Sample records for small orbits early

  1. Tidal friction and the early history of the moon's orbit

    NASA Technical Reports Server (NTRS)

    Rubincam, D. P.

    1975-01-01

    The present work investigates the consequences implied by various rheological models of the early earth for the orbital history of the moon subsequent to its formation. Models of the earth that yield small tidal angles, such as low-viscosity models, imply that the moon never orbited in the earth's equatorial plane, thereby ruling out an equatorial origin for the moon. A high-viscosity model is shown to permit the moon to originate in the equatorial plane and still account for the present-day characteristics of the moon's orbit.

  2. NASA's Marshall Space Flight Center Recent Studies and Technology Developments in the Area of SSA/Orbital Debris

    NASA Technical Reports Server (NTRS)

    Wiegmann, Bruce M.; Hovater, Mary; Kos, Larry

    2012-01-01

    NASA/MSFC has been investigating the various aspects of the growing orbital debris problem since early 2009. Data shows that debris ranging in size from 5 mm to 10 cm presents the greatest threat to operational spacecraft today. Therefore, MSFC has focused its efforts on small orbital debris. Using off-the-shelf analysis packages, like the ESA MASTER software, analysts at MSFC have begun to characterize the small debris environment in LEO to support several spacecraft concept studies and hardware test programs addressing the characterization, mitigation, and ultimate removal, if necessary, of small debris. The Small Orbital Debris Active Removal (SODAR) architectural study investigated the overall effectiveness of removing small orbital debris from LEO using a low power, space-based laser. The Small Orbital Debris Detection, Acquisition, and Tracking (SODDAT) conceptual technology demonstration spacecraft was developed to address the challenges of in-situ small orbital debris environment classification including debris observability and instrument requirements for small debris observation. Work is underway at MSFC in the areas of hardware and testing. By combining off the shelf digital video technology, telescope lenses, and advanced video image FPGA processing, MSFC is building a breadboard of a space based, passive orbital tracking camera that can detect and track faint objects (including small debris, satellites, rocket bodies, and NEOs) at ranges of tens to hundreds of kilometers and speeds in excess of 15 km/sec,. MSFC is also sponsoring the development of a one-of-a-kind Dynamic Star Field Simulator with a high resolution large monochrome display and a custom collimator capable of projecting realistic star images with simple orbital debris spots (down to star magnitude 11-12) into a passive orbital detection and tracking system with simulated real-time angular motions of the vehicle mounted sensor. The dynamic star field simulator can be expanded for multiple sensors (including advanced star trackers), real-time vehicle pointing inputs, and more complex orbital debris images. This system is also adaptable to other sensor optics, missions, and installed sensor testing.

  3. THE ASTEROID BELT AS A RELIC FROM A CHAOTIC EARLY SOLAR SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izidoro, André; Raymond, Sean N.; Pierens, Arnaud

    The orbital structure of the asteroid belt holds a record of the solar system’s dynamical history. The current belt only contains ∼10{sup −3} Earth masses yet the asteroids’ orbits are dynamically excited, with a large spread in eccentricity and inclination. In the context of models of terrestrial planet formation, the belt may have been excited by Jupiter’s orbital migration. The terrestrial planets can also be reproduced without invoking a migrating Jupiter; however, as it requires a severe mass deficit beyond Earth’s orbit, this model systematically under-excites the asteroid belt. Here we show that the orbits of the asteroids may havemore » been excited to their current state if Jupiter’s and Saturn’s early orbits were chaotic. Stochastic variations in the gas giants’ orbits cause resonances to continually jump across the main belt and excite the asteroids’ orbits on a timescale of tens of millions of years. While hydrodynamical simulations show that the gas giants were likely in mean motion resonance at the end of the gaseous disk phase, small perturbations could have driven them into a chaotic but stable state. The gas giants’ current orbits were achieved later, during an instability in the outer solar system. Although it is well known that the present-day solar system exhibits chaotic behavior, our results suggest that the early solar system may also have been chaotic.« less

  4. Submillimeter Wave Astronomy Satellite (SWAS) Launch and Early Orbit Support Experiences

    NASA Technical Reports Server (NTRS)

    Kirschner, S.; Sedlak, J.; Challa, M.; Nicholson, A.; Sande, C.; Rohrbaugh, D.

    1999-01-01

    The Submillimeter Wave Astronomy Satellite (SWAS) was successfully launched on December 6, 1998 at 00:58 UTC. The two year mission is the fourth in the series of Small Explorer (SMEX) missions. SWAS is dedicated to the study of star formation and interstellar chemistry. SWAS was injected into a 635 km by 650 km orbit with an inclination of nearly 70 deg by an Orbital Sciences Corporation Pegasus XL launch vehicle. The Flight Dynamics attitude and navigation teams supported all phases of the early mission. This support included orbit determination, attitude determination, real-time monitoring, and sensor calibration. This paper reports the main results and lessons learned concerning navigation, support software, star tracker performance, magnetometer and gyroscope calibrations, and anomaly resolution. This includes information on spacecraft tip-off rates, first-day navigation problems, target acquisition anomalies, star tracker anomalies, and significant sensor improvements due to calibration efforts.

  5. Man-Made Debris In and From Lunar Orbit

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.; McKay, Gordon A. (Technical Monitor)

    1999-01-01

    During 1966-1976, as part of the first phase of lunar exploration, 29 manned and robotic missions placed more than 40 objects into lunar orbit. Whereas several vehicles later successfully landed on the Moon and/or returned to Earth, others were either abandoned in orbit or intentionally sent to their destruction on the lunar surface. The former now constitute a small population of lunar orbital debris; the latter, including four Lunar Orbiters and four Lunar Module ascent stages, have contributed to nearly 50 lunar sites of man's refuse. Other lunar satellites are known or suspected of having fallen from orbit. Unlike Earth satellite orbital decays and deorbits, lunar satellites impact the lunar surface unscathed by atmospheric burning or melting. Fragmentations of lunar satellites, which would produce clouds of numerous orbital debris, have not yet been detected. The return to lunar orbit in the 1990's by the Hagoromo, Hiten, Clementine, and Lunar Prospector spacecraft and plans for increased lunar exploration early in the 21st century, raise questions of how best to minimize and to dispose of lunar orbital debris. Some of the lessons learned from more than 40 years of Earth orbit exploitation can be applied to the lunar orbital environment. For the near-term, perhaps the most important of these is postmission passivation. Unique solutions, e.g., lunar equatorial dumps, may also prove attractive. However, as with Earth satellites, debris mitigation measures are most effectively adopted early in the concept and design phase, and prevention is less costly than remediation.

  6. Trojan Tour and Rendezvous (TTR): A New Frontiers Mission to Explore the Origin and Evolution of the Early Solar System

    NASA Astrophysics Data System (ADS)

    Bell, J. F., III; Olkin, C.; Castillo, J. C.

    2015-12-01

    The orbital properties, compositions, and physical properties of the diverse populations of small outer solar system bodies provide a forensic map of how our solar system formed and evolved. Perhaps the most potentially diagnostic, but least explored, of those populations are the Jupiter Trojan asteroids, which orbit at ~5 AU in the L4 and L5 Lagrange points of Jupiter. More than 6200 Jupiter Trojans are presently known, but these are predicted to be only a small fraction of the 500,000 to 1 million Trojans >1 km in size. The Trojans are hypothesized to be either former Kuiper Belt Objects (KBOs) that were scattered into the inner solar system by early giant planet migration and then trapped in the 1:1 Jupiter mean motion resonance, or bodies formed near 5 AU in a much more quiescent early solar system, and then trapped at L4 and L5. The 2011 Planetary Science Decadal Survey identified important questions about the origin and evolution of the solar system that can be addressed by studying of the Trojan asteroids, including: (a) How did the giant planets and their satellite systems accrete, and is there evidence that they migrated to new orbital positions? (b) What is the relationship between large and small KBOs? Is the small population derived by impact disruption of the large one? (c) What kinds of surface evolution, radiation chemistry, and surface-atmosphere interactions occur on distant icy primitive bodies? And (d) What are the sources of asteroid groups (Trojans and Centaurs) that remain to be explored by spacecraft? The Trojan Tour and Rendezvous (TTR) is a New Frontiers-class mission designed to answer these questions, and to test hypotheses for early giant planet migration and solar system evolution. Via close flybys of a large number of these objects,, and orbital characterization of at least one large Trojan, TTR will enable the first-time exploration of this population. Our primary mission goals are to characterize the overall surface geology, geochemistry and mineralogy of these worlds; to characterize their internal structure and dynamical properties; to investigate the nature, sources and history of activity on these bodies; and to explore the diversity of the broader Trojan asteroid population.

  7. Trojan Tour and Rendezvous (TTR): A New Frontiers Mission to Conduct the First Detailed Reconnaissance of the Jupiter Trojan Asteroids

    NASA Astrophysics Data System (ADS)

    Bell, James F.; Olkin, Cathy; Castillo-Rogez, Julie

    2015-11-01

    Among the most potentially diagnostic but least explored populations of small bodies are the Jupiter Trojan asteroids, which orbit at ~5 AU in the L4 and L5 Lagrange points of Jupiter. The Trojans provide a unique perspective on solar system history, because their locations and physical, compositional, and mineralogic properties preserve evidence for important gravitational interactions among the giant planets. The locations and orbital properties of more than 6200 Jupiter Trojans are now known, but that is likely only a small fraction of a population of up to ~1e6 Trojans >1 km in size. The Trojans are hypothesized to be either former KBOs scattered into the inner solar system by early giant planet migration and then trapped in L4 and L5, or bodies formed near 5 AU in a more quiescent early solar system.Important Planetary Decadal Survey questions that can be addressed by studying the Trojans include: (a) How did the giant planets and their satellite systems accrete, and is there evidence that they migrated to new orbital positions? (b) What is the relationship between large and small KBOs? Is the small population derived by impact disruption of the large one? (c) What kinds of surface evolution, radiation chemistry, and surface-atmosphere interactions occur on distant icy primitive bodies? And (d) What are the sources of asteroid groups (Trojans and Centaurs) that remain to be explored by spacecraft?Here we describe the Trojan Tour and Rendezvous (TTR) New Frontiers mission concept, which is designed to answer these Decadal questions and to test hypotheses for early giant planet migration and solar system evolution. Via close flybys of many of these objects, and orbital characterization of at least one large Trojan, TTR will enable the initial up-close exploration of this population. Our primary mission goals are to characterize the overall surface geology, geochemistry and mineralogy of these worlds; to characterize their internal structure and dynamical properties; to investigate the nature, sources and history of activity on these bodies; and to explore the diversity of the broader Trojan asteroid population.

  8. A complex of meteorite-forming bodies (the Innisfree - Ridgedale family).

    NASA Astrophysics Data System (ADS)

    Shestaka, I. S.

    1994-12-01

    For the first time a swarm of meteorite-forming bodies was identified. Yearly this swarm's orbit approaches the Earth's orbit in early February. This swarm contains the Innisfree and Ridgedale fireballs, 9 small meteoric swarms, several asteroids and 12 fireballs photographed by the cameras of the Prairie Network and Canadian Meteorite Observation and Discovery Project. The discovery of this complex, intensive bombardments of the Moon's surface recorded by means of seismographs left on the Moon, the analysis of the time distributions of meteorite falls on the Earth and other established facts confirm the existence of swarms of meteorite-forming bodies which are crossing the Earth's orbit.

  9. The Origin of Pluto's Orbit: Implications for the Solar System Beyond Neptune

    NASA Technical Reports Server (NTRS)

    Malhotra, Renu

    1995-01-01

    The origin of the highly eccentric, inclined, and resonance-locked orbit of Pluto has long been a puzzle. A possible explanation has been proposed recently which suggests that these extraordinary orbital properties may be a natural consequence of the formation and early dynamical evolution of the outer solar system. A resonance capture mechanism is possible during the clearing of the residual planetesimal debris and the formation of the Oort Cloud of comets by planetesimal mass loss from the vicinity of the giant planets. If this mechanism were in operation during the early history of the planetary system, the entire region between the orbit of Neptune and approximately 50 AU would have been swept by first-order mean motion resonances. Thus, resonance capture could occur not only for Pluto, but quite generally for other trans-Neptunian small bodies. Some consequences of this evolution for the present-day dynamical structure of the trans-Neptunian region are (1) most of the objects in the region beyond Neptune and up to approximately 50 AU exist in very narrow zones located at orbital resonances with Neptune (particularly the 3:2 and the 2:1 resonances); and (2) these resonant objects would have significantly large eccentricities. The distribution of objects in the Kuiper Belt as predicted by this theory is presented here.

  10. Capturing asteroids into bound orbits around the earth: Massive early return on an asteroid terminal defense system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hills, J.G.

    1992-02-06

    Nuclear explosives may be used to capture small asteroids (e.g., 20--50 meters in diameter) into bound orbits around the earth. The captured objects could be used for construction material for manned and unmanned activity in Earth orbit. Asteroids with small approach velocities, which are the ones most likely to have close approaches to the Earth, require the least energy for capture. They are particularly easy to capture if they pass within one Earth radius of the surface of the Earth. They could be intercepted with intercontinental missiles if the latter were retrofit with a more flexible guiding and homing capability.more » This asteroid capture-defense system could be implemented in a few years at low cost by using decommissioned ICMs. The economic value of even one captured asteroid is many times the initial investment. The asteroid capture system would be an essential part of the learning curve for dealing with larger asteroids that can hit the earth.« less

  11. Saving the Inner Solar System with an Early Instability

    NASA Astrophysics Data System (ADS)

    Clement, Matthew; Kaib, Nathan A.; Raymond, Sean N.; Walsh, Kevin J.

    2018-04-01

    An orbital instability between the solar system’s giant planets (the so-called Nice Model) has been shown to greatly disturb the orbits of the young terrestrial planets. Undesirable outcomes such as over-excitated orbits, ejections and collisions can be avoided if the instability occurs before the inner planets are fully formed. Such a scenario also has the advantage of limiting the mass and formation time of Mars when it occurs within several million years (Myr) of gas disk dissipation. The dynamical effects of the instability cause many small embryos and planetesimals to scatter away from the forming Mars, and lead to heavy mass depletion in the Asteroid Belt. We present new simulations of this scenario that demonstrate its ability to accurately reproduce the eccentricity, inclination and resonant structures of the Asteroid Belt. Furthermore, we perform simulations using an integration scheme which accounts for the fragmentation of colliding bodies. The final terrestrial systems formed in these simulations provide a better match to the actual planets' compact mass distribution and dynamically cold orbits. An early instability scenario is thus very successful at simultaneously replicating the dynamical state of both the inner and outer solar system.

  12. Preparing for TESS: Precision Ground-based Light-curves of Newly Discovered Transiting Exoplanets

    NASA Astrophysics Data System (ADS)

    Li, Yiting; Stefansson, Gudmundur; Mahadevan, Suvrath; Monson, Andy; Hebb, Leslie; Wisniewski, John; Huehnerhoff, Joseph

    2018-01-01

    NASA’s Transiting Exoplanet Survey Satellite (TESS), to be launched in early 2018, is expected to catalog a myriad of transiting exoplanet candidates ranging from Earth-sized to gas giants, orbiting a diverse range of stellar types in the solar neighborhood. In particular, TESS will find small planets orbiting the closest and brightest stars, and will enable detailed atmospheric characterizations of planets with current and future telescopes. In the TESS era, ground-based follow-up resources will play a critical role in validating and confirming the planetary nature of the candidates TESS will discover. Along with confirming the planetary nature of exoplanet transits, high precision ground-based transit observations allow us to put further constraints on exoplanet orbital parameters and transit timing variations. In this talk, we present new observations of transiting exoplanets recently discovered by the K2 mission, using the optical diffuser on the 3.5m ARC Telescope at Apache Point Observatory. These include observations of the mini-Neptunes K2-28b and K2-104b orbiting early-to-mid M-dwarfs. In addition, other recent transit observations performed using the robotic 30cm telescope at Las Campanas Observatory in Chile will be presented.

  13. A small scale lunar launcher for early lunar material utilization

    NASA Technical Reports Server (NTRS)

    Snow, W. R.; Kubby, J. A.; Dunbar, R. S.

    1981-01-01

    A system for the launching of lunar derived oxygen or raw materials into low lunar orbit or to L2 for transfer to low earth orbit is presented. The system described is a greatly simplified version of the conventional and sophisticated approach suggested by O'Neill using mass drivers with recirculating buckets. An electromagnetic accelerator is located on the lunar surface which launches 125 kg 'smart' containers of liquid oxygen or raw materials into a transfer orbit. Upon reaching apolune a kick motor is fired to circularize the orbit at 100 km altitude or L2. These containers are collected and their payloads transferred to a tanker OTV. The empty containers then have their kick motors refurbished and then are returned to the launcher site on the lunar surface for reuse. Initial launch capability is designed for about 500T of liquid oxygen delivered to low earth orbit per year with upgrading to higher levels, delivery of lunar soil for shielding, or raw materials for processing given the demand.

  14. On the Early In Situ Formation of Pluto’s Small Satellites

    NASA Astrophysics Data System (ADS)

    Woo, Jason Man Yin; Lee, Man Hoi

    2018-04-01

    The formation of Pluto’s small satellites—Styx, Nix, Keberos, and Hydra—remains a mystery. Their orbits are nearly circular and are near mean-motion resonances and nearly coplanar with Charon’s orbit. One scenario suggests that they all formed close to their current locations from a disk of debris that was ejected from the Charon-forming impact before the tidal evolution of Charon. The validity of this scenario is tested by performing N-body simulations with the small satellites treated as test particles and Pluto–Charon evolving tidally from an initial orbit at a few Pluto radii with initial eccentricity e C = 0 or 0.2. After tidal evolution, the free eccentricities e free of the test particles are extracted by applying fast Fourier transformation to the distance between the test particles and the center of mass of the system and compared with the current eccentricities of the four small satellites. The only surviving test particles with e free matching the eccentricities of the current satellites are those not affected by mean-motion resonances during the tidal evolution in a model with Pluto’s effective tidal dissipation function Q = 100 and an initial e C = 0.2 that is damped down rapidly. However, these test particles do not have any preference to be in or near 4:1, 5:1, and 6:1 resonances with Charon. An alternative scenario may be needed to explain the formation of Pluto’s small satellites.

  15. NASA's Space Launch System: Deep-Space Delivery for SmallSats

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Norris, George

    2017-01-01

    Designed for human exploration missions into deep space, NASA's Space Launch System (SLS) represents a new spaceflight infrastructure asset, enabling a wide variety of unique utilization opportunities. While primarily focused on launching the large systems needed for crewed spaceflight beyond Earth orbit, SLS also offers a game-changing capability for the deployment of small satellites to deep-space destinations, beginning with its first flight. Currently, SLS is making rapid progress toward readiness for its first launch in two years, using the initial configuration of the vehicle, which is capable of delivering more than 70 metric tons (t) to Low Earth Orbit (LEO). On its first flight, an uncrewed test of the Orion spacecraft into distant retrograde orbit around the moon, accompanying Orion on SLS will be 13 small-satellite secondary payloads, which will deploy in cislunar space. These secondary payloads will include not only NASA research, but also spacecraft from industry and international partners and academia. The payloads also represent a variety of disciplines including, but not limited to, studies of the moon, Earth, sun, and asteroids. The Space Launch System Program is working actively with the developers of the payloads toward vehicle integration. Following its first flight and potentially as early as its second, SLS will evolve into a more powerful configuration with a larger upper stage. This configuration will initially be able to deliver 105 t to LEO, and will continue to be upgraded to a performance of greater than 130 t to LEO. While the addition of the more powerful upper stage will mean a change to the secondary payload accommodations from those on the first launch, the SLS Program is already evaluating options for future secondary payload opportunities. Early discussions are also already underway for the use of SLS to launch spacecraft on interplanetary trajectories, which could open additional opportunities for small satellites. This presentation will include an overview of the SLS vehicle and its capabilities, including the current status of progress toward first launch. It will also explain the opportunities the vehicle offers for small satellites, including an overview of the CubeSat manifest for Exploration Mission-1 in 2018 and a discussion of future capabilities.

  16. Bayesian Orbit Computation Tools for Objects on Geocentric Orbits

    NASA Astrophysics Data System (ADS)

    Virtanen, J.; Granvik, M.; Muinonen, K.; Oszkiewicz, D.

    2013-08-01

    We consider the space-debris orbital inversion problem via the concept of Bayesian inference. The methodology has been put forward for the orbital analysis of solar system small bodies in early 1990's [7] and results in a full solution of the statistical inverse problem given in terms of a posteriori probability density function (PDF) for the orbital parameters. We demonstrate the applicability of our statistical orbital analysis software to Earth orbiting objects, both using well-established Monte Carlo (MC) techniques (for a review, see e.g. [13] as well as recently developed Markov-chain MC (MCMC) techniques (e.g., [9]). In particular, we exploit the novel virtual observation MCMC method [8], which is based on the characterization of the phase-space volume of orbital solutions before the actual MCMC sampling. Our statistical methods and the resulting PDFs immediately enable probabilistic impact predictions to be carried out. Furthermore, this can be readily done also for very sparse data sets and data sets of poor quality - providing that some a priori information on the observational uncertainty is available. For asteroids, impact probabilities with the Earth from the discovery night onwards have been provided, e.g., by [11] and [10], the latter study includes the sampling of the observational-error standard deviation as a random variable.

  17. Automated maneuver planning using a fuzzy logic algorithm

    NASA Technical Reports Server (NTRS)

    Conway, D.; Sperling, R.; Folta, D.; Richon, K.; Defazio, R.

    1994-01-01

    Spacecraft orbital control requires intensive interaction between the analyst and the system used to model the spacecraft trajectory. For orbits with right mission constraints and a large number of maneuvers, this interaction is difficult or expensive to accomplish in a timely manner. Some automation of maneuver planning can reduce these difficulties for maneuver-intensive missions. One approach to this automation is to use fuzzy logic in the control mechanism. Such a prototype system currently under development is discussed. The Tropical Rainfall Measurement Mission (TRMM) is one of several missions that could benefit from automated maneuver planning. TRMM is scheduled for launch in August 1997. The spacecraft is to be maintained in a 350-km circular orbit throughout the 3-year lifetime of the mission, with very small variations in this orbit allowed. Since solar maximum will occur as early as 1999, the solar activity during the TRMM mission will be increasing. The increasing solar activity will result in orbital maneuvers being performed as often as every other day. The results of automated maneuver planning for the TRMM mission will be presented to demonstrate the prototype of the fuzzy logic tool.

  18. Radio and Plasma Wave Observations During Cassini's Grand Finale

    NASA Astrophysics Data System (ADS)

    Kurth, W. S.; Bostrom, R.; Canu, P.; Cecconi, B.; Cornilleau-Wehrlin, N.; Farrell, W. M.; Fischer, G.; Galopeau, P. H. M.; Gurnett, D. A.; Gustafsson, G.; Hospodarsky, G. B.; Lamy, L.; Lecacheux, A.; Louarn, P.; MacDowall, R. J.; Menietti, J. D.; Modolo, R.; Morooka, M.; Pedersen, A.; Persoon, A. M.; Sulaiman, A. H.; Wahlund, J. E.; Ye, S.; Zarka, P. M.

    2017-12-01

    Cassini ends its 13-year exploration of the Saturnian system in 22 high inclination Grand Finale orbits with perikrones falling between the inner edge of the D ring and the upper limits of Saturn's atmosphere. The Cassini Radio and Plasma Wave Science (RPWS) instrument makes a variety of observations in these unique orbits including Saturn kilometric radiation, plasma waves such as auroral hiss associated with Saturn's auroras, dust via impacts with Cassini, and the upper reaches of Saturn's ionosphere. This paper will provide an overview of the RPWS results from this final phase of the Cassini mission with the unique opportunities afforded by the orbit. Based on early Grand Finale orbits, we can already say that the spacecraft has passed through cyclotron maser source regions of the Saturn kilometric radiation a number of times, found only small amounts of micron-sized dust in the equatorial region, and observed highly variable densities of cold plasma of order 1000 cm-3 in the ionosphere at altitudes of a few thousand km.

  19. Quasi-Tangency Points on the Orbits of a Small Body and a Planet at the Low-Velocity Encounter

    NASA Astrophysics Data System (ADS)

    Emel'yanenko, N. Yu.

    2018-03-01

    We propose a method for selecting a low-velocity encounter of a small body with a planet from the evolution of the orbital elements. Polar orbital coordinates of the quasi-tangency point on the orbit of a small body are determined. Rectangular heliocentric coordinates of the quasi-tangency point on the orbit of a planet are determined. An algorithm to search for low-velocity encounters in the evolution of the orbital elements of small bodies is described. The low-velocity encounter of comet 39P/Oterma with Jupiter is considered as an example.

  20. Using GEO Optical Observations to Infer Orbit Populations

    NASA Technical Reports Server (NTRS)

    Matney, Mark; Africano, John

    2002-01-01

    NASA's Orbital Debris measurements program has a goal to characterize the small debris environment in the geosynchronous Earth-orbit (GEO) region using optical telescopes ("small" refers to objects too small to catalog and track with current systems). Traditionally, observations of GEO and near-GEO objects involve following the object with the telescope long enough to obtain an orbit. When observing very dim objects with small field-of-view telescopes, though, the observations are generally too short to obtain accurate orbital elements. However, it is possible to use such observations to statistically characterize the small object environment. A telescope pointed at a particular spot could potentially see objects in a number of different orbits. Inevitably, when looking at one region for certain types of orbits, there are objects in other types of orbits that cannot be seen. Observation campaigns are designed with these limitations in mind and are set up to span a number of regions of the sky, making it possible to sample all potential orbits under consideration. Each orbit is not seen with the same probability, however, so there are observation biases intrinsic to any observation campaign. Fortunately, it is possible to remove such biases and reconstruct a meaningful estimate of the statistical orbit populations of small objects in GEO. This information, in turn, can be used to investigate the nature of debris sources and to characterize the risk to GEO spacecraft. This paper describes these statistical tools and presents estimates of small object GEO populations.

  1. Constraining the Properties of Small Stars and Small Planets Observed by K2

    NASA Astrophysics Data System (ADS)

    Dressing, Courtney D.; Newton, Elisabeth R.; Charbonneau, David; Schlieder, Josh; Hawaii/California/Arizona/Indiana K2 Follow-up Consortium, HARPS-N Consortium

    2016-01-01

    We are using the results of the NASA K2 mission (the second career of the Kepler spacecraft) to study how the frequency and architectures of planetary systems orbiting M dwarfs throughout the ecliptic plane compare to those of the early M dwarf planetary systems observed by Kepler. In a previous analysis of the Kepler data set, we found that planets orbiting early M dwarfs are common: we measured a cumulative planet occurrence rate of 2.45 +/- 0.22 planets per M dwarf with periods of 0.5-200 days and planet radii of 1-4 Earth radii. Within a conservative habitable zone based on the moist greenhouse inner limit and maximum greenhouse outer limit, we estimated an occurrence rate of 0.15 (+0.18/-0.06) Earth-size planets and 0.09 (+0.10/-0.04) super-Earths per M dwarf HZ. Applying these occurrence rates to the population of nearby stars and assuming that mid- and late-M dwarfs host planets at the same rate as early M dwarfs, we predicted that the nearest potentially habitable Earth-size planet likely orbits an M dwarf a mere 2.6 ± 0.4 pc away. We are now testing the assumption of equal planet occurrence rates for M dwarfs of all types by inspecting the population of planets detected by K2 and conducting follow-up observations of planet candidate host stars to identify false positives and better constrain system parameters. I will present the results of recent observing runs with SpeX on the IRTF to obtain near-infrared spectra of low-mass stars targeted by K2 and determine the radii, temperatures, and metallicities of our target stars using empirical relations. We gratefully acknowledge funding from the NASA XRP Program, the John Templeton Foundation, and the NASA Sagan Fellowship Program.

