the occurrence of false detections. Applying the method recursively to all sub-regions of a single molecule trajectory ensures that all kinetic change points are located. The algorithm presented allows rigorous and quantitative determination of kinetic change points in noisy single molecule observations without the need for filtering or binning, which reduce temporal resolution and obscure dynamics. The statistical framework for the approach and implementation details are discussed. The detection power of the algorithm is assessed using simulations with both single kinetic changes and multiple kinetic changes that typically arise in observations of single-molecule DNA-replication reactions. Implementations of the algorithm are provided in ImageJ plugin format written in Java and in the Julia language for numeric computing, with accompanying Jupyter Notebooks to allow reproduction of the analysis presented here.

  6. Identification of a Broad-Spectrum Antiviral Small Molecule against Severe Acute Respiratory Syndrome Coronavirus and Ebola, Hendra, and Nipah Viruses by Using a Novel High-Throughput Screening Assay

    PubMed Central

    Elshabrawy, Hatem A.; Fan, Jilao; Haddad, Christine S.; Ratia, Kiira; Broder, Christopher C.; Caffrey, Michael

    2014-01-01

    ABSTRACT Severe acute respiratory syndrome coronavirus (SARS-CoV) and Ebola, Hendra, and Nipah viruses are members of different viral families and are known causative agents of fatal viral diseases. These viruses depend on cathepsin L for entry into their target cells. The viral glycoproteins need to be primed by protease cleavage, rendering them active for fusion with the host cell membrane. In this study, we developed a novel high-throughput screening assay based on peptides, derived from the glycoproteins of the aforementioned viruses, which contain the cathepsin L cleavage site. We screened a library of 5,000 small molecules and discovered a small molecule that can inhibit the cathepsin L cleavage of all viral peptides with minimal inhibition of cleavage of a host protein-derived peptide (pro-neuropeptide Y). The small molecule inhibited the entry of all pseudotyped viruses in vitro and the cleavage of SARS-CoV spike glycoprotein in an in vitro cleavage assay. In addition, the Hendra and Nipah virus fusion glycoproteins were not cleaved in the presence of the small molecule in a cell-based cleavage assay. Furthermore, we demonstrate that the small molecule is a mixed inhibitor of cathepsin L. Our broad-spectrum antiviral small molecule appears to be an ideal candidate for future optimization and development into a potent antiviral against SARS-CoV and Ebola, Hendra, and Nipah viruses. IMPORTANCE We developed a novel high-throughput screening assay to identify small molecules that can prevent cathepsin L cleavage of viral glycoproteins derived from SARS-CoV and Ebola, Hendra, and Nipah viruses that are required for their entry into the host cell. We identified a novel broad-spectrum small molecule that could block cathepsin L-mediated cleavage and thus inhibit the entry of pseudotypes bearing the glycoprotein derived from SARS-CoV or Ebola, Hendra, or Nipah virus. The small molecule can be further optimized and developed into a potent broad-spectrum antiviral drug. PMID:24501399

  7. Identification of a broad-spectrum antiviral small molecule against severe acute respiratory syndrome coronavirus and Ebola, Hendra, and Nipah viruses by using a novel high-throughput screening assay.

    PubMed

    Elshabrawy, Hatem A; Fan, Jilao; Haddad, Christine S; Ratia, Kiira; Broder, Christopher C; Caffrey, Michael; Prabhakar, Bellur S

    2014-04-01

    Severe acute respiratory syndrome coronavirus (SARS-CoV) and Ebola, Hendra, and Nipah viruses are members of different viral families and are known causative agents of fatal viral diseases. These viruses depend on cathepsin L for entry into their target cells. The viral glycoproteins need to be primed by protease cleavage, rendering them active for fusion with the host cell membrane. In this study, we developed a novel high-throughput screening assay based on peptides, derived from the glycoproteins of the aforementioned viruses, which contain the cathepsin L cleavage site. We screened a library of 5,000 small molecules and discovered a small molecule that can inhibit the cathepsin L cleavage of all viral peptides with minimal inhibition of cleavage of a host protein-derived peptide (pro-neuropeptide Y). The small molecule inhibited the entry of all pseudotyped viruses in vitro and the cleavage of SARS-CoV spike glycoprotein in an in vitro cleavage assay. In addition, the Hendra and Nipah virus fusion glycoproteins were not cleaved in the presence of the small molecule in a cell-based cleavage assay. Furthermore, we demonstrate that the small molecule is a mixed inhibitor of cathepsin L. Our broad-spectrum antiviral small molecule appears to be an ideal candidate for future optimization and development into a potent antiviral against SARS-CoV and Ebola, Hendra, and Nipah viruses. We developed a novel high-throughput screening assay to identify small molecules that can prevent cathepsin L cleavage of viral glycoproteins derived from SARS-CoV and Ebola, Hendra, and Nipah viruses that are required for their entry into the host cell. We identified a novel broad-spectrum small molecule that could block cathepsin L-mediated cleavage and thus inhibit the entry of pseudotypes bearing the glycoprotein derived from SARS-CoV or Ebola, Hendra, or Nipah virus. The small molecule can be further optimized and developed into a potent broad-spectrum antiviral drug.

  8. Organic nanofiber nanosensors

    NASA Astrophysics Data System (ADS)

    Madsen, M.; Schiek, M.; Thomsen, P.; Andersen, N. L.; Lützen, A.; Rubahn, H.-G.

    2007-09-01

    A new way of developing optical nanosensors is presented. Organic nanofibers serve as key elements in these new types of devices, which exploit both the smallness and brightness of the nanoaggregates to make new compact and sensitive optical nanosensors. On the basis of bottom up technology, we functionalize individual molecules, which are then intrinsically sensitive to specific agents. These molecules are used as building blocks for controlled growth of larger nanoscaled aggregates. The aggregates in turn can be used as sensing elements on the meso-scale in the size range from hundred nanometers to a few hundred microns. The organic nanofibers thereby might become a versatile tool within nanosensor technology, allowing sensing on the basis of individual molecules over small aggregates to large assemblies. First experiments of Bovine Serum Albumin (BSA) coupling to para-hexaphenyl (p-6P) nanofibers are presented, which could lead towards a new type of protein sensors. Besides large versatility and sensitivity, the nanofibers benefit from the fact that they can be integrated in devices, either in liquids by the use of microfluidic cavities or all in parallel.

  9. Further Analysis of Boiling Points of Small Molecules, CH[subscript w]F[subscript x]Cl[subscript y]Br[subscript z

    ERIC Educational Resources Information Center

    Beauchamp, Guy

    2005-01-01

    A study to present specific hypothesis that satisfactorily explain the boiling point of a number of molecules, CH[subscript w]F[subscript x]Cl[subscript y]Br[subscript z] having similar structure, and then analyze the model with the help of multiple linear regression (MLR), a data analysis tool. The MLR analysis was useful in selecting the…

  10. A rapid and sensitive method for the simultaneous analysis of aliphatic and polar molecules containing free carboxyl groups in plant extracts by LC-MS/MS

    PubMed Central

    2009-01-01

    Background Aliphatic molecules containing free carboxyl groups are important intermediates in many metabolic and signalling reactions, however, they accumulate to low levels in tissues and are not efficiently ionized by electrospray ionization (ESI) compared to more polar substances. Quantification of aliphatic molecules becomes therefore difficult when small amounts of tissue are available for analysis. Traditional methods for analysis of these molecules require purification or enrichment steps, which are onerous when multiple samples need to be analyzed. In contrast to aliphatic molecules, more polar substances containing free carboxyl groups such as some phytohormones are efficiently ionized by ESI and suitable for analysis by LC-MS/MS. Thus, the development of a method with which aliphatic and polar molecules -which their unmodified forms differ dramatically in their efficiencies of ionization by ESI- can be simultaneously detected with similar sensitivities would substantially simplify the analysis of complex biological matrices. Results A simple, rapid, specific and sensitive method for the simultaneous detection and quantification of free aliphatic molecules (e.g., free fatty acids (FFA)) and small polar molecules (e.g., jasmonic acid (JA), salicylic acid (SA)) containing free carboxyl groups by direct derivatization of leaf extracts with Picolinyl reagent followed by LC-MS/MS analysis is presented. The presence of the N atom in the esterified pyridine moiety allowed the efficient ionization of 25 compounds tested irrespective of their chemical structure. The method was validated by comparing the results obtained after analysis of Nicotiana attenuata leaf material with previously described analytical methods. Conclusion The method presented was used to detect 16 compounds in leaf extracts of N. attenuata plants. Importantly, the method can be adapted based on the specific analytes of interest with the only consideration that the molecules must contain at least one free carboxyl group. PMID:19939243

  11. Recent Developments in β-Cell Differentiation of Pluripotent Stem Cells Induced by Small and Large Molecules

    PubMed Central

    Kumar, S. Suresh; Alarfaj, Abdullah A.; Munusamy, Murugan A.; Singh, A. J. A. Ranjith; Peng, I-Chia; Priya, Sivan Padma; Hamat, Rukman Awang; Higuchi, Akon

    2014-01-01

    Human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), hold promise as novel therapeutic tools for diabetes treatment because of their self-renewal capacity and ability to differentiate into beta (β)-cells. Small and large molecules play important roles in each stage of β-cell differentiation from both hESCs and hiPSCs. The small and large molecules that are described in this review have significantly advanced efforts to cure diabetic disease. Lately, effective protocols have been implemented to induce hESCs and human mesenchymal stem cells (hMSCs) to differentiate into functional β-cells. Several small molecules, proteins, and growth factors promote pancreatic differentiation from hESCs and hMSCs. These small molecules (e.g., cyclopamine, wortmannin, retinoic acid, and sodium butyrate) and large molecules (e.g. activin A, betacellulin, bone morphogentic protein (BMP4), epidermal growth factor (EGF), fibroblast growth factor (FGF), keratinocyte growth factor (KGF), hepatocyte growth factor (HGF), noggin, transforming growth factor (TGF-α), and WNT3A) are thought to contribute from the initial stages of definitive endoderm formation to the final stages of maturation of functional endocrine cells. We discuss the importance of such small and large molecules in uniquely optimized protocols of β-cell differentiation from stem cells. A global understanding of various small and large molecules and their functions will help to establish an efficient protocol for β-cell differentiation. PMID:25526563

  12. High Throughput, Label-free Screening Small Molecule Compound Libraries for Protein-Ligands using Combination of Small Molecule Microarrays and a Special Ellipsometry-based Optical Scanner.

    PubMed

    Landry, James P; Fei, Yiyan; Zhu, X D

    2011-12-01

    Small-molecule compounds remain the major source of therapeutic and preventative drugs. Developing new drugs against a protein target often requires screening large collections of compounds with diverse structures for ligands or ligand fragments that exhibit sufficiently affinity and desirable inhibition effect on the target before further optimization and development. Since the number of small molecule compounds is large, high-throughput screening (HTS) methods are needed. Small-molecule microarrays (SMM) on a solid support in combination with a suitable binding assay form a viable HTS platform. We demonstrate that by combining an oblique-incidence reflectivity difference optical scanner with SMM we can screen 10,000 small-molecule compounds on a single glass slide for protein ligands without fluorescence labeling. Furthermore using such a label-free assay platform we can simultaneously acquire binding curves of a solution-phase protein to over 10,000 immobilized compounds, thus enabling full characterization of protein-ligand interactions over a wide range of affinity constants.

  13. Secondary metabolites and other small molecules as intercellular pathogenic signals.

    PubMed

    Dufour, Nicholas; Rao, Reeta Prusty

    2011-01-01

    Microorganisms often use small chemicals or secondary metabolites as informational cues to regulate gene expression. It is hypothesized that microorganisms exploit these signals to gain a competitive advantage. Here, we present examples of pathogens that use this strategy to exclude other microorganisms from the site of infection. An emerging theme is that inhibiting these systems presents a novel approach to antimicrobial therapies. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  14. Delivery of small molecules for bone regenerative engineering: preclinical studies and potential clinical applications.

    PubMed

    Laurencin, Cato T; Ashe, Keshia M; Henry, Nicole; Kan, Ho Man; Lo, Kevin W-H

    2014-06-01

    Stimulation of bone regeneration using growth factors is a promising approach for musculoskeletal regenerative engineering. However, common limitations with protein growth factors, such as high manufacturing costs, protein instability, contamination issues, and unwanted immunogenic responses of the host reduce potential clinical applications. New strategies for bone regeneration that involve inexpensive and stable small molecules can obviate these problems and have a significant impact on the treatment of skeletal injury and diseases. Over the past decade, a large number of small molecules with the potential of regenerating skeletal tissue have been reported in the literature. Here, we review this literature, paying specific attention to the prospects for small molecule-based bone-regenerative engineering. We also review the preclinical study of small molecules associated with bone regeneration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Developing an Efficient and General Strategy for Immobilization of Small Molecules onto Microarrays Using Isocyanate Chemistry.

    PubMed

    Zhu, Chenggang; Zhu, Xiangdong; Landry, James P; Cui, Zhaomeng; Li, Quanfu; Dang, Yongjun; Mi, Lan; Zheng, Fengyun; Fei, Yiyan

    2016-03-16

    Small-molecule microarray (SMM) is an effective platform for identifying lead compounds from large collections of small molecules in drug discovery, and efficient immobilization of molecular compounds is a pre-requisite for the success of such a platform. On an isocyanate functionalized surface, we studied the dependence of immobilization efficiency on chemical residues on molecular compounds, terminal residues on isocyanate functionalized surface, lengths of spacer molecules, and post-printing treatment conditions, and we identified a set of optimized conditions that enable us to immobilize small molecules with significantly improved efficiencies, particularly for those molecules with carboxylic acid residues that are known to have low isocyanate reactivity. We fabricated microarrays of 3375 bioactive compounds on isocyanate functionalized glass slides under these optimized conditions and confirmed that immobilization percentage is over 73%.

  16. Cell-targetable DNA nanocapsules for spatiotemporal release of caged bioactive small molecules

    NASA Astrophysics Data System (ADS)

    Veetil, Aneesh T.; Chakraborty, Kasturi; Xiao, Kangni; Minter, Myles R.; Sisodia, Sangram S.; Krishnan, Yamuna

    2017-12-01

    Achieving triggered release of small molecules with spatial and temporal precision at designated cells within an organism remains a challenge. By combining a cell-targetable, icosahedral DNA-nanocapsule loaded with photoresponsive polymers, we show cytosolic delivery of small molecules with the spatial resolution of single endosomes in specific cells in Caenorhabditis elegans. Our technology can report on the extent of small molecules released after photoactivation as well as pinpoint the location at which uncaging of the molecules occurred. We apply this technology to release dehydroepiandrosterone (DHEA), a neurosteroid that promotes neurogenesis and neuron survival, and determined the timescale of neuronal activation by DHEA, using light-induced release of DHEA from targeted DNA nanocapsules. Importantly, sequestration inside the DNA capsule prevents photocaged DHEA from activating neurons prematurely. Our methodology can in principle be generalized to diverse neurostimulatory molecules.

  17. Exploring biology with small organic molecules

    PubMed Central

    Stockwell, Brent R.

    2011-01-01

    Small organic molecules have proven to be invaluable tools for investigating biological systems, but there is still much to learn from their use. To discover and to use more effectively new chemical tools to understand biology, strategies are needed that allow us to systematically explore ‘biological-activity space’. Such strategies involve analysing both protein binding of, and phenotypic responses to, small organic molecules. The mapping of biological-activity space using small molecules is akin to mapping the stars — uncharted territory is explored using a system of coordinates that describes where each new feature lies. PMID:15602550

  18. Mechanisms of resistance to imatinib in CML patients: a paradigm for the advantages and pitfalls of molecularly targeted therapy.

    PubMed

    Ritchie, E; Nichols, G

    2006-12-01

    One of the challenges of cancer therapeutics is to discover targets unique to the tumor cell population. Constitutively activated tyrosine kinases play a role in the malignant phenotype in a number of different cancers. While the kinases may be present in the normal cell, the cancer cell is often dependent upon the activation of the kinase for the maintenance of malignant growth. Inhibition of kinase activation may therefore selectively inhibit malignant proliferation. In the case of chronic myelogenous leukemia (CML), the activated tyrosine kinase (BCR-ABL) is due to a chromosomal translocation that defines this disease, and is necessary for malignant transformation. Imatinib mesylate (Gleevec, Novartis) is a small molecule tyrosine kinase inhibitor, developed through the chemical modification to be selected for a small number of tyrosine kinases present in human cells. This agent is also orally bioavailable and has been found to be effective in clinical trials. We have learned much through the clinical use of this agent. 1) Specific targeting of activated signal transduction pathways may be effective in inhibiting cancer cells. 2) Cancer cells may not only be inherently resistant to small molecule inhibitors, but may also develop resistance after exposure to the inhibitor. 3) Increased knowledge regarding critical signal transduction pathways, the structure of the molecules that are being targeted and the inhibitors themselves, will allow us to understand resistance as it develops and create new molecules to bypass resistance. We will discuss imatinib as an important example of the success and pitfalls of targeted therapeutics for cancer.

  19. Variable genetic architectures produce virtually identical molecules in bacterial symbionts of fungus-growing ants

    PubMed Central

    Sit, Clarissa S.; Ruzzini, Antonio C.; Van Arnam, Ethan B.; Ramadhar, Timothy R.; Currie, Cameron R.; Clardy, Jon

    2015-01-01

    Small molecules produced by Actinobacteria have played a prominent role in both drug discovery and organic chemistry. As part of a larger study of the actinobacterial symbionts of fungus-growing ants, we discovered a small family of three previously unreported piperazic acid-containing cyclic depsipeptides, gerumycins A–C. The gerumycins are slightly smaller versions of dentigerumycin, a cyclic depsipeptide that selectively inhibits a common fungal pathogen, Escovopsis. We had previously identified this molecule from a Pseudonocardia associated with Apterostigma dentigerum, and now we report the molecule from an associate of the more highly derived ant Trachymyrmex cornetzi. The three previously unidentified compounds, gerumycins A–C, have essentially identical structures and were produced by two different symbiotic Pseudonocardia spp. from ants in the genus Apterostigma found in both Panama and Costa Rica. To understand the similarities and differences in the biosynthetic pathways that produced these closely related molecules, the genomes of the three producing Pseudonocardia were sequenced and the biosynthetic gene clusters identified. This analysis revealed that dramatically different biosynthetic architectures, including genomic islands, a plasmid, and the use of spatially separated genetic loci, can lead to molecules with virtually identical core structures. A plausible evolutionary model that unifies these disparate architectures is presented. PMID:26438860

  20. Screening for small molecule inhibitors of Toxoplasma gondii.

    PubMed

    Kortagere, Sandhya

    2012-12-01

    Toxoplasma gondii, the agent that causes toxoplasmosis, is an opportunistic parasite that infects many mammalian species. It is an obligate intracellular parasite that causes severe congenital neurological and ocular disease mostly in immunocompromised humans. The current regimen of therapy includes only a few medications that often lead to hypersensitivity and toxicity. In addition, there are no vaccines available to prevent the transmission of this agent. Therefore, safer and more effective medicines to treat toxoplasmosis are urgently needed. The author presents in silico and in vitro strategies that are currently used to screen for novel targets and unique chemotypes against T. gondii. Furthermore, this review highlights the screening technologies and characterization of some novel targets and new chemical entities that could be developed into highly efficacious treatments for toxoplasmosis. A number of diverse methods are being used to design inhibitors against T. gondii. These include ligand-based methods, in which drugs that have been shown to be efficacious against other Apicomplexa parasites can be repurposed to identify lead molecules against T. gondii. In addition, structure-based methods use currently available repertoire of structural information in various databases to rationally design small-molecule inhibitors of T. gondii. Whereas the screening methods have their advantages and limitations, a combination of methods is ideally suited to design small-molecule inhibitors of complex parasites such as T. gondii.

  1. Identification of small molecule inhibitors of cytokinesis and single cell wound repair

    PubMed Central

    Clark, Andrew G.; Sider, Jenny R.; Verbrugghe, Koen; Fenteany, Gabriel; von Dassow, George; Bement, William M.

    2013-01-01

    Screening of small molecule libraries offers the potential to identify compounds that inhibit specific biological processes and, ultimately, to identify macromolecules that are important players in such processes. To date, however, most screens of small molecule libraries have focused on identification of compounds that inhibit known proteins or particular steps in a given process, and have emphasized automated primary screens. Here we have used “low tech” in vivo primary screens to identify small molecules that inhibit both cytokinesis and single cell wound repair, two complex cellular processes that possess many common features. The “diversity set”, an ordered array of 1990 compounds available from the National Cancer Institute, was screened in parallel to identify compounds that inhibit cytokinesis in D. excentricus (sand dollar) embryos and single cell wound repair in X. laevis (frog) oocytes. Two small molecules were thus identified: Sph1 and Sph2. Sph1 reduces Rho activation in wound repair and suppresses formation of the spindle midzone during cytokinesis. Sph2 also reduces Rho activation in wound repair and may inhibit cytokinesis by blocking membrane fusion. The results identify two small molecules of interest for analysis of wound repair and cytokinesis, reveal that these processes are more similar than often realized and reveal the potential power of low tech screens of small molecule libraries for analysis of complex cellular processes. PMID:23125193

  2. DNA Motion Capture Reveals the Mechanical Properties of DNA at the Mesoscale

    PubMed Central

    Price, Allen C.; Pilkiewicz, Kevin R.; Graham, Thomas G.W.; Song, Dan; Eaves, Joel D.; Loparo, Joseph J.

    2015-01-01

    Single-molecule studies probing the end-to-end extension of long DNAs have established that the mechanical properties of DNA are well described by a wormlike chain force law, a polymer model where persistence length is the only adjustable parameter. We present a DNA motion-capture technique in which DNA molecules are labeled with fluorescent quantum dots at specific sites along the DNA contour and their positions are imaged. Tracking these positions in time allows us to characterize how segments within a long DNA are extended by flow and how fluctuations within the molecule are correlated. Utilizing a linear response theory of small fluctuations, we extract elastic forces for the different, ∼2-μm-long segments along the DNA backbone. We find that the average force-extension behavior of the segments can be well described by a wormlike chain force law with an anomalously small persistence length. PMID:25992731

  3. Recent development of small molecule glutaminase inhibitors.

    PubMed

    Song, Minsoo; Kim, Soong-Hyun; Im, Chun Young; Hwang, Hee-Jong

    2018-05-24

    Glutaminase (GLS) which is responsible for the conversion of glutamine to glutamate plays vital role in up-regulating cell metabolism for tumor cell growth, and is considered as a valuable therapeutic target for cancer treatment. Based on this important function of glutaminase in cancer, several GLS inhibitors have been developed from both academia and industries. Most importantly, Calithera Biosciences Inc. is actively developing glutaminase inhibitor CB-839 for the treatment of various cancers in phase 1 and 2 clinical trials at present. In this review, it is discussed about recent efforts to develop small molecule glutaminase inhibitors targeting glutamine metabolism both in the preclinical and clinical studies. In particular, more emphasis is placed on CB-839 since it is the only small molecule GLS inhibitor being studied in clinical setting. Inhibition mechanism is discussed based on x-ray structure study of thiadiazole derivatives as well. Finally, recent medicinal chemistry efforts to develop a new class of GLS inhibitors are given herein in the hope of providing useful information for GLS inhibitors of the next generation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. A Structural Perspective on the Modulation of Protein-Protein Interactions with Small Molecules.

    PubMed

    Demirel, Habibe Cansu; Dogan, Tunca; Tuncbag, Nurcan

    2018-05-31

    Protein-protein interactions (PPIs) are the key components in many cellular processes including signaling pathways, enzymatic reactions and epigenetic regulation. Abnormal interactions of some proteins may be pathogenic and cause various disorders including cancer and neurodegenerative diseases. Although inhibiting PPIs with small molecules is a challenging task, it gained an increasing interest because of its strong potential for drug discovery and design. The knowledge of the interface as well as the structural and chemical characteristics of the PPIs and their roles in the cellular pathways are necessary for a rational design of small molecules to modulate PPIs. In this study, we review the recent progress in the field and detail the physicochemical properties of PPIs including binding hot spots with a focus on structural methods. Then, we review recent approaches for structural prediction of PPIs. Finally, we revisit the concept of targeting PPIs in a systems biology perspective and we refer to the non-structural approaches, usually employed when the structural information is not present. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Structural basis of AMPK regulation by small molecule activators

    NASA Astrophysics Data System (ADS)

    Xiao, Bing; Sanders, Matthew J.; Carmena, David; Bright, Nicola J.; Haire, Lesley F.; Underwood, Elizabeth; Patel, Bhakti R.; Heath, Richard B.; Walker, Philip A.; Hallen, Stefan; Giordanetto, Fabrizio; Martin, Stephen R.; Carling, David; Gamblin, Steven J.

    2013-12-01

    AMP-activated protein kinase (AMPK) plays a major role in regulating cellular energy balance by sensing and responding to increases in AMP/ADP concentration relative to ATP. Binding of AMP causes allosteric activation of the enzyme and binding of either AMP or ADP promotes and maintains the phosphorylation of threonine 172 within the activation loop of the kinase. AMPK has attracted widespread interest as a potential therapeutic target for metabolic diseases including type 2 diabetes and, more recently, cancer. A number of direct AMPK activators have been reported as having beneficial effects in treating metabolic diseases, but there has been no structural basis for activator binding to AMPK. Here we present the crystal structure of human AMPK in complex with a small molecule activator that binds at a site between the kinase domain and the carbohydrate-binding module, stabilising the interaction between these two components. The nature of the activator-binding pocket suggests the involvement of an additional, as yet unidentified, metabolite in the physiological regulation of AMPK. Importantly, the structure offers new opportunities for the design of small molecule activators of AMPK for treatment of metabolic disorders.

  6. Chemoinformatic Analysis of Combinatorial Libraries, Drugs, Natural Products and Molecular Libraries Small Molecule Repository

    PubMed Central

    Singh, Narender; Guha, Rajarshi; Giulianotti, Marc; Pinilla, Clemencia; Houghten, Richard; Medina-Franco, Jose L.

    2009-01-01

    A multiple criteria approach is presented, that is used to perform a comparative analysis of four recently developed combinatorial libraries to drugs, Molecular Libraries Small Molecule Repository (MLSMR) and natural products. The compound databases were assessed in terms of physicochemical properties, scaffolds and fingerprints. The approach enables the analysis of property space coverage, degree of overlap between collections, scaffold and structural diversity and overall structural novelty. The degree of overlap between combinatorial libraries and drugs was assessed using the R-NN curve methodology, which measures the density of chemical space around a query molecule embedded in the chemical space of a target collection. The combinatorial libraries studied in this work exhibit scaffolds that were not observed in the drug, MLSMR and natural products collections. The fingerprint-based comparisons indicate that these combinatorial libraries are structurally different to current drugs. The R-NN curve methodology revealed that a proportion of molecules in the combinatorial libraries are located within the property space of the drugs. However, the R-NN analysis also showed that there are a significant number of molecules in several combinatorial libraries that are located in sparse regions of the drug space. PMID:19301827

  7. MALDI Mass Spectrometry Imaging for Visualizing In Situ Metabolism of Endogenous Metabolites and Dietary Phytochemicals

    PubMed Central

    Fujimura, Yoshinori; Miura, Daisuke

    2014-01-01

    Understanding the spatial distribution of bioactive small molecules is indispensable for elucidating their biological or pharmaceutical roles. Mass spectrometry imaging (MSI) enables determination of the distribution of ionizable molecules present in tissue sections of whole-body or single heterogeneous organ samples by direct ionization and detection. This emerging technique is now widely used for in situ label-free molecular imaging of endogenous or exogenous small molecules. MSI allows the simultaneous visualization of many types of molecules including a parent molecule and its metabolites. Thus, MSI has received much attention as a potential tool for pathological analysis, understanding pharmaceutical mechanisms, and biomarker discovery. On the other hand, several issues regarding the technical limitations of MSI are as of yet still unresolved. In this review, we describe the capabilities of the latest matrix-assisted laser desorption/ionization (MALDI)-MSI technology for visualizing in situ metabolism of endogenous metabolites or dietary phytochemicals (food factors), and also discuss the technical problems and new challenges, including MALDI matrix selection and metabolite identification, that need to be addressed for effective and widespread application of MSI in the diverse fields of biological, biomedical, and nutraceutical (food functionality) research. PMID:24957029

  8. Crossing borders to bind proteins--a new concept in protein recognition based on the conjugation of small organic molecules or short peptides to polypeptides from a designed set.

    PubMed

    Baltzer, Lars

    2011-06-01

    A new concept for protein recognition and binding is highlighted. The conjugation of small organic molecules or short peptides to polypeptides from a designed set provides binder molecules that bind proteins with high affinities, and with selectivities that are equal to those of antibodies. The small organic molecules or peptides need to bind the protein targets but only with modest affinities and selectivities, because conjugation to the polypeptides results in molecules with dramatically improved binder performance. The polypeptides are selected from a set of only sixteen sequences designed to bind, in principle, any protein. The small number of polypeptides used to prepare high-affinity binders contrasts sharply with the huge libraries used in binder technologies based on selection or immunization. Also, unlike antibodies and engineered proteins, the polypeptides have unordered three-dimensional structures and adapt to the proteins to which they bind. Binder molecules for the C-reactive protein, human carbonic anhydrase II, acetylcholine esterase, thymidine kinase 1, phosphorylated proteins, the D-dimer, and a number of antibodies are used as examples to demonstrate that affinities are achieved that are higher than those of the small molecules or peptides by as much as four orders of magnitude. Evaluation by pull-down experiments and ELISA-based tests in human serum show selectivities to be equal to those of antibodies. Small organic molecules and peptides are readily available from pools of endogenous ligands, enzyme substrates, inhibitors or products, from screened small molecule libraries, from phage display, and from mRNA display. The technology is an alternative to established binder concepts for applications in drug development, diagnostics, medical imaging, and protein separation.

  9. Insufficient amount of Cdc2 and continuous activation of Wee1 B are the cause of meiotic failure in porcine growing oocytes.

    PubMed

    Nishimura, Takanori; Shimaoka, Takuma; Kano, Kiyoshi; Naito, Kunihiko

    2009-10-01

    In mammals, growing oocytes with a diameter less than 80% of that of full-grown oocytes cannot start meiotic maturation, and their maturation promoting factor (MPF) cannot be activated by hormonal stimulation or isolation from follicles. The aim of the present study was to identify the key molecules responsible for meiotic failure of these growing oocytes (referred to as "small oocytes" in the present study). To this end, we altered the expression of the molecules involved in MPF activation in the small oocytes of pigs by injecting them with mRNA or antisense RNA (asRNA) and examined the effects on the meiotic ability of the small oocytes. Immunoblotting analyses revealed three defects in small oocytes compared with full-grown oocytes, an inactive mitogen activated protein kinase (MAPK) cascade, a failure of cyclin B synthesis and an insufficient amount of Cdc2. Injection with mRNAs of Mos, the uppermost molecule of the MAPK cascade, cyclin B1, cyclin B2 or Cdc2 into small porcine oocytes indicated directly and for the first time that the cause of meiotic failure of porcine small oocytes is an insufficient amount of Cdc2 rather than MAPK inactivation or failure of cyclin B synthesis. Next, in order to suppress Myt1 and Wee1B, which phosphorylates at inhibitory phosphorylation sites of Cdc2 and inactive MPF, we injected their asRNAs into the porcine small oocytes and found that the Wee1B asRNA significantly increased meiotic ability, whereas the Myt1 asRNA had no effect. When Cdc2 overexpression and suppression of Wee1B expression were simultaneously induced in the small oocytes of pigs, about 70% of the small oocytes resumed meiosis, and this rate was nearly comparable with that of the full-grown oocytes. These results strongly suggest that an insufficient amount of Cdc2 and continuous activation of Wee1 B are the cause of meiotic failure of small oocytes in pigs.

  10. Perylene-Diimide Based Donor-Acceptor-Donor Type Small-Molecule Acceptors for Solution-Processable Organic Solar Cells

    NASA Astrophysics Data System (ADS)

    Ganesamoorthy, Ramasamy; Vijayaraghavan, Rajagopalan; Sakthivel, Pachagounder

    2017-12-01

    Development of nonfullerene acceptors plays an important role in the commercial availability of plastic solar cells. We report herein synthesis of bay-substituted donor-acceptor-donor (D-A-D)-type perylene diimide (PDI)-based small molecules (SM-1 to SM-4) by Suzuki coupling method and their use as acceptors in bulk heterojunction organic solar cells (BHJ-OSCs) with poly(3-hexylthiophene) (P3HT) polymer donor. We varied the number of electron-rich thiophene units and the solubilizing side chains and also evaluated the optical and electrochemical properties of the small molecules. The synthesized small molecules were confirmed by Fourier-transform infrared (FT-IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and high-resolution mass spectroscopy (HR-MS). The small molecules showed extensive and strong absorption in the ultraviolet-visible (UV-Vis) region up to 750 nm, with bandgap (E_{{g}}^{{opt}} ) reduced below <2 eV. The energy levels of small molecules SM-1 to SM-4 were suitable for use as electron-accepting materials. The small molecules showed good thermal stability up to 300°C. BHJ-OSCs with SM-1 and P3HT polymer donor showed maximum power conversion efficiency (PCE) of 0.19% with V oc of 0.30 V, J sc of 1.72 mA cm-2, and fill factor (FF) of 37%. The PCE decreased with the number of thiophene units. The PCE of SM-2 was lower than that of SM-1. This difference in PCE can be explained by the higher aggregation tendency of the bithiophene compared with the thiophene unit. Introduction of the solubilizing group in the bay position increased the aggregation property, leading to much lower PCE than for the small molecules without solubilizing group.

  11. Re-Designing of Existing Pharmaceuticals for Environmental Biodegradability: A Tiered Approach with β-Blocker Propranolol as an Example.

    PubMed

    Rastogi, Tushar; Leder, Christoph; Kümmerer, Klaus

    2015-10-06

    Worldwide, contamination of aquatic systems with micropollutants, including pharmaceuticals, is one of the challenges for sustainable management of water resources. Although micropollutants are present at low concentrations, many of them raise considerable toxicological concerns, particularly when present as components of complex mixtures. Recent research has shown that this problem cannot be sustainably solved with advanced effluent treatment. Therefore, an alternative that might overcome these environmental problems is the design of new pharmaceutical molecules or the redesign of existing pharmaceutical molecules that present the functionality needed for their application and have improved environmental biodegradability. Such redesigning can be performed by small molecular changes in the drug molecule with intact drug moiety which could incorporate the additional attribute such as biodegradability while retaining its pharmacological potency. This proof of concept study provides an approach for the rational redesign of a given pharmaceutical (Propranolol as an example). New derivatives with small molecular changes as compared to propranolol molecule were generated by a nontargeted photolysis process. Generated derivatives with intact drug moieties (an aromatic ring and a β-ethanolamine moiety) were further screened for aerobic biodegradability and pharmacological potency. The feasibility of the approach of redesigning an existing pharmaceutical through nontargeted generation of new derivatives with intact drug moiety and through subsequent screening was demonstrated in this study. Application of such approaches in turn might contribute to the protection of water resources in a truly sustainable manner.

  12. Hierarchical virtual screening approaches in small molecule drug discovery.

    PubMed

    Kumar, Ashutosh; Zhang, Kam Y J

    2015-01-01

    Virtual screening has played a significant role in the discovery of small molecule inhibitors of therapeutic targets in last two decades. Various ligand and structure-based virtual screening approaches are employed to identify small molecule ligands for proteins of interest. These approaches are often combined in either hierarchical or parallel manner to take advantage of the strength and avoid the limitations associated with individual methods. Hierarchical combination of ligand and structure-based virtual screening approaches has received noteworthy success in numerous drug discovery campaigns. In hierarchical virtual screening, several filters using ligand and structure-based approaches are sequentially applied to reduce a large screening library to a number small enough for experimental testing. In this review, we focus on different hierarchical virtual screening strategies and their application in the discovery of small molecule modulators of important drug targets. Several virtual screening studies are discussed to demonstrate the successful application of hierarchical virtual screening in small molecule drug discovery. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. An autonomous chemically fuelled small-molecule motor

    NASA Astrophysics Data System (ADS)

    Wilson, Miriam R.; Solà, Jordi; Carlone, Armando; Goldup, Stephen M.; Lebrasseur, Nathalie; Leigh, David A.

    2016-06-01

    Molecular machines are among the most complex of all functional molecules and lie at the heart of nearly every biological process. A number of synthetic small-molecule machines have been developed, including molecular muscles, synthesizers, pumps, walkers, transporters and light-driven and electrically driven rotary motors. However, although biological molecular motors are powered by chemical gradients or the hydrolysis of adenosine triphosphate (ATP), so far there are no synthetic small-molecule motors that can operate autonomously using chemical energy (that is, the components move with net directionality as long as a chemical fuel is present). Here we describe a system in which a small molecular ring (macrocycle) is continuously transported directionally around a cyclic molecular track when powered by irreversible reactions of a chemical fuel, 9-fluorenylmethoxycarbonyl chloride. Key to the design is that the rate of reaction of this fuel with reactive sites on the cyclic track is faster when the macrocycle is far from the reactive site than when it is near to it. We find that a bulky pyridine-based catalyst promotes carbonate-forming reactions that ratchet the displacement of the macrocycle away from the reactive sites on the track. Under reaction conditions where both attachment and cleavage of the 9-fluorenylmethoxycarbonyl groups occur through different processes, and the cleavage reaction occurs at a rate independent of macrocycle location, net directional rotation of the molecular motor continues for as long as unreacted fuel remains. We anticipate that autonomous chemically fuelled molecular motors will find application as engines in molecular nanotechnology.

  14. Multiscale Molecular Simulation of Solution Processing of SMDPPEH: PCBM Small-Molecule Organic Solar Cells.

    PubMed

    Lee, Cheng-Kuang; Pao, Chun-Wei

    2016-08-17

    Solution-processed small-molecule organic solar cells are a promising renewable energy source because of their low production cost, mechanical flexibility, and light weight relative to their pure inorganic counterparts. In this work, we developed a coarse-grained (CG) Gay-Berne ellipsoid molecular simulation model based on atomistic trajectories from all-atom molecular dynamics simulations of smaller system sizes to systematically study the nanomorphology of the SMDPPEH/PCBM/solvent ternary blend during solution processing, including the blade-coating process by applying external shear to the solution. With the significantly reduced overall system degrees of freedom and computational acceleration from GPU, we were able to go well beyond the limitation of conventional all-atom molecular simulations with a system size on the order of hundreds of nanometers with mesoscale molecular detail. Our simulations indicate that, similar to polymer solar cells, the optimal blending ratio in small-molecule organic solar cells must provide the highest specific interfacial area for efficient exciton dissociation, while retaining balanced hole/electron transport pathway percolation. We also reveal that blade-coating processes have a significant impact on nanomorphology. For given donor/acceptor blending ratios, applying an external shear force can effectively promote donor/acceptor phase segregation and stacking in the SMDPPEH domains. The present study demonstrated the capability of an ellipsoid-based coarse-grained model for studying the nanomorphology evolution of small-molecule organic solar cells during solution processing/blade-coating and provided links between fabrication protocols and device nanomorphologies.

  15. Reprint of "Potential seminal transport of pharmaceuticals to the conceptus".

    PubMed

    Scialli, Anthony R; Bailey, Graham; Beyer, Bruce K; Bøgh, Ingrid Brück; Breslin, William J; Chen, Connie L; DeLise, Anthony M; Hui, Julia Y; Moffat, Graeme J; Stewart, Jane; Thompson, Kary E

    2016-01-01

    Small molecule pharmaceutical products are assumed to reach concentrations in semen similar to those in blood plasma. Exposure modeling for these small-molecule products in humans assumes a daily dose of 5mL of semen and 100% absorption from the vagina with distribution to the conceptus through the maternal systemic circulation. Monoclonal antibody drugs are present in semen at concentrations about 2% or less of those in blood, and the modeling used for small molecules will over-estimate the possibility of conceptus exposure to immunoglobulins. It is not known whether peptide products reach semen, but in general peptide medications are destroyed by vaginal peptidases, and conceptus exposure is predicted to be minimal. Theoretical exposure routes to pharmaceuticals that might result in exposure of the conceptus greater than that of maternal systemic exposures include direct access through the cervical canal, adsorption to sperm for carriage into the oocyte, and direct delivery from the vaginal veins or lymphatics to the uterine artery. There is some evidence for direct access to the uterus for progesterone, terbutaline, and danazol, but the evidence does not involve exposures during pregnancy in most instances. Studies in mice, rats, rabbits, and monkeys do not suggest that exposure to small molecule pharmaceuticals in semen imposes risks to the conceptus beyond those that can be predicted using modeling of systemic maternal exposure. Monoclonal antibody and peptide exposure in semen does not pose a significant risk to the conceptus. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Potential seminal transport of pharmaceuticals to the conceptus.

    PubMed

    Scialli, Anthony R; Bailey, Graham; Beyer, Bruce K; Bøgh, Ingrid Brück; Breslin, William J; Chen, Connie L; DeLise, Anthony M; Hui, Julia Y; Moffat, Graeme J; Stewart, Jane; Thompson, Kary E

    2015-12-01

    Small molecule pharmaceutical products are assumed to reach concentrations in semen similar to those in blood plasma. Exposure modeling for these small-molecule products in humans assumes a daily dose of 5mL of semen and 100% absorption from the vagina with distribution to the conceptus through the maternal systemic circulation. Monoclonal antibody drugs are present in semen at concentrations about 2% or less of those in blood, and the modeling used for small molecules will over-estimate the possibility of conceptus exposure to immunoglobulins. It is not known whether peptide products reach semen, but in general peptide medications are destroyed by vaginal peptidases, and conceptus exposure is predicted to be minimal. Theoretical exposure routes to pharmaceuticals that might result in exposure of the conceptus greater than that of maternal systemic exposures include direct access through the cervical canal, adsorption to sperm for carriage into the oocyte, and direct delivery from the vaginal veins or lymphatics to the uterine artery. There is some evidence for direct access to the uterus for progesterone, terbutaline, and danazol, but the evidence does not involve exposures during pregnancy in most instances. Studies in mice, rats, rabbits, and monkeys do not suggest that exposure to small molecule pharmaceuticals in semen imposes risks to the conceptus beyond those that can be predicted using modeling of systemic maternal exposure. Monoclonal antibody and peptide exposure in semen does not pose a significant risk to the conceptus. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Isolation of a small molecule with anti-MRSA activity from a mangrove symbiont Streptomyces sp. PVRK-1 and its biomedical studies in Zebrafish embryos.

    PubMed

    Kannan, Rajaretinam Rajesh; Iniyan, Appadurai Muthamil; Prakash, Vincent Samuel Gnana

    2011-10-01

    The aim of the present study was to isolate the anti-MRSA (Methicillin Resistant Staphylococcus aureus) molecule from the Mangrove symbiont Streptomyces and its biomedical studies in Zebrafish embryos. MRSA was isolated from the pus samples of Colachal hospitals and confirmed by amplification of mecA gene. Anti-MRSA molecule producing strain was identified by 16s rRNA gene sequencing. Anti-MRSA compound production was optimized by Solid State Fermentation (SSF) and the purification of the active molecule was carried out by TLC and RP-HPLC. The inhibitory concentration and LC50 were calculated using Statistical software SPSS. The Biomedical studies including the cardiac assay and organ toxicity assessment were carried out in Zebrafish. The bioactive anti-MRSA small molecule A2 was purified by TLC with Rf value of 0.37 with 1.389 retention time at RP-HPLC. The Inhibitory Concentration of the purified molecule A2 was 30 µg/mL but, the inhibitory concentration of the MRSA in the infected embryo was 32-34 µg/mL for TLC purified molecule A2 with LC50 mean value was 61.504 µg/mL. Zebrafish toxicity was assessed in 48-60 µg/mL by observing the physiological deformities and the heart beat rates (HBR) of embryos for anti MRSA molecule showed the mean of 41.33-41.67 HBR/15 seconds for 40 µg/mL and control was 42.33-42.67 for 15 seconds which significantly showed that the anti-MRSA molecule A2 did not affected the HBR. Anti-MRSA molecule from Streptomyces sp PVRK-1 was isolated and biomedical studies in Zebrafish model assessed that the molecule was non toxic at the minimal inhibitory concentration of MRSA.

  18. Systematic development of small molecules to inhibit specific microscopic steps of Aβ42 aggregation in Alzheimer's disease.

    PubMed

    Habchi, Johnny; Chia, Sean; Limbocker, Ryan; Mannini, Benedetta; Ahn, Minkoo; Perni, Michele; Hansson, Oskar; Arosio, Paolo; Kumita, Janet R; Challa, Pavan Kumar; Cohen, Samuel I A; Linse, Sara; Dobson, Christopher M; Knowles, Tuomas P J; Vendruscolo, Michele

    2017-01-10

    The aggregation of the 42-residue form of the amyloid-β peptide (Aβ42) is a pivotal event in Alzheimer's disease (AD). The use of chemical kinetics has recently enabled highly accurate quantifications of the effects of small molecules on specific microscopic steps in Aβ42 aggregation. Here, we exploit this approach to develop a rational drug discovery strategy against Aβ42 aggregation that uses as a read-out the changes in the nucleation and elongation rate constants caused by candidate small molecules. We thus identify a pool of compounds that target specific microscopic steps in Aβ42 aggregation. We then test further these small molecules in human cerebrospinal fluid and in a Caenorhabditis elegans model of AD. Our results show that this strategy represents a powerful approach to identify systematically small molecule lead compounds, thus offering an appealing opportunity to reduce the attrition problem in drug discovery.

  19. Synthesis of many different types of organic small molecules using one automated process.

    PubMed

    Li, Junqi; Ballmer, Steven G; Gillis, Eric P; Fujii, Seiko; Schmidt, Michael J; Palazzolo, Andrea M E; Lehmann, Jonathan W; Morehouse, Greg F; Burke, Martin D

    2015-03-13

    Small-molecule synthesis usually relies on procedures that are highly customized for each target. A broadly applicable automated process could greatly increase the accessibility of this class of compounds to enable investigations of their practical potential. Here we report the synthesis of 14 distinct classes of small molecules using the same fully automated process. This was achieved by strategically expanding the scope of a building block-based synthesis platform to include even C(sp3)-rich polycyclic natural product frameworks and discovering a catch-and-release chromatographic purification protocol applicable to all of the corresponding intermediates. With thousands of compatible building blocks already commercially available, many small molecules are now accessible with this platform. More broadly, these findings illuminate an actionable roadmap to a more general and automated approach for small-molecule synthesis. Copyright © 2015, American Association for the Advancement of Science.

  20. Small Molecule Signaling Agents: The Integrated Chemistry and Biochemistry of Nitrogen Oxides, Oxides of Carbon, Dioxygen, Hydrogen Sulfide, and Their Derived Species

    PubMed Central

    Fukuto, Jon M.; Carrington, Samantha J.; Tantillo, Dean J.; Harrison, Jason G.; Ignarro, Louis J.; Freeman, Bruce A.; Chen, Andrew; Wink, David A.

    2014-01-01

    Several small molecule species formally known primarily as toxic gases have, over the past 20 years, been shown to be endogenously generated signaling molecules. The biological signaling associated with the small molecules NO, CO, H2S (and the nonendogenously generated O2), and their derived species have become a topic of extreme interest. It has become increasingly clear that these small molecule signaling agents form an integrated signaling web that affects/regulates numerous physiological processes. The chemical interactions between these species and each other or biological targets is an important factor in their roles as signaling agents. Thus, a fundamental understanding of the chemistry of these molecules is essential to understanding their biological/physiological utility. This review focuses on this chemistry and attempts to establish the chemical basis for their signaling functions. PMID:22263838

  1. Fluorination-enabled optimal morphology leads to over 11% efficiency for inverted small-molecule organic solar cells

    PubMed Central

    Deng, Dan; Zhang, Yajie; Zhang, Jianqi; Wang, Zaiyu; Zhu, Lingyun; Fang, Jin; Xia, Benzheng; Wang, Zhen; Lu, Kun; Ma, Wei; Wei, Zhixiang

    2016-01-01

    Solution-processable small molecules for organic solar cells have attracted intense attention for their advantages of definite molecular structures compared with their polymer counterparts. However, the device efficiencies based on small molecules are still lower than those of polymers, especially for inverted devices, the highest efficiency of which is <9%. Here we report three novel solution-processable small molecules, which contain π-bridges with gradient-decreased electron density and end acceptors substituted with various fluorine atoms (0F, 1F and 2F, respectively). Fluorination leads to an optimal active layer morphology, including an enhanced domain purity, the formation of hierarchical domain size and a directional vertical phase gradation. The optimal morphology balances charge separation and transfer, and facilitates charge collection. As a consequence, fluorinated molecules exhibit excellent inverted device performance, and an average power conversion efficiency of 11.08% is achieved for a two-fluorine atom substituted molecule. PMID:27991486

  2. The Role of Histone Deacetylases in Neurodegenerative Diseases and Small-Molecule Inhibitors as a Potential Therapeutic Approach

    NASA Astrophysics Data System (ADS)

    Bürli, Roland W.; Thomas, Elizabeth; Beaumont, Vahri

    Neurodegenerative disorders are devastating for patients and their social environment. Their etiology is poorly understood and complex. As a result, there is clearly an urgent need for therapeutic agents that slow down disease progress and alleviate symptoms. In this respect, interference with expression and function of multiple gene products at the epigenetic level has offered much promise, and histone deacetylases play a crucial role in these processes. This review presents an overview of the biological pathways in which these enzymes are involved and illustrates the complex network of proteins that governs their activity. An overview of small molecules that interfere with histone deacetylase function is provided.

  3. Hippocampal and cortical neuronal growth mediated by the small molecule natural product clovanemagnolol.

    PubMed

    Khaing, Zin; Kang, Danby; Camelio, Andrew M; Schmidt, Christine E; Siegel, Dionicio

    2011-08-15

    The use of small molecule surrogates of growth factors that directly or indirectly promote growth represents an attractive approach to regenerative medicine. With synthetic access to clovanemagnolol, a small molecule initially isolated from the bark of the Bigleaf Magnolia tree, we have examined the small molecule's ability to promote growth of embryonic hippocampal and cortical neurons in serum-free medium. Comparisons with magnolol, a known promoter of growth, reveals that clovanmagnolol is a potent neurotrophic agent, promoting neuronal growth at concentrations of 10 nM. In addition, both clovanemagnolol and magnolol promote growth through a biphasic dose response. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Second-generation DNA-templated macrocycle libraries for the discovery of bioactive small molecules.

    PubMed

    Usanov, Dmitry L; Chan, Alix I; Maianti, Juan Pablo; Liu, David R

    2018-07-01

    DNA-encoded libraries have emerged as a widely used resource for the discovery of bioactive small molecules, and offer substantial advantages compared with conventional small-molecule libraries. Here, we have developed and streamlined multiple fundamental aspects of DNA-encoded and DNA-templated library synthesis methodology, including computational identification and experimental validation of a 20 × 20 × 20 × 80 set of orthogonal codons, chemical and computational tools for enhancing the structural diversity and drug-likeness of library members, a highly efficient polymerase-mediated template library assembly strategy, and library isolation and purification methods. We have integrated these improved methods to produce a second-generation DNA-templated library of 256,000 small-molecule macrocycles with improved drug-like physical properties. In vitro selection of this library for insulin-degrading enzyme affinity resulted in novel insulin-degrading enzyme inhibitors, including one of unusual potency and novel macrocycle stereochemistry (IC 50  = 40 nM). Collectively, these developments enable DNA-templated small-molecule libraries to serve as more powerful, accessible, streamlined and cost-effective tools for bioactive small-molecule discovery.