  2. LARES: A new mission to improve the measurement of lense-thirring effect with Satellite Laser Ranging

    NASA Astrophysics Data System (ADS)

    Pavlis, E. C.; Ciufolini, I.; Paolozzi, A.

    2012-12-01

    LARES, Laser Relativity Satellite, is a spherical laser-ranged satellite, passive and covered with retroreflectors. It will be launched with ESA's new launch vehicle VEGA (ESA-ELV-ASI-AVIO) in early 2012. Its orbital elements will be: inclination 70° ± 1, semi-major axis 7830 km and near zero eccentricity. Its weight is about 387 kg and its radius 18.2 cm. It will be the single known most dense body orbiting Earth in the solar system, and the non-gravitational perturbations will be minimized by its very small 'cross-section-to-mass' ratio. The main objective of the LARES satellite is a test of the frame-dragging effect, a consequence of the gravitomagnetic field predicted by Einstein's theory of General Relativity. Together with the orbital data from LAGEOS and LAGEOS 2, it will allow a measurement of frame-dragging with an accuracy of a few percent.

  3. Light curve solutions of the eclipsing eccentric binaries KIC 8111622, KIC 10518735, KIC 8196180 and their out-of-eclipse variability

    NASA Astrophysics Data System (ADS)

    Kjurkchieva, Diana P.; Vasileva, Doroteya L.

    2018-02-01

    We determined the orbits and stellar parameters of three eccentric eclipsing binaries by light curve solutions of their Kepler data. KIC 8111622 and KIC 10518735 undergo total eclipses while KIC 8196180 reveals partial eclipses. The target components are G and K stars, excluding the primary of KIC 8196180 which is early F star. KIC 8196180 reveals well-visible tidally-induced feature at periastron, i.e. it is an eclipsing heartbeat star. The characteristics of the observed periastron feature (shape, width and amplitude) confirm the theoretical predictions. There are additional out-of-eclipse variations of KIC 8196180 with the orbital period which may be explained by spot activity of synchronously rotating component. Besides worse visible periastron feature KIC 811162 exhibits small-amplitude light variations whose period is around 2.3 times shorter than the orbital one. These oscillations were attributed to spot(s) on asynchronously rotating component.

  4. High Power Microwave Emission of Large and Small Orbit Gyrotron Devices in Rectangular Interaction Structures

    NASA Astrophysics Data System (ADS)

    Hochman, J. M.; Gilgenbach, R. M.; Jaynes, R. L.; Rintamaki, J. I.; Luginsland, J. W.; Lau, Y. Y.; Spencer, T. A.

    1996-11-01

    Experiments utilize large and small orbit e-beam gyrotron devices in a rectangular-cross-section (RCS) gyrotron. This device is being explored to examine polarization control. Other research issues include pulse shortening, and mode competition. MELBA generates electron beams with parameters of: -800kV, 1-10kA diode current, and 0.5-1.0 μ sec pulselengths. The small orbit gyrotron device is converted to a large orbit experiment by running MELBA's annular electron beam through a magnetic cusp. Initial experiments showed an increase in beam alpha (V_perp/V_par) of a factor of ~ 4 between small and large orbit devices. Experimental results from the RCS gyrotron will be compared for large-orbit and small-orbit electron beams. Beam transport data and frequency measurements will be presented. Computer modeling utilizing the MAGIC and E-gun codes will be shown.

  5. Optimised low-thrust mission to the Atira asteroids

    NASA Astrophysics Data System (ADS)

    Di Carlo, Marilena; Romero Martin, Juan Manuel; Ortiz Gomez, Natalia; Vasile, Massimiliano

    2017-04-01

    Atira asteroids are recently-discovered celestial bodies characterised by orbits lying completely inside the heliocentric orbit of the Earth. The study of these objects is difficult due to the limitations of ground-based observations: objects can only be detected when the Sun is not in the field of view of the telescope. However, many asteroids are expected to exist in the inner region of the Solar System, many of which could pose a significant threat to our planet. In this paper, a small, low-cost, mission to visit the known Atira asteroids and to discover new Near Earth Asteroids (NEA) is proposed. The mission is realised using electric propulsion. The trajectory is optimised to maximise the number of visited asteroids of the Atira group using the minimum propellant consumption. During the tour of the Atira asteroids an opportunistic NEA discovery campaign is proposed to increase our knowledge of the asteroid population. The mission ends with a transfer to an orbit with perihelion equal to Venus's orbit radius. This orbit represents a vantage point to monitor and detect asteroids in the inner part of the Solar System and provide early warning in the case of a potential impact.

  6. Seismoball: A Small Europa Orbiter Drop-Off Probe for Early Exploration of the Europan Surface

    NASA Technical Reports Server (NTRS)

    Tamppari, L.; Zimmerman, W.; Green, J.

    2001-01-01

    Recent magnetometry data received from Galileo indicate that the most likely explanation for the magnetic signature there is indeed a global conducting layer below the surface. This conducting layer is well matched by a salty, mineral rich strata beneath the Europan ice crust or a salt water ocean. Galileo imaging results show a variety of terrain types thought to contain young material; for example, lineaments, chaotic terrain, and eruption features. Additionally, Galileo images have shown indications of areas of up-welling where subsurface material periodically gets pushed to the surface due to the forces of fracturing, butting, and refreezing of the ice sheet. While Europa Orbiter will provide close-flyby high resolution images, as well as magnetometry, spectroscopy and other remote sensing data of the surface, it will not be able to provide essential engineering data like surface hardness and surface ice structure needed to support eventual landed missions. Additionally, ice chemical composition at microscopic scales can only be studied in detail through in situ instrumentation. Seismoball is a small probe designed to be injected into a surface intersect orbit around Europa. Using small reverse thrusters, the probe will be capable of nulling the high horizontal injection velocity as it approaches the 2 km surface injection altitude, thus allowing it to fall to the surface at an impact velocity of < 100m/sec (much less than the DS-2 impact velocities). The external breakaway thruster structure and crushable exterior shell absorb the impact energy while allowing the science instrument suite to remain intact. JPL has already started analyzing the entry dynamics and designing/building a small, low mass probe which will withstand the impact g-forces and fit as a 'carry-on' on board the Europa Orbiter. The probe will carry a suite of 5-6 micro-instruments for imaging the surface (both microscopic and far-field), surface and shallow subsurface ice temperatures, surface hardness, crustal dynamics and periodicity, and compositional chemistry. If selected, this flight development activity will provide a unique science opportunity and adjunct to the primary Orbiter science mission. The final flight system will be designed to accommodate orbiter mass, volume, and power interface constraints, as well as entry dynamics, g-load mitigation, and arbitrary landing orientation.

  7. Early Program Development

    NASA Image and Video Library

    1971-01-01

    This 1971 artist's concept shows a Nuclear Shuttle and an early Space Shuttle docked with an Orbital Propellant Depot. As envisioned by Marshall Space Flight Center Program Development persornel, an orbital modular propellant storage depot, supplied periodically by the Space Shuttle or Earth-to-orbit fuel tankers, would be critical in making available large amounts of fuel to various orbital vehicles and spacecraft.

  8. An affordable RBCC-powered 2-stage small orbital payload transportation systems concept based on test-proven hardware

    NASA Astrophysics Data System (ADS)

    Escher, William J. D.

    1998-01-01

    Deriving from the initial planning activity of early 1965, which led to NASA's Advanced Space Transportation Program (ASTP), an early-available airbreathing/rocket combined propulsion system powered ``ultralight payload'' launcher was defined at the conceptual design level. This system, named the ``W Vehicle,'' was targeted to be a ``second generation'' successor to the original Bantam Lifter class, all-rocket powered systems presently being pursued by NASA and a selected set of its contractors. While this all-rocket vehicle is predicated on a fully expendable approach, the W-Vehicle system was to be a fully reusable 2-stage vehicle. The general (original) goal of the Bantam class of launchers was to orbit a 100 kg payload for a recurring per-launch cost of less than one million dollars. Reusability, as the case for larger vehicles focusing on single stage to orbit (SSTO) configurations, is considered the principal key to affordability. In the general context of a range of space transports, covering the payload range of 0.1 to 10 metric ton payloads, the W Vehicle concept-predicated mainly on ground- and flight-test proven hardware-is described in this paper, along with a nominal development schedule and budgetary estimate (recurring costs were not estimated).

  9. Orbit Determination and Navigation of the Time History of Events and Macroscale Interactions during Substorms (THEMIS)

    NASA Technical Reports Server (NTRS)

    Morinelli, Patrick; Cosgrove, Jennifer; Blizzard, Mike; Robertson, Mike

    2007-01-01

    This paper provides an overview of the launch and early orbit activities performed by the NASA Goddard Space Flight Center's (GSFC) Flight Dynamics Facility (FDF) in support of five probes comprising the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft. The FDF was tasked to support THEMIS in a limited capacity providing backup orbit determination support for validation purposes for all five THEMIS probes during launch plus 30 days in coordination with University of California Berkeley Flight Dynamics Center (UCB/FDC)2. The FDF's orbit determination responsibilities were originally planned to be as a backup to the UCB/FDC for validation purposes only. However, various challenges early on in the mission and a Spacecraft Emergency declared thirty hours after launch placed the FDF team in the role of providing the orbit solutions that enabled contact with each of the probes and the eventual termination of the Spacecraft Emergency. This paper details the challenges and various techniques used by the GSFC FDF team to successfully perform orbit determination for all five THEMIS probes during the early mission. In addition, actual THEMIS orbit determination results are presented spanning the launch and early orbit mission phase. Lastly, this paper enumerates lessons learned from the THEMIS mission, as well as demonstrates the broad range of resources and capabilities within the FDF for supporting critical launch and early orbit navigation activities, especially challenging for constellation missions.

  10. Orbit Determination and Navigation of the Time History of Events and Macroscale Interactions during Substorms (THEMIS)

    NASA Technical Reports Server (NTRS)

    Morinelli, Patrick; Cosgrove, jennifer; Blizzard, Mike; Nicholson, Ann; Robertson, Mika

    2007-01-01

    This paper provides an overview of the launch and early orbit activities performed by the NASA Goddard Space Flight Center's (GSFC) Flight Dynamics Facility (FDF) in support of five probes comprising the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft. The FDF was tasked to support THEMIS in a limited capacity providing backup orbit determination support for validation purposes for all five THEMIS probes during launch plus 30 days in coordination with University of California Berkeley Flight Dynamics Center (UCB/FDC). The FDF's orbit determination responsibilities were originally planned to be as a backup to the UCB/FDC for validation purposes only. However, various challenges early on in the mission and a Spacecraft Emergency declared thirty hours after launch placed the FDF team in the role of providing the orbit solutions that enabled contact with each of the probes and the eventual termination of the Spacecraft Emergency. This paper details the challenges and various techniques used by the GSFC FDF team to successfully perform orbit determination for all five THEMIS probes during the early mission. In addition, actual THEMIS orbit determination results are presented spanning the launch and early orbit mission phase. Lastly, this paper enumerates lessons learned from the THEMIS mission, as well as demonstrates the broad range of resources and capabilities within the FDF for supporting critical launch and early orbit navigation activities, especially challenging for constellation missions.

  11. Small Orbital Stereo Tracking Camera Technology Development

    NASA Technical Reports Server (NTRS)

    Bryan, Tom; MacLeod, Todd; Gagliano, Larry

    2017-01-01

    Any exploration vehicle assembled or Spacecraft placed in LEO or GTO must pass through this debris cloud and survive. Large cross section, low thrust vehicles will spend more time spiraling out through the cloud and will suffer more impacts.Better knowledge of small debris will improve survival odds. Current estimated Density of debris at various orbital attitudes with notation of recent collisions and resulting spikes. Orbital Debris Tracking and Characterization has now been added to NASA Office of Chief Technologists Technology Development Roadmap in Technology Area 5 (TA5.7)[Orbital Debris Tracking and Characterization] and is a technical gap in the current National Space Situational Awareness necessary to safeguard orbital assets and crews due to the risk of Orbital Debris damage to ISS Exploration vehicles. The Problem: Traditional orbital trackers looking for small, dim orbital derelicts and debris typically will stare at the stars and let any reflected light off the debris integrate in the imager for seconds, thus creating a streak across the image. The Solution: The Small Tracker will see Stars and other celestial objects rise through its Field of View (FOV) at the rotational rate of its orbit, but the glint off of orbital objects will move through the FOV at different rates and directions. Debris on a head-on collision course (or close) will stay in the FOV at 14 Km per sec. The Small Tracker can track at 60 frames per sec allowing up to 30 fixes before a near-miss pass. A Stereo pair of Small Trackers can provide range data within 5-7 Km for better orbit measurements.

  12. Orbital Perturbations of the Galilean Satellites during Planetary Encounters

    NASA Astrophysics Data System (ADS)

    Deienno, Rogerio; Nesvorný, David; Vokrouhlický, David; Yokoyama, Tadashi

    2014-08-01

    The Nice model of the dynamical instability and migration of the giant planets can explain many properties of the present solar system, and can be used to constrain its early architecture. In the jumping-Jupiter version of the Nice model, required from the terrestrial planet constraint and dynamical structure of the asteroid belt, Jupiter has encounters with an ice giant. Here, we study the survival of the Galilean satellites in the jumping-Jupiter model. This is an important concern because the ice-giant encounters, if deep enough, could dynamically perturb the orbits of the Galilean satellites and lead to implausible results. We performed numerical integrations where we tracked the effect of planetary encounters on the Galilean moons. We considered three instability cases from Nesvorný & Morbidelli that differed in the number and distribution of encounters. We found that in one case, where the number of close encounters was relatively small, the Galilean satellite orbits were not significantly affected. In the other two, the orbital eccentricities of all moons were excited by encounters, Callisto's semimajor axis changed, and, in a large fraction of trials, the Laplace resonance of the inner three moons was disrupted. The subsequent evolution by tides damps eccentricities and can recapture the moons in the Laplace resonance. A more important constraint is represented by the orbital inclinations of the moons, which can be excited during the encounters and not appreciably damped by tides. We find that one instability case taken from Nesvorný & Morbidelli clearly does not meet this constraint. This shows how the regular satellites of Jupiter can be used to set limits on the properties of encounters in the jumping-Jupiter model, and help us to better understand how the early solar system evolved.

  13. Computer Aided Ballistic Orbit Classification Around Small Bodies

    NASA Astrophysics Data System (ADS)

    Villac, Benjamin F.; Anderson, Rodney L.; Pini, Alex J.

    2016-09-01

    Orbital dynamics around small bodies are as varied as the shapes and dynamical states of these bodies. While various classes of orbits have been analyzed in detail, the global overview of relevant ballistic orbits at particular bodies is not easily computed or organized. Yet, correctly categorizing these orbits will ease their future use in the overall trajectory design process. This paper overviews methods that have been used to organize orbits, focusing on periodic orbits in particular, and introduces new methods based on clustering approaches.

  14. Building large telescopes in orbit using small satellites

    NASA Astrophysics Data System (ADS)

    Saunders, Chris; Lobb, Dan; Sweeting, Martin; Gao, Yang

    2017-12-01

    In many types of space mission there is a constant desire for larger and larger instrument apertures, primarily for the purposes of increased resolution or sensitivity. In the Radio Frequency domain, this is currently addressed by antennas that unfold or deploy on-orbit. However, in the optical and infrared domains, this is a significantly more challenging problem, and has up to now either been addressed by simply having large monolithic mirrors (which are fundamentally limited by the volume and mass lifting capacity of any launch vehicle) or by complex 'semi-folding' designs such as the James Webb Space Telescope. An alternative is to consider a fractionated instrument which is launched as a collection of individual smaller elements which are then assembled (or self-assemble) once in space, to form a much larger overall instrument. SSTL has been performing early concept assessment work on such systems for high resolution science observations from high orbits (potentially also for persistent surveillance of Earth). A point design of a 25 m sparse aperture (annular ring) telescope is presented. Key characteristics of 1) multiple small elements launched separately and 2) on-orbit assembly to form a larger instrument are included in the architecture. However, on-orbit assembly brings its own challenges in terms of guidance navigation and control, robotics, docking mechanisms, system control and data handling, optical alignment and stability, and many other elements. The number and type of launchers used, and the technologies and systems used heavily affect the outcome and general cost of the telescope. The paper describes one of the fractionated architecture concepts currently being studied by SSTL, including the key technologies and operational concepts that may be possible in the future.

  15. Orbit-attitude coupled motion around small bodies: Sun-synchronous orbits with Sun-tracking attitude motion

    NASA Astrophysics Data System (ADS)

    Kikuchi, Shota; Howell, Kathleen C.; Tsuda, Yuichi; Kawaguchi, Jun'ichiro

    2017-11-01

    The motion of a spacecraft in proximity to a small body is significantly perturbed due to its irregular gravity field and solar radiation pressure. In such a strongly perturbed environment, the coupling effect of the orbital and attitude motions exerts a large influence that cannot be neglected. However, natural orbit-attitude coupled dynamics around small bodies that are stationary in both orbital and attitude motions have yet to be observed. The present study therefore investigates natural coupled motion that involves both a Sun-synchronous orbit and Sun-tracking attitude motion. This orbit-attitude coupled motion enables a spacecraft to maintain its orbital geometry and attitude state with respect to the Sun without requiring active control. Therefore, the proposed method can reduce the use of an orbit and attitude control system. This paper first presents analytical conditions to achieve Sun-synchronous orbits and Sun-tracking attitude motion. These analytical solutions are then numerically propagated based on non-linear coupled orbit-attitude equations of motion. Consequently, the possibility of implementing Sun-synchronous orbits with Sun-tracking attitude motion is demonstrated.

  16. Close encounters with PHOBOS

    NASA Astrophysics Data System (ADS)

    Zakharov, A. V.

    1988-07-01

    Aspects of the Soviet mission to Phobos are examined, including the objectives of the mission, the spapcecraft, experiments, and landers. Past Mars research and unanswered questions concerning Mars and its satellites are discussed. The spacecraft is expected to reach Mars in early 1989 and to observe the planet from two orbits, coming as close as 500 km from the surface, before moving into a third path close to Phobos. After studying the Phobos terrain from above, the craft will jettison one or two small long-duration automated landers, which will perform surface experiments, including work on celestial mechanics, the history of the Phobos orbit, surface composition, and mechanical properties. In addition to studying Phobos and Mars, the craft will examine the interplanetary medium, make observations of the Sun, and possibly study Deimos.

  17. Chartering Launchers for Small Satellites

    NASA Astrophysics Data System (ADS)

    Hernandez, Daniel

    The question of how to launch small satellites has been solved over the years by the larger launchers offering small satellites the possibility of piggy-backing. Specific fixtures have been developed and commercialized: Arianespace developed the ASAP interface, the USAF studied ESPA, NASA has promoted Shuttle launch possibilities, Russian authorities and companies have been able to find solutions with many different launchers... It is fair to say that most launcher suppliers have worked hard and finally often been able to find solutions to launch most small satellites into orbit. It is also true, however, that most of these small satellites were technology demonstration missions capable of accepting a wide range of orbit and launch characteristics: orbit altitude and inclination, launch date, etc. In some cases the small satellite missions required a well-defined type of orbit and have therefore been obliged to hire a small launcher on which they were the prime passenger. In our paper we would like to propose an additional solution to all these possibilities: launchers could plan well in advance (for example about 3 years), trips to precisely defined orbits to allow potential passengers to organize themselves and be ready on the D-Day. On the scheduled date the chartered launcher goes to the stated orbit while on another date, another chartered launcher goes to another orbit. The idea is to organize departures for space like trains or airplanes leaving on known schedules for known destinations.

  18. Earth observations taken from shuttle orbiter Atlantis during STS-84 mission

    NASA Image and Video Library

    1997-05-20

    STS084-712-003 (15-24 May 1997) --- Early morning sun highlights the volcanic features on Onekotan Island which is one of several volcanic islands in the Russian owned Kurile Island chain. Onekotan lies just south of Kamchatka. Two volcanoes are active on the island -- the small island surrounded by a moat-like lake in the south (Tao-Rusyr caldera) last erupted in 1952, and the cone-shaped peak at the north end of the island, Nemo peak, erupted in 1938.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Key, Joey Shapiro; Cornish, Neil J.

    The Laser Interferometer Space Antenna (LISA) is designed to detect gravitational wave signals from astrophysical sources, including those from coalescing binary systems of compact objects such as black holes. Colliding galaxies have central black holes that sink to the center of the merged galaxy and begin to orbit one another and emit gravitational waves. Some galaxy evolution models predict that the binary black hole system will enter the LISA band with significant orbital eccentricity, while other models suggest that the orbits will already have circularized. Using a full 17 parameter waveform model that includes the effects of orbital eccentricity, spinmore » precession, and higher harmonics, we investigate how well the source parameters can be inferred from simulated LISA data. Defining the reference eccentricity as the value one year before merger, we find that for typical LISA sources, it will be possible to measure the eccentricity to an accuracy of parts in a thousand. The accuracy with which the eccentricity can be measured depends only very weakly on the eccentricity, making it possible to distinguish circular orbits from those with very small eccentricities. LISA measurements of the orbital eccentricity can help constraints theories of galaxy mergers in the early universe. Failing to account for the eccentricity in the waveform modeling can lead to a loss of signal power and bias the estimation of parameters such as the black hole masses and spins.« less

  20. On the Pre-impact Orbital Evolution of 2018 LA, Parent Body of the Bright Fireball Observed Over Botswana on 2018 June 2

    NASA Astrophysics Data System (ADS)

    de la Fuente Marcos, Carlos; de la Fuente Marcos, Raúl

    2018-06-01

    On 2018 June 2, meteoroid 2018 LA became the third natural body ever to be observed before entering our atmosphere ---small asteroids 2014 AA and 2008 TC3 had stricken the Earth on 2014 January 2 and 2008 October 7, respectively. Here, we explore the pre-impact orbital evolution of 2018 LA and investigate the possible presence of known NEOs moving in similar orbits using N-body simulations and the D-criteria. We identify several objects moving in orbits similar to that of 2018 LA and focus on three of them: (454100) 2013 BO73, which is the largest of the group and a PHA, 2016 LR, and 2018 BA5, which follows a path very close to that of 2018 LA in terms of semimajor axis, eccentricity, and inclination. All these objects could be part of a dynamical grouping and their orbital evolution is rather chaotic, experiencing close encounters with Venus, the Earth-Moon system, and Mars. NEO encounters take place at the node and, on the short-term, the relative positions of our planet in its orbit around the Sun repeat every year. Besides the bright fireball observed over Botswana on 2018 June 2, three other bolides were observed early in June in recent years: Crete on 2002 June 6, Washington State on 2004 June 3, and Reisadalen on 2007 June 7.

  1. Early Program Development

    NASA Image and Video Library

    1970-01-01

    This artist's concept from 1970 shows a Nuclear Shuttle docked to an Orbital Propellant Depot and an early Space Shuttle. As envisioned by Marshall Space Flight Center Program Development plarners, the Nuclear Shuttle, in either manned or unmanned mode, would deliver payloads to lunar orbit or other destinations then return to Earth orbit for refueling and additonal missions.

  2. Formation of most of our coal brought Earth close to global glaciation.

    PubMed

    Feulner, Georg

    2017-10-24

    The bulk of Earth's coal deposits used as fossil fuel today was formed from plant debris during the late Carboniferous and early Permian periods. The high burial rate of organic carbon correlates with a significant drawdown of atmospheric carbon dioxide (CO 2 ) at that time. A recent analysis of a high-resolution record reveals large orbitally driven variations in atmospheric CO 2 concentration between [Formula: see text]150 and 700 ppm for the latest Carboniferous and very low values of 100 [Formula: see text] 80 ppm for the earliest Permian. Here, I explore the sensitivity of the climate around the Carboniferous/Permian boundary to changes in Earth's orbital parameters and in atmospheric CO 2 using a coupled climate model. The coldest orbital configurations are characterized by large axial tilt and small eccentricities of Earth's elliptical orbit, whereas the warmest configuration occurs at minimum tilt, maximum eccentricity, and a perihelion passage during Northern hemisphere spring. Global glaciation occurs at CO 2 concentrations <40 ppm, suggesting a rather narrow escape from a fully glaciated Snowball Earth state given the low levels and large fluctuations of atmospheric CO 2 These findings highlight the importance of orbital cycles for the climate and carbon cycle during the late Paleozoic ice age and the climatic significance of the fossil carbon stored in Earth's coal deposits.

  3. High Speed, Low Cost Telemetry Access from Space Development Update on Programmable Ultra Lightweight System Adaptable Radio (PULSAR)

    NASA Technical Reports Server (NTRS)

    Simms, William Herbert, III; Varnavas, Kosta; Eberly, Eric

    2014-01-01

    Software Defined Radio (SDR) technology has been proven in the commercial sector since the early 1990's. Today's rapid advancement in mobile telephone reliability and power management capabilities exemplifies the effectiveness of the SDR technology for the modern communications market. In contrast, the foundations of transponder technology presently qualified for satellite applications were developed during the early space program of the 1960's. Conventional transponders are built to a specific platform and must be redesigned for every new bus while the SDR is adaptive in nature and can fit numerous applications with no hardware modifications. A SDR uses a minimum amount of analog / Radio Frequency (RF) components to up/down-convert the RF signal to/from a digital format. Once the signal is digitized, all processing is performed using hardware or software logic. Typical SDR digital processes include; filtering, modulation, up/down converting and demodulation. NASA Marshall Space Flight Center (MSFC) Programmable Ultra Lightweight System Adaptable Radio (PULSAR) leverages existing MSFC SDR designs and commercial sector enhanced capabilities to provide a path to a radiation tolerant SDR transponder. These innovations (1) reduce the cost of NASA Low Earth Orbit (LEO) and Deep Space standard transponders, (2) decrease power requirements, and (3) commensurately reduce volume. A second pay-off is the increased SDR flexibility by allowing the same hardware to implement multiple transponder types simply by altering hardware logic - no change of hardware is required - all of which will ultimately be accomplished in orbit. Development of SDR technology for space applications will provide a highly capable, low cost transponder to programs of all sizes. The MSFC PULSAR Project results in a Technology Readiness Level (TRL) 7 low-cost telemetry system available to Smallsat and CubeSat missions, as well as other platforms. This paper documents the continued development and verification/validation of the MSFC SDR, called PULSAR, which contributes to advancing the state-of-the-art in transponder design - directly applicable to the SmallSat and CubeSat communities. This paper focuses on lessons learned on the first sub-orbital flight (high altitude balloon) and the follow-on steps taken to validate PULSAR. A sounding rocket launch, currently planned for 03/2015, will further expose PULSAR to the high dynamics of sub-orbital flights. Future opportunities for orbiting satellite incorporation reside in the small satellite missions (FASTSat, CubeSat. etc.).

  4. Early Mission Maneuver Operations for the Deep Space Climate Observatory Sun-Earth L1 Libration Point Mission

    NASA Technical Reports Server (NTRS)

    Roberts, Craig; Case, Sara; Reagoso, John; Webster, Cassandra

    2015-01-01

    The Deep Space Climate Observatory mission launched on February 11, 2015, and inserted onto a transfer trajectory toward a Lissajous orbit around the Sun-Earth L1 libration point. This paper presents an overview of the baseline transfer orbit and early mission maneuver operations leading up to the start of nominal science orbit operations. In particular, the analysis and performance of the spacecraft insertion, mid-course correction maneuvers, and the deep-space Lissajous orbit insertion maneuvers are discussed, com-paring the baseline orbit with actual mission results and highlighting mission and operations constraints..

  5. The Mars Pathfinder Mission

    NASA Astrophysics Data System (ADS)

    Golombek, M. P.