  5. Use of mRNA expression signatures to discover small molecule inhibitors of skeletal muscle atrophy

    PubMed Central

    Adams, Christopher M.; Ebert, Scott M.; Dyle, Michael C.

    2017-01-01

    Purpose of review Here, we discuss a recently developed experimental strategy for discovering small molecules with potential to prevent and treat skeletal muscle atrophy. Recent findings Muscle atrophy involves and requires widespread changes in skeletal muscle gene expression, which generate complex but measurable patterns of positive and negative changes in skeletal muscle mRNA levels (a.k.a. mRNA expression signatures of muscle atrophy). Many bioactive small molecules generate their own characteristic mRNA expression signatures, and by identifying small molecules whose signatures approximate mirror images of muscle atrophy signatures, one may identify small molecules with potential to prevent and/or reverse muscle atrophy. Unlike a conventional drug discovery approach, this strategy does not rely on a predefined molecular target but rather exploits the complexity of muscle atrophy to identify small molecules that counter the entire spectrum of pathological changes in atrophic muscle. We discuss how this strategy has been used to identify two natural compounds, ursolic acid and tomatidine, that reduce muscle atrophy and improve skeletal muscle function. Summary Discovery strategies based on mRNA expression signatures can elucidate new approaches for preserving and restoring muscle mass and function. PMID:25807353

  6. Use of mRNA expression signatures to discover small molecule inhibitors of skeletal muscle atrophy.

    PubMed

    Adams, Christopher M; Ebert, Scott M; Dyle, Michael C

    2015-05-01

    Here, we discuss a recently developed experimental strategy for discovering small molecules with potential to prevent and treat skeletal muscle atrophy. Muscle atrophy involves and requires widespread changes in skeletal muscle gene expression, which generate complex but measurable patterns of positive and negative changes in skeletal muscle mRNA levels (a.k.a. mRNA expression signatures of muscle atrophy). Many bioactive small molecules generate their own characteristic mRNA expression signatures, and by identifying small molecules whose signatures approximate mirror images of muscle atrophy signatures, one may identify small molecules with potential to prevent and/or reverse muscle atrophy. Unlike a conventional drug discovery approach, this strategy does not rely on a predefined molecular target but rather exploits the complexity of muscle atrophy to identify small molecules that counter the entire spectrum of pathological changes in atrophic muscle. We discuss how this strategy has been used to identify two natural compounds, ursolic acid and tomatidine, that reduce muscle atrophy and improve skeletal muscle function. Discovery strategies based on mRNA expression signatures can elucidate new approaches for preserving and restoring muscle mass and function.

  7. Mass amplifying probe for sensitive fluorescence anisotropy detection of small molecules in complex biological samples.

    PubMed

    Cui, Liang; Zou, Yuan; Lin, Ninghang; Zhu, Zhi; Jenkins, Gareth; Yang, Chaoyong James

    2012-07-03

    Fluorescence anisotropy (FA) is a reliable and excellent choice for fluorescence sensing. One of the key factors influencing the FA value for any molecule is the molar mass of the molecule being measured. As a result, the FA method with functional nucleic acid aptamers has been limited to macromolecules such as proteins and is generally not applicable for the analysis of small molecules because their molecular masses are relatively too small to produce observable FA value changes. We report here a molecular mass amplifying strategy to construct anisotropy aptamer probes for small molecules. The probe is designed in such a way that only when a target molecule binds to the probe does it activate its binding ability to an anisotropy amplifier (a high molecular mass molecule such as protein), thus significantly increasing the molecular mass and FA value of the probe/target complex. Specifically, a mass amplifying probe (MAP) consists of a targeting aptamer domain against a target molecule and molecular mass amplifying aptamer domain for the amplifier protein. The probe is initially rendered inactive by a small blocking strand partially complementary to both target aptamer and amplifier protein aptamer so that the mass amplifying aptamer domain would not bind to the amplifier protein unless the probe has been activated by the target. In this way, we prepared two probes that constitute a target (ATP and cocaine respectively) aptamer, a thrombin (as the mass amplifier) aptamer, and a fluorophore. Both probes worked well against their corresponding small molecule targets, and the detection limits for ATP and cocaine were 0.5 μM and 0.8 μM, respectively. More importantly, because FA is less affected by environmental interferences, ATP in cell media and cocaine in urine were directly detected without any tedious sample pretreatment. Our results established that our molecular mass amplifying strategy can be used to design aptamer probes for rapid, sensitive, and selective detection of small molecules by means of FA in complex biological samples.

  8. Design of an integrated sensor system for the detection of traces of different molecules in the air

    NASA Astrophysics Data System (ADS)

    Strle, D.; Muševič, I.

    2015-04-01

    This article presents the design of a miniature detection system and its associated signal processing electronics, which can detect and selectively recognize vapor traces of different materials in the air - including explosives. It is based on the array of surface-functionalized COMB capacitive sensors and extremely low noise, analog, integrated electronic circuit, hardwired digital signal processing hardware and additional software running on a PC. The instrument is sensitive and selective, consumes a minimum amount of energy, is very small (few mm3) and cheap to produce in large quantities, and is insensitive to mechanical influences. Using an electronic detection system built of low noise analog front-end and hard-wired digital signal processing, it is possible to detect less than 0.3ppt of TNT molecules in the atmosphere (3 TNT molecules in 1013 molecules of the air) at 25°C on a 1 Hz bandwidth using very small volume and approx. 10 mA current from a 5V supply voltage. The sensors are implemented in a modified MEMS process and analog electronics in 0.18 um CMOS technology.

  9. Nanowire Electron Scattering Spectroscopy

    NASA Technical Reports Server (NTRS)

    Hunt, Brian; Bronikowsky, Michael; Wong, Eric; VonAllmen, Paul; Oyafuso, Fablano

    2009-01-01

    Nanowire electron scattering spectroscopy (NESS) has been proposed as the basis of a class of ultra-small, ultralow-power sensors that could be used to detect and identify chemical compounds present in extremely small quantities. State-of-the-art nanowire chemical sensors have already been demonstrated to be capable of detecting a variety of compounds in femtomolar quantities. However, to date, chemically specific sensing of molecules using these sensors has required the use of chemically functionalized nanowires with receptors tailored to individual molecules of interest. While potentially effective, this functionalization requires labor-intensive treatment of many nanowires to sense a broad spectrum of molecules. In contrast, NESS would eliminate the need for chemical functionalization of nanowires and would enable the use of the same sensor to detect and identify multiple compounds. NESS is analogous to Raman spectroscopy, the main difference being that in NESS, one would utilize inelastic scattering of electrons instead of photons to determine molecular vibrational energy levels. More specifically, in NESS, one would exploit inelastic scattering of electrons by low-lying vibrational quantum states of molecules attached to a nanowire or nanotube.

  10. Quantitative Whole Body Biodistribution of Fluorescent-Labeled Agents by Non-Invasive Tomographic Imaging

    PubMed Central

    Vasquez, Kristine O.; Casavant, Chelsea; Peterson, Jeffrey D.

    2011-01-01

    When small molecules or proteins are injected into live animals, their physical and chemical properties will significantly affect pharmacokinetics, tissue penetration, and the ultimate routes of metabolism and clearance. Fluorescence molecular tomography (FMT) offers the ability to non-invasively image and quantify temporal changes in fluorescence throughout the major organ systems of living animals, in a manner analogous to traditional approaches with radiolabeled agents. This approach is best used with biotherapeutics (therapeutic antibodies, or other large proteins) or large-scaffold drug-delivery vectors, that are minimally affected by low-level fluorophore conjugation. Application to small molecule drugs should take into account the significant impact of fluorophore labeling on size and physicochemical properties, however, the presents studies show that this technique is readily applied to small molecule agents developed for far-red (FR) or near infrared (NIR) imaging. Quantification by non-invasive FMT correlated well with both fluorescence from tissue homogenates as well as with planar (2D) fluorescence reflectance imaging of excised intact organs (r2 = 0.996 and 0.969, respectively). Dynamic FMT imaging (multiple times from 0 to 24 h) performed in live mice after the injection of four different FR/NIR-labeled agents, including immunoglobulin, 20–50 nm nanoparticles, a large vascular imaging agent, and a small molecule integrin antagonist, showed clear differences in the percentage of injected dose per gram of tissue (%ID/g) in liver, kidney, and bladder signal. Nanoparticles and IgG1 favored liver over kidney signal, the small molecule integrin-binding agent favored rapid kidney and bladder clearance, and the vascular agent, showed both liver and kidney clearance. Further assessment of the volume of distribution of these agents by fluorescent volume added information regarding their biodistribution and highlighted the relatively poor extravasation into tissue by IgG1. These studies demonstrate the ability of quantitative FMT imaging of FR/NIR agents to non-invasively visualize and quantify the biodistribution of different agents over time. PMID:21731618

  11. Triptycene: A Nucleic Acid Three-Way Junction Binder Scaffold

    NASA Astrophysics Data System (ADS)

    Yoon, Ina

    Nucleic acids play a critical role in many biological processes such as gene regulation and replication. The development of small molecules that modulate nucleic acids with sequence or structure specificity would provide new strategies for regulating disease states at the nucleic acid level. However, this remains challenging mainly because of the nonspecific interactions between nucleic acids and small molecules. Three-way junctions are critical structural elements of nucleic acids. They are present in many important targets such as trinucleotide repeat junctions related to Huntington's disease, a temperature sensor sigma32 in E. coli, Dengue virus, and HIV. Triptycene-derived small molecules have been shown to bind to nucleic acid three-way junctions, resulting from their shape complementary. To develop a better understanding of designing molecules for targeting different junctions, a rapid screening of triptycene-based small molecules is needed. We envisioned that the installation of a linker at C9 position of the bicyclic core would allow for a rapid solid phase diversification. To achieve this aim, we synthesized 9-substituted triptycene scaffolds by using two different synthetic routes. The first synthetic route installed the linker from the amidation reaction between carboxylic acid at C9 position of the triptycene and an amine linker, beta-alanine ethyl ester. This new 9-substituted triptycene scaffold was then attached to a 2-chlorotrityl chloride resin for solid-phase diversification. This enabled a rapid diversification and an easy purification of mono-, di-, and tri-peptide triptycene derivatives. The binding affinities of these compounds were investigated towards a (CAG)˙(CTG) trinucleotide repeat junction. In the modified second synthetic route, we utilized a combined Heck coupling/benzyne Diels-Alder strategy. This improved synthetic strategy reduced the number of steps and total reaction times, increased the overall yield, improved solubilities of intermediates, and provided a new regioisomer that was not observed in the previous synthesis. Through this investigation, we discovered new high-affinity lead compounds towards a d(CAG)·(CTG) trinucleotide repeat junction. In addition, we turned our attention to sigma 32 mRNA, which contains a RNA three-way junction in E. coli. We demonstrated that triptycene-based small molecules can modulate the heat shock response in E. coli..

  12. Resolving metal-molecule interfaces at single-molecule junctions

    NASA Astrophysics Data System (ADS)

    Komoto, Yuki; Fujii, Shintaro; Nakamura, Hisao; Tada, Tomofumi; Nishino, Tomoaki; Kiguchi, Manabu

    2016-05-01

    Electronic and structural detail at the electrode-molecule interface have a significant influence on charge transport across molecular junctions. Despite the decisive role of the metal-molecule interface, a complete electronic and structural characterization of the interface remains a challenge. This is in no small part due to current experimental limitations. Here, we present a comprehensive approach to obtain a detailed description of the metal-molecule interface in single-molecule junctions, based on current-voltage (I-V) measurements. Contrary to conventional conductance studies, this I-V approach provides a correlated statistical description of both, the degree of electronic coupling across the metal-molecule interface, and the energy alignment between the conduction orbital and the Fermi level of the electrode. This exhaustive statistical approach was employed to study single-molecule junctions of 1,4-benzenediamine (BDA), 1,4-butanediamine (C4DA), and 1,4-benzenedithiol (BDT). A single interfacial configuration was observed for both BDA and C4DA junctions, while three different interfacial arrangements were resolved for BDT. This multiplicity is due to different molecular adsorption sites on the Au surface namely on-top, hollow, and bridge. Furthermore, C4DA junctions present a fluctuating I-V curve arising from the greater conformational freedom of the saturated alkyl chain, in sharp contrast with the rigid aromatic backbone of both BDA and BDT.

  13. Influence of thermocleavable functionality on organic field-effect transistor performance of small molecules

    NASA Astrophysics Data System (ADS)

    Mahale, Rajashree Y.; Dharmapurikar, Satej S.; Chini, Mrinmoy Kumar; Venugopalan, Vijay

    2017-06-01

    Diketopyrrolopyrrole based donor-acceptor-donor conjugated small molecules using ethylene dioxythiophene as a donor was synthesized. Electron deficient diketopyrrolopyrrole unit was substituted with thermocleavable (tert-butyl acetate) side chains. The thermal treatment of the molecules at 160 °C eliminated the tert-butyl ester group results in the formation of corresponding acid. Optical and theoretical studies revealed that the molecules adopted a change in molecular arrangement after thermolysis. The conjugated small molecules possessed p-channel charge transport characteristics in organic field effect transistors. The charge carrier mobility was increased after thermolysis of tert-butyl ester group to 5.07 × 10-5 cm2/V s.

  14. Discovery of Small Molecules that Inhibit the Disordered Protein, p27Kip1

    PubMed Central

    Iconaru, Luigi I.; Ban, David; Bharatham, Kavitha; Ramanathan, Arvind; Zhang, Weixing; Shelat, Anang A.; Zuo, Jian; Kriwacki, Richard W.

    2015-01-01

    Disordered proteins are highly prevalent in biological systems, they control myriad signaling and regulatory processes, and their levels and/or cellular localization are often altered in human disease. In contrast to folded proteins, disordered proteins, due to conformational heterogeneity and dynamics, are not considered viable drug targets. We challenged this paradigm by identifying through NMR-based screening small molecules that bound specifically, albeit weakly, to the disordered cell cycle regulator, p27Kip1 (p27). Two groups of molecules bound to sites created by transient clusters of aromatic residues within p27. Conserved chemical features within these two groups of small molecules exhibited complementarity to their binding sites within p27, establishing structure-activity relationships for small molecule:disordered protein interactions. Finally, one compound counteracted the Cdk2/cyclin A inhibitory function of p27 in vitro, providing proof-of-principle that small molecules can inhibit the function of a disordered protein (p27) through sequestration in a conformation incapable of folding and binding to a natural regulatory target (Cdk2/cyclin A). PMID:26507530

  15. Discovery of Small Molecules that Inhibit the Disordered Protein, p27 Kip1

    DOE PAGES

    Iconaru, Luigi I.; Ban, David; Bharatham, Kavitha; ...

    2015-10-28

    In disordered proteins we see that they are highly prevalent in biological systems. They control myriad signaling and regulatory processes, and their levels and/or cellular localization are often altered in human disease. In contrast to folded proteins, disordered proteins, due to conformational heterogeneity and dynamics, are not considered viable drug targets. We challenged this paradigm by identifying through NMR-based screening small molecules that bound specifically, albeit weakly, to the disordered cell cycle regulator, p27 Kip1 (p27). Moreover, two groups of molecules bound to sites created by transient clusters of aromatic residues within p27. Conserved chemical features within these two groupsmore » of small molecules exhibited complementarity to their binding sites within p27, establishing structure-activity relationships for small molecule: disordered protein interactions. Finally, one compound counteracted the Cdk2/cyclin A inhibitory function of p27 in vitro, providing proof-of- principle that small molecules can inhibit the function of a disordered protein (p27) through sequestration in a conformation incapable of folding and binding to a natural regulatory target (Cdk2/cyclin A).« less

  16. The role of van der Waals interaction in the tilted binding of amine molecules to the Au(111) surface

    NASA Astrophysics Data System (ADS)

    Le, Duy; Aminpour, Maral; Kiejna, Adam; Rahman, Talat S.

    2012-06-01

    We present the results of ab initio electronic structure calculations for the adsorption characteristics of three amine molecules on Au(111), which show that the inclusion of van der Waals interactions between the isolated molecule and the surface leads in general to good agreement with experimental data on the binding energies. Each molecule, however, adsorbs with a small tilt angle (between -5 and 9°). For the specific case of 1,4-diaminobenzene (BDA) our calculations reproduce the larger tilt angle (close to 24°) measured by photoemission experiments, when intermolecular (van der Waals) interactions (for about 8% coverage) are included. These results point not only to the important contribution of van der Waals interactions to molecule-surface binding energy, but also that of intermolecular interactions, often considered secondary to that between the molecule and the surface, in determining the adsorption geometry and pattern formation.

  17. Strategy to discover diverse optimal molecules in the small molecule universe.

    PubMed

    Rupakheti, Chetan; Virshup, Aaron; Yang, Weitao; Beratan, David N

    2015-03-23

    The small molecule universe (SMU) is defined as a set of over 10(60) synthetically feasible organic molecules with molecular weight less than ∼500 Da. Exhaustive enumerations and evaluation of all SMU molecules for the purpose of discovering favorable structures is impossible. We take a stochastic approach and extend the ACSESS framework ( Virshup et al. J. Am. Chem. Soc. 2013 , 135 , 7296 - 7303 ) to develop diversity oriented molecular libraries that can generate a set of compounds that is representative of the small molecule universe and that also biases the library toward favorable physical property values. We show that the approach is efficient compared to exhaustive enumeration and to existing evolutionary algorithms for generating such libraries by testing in the NKp fitness landscape model and in the fully enumerated GDB-9 chemical universe containing 3 × 10(5) molecules.

  18. Strategy To Discover Diverse Optimal Molecules in the Small Molecule Universe

    PubMed Central

    2015-01-01

    The small molecule universe (SMU) is defined as a set of over 1060 synthetically feasible organic molecules with molecular weight less than ∼500 Da. Exhaustive enumerations and evaluation of all SMU molecules for the purpose of discovering favorable structures is impossible. We take a stochastic approach and extend the ACSESS framework (Virshup et al. J. Am. Chem. Soc.2013, 135, 7296–730323548177) to develop diversity oriented molecular libraries that can generate a set of compounds that is representative of the small molecule universe and that also biases the library toward favorable physical property values. We show that the approach is efficient compared to exhaustive enumeration and to existing evolutionary algorithms for generating such libraries by testing in the NKp fitness landscape model and in the fully enumerated GDB-9 chemical universe containing 3 × 105 molecules. PMID:25594586

  19. Intermolecular interaction approach for TADF (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wong, Ken-Tsung

    2016-09-01

    Materials with thermally activated delayed fluorescence (TADF) have recently emerged as new fluorescent emitters for highly efficient organic light-emitting diodes (OLEDs). Molecule with TADF behavior needs to have a small singlet-triplet energy difference (ΔES-T) that allows the up-conversion from nonradiative triplet state (T1) to radiative singlet state (S1) via reverse intersystem crossing (RISC) process. Generally, molecules with small ΔES-T can be obtained via carefully manipulate the degree of "intramolecular" charge transfer (ICT) between electron-donating and -accepting components, such that the electron exchange energy that contributes to ΔES-T, can be minimized. Alternatively, excited state with small ΔES-T can be feasibly realized via "intermolecular" charge transfer occurring at the interface between spatially separating donor (D) and acceptor (A) molecules. Because the exchange energy decreases as the HOMO-LUMO separation distance increases, theoretically, the intermolecular D/A charge transfer state (or exciplex) should have rather small ΔES-T, leading to efficient TADF. However, it is still a challenge to access highly efficient exciplex systems. This is mainly because exciplex formation is commonly accompanied with a large red shift of emission spectra and long radiative lifetime, which tend to diminish photoluminescence quantum yield (PLQY) as well as electroluminescence (EL) performance. Until now, exciplex-based OLEDs with external quantum efficiency (EQE) above 10% are still limited. By judicious selection of donor and acceptor, the formation of efficient exciplex can be feasibly achieved. In this conference, our recent efforts on highly efficient exciplexes using C3-symmetry triazine acceptors and various donors, and their device characteristics will be presented.

  20. Prediction of small molecule binding property of protein domains with Bayesian classifiers based on Markov chains.

    PubMed

    Bulashevska, Alla; Stein, Martin; Jackson, David; Eils, Roland

    2009-12-01

    Accurate computational methods that can help to predict biological function of a protein from its sequence are of great interest to research biologists and pharmaceutical companies. One approach to assume the function of proteins is to predict the interactions between proteins and other molecules. In this work, we propose a machine learning method that uses a primary sequence of a domain to predict its propensity for interaction with small molecules. By curating the Pfam database with respect to the small molecule binding ability of its component domains, we have constructed a dataset of small molecule binding and non-binding domains. This dataset was then used as training set to learn a Bayesian classifier, which should distinguish members of each class. The domain sequences of both classes are modelled with Markov chains. In a Jack-knife test, our classification procedure achieved the predictive accuracies of 77.2% and 66.7% for binding and non-binding classes respectively. We demonstrate the applicability of our classifier by using it to identify previously unknown small molecule binding domains. Our predictions are available as supplementary material and can provide very useful information to drug discovery specialists. Given the ubiquitous and essential role small molecules play in biological processes, our method is important for identifying pharmaceutically relevant components of complete proteomes. The software is available from the author upon request.

  1. Small Molecule Protection of Bone Marrow Hematopoietic Stem Cells

    DTIC Science & Technology

    2015-10-01

    several recently identified small molecules can protect hematopoietic stem cells (HSCs) from damage or killing by endogenous aldehydes . Proof-of-concept...anemia bone marrow failure CD34+ hematopoietic stem cells aldehydes formaldehyde DNA damage DNA base adduct DNA-protein crosslink mass...below. Revised Specific Aim 1: Small molecule protection of human cells from aldehyde - induced killing (in vitro studies - no mice or human subjects

  2. Small-molecule inhibitors of APE1 DNA repair function: an overview.

    PubMed

    Al-Safi, Rasha I; Odde, Srinivas; Shabaik, Yumna; Neamati, Nouri

    2012-01-01

    APE1 is a multifaceted protein that orchestrates multiple activities in the cell, one of which is the preservation of genomic integrity; a vital process that takes place in the context of the base excision repair (BER) pathway. Studies have implicated APE1 in rendering cancerous cells less vulnerable to the effects of DNA-damaging agents that are commonly used for the treatment of cancer. Furthermore, suppression of APE1 expression in cancer cell lines is accompanied by the potentiation of the activity of cytotoxic agents. As a result, major efforts have been directed towards the identification of small-molecule inhibitors of this DNA-repair enzyme. Herein, we review all patented small-molecule APE1 inhibitors reported prior to 2011. Unfortunately, the potency and selectivity of many of the reported inhibitors were not disclosed by the original authors, and at present it is unclear if APE1 is a bona fide target for many of the purported inhibitors. Moreover, cellular activity and toxicity of many inhibitors remain to be established. Since this is the first comprehensive review of small molecule APE1 inhibitors, we present all compounds reported to inhibit APE1 activity with an IC50 value ≤ 25 μM. Efforts towards a careful validation and optimization of these compounds are warranted. Furthermore, we explore potential allosteric drug-binding sites on the protein as an alternative approach for modulating the activity of this multifunctional protein. In addition, we give an overview of APE2, as well as other APE1 homologues in some disease-causing pathogens. Finally, given the universal importance of DNA repair, as well as the considerable conservation of repair proteins across all living organisms, we propose targeting the AP endonuclease activity of pathogens by the compounds discussed in this review, thereby expanding their therapeutic potential and application.

  3. DG-AMMOS: a new tool to generate 3d conformation of small molecules using distance geometry and automated molecular mechanics optimization for in silico screening.

    PubMed

    Lagorce, David; Pencheva, Tania; Villoutreix, Bruno O; Miteva, Maria A

    2009-11-13

    Discovery of new bioactive molecules that could enter drug discovery programs or that could serve as chemical probes is a very complex and costly endeavor. Structure-based and ligand-based in silico screening approaches are nowadays extensively used to complement experimental screening approaches in order to increase the effectiveness of the process and facilitating the screening of thousands or millions of small molecules against a biomolecular target. Both in silico screening methods require as input a suitable chemical compound collection and most often the 3D structure of the small molecules has to be generated since compounds are usually delivered in 1D SMILES, CANSMILES or in 2D SDF formats. Here, we describe the new open source program DG-AMMOS which allows the generation of the 3D conformation of small molecules using Distance Geometry and their energy minimization via Automated Molecular Mechanics Optimization. The program is validated on the Astex dataset, the ChemBridge Diversity database and on a number of small molecules with known crystal structures extracted from the Cambridge Structural Database. A comparison with the free program Balloon and the well-known commercial program Omega generating the 3D of small molecules is carried out. The results show that the new free program DG-AMMOS is a very efficient 3D structure generator engine. DG-AMMOS provides fast, automated and reliable access to the generation of 3D conformation of small molecules and facilitates the preparation of a compound collection prior to high-throughput virtual screening computations. The validation of DG-AMMOS on several different datasets proves that generated structures are generally of equal quality or sometimes better than structures obtained by other tested methods.

  4. Profiling protein function with small molecule microarrays

    PubMed Central

    Winssinger, Nicolas; Ficarro, Scott; Schultz, Peter G.; Harris, Jennifer L.

    2002-01-01

    The regulation of protein function through posttranslational modification, local environment, and protein–protein interaction is critical to cellular function. The ability to analyze on a genome-wide scale protein functional activity rather than changes in protein abundance or structure would provide important new insights into complex biological processes. Herein, we report the application of a spatially addressable small molecule microarray to an activity-based profile of proteases in crude cell lysates. The potential of this small molecule-based profiling technology is demonstrated by the detection of caspase activation upon induction of apoptosis, characterization of the activated caspase, and inhibition of the caspase-executed apoptotic phenotype using the small molecule inhibitor identified in the microarray-based profile. PMID:12167675

  5. Mapping small molecule binding data to structural domains

    PubMed Central

    2012-01-01

    Background Large-scale bioactivity/SAR Open Data has recently become available, and this has allowed new analyses and approaches to be developed to help address the productivity and translational gaps of current drug discovery. One of the current limitations of these data is the relative sparsity of reported interactions per protein target, and complexities in establishing clear relationships between bioactivity and targets using bioinformatics tools. We detail in this paper the indexing of targets by the structural domains that bind (or are likely to bind) the ligand within a full-length protein. Specifically, we present a simple heuristic to map small molecule binding to Pfam domains. This profiling can be applied to all proteins within a genome to give some indications of the potential pharmacological modulation and regulation of all proteins. Results In this implementation of our heuristic, ligand binding to protein targets from the ChEMBL database was mapped to structural domains as defined by profiles contained within the Pfam-A database. Our mapping suggests that the majority of assay targets within the current version of the ChEMBL database bind ligands through a small number of highly prevalent domains, and conversely the majority of Pfam domains sampled by our data play no currently established role in ligand binding. Validation studies, carried out firstly against Uniprot entries with expert binding-site annotation and secondly against entries in the wwPDB repository of crystallographic protein structures, demonstrate that our simple heuristic maps ligand binding to the correct domain in about 90 percent of all assessed cases. Using the mappings obtained with our heuristic, we have assembled ligand sets associated with each Pfam domain. Conclusions Small molecule binding has been mapped to Pfam-A domains of protein targets in the ChEMBL bioactivity database. The result of this mapping is an enriched annotation of small molecule bioactivity data and a grouping of activity classes following the Pfam-A specifications of protein domains. This is valuable for data-focused approaches in drug discovery, for example when extrapolating potential targets of a small molecule with known activity against one or few targets, or in the assessment of a potential target for drug discovery or screening studies. PMID:23282026

  6. Prospective virtual screening for novel p53-MDM2 inhibitors using ultrafast shape recognition

    NASA Astrophysics Data System (ADS)

    Patil, Sachin P.; Ballester, Pedro J.; Kerezsi, Cassidy R.

    2014-02-01

    The p53 protein, known as the guardian of genome, is mutated or deleted in approximately 50 % of human tumors. In the rest of the cancers, p53 is expressed in its wild-type form, but its function is inhibited by direct binding with the murine double minute 2 (MDM2) protein. Therefore, inhibition of the p53-MDM2 interaction, leading to the activation of tumor suppressor p53 protein presents a fundamentally novel therapeutic strategy against several types of cancers. The present study utilized ultrafast shape recognition (USR), a virtual screening technique based on ligand-receptor 3D shape complementarity, to screen DrugBank database for novel p53-MDM2 inhibitors. Specifically, using 3D shape of one of the most potent crystal ligands of MDM2, MI-63, as the query molecule, six compounds were identified as potential p53-MDM2 inhibitors. These six USR hits were then subjected to molecular modeling investigations through flexible receptor docking followed by comparative binding energy analysis. These studies suggested a potential role of the USR-selected molecules as p53-MDM2 inhibitors. This was further supported by experimental tests showing that the treatment of human colon tumor cells with the top USR hit, telmisartan, led to a dose-dependent cell growth inhibition in a p53-dependent manner. It is noteworthy that telmisartan has a long history of safe human use as an approved anti-hypertension drug and thus may present an immediate clinical potential as a cancer therapeutic. Furthermore, it could also serve as a structurally-novel lead molecule for the development of more potent, small-molecule p53-MDM2 inhibitors against variety of cancers. Importantly, the present study demonstrates that the adopted USR-based virtual screening protocol is a useful tool for hit identification in the domain of small molecule p53-MDM2 inhibitors.

  7. Free-standing few-layered graphene oxide films: selective, steady and lasting permeation of organic molecules with adjustable speeds

    NASA Astrophysics Data System (ADS)

    Huang, Tao; An, Qi; Luan, Xinglong; Zhang, Qian; Zhang, Yihe

    2016-01-01

    A variety of small molecules with diameters around 1 nm possess a range of functions, such as antibiotic, antimicrobic, anticoagulant, pesticidal and chemotherapy effects, making these molecules especially useful in various applications ranging from medical treatment to environmental microbiological control. However, the long-term steady delivery (release or permeation) of these small molecules with adjustable and controllable speeds has remained an especially challenging task. In this study, we prepared covalently cross-linked free-standing few-layered GO films using a layer-by-layer technique in combination with photochemical cross-linkages, and achieved a controlled release of positively charged, negatively charged, and zwitterionic small molecules with adjustable and controllable speeds. The steady delivery of the small molecule lasted up to 9 days. Other functionalities, such as graphene-enhanced Raman spectra and electrochemical properties that could also be integrated or employed in delivery systems, were also studied for our films. We expect the special molecular delivery properties of our films to lead to new possibilities in drug/fertilizer delivery and environmental microbiological control applications.A variety of small molecules with diameters around 1 nm possess a range of functions, such as antibiotic, antimicrobic, anticoagulant, pesticidal and chemotherapy effects, making these molecules especially useful in various applications ranging from medical treatment to environmental microbiological control. However, the long-term steady delivery (release or permeation) of these small molecules with adjustable and controllable speeds has remained an especially challenging task. In this study, we prepared covalently cross-linked free-standing few-layered GO films using a layer-by-layer technique in combination with photochemical cross-linkages, and achieved a controlled release of positively charged, negatively charged, and zwitterionic small molecules with adjustable and controllable speeds. The steady delivery of the small molecule lasted up to 9 days. Other functionalities, such as graphene-enhanced Raman spectra and electrochemical properties that could also be integrated or employed in delivery systems, were also studied for our films. We expect the special molecular delivery properties of our films to lead to new possibilities in drug/fertilizer delivery and environmental microbiological control applications. Electronic supplementary information (ESI) available: AFM images of GO and GO films, UV-vis spectra of delayed release, and permeation fidelities. See DOI: 10.1039/c5nr08129g

  8. Adsorption of small inorganic molecules on a defective MoS2 monolayer.

    PubMed

    González, César; Biel, Blanca; Dappe, Yannick J

    2017-04-05

    We present a theoretical study of molecular adsorption on defects on a MoS 2 monolayer. Based on Density Functional Theory, our calculations confirm that small inorganic molecules, such as CO 2 , CO, H 2 O, NO, NO 2 , H 2 and N 2 , remain bonded to the pristine monolayer through weak van der Waals interactions, suggesting that the molecules may easily diffuse over the clean monolayer. On the other hand, the introduction of defects can lead to three different situations, depending on the defect and the molecule considered: physisorption, chemical (strong) bonding to the metallic defects, namely the Mo substitutional atoms on the S vacancies, and dissociation, that can take place spontaneously at 0 K in some specific cases or by the effect of thermal agitation in molecules such as CO 2 or NO 2 on the S vacancy. Our energetic and electronic analyses provide an explanation to such bonding possibilities, showing that in the low interacting situations, the molecules tend to adopt a planar configuration parallel to the monolayer, while a molecular rotation is favored in order to facilitate the bond formation on the reactive sites. Finally, the ab initio based Scanning Tunneling Microscopy (STM) simulations show the fingerprint of each molecule adsorbed on the most reactive site. This work opens the way to the possibility of tuning the catalytic properties of MoS 2 by controlling the creation of specific defects in the MoS 2 monolayer.

  9. In vitro selection of shape-changing DNA nanostructures capable of binding-induced cargo release.

    PubMed

    Oh, Seung Soo; Plakos, Kory; Xiao, Yi; Eisenstein, Michael; Soh, H Tom

    2013-11-26

    Many biological systems employ allosteric regulatory mechanisms, which offer a powerful means of directly linking a specific binding event to a wide spectrum of molecular functionalities. There is considerable interest in generating synthetic allosteric regulators that can perform useful molecular functions for applications in diagnostics, imaging and targeted therapies, but generating such molecules through either rational design or directed evolution has proven exceptionally challenging. To address this need, we present an in vitro selection strategy for generating conformation-switching DNA nanostructures that selectively release a small-molecule payload in response to binding of a specific trigger molecule. As an exemplar, we have generated a DNA nanostructure that hybridizes with a separate 'cargo strand' containing an abasic site. This abasic site stably sequesters a fluorescent cargo molecule in an inactive state until the DNA nanostructure encounters an ATP trigger molecule. This ATP trigger causes the nanostructure to release the cargo strand, thereby liberating the fluorescent payload and generating a detectable fluorescent readout. Our DNA nanostructure is highly sensitive, with an EC50 of 30 μM, and highly specific, releasing its payload in response to ATP but not to other chemically similar nucleotide triphosphates. We believe that this selection approach could be generalized to generate synthetic nanostructures capable of selective and controlled release of other small-molecule cargos in response to a variety of triggers, for both research and clinical applications.

  10. A Fragment-Based Method of Creating Small-Molecule Libraries to Target the Aggregation of Intrinsically Disordered Proteins.

    PubMed

    Joshi, Priyanka; Chia, Sean; Habchi, Johnny; Knowles, Tuomas P J; Dobson, Christopher M; Vendruscolo, Michele

    2016-03-14

    The aggregation process of intrinsically disordered proteins (IDPs) has been associated with a wide range of neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. Currently, however, no drug in clinical use targets IDP aggregation. To facilitate drug discovery programs in this important and challenging area, we describe a fragment-based approach of generating small-molecule libraries that target specific IDPs. The method is based on the use of molecular fragments extracted from compounds reported in the literature to inhibit of the aggregation of IDPs. These fragments are used to screen existing large generic libraries of small molecules to form smaller libraries specific for given IDPs. We illustrate this approach by describing three distinct small-molecule libraries to target, Aβ, tau, and α-synuclein, which are three IDPs implicated in Alzheimer's and Parkinson's diseases. The strategy described here offers novel opportunities for the identification of effective molecular scaffolds for drug discovery for neurodegenerative disorders and to provide insights into the mechanism of small-molecule binding to IDPs.

  11. Systematic development of small molecules to inhibit specific microscopic steps of Aβ42 aggregation in Alzheimer’s disease

    PubMed Central

    Habchi, Johnny; Chia, Sean; Limbocker, Ryan; Mannini, Benedetta; Ahn, Minkoo; Perni, Michele; Hansson, Oskar; Arosio, Paolo; Kumita, Janet R.; Challa, Pavan Kumar; Cohen, Samuel I. A.; Dobson, Christopher M.; Knowles, Tuomas P. J.; Vendruscolo, Michele

    2017-01-01

    The aggregation of the 42-residue form of the amyloid-β peptide (Aβ42) is a pivotal event in Alzheimer’s disease (AD). The use of chemical kinetics has recently enabled highly accurate quantifications of the effects of small molecules on specific microscopic steps in Aβ42 aggregation. Here, we exploit this approach to develop a rational drug discovery strategy against Aβ42 aggregation that uses as a read-out the changes in the nucleation and elongation rate constants caused by candidate small molecules. We thus identify a pool of compounds that target specific microscopic steps in Aβ42 aggregation. We then test further these small molecules in human cerebrospinal fluid and in a Caenorhabditis elegans model of AD. Our results show that this strategy represents a powerful approach to identify systematically small molecule lead compounds, thus offering an appealing opportunity to reduce the attrition problem in drug discovery. PMID:28011763

  12. Genome-Scale Architecture of Small Molecule Regulatory Networks and the Fundamental Trade-Off between Regulation and Enzymatic Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reznik, Ed; Christodoulou, Dimitris; Goldford, Joshua E.

    Metabolic flux is in part regulated by endogenous small molecules that modulate the catalytic activity of an enzyme, e.g., allosteric inhibition. In contrast to transcriptional regulation of enzymes, technical limitations have hindered the production of a genome-scale atlas of small molecule-enzyme regulatory interactions. Here, we develop a framework leveraging the vast, but fragmented, biochemical literature to reconstruct and analyze the small molecule regulatory network (SMRN) of the model organism Escherichia coli, including the primary metabolite regulators and enzyme targets. Using metabolic control analysis, we prove a fundamental trade-off between regulation and enzymatic activity, and we combine it with metabolomic measurementsmore » and the SMRN to make inferences on the sensitivity of enzymes to their regulators. By generalizing the analysis to other organisms, we identify highly conserved regulatory interactions across evolutionarily divergent species, further emphasizing a critical role for small molecule interactions in the maintenance of metabolic homeostasis.« less

  13. Simultaneous optimization of biomolecular energy function on features from small molecules and macromolecules

    PubMed Central

    Park, Hahnbeom; Bradley, Philip; Greisen, Per; Liu, Yuan; Mulligan, Vikram Khipple; Kim, David E.; Baker, David; DiMaio, Frank

    2017-01-01

    Most biomolecular modeling energy functions for structure prediction, sequence design, and molecular docking, have been parameterized using existing macromolecular structural data; this contrasts molecular mechanics force fields which are largely optimized using small-molecule data. In this study, we describe an integrated method that enables optimization of a biomolecular modeling energy function simultaneously against small-molecule thermodynamic data and high-resolution macromolecular structural data. We use this approach to develop a next-generation Rosetta energy function that utilizes a new anisotropic implicit solvation model, and an improved electrostatics and Lennard-Jones model, illustrating how energy functions can be considerably improved in their ability to describe large-scale energy landscapes by incorporating both small-molecule and macromolecule data. The energy function improves performance in a wide range of protein structure prediction challenges, including monomeric structure prediction, protein-protein and protein-ligand docking, protein sequence design, and prediction of the free energy changes by mutation, while reasonably recapitulating small-molecule thermodynamic properties. PMID:27766851

  14. Identifying the preferred RNA motifs and chemotypes that interact by probing millions of combinations.

    PubMed

    Tran, Tuan; Disney, Matthew D

    2012-01-01

    RNA is an important therapeutic target but information about RNA-ligand interactions is limited. Here, we report a screening method that probes over 3,000,000 combinations of RNA motif-small molecule interactions to identify the privileged RNA structures and chemical spaces that interact. Specifically, a small molecule library biased for binding RNA was probed for binding to over 70,000 unique RNA motifs in a high throughput solution-based screen. The RNA motifs that specifically bind each small molecule were identified by microarray-based selection. In this library-versus-library or multidimensional combinatorial screening approach, hairpin loops (among a variety of RNA motifs) were the preferred RNA motif space that binds small molecules. Furthermore, it was shown that indole, 2-phenyl indole, 2-phenyl benzimidazole and pyridinium chemotypes allow for specific recognition of RNA motifs. As targeting RNA with small molecules is an extremely challenging area, these studies provide new information on RNA-ligand interactions that has many potential uses.

  15. Design of a bioactive small molecule that targets r(AUUCU) repeats in spinocerebellar ataxia 10.

    PubMed

    Yang, Wang-Yong; Gao, Rui; Southern, Mark; Sarkar, Partha S; Disney, Matthew D

    2016-06-01

    RNA is an important target for chemical probes of function and lead therapeutics; however, it is difficult to target with small molecules. One approach to tackle this problem is to identify compounds that target RNA structures and utilize them to multivalently target RNA. Here we show that small molecules can be identified to selectively bind RNA base pairs by probing a library of RNA-focused small molecules. A small molecule that selectively binds AU base pairs informed design of a dimeric compound (2AU-2) that targets the pathogenic RNA, expanded r(AUUCU) repeats, that causes spinocerebellar ataxia type 10 (SCA10) in patient-derived cells. Indeed, 2AU-2 (50 nM) ameliorates various aspects of SCA10 pathology including improvement of mitochondrial dysfunction, reduced activation of caspase 3, and reduction of nuclear foci. These studies provide a first-in-class chemical probe to study SCA10 RNA toxicity and potentially define broadly applicable compounds targeting RNA AU base pairs in cells.

  16. Identifying the Preferred RNA Motifs and Chemotypes that Interact by Probing Millions of Combinations

    PubMed Central

    Tran, Tuan; Disney, Matthew D.

    2012-01-01

    RNA is an important therapeutic target but information about RNA-ligand interactions is limited. Here we report a screening method that probes over 3,000,000 combinations of RNA motif-small molecule interactions to identify the privileged RNA structures and chemical spaces that interact. Specifically, a small molecule library biased for binding RNA was probed for binding to over 70,000 unique RNA motifs in a high throughput solution-based screen. The RNA motifs that specifically bind each small molecule were identified by microarray-based selection. In this library-versus-library or multidimensional combinatorial screening approach, hairpin loops (amongst a variety of RNA motifs) were the preferred RNA motif space that binds small molecules. Furthermore, it was shown that indole, 2-phenyl indole, 2-phenyl benzimidazole, and pyridinium chemotypes allow for specific recognition of RNA motifs. Since targeting RNA with small molecules is an extremely challenging area, these studies provide new information on RNA-ligand interactions that has many potential uses. PMID:23047683

  17. Small-Molecule-Directed Hepatocyte-Like Cell Differentiation of Human Pluripotent Stem Cells.

    PubMed

    Mathapati, Santosh; Siller, Richard; Impellizzeri, Agata A R; Lycke, Max; Vegheim, Karianne; Almaas, Runar; Sullivan, Gareth J

    2016-08-17

    Hepatocyte-like cells (HLCs) generated in vitro from human pluripotent stem cells (hPSCs) provide an invaluable resource for basic research, regenerative medicine, drug screening, toxicology, and modeling of liver disease and development. This unit describes a small-molecule-driven protocol for in vitro differentiation of hPSCs into HLCs without the use of growth factors. hPSCs are coaxed through a developmentally relevant route via the primitive streak to definitive endoderm (DE) using the small molecule CHIR99021 (a Wnt agonist), replacing the conventional growth factors Wnt3A and activin A. The small-molecule-derived DE is then differentiated to hepatoblast-like cells in the presence of dimethyl sulfoxide. The resulting hepatoblasts are then differentiated to HLCs with N-hexanoic-Tyr, Ile-6 aminohexanoic amide (Dihexa, a hepatocyte growth factor agonist) and dexamethasone. The protocol provides an efficient and reproducible procedure for differentiation of hPSCs into HLCs utilizing small molecules. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  18. Bioorthogonal cyclization-mediated in situ self-assembly of small-molecule probes for imaging caspase activity in vivo

    NASA Astrophysics Data System (ADS)

    Ye, Deju; Shuhendler, Adam J.; Cui, Lina; Tong, Ling; Tee, Sui Seng; Tikhomirov, Grigory; Felsher, Dean W.; Rao, Jianghong

    2014-06-01

    Directed self-assembly of small molecules in living systems could enable a myriad of applications in biology and medicine, and already this has been used widely to synthesize supramolecules and nano/microstructures in solution and in living cells. However, controlling the self-assembly of synthetic small molecules in living animals is challenging because of the complex and dynamic in vivo physiological environment. Here we employ an optimized first-order bioorthogonal cyclization reaction to control the self-assembly of a fluorescent small molecule, and demonstrate its in vivo applicability by imaging caspase-3/7 activity in human tumour xenograft mouse models of chemotherapy. The fluorescent nanoparticles assembled in situ were imaged successfully in both apoptotic cells and tumour tissues using three-dimensional structured illumination microscopy. This strategy combines the advantages offered by small molecules with those of nanomaterials and should find widespread use for non-invasive imaging of enzyme activity in vivo.

  19. 9,10-Azaboraphenanthrene-containing small molecules and conjugated polymers: synthesis and their application in chemodosimeters for the ratiometric detection of fluoride ions.

    PubMed

    Zhang, Weidong; Li, Guoping; Xu, Letian; Zhuo, Yue; Wan, Wenming; Yan, Ni; He, Gang

    2018-05-21

    The introduction of main group elements into conjugated scaffolds is emerging as a key route to novel optoelectronic materials. Herein, an efficient and versatile way to synthesize polymerizable 9,10-azaboraphenanthrene ( BNP )-containing monomers by aromaticity-driven ring expansion reactions between highly antiaromatic borafluorene and azides is reported, and the corresponding conjugated small molecules and polymers are developed as well. The BNP -containing small molecules and conjugated polymers showed good air/moisture stability and notable fluorescence properties. Addition of fluoride ions to the BNP -based small molecules and polymers induced a rapid change in the emission color from blue to green/yellow, respectively, accompanied by strong intensity changes. The conjugated polymers showed better ratiometric sensing performance than small molecules due to the exciton migration along the conjugated chains. Further experiments showed that the sensing process is fully reversible. The films prepared by solution-deposition of BNP -based compounds in the presence of polycaprolactone also showed good ratiometric sensing for fluoride ions.

  20. Small molecules enhance CRISPR genome editing in pluripotent stem cells.

    PubMed

    Yu, Chen; Liu, Yanxia; Ma, Tianhua; Liu, Kai; Xu, Shaohua; Zhang, Yu; Liu, Honglei; La Russa, Marie; Xie, Min; Ding, Sheng; Qi, Lei S

    2015-02-05

    The bacterial CRISPR-Cas9 system has emerged as an effective tool for sequence-specific gene knockout through non-homologous end joining (NHEJ), but it remains inefficient for precise editing of genome sequences. Here we develop a reporter-based screening approach for high-throughput identification of chemical compounds that can modulate precise genome editing through homology-directed repair (HDR). Using our screening method, we have identified small molecules that can enhance CRISPR-mediated HDR efficiency, 3-fold for large fragment insertions and 9-fold for point mutations. Interestingly, we have also observed that a small molecule that inhibits HDR can enhance frame shift insertion and deletion (indel) mutations mediated by NHEJ. The identified small molecules function robustly in diverse cell types with minimal toxicity. The use of small molecules provides a simple and effective strategy to enhance precise genome engineering applications and facilitates the study of DNA repair mechanisms in mammalian cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Genome-Scale Architecture of Small Molecule Regulatory Networks and the Fundamental Trade-Off between Regulation and Enzymatic Activity

    DOE PAGES

    Reznik, Ed; Christodoulou, Dimitris; Goldford, Joshua E.; ...

    2017-09-12

    Metabolic flux is in part regulated by endogenous small molecules that modulate the catalytic activity of an enzyme, e.g., allosteric inhibition. In contrast to transcriptional regulation of enzymes, technical limitations have hindered the production of a genome-scale atlas of small molecule-enzyme regulatory interactions. Here, we develop a framework leveraging the vast, but fragmented, biochemical literature to reconstruct and analyze the small molecule regulatory network (SMRN) of the model organism Escherichia coli, including the primary metabolite regulators and enzyme targets. Using metabolic control analysis, we prove a fundamental trade-off between regulation and enzymatic activity, and we combine it with metabolomic measurementsmore » and the SMRN to make inferences on the sensitivity of enzymes to their regulators. By generalizing the analysis to other organisms, we identify highly conserved regulatory interactions across evolutionarily divergent species, further emphasizing a critical role for small molecule interactions in the maintenance of metabolic homeostasis.« less

  2. Discrete Cu(i) complexes for azide-alkyne annulations of small molecules inside mammalian cells.

    PubMed

    Miguel-Ávila, Joan; Tomás-Gamasa, María; Olmos, Andrea; Pérez, Pedro J; Mascareñas, José L

    2018-02-21

    The archetype reaction of "click" chemistry, namely, the copper-promoted azide-alkyne cycloaddition (CuAAC), has found an impressive number of applications in biological chemistry. However, methods for promoting intermolecular annulations of exogenous, small azides and alkynes in the complex interior of mammalian cells, are essentially unknown. Herein we demonstrate that isolated, well-defined copper(i)-tris(triazolyl) complexes featuring designed ligands can readily enter mammalian cells and promote intracellular CuAAC annulations of small, freely diffusible molecules. In addition to simplifying protocols and avoiding the addition of "non-innocent" reductants, the use of these premade copper complexes leads to more efficient processes than with the alternative, in situ made copper species prepared from Cu(ii) sources, tris(triazole) ligands and sodium ascorbate. Under the reaction conditions, the well-defined copper complexes exhibit very good cell penetration properties, and do not present significant toxicities.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Yung-Ting; Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan 10617, Taiwan; Liu, Shun-Wei

    Single-layer blue phosphorescence organic light emitting diodes (OLEDs) with either small-molecule or polymer hosts are fabricated using solution process and the performances of devices with different hosts are investigated. The small-molecule device exhibits luminous efficiency of 14.7 cd/A and maximum power efficiency of 8.39 lm/W, which is the highest among blue phosphorescence OLEDs with single-layer solution process and small molecular hosts. Using the same solution process for all devices, comparison of light out-coupling enhancement, with brightness enhancement film (BEF), between small-molecule and polymer based OLEDs is realized. Due to different dipole orientation and anisotropic refractive index, polymer-based OLEDs would trap less lightmore » than small molecule-based OLEDs internally, about 37% better based simulation results. In spite of better electrical and spectroscopic characteristics, including ambipolar characteristics, higher carrier mobility, higher photoluminescence quantum yield, and larger triplet state energy, the overall light out-coupling efficiency of small molecule-based devices is worse than that of polymer-based devices without BEF. However, with BEF for light out-coupling enhancement, the improved ratio in luminous flux and luminous efficiency for small molecule based device is 1.64 and 1.57, respectively, which are significantly better than those of PVK (poly-9-vinylcarbazole) devices. In addition to the theoretical optical simulation, the experimental data also confirm the origins of differential light-outcoupling enhancement. The maximum luminous efficiency and power efficiency are enhanced from 14.7 cd/A and 8.39 lm/W to 23 cd/A and 13.2 lm/W, respectively, with laminated BEF, which are both the highest so far for single-layer solution-process blue phosphorescence OLEDs with small molecule hosts.« less

  4. Signatures in vibrational and UV-visible absorption spectra for identifying cyclic hydrocarbons by graphene fragments.

    PubMed

    Meng, Yan; Wu, Qi; Chen, Lei; Wangmo, Sonam; Gao, Yang; Wang, Zhigang; Zhang, Rui-Qin; Ding, Dajun; Niehaus, Thomas A; Frauenheim, Thomas

    2013-12-21

    To promote possible applications of graphene in molecular identification based on stacking effects, in particular in recognizing aromatic amino acids and even sequencing nucleobases in life sciences, we comprehensively study the interaction between graphene segments and different cyclic organic hydrocarbons including benzene (C6H6), cyclohexane (C6H12), benzyne (C6H4), cyclohexene (C6H10), 1,3-cyclohexadiene (C6H8(1)) and 1,4-cyclohexadiene (C6H8(2)), using the density-functional tight-binding (DFTB) method. Interestingly, we find obviously different characteristics in Raman vibrational and ultraviolet visible absorption spectra of the small molecules adsorbed on the graphene sheet. Specifically, we find that both spectra involve clearly different characteristic peaks, belonging to the different small molecules upon adsorption, with the ones of ionized molecules being more substantial. Further analysis shows that the adsorptions are almost all due to the presence of dispersion energy in neutral cases and involve charge transfer from the graphene to the small molecules. In contrast, the main binding force in the ionic adsorption systems is the electronic interaction. The results present clear signatures that can be used to recognize different kinds of aromatic hydrocarbon rings on graphene sheets. We expect that our findings will be helpful for designing molecular recognition devices using graphene.

  5. Plasmonic Aptamer-Gold Nanoparticle Sensors for Small Molecule Fingerprint Identification

    DTIC Science & Technology

    2014-08-01

    AFRL-RH-WP-TR-2014-0107 PLASMONIC APTAMER -GOLD NANOPARTICLE SENSORS FOR SMALL MOLECULE FINGERPRINT IDENTIFICATION Jorge Chávez Grant Slusher...Plasmonic Aptamer -Gold Nanoparticle Sensors for Small Molecule Fingerprint Identification 5a. CONTRACT NUMBER N/A 5b. GRANT NUMBER 5c. PROGRAM...The utilization of the plasmonic response of aptamer -gold nanoparticle conjugates (Apt-AuNPs) to design cross- reactive arrays for fingerprint

  6. Covalent small-molecule-RNA complex formation enables cellular profiling of small-molecule-RNA interactions.

    PubMed

    Guan, Lirui; Disney, Matthew D

    2013-09-16

    Won't let you go! A strategy is described to design small molecules that react with their cellular RNA targets. This approach not only improves the activity of compounds targeting RNA in cell culture by a factor of about 2500 but also enables cell-wide profiling of its RNA targets. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Re-education begins at home: an overview of the discovery of in vivo-active small molecule modulators of endogenous stem cells.

    PubMed

    Um, JungIn; Lee, Ji-Hyung; Jung, Da-Woon; Williams, Darren R

    2018-04-01

    Degenerative diseases, such as Alzheimer's disease, heart disease and arthritis cause great suffering and are major socioeconomic burdens. An attractive treatment approach is stem cell transplantation to regenerate damaged or destroyed tissues. However, this can be problematic. For example, donor cells may not functionally integrate into the host tissue. An alternative methodology is to deliver bioactive agents, such as small molecules, directly into the diseased tissue to enhance the regenerative potential of endogenous stem cells. Areas covered: In this review, the authors discuss the necessity of developing these small molecules to treat degenerative diseases and survey progress in their application as therapeutics. They describe both the successes and caveats of developing small molecules that target endogenous stem cells to induce tissue regeneration. This article is based on literature searches which encompass databases for biomedical research and clinical trials. These small molecules are also categorized per their target disease and mechanism of action. Expert opinion: The development of small molecules targeting endogenous stem cells is a high-profile research area. Some compounds have made the successful transition to the clinic. Novel approaches, such as modulating the stem cell niche or targeted delivery to disease sites, should increase the likelihood of future successes in this field.

  8. Bottom-up design of small molecules that stimulate exon 10 skipping in mutant MAPT pre-mRNA.

    PubMed

    Luo, Yiling; Disney, Matthew D

    2014-09-22

    One challenge in chemical biology is to develop small molecules that control cellular protein content. The amount and identity of proteins are influenced by the RNAs that encode them; thus, protein content in a cell could be affected by targeting mRNA. However, RNA has been traditionally difficult to target with small molecules. In this report, we describe controlling the protein products of the mutated microtubule-associated protein tau (MAPT) mature mRNA with a small molecule. MAPT mutations in exon 10 are associated with inherited frontotemporal dementia and Parkinsonism linked to chromosome 17 (FTDP-17), an incurable disease that is directly caused by increased inclusion of exon 10 in MAPT mRNA. Recent studies have shown that mutations within a hairpin at the MAPT exon 10-intron junction decrease the thermodynamic stability of the RNA, increasing binding to U1 snRNP and thus exon 10 inclusion. Therefore, we designed small molecules that bind and stabilize a mutant MAPT by using Inforna, a computational approach based on information about RNA-small-molecule interactions. The optimal compound selectively bound the mutant MAPT hairpin and thermodynamically stabilized its folding, facilitating exon 10 exclusion. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Small Molecule Supplements Improve Cultured Megakaryocyte Polyploidization by Modulating Multiple Cell Cycle Regulators.

    PubMed

    Zou, Xiaojing; Qu, Mingyi; Fang, Fang; Fan, Zeng; Chen, Lin; Yue, Wen; Xie, Xiaoyan; Pei, Xuetao

    2017-01-01

    Platelets (PLTs) are produced by megakaryocytes (MKs) that completed differentiation and endomitosis. Endomitosis is an important process in which the cell replicates its DNA without cytokinesis and develops highly polyploid MK. In this study, to gain a better PLTs production, four small molecules (Rho-Rock inhibitor (RRI), nicotinamide (NIC), Src inhibitor (SI), and Aurora B inhibitor (ABI)) and their combinations were surveyed as MK culture supplements for promoting polyploidization. Three leukemia cell lines as well as primary mononuclear cells were chosen in the function and mechanism studies of the small molecules. In an optimal culture method, cells were treated with different small molecules and their combinations. The impact of the small molecules on megakaryocytic surface marker expression, polyploidy, proliferation, and apoptosis was examined for the best MK polyploidization supplement. The elaborate analysis confirmed that the combination of SI and RRI together with our MK induction system might result in efficient ploidy promotion. Our experiments demonstrated that, besides direct downregulation on the expression of cytoskeleton protein actin, SI and RRI could significantly enhance the level of cyclins through the suppression of p53 and p21. The verified small molecule combination might be further used in the in vitro PLT manufacture and clinical applications.

  10. Small Molecule Supplements Improve Cultured Megakaryocyte Polyploidization by Modulating Multiple Cell Cycle Regulators

    PubMed Central

    Fang, Fang; Chen, Lin; Yue, Wen

    2017-01-01

    Platelets (PLTs) are produced by megakaryocytes (MKs) that completed differentiation and endomitosis. Endomitosis is an important process in which the cell replicates its DNA without cytokinesis and develops highly polyploid MK. In this study, to gain a better PLTs production, four small molecules (Rho-Rock inhibitor (RRI), nicotinamide (NIC), Src inhibitor (SI), and Aurora B inhibitor (ABI)) and their combinations were surveyed as MK culture supplements for promoting polyploidization. Three leukemia cell lines as well as primary mononuclear cells were chosen in the function and mechanism studies of the small molecules. In an optimal culture method, cells were treated with different small molecules and their combinations. The impact of the small molecules on megakaryocytic surface marker expression, polyploidy, proliferation, and apoptosis was examined for the best MK polyploidization supplement. The elaborate analysis confirmed that the combination of SI and RRI together with our MK induction system might result in efficient ploidy promotion. Our experiments demonstrated that, besides direct downregulation on the expression of cytoskeleton protein actin, SI and RRI could significantly enhance the level of cyclins through the suppression of p53 and p21. The verified small molecule combination might be further used in the in vitro PLT manufacture and clinical applications. PMID:29201898

  11. Small Molecules Affect Human Dental Pulp Stem Cell Properties Via Multiple Signaling Pathways

    PubMed Central

    Al-Habib, Mey; Yu, Zongdong

    2013-01-01

    One fundamental issue regarding stem cells for regenerative medicine is the maintenance of stem cell stemness. The purpose of the study was to test whether small molecules can enhance stem cell properties of mesenchymal stem cells (MSCs) derived from human dental pulp (hDPSCs), which have potential for multiple clinical applications. We identified the effects of small molecules (Pluripotin (SC1), 6-bromoindirubin-3-oxime and rapamycin) on the maintenance of hDPSC properties in vitro and the mechanisms involved in exerting the effects. Primary cultures of hDPSCs were exposed to optimal concentrations of these small molecules. Treated hDPSCs were analyzed for their proliferation, the expression levels of pluripotent and MSC markers, differentiation capacities, and intracellular signaling activations. We found that small molecule treatments decreased cell proliferation and increased the expression of STRO-1, NANOG, OCT4, and SOX2, while diminishing cell differentiation into odonto/osteogenic, adipogenic, and neurogenic lineages in vitro. These effects involved Ras-GAP-, ERK1/2-, and mTOR-signaling pathways, which may preserve the cell self-renewal capacity, while suppressing differentiation. We conclude that small molecules appear to enhance the immature state of hDPSCs in culture, which may be used as a strategy for adult stem cell maintenance and extend their capacity for regenerative applications. PMID:23573877

  12. Addressing individual metal ion centers in supramolecules by STS

    NASA Astrophysics Data System (ADS)

    Alam, M. S.; Ako, A. M.; Ruben, M.; Thompson, L. K.; Lehn, J.-M.

    2005-03-01

    As the information of STM measurements arises from electronic structure, separating information on the topography is not straightforward for complex molecules. Scanning tunneling spectroscopy (STS) measurements give information about the molecular energy levels, which are next to the molecules Fermi level. Using a home built STM working under ambient conditions, we succeeded to combine high resolution topography mapping with simultaneous current-voltage characteristics (STS) measurements on single molecules deposited on highly oriented pyrolytic graphite surfaces. We present our recent results on grid-type molecules [Co4L4] (L=4,6-bis(2',2''-bipyridyl-6-yl)pyrimidine) and [Mn9L6] (L=2POAP-2H) as well as on ring-shaped Fe ion chains [Fe6Cl6L6] (L=1-Ecosyliminodiethanol). Small, regular molecule clusters as well as separated single molecules were observed. We found a rather large contrast at the expected location of the metal centers in our molecules, i.e. the location of the individual metal ions in their organic matrix is directly addressable by STS.

  13. Magnetic wire trap arrays for biomarker-based molecular detection

    NASA Astrophysics Data System (ADS)

    Vieira, Gregory; Mahajan, Kalpesh; Ruan, Gang; Winter, Jessica; Sooryakumar, R.

    2012-02-01

    Submicrometer-scale magnetic devices built on chip-based platforms have recently been shown to present opportunities for new particle trapping and manipulation technologies. Meanwhile, advances in nanoparticle fabrication allow for the building of custom-made particles with precise control of their size, composition, and other properties such as magnetism, fluorescence, and surface biomarker characteristics. In particular, carefully tailored surface biomarkers facilitate precise binding to targeted molecules, self-actuated construction of hybrid structures, and fluorescence-based detection schemes. Based on these progresses, we present an on-chip detection mechanism for molecules with known surface markers. Hybrid nanostructures consisting of micelle nanoparticles, fluorescent quantum dots, and superparamagnetic iron oxide nanoparticles are used to detect proteins or DNA molecules. The target is detected by the magnetic and fluorescent functionalities of the composite nanostructure, whereas in the absence of the target these signals are not present. Underlying this approach is the simultaneous manipulation via ferromagnetic zigzag nanowire arrays and imaging via quantum dot excitation. This chip-based detection technique could provide a powerful, low cost tool for ultrasensitive molecule detection with ramifications in healthcare diagnostics and small-scale chemical synthesis.

  14. Complex organic molecules and star formation

    NASA Astrophysics Data System (ADS)

    Bacmann, A.; Faure, A.

    2014-12-01

    Star forming regions are characterised by the presence of a wealth of chemical species. For the past two to three decades, ever more complex organic species have been detected in the hot cores of protostars. The evolution of these molecules in the course of the star forming process is still uncertain, but it is likely that they are partially incorporated into protoplanetary disks and then into planetesimals and the small bodies of planetary systems. The complex organic molecules seen in star forming regions are particularly interesting since they probably make up building blocks for prebiotic chemistry. Recently we showed that these species were also present in the cold gas in prestellar cores, which represent the very first stages of star formation. These detections question the models which were until now accepted to account for the presence of complex organic molecules in star forming regions. In this article, we shortly review our current understanding of complex organic molecule formation in the early stages of star formation, in hot and cold cores alike and present new results on the formation of their likely precursor radicals.

  15. Single-molecule experiments in biological physics: methods and applications.

    PubMed

    Ritort, F

    2006-08-16

    I review single-molecule experiments (SMEs) in biological physics. Recent technological developments have provided the tools to design and build scientific instruments of high enough sensitivity and precision to manipulate and visualize individual molecules and measure microscopic forces. Using SMEs it is possible to manipulate molecules one at a time and measure distributions describing molecular properties, characterize the kinetics of biomolecular reactions and detect molecular intermediates. SMEs provide additional information about thermodynamics and kinetics of biomolecular processes. This complements information obtained in traditional bulk assays. In SMEs it is also possible to measure small energies and detect large Brownian deviations in biomolecular reactions, thereby offering new methods and systems to scrutinize the basic foundations of statistical mechanics. This review is written at a very introductory level, emphasizing the importance of SMEs to scientists interested in knowing the common playground of ideas and the interdisciplinary topics accessible by these techniques. The review discusses SMEs from an experimental perspective, first exposing the most common experimental methodologies and later presenting various molecular systems where such techniques have been applied. I briefly discuss experimental techniques such as atomic-force microscopy (AFM), laser optical tweezers (LOTs), magnetic tweezers (MTs), biomembrane force probes (BFPs) and single-molecule fluorescence (SMF). I then present several applications of SME to the study of nucleic acids (DNA, RNA and DNA condensation) and proteins (protein-protein interactions, protein folding and molecular motors). Finally, I discuss applications of SMEs to the study of the nonequilibrium thermodynamics of small systems and the experimental verification of fluctuation theorems. I conclude with a discussion of open questions and future perspectives.

  16. TOPICAL REVIEW: Single-molecule experiments in biological physics: methods and applications

    NASA Astrophysics Data System (ADS)

    Ritort, F.

    2006-08-01

    I review single-molecule experiments (SMEs) in biological physics. Recent technological developments have provided the tools to design and build scientific instruments of high enough sensitivity and precision to manipulate and visualize individual molecules and measure microscopic forces. Using SMEs it is possible to manipulate molecules one at a time and measure distributions describing molecular properties, characterize the kinetics of biomolecular reactions and detect molecular intermediates. SMEs provide additional information about thermodynamics and kinetics of biomolecular processes. This complements information obtained in traditional bulk assays. In SMEs it is also possible to measure small energies and detect large Brownian deviations in biomolecular reactions, thereby offering new methods and systems to scrutinize the basic foundations of statistical mechanics. This review is written at a very introductory level, emphasizing the importance of SMEs to scientists interested in knowing the common playground of ideas and the interdisciplinary topics accessible by these techniques. The review discusses SMEs from an experimental perspective, first exposing the most common experimental methodologies and later presenting various molecular systems where such techniques have been applied. I briefly discuss experimental techniques such as atomic-force microscopy (AFM), laser optical tweezers (LOTs), magnetic tweezers (MTs), biomembrane force probes (BFPs) and single-molecule fluorescence (SMF). I then present several applications of SME to the study of nucleic acids (DNA, RNA and DNA condensation) and proteins (protein-protein interactions, protein folding and molecular motors). Finally, I discuss applications of SMEs to the study of the nonequilibrium thermodynamics of small systems and the experimental verification of fluctuation theorems. I conclude with a discussion of open questions and future perspectives.

  17. Packing C60 in Boron Nitride Nanotubes

    NASA Astrophysics Data System (ADS)

    Mickelson, W.; Aloni, S.; Han, Wei-Qiang; Cumings, John; Zettl, A.

    2003-04-01

    We have created insulated C60 nanowire by packing C60 molecules into the interior of insulating boron nitride nanotubes (BNNTs). For small-diameter BNNTs, the wire consists of a linear chain of C60 molecules. With increasing BNNT inner diameter, unusual C60 stacking configurations are obtained (including helical, hollow core, and incommensurate) that are unknown for bulk or thin-film forms of C60. C60 in BNNTs thus presents a model system for studying the properties of dimensionally constrained ``silo'' crystal structures. For the linear-chain case, we have fused the C60 molecules to form a single-walled carbon nanotube inside the insulating BNNT.

  18. Miniaturized transportable evaporator for molecule deposition inside cryogenic scanning probe microscopes.

    PubMed

    Lämmle, K; Schwarz, A; Wiesendanger, R

    2010-05-01

    Here, we present a very small evaporator unit suitable to deposit molecules onto a sample in a cryogenic environment. It can be transported in an ultrahigh vacuum system and loaded into Omicron-type cantilever stages. Thus, molecule deposition inside a low temperature force microscope is possible. The design features an insulating base plate with two embedded electrical contacts and a crucible with low power consumption, which is thermally well isolated from the surrounding. The current is supplied via a removable power clip. Details of the manufacturing process as well as the used material are described. Finally, the performance of the whole setup is demonstrated.

  19. Selectivity by Small-Molecule Inhibitors of Protein Interactions Can Be Driven by Protein Surface Fluctuations

    PubMed Central

    Johnson, David K.; Karanicolas, John

    2015-01-01

    Small-molecules that inhibit interactions between specific pairs of proteins have long represented a promising avenue for therapeutic intervention in a variety of settings. Structural studies have shown that in many cases, the inhibitor-bound protein adopts a conformation that is distinct from its unbound and its protein-bound conformations. This plasticity of the protein surface presents a major challenge in predicting which members of a protein family will be inhibited by a given ligand. Here, we use biased simulations of Bcl-2-family proteins to generate ensembles of low-energy conformations that contain surface pockets suitable for small molecule binding. We find that the resulting conformational ensembles include surface pockets that mimic those observed in inhibitor-bound crystal structures. Next, we find that the ensembles generated using different members of this protein family are overlapping but distinct, and that the activity of a given compound against a particular family member (ligand selectivity) can be predicted from whether the corresponding ensemble samples a complementary surface pocket. Finally, we find that each ensemble includes certain surface pockets that are not shared by any other family member: while no inhibitors have yet been identified to take advantage of these pockets, we expect that chemical scaffolds complementing these “distinct” pockets will prove highly selective for their targets. The opportunity to achieve target selectivity within a protein family by exploiting differences in surface fluctuations represents a new paradigm that may facilitate design of family-selective small-molecule inhibitors of protein-protein interactions. PMID:25706586

  20. Branched terthiophenes in organic electronics: from small molecules to polymers.

    PubMed

    Scheuble, Martin; Goll, Miriam; Ludwigs, Sabine

    2015-01-01

    A zoo of chemical structures is accessible when the branched unit 2,2':3',2″-terthiophene (3T) is included both in structurally well-defined small molecules and polymer-like architectures. The first part of this review article highlights literature on all-thiophene based branched oligomers including dendrimers as well as combinations of 3T-units with functional moieties for light-harvesting systems. Motivated by the perfectly branched macromolecular dendrimers both electropolymerization as well as chemical approaches are presented as methods for the preparation of branched polythiophenes with different branching densities. Structure-function relationships between the molecular architecture and optical and electronic properties are discussed throughout the article. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Optimization of protein buffer cocktails using Thermofluor.

    PubMed

    Reinhard, Linda; Mayerhofer, Hubert; Geerlof, Arie; Mueller-Dieckmann, Jochen; Weiss, Manfred S

    2013-02-01

    The stability and homogeneity of a protein sample is strongly influenced by the composition of the buffer that the protein is in. A quick and easy approach to identify a buffer composition which increases the stability and possibly the conformational homogeneity of a protein sample is the fluorescence-based thermal-shift assay (Thermofluor). Here, a novel 96-condition screen for Thermofluor experiments is presented which consists of buffer and additive parts. The buffer screen comprises 23 different buffers and the additive screen includes small-molecule additives such as salts and nucleotide analogues. The utilization of small-molecule components which increase the thermal stability of a protein sample frequently results in a protein preparation of higher quality and quantity and ultimately also increases the chances of the protein crystallizing.

  2. Targeting of small molecule anticancer drugs to the tumour and its vasculature using cationic liposomes: lessons from gene therapy

    PubMed Central

    Dass, Crispin R; Choong, Peter FM

    2006-01-01

    Cationic (positively charged) liposomes have been tested in various gene therapy clinical trials for neoplastic and other diseases. They have demonstrated selectivity for tumour vascular endothelial cells raising hopes for both antiangiogenic and antivascular therapies. They are also capable of being selectively delivered to the lungs and liver when administered intravenously. These vesicles are being targeted to the tumour in various parts of the body by using advanced liposomal systems such as ligand-receptor and antibody-antigen combinations. At present, the transferrin receptor is commonly used for cancer-targeted drug delivery systems including cationic liposomes. This review looks at the growing utility of these vesicles for delivery of small molecule anticancer drugs. PMID:16792817

  3. Thirteen year retrospective review of the spectrum of inborn errors of metabolism presenting in a tertiary center in Saudi Arabia.

    PubMed

    Alfadhel, Majid; Benmeakel, Mohammed; Hossain, Mohammad Arif; Al Mutairi, Fuad; Al Othaim, Ali; Alfares, Ahmed A; Al Balwi, Mohammed; Alzaben, Abdullah; Eyaid, Wafaa

    2016-09-15

    Inborn errors of metabolism (IEMs) are individually rare; however, they are collectively common. More than 600 human diseases caused by inborn errors of metabolism are now recognized, and this number is constantly increasing as new concepts and techniques become available for identifying biochemical phenotypes. The aim of this study was to determine the type and distribution of IEMs in patients presenting to a tertiary care center in Saudi Arabia. We conducted a retrospective review of children diagnosed with IEMs presenting to the Pediatric Department of King Abdulaziz Medical City in Riyadh, Saudi Arabia over a 13-year period. Over the 13- year period of this retrospective cohort, the total number of live births reached 110,601. A total of 187 patients were diagnosed with IEMs, representing a incidence of 169 in 100,000 births (1:591). Of these, 121 patients (64.7 %) were identified to have small molecule diseases and 66 (35.3 %) to have large molecule diseases. Organic acidemias were the most common small molecule IEMs, while lysosomal storage disorders (LSD) were the most common large molecule diseases. Sphingolipidosis were the most common LSD. Our study confirms the previous results of the high rate of IEMs in Saudi Arabia and urges the health care strategists in the country to devise a long-term strategic plan, including an IEM national registry and a high school carrier screening program, for the prevention of such disorders. In addition, we identified 43 novel mutations that were not described previously, which will help in the molecular diagnosis of these disorders.

  4. Mechanism of Inhibition of Cholesteryl Ester Transfer Protein by Small Molecule Inhibitors.

    PubMed

    Chirasani, Venkat R; Sankar, Revathi; Senapati, Sanjib

    2016-08-25

    Cholesteryl ester transfer protein (CETP) facilitates the bidirectional exchange of cholesteryl esters and triglycerides between high-density lipoproteins and low- or very low-density lipoproteins. Recent studies have shown that the impairment of lipid exchange processes of CETP can be an effective strategy for the treatment of cardiovascular diseases (CVDs). Understanding the molecular mechanism of CETP inhibition has, therefore, attracted tremendous attention in recent past. In this study, we explored the detailed mechanism of CETP inhibition by a series of recently reported small molecule inhibitors that are currently under preclinical testing. Our results from molecular dynamics simulations and protein-ligand docking studies suggest that the hydrophobic interactions between the CETP core tunnel residues and inhibitor moieties play a pivotal role, and physical occlusion of the CETP tunnel by these small molecules is the primary mechanism of CETP inhibition. Interestingly, bound inhibitors were found to increase the plasticity of CETP, which was explained by principal component analysis that showed a larger space of sampling of CETP C-domain due to inhibitor binding. The atomic-level details presented here could help accelerate the structure-based drug-discovery processes targeting CETP for CVD therapeutics.

  5. In situ click chemistry: from small molecule discovery to synthetic antibodies

    PubMed Central

    Agnew, Heather D.; Lai, Bert; Lee, Su Seong; Lim, Jaehong; Nag, Arundhati; Pitram, Suresh; Rohde, Rosemary; Heath, James R.

    2013-01-01

    Advances in the fields of proteomics, molecular imaging, and therapeutics are closely linked to the availability of affinity reagents that selectively recognize their biological targets. Here we present a review of Iterative Peptide In Situ Click Chemistry (IPISC), a novel screening technology for designing peptide multiligands with high affinity and specificity. This technology builds upon in situ click chemistry, a kinetic target-guided synthesis approach where the protein target catalyzes the conjugation of two small molecules, typically through the azide–alkyne Huisgen cycloaddition. Integrating this methodology with solid phase peptide libraries enables the assembly of linear and branched peptide multiligands we refer to as Protein Catalyzed Capture Agents (PCC Agents). The resulting structures can be thought of as analogous to the antigen recognition site of antibodies and serve as antibody replacements in biochemical and cell-based applications. In this review, we discuss the recent progress in ligand design through IPISC and related approaches, focusing on the improvements in affinity and specificity as multiligands are assembled by target-catalyzed peptide conjugation. We compare the IPISC process to small molecule in situ click chemistry with particular emphasis on the advantages and technical challenges of constructing antibody-like PCC Agents. PMID:22836343

  6. Subdiffusion in Membrane Permeation of Small Molecules.

    PubMed

    Chipot, Christophe; Comer, Jeffrey

    2016-11-02

    Within the solubility-diffusion model of passive membrane permeation of small molecules, translocation of the permeant across the biological membrane is traditionally assumed to obey the Smoluchowski diffusion equation, which is germane for classical diffusion on an inhomogeneous free-energy and diffusivity landscape. This equation, however, cannot accommodate subdiffusive regimes, which have long been recognized in lipid bilayer dynamics, notably in the lateral diffusion of individual lipids. Through extensive biased and unbiased molecular dynamics simulations, we show that one-dimensional translocation of methanol across a pure lipid membrane remains subdiffusive on timescales approaching typical permeation times. Analysis of permeant motion within the lipid bilayer reveals that, in the absence of a net force, the mean squared displacement depends on time as t 0.7 , in stark contrast with the conventional model, which assumes a strictly linear dependence. We further show that an alternate model using a fractional-derivative generalization of the Smoluchowski equation provides a rigorous framework for describing the motion of the permeant molecule on the pico- to nanosecond timescale. The observed subdiffusive behavior appears to emerge from a crossover between small-scale rattling of the permeant around its present position in the membrane and larger-scale displacements precipitated by the formation of transient voids.

  7. Novel Small Molecule Inhibitors of Choline Kinase Identified by Fragment-Based Drug Discovery.

    PubMed

    Zech, Stephan G; Kohlmann, Anna; Zhou, Tianjun; Li, Feng; Squillace, Rachel M; Parillon, Lois E; Greenfield, Matthew T; Miller, David P; Qi, Jiwei; Thomas, R Mathew; Wang, Yihan; Xu, Yongjin; Miret, Juan J; Shakespeare, William C; Zhu, Xiaotian; Dalgarno, David C

    2016-01-28

    Choline kinase α (ChoKα) is an enzyme involved in the synthesis of phospholipids and thereby plays key roles in regulation of cell proliferation, oncogenic transformation, and human carcinogenesis. Since several inhibitors of ChoKα display antiproliferative activity in both cellular and animal models, this novel oncogene has recently gained interest as a promising small molecule target for cancer therapy. Here we summarize our efforts to further validate ChoKα as an oncogenic target and explore the activity of novel small molecule inhibitors of ChoKα. Starting from weakly binding fragments, we describe a structure based lead discovery approach, which resulted in novel highly potent inhibitors of ChoKα. In cancer cell lines, our lead compounds exhibit a dose-dependent decrease of phosphocholine, inhibition of cell growth, and induction of apoptosis at low micromolar concentrations. The druglike lead series presented here is optimizable for improvements in cellular potency, drug target residence time, and pharmacokinetic parameters. These inhibitors may be utilized not only to further validate ChoKα as antioncogenic target but also as novel chemical matter that may lead to antitumor agents that specifically interfere with cancer cell metabolism.

  8. Application of reference-modified density functional theory: Temperature and pressure dependences of solvation free energy.

    PubMed

    Sumi, Tomonari; Maruyama, Yutaka; Mitsutake, Ayori; Mochizuki, Kenji; Koga, Kenichiro

    2018-02-05

    Recently, we proposed a reference-modified density functional theory (RMDFT) to calculate solvation free energy (SFE), in which a hard-sphere fluid was introduced as the reference system instead of an ideal molecular gas. Through the RMDFT, using an optimal diameter for the hard-sphere reference system, the values of the SFE calculated at room temperature and normal pressure were in good agreement with those for more than 500 small organic molecules in water as determined by experiments. In this study, we present an application of the RMDFT for calculating the temperature and pressure dependences of the SFE for solute molecules in water. We demonstrate that the RMDFT has high predictive ability for the temperature and pressure dependences of the SFE for small solute molecules in water when the optimal reference hard-sphere diameter determined for each thermodynamic condition is used. We also apply the RMDFT to investigate the temperature and pressure dependences of the thermodynamic stability of an artificial small protein, chignolin, and discuss the mechanism of high-temperature and high-pressure unfolding of the protein. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Electronic Structure of Small Lanthanide Containing Molecules

    NASA Astrophysics Data System (ADS)

    Kafader, Jared O.; Ray, Manisha; Topolski, Josey E.; Chick Jarrold, Caroline

    2016-06-01

    Lanthanide-based materials have unusual electronic properties because of the high number of electronic degrees of freedom arising from partial occupation of 4f orbitals, which make these materials optimal for their utilization in many applications including electronics and catalysis. Electronic spectroscopy of small lanthanide molecules helps us understand the role of these 4f electrons, which are generally considered core-like because of orbital contraction, but are energetically similar to valence electrons. The spectroscopy of small lanthanide-containing molecules is relatively unexplored and to broaden this understanding we have completed the characterization of small cerium, praseodymium, and europium molecules using photoelectron spectroscopy coupled with DFT calculations. The characterization of PrO, EuH, EuO/EuOH, and CexOy molecules have allowed for the determination of their electron affinity, the assignment of numerous anion to neutral state transitions, modeling of anion/neutral structures and electron orbital occupation.

  10. System dynamics of subcellular transport.

    PubMed

    Chen, Vivien Y; Khersonsky, Sonya M; Shedden, Kerby; Chang, Young Tae; Rosania, Gus R

    2004-01-01

    In pharmacokinetic experiments, interpretations often hinge on treating cells as a "black box": a single, lumped compartment or boundary. Here, a combinatorial library of fluorescent small molecules was used to visualize subcellular transport pathways in living cells, using a kinetic, high content imaging system to monitor spatiotemporal variations of intracellular probe distribution. Most probes accumulate in cytoplasmic vesicles and probe kinetics conform to a nested, two-compartment dynamical system. At steady state, probes preferentially partition from the extracellular medium to the cytosol, and from the cytosol to cytoplasmic vesicles, with hydrophobic molecules favoring sequestration. Altogether, these results point to a general organizing principle underlying the system dynamics of subcellular, small molecule transport. In addition to plasma membrane permeability, subcellular transport phenomena can determine the active concentration of small molecules in the cytosol and the efflux of small molecules from cells. Fundamentally, direct observation of intracellular probe distribution challenges the simple boundary model of classical pharmacokinetics, which considers cells as static permeability barriers.

  11. Activation of Polymine Catabolism as a Novel Strategy for Treating and/or Preventing Human Prostate Cancer

    DTIC Science & Technology

    2006-03-01

    strategy against prostate cancer and thus, worthy of small molecule discovery and development. On the basis of findings obtained over the past 3...support for the discovery and development of specific small molecule inducers of SSAT as a novel therapeutic strategy targeting prostate cancer. This...D. Unscheduled Findings. Findings under Tasks 1 and 3 provided genetic evidence for the discovery and development of small molecule inducers of

  12. A-D-A small molecules for solution-processed organic photovoltaic cells.

    PubMed

    Ni, Wang; Wan, Xiangjian; Li, Miaomiao; Wang, Yunchuang; Chen, Yongsheng

    2015-03-25

    A-D-A small molecules have drawn more and more attention in solution-processed organic solar cells due to the advantages of a diversity of structures, easy control of energy levels, etc. Recently, a power conversion efficiency of nearly 10% has been achieved through careful material design and device optimization. This feature article reviews recent representative progress in the design and application of A-D-A small molecules in organic photovoltaic cells.

  13. Delivery of small molecules for bone regenerative engineering: preclinical studies and potential clinical applications

    PubMed Central

    Laurencin, Cato T.; Ashe, Keshia M.; Henry, Nicole; Kan, Ho Man; Lo, Kevin W-H.

    2014-01-01

    Stimulation of bone regeneration using growth factors is a promising approach for musculoskeletal regenerative engineering. Common limitations with protein growth factors are high manufacturing costs, protein instability, contamination issues, and unwanted immunogenic responses of the host. New strategies for bone regeneration that obviate these problems can have a significant impact on the treatment of skeletal injury and diseases. Over the past decade, a large number of small molecules with the potential of regenerating skeletal tissue have been reported in the literature. Here, we review this literature, paying specific attention to the prospects for small molecule-based bone-regenerative engineering. We also review the preclinical study of small molecules associated with bone regeneration. PMID:24508820

  14. Cobalt coated substrate for matrix-free analysis of small molecules by laser desorption/ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Yalcin, Talat; Li, Liang

    2009-12-01

    Small molecule analysis is one of the most challenging issues in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. We have developed a cobalt coated substrate as a target for matrix-free analysis of small molecules in laser desorption/ionization mass spectrometry. Cobalt coating of 60-70 nm thickness has been characterized by scanning electron microscopy, energy dispersive X-ray analysis, X-ray diffraction, and laser induced breakdown spectroscopy. This target facilitates hundreds of samples to be spotted and analyzed without mixing any matrices, in a very short time. This can save a lot of time and money and can be a very practical approach for the analysis of small molecules by laser desorption/ionization mass spectrometry.

  15. Test measurement on ion-molecule reactions in a ringelectrode ion trap

    NASA Astrophysics Data System (ADS)

    Savic, I.; Lukic, S. R.; Guth, I.; Gerlich, D.

    2006-05-01

    Very recently a new experimental setup has been developed allowing studies of astrophysically relevant collisions between neutral atoms and small pure carbon molecules from one side and ions from the other side and first results are obtained (Savić et al., 2005). The ions are stored in a radio- frequency (rf) ring-electrode trap and during reaction time exposed to the effusive carbon beam. In this paper, one of the final tests of the experimental setup is presented.

  16. Combinatorics of feedback in cellular uptake and metabolism of small molecules.

    PubMed

    Krishna, Sandeep; Semsey, Szabolcs; Sneppen, Kim

    2007-12-26

    We analyze the connection between structure and function for regulatory motifs associated with cellular uptake and usage of small molecules. Based on the boolean logic of the feedback we suggest four classes: the socialist, consumer, fashion, and collector motifs. We find that the socialist motif is good for homeostasis of a useful but potentially poisonous molecule, whereas the consumer motif is optimal for nutrition molecules. Accordingly, examples of these motifs are found in, respectively, the iron homeostasis system in various organisms and in the uptake of sugar molecules in bacteria. The remaining two motifs have no obvious analogs in small molecule regulation, but we illustrate their behavior using analogies to fashion and obesity. These extreme motifs could inspire construction of synthetic systems that exhibit bistable, history-dependent states, and homeostasis of flux (rather than concentration).

  17. DNA motion capture reveals the mechanical properties of DNA at the mesoscale.

    PubMed

    Price, Allen C; Pilkiewicz, Kevin R; Graham, Thomas G W; Song, Dan; Eaves, Joel D; Loparo, Joseph J

    2015-05-19

    Single-molecule studies probing the end-to-end extension of long DNAs have established that the mechanical properties of DNA are well described by a wormlike chain force law, a polymer model where persistence length is the only adjustable parameter. We present a DNA motion-capture technique in which DNA molecules are labeled with fluorescent quantum dots at specific sites along the DNA contour and their positions are imaged. Tracking these positions in time allows us to characterize how segments within a long DNA are extended by flow and how fluctuations within the molecule are correlated. Utilizing a linear response theory of small fluctuations, we extract elastic forces for the different, ∼2-μm-long segments along the DNA backbone. We find that the average force-extension behavior of the segments can be well described by a wormlike chain force law with an anomalously small persistence length. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Thieno[3,2-c]pyran-4-one based novel small molecules: their synthesis, crystal structure analysis and in vitro evaluation as potential anticancer agents.

    PubMed

    Nakhi, Ali; Adepu, Raju; Rambabu, D; Kishore, Ravada; Vanaja, G R; Kalle, Arunasree M; Pal, Manojit

    2012-07-01

    Novel thieno[3,2-c]pyran-4-one based small molecules were designed as potential anticancer agents. Expeditious synthesis of these compounds was carried out via a multi-step sequence consisting of few steps such as Gewald reaction, Sandmeyer type iodination, Sonogashira type coupling followed by iodocyclization and then Pd-mediated various C-C bond forming reactions. The overall strategy involved the construction of thiophene ring followed by the fused pyranone moiety and then functionalization at C-7 position of the resultant thieno[3,2-c]pyran-4-one framework. Some of the compounds synthesized showed selective growth inhibition of cancer cells in vitro among which two compounds for example, 5d and 6c showed IC(50) values in the range of 2.0-2.5 μM. The crystal structure analysis of an active compound along with hydrogen bonding patterns and molecular arrangement present within the molecule is described. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Catalytic in vivo protein knockdown by small-molecule PROTACs

    PubMed Central

    Bondeson, Daniel P; Mares, Alina; Smith, Ian E D; Ko, Eunhwa; Campos, Sebastien; Miah, Afjal H; Mulholland, Katie E; Routly, Natasha; Buckley, Dennis L; Gustafson, Jeffrey L; Zinn, Nico; Grandi, Paola; Shimamura, Satoko; Bergamini, Giovanna; Faelth-Savitski, Maria; Bantscheff, Marcus; Cox, Carly; Gordon, Deborah A; Willard, Ryan R; Flanagan, John J; Casillas, Linda N; Votta, Bartholomew J; den Besten, Willem; Famm, Kristoffer; Kruidenier, Laurens; Carter, Paul S; Harling, John D; Churcher, Ian; Crews, Craig M

    2015-01-01

    The current predominant theapeutic paradigm is based on maximizing drug-receptor occupancy to achieve clinical benefit. This strategy, however, generally requires excessive drug concentrations to ensure sufficient occupancy, often leading to adverse side effects. Here, we describe major improvements to the proteolysis targeting chimeras (PROTACs) method, a chemical knockdown strategy in which a heterobifunctional molecule recruits a specific protein target to an E3 ubiquitin ligase, resulting in the target’s ubiquitination and degradation. These compounds behave catalytically in their ability to induce the ubiquitination of super-stoichiometric quantities of proteins, providing efficacy that is not limited by equilibrium occupancy. We present two PROTACs that are capable of specifically reducing protein levels by >90% at nanomolar concentrations. In addition, mouse studies indicate that they provide broad tissue distribution and knockdown of the targeted protein in tumor xenografts. Together, these data demonstrate a protein knockdown system combining many of the favorable properties of small-molecule agents with the potent protein knockdown of RNAi and CRISPR. PMID:26075522

  20. Self-assembled near-infrared dye nanoparticles as a selective protein sensor by activation of a dormant fluorophore.

    PubMed

    Anees, Palapuravan; Sreejith, Sivaramapanicker; Ajayaghosh, Ayyappanpillai

    2014-09-24

    Design of selective sensors for a specific analyte in blood serum, which contains a large number of proteins, small molecules, and ions, is important in clinical diagnostics. While metal and polymeric nanoparticle conjugates have been used as sensors, small molecular assemblies have rarely been exploited for the selective sensing of a protein in blood serum. Herein we demonstrate how a nonspecific small molecular fluorescent dye can be empowered to form a selective protein sensor as illustrated with a thiol-sensitive near-IR squaraine (Sq) dye (λabs= 670 nm, λem= 700 nm). The dye self-assembles to form nonfluorescent nanoparticles (Dh = 200 nm) which selectively respond to human serum albumin (HSA) in the presence of other thiol-containing molecules and proteins by triggering a green fluorescence. This selective response of the dye nanoparticles allowed detection and quantification of HSA in blood serum with a sensitivity limit of 3 nM. Notably, the Sq dye in solution state is nonselective and responds to any thiol-containing proteins and small molecules. The sensing mechanism involves HSA specific controlled disassembly of the Sq nanoparticles to the molecular dye by a noncovalent binding process and its subsequent reaction with the thiol moiety of the protein, triggering the green emission of a dormant fluorophore present in the dye. This study demonstrates the power of a self-assembled small molecular fluorophore for protein sensing and is a simple chemical tool for the clinical diagnosis of blood serum.

  1. Model for fluorescence quenching in light harvesting complex II in different aggregation states.

    PubMed

    Andreeva, Atanaska; Abarova, Silvia; Stoitchkova, Katerina; Busheva, Mira

    2009-02-01

    Low-temperature (77 K) steady-state fluorescence emission spectroscopy and dynamic light scattering were applied to the main chlorophyll a/b protein light harvesting complex of photosystem II (LHC II) in different aggregation states to elucidate the mechanism of fluorescence quenching within LHC II oligomers. Evidences presented that LHC II oligomers are heterogeneous and consist of large and small particles with different fluorescence yield. At intermediate detergent concentrations the mean size of the small particles is similar to that of trimers, while the size of large particles is comparable to that of aggregated trimers without added detergent. It is suggested that in small particles and trimers the emitter is monomeric chlorophyll, whereas in large aggregates there is also another emitter, which is a poorly fluorescing chlorophyll associate. A model, describing populations of antenna chlorophyll molecules in small and large aggregates in their ground and first singlet excited states, is considered. The model enables us to obtain the ratio of the singlet excited-state lifetimes in small and large particles, the relative amount of chlorophyll molecules in large particles, and the amount of quenchers as a function of the degree of aggregation. These dependencies reveal that the quenching of the chl a fluorescence upon aggregation is due to the formation of large aggregates and the increasing of the amount of chlorophyll molecules forming these aggregates. As a consequence, the amount of quenchers, located in large aggregates, is increased, and their singlet excited-state lifetimes steeply decrease.

  2. News from Online: What's New with Chime?

    NASA Astrophysics Data System (ADS)

    Dorland, Liz

    2002-07-01

    The Chime plugin (pronounced like the bells) provides a simple route to presenting interactive molecular structures to students via the Internet or in classroom presentations. Small inorganic molecules, ionic structures, organic molecules and giant macromolecules can all be viewed in several formats including ball and stick and spacefilling. Extensive Chime resources on the Internet allow chemistry and biochemistry instructors to create their own Web pages or to use some of the many tutorials for students already online. This article describes about twenty Chime-based Web sites in three categories: Chime Resources, Materials for Student and Classroom Use, and Structure Databases. A list of links is provided.

  3. Quantum chemical approach for positron annihilation spectra of atoms and molecules beyond plane-wave approximation

    NASA Astrophysics Data System (ADS)

    Ikabata, Yasuhiro; Aiba, Risa; Iwanade, Toru; Nishizawa, Hiroaki; Wang, Feng; Nakai, Hiromi

    2018-05-01

    We report theoretical calculations of positron-electron annihilation spectra of noble gas atoms and small molecules using the nuclear orbital plus molecular orbital method. Instead of a nuclear wavefunction, the positronic wavefunction is obtained as the solution of the coupled Hartree-Fock or Kohn-Sham equation for a positron and the electrons. The molecular field is included in the positronic Fock operator, which allows an appropriate treatment of the positron-molecule repulsion. The present treatment succeeds in reproducing the Doppler shift, i.e., full width at half maximum (FWHM) of experimentally measured annihilation (γ-ray) spectra for molecules with a mean absolute error less than 10%. The numerical results indicate that the interpretation of the FWHM in terms of a specific molecular orbital is not appropriate.

  4. Chemical correction of pre-mRNA splicing defects associated with sequestration of muscleblind-like 1 protein by expanded r(CAG)-containing transcripts.

    PubMed

    Kumar, Amit; Parkesh, Raman; Sznajder, Lukasz J; Childs-Disney, Jessica L; Sobczak, Krzysztof; Disney, Matthew D

    2012-03-16

    Recently, it was reported that expanded r(CAG) triplet repeats (r(CAG)(exp)) associated with untreatable neurological diseases cause pre-mRNA mis-splicing likely due to sequestration of muscleblind-like 1 (MBNL1) splicing factor. Bioactive small molecules that bind the 5'CAG/3'GAC motif found in r(CAG)(exp) hairpin structure were identified by using RNA binding studies and virtual screening/chemical similarity searching. Specifically, a benzylguanidine-containing small molecule was found to improve pre-mRNA alternative splicing of MBNL1-sensitive exons in cells expressing the toxic r(CAG)(exp). The compound was identified by first studying the binding of RNA 1 × 1 nucleotide internal loops to small molecules known to have affinity for nucleic acids. Those studies identified 4',6-diamidino-2-phenylindole (DAPI) as a specific binder to RNAs with the 5'CAG/3'GAC motif. DAPI was then used as a query molecule in a shape- and chemistry alignment-based virtual screen to identify compounds with improved properties, which identified 4-guanidinophenyl 4-guanidinobenzoate, a small molecule that improves pre-mRNA splicing defects associated with the r(CAG)(exp)-MBNL1 complex. This compound may facilitate the development of therapeutics to treat diseases caused by r(CAG)(exp) and could serve as a useful chemical tool to dissect the mechanisms of r(CAG)(exp) toxicity. The approach used in these studies, defining the small RNA motifs that bind small molecules with known affinity for nucleic acids and then using virtual screening to optimize them for bioactivity, may be generally applicable for designing small molecules that target other RNAs in the human genomic sequence.

  5. A Computational Investigation of Small-Molecule Engagement of Hot Spots at Protein-Protein Interaction Interfaces.

    PubMed

    Xu, David; Si, Yubing; Meroueh, Samy O

    2017-09-25

    The binding affinity of a protein-protein interaction is concentrated at amino acids known as hot spots. It has been suggested that small molecules disrupt protein-protein interactions by either (i) engaging receptor protein hot spots or (ii) mimicking hot spots of the protein ligand. Yet, no systematic studies have been done to explore how effectively existing small-molecule protein-protein interaction inhibitors mimic or engage hot spots at protein interfaces. Here, we employ explicit-solvent molecular dynamics simulations and end-point MM-GBSA free energy calculations to explore this question. We select 36 compounds for which high-quality binding affinity and cocrystal structures are available. Five complexes that belong to three classes of protein-protein interactions (primary, secondary, and tertiary) were considered, namely, BRD4•H4, XIAP•Smac, MDM2•p53, Bcl-xL•Bak, and IL-2•IL-2Rα. Computational alanine scanning using MM-GBSA identified hot-spot residues at the interface of these protein interactions. Decomposition energies compared the interaction of small molecules with individual receptor hot spots to those of the native protein ligand. Pharmacophore analysis was used to investigate how effectively small molecules mimic the position of hot spots of the protein ligand. Finally, we study whether small molecules mimic the effects of the native protein ligand on the receptor dynamics. Our results show that, in general, existing small-molecule inhibitors of protein-protein interactions do not optimally mimic protein-ligand hot spots, nor do they effectively engage protein receptor hot spots. The more effective use of hot spots in future drug design efforts may result in smaller compounds with higher ligand efficiencies that may lead to greater success in clinical trials.

  6. Cancer Theranostic Nanoparticles Self-Assembled from Amphiphilic Small Molecules with Equilibrium Shift-Induced Renal Clearance

    PubMed Central

    Ma, Yuan; Mou, Quanbing; Sun, Mo; Yu, Chunyang; Li, Jianqi; Huang, Xiaohua; Zhu, Xinyuan; Yan, Deyue; Shen, Jian

    2016-01-01

    Nano drug delivery systems have emerged as promising candidates for cancer therapy, whereas their uncertainly complete elimination from the body within specific timescales restricts their clinical translation. Compared with hepatic clearance of nanoparticles, renal excretion of small molecules is preferred to minimize the agent-induced toxicity. Herein, we construct in vivo renal-clearable nanoparticles, which are self-assembled from amphiphilic small molecules holding the capabilities of magnetic resonance imaging (MRI) and chemotherapy. The assembled nanoparticles can accumulate in tumor tissues for their nano-characteristics, while the small molecules dismantled from the nanoparticles can be efficiently cleared by kidneys. The renal-clearable nanoparticles exhibit excellent tumor-inhibition performance as well as low side effects and negligible chronic toxicity. These results demonstrate a potential strategy for small molecular nano drug delivery systems with obvious anticancer effect and low-toxic metabolism pathway for clinical applications. PMID:27446502

  7. Effects of endogenous small molecular compounds on the rheological properties, texture and microstructure of soymilk coagulum: Removal of phytate using ultrafiltration.

    PubMed

    Wang, Ruican; Guo, Shuntang

    2016-11-15

    This study aims to clarify the roles played by endogenous small molecular components in soymilk coagulation process and the properties of gels. Soymilk samples with decreasing levels of small molecules were prepared by ultrafiltration, to reduce the amount of phytate and salts. CaSO4-induced coagulation process was analyzed using rheological methods. Results showed that removal of free small molecules decreased the activation energy of protein coagulation, resulting in accelerated reaction and increased gel strength. However, too fast a reaction led to the drop in storage modulus (G'). Microscopic observation suggested that accelerated coagulation generated a coarse and non-uniform gel network with large pores. This network could not hold much water, leading to serious syneresis. Endogenous small molecules in soymilk were vital in the fine gel structure. Coagulation rate could be controlled by adjusting the amount of small molecules to obtain tofu products with the optimal texture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Isolation of a small molecule with anti-MRSA activity from a mangrove symbiont Streptomyces sp. PVRK-1 and its biomedical studies in Zebrafish embryos

    PubMed Central

    Kannan, Rajaretinam Rajesh; Iniyan, Appadurai Muthamil; Prakash, Vincent Samuel Gnana

    2011-01-01

    Objective The aim of the present study was to isolate the anti-MRSA (Methicillin Resistant Staphylococcus aureus) molecule from the Mangrove symbiont Streptomyces and its biomedical studies in Zebrafish embryos. Methods MRSA was isolated from the pus samples of Colachal hospitals and confirmed by amplification of mecA gene. Anti-MRSA molecule producing strain was identified by 16s rRNA gene sequencing. Anti-MRSA compound production was optimized by Solid State Fermentation (SSF) and the purification of the active molecule was carried out by TLC and RP-HPLC. The inhibitory concentration and LC50 were calculated using Statistical software SPSS. The Biomedical studies including the cardiac assay and organ toxicity assessment were carried out in Zebrafish. Results The bioactive anti-MRSA small molecule A2 was purified by TLC with Rf value of 0.37 with 1.389 retention time at RP-HPLC. The Inhibitory Concentration of the purified molecule A2 was 30 µg/mL but, the inhibitory concentration of the MRSA in the infected embryo was 32-34 µg/mL for TLC purified molecule A2 with LC50 mean value was 61.504 µg/mL. Zebrafish toxicity was assessed in 48-60 µg/mL by observing the physiological deformities and the heart beat rates (HBR) of embryos for anti MRSA molecule showed the mean of 41.33-41.67 HBR/15 seconds for 40 µg/mL and control was 42.33-42.67 for 15 seconds which significantly showed that the anti-MRSA molecule A2 did not affected the HBR. Conclusions Anti-MRSA molecule from Streptomyces sp PVRK-1 was isolated and biomedical studies in Zebrafish model assessed that the molecule was non toxic at the minimal inhibitory concentration of MRSA. PMID:23569790

  9. Induction and reversal of myotonic dystrophy type 1 pre-mRNA splicing defects by small molecules.

    PubMed

    Childs-Disney, Jessica L; Stepniak-Konieczna, Ewa; Tran, Tuan; Yildirim, Ilyas; Park, HaJeung; Chen, Catherine Z; Hoskins, Jason; Southall, Noel; Marugan, Juan J; Patnaik, Samarjit; Zheng, Wei; Austin, Chris P; Schatz, George C; Sobczak, Krzysztof; Thornton, Charles A; Disney, Matthew D

    2013-01-01

    The ability to control pre-mRNA splicing with small molecules could facilitate the development of therapeutics or cell-based circuits that control gene function. Myotonic dystrophy type 1 is caused by the dysregulation of alternative pre-mRNA splicing due to sequestration of muscleblind-like 1 protein (MBNL1) by expanded, non-coding r(CUG) repeats (r(CUG)(exp)). Here we report two small molecules that induce or ameliorate alternative splicing dysregulation. A thiophene-containing small molecule (1) inhibits the interaction of MBNL1 with its natural pre-mRNA substrates. Compound (2), a substituted naphthyridine, binds r(CUG)(exp) and displaces MBNL1. Structural models show that 1 binds MBNL1 in the Zn-finger domain and that 2 interacts with UU loops in r(CUG)(exp). This study provides a structural framework for small molecules that target MBNL1 by mimicking r(CUG)(exp) and shows that targeting MBNL1 causes dysregulation of alternative splicing, suggesting that MBNL1 is thus not a suitable therapeutic target for the treatment of myotonic dystrophy type 1.