    1996-09-01

    The Mars Pathfinder mission is a Discovery class mission that will place a small lander and rover on the surface of Mars on July 4, 1997. The Pathfinder flight system is a single small lander, packaged within an aeroshell and back cover with a back-pack-style cruise stage. The vehicle will be launched, fly independently to Mars, and enter the atmosphere directly on approach behind the aeroshell. The vehicle is slowed by a parachute and 3 small solid rockets before landing on inflated airbags. Petals of a small tetrahedron shaped lander open up, to right the vehicle. The lander is solar powered with batteries and will operate on the surface for up to a year, downlinking data on a high-gain antenna. Pathfinder will be the first mission to use a rover, with 3 imagers and an alpha proton X-ray spectrometer, to characterize the rocks and soils in a landing area over hundreds of square meters on Mars, which will provide a calibration point or "ground truth" for orbital remote sensing observations. The rover (includes a series of technology experiments), the instruments (including a stereo multispectral surface imager on a pop up mast and an atmospheric structure instrument-surface meteorology package) and the telemetry system will allow investigations of: the surface morphology and geology at meter scale, the petrology and geochemistry of rocks and soils, the magnetic properties of dust, soil mechanics and properties, a variety of atmospheric investigations and the rotational and orbital dynamics of Mars. Landing downstream from the mouth of a giant catastrophic outflow channel, Ares Vallis, offers the potential of identifying and analyzing a wide variety of crustal materials, from the ancient heavily cratered terrain, intermediate-aged ridged plains and reworked channel deposits, thus allowing first-order scientific investigations of the early differentiation and evolution of the crust, the development of weathering products and early environments and conditions on Mars.

  6. Cosmic Origins Spectrograph: On-Orbit Performance of Target Acquisitions

    NASA Astrophysics Data System (ADS)

    Penton, Steven V.

    2010-07-01

    COS is a slit-less spectrograph with a very small aperture (R=1.2500). To achieve the desired wavelength accuracies, HST+COS must center the target to within 0.100 of the center of the aperture for the FUV channel, and 0.0400 for NUV. During SMOV and early Cycle 17 we fine-tuned the COS target acquisition (TA) procedures to exceed this accuracy for all three COS TA modes; NUV imaging, NUV spectroscopic, and FUV spectroscopic. In Cycle 17, we also adjusted the COSto- FGS offsets in the SIAF file. This allows us to recommend skipping the time consuming ACQ/SEARCH in cases where the target coordinates are well known. Here we will compare the on-orbit performance of all COS TA modes in terms of centering accuracy, efficiency, and required signal-to-noise (S/N).

  7. Integrated Vehicle and Trajectory Design of Small Spacecraft with Electric Propulsion for Earth and Interplanetary Missions

    NASA Technical Reports Server (NTRS)

    Spangelo, Sara; Dalle, Derek; Longmier, Benjamin

    2015-01-01

    This paper investigates the feasibility of Earth-transfer and interplanetary mission architectures for miniaturized spacecraft using emerging small solar electric propulsion technologies. Emerging small SEP thrusters offer significant advantages relative to existing technologies and will enable U-class systems to perform trajectory maneuvers with significant Delta V requirements. The approach in this paper is unique because it integrates trajectory design with vehicle sizing and accounts for the system and operational constraints of small U-class missions. The modeling framework includes integrated propulsion, orbit, energy, and external environment dynamics and systems-level power, energy, mass, and volume constraints. The trajectory simulation environment models orbit boosts in Earth orbit and flyby and capture trajectories to interplanetary destinations. A family of small spacecraft mission architectures are studied, including altitude and inclination transfers in Earth orbit and trajectories that escape Earth orbit and travel to interplanetary destinations such as Mercury, Venus, and Mars. Results are presented visually to show the trade-offs between competing performance objectives such as maximizing available mass and volume for payloads and minimizing transfer time. The results demonstrate the feasibility of using small spacecraft to perform significant Earth and interplanetary orbit transfers in less than one year with reasonable U-class mass, power, volume, and mission durations.

  8. Method of determining the orbits of the small bodies in the solar system based on an exhaustive search of orbital planes

    NASA Astrophysics Data System (ADS)

    Bondarenko, Yu. S.; Vavilov, D. E.; Medvedev, Yu. D.

    2014-05-01

    A universal method of determining the orbits of newly discovered small bodies in the Solar System using their positional observations has been developed. The proposed method suggests determining geocentric distances of a small body by means of an exhaustive search for heliocentric orbital planes and subsequent determination of the distance between the observer and the points at which the chosen plane intersects with the vectors pointing to the object. Further, the remaining orbital elements are determined using the classical Gauss method after eliminating those heliocentric distances that have a fortiori low probabilities. The obtained sets of elements are used to determine the rms between the observed and calculated positions. The sets of elements with the least rms are considered to be most probable for newly discovered small bodies. Afterwards, these elements are improved using the differential method.

  9. NASA's small spacecraft technology initiative _Clark_ spacecraft

    NASA Astrophysics Data System (ADS)

    Hayduk, Robert J.; Scott, Walter S.; Walberg, Gerald D.; Butts, James J.; Starr, Richard D.

    1996-11-01

    The Small Satellite Technology Initiative (SSTI) is a National Aeronautics and Space Administration (NASA) program to demonstrate smaller, high technology satellites constructed rapidly and less expensively. Under SSTI, NASA funded the development of "Clark," a high technology demonstration satellite to provide 3-m resolution panchromatic and 15-m resolution multispectral images, as well as collect atmospheric constituent and cosmic x-ray data. The 690-Ib. satellite, to be launched in early 1997, will be in a 476 km, circular, sun-synchronous polar orbit. This paper describes the program objectives, the technical characteristics of the sensors and satellite, image processing, archiving and distribution. Data archiving and distribution will be performed by NASA Stennis Space Center and by the EROS Data Center, Sioux Falls, South Dakota, USA.

  10. The MEarth Project: Finding the Best Targets for Atmospheric Characterization with JWST

    NASA Astrophysics Data System (ADS)

    Berta-Thompson, Z.

    2014-04-01

    If we want to directly observe the radius, orbit, mass, and atmosphere of a small, cool, habitable exoplanet, our best opportunity is to find such a planet transiting a small, cool, nearby M dwarf star. The MEarth Project is an ongoing all-sky survey for Earth-like planets transiting the closest, smallest M dwarfs in the Galaxy. MEarth aims to find good targets for atmospheric characterization with JWST and the next generation of enormous ground-based telescopes. This poster provides a status update on the MEarth Project, including the progress we've made over the past five years with 8 telescopes in the Northern hemisphere and promising early results from our new installation of 8 more telescopes in the Southern hemisphere.

  11. Formation of most of our coal brought Earth close to global glaciation

    PubMed Central

    2017-01-01

    The bulk of Earth’s coal deposits used as fossil fuel today was formed from plant debris during the late Carboniferous and early Permian periods. The high burial rate of organic carbon correlates with a significant drawdown of atmospheric carbon dioxide (CO2) at that time. A recent analysis of a high-resolution record reveals large orbitally driven variations in atmospheric CO2 concentration between ∼150 and 700 ppm for the latest Carboniferous and very low values of 100 ± 80 ppm for the earliest Permian. Here, I explore the sensitivity of the climate around the Carboniferous/Permian boundary to changes in Earth’s orbital parameters and in atmospheric CO2 using a coupled climate model. The coldest orbital configurations are characterized by large axial tilt and small eccentricities of Earth’s elliptical orbit, whereas the warmest configuration occurs at minimum tilt, maximum eccentricity, and a perihelion passage during Northern hemisphere spring. Global glaciation occurs at CO2 concentrations <40 ppm, suggesting a rather narrow escape from a fully glaciated Snowball Earth state given the low levels and large fluctuations of atmospheric CO2. These findings highlight the importance of orbital cycles for the climate and carbon cycle during the late Paleozoic ice age and the climatic significance of the fossil carbon stored in Earth’s coal deposits. PMID:29073052

  12. Exploring the η Aquila System: Another Cepheid Parallax and Further Evidence for a Tertiary

    NASA Astrophysics Data System (ADS)

    Benedict, George Frederick; Barnes, Thomas G.; Evans, Nancy; Cochran, William; McArthur, Barbara E.; Harrison, Thomas E.

    2018-01-01

    We report progress towards a re-analysis of Hubble Space Telescope Fine Guidance Sensor astrometric data, originally acquired to determine a parallax for and absolute magnitudes of the classical Cepheid, η Aquila. This object was not included in past Cepheid Period-Luminosity Relation (PLR) work (Benedict et al. 2007, AJ, 133, 1810), because we had an insufficient number of epochs with which to establish a suspected and complicating companion orbit. Our new investigation is considerably aided by including a significant number of radial velocity measures (RV) from six sources, including new, high-quality Hobby-Eberly Telescope spectra. We first derive a 12 Fourier coefficient description of the Cepheid pulsation, solving for velocity offsets required to bring the six RV data sets into coincidence. We next model the RV residuals to that fit with an orbit. The resulting orbit has very high eccentricity. The astrometric residuals show only a very small perturbation, consistent with a prediction from the spectroscopic orbit. We finally include that orbit in a combined astrometry and radial velocity model. This modeling, similar to that presented in Benedict and Harrison (2017, AJ, 153, 258) yields a parallax, allowing inclusion of η Aquila in a PLR. It also establishes a Cepheid/companion mass ratio for the early-type star companion identified in IUE spectra (Evans 1991, ApJ, 372, 597).

  13. Geosat follow-on satellite to supply ocean sciences data

    NASA Astrophysics Data System (ADS)

    Barry, Robert; Finkelstein, Jay; Kilgus, Charles; Mooers, C. N. K.; Needham, Bruce; Crawford, Mike

    After successfully completing a critical design review for its Geosat Follow-On (GFO) radar altimeter satellite, the Navy is giving the green light for an early 1996 launch. GFO is a small (347 kg) highly capable satellite that capitalizes on both Geosat and TOPEX experience. GFO will fly in the exact orbit of Geosat, delivering real-time data directly to ships at sea and making global observations for shore-based ocean prediction and scientific research. The National Oceanographic and Atmospheric Administration (NOAA) will distribute GFO data to the ocean science community.

  14. Simulation research: A vital step for human missions to Mars

    NASA Astrophysics Data System (ADS)

    Perino, Maria Antonietta; Apel, Uwe; Bichi, Alessandro

    The complex nature of the challenge as humans embark on exploration missions beyond Earth orbit will require that, in the early stages, simulation facilities be established at least on Earth. Suitable facilities in Low Earth Orbit and on the Moon surface would provide complementary information of critical importance for the overall design of a human mission to Mars. A full range of simulation campaigns is required, in fact, to reach a better understanding of the complexities involved in exploration missions that will bring humans back to the Moon and then outward to Mars. The corresponding simulation means may range from small scale environmental simulation chambers and/or computer models that will aid in the development of new materials, to full scale mock-ups of spacecraft and planetary habitats and/or orbiting infrastructues. This paper describes how a suitable simulation campaign will contribute to the definition of the required countermeasures with respect to the expected duration of the flight. This will allow to be traded contermeasure payload and astronaut time against effort in technological development of propulsion systems.

  15. Small Orbital Stereo Tracking Camera Technology Development

    NASA Technical Reports Server (NTRS)

    Bryan, Tom; Macleod, Todd; Gagliano, Larry

    2015-01-01

    On-Orbit Small Debris Tracking and Characterization is a technical gap in the current National Space Situational Awareness necessary to safeguard orbital assets and crew. This poses a major risk of MOD damage to ISS and Exploration vehicles. In 2015 this technology was added to NASA's Office of Chief Technologist roadmap. For missions flying in or assembled in or staging from LEO, the physical threat to vehicle and crew is needed in order to properly design the proper level of MOD impact shielding and proper mission design restrictions. Need to verify debris flux and size population versus ground RADAR tracking. Use of ISS for In-Situ Orbital Debris Tracking development provides attitude, power, data and orbital access without a dedicated spacecraft or restricted operations on-board a host vehicle as a secondary payload. Sensor Applicable to in-situ measuring orbital debris in flux and population in other orbits or on other vehicles. Could enhance safety on and around ISS. Some technologies extensible to monitoring of extraterrestrial debris as well to help accomplish this, new technologies must be developed quickly. The Small Orbital Stereo Tracking Camera is one such up and coming technology. It consists of flying a pair of intensified megapixel telephoto cameras to evaluate Orbital Debris (OD) monitoring in proximity of International Space Station. It will demonstrate on-orbit optical tracking (in situ) of various sized objects versus ground RADAR tracking and small OD models. The cameras are based on Flight Proven Advanced Video Guidance Sensor pixel to spot algorithms (Orbital Express) and military targeting cameras. And by using twin cameras we can provide Stereo images for ranging & mission redundancy. When pointed into the orbital velocity vector (RAM), objects approaching or near the stereo camera set can be differentiated from the stars moving upward in background.

  16. Small Orbital Stereo Tracking Camera Technology Development

    NASA Technical Reports Server (NTRS)

    Bryan, Tom; MacLeod, Todd; Gagliano, Larry

    2016-01-01

    On-Orbit Small Debris Tracking and Characterization is a technical gap in the current National Space Situational Awareness necessary to safeguard orbital assets and crew. This poses a major risk of MOD damage to ISS and Exploration vehicles. In 2015 this technology was added to NASA's Office of Chief Technologist roadmap. For missions flying in or assembled in or staging from LEO, the physical threat to vehicle and crew is needed in order to properly design the proper level of MOD impact shielding and proper mission design restrictions. Need to verify debris flux and size population versus ground RADAR tracking. Use of ISS for In-Situ Orbital Debris Tracking development provides attitude, power, data and orbital access without a dedicated spacecraft or restricted operations on-board a host vehicle as a secondary payload. Sensor Applicable to in-situ measuring orbital debris in flux and population in other orbits or on other vehicles. Could enhance safety on and around ISS. Some technologies extensible to monitoring of extraterrestrial debris as well To help accomplish this, new technologies must be developed quickly. The Small Orbital Stereo Tracking Camera is one such up and coming technology. It consists of flying a pair of intensified megapixel telephoto cameras to evaluate Orbital Debris (OD) monitoring in proximity of International Space Station. It will demonstrate on-orbit optical tracking (in situ) of various sized objects versus ground RADAR tracking and small OD models. The cameras are based on Flight Proven Advanced Video Guidance Sensor pixel to spot algorithms (Orbital Express) and military targeting cameras. And by using twin cameras we can provide Stereo images for ranging & mission redundancy. When pointed into the orbital velocity vector (RAM), objects approaching or near the stereo camera set can be differentiated from the stars moving upward in background.

  17. Results in orbital evolution of objects in the geosynchronous region

    NASA Technical Reports Server (NTRS)

    Friesen, Larry Jay; Jackson, Albert A., IV; Zook, Herbert A.; Kessler, Donald J.

    1990-01-01

    The orbital evolution of objects at or near geosynchronous orbit (GEO) has been simulated to investigate possible hazards to working geosynchronous satellites. Orbits of both large satellites and small particles have been simulated, subject to perturbations by nonspherical geopotential terms, lunar and solar gravity, and solar radiation pressure. Large satellites in initially circular orbits show an expected cycle of inclination change driven by lunar and solar gravity, but very little altitude change. They thus have little chance of colliding with objects at other altitudes. However, if such a satellite is disrupted, debris can reach thousands of kilometers above or below the initial satellite altitude. Small particles in GEO experience two cycles driven by solar radiation: an expected eccentricity cycle and an inclination cycle not expected. Particles generated by GEO insertion stage solid rocket motors typically hit the earth or escape promptly; a small fraction appear to remain in persistent orbits.

  18. Towards Low-Cost Permanent Space-Borne Observation of the Geomagnetic Field and Ionospheric Environment

    NASA Astrophysics Data System (ADS)

    Hulot, G.; Leger, J. M.; Vigneron, P.; Jager, T.; Bertrand, F.; Coisson, P.; Astafyeva, E.; Tomasini, L.

    2016-12-01

    Space-borne observation of the Earth's magnetic field and of the ionospheric environment started early on in the history of space exploration. But only since 1999 has continuous low Earth orbiting observation successfully been achieved, thanks, in particular, to the Oersted, CHAMP and Swarm missions. These missions have demonstrated the usefulness of long-term continuous observation from space for a wealth of applications, ranging from understanding the fast and small scales of the Earth's core dynamo, to investigations of still poorly understood ionospheric phenomena. In this presentation, we will show that such observations could now possibly be achieved by much cheaper free-orbiting gradient stabilized 12U nanosatellites, such as the "NanoMagSat" nanosatellite concept currently under phase 0 within CNES. Such satellites would not require sophisticated orbit or attitude control, and would take advantage of a miniaturized version of the absolute magnetometer designed by CEA-LETI, which currently operates on the Swarm mission. This instrument is capable of simultaneously providing absolute scalar and vector measurements of the magnetic field at 1 Hz sampling rate, together with higher frequency (250 Hz sampling rate) absolute scalar data. It would be coupled with star imagers for attitude restitution, together with other instruments providing additional measurement capabilities for ionospheric science and monitoring purposes (vector field measurements beyond 1Hz, plasma density, electron temperature, TEC, in particular). Because Swarm will very likely ensure data acquisition on polar orbits for at least another 10 years, a first "NanoMagSat" satellite could be launched on an inclined orbit (within the 60° range) to provide a much-needed fast local time coverage of all sub-auroral latitudes (the so-called "Swarm Delta" mission concept). Beyond this maiden mission, "NanoMagSat" satellites could then next be used as a baseline for the progressive establishment and maintenance of a permanent international network of a small number of satellites, operated and coordinated in a way analogous to the Intermagnet network of ground magnetic observatories.

  19. Analysis of orbital perturbations acting on objects in orbits near geosynchronous earth orbit

    NASA Technical Reports Server (NTRS)

    Friesen, Larry J.; Jackson, Albert A., IV; Zook, Herbert A.; Kessler, Donald J.

    1992-01-01

    The paper presents a numerical investigation of orbital evolution for objects started in GEO or in orbits near GEO in order to study potential orbital debris problems in this region. Perturbations simulated include nonspherical terms in the earth's geopotential field, lunar and solar gravity, and solar radiation pressure. Objects simulated include large satellites, for which solar radiation pressure is insignificant, and small particles, for which solar radiation pressure is an important force. Results for large satellites are largely in agreement with previous GEO studies that used classical perturbation techniques. The orbit plane of GEO satellites placed in a stable plane orbit inclined approximately 7.3 deg to the equator experience very little precession, remaining always within 1.2 percent of their initial orientation. Solar radiation pressure generates two major effects on small particles: an orbital eccentricity oscillation anticipated from previous research, and an oscillation in orbital inclination.

  20. Study of a homotopy continuation method for early orbit determination with the Tracking and Data Relay Satellite System (TDRSS)

    NASA Technical Reports Server (NTRS)

    Smith, R. L.; Huang, C.

    1986-01-01

    A recent mathematical technique for solving systems of equations is applied in a very general way to the orbit determination problem. The study of this technique, the homotopy continuation method, was motivated by the possible need to perform early orbit determination with the Tracking and Data Relay Satellite System (TDRSS), using range and Doppler tracking alone. Basically, a set of six tracking observations is continuously transformed from a set with known solution to the given set of observations with unknown solutions, and the corresponding orbit state vector is followed from the a priori estimate to the solutions. A numerical algorithm for following the state vector is developed and described in detail. Numerical examples using both real and simulated TDRSS tracking are given. A prototype early orbit determination algorithm for possible use in TDRSS orbit operations was extensively tested, and the results are described. Preliminary studies of two extensions of the method are discussed: generalization to a least-squares formulation and generalization to an exhaustive global method.

  1. Pulsed Plasma Thruster Technology for Small Satellite Missions

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.; Oleson, Steven R.; Mcguire, Melissa; Meckel, Nicole J.; Cassady, R. Joseph

    1995-01-01

    Pulsed plasma thrusters (PPT's) offer the combined benefits of extremely low average electric power requirements (1 to 150 W), high specific impulse (approximately 1000 s), and system simplicity derived from the use of an inert solid propellant. Potential applications range from orbit insertion and maintenance of small satellites to attitude control for large geostationary communications satellites. While PPT's have been used operationally on several spacecraft, there has been no new PPT technology development since the early 1970's. As result of the rapid growth in the small satellite community and the broad range of PPT applications, NASA has initiated a development program with the objective of dramatically reducing the PPT dry mass, increasing PPT performance, and demonstrating a flight ready system by October 1997. This paper presents the results of a series of near-Earth mission studies including both primary and auxiliary propulsion and attitude control functions and reviews the status of NASA's on-going development program.

  2. Mars Odyssey Observes Deimos

    NASA Image and Video Library

    2018-02-22

    Colors in this image of the Martian moon Deimos indicate a range of surface temperatures detected by observing the moon on February 15, 2018, with the Thermal Emission Imaging System (THEMIS) camera on NASA's Mars Odyssey orbiter. The left edge of the small moon is in darkness, and the right edge in sunlight. Temperature information was derived from thermal-infrared imaging such as the grayscale image shown smaller at lower left with the moon in the same orientation. The color-coding merges information from THEMIS observations made in 10 thermal-infrared wavelength bands. This was the first observation of Deimos by Mars Odyssey; the spacecraft first imaged Mars' other moon, Phobos, on September 29, 2017. Researchers have been using THEMIS to examine Mars since early 2002, but the maneuver turning the orbiter around to point the camera at Phobos was developed only recently. https://photojournal.jpl.nasa.gov/catalog/PIA22250

  3. Mars Odyssey Observes Phobos

    NASA Image and Video Library

    2018-02-22

    Colors in this image of the Martian moon Phobos indicate a range of surface temperatures detected by observing the moon on February 15, 2018, with the Thermal Emission Imaging System (THEMIS) camera on NASA's Mars Odyssey orbiter. The left edge of the small moon is in darkness, and the right edge in sunlight. Phobos has an oblong shape with average diameter of about 14 miles (22 kilometers). Temperature information was derived from thermal-infrared imaging such as the grayscale image shown smaller at lower left with the moon in the same orientation. The color-coding merges information from THEMIS observations made in 10 thermal-infrared wavelength bands. This was the second observation of Phobos by Mars Odyssey; the first was on September 29, 2017. Researchers have been using THEMIS to examine Mars since early 2002, but the maneuver turning the orbiter around to point the camera at Phobos was developed only recently. https://photojournal.jpl.nasa.gov/catalog/PIA22249

  4. The Magnetospheric Multiscale Constellation

    NASA Technical Reports Server (NTRS)

    Tooley, C. R.; Black, R. K.; Robertson, B. P.; Stone, J. M.; Pope, S. E.; Davis, G. T.

    2015-01-01

    The Magnetospheric Multiscale (MMS) mission is the fourth mission of the Solar Terrestrial Probe (STP) program of the National Aeronautics and Space Administration (NASA). The MMS mission was launched on March 12, 2015. The MMS mission consists of four identically instrumented spin-stabilized observatories which are flown in formation to perform the first definitive study of magnetic reconnection in space. The MMS mission was presented with numerous technical challenges, including the simultaneous construction and launch of four identical large spacecraft with 100 instruments total, stringent electromagnetic cleanliness requirements, closed-loop precision maneuvering and pointing of spinning flexible spacecraft, on-board GPS based orbit determination far above the GPS constellation, and a flight dynamics design that enables formation flying with separation distances as small as 10 km. This paper describes the overall mission design and presents an overview of the design, testing, and early on-orbit operation of the spacecraft systems and instrument suite.

  5. Earth observations taken from shuttle orbiter Columbia

    NASA Image and Video Library

    1995-10-26

    STS073-708-089 (26 October 1995) --- As evidenced by this 70mm photograph from the Earth-orbiting Space Shuttle Columbia, international borders have become easier to see from space in recent decades. This, according to NASA scientists studying the STS-73 photo collection, is particularly true in arid and semi-arid environments. The scientists go on to cite this example of the razor-sharp vegetation boundary between southern Israel and Gaza and the Sinai. The nomadic grazing practices to the south (the lighter areas of the Sinai and Gaza, top left) have removed most of the vegetation from the desert surface. On the north side of the border, Israel uses advanced irrigation techniques in Israel, mainly "trickle irrigation" by which small amounts of water are delivered directly to plant roots. These water-saving techniques have allowed precious supplies from the Jordan River to be used on farms throughout the country. Numerous fields of dark green can be seen in this detailed view. Scientists say this redistribution of the Jordan River waters has increased the Israeli vegetation cover to densities that approach those that may have been common throughout the Mid-East in wetter early Biblical times. A small portion of the Mediterranean Sea appears top right.

  6. View of the early morning launch of STS 41-G Challenger

    NASA Image and Video Library

    1984-10-05

    View of the early morning launch of STS 41-G Challenger. The dark launch complex is illuminated by spotlights as the orbiter begins its ascent from the pad. The light is reflected off the clouds of smoke from the orbiter's engines.

  7. Mars Climate History: Insights From Impact Crater Wall Slope Statistics

    NASA Astrophysics Data System (ADS)

    Kreslavsky, Mikhail A.; Head, James W.

    2018-02-01

    We use the global distribution of the steepest slopes on crater walls derived from Mars Orbiter Laser Altimeter profile data to assess the magnitudes of degradational processes with latitude, altitude, and time. We independently confirm that Amazonian polar/high-latitude crater slope modification is substantial, but that craters in the low latitudes have essentially escaped significant slope modification since the Early Hesperian. We find that the total amount of crater wall degradation in the Late Noachian is very small in comparison to the circumpolar regions in the Late Amazonian, an observation that we interpret to mean that the Late Noachian climate was not characterized by persistent and continuous warm and wet conditions. A confirmed elevational zonality in degradation in the Early Hesperian is interpreted to mean that the atmosphere was denser than today.

  8. Low-speed impact phenomena and orbital resonances in the moon- and planet-building process

    NASA Technical Reports Server (NTRS)

    Chapman, C. R.

    1977-01-01

    A simulation of collisional and gravitational interaction in the early solar system generates planets approximately 1000 km in diameter from an initial swarm of kilometer sized planetesimals. The model treats collisions according to experimental and theoretical impact results (such as rebound, cratering, and catastrophic fragmentation) for a variety of materials whose parameters span plausible values for early solid objects. The small planets form in approximately 1000 yr, during which time most of the mass of the system continues to reside in particles near the original size. The simulation is terminated when the largest objects' random motion is of smaller dimension than their collision cross-sections. The few 1000 km planets may act as seeds for the subsequent, gradual, accretional growth into full-sized planets.

  9. Comparative evaluation of existing expendable upper stages for space shuttle

    NASA Technical Reports Server (NTRS)

    Weyers, V. J.; Sagerman, G. D.; Borsody, J.; Lubick, R. J.

    1974-01-01

    The use of existing expendable upper stages in the space shuttle during its early years of operation is evaluated. The Burner 2, Scout, Delta, Agena, Transtage, and Centaur were each studied under contract by their respective manufacturers to determine the extent and cost of the minimum modifications necessary to integrate the stage with the shuttle orbiter. A comparative economic analysis of thirty-five different families of these stages is discussed. Results show that the overall transportation system cost differences between many of the families are quite small. However, by considering several factors in addition to cost, it is possible to select one family as being representative of the capability of the minimum modification existing stage approach. The selected family meets all of the specified mission requirements during the early years of shuttle operation.