  10. Induction and Reversal of Myotonic Dystrophy Type 1 Pre-mRNA Splicing Defects by Small Molecules

    PubMed Central

    Childs-Disney, Jessica L.; Stepniak-Konieczna, Ewa; Tran, Tuan; Yildirim, Ilyas; Park, HaJeung; Chen, Catherine Z.; Hoskins, Jason; Southall, Noel; Marugan, Juan J.; Patnaik, Samarjit; Zheng, Wei; Austin, Chris P.; Schatz, George C.; Sobczak, Krzysztof; Thornton, Charles A.; Disney, Matthew D.

    2013-01-01

    The ability to control pre-mRNA splicing with small molecules could facilitate the development of therapeutics or cell-based circuits that control gene function. Myotonic dystrophy type 1 (DM1) is caused by the dysregulation of alternative pre-mRNA splicing due to sequestration of muscleblind-like 1 protein (MBNL1) by expanded, non-coding r(CUG) repeats (r(CUG)exp). Here we report two small molecules that induce or ameliorate alternative splicing dysregulation. The thiophene-containing small molecule (1) inhibits the interaction of MBNL1 with its natural pre-mRNA substrates. Compound (2), a substituted naphthyridine, binds r(CUG)exp and displaces MBNL1. Structural models show that 1 binds MBNL1 in the Zn-finger domain and that 2 interacts with UU loops in r(CUG)exp. This study provides a structural framework for small molecules that target MBNL1 by mimicking r(CUG)exp and shows that targeting MBNL1 causes dysregulation of alternative splicing, suggesting that MBNL1 is thus not a suitable therapeutic target for the treatment of DM1. PMID:23806903

  11. Selecting, Acquiring, and Using Small Molecule Libraries for High-Throughput Screening

    PubMed Central

    Dandapani, Sivaraman; Rosse, Gerard; Southall, Noel; Salvino, Joseph M.; Thomas, Craig J.

    2015-01-01

    The selection, acquisition and use of high quality small molecule libraries for screening is an essential aspect of drug discovery and chemical biology programs. Screening libraries continue to evolve as researchers gain a greater appreciation of the suitability of small molecules for specific biological targets, processes and environments. The decisions surrounding the make-up of any given small molecule library is informed by a multitude of variables and opinions vary on best-practices. The fitness of any collection relies upon upfront filtering to avoiding problematic compounds, assess appropriate physicochemical properties, install the ideal level of structural uniqueness and determine the desired extent of molecular complexity. These criteria are under constant evaluation and revision as academic and industrial organizations seek out collections that yield ever improving results from their screening portfolios. Practical questions including cost, compound management, screening sophistication and assay objective also play a significant role in the choice of library composition. This overview attempts to offer advice to all organizations engaged in small molecule screening based upon current best practices and theoretical considerations in library selection and acquisition. PMID:26705509

  12. Selecting, Acquiring, and Using Small Molecule Libraries for High-Throughput Screening.

    PubMed

    Dandapani, Sivaraman; Rosse, Gerard; Southall, Noel; Salvino, Joseph M; Thomas, Craig J

    The selection, acquisition and use of high quality small molecule libraries for screening is an essential aspect of drug discovery and chemical biology programs. Screening libraries continue to evolve as researchers gain a greater appreciation of the suitability of small molecules for specific biological targets, processes and environments. The decisions surrounding the make-up of any given small molecule library is informed by a multitude of variables and opinions vary on best-practices. The fitness of any collection relies upon upfront filtering to avoiding problematic compounds, assess appropriate physicochemical properties, install the ideal level of structural uniqueness and determine the desired extent of molecular complexity. These criteria are under constant evaluation and revision as academic and industrial organizations seek out collections that yield ever improving results from their screening portfolios. Practical questions including cost, compound management, screening sophistication and assay objective also play a significant role in the choice of library composition. This overview attempts to offer advice to all organizations engaged in small molecule screening based upon current best practices and theoretical considerations in library selection and acquisition.

  13. Simulation-based cheminformatic analysis of organelle-targeted molecules: lysosomotropic monobasic amines.

    PubMed

    Zhang, Xinyuan; Zheng, Nan; Rosania, Gus R

    2008-09-01

    Cell-based molecular transport simulations are being developed to facilitate exploratory cheminformatic analysis of virtual libraries of small drug-like molecules. For this purpose, mathematical models of single cells are built from equations capturing the transport of small molecules across membranes. In turn, physicochemical properties of small molecules can be used as input to simulate intracellular drug distribution, through time. Here, with mathematical equations and biological parameters adjusted so as to mimic a leukocyte in the blood, simulations were performed to analyze steady state, relative accumulation of small molecules in lysosomes, mitochondria, and cytosol of this target cell, in the presence of a homogenous extracellular drug concentration. Similarly, with equations and parameters set to mimic an intestinal epithelial cell, simulations were also performed to analyze steady state, relative distribution and transcellular permeability in this non-target cell, in the presence of an apical-to-basolateral concentration gradient. With a test set of ninety-nine monobasic amines gathered from the scientific literature, simulation results helped analyze relationships between the chemical diversity of these molecules and their intracellular distributions.

  14. Thermal Degradation of Small Molecules: A Global Metabolomic Investigation.

    PubMed

    Fang, Mingliang; Ivanisevic, Julijana; Benton, H Paul; Johnson, Caroline H; Patti, Gary J; Hoang, Linh T; Uritboonthai, Winnie; Kurczy, Michael E; Siuzdak, Gary

    2015-11-03

    Thermal processes are widely used in small molecule chemical analysis and metabolomics for derivatization, vaporization, chromatography, and ionization, especially in gas chromatography mass spectrometry (GC/MS). In this study the effect of heating was examined on a set of 64 small molecule standards and, separately, on human plasma metabolite extracts. The samples, either derivatized or underivatized, were heated at three different temperatures (60, 100, and 250 °C) at different exposure times (30 s, 60 s, and 300 s). All the samples were analyzed by liquid chromatography coupled to electrospray ionization mass spectrometry (LC/MS) and the data processed by XCMS Online ( xcmsonline.scripps.edu ). The results showed that heating at an elevated temperature of 100 °C had an appreciable effect on both the underivatized and derivatized molecules, and heating at 250 °C created substantial changes in the profile. For example, over 40% of the molecular peaks were altered in the plasma metabolite analysis after heating (250 °C, 300s) with a significant formation of degradation and transformation products. The analysis of 64 small molecule standards validated the temperature-induced changes observed on the plasma metabolites, where most of the small molecules degraded at elevated temperatures even after minimal exposure times (30 s). For example, tri- and diorganophosphates (e.g., adenosine triphosphate and adenosine diphosphate) were readily degraded into a mono-organophosphate (e.g., adenosine monophosphate) during heating. Nucleosides and nucleotides (e.g., inosine and inosine monophosphate) were also found to be transformed into purine derivatives (e.g., hypoxanthine). A newly formed transformation product, oleoyl ethyl amide, was identified in both the underivatized and derivatized forms of the plasma extracts and small molecule standard mixture, and was likely generated from oleic acid. Overall these analyses show that small molecules and metabolites undergo significant time-sensitive alterations when exposed to elevated temperatures, especially those conditions that mimic sample preparation and analysis in GC/MS experiments.

  15. Broadband mid-infrared and THz chemical detection with quantum cascade laser multi-heterodyne spectrometers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Westberg, Jonas; Sterczewski, Lukasz A.; Patrick, Link; Wysocki, Gerard

    2017-05-01

    Majority of chemical species of interest in security and safety applications (e.g. explosives) have complex molecular structures that produce unresolved rotational-vibrational spectroscopic signatures in the mid-infrared. This requires spectroscopic techniques that can provide broadband coverage in the mid-IR region to target broadband absorbers and high resolution to address small molecules that exhibit well-resolved spectral lines. On the other hand, many broadband mid-IR absorbers exhibit well-resolved rotational components in the THz spectral region. Thus, development of spectroscopic sensing technologies that can address both spectral regions is of great importance. Here we demonstrate recent progress towards broadband high-resolution spectroscopic sensing applications with Fabry-Perot quantum cascade lasers (QCLs) and frequency combs using multi-heterodyne spectroscopy (MHS) techniques. In this paper, we will present spectroscopic sensing of large and small molecules in the mid-IR region using QCLs operating at 8.5µm. An example high-resolution, broadband MHS of ammonia (small molecule) and isobutane (broadband absorber) at atmospheric pressure in the 1165-1190 cm^-1 range will be discussed. We have developed a balanced MHS system for mitigation of the laser intensity fluctuations. Absorption spectroscopy as well as dispersion spectroscopy with minimum fractional absorption down to 10^-4/Hz1/2 and fast spectral acquisition capabilities down to 10 µs/spectrum range will be demonstrated. In order to mitigate the shortcomings of the limited chemical selectivity in the mid-IR, THz QCL based spectrometer is currently under development to provide spectral de-congestion and thus significantly improve chemical identification. Preliminary characterization of the performance of THZ QCL combs for the THz QCL-MHS will be presented.

  16. Identification of small molecules capable of regulating conformational changes of telomeric G-quadruplex

    NASA Astrophysics Data System (ADS)

    Chen, Shuo-Bin; Liu, Guo-Cai; Gu, Lian-Quan; Huang, Zhi-Shu; Tan, Jia-Heng

    2018-02-01

    Design of small molecules targeted at human telomeric G-quadruplex DNA is an extremely active research area. Interestingly, the telomeric G-quadruplex is a highly polymorphic structure. Changes in its conformation upon small molecule binding may be a powerful method to achieve a desired biological effect. However, the rational development of small molecules capable of regulating conformational change of telomeric G-quadruplex structures is still challenging. In this study, we developed a reliable ligand-based pharmacophore model based on isaindigotone derivatives with conformational change activity toward telomeric G-quadruplex DNA. Furthermore, virtual screening of database was conducted using this pharmacophore model and benzopyranopyrimidine derivatives in the database were identified as a strong inducer of the telomeric G-quadruplex DNA conformation, transforming it from hybrid-type structure to parallel structure.

  17. Protein Scaffolding for Small Molecule Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, David

    We aim to design hybrid catalysts for energy production and storage that combine the high specificity, affinity, and tunability of proteins with the potent chemical reactivities of small organometallic molecules. The widely used Rosetta and RosettaDesign methodologies will be extended to model novel protein / small molecule catalysts in which one or many small molecule active centers are supported and coordinated by protein scaffolding. The promise of such hybrid molecular systems will be demonstrated with the nickel-phosphine hydrogenase of DuBois et. al.We will enhance the hydrogenase activity of the catalyst by designing protein scaffolds that incorporate proton relays and systematicallymore » modulate the local environment of the catalyticcenter. In collaboration with DuBois and Shaw, the designs will be experimentally synthesized and characterized.« less

  18. SPLINTS: small-molecule protein ligand interface stabilizers.

    PubMed

    Fischer, Eric S; Park, Eunyoung; Eck, Michael J; Thomä, Nicolas H

    2016-04-01

    Regulatory protein-protein interactions are ubiquitous in biology, and small molecule protein-protein interaction inhibitors are an important focus in drug discovery. Remarkably little attention has been given to the opposite strategy-stabilization of protein-protein interactions, despite the fact that several well-known therapeutics act through this mechanism. From a structural perspective, we consider representative examples of small molecules that induce or stabilize the association of protein domains to inhibit, or alter, signaling for nuclear hormone, GTPase, kinase, phosphatase, and ubiquitin ligase pathways. These SPLINTS (small-molecule protein ligand interface stabilizers) drive interactions that are in some cases physiologically relevant, and in others entirely adventitious. The diverse structural mechanisms employed suggest approaches for a broader and systematic search for such compounds in drug discovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Selective small-molecule inhibitors as chemical tools to define the roles of matrix metalloproteinases in disease.

    PubMed

    Meisel, Jayda E; Chang, Mayland

    2017-11-01

    The focus of this article is to highlight novel inhibitors and current examples where the use of selective small-molecule inhibitors has been critical in defining the roles of matrix metalloproteinases (MMPs) in disease. Selective small-molecule inhibitors are surgical chemical tools that can inhibit the targeted enzyme; they are the method of choice to ascertain the roles of MMPs and complement studies with knockout animals. This strategy can identify targets for therapeutic development as exemplified by the use of selective small-molecule MMP inhibitors in diabetic wound healing, spinal cord injury, stroke, traumatic brain injury, cancer metastasis, and viral infection. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Visualization of molecular structures using HoloLens-based augmented reality

    PubMed Central

    Hoffman, MA; Provance, JB

    2017-01-01

    Biological molecules and biologically active small molecules are complex three dimensional structures. Current flat screen monitors are limited in their ability to convey the full three dimensional characteristics of these molecules. Augmented reality devices, including the Microsoft HoloLens, offer an immersive platform to change how we interact with molecular visualizations. We describe a process to incorporate the three dimensional structures of small molecules and complex proteins into the Microsoft HoloLens using aspirin and the human leukocyte antigen (HLA) as examples. Small molecular structures can be introduced into the HoloStudio application, which provides native support for rotating, resizing and performing other interactions with these molecules. Larger molecules can be imported through the Unity gaming development platform and then Microsoft Visual Developer. The processes described here can be modified to import a wide variety of molecular structures into augmented reality systems and improve our comprehension of complex structural features. PMID:28815109

  1. Structures, electronic properties and reaction paths from Fe(CO)5 molecule to small Fe clusters

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Zhao, Zhen

    2018-04-01

    The geometries, electrical characters and reaction paths from Fe(CO)5 molecule to small Fe clusters were investigated by using all-electron density functional theory. The results show that in the decomposition process of pentacarbonyl-iron, Fe(CO)5 molecule prefers to remove a carbon monoxide and adsorb another Fe(CO)5 molecule to produce nonacarbonyldiiron Fe2(CO)9 then Fe2(CO)9 gradually removes carbon monoxide to produce small Fe clusters. As It can be seen from the highest occupied molecule orbital-lowest unoccupied molecule orbital gap curves, the Fe(CO)n=3, and 5 and Fe2(CO)n=3, 7 and 9 intermediates have higher chemical stability than their neighbors. The local magnetic moment of the carbon monoxide is aligning anti-ferromagnetic. The effect of external magnetic field to the initial decomposition products of Fe(CO)5 can be ignored.

  2. Metathesis depolymerizable surfactants

    DOEpatents

    Jamison, Gregory M [Albuquerque, NM; Wheeler, David R [Albuquerque, NM; Loy, Douglas A [Tucson, AZ; Simmons, Blake A [San Francisco, CA; Long, Timothy M [Evanston, IL; McElhanon, James R [Manteca, CA; Rahimian, Kamyar [Albuquerque, NM; Staiger, Chad L [Albuquerque, NM

    2008-04-15

    A class of surfactant molecules whose structure includes regularly spaced unsaturation in the tail group and thus, can be readily decomposed by ring-closing metathesis, and particularly by the action of a transition metal catalyst, to form small molecule products. These small molecules are designed to have increased volatility and/or enhanced solubility as compared to the original surfactant molecule and are thus easily removed by solvent extraction or vacuum extraction at low temperature. By producing easily removable decomposition products, the surfactant molecules become particularly desirable as template structures for preparing meso- and microstructural materials with tailored properties.

  3. Ultraviolet Pretreatment of Titanium Dioxide and Tin-Doped Indium Oxide Surfaces as a Promoter of the Adsorption of Organic Molecules in Dry Deposition Processes: Light Patterning of Organic Nanowires.

    PubMed

    Oulad-Zian, Youssef; Sanchez-Valencia, Juan R; Parra-Barranco, Julian; Hamad, Said; Espinos, Juan P; Barranco, Angel; Ferrer, Javier; Coll, Mariona; Borras, Ana

    2015-08-04

    In this article we present the preactivation of TiO2 and ITO by UV irradiation under ambient conditions as a tool to enhance the incorporation of organic molecules on these oxides by evaporation at low pressures. The deposition of π-stacked molecules on TiO2 and ITO at controlled substrate temperature and in the presence of Ar is thoroughly followed by SEM, UV-vis, XRD, RBS, and photoluminescence spectroscopy, and the effect is exploited for the patterning formation of small-molecule organic nanowires (ONWs). X-ray photoelectron spectroscopy (XPS) in situ experiments and molecular dynamics simulations add critical information to fully elucidate the mechanism behind the increase in the number of adsorption centers for the organic molecules. Finally, the formation of hybrid organic/inorganic semiconductors is also explored as a result of the controlled vacuum sublimation of organic molecules on the open thin film microstructure of mesoporous TiO2.

  4. Interaction between perylene-derivated molecules observed by low temperature scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Vernisse, Loranne; Guillermet, Olivier; Gourdon, André; Coratger, Roland

    2018-03-01

    Derivative perylene molecules deposited on Ag(111) and on NaCl(001) ultrathin layers have been investigated using low temperature STM and NC-AFM. When the metallic substrate is held at ambient temperature during evaporation, the molecules form characteristic trimers on the Ag(111) surface and interact through their polar groups. Close to the steps, the molecules form linear structures and seems to stand side by side. On the other hand, after deposition on a substrate cooled at liquid helium temperature, single molecules are observed both on metal and on NaCl. On the ultrathin insulator layers, the STM images present characteristic contrasts related to the molecular orbitals which favors the localization of aldehyde groups. In this case, the lateral molecular interactions may induce the formation of small assemblies in which the electronic levels are slightly shifted. A possible interpretation of this phenomenon is to take into account polar interactions and charge transfer between neighboring molecules.

  5. Challenges and Opportunities for Small-Molecule Fluorescent Probes in Redox Biology Applications.

    PubMed

    Jiang, Xiqian; Wang, Lingfei; Carroll, Shaina L; Chen, Jianwei; Wang, Meng C; Wang, Jin

    2018-02-16

    The concentrations of reactive oxygen/nitrogen species (ROS/RNS) are critical to various biochemical processes. Small-molecule fluorescent probes have been widely used to detect and/or quantify ROS/RNS in many redox biology studies and serve as an important complementary to protein-based sensors with unique applications. Recent Advances: New sensing reactions have emerged in probe development, allowing more selective and quantitative detection of ROS/RNS, especially in live cells. Improvements have been made in sensing reactions, fluorophores, and bioavailability of probe molecules. In this review, we will not only summarize redox-related small-molecule fluorescent probes but also lay out the challenges of designing probes to help redox biologists independently evaluate the quality of reported small-molecule fluorescent probes, especially in the chemistry literature. We specifically highlight the advantages of reversibility in sensing reactions and its applications in ratiometric probe design for quantitative measurements in living cells. In addition, we compare the advantages and disadvantages of small-molecule probes and protein-based probes. The low physiological relevant concentrations of most ROS/RNS call for new sensing reactions with better selectivity, kinetics, and reversibility; fluorophores with high quantum yield, wide wavelength coverage, and Stokes shifts; and structural design with good aqueous solubility, membrane permeability, low protein interference, and organelle specificity. Antioxid. Redox Signal. 00, 000-000.

  6. Solving the Schrödinger equation of molecules by relaxing the antisymmetry rule: Inter-exchange theory.

    PubMed

    Nakatsuji, Hiroshi; Nakashima, Hiroyuki

    2015-05-21

    The Schrödinger equation (SE) and the antisymmetry principle constitute the governing principle of chemistry. A general method of solving the SE was presented before as the free complement (FC) theory, which gave highly accurate solutions for small atoms and molecules. We assume here to use the FC theory starting from the local valence bond wave function. When this theory is applied to larger molecules, antisymmetrizations of electronic wave functions become time-consuming and therefore, an additional breakthrough is necessary concerning the antisymmetry principle. Usually, in molecular calculations, we first construct the wave function to satisfy the antisymmetry rule, "electronic wave functions must be prescribed to be antisymmetric for all exchanges of electrons, otherwise bosonic interference may disturb the basis of the science." Starting from determinantal wave functions is typical. Here, we give an antisymmetrization theory, called inter-exchange (iExg) theory, by dividing molecular antisymmetrizations to those within atoms and between atoms. For the electrons belonging to distant atoms in a molecule, only partial antisymmetrizations or even no antisymmetrizations are necessary, depending on the distance between the atoms. So, the above antisymmetry rule is not necessarily followed strictly to get the results of a desired accuracy. For this and other reasons, the necessary parts of the antisymmetrization operations become very small as molecules become larger, leading finally to the operation counts of lower orders of N, the number of electrons. This theory creates a natural antisymmetrization method that is useful for large molecules.

  7. Inhibition of HIF-2.alpha. heterodimerization with HIF1.beta. (ARNT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruick, Richard K.; Caldwell, Charles G.; Frantz, Doug E.

    2017-09-12

    Provided is a method of inhibiting heterodimerization of HIF-2.alpha. to HIF1.beta. (ARNT) comprising binding certain small molecules to the HIF-2.alpha. PAS-B domain cavity but not to HIF1.alpha. and inhibiting HIF-2.alpha. heterodimerization to HIF1.beta. (ARNT) but not inhibiting HIF1.alpha. heterodimerization to HIF1.beta. (ARNT). Those certain small molecules are also referenced synonymously as HIF2-HDI and HIF2.alpha. heterodimerization inhibitors and also simply as certain small molecules.

  8. Fullerene-free small molecule organic solar cells with a high open circuit voltage of 1.15 V.

    PubMed

    Ni, Wang; Li, Miaomiao; Kan, Bin; Liu, Feng; Wan, Xiangjian; Zhang, Qian; Zhang, Hongtao; Russell, Thomas P; Chen, Yongsheng

    2016-01-11

    A new small molecule named DTBTF with thiobarbituric acid as a terminal group was designed and synthesized as an acceptor for organic photovoltaic applications. DTBTF exhibits strong absorption in the visible region, and a relatively high lying LUMO energy level (-3.62 eV). All-small-molecule organic solar cells based on DR3TSBDT:DTBTF blend films show a considerable PCE of 3.84% with a high V(oc) of 1.15 V.

  9. Structure-based drug design for G protein-coupled receptors.

    PubMed

    Congreve, Miles; Dias, João M; Marshall, Fiona H

    2014-01-01

    Our understanding of the structural biology of G protein-coupled receptors has undergone a transformation over the past 5 years. New protein-ligand complexes are described almost monthly in high profile journals. Appreciation of how small molecules and natural ligands bind to their receptors has the potential to impact enormously how medicinal chemists approach this major class of receptor targets. An outline of the key topics in this field and some recent examples of structure- and fragment-based drug design are described. A table is presented with example views of each G protein-coupled receptor for which there is a published X-ray structure, including interactions with small molecule antagonists, partial and full agonists. The possible implications of these new data for drug design are discussed. © 2014 Elsevier B.V. All rights reserved.

  10. In silico screening for Plasmodium falciparum enoyl-ACP reductase inhibitors

    NASA Astrophysics Data System (ADS)

    Lindert, Steffen; Tallorin, Lorillee; Nguyen, Quynh G.; Burkart, Michael D.; McCammon, J. Andrew

    2015-01-01

    The need for novel therapeutics against Plasmodium falciparum is urgent due to recent emergence of multi-drug resistant malaria parasites. Since fatty acids are essential for both the liver and blood stages of the malarial parasite, targeting fatty acid biosynthesis is a promising strategy for combatting P. falciparum. We present a combined computational and experimental study to identify novel inhibitors of enoyl-acyl carrier protein reductase ( PfENR) in the fatty acid biosynthesis pathway. A small-molecule database from ChemBridge was docked into three distinct PfENR crystal structures that provide multiple receptor conformations. Two different docking algorithms were used to generate a consensus score in order to rank possible small molecule hits. Our studies led to the identification of five low-micromolar pyrimidine dione inhibitors of PfENR.

  11. Chemical modulation of glycerolipid signaling and metabolic pathways

    PubMed Central

    Scott, Sarah A.; Mathews, Thomas P.; Ivanova, Pavlina T.; Lindsley, Craig W.; Brown, H. Alex

    2014-01-01

    Thirty years ago, glycerolipids captured the attention of biochemical researchers as novel cellular signaling entities. We now recognize that these biomolecules occupy signaling nodes critical to a number of physiological and pathological processes. Thus, glycerolipid-metabolizing enzymes present attractive targets for new therapies. A number of fields—ranging from neuroscience and cancer to diabetes and obesity—have elucidated the signaling properties of glycerolipids. The biochemical literature teems with newly emerging small molecule inhibitors capable of manipulating glycerolipid metabolism and signaling. This ever-expanding pool of chemical modulators appears daunting to those interested in exploiting glycerolipid-signaling pathways in their model system of choice. This review distills the current body of literature surrounding glycerolipid metabolism into a more approachable format, facilitating the application of small molecule inhibitors to novel systems. PMID:24440821

  12. Small molecule non-peptide inhibitors of botulinum neurotoxin serotype E: Structure-activity relationship and a pharmacophore model.

    PubMed

    Kumar, Gyanendra; Agarwal, Rakhi; Swaminathan, Subramanyam

    2016-09-15

    Botulinum neurotoxins (BoNTs) are the most poisonous biological substance known to humans. They cause flaccid paralysis by blocking the release of acetylcholine at the neuromuscular junction. Here, we report a number of small molecule non-peptide inhibitors of BoNT serotype E. The structure-activity relationship and a pharmacophore model are presented. Although non-peptidic in nature, these inhibitors mimic key features of the uncleavable substrate peptide Arg-Ile-Met-Glu (RIME) of the SNAP-25 protein. Among the compounds tested, most of the potent inhibitors bear a zinc-chelating moiety connected to a hydrophobic and aromatic moiety through a carboxyl or amide linker. All of them show low micromolar IC50 values. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Small molecule non-peptide inhibitors of botulinum neurotoxin serotype E: Structure–activity relationship and a pharmacophore model

    DOE PAGES

    Kumar, Gyanendra; Agarwal, Rakhi; Swaminathan, Subramanyam

    2016-06-18

    Botulinum neurotoxins (BoNTs) are the most poisonous biological substance known to humans. They cause flaccid paralysis by blocking the release of acetylcholine at the neuromuscular junction. Here, we report a number of small molecule non-peptide inhibitors of BoNT serotype E. In addition, the structure–activity relationship and a pharmacophore model are presented. Although non-peptidic in nature, these inhibitors mimic key features of the uncleavable substrate peptide Arg-Ile-Met-Glu (RIME) of the SNAP-25 protein. Among the compounds tested, most of the potent inhibitors bear a zinc-chelating moiety connected to a hydrophobic and aromatic moiety through a carboxyl or amide linker. All of themmore » show low micromolar IC 50 values.« less

  14. System in biology leading to cell pathology: stable protein-protein interactions after covalent modifications by small molecules or in transgenic cells.

    PubMed

    Malina, Halina Z

    2011-01-19

    The physiological processes in the cell are regulated by reversible, electrostatic protein-protein interactions. Apoptosis is such a regulated process, which is critically important in tissue homeostasis and development and leads to complete disintegration of the cell. Pathological apoptosis, a process similar to apoptosis, is associated with aging and infection. The current study shows that pathological apoptosis is a process caused by the covalent interactions between the signaling proteins, and a characteristic of this pathological network is the covalent binding of calmodulin to regulatory sequences. Small molecules able to bind covalently to the amino group of lysine, histidine, arginine, or glutamine modify the regulatory sequences of the proteins. The present study analyzed the interaction of calmodulin with the BH3 sequence of Bax, and the calmodulin-binding sequence of myristoylated alanine-rich C-kinase substrate in the presence of xanthurenic acid in primary retinal epithelium cell cultures and murine epithelial fibroblast cell lines transformed with SV40 (wild type [WT], Bid knockout [Bid-/-], and Bax-/-/Bak-/- double knockout [DKO]). Cell death was observed to be associated with the covalent binding of calmodulin, in parallel, to the regulatory sequences of proteins. Xanthurenic acid is known to activate caspase-3 in primary cell cultures, and the results showed that this activation is also observed in WT and Bid-/- cells, but not in DKO cells. However, DKO cells were not protected against death, but high rates of cell death occurred by detachment. The results showed that small molecules modify the basic amino acids in the regulatory sequences of proteins leading to covalent interactions between the modified sequences (e.g., calmodulin to calmodulin-binding sites). The formation of these polymers (aggregates) leads to an unregulated and, consequently, pathological protein network. The results suggest a mechanism for the involvement of small molecules in disease development. In the knockout cells, incorrect interactions between proteins were observed without the protein modification by small molecules, indicating the abnormality of the protein network in the transgenic system. The irreversible protein-protein interactions lead to protein aggregation and cell degeneration, which are observed in all aging-associated diseases.

  15. System in biology leading to cell pathology: stable protein-protein interactions after covalent modifications by small molecules or in transgenic cells

    PubMed Central

    2011-01-01

    Background The physiological processes in the cell are regulated by reversible, electrostatic protein-protein interactions. Apoptosis is such a regulated process, which is critically important in tissue homeostasis and development and leads to complete disintegration of the cell. Pathological apoptosis, a process similar to apoptosis, is associated with aging and infection. The current study shows that pathological apoptosis is a process caused by the covalent interactions between the signaling proteins, and a characteristic of this pathological network is the covalent binding of calmodulin to regulatory sequences. Results Small molecules able to bind covalently to the amino group of lysine, histidine, arginine, or glutamine modify the regulatory sequences of the proteins. The present study analyzed the interaction of calmodulin with the BH3 sequence of Bax, and the calmodulin-binding sequence of myristoylated alanine-rich C-kinase substrate in the presence of xanthurenic acid in primary retinal epithelium cell cultures and murine epithelial fibroblast cell lines transformed with SV40 (wild type [WT], Bid knockout [Bid-/-], and Bax-/-/Bak-/- double knockout [DKO]). Cell death was observed to be associated with the covalent binding of calmodulin, in parallel, to the regulatory sequences of proteins. Xanthurenic acid is known to activate caspase-3 in primary cell cultures, and the results showed that this activation is also observed in WT and Bid-/- cells, but not in DKO cells. However, DKO cells were not protected against death, but high rates of cell death occurred by detachment. Conclusions The results showed that small molecules modify the basic amino acids in the regulatory sequences of proteins leading to covalent interactions between the modified sequences (e.g., calmodulin to calmodulin-binding sites). The formation of these polymers (aggregates) leads to an unregulated and, consequently, pathological protein network. The results suggest a mechanism for the involvement of small molecules in disease development. In the knockout cells, incorrect interactions between proteins were observed without the protein modification by small molecules, indicating the abnormality of the protein network in the transgenic system. The irreversible protein-protein interactions lead to protein aggregation and cell degeneration, which are observed in all aging-associated diseases. PMID:21247434

  16. Observing the conformation of individual SNARE proteins inside live cells

    NASA Astrophysics Data System (ADS)

    Weninger, Keith

    2010-10-01

    Protein conformational dynamics are directly linked to function in many instances. Within living cells, protein dynamics are rarely synchronized so observing ensemble-averaged behaviors can hide details of signaling pathways. Here we present an approach using single molecule fluorescence resonance energy transfer (FRET) to observe the conformation of individual SNARE proteins as they fold to enter the SNARE complex in living cells. Proteins were recombinantly expressed, labeled with small-molecule fluorescent dyes and microinjected for in vivo imaging and tracking using total internal reflection microscopy. Observing single molecules avoids the difficulties of averaging over unsynchronized ensembles. Our approach is easily generalized to a wide variety of proteins in many cellular signaling pathways.

  17. Single-molecule imaging in live bacteria cells.

    PubMed

    Ritchie, Ken; Lill, Yoriko; Sood, Chetan; Lee, Hochan; Zhang, Shunyuan

    2013-02-05

    Bacteria, such as Escherichia coli and Caulobacter crescentus, are the most studied and perhaps best-understood organisms in biology. The advances in understanding of living systems gained from these organisms are immense. Application of single-molecule techniques in bacteria have presented unique difficulties owing to their small size and highly curved form. The aim of this review is to show advances made in single-molecule imaging in bacteria over the past 10 years, and to look to the future where the combination of implementing such high-precision techniques in well-characterized and controllable model systems such as E. coli could lead to a greater understanding of fundamental biological questions inaccessible through classic ensemble methods.

  18. Photoinduced nucleation: a novel tool for detecting molecules in air at ultra-low concentrations

    DOEpatents

    Katz, Joseph L.; Lihavainen, Heikki; Rudek, Markus M.; Salter, Brian C.

    2002-01-01

    A method and apparatus for determining the presence of molecules in a gas at concentrations of less than about 100 ppb. Light having wavelengths in the range from about 200 nm to about 350 nm is used to illuminate a flowing sample of the gas causing the molecules if present to form clusters. A mixture of the illuminated gas and a vapor is cooled until the vapor is supersaturated so that there is a small rate of homogeneous nucleation. The supersaturated vapor condenses on the clusters thus causing the clusters to grow to a size sufficient to be counted by light scattering and then the clusters are counted.

  19. The Formation of N- and O-Heterocycles from the Irradiation of Benzene and Naphthalene in H2O/NH3- Containing Ices

    NASA Technical Reports Server (NTRS)

    Sandford, S. A.; Materese, C. K.; Nuevo, M.

    2015-01-01

    Aromatic hydrocarbons are an important class of molecules for both astrochemistry and astrobiology (Fig. 1). Within this class of molecules, polycyclic aromatic hydrocarbons (PAHs) are known to be ubiquitous in many astrophysical environments, and are likely present in interstellar clouds and protostellar disks. In dense clouds, PAHs are expected to condense onto grains as part of mixed molecular ice mantles dominated by small molecules like H2O,CH3OH, NH3, CO, and CO2. These ices are exposed to ionizing radiation in the form of cosmic rays and ambient high-energy X-ray and UV photons.

  20. Integrated Solvent Design for CO 2 Capture and Viscosity Tuning

    DOE PAGES

    Cantu, David C.; Malhotra, Deepika; Koech, Phillip K.; ...

    2017-08-18

    We present novel design strategies for reduced viscosity single-component, water-lean CO 2 capture organic solvent systems. Through molecular simulation, we identify the main molecular-level descriptor that influences bulk solvent viscosity. Upon loading, a zwitterionic structure forms with a small activation energy of ca 16 kJ/mol and a small stabilization of ca 6 kJ/mol. Viscosity increases exponentially with CO 2 loading due to hydrogen-bonding between neighboring Zwitterions. We find that molecular structures that promote internal hydrogen bonding (within the same molecule) and suppress interactions with neighboring molecules have low viscosities. In addition, tuning the acid/base properties leads to a shift ofmore » the equilibrium toward a non-charged (acid) form that further reduces the viscosity. Here, based on the above structural criteria, a reduced order model is also presented that allows for the quick screening of large compound libraries and down selection of promising candidates for synthesis and testing.« less

  1. A redox-active, compact molecule for cross-linking amyloidogenic peptides into nontoxic, off-pathway aggregates: In vitro and in vivo efficacy and molecular mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derrick, Jeffrey S.; Kerr, Richard A.; Nam, Younwoo

    Chemical reagents targeting and controlling amyloidogenic peptides have received much attention for helping identify their roles in the pathogenesis of protein-misfolding disorders. In this paper, we report a novel strategy for redirecting amyloidogenic peptides into nontoxic, off-pathway aggregates, which utilizes redox properties of a small molecule (DMPD, N,N-dimethyl- p-phenylenediamine) to trigger covalent adduct formation with the peptide. In addition, for the first time, biochemical, biophysical, and molecular dynamics simulation studies have been performed to demonstrate a mechanistic understanding for such an interaction between a small molecule (DMPD) and amyloid-β (Aβ) and its subsequent anti-amyloidogenic activity, which, upon its transformation, generatesmore » ligand–peptide adducts via primary amine-dependent intramolecular cross-linking correlated with structural compaction. Furthermore, in vivo efficacy of DMPD toward amyloid pathology and cognitive impairment was evaluated employing 5xFAD mice of Alzheimer’s disease (AD). Such a small molecule (DMPD) is indicated to noticeably reduce the overall cerebral amyloid load of soluble Aβ forms and amyloid deposits as well as significantly improve cognitive defects in the AD mouse model. Altogether our in vitro and in vivo studies of DMPD toward Aβ with the first molecular-level mechanistic investigations present the feasibility of developing new, innovative approaches that employ redox-active compounds without the structural complexity as next-generation chemical tools for amyloid management.« less

  2. A Redox-Active, Compact Molecule for Cross-Linking Amyloidogenic Peptides into Nontoxic, Off-Pathway Aggregates: In Vitro and In Vivo Efficacy and Molecular Mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derrick, Jeffrey S.; Kerr, Richard A.; Nam, Younwoo

    Chemical reagents targeting and controlling amyloidogenic peptides have received much attention for helping identify their roles in the pathogenesis of protein-misfolding disorders. Herein, we report a novel strategy for redirecting amyloidogenic peptides into nontoxic, off-pathway aggregates, which utilizes redox properties of a small molecule (DMPD, N,N-dimethyl-p-phenylenediamine) to trigger covalent adduct formation with the peptide. In addition, for the first time, biochemical, biophysical, and molecular dynamics simulation studies have been performed to demonstrate a mechanistic understanding for such an interaction between a small molecule (DMPD) and amyloid-β (Aβ) and its subsequent anti-amyloidogenic activity, which, upon its transformation, generates ligand–peptide adducts viamore » primary amine-dependent intramolecular cross-linking correlated with structural compaction. Furthermore, in vivo efficacy of DMPD toward amyloid pathology and cognitive impairment was evaluated employing 5xFAD mice of Alzheimer’s disease (AD). Such a small molecule (DMPD) is indicated to noticeably reduce the overall cerebral amyloid load of soluble Aβ forms and amyloid deposits as well as significantly improve cognitive defects in the AD mouse model. Overall, our in vitro and in vivo studies of DMPD toward Aβ with the first molecular-level mechanistic investigations present the feasibility of developing new, innovative approaches that employ redox-active compounds without the structural complexity as next-generation chemical tools for amyloid management.« less

  3. Protocols for the delivery of small molecules to the two-spotted spider mite, Tetranychus urticae

    PubMed Central

    Nunes, Maria Andreia; Zhurov, Vladimir; Dermauw, Wannes; Osakabe, Masahiro; Van Leeuwen, Thomas; Grbic, Miodrag

    2017-01-01

    The two-spotted spider mite, Tetranychus urticae, is a chelicerate herbivore with an extremely wide host range and an extraordinary ability to develop pesticide resistance. Due to its responsiveness to natural and synthetic xenobiotics, the spider mite is becoming a prime pest herbivore model for studies of the evolution of host range, plant-herbivore interactions and mechanisms of xenobiotic resistance. The spider mite genome has been sequenced and its transcriptional responses to developmental and various biotic and abiotic cues have been documented. However, to identify biological and evolutionary roles of T. urticae genes and proteins, it is necessary to develop methods for the efficient manipulation of mite gene function or protein activity. Here, we describe protocols developed for the delivery of small molecules into spider mites. Starting with mite maintenance and the preparation of the experimental mite populations of developmentally synchronized larvae and adults, we describe 3 methods for delivery of small molecules including artificial diet, leaf coating, and soaking. The presented results define critical steps in these methods and demonstrate that they can successfully deliver tracer dyes into mites. Described protocols provide guidelines for high-throughput setups for delivery of experimental compounds that could be used in reverse genetics platforms to modulate gene expression or protein activity, or for screens focused on discovery of new molecules for mite control. In addition, described protocols could be adapted for other Tetranychidae and related species of economic importance such as Varroa, dust and poultry mites. PMID:28686745

  4. A redox-active, compact molecule for cross-linking amyloidogenic peptides into nontoxic, off-pathway aggregates: In vitro and in vivo efficacy and molecular mechanisms

    DOE PAGES

    Derrick, Jeffrey S.; Kerr, Richard A.; Nam, Younwoo; ...

    2015-11-17

    Chemical reagents targeting and controlling amyloidogenic peptides have received much attention for helping identify their roles in the pathogenesis of protein-misfolding disorders. In this paper, we report a novel strategy for redirecting amyloidogenic peptides into nontoxic, off-pathway aggregates, which utilizes redox properties of a small molecule (DMPD, N,N-dimethyl- p-phenylenediamine) to trigger covalent adduct formation with the peptide. In addition, for the first time, biochemical, biophysical, and molecular dynamics simulation studies have been performed to demonstrate a mechanistic understanding for such an interaction between a small molecule (DMPD) and amyloid-β (Aβ) and its subsequent anti-amyloidogenic activity, which, upon its transformation, generatesmore » ligand–peptide adducts via primary amine-dependent intramolecular cross-linking correlated with structural compaction. Furthermore, in vivo efficacy of DMPD toward amyloid pathology and cognitive impairment was evaluated employing 5xFAD mice of Alzheimer’s disease (AD). Such a small molecule (DMPD) is indicated to noticeably reduce the overall cerebral amyloid load of soluble Aβ forms and amyloid deposits as well as significantly improve cognitive defects in the AD mouse model. Altogether our in vitro and in vivo studies of DMPD toward Aβ with the first molecular-level mechanistic investigations present the feasibility of developing new, innovative approaches that employ redox-active compounds without the structural complexity as next-generation chemical tools for amyloid management.« less

  5. Covalent modification of a ten-residue cationic antimicrobial peptide with levofloxacin

    NASA Astrophysics Data System (ADS)

    Rodriguez, Carlos; Papanastasiou, Emilios; Juba, Melanie; Bishop, Barney

    2014-09-01

    The rampant spread of antibiotic resistant bacteria has spurred interest in alternative strategies for developing next-generation antibacterial therapies. As such, there has been growing interest in cationic antimicrobial peptides (CAMPs) and their therapeutic applications. Modification of CAMPs via conjugation to auxiliary compounds, including small molecule drugs, is a new approach to developing effective, broad-spectrum antibacterial agents with novel physicochemical properties and versatile antibacterial mechanisms. Here, we’ve explored design parameters for engineering CAMPs conjugated to small molecules with favorable physicochemical and antibacterial properties by covalently affixing a fluoroquinolone antibiotic, levofloxacin, to the ten-residue CAMP Pep-4. Relative to the unmodified Pep-4, the conjugate was found to demonstrate substantially increased antibacterial potency under high salt concentrations. Historically, it has been observed that most CAMPs lose antibacterial effectiveness in such high ionic strength environments, a fact that has presented a challenge to their development as therapeutics. Physicochemical studies revealed that P4LC was more hydrophobic than Pep-4, while mechanistic findings indicated that the conjugate was more effective at disrupting bacterial membrane integrity. Although the inherent antibacterial effect of the incorporated levofloxacin molecules did not appear to be substantially realized in this conjugate, these findings nevertheless suggest that covalent attachment of small molecule antibiotics with favorable physicochemical properties to CAMPs could be a promising strategy for enhancing peptide performance and overall therapeutic potential. These results have broader applicability to the development of future CAMP-antibiotic conjugates for potential therapeutic applications.

  6. A size selective porous silicon grating-coupled Bloch surface and sub-surface wave biosensor.

    PubMed

    Rodriguez, Gilberto A; Ryckman, Judson D; Jiao, Yang; Weiss, Sharon M

    2014-03-15

    A porous silicon (PSi) grating-coupled Bloch surface and sub-surface wave (BSW/BSSW) biosensor is demonstrated to size selectively detect the presence of both large and small molecules. The BSW is used to sense large immobilized analytes at the surface of the structure while the BSSW that is confined inside but near the top of the structure is used to sensitively detect small molecules. Functionality of the BSW and BSSW modes is theoretically described by dispersion relations, field confinements, and simulated refractive index shifts within the structure. The theoretical results are experimentally verified by detecting two different small chemical molecules and one large 40 base DNA oligonucleotide. The PSi-BSW/BSSW structure is benchmarked against current porous silicon technology and is shown to have a 6-fold higher sensitivity in detecting large molecules and a 33% improvement in detecting small molecules. This is the first report of a grating-coupled BSW biosensor and the first report of a BSSW propagating mode. © 2013 Published by Elsevier B.V.

  7. [Innovative application of small molecules to influence -pathogenicity of dental plaque].

    PubMed

    Janus, M M; Volgenant, C M C; Krom, B P

    2018-05-01

    Current preventive measures against infectious oral diseases are mainly focussed on plaque removal and promoting a healthy lifestyle. This in vitro study investigated a third preventive method: maintaining healthy dental plaque with the use of small molecules. As a model of dental plaque, in vitro biofilms were cultivated under conditions that induce pathogenic characteristics. The effect of erythritol and other small molecules on the pathogenic characteristics and bacterial composition of the biofilm was evaluated. The artificial sweetener erythritol and the molecule 3-Oxo-N-(2-oxycyclohexyl)dodecanamide (3-Oxo-N) had no clinically relevant effect on total biofilm formation. Erythritol did, however, lower the gingivitis related protease activity of the biofilm, while 3-Oxo-N blocked the caries related lactic acid accumulation. Furthermore, both substances ensured the biofilm maintained a young, non-pathogenic microbial composition. This shows it is possible to influence the dental plaque in a positive manner in vitro with the help of small molecules. Further research is necessary before this manipulation of dental plaque can be applied.

  8. Demonstration of sub-femtomole sensitivity for small molecules with microsphere ring resonator sensors

    NASA Astrophysics Data System (ADS)

    White, Ian M.; Oveys, Hesam; Fan, Xudong

    2006-02-01

    Optical microsphere resonators can function as highly sensitive bio/chemical sensors due to the large Q-factor, which leads to high light-matter interaction. The whispering gallery modes (WGM) arise at the surface of the microsphere, creating a highly enhanced optical field that interacts with matter on or near the microsphere surface. As a result, the spectral position of the WGM is extremely sensitive to refractive index changes near the surface, such as when bio/chemical molecules bind to the sphere. We show the potential feasibility of a microsphere ring resonator as a sensor for small molecules by demonstrating detection of sub-femtomole changes in SiO II molecules at the surface of the microsphere. In this experiment, the silica molecules act as an excellent model for small molecule analytes because of their 60 Dalton molecular weight, and because we know nearly the exact quantity of molecules at the surface, which enables a sensitivity characterization. We measure the spectral shifts in the WGMs when low concentrations of hydrofluoric acid (HF) are added to a solution that is being probed by the microsphere. As the HF molecules break apart the SiO II molecules at the sphere surface, the WGMs shift due to the sub-nano-scale decrease in the size of the microsphere. These calculations show that the sensitivity of this microsphere resonator is on the order of 500 attomoles. Our results will lead to the utilization of optical microspheres for detection of trace quantities of small molecules for such applications as drug discovery, environmental monitoring, and enzyme detection using peptide cleavage.

  9. Inhibition of SIRT1 by a small molecule induces apoptosis in breast cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalle, Arunasree M., E-mail: arunasreemk@ilsresearch.org; Mallika, A.; Badiger, Jayasree

    2010-10-08

    Research highlights: {yields} Novel small molecule SIRT1 inhibitor better than sirtinol. {yields} IC{sub 50} 500 nM. {yields} Specific tumor cytotoxicity towards breast cancer cells. {yields} Restoration of H3K9 acetylation levels to baseline when co-treated with SIRT1 activator (Activator X) and inhibitor (ILS-JGB-1741). -- Abstract: Overexpression of SIRT1, a NAD{sup +}-dependent class III histone deacetylases (HDACs), is implicated in many cancers and therefore could become a promising antitumor target. Here we demonstrate a small molecule SIRT1 inhibitor, ILS-JGB-1741(JGB1741) with potent inhibitory effects on the proliferation of human metastatic breast cancer cells, MDA-MB 231. The molecule has been designed using medicinal chemistrymore » approach based on known SIRT1 inhibitor, sirtinol. The molecule showed a significant inhibition of SIRT1 activity compared to sirtinol. Studies on the antitumor effects of JGB on three different cancer cell lines, K562, HepG2 and MDA-MB 231 showed an IC{sub 50} of 1, 10 and 0.5 {mu}M, respectively. Further studies on MDA-MB 231 cells showed a dose-dependent increase in K9 and K382 acetylation of H3 and p53, respectively. Results also demonstrated that JGB1741-induced apoptosis is associated with increase in cytochrome c release, modulation in Bax/Bcl2 ratio and cleavage of PARP. Flowcytometric analysis showed increased percentage of apoptotic cells, decrease in mitochondrial membrane potential and increase in multicaspase activation. In conclusion, the present study indicates the potent apoptotic effects of JGB1741 in MDA-MB 231 cells.« less

  10. Neurotrophin receptor agonists and antagonists as therapeutic agents: An evolving paradigm.

    PubMed

    Josephy-Hernandez, Sylvia; Jmaeff, Sean; Pirvulescu, Iulia; Aboulkassim, Tahar; Saragovi, H Uri

    2017-01-01

    Neurodegenerative disorders are prevalent, complex and devastating conditions, with very limited treatment options currently available. While they manifest in many forms, there are commonalities that link them together. In this review, we will focus on neurotrophins - a family of related factors involved in neuronal development and maintenance. Neurodegenerative diseases often present with a neurotrophin imbalance, in which there may be decreases in trophic signaling through Trk receptors for example, and/or increases in pro-apoptotic activity through p75. Clinical trials with neurotrophins have continuously failed due to their poor pharmacological properties as well as the unavoidable activation of p75. Thus, there is a need for drugs without such setbacks. Small molecule neurotrophin mimetics are favorable options since they can selectively activate Trks or inactivate p75. In this review, we will initially present a brief outline of how these molecules are synthesized and their mechanisms of action; followed by an update in the current state of neurotrophins and small molecules in major neurodegenerative diseases. Although there has been significant progress in the development of potential therapeutics, more studies are needed to establish clear mechanisms of action and target specificity in order to transition from animal models to the assessment of safety and use in humans. Copyright © 2016. Published by Elsevier Inc.

  11. Considerations for the nonclinical safety evaluation of antibody drug conjugates for oncology.

    PubMed

    Roberts, Stanley A; Andrews, Paul A; Blanset, Diann; Flagella, Kelly M; Gorovits, Boris; Lynch, Carmel M; Martin, Pauline L; Kramer-Stickland, Kimberly; Thibault, Stephane; Warner, Garvin

    2013-12-01

    Antibody drug conjugates (ADCs) include monoclonal antibodies that are linked to cytotoxic small molecules. A number of these agents are currently being developed as anti-cancer agents designed to improve the therapeutic index of the cytotoxin (i.e., cytotoxic small molecule or cytotoxic agent) by specifically delivering it to tumor cells. This paper presents primary considerations for the nonclinical safety evaluation of ADCs and includes strategies for the evaluation of the entire ADC or the various individual components (i.e., antibody, linker or the cytotoxin). Considerations are presented on how to design a nonclinical safety assessment program to identify the on- and off-target toxicities to enable first-in-human (FIH) studies. Specific discussions are also included that provide details as to the need and how to conduct the studies for evaluating ADCs in genetic toxicology, tissue cross-reactivity, safety pharmacology, carcinogenicity, developmental and reproductive toxicology, biotransformation, toxicokinetic monitoring, bioanalytical assays, immunogenicity testing, test article stability and the selection of the FIH dose. Given the complexity of these molecules and our evolving understanding of their properties, there is no single all-encompassing nonclinical strategy. Instead, each ADC should be evaluated on a case-by-case scientifically-based approach that is consistent with ICH and animal research guidelines. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Development of a surface-enhanced Raman technique for biomarker studies on Mars.