  10. Elliptical-like orbits on a warped spandex fabric: A theoretical/experimental undergraduate research project

    NASA Astrophysics Data System (ADS)

    Middleton, Chad A.; Weller, Dannyl

    2016-04-01

    We present a theoretical and experimental analysis of the elliptical-like orbits of a marble rolling on a warped spandex fabric. We arrive at an expression describing the angular separation between successive apocenters, or equivalently successive pericenters, in both the small and large slope regimes. We find that a minimal angular separation of ˜197° is predicted for orbits with small radial distances when the surface is void of a central mass. We then show that for small radii and large central masses, when the orbiting marble is deep within the well, the angular separation between successive apocenters transitions to values greater than 360°. We lastly compare these expressions to those describing elliptical-like orbits about a static, spherically symmetric massive object in the presence of a constant vacuum energy, as described by general relativity.

  11. Geosynchronous earth orbit/low earth orbit space object inspection and debris disposal: A preliminary analysis using a carrier satellite with deployable small satellites

    NASA Astrophysics Data System (ADS)

    Crockett, Derick

    Detailed observations of geosynchronous satellites from earth are very limited. To better inspect these high altitude satellites, the use of small, refuelable satellites is proposed. The small satellites are stationed on a carrier platform in an orbit near the population of geosynchronous satellites. A carrier platform equipped with deployable, refuelable SmallSats is a viable option to inspect geosynchronous satellites. The propellant requirement to transfer to a targeted geosynchronous satellite, perform a proximity inspection mission, and transfer back to the carrier platform in a nearby orbit is determined. Convex optimization and traditional optimization techniques are explored, determining minimum propellant trajectories. Propellant is measured by the total required change in velocity, delta-v. The trajectories were modeled in a relative reference frame using the Clohessy-Wiltshire equations. Mass estimations for the carrier platform and the SmallSat were determined by using the rocket equation. The mass estimates were compared to the mass of a single, non-refuelable satellite performing the same geosynchronous satellite inspection missions. From the minimum delta-v trajectories and the mass analysis, it is determined that using refuelable SmallSats and a carrier platform in a nearby orbit can be more efficient than using a single non-refuelable satellite to perform multiple geosynchronous satellite inspections.

  12. CUBES Project Support

    NASA Technical Reports Server (NTRS)

    Jenkins, Kenneth T., Jr.

    2012-01-01

    CUBES stands for Creating Understanding and Broadening Education through Satellites. The goal of the project is to allow high school students to build a small satellite, or CubeSat. Merritt Island High School (MIHS) was selected to partner with NASA, and California Polytechnic State University (Cal-Poly}, to build a CubeSat. The objective of the mission is to collect flight data to better characterize maximum predicted environments inside the CubeSat launcher, Poly-Picosatellite Orbital Deplorer (P-POD), while attached to the launch vehicle. The MIHS CubeSat team will apply to the NASA CubeSat Launch Initiative, which provides opportunities for small satellite development teams to secure launch slots on upcoming expendable launch vehicle missions. The MIHS team is working to achieve a test launch, or proof of concept flight aboard a suborbital launch vehicle in early 2013.

  13. A simplex method for the orbit determination of maneuvering satellites

    NASA Astrophysics Data System (ADS)

    Chen, JianRong; Li, JunFeng; Wang, XiJing; Zhu, Jun; Wang, DanNa

    2018-02-01

    A simplex method of orbit determination (SMOD) is presented to solve the problem of orbit determination for maneuvering satellites subject to small and continuous thrust. The objective function is established as the sum of the nth powers of the observation errors based on global positioning satellite (GPS) data. The convergence behavior of the proposed method is analyzed using a range of initial orbital parameter errors and n values to ensure the rapid and accurate convergence of the SMOD. For an uncontrolled satellite, the orbit obtained by the SMOD provides a position error compared with GPS data that is commensurate with that obtained by the least squares technique. For low Earth orbit satellite control, the precision of the acceleration produced by a small pulse thrust is less than 0.1% compared with the calibrated value. The orbit obtained by the SMOD is also compared with weak GPS data for a geostationary Earth orbit satellite over several days. The results show that the position accuracy is within 12.0 m. The working efficiency of the electric propulsion is about 67% compared with the designed value. The analyses provide the guidance for subsequent satellite control. The method is suitable for orbit determination of maneuvering satellites subject to small and continuous thrust.

  14. Celestial data routing network

    NASA Astrophysics Data System (ADS)

    Bordetsky, Alex

    2000-11-01

    Imagine that information processing human-machine network is threatened in a particular part of the world. Suppose that an anticipated threat of physical attacks could lead to disruption of telecommunications network management infrastructure and access capabilities for small geographically distributed groups engaged in collaborative operations. Suppose that small group of astronauts are exploring the solar planet and need to quickly configure orbital information network to support their collaborative work and local communications. The critical need in both scenarios would be a set of low-cost means of small team celestial networking. To the geographically distributed mobile collaborating groups such means would allow to maintain collaborative multipoint work, set up orbital local area network, and provide orbital intranet communications. This would be accomplished by dynamically assembling the network enabling infrastructure of the small satellite based router, satellite based Codec, and set of satellite based intelligent management agents. Cooperating single function pico satellites, acting as agents and personal switching devices together would represent self-organizing intelligent orbital network of cooperating mobile management nodes. Cooperative behavior of the pico satellite based agents would be achieved by comprising a small orbital artificial neural network capable of learning and restructing the networking resources in response to the anticipated threat.

  15. Affordable Launch Services using the Sport Orbit Transfer System

    NASA Astrophysics Data System (ADS)

    Goldstein, D. J.

    2002-01-01

    Despite many advances in small satellite technology, a low-cost, reliable method is needed to place spacecraft in their de- sired orbits. AeroAstro has developed the Small Payload ORbit Transfer (SPORTTM) system to provide a flexible low-cost orbit transfer capability, enabling small payloads to use low-cost secondary launch opportunities and still reach their desired final orbits. This capability allows small payloads to effectively use a wider variety of launch opportunities, including nu- merous under-utilized GTO slots. Its use, in conjunction with growing opportunities for secondary launches, enable in- creased access to space using proven technologies and highly reliable launch vehicles such as the Ariane family and the Starsem launcher. SPORT uses a suite of innovative technologies that are packaged in a simple, reliable, modular system. The command, control and data handling of SPORT is provided by the AeroAstro BitsyTM core electronics module. The Bitsy module also provides power regulation for the batteries and optional solar arrays. The primary orbital maneuvering capability is provided by a nitrous oxide monopropellant propulsion system. This system exploits the unique features of nitrous oxide, which in- clude self-pressurization, good performance, and safe handling, to provide a light-weight, low-cost and reliable propulsion capability. When transferring from a higher energy orbit to a lower energy orbit (i.e. GTO to LEO), SPORT uses aerobraking technol- ogy. After using the propulsion system to lower the orbit perigee, the aerobrake gradually slows SPORT via atmospheric drag. After the orbit apogee is reduced to the target level, an apogee burn raises the perigee and ends the aerobraking. At the conclusion of the orbit transfer maneuver, either the aerobrake or SPORT can be shed, as desired by the payload. SPORT uses a simple design for high reliability and a modular architecture for maximum mission flexibility. This paper will discuss the launch system and its application to small satellite launch without increasing risk. It will also discuss relevant issues such as aerobraking operations and radiation issues, as well as existing partnerships and patents for the system.

  16. Test plan. Task 5, subtask 5.2: Early on-orbit TPSdebris impact tests

    NASA Technical Reports Server (NTRS)

    Greenberg, H. S.

    1994-01-01

    The limitation of damage to, and survival of, the cryogenic tankage during the on-orbit stay despite potential impact of orbital debris, may be a significant discriminator in the RHCTS trade studies described in the TA-1 trade study plan (ref. RHCTS-TSP-1) dated July 29, 1994. The objective of this early phase of an overall debris impact test program is to provide the data to support assessment of the relative suitability of integral and non integral tanks.

  17. Electric Propulsion System for Constellation Deployment and Orbit Control of Minisats

    NASA Astrophysics Data System (ADS)

    Bianco, P.; de Rocco, L.; Lovera, M.

    1999-09-01

    The late technology developments and the demand for low-cost space missions have raised the interest in small satellites and in their potential use as parts of satellite formations as well as building units of satellite constellations. Formation flying of small satellites can be used to bring in-orbit spares for failed payloads on larger satellites as well as to replace large satellites at all by flying the mission on more small satellites, each carrying a single payload. Small satellites can be used in constellations for scientific missions (e.g. remote sensing) as well as for commercial purposes (e.g. data relay). Yet, "small satellite" doesn't necessarily mean "cheap satellite": cost reduction must be enforced into the space mission design since the very beginning of it, at system level. This usually implies seeking for trade-offs on most expensive system items for a small sat. Among these, we surely have the launch and the onboard propulsion system for orbital manoeuvres and station keeping: the stricter the requirements, the higher the costs. And, when dealing with satellite constellations or formations, orbital requirements can be quite challenging. The system designer is faced with the dilemma on whether to buy a relatively expensive dedicated launch or to have a highly cost-impactive autonomous onboard propulsion system that should perform orbit transfers as well. The present paper, which is an up-to-date version of the one presented at IAF-99, introduces a system based on FEEP (Field Emission Electric Propulsion) technology, featuring low thrust plug-on propulsion units. Thanks to the self-contained concept of FEEP thrusters and to the plug-on feature of the whole system, a very low cost-impactive onboard propulsion system can be implemented in order to serve for both orbital manoeuvres (constellation / formation deployment, orbit rising) and orbit maintenance (drag compensation, station keeping relative to other satellites). Most convenient strategies to operate such propulsion systems with respect to orbital requirements, principal design drivers and sizing methods are presented and discussed as well as practical up-to-date case study results performed at Carlo Gavazzi Space.

  18. A Brief History of Meteoroid and Orbital Debris Shielding Technology for US Manned Spacecraft

    NASA Technical Reports Server (NTRS)

    Bjorkman, Michael D.; Hyde, James L.

    2008-01-01

    Meteoroid and orbital debris shielding has played an important role from the beginning of manned spaceflight. During the early 60 s, meteoroid protection drove requirements for new meteor and micrometeoroid impact science. Meteoroid protection also stimulated advances in the technology of hypervelocity impact launchers and impact damage assessment methodologies. The first phase of meteoroid shielding assessments closed in the early 70 s with the end of the Apollo program. The second phase of meteoroid protection technology began in the early 80 s when it was determined that there is a manmade Earth orbital debris belt that poses a significant risk to LEO manned spacecraft. The severity of the Earth orbital debris environment has dictated changes in Space Shuttle and ISS operations as well as driven advances in shielding technology and assessment methodologies. A timeline of shielding technology and assessment methodology advances is presented along with a summary of risk assessment results.

  19. Probability of coincidental similarity among the orbits of small bodies - I. Pairing

    NASA Astrophysics Data System (ADS)

    Jopek, Tadeusz Jan; Bronikowska, Małgorzata

    2017-09-01

    Probability of coincidental clustering among orbits of comets, asteroids and meteoroids depends on many factors like: the size of the orbital sample searched for clusters or the size of the identified group, it is different for groups of 2,3,4,… members. Probability of coincidental clustering is assessed by the numerical simulation, therefore, it depends also on the method used for the synthetic orbits generation. We have tested the impact of some of these factors. For a given size of the orbital sample we have assessed probability of random pairing among several orbital populations of different sizes. We have found how these probabilities vary with the size of the orbital samples. Finally, keeping fixed size of the orbital sample we have shown that the probability of random pairing can be significantly different for the orbital samples obtained by different observation techniques. Also for the user convenience we have obtained several formulae which, for given size of the orbital sample can be used to calculate the similarity threshold corresponding to the small value of the probability of coincidental similarity among two orbits.

  20. Laser Prevention of Earth Impact Disasters

    NASA Technical Reports Server (NTRS)

    Campbell, J.; Smalley, L.; Boccio, D.; Howell, Joe T. (Technical Monitor)

    2002-01-01

    We now believe that while there are about 2000 earth orbit crossing rocks greater than 1 kilometer in diameter, there may be as many as 100,000 or more objects in the 100m size range. Can anything be done about this fundamental existence question facing us? The answer is a resounding yes! We have the technology to prevent collisions. By using an intelligent combination of Earth and space based sensors coupled with an infrastructure of high-energy laser stations and other secondary mitigation options, we can deflect inbound asteroids, meteoroids, and comets and prevent them from striking the Earth. This can be accomplished by irradiating the surface of an inbound rock with sufficiently intense pulses so that ablation occurs. This ablation acts as a small rocket incrementally changing the shape of the rock's orbit around the Sun. One-kilometer size rocks can be moved sufficiently in a month while smaller rocks may be moved in a shorter time span.We recommend that the World's space objectives be immediately reprioritized to start us moving quickly towards a multiple option defense capability. While lasers should be the primary approach, all mitigation options depend on robust early warning, detection, and tracking resources to find objects sufficiently prior to Earth orbit passage in time to allow mitigation. Infrastructure options should include ground, LEO, GEO, Lunar, and libration point laser and sensor stations for providing early warning, tracking, and deflection. Other options should include space interceptors that will carry both laser and nuclear ablators for close range work. Response options must be developed to deal with the consequences of an impact should we move too slowly.

  1. EVOLUTION OF A RING AROUND THE PLUTO–CHARON BINARY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bromley, Benjamin C.; Kenyon, Scott J., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu

    We consider the formation of satellites around the Pluto–Charon binary. An early collision between the two partners likely produced the binary and a narrow ring of debris, out of which arose the moons Styx, Nix, Kerberos, and Hydra. How the satellites emerged from the compact ring is uncertain. Here we show that a particle ring spreads from physical collisions and collective gravitational scattering, similar to migration. Around a binary, these processes take place in the reference frames of “most circular” orbits, akin to circular ones in a Keplerian potential. Ring particles damp to these orbits and avoid destructive collisions. Dampingmore » and diffusion also help particles survive dynamical instabilities driven by resonances with the binary. In some situations, particles become trapped near resonances that sweep outward with the tidal evolution of the Pluto–Charon binary. With simple models and numerical experiments, we show how the Pluto–Charon impact ring may have expanded into a broad disk, out of which grew the circumbinary moons. In some scenarios, the ring can spread well beyond the orbit of Hydra, the most distant moon, to form a handful of smaller satellites. If these small moons exist, New Horizons will find them.« less

  2. Photometric follow-up of sungrazing comet C/2012 S1 ISON from OAdM and other observatories

    NASA Astrophysics Data System (ADS)

    Trigo-Rodríguez, J. M.; Moyano-Cambero, C. E.; Meech, K. J.; Rodríguez, D.; Sánchez, A.; Lacruz, J.

    2013-09-01

    Comet C/2012 S1 ISON was discovered on Sept. 21st, 2012 by Russian amateur astronomers Vitaly Nevski and Artyom Novichonok in the framework of a monitoring program called the International Scientific Optical Network (giving the acronym ISON from which the comet has been named). At discovery the comet was at a heliocentric distance of 6.29 A.U. and its magnitude was +18.8, but the computed orbit indicated that the comet was following a nearly parabolic orbit. The current orbit brings C/2012 S1 ISON to an extremely small perihelion distance of about 1 milion km on Nov. 28th, 2013. We have set up a multiband photometric monitoring of this sungrazing comet using 0.8m Telescope Joan Oró of the Montsec Astronomical Observatory (OAdM: www.oadm.cat) and several medium-size amateur telescopes with dedicated experience in cometary photometry [1, 2]. Comet sungrazers are interesting objects as they probably originate from the dynamical evolution of long period comets that typically end their lives colliding with the Sun [3]. They are though to be fragments of primitive ice-rich bodies gravitationally dispersed during the early stages of solar system evolution [4].

  3. Orbital Debris and NASA's Measurement Program

    NASA Astrophysics Data System (ADS)

    Africano, J. L.; Stansbery, E. G.

    2002-05-01

    Since the launch of Sputnik in 1957, the number of manmade objects in orbit around the Earth has dramatically increased. The United States Space Surveillance Network (SSN) tracks and maintains orbits on over nine thousand objects down to a limiting diameter of about ten centimeters. Unfortunately, active spacecraft are only a small percentage ( ~ 7%) of this population. The rest of the population is orbital debris or ``space junk" consisting of expended rocket bodies, dead payloads, bits and pieces from satellite launches, and fragments from satellite breakups. The number of these smaller orbital debris objects increases rapidly with decreasing size. It is estimated that there are at least 130,000 orbital debris objects between one and ten centimeters in diameter. Most objects smaller than 10 centimeters go untracked! As the orbital debris population grows, the risk to other orbiting objects, most importantly manned space vehicles, of a collision with a piece of debris also grows. The kinetic energy of a solid 1 cm aluminum sphere traveling at an orbital velocity of 10 km/sec is equivalent to a 400 lb. safe traveling at 60 mph. Fortunately, the volume of space in which the orbiting population resides is large, collisions are infrequent, but they do occur. The Space Shuttle often returns to earth with its windshield pocked with small pits or craters caused by collisions with very small, sub-millimeter-size pieces of debris (paint flakes, particles from solid rocket exhaust, etc.), and micrometeoroids. To get a more complete picture of the orbital-debris environment, NASA has been using both radar and optical techniques to monitor the orbital debris environment. This paper gives an overview of the orbital debris environment and NASA's measurement program.

  4. Programmable Ultra Lightweight System Adaptable Radio (PULSAR) Low Cost Telemetry - Access from Space Advanced Technologies or Down the Middle

    NASA Technical Reports Server (NTRS)

    Sims. Herb; Varnavas, Kosta; Eberly, Eric

    2013-01-01

    Software Defined Radio (SDR) technology has been proven in the commercial sector since the early 1990's. Today's rapid advancement in mobile telephone reliability and power management capabilities exemplifies the effectiveness of the SDR technology for the modern communications market. In contrast, presently qualified satellite transponder applications were developed during the early 1960's space program. Programmable Ultra Lightweight System Adaptable Radio (PULSAR, NASA-MSFC SDR) technology revolutionizes satellite transponder technology by increasing data through-put capability by, at least, an order of magnitude. PULSAR leverages existing Marshall Space Flight Center SDR designs and commercially enhanced capabilities to provide a path to a radiation tolerant SDR transponder. These innovations will (1) reduce the cost of NASA Low Earth Orbit (LEO) and Deep Space transponders, (2) decrease power requirements, and (3) a commensurate volume reduction. Also, PULSAR increases flexibility to implement multiple transponder types by utilizing the same hardware with altered logic - no analog hardware change is required - all of which can be accomplished in orbit. This provides high capability, low cost, transponders to programs of all sizes. The final project outcome would be the introduction of a Technology Readiness Level (TRL) 7 low-cost CubeSat to SmallSat telemetry system into the NASA Portfolio.

  5. A galactic nursery

    NASA Image and Video Library

    2015-07-20

    This dramatic image shows the NASA/ESA Hubble Space Telescope’s view of dwarf galaxy known as NGC 1140, which lies 60 million light-years away in the constellation of Eridanus. As can be seen in this image NGC 1140 has an irregular form, much like the Large Magellanic Cloud — a small galaxy that orbits the Milky Way. This small galaxy is undergoing what is known as a starburst. Despite being almost ten times smaller than the Milky Way it is creating stars at about the same rate, with the equivalent of one star the size of the Sun being created per year. This is clearly visible in the image, which shows the galaxy illuminated by bright, blue-white, young stars. Galaxies like NGC 1140 — small, starbursting and containing large amounts of primordial gas with way fewer elements heavier than hydrogen and helium than present in our Sun — are of particular interest to astronomers. Their composition makes them similar to the intensely star-forming galaxies in the early Universe. And these early Universe galaxies were the building blocks of present-day large galaxies like our galaxy, the Milky Way. But, as they are so far away these early Universe galaxies are harder to study so these closer starbursting galaxies are a good substitute for learning more about galaxy evolution . The vigorous star formation will have a very destructive effect on this small dwarf galaxy in its future. When the larger stars in the galaxy die, and explode as supernovae, gas is blown into space and may easily escape the gravitational pull of the galaxy. The ejection of gas from the galaxy means it is throwing out its potential for future stars as this gas is one of the building blocks of star formation. NGC 1140’s starburst cannot last for long.

  6. Origin of the terrestrial planets and the moon.

    PubMed

    Taylor, S R

    1996-03-01

    Our ideas about the origin and evolution of the solar system have advanced significantly as a result of the past 25 years of space exploration. Metal-sulfide-silicate partitioning seems to have been present in the early dust components of the solar nebula, prior to chondrule formation. The inner solar nebula was depleted in volatile elements by early solar activity. The early formation of the gas giant, Jupiter, affected the subsequent development of inner solar system and is responsible for the existence of the asteroid belt, and the small size of Mars. The Earth and the other terrestrial planets accreted in a gas-free environment, mostly from volatile-depleted planetesimals which were already differentiated into metallic cores and silicate mantles. The origin of the Moon by a single massive impact with a body larger than Mars explains the angular momentum, orbital characteristics and unique nature of the Earth-Moon system. The density and chemical differences between the Earth and Moon are accounted for by deriving the Moon from the mantle of the impactor.

  7. Study of Required Thrust Profile Determination of a Three Stages Small Launch Vehicle

    NASA Astrophysics Data System (ADS)

    Fariz, A.; Sasongko, R. A.; Poetro, R. E.

    2018-04-01

    The effect of solid rocket motor specifications, i.e. specific impulse and mass flow rate, and coast time on the thrust profile of three stages small launch vehicle is studied. Solid rocket motor specifications are collected from various small launch vehicle that had ever been in operation phase, and also from previous study. Comparison of orbital parameters shows that the radius of apocenter targeted can be approached using one combination of solid rocket motor specifications and appropriate coast time. However, the launch vehicle designed is failed to achieve the targeted orbit nor injecting the satellite to any orbit.

  8. Lessons from Vesta and Ceres

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Raymond, C. A.; McSween, H. Y.; Jaumann, R.; DeSanctis, M. C.; Nathues, A.; Prettyman, T.; Capria, M. T.; Pieters, C.; McFadden, L.; Ammannito, E.; Sykes, M. V.; McCord, T. B.; Zuber, M.; Smith, D.; Hoffman, M.; Scully, J. E. C.; Buczkowski, D.

    2014-04-01

    When first discovered, the bodies in the asteroid belt were considered the missing planet(s) between Mars and Jupiter. When their small size and large number become realized, they were deemed to be minor planets and then asteroids. They soon were considered to be simply airless bodies, consisting mostly of rocky material, some having iron cores. When Dawn reached Vesta, this picture was initially largely reinforced by the extensive southern basin and the battered northern hemisphere. A more accurate picture arises, using the color filters of the Framing Camera, in coordination with the nearinfrared spectrometer, revealing a diverse surface with different minerals and processes affecting regions on the surface in various ways. The variegated light and dark material and varying thermal properties indicate a complex surface. The water (OH) content of the surface is far from uniform. Examinations of the floors of Marcia and Cornelia revealed pits, and their crater walls have possibly water-carved gullies. The parent craters appear to have been formed in a wet surface, possibly ice melted in the crater-forming event. Figure 1 shows the latest mosaic of the vestan surface with the currently approved names for the surface features. It had been expected that olivine would be excavated in the southern basin but it was not to be found there. Surprisingly, patches of olivine-rich material were discovered in the north. Doubts arose as to whether a magma ocean hypothesis applies to Vesta, in spite of quantifying the mass of its core, and new ways to explain Vesta's petrogenesis were developed. Closer examination of the surface suggested more interesting scenarios, possible excavation of early volcanic materials, odd craters that seemed impossible to form with simple impacts, and a long ribbon of material stretching diagonally across the surface, possibly originating in the Marcia ejecta blanket. The relative youth of some of these features (ca 50 Ma) suggest Vesta has had planetary processes acting over much of its history and is very much a small terrestrial planet worthy of participating in the comparative planetology that aids our ability to understand these diverse family members. Ceres has yet to be visited by our spacecraft, but it too tells a story of active planetary processes. Ceres does not have meteorites or a family of small ceroids accompanying it in space, so we know little about its origins with any certainty. However, because it is large and has a low density, we believe it accreted late after the short-lived radionucleides had time to decay. It also seems to have continued to devolatize until the present. There were early 1 AU reports from observations at 1 AU of activity that have continued through the recent Herschel plume report. Dawn followed a simple mapping scenario at Vesta with initial low-resolution measurements in a Survey orbit followed by a High-Altitude Mapping Orbit which gave complete stereo imagery and extensive moderate resolution VIR IR and Framing Camera color data. A later Low-Altitude Mapping Orbit provided data on GRaND's elemental composition, gravity and localized high-resolution imagery and spectra. A second HAMO orbit completed the needed stereo data and other data over the northern quadrangles. The same mapping philosophy is planned for Ceres. There will be Survey, HAMO, and LAMO orbits, but once in Ceres orbit, Dawn is not expected to leave. Dawn has sufficient resources to achieve its science objectives but does not carry a large reserve for extended exploration.

  9. The analysis of behavior in orbit GSS two series of US early-warning system

    NASA Astrophysics Data System (ADS)

    Sukhov, P. P.; Epishev, V. P.; Sukhov, K. P.; Motrunych, I. I.

    2016-09-01

    Satellites Early Warning System Series class SBIRS US Air Force must replace on GEO early series DSP Series. During 2014-2016 the authors received more than 30 light curves "DSP-18 and "Sbirs-Geo 2". The analysis of the behavior of these satellites in orbit by a coordinate and photometric data. It is shown that for the monitoring of the Earth's surface is enough to place GEO 4 unit SBIRS across 90 deg.

  10. A Neptune-sized transiting planet closely orbiting a 5–10-million-year-old star.

    PubMed

    David, Trevor J; Hillenbrand, Lynne A; Petigura, Erik A; Carpenter, John M; Crossfield, Ian J M; Hinkley, Sasha; Ciardi, David R; Howard, Andrew W; Isaacson, Howard T; Cody, Ann Marie; Schlieder, Joshua E; Beichman, Charles A; Barenfeld, Scott A

    2016-06-30

    Theories of the formation and early evolution of planetary systems postulate that planets are born in circumstellar disks, and undergo radial migration during and after dissipation of the dust and gas disk from which they formed. The precise ages of meteorites indicate that planetesimals—the building blocks of planets—are produced within the first million years of a star’s life. Fully formed planets are frequently detected on short orbital periods around mature stars. Some theories suggest that the in situ formation of planets close to their host stars is unlikely and that the existence of such planets is therefore evidence of large-scale migration. Other theories posit that planet assembly at small orbital separations may be common. Here we report a newly born, transiting planet orbiting its star with a period of 5.4 days. The planet is 50 per cent larger than Neptune, and its mass is less than 3.6 times that of Jupiter (at 99.7 per cent confidence), with a true mass likely to be similar to that of Neptune. The star is 5–10 million years old and has a tenuous dust disk extending outward from about twice the Earth–Sun separation, in addition to the fully formed planet located at less than one-twentieth of the Earth–Sun separation.

  11. Space Debris Senso

    NASA Image and Video Library

    2017-12-11

    Orbital debris poses a risk to all spacecraft in Earth orbit, so the International Space Station is getting a new debris impact sensor to provide information on the micrometeoroid orbital debris environment in low Earth orbit. The Space Debris Sensor, launching on the next SpaceX Dragon cargo vehicle, will monitor impacts caused by small-scale orbital debris for a period of two to three years. That data will improve station safety by generating a more accurate estimate of the amount of small-scale debris that cannot be tracked from the ground and helping define better spacecraft shielding requirements. _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  12. [Orbital alveolar rhabdomyosarcoma masked by ethmoid sinusitis in a 25-year-old].