    PubMed

    Dunn, Darrell S; Sridhar, Narasi; Miller, Michael A; Price, Kendra T; Pabalan, Roberto; Abrajano, Teofilo A

    2007-01-01

    Raman spectroscopy has been identified as a potentially useful tool to collect evidence of past or present life on extraterrestrial bodies. However, it is limited by its inherently low signal strength. In this investigation, laboratory tests were conducted using surface-enhanced Raman spectroscopy (SERS) in an "inverted" mode to detect the presence of organic compounds that may be similar to possible biomarkers present on Mars. SERS was used to overcome the inherently low signal intensity of Raman spectroscopy and was an effective method for detecting small concentrations of organic compounds on a number of surfaces. For small organic molecules, dissolution of the molecule to be analyzed in a suitable solvent and depositing it on a prepared SERS substrate for analysis is possible. However, for larger molecules, an "inverted" SERS (iSERS) technique was shown to be effective. In iSERS, nanoparticles of silver or gold were deposited on the mineral substrate/organic compound to be analyzed. Benzotriazole, benzoic acid, and phthalic acid were used as test organic analogs and the iSERS technique was able to detect femtomole levels of the analytes. The interference from various mineral substrates was also examined. Different methods of depositing silver particles were evaluated, including ion beam-assisted vapor deposition and deposition from aqueous colloidal suspensions.

  13. On the chemical enhancement in SERS

    NASA Astrophysics Data System (ADS)

    Jensen, Lasse

    2012-12-01

    In Surface-enhanced Raman scattering (SERS), the Raman signal of a molecule adsorbed on a metal surface is enhanced by many orders of magnitude. This provides a "finger-print" of molecules which can be used in ultrasensitive sensing devises. Here we present a time-dependent density functional theory (TDDFT) study of the molecule-surface chemical coupling in SERS. A systematic study of the chemical enhancement (CHEM) of meta-and para-substituted pyridines interacting with a small silver cluster (Ag20) is presented. We find that the magnitude of chemical enhancement is governed to a large extent by the energy difference between the highest occupied energy level (HOMO) of the metal and the lowest unoccupied energy level (LUMO) of the molecule. A two-state approximation shows that the enhancement scales roughly as (ωX/ω¯e)4, where accent="true">ω¯e is an average excitation energy between the HOMO of the metal and the LUMO of the molecule and wX the HOMO-LUMO gap of the free molecule. Furthermore, we demonstrate that it is possible to control the CHEM enhancement by switching a dithienylethene photoswitch from its closed form to its open form. The open form of the photoswitch is found to be the strongest Raman scatterer when adsorbed on the surface whereas the opposite is found for the free molecule. This trend is explained using the simple two-state approximation.

  14. Small Molecule Targeted Recruitment of a Nuclease to RNA.

    PubMed

    Costales, Matthew G; Matsumoto, Yasumasa; Velagapudi, Sai Pradeep; Disney, Matthew D

    2018-06-06

    The choreography between RNA synthesis and degradation is a key determinant in biology. Engineered systems such as CRISPR have been developed to rid a cell of RNAs. Here, we show that a small molecule can recruit a nuclease to a specific transcript, triggering its destruction. A small molecule that selectively binds the oncogenic microRNA(miR)-96 hairpin precursor was appended with a short 2'-5' poly(A) oligonucleotide. The conjugate locally activated endogenous, latent ribonuclease (RNase L), which selectively cleaved the miR-96 precursor in cancer cells in a catalytic and sub-stoichiometric fashion. Silencing miR-96 derepressed pro-apoptotic FOXO1 transcription factor, triggering apoptosis in breast cancer, but not healthy breast, cells. These results demonstrate that small molecules can be programmed to selectively cleave RNA via nuclease recruitment and has broad implications.

  15. Small-molecule control of protein function through Staudinger reduction

    NASA Astrophysics Data System (ADS)

    Luo, Ji; Liu, Qingyang; Morihiro, Kunihiko; Deiters, Alexander

    2016-11-01

    Using small molecules to control the function of proteins in live cells with complete specificity is highly desirable, but challenging. Here we report a small-molecule switch that can be used to control protein activity. The approach uses a phosphine-mediated Staudinger reduction to activate protein function. Genetic encoding of an ortho-azidobenzyloxycarbonyl amino acid using a pyrrolysyl transfer RNA synthetase/tRNACUA pair in mammalian cells enables the site-specific introduction of a small-molecule-removable protecting group into the protein of interest. Strategic placement of this group renders the protein inactive until deprotection through a bioorthogonal Staudinger reduction delivers the active wild-type protein. This developed methodology was applied to the conditional control of several cellular processes, including bioluminescence (luciferase), fluorescence (enhanced green fluorescent protein), protein translocation (nuclear localization sequence), DNA recombination (Cre) and gene editing (Cas9).

  16. RISC-Target Interaction: Cleavage and Translational Suppression

    PubMed Central

    van den Berg, Arjen; Mols, Johann; Han, Jiahuai

    2008-01-01

    Summary Small RNA molecules have been known and utilized to suppress gene expression for more than a decade. The discovery that these small RNA molecules are endogenously expressed in many organisms and have a critical role in controlling gene expression have led to the arising of a whole new field of research. Termed small interfering RNA (siRNA) or microRNA (miRNA) these ~22 nt RNA molecules have the capability to suppress gene expression through various mechanisms once they are incorporated in the multi-protein RNA-Induced Silencing Complex (RISC) and interact with their target mRNA. This review introduces siRNAs and microRNAs in a historical perspective and focuses on the key molecules in RISC, structural properties and mechanisms underlying the process of small RNA regulated post-transcriptional suppression of gene expression. PMID:18692607

  17. Biased and unbiased strategies to identify biologically active small molecules.

    PubMed

    Abet, Valentina; Mariani, Angelica; Truscott, Fiona R; Britton, Sébastien; Rodriguez, Raphaël

    2014-08-15

    Small molecules are central players in chemical biology studies. They promote the perturbation of cellular processes underlying diseases and enable the identification of biological targets that can be validated for therapeutic intervention. Small molecules have been shown to accurately tune a single function of pluripotent proteins in a reversible manner with exceptional temporal resolution. The identification of molecular probes and drugs remains a worthy challenge that can be addressed by the use of biased and unbiased strategies. Hypothesis-driven methodologies employs a known biological target to synthesize complementary hits while discovery-driven strategies offer the additional means of identifying previously unanticipated biological targets. This review article provides a general overview of recent synthetic frameworks that gave rise to an impressive arsenal of biologically active small molecules with unprecedented cellular mechanisms. Copyright © 2014. Published by Elsevier Ltd.

  18. Synthetic Small Molecule Inhibitors of Hh Signaling As Anti-Cancer Chemotherapeutics

    PubMed Central

    Maschinot, C.A.; Pace, J.R.; Hadden, M.K.

    2016-01-01

    The hedgehog (Hh) pathway is a developmental signaling pathway that is essential to the proper embryonic development of many vertebrate systems. Dysregulation of Hh signaling has been implicated as a causative factor in the development and progression of several forms of human cancer. As such, the development of small molecule inhibitors of Hh signaling as potential anti-cancer chemotherapeutics has been a major area of research interest in both academics and industry over the past ten years. Through these efforts, synthetic small molecules that target multiple components of the Hh pathway have been identified and advanced to preclinical or clinical development. The goal of this review is to provide an update on the current status of several synthetic small molecule Hh pathway inhibitors and explore the potential of several recently disclosed inhibitory scaffolds. PMID:26310919

  19. [Imaging Mass Spectrometry in Histopathologic Analysis].

    PubMed

    Yamazaki, Fumiyoshi; Seto, Mitsutoshi

    2015-04-01

    Matrix-assisted laser desorption/ionization (MALDI)-imaging mass spectrometry (IMS) enables visualization of the distribution of a range of biomolecules by integrating biochemical information from mass spectrometry with positional information from microscopy. IMS identifies a target molecule. In addition, IMS enables global analysis of biomolecules containing unknown molecules by detecting the ratio of the molecular weight to electric charge without any target, which makes it possible to identify novel molecules. IMS generates data on the distribution of lipids and small molecules in tissues, which is difficult to visualize with either conventional counter-staining or immunohistochemistry. In this review, we firstly introduce the principle of imaging mass spectrometry and recent advances in the sample preparation method. Secondly, we present findings regarding biological samples, especially pathological ones. Finally, we discuss the limitations and problems of the IMS technique and clinical application, such as in drug development.

  20. New Small Molecule Agonists to the Thyrotropin Receptor

    PubMed Central

    Ali, M. Rejwan; Ma, Risheng; David, Martine; Morshed, Syed A.; Ohlmeyer, Michael; Felsenfeld, Dan P.; Lau, Zerlina; Mezei, Mihaly; Davies, Terry F.

    2015-01-01

    Background Novel small molecular ligands (SMLs) to the thyrotropin receptor (TSHR) have potential as improved molecular probes and as therapeutic agents for the treatment of thyroid dysfunction and thyroid cancer. Methods To identify novel SMLs to the TSHR, we developed a transcription-based luciferase-cAMP high-throughput screening system and we screened 48,224 compounds from a 100K library in duplicate. Results We obtained 62 hits using the cut-off criteria of the mean±three standard deviations above the baseline. Twenty molecules with the greatest activity were rescreened against the parent CHO-luciferase cell for nonspecific activation, and we selected two molecules (MS437 and MS438) with the highest potency for further study. These lead molecules demonstrated no detectible cross-reactivity with homologous receptors when tested against luteinizing hormone (LH)/human chorionic gonadotropin receptor and follicle stimulating hormone receptor–expressing cells. Molecule MS437 had a TSHR-stimulating potency with an EC50 of 13×10−8 M, and molecule MS438 had an EC50 of 5.3×10−8 M. The ability of these small molecule agonists to bind to the transmembrane domain of the receptor and initiate signal transduction was suggested by their activation of a chimeric receptor consisting of an LHR ectodomain and a TSHR transmembrane. Molecular modeling demonstrated that these molecules bound to residues S505 and E506 for MS438 and T501 for MS437 in the intrahelical region of transmembrane helix 3. We also examined the G protein activating ability of these molecules using CHO cells co-expressing TSHRs transfected with luciferase reporter vectors in order to measure Gsα, Gβγ, Gαq, and Gα12 activation quantitatively. The MS437 and MS438 molecules showed potent activation of Gsα, Gαq, and Gα12 similar to TSH, but neither the small molecule agonists nor TSH showed activation of the Gβγ pathway. The small molecules MS437 and MS438 also showed upregulation of thyroglobulin (Tg), sodium iodine symporter (NIS), and TSHR gene expression. Conclusions Pharmacokinetic analysis of MS437 and MS438 indicated their pharmacotherapeutic potential, and their intraperitoneal administration to normal female mice resulted in significantly increased serum thyroxine levels, which could be maintained by repeated treatments. These molecules can therefore serve as lead molecules for further development of powerful TSH agonists. PMID:25333622

  1. Targeting RNA in mammalian systems with small molecules.

    PubMed

    Donlic, Anita; Hargrove, Amanda E

    2018-05-03

    The recognition of RNA functions beyond canonical protein synthesis has challenged the central dogma of molecular biology. Indeed, RNA is now known to directly regulate many important cellular processes, including transcription, splicing, translation, and epigenetic modifications. The misregulation of these processes in disease has led to an appreciation of RNA as a therapeutic target. This potential was first recognized in bacteria and viruses, but discoveries of new RNA classes following the sequencing of the human genome have invigorated exploration of its disease-related functions in mammals. As stable structure formation is evolving as a hallmark of mammalian RNAs, the prospect of utilizing small molecules to specifically probe the function of RNA structural domains and their interactions is gaining increased recognition. To date, researchers have discovered bioactive small molecules that modulate phenotypes by binding to expanded repeats, microRNAs, G-quadruplex structures, and RNA splice sites in neurological disorders, cancers, and other diseases. The lessons learned from achieving these successes both call for additional studies and encourage exploration of the plethora of mammalian RNAs whose precise mechanisms of action remain to be elucidated. Efforts toward understanding fundamental principles of small molecule-RNA recognition combined with advances in methodology development should pave the way toward targeting emerging RNA classes such as long noncoding RNAs. Together, these endeavors can unlock the full potential of small molecule-based probing of RNA-regulated processes and enable us to discover new biology and underexplored avenues for therapeutic intervention in human disease. This article is categorized under: RNA Methods > RNA Analyses In Vitro and In Silico RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions RNA in Disease and Development > RNA in Disease. © 2018 Wiley Periodicals, Inc.

  2. Draft Genome Sequence of the Dimorphic Yeast Yarrowia lipolytica Strain W29

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pomraning, Kyle R.; Baker, Scott E.

    Here, we present the draft genome sequence of the dimorphic ascomycete yeastYarrowia lipolyticastrain W29 (ATCC 20460).Y. lipolyticais a commonly employed model for the industrial production of lipases, small molecules, and more recently for its ability to accumulate lipids.

  3. Improving Photoconductance of Fluorinated Donors with Fluorinated Acceptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garner, Logan E.; Larson, Bryon; Oosterhout, Stefan

    2016-11-21

    This work investigates the influence of fluorination of both donor and acceptor materials on the generation of free charge carriers in small molecule donor/fullerene acceptor BHJ OPV active layers. A fluorinated and non-fluorinated small molecule analogue were synthesized and their optoelectronic properties characterized. The intrinsic photoconductance of blends of these small molecule donors was investigated using time-resolved microwave conductivity. Blends of the two donor molecules with a traditional non-fluorinated fullerene (PC70BM) as well as a fluorinated fullerene (C60(CF3)2-1) were investigated using 5% and 50% fullerene loading. We demonstrate for the first time that photoconductance in a 50:50 donor:acceptor BHJ blendmore » using a fluorinated fullerene can actually be improved relative to a traditional non-fluorinated fullerene by fluorinating the donor molecule as well.« less

  4. Small-molecule inhibitors of toxT expression in Vibrio cholerae.

    PubMed

    Anthouard, Rebecca; DiRita, Victor J

    2013-08-06

    Vibrio cholerae, a Gram-negative bacterium, infects humans and causes cholera, a severe disease characterized by vomiting and diarrhea. These symptoms are primarily caused by cholera toxin (CT), whose production by V. cholerae is tightly regulated by the virulence cascade. In this study, we designed and carried out a high-throughput chemical genetic screen to identify inhibitors of the virulence cascade. We identified three compounds, which we named toxtazin A and toxtazin B and B', representing two novel classes of toxT transcription inhibitors. All three compounds reduce production of both CT and the toxin-coregulated pilus (TCP), an important colonization factor. We present evidence that toxtazin A works at the level of the toxT promoter and that toxtazins B and B' work at the level of the tcpP promoter. Treatment with toxtazin B results in a 100-fold reduction in colonization in an infant mouse model of infection, though toxtazin A did not reduce colonization at the concentrations tested. These results add to the growing body of literature indicating that small-molecule inhibitors of virulence genes could be developed to treat infections, as alternatives to antibiotics become increasingly needed. V. cholerae caused more than 580,000 infections worldwide in 2011 alone (WHO, Wkly. Epidemiol. Rec. 87:289-304, 2012). Cholera is treated with an oral rehydration therapy consisting of water, glucose, and electrolytes. However, as V. cholerae is transmitted via contaminated water, treatment can be difficult for communities whose water source is contaminated. In this study, we address the need for new therapeutic approaches by targeting the production of the main virulence factor, cholera toxin (CT). The high-throughput screen presented here led to the identification of two novel classes of inhibitors of the virulence cascade in V. cholerae, toxtazin A and toxtazins B and B'. We demonstrate that (i) small-molecule inhibitors of virulence gene production can be identified in a high-throughput screen, (ii) targeting virulence gene production is an effective therapeutic strategy, and (iii) small-molecule inhibitors can uncover unknown layers of gene regulation, even in well-studied regulatory cascades.

  5. Toward an alternative hardness kernel matrix structure in the Electronegativity Equalization Method (EEM).

    PubMed

    Chaves, J; Barroso, J M; Bultinck, P; Carbó-Dorca, R

    2006-01-01

    This study presents an alternative of the Electronegativity Equalization Method (EEM), where the usual Coulomb kernel has been transformed into a smooth function. The new framework, as the classical EEM, permits fast calculations of atomic charges in a given molecule for a small computational cost. The original EEM procedure needs to previously calibrate the different implied atomic hardness and electronegativity, using a chosen set of molecules. In the new EEM algorithm half the number of parameters needs to be calibrated, since a relationship between electronegativities and hardnesses has been found.

  6. Method for digesting a nitro-bearing explosive compound

    DOEpatents

    Shah, Manish M.

    2000-01-01

    The present invention is a process wherein superoxide radicals from superoxide salt are used to break down the explosive compounds. The process has an excellent reaction rate for degrading explosives, and operates at ambient temperature and atmospheric pressure in aqueous or non-aqueous conditions. Because the superoxide molecules are small, much smaller than an enzyme molecule for example, they can penetrate the microstructure of plastic explosives faster. The superoxide salt generates reactive hydroxyl radicals, which can destroy other organic contaminants, if necessary, along with digesting the explosive nitro-bearing compound.

  7. Summary of the EMA Joint Regulators/Industry QbD workshop (London, UK; 28-29 January 2014).

    PubMed

    Cook, Graham; France, Georges; Holte, Øyvind; Lorenti, Giampiero; Tainsh, David

    2016-01-01

    This paper summarizes the discussions and insights gained from the key themes that emerged during the Quality by Design (QbD) Workshop held at the European Medicines Agency (EMA) offices in London, UK, on 28-29 January 2014. Industry and regulators shared practical experiences from six case studies (five approved small molecule products and one phase 3 biotechnological product) based on QbD submissions by five companies (AstraZeneca, GlaxoSmithKline, Novartis, NovoNordisk, and Pfizer).The case studies covered a range of different development, regulatory submission, and post-approval aspects of QbD and were developed through confidential discussions between the company representatives and regulators. Key themes that emerged from the workshop discussions were: 1. presentation of information in submissions (development story and the presentation of information in marketing authorization applications; risk assessment and criticality); 2. development aspects (design space; use of models; control strategy); and 3. post-approval aspects (lifecycle management; dossier-quality system interactions; handling of deviations). Many aspects of QbD for biotechnological products are similar to small molecules, but there are some important differences highlighted in this paper.The final section of the paper discusses some proposals for future developments to address the issues that were identified. This paper summarizes the discussions and insights gained from the key themes that emerged during the Quality by Design (QbD) Workshop held at the European Medicines Agency offices in London, UK, on 28-29 January 2014. Industry and regulators shared practical experiences from six case studies (five approved small-molecule products and one phase 3 biotechnological product) based on QbD submissions by five companies (AstraZeneca, GlaxoSmithKline, Novartis, NovoNordisk, and Pfizer).The case studies covered a range of different development, regulatory submission, and post-approval aspects of QbD and were developed through confidential discussions between the company representatives and regulators. Key themes that emerged from the workshop discussions were: 1. presentation of information in submissions (development story and the presentation of information in marketing authorization applications; risk assessment and criticality); 2. development aspects (design space; use of models; control strategy); and 3. post-approval aspects (lifecycle management; dossier-quality system interactions; handling of deviations). Many aspects of QbD for biotechnological products are similar to small molecules, but there are some important differences highlighted in this paper.The final section of the paper discusses some proposals for future developments to address the issues that were identified. © PDA, Inc. 2016.

  8. Angular correlations of photons from solution diffraction at a free-electron laser encode molecular structure

    DOE PAGES

    Mendez, Derek; Watkins, Herschel; Qiao, Shenglan; ...

    2016-09-26

    During X-ray exposure of a molecular solution, photons scattered from the same molecule are correlated. If molecular motion is insignificant during exposure, then differences in momentum transfer between correlated photons are direct measurements of the molecular structure. In conventional small- and wide-angle solution scattering, photon correlations are ignored. This report presents advances in a new biomolecular structural analysis technique, correlated X-ray scattering (CXS), which uses angular intensity correlations to recover hidden structural details from molecules in solution. Due to its intense rapid pulses, an X-ray free electron laser (XFEL) is an excellent tool for CXS experiments. A protocol is outlinedmore » for analysis of a CXS data set comprising a total of half a million X-ray exposures of solutions of small gold nanoparticles recorded at the Spring-8 Ångström Compact XFEL facility (SACLA). From the scattered intensities and their correlations, two populations of nanoparticle domains within the solution are distinguished: small twinned, and large probably non-twinned domains. Finally, it is shown analytically how, in a solution measurement, twinning information is only accessible via intensity correlations, demonstrating how CXS reveals atomic-level information from a disordered solution of like molecules.« less

  9. Detection of cortisol in saliva with a flow-filtered, portable surface plasmon resonance biosensor system

    PubMed Central

    Stevens, Richard C.; Soelberg, Scott D.; Near, Steve; Furlong, Clement E.

    2011-01-01

    Saliva provides a useful and non-invasive alternative to blood for many biomedical diagnostic assays. The level of the hormone cortisol in blood and saliva is related to the level of stress. We present here the development of a portable surface plasmon resonance (SPR) biosensor system for detection of cortisol in saliva. Cortisol-specific monoclonal antibodies were used to develop a competition assay with a 6-channel portable SPR biosensor designed in our laboratory. The detection limit of cortisol in laboratory buffers was 0.36 ng/ml (1.0 nM). An in-line filter based on diffusion through a hollow fiber hydrophilic membrane served to separate small molecules from the complex macromolecular matrix of saliva prior to introduction to the sensor surface. The filtering flow cell provided in-line separation of small molecules from salivary mucins and other large molecules with only a 29% reduction of signal compared with direct flow of the same concentration of analyte over the sensor surface. A standard curve for detection of cortisol in saliva was generated with a detection limit of 1.0 ng/ml (3.6 nM), sufficiently sensitive for clinical use. The system will also be useful for a wide range of applications where small molecular weight analytes are found in complex matrices. PMID:18656950

  10. Identification of a small-molecule ligand of the epigenetic reader protein Spindlin1 via a versatile screening platform

    PubMed Central

    Wagner, Tobias; Greschik, Holger; Burgahn, Teresa; Schmidtkunz, Karin; Schott, Anne-Kathrin; McMillan, Joel; Baranauskienė, Lina; Xiong, Yan; Fedorov, Oleg; Jin, Jian; Oppermann, Udo; Matulis, Daumantas; Schüle, Roland; Jung, Manfred

    2016-01-01

    Epigenetic modifications of histone tails play an essential role in the regulation of eukaryotic transcription. Writer and eraser enzymes establish and maintain the epigenetic code by creating or removing posttranslational marks. Specific binding proteins, called readers, recognize the modifications and mediate epigenetic signalling. Here, we present a versatile assay platform for the investigation of the interaction between methyl lysine readers and their ligands. This can be utilized for the screening of small-molecule inhibitors of such protein–protein interactions and the detailed characterization of the inhibition. Our platform is constructed in a modular way consisting of orthogonal in vitro binding assays for ligand screening and verification of initial hits and biophysical, label-free techniques for further kinetic characterization of confirmed ligands. A stability assay for the investigation of target engagement in a cellular context complements the platform. We applied the complete evaluation chain to the Tudor domain containing protein Spindlin1 and established the in vitro test systems for the double Tudor domain of the histone demethylase JMJD2C. We finally conducted an exploratory screen for inhibitors of the interaction between Spindlin1 and H3K4me3 and identified A366 as the first nanomolar small-molecule ligand of a Tudor domain containing methyl lysine reader. PMID:26893353

  11. On-Demand Targeting: Investigating Biology with Proximity-Directed Chemistry

    PubMed Central

    2016-01-01

    Proximity enhancement is a central chemical tenet underpinning an exciting suite of small-molecule toolsets that have allowed us to unravel many biological complexities. The leitmotif of this opus is “tethering”—a strategy in which a multifunctional small molecule serves as a template to bring proteins/biomolecules together. Scaffolding approaches have been powerfully applied to control diverse biological outcomes such as protein–protein association, protein stability, activity, and improve imaging capabilities. A new twist on this strategy has recently appeared, in which the small-molecule probe is engineered to unleash controlled amounts of reactive chemical signals within the microenvironment of a target protein. Modification of a specific target elicits a precisely timed and spatially controlled gain-of-function (or dominant loss-of-function) signaling response. Presented herein is a unique personal outlook conceptualizing the powerful proximity-enhanced chemical biology toolsets into two paradigms: “multifunctional scaffolding” versus “on-demand targeting”. By addressing the latest advances and challenges in the established yet constantly evolving multifunctional scaffolding strategies as well as in the emerging on-demand precision targeting (and related) systems, this Perspective is aimed at choosing when it is best to employ each of the two strategies, with an emphasis toward further promoting novel applications and discoveries stemming from these innovative chemical biology platforms. PMID:26907082

  12. On-Demand Targeting: Investigating Biology with Proximity-Directed Chemistry.

    PubMed

    Long, Marcus J C; Poganik, Jesse R; Aye, Yimon

    2016-03-23

    Proximity enhancement is a central chemical tenet underpinning an exciting suite of small-molecule toolsets that have allowed us to unravel many biological complexities. The leitmotif of this opus is "tethering"-a strategy in which a multifunctional small molecule serves as a template to bring proteins/biomolecules together. Scaffolding approaches have been powerfully applied to control diverse biological outcomes such as protein-protein association, protein stability, activity, and improve imaging capabilities. A new twist on this strategy has recently appeared, in which the small-molecule probe is engineered to unleash controlled amounts of reactive chemical signals within the microenvironment of a target protein. Modification of a specific target elicits a precisely timed and spatially controlled gain-of-function (or dominant loss-of-function) signaling response. Presented herein is a unique personal outlook conceptualizing the powerful proximity-enhanced chemical biology toolsets into two paradigms: "multifunctional scaffolding" versus "on-demand targeting". By addressing the latest advances and challenges in the established yet constantly evolving multifunctional scaffolding strategies as well as in the emerging on-demand precision targeting (and related) systems, this Perspective is aimed at choosing when it is best to employ each of the two strategies, with an emphasis toward further promoting novel applications and discoveries stemming from these innovative chemical biology platforms.

  13. Hypoxia-inducible factor stabilizers and other small-molecule erythropoiesis-stimulating agents in current and preventive doping analysis.

    PubMed

    Beuck, Simon; Schänzer, Wilhelm; Thevis, Mario

    2012-11-01

    Increasing the blood's capacity for oxygen transport by erythropoiesis-stimulating agents (ESAs) constitutes a prohibited procedure of performance enhancement according to the World Anti-Doping Agency (WADA). The advent of orally bio-available small-molecule ESAs such as hypoxia-inducible factor (HIF) stabilizers in the development of novel anti-anaemia therapies expands the list of potential ESA doping techniques. Here, the erythropoiesis-stimulating properties and doping relevance of experimental HIF-stabilizers, such as cobaltous chloride, 3,4-dihydroxybenzoic acid or GSK360A, amongst others, are discussed. The stage of clinical trials is reviewed for the anti-anaemia drug candidates FG-2216, FG-4592, GSK1278863, AKB-6548, and BAY85-3934. Currently available methods and strategies for the determination of selected HIF stabilizers in sports drug testing are based on liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). For the support of further analytical assay development, patents claiming distinct compounds for the use in HIF-mediated therapies are evaluated and exemplary molecular structures of HIF stabilizers presented. Moreover, data concerning the erythropoiesis-enhancing effects of the GATA inhibitors K7174 and K11706 as well as the lipidic small-molecule ESA PBI-1402 are elucidated the context of doping analysis. Copyright © 2012 John Wiley & Sons, Ltd.

  14. Discrete Cu(i) complexes for azide–alkyne annulations of small molecules inside mammalian cells† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc04643j

    PubMed Central

    Miguel-Ávila, Joan; Tomás-Gamasa, María; Olmos, Andrea

    2018-01-01

    The archetype reaction of “click” chemistry, namely, the copper-promoted azide–alkyne cycloaddition (CuAAC), has found an impressive number of applications in biological chemistry. However, methods for promoting intermolecular annulations of exogenous, small azides and alkynes in the complex interior of mammalian cells, are essentially unknown. Herein we demonstrate that isolated, well-defined copper(i)–tris(triazolyl) complexes featuring designed ligands can readily enter mammalian cells and promote intracellular CuAAC annulations of small, freely diffusible molecules. In addition to simplifying protocols and avoiding the addition of “non-innocent” reductants, the use of these premade copper complexes leads to more efficient processes than with the alternative, in situ made copper species prepared from Cu(ii) sources, tris(triazole) ligands and sodium ascorbate. Under the reaction conditions, the well-defined copper complexes exhibit very good cell penetration properties, and do not present significant toxicities. PMID:29675241

  15. Comparison of small molecules and oligonucleotides that target a toxic, non-coding RNA.

    PubMed

    Costales, Matthew G; Rzuczek, Suzanne G; Disney, Matthew D

    2016-06-01

    Potential RNA targets for chemical probes and therapeutic modalities are pervasive in the transcriptome. Oligonucleotide-based therapeutics are commonly used to target RNA sequence. Small molecules are emerging as a modality to target RNA structures selectively, but their development is still in its infancy. In this work, we compare the activity of oligonucleotides and several classes of small molecules that target the non-coding r(CCUG) repeat expansion (r(CCUG)(exp)) that causes myotonic dystrophy type 2 (DM2), an incurable disease that is the second-most common cause of adult onset muscular dystrophy. Small molecule types investigated include monomers, dimers, and multivalent compounds synthesized on-site by using RNA-templated click chemistry. Oligonucleotides investigated include phosphorothioates that cleave their target and vivo-morpholinos that modulate target RNA activity via binding. We show that compounds assembled on-site that recognize structure have the highest potencies amongst small molecules and are similar in potency to a vivo-morpholino modified oligonucleotide that targets sequence. These studies are likely to impact the design of therapeutic modalities targeting other repeats expansions that cause fragile X syndrome and amyotrophic lateral sclerosis, for example. Copyright © 2016. Published by Elsevier Ltd.

  16. Measurement of Small Molecular Dopant F4TCNQ and C 60F 36 Diffusion in Organic Bilayer Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jun; Rochester, Chris W.; Jacobs, Ian E.

    2015-12-03

    The diffusion of molecules through and between organic layers is a serious stability concern in organic electronic devices. In this paper, the temperature-dependent diffusion of molecular dopants through small molecule hole transport layers is observed. Specifically we investigate bilayer stacks of small molecules used for hole transport (MeO-TPD) and p-type dopants (F4TCNQ and C 60F 36) used in hole injection layers for organic light emitting diodes and hole collection electrodes for organic photovoltaics. With the use of absorbance spectroscopy, photoluminescence spectroscopy, neutron reflectometry, and near-edge X-ray absorption fine structure spectroscopy, we are able to obtain a comprehensive picture of themore » diffusion of fluorinated small molecules through MeO-TPD layers. F4TCNQ spontaneously diffuses into the MeO-TPD material even at room temperature, while C 60F 36, a much bulkier molecule, is shown to have a substantially higher morphological stability. Finally, this study highlights that the differences in size/geometry and thermal properties of small molecular dopants can have a significant impact on their diffusion in organic device architectures.« less

  17. A semantic web ontology for small molecules and their biological targets.

    PubMed

    Choi, Jooyoung; Davis, Melissa J; Newman, Andrew F; Ragan, Mark A

    2010-05-24

    A wide range of data on sequences, structures, pathways, and networks of genes and gene products is available for hypothesis testing and discovery in biological and biomedical research. However, data describing the physical, chemical, and biological properties of small molecules have not been well-integrated with these resources. Semantically rich representations of chemical data, combined with Semantic Web technologies, have the potential to enable the integration of small molecule and biomolecular data resources, expanding the scope and power of biomedical and pharmacological research. We employed the Semantic Web technologies Resource Description Framework (RDF) and Web Ontology Language (OWL) to generate a Small Molecule Ontology (SMO) that represents concepts and provides unique identifiers for biologically relevant properties of small molecules and their interactions with biomolecules, such as proteins. We instanced SMO using data from three public data sources, i.e., DrugBank, PubChem and UniProt, and converted to RDF triples. Evaluation of SMO by use of predetermined competency questions implemented as SPARQL queries demonstrated that data from chemical and biomolecular data sources were effectively represented and that useful knowledge can be extracted. These results illustrate the potential of Semantic Web technologies in chemical, biological, and pharmacological research and in drug discovery.

  18. Small molecules as therapy for uveitis: a selected perspective of new and developing agents.

    PubMed

    Pleyer, Uwe; Algharably, Engi Abdel-Hady; Feist, Eugen; Kreutz, Reinhold

    2017-09-01

    Intraocular inflammation (uveitis) remains a significant burden of legal blindness. Because of its immune mediated and chronic recurrent nature, common therapy includes corticosteroids, disease-modifying anti-rheumatic drugs and more recently biologics as immune modulatory agents. The purpose of this article is to identify the role of new treatment approaches focusing on small molecules as therapeutic option in uveitis. Areas covered: A MEDLINE database search was conducted through February 2017 using the terms 'uveitis' and 'small molecule'. To provide ongoing and future perspectives in treatment options, also clinical trials as registered at ClinicalTrials.gov were included. Both, results from experimental as well as clinical research in this field were included. Since this field is rapidly evolving, a selection of promising agents had to be made. Expert opinion: Small molecules may interfere at different steps of the inflammatory cascade and appear as an interesting option in the treatment algorithm of uveitis. Because of their highly targeted molecular effects and their favorable bioavailability with the potential of topical application small molecules hold great promise. Nevertheless, a careful evaluation of these agents has to be made, since current experience is almost exclusively based on experimental uveitis models and few registered trials.

  19. Exporters for Production of Amino Acids and Other Small Molecules.

    PubMed

    Eggeling, Lothar

    Microbes are talented catalysts to synthesize valuable small molecules in their cytosol. However, to make full use of their skills - and that of metabolic engineers - the export of intracellularly synthesized molecules to the culture medium has to be considered. This step is as essential as is each step for the synthesis of the favorite molecule of the metabolic engineer, but is frequently not taken into account. To export small molecules via the microbial cell envelope, a range of different types of carrier proteins is recognized to be involved, which are primary active carriers, secondary active carriers, or proteins increasing diffusion. Relevant export may require just one carrier as is the case with L-lysine export by Corynebacterium glutamicum or involve up to four carriers as known for L-cysteine excretion by Escherichia coli. Meanwhile carriers for a number of small molecules of biotechnological interest are recognized, like for production of peptides, nucleosides, diamines, organic acids, or biofuels. In addition to carriers involved in amino acid excretion, such carriers and their impact on product formation are described, as well as the relatedness of export carriers which may serve as a hint to identify further carriers required to improve product formation by engineering export.

  20. Reaction-based small-molecule fluorescent probes for dynamic detection of ROS and transient redox changes in living cells and small animals.

    PubMed

    Lü, Rui

    2017-09-01

    Dynamic detection of transient redox changes in living cells and animals has broad implications for human health and disease diagnosis, because intracellular redox homeostasis regulated by reactive oxygen species (ROS) plays important role in cell functions, normal physiological functions and some serious human diseases (e.g., cancer, Alzheimer's disease, diabetes, etc.) usually have close relationship with the intracellular redox status. Small-molecule ROS-responsive fluorescent probes can act as powerful tools for dynamic detection of ROS and redox changes in living cells and animals through fluorescence imaging techniques; and great advances have been achieved recently in the design and synthesis of small-molecule ROS-responsive fluorescent probes. This article highlights up-to-date achievements in designing and using the reaction-based small-molecule fluorescent probes (with high sensitivity and selectivity to ROS and redox cycles) in the dynamic detection of ROS and transient redox changes in living cells and animals through fluorescence imaging. Copyright © 2017. Published by Elsevier Ltd.

  1. The Endoplasmic Reticulum Membrane Is Permeable to Small Molecules

    PubMed Central

    Le Gall, Sylvie; Neuhof, Andrea; Rapoport, Tom

    2004-01-01

    The lumen of the endoplasmic reticulum (ER) differs from the cytosol in its content of ions and other small molecules, but it is unclear whether the ER membrane is as impermeable as other membranes in the cell. Here, we have tested the permeability of the ER membrane to small, nonphysiological molecules. We report that isolated ER vesicles allow different chemical modification reagents to pass from the outside into the lumen with little hindrance. In permeabilized cells, the ER membrane allows the passage of a small, charged modification reagent that is unable to cross the plasma membrane or the lysosomal and trans-Golgi membranes. A larger polar reagent of ∼5 kDa is unable to pass through the ER membrane. Permeation of the small molecules is passive because it occurs at low temperature in the absence of energy. These data indicate that the ER membrane is significantly more leaky than other cellular membranes, a property that may be required for protein folding and other functions of the ER. PMID:14617815

  2. Cucurbituril mediated single molecule detection and identification via recognition tunneling.

    PubMed

    Xiao, Bohuai; Liang, Feng; Liu, Simin; Im, JongOne; Li, Yunchuan; Liu, Jing; Zhang, Bintian; Zhou, Jianghao; He, Jin; Chang, Shuai

    2018-06-08

    Recognition tunneling (RT) is an emerging technique for investigating single molecules in a tunnel junction. We have previously demonstrated its capability of single molecule detection and identification, as well as probing the dynamics of intermolecular bonding at the single molecule level. Here by introducing cucurbituril as a new class of recognition molecule, we demonstrate a powerful platform for electronically investigating the host-guest chemistry at single molecule level. In this report, we first investigated the single molecule electrical properties of cucurbituril in a tunnel junction. Then we studied two model guest molecules, aminoferrocene and amantadine, which were encapsulated by cucurbituril. Small differences in conductance and lifetime can be recognized between the host-guest complexes with the inclusion of different guest molecules. By using a machine learning algorithm to classify the RT signals in a hyper dimensional space, the accuracy of guest molecule recognition can be significantly improved, suggesting the possibility of using cucurbituril molecule for single molecule identification. This work enables a new class of recognition molecule for RT technique and opens the door for detecting a vast variety of small molecules by electrical measurements.

  3. Identification of antipsychotic drug fluspirilene as a potential p53-MDM2 inhibitor: a combined computational and experimental study

    NASA Astrophysics Data System (ADS)

    Patil, Sachin P.; Pacitti, Michael F.; Gilroy, Kevin S.; Ruggiero, John C.; Griffin, Jonathan D.; Butera, Joseph J.; Notarfrancesco, Joseph M.; Tran, Shawn; Stoddart, John W.

    2015-02-01

    The inhibition of tumor suppressor p53 protein due to its direct interaction with oncogenic murine double minute 2 (MDM2) protein, plays a central role in almost 50 % of all human tumor cells. Therefore, pharmacological inhibition of the p53-binding pocket on MDM2, leading to p53 activation, presents an important therapeutic target against these cancers expressing wild-type p53. In this context, the present study utilized an integrated virtual and experimental screening approach to screen a database of approved drugs for potential p53-MDM2 interaction inhibitors. Specifically, using an ensemble rigid-receptor docking approach with four MDM2 protein crystal structures, six drug molecules were identified as possible p53-MDM2 inhibitors. These drug molecules were then subjected to further molecular modeling investigation through flexible-receptor docking followed by Prime/MM-GBSA binding energy analysis. These studies identified fluspirilene, an approved antipsychotic drug, as a top hit with MDM2 binding mode and energy similar to that of a native MDM2 crystal ligand. The molecular dynamics simulations suggested stable binding of fluspirilene to the p53-binding pocket on MDM2 protein. The experimental testing of fluspirilene showed significant growth inhibition of human colon tumor cells in a p53-dependent manner. Fluspirilene also inhibited growth of several other human tumor cell lines in the NCI60 cell line panel. Taken together, these computational and experimental data suggest a potentially novel role of fluspirilene in inhibiting the p53-MDM2 interaction. It is noteworthy here that fluspirilene has a long history of safe human use, thus presenting immediate clinical potential as a cancer therapeutic. Furthermore, fluspirilene could also serve as a structurally-novel lead molecule for the development of more potent, small-molecule p53-MDM2 inhibitors against several types of cancer. Importantly, the combined computational and experimental screening protocol presented in this study may also prove useful for screening other commercially-available compound databases for identification of novel, small molecule p53-MDM2 inhibitors.

  4. Rationally designed small molecules targeting the RNA that causes myotonic dystrophy type 1 are potently bioactive.

    PubMed

    Childs-Disney, Jessica L; Hoskins, Jason; Rzuczek, Suzanne G; Thornton, Charles A; Disney, Matthew D

    2012-05-18

    RNA is an important drug target, but it is difficult to design or discover small molecules that modulate RNA function. In the present study, we report that rationally designed, modularly assembled small molecules that bind the RNA that causes myotonic dystrophy type 1 (DM1) are potently bioactive in cell culture models. DM1 is caused when an expansion of r(CUG) repeats, or r(CUG)(exp), is present in the 3' untranslated region (UTR) of the dystrophia myotonica protein kinase (DMPK) mRNA. r(CUG)(exp) folds into a hairpin with regularly repeating 5'CUG/3'GUC motifs and sequesters muscleblind-like 1 protein (MBNL1). A variety of defects are associated with DM1, including (i) formation of nuclear foci, (ii) decreased translation of DMPK mRNA due to its nuclear retention, and (iii) pre-mRNA splicing defects due to inactivation of MBNL1, which controls the alternative splicing of various pre-mRNAs. Previously, modularly assembled ligands targeting r(CUG)(exp) were designed using information in an RNA motif-ligand database. These studies showed that a bis-benzimidazole (H) binds the 5'CUG/3'GUC motif in r(CUG)(exp.) Therefore, we designed multivalent ligands to bind simultaneously multiple copies of this motif in r(CUG)(exp). Herein, we report that the designed compounds improve DM1-associated defects including improvement of translational and pre-mRNA splicing defects and the disruption of nuclear foci. These studies may establish a foundation to exploit other RNA targets in genomic sequence.

  5. Development of small molecule biosensors by coupling the recognition of the bacterial allosteric transcription factor with isothermal strand displacement amplification.

    PubMed

    Yao, Yongpeng; Li, Shanshan; Cao, Jiaqian; Liu, Weiwei; Fan, Keqiang; Xiang, Wensheng; Yang, Keqian; Kong, Deming; Wang, Weishan

    2018-05-08

    Here, we demonstrate an easy-to-implement and general biosensing strategy by coupling the small-molecule recognition of the bacterial allosteric transcription factor (aTF) with isothermal strand displacement amplification (SDA) in vitro. Based on this strategy, we developed two biosensors for the detection of an antiseptic, p-hydroxybenzoic acid, and a disease marker, uric acid, using bacterial aTF HosA and HucR, respectively, highlighting the great potential of this strategy for the development of small-molecule biosensors.

  6. A structural biology perspective on bioactive small molecules and their plant targets.

    PubMed

    Kumari, Selva; van der Hoorn, Renier A L

    2011-10-01

    Structural biology efforts in recent years have generated numerous co-crystal structures of bioactive small molecules interacting with their plant targets. These studies include the targets of various phytohormones, pathogen-derived effectors, herbicides and other bioactive compounds. Here we discuss that this collection of structures contains excellent examples of nine collective observations: molecular glues, allostery, inhibitors, molecular mimicry, promiscuous binding sites, unexpected electron densities, natural selection at atomic resolution, and applications in structure-guided mutagenesis and small molecule design. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. New developments in microbial interspecies signaling.

    PubMed

    Shank, Elizabeth Anne; Kolter, Roberto

    2009-04-01

    There is a growing appreciation that in addition to well-documented intraspecies quorum sensing systems, small molecules act as signals between microbes of different species. This review will focus on how bacterial small molecules modulate these interspecies interactions. We will particularly emphasize complex relationships such as those between microbes and insects, interactions resulting in non-antagonistic outcomes (i.e. developmental and morphological processes), how co-culture can lead to the discovery of new small molecules, and the use of known compounds to evoke unexpected responses and mediate crosstalk between microbes.

  8. Tailoring the interface using thiophene small molecules in TiO2/P3HT hybrid solar cells.

    PubMed

    Freitas, Flavio S; Clifford, John N; Palomares, Emilio; Nogueira, Ana F

    2012-09-14

    In this paper we focus on the effect of carboxylated thiophene small molecules as interface modifiers in TiO(2)/P3HT hybrid solar cells. Our results show that small differences in the chemical structure of these molecules, for example, the presence of the -CH(2)- group in the 2-thiopheneacetic acid (TAA), can greatly increase the TiO(2) surface wettability, improving the TiO(2)/polymer contact. This effect is important to enhance exciton splitting and charge separation.

  9. Janus Kinase Antagonists and Other Novel Small Molecules for the Treatment of Crohn's Disease.

    PubMed

    Boland, Brigid S; Vermeire, Séverine

    2017-09-01

    There is an ongoing, unmet need for effective therapies for Crohn's disease. Treatments for Crohn's disease continue to evolve from the traditional biologics to novel small molecules, with targeted mechanisms directed toward pathways that are dysregulated in Crohn's disease. There are multiple emerging mechanisms of action, including Janus kinase inhibition, Smad7 inhibition, and sphingosine-1-phosphate receptor modulators, that are administered as oral medications, and small molecules represent the next generation of therapies for Crohn's disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Theoretical Investigation of Single-Molecule Sensing Using Nanotube-Enhanced Circular Dichroism.

    PubMed

    Silva, Jaime; Milne, Bruce F; Nogueira, Fernando

    2018-06-19

    First-principles calculations have been used to investigate the potential use of circular dichroism (CD) spectroscopy in single-molecule sensing. Using a real-space implementation of time-dependent density functional theory (TDDFT), several systems involving single-walled carbon nanotubes (SWCNT) and small molecules have been studied to evaluate their CD response. Large induced CD (ICD) effects, differing for each test molecule, were observed in all SWCNT-molecule complexes. As the SWCNT used in this study shows no intrinsic CD response, the ICD spectra are the result of interaction with the small molecules. This finding is general and independent of the (a)chiral nature of the adsorbed molecule. Our results indicate that it is possible to design a system that uses SWCNT for detection of molecules using the change in CD spectrum of the system induced by adsorption of the molecule onto the SWCNT surface.

  11. 2016 White Paper on recent issues in bioanalysis: focus on biomarker assay validation (BAV) (Part 1 - small molecules, peptides and small molecule biomarkers by LCMS).

    PubMed

    Yang, Eric; Welink, Jan; Cape, Stephanie; Woolf, Eric; Sydor, Jens; James, Christopher; Goykhman, Dina; Arnold, Mark; Addock, Neil; Bauer, Ronald; Buonarati, Michael; Ciccimaro, Eugene; Dodda, Raj; Evans, Christopher; Garofolo, Fabio; Hughes, Nicola; Islam, Rafiq; Nehls, Corey; Wilson, Amanda; Briscoe, Chad; Bustard, Mark; Coppola, Laura; Croft, Stephanie; Drexler, Dieter; Ferrari, Luca; Fraier, Daniela; Jenkins, Rand; Kadavil, John; King, Lloyd; Li, Wenkui; Lima Santos, Gustavo Mendes; Musuku, Adrien; Ramanathan, Ragu; Saito, Yoshiro; Savoie, Natasha; Summerfield, Scott; Sun, Rachel; Tampal, Nilufer; Vinter, Steve; Wakelin-Smith, Jason; Yue, Qin

    2016-10-07

    The 2016 10 th Workshop on Recent Issues in Bioanalysis (10 th WRIB) took place in Orlando, Florida with participation of close to 700 professionals from pharmaceutical/biopharmaceutical companies, biotechnology companies, contract research organizations, and regulatory agencies worldwide. WRIB was once again a 5-day, weeklong event - A Full Immersion Week of Bioanalysis including Biomarkers and Immunogenicity. As usual, it was specifically designed to facilitate sharing, reviewing, discussing and agreeing on approaches to address the most current issues of interest including both small and large molecule analysis involving LCMS, hybrid LBA/LCMS, and LBA approaches, with the focus on biomarkers and immunogenicity. This 2016 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop, and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. This white paper is published in 3 parts due to length. This part (Part 1) discusses the recommendations for small molecules, peptides and small molecule biomarkers by LCMS. Part 2 (Hybrid LBA/LCMS and regulatory inputs from major global health authorities) and Part 3 (large molecule bioanalysis using LBA, biomarkers and immunogenicity) will be published in the Bioanalysis journal, issue 23.

  12. Diffusion of small molecules into medaka embryos improved by electroporation

    PubMed Central

    2013-01-01

    Background Diffusion of small molecules into fish embryos is essential for many experimental procedures in developmental biology and toxicology. Since we observed a weak uptake of lithium into medaka eggs we started a detailed analysis of its diffusion properties using small fluorescent molecules. Results Contrary to our expectations, not the rigid outer chorion but instead membrane systems surrounding the embryo/yolk turned out to be the limiting factor for diffusion into medaka eggs. The consequence is a bi-phasic uptake of small molecules first reaching the pervitelline space with a diffusion half-time in the range of a few minutes. This is followed by a slow second phase (half-time in the range of several hours) during which accumulation in the embryo/yolk takes place. Treatment with detergents improved the uptake, but strongly affected the internal distribution of the molecules. Testing electroporation we could establish conditions to overcome the diffusion barrier. Applying this method to lithium chloride we observed anterior truncations in medaka embryos in agreement with its proposed activation of Wnt signalling. Conclusions The diffusion of small molecules into medaka embryos is slow, caused by membrane systems underneath the chorion. These results have important implications for pharmacologic/toxicologic techniques like the fish embryo test, which therefore require extended incubation times in order to reach sufficient concentrations in the embryos. PMID:23815821

  13. Encapsulation of small ionic molecules within alpha-cyclodextrins.

    PubMed

    Rodriguez, Javier; Elola, M Dolores

    2009-02-05

    Results from molecular dynamics experiments pertaining to the encapsulation of ClO4- within the hydrophobic cavity of an aqueous alpha-cyclodextrin (alpha-CD) are presented. Using a biased sampling procedure, we constructed the Gibbs free energy profile associated with the complexation process. The profile presents a global minimum at the vicinity of the primary hydroxyl groups, where the ion remains tightly coordinated to four water molecules via hydrogen bonds. Our estimate for the global free energy of encapsulation yields DeltaGenc approximately -2.5 kBT. The decomposition of the average forces acting on the trapped ion reveals that the encapsulation is controlled by Coulomb interactions between the ion and OH groups in the CD, with a much smaller contribution from the solvent molecules. Changes in the previous results, arising from the partial methylation of the host CD and modifications in the charge distribution of the guest molecule are also discussed. The global picture that emerges from our results suggests that the stability of the ClO4- encapsulation involves not only the individual ion but also its first solvation shell.

  14. Small molecules targeting LapB protein prevent Listeria attachment to catfish muscle

    PubMed Central

    Das, Bhaskar; Lawrence, Mark

    2017-01-01

    Listeria monocytogenes is a Gram-positive foodborne pathogen and the causative agent of listeriosis. L. monocytogenes lapB gene encodes a cell wall surface anchor protein, and mutation of this gene causes Listeria attenuation in mice. In this work, the potential role of Listeria LapB protein in catfish fillet attachment was investigated. To achieve this, boron-based small molecules designed to interfere with the active site of the L. monocytogenes LapB protein were developed, and their ability to prevent L. monocytogenes attachment to fish fillet was tested. Results indicated that seven out of nine different small molecules were effective in reducing the Listeria attachment to catfish fillets. Of these, three small molecules (SM3, SM5, and SM7) were highly effective in blocking Listeria attachment to catfish fillets. This study suggests an alternative strategy for reduction of L. monocytogenes contamination in fresh and frozen fish products. PMID:29253892

  15. Precise small molecule recognition of a toxic CUG RNA repeat expansion

    PubMed Central

    Rzuczek, Suzanne G; Colgan, Lesley A; Nakai, Yoshio; Cameron, Michael D; Furling, Denis; Yasuda, Ryohei; Disney, Matthew D

    2017-01-01

    Excluding the ribosome and riboswitches, developing small molecules that selectively target RNA is a longstanding problem in chemical biology. A typical cellular RNA is difficult to target because it has little tertiary, but abundant secondary structure. We designed allele-selective compounds that target such an RNA, the toxic noncoding repeat expansion (r(CUG)exp) that causes myotonic dystrophy type 1 (DM1). We developed several strategies to generate allele-selective small molecules, including non-covalent binding, covalent binding, cleavage and on-site probe synthesis. Covalent binding and cleavage enabled target profiling in cells derived from individuals with DM1, showing precise recognition of r(CUG)exp. In the on-site probe synthesis approach, small molecules bound adjacent sites in r(CUG)exp and reacted to afford picomolar inhibitors via a proximity-based click reaction only in DM1-affected cells. We expanded this approach to image r(CUG)exp in its natural context. PMID:27941760

  16. Precise small-molecule recognition of a toxic CUG RNA repeat expansion.

    PubMed

    Rzuczek, Suzanne G; Colgan, Lesley A; Nakai, Yoshio; Cameron, Michael D; Furling, Denis; Yasuda, Ryohei; Disney, Matthew D

    2017-02-01

    Excluding the ribosome and riboswitches, developing small molecules that selectively target RNA is a longstanding problem in chemical biology. A typical cellular RNA is difficult to target because it has little tertiary, but abundant secondary structure. We designed allele-selective compounds that target such an RNA, the toxic noncoding repeat expansion (r(CUG) exp ) that causes myotonic dystrophy type 1 (DM1). We developed several strategies to generate allele-selective small molecules, including non-covalent binding, covalent binding, cleavage and on-site probe synthesis. Covalent binding and cleavage enabled target profiling in cells derived from individuals with DM1, showing precise recognition of r(CUG) exp . In the on-site probe synthesis approach, small molecules bound adjacent sites in r(CUG) exp and reacted to afford picomolar inhibitors via a proximity-based click reaction only in DM1-affected cells. We expanded this approach to image r(CUG) exp in its natural context.

  17. Small molecule alteration of RNA sequence in cells and animals.

    PubMed

    Guan, Lirui; Luo, Yiling; Ja, William W; Disney, Matthew D

    2017-10-18

    RNA regulation and maintenance are critical for proper cell function. Small molecules that specifically alter RNA sequence would be exceptionally useful as probes of RNA structure and function or as potential therapeutics. Here, we demonstrate a photochemical approach for altering the trinucleotide expanded repeat causative of myotonic muscular dystrophy type 1 (DM1), r(CUG) exp . The small molecule, 2H-4-Ru, binds to r(CUG) exp and converts guanosine residues to 8-oxo-7,8-dihydroguanosine upon photochemical irradiation. We demonstrate targeted modification upon irradiation in cell culture and in Drosophila larvae provided a diet containing 2H-4-Ru. Our results highlight a general chemical biology approach for altering RNA sequence in vivo by using small molecules and photochemistry. Furthermore, these studies show that addition of 8-oxo-G lesions into RNA 3' untranslated regions does not affect its steady state levels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. High-Throughput RT-PCR for small-molecule screening assays

    PubMed Central

    Bittker, Joshua A.

    2012-01-01

    Quantitative measurement of the levels of mRNA expression using real-time reverse transcription polymerase chain reaction (RT-PCR) has long been used for analyzing expression differences in tissue or cell lines of interest. This method has been used somewhat less frequently to measure the changes in gene expression due to perturbagens such as small molecules or siRNA. The availability of new instrumentation for liquid handling and real-time PCR analysis as well as the commercial availability of start-to-finish kits for RT-PCR has enabled the use of this method for high-throughput small-molecule screening on a scale comparable to traditional high-throughput screening (HTS) assays. This protocol focuses on the special considerations necessary for using quantitative RT-PCR as a primary small-molecule screening assay, including the different methods available for mRNA isolation and analysis. PMID:23487248

  19. Selective inhibition of c-Myc/Max dimerization and DNA binding by small molecules.

    PubMed

    Kiessling, Anke; Sperl, Bianca; Hollis, Angela; Eick, Dirk; Berg, Thorsten

    2006-07-01

    bZip and bHLHZip protein family members comprise a large fraction of eukaryotic transcription factors and need to bind DNA in order to exert most of their fundamental biological roles. Their binding to DNA requires homo- or heterodimerization via alpha-helical domains, which generally do not contain obvious binding sites for small molecules. We have identified two small molecules, dubbed Mycro1 and Mycro2, which inhibit the protein-protein interactions between the bHLHZip proteins c-Myc and Max. Mycros are the first inhibitors of c-Myc/Max dimerization, which have been demonstrated to inhibit DNA binding of c-Myc with preference over other dimeric transcription factors in vitro. Mycros inhibit c-Myc-dependent proliferation, gene transcription, and oncogenic transformation in the low micromolar concentration range. Our data support the idea that dimeric transcription factors can be druggable even in the absence of obvious small-molecule binding pockets.

  20. Small-molecule pheromones and hormones controlling nematode development.

    PubMed

    Butcher, Rebecca A

    2017-05-17

    The existence of small-molecule signals that influence development in Caenorhabditis elegans has been known for several decades, but only in recent years have the chemical structures of several of these signals been established. The identification of these signals has enabled connections to be made between these small molecules and fundamental signaling pathways in C. elegans that influence not only development but also metabolism, fertility, and lifespan. Spurred by these important discoveries and aided by recent advances in comparative metabolomics and NMR spectroscopy, the field of nematode chemistry has the potential to expand dramatically in the coming years. This Perspective will focus on small-molecule pheromones and hormones that influence developmental events in the nematode life cycle (ascarosides, dafachronic acids, and nemamides), will cover more recent work regarding the biosynthesis of these signals, and will explore how the discovery of these signals is transforming our understanding of nematode development and physiology.

  1. A small molecule chemical chaperone optimizes its unfolded state contraction and denaturant like properties

    NASA Astrophysics Data System (ADS)

    Sharma, Sunny; Sarkar, Suparna; Paul, Simanta Sarani; Roy, Syamal; Chattopadhyay, Krishnananda

    2013-12-01

    Protein aggregation is believed to occur through the formation of misfolded conformations. It is expected that, in order to minimize aggregation, an effective small molecule chaperone would destabilize these intermediates. To study the mechanism of a chemical chaperone, we have designed a series of mutant proteins in which a tryptophan residue experiences different local environments and solvent exposures. We show that these mutants correspond to a series of conformationally altered proteins with varying degree of misfolding stress and aggregation propensities. Using arginine as a model small molecule, we show that a combination of unfolded state contraction and denaturant like properties results in selective targeting and destabilization of the partially folded proteins. In comparison, the effect of arginine towards the folded like control mutant, which is not aggregation prone, is significantly less. Other small molecules, lacking either of the above two properties, do not offer any specificity towards the misfolded proteins.

  2. Side-chain Engineering of Benzo[1,2-b:4,5-b’]dithiophene Core-structured Small Molecules for High-Performance Organic Solar Cells

    PubMed Central

    Yin, Xinxing; An, Qiaoshi; Yu, Jiangsheng; Guo, Fengning; Geng, Yongliang; Bian, Linyi; Xu, Zhongsheng; Zhou, Baojing; Xie, Linghai; Zhang, Fujun; Tang, Weihua

    2016-01-01

    Three novel small molecules have been developed by side-chain engineering on benzo[1,2-b:4,5-b’]dithiophene (BDT) core. The typical acceptor-donor-acceptor (A-D-A) structure is adopted with 4,8-functionalized BDT moieties as core, dioctylterthiophene as π bridge and 3-ethylrhodanine as electron-withdrawing end group. Side-chain engineering on BDT core exhibits small but measurable effect on the optoelectronic properties of small molecules. Theoretical simulation and X-ray diffraction study reveal the subtle tuning of interchain distance between conjugated backbones has large effect on the charge transport and thus the photovoltaic performance of these molecules. Bulk-heterojunction solar cells fabricated with a configuration of ITO/PEDOT:PSS/SM:PC71BM/PFN/Al exhibit a highest power conversion efficiency (PCE) of 6.99% after solvent vapor annealing. PMID:27140224

  3. Side-chain Engineering of Benzo[1,2-b:4,5-b']dithiophene Core-structured Small Molecules for High-Performance Organic Solar Cells.

    PubMed

    Yin, Xinxing; An, Qiaoshi; Yu, Jiangsheng; Guo, Fengning; Geng, Yongliang; Bian, Linyi; Xu, Zhongsheng; Zhou, Baojing; Xie, Linghai; Zhang, Fujun; Tang, Weihua

    2016-05-03

    Three novel small molecules have been developed by side-chain engineering on benzo[1,2-b:4,5-b']dithiophene (BDT) core. The typical acceptor-donor-acceptor (A-D-A) structure is adopted with 4,8-functionalized BDT moieties as core, dioctylterthiophene as π bridge and 3-ethylrhodanine as electron-withdrawing end group. Side-chain engineering on BDT core exhibits small but measurable effect on the optoelectronic properties of small molecules. Theoretical simulation and X-ray diffraction study reveal the subtle tuning of interchain distance between conjugated backbones has large effect on the charge transport and thus the photovoltaic performance of these molecules. Bulk-heterojunction solar cells fabricated with a configuration of ITO/PEDOT:PSS/SM:PC71BM/PFN/Al exhibit a highest power conversion efficiency (PCE) of 6.99% after solvent vapor annealing.

  4. Small molecule solution-processed bulk heterojunction solar cells with inverted structure using porphyrin donor

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takaki; Hatano, Junichi; Nakagawa, Takafumi; Yamaguchi, Shigeru; Matsuo, Yutaka

    2013-01-01

    Utilizing tetraethynyl porphyrin derivative (TE-Por) as a small molecule donor material, we fabricated a small molecule solution-processed bulk heterojunction (BHJ) solar cell with inverted structure, which exhibited 1.6% power conversion efficiency (JSC (short-circuit current) = 4.6 mA/cm2, VOC (open-circuit voltage) = 0.90 V, and FF (fill factor) = 0.39) in the device configuration indium tin oxide/TiOx (titanium sub-oxide)/[6,6]-phenyl-C61-butyric acid methyl ester:TE-Por (5:1)/MoOx (molybdenum sub-oxide)/Au under AM1.5 G illumination at 100 mW/cm2. Without encapsulation, the small molecule solution-processed inverted BHJ solar cell also showed remarkable durability to air, where it kept over 73% of its initial power conversion efficiency after storage for 28 days under ambient atmosphere in the dark.

  5. Multivalent small molecule pan-RAS inhibitors

    PubMed Central

    Welsch, Matthew E.; Kaplan, Anna; Chambers, Jennifer M.; Stokes, Michael E.; Bos, Pieter H.; Zask, Arie; Zhang, Yan; Sanchez-Martin, Marta; Badgley, Michael A.; Huang, Christine S.; Tran, Timothy H.; Akkiraju, Hemanth; Brown, Lewis M.; Nandakumar, Renu; Cremers, Serge; Yang, Wan S.; Tong, Liang; Olive, Kenneth P.; Ferrando, Adolfo; Stockwell, Brent R.

    2017-01-01

    SUMMARY Design of small molecules that disrupt protein-protein interactions, including the interaction of RAS proteins and their effectors, have potential use as chemical probes and therapeutic agents. We describe here the synthesis and testing of potential small molecule pan-RAS ligands, which were designed to interact with adjacent sites on the surface of oncogenic KRAS. One compound, termed 3144, was found to bind to RAS proteins using microscale thermophoresis, nuclear magnetic resonance spectroscopy and isothermal titration calorimetry, and to exhibit lethality in cells partially dependent on expression of RAS proteins. This compound was metabolically stable in liver microsomes and displayed anti-tumor activity in xenograft mouse cancer models. These findings suggest that pan-RAS inhibition may be an effective therapeutic strategy for some cancers, and that structure-based design of small molecules targeting multiple adjacent sites to create multivalent inhibitors may be effective for some proteins. PMID:28235199

  6. HF in clusters of molecular hydrogen. I. Size evolution of quantum solvation by parahydrogen molecules.

    PubMed

    Jiang, Hao; Bacić, Zlatko

    2005-06-22

    We present a theoretical study of the quantum solvation of the HF molecule by a small number of parahydrogen molecules, having n = 1-13 solvent particles. The minimum-energy cluster structures determined for n = 1-12 have all of the H(2) molecules in the first solvent shell. The first solvent shell closes at n = 12 and its geometry is icosahedral, with the HF molecule at the center. The quantum-mechanical ground-state properties of the clusters are calculated exactly using the diffusion Monte Carlo method. The zero-point energy of (p-H(2))(n)HF clusters is unusually large, amounting to 86% of the potential well depth for n > 7. The radial probability distribution functions (PDFs) confirm that the first solvent shell is complete for n = 12, and that the 13th p-H(2) molecule begins to fill the second solvent shell. The p-H(2) molecules execute large-amplitude motions and are highly mobile, making the solvent cage exceptionally fluxional. The anisotropy of the solvent, very pronounced for small clusters, decreases rapidly with increasing n, so that for n approximately 8-9 the solvent environment is practically isotropic. The analysis of the pair angular PDF reveals that for a given n, the parahydrogen solvent density around the HF is modulated in a pattern which clearly reflects the lowest-energy cluster configuration. The rigidity of the solvent clusters displays an interesting size dependence, increasing from n = 6 to 9, becoming floppier for n = 10, and increasing again up to n = 12, as the solvent shell is filled. The rigidity of the solvent cage appears to reach its maximum for n = 12, the point at which the first solvent shell is closed.

  7. An initial non-targeted analysis of the peanut seed metabolome

    USDA-ARS?s Scientific Manuscript database

    There are likely a large number of compounds that constitute the peanut seed metabolome that have yet to be elucidated. Although the proximate composition and nutrients such as vitamins and minerals are well known, the composition of many other small molecule metabolites present have not been syste...

  8. Matrix elements of explicitly correlated Gaussian basis functions with arbitrary angular momentum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joyce, Tennesse; Varga, Kálmán

    2016-05-14

    A new algorithm for calculating the Hamiltonian matrix elements with all-electron explicitly correlated Gaussian functions for quantum-mechanical calculations of atoms with arbitrary angular momentum is presented. The calculations are checked on several excited states of three and four electron systems. The presented formalism can be used as unified framework for high accuracy calculations of properties of small atoms and molecules.

  9. Low Copy Numbers of DC-SIGN in Cell Membrane Microdomains: Implications for Structure and Function

    PubMed Central

    Liu, Ping; Wang, Xiang; Itano, Michelle S.; Neumann, Aaron K.; de Silva, Aravinda M.; Jacobson, Ken; Thompson, Nancy L.

    2014-01-01

    Presently, there are few estimates of the number of molecules occupying membrane domains. Using a total internal reflection fluorescence microscopy (TIRFM) imaging approach, based on comparing the intensities of fluorescently labeled microdomains with those of single fluorophores, we measured the occupancy of DC-SIGN, a C-type lectin, in membrane microdomains. DC-SIGN or its mutants were labeled with primary monoclonal antibodies (mAbs) in either dendritic cells (DCs) or NIH3T3 cells, or expressed as GFP fusions in NIH3T3 cells. The number of DC-SIGN molecules per microdomain ranges from only a few to over 20, while microdomain dimensions range from the diffraction limit to > 1μm. The largest fraction of microdomains, appearing at the diffraction limit, in either immature DCs or 3T3 cells contains only 4-8 molecules of DC-SIGN, consistent with our preliminary super-resolution Blink microscopy estimates. We further show that these small assemblies are sufficient to bind and efficiently internalize a small (~50nm) pathogen, dengue virus, leading to infection of host cells. PMID:24313910

  10. Identification of small-molecule antagonists of the Pseudomonas aeruginosa transcriptional regulator PqsR: biophysically guided hit discovery and optimization.

    PubMed

    Klein, Tobias; Henn, Claudia; de Jong, Johannes C; Zimmer, Christina; Kirsch, Benjamin; Maurer, Christine K; Pistorius, Dominik; Müller, Rolf; Steinbach, Anke; Hartmann, Rolf W

    2012-09-21

    The Gram-negative pathogen Pseudomonas aeruginosa produces an intercellular alkyl quinolone signaling molecule, the Pseudomonas quinolone signal. The pqs quorum sensing communication system that is characteristic for P. aeruginosa regulates the production of virulence factors. Therefore, we consider the pqs system a novel target to limit P. aeruginosa pathogenicity. Here, we present small molecules targeting a key player of the pqs system, PqsR. A rational design strategy in combination with surface plasmon resonance biosensor analysis led to the identification of PqsR binders. Determination of thermodynamic binding signatures and functional characterization in E. coli guided the hit optimization, resulting in the potent hydroxamic acid derived PqsR antagonist 11 (IC(50) = 12.5 μM). Remarkably it displayed a comparable potency in P. aeruginosa (IC(50) = 23.6 μM) and reduced the production of the virulence factor pyocyanin. Beyond this, site-directed mutagenesis together with thermodynamic analysis provided insights into the energetic characteristics of protein-ligand interactions. Thus the identified PqsR antagonists are promising scaffolds for further drug design efforts against this important pathogen.

  11. Complex small-molecule architectures regulate phenotypic plasticity in a nematode.

    PubMed

    Bose, Neelanjan; Ogawa, Akira; von Reuss, Stephan H; Yim, Joshua J; Ragsdale, Erik J; Sommer, Ralf J; Schroeder, Frank C

    2012-12-07

    Chemistry the worm's way: The nematode Pristionchus pacificus constructs elaborate small molecules from modified building blocks of primary metabolism, including an unusual xylopyranose-based nucleoside (see scheme). These compounds act as signaling molecules to control adult phenotypic plasticity and dauer development and provide examples of modular generation of structural diversity in metazoans. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Light Controlled Modulation of Gene Expression by Chemical Optoepigenetic Probes

    PubMed Central

    Reis, Surya A.; Ghosh, Balaram; Hendricks, J. Adam; Szantai-Kis, D. Miklos; Törk, Lisa; Ross, Kenneth N.; Lamb, Justin; Read-Button, Willis; Zheng, Baixue; Wang, Hongtao; Salthouse, Christopher; Haggarty, Stephen J.; Mazitschek, Ralph

    2016-01-01

    Epigenetic gene regulation is a dynamic process orchestrated by chromatin-modifying enzymes. Many of these master regulators exert their function through covalent modification of DNA and histone proteins. Aberrant epigenetic processes have been implicated in the pathophysiology of multiple human diseases. Small-molecule inhibitors have been essential to advancing our understanding of the underlying molecular mechanisms of epigenetic processes. However, the resolution offered by small molecules is often insufficient to manipulate epigenetic processes with high spatio-temporal control. Here, we present a novel and generalizable approach, referred to as ‘Chemo-Optical Modulation of Epigenetically-regulated Transcription’ (COMET), enabling high-resolution, optical control of epigenetic mechanisms based on photochromic inhibitors of human histone deacetylases using visible light. COMET probes may translate into novel therapeutic strategies for diseases where conditional and selective epigenome modulation is required. PMID:26974814

  13. Chemical genomics: characterizing target pathways for bioactive compounds using the endomembrane trafficking network.

    PubMed

    Rodriguez-Furlán, Cecilia; Hicks, Glenn R; Norambuena, Lorena

    2014-01-01

    The plant endomembrane trafficking system is a highly complex set of processes. This complexity presents a challenge for its study. Classical plant genetics often struggles with loss-of-function lethality and gene redundancy. Chemical genomics allows overcoming many of these issues by using small molecules of natural or synthetic origin to inhibit specific trafficking proteins thereby affecting the processes in a tunable and reversible manner. Bioactive chemicals identified by high-throughput phenotype screens must be characterized in detail starting with understanding of the specific trafficking pathways affected. Here, we describe approaches to characterize bioactive compounds that perturb vesicle trafficking. This should equip researchers with practical knowledge on how to identify endomembrane-specific trafficking pathways that may be perturbed by specific compounds and will help to eventually identify molecular targets for these small molecules.

  14. Fully automatic assignment of small molecules' NMR spectra without relying on chemical shift predictions.

    PubMed

    Castillo, Andrés M; Bernal, Andrés; Patiny, Luc; Wist, Julien

    2015-08-01

    We present a method for the automatic assignment of small molecules' NMR spectra. The method includes an automatic and novel self-consistent peak-picking routine that validates NMR peaks in each spectrum against peaks in the same or other spectra that are due to the same resonances. The auto-assignment routine used is based on branch-and-bound optimization and relies predominantly on integration and correlation data; chemical shift information may be included when available to fasten the search and shorten the list of viable assignments, but in most cases tested, it is not required in order to find the correct assignment. This automatic assignment method is implemented as a web-based tool that runs without any user input other than the acquired spectra. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Solid-phase assays for small molecule screening using sol-gel entrapped proteins.

    PubMed

    Lebert, Julie M; Forsberg, Erica M; Brennan, John D

    2008-04-01

    With compound libraries exceeding one million compounds, the ability to quickly and effectively screen these compounds against relevant pharmaceutical targets has become crucial. Solid-phase assays present several advantages over solution-based methods. For example, a higher degree of miniaturization can be achieved, functional- and affinity-based studies are possible, and a variety of detection methods can be used. Unfortunately, most protein immobilization methods are either too harsh or require recombinant proteins and thus are not amenable to delicate proteins such as kinases and membrane-bound receptors. Sol-gel encapsulation of proteins in an inorganic silica matrix has emerged as a novel solid-phase assay platform. In this minireview, we discuss the development of sol-gel derived protein microarrays and sol-gel based monolithic bioaffinity columns for the high-throughput screening of small molecule libraries and mixtures.

  16. Elucidation of the Hsp90 C-terminal Inhibitor Binding Site

    PubMed Central

    Matts, Robert L.; Dixit, Anshuman; Peterson, Laura B.; Sun, Liang; Voruganti, Sudhakar; Kalyanaraman, Palgunan; Hartson, Steve D.; Verkhivker, Gennady M.; Blagg, Brian S. J.

    2011-01-01

    The Hsp90 chaperone machine is required for the folding, activation and/or stabilization of more than 50 proteins directly related to malignant progression. Hsp90 contains small molecule binding sites at both its N- and C-terminal domains, however, limited structural and biochemical data regarding the C-terminal binding site is available. In this report, the small molecule binding site in the Hsp90 C-terminal domain was revealed by protease fingerprinting and photoaffinity labeling utilizing LC-MS/MS. The identified site was characterized by generation of a homology model for hHsp90α using the SAXS open structure of HtpG and docking the bioactive conformation of NB into the generated model. The resulting model for the bioactive conformation of NB bound to Hsp90α is presented herein. PMID:21548602

  17. Using naturally occurring polysaccharides to align molecules with nonlinear optical activity

    NASA Technical Reports Server (NTRS)

    Prasthofer, Thomas

    1996-01-01

    The Biophysics and Advanced Materials Branch of the Microgravity Science and Applications Division at Marshall Space Flight Center has been investigating polymers with the potential for nonlinear optical (NLO) applications for a number of years. Some of the potential applications for NLO materials include optical communications, computing, and switching. To this point the branch's research has involved polydiacetylenes, phthalocyanins, and other synthetic polymers which have inherent NLO properties. The aim of the present research is to investigate the possibility of using naturally occurring polymers such as polysaccharides or proteins to trap and align small organic molecules with useful NLO properties. Ordering molecules with NLO properties enhances 3rd order nonlinear effects and is required for 2nd order nonlinear effects. Potential advantages of such a system are the flexibility to use different small molecules with varying chemical and optical properties, the stability and cost of the polymers, and the ability to form thin, optically transparent films. Since the quality of any polymer films depends on optimizing ordering and minimizing defects, this work is particularly well suited for microgravity experiments. Polysaccharide and protein polymers form microscopic crystallites which must align to form ordered arrays. The ordered association of crystallites is disrupted by gravity effects and NASA research on protein crystal growth has demonstrated that low gravity conditions can improve crystal quality.

  18. Inhibition of SIRT1 by a small molecule induces apoptosis in breast cancer cells.

    PubMed

    Kalle, Arunasree M; Mallika, A; Badiger, Jayasree; Alinakhi; Talukdar, Pinaki; Sachchidanand

    2010-10-08

    Overexpression of SIRT1, a NAD+-dependent class III histone deacetylases (HDACs), is implicated in many cancers and therefore could become a promising antitumor target. Here we demonstrate a small molecule SIRT1 inhibitor, ILS-JGB-1741(JGB1741) with potent inhibitory effects on the proliferation of human metastatic breast cancer cells, MDA-MB 231. The molecule has been designed using medicinal chemistry approach based on known SIRT1 inhibitor, sirtinol. The molecule showed a significant inhibition of SIRT1 activity compared to sirtinol. Studies on the antitumor effects of JGB on three different cancer cell lines, K562, HepG2 and MDA-MB 231 showed an IC₅₀ of 1, 10 and 0.5 μM, respectively. Further studies on MDA-MB 231 cells showed a dose-dependent increase in K9 and K382 acetylation of H3 and p53, respectively. Results also demonstrated that JGB1741-induced apoptosis is associated with increase in cytochrome c release, modulation in Bax/Bcl2 ratio and cleavage of PARP. Flowcytometric analysis showed increased percentage of apoptotic cells, decrease in mitochondrial membrane potential and increase in multicaspase activation. In conclusion, the present study indicates the potent apoptotic effects of JGB1741 in MDA-MB 231 cells. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Inhibitor of PI3K/Akt Signaling Pathway Small Molecule Promotes Motor Neuron Differentiation of Human Endometrial Stem Cells Cultured on Electrospun Biocomposite Polycaprolactone/Collagen Scaffolds.

    PubMed

    Ebrahimi-Barough, Somayeh; Hoveizi, Elham; Yazdankhah, Meysam; Ai, Jafar; Khakbiz, Mehrdad; Faghihi, Faezeh; Tajerian, Roksana; Bayat, Neda

    2017-05-01

    Small molecules as useful chemical tools can affect cell differentiation and even change cell fate. It is demonstrated that LY294002, a small molecule inhibitor of phosphatidylinositol 3-kinase (PI3K)/Akt signal pathway, can inhibit proliferation and promote neuronal differentiation of mesenchymal stem cells (MSCs). The purpose of this study was to investigate the differentiation effect of Ly294002 small molecule on the human endometrial stem cells (hEnSCs) into motor neuron-like cells on polycaprolactone (PCL)/collagen scaffolds. hEnSCs were cultured in a neurogenic inductive medium containing 1 μM LY294002 on the surface of PCL/collagen electrospun fibrous scaffolds. Cell attachment and viability of cells on scaffolds were characterized by scanning electron microscope (SEM) and 3-(4,5-dimethylthiazoyl-2-yl)2,5-diphenyltetrazolium bromide (MTT) assay. The expression of neuron-specific markers was assayed by real-time PCR and immunocytochemistry analysis after 15 days post induction. Results showed that attachment and differentiation of hEnSCs into motor neuron-like cells on the scaffolds with Ly294002 small molecule were higher than that of the cells on tissue culture plates as control group. In conclusion, PCL/collagen electrospun scaffolds with Ly294002 have potential for being used in neural tissue engineering because of its bioactive and three-dimensional structure which enhances viability and differentiation of hEnSCs into neurons through inhibition of the PI3K/Akt pathway. Thus, manipulation of this pathway by small molecules can enhance neural differentiation.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iconaru, Luigi I.; Ban, David; Bharatham, Kavitha

    In disordered proteins we see that they are highly prevalent in biological systems. They control myriad signaling and regulatory processes, and their levels and/or cellular localization are often altered in human disease. In contrast to folded proteins, disordered proteins, due to conformational heterogeneity and dynamics, are not considered viable drug targets. We challenged this paradigm by identifying through NMR-based screening small molecules that bound specifically, albeit weakly, to the disordered cell cycle regulator, p27 Kip1 (p27). Moreover, two groups of molecules bound to sites created by transient clusters of aromatic residues within p27. Conserved chemical features within these two groupsmore » of small molecules exhibited complementarity to their binding sites within p27, establishing structure-activity relationships for small molecule: disordered protein interactions. Finally, one compound counteracted the Cdk2/cyclin A inhibitory function of p27 in vitro, providing proof-of- principle that small molecules can inhibit the function of a disordered protein (p27) through sequestration in a conformation incapable of folding and binding to a natural regulatory target (Cdk2/cyclin A).« less

  1. Simple and green synthesis of protein-conjugated CdS nanoparticles and spectroscopic study on the interaction between CdS and zein

    NASA Astrophysics Data System (ADS)

    Qin, Dezhi; Zhang, Li; Du, Xian; Wang, Yabo; Zhang, Qiuxia

    2016-09-01

    The present study demonstrates the role of zein molecules in synthesizing CdS nanoassemblies through protein-directed, green synthetic approach. Zein molecules can as capping ligand and stabilizing agent to regulate the nucleation and growth of CdS nanocrystals, and the obtained products are organic-inorganic nanocomposites. The analysis of surface charge and conductivity indicates that strong electrostatic force restricts mobility of ions, which creates a local supersaturation surrounding the binding sites of zein and reduces the activated energy of nucleation. The interaction between Cd2+/CdS and zein molecules was systematically investigated through spectroscopy techniques. Fourier transform infrared (FT-IR) spectra were used to envisage the binding of the functional groups of zein with the surface of CdS nanoparticles. Ultraviolet visible (UV-Vis) and photoluminescence (PL) spectra results show that Cd2+/CdS might interact with the aromatic amino acids of protein molecules and change its chemical microenvironment. The quantum-confined effect of nanocrystals is confirmed by optical absorption spectrum due to the small size (3-5 nm) of CdS particles. The data of circular dichroism (CD) spectra indicate that the formation of CdS nanocrystals could lead to the conformational change of zein molecules. Moreover, the possible mechanism of CdS nanocrystals growth in zein solution was also discussed. The weak interactions such as Van der Waals, hydrophobic forces and hydrogen bonds in zein molecules should play a crucial factor in the self-assembly of small nanoparticles.

  2. Middle molecules and small-molecular-weight proteins in ESRD: properties and strategies for their removal.

    PubMed

    Clark, William R; Winchester, James F

    2003-10-01

    Molecular weight has traditionally been the parameter most commonly used to classify uremic toxins, with a value of approximately 500 Da frequently used as a demarcation point below which the molecular weights of small nitrogenous waste products fall. This toxin group, the most extensively studied from a clinical perspective, is characterized by a high degree of water solubility and the absence of protein binding. However, uremia is mediated by the retention of a plethora of other compounds having characteristics that differ significantly from those of the previously mentioned group. As opposed to the relative homogeneity of the nitrogenous metabolite class, other uremic toxins collectively are a very heterogeneous group, not only with respect to molecular weight but also other characteristics, such as protein binding and hydrophobicity. A recently proposed classification scheme by the European Uraemic Toxin Work Group subdivides the remainder of molecules into 2 categories: protein-bound solutes and middle molecules. For the latter group, the Work Group proposes a molecular weight range (500-60,000 Da) that incorporates many toxins identified since the original middle molecule hypothesis, for which the upper molecular weight limit was approximately 2,000 Da. In fact, low-molecular-weight peptides and proteins (LMWPs) comprise nearly the entire middle molecule category in the new scheme. The purpose of this article is to provide an overview of the middle molecule class of uremic toxins, with the focus on LMWPs. A brief review of LMWP metabolism under conditions of normal (and in a few cases, abnormal) renal function will be presented. The physical characteristics of several LMWPs will also be presented, including molecular weight, conformation, and charge. Specific LMWPs to be covered will include beta 2-microglobulin, complement proteins (C3a and Factor D), leptin, and proinflammatory cytokines. The article will also include a discussion of the treatment-related factors influencing dialytic removal of middle molecules. Once these factors, which include membrane characteristics, protein-membrane interactions, and solute removal mechanisms, are discussed, an overview of the different therapeutic strategies used to enhance clearance of these compounds is provided.

  3. Tulane/Xavier Vaccine Development/Engineering Project

    DTIC Science & Technology

    2009-02-01

    spectroscopic studies with polar dyes (e.g. proflavine ) have verified these compounds’ ability to encapsulate and solvate small polar dye molecules in...systems. Fluorescent microscopy studies verify that they significantly enhance the transport of polar small molecules ( proflavin dye) through

  4. Difficulties in Laboratory Studies and Astronomical Observations of Organic Molecules: Hydroxyacetone and Lactic Acid

    NASA Technical Reports Server (NTRS)

    Apponi, A. J.; Brewster, M. A.; Hoy, J.; Ziurys, L. M.

    2006-01-01

    For the past 35 years, radio astronomy has revealed a rich organic chemistry in the interstellar gas, which is exceptionally complex towards active star-forming regions. New solar systems condense out of this gas and may influence the evolution of life on newly formed planets. Much of the biologically important functionality is present among the some 130 gas-phase molecules found to date, including alcohols, aldehydes, ketones, acids, amines, amides and even the simplest sugar - glycolaldehyde. Still, many unidentified interstellar radio signals remain, and their identification relies on further laboratory study. The molecules hydroxyacetone and lactic acid are relatively small organic molecules, but possess rather complex rotational spectra owing to their high asymmetry. Hydroxyacetone is particularly problematic because it possess a very low barrier to internal rotation, and exhibits strong coupling of the free-rotor states with the overall rotation of the molecule. As in the case of acetamide, a full decomposition method was employed to order the resultant eigenstates onto normal asymmetric top eigenvectors.

  5. Mass action at the single-molecule level.

    PubMed

    Shon, Min Ju; Cohen, Adam E

    2012-09-05

    We developed a system to reversibly encapsulate small numbers of molecules in an array of nanofabricated "dimples". This system enables highly parallel, long-term, and attachment-free studies of molecular dynamics via single-molecule fluorescence. In studies of bimolecular reactions of small numbers of confined molecules, we see phenomena that, while expected from basic statistical mechanics, are not observed in bulk chemistry. Statistical fluctuations in the occupancy of sealed reaction chambers lead to steady-state fluctuations in reaction equilibria and rates. These phenomena are likely to be important whenever reactions happen in confined geometries.

  6. Extracellular matrix biomimicry for the creation of investigational and therapeutic devices.

    PubMed

    Pellowe, Amanda S; Gonzalez, Anjelica L

    2016-01-01

    The extracellular matrix (ECM) is a web of fibrous proteins that serves as a scaffold for tissues and organs, and is important for maintaining homeostasis and facilitating cellular adhesion. Integrin transmembrane receptors are the primary adhesion molecules that anchor cells to the ECM, thus integrating cells with their microenvironments. Integrins play a critical role in facilitating cell-matrix interactions and promoting signal transduction, both from the cell to the ECM and vice versa, ultimately mediating cell behavior. For this reason, many advanced biomaterials employ biomimicry by replicating the form and function of fibrous ECM proteins. The ECM also acts as a reservoir for small molecules and growth factors, wherein fibrous proteins directly bind and present these bioactive moieties that facilitate cell activity. Therefore biomimicry can be enhanced by incorporating small molecules into ECM-like substrates. Biomimetic ECM materials have served as invaluable research tools for studying interactions between cells and the surrounding ECM, revealing that cell-matrix signaling is driven by mechanical forces, integrin engagement, and small molecules. Mimicking pathological ECMs has also elucidated disease specific cell behaviors. For example, biomimetic tumor microenvironments have been used to induce metastatic cell behaviors, and have thereby shown promise for in vitro cancer drug testing and targeting. Further, ECM-like substrates have been successfully employed for autologous cell recolonization for tissue engineering and wound healing. As we continue to learn more about the mechanical and biochemical characteristics of the ECM, these properties can be harnessed to develop new biomaterials, biomedical devices, and therapeutics. © 2015 Wiley Periodicals, Inc.

  7. Assessing the properties of internal standards for quantitative matrix-assisted laser desorption/ionization mass spectrometry of small molecules.

    PubMed

    Sleno, Lekha; Volmer, Dietrich A

    2006-01-01

    Growing interest in the ability to conduct quantitative assays for small molecules by matrix-assisted laser desorption/ionization (MALDI) has been the driving force for several recent studies. This present work includes the investigation of internal standards for these analyses using a high-repetition rate MALDI triple quadrupole instrument. Certain physicochemical properties are assessed for predicting possible matches for internal standards for different small molecules. The importance of similar molecular weight of an internal standard to its analyte is seen through experiments with a series of acylcarnitines, having a fixed charge site and growing alkyl chain length. Both acetyl- and hexanoyl-carnitine were systematically assessed with several other acylcarnitine compounds as internal standards. The results clearly demonstrate that closely matched molecular weights between analyte and internal standard are essential for acceptable quantitation results. Using alpha-cyano-4-hydroxycinnamic acid as the organic matrix, the similarities between analyte and internal standard remain the most important parameter and not necessarily their even distribution within the solid sample spot. Several 4-quinolone antibiotics as well as a diverse group of pharmaceutical drugs were tested as internal standards for the 4-quinolone, ciprofloxacin. Quantitative results were shown using the solution-phase properties, log D and pKa, of these molecules. Their distribution coefficients, log D, are demonstrated as a fundamental parameter for similar crystallization patterns of analyte and internal standard. In the end, it was also possible to quantify ciprofloxacin using a drug from a different compound class, namely quinidine, having a similar log D value as the analyte. Copyright 2006 John Wiley & Sons, Ltd.

  8. Interaction of TAPBPR, a tapasin homolog, with MHC-I molecules promotes peptide editing.

    PubMed

    Morozov, Giora I; Zhao, Huaying; Mage, Michael G; Boyd, Lisa F; Jiang, Jiansheng; Dolan, Michael A; Venna, Ramesh; Norcross, Michael A; McMurtrey, Curtis P; Hildebrand, William; Schuck, Peter; Natarajan, Kannan; Margulies, David H

    2016-02-23

    Peptide loading of major histocompatibility complex class I (MHC-I) molecules is central to antigen presentation, self-tolerance, and CD8(+) T-cell activation. TAP binding protein, related (TAPBPR), a widely expressed tapasin homolog, is not part of the classical MHC-I peptide-loading complex (PLC). Using recombinant MHC-I molecules, we show that TAPBPR binds HLA-A*02:01 and several other MHC-I molecules that are either peptide-free or loaded with low-affinity peptides. Fluorescence polarization experiments establish that TAPBPR augments peptide binding by MHC-I. The TAPBPR/MHC-I interaction is reversed by specific peptides, related to their affinity. Mutational and small-angle X-ray scattering (SAXS) studies confirm the structural similarities of TAPBPR with tapasin. These results support a role of TAPBPR in stabilizing peptide-receptive conformation(s) of MHC-I, permitting peptide editing.

  9. Interaction of TAPBPR, a tapasin homolog, with MHC-I molecules promotes peptide editing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morozov, Giora I.; Zhao, Huaying; Mage, Michael G.

    Peptide loading of major histocompatibility complex class I (MHC-I) molecules is central to antigen presentation, self-tolerance, and CD8 + T-cell activation. TAP binding protein, related (TAPBPR), a widely expressed tapasin homolog, is not part of the classical MHC-I peptide-loading complex (PLC). Using recombinant MHC-I molecules, we show that TAPBPR binds HLA-A*02:01 and several other MHC-I molecules that are either peptide-free or loaded with low-affinity peptides. Fluorescence polarization experiments establish that TAPBPR augments peptide binding by MHC-I. The TAPBPR/MHC-I interaction is reversed by specific peptides, related to their affinity. Mutational and small-angle X-ray scattering (SAXS) studies confirm the structural similarities ofmore » TAPBPR with tapasin. These results support a role of TAPBPR in stabilizing peptide-receptive conformation(s) of MHC-I, permitting peptide editing.« less

  10. Interaction of TAPBPR, a tapasin homolog, with MHC-I molecules promotes peptide editing

    DOE PAGES

    Morozov, Giora I.; Zhao, Huaying; Mage, Michael G.; ...

    2016-02-11

    Peptide loading of major histocompatibility complex class I (MHC-I) molecules is central to antigen presentation, self-tolerance, and CD8 + T-cell activation. TAP binding protein, related (TAPBPR), a widely expressed tapasin homolog, is not part of the classical MHC-I peptide-loading complex (PLC). Using recombinant MHC-I molecules, we show that TAPBPR binds HLA-A*02:01 and several other MHC-I molecules that are either peptide-free or loaded with low-affinity peptides. Fluorescence polarization experiments establish that TAPBPR augments peptide binding by MHC-I. The TAPBPR/MHC-I interaction is reversed by specific peptides, related to their affinity. Mutational and small-angle X-ray scattering (SAXS) studies confirm the structural similarities ofmore » TAPBPR with tapasin. These results support a role of TAPBPR in stabilizing peptide-receptive conformation(s) of MHC-I, permitting peptide editing.« less

  11. Polycyclic aromatic hydrocarbon optical properties and contribution to the acceleration of stellar outflows

    NASA Technical Reports Server (NTRS)

    Cherchneff, Isabelle; Barker, John R.; Tielens, Alexander G. G. M.

    1991-01-01

    The optical constants of four polycyclic aromatic hydrocarbon (PAH) molecules (benzene, pyrene, pentacene, and coronene) are determined from their measured laboratory absorption spectra. The Planck mean of the radiation pressure cross section is computed for each molecule and for amorphous carbon (AC) grains, and semiempirically estimated for large PAH molecules up to 400 carbon atoms. Assuming that PAHs are present in carbon-rich stellar outflows, the radiation pressure forces acting on them are calculated and compared with the radiation forces on AC particles. The results show that PAHs possess very different optical properties from AC grains. Small PAHs may experience an 'inverse greenhouse' effect in the inner part of the envelope, as they decouple from the gas close to the photosphere. The radiation pressure force on PAHs is always much less than the force at work on AC grains, and PAH molecules do not affect significantly the dynamics of the outflow.

  12. Caenorhabditis elegans chemical biology: lessons from small molecules

    USDA-ARS?s Scientific Manuscript database

    How can we complement Caenorhabditis elegans genomics and proteomics with a comprehensive structural and functional annotation of its metabolome? Several lines of evidence indicate that small molecules of largely undetermined structure play important roles in C. elegans biology, including key pathw...

  13. Solution-processed small molecule:fullerene bulk-heterojunction solar cells: impedance spectroscopy deduced bulk and interfacial limits to fill-factors.

    PubMed

    Guerrero, Antonio; Loser, Stephen; Garcia-Belmonte, Germà; Bruns, Carson J; Smith, Jeremy; Miyauchi, Hiroyuki; Stupp, Samuel I; Bisquert, Juan; Marks, Tobin J

    2013-10-21

    Using impedance spectroscopy, we demonstrate that the low fill factor (FF) typically observed in small molecule solar cells is due to hindered carrier transport through the active layer and hindered charge transfer through the anode interfacial layer (IFL). By carefully tuning the active layer thickness and anode IFL in BDT(TDPP)2 solar cells, the FF is increased from 33 to 55% and the PCE from 1.9 to 3.8%. These results underscore the importance of simultaneously optimizing active layer thickness and IFL in small molecule solar cells.

  14. Inhibitors of voltage-gated sodium channel Nav1.7: patent applications since 2010.

    PubMed

    Sun, Shaoyi; Cohen, Charles J; Dehnhardt, Christoph M

    2014-09-01

    There has been intense interest in developing inhibitors of the sodium channel Nav1.7 because genetic studies have established very strong validation for the efficacy to alleviate both inflammatory and neuropathic pain. This review summarizes patent applications targeting Nav1.7 since 2010 until May, 2014. We have classified the patents into three categories as follows: small molecules with well-defined molecular selectivity among sodium channel isoforms; biologicals with well-defined molecular selectivity; and, small molecules that inhibit Nav1.7 with unknown molecular selectivity. Most of the review is dedicated to small molecule selective compounds.

  15. Photobleaching dynamics in small molecule vs.  polymer organic photovoltaic blends with 1,7-bis-trifluoromethylfullerene

    DOE PAGES

    Garner, Logan E.; Nellissery Viswanathan, Vinila; Arias, Dylan H.; ...

    2018-02-27

    Two organic photovoltaic (OPV) donor materials (one polymer and one small molecule) are synthesized from the same constituent building blocks, namely thiophene units, cyclopentathiophene dione (CTD), and cyclopentadithiophene (CPDT). Photobleaching dynamics of these donor materials are then studied under white light illumination in air with blends of PC 70BM and the bistrifluoromethylfullerene 1,7-C 60(CF 3) 2. For both the polymer and small molecule blends, C 60(CF 3) 2 stabilizes the initial rate of photobleaching by a factor of 15 relative to PC70BM. However, once the small molecule:C 60(CF 3) 2 blend bleaches to ~80% of its initial optical density, themore » rate of photobleaching dramatically accelerates, which is not observed in the analagous polymer blend. We probe that phenomenon using time-resovled photoluminescence (TRPL) to measure PL quenching efficiencies at defined intervals during the photobleaching experiments. The data indicates the small molecule donor and C 60(CF 3) 2 acceptor significantly de-mix with time, after which the blend begins to bleach at approximately the same rate as the neat donor sample. The work suggests that perfluoroalkylfullerenes have great potential to stabilize certain OPV active layers toward photodegradation, provided their morphology is stable.« less

  16. Photobleaching dynamics in small molecule vs.  polymer organic photovoltaic blends with 1,7-bis-trifluoromethylfullerene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garner, Logan E.; Nellissery Viswanathan, Vinila; Arias, Dylan H.

    Two organic photovoltaic (OPV) donor materials (one polymer and one small molecule) are synthesized from the same constituent building blocks, namely thiophene units, cyclopentathiophene dione (CTD), and cyclopentadithiophene (CPDT). Photobleaching dynamics of these donor materials are then studied under white light illumination in air with blends of PC 70BM and the bistrifluoromethylfullerene 1,7-C 60(CF 3) 2. For both the polymer and small molecule blends, C 60(CF 3) 2 stabilizes the initial rate of photobleaching by a factor of 15 relative to PC70BM. However, once the small molecule:C 60(CF 3) 2 blend bleaches to ~80% of its initial optical density, themore » rate of photobleaching dramatically accelerates, which is not observed in the analagous polymer blend. We probe that phenomenon using time-resovled photoluminescence (TRPL) to measure PL quenching efficiencies at defined intervals during the photobleaching experiments. The data indicates the small molecule donor and C 60(CF 3) 2 acceptor significantly de-mix with time, after which the blend begins to bleach at approximately the same rate as the neat donor sample. The work suggests that perfluoroalkylfullerenes have great potential to stabilize certain OPV active layers toward photodegradation, provided their morphology is stable.« less

  17. A Potent and Selective Quinoxalinone-Based STK33 Inhibitor Does Not Show Synthetic Lethality in KRAS-Dependent Cells

    PubMed Central

    2012-01-01

    The KRAS oncogene is found in up to 30% of all human tumors. In 2009, RNAi experiments revealed that lowering mRNA levels of a transcript encoding the serine/threonine kinase STK33 was selectively toxic to KRAS-dependent cancer cell lines, suggesting that small-molecule inhibitors of STK33 might selectively target KRAS-dependent cancers. To test this hypothesis, we initiated a high-throughput screen using compounds in the Molecular Libraries Small Molecule Repository (MLSMR). Several hits were identified, and one of these, a quinoxalinone derivative, was optimized. Extensive SAR studies were performed and led to the chemical probe ML281 that showed low nanomolar inhibition of purified recombinant STK33 and a distinct selectivity profile as compared to other STK33 inhibitors that were reported in the course of these studies. Even at the highest concentration tested (10 μM), ML281 had no effect on the viability of KRAS-dependent cancer cells. These results are consistent with other recent reports using small-molecule STK33 inhibitors. Small molecules having different chemical structures and kinase-selectivity profiles are needed to fully understand the role of STK33 in KRAS-dependent cancers. In this regard, ML281 is a valuable addition to small-molecule probes of STK33. PMID:23256033

  18. Simulation-based cheminformatic analysis of organelle-targeted molecules: lysosomotropic monobasic amines

    PubMed Central

    Zhang, Xinyuan; Zheng, Nan

    2008-01-01

    Cell-based molecular transport simulations are being developed to facilitate exploratory cheminformatic analysis of virtual libraries of small drug-like molecules. For this purpose, mathematical models of single cells are built from equations capturing the transport of small molecules across membranes. In turn, physicochemical properties of small molecules can be used as input to simulate intracellular drug distribution, through time. Here, with mathematical equations and biological parameters adjusted so as to mimic a leukocyte in the blood, simulations were performed to analyze steady state, relative accumulation of small molecules in lysosomes, mitochondria, and cytosol of this target cell, in the presence of a homogenous extracellular drug concentration. Similarly, with equations and parameters set to mimic an intestinal epithelial cell, simulations were also performed to analyze steady state, relative distribution and transcellular permeability in this non-target cell, in the presence of an apical-to-basolateral concentration gradient. With a test set of ninety-nine monobasic amines gathered from the scientific literature, simulation results helped analyze relationships between the chemical diversity of these molecules and their intracellular distributions. Electronic supplementary material The online version of this article (doi:10.1007/s10822-008-9194-7) contains supplementary material, which is available to authorized users. PMID:18338229

  19. Signal-enhancer molecules encapsulated liposome as a valuable sensing and amplification platform combining the aptasensor for ultrasensitive ECL immunoassay.

    PubMed

    Mao, Li; Yuan, Ruo; Chai, Yaqin; Zhuo, Ying; Xiang, Yun

    2011-06-15

    An innovatory ECL immunoassay strategy was proposed to detect the newly developing heart failure biomarker N-terminal pro-brain natriuretic peptide (NT-proBNP). Firstly, this strategy used small molecules encapsulated liposome as immune label to construct a sandwich immune sensing platform for NT-proBNP. Then the ECL aptasensor was prepared to collect and detect the small molecules released from the liposome. Finally, based on the ECL signal changes caused by the small molecules, the ECL signal indirectly reflected the level of NT-proBNP antigen. In this experiment, the cocaine was chosen as the proper small molecule that can act as signal-enhancer to enhance the ECL of Ru(bpy)(3)(2+). The cocaine-encapsulated liposomes were successfully characterized by TEM. The quantificational calculation proved the ∼5.3×10(3) cocaine molecules per liposome enough to perform the assignment of signal amplification. The cocaine-binding ECL aptasensor further promoted the work aimed at amplifying signal. The performance of NT-proBNP assay by the proposed strategy exhibited high sensitivity and high specificities with a linear relationship over 0.01-500 ng mL(-1) range, and a detection limit down to 0.77 pg mL(-1). Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Reading PDB: perception of molecules from 3D atomic coordinates.

    PubMed

    Urbaczek, Sascha; Kolodzik, Adrian; Groth, Inken; Heuser, Stefan; Rarey, Matthias

    2013-01-28

    The analysis of small molecule crystal structures is a common way to gather valuable information for drug development. The necessary structural data is usually provided in specific file formats containing only element identities and three-dimensional atomic coordinates as reliable chemical information. Consequently, the automated perception of molecular structures from atomic coordinates has become a standard task in cheminformatics. The molecules generated by such methods must be both chemically valid and reasonable to provide a reliable basis for subsequent calculations. This can be a difficult task since the provided coordinates may deviate from ideal molecular geometries due to experimental uncertainties or low resolution. Additionally, the quality of the input data often differs significantly thus making it difficult to distinguish between actual structural features and mere geometric distortions. We present a method for the generation of molecular structures from atomic coordinates based on the recently published NAOMI model. By making use of this consistent chemical description, our method is able to generate reliable results even with input data of low quality. Molecules from 363 Protein Data Bank (PDB) entries could be perceived with a success rate of 98%, a result which could not be achieved with previously described methods. The robustness of our approach has been assessed by processing all small molecules from the PDB and comparing them to reference structures. The complete data set can be processed in less than 3 min, thus showing that our approach is suitable for large scale applications.