    PubMed

    Sanz-Marco, E; España, E; Alamar, A; Pérez-Rojas, J; López-Prats, M J; Díaz-Llopis, M

    2014-05-01

    A 25-year-old woman with right subacute sinusitis, complained about discomfort in her right eye. Clinical manifestations and computed tomography were suggestive of sub-periosteal orbital ethmoid wall abscess, for which the patient underwent urgent drainage. A solid tumor was found, with a positive biopsy for alveolar rhabdomyosarcoma. Complete remission and resolution of orbital symptoms were achieved with chemotherapy and radiation therapy. Alveolar orbital rhabdomyosarcoma in adults is uncommon. Rhabdomyosarcoma has a high risk of spreading. It can simulate a sinusitis, as in our patient, early diagnosis and early treatment being especially important in these patients. Copyright © 2010 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  13. Volatiles Inventory to the Inner Planets Due to Small Bodies Migration

    NASA Technical Reports Server (NTRS)

    Marov, M. Y.; Ipatov, S. I.

    2003-01-01

    The concurrent processes of endogeneous and exogeneous origin are assumed to be responsible for the volatile reserves in the terrestrial planets. Volatiles inventory through collisions is rooted in orbital dynamics of small bodies including near-Earth objects (NEOs), short and long-period comets, and trans-Neptunian objects (TNOs), the latter probably supplying a large amount of Jupiter crossing objects (JCOs). Our model testifies that even a relatively small portion (approx. 0.001) of JCOs which transit to orbits with aphelia inside Jupiter's orbit (Q<4.7 AU) and reside such orbits during more than 1 Myr may contribute significantly in collisions with the terrestrial planets. The total mass of volatiles delivered to the Earth from the feeding zone of the giant planets could be greater than the mass of the Earth's oceans.

  14. Peaking Into the Dark

    NASA Image and Video Library

    2017-12-08

    In this dramatic scene, an unnamed crater in Mercury's northern volcanic plains is bathed in darkness as the sun sits low on the horizon. Rising from the floor of the crater is its central peak, a small mountain resulting from the crater's formation. A central peak is a type of crater morphology that lies between "simple" and "peak ring" in the range of crater morphology on Mercury. This image was acquired as a high-resolution targeted observation. Targeted observations are images of a small area on Mercury's surface at resolutions much higher than the 200-meter/pixel morphology base map. It is not possible to cover all of Mercury's surface at this high resolution, but typically several areas of high scientific interest are imaged in this mode each week. The MESSENGER spacecraft is the first ever to orbit the planet Mercury, and the spacecraft's seven scientific instruments and radio science investigation are unraveling the history and evolution of the Solar System's innermost planet. During the first two years of orbital operations, MESSENGER acquired over 150,000 images and extensive other data sets. MESSENGER is capable of continuing orbital operations until early 2015. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. Small Spacecraft System-Level Design and Optimization for Interplanetary Trajectories

    NASA Technical Reports Server (NTRS)

    Spangelo, Sara; Dalle, Derek; Longmier, Ben

    2014-01-01

    The feasibility of an interplanetary mission for a CubeSat, a type of miniaturized spacecraft, that uses an emerging technology, the CubeSat Ambipolar Thruster (CAT) is investigated. CAT is a large delta-V propulsion system that uses a high-density plasma source that has been miniaturized for small spacecraft applications. An initial feasibility assessment that demonstrated escaping Low Earth Orbit (LEO) and achieving Earth-escape trajectories with a 3U CubeSat and this thruster technology was demonstrated in previous work. We examine a mission architecture with a trajectory that begins in Earth orbits such as LEO and Geostationary Earth Orbit (GEO) which escapes Earth orbit and travels to Mars, Jupiter, or Saturn. The goal was to minimize travel time to reach the destinations and considering trade-offs between spacecraft dry mass, fuel mass, and solar power array size. Sensitivities to spacecraft dry mass and available power are considered. CubeSats are extremely size, mass, and power constrained, and their subsystems are tightly coupled, limiting their performance potential. System-level modeling, simulation, and optimization approaches are necessary to find feasible and optimal operational solutions to ensure system-level interactions are modeled. Thus, propulsion, power/energy, attitude, and orbit transfer models are integrated to enable systems-level analysis and trades. The CAT technology broadens the possible missions achievable with small satellites. In particular, this technology enables more sophisticated maneuvers by small spacecraft such as polar orbit insertion from an equatorial orbit, LEO to GEO transfers, Earth-escape trajectories, and transfers to other interplanetary bodies. This work lays the groundwork for upcoming CubeSat launch opportunities and supports future development of interplanetary and constellation CubeSat and small satellite mission concepts.

  16. LauncherOne: Virgin Orbit's Dedicated Launch Vehicle for Small Satellites & Impact to the Space Enterprise Vision

    NASA Astrophysics Data System (ADS)

    Vaughn, M.; Kwong, J.; Pomerantz, W.

    Virgin Orbit is developing a space transportation service to provide an affordable, reliable, and responsive dedicated ride to orbit for smaller payloads. No longer will small satellite users be forced to make a choice between accepting the limitations of flight as a secondary payload, paying dramatically more for a dedicated launch vehicle, or dealing with the added complexity associated with export control requirements and international travel to distant launch sites. Virgin Orbit has made significant progress towards first flight of a new vehicle that will give satellite developers and operators a better option for carrying their small satellites into orbit. This new service is called LauncherOne (See the figure below). LauncherOne is a two stage, air-launched liquid propulsion (LOX/RP) rocket. Air launched from a specially modified 747-400 carrier aircraft (named “Cosmic Girl”), this system is designed to conduct operations from a variety of locations, allowing customers to select various launch azimuths and increasing available orbital launch windows. This provides small satellite customers an affordable, flexible and dedicated option for access to space. In addition to developing the LauncherOne vehicle, Virgin Orbit has worked with US government customers and across the new, emerging commercial sector to refine concepts for resiliency, constellation replenishment and responsive launch elements that can be key enables for the Space Enterprise Vision (SEV). This element of customer interaction is being led by their new subsidiary company, VOX Space. This paper summarizes technical progress made on LauncherOne in the past year and extends the thinking of how commercial space, small satellites and this new emerging market can be brought to bear to enable true space system resiliency.

  17. Low-Cost Propellant Launch From a Tethered Balloon

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian

    2006-01-01

    A document presents a concept for relatively inexpensive delivery of propellant to a large fuel depot in low orbit around the Earth, for use in rockets destined for higher orbits, the Moon, and for remote planets. The propellant is expected to be at least 85 percent of the mass needed in low Earth orbit to support the NASA Exploration Vision. The concept calls for the use of many small ( 10 ton) spin-stabilized, multistage, solid-fuel rockets to each deliver 250 kg of propellant. Each rocket would be winched up to a balloon tethered above most of the atmospheric mass (optimal altitude 26 2 km). There, the rocket would be aimed slightly above the horizon, spun, dropped, and fired at a time chosen so that the rocket would arrive in orbit near the depot. Small thrusters on the payload (powered, for example, by boil-off gases from cryogenic propellants that make up the payload) would precess the spinning rocket, using data from a low-cost inertial sensor to correct for small aerodynamic and solid rocket nozzle misalignment torques on the spinning rocket; would manage the angle of attack and the final orbit insertion burn; and would be fired on command from the depot in response to observations of the trajectory of the payload so as to make small corrections to bring the payload into a rendezvous orbit and despin it for capture by the depot. The system is low-cost because the small rockets can be mass-produced using the same techniques as those to produce automobiles and low-cost munitions, and one or more can be launched from a U.S. territory on the equator (Baker or Jarvis Islands in the mid-Pacific) to the fuel depot on each orbit (every 90 minutes, e.g., any multiple of 6,000 per year).

  18. Aquarius Radiometer Performance: Early On-Orbit Calibration and Results

    NASA Technical Reports Server (NTRS)

    Piepmeier, Jeffrey R.; LeVine, David M.; Yueh, Simon H.; Wentz, Frank; Ruf, Christopher

    2012-01-01

    The Aquarius/SAC-D observatory was launched into a 657-km altitude, 6-PM ascending node, sun-synchronous polar orbit from Vandenberg, California, USA on June 10, 2011. The Aquarius instrument was commissioned two months after launch and began operating in mission mode August 25. The Aquarius radiometer meets all engineering requirements, exhibited initial calibration biases within expected error bars, and continues to operate well. A review of the instrument design, discussion of early on-orbit performance and calibration assessment, and investigation of an on-going calibration drift are summarized in this abstract.

  19. Mars approach navigation using Doppler and range measurements to surface beacons and orbiting spacecraft

    NASA Technical Reports Server (NTRS)

    Thurman, Sam W.; Estefan, Jeffrey A.

    1991-01-01

    Approximate analytical models are developed and used to construct an error covariance analysis for investigating the range of orbit determination accuracies which might be achieved for typical Mars approach trajectories. The sensitivity or orbit determination accuracy to beacon/orbiter position errors and to small spacecraft force modeling errors is also investigated. The results indicate that the orbit determination performance obtained from both Doppler and range data is a strong function of the inclination of the approach trajectory to the Martian equator, for surface beacons, and for orbiters, the inclination relative to the orbital plane. Large variations in performance were also observed for different approach velocity magnitudes; Doppler data in particular were found to perform poorly in determining the downtrack (along the direction of flight) component of spacecraft position. In addition, it was found that small spacecraft acceleration modeling errors can induce large errors in the Doppler-derived downtrack position estimate.

  20. Calculating Statistical Orbit Distributions Using GEO Optical Observations with the Michigan Orbital Debris Survey Telescope (MODEST)

    NASA Technical Reports Server (NTRS)

    Matney, M.; Barker, E.; Seitzer, P.; Abercromby, K. J.; Rodriquez, H. M.

    2006-01-01

    NASA's Orbital Debris measurements program has a goal to characterize the small debris environment in the geosynchronous Earth-orbit (GEO) region using optical telescopes ("small" refers to objects too small to catalog and track with current systems). Traditionally, observations of GEO and near-GEO objects involve following the object with the telescope long enough to obtain an orbit suitable for tracking purposes. Telescopes operating in survey mode, however, randomly observe objects that pass through their field of view. Typically, these short-arc observation are inadequate to obtain detailed orbits, but can be used to estimate approximate circular orbit elements (semimajor axis, inclination, and ascending node). From this information, it should be possible to make statistical inferences about the orbital distributions of the GEO population bright enough to be observed by the system. The Michigan Orbital Debris Survey Telescope (MODEST) has been making such statistical surveys of the GEO region for four years. During that time, the telescope has made enough observations in enough areas of the GEO belt to have had nearly complete coverage. That means that almost all objects in all possible orbits in the GEO and near- GEO region had a non-zero chance of being observed. Some regions (such as those near zero inclination) have had good coverage, while others are poorly covered. Nevertheless, it is possible to remove these statistical biases and reconstruct the orbit populations within the limits of sampling error. In this paper, these statistical techniques and assumptions are described, and the techniques are applied to the current MODEST data set to arrive at our best estimate of the GEO orbit population distribution.

  1. Solidifying Small Satellite Access to Orbit via the International Space Station (ISS): Cyclops' Deployment of the Lonestar SmallSat from the ISS

    NASA Technical Reports Server (NTRS)

    Hershey, Matthew P.; Newswander, Daniel R.; Evernden, Brent A.

    2016-01-01

    On January 29, 2016, the Space Station Integrated Kinetic Launcher for Orbital Payload Systems (SSIKLOPS), known as "Cyclops" to the International Space Station (ISS) community, deployed Lonestar from the ISS. The deployment of Lonestar, a collaboration between Texas A&M University and the University of Texas at Austin, continued to showcase the simplicity and reliability of the Cyclops deployment system. Cyclops, a NASA-developed, dedicated 10-100 kg class ISS SmallSat deployment system, utilizes the Japanese airlock and robotic systems to seamlessly insert SmallSats into orbit. This paper will illustrate Cyclops' successful deployment of Lonestar from the ISS as well as outline its concept of operations, interfaces, requirements, and processes.

  2. Ground-to-orbit laser propulsion: Advanced applications

    NASA Technical Reports Server (NTRS)

    Kare, Jordin T.

    1990-01-01

    Laser propulsion uses a large fixed laser to supply energy to heat an inert propellant in a rocket thruster. Such a system has two potential advantages: extreme simplicity of the thruster, and potentially high performance, particularly high exhaust velocity. By taking advantage of the simplicity of the thruster, it should be possible to launch small (10 to 1000 kg) payloads to orbit using roughly 1 MW of average laser power per kg of payload. The incremental cost of such launches would be of an order of $200/kg for the smallest systems, decreasing to essentially the cost of electricity to run the laser (a few times $10/kg) for larger systems. Although the individual payload size would be smaller, a laser launch system would be inherently high-volume, with the capacity to launch tens of thousands of payloads per year. Also, with high exhaust velocity, a laser launch system could launch payloads to high velocities - geosynchronous transfer, Earth escape, or beyond - at a relatively small premium over launches to LEO. The status of pulsed laser propulsion is briefly reviewed including proposals for advanced vehicles. Several applications appropriate to the early part of the next century and perhaps valuable well into the next millennium are discussed qualitatively: space habitat supply, deep space mission supply, nuclear waste disposal, and manned vehicle launching.

  3. Yarkovsky-Schach effect on space debris motion

    NASA Astrophysics Data System (ADS)

    Murawiecka, M.; Lemaitre, A.

    2018-02-01

    The Yarkovsky-Schach effect is a small perturbation affecting Earth satellites and space debris illuminated by the Sun. It was first applied to the orbit of LAGEOS satellites as an explanation of the residuals in orbital elements. In this work, we carry out several numerical integration tests taking into consideration various orbit and rotation parameters, in order to analyse this effect in a broader context. The semi-major axis variations remain small and depend on the spin axis attitude with respect to the Sun. We show that the force amplitude is maximised for orbits inclined with i ≈ 20-30°. We also observe the influence on other orbital elements, notably on the orbit inclination. However, these effects are clearly observed only on long timescales; in our simulations, we propagated the orbits for 200 y. The Yarkovsky-Schach effect is thus confirmed to have a minuscule magnitude. It should be taken into account in studies requiring high-precision orbit determination, or on expanded timescales.

  4. Jovian Small Orbiter for Magnetospheric and Auroral Studies

    NASA Astrophysics Data System (ADS)

    Takashima, T.; Kasaba, Y.; Misawa, H.; Kawaguchi, J.

    2005-12-01

    Solar-Sail Project to have been examined by ISAS/JAXA as an engineering mission has a possibility of a small probe into the Jovian orbit. This paper summarizes the basic design of Jovian magnetospheric and auroral studies by this small chance. The large-scale Jovian mission has been a hope since the 1970s when the examinations of planetary exploration were started in Japan. In the one of plans, the largest planet in the solar system would be solved by two main objectives: (1) Structure of a gas planet: the internal & atmospheric structures of a gas planet which could not become a star (following the objectives of Planet-C and BepiColombo). (2) Jovian-type magnetosphere: the process of a pulsar-like magnetosphere with the strongest magnetospheric activities in the solar system (following the objectives of BepiColombo and SCOPE). The small polar-orbit orbiter in Solar-Sail Project aims to establish the feasibility of such future outer planet missions by ISAS/JAXA. It aims the former target in its limited resources.

  5. Habitable evaporated cores: transforming mini-Neptunes into super-Earths in the habitable zones of M dwarfs.

    PubMed

    Luger, R; Barnes, R; Lopez, E; Fortney, J; Jackson, B; Meadows, V

    2015-01-01

    We show that photoevaporation of small gaseous exoplanets ("mini-Neptunes") in the habitable zones of M dwarfs can remove several Earth masses of hydrogen and helium from these planets and transform them into potentially habitable worlds. We couple X-ray/extreme ultraviolet (XUV)-driven escape, thermal evolution, tidal evolution, and orbital migration to explore the types of systems that may harbor such "habitable evaporated cores" (HECs). We find that HECs are most likely to form from planets with ∼1 M⊕ solid cores with up to about 50% H/He by mass, though whether or not a given mini-Neptune forms a HEC is highly dependent on the early XUV evolution of the host star. As terrestrial planet formation around M dwarfs by accumulation of local material is likely to form planets that are small and dry, evaporation of small migrating mini-Neptunes could be one of the dominant formation mechanisms for volatile-rich Earths around these stars.

  6. The sensitivity of harassment to orbit: mass loss from early-type dwarfs in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Smith, R.; Sánchez-Janssen, R.; Beasley, M. A.; Candlish, G. N.; Gibson, B. K.; Puzia, T. H.; Janz, J.; Knebe, A.; Aguerri, J. A. L.; Lisker, T.; Hensler, G.; Fellhauer, M.; Ferrarese, L.; Yi, S. K.

    2015-12-01

    We conduct a comprehensive numerical study of the orbital dependence of harassment on early-type dwarfs consisting of 168 different orbits within a realistic, Virgo-like cluster, varying in eccentricity and pericentre distance. We find harassment is only effective at stripping stars or truncating their stellar discs for orbits that enter deep into the cluster core. Comparing to the orbital distribution in cosmological simulations, we find that the majority of the orbits (more than three quarters) result in no stellar mass loss. We also study the effects on the radial profiles of the globular cluster systems of early-type dwarfs. We find these are significantly altered only if harassment is very strong. This suggests that perhaps most early-type dwarfs in clusters such as Virgo have not suffered any tidal stripping of stars or globular clusters due to harassment, as these components are safely embedded deep within their dark matter halo. We demonstrate that this result is actually consistent with an earlier study of harassment of dwarf galaxies, despite the apparent contradiction. Those few dwarf models that do suffer stellar stripping are found out to the virial radius of the cluster at redshift = 0, which mixes them in with less strongly harassed galaxies. However when placed on phase-space diagrams, strongly harassed galaxies are found offset to lower velocities compared to weakly harassed galaxies. This remains true in a cosmological simulation, even when haloes have a wide range of masses and concentrations. Thus phase-space diagrams may be a useful tool for determining the relative likelihood that galaxies have been strongly or weakly harassed.

  7. Current and Near-Term Future Measurements of the Orbital Debris Environment at NASA

    NASA Technical Reports Server (NTRS)

    Stansbery, Gene; Liou, J.-C.; Mulrooney, M.; Horstman, M

    2010-01-01

    The NASA Orbital Debris Program Office places great emphasis on obtaining and understanding direct measurements of the orbital debris environment. The Orbital Debris Program Office's environmental models are all based on these measurements. Because OD measurements must cover a very wide range of sizes and altitudes, one technique realistically cannot be used for all measurements. In general, radar measurements have been used for lower altitudes and optical measurements for higher altitude orbits. For very small debris, in situ measurements such as returned spacecraft surfaces are utilized. In addition to receiving information from large debris (> 5-10 cm diameter) from the U.S. Space Surveillance Network, NASA conducts statistical measurements of the debris population for smaller sizes. NASA collects data from the Haystack and Goldstone radars for debris in low Earth orbit as small as 2- 4 mm diameter and from the Michigan Orbital DEbris Survey Telescope for debris near geosynchronous orbit altitude for sizes as small as 30-60 cm diameter. NASA is also currently examining the radiator panel of the Hubble Space Telescope Wide Field Planetary Camera 2 which was exposed to space for 16 years and was recently returned to Earth during the STS- 125 Space Shuttle mission. This paper will give an overview of these on-going measurement programs at NASA as well as discuss progress and plans for new instruments and techniques in the near future.

  8. STS-88 Mission Commander Cabana looks at the mission payload Unity at pad

    NASA Technical Reports Server (NTRS)

    1998-01-01

    At Launch Pad 39A, STS-88 Mission Commander Robert D. Cabana gets a close look at the Unity connecting module that is in the payload bay of the orbiter Endeavour. Cabana and the STS-88 crew arrived at KSC in the early morning hours of Nov. 30 for pre- launch preparations. The other crew members are Pilot Frederick W. 'Rick' Sturckow, Mission Specialist Nancy J. Currie, Mission Specialist James H. Newman and Mission Specialist Sergei Konstantinovich Krikalev, a Russian cosmonaut. The scheduled lift-off is at 3:56 a.m. on Dec. 3. Unity is the primary payload of the mission, which is the first U.S. launch for the International Space Station. The crew will be mating Unity with the Russian-built Zarya control module already in orbit. In addition to Unity, two small replacement electronics boxes are on board for possible repairs to Zarya batteries. Endeavour is expected to land at KSC at 10:17 p.m. on Monday, Dec. 14.

  9. STS-88 Pilot Sturckow and Commander Cabana look over the payload Unity at pad

    NASA Technical Reports Server (NTRS)

    1998-01-01

    At Launch Pad 39A, STS-88 Pilot Frederick W. 'Rick' Sturckow and Mission Commander Robert D. Cabana look over the Unity connecting module that is in the payload bay of the orbiter Endeavour. Cabana, Sturckow and the STS-88 crew arrived at KSC in the early morning hours of Nov. 30 for pre-launch preparations. The other crew members are Mission Specialist Nancy J. Currie, Mission Specialist James H. Newman and Mission Specialist Sergei Konstantinovich Krikalev, a Russian cosmonaut. The scheduled lift-off is at 3:56 a.m. on Dec. 3. Unity is the primary payload of the mission, which is the first U.S. launch for the International Space Station. The crew will be mating Unity with the Russian-built Zarya control module already in orbit. In addition to Unity, two small replacement electronics boxes are on board for possible repairs to Zarya batteries. Endeavour is expected to land at KSC at 10:17 p.m. on Monday, Dec. 14.

  10. Mind Your Ps and Qs: The Interrelation between Period (P) and Mass-ratio (Q) Distributions of Binary Stars

    NASA Astrophysics Data System (ADS)

    Moe, Maxwell; Di Stefano, Rosanne

    2017-06-01

    We compile observations of early-type binaries identified via spectroscopy, eclipses, long-baseline interferometry, adaptive optics, common proper motion, etc. Each observational technique is sensitive to companions across a narrow parameter space of orbital periods P and mass ratios q = {M}{comp}/M 1. After combining the samples from the various surveys and correcting for their respective selection effects, we find that the properties of companions to O-type and B-type main-sequence (MS) stars differ among three regimes. First, at short orbital periods P ≲ 20 days (separations a ≲ 0.4 au), the binaries have small eccentricities e ≲ 0.4, favor modest mass ratios < q> ≈ 0.5, and exhibit a small excess of twins q > 0.95. Second, the companion frequency peaks at intermediate periods log P (days) ≈ 3.5 (a ≈ 10 au), where the binaries have mass ratios weighted toward small values q ≈ 0.2-0.3 and follow a Maxwellian “thermal” eccentricity distribution. Finally, companions with long orbital periods log P (days) ≈ 5.5-7.5 (a ≈ 200-5000 au) are outer tertiary components in hierarchical triples and have a mass ratio distribution across q ≈ 0.1-1.0 that is nearly consistent with random pairings drawn from the initial mass function. We discuss these companion distributions and properties in the context of binary-star formation and evolution. We also reanalyze the binary statistics of solar-type MS primaries, taking into account that 30% ± 10% of single-lined spectroscopic binaries likely contain white dwarf companions instead of low-mass stellar secondaries. The mean frequency of stellar companions with q > 0.1 and log P (days) < 8.0 per primary increases from 0.50 ± 0.04 for solar-type MS primaries to 2.1 ± 0.3 for O-type MS primaries. We fit joint probability density functions f({M}1,q,P,e)\

  11. Optimization of high-inclination orbits using planetary flybys for a zodiacal light-imaging mission

    NASA Astrophysics Data System (ADS)

    Soto, Gabriel; Lloyd, James; Savransky, Dmitry; Grogan, Keith; Sinha, Amlan

    2017-09-01

    The zodiacal light caused by interplanetary dust grains is the second-most luminous source in the solar system. The dust grains coalesce into structures reminiscent of early solar system formation; their composition has been predicted through simulations and some edge-on observations but better data is required to validate them. Scattered light from these dust grains presents challenges to exoplanet imaging missions: resolution of their stellar environment is hindered by exozodiacal emissions and therefore sets the size and scope of these imaging missions. Understanding the composition of this interplanetary dust in our solar system requires an imaging mission from a vantage point above the ecliptic plane. The high surface brightness of the zodiacal light requires only a small aperture with moderate sensitivity; therefore a 3cm camera is enough to meet the science goals of the mission at an orbital height of 0.1AU above the ecliptic. A 6U CubeSat is the target mass for this mission which will be a secondary payload detaching from an existing interplanetary mission. Planetary flybys are utilized to produce most of the plane change Δv deep space corrective maneuvers are implemented to optimize each planetary flyby. We developed an algorithm which determines the minimum Δv required to place the CubeSat on a transfer orbit to a planet's sphere of influence and maximizes the resultant orbital height with respect to the ecliptic plane. The satellite could reach an orbital height of 0.22 AU with an Earth gravity assist in late 2024 by boarding the Europa Clipper mission.

  12. Collisionless encounters and the origin of the lunar inclination.

    PubMed

    Pahlevan, Kaveh; Morbidelli, Alessandro

    2015-11-26

    The Moon is generally thought to have formed from the debris ejected by the impact of a planet-sized object with the proto-Earth towards the end of planetary accretion. Models of the impact process predict that the lunar material was disaggregated into a circumplanetary disk and that lunar accretion subsequently placed the Moon in a near-equatorial orbit. Forward integration of the lunar orbit from this initial state predicts a modern inclination at least an order of magnitude smaller than the lunar value--a long-standing discrepancy known as the lunar inclination problem. Here we show that the modern lunar orbit provides a sensitive record of gravitational interactions with Earth-crossing planetesimals that were not yet accreted at the time of the Moon-forming event. The currently observed lunar orbit can naturally be reproduced via interaction with a small quantity of mass (corresponding to 0.0075-0.015 Earth masses eventually accreted to the Earth) carried by a few bodies, consistent with the constraints and models of late accretion. Although the encounter process has a stochastic element, the observed value of the lunar inclination is among the most likely outcomes for a wide range of parameters. The excitation of the lunar orbit is most readily reproduced via collisionless encounters of planetesimals with the Earth-Moon system with strong dissipation of tidal energy on the early Earth. This mechanism obviates the need for previously proposed (but idealized) excitation mechanisms, places the Moon-forming event in the context of the formation of Earth, and constrains the pristineness of the dynamical state of the Earth-Moon system.

  13. NASA's Earth Science Flight Program overview

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Volz, Stephen M.

    2011-11-01

    NASA's Earth Science Division (ESD) conducts pioneering work in Earth system science, the interdisciplinary view of Earth that explores the interaction among the atmosphere, oceans, ice sheets, land surface interior, and life itself that has enabled scientists to measure global and climate changes and to inform decisions by governments, organizations, and people in the United States and around the world. The ESD makes the data collected and results generated by its missions accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster management, agricultural yield projections, and aviation safety. In addition to four missions now in development and 14 currently operating on-orbit, the ESD is now developing the first tier of missions recommended by the 2007 Earth Science Decadal Survey and is conducting engineering studies and technology development for the second tier. Furthermore, NASA's ESD is planning implementation of a set of climate continuity missions to assure availability of key data sets needed for climate science and applications. These include a replacement for the Orbiting Carbon Observatory (OCO), OCO-2, planned for launch in 2013; refurbishment of the SAGE III atmospheric chemistry instrument to be hosted by the International Space Station (ISS) as early as 2014; and the Gravity Recovery and Climate Experiment Follow-On (GRACE FO) mission scheduled for launch in 2016. The new Earth Venture (EV) class of missions is a series of uncoupled, low to moderate cost, small to medium-sized, competitively selected, full orbital missions, instruments for orbital missions of opportunity, and sub-orbital projects.

  14. Early Program Development

    NASA Image and Video Library

    1970-01-01

    This artist's concept from 1970 shows a Nuclear Shuttle taking on fuel from an orbiting Liquid Hydrogen Depot. As envisioned by Marshall Space Flight Center Program Development persornel, the Nuclear Shuttle would deliver payloads to lunar orbit or other destinations then return to Earth orbit for refueling and additional missions.

  15. A methodology for small scale rural land use mapping in semi-arid developing countries using orbital imagery. 1: Introduction

    NASA Technical Reports Server (NTRS)

    Vangenderen, J. L. (Principal Investigator); Lock, B. F.