  1. Modeling corrosion inhibition efficacy of small organic molecules as non-toxic chromate alternatives using comparative molecular surface analysis (CoMSA).

    PubMed

    Fernandez, Michael; Breedon, Michael; Cole, Ivan S; Barnard, Amanda S

    2016-10-01

    Traditionally many structural alloys are protected by primer coatings loaded with corrosion inhibiting additives. Strontium Chromate (or other chromates) have been shown to be extremely effectively inhibitors, and find extensive use in protective primer formulations. Unfortunately, hexavalent chromium which imbues these coatings with their corrosion inhibiting properties is also highly toxic, and their use is being increasingly restricted by legislation. In this work we explore a novel tridimensional Quantitative-Structure Property Relationship (3D-QSPR) approach, comparative molecular surface analysis (CoMSA), which was developed to recognize "high-performing" corrosion inhibitor candidates from the distributions of electronegativity, polarizability and van der Waals volume on the molecular surfaces of 28 small organic molecules. Multivariate statistical analysis identified five prototypes molecules, which are capable of explaining 71% of the variance within the inhibitor data set; whilst a further five molecules were also identified as archetypes, describing 75% of data variance. All active corrosion inhibitors, at a 80% threshold, were successfully recognized by the CoMSA model with adequate specificity and precision higher than 70% and 60%, respectively. The model was also capable of identifying structural patterns, that revealed reasonable starting points for where structural changes may augment corrosion inhibition efficacy. The presented methodology can be applied to other functional molecules and extended to cover structure-activity studies in a diverse range of areas such as drug design and novel material discovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakatsuji, Hiroshi, E-mail: h.nakatsuji@qcri.or.jp; Nakashima, Hiroyuki

    The Schrödinger equation (SE) and the antisymmetry principle constitute the governing principle of chemistry. A general method of solving the SE was presented before as the free complement (FC) theory, which gave highly accurate solutions for small atoms and molecules. We assume here to use the FC theory starting from the local valence bond wave function. When this theory is applied to larger molecules, antisymmetrizations of electronic wave functions become time-consuming and therefore, an additional breakthrough is necessary concerning the antisymmetry principle. Usually, in molecular calculations, we first construct the wave function to satisfy the antisymmetry rule, “electronic wave functionsmore » must be prescribed to be antisymmetric for all exchanges of electrons, otherwise bosonic interference may disturb the basis of the science.” Starting from determinantal wave functions is typical. Here, we give an antisymmetrization theory, called inter-exchange (iExg) theory, by dividing molecular antisymmetrizations to those within atoms and between atoms. For the electrons belonging to distant atoms in a molecule, only partial antisymmetrizations or even no antisymmetrizations are necessary, depending on the distance between the atoms. So, the above antisymmetry rule is not necessarily followed strictly to get the results of a desired accuracy. For this and other reasons, the necessary parts of the antisymmetrization operations become very small as molecules become larger, leading finally to the operation counts of lower orders of N, the number of electrons. This theory creates a natural antisymmetrization method that is useful for large molecules.« less

  3. Stochastic voyages into uncharted chemical space produce a representative library of all possible drug-like compounds

    PubMed Central

    Virshup, Aaron M.; Contreras-García, Julia; Wipf, Peter; Yang, Weitao; Beratan, David N.

    2013-01-01

    The “small molecule universe” (SMU), the set of all synthetically feasible organic molecules of 500 Daltons molecular weight or less, is estimated to contain over 1060 structures, making exhaustive searches for structures of interest impractical. Here, we describe the construction of a “representative universal library” spanning the SMU that samples the full extent of feasible small molecule chemistries. This library was generated using the newly developed Algorithm for Chemical Space Exploration with Stochastic Search (ACSESS). ACSESS makes two important contributions to chemical space exploration: it allows the systematic search of the unexplored regions of the small molecule universe, and it facilitates the mining of chemical libraries that do not yet exist, providing a near-infinite source of diverse novel compounds. PMID:23548177

  4. Measurements of trap dynamics of cold OH molecules using resonance-enhanced multiphoton ionization

    NASA Astrophysics Data System (ADS)

    Gray, John M.; Bossert, Jason A.; Shyur, Yomay; Lewandowski, H. J.

    2017-08-01

    Trapping cold, chemically important molecules with electromagnetic fields is a useful technique to study small molecules and their interactions. Traps provide long interaction times, which are needed to precisely examine these low-density molecular samples. However, the trapping fields lead to nonuniform molecular density distributions in these systems. Therefore, it is important to be able to experimentally characterize the spatial density distribution in the trap. Ionizing molecules at different locations in the trap using resonance-enhanced multiphoton ionization (REMPI) and detecting the resulting ions can be used to probe the density distribution even at the low density present in these experiments because of the extremely high efficiency of detection. Until recently, one of the most chemically important molecules, OH, did not have a convenient REMPI scheme identified. Here, we use a newly developed 1 +1' REMPI scheme to detect trapped cold OH molecules. We use this capability to measure the trap dynamics of the central density of the cloud and the density distribution. These types of measurements can be used to optimize loading of molecules into traps, as well as to help characterize the energy distribution, which is critical knowledge for interpreting molecular collision experiments.

  5. Structural Mechanism of the Interaction of Alzheimer Disease Aβ Fibrils with the Non-steroidal Anti-inflammatory Drug (NSAID) Sulindac Sulfide.

    PubMed

    Prade, Elke; Bittner, Heiko J; Sarkar, Riddhiman; Lopez Del Amo, Juan Miguel; Althoff-Ospelt, Gerhard; Multhaup, Gerd; Hildebrand, Peter W; Reif, Bernd

    2015-11-27

    Alzheimer disease is the most severe neurodegenerative disease worldwide. In the past years, a plethora of small molecules interfering with amyloid-β (Aβ) aggregation has been reported. However, their mode of interaction with amyloid fibers is not understood. Non-steroidal anti-inflammatory drugs (NSAIDs) are known γ-secretase modulators; they influence Aβ populations. It has been suggested that NSAIDs are pleiotrophic and can interact with more than one pathomechanism. Here we present a magic angle spinning solid-state NMR study demonstrating that the NSAID sulindac sulfide interacts specifically with Alzheimer disease Aβ fibrils. We find that sulindac sulfide does not induce drastic architectural changes in the fibrillar structure but intercalates between the two β-strands of the amyloid fibril and binds to hydrophobic cavities, which are found consistently in all analyzed structures. The characteristic Asp(23)-Lys(28) salt bridge is not affected upon interacting with sulindac sulfide. The primary binding site is located in the vicinity of residue Gly(33), a residue involved in Met(35) oxidation. The results presented here will assist the search for pharmacologically active molecules that can potentially be employed as lead structures to guide the design of small molecules for the treatment of Alzheimer disease. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Prediction and validation of diffusion coefficients in a model drug delivery system using microsecond atomistic molecular dynamics simulation and vapour sorption analysis.

    PubMed

    Forrey, Christopher; Saylor, David M; Silverstein, Joshua S; Douglas, Jack F; Davis, Eric M; Elabd, Yossef A

    2014-10-14

    Diffusion of small to medium sized molecules in polymeric medical device materials underlies a broad range of public health concerns related to unintended leaching from or uptake into implantable medical devices. However, obtaining accurate diffusion coefficients for such systems at physiological temperature represents a formidable challenge, both experimentally and computationally. While molecular dynamics simulation has been used to accurately predict the diffusion coefficients, D, of a handful of gases in various polymers, this success has not been extended to molecules larger than gases, e.g., condensable vapours, liquids, and drugs. We present atomistic molecular dynamics simulation predictions of diffusion in a model drug eluting system that represent a dramatic improvement in accuracy compared to previous simulation predictions for comparable systems. We find that, for simulations of insufficient duration, sub-diffusive dynamics can lead to dramatic over-prediction of D. We present useful metrics for monitoring the extent of sub-diffusive dynamics and explore how these metrics correlate to error in D. We also identify a relationship between diffusion and fast dynamics in our system, which may serve as a means to more rapidly predict diffusion in slowly diffusing systems. Our work provides important precedent and essential insights for utilizing atomistic molecular dynamics simulations to predict diffusion coefficients of small to medium sized molecules in condensed soft matter systems.

  7. Enhanced EGFR Targeting Activity of Plasmonic Nanostructures with Engineered GE11 Peptide.

    PubMed

    Biscaglia, Francesca; Rajendran, Senthilkumar; Conflitti, Paolo; Benna, Clara; Sommaggio, Roberta; Litti, Lucio; Mocellin, Simone; Bocchinfuso, Gianfranco; Rosato, Antonio; Palleschi, Antonio; Nitti, Donato; Gobbo, Marina; Meneghetti, Moreno

    2017-12-01

    Plasmonic nanostructures show important properties for biotechnological applications, but they have to be guided on the target for exploiting their potentialities. Antibodies are the natural molecules for targeting. However, their possible adverse immunogenic activity and their cost have suggested finding other valid substitutes. Small molecules like peptides can be an alternative source of targeting agents, even if, as single molecules, their binding affinity is usually not very good. GE11 is a small dodecapeptide with specific binding to the epidermal growth factor receptor (EGFR) and low immunogenicity. The present work shows that thousands of polyethylene glycol (PEG) chains modified with lysines and functionalized with GE11 on clusters of naked gold nanoparticles, obtained by laser ablation in water, achieves a better targeting activity than that recorded with nanoparticles decorated with the specific anti-EGFR antibody Cetuximab (C225). The insertion of the cationic spacer between the polymeric part of the ligand and the targeting peptide allows for a proper presentation of GE11 on the surface of the nanosystems. Surface enhanced resonance Raman scattering signals of the plasmonic gold nanoparticles are used for quantifying the targeting activity. Molecular dynamic calculations suggest that subtle differences in the exposition of the peptide on the PEG sea are important for the targeting activity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Chembank | Office of Cancer Genomics

    Cancer.gov

    Funded in large part by the Initiative for Chemical Genetics (ICG), Chembank is an interactive database for small molecules. It contains data from hundreds of biomedically relevant small molecule screens that involved hundreds-of-thousands of compounds. Chembank also provides analysis tools to facilitate data mining.

  9. Combined treatment of curcumin and small molecule inhibitors suppresses proliferation of A549 and H1299 human non-small-cell lung cancer cells.

    PubMed

    Lin, Hui-Ping; Kuo, Li-Kuo; Chuu, Chih-Pin

    2012-01-01

    Curcumin (diferuloylmethane) is a phenolic compound present in turmeric and is ingested daily in many parts of the world. Curcumin has been reported to cause inhibition on proliferation and induction of apoptosis in many human cancer cell lines, including non-small cell lung cancer cells (NSCLC). However, the clinical application of curcumin is restricted by its low bioavailability. In this report, it was observed that combined treatment of a low dosage of curcumin (5-10 µM) with a low concentration (0.1-2.5 µM) of small molecule inhibitors, including AG1478, AG1024, PD173074, LY294002 and caffeic acid phenethyl ester (CAPE) increased the growth inhibition in two human NSCLC cell lines: A549 and H1299 cells. The observation suggested that combined treatment of a low dosage of curcumin with inhibitors against epidermal growth factor receptor (EGFR), insulin-like growth factor 1 (IGF-1R), fibroblast growth factors receptor (FGFR), phosphatidylinositol 3-kinases (PI3K) or NF-κB signaling pathway may be a potential adjuvant therapy beneficial to NSCLC patients. Copyright © 2011 John Wiley & Sons, Ltd.

  10. π-Cation Interactions in Molecular Recognition: Perspectives on Pharmaceuticals and Pesticides.

    PubMed

    Liang, Zhibin; Li, Qing X

    2018-04-04

    The π-cation interaction that differs from the cation-π interaction is a valuable concept in molecular design of pharmaceuticals and pesticides. In this Perspective we present an up-to-date review (from 1995 to 2017) on bioactive molecules involving π-cation interactions with the recognition site, and categorize into systems of inhibitor-enzyme, ligand-receptor, ligand-transporter, and hapten-antibody. The concept of π-cation interactions offers use of π systems in a small molecule to enhance the binding affinity, specificity, selectivity, lipophilicity, bioavailability, and metabolic stability, which are physiochemical features desired for drugs and pesticides.

  11. Chemical correction of pre-mRNA splicing defects associated with sequestration of muscleblind-like 1 protein by expanded r(CAG) transcripts

    PubMed Central

    Kumar, Amit; Parkesh, Raman; Sznajder, Lukasz J.; Childs-Disney, Jessica; Sobczak, Krzysztof; Disney, Matthew D.

    2012-01-01

    Recently, it was reported that expanded r(CAG) triplet repeats (r(CAG)exp) associated with untreatable neurological diseases cause pre-mRNA mis-splicing likely due to sequestration of muscleblind-like 1 (MBNL1) splicing factor. Bioactive small molecules that bind the 5’CAG/3’GAC motif found in r(CAG)exp hairpin structure were identified by using RNA binding studies and virtual screening/chemical similarity searching. Specifically, a benzylguanidine-containing small molecule was found to improve pre-mRNA alternative splicing of MBNL1-sensitive exons in cells expressing the toxic r(CAG)exp. The compound was identified by first studying the binding of RNA 1×1 nucleotide internal loops to small molecules known to have affinity for nucleic acids. Those studies identified 4',6-diamidino-2-phenylindole (DAPI) as a specific binder to RNAs with the 5’CAG/3’GAC motif. DAPI was then used as a query molecule in a shape- and chemistry alignment-based virtual screen to identify compounds with improved properties, which identified 4-guanidinophenyl 4-guanidinobenzoate as small molecule capable of improving pre-mRNA splicing defects associated with the r(CAG)exp-MBNL1 complex. This compound may facilitate the development of therapeutics to treat diseases caused by r(CAG)exp and could serve as a useful chemical tool to dissect the mechanisms of r(CAG)exp toxicity. The approach used in these studies, defining the small RNA motifs that bind known nucleic acid binders and then using virtual screening to optimize them for bioactivity, may be generally applicable for designing small molecules that target other RNAs in human genomic sequence. PMID:22252896

  12. The advent and development of organocatalysis.

    PubMed

    MacMillan, David W C

    2008-09-18

    The use of small organic molecules as catalysts has been known for more than a century. But only in the past decade has organocatalysis become a thriving area of general concepts and widely applicable asymmetric reactions. Here I present my opinion on why the field of organocatalysis has blossomed so dramatically over the past decade.

  13. Metabolomic technologies for improving the quality of food: Practice and promise

    USDA-ARS?s Scientific Manuscript database

    It is now well documented that the diet has a significant impact on human health and well-being. However, the complete set of small molecule metabolites present in foods that make up the human diet and the role of food production systems in altering this food metabolome are still largely unknown. Me...

  14. Aptamer-mediated 'turn-off/turn-on' nanozyme activity of gold nanoparticles for kanamycin detection.

    PubMed

    Sharma, Tarun Kumar; Ramanathan, Rajesh; Weerathunge, Pabudi; Mohammadtaheri, Mahsa; Daima, Hemant Kumar; Shukla, Ravi; Bansal, Vipul

    2014-12-28

    A new ultrafast and highly sensitive 'turn-off/turn-on' biosensing approach that combines the intrinsic peroxidase-like activity of gold nanoparticles (GNPs) with the high affinity and specificity of a ssDNA aptamer is presented for the efficient detection of a model small molecule kanamycin.

  15. Midbond basis functions for weakly bound complexes

    NASA Astrophysics Data System (ADS)

    Shaw, Robert A.; Hill, J. Grant

    2018-06-01

    Weakly bound systems present a difficult problem for conventional atom-centred basis sets due to large separations, necessitating the use of large, computationally expensive bases. This can be remedied by placing a small number of functions in the region between molecules in the complex. We present compact sets of optimised midbond functions for a range of complexes involving noble gases, alkali metals and small molecules for use in high accuracy coupled -cluster calculations, along with a more robust procedure for their optimisation. It is shown that excellent results are possible with double-zeta quality orbital basis sets when a few midbond functions are added, improving both the interaction energy and the equilibrium bond lengths of a series of noble gas dimers by 47% and 8%, respectively. When used in conjunction with explicitly correlated methods, near complete basis set limit accuracy is readily achievable at a fraction of the cost that using a large basis would entail. General purpose auxiliary sets are developed to allow explicitly correlated midbond function studies to be carried out, making it feasible to perform very high accuracy calculations on weakly bound complexes.

  16. The separation between the 5'-3' ends in long RNA molecules is short and nearly constant.

    PubMed

    Leija-Martínez, Nehemías; Casas-Flores, Sergio; Cadena-Nava, Rubén D; Roca, Joan A; Mendez-Cabañas, José A; Gomez, Eduardo; Ruiz-Garcia, Jaime

    2014-12-16

    RNA molecules play different roles in coding, decoding and gene expression regulation. Such roles are often associated to the RNA secondary or tertiary structures. The folding dynamics lead to multiple secondary structures of long RNA molecules, since an RNA molecule might fold into multiple distinct native states. Despite an ensemble of different structures, it has been theoretically proposed that the separation between the 5' and 3' ends of long single-stranded RNA molecules (ssRNA) remains constant, independent of their base content and length. Here, we present the first experimental measurements of the end-to-end separation in long ssRNA molecules. To determine this separation, we use single molecule Fluorescence Resonance Energy Transfer of fluorescently end-labeled ssRNA molecules ranging from 500 to 5500 nucleotides in length, obtained from two viruses and a fungus. We found that the end-to-end separation is indeed short, within 5-9 nm. It is remarkable that the separation of the ends of all RNA molecules studied remains small and similar, despite the origin, length and differences in their secondary structure. This implies that the ssRNA molecules are 'effectively circularized' something that might be a general feature of RNAs, and could result in fine-tuning for translation and gene expression regulation. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Treating advanced non-small-cell lung cancer in Chinese patients: focus on icotinib

    PubMed Central

    Liang, Jun-Li; Ren, Xiao-Cang; Lin, Qiang

    2014-01-01

    Icotinib hydrochloride is an orally administered small-molecule reversible tyrosine kinase inhibitor that has been independently researched and developed and has independent intellectual property rights in the People’s Republic of China. Clinical trials have demonstrated that the response to icotinib among advanced non-small-cell lung cancer (NSCLC) patients who received at least one platinum-based chemotherapy regimen was not inferior to gefitinib. Since being launched August 2011 in the People’s Republic of China, icotinib has been widely used in clinics, and has become an important treatment option for Chinese patients with advanced NSCLC. The present study presents the Phase I, II, and III clinical trials of icotinib and discusses current clinical applications in the People’s Republic of China and future research directions. PMID:24876785

  18. Optical Fluorescent Imaging to Monitor Temporal Effects of Microbubble-Mediated Ultrasound Therapy

    PubMed Central

    Sorace, Anna G.; Saini, Reshu; Rosenthal, Eben; Warram, Jason M.; Zinn, Kurt R.; Hoyt, Kenneth

    2013-01-01

    Microbubble-mediated ultrasound therapy can noninvasively enhance drug delivery to localized regions in the body. This technique can be beneficial in cancer therapy, but currently there are limitations to tracking the therapeutic effects. The purpose of this experiment was to investigate the potential of fluorescent imaging for monitoring the temporal effects of microbubble-mediated ultrasound therapy. Mice were implanted with 2LMP breast cancer cells. The animals underwent microbubble-mediated ultrasound therapy in the presence of Cy5.5 fluorescent-labeled IgG antibody (large molecule) or Cy5.5 dye (small molecule) and microbubble contrast agents. Control animals were administered fluorescent molecules only. Animals were transiently imaged in vivo at 1, 10, 30, and 60 min post therapy using a small animal optical imaging system. Tumors were excised and analyzed ex vivo. Tumors were homogenized and emulsion imaged for Cy5.5 fluorescence. Monitoring in vivo results showed significant influx of dye into the tumor (p < 0.05) using the small molecule, but not in the large molecule group (p > 0.05). However, after tumor emulsion, significantly higher dye concentration was detected in therapy group tumors for both small and large molecule groups in comparison to their control counterparts (p < 0.01). This paper explores a noninvasive optical imaging method for monitoring the effects of microbubble-mediated ultrasound therapy in a cancer model. It provides temporal information following the process of increasing extravasation of molecules into target tumors. PMID:23357902

  19. Optical fluorescent imaging to monitor temporal effects of microbubble-mediated ultrasound therapy.

    PubMed

    Sorace, Anna G; Saini, Reshu; Rosenthal, Eben; Warram, Jason M; Zinn, Kurt R; Hoyt, Kenneth

    2013-02-01

    Microbubble-mediated ultrasound therapy can noninvasively enhance drug delivery to localized regions in the body. This technique can be beneficial in cancer therapy, but currently there are limitations to tracking the therapeutic effects. The purpose of this experiment was to investigate the potential of fluorescent imaging for monitoring the temporal effects of microbubble-mediated ultrasound therapy. Mice were implanted with 2LMP breast cancer cells. The animals underwent microbubble-mediated ultrasound therapy in the presence of Cy5.5 fluorescent-labeled IgG antibody (large molecule) or Cy5.5 dye (small molecule) and microbubble contrast agents. Control animals were administered fluorescent molecules only. Animals were transiently imaged in vivo at 1, 10, 30, and 60 min post therapy using a small animal optical imaging system. Tumors were excised and analyzed ex vivo. Tumors were homogenized and emulsion imaged for Cy5.5 fluorescence. Monitoring in vivo results showed significant influx of dye into the tumor (p < 0.05) using the small molecule, but not in the large molecule group (p > 0.05). However, after tumor emulsion, significantly higher dye concentration was detected in therapy group tumors for both small and large molecule groups in comparison to their control counterparts (p <0.01). This paper explores a noninvasive optical imaging method for monitoring the effects of microbubble-mediated ultrasound therapy in a cancer model. It provides temporal information following the process of increasing extravasation of molecules into target tumors.

  20. Inhibition of Non-ATG Translational Events in Cells via Covalent Small Molecules Targeting RNA.

    PubMed

    Yang, Wang-Yong; Wilson, Henry D; Velagapudi, Sai Pradeep; Disney, Matthew D

    2015-04-29

    One major class of disease-causing RNAs is expanded repeating transcripts. These RNAs cause diseases via multiple mechanisms, including: (i) gain-of-function, in which repeating RNAs bind and sequester proteins involved in RNA biogenesis and (ii) repeat associated non-ATG (RAN) translation, in which repeating transcripts are translated into toxic proteins without use of a canonical, AUG, start codon. Herein, we develop and study chemical probes that bind and react with an expanded r(CGG) repeat (r(CGG)(exp)) present in a 5' untranslated region that causes fragile X-associated tremor/ataxia syndrome (FXTAS). Reactive compounds bind to r(CGG)(exp) in cellulo as shown with Chem-CLIP-Map, an approach to map small molecule binding sites within RNAs in cells. Compounds also potently improve FXTAS-associated pre-mRNA splicing and RAN translational defects, while not affecting translation of the downstream open reading frame. In contrast, oligonucleotides affect both RAN and canonical translation when they bind to r(CGG)(exp), which is mechanistically traced to a decrease in polysome loading. Thus, designer small molecules that react with RNA targets can be used to profile the RNAs to which they bind in cells, including identification of binding sites, and can modulate several aspects of RNA-mediated disease pathology in a manner that may be more beneficial than oligonucleotides.

  1. Okadaic acid and microcystin insensitive PPP-family phosphatases may represent novel biotechnology targets.

    PubMed

    Uhrig, R Glen; Moorhead, Greg B

    2011-12-01

    Reversible protein phosphorylation is of central importance to the proper cellular functioning of all living organisms. Catalyzed by the opposing reactions of protein kinases and phosphatases, dysfunction in reversible protein phosphorylation can result in a wide variety of cellular aberrations. In eukaryotic organisms there exists four classes of protein phosphatases, of which the PPP-family protein phosphatases have documented susceptibility to a range of protein and small molecule inhibitors. These inhibitors have been of great importance to the biochemical characterization of PPP-family protein phosphatases since their discovery, but also maintain in natura biological significance with their endogenous regulatory properties (protein inhibitors) and toxicity (small molecule inhibitors). Recently, two unique PPP-family protein phosphatases, named the Shewanella-like protein phosphatases (SLP phosphatases), from Arabidopsis thaliana were characterized and found to be phylogenetically similar to the PPP-family protein phosphatases protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A), while completely lacking sensitivity to the classic PPP-family phosphatase small molecule inhibitors okadaic acid and microcystin-LR. SLP phosphatases were also found to be absent in metazoans, but present in a wide range of bacteria, fungi and protozoa responsible for human disease. The unique biochemical properties and evolutionary heritage of SLP phosphatases suggests they could not only be potential biotechnology targets for agriculture, but may also prove to be of interest for future therapeutic drug development. © 2011 Landes Bioscience

  2. Purmorphamine as a Shh Signaling Activator Small Molecule Promotes Motor Neuron Differentiation of Mesenchymal Stem Cells Cultured on Nanofibrous PCL Scaffold.

    PubMed

    Bahrami, Naghmeh; Bayat, Mohammad; Mohamadnia, Abdolreza; Khakbiz, Mehrdad; Yazdankhah, Meysam; Ai, Jafar; Ebrahimi-Barough, Somayeh

    2017-09-01

    There is variety of stem cell sources but problems in ethical issues, contamination, and normal karyotype cause many limitations in obtaining and using these cells. The cells in Wharton's jelly region of umbilical cord are abundant and available stem cells with low immunological incompatibility, which could be considered for cell replacement therapy. Small molecules have been presented as less expensive biologically active compounds that can regulate different developmental process. Purmorphamine (PMA) is a small molecule that, according to some studies, possesses certain differentiation effects. In this study, we investigated the effect of the PMA on Wharton's jelly mesenchymal stem cell (WJ-MSC) differentiation into motor neuronal lineages instead of sonic hedgehog (Shh) on PCL scaffold. After exposing to induction media for 15 days, the cells were characterized for expression of motor neuron markers including PAX6, NF-H, Islet1, HB9, and choline acetyl transferase (ChAT) by quantitative reverse transcription (PCR) and immunocytochemistry. Our results demonstrated that induced WJ-MSCs with PMA could significantly express motor neuron markers in RNA and protein levels 15 days post induction. These results suggested that WJ-MSCs can differentiate to motor neuron-like cells with PMA on PCL scaffold and might provide a potential source in cell therapy for nervous system.

  3. Network modeling of kinase inhibitor polypharmacology reveals pathways targeted in chemical screens

    PubMed Central

    Ursu, Oana; Gosline, Sara J. C.; Beeharry, Neil; Fink, Lauren; Bhattacharjee, Vikram; Huang, Shao-shan Carol; Zhou, Yan; Yen, Tim; Fraenkel, Ernest

    2017-01-01

    Small molecule screens are widely used to prioritize pharmaceutical development. However, determining the pathways targeted by these molecules is challenging, since the compounds are often promiscuous. We present a network strategy that takes into account the polypharmacology of small molecules in order to generate hypotheses for their broader mode of action. We report a screen for kinase inhibitors that increase the efficacy of gemcitabine, the first-line chemotherapy for pancreatic cancer. Eight kinase inhibitors emerge that are known to affect 201 kinases, of which only three kinases have been previously identified as modifiers of gemcitabine toxicity. In this work, we use the SAMNet algorithm to identify pathways linking these kinases and genetic modifiers of gemcitabine toxicity with transcriptional and epigenetic changes induced by gemcitabine that we measure using DNaseI-seq and RNA-seq. SAMNet uses a constrained optimization algorithm to connect genes from these complementary datasets through a small set of protein-protein and protein-DNA interactions. The resulting network recapitulates known pathways including DNA repair, cell proliferation and the epithelial-to-mesenchymal transition. We use the network to predict genes with important roles in the gemcitabine response, including six that have already been shown to modify gemcitabine efficacy in pancreatic cancer and ten novel candidates. Our work reveals the important role of polypharmacology in the activity of these chemosensitizing agents. PMID:29023490

  4. Scrutiny of the mechanism of small molecule inhibitor preventing conformational transition of amyloid-β42 monomer: insights from molecular dynamics simulations.

    PubMed

    Shuaib, Suniba; Goyal, Bhupesh

    2018-02-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is characterized by loss of intellectual functioning of brain and memory loss. According to amyloid cascade hypothesis, aggregation of amyloid-β 42 (Aβ 42 ) peptide can generate toxic oligomers and their accumulation in the brain is responsible for the onset of AD. In spite of carrying out a large number of experimental studies on inhibition of Aβ 42 aggregation by small molecules, the detailed inhibitory mechanism remains elusive. In the present study, comparable molecular dynamics (MD) simulations were performed to elucidate the inhibitory mechanism of a sulfonamide inhibitor C1 (2,5-dichloro-N-(4-piperidinophenyl)-3-thiophenesulfonamide), reported for its in vitro and in vivo anti-aggregation activity against Aβ 42 . MD simulations reveal that C1 stabilizes native α-helix conformation of Aβ 42 by interacting with key residues in the central helix region (13-26) with hydrogen bonds and π-π interactions. C1 lowers the solvent-accessible surface area of the central hydrophobic core (CHC), KLVFF (16-20), that confirms burial of hydrophobic residues leading to the dominance of helical conformation in the CHC region. The binding free energy analysis with MM-PBSA demonstrates that Ala2, Phe4, Tyr10, Gln15, Lys16, Leu17, Val18, Phe19, Phe20, Glu22, and Met35 contribute maximum to binding free energy (-43.1 kcal/mol) between C1 and Aβ 42 monomer. Overall, MD simulations reveal that C1 inhibits Aβ 42 aggregation by stabilizing native helical conformation and inhibiting the formation of aggregation-prone β-sheet conformation. The present results will shed light on the underlying inhibitory mechanism of small molecules that show potential in vitro anti-aggregation activity against Aβ 42 .

  5. The effect of pressure and mobile phase velocity on the retention properties of small analytes and large biomolecules in ultra-high pressure liquid chromatography.

    PubMed

    Fekete, Szabolcs; Veuthey, Jean-Luc; McCalley, David V; Guillarme, Davy

    2012-12-28

    A possible complication of ultra-high pressure liquid chromatography (UHPLC) is related to the effect of pressure and mobile phase velocity on the retention properties of the analytes. In the present work, numerous model compounds have been selected including small molecules, peptides, and proteins (such as monoclonal antibodies). Two instrumental setups were considered to attain elevated pressure drops, firstly the use of a post-column restrictor capillary at low mobile phase flow rate (pure effect of pressure) and secondly the increase of mobile phase flow rate without restrictor (i.e. a combined effect of pressure and frictional heating). In both conditions, the goal was to assess differences in retention behaviour, depending on the type or character of the analyte. An important conclusion is that the effect of pressure and mobile phase velocity on retention varied in proportion with the size of the molecule and in some cases showed very different behaviour. In isocratic mode, the pure effect of pressure (experiments with a post-column restrictor capillary) induces an increase in retention by 25-100% on small molecules (MW<300 g/mol), 150% for peptides (~1.3 kDa), 800% for insulin (~6 kDa) and up to >3000% for myoglobin (~17 kDa) for an increase in pressure from 100 bar up to 1100 bar. The important effect observed for the isocratic elution of proteins is probably related to conformational changes of the protein in addition to the effect of molecular size. Working in gradient elution mode, the pressure related effects on retention were found to be less pronounced but still present (an increase of apparent retention factor between 0.2 and 2.5 was observed). Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Cell-Based Selection Expands the Utility of DNA-Encoded Small-Molecule Library Technology to Cell Surface Drug Targets: Identification of Novel Antagonists of the NK3 Tachykinin Receptor.

    PubMed

    Wu, Zining; Graybill, Todd L; Zeng, Xin; Platchek, Michael; Zhang, Jean; Bodmer, Vera Q; Wisnoski, David D; Deng, Jianghe; Coppo, Frank T; Yao, Gang; Tamburino, Alex; Scavello, Genaro; Franklin, G Joseph; Mataruse, Sibongile; Bedard, Katie L; Ding, Yun; Chai, Jing; Summerfield, Jennifer; Centrella, Paolo A; Messer, Jeffrey A; Pope, Andrew J; Israel, David I

    2015-12-14

    DNA-encoded small-molecule library technology has recently emerged as a new paradigm for identifying ligands against drug targets. To date, this technology has been used with soluble protein targets that are produced and used in a purified state. Here, we describe a cell-based method for identifying small-molecule ligands from DNA-encoded libraries against integral membrane protein targets. We use this method to identify novel, potent, and specific inhibitors of NK3, a member of the tachykinin family of G-protein coupled receptors (GPCRs). The method is simple and broadly applicable to other GPCRs and integral membrane proteins. We have extended the application of DNA-encoded library technology to membrane-associated targets and demonstrate the feasibility of selecting DNA-tagged, small-molecule ligands from complex combinatorial libraries against targets in a heterogeneous milieu, such as the surface of a cell.

  7. Chemical Genetics Reveals an RGS/G-Protein Role in the Action of a Compound

    PubMed Central

    Fitzgerald, Kevin; Tertyshnikova, Svetlana; Moore, Lisa; Bjerke, Lynn; Burley, Ben; Cao, Jian; Carroll, Pamela; Choy, Robert; Doberstein, Steve; Dubaquie, Yves; Franke, Yvonne; Kopczynski, Jenny; Korswagen, Hendrik; Krystek, Stanley R; Lodge, Nicholas J; Plasterk, Ronald; Starrett, John; Stouch, Terry; Thalody, George; Wayne, Honey; van der Linden, Alexander; Zhang, Yongmei; Walker, Stephen G; Cockett, Mark; Wardwell-Swanson, Judi; Ross-Macdonald, Petra; Kindt, Rachel M

    2006-01-01

    We report here on a chemical genetic screen designed to address the mechanism of action of a small molecule. Small molecules that were active in models of urinary incontinence were tested on the nematode Caenorhabditis elegans, and the resulting phenotypes were used as readouts in a genetic screen to identify possible molecular targets. The mutations giving resistance to compound were found to affect members of the RGS protein/G-protein complex. Studies in mammalian systems confirmed that the small molecules inhibit muscarinic G-protein coupled receptor (GPCR) signaling involving G-αq (G-protein alpha subunit). Our studies suggest that the small molecules act at the level of the RGS/G-αq signaling complex, and define new mutations in both RGS and G-αq, including a unique hypo-adapation allele of G-αq. These findings suggest that therapeutics targeted to downstream components of GPCR signaling may be effective for treatment of diseases involving inappropriate receptor activation. PMID:16683034

  8. Imaging enzyme-triggered self-assembly of small molecules inside live cells

    PubMed Central

    Gao, Yuan; Shi, Junfeng; Yuan, Dan; Xu, Bing

    2012-01-01

    Self-assembly of small molecules in water to form nanofibers, besides generating sophisticated biomaterials, promises a simple system inside cells for regulating cellular processes. But lack of a convenient approach for studying the self-assembly of small molecules inside cells hinders the development of such systems. Here we report a method to image enzyme-triggered self-assembly of small molecules inside live cells. After linking a fluorophore to a self-assembly motif to make a precursor, we confirmed by 31P NMR and rheology that enzyme-triggered conversion of the precursor to a hydrogelator results in the formation of a hydrogel via self-assembly. The imaging contrast conferred by the nanofibers of the hydrogelators allowed the evaluation of intracellular self-assembly; the dynamics, and the localization of the nanofibers of the hydrogelators in live cells. This approach explores supramolecular chemistry inside cells and may lead to new insights, processes, or materials at the interface of chemistry and biology. PMID:22929790

  9. Sequence-based design of bioactive small molecules that target precursor microRNAs.

    PubMed

    Velagapudi, Sai Pradeep; Gallo, Steven M; Disney, Matthew D

    2014-04-01

    Oligonucleotides are designed to target RNA using base pairing rules, but they can be hampered by poor cellular delivery and nonspecific stimulation of the immune system. Small molecules are preferred as lead drugs or probes but cannot be designed from sequence. Herein, we describe an approach termed Inforna that designs lead small molecules for RNA from solely sequence. Inforna was applied to all human microRNA hairpin precursors, and it identified bioactive small molecules that inhibit biogenesis by binding nuclease-processing sites (44% hit rate). Among 27 lead interactions, the most avid interaction is between a benzimidazole (1) and precursor microRNA-96. Compound 1 selectively inhibits biogenesis of microRNA-96, upregulating a protein target (FOXO1) and inducing apoptosis in cancer cells. Apoptosis is ablated when FOXO1 mRNA expression is knocked down by an siRNA, validating compound selectivity. Markedly, microRNA profiling shows that 1 only affects microRNA-96 biogenesis and is at least as selective as an oligonucleotide.

  10. Sequence-based design of bioactive small molecules that target precursor microRNAs

    PubMed Central

    Velagapudi, Sai Pradeep; Gallo, Steven M.; Disney, Matthew D.

    2014-01-01

    Oligonucleotides are designed to target RNA using base pairing rules, however, they are hampered by poor cellular delivery and non-specific stimulation of the immune system. Small molecules are preferred as lead drugs or probes, but cannot be designed from sequence. Herein, we describe an approach termed Inforna that designs lead small molecules for RNA from solely sequence. Inforna was applied to all human microRNA precursors and identified bioactive small molecules that inhibit biogenesis by binding to nuclease processing sites (41% hit rate). Amongst 29 lead interactions, the most avid interaction is between a benzimidazole (1) and precursor microRNA-96. Compound 1 selectively inhibits biogenesis of microRNA-96, upregulating a protein target (FOXO1) and inducing apoptosis in cancer cells. Apoptosis is ablated when FOXO1 mRNA expression is knocked down by an siRNA, validating compound selectivity. Importantly, microRNA profiling shows that 1 only significantly effects microRNA-96 biogenesis and is more selective than an oligonucleotide. PMID:24509821

  11. Nonpeptide-Based Small-Molecule Probe for Fluorogenic and Chromogenic Detection of Chymotrypsin.

    PubMed

    Wu, Lei; Yang, Shu-Hou; Xiong, Hao; Yang, Jia-Qian; Guo, Jun; Yang, Wen-Chao; Yang, Guang-Fu

    2017-03-21

    We report herein a nonpeptide-based small-molecule probe for fluorogenic and chromogenic detection of chymotrypsin, as well as the primary application for this probe. This probe was rationally designed by mimicking the peptide substrate and optimized by adjusting the recognition group. The refined probe 2 exhibits good specificity toward chymotrypsin, producing about 25-fold higher enhancement in both the fluorescence intensity and absorbance upon the catalysis by chymotrypsin. Compared with the most widely used peptide substrate (AMC-FPAA-Suc) of chymotrypsin, probe 2 shows about 5-fold higher binding affinity and comparable catalytical efficiency against chymotrypsin. Furthermore, it was successfully applied for the inhibitor characterization. To the best of our knowledge, probe 2 is the first nonpeptide-based small-molecule probe for chymotrypsin, with the advantages of simple structure and high sensitivity compared to the widely used peptide-based substrates. This small-molecule probe is expected to be a useful molecular tool for drug discovery and chymotrypsin-related disease diagnosis.

  12. The cationic small molecule GW4869 is cytotoxic to high phosphatidylserine-expressing myeloma cells.

    PubMed

    Vuckovic, Slavica; Vandyke, Kate; Rickards, David A; McCauley Winter, Padraig; Brown, Simon H J; Mitchell, Todd W; Liu, Jun; Lu, Jun; Askenase, Philip W; Yuriev, Elizabeth; Capuano, Ben; Ramsland, Paul A; Hill, Geoffrey R; Zannettino, Andrew C W; Hutchinson, Andrew T

    2017-05-01

    We have discovered that a small cationic molecule, GW4869, is cytotoxic to a subset of myeloma cell lines and primary myeloma plasma cells. Biochemical analysis revealed that GW4869 binds to anionic phospholipids such as phosphatidylserine - a lipid normally confined to the intracellular side of the cell membrane. However, interestingly, phosphatidylserine was expressed on the surface of all myeloma cell lines tested (n = 12) and 9/15 primary myeloma samples. Notably, the level of phosphatidylserine expression correlated well with sensitivity to GW4869. Inhibition of cell surface phosphatidylserine exposure with brefeldin A resulted in resistance to GW4869. Finally, GW4869 was shown to delay the growth of phosphatidylserine-high myeloma cells in vivo. To the best of our knowledge, this is the first example of using a small molecule to target phosphatidylserine on malignant cells. This study may provide the rationale for the development of phosphatidylserine-targeting small molecules for the treatment of surface phosphatidylserine-expressing cancers. © 2017 John Wiley & Sons Ltd.

  13. Aldolase-catalysed stereoselective synthesis of fluorinated small molecules.

    PubMed

    Windle, Claire L; Berry, Alan; Nelson, Adam

    2017-04-01

    The introduction of fluorine has been widely exploited to tune the biological functions of small molecules. Indeed, around 20% of leading drugs contain at least one fluorine atom. Yet, despite profound effects of fluorination on conformation, there is only a limited toolkit of reactions that enable stereoselective synthesis of fluorinated compounds. Aldolases are useful catalysts for the stereoselective synthesis of bioactive small molecules; however, despite fluoropyruvate being a viable nucleophile for some aldolases, the potential of aldolases to control the formation of fluorine-bearing stereocentres has largely been untapped. Very recently, it has been shown that aldolase-catalysed stereoselective carboncarbon bond formation with fluoropyruvate as nucleophile enable the synthesis of many α-fluoro β-hydroxy carboxyl derivatives. Furthermore, an understanding of the structural basis for the stereocontrol observed in these reactions is beginning to emerge. Here, we review the application of aldolase catalysis in the stereocontrolled synthesis of chiral fluorinated small molecules, and highlight likely areas for future developments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Organic synthesis toward small-molecule probes and drugs

    PubMed Central

    Schreiber, Stuart L.

    2011-01-01

    “Organic synthesis” is a compound-creating activity often focused on biologically active small molecules. This special issue of PNAS explores innovations and trends in the field that are enabling the synthesis of new types of small-molecule probes and drugs. This perspective article frames the research described in the special issue but also explores how these modern capabilities can both foster a new and more extensive view of basic research in the academy and promote the linkage of life-science research to the discovery of novel types of small-molecule therapeutics [Schreiber SL (2009) Chem Bio Chem 10:26–29]. This new view of basic research aims to bridge the chasm between basic scientific discoveries in life sciences and new drugs that treat the root cause of human disease—recently referred to as the “valley of death” for drug discovery. This perspective article describes new roles that modern organic chemistry will need to play in overcoming this challenge. PMID:21464328

  15. High-throughput platform assay technology for the discovery of pre-microrna-selective small molecule probes.

    PubMed

    Lorenz, Daniel A; Song, James M; Garner, Amanda L

    2015-01-21

    MicroRNAs (miRNA) play critical roles in human development and disease. As such, the targeting of miRNAs is considered attractive as a novel therapeutic strategy. A major bottleneck toward this goal, however, has been the identification of small molecule probes that are specific for select RNAs and methods that will facilitate such discovery efforts. Using pre-microRNAs as proof-of-concept, herein we report a conceptually new and innovative approach for assaying RNA-small molecule interactions. Through this platform assay technology, which we term catalytic enzyme-linked click chemistry assay or cat-ELCCA, we have designed a method that can be implemented in high throughput, is virtually free of false readouts, and is general for all nucleic acids. Through cat-ELCCA, we envision the discovery of selective small molecule ligands for disease-relevant miRNAs to promote the field of RNA-targeted drug discovery and further our understanding of the role of miRNAs in cellular biology.

  16. Small-Molecule Inhibitors Targeting DNA Repair and DNA Repair Deficiency in Research and Cancer Therapy.

    PubMed

    Hengel, Sarah R; Spies, M Ashley; Spies, Maria

    2017-09-21

    To maintain stable genomes and to avoid cancer and aging, cells need to repair a multitude of deleterious DNA lesions, which arise constantly in every cell. Processes that support genome integrity in normal cells, however, allow cancer cells to develop resistance to radiation and DNA-damaging chemotherapeutics. Chemical inhibition of the key DNA repair proteins and pharmacologically induced synthetic lethality have become instrumental in both dissecting the complex DNA repair networks and as promising anticancer agents. The difficulty in capitalizing on synthetically lethal interactions in cancer cells is that many potential targets do not possess well-defined small-molecule binding determinates. In this review, we discuss several successful campaigns to identify and leverage small-molecule inhibitors of the DNA repair proteins, from PARP1, a paradigm case for clinically successful small-molecule inhibitors, to coveted new targets, such as RAD51 recombinase, RAD52 DNA repair protein, MRE11 nuclease, and WRN DNA helicase. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Non-Born-Oppenheimer self-consistent field calculations with cubic scaling

    NASA Astrophysics Data System (ADS)

    Moncada, Félix; Posada, Edwin; Flores-Moreno, Roberto; Reyes, Andrés

    2012-05-01

    An efficient nuclear molecular orbital methodology is presented. This approach combines an auxiliary density functional theory for electrons (ADFT) and a localized Hartree product (LHP) representation for the nuclear wave function. A series of test calculations conducted on small molecules exposed that energy and geometry errors introduced by the use of ADFT and LHP approximations are small and comparable to those obtained by the use of electronic ADFT. In addition, sample calculations performed on (HF)n chains disclosed that the combined ADFT/LHP approach scales cubically with system size (n) as opposed to the quartic scaling of Hartree-Fock/LHP or DFT/LHP methods. Even for medium size molecules the improved scaling of the ADFT/LHP approach resulted in speedups of at least 5x with respect to Hartree-Fock/LHP calculations. The ADFT/LHP method opens up the possibility of studying nuclear quantum effects on large size systems that otherwise would be impractical.

  18. An RNA motif that binds ATP

    NASA Technical Reports Server (NTRS)

    Sassanfar, M.; Szostak, J. W.

    1993-01-01

    RNAs that contain specific high-affinity binding sites for small molecule ligands immobilized on a solid support are present at a frequency of roughly one in 10(10)-10(11) in pools of random sequence RNA molecules. Here we describe a new in vitro selection procedure designed to ensure the isolation of RNAs that bind the ligand of interest in solution as well as on a solid support. We have used this method to isolate a remarkably small RNA motif that binds ATP, a substrate in numerous biological reactions and the universal biological high-energy intermediate. The selected ATP-binding RNAs contain a consensus sequence, embedded in a common secondary structure. The binding properties of ATP analogues and modified RNAs show that the binding interaction is characterized by a large number of close contacts between the ATP and RNA, and by a change in the conformation of the RNA.

  19. Small-scale Detonation Velocity Measurement of Select CL-20 Cocrystals

    NASA Astrophysics Data System (ADS)

    Vuppuluri, Vasant; Gunduz, I. Emre; Son, Steven F.

    2017-06-01

    The challenge of developing novel energetic materials makes cocrystallization using existing energetic molecules useful. Cocrystallization of CL-20 with other high explosives such as HMX has been demonstrated previously to yield novel energetic materials and may have favorable detonation performance. However, detonation performance characterization of these cocrystals is challenging due to limited availability of material. Also, the contribution of bonding energy between coformers contained within the cocrystal is not well-understood. We present the comparison of steady detonation velocities of CL-20 cocrystals to their corresponding physical mixtures using microwave interferometry. With less than 1.5 g of the cocrystal material contained within 6.52 mm diameter charges, shot-to-shot variation in detonation velocity of only about 100 m/s are achievable with this technique. This variation is adequate to resolve relatively small differences between physical mixed explosive molecules and cocrystals.

  20. Osteogenic Activity of Locally Applied Small Molecule Drugs in a Rat Femur Defect Model

    PubMed Central

    Cottrell, Jessica A.; Vales, Francis M.; Schachter, Deborah; Wadsworth, Scott; Gundlapalli, Rama; Kapadia, Rasesh; O'Connor, J. Patrick

    2010-01-01

    The long-term success of arthroplastic joints is dependent on the stabilization of the implant within the skeletal site. Movement of the arthroplastic implant within the bone can stimulate osteolysis, and therefore methods which promote rigid fixation or bone growth are expected to enhance implant stability and the long-term success of joint arthroplasty. In the present study, we used a simple bilateral bone defect model to analyze the osteogenic activity of three small-molecule drug implants via microcomputerized tomography (micro-CT) and histomorphometry. In this study, we show that local delivery of alendronate, but not lovastatin or omeprazole, led to significant new bone formation at the defect site. Since alendronate impedes osteoclast-development, it is theorized that alendronate treatment results in a net increase in bone formation by preventing osteoclast mediated remodeling of the newly formed bone and upregulating osteoblasts. PMID:20625499

  1. Accurate on-chip measurement of the Seebeck coefficient of high mobility small molecule organic semiconductors

    NASA Astrophysics Data System (ADS)

    Warwick, C. N.; Venkateshvaran, D.; Sirringhaus, H.

    2015-09-01

    We present measurements of the Seebeck coefficient in two high mobility organic small molecules, 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) and 2,9-didecyl-dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (C10-DNTT). The measurements are performed in a field effect transistor structure with high field effect mobilities of approximately 3 cm2/V s. This allows us to observe both the charge concentration and temperature dependence of the Seebeck coefficient. We find a strong logarithmic dependence upon charge concentration and a temperature dependence within the measurement uncertainty. Despite performing the measurements on highly polycrystalline evaporated films, we see an agreement in the Seebeck coefficient with modelled values from Shi et al. [Chem. Mater. 26, 2669 (2014)] at high charge concentrations. We attribute deviations from the model at lower charge concentrations to charge trapping.

  2. Development of Potential Small Molecule Therapeutics for Treatment of Ebola Virus.

    PubMed

    Schafer, Adam Michael; Cheng, Han; Lee, Charles; Du, Ruikun; Han, Julianna; Perez, Jasmine; Peet, Norton; Manicassamy, Balaji; Rong, Lijun

    2017-10-10

    Ebola virus has caused 26 outbreaks in 10 different countries since its identification in 1976, making it one of the deadliest emerging viral pathogens. The most recent outbreak in West Africa from 2014-16 was the deadliest yet and culminated in 11,310 deaths out of 28,616 confirmed cases. Currently there are no FDA-approved therapeutics or vaccines to treat Ebola virus infections. The slow development of effective vaccines combined with the severity of past outbreaks emphasizes the need to accelerate research into understanding the virus lifecycle and the development of therapeutics for post exposure treatment. Here we present a summary of the major findings on the Ebola virus replication cycle and the therapeutic approaches explored to treat this devastating disease. The major focus of this review is on small molecule inhibitors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. High performance small molecule photodetector with broad spectral response range from 200 to 900 nm

    NASA Astrophysics Data System (ADS)

    Wu, Shuang-hong; Li, Wen-lian; Chu, Bei; Su, Zi-sheng; Zhang, Feng; Lee, C. S.

    2011-07-01

    We demonstrate a photodetector (PD) with broad spectral response by taking the advantages of more flexible device design in using small molecule materials. The optimized device shows an external quantum efficiency of over 20% from 200 to 900 nm. The high performance is achieved by jointing two donor (D)/acceptor (A) hetero-junctions [m-MTDATA(D)/TiOPc(A) and TiOPc(D)/F16CuPc: PTCDI-C8(A)] such that photoresponses over the deep-ultraviolet (UV) and visible-near infrared regions can be independently optimized. By choosing D- and A-materials with matched energy level alignment, high carrier mobility, and balanced carrier transporting properties, the present PD shows a fast response of 56 ns. The high speed and deep-UV sensitivity might lead to potential military applications such as missile tracking in addition to optical communications, chemical/biological sensing etc.