    1976-01-01

    The author has identified the following significant results. This research program has developed a viable methodology for producing small scale rural land use maps in semi-arid developing countries using imagery obtained from orbital multispectral scanners.

  16. Quantum oscillation signatures of spin-orbit interactions controlling the residual nodal bilayer-splitting in underdoped high-Tc cuprates

    NASA Astrophysics Data System (ADS)

    Harrison, Neil; Shekhter, Arkady

    2015-03-01

    We investigate the origin of the small residual nodal bilayer-splitting in the underdoped high-Tc superconductor YBa2Cu3O6+x using the results of recently published angle-resolved quantum oscillation data [Sebastian et al., Nature 511, 61 (2014)]. A crucial clue to the origin of the residual bilayer-splitting is found to be provided by the anomalously small Zeeman-splitting of some of the observed cyclotron orbits. We show that such an anomalously Zeeman-splitting (or small effective g-factor) for a subset of orbits can be explained by spin-orbit interactions, which become significant in the nodal regions as a result of the vanishing bilayer coupling. The primary effect of spin-orbit interactions is to cause quasiparticles traversing the nodal region of the Brillouin zone to undergo a spin flip. We suggest that the Rashba-like spin-orbit interactions, naturally present in bilayer systems, have the right symmetry and magnitude to give rise to a network of coupled orbits consistent with experimental observations in underdoped YBa2Cu3O6+x. This work is supported by the DOEm BES proposal LANLF100, while the magnet lab is supported by the NSF and Florida State.

  17. Stability of Multi-Planet Systems in the Alpha Centauri System

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    2017-01-01

    We evaluate the extent of the regions within the alpha Centauri AB star system where small planets are able to orbit for billion-year timescales (Quarles & Lissauer 2016, Astron. J. 151, 111), as well as how closely-spaced planetary orbits can be within those regions in which individual planets can survive. Although individual planets on low inclination, low eccentricity, orbits can survive throughout the habitable zones of both stars, perturbations from the companion star imply that the spacing of planets in multi-planet systems within the habitable zones of each star must be significantly larger than the spacing of similar multi-planet systems orbiting single stars in order to be long-lived. Because the binary companion induces a forced eccentricity upon the orbits of planets in orbit around either star, appropriately-aligned circumstellar orbits with small initial eccentricities are stable to slightly larger initial semimajor axes than are initially circular orbits. Initial eccentricities close to forced eccentricities can have a much larger affect on how closely planetary orbits can be spaced, and therefore on how many planets may remain in the habitable zones, although the required spacing remains significantly higher than for planets orbiting single stars.

  18. Kilauea volcano eruption seen from orbit

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The STS-51 crew had a clear view of the erupting Kilauea volcano during the early morning pass over the Hawaiian islands. Kilauea, on the southwest side of the island of Hawaii, has been erupting almost continuously since January, 1983. Kilauea's summit caldera, with the smaller Halemaumau crater nestled within, is highlighted in the early morning sun (just above the center of the picture). The lava flows which covered roads and subdivisions in 1983-90 can be seen as dark flows to the east (toward the upper right) of the steam plumes on this photo. The summit crater and lava flows of Mauna Loa volcano make up the left side of the photo. Features like the Volcano House and Kilauea Visitor Center on the edge of the caldera, the small subdivisions east of the summit, Ola's Rain Forest north of the summit, and agricultural land along the coast are easily identified.

  19. Solar power satellite system definition study. Volume 5: Space transportation analysis, phase 3

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A small Heavy Lift Launch Vehicle (HLLV) for the Solar Power Satellites (SPS) System was analyzed. It is recommended that the small HLLV with a payload of 120 metric tons be adopted as the SPS launch vehicle. The reference HLLV, a shuttle-derived option with a payload of 400 metric tons, should serve as a backup and be examined further after initial flight experience. The electric orbit transfer vehicle should be retained as the reference orbit-to-orbit cargo system.

  20. On the small-x behavior of the orbital angular momentum distributions in QCD

    NASA Astrophysics Data System (ADS)

    Hatta, Yoshitaka; Yang, Dong-Jing

    2018-06-01

    We present the numerical solution of the leading order QCD evolution equation for the orbital angular momentum distributions of quarks and gluons and discuss its implications for the nucleon spin sum rule. We observe that at small-x, the gluon helicity and orbital angular momentum distributions are roughly of the same magnitude but with opposite signs, indicating a significant cancellation between them. A similar cancellation occurs also in the quark sector. We explain analytically the reason for this cancellation.

  1. Proof-of-Concept Trajectory Designs for a Multi-Spacecraft, Low-Thrust Heliocentric Solar Weather Buoy Mission

    NASA Technical Reports Server (NTRS)

    Muller, Ronald; Franz, Heather; Roberts, Craig; Folta, Dave

    2005-01-01

    A new solar weather mission has been proposed, involving a dozen or more small spacecraft spaced at regular, constant intervals in a mutual heliocentric circular orbit between the orbits of Earth and Venus. These solar weather buoys (SWBs) would carry instrumentation to detect and measure the material in solar flares, solar energetic particle events, and coronal mass ejections as they flowed past the buoys, serving both as science probes and as a radiation early warning system for the Earth and interplanetary travelers to Mars. The baseline concept involves placing a mothercraft carrying the SWBs into a staging orbit at the Sun-Earth L1 libration point. The mothercraft departs the L1 orbit at the proper time to execute a trailing-edge lunar flyby near New Moon, injecting it into a heliocentric orbit with its perihelion interior to Earth s orbit. An alternative approach would involve the use of a Double Lunar Swingby (DLS) orbit, rather than the L1 orbit, for staging prior to this flyby. After injection into heliocentric orbit, the mothercraft releases the SWBs-all equipped with low-thrust pulsed plasma thrusters (PPTs)-whereupon each SWB executes a multi-day low-thrust finite bum around perihelion, lowering aphelion such that each achieves an elliptical phasing orbit of different orbital period from its companions. The resulting differences in angular rates of motion cause the spacecraft to separate. While the lead SWB achieves the mission orbit following an insertion burn at its second perihelion passage, the remaining SWBs must complete several revolutions in their respective phasing orbits to establish them in the mission orbit with the desired longitudinal spacing. The complete configuration for a 14 SWB scenario using a single mothercraft is achieved in about 8 years, and the spacing remains stable for at least a further 6 years. Flight operations can be simplified, and mission risk reduced, by employing two mothercraft instead of one. In this scenario: the second mothercraft stays in a libration-point or DLS staging orbit until the first mothercraft has achieved nearly 180 separation from the Earth. The timing of the second mothercraft's subsequent lunar flyby is planned such that this spacecraft will be located 180 from the first mothercraft upon completion of its heliocentric circularization maneuvers. Both groups of satellites then only have to spread out over 180 to obtain full 360 coverage around the Sun.

  2. Rings of earth. [orbiting bands of space debris

    NASA Technical Reports Server (NTRS)

    Goldstein, Richard M.; Randolph, L. W.

    1992-01-01

    Small particles moving at an orbital velocity of 7.6 kilometers per second can present a considerable hazard to human activity in space. For astronauts outside of the protective shielding of their space vehicles, such particles can be lethal. The powerful radar at NASA's Goldstone Deep Communications Complex was used to monitor such orbital debris. This radar can detect metallic objects as small as 1.8 mm in diameter at 600 km altitude. The results of the preliminary survey show a flux (at 600 km altitude) of 6.4 objects per square kilometer per day of equivalent size of 1.8 mm or larger. Forty percent of the observed particles appear to be concentrated into two orbits. An orbital ring with the same inclination as the radar (35.1 degrees) is suggested. However, an orbital band with a much higher inclination (66 degrees) is also a possibility.

  3. How long will asteroids on retrograde orbits survive?

    NASA Astrophysics Data System (ADS)

    Kankiewicz, Paweł; Włodarczyk, Ireneusz

    2018-05-01

    Generally, a common scenario for the origin of minor planets with high orbital inclinations does not exist. This applies especially to objects whose orbital inclinations are much greater than 90° (retrograde asteroids). Since the discovery of Dioretsa in 1999, approximately 100 small bodies now are classified as retrograde asteroids. A small number of them were reclassified as comets, due to cometary activity. There are only 25 multi-opposition retrograde asteroids, with a relatively large number of observations and well-determined orbits. We studied the orbital evolution of numbered and multi-opposition retrograde asteroids by numerical integration up to 1 Gy forward and backward in time. Additionally, we analyzed the propagation of orbital elements with the observational errors, determined dynamical lifetimes and studied their chaotic properties. Conclusively, we obtained quantitative parameters describing the long-term stability of orbits relating to the past and the future. In turn, we were able to estimate their lifetimes and how long these objects will survive in the Solar System.

  4. Asteroid Airbursts: Risk Assessment and Reduction

    NASA Astrophysics Data System (ADS)

    Boslough, M.

    2015-12-01

    Airbursts are events in which small (meters to tens-of-meters in diameter) asteroids deposit most of their energy in the atmosphere with a total energy greater than small nuclear explosions (>0.1 kilotons of TNT). The airburst risk is higher than previous assessments for two reasons. First, they are more frequent than previously thought. The Tunguska-class (~40 meters) population estimate has doubled, and Chelyabinsk-class (~20 meters) has increased by a factor of 2.6. Second, asteroid airbursts are significantly more damaging than previously assumed. In most cases, they more efficiently couple energy to the surface than nuclear explosions of the same yield. Past Near-Earth Object (NEO) risk assessments concluded that the largest asteroids (> 1 km) dominated the hazard. Large NEOs represent only a tiny fraction of the population but the potential for global catastrophe means that the contribution from low-probability, high-consequence events is large. Nearly 90% of these objects, none of which is on a collision course, have been catalogued. This has reduced their assessed near-term statistical risk by more than an order of magnitude because completion is highest for the largest and most dangerous. The relative risk from small objects would therefore be increasing even if their absolute assessed risk were not. Uncertainty in the number of small NEOs remains large and can only be reduced by expanded surveys. One strategy would be to count small NEOs making close passes in statistically significant numbers. For example, there are about 25 times as many objects of a given size that pass within the distance of geosynchronous orbit than collide with the earth, and 2000 times as many pass within a lunar distance (accounting for gravitational focusing). An asteroid the size of the Chelyabinsk impactor (~20 m) could potentially be observed within geosynchronous orbit every two years and within lunar orbit nearly once a week. A Tunguska-sized asteroid (~40 m) passes within a lunar distance several times a year. A survey optimized to discover and count these objects would rapidly reduce the uncertainty in their populations. An additional benefit would be early warning of an imminent impact to give authorities time to issue evacuation or take-cover instructions in circumstances for which there would be no time the prevent an impact.

  5. Concept considerations for a small orbital transfer vehicle

    NASA Technical Reports Server (NTRS)

    Green, M.; Sibila, A. I.

    1979-01-01

    This paper summarizes a study of small orbital transfer vehicles to place payloads in orbits with altitudes above those of the standard Shuttle operations. The overall objective of the study is to examine the role of the small orbital transfer vehicle (SOTV) in Shuttle operations and to identify typical propulsion concepts for accomplishing the mission. Consideration is given to existing and planned systems and upper stages, along with new propulsion stages. The new propulsion concept development examines tandem and clustered solids, controlled solids, monopropellant and bipropellant liquids, and staged solid/liquid combinations. The paper presents considerations of the mission requirements, tradeoffs of the various configurations, and candidate selections. For the selected candidate concepts the performance, support equipment, operational considerations and program costs were determined. The results show that a new modular liquid stage system is cost effective in handling the majority of the payloads considered. The remainder of the payloads can be accomodated by existing systems.

  6. NanoLaunch

    NASA Technical Reports Server (NTRS)

    Jones, Jonathan; Harris, Lawanna

    2015-01-01

    NASA's NanoLaunch effort will provide the framework to mature both Earth-to-orbit and on-orbit propulsion and avionics technologies while also providing affordable, dedicated access to low-Earth orbit for CubeSat-class payloads. The project will also serve as an early career personnel training opportunity with mentors to gain hands-on project experience.

  7. Formation flying for electric sails in displaced orbits. Part I: Geometrical analysis

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Mengali, Giovanni; Quarta, Alessandro A.; Yuan, Jianping

    2017-09-01

    We present a geometrical methodology for analyzing the formation flying of electric solar wind sail based spacecraft that operate in heliocentric, elliptic, displaced orbits. The spacecraft orbit is maintained by adjusting its propulsive acceleration modulus, whose value is estimated using a thrust model that takes into account a variation of the propulsive performance with the sail attitude. The properties of the relative motion of the spacecraft are studied in detail and a geometrical solution is obtained in terms of relative displaced orbital elements, assumed to be small quantities. In particular, for the small eccentricity case (i.e. for a near-circular displaced orbit), the bounds characterized by the extreme values of relative distances are analytically calculated, thus providing an useful mathematical tool for preliminary design of the spacecraft formation structure.

  8. Understanding the importance of transient resonances in extreme mass ratio inspirals

    NASA Astrophysics Data System (ADS)

    Berry, C. P. L.; Cole, R. H.; Cañizares, P.; Gair, J. R.

    2017-05-01

    Extreme mass ratio inspirals (EMRIs) occur when a compact object orbits a much larger one, like a solar-mass black hole around a supermassive black hole. The orbit has 3 frequencies which evolve through the inspiral. If the orbital radial frequency and polar frequency become commensurate, the system passes through a transient resonance. Evolving through resonance causes a jump in the evolution of the orbital parameters. We study these jumps and their impact on EMRI gravitational-wave detection. Jumps are smaller for lower eccentricity orbits; since most EMRIs have small eccentricities when passing through resonances, we expect that the impact on detection will be small. Neglecting the effects of transient resonances leads to a loss of ∼ 4% of detectable signals for an astrophysically motivated population of EMRIs.

  9. Crustal evolution inferred from Apollo magnetic measurements

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Daily, W. D.; Vanyan, L. L.

    1978-01-01

    Magnetic field and solar wind plasma density measurements were analyzed to determine the scale size characteristics of remanent fields at the Apollo 12, 15, and 16 landing sites. Theoretical model calculations of the field-plasma interaction, involving diffusion of the remanent field into the solar plasma, were compared to the data. The information provided by all these experiments shows that remanent fields over most of the lunar surface are characterized by spatial variations as small as a few kilometers. Large regions (50 to 100 km) of the lunar crust were probably uniformly magnetized during early crustal evolution. Bombardment and subsequent gardening of the upper layers of these magnetized regions left randomly oriented, smaller scale (5 to 10 km) magnetic sources close to the surface. The larger scale size fields of magnitude approximately 0.1 gammas are measured by the orbiting subsatellite experiments and the small scale sized remanent fields of magnitude approximately 100 gammas are measured by the surface experiments.

  10. Small Satellites and the DARPA/Air Force Falcon Program

    NASA Technical Reports Server (NTRS)

    Weeks, David J.; Walker, Steven H.; Sackheim, Robert L.

    2004-01-01

    The FALCON ((Force Application and Launch from CONUS) program is a technology demonstration effort with three major components: a Small Launch Vehicle (SLV), a Common Aero Vehicle (CAV), and a Hypersonic Cruise Vehicle (HCV). Sponsored by DARPA and executed jointly by the United States Air Force and DARPA with NASA participation, the objectives are to develop and demonstrate technologies that will enable both near-term and far-term capability to execute time-critical, global reach missions. The focus of this paper is on the SLV as it relates to small satellites and the implications of lower cost to orbit for small satellites. The target recurring cost for placing 1000 pounds payloads into a circular reference orbit of 28.5 degrees at 100 nautical miles is $5,000,000 per launch. This includes range costs but not the payload or payload integration costs. In addition to the nominal 1000 pounds to LEO, FALCON is seeking delivery of a range of orbital payloads from 220 pounds to 2200 pounds to the reference orbit. Once placed on alert status, the SLV must be capable of launch within 24 hours.

  11. Temperature Gradient on Martian Moon Phobos

    NASA Image and Video Library

    2017-10-04

    This image combines two products from the first pointing at the Martian moon Phobos by the Thermal Emission Imaging System (THEMIS) camera on NASA's Mars Odyssey orbiter, on Sept. 29, 2017. Surface-temperature information from observation in thermal-infrared wavelengths is overlaid on a more detailed image from a visible-light observation. The left edge of the small moon was in darkness, and the right edge in morning sunlight. Phobos has an oblong shape with average diameter of about 14 miles (22 kilometers). The distance to Phobos from Odyssey during the observation was about 3,424 miles (5,511 kilometers). Researchers will analyze the surface-temperature information from this observation and possible future THEMIS observations to learn how quickly the surface warms after sunup or cools after sundown. That could provide information about surface materials, because larger rocks heat or cool more slowly than smaller particles do. The thermal information in this image is from merging observations made in four thermal-infrared wavelength bands, centered from 11.04 microns to 14.88 microns. Researchers have been using THEMIS to examine Mars since early 2002, but the maneuver turning the orbiter around to point the camera at Phobos was developed only recently. Odyssey orbits Mars at an altitude of about 250 miles (400 kilometers), much closer to the planet than to Phobos, which orbits about 3,700 miles (6,000 kilometers) above the surface of Mars. https://photojournal.jpl.nasa.gov/catalog/PIA22057

  12. Characterization of the 2012-044C BRIZ-M Upper Stage Breakup

    NASA Astrophysics Data System (ADS)

    Matney, M. J.; Hamilton, J.; Horstman, M.; Papanyan, V.

    2013-08-01

    On 6 August 2012, Russia launched two commercial satellites aboard a Proton rocket, and attempted to place them in geosynchronous orbit using a Briz-M upper stage (2012-044C, SSN 38746). Unfortunately, the upper stage failed early in its burn and was left stranded in an elliptical orbit with a perigee in low Earth orbit (LEO). Because the stage failed with much of its fuel on board, it was deemed a significant breakup risk. These fears were confirmed when it broke up 16 October, creating a large cloud of debris with perigees below that of the International Space Station. The debris cloud was tracked by the U.S. Space Surveillance Network (SSN), which can reliably detect and track objects down to about 10 cm in size. Because of the unusual geometry of the breakup, there was an opportunity for the NASA Orbital Debris Program Office to use specialized radar assets to characterize the extent of the debris cloud in sizes smaller than the standard debris tracked by the SSN. This paper describes the observation campaign to measure the small particle distributions of this cloud and presents the results of the data analysis. We shall compare the data to the modelled size distribution, number, and shape of the cloud, and what implications this may have for future breakup debris models. We shall conclude the paper with a discussion about how this measurement process can be improved for future breakups.

  13. Characterization of the 2012-044C Briz-M Upper Stage Breakup

    NASA Technical Reports Server (NTRS)

    Matney, M. J.; Hamilton, J.; Horstman, M.; Papanyan, V.

    2013-01-01

    On 6 August, 2012, Russia launched two commercial satellites aboard a Proton rocket, and attempted to place them in geosynchronous orbit using a Briz-M upper stage (2012-044C, SSN 38746). Unfortunately, the upper stage failed early in its burn and was left stranded in an elliptical orbit with a perigee in low Earth orbit (LEO). Because the stage failed with much of its fuel on board, it was deemed a significant breakup risk. These fears were confirmed when it broke up 16 October, creating a large cloud of debris with perigees below that of the International Space Station. The debris cloud was tracked by the US Space Surveillance Network (SSN), which can reliably detect and track objects down to about 10 cm in size. Because of the unusual geometry of the breakup, there was an opportunity for NASA Orbital Debris Program Office to use specialized radar assets to characterize the extent of the debris cloud in sizes smaller than the standard debris tracked by the SSN. This paper will describe the observation campaign to measure the small particle distributions of this cloud, and presents the results of the analysis of the data. We shall compare the data to the modelled size distribution, number, and shape of the cloud, and what implications this may have for future breakup debris models. We shall conclude the paper with a discussion how this measurement process can be improved for future breakups.

  14. Characterization of the 2012-044c Briz-M Upper Stage Breakup

    NASA Technical Reports Server (NTRS)

    Matney, M. J.; Hamilton, Joseph; Papanyan, Valen

    2013-01-01

    On 6 August, 2012, Russia launched two commercial satellites aboard a Proton rocket, and attempted to place them in geosynchronous orbit using a Briz-M upper stage (2012-044C, SSN 38746). Unfortunately, the upper stage failed early in its burn and was left stranded in an elliptical orbit with a perigee in low Earth orbit (LEO). Because the stage failed with much of its fuel on board, it was deemed a significant breakup risk. These fears were confirmed when it broke up 16 October, creating a large cloud of debris with perigees below that of the International Space Station. The debris cloud was tracked by the US Space Surveillance Network (SSN), which can reliably detect and track objects down to about 10 cm in size. Because of the unusual geometry of the breakup, there was an opportunity for NASA Orbital Debris Program Office to request radar assets to characterize the extent of the debris cloud in sizes smaller than the standard debris tracked by the SSN. This paper will describe the observation campaign to measure the small particle distributions of this cloud, and presents the results of the analysis of the data. We shall compare the data to the modelled size distribution, number, and shape of the cloud, and what implications this may have for future breakup debris models. We shall conclude the paper with a discussion how this measurement process can be improved for future breakups.

  15. Habitable planets around white and brown dwarfs: the perils of a cooling primary.

    PubMed

    Barnes, Rory; Heller, René

    2013-03-01

    White and brown dwarfs are astrophysical objects that are bright enough to support an insolation habitable zone (IHZ). Unlike hydrogen-burning stars, they cool and become less luminous with time; hence their IHZ moves in with time. The inner edge of the IHZ is defined as the orbital radius at which a planet may enter a moist or runaway greenhouse, phenomena that can remove a planet's surface water forever. Thus, as the IHZ moves in, planets that enter it may no longer have any water and are still uninhabitable. Additionally, the close proximity of the IHZ to the primary leads to concern that tidal heating may also be strong enough to trigger a runaway greenhouse, even for orbital eccentricities as small as 10(-6). Water loss occurs due to photolyzation by UV photons in the planetary stratosphere, followed by hydrogen escape. Young white dwarfs emit a large amount of these photons, as their surface temperatures are over 10(4) K. The situation is less clear for brown dwarfs, as observational data do not constrain their early activity and UV emission very well. Nonetheless, both types of planets are at risk of never achieving habitable conditions, but planets orbiting white dwarfs may be less likely to sustain life than those orbiting brown dwarfs. We consider the future habitability of the planet candidates KOI 55.01 and 55.02 in these terms and find they are unlikely to become habitable.

  16. The asteroid-meteorite connection: Forging a new link to Vesta as the parent body of basaltic achondrite (HED) meteorites

    NASA Technical Reports Server (NTRS)

    Binzel, R. P.

    1993-01-01

    Asteroid 4 Vesta has been at the center of the debate over the identity of the howardite eucrite diogenite (HED) parent body since the early 1970s. Despite its unique (among the 500 largest asteroids) compositional match to HED meteorites, substantial dynamical difficulties in delivering fragments from Vesta to the Earth have precluded any conclusive HED parent body link. These dynamical difficulties arise because Vesta's orbital location is far from known resonances. Consequently, it has been argued as dynamically improbable that meteoroid-sized (1 km) fragments could be excavated from Vesta with sufficient velocities to reach the resonances. Through new astronomical observations, numerous small (4-7 km) asteroids between Vesta and the 3:1 resonance have been discovered to have eucrite and diogenite compositions. Based on similar orbital elements to Vesta, all of these new asteroids are likely large impact fragments excavated from Vesta. Their current orbits imply ejection velocities in excess of 700 m/sec. Smaller (1 km) fragments can therefore be expected to have been ejected with velocities greater than 1 km/sec, sufficient to reach the 3:1 and v6 resonances. Thus it now appears to be dynamically viable for Vesta to be linked as the HED parent body.

  17. System analysis and test-bed for an atmosphere-breathing electric propulsion system using an inductive plasma thruster

    NASA Astrophysics Data System (ADS)

    Romano, F.; Massuti-Ballester, B.; Binder, T.; Herdrich, G.; Fasoulas, S.; Schönherr, T.

    2018-06-01

    Challenging space mission scenarios include those in low altitude orbits, where the atmosphere creates significant drag to the S/C and forces their orbit to an early decay. For drag compensation, propulsion systems are needed, requiring propellant to be carried on-board. An atmosphere-breathing electric propulsion system (ABEP) ingests the residual atmosphere particles through an intake and uses them as propellant for an electric thruster. Theoretically applicable to any planet with atmosphere, the system might allow to orbit for unlimited time without carrying propellant. A new range of altitudes for continuous operation would become accessible, enabling new scientific missions while reducing costs. Preliminary studies have shown that the collectible propellant flow for an ion thruster (in LEO) might not be enough, and that electrode erosion due to aggressive gases, such as atomic oxygen, will limit the thruster lifetime. In this paper an inductive plasma thruster (IPT) is considered for the ABEP system. The starting point is a small scale inductively heated plasma generator IPG6-S. These devices are electrodeless and have already shown high electric-to-thermal coupling efficiencies using O2 and CO2 . The system analysis is integrated with IPG6-S tests to assess mean mass-specific energies of the plasma plume and estimate exhaust velocities.

  18. Low-Cost Propellant Launch to Earth Orbit from a Tethered Balloon

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian H.

    2006-01-01

    Propellant will be more than 85% of the mass that needs to be lofted into Low Earth Orbit (LEO) in the planned program of Exploration of the Moon, Mars, and beyond. This paper describes a possible means for launching thousands of tons of propellant per year into LEO at a cost 15 to 30 times less than the current launch cost per kilogram. The basic idea is to mass-produce very simple, small and relatively low-performance rockets at a cost per kilogram comparable to automobiles, instead of the 25X greater cost that is customary for current launch vehicles that are produced in small quantities and which are manufactured with performance near the limits of what is possible. These small, simple rockets can reach orbit because they are launched above 95% of the atmosphere, where the drag losses even on a small rocket are acceptable, and because they can be launched nearly horizontally with very simple guidance based primarily on spin-stabilization. Launching above most of the atmosphere is accomplished by winching the rocket up a tether to a balloon. A fuel depot in equatorial orbit passes over the launch site on every orbit (approximately every 90 minutes). One or more rockets can be launched each time the fuel depot passes overhead, so the launch rate can be any multiple of 6000 small rockets per year, a number that is sufficient to reap the benefits of mass production.

  19. Material Density Distribution of Small Debris in Earth Orbit

    NASA Technical Reports Server (NTRS)

    Krisko, P. H.; Xu, Y.-l.; Opiela, J. N.; Hill, N. M.; Matney, M. J.

    2008-01-01

    Over 200 spacecraft and rocket body breakups in Earth orbit have populated that regime with debris fragments in the sub-micron through meter size range. Though the largest debris fragments can cause significant collisional damage to active (operational) spacecraft, these are few and trackable by radar. Fragments on the order of a millimeter to a centimeter in size are as yet untrackable. But this smaller debris can result in damage to critical spacecraft systems and, under the worst conditions, fragmenting collision events. Ongoing research at the NASA Orbital Debris Program Office on the sources of these small fragments has focused on the material components of spacecraft and rocket bodies and on breakup event morphology. This has led to fragment material density estimates, and also the beginnings of shape categorizations. To date the NASA Standard Breakup Model has not considered specific material density distinctions of small debris. The basis of small debris in that model is the fourth hypervelocity impact event of the Satellite Orbital Debris Characterization Impact Test (SOCIT) series. This test targeted a flight-ready, U.S. Transit navigation satellite with a solid aluminum sphere impactor. Results in this event yield characteristic length (size) and area-to-mass distributions of fragments smaller than 10 cm in the NASA model. Recent re-analysis of the SOCIT4 small fragment dataset highlighted the material-specific characteristics of metals and non-metals. Concurrent analysis of Space Shuttle in-situ impact data showed a high percentage of aluminum debris in shuttle orbit regions. Both analyses led to the definition of three main on-orbit debris material density categories -low density (< 2 g/cc), medium density (2 to 6 g/cc), and high density (> 6 g/cc). This report considers the above studies in an explicit extension of the NASA Standard Breakup Model where separate material densities for debris are generated and these debris fragments are propagated in Earth orbit. The near Earth environment is thus parameterized by debris density percentages within subsections of that environment. This model version is used in the upgraded NASA Orbital Debris Engineering Model (ORDEM).

  20. Options for flight testing rocket-based combined-cycle (RBCC) engines

    NASA Technical Reports Server (NTRS)

    Olds, John

    1996-01-01

    While NASA's current next-generation launch vehicle research has largely focused on advanced all-rocket single-stage-to-orbit vehicles (i.e. the X-33 and it's RLV operational follow-on), some attention is being given to advanced propulsion concepts suitable for 'next-generation-and-a-half' vehicles. Rocket-based combined-cycle (RBCC) engines combining rocket and airbreathing elements are one candidate concept. Preliminary RBCC engine development was undertaken by the United States in the 1960's. However, additional ground and flight research is required to bring the engine to technological maturity. This paper presents two options for flight testing early versions of the RBCC ejector scramjet engine. The first option mounts a single RBCC engine module to the X-34 air-launched technology testbed for test flights up to about Mach 6.4. The second option links RBCC engine testing to the simultaneous development of a small-payload (220 lb.) two-stage-to-orbit operational vehicle in the Bantam payload class. This launcher/testbed concept has been dubbed the W vehicle. The W vehicle can also serve as an early ejector ramjet RBCC launcher (albeit at a lower payload). To complement current RBCC ground testing efforts, both flight test engines will use earth-storable propellants for their RBCC rocket primaries and hydrocarbon fuel for their airbreathing modes. Performance and vehicle sizing results are presented for both options.

  1. Early Program Development

    NASA Image and Video Library

    1971-01-01

    In this 1971 artist's concept, the Nuclear Shuttle is shown in various space-based applications. As envisioned by Marshall Space Flight Center Program Development persornel, the Nuclear Shuttle would deliver payloads to geosychronous Earth orbits or lunar orbits then return to low Earth orbit for refueling. A cluster of Nuclear Shuttle units could form the basis for planetary missions.

  2. Surgery of the globe and orbit.

    PubMed

    Cho, Jane

    2008-02-01

    Orbital anatomy and the indications and surgical techniques for a variety of small animal orbital/globe surgical procedures are discussed. Details of the more common orbital surgical procedures, including ocular evisceration, intrascleral prosthesis implantation, enucleation, and proptosis repair, are given. Common complications and postoperative considerations for these procedures are also discussed with an emphasis on the practical aspects.

  3. Update on orbital reconstruction.

    PubMed

    Chen, Chien-Tzung; Chen, Yu-Ray

    2010-08-01

    Orbital trauma is common and frequently complicated by ocular injuries. The recent literature on orbital fracture is analyzed with emphasis on epidemiological data assessment, surgical timing, method of approach and reconstruction materials. Computed tomographic (CT) scan has become a routine evaluation tool for orbital trauma, and mobile CT can be applied intraoperatively if necessary. Concomitant serious ocular injury should be carefully evaluated preoperatively. Patients presenting with nonresolving oculocardiac reflex, 'white-eyed' blowout fracture, or diplopia with a positive forced duction test and CT evidence of orbital tissue entrapment require early surgical repair. Otherwise, enophthalmos can be corrected by late surgery with a similar outcome to early surgery. The use of an endoscope-assisted approach for orbital reconstruction continues to grow, offering an alternative method. Advances in alloplastic materials have improved surgical outcome and shortened operating time. In this review of modern orbital reconstruction, several controversial issues such as surgical indication, surgical timing, method of approach and choice of reconstruction material are discussed. Preoperative fine-cut CT image and thorough ophthalmologic examination are key elements to determine surgical indications. The choice of surgical approach and reconstruction materials much depends on the surgeon's experience and the reconstruction area. Prefabricated alloplastic implants together with image software and stereolithographic models are significant advances that help to more accurately reconstruct the traumatized orbit. The recent evolution of orbit reconstruction improves functional and aesthetic results and minimizes surgical complications.

  4. Modeling of the Orbital Debris Environment Risks in the Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Matney, Mark

    2016-01-01

    Despite of the tireless work by space surveillance assets, much of the Earth debris environment is not easily measured or tracked. For every object that is in an orbit we can track, there are hundreds of small debris that are too small to be tracked but still large enough to damage spacecraft. In addition, even if we knew today's environment with perfect knowledge, the debris environment is dynamic and would change tomorrow. Therefore, orbital debris scientists rely on numerical modeling to understand the nature of the debris environment and its risk to space operations throughout Earth orbit and into the future. This talk will summarize the ways in which modeling complements measurements to help give us a better picture of what is occurring in Earth orbit, and helps us to better conduct current and future space operations.

  5. ALDH1A3 Mutations Cause Recessive Anophthalmia and Microphthalmia

    PubMed Central

    Fares-Taie, Lucas; Gerber, Sylvie; Chassaing, Nicolas; Clayton-Smith, Jill; Hanein, Sylvain; Silva, Eduardo; Serey, Margaux; Serre, Valérie; Gérard, Xavier; Baumann, Clarisse; Plessis, Ghislaine; Demeer, Bénédicte; Brétillon, Lionel; Bole, Christine; Nitschke, Patrick; Munnich, Arnold; Lyonnet, Stanislas; Calvas, Patrick; Kaplan, Josseline; Ragge, Nicola; Rozet, Jean-Michel

    2013-01-01

    Anophthalmia and microphthalmia (A/M) are early-eye-development anomalies resulting in absent or small ocular globes, respectively. A/M anomalies occur in syndromic or nonsyndromic forms. They are genetically heterogeneous, some mutations in some genes being responsible for both anophthalmia and microphthalmia. Using a combination of homozygosity mapping, exome sequencing, and Sanger sequencing, we identified homozygosity for one splice-site and two missense mutations in the gene encoding the A3 isoform of the aldehyde dehydrogenase 1 (ALDH1A3) in three consanguineous families segregating A/M with occasional orbital cystic, neurological, and cardiac anomalies. ALDH1A3 is a key enzyme in the formation of a retinoic acid gradient along the dorso-ventral axis during early eye development. Transitory expression of mutant ALDH1A3 open reading frames showed that both missense mutations reduce the accumulation of the enzyme, potentially leading to altered retinoic acid synthesis. Although the role of retinoic acid signaling in eye development is well established, our findings provide genetic evidence of a direct link between retinoic-acid-synthesis dysfunction and early-eye-development anomalies in humans. PMID:23312594

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yun; Kouwenhoven, M. B. N.; Stamatellos, D.

    The origin of very low-mass hydrogen-burning stars, brown dwarfs (BDs), and planetary-mass objects (PMOs) at the low-mass end of the initial mass function is not yet fully understood. Gravitational fragmentation of circumstellar disks provides a possible mechanism for the formation of such low-mass objects. The kinematic and binary properties of very low-mass objects formed through disk fragmentation at early times (<10 Myr) were discussed in our previous paper. In this paper we extend the analysis by following the long-term evolution of disk-fragmented systems up to an age of 10 Gyr, covering the ages of the stellar and substellar populations inmore » the Galactic field. We find that the systems continue to decay, although the rates at which companions escape or collide with each other are substantially lower than during the first 10 Myr, and that dynamical evolution is limited beyond 1 Gyr. By t = 10 Gyr, about one third of the host stars are single, and more than half have only one companion left. Most of the other systems have two companions left that orbit their host star in widely separated orbits. A small fraction of companions have formed binaries that orbit the host star in a hierarchical triple configuration. The majority of such double-companion systems have internal orbits that are retrograde with respect to their orbits around their host stars. Our simulations allow a comparison between the predicted outcomes of disk fragmentation with the observed low-mass hydrogen-burning stars, BDs, and PMOs in the solar neighborhood. Imaging and radial velocity surveys for faint binary companions among nearby stars are necessary for verification or rejection of the formation mechanism proposed in this paper.« less

  7. Threats to U.S. National Security Interests in Space: Orbital Debris Mitigation and Removal

    DTIC Science & Technology

    2014-01-08

    objects larger than the size of a softball and hundreds of thousands of smaller fragments. This population of space debris potentially threatens U.S...catalogues objects as small as about 10 cm ( softball size) in LEO and as small as 1 meter in Geosynchronous Orbit.12 Today, the Space Surveillance

  8. Primary desmoplastic small round cell tumor in the left orbit: a case report and literature review.

    PubMed

    He, Xue-Rui; Liu, Zheng; Wei, Jing; Li, Wan-Jun; Liu, Tao

    2018-01-30

    Desmoplastic small round cell tumor is a rare malignant neoplasm that most often occurs in the abdomen or pelvis of young men. We herein describe a rare case of desmoplastic small round cell tumor arising from the left orbit in a 16-year-old male. A biopsy was performed and the histology showed the nests of tumor cells with small round cell morphology. The tumor cells showed immunopositivity for desmin, CD99, CD56, SMA, NSE, CgA, SYN, Ki67 and vimentin. Fluorescence in situ hybridization study using EWSR1 break-apart probe was positive for EWSR1 gene rearrangement. After complete surgical resection of the tumor, we did not find tumor recurrence or metastasis with one-year follow-up. Furthermore, a review of the relevant English literature has been discussed. In the present study, for the first time, we report a case of desmoplastic small round cell tumor which is located in the orbital region.

  9. The Dust Cycle Observed by Pathfinder

    NASA Astrophysics Data System (ADS)

    Smith, P. H.; Lemmon, M. T.; Tomasko, M. G.

    1998-09-01

    The Imager for Mars Pathfinder observed the Sun through special filters nearly every sol throughout the 83 sol mission; a total of 1733 images of the Sun have been obtained. Optical depths at four wavelengths (450, 670, 883, and 989 nm) steadily increased from 0.4 to 0.6 during the mission (Ls 145-185). Comparing observations taken in the morning to those from the afternoon shows a general variability with the morning haze being somewhat thicker by 0.1 optical depths. Typically, the trend is more pronounced in the blue wavelength band; we interpret this to be the influence of a high level haze of water ice crystals that forms in the early morning and evaporates during the day. Small, Rayleigh scattering crystals explains the spectral signature that we measure. It may be that this upper haze layer is associated with the small, ice crystals seen by Mariner 9, the Viking orbiters, and the Phobos orbiter. UV images taken by HST show strong limb brightening that can be explained by this high level ice. Calculations of the haze lifetimes given the sedimentation rates measured from the Rover's solar panels and the magnetic targets, suggest that the haze should completely deposit onto the surface within 120 days. A primary mechanism for replenishing the haze may be the dust devils that were observed during the sol 11 gallery pan.

  10. The early history of the lunar inclination. [effect of tidal friction

    NASA Technical Reports Server (NTRS)

    Rubincam, D. P.

    1973-01-01

    The effect of tidal friction on the inclination of the lunar orbit to the earth's equator for earth-moon distances of less than 10 earth radii is examined. The results obtained bear on a conclusion drawn by Gerstenkorn and others which has been raised as a fatal objection to the fission hypothesis of lunar origin, namely, that the present nonzero inclination of the moon's orbit to the ecliptic implies a steep inclination of the moon's orbit to the earth's equatorial plane in the early history of the earth-moon system. This conclusion is shown to be valid only for particular rheological models of the earth. The earth is assumed to behave like a highly viscous fluid in response to tides raised in it by the moon. The moon is assumed to be tideless and in a circular orbit about the earth. The equations of tidal friction are integrated numerically to give inclination of the lunar orbit as a function of earth-moon distance.

  11. Small Satellite Propulsion Options

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.; Oleson, Steven R.; Curran, Francis M.; Schneider, Steven J.

    1994-01-01

    Advanced chemical and low power electric propulsion offer attractive options for small satellite propulsion. Applications include orbit raising, orbit maintenance, attitude control, repositioning, and deorbit of both Earth-space and planetary spacecraft. Potential propulsion technologies for these functions include high pressure Ir/Re bipropellant engines, very low power arcjets, Hall thrusters, and pulsed plasma thrusters, all of which have been shown to operate in manners consistent with currently planned small satellites. Mission analyses show that insertion of advanced propulsion technologies enables and/or greatly enhances many planned small satellite missions. Examples of commercial, DoD, and NASA missions are provided to illustrate the potential benefits of using advanced propulsion options on small satellites.

  12. Electronic Structure of Small Lanthanide Containing Molecules

    NASA Astrophysics Data System (ADS)

    Kafader, Jared O.; Ray, Manisha; Topolski, Josey E.; Chick Jarrold, Caroline

    2016-06-01

    Lanthanide-based materials have unusual electronic properties because of the high number of electronic degrees of freedom arising from partial occupation of 4f orbitals, which make these materials optimal for their utilization in many applications including electronics and catalysis. Electronic spectroscopy of small lanthanide molecules helps us understand the role of these 4f electrons, which are generally considered core-like because of orbital contraction, but are energetically similar to valence electrons. The spectroscopy of small lanthanide-containing molecules is relatively unexplored and to broaden this understanding we have completed the characterization of small cerium, praseodymium, and europium molecules using photoelectron spectroscopy coupled with DFT calculations. The characterization of PrO, EuH, EuO/EuOH, and CexOy molecules have allowed for the determination of their electron affinity, the assignment of numerous anion to neutral state transitions, modeling of anion/neutral structures and electron orbital occupation.

  13. A UNIFIED FRAMEWORK FOR THE ORBITAL STRUCTURE OF BARS AND TRIAXIAL ELLIPSOIDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valluri, Monica; Abbott, Caleb; Shen, Juntai

    We examine a large random sample of orbits in two self-consistent simulations of N-body bars. Orbits in these bars are classified both visually and with a new automated orbit classification method based on frequency analysis. The well-known prograde x1 orbit family originates from the same parent orbit as the box orbits in stationary and rotating triaxial ellipsoids. However, only a small fraction of bar orbits (∼4%) have predominately prograde motion like their periodic parent orbit. Most bar orbits arising from the x1 orbit have little net angular momentum in the bar frame, making them equivalent to box orbits in rotatingmore » triaxial potentials. In these simulations a small fraction of bar orbits (∼7%) are long-axis tubes that behave exactly like those in triaxial ellipsoids: they are tipped about the intermediate axis owing to the Coriolis force, with the sense of tipping determined by the sign of their angular momentum about the long axis. No orbits parented by prograde periodic x2 orbits are found in the pure bar model, but a tiny population (∼2%) of short-axis tube orbits parented by retrograde x4 orbits are found. When a central point mass representing a supermassive black hole (SMBH) is grown adiabatically at the center of the bar, those orbits that lie in the immediate vicinity of the SMBH are transformed into precessing Keplerian orbits that belong to the same major families (short-axis tubes, long-axis tubes and boxes) occupying the bar at larger radii. During the growth of an SMBH, the inflow of mass and outward transport of angular momentum transform some x1 and long-axis tube orbits into prograde short-axis tubes. This study has important implications for future attempts to constrain the masses of SMBHs in barred galaxies using orbit-based methods like the Schwarzschild orbit superposition scheme and for understanding the observed features in barred galaxies.« less

  14. Two Small Transiting Planets and a Possible Third Body Orbiting HD 106315

    NASA Astrophysics Data System (ADS)

    Crossfield, Ian J. M.; Ciardi, David R.; Isaacson, Howard; Howard, Andrew W.; Petigura, Erik A.; Weiss, Lauren M.; Fulton, Benjamin J.; Sinukoff, Evan; Schlieder, Joshua E.; Mawet, Dimitri; Ruane, Garreth; de Pater, Imke; de Kleer, Katherine; Davies, Ashley G.; Christiansen, Jessie L.; Dressing, Courtney D.; Hirsch, Lea; Benneke, Björn; Crepp, Justin R.; Kosiarek, Molly; Livingston, John; Gonzales, Erica; Beichman, Charles A.; Knutson, Heather A.

    2017-06-01

    The masses, atmospheric makeups, spin-orbit alignments, and system architectures of extrasolar planets can be best studied when the planets orbit bright stars. We report the discovery of three bodies orbiting HD 106315, a bright (V = 8.97 mag) F5 dwarf targeted by our K2 survey for transiting exoplanets. Two small transiting planets are found to have radii {2.23}-0.25+0.30 {R}\\oplus and {3.95}-0.39+0.42 {R}\\oplus and orbital periods 9.55 days and 21.06 days, respectively. A radial velocity (RV) trend of 0.3 ± 0.1 m s-1 day-1 indicates the likely presence of a third body orbiting HD 106315 with period ≳160 days and mass ≳45 M ⊕. Transits of this object would have depths ≳0.1% and are definitively ruled out. Although the star has v sin I = 13.2 km s-1, it exhibits a short-timescale RV variability of just 6.4 m s-1. Thus, it is a good target for RV measurements of the mass and density of the inner two planets and the outer object’s orbit and mass. Furthermore, the combination of RV noise and moderate v sin I makes HD 106315 a valuable laboratory for studying the spin-orbit alignment of small planets through the Rossiter-McLaughlin effect. Space-based atmospheric characterization of the two transiting planets via transit and eclipse spectroscopy should also be feasible. This discovery demonstrates again the power of K2 to find compelling exoplanets worthy of future study.

  15. Preadapting to Weightlessness

    NASA Technical Reports Server (NTRS)

    Reschke, M. F.; Parker, D. E.; Arrott, A. P.

    1986-01-01

    Report discusses physiological and physical concepts of proposed training system to precondition astronauts to weightless environment. System prevents motion sickness, often experienced during early part of orbital flight. Also helps prevent seasickness and other forms of terrestrial motion sickness, often experienced during early part of orbital flight. Training affects subject's perception of inner-ear signals, visual signals, and kinesthetic motion perception. Changed perception resembles that of astronauts who spent many days in space and adapted to weightlessness.

  16. Accuracy in Orbital Propagation: A Comparison of Predictive Software Models

    DTIC Science & Technology

    2017-06-01

    astrology and astronomy , as ancient cultures observed patterns in the sun and moon [2]. These early observers and philosophers sought to devise...methods and observations of the time would shape the science and mathematics still in use in modern orbital mechanics [3]. Astronomy and astrology...B.C.), who gained early fame by predicting eclipses, and would go on to be one of the founders of Greek philosophy and astronomy [4]. He was the

  17. The study of the physics of cometary nuclei

    NASA Technical Reports Server (NTRS)

    Whipple, F. L.

    1985-01-01

    The development and utilization of an optimized computer program to analyze orbital stabilization by repeated calculations is presented. The stability of comets in the Opik-Oort Cloud about the Sun against perturbations by the Galactic center involve the same basic type of calculation. The supposed persistence of these bodies in orbits over the life of the solar system, depends upon the stability of bodies of negligible mass in orbits around a body whose mass is small compared to the central mass about which they revolve. The question remains of preferential orientation of extremely eccentric comet orbits, possibly to explain the asymmetry observed among new comet motions. A third application of the computing programs is suited to meteoroids that may exist in orbits about asteroids and that may endanger science spacecraft making flybys too near to asteroids. As in the double-comet case, solar activity and solar gravitational perturbations limit the attendance to an asteroid by small meteroids in their orbits. It is found that the mass distances planned for asteroid fly-bys are adequate.

  18. Dynamical evolution of young binaries and multiple systems

    NASA Astrophysics Data System (ADS)

    Reipurth, B.

    Most stars, and perhaps all, are born in small multiple systems whose components interact, leading to chaotic dynamic behavior. Some components are ejected, either into distant orbits or into outright escapes, while the remaining components form temporary and eventually permanent binary systems. More than half of all such breakups of multiple systems occur during the protostellar phase, leading to the occasional ejection of protostars outside their nascent cloud cores. Such orphaned protostars are observed as wide companions to embedded protostars, and thus allow the direct study of protostellar objects. Dynamic interactions during early stellar evolution explain the shape and enormous width of the separation distribution function of binaries, from close spectroscopic binaries to the widest binaries.

  19. Launching rockets and small satellites from the lunar surface

    NASA Technical Reports Server (NTRS)

    Anderson, K. A.; Dougherty, W. M.; Pankow, D. H.

    1985-01-01

    Scientific payloads and their propulsion systems optimized for launch from the lunar surface differ considerably from their counterparts for use on earth. For spin-stabilized payloads, the preferred shape is a large diameter-to-length ratio to provide stability during the thrust phase. The rocket motor required for a 50-kg payload to reach an altitude of one lunar radius would have a mass of about 41 kg. To place spin-stabilized vehicles into low altitude circular orbits, they are first launched into an elliptical orbit with altitude about 840 km at aposelene. When the spacecraft crosses the desired circular orbit, small retro-rockets are fired to attain the appropriate direction and speed. Values of the launch angle, velocity increments, and other parameters for circular orbits of several altitudes are tabulated. To boost a 50-kg payload into a 100-km altitude circular orbit requires a total rocket motor mass of about 90 kg.

  20. Launching rockets and small satellites from the lunar surface

    NASA Astrophysics Data System (ADS)

    Anderson, K. A.; Dougherty, W. M.; Pankow, D. H.

    Scientific payloads and their propulsion systems optimized for launch from the lunar surface differ considerably from their counterparts for use on earth. For spin-stabilized payloads, the preferred shape is a large diameter-to-length ratio to provide stability during the thrust phase. The rocket motor required for a 50-kg payload to reach an altitude of one lunar radius would have a mass of about 41 kg. To place spin-stabilized vehicles into low altitude circular orbits, they are first launched into an elliptical orbit with altitude about 840 km at aposelene. When the spacecraft crosses the desired circular orbit, small retro-rockets are fired to attain the appropriate direction and speed. Values of the launch angle, velocity increments, and other parameters for circular orbits of several altitudes are tabulated. To boost a 50-kg payload into a 100-km altitude circular orbit requires a total rocket motor mass of about 90 kg.

  1. First Results from NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE)

    NASA Technical Reports Server (NTRS)

    Elphic, R.; Colaprete, A.; Horanyi, M; Mahaffy, Paul; Boroson, D.; Delory, G.; Noble, s; Hine, B; Salute, J.

    2013-01-01

    As of early August, 2013, the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission is scheduled for launch on a Minotaur V rocket from Wallops Flight Facility during a five-day launch period that opens on Sept. 6, 2013 (early Sept. 7 UTC). LADEE will address 40 year-old mysteries of the lunar atmosphere and the question of levitated lunar dust. It will also pioneer the next generation of optical space communications. LADEE will assess the composition of the lunar atmosphere and investigate the processes that control its distribution and variability, including sources, sinks, and surface interactions. LADEE will also determine whether dust is present in the lunar exosphere, and reveal its sources and variability. These investigations are relevant to our understanding of surface boundary exospheres and dust processes occurring at many objects throughout the solar system, address questions regarding the origin and evolution of lunar volatiles, and have potential implications for future exploration activities. Following a successful launch, LADEE will enter a series of phasing orbits, which allows the spacecraft to arrive at the Moon at the proper time and phase. This approach accommodates any dispersion in the Minotaur V launch injection. LADEE's arrival at the moon in early October. The spacecraft will approach the moon from its leading edge, travel behind the Moon out of sight of the Earth, and then re-emerge and execute a three-minute Lunar Orbit Insertion maneuver. This will place LADEE in an elliptical retrograde equatorial orbit with an orbital period of approximately 24 hours. A series of maneuvers is then performed to reduce the orbit to become nearly circular with a 156-mile (250- kilometer) altitude. Spacecraft checkout and science instrument commissioning will commence in early-October and will nominally span 30 days but can be extended for an additional 30 days in the event of contingencies. Following commissioning, the 100-day Science Phase is performed at an orbit with periapsis between 20-60 km. This orbit must be constantly managed due to the Moon's highly inhomogeneous gravity field. During the Science Phase, the moon will rotate more than three times underneath the LADEE orbit. LADEE employs a high heritage instrument payload: a Neutral Mass Spectrometer (NMS) from Goddard Space Flight Center, an Ultraviolet/Visible Spectrometer (UVS) from Ames Research Center, and a dust detection experiment (LDEX) from the University of Colorado/LASP. It will also carry the Lunar Laser Communications Demonstration (LLCD) as a technology demonstration. The LLCD is funded by the Human Exploration Operations Mission Directorate (HEOMD), managed by GSFC, and built by the MIT Lincoln Lab. Contingent upon LADEE's successful lunar orbit insertion and checkout, we will report the early results from the science investigations.

  2. A laser-optical system to re-enter or lower low Earth orbit space debris

    NASA Astrophysics Data System (ADS)

    Phipps, Claude R.

    2014-01-01

    Collisions among existing Low Earth Orbit (LEO) debris are now a main source of new debris, threatening future use of LEO space. Due to their greater number, small (1-10 cm) debris are the main threat, while large (>10 cm) objects are the main source of new debris. Flying up and interacting with each large object is inefficient due to the energy cost of orbit plane changes, and quite expensive per object removed. Strategically, it is imperative to remove both small and large debris. Laser-Orbital-Debris-Removal (LODR), is the only solution that can address both large and small debris. In this paper, we briefly review ground-based LODR, and discuss how a polar location can dramatically increase its effectiveness for the important class of sun-synchronous orbit (SSO) objects. With 20% clear weather, a laser-optical system at either pole could lower the 8-ton ENVISAT by 40 km in about 8 weeks, reducing the hazard it represents by a factor of four. We also discuss the advantages and disadvantages of a space-based LODR system. We estimate cost per object removed for these systems. International cooperation is essential for designing, building and operating any such system.

  3. Hubble Looks in on a Galactic Nursery

    NASA Image and Video Library

    2017-12-08

    This dramatic image shows the NASA/ESA Hubble Space Telescope’s view of dwarf galaxy known as NGC 1140, which lies 60 million light-years away in the constellation of Eridanus. As can be seen in this image NGC 1140 has an irregular form, much like the Large Magellanic Cloud — a small galaxy that orbits the Milky Way. This small galaxy is undergoing what is known as a starburst. Despite being almost ten times smaller than the Milky Way it is creating stars at about the same rate, with the equivalent of one star the size of our sun being created per year. This is clearly visible in the image, which shows the galaxy illuminated by bright, blue-white, young stars. Galaxies like NGC 1140 — small, starbursting and containing large amounts of primordial gas with far fewer elements heavier than hydrogen and helium than are present in our sun — are of particular interest to astronomers. Their composition makes them similar to the intensely star-forming galaxies in the early Universe. And these early Universe galaxies were the building blocks of present-day large galaxies like our galaxy, the Milky Way. But, as they are so far away these early Universe galaxies are harder to study so these closer starbursting galaxies are a good substitute for learning more about galaxy evolution. The vigorous star formation will have a very destructive effect on this small dwarf galaxy in its future. When the larger stars in the galaxy die, and explode as supernovae, gas is blown into space and may easily escape the gravitational pull of the galaxy. The ejection of gas from the galaxy means it is throwing out its potential for future stars as this gas is one of the building blocks of star formation. NGC 1140’s starburst cannot last for long. Image credit: ESA/Hubble & NASA

  4. Multiple Payload Ejector for Education, Science and Technology Experiments

    NASA Technical Reports Server (NTRS)

    Lechworth, Gary

    2005-01-01

    The education research community no longer has a means of being manifested on Space Shuttle flights, and small orbital payload carriers must be flown as secondary payloads on ELV flights, as their launch schedule, secondary payload volume and mass permits. This has resulted in a backlog of small payloads, schedule and cost problems, and an inability for the small payloads community to achieve routine, low-cost access to orbit. This paper will discuss Goddard's Wallops Flight Facility funded effort to leverage its core competencies in small payloads, sounding rockets, balloons and range services to develop a low cost, multiple payload ejector (MPE) carrier for orbital experiments. The goal of the MPE is to provide a low-cost carrier intended primarily for educational flight research experiments. MPE can also be used by academia and industry for science, technology development and Exploration experiments. The MPE carrier will take advantage of the DARPAI NASA partnership to perform flight testing of DARPA s Falcon small, demonstration launch vehicle. The Falcon is similar to MPE fiom the standpoint of focusing on a low-cost, responsive system. Therefore, MPE and Falcon complement each other for the desired long-term goal of providing the small payloads community with a low-cost ride to orbit. The readiness dates of Falcon and MPE are complementary, also. MPE is being developed and readied for flight within 18 months by a small design team. Currently, MPE is preparing for Critical Design Review in fall 2005, payloads are being manifested on the first mission, and the carrier will be ready for flight on the first Falcon demonstration flight in summer, 2006. The MPE and attached experiments can weigh up to 900 lb. to be compatible with Falcon demonstration vehicle lift capabilities fiom Wallops, and will be delivered to the Falcon demonstration orbit - 100 nautical mile circular altitude.