  4. Using the small alignment index chaos indicator to characterize the vibrational dynamics of a molecular system: LiNC-LiCN.

    PubMed

    Benitez, P; Losada, J C; Benito, R M; Borondo, F

    2015-10-01

    A study of the dynamical characteristics of the phase space corresponding to the vibrations of the LiNC-LiCN molecule using an analysis based on the small alignment index (SALI) is presented. SALI is a good indicator of chaos that can easily determine whether a given trajectory is regular or chaotic regardless of the dimensionality of the system, and can also provide a wealth of dynamical information when conveniently implemented. In two-dimensional (2D) systems SALI maps are computed as 2D phase space representations, where the SALI asymptotic values are represented in color scale. We show here how these maps provide full information on the dynamical phase space structure of the LiNC-LiCN system, even quantifying numerically the volume of the different zones of chaos and regularity as a function of the molecule excitation energy.

  5. A concise review on advances in development of small molecule anti-inflammatory therapeutics emphasising AMPK: An emerging target.

    PubMed

    Gejjalagere Honnappa, Chethan; Mazhuvancherry Kesavan, Unnikrishnan

    2016-12-01

    Inflammatory diseases are complex, multi-factorial outcomes of evolutionarily conserved tissue repair processes. For decades, non-steroidal anti-inflammatory drugs and cyclooxygenase inhibitors, the primary drugs of choice for the management of inflammatory diseases, addressed individual targets in the arachidonic acid pathway. Unsatisfactory safety and efficacy profiles of the above have necessitated the development of multi-target agents to treat complex inflammatory diseases. Current anti-inflammatory therapies still fall short of clinical needs and the clinical trial results of multi-target therapeutics are anticipated. Additionally, new drug targets are emerging with improved understanding of molecular mechanisms controlling the pathophysiology of inflammation. This review presents an outline of small molecules and drug targets in anti-inflammatory therapeutics with a summary of a newly identified target AMP-activated protein kinase, which constitutes a novel therapeutic pathway in inflammatory pathology. © The Author(s) 2016.

  6. Structurally diverse natural products that cause potassium leakage trigger multicellularity in Bacillus subtilis.

    PubMed

    López, Daniel; Fischbach, Michael A; Chu, Frances; Losick, Richard; Kolter, Roberto

    2009-01-06

    We report a previously undescribed quorum-sensing mechanism for triggering multicellularity in Bacillus subtilis. B. subtilis forms communities of cells known as biofilms in response to an unknown signal. We discovered that biofilm formation is stimulated by a variety of small molecules produced by bacteria--including the B. subtilis nonribosomal peptide surfactin--that share the ability to induce potassium leakage. Natural products that do not cause potassium leakage failed to induce multicellularity. Small-molecule-induced multicellularity was prevented by the addition of potassium, but not sodium or lithium. Evidence is presented that potassium leakage stimulates the activity of a membrane protein kinase, KinC, which governs the expression of genes involved in biofilm formation. We propose that KinC responds to lowered intracellular potassium concentration and that this is a quorum-sensing mechanism that enables B. subtilis to respond to related and unrelated bacteria.

  7. Fused Deposition Modeling Enables the Low-Cost Fabrication of Porous, Customized-Shape Sorbents for Small-Molecule Extraction.

    PubMed

    Belka, Mariusz; Ulenberg, Szymon; Bączek, Tomasz

    2017-04-18

    Fused deposition modeling, one of the most common techniques in three-dimensional printing and additive manufacturing, has many practical applications in the fields of chemistry and pharmacy. We demonstrate that a thermoplastic elastomer-poly(vinyl alcohol) (PVA) composite material (LAY-FOMM 60), which presents porous properties after PVA removal, is useful for the extraction of small-molecule drug-like compounds from water samples. The usefulness of the proposed approach is demonstrated by the extraction of glimepiride from a water sample, followed by LC-MS analysis. The recovery was 82.24%, with a relative standard deviation of less than 5%. The proposed approach can change the way of thinking about extraction and sample preparation due to a shift to the use of sorbents with customizable size, shape, and chemical properties that do not rely on commercial suppliers.

  8. Proprotein convertase subtilisin/kexin type 9: a new target molecule for gene therapy.

    PubMed

    Banaszewska, Anna; Piechota, Michal; Plewa, Robert

    2012-06-01

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a novel target for controlling plasma levels of low-density lipoprotein cholesterol (LDL-C) and decreasing the risk of cardiovascular diseases. At present it is clear that the major classes of commonly prescribed lipid-lowering medications increase serum PCSK9 levels and fail to protect a significant percentage of patients from cardiovascular events. Therefore development of new LDL-C lowering medications that either do not increase circulating PCSK9 levels or work through inhibition of PCSK9 expression and protease activity is a highly desirable approach to overcome hypercholesterolemia. Since there are several agents which are being evaluated in human preclinical and clinical trials, this review summarizes current therapeutic strategies targeting PCSK9, including specific antibodies, antisense oligonucleotides, small interfering RNAs (siRNAs) and other small-molecule inhibitors.

  9. Investigating protein-protein interaction surfaces using a reduced stereochemical and electrostatic model.

    PubMed

    Warwicker, J

    1989-03-20

    A method of calculating the electrostatic potential energy between two molecules, using finite difference potential, is presented. A reduced charge set is used so that the interaction energy can be calculated as the two static molecules explore their full six-dimensional configurational space. The energies are contoured over surfaces fixed to each molecule with an interactive computer graphics program. For two crystal structures (trypsin-trypsin inhibitor and anti-lysozyme Fab-lysozyme), it is found that the complex corresponds to highly favourable interacting regions in the contour plots. These matches arise from a small number of protruding basic residues interacting with enhanced negative potential in each case. The redox pair cytochrome c peroxidase-cytochrome c exhibits an extensive favourably interacting surface within which a possible electron transfer complex may be defined by an increased electrostatic complementarity, but a decreased electrostatic energy. A possible substrate transfer configuration for the glycolytic enzyme pair glyceraldehyde phosphate dehydrogenase-phosphoglycerate kinase is presented.

  10. Development of pharmacophore models for small molecules targeting RNA: Application to the RNA repeat expansion in myotonic dystrophy type 1.

    PubMed

    Angelbello, Alicia J; González, Àlex L; Rzuczek, Suzanne G; Disney, Matthew D

    2016-12-01

    RNA is an important drug target, but current approaches to identify bioactive small molecules have been engineered primarily for protein targets. Moreover, the identification of small molecules that bind a specific RNA target with sufficient potency remains a challenge. Computer-aided drug design (CADD) and, in particular, ligand-based drug design provide a myriad of tools to identify rapidly new chemical entities for modulating a target based on previous knowledge of active compounds without relying on a ligand complex. Herein we describe pharmacophore virtual screening based on previously reported active molecules that target the toxic RNA that causes myotonic dystrophy type 1 (DM1). DM1-associated defects are caused by sequestration of muscleblind-like 1 protein (MBNL1), an alternative splicing regulator, by expanded CUG repeats (r(CUG) exp ). Several small molecules have been found to disrupt the MBNL1-r(CUG) exp complex, ameliorating DM1 defects. Our pharmacophore model identified a number of potential lead compounds from which we selected 11 compounds to evaluate. Of the 11 compounds, several improved DM1 defects both in vitro and in cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Toxicity evaluation of convection-enhanced delivery of small-molecule kinase inhibitors in naïve mouse brainstem.

    PubMed

    Zhou, Zhiping; Ho, Sharon L; Singh, Ranjodh; Pisapia, David J; Souweidane, Mark M

    2015-04-01

    Diffuse intrinsic pontine gliomas (DIPGs) are inoperable and lethal high-grade gliomas lacking definitive therapy. Platelet-derived growth factor receptor (PDGFR) and its downstream signaling molecules are the most commonly overexpressed oncogenes in DIPG. This study tested the effective concentration of PDGFR pathway inhibitors in cell culture and then toxicity of these small-molecule kinase inhibitors delivered to the mouse brainstem via convection-enhanced delivery (CED) for potential clinical application. Effective concentrations of small-molecule kinase inhibitors were first established in cell culture from a mouse brainstem glioma model. Sixteen mice underwent CED, a local drug delivery technique, of saline or of single and multidrug combinations of dasatinib (2 M), everolimus (20 M), and perifosine (0.63 mM) in the pons. Animals were kept alive for 3 days following the completion of infusion. No animals displayed any immediate or delayed neurological deficits postoperatively. Histological analysis revealed edema, microgliosis, acute inflammation, and/or axonal injury in the experimental animals consistent with mild acute drug toxicity. Brainstem CED of small-molecule kinase inhibitors in the mouse did not cause serious acute toxicities. Future studies will be necessary to evaluate longer-term safety to prepare for potential clinical application.

  12. Clathrate hydrates in the solar system

    NASA Technical Reports Server (NTRS)

    Miller, S. L.

    1985-01-01

    Clathrate hydrates are crystalline compounds in which an expanded ice lattice forms cages that contain gas molecules. There are two principal hydrate structures. Structure I, with a 12 A cubic unit cell, contains 46 water molecules and 8 cages of two types, giving an ideal formula (for CH4) of CH4.5.75H2O. The actual formula contains somewhat more water as the cages are not completely filled. Other examples that form Structure I hydrates are C2H6, C2H4, C2H2, CO2, SO2, OCS, Xe, H2S. Structure II, with a 17 A cubic unit cell, contains 136 water molecules, and 8 large and 16 small cages. The ideal formula for CHCl3 is CHCL3.17H2O. Other examples of Structure II hydrates include C3H8, C2H5Cl, acetone, and tetrahydrofuran. Small molecules such as Ar, Kr and probably N2 and O2 also form a Structure II hydrate. The small molecules occupy both the large and small cages, giving an ideal formula of Ar.5.67H2O. The conditions of pressure and temperature for hydrate formation are discussed.

  13. Calcium phosphate nanoparticles as versatile carrier for small and large molecules across cell membranes

    NASA Astrophysics Data System (ADS)

    Sokolova, Viktoriya; Rotan, Olga; Klesing, Jan; Nalbant, Perihan; Buer, Jan; Knuschke, Torben; Westendorf, Astrid M.; Epple, Matthias

    2012-06-01

    The successful transport of molecules across the cell membrane is a key point in biology and medicine. In most cases, molecules alone cannot penetrate the cell membrane, therefore an efficient carrier is needed. Calcium phosphate nanoparticles (diameter: 100-250 nm, depending on the functionalization) were loaded with fluorescent oligonucleotides, peptide, proteins, antibodies, polymers or porphyrins and characterized by dynamic light scattering, nanoparticle tracking analysis and scanning electron microscopy. Any excess of molecules was removed by ultracentrifugation, and the dissolved molecules at the same concentration were used as control. The uptake of such fluorescence-labeled nanoparticles into HeLa cells was monitored by fluorescence microscopy and confocal laser scanning microscopy. Calcium phosphate nanoparticles were able to transport all molecules across the cell membrane, whereas the dissolved molecules alone were taken up only to a very small extent or even not at all.

  14. Multifunctional and biologically active matrices from multicomponent polymeric solutions

    NASA Technical Reports Server (NTRS)

    Kiick, Kristi L. (Inventor); Yamaguchi, Nori (Inventor)

    2010-01-01

    The present invention relates to a biologically active functionalized electrospun matrix to permit immobilization and long-term delivery of biologically active agents. In particular the invention relates to a functionalized polymer matrix comprising a matrix polymer, a compatibilizing polymer and a biomolecule or other small functioning molecule. In certain aspects the electrospun polymer fibers comprise at least one biologically active molecule functionalized with low molecular weight heparin. Examples of active molecules that may be used with the multicomponent polymer of the invention include, for example, a drug, a biopolymer, for example a growth factor, a protein, a peptide, a nucleotide, a polysaccharide, a biological macromolecule or the like. The invention is further directed to the formation of functionalized crosslinked matrices, such as hydrogels, that include at least one functionalized compatibilizing polymer capable of assembly.

  15. Getting Across the Cell Membrane: An Overview for Small Molecules, Peptides, and Proteins

    PubMed Central

    Yang, Nicole J.; Hinner, Marlon J.

    2016-01-01

    The ability to efficiently access cytosolic proteins is desired in both biological research and medicine. However, targeting intracellular proteins is often challenging, because to reach the cytosol, exogenous molecules must first traverse the cell membrane. This review provides a broad overview of how certain molecules are thought to cross this barrier, and what kinds of approaches are being made to enhance the intracellular delivery of those that are impermeable. We first discuss rules that govern the passive permeability of small molecules across the lipid membrane, and mechanisms of membrane transport that have evolved in nature for certain metabolites, peptides, and proteins. Then, we introduce design strategies that have emerged in the development of small molecules and peptides with improved permeability. Finally, intracellular delivery systems that have been engineered for protein payloads are surveyed. Viewpoints from varying disciplines have been brought together to provide a cohesive overview of how the membrane barrier is being overcome. PMID:25560066

  16. Delivery of large biopharmaceuticals from cardiovascular stents: a review

    PubMed Central

    Takahashi, Hironobu; Letourneur, Didier; Grainger, David W.

    2008-01-01

    This review focuses on the new and emerging large-molecule bioactive agents delivered from stent surfaces in drug-eluting stents (DES) to inhibit vascular restenosis in the context of interventional cardiology. New therapeutic agents representing proteins, nucleic acids (small interfering RNAs and large DNA plasmids), viral delivery vectors and even engineered cell therapies require specific delivery designs distinct from traditional smaller molecule approaches on DES. While small molecules are currently the clinical standard for coronary stenting, extension of the DES to other lesion types, peripheral vasculature and non-vasculature therapies will seek to deliver an increasingly sophisticated armada of drug types. This review describes many of the larger molecule and biopharmaceutical approaches reported recently for stent-based delivery with the challenges associated with formulating and delivering these drug classes compared to the current small molecule drugs. It also includes perspectives on possible future applications that may improve safety and efficacy and facilitate diversification of the DES to other clinical applications. PMID:17929968

  17. Application of encoded library technology (ELT) to a protein-protein interaction target: discovery of a potent class of integrin lymphocyte function-associated antigen 1 (LFA-1) antagonists.

    PubMed

    Kollmann, Christopher S; Bai, Xiaopeng; Tsai, Ching-Hsuan; Yang, Hongfang; Lind, Kenneth E; Skinner, Steven R; Zhu, Zhengrong; Israel, David I; Cuozzo, John W; Morgan, Barry A; Yuki, Koichi; Xie, Can; Springer, Timothy A; Shimaoka, Motomu; Evindar, Ghotas

    2014-04-01

    The inhibition of protein-protein interactions remains a challenge for traditional small molecule drug discovery. Here we describe the use of DNA-encoded library technology for the discovery of small molecules that are potent inhibitors of the interaction between lymphocyte function-associated antigen 1 and its ligand intercellular adhesion molecule 1. A DNA-encoded library with a potential complexity of 4.1 billion compounds was exposed to the I-domain of the target protein and the bound ligands were affinity selected, yielding an enriched small-molecule hit family. Compounds representing this family were synthesized without their DNA encoding moiety and found to inhibit the lymphocyte function-associated antigen 1/intercellular adhesion molecule-1 interaction with submicromolar potency in both ELISA and cell adhesion assays. Re-synthesized compounds conjugated to DNA or a fluorophore were demonstrated to bind to cells expressing the target protein. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Identification of Direct Protein Targets of Small Molecules

    PubMed Central

    2010-01-01

    Small-molecule target identification is a vital and daunting task for the chemical biology community as well as for researchers interested in applying the power of chemical genetics to impact biology and medicine. To overcome this “target ID” bottleneck, new technologies are being developed that analyze protein–drug interactions, such as drug affinity responsive target stability (DARTS), which aims to discover the direct binding targets (and off targets) of small molecules on a proteome scale without requiring chemical modification of the compound. Here, we review the DARTS method, discuss why it works, and provide new perspectives for future development in this area. PMID:21077692

  19. Design of small-molecule epigenetic modulators

    PubMed Central

    Pachaiyappan, Boobalan

    2013-01-01

    The field of epigenetics has expanded rapidly to reveal multiple new targets for drug discovery. The functional elements of the epigenomic machinery can be catagorized as writers, erasers and readers, and together these elements control cellular gene expression and homeostasis. It is increasingly clear that aberrations in the epigenome can underly a variety of diseases, and thus discovery of small molecules that modulate the epigenome in a specific manner is a viable approach to the discovery of new therapeutic agents. In this Digest, the components of epigenetic control of gene expression will be briefly summarized, and efforts to identify small molecules that modulate epigenetic processes will be described. PMID:24300735

  20. Design, synthesis and selection of DNA-encoded small-molecule libraries.

    PubMed

    Clark, Matthew A; Acharya, Raksha A; Arico-Muendel, Christopher C; Belyanskaya, Svetlana L; Benjamin, Dennis R; Carlson, Neil R; Centrella, Paolo A; Chiu, Cynthia H; Creaser, Steffen P; Cuozzo, John W; Davie, Christopher P; Ding, Yun; Franklin, G Joseph; Franzen, Kurt D; Gefter, Malcolm L; Hale, Steven P; Hansen, Nils J V; Israel, David I; Jiang, Jinwei; Kavarana, Malcolm J; Kelley, Michael S; Kollmann, Christopher S; Li, Fan; Lind, Kenneth; Mataruse, Sibongile; Medeiros, Patricia F; Messer, Jeffrey A; Myers, Paul; O'Keefe, Heather; Oliff, Matthew C; Rise, Cecil E; Satz, Alexander L; Skinner, Steven R; Svendsen, Jennifer L; Tang, Lujia; van Vloten, Kurt; Wagner, Richard W; Yao, Gang; Zhao, Baoguang; Morgan, Barry A

    2009-09-01

    Biochemical combinatorial techniques such as phage display, RNA display and oligonucleotide aptamers have proven to be reliable methods for generation of ligands to protein targets. Adapting these techniques to small synthetic molecules has been a long-sought goal. We report the synthesis and interrogation of an 800-million-member DNA-encoded library in which small molecules are covalently attached to an encoding oligonucleotide. The library was assembled by a combination of chemical and enzymatic synthesis, and interrogated by affinity selection. We describe methods for the selection and deconvolution of the chemical display library, and the discovery of inhibitors for two enzymes: Aurora A kinase and p38 MAP kinase.

  1. Additional band broadening of peptides in the first size-exclusion chromatographic dimension of an automated stop-flow two-dimensional high performance liquid chromatography.

    PubMed

    Xu, Jucai; Sun-Waterhouse, Dongxiao; Qiu, Chaoying; Zhao, Mouming; Sun, Baoguo; Lin, Lianzhu; Su, Guowan

    2017-10-27

    The need to improve the peak capacity of liquid chromatography motivates the development of two-dimensional analysis systems. This paper presented a fully automated stop-flow two-dimensional liquid chromatography system with size exclusion chromatography followed by reversed phase liquid chromatography (SEC×RPLC) to efficiently separate peptides. The effects of different stop-flow operational parameters (stop-flow time, peak parking position, number of stop-flow periods and column temperature) on band broadening in the first dimension (1 st D) SEC column were quantitatively evaluated by using commercial small proteins and peptides. Results showed that the effects of peak parking position and the number of stop-flow periods on band broadening were relatively small. Unlike stop-flow analysis of large molecules with a long running time, additional band broadening was evidently observed for small molecule analytes due to the relatively high effective diffusion coefficient (D eff ). Therefore, shorter analysis time and lower 1 st D column temperature were suggested for analyzing small molecules. The stop-flow two-dimensional liquid chromatography (2D-LC) system was further tested on peanut peptides and an evidently improved resolution was observed for both stop-flow heart-cutting and comprehensive 2D-LC analysis (in spite of additional band broadening in SEC). The stop-flow SEC×RPLC, especially heart-cutting analysis with shorter analysis time and higher 1 st D resolution for selected fractions, offers a promising approach for efficient analysis of complex samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. From synthesis to function via iterative assembly of N-methyliminodiacetic acid boronate building blocks.

    PubMed

    Li, Junqi; Grillo, Anthony S; Burke, Martin D

    2015-08-18

    The study and optimization of small molecule function is often impeded by the time-intensive and specialist-dependent process that is typically used to make such compounds. In contrast, general and automated platforms have been developed for making peptides, oligonucleotides, and increasingly oligosaccharides, where synthesis is simplified to iterative applications of the same reactions. Inspired by the way natural products are biosynthesized via the iterative assembly of a defined set of building blocks, we developed a platform for small molecule synthesis involving the iterative coupling of haloboronic acids protected as the corresponding N-methyliminodiacetic acid (MIDA) boronates. Here we summarize our efforts thus far to develop this platform into a generalized and automated approach for small molecule synthesis. We and others have employed this approach to access many polyene-based compounds, including the polyene motifs found in >75% of all polyene natural products. This platform further allowed us to derivatize amphotericin B, the powerful and resistance-evasive but also highly toxic last line of defense in treating systemic fungal infections, and thereby understand its mechanism of action. This synthesis-enabled mechanistic understanding has led us to develop less toxic derivatives currently under evaluation as improved antifungal agents. To access more Csp(3)-containing small molecules, we gained a stereocontrolled entry into chiral, non-racemic α-boryl aldehydes through the discovery of a chiral derivative of MIDA. These α-boryl aldehydes are versatile intermediates for the synthesis of many Csp(3) boronate building blocks that are otherwise difficult to access. In addition, we demonstrated the utility of these types of building blocks in accessing pharmaceutically relevant targets via an iterative Csp(3) cross-coupling cycle. We have further expanded the scope of the platform to include stereochemically complex macrocyclic and polycyclic molecules using a linear-to-cyclized strategy, in which Csp(3) boronate building blocks are iteratively assembled into linear precursors that are then cyclized into the cyclic frameworks found in many natural products and natural product-like structures. Enabled by the serendipitous discovery of a catch-and-release protocol for generally purifying MIDA boronate intermediates, the platform has been automated. The synthesis of 14 distinct classes of small molecules, including pharmaceuticals, materials components, and polycyclic natural products, has been achieved using this new synthesis machine. It is anticipated that the scope of small molecules accessible by this platform will continue to expand via further developments in building block synthesis, Csp(3) cross-coupling methodologies, and cyclization strategies. Achieving these goals will enable the more generalized synthesis of small molecules and thereby help shift the rate-limiting step in small molecule science from synthesis to function.

  3. A small molecule inhibitor of Rheb selectively targets mTORC1 signaling.

    PubMed

    Mahoney, Sarah J; Narayan, Sridhar; Molz, Lisa; Berstler, Lauren A; Kang, Seong A; Vlasuk, George P; Saiah, Eddine

    2018-02-07

    The small G-protein Rheb activates the mechanistic target of rapamycin complex 1 (mTORC1) in response to growth factor signals. mTORC1 is a master regulator of cellular growth and metabolism; aberrant mTORC1 signaling is associated with fibrotic, metabolic, and neurodegenerative diseases, cancers, and rare disorders. Point mutations in the Rheb switch II domain impair its ability to activate mTORC1. Here, we report the discovery of a small molecule (NR1) that binds Rheb in the switch II domain and selectively blocks mTORC1 signaling. NR1 potently inhibits mTORC1 driven phosphorylation of ribosomal protein S6 kinase beta-1 (S6K1) but does not inhibit phosphorylation of AKT or ERK. In contrast to rapamycin, NR1 does not cause inhibition of mTORC2 upon prolonged treatment. Furthermore, NR1 potently and selectively inhibits mTORC1 in mouse kidney and muscle in vivo. The data presented herein suggest that pharmacological inhibition of Rheb is an effective approach for selective inhibition of mTORC1 with therapeutic potential.

  4. Effect of the collective motions of molecules inside a condensed phase on fluctuations in the density of small bodies

    NASA Astrophysics Data System (ADS)

    Tovbin, Yu. K.

    2017-11-01

    An approach to calculating the effects of fluctuations in density that considers the collective motions of molecules in small condensed phases (e.g., droplets, microcrystals, adsorption at microcrystal faces) is proposed. Statistical sums of the vibrational, rotational, and translational motions of molecules are of a collective character expressed in the dependences of these statistical sums on the local configurations of neighboring molecules. This changes their individual contributions to the free energy and modifies fluctuations in density in the inner homogeneous regions of small bodies. Interactions between nearest neighbors are considered in a quasi-chemical approximation that reflects the effects of short-range direct correlations. Expressions for isotherms relating the densities of mixture components to the chemical potentials in a thermostat are obtained, along with equations for pair distribution functions.

  5. Development of novel small molecules for imaging and drug release

    NASA Astrophysics Data System (ADS)

    Cao, Yanting

    Small organic molecules, including small molecule based fluorescent probes, small molecule based drugs or prodrugs, and smart multifunctional fluorescent drug delivery systems play important roles in biological research, drug discovery, and clinical practices. Despite the significant progress made in these fields, the development of novel and diverse small molecules is needed to meet various demands for research and clinical applications. My Ph.D study focuses on the development of novel functional molecules for recognition, imaging and drug release. In the first part, a turn-on fluorescent probe is developed for the detection of intracellular adenosine-5'-triphosphate (ATP) levels based on multiplexing recognitions. Considering the unique and complicated structure of ATP molecules, a fluorescent probe has been implemented with improved sensitivity and selectivity due to two synergistic binding recognitions by incorporating of 2, 2'-dipicolylamine (Dpa)-Zn(II) for targeting of phospho anions and phenylboronic acid group for cis-diol moiety. The novel probe is able to detect intracellular ATP levels in SH-SY5Y cells. Meanwhile, the advantages of multiplexing recognition design concept have been demonstrated using two control molecules. In the second part, a prodrug system is developed to deliver multiple drugs within one small molecule entity. The prodrug is designed by using 1-(2-nitrophenyl)ethyl (NPE) as phototrigger, and biphenol biquaternary ammonium as the prodrug. With controlled photo activation, both DNA cross-linking agents mechlorethamine and o-quinone methide are delivered and released at the preferred site, leading to efficient DNA cross-links formation and cell death. The prodrug shows negligible cytotoxicity towards normal skin cells (Hekn cells) with and without UV activation, but displays potent activity towards cancer cells (HeLa cells) upon UV activation. The multiple drug release system may hold a great potential for practical application. In the last part, a new photo-initiated fluorescent anticancer prodrug for DNA alkylating agent mechlorethamine releasing and monitoring has been developed. The theranostic prodrug consists a photolabile NPE group, an inactive form of mechlorethamine and a nonfluorescent coumarin in one small molecule. It is demonstrated that the prodrug shows negligible cytotoxicity towards normal skin cells (Hekn cells) with and without UV activation, while the original parent drug mechlorethamine can be photocontrol-released and induces effective DNA cross-linking activity. Importantly, the drug release progress can be conveniently monitored by the 'off-on' fluorescence enhancement in cells. Moreover, the selective prodrug is not only cell permeable but also nuclear permeable. Therefore, the prodrug serves as a promising drug delivery system for spatiotemporal control release and monitoring of an anticancer drug to obtain the optimal treatment efficacy.

  6. 9.73% Efficiency Nonfullerene All Organic Small Molecule Solar Cells with Absorption-Complementary Donor and Acceptor.

    PubMed

    Bin, Haijun; Yang, Yankang; Zhang, Zhi-Guo; Ye, Long; Ghasemi, Masoud; Chen, Shanshan; Zhang, Yindong; Zhang, Chunfeng; Sun, Chenkai; Xue, Lingwei; Yang, Changduk; Ade, Harald; Li, Yongfang

    2017-03-29

    In the last two years, polymer solar cells (PSCs) developed quickly with n-type organic semiconductor (n-OSs) as acceptor. In contrast, the research progress of nonfullerene organic solar cells (OSCs) with organic small molecule as donor and the n-OS as acceptor lags behind. Here, we synthesized a D-A structured medium bandgap organic small molecule H11 with bithienyl-benzodithiophene (BDTT) as central donor unit and fluorobenzotriazole as acceptor unit, and achieved a power conversion efficiency (PCE) of 9.73% for the all organic small molecules OSCs with H11 as donor and a low bandgap n-OS IDIC as acceptor. A control molecule H12 without thiophene conjugated side chains on the BDT unit was also synthesized for investigating the effect of the thiophene conjugated side chains on the photovoltaic performance of the p-type organic semiconductors (p-OSs). Compared with H12, the 2D-conjugated H11 with thiophene conjugated side chains shows intense absorption, low-lying HOMO energy level, higher hole mobility and ordered bimodal crystallite packing in the blend films. Moreover, a larger interaction parameter (χ) was observed in the H11 blends calculated from Hansen solubility parameters and differential scanning calorimetry measurements. These special features combined with the complementary absorption of H11 donor and IDIC acceptor resulted in the best PCE of 9.73% for nonfullerene all small molecule OSCs up to date. Our results indicate that fluorobenzotriazole based 2D conjugated p-OSs are promising medium bandgap donors in the nonfullerene OSCs.

  7. Ionically Cross-Linked Polymer Networks for the Multiple-Month Release of Small Molecules

    PubMed Central

    2016-01-01

    Long-term (multiple-week or -month) release of small, water-soluble molecules from hydrogels remains a significant pharmaceutical challenge, which is typically overcome at the expense of more-complicated drug carrier designs. Such approaches are payload-specific and include covalent conjugation of drugs to base materials or incorporation of micro- and nanoparticles. As a simpler alternative, here we report a mild and simple method for achieving multiple-month release of small molecules from gel-like polymer networks. Densely cross-linked matrices were prepared through ionotropic gelation of poly(allylamine hydrochloride) (PAH) with either pyrophosphate (PPi) or tripolyphosphate (TPP), all of which are commonly available commercial molecules. The loading of model small molecules (Fast Green FCF and Rhodamine B dyes) within these polymer networks increases with the payload/network binding strength and with the PAH and payload concentrations used during encapsulation. Once loaded into the PAH/PPi and PAH/TPP ionic networks, only a few percent of the payload is released over multiple months. This extended release is achieved regardless of the payload/network binding strength and likely reflects the small hydrodynamic mesh size within the gel-like matrices. Furthermore, the PAH/TPP networks show promising in vitro cytocompatibility with model cells (human dermal fibroblasts), though slight cytotoxic effects were exhibited by the PAH/PPi networks. Taken together, the above findings suggest that PAH/PPi and (especially) PAH/TPP networks might be attractive materials for the multiple-month delivery of drugs and other active molecules (e.g., fragrances or disinfectants). PMID:26811936

  8. Proteome-wide covalent ligand discovery in native biological systems

    PubMed Central

    Backus, Keriann M.; Correia, Bruno E.; Lum, Kenneth M.; Forli, Stefano; Horning, Benjamin D.; González-Páez, Gonzalo E.; Chatterjee, Sandip; Lanning, Bryan R.; Teijaro, John R.; Olson, Arthur J.; Wolan, Dennis W.; Cravatt, Benjamin F.

    2016-01-01

    Small molecules are powerful tools for investigating protein function and can serve as leads for new therapeutics. Most human proteins, however, lack small-molecule ligands, and entire protein classes are considered “undruggable” 1,2. Fragment-based ligand discovery (FBLD) can identify small-molecule probes for proteins that have proven difficult to target using high-throughput screening of complex compound libraries 1,3. Although reversibly binding ligands are commonly pursued, covalent fragments provide an alternative route to small-molecule probes 4–10, including those that can access regions of proteins that are difficult to access through binding affinity alone 5,10,11. In this manuscript, we report a quantitative analysis of cysteine-reactive small-molecule fragments screened against thousands of proteins. Covalent ligands were identified for >700 cysteines found in both druggable proteins and proteins deficient in chemical probes, including transcription factors, adaptor/scaffolding proteins, and uncharacterized proteins. Among the atypical ligand-protein interactions discovered were compounds that react preferentially with pro- (inactive) caspases. We used these ligands to distinguish extrinsic apoptosis pathways in human cell lines versus primary human T-cells, showing that the former is largely mediated by caspase-8 while the latter depends on both caspase-8 and −10. Fragment-based covalent ligand discovery provides a greatly expanded portrait of the ligandable proteome and furnishes compounds that can illuminate protein functions in native biological systems. PMID:27309814

  9. Design of a small molecule against an oncogenic noncoding RNA.

    PubMed

    Velagapudi, Sai Pradeep; Cameron, Michael D; Haga, Christopher L; Rosenberg, Laura H; Lafitte, Marie; Duckett, Derek R; Phinney, Donald G; Disney, Matthew D

    2016-05-24

    The design of precision, preclinical therapeutics from sequence is difficult, but advances in this area, particularly those focused on rational design, could quickly transform the sequence of disease-causing gene products into lead modalities. Herein, we describe the use of Inforna, a computational approach that enables the rational design of small molecules targeting RNA to quickly provide a potent modulator of oncogenic microRNA-96 (miR-96). We mined the secondary structure of primary microRNA-96 (pri-miR-96) hairpin precursor against a database of RNA motif-small molecule interactions, which identified modules that bound RNA motifs nearby and in the Drosha processing site. Precise linking of these modules together provided Targaprimir-96 (3), which selectively modulates miR-96 production in cancer cells and triggers apoptosis. Importantly, the compound is ineffective on healthy breast cells, and exogenous overexpression of pri-miR-96 reduced compound potency in breast cancer cells. Chemical Cross-Linking and Isolation by Pull-Down (Chem-CLIP), a small-molecule RNA target validation approach, shows that 3 directly engages pri-miR-96 in breast cancer cells. In vivo, 3 has a favorable pharmacokinetic profile and decreases tumor burden in a mouse model of triple-negative breast cancer. Thus, rational design can quickly produce precision, in vivo bioactive lead small molecules against hard-to-treat cancers by targeting oncogenic noncoding RNAs, advancing a disease-to-gene-to-drug paradigm.

  10. Chemicals as the Sole Transformers of Cell Fate.

    PubMed

    Ebrahimi, Behnam

    2016-05-30

    Forced expression of lineage-specific transcription factors in somatic cells can result in the generation of different cell types in a process named direct reprogramming, bypassing the pluripotent state. However, the introduction of transgenes limits the therapeutic applications of the produced cells. Numerous small-molecules have been introduced in the field of stem cell biology capable of governing self-renewal, reprogramming, transdifferentiation and regeneration. These chemical compounds are versatile tools for cell fate conversion toward desired outcomes. Cell fate conversion using small-molecules alone (chemical reprogramming) has superiority over arduous traditional genetic techniques in several aspects. For instance, rapid, transient, and reversible effects in activation and inhibition of functions of specific proteins are of the profits of small-molecules. They are cost-effective, have a long half-life, diversity on structure and function, and allow for temporal and flexible regulation of signaling pathways. Additionally, their effects could be adjusted by fine-tuning concentrations and combinations of different small-molecules. Therefore, chemicals are powerful tools in cell fate conversion and study of stem cell and chemical biology in vitro and in vivo. Moreover, transgene-free and chemical-only transdifferentiation approaches provide alternative strategies for the generation of various cell types, disease modeling, drug screening, and regenerative medicine. The current review gives an overview of the recent findings concerning transdifferentiation by only small-molecules without the use of transgenes.

  11. Laser desorption/ionization mass spectrometry for direct profiling and imaging of small molecules from raw biological materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cha, Sangwon

    2008-01-01

    Matrix-assisted laser desorption/ionization(MALDI) mass spectrometry(MS) has been widely used for analysis of biological molecules, especially macromolecules such as proteins. However, MALDI MS has a problem in small molecule (less than 1 kDa) analysis because of the signal saturation by organic matrixes in the low mass region. In imaging MS (IMS), inhomogeneous surface formation due to the co-crystallization process by organic MALDI matrixes limits the spatial resolution of the mass spectral image. Therefore, to make laser desorption/ionization (LDI) MS more suitable for mass spectral profiling and imaging of small molecules directly from raw biological tissues, LDI MS protocols with various alternativemore » assisting materials were developed and applied to many biological systems of interest. Colloidal graphite was used as a matrix for IMS of small molecules for the first time and methodologies for analyses of small metabolites in rat brain tissues, fruits, and plant tissues were developed. With rat brain tissues, the signal enhancement for cerebroside species by colloidal graphite was observed and images of cerebrosides were successfully generated by IMS. In addition, separation of isobaric lipid ions was performed by imaging tandem MS. Directly from Arabidopsis flowers, flavonoids were successfully profiled and heterogeneous distribution of flavonoids in petals was observed for the first time by graphite-assisted LDI(GALDI) IMS.« less

  12. A Small Molecule Inverse Agonist for the Human Thyroid-Stimulating Hormone Receptor

    PubMed Central

    Neumann, Susanne; Huang, Wenwei; Eliseeva, Elena; Titus, Steve; Thomas, Craig J.; Gershengorn, Marvin C.

    2010-01-01

    Small molecule inverse agonists for the TSH receptor (TSHR) may be used as probes of the role of basal (or agonist-independent or constitutive) signaling and may have therapeutic potential as orally active drugs to inhibit basal signaling in patients with thyroid cancer and in some patients with hyperthyroidism. We describe the first small-molecule ligand [1;2-(3-((2,6-dimethylphenoxy)methyl)-4-methoxyphenyl)-3-(furan-2-ylmethyl)-2,3-dihydroquinazolin-4(1H)-one] that exhibits inverse agonist properties at TSHR. 1 inhibits basal and TSH-stimulated signaling, measured as cAMP production, by TSHRs in HEK-EM 293 cells stably expressing wild-type TSHRs; the antagonism of TSH-mediated signaling is competitive. 1 also inhibits basal signaling by wild-type TSHRs, and four constitutively active mutants of TSHR expressed transiently in HEK-EM 293 cells. 1 was active under more physiologically relevant conditions in primary cultures of human thyrocytes expressing endogenous TSHRs where it inhibited basal levels of mRNA transcripts for thyroglobulin, thyroperoxidase, sodium iodide symporter, and TSHR. These data serve as proof of principle that small, drug-like molecules can inhibit basal signaling by TSHR. We suggest that this small molecule is a lead compound for the development of higher-potency inverse agonists that can be used as probes of TSHR biology with therapeutic potential. PMID:20427476

  13. Bioorthogonal Chemical Imaging for Biomedicine

    NASA Astrophysics Data System (ADS)

    Min, Wei

    2017-06-01

    Innovations in light microscopy have tremendously revolutionized the way researchers study biological systems with subcellular resolution. Although fluorescence microscopy is currently the method of choice for cellular imaging, it faces fundamental limitations for studying the vast number of small biomolecules. This is because relatively bulky fluorescent labels could introduce considerable perturbation to or even completely alter the native functions of vital small biomolecules. Hence, despite their immense functional importance, these small biomolecules remain largely undetectable by fluorescence microscopy. To address this challenge, we have developed a bioorthogonal chemical imaging platform. By coupling stimulated Raman scattering (SRS) microscopy, an emerging nonlinear Raman microscopy technique, with tiny and Raman-active vibrational probes (e.g., alkynes, nitriles and stable isotopes including 2H and 13C), bioorthogonal chemical imaging exhibits superb sensitivity, specificity, multiplicity and biocompatibility for imaging small biomolecules in live systems including tissues and organisms. Exciting biomedical applications such as imaging fatty acid metabolism related to lipotoxicity, glucose uptake and metabolism, drug trafficking, protein synthesis, DNA replication, protein degradation, RNA synthesis and tumor metabolism will be presented. This bioorthogonal chemical imaging platform is compatible with live-cell biology, thus allowing real-time imaging of small-molecule dynamics. Moreover, further chemical and spectroscopic strategies allow for multicolor bioorthogonal chemical imaging, a valuable technique in the era of "omics". We envision that the coupling of SRS microscopy with vibrational probes would do for small biomolecules what fluorescence microscopy of fluorophores has done for larger molecular species, bringing small molecules under the illumination of modern light microscopy.

  14. Permeability and route of entry for lipid-insoluble molecules across brain barriers in developing Monodelphis domestica

    PubMed Central

    Ek, C Joakim; Habgood, Mark D; Dziegielewska, Katarzyna M; Potter, Ann; Saunders, Norman R

    2001-01-01

    We have studied the permeability of blood-brain barriers to small molecules such as [14C]sucrose, [3H]inulin, [14C]l-glucose and [3H]glycerol from early stages of development (postnatal day 6, P6) in South American opossums (Monodelphis domestica), using a litter-based method for estimating steady-state cerebrospinal fluid (CSF)/plasma and brain/plasma ratios of markers that were injected i.p.. Steady-state ratios for l-glucose, sucrose and inulin all showed progressive decreases during development. The rate of uptake of l-glucose into the brain and CSF, in short time course experiments (7–24 min) when age-related differences in CSF production can be considered negligible also decreased during development. These results indicate that there is a significant decrease in the permeability of brain barriers to small lipid-insoluble molecules during brain development. The steady-state blood/CSF ratio for 3000 Da lysine-fixable biotin-dextran following i.p. injection was shown to be consistent with diffusion from blood to CSF. It was therefore used to visualise the route of penetration for small lipid-insoluble molecules across brain barriers at P 0–30. The proportion of biotin-dextran-positive cells in the choroid plexuses declined in parallel with the age-related decline in permeability to the small-molecular-weight markers; the paracellular (tight junction) pathway for biotin-dextran appeared to be blocked, but biotin-dextran was easily detectable in the CSF. A transcellular route from blood to CSF was suggested by the finding that some choroid plexus epithelial cells contained biotin-dextran. Biotin-dextran was also taken up by cerebral endothelial cells in the youngest brains studied (P0), but in contrast to the CSF, could not be detected in the brain extracellular space (i.e. a significant blood-brain barrier to small-sized lipid-insoluble compounds was already present). However, in immature brains (P0–13) biotin-dextran was taken up by some cells in the brain. These cells generally had contact with the CSF, suggesting that it is likely to have been the 2source of their biotin-dextran. Since the quantitative permeability data suggest that biotin-dextran behaves similarly to the radiolabelled markers used in this study, it is suggested that these markers in the more immature brains were also present intracellularly. Thus, brain/plasma ratios may be a misleading indicator of blood-brain barrier permeability in very immature animals. The immunocytochemical staining for biotin-dextran in the CSF, in contrast to the lack of staining in the brain extracellular space, together with the quantitative permeability data showing that the radiolabelled markers penetrated more rapidly and to a much higher steady-state level in CSF than in the brain, suggests that lipid-insoluble molecules such as sucrose and inulin reach the immature brain predominantly via the CSF rather than directly across the very few blood vessels that are present at that time. PMID:11691876

  15. [Advances in the study of natural small molecular antibody].

    PubMed

    Zhu, Lei; Zhang, Da-peng

    2012-10-01

    Small molecule antibodies are naturally existed and well functioned but not structurally related to the conventional antibodies. They are only composed of heavy protein chains or light chains, much smaller than common antibody. The first small molecule antibody, called Nanobody was engineered from heavy-chain antibodies found in camelids. Cartilaginous fishes also have heavy-chain antibodies (IgNAR, "immunoglobulin new antigen receptor"), from which single-domain antibodies called Vnar fragments can be obtained. In addition, free light chain (FLC) antibodies in human bodies are being developed as therapeutic and diagnostic agents. Comparing to intact antibodies, common advantages of small molecule antibodies are with better solubility, tissue penetration, stability towards heat and enzymes, and comparatively low production costs. This article reviews the structural characteristics and mechanism of action of the Nanobody, IgNAR and FLC.

  16. Allosteric analysis of glucocorticoid receptor-DNA interface induced by cyclic Py-Im polyamide: a molecular dynamics simulation study.

    PubMed

    Wang, Yaru; Ma, Na; Wang, Yan; Chen, Guangju

    2012-01-01

    It has been extensively developed in recent years that cell-permeable small molecules, such as polyamide, can be programmed to disrupt transcription factor-DNA interfaces and can silence aberrant gene expression. For example, cyclic pyrrole-imidazole polyamide that competes with glucocorticoid receptor (GR) for binding to glucocorticoid response elements could be expected to affect the DNA dependent binding by interfering with the protein-DNA interface. However, how such small molecules affect the transcription factor-DNA interfaces and gene regulatory pathways through DNA structure distortion is not fully understood so far. In the present work, we have constructed some models, especially the ternary model of polyamides+DNA+GR DNA-binding domain (GRDBD) dimer, and carried out molecular dynamics simulations and free energy calculations for them to address how polyamide molecules disrupt the GRDBD and DNA interface when polyamide and protein bind at the same sites on opposite grooves of DNA. We found that the cyclic polyamide binding in minor groove of DNA can induce a large structural perturbation of DNA, i.e. a >4 Å widening of the DNA minor groove and a compression of the major groove by more than 4 Å as compared with the DNA molecule in the GRDBD dimer+DNA complex. Further investigations for the ternary system of polyamides+DNA+GRDBD dimer and the binary system of allosteric DNA+GRDBD dimer revealed that the compression of DNA major groove surface causes GRDBD to move away from the DNA major groove with the initial average distance of ∼4 Å to the final average distance of ∼10 Å during 40 ns simulation course. Therefore, this study straightforward explores how small molecule targeting specific sites in the DNA minor groove disrupts the transcription factor-DNA interface in DNA major groove, and consequently modulates gene expression.

  17. Conformational Explosion: Understanding the Complexity of the Para-Dialkylbenzene Potential Energy Surfaces

    NASA Astrophysics Data System (ADS)

    Mishra, Piyush; Hewett, Daniel M.; Zwier, Timothy S.

    2017-06-01

    This talk focuses on the single-conformation spectroscopy of small-chain para-dialkylbenzenes. This work builds on previous studies from our group on long-chain n-alkylbenzenes that identified the first folded structure in octylbenzene. The dialkylbenzenes are representative of a class of molecules that are common components of coal and aviation fuel and are known to be present in vehicle exhaust. We bring the molecules para-diethylbenzene, para-dipropylbenzene and para-dibutylbenzene into the gas phase and cool the molecules in a supersonic expansion. The jet-cooled molecules are then interrogated using laser-induced fluorescence excitation, fluorescence dip IR spectroscopy (FDIRS) and dispersed fluorescence. The LIF spectra in the S_{0}-S_{1} origin region show dramatic increases in the number of resolved transitions with increasing length of alkyl chains, reflecting an explosion in the number of unique low-energy conformations formed when two independent alkyl chains are present. Since the barriers to isomerization of the alkyl chain are similar in size, this results in an 'egg carton' shape to the potential energy surface. We use a combination of electronic frequency shift and alkyl CH stretch infrared spectra to generate a consistent set of conformational assignments.

  18. Influence of charge on encapsulation and release behavior of small molecules in self-assembled layer-by-layer microcapsules.

    PubMed

    Mandapalli, Praveen K; Labala, Suman; Vanamala, Deekshith; Koranglekar, Manali P; Sakimalla, Lakshmi A; Venuganti, Venkata Vamsi K

    2014-12-01

    The objective of this study is to investigate the influence of charge of model small molecules on their encapsulation and release behavior in layer-by-layer microcapsules (LbL-MC). Poly(styrene sulfonate) and poly(ethylene imine) were sequentially adsorbed on calcium carbonate sacrificial templates to prepare LbL-MC. Model molecules with varying charge, anionic - ascorbic acid, cationic - imatinib mesylate (IM) and neutral - 5-fluorouracil were encapsulated in LbL-MC. Free and encapsulated LbL-MC were characterized using zetasizer, FTIR spectroscope and differential scanning calorimeter. The influence of IM-loaded LbL-MC on cell viability was studied in B16F10 murine melanoma cells. Furthermore, biodistribution of IM-loaded LbL-MC with and without PEGylation was studied in BALB/c mice. Results showed spherical LbL-MC of 3.0 ± 0.4 μm diameter. Encapsulation efficiency of LbL-MC increased linearly (R(2 )= 0.89-0.99) with the increase in solute concentration. Increase in pH from 2 to 6 increased the encapsulation of charged molecules in LbL-MC. Charged molecules showed greater encapsulation efficiency in LbL-MC compared with neutral molecule. In vitro release kinetics showed Fickian and non-Fickian diffusion of small molecules, depending on the nature of molecular interactions with LbL-MC. At 50 μM concentration, free IM showed significantly (p < 0.05) more cytotoxicity compared with IM-loaded LbL-MC. Biodistribution studies showed that PEGylation of LbL-MC decreased the liver and spleen uptake of IM-encapsulated LbL-MC. In conclusion, LbL-MC can be developed as a potential carrier for small molecules depending on their physical and chemical properties.

  19. The Mid-Infrared Absorption Spectra of Neutral PAHs in Dense Interstellar Clouds

    NASA Technical Reports Server (NTRS)

    Bernstein, M. P.; Sandford, S. A.; Allamandola, L. J.

    2005-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are common throughout the universe and are expected to be present in dense interstellar clouds. In these environments, some P.4Hs may be present in the gas phase, but most should be frozen into ice mantles or adsorbed onto dust grains and their spectral features are expected to be seen in absorption. Here we extend our previous work on the infrared spectral properties of the small PAH naphthalene (C10H8) in several media to include the full mid-infrared laboratory spectra of 11 other PAHs and related aromatic species frozen in H2O ices. These include the molecules 1,2-dihydronaphthalene, anthracene, 9,1O-dihydroanthracene, phenanthrene, pyrene, benzo[e]pyrene, perylene, benzo(k)fluoranthene, pentacene, benzo[ghi]perylene, and coronene. These results demonstrate that PAHs and related molecules, as a class, show the same spectral behaviors as naphthalene when incorporated into H2O-rich matrices. When compared to the spectra of these same molecules isolated in inert matrices (e.g., Ar or N2), the absorption bands produced when they are frozen in H2O matrices are broader (factors of 3-10), show small position shifts in either direction (usually < 4/cm, always < 10/cm), and show variable changes in relative band strengths (typically factors of 1-3). There is no evidence of systematic increases or decreases in the absolute strengths of the bands of these molecules when they are incorporated in H2O matrices. In H2O-rich ices, their absorption bands are relatively insensitive to concentration over the range of 10 < H2O/PAH < 200): The absorption bands of these molecules are also insensitive to temperature over the 10 K < T < 125 K range, although the spectra can show dramatic changes as the ices are warmed through the temperature range in which amorphous H2O ice converts to its cubic and hexagonal crystalline forms (T > 125 Kj. Given the small observed band shifts cause by H2O, the current database of spectra from Ar matrix-isolated neutral PAHs and related molecules should be useful for the search for these species in dense clouds on the basis of observed absorption band positions. Furthermore, these data permit determination of column densities to better than a factor of 3 for PAHs in dense clouds. Column density determination of detected aromatics to better than a factor of 3 will, however, require good knowledge about the nature of the matrix in which the PAH is embedded and laboratory studies of relevant samples.

  20. mirRICH, a simple method to enrich the small RNA fraction from over-dried RNA pellets.

    PubMed

    Choi, Cheolwon; Yoon, Seulgi; Moon, Hyesu; Bae, Yun-Ui; Kim, Chae-Bin; Diskul-Na-Ayudthaya, Penchatr; Ngu, Trinh Van; Munir, Javaria; Han, JaeWook; Park, Se Bin; Moon, Jong-Seok; Song, Sujung; Ryu, Seongho

    2018-04-11

    Techniques to isolate the small RNA fraction (<200nt) by column-based methods are commercially available. However, their use is limited because of the relatively high cost. We found that large RNA molecules, including mRNAs and rRNAs, are aggregated together in the presence of salts when RNA pellets are over-dried. Moreover, once RNA pellets are over-dried, large RNA molecules are barely soluble again during the elution process, whereas small RNA molecules (<100nt) can be eluted. We therefore modified the acid guanidinium thiocyanate-phenol-chloroform (AGPC)-based RNA extraction protocol by skipping the 70% ethanol washing step and over-drying the RNA pellet for 1 hour at room temperature. We named this novel small RNA isolation method "mirRICH." The quality of the small RNA sequences was validated by electrophoresis, next-generation sequencing, and quantitative PCR, and the findings support that our newly developed column-free method can successfully and efficiently isolate small RNAs from over-dried RNA pellets.

Top