  5. Enabling Dedicated, Affordable Space Access Through Aggressive Technology Maturation

    NASA Technical Reports Server (NTRS)

    Jones, Jonathan; Kibbey, Tim; Lampton, Pat; Brown, Thomas

    2014-01-01

    A recent explosion in nano-sat, small-sat, and university class payloads has been driven by low cost electronics and sensors, wide component availability, as well as low cost, miniature computational capability and open source code. Increasing numbers of these very small spacecraft are being launched as secondary payloads, dramatically decreasing costs, and allowing greater access to operations and experimentation using actual space flight systems. While manifesting as a secondary payload provides inexpensive rides to orbit, these arrangements also have certain limitations. Small, secondary payloads are typically included with very limited payload accommodations, supported on a non interference basis (to the prime payload), and are delivered to orbital conditions driven by the primary launch customer. Integration of propulsion systems or other hazardous capabilities will further complicate secondary launch arrangements, and accommodation requirements. The National Aeronautics and Space Administration's Marshall Space Flight Center has begun work on the development of small, low cost launch system concepts that could provide dedicated, affordable launch alternatives to small, risk tolerant university type payloads and spacecraft. These efforts include development of small propulsion systems and highly optimized structural efficiency, utilizing modern advanced manufacturing techniques. This paper outlines the plans and accomplishments of these efforts and investigates opportunities for truly revolutionary reductions in launch and operations costs. Both evolution of existing sounding rocket systems to orbital delivery, and the development of clean sheet, optimized small launch systems are addressed. A launch vehicle at the scale and price point which allows developers to take reasonable risks with new propulsion and avionics hardware solutions does not exist today. Establishing this service provides a ride through the proverbial "valley of death" that lies between demonstration in laboratory and flight environments. This effort will provide the framework to mature both on-orbit and earth-to-orbit avionics and propulsion technologies while also providing dedicated, affordable access to LEO for cubesat class payloads.

  6. The fate of NGC602, an intense region of star-formation in the Wing of the SMC

    NASA Astrophysics Data System (ADS)

    Sabbi, Elena

    2017-08-01

    This is a small 2 orbit proposal designed to measure the internal dynamics of NGC602, a small region of intense star formation in the Wing of the SMC, with a low gas and dust density that has been often considered an unfavorable place for star formation. Small regions of massive star formation are important to study for our understanding of the process of star and cluster formation, the ionization of the interstellar medium, and the injection of energy and momentum into their host galaxy. By combining our new observations with archival ACS/WFC data acquired in July 2004, we will be able to measure the relative proper motions of the NGC602 sub-structures better than 2.3 km/s and investigate the nature of the apparently isolated massive stars found around NGC602. This study will provide unique observational data to characterize the early phase of cluster evolution and test cluster formation theories. It will also address significant open issues in star formation, cluster dynamics and the origin of isolated supernovae and GRBs.

  7. Electron Bombardment Ion Thruster

    NASA Image and Video Library

    1970-08-21

    Researchers at the Lewis Research Center had been studying different methods of electric rocket propulsion since the mid-1950s. Harold Kaufman created the first successful engine, the electron bombardment ion engine, in the early 1960s. Over the ensuing decades Lewis researchers continued to advance the original ion thruster concept. A Space Electric Rocket Test (SERT) spacecraft was launched in June 1964 to test Kaufman’s engine in space. SERT I had one cesium engine and one mercury engine. The suborbital flight was only 50 minutes in duration but proved that the ion engine could operate in space. This was followed in 1966 by the even more successful SERT II, which operated on and off for over ten years. Lewis continued studying increasingly more powerful ion thrusters. These electric engines created and accelerated small particles of propellant material to high exhaust velocities. Electric engines have a very small amount of thrust and are therefore not capable of lifting a spaceship from the surface of the Earth. Once lofted into orbit, however, electric engines are can produce small, continuous streams of thrust for several years.

  8. Climate change and carbon-cycling during the latest Cretaceous-Early Paleogene; a new 13.5 million year-long, orbital-resolution, stable isotope record from the South Atlantic

    NASA Astrophysics Data System (ADS)

    Barnet, J.; Littler, K.; Kroon, D.; Leng, M. J.; Westerhold, T.; Roehl, U.; Zachos, J. C.

    2017-12-01

    The "greenhouse" world of the latest Cretaceous-Early Paleogene ( 70-34 Ma) was characterised by multi-million year variability in climate and the carbon-cycle. Throughout this interval the pervasive imprint of orbital-cyclicity, particularly eccentricity and precession, is visible in elemental and stable isotope data obtained from multiple deep-sea sites. Periodic "hyperthermal" events, occurring largely in-step with these orbital cycles, have proved particularly enigmatic, and may be the closest, albeit imperfect, analogues for anthropogenic climate change. This project utilises CaCO3-rich marine sediments recovered from ODP Site 1262 at a paleo-depth of 3600 m on the Walvis Ridge, South Atlantic, of late Maastrichtian-mid Paleocene age ( 67-60 Ma). We have derived high-resolution (2.5-4 kyr) carbon and oxygen isotope data from the epifaunal benthic foraminifera species Nuttallides truempyi. Combining the new record with the existing Late Paleocene-Early Eocene record generated from the same site by Littler et al. (2014), yields a single-site reference curve detailing 13.5 million years of orbital cyclicity in paleoclimate and carbon cycle from the latest Cretaceous to near the peak warmth of the Early Paleogene greenhouse. Spectral analysis of this new combined dataset allows us to identify long (405-kyr) eccentricity, short (100-kyr) eccentricity, and precession (19-23-kyr) as the principle forcing mechanisms governing pacing of the background climate and carbon-cycle during this time period, with a comparatively weak obliquity (41-kyr) signal. Cross-spectral analysis suggests that changes in climate lead the carbon cycle throughout most of the record, emphasising the role of the release of temperature-sensitive carbon stores as a positive feedback to an initial warming induced by changes in orbital configuration. The expression of comparatively understudied Early Paleocene events, including the Dan-C2 Event, Latest Danian Event, and Danian/Selandian Transition Event, are also identified within this new record, confirming the global nature and orbital pacing of the Latest Danian Event and Danian/Selandian Transition Event, but questioning the Dan-C2 event as a global hyperthermal.

  9. Lunar orbiting prospector

    NASA Technical Reports Server (NTRS)

    1988-01-01

    One of the prime reasons for establishing a manned lunar presence is the possibility of using the potential lunar resources. The Lunar Orbital Prospector (LOP) is a lunar orbiting platform whose mission is to prospect and explore the Moon from orbit in support of early lunar colonization and exploitation efforts. The LOP mission is divided into three primary phases: transport from Earth to low lunar orbit (LLO), operation in lunar orbit, and platform servicing in lunar orbit. The platform alters its orbit to obtain the desired surface viewing, and the orbit can be changed periodically as needed. After completion of the inital remote sensing mission, more ambitious and/or complicated prospecting and exploration missions can be contemplated. A refueled propulsion module, updated instruments, or additional remote sensing packages can be flown up from the lunar base to the platform.

  10. On-orbit checkout of satellites, volume 2. Part 3 of on-orbit checkout study. [space maintenance

    NASA Technical Reports Server (NTRS)

    Pritchard, E. I.

    1978-01-01

    Early satellite failures significantly degrading satellite operations are reviewed with emphasis on LANDSAT D, the Technology Demonstration Satellite, the ATREX/AEM spacecraft, STORMSAT 2, and the synchronous meteorological satellite. Candidates for correction with on-orbit checkout and appropriate actions are analyzed. On-orbit checkout subsystem level studies are summarized for electrical power, attitude control, thermal control, reaction control and propulsion, instruments, and angular rate matching for alignment of satellite IRU.

  11. A terrestrial Eocene stack: tying terrestrial lake ecology to marine carbon cycling through the Early Eocene Climatic Optimum

    NASA Astrophysics Data System (ADS)

    Grogan, D. S.; Whiteside, J. H.; Musher, D.; Rosengard, S. Z.; Vankeuren, M. A.; Pancost, R. D.

    2010-12-01

    The lacustrine Green River Formation is known to span ≥15 million years through the early-middle Eocene, and recent work on radioisotopic dating has provided a framework on which to build ties to the orbitally-tuned marine Eocene record. Here we present a spliced stack of Fischer assay data from drilled cores of the Green River Formation that span both an East-West and a North-South transect of the Uinta Basin of Utah. Detailed work on two cores demonstrate that Fischer assay measurements covary with total organic carbon and bulk carbon isotopes, allowing us to use Fisher assay results as a representative carbon cycling proxy throughout the stack. We provide an age model for this core record by combining radioisotopic dates of tuff layers with frequency analysis of Fischer assay measurements. Identification of orbital frequencies tied directly to magnetochrons through radioisotopic dates allows for a direct comparison of the terrestrial to the marine Eocene record. Our analysis indicates that the marker beds used to correlate the stack cores represent periods of enhanced lake productivity and extreme carbon burial; however, unlike the hyperthermal events that are clearly marked in the marine Eocene record, the hydrocarbon-rich "Mahogany Bed" period of burial does not correspond to a clear carbon isotope excursion. This suggests that the terrestrial realm may have experienced extreme ecological responses to relatively small perturbations in the carbon cycle during the Early Eocene Climatic Optimum. To investigate the ecological responses to carbon cycle perturbations through the hydrocarbon rich beds, we analyzed a suite of microbial biomarkers, finding evidence for cyanobacteria, dinoflagellates, and potentially green sulfur bacteria. These taxa indicate fluctuating oxic/anoxic conditions in the lake during abrupt intervals of carbon burial, suggesting a lake biogeochemical regime with no modern analogues.

  12. A design of an on-orbit radiometric calibration device for high dynamic range infrared remote sensors

    NASA Astrophysics Data System (ADS)

    Sheng, Yicheng; Jin, Weiqi; Dun, Xiong; Zhou, Feng; Xiao, Si

    2017-10-01

    With the demand of quantitative remote sensing technology growing, high reliability as well as high accuracy radiometric calibration technology, especially the on-orbit radiometric calibration device has become an essential orientation in term of quantitative remote sensing technology. In recent years, global launches of remote sensing satellites are equipped with innovative on-orbit radiometric calibration devices. In order to meet the requirements of covering a very wide dynamic range and no-shielding radiometric calibration system, we designed a projection-type radiometric calibration device for high dynamic range sensors based on the Schmidt telescope system. In this internal radiometric calibration device, we select the EF-8530 light source as the calibration blackbody. EF-8530 is a high emittance Nichrome (Ni-Cr) reference source. It can operate in steady or pulsed state mode at a peak temperature of 973K. The irradiance from the source was projected to the IRFPA. The irradiance needs to ensure that the IRFPA can obtain different amplitude of the uniform irradiance through the narrow IR passbands and cover the very wide dynamic range. Combining the internal on-orbit radiometric calibration device with the specially designed adaptive radiometric calibration algorithms, an on-orbit dynamic non-uniformity correction can be accomplished without blocking the optical beam from outside the telescope. The design optimizes optics, source design, and power supply electronics for irradiance accuracy and uniformity. The internal on-orbit radiometric calibration device not only satisfies a series of indexes such as stability, accuracy, large dynamic range and uniformity of irradiance, but also has the advantages of short heating and cooling time, small volume, lightweight, low power consumption and many other features. It can realize the fast and efficient relative radiometric calibration without shielding the field of view. The device can applied to the design and manufacture of the scanning infrared imaging system, the infrared remote sensing system, the infrared early-warning satellite, and so on.

  13. Radar Measurements of Small Debris from HUSIR and HAX

    NASA Technical Reports Server (NTRS)

    Hamilton J.; Blackwell, C.; McSheehy, R.; Juarez, Q.; Anz-Meador, P.

    2017-01-01

    For many years, the NASA Orbital Debris Program Office has been collecting measurements of the orbital debris environment from the Haystack Ultra-wideband Satellite Imaging Radar (HUSIR) and its auxiliary (HAX). These measurements sample the small debris population in low earth orbit (LEO). This paper will provide an overview of recent observations and highlight trends in selected debris populations. Using the NASA size estimation model, objects with a characteristic size of 1 cm and larger observed from HUSIR will be presented. Also, objects with a characteristic size of 2 cm and larger observed from HAX will be presented.

  14. Orbital floor reconstruction using a tensor fascia lata sling after total maxillectomy.

    PubMed

    Jung, Bok Ki; Yun, In Sik; Lee, Won Jai; Lew, Dae Hyun; Choi, Eun Chang; Lee, Dong Won

    2016-05-01

    Reconstruction after total maxillectomy with extensive orbital floor defects poses a significant challenge for the reconstruction. The aim of this study is to present the outcomes of orbital floor reconstruction using tensor fascia lata slings after total maxillectomy and to compare these results to orbital floor reconstruction using alloplastic implants. This was a retrospective analysis of 19 consecutive patients who underwent tumor resection with orbital floor removal for malignancies. Reconstructions were performed using either tensor fascia lata slings (Group A) or alloplastic implants (Group B). The early and late postoperative outcomes such as wound infection, plate exposure, ectropion, diplopia, and enophthalmos, were analyzed and compared between the two groups. Patients in group A had significantly less wound complication than in group B (p < 0.05). In group A, there were no early or late wound complications after the operation. However, in group B, five patients had infection, the plate was exposed in eight of fourteen patients, and three patients had enophthalmos. Eight patients in group B underwent reoperation to correct their complications. Reconstruction of the orbital floor with a tensor fascia lata sling offers reliable support to the globe and prevents the ophthalmic complications associated with loss of orbital support. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  15. The orbit properties of colliding co-orbiting bodies

    NASA Technical Reports Server (NTRS)

    Freeman, John W.

    1987-01-01

    It is generally assumed that an ensemble of small bodies located in similar Keplarian orbits will, because of collisions, tend to disperse into more and more dissimilar orbits. This theory was challenged. Alfven maintains that for the case where the time between collisions is longer than the orbit period and the collisions are essentially inelastic the orbits and velocities will become more similar. This gives rise to the concepts of negative diffusion and jet streams. It is proposed that this question might be investigated experimentally using the space station. The proposed experiment is briefly described.

  16. Early Program Development

    NASA Image and Video Library

    1970-01-01

    This 1970 artist's concept shows a Nuclear Shuttle in flight. As envisioned by Marshall Space Flight Center Program Development engineers, the Nuclear Shuttle would deliver payloads to lunar orbit or other destinations then return to Earth orbit for refueling and additional missions.

  17. Towards Routine Uncued Surveillance of Small Objects at and near Geostationary Orbit with Small Telescopes

    NASA Astrophysics Data System (ADS)

    Zimmer, P.; McGraw, J. T.; Ackermann, M. R.

    There is considerable interest in the capability to discover and monitor small objects (d 20cm) in geosynchronous (GEO) and near-GEO orbital regimes using small, ground-based optical telescopes (D < 0.5m). The threat of such objects is clear. Small telescopes have an unrivaled cost advantage and, under ideal lighting and sky conditions, have the capability of detecting faint objects. This combination of conditions, however, is relatively rare, making routine and persistent surveillance more challenging. In a truly geostationary orbit, a small object is easy to detect because its apparent rate of motion is nearly zero for a ground-based observer, and signal accumulation occurs as it would for more traditional sidereal-tracked astronomical observations. In this regime, though, small objects are not expected to be in controlled or predictable orbits, thus a range of inclinations and eccentricities is possible. This results in a range of apparent angular rates and directions that must be surveilled. This firmly establishes this task as uncued or blind surveillance. Detections in this case are subject to what is commonly called “trailing loss,” where the signal from the object does not accumulate in a fixed detection element, resulting in far lower sensitivity than for a similar object optimally tracked. We review some of the limits of detecting these objects under less than ideal observing conditions, subject further to the current limitations based on technological and operational realities. We demonstrate progress towards this goal using telescopes much smaller than normally considered viable for this task using novel detection and analysis techniques.

  18. ARC-1989-A89-7041

    NASA Image and Video Library

    1989-07-30

    P-34540 Range: 37.3 million kilometers (23.6 million miles) This image captured by the Voyager 2 spacecraft was used to confirm the discovery of three new satellites orbiting Neptune. The 46-second exposure was taken with the narrow angle camera and shows the large globe of the planet to be severely overexposed and almost pure white in appearance. The image has been computer-processed to accentuate the new moons, which otherwise would be hard to distinguish from background noise. The satellite 1989N1, at right in this frame, was discovered by Voyager 2 in early July 1989. The new satellites confirmed later are 1989N2, 1989N3 and 1989N4. Each of the moons appears as a small streak, an effect caused by movement of the spacecraft during the long exposure. The new moons occupy nearly circular and equatorial orbits ranging from about 27,300 to 48,300 kilometers (17,000 to 30,000 miles) from Neptunes's cloud tops, and are estimated to range in diameter from about 100 to 200 kilometers (about 60 to 125 miles).

  19. The NASA CYGNSS Small Satellite Constellation

    NASA Astrophysics Data System (ADS)

    Ruf, C. S.; Gleason, S.; McKague, D. S.; Rose, R.; Scherrer, J.

    2017-12-01

    The NASA Cyclone Global Navigation Satellite System (CYGNSS) is a constellation of eight microsatellite observatories that was launched into a low (35°) inclination, low Earth orbit on 15 December 2016. Each observatory carries a 4-channel GNSS-R bistatic radar receiver. The radars are tuned to receive the L1 signals transmitted by GPS satellites, from which near-surface ocean wind speed is estimated. The mission architecture is designed to improve the temporal sampling of winds in tropical cyclones (TCs). The 32 receive channels of the complete CYGNSS constellation, combined with the 30 GPS satellite transmitters, results in a revisit time for sampling of the wind of 2.8 hours (median) and 7.2 hours (mean) at all locations between 38 deg North and 38 deg South latitude. Operation at the GPS L1 frequency of 1575 MHz allows for wind measurements in the TC inner core that are often obscured from other spaceborne remote sensing instruments by intense precipitation in the eye wall and inner rain bands. An overview of the CYGNSS mission wil be presented, followed by early on-orbit status and results.

  20. An Assessment of Educational Benefits from the OpenOrbiter Space Program

    ERIC Educational Resources Information Center

    Straub, Jeremy; Whalen, David

    2013-01-01

    This paper analyzes the educational impact of the OpenOrbiter Small Spacecraft Development Initiative, a CubeSat development program underway at the University of North Dakota. OpenOrbiter includes traditional STEM activities (e.g., spacecraft engineering, software development); it also incorporates students from non-STEM disciplines not generally…

  1. 14 CFR 420.19 - Launch site location review-general.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... nm orbit Weight class Small Medium Medium large Large 28 degrees inclination * ≤4400 >4400 to ≤11100.... Orbital expendable launch vehicles are further classified by weight class, based on the weight of payload... class of orbital expendable launch vehicles flown from a launch point, the applicant shall demonstrate...

  2. S-NPP VIIRS thermal band spectral radiance performance through 18 months of operation on-orbit

    NASA Astrophysics Data System (ADS)

    Moeller, Chris; Tobin, Dave; Quinn, Greg

    2013-09-01

    The Suomi National Polar-orbiting Partnership (S-NPP) satellite, carrying the first Visible Infrared Imager Radiometer Suite (VIIRS) was successfully launched on October 28, 2011 with first light on November 21, 2011. The passive cryo-radiator cooler doors were opened on January 18, 2012 allowing the cold focal planes (S/MWIR and LWIR) to cool to the nominal operating temperature of 80K. After an early on-orbit functional checkout period, an intensive Cal/Val (ICV) phase has been underway. During the ICV, the VIIRS SDR performance for thermal emissive bands (TEB) has been under evaluation using on-orbit comparisons between VIIRS and the CrIS instrument on S-NPP, as well as VIIRS and the IASI instrument on MetOp-A. CrIS has spectral coverage of VIIRS bands M13, M15, M16, and I5 while IASI covers all VIIRS TEB. These comparisons largely verify that VIIRS TEB SDR are performing within or nearly within pre-launch requirements across the full dynamic range of these VIIRS bands, with the possible exception of warm scenes (<280 K) in band M12 as suggested by VIIRS-IASI comparisons. The comparisons with CrIS also indicate that the VIIRS Half Angle Mirror (HAM) reflectance versus scan (RVS) is well-characterized by virtue that the VIIRS-CrIS differences show little or no dependence on scan angle. The VIIRS-IASI and VIIRS-CrIS findings closely agree for bands M13, M15, and M16 for warm scenes but small offsets exist at cold scenes for M15, M16, and particularly M13. IASI comparisons also show that spectral out-of-band influence on the VIIRS SDR is <0.05 K for all bands across the full dynamic range with the exception of very cold scenes in Band M13 where the OOB influence reaches 0.10 K. TEB performance, outside of small adjustments to the SDR algorithm and supporting look-up tables, has been very stable through 18 months on-orbit. Preliminary analysis from an S-NPP underflight using a NASA ER-2 aircraft with the SHIS instrument (NIST-traceable source) confirms TEB SDR accuracy as compliant for a typical warm earth scene (285-290 K).

  3. A tapestry of orbits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King-Hele, D.

    1992-01-01

    In this book, the author describes how orbital research developed to yield a rich harvest of knowledge about the earth and its atmosphere. King-Hele relates a personal account of this research based on analysis of satellite orbits between 1957 and 1990 conducted from the Royal Aircraft Establishment in Farnborough England. The early research methods used before the launch of Sputnik in 1957 are discussed.

  4. Early Program Development

    NASA Image and Video Library

    1970-01-01

    In this 1970 artist's concept, the Nuclear Shuttle is shown in its lunar and geosynchronous orbit configuration and in its planetary mission configuration. As envisioned by Marshall Space Flight Center Program Development plarners, the Nuclear Shuttle would deliver payloads to lunar orbit or other destinations then return to Earth orbit for refueling. A cluster of Nuclear Shuttle units could form the basis for planetary missions.

  5. 2016 Summer Series - Bethany Ehlmann - Early Mars: A View from Rovers and Orbiters

    NASA Image and Video Library

    2016-08-18

    Water signatures include geological changes and life. Surface and orbital interplanetary robotic missions are critical for obtaining knowledge on atmospheric, surface and subsurface conditions of planets in our solar system. Ehlmann will talk about Mars data collected from orbital and rover missions and their implication for our understating of Mars past and present water environments.

  6. MRI study of minor physical anomaly in childhood autism implicates aberrant neurodevelopment in infancy.

    PubMed

    Cheung, Charlton; McAlonan, Grainne M; Fung, Yee Y; Fung, Germaine; Yu, Kevin K; Tai, Kin-Shing; Sham, Pak C; Chua, Siew E

    2011-01-01

    MPAs (minor physical anomalies) frequently occur in neurodevelopmental disorders because both face and brain are derived from neuroectoderm in the first trimester. Conventionally, MPAs are measured by evaluation of external appearance. Using MRI can help overcome inherent observer bias, facilitate multi-centre data acquisition, and explore how MPAs relate to brain dysmorphology in the same individual. Optical MPAs exhibit a tightly synchronized trajectory through fetal, postnatal and adult life. As head size enlarges with age, inter-orbital distance increases, and is mostly completed before age 3 years. We hypothesized that optical MPAs might afford a retrospective 'window' to early neurodevelopment; specifically, inter-orbital distance increase may represent a biomarker for early brain dysmaturation in autism. We recruited 91 children aged 7-16; 36 with an autism spectrum disorder and 55 age- and gender-matched typically developing controls. All children had normal IQ. Inter-orbital distance was measured on T1-weighted MRI scans. This value was entered into a voxel-by-voxel linear regression analysis with grey matter segmented from a bimodal MRI data-set. Age and total brain tissue volume were entered as covariates. Intra-class coefficient for measurement of the inter-orbital distance was 0.95. Inter-orbital distance was significantly increased in the autism group (p = 0.03, 2-tailed). The autism group showed a significant relationship between inter-orbital distance grey matter volume of bilateral amygdalae extending to the unci and inferior temporal poles. Greater inter-orbital distance in the autism group compared with healthy controls is consistent with infant head size expansion in autism. Inter-orbital distance positively correlated with volume of medial temporal lobe structures, suggesting a link to "social brain" dysmorphology in the autism group. We suggest these data support the role of optical MPAs as a "fossil record" of early aberrant neurodevelopment, and potential biomarker for brain dysmaturation in autism.

  7. Synchrotron microtomography of a Nothosaurus marchicus skull informs on nothosaurian physiology and neurosensory adaptations in early Sauropterygia

    PubMed Central

    Reich, Tobias; Araújo, Ricardo; Scheyer, Torsten M.

    2018-01-01

    Nothosaurs form a subclade of the secondarily marine Sauropterygia that was well represented in late Early to early Late Triassic marine ecosystems. Here we present and discuss the internal skull anatomy of the small piscivorous nothosaur Nothosaurus marchicus from coastal to shallow marine Lower Muschelkalk deposits (Anisian) of Winterswijk, The Netherlands, which represents the oldest sauropterygian endocast visualized to date. The cranial endocast is only partially encapsulated by ossified braincase elements. Cranial flattening and lateral constriction by hypertrophied temporal musculature grant the brain a straight, tubular geometry that lacks particularly well-developed cerebral lobes but does potentially involve distinguishable optic lobes, suggesting vision may have represented an important sense during life. Despite large orbit size, the circuitous muscular pathway linking the basisphenoidal and orbital regions indicates poor oculomotor performance. This suggests a rather fixed ocular orientation, although eye placement and neck manoeuvrability could have enabled binocular if not stereoscopic vision. The proportionally large dorsal projection of the braincase endocast towards the well-developed pineal foramen advocates substantial dependence on the corresponding pineal system in vivo. Structures corroborating keen olfactory or acoustic senses were not identified. The likely atrophied vomeronasal organ argues against the presence of a forked tongue in Nothosaurus, and the relative positioning of external and internal nares contrasts respiratory configurations proposed for pistosauroid sauropterygians. The antorbital domain furthermore accommodates a putative rostral sensory plexus and pronounced lateral nasal glands that were likely exapted as salt glands. Previously proposed nothosaurian ‘foramina eustachii’ arose from architectural constraints on braincase development rather than representing functional foramina. Several modifications to brain shape and accessory organs were achieved through heterochronic development of the cranium, particularly the braincase. In summary, the cranium of Nothosaurus marchicus reflects important physiological and neurosensory adaptations that enabled the group’s explosive invasion of shallow marine habitats in the late Early Triassic. PMID:29298295

  8. Synchrotron microtomography of a Nothosaurus marchicus skull informs on nothosaurian physiology and neurosensory adaptations in early Sauropterygia.

    PubMed

    Voeten, Dennis F A E; Reich, Tobias; Araújo, Ricardo; Scheyer, Torsten M

    2018-01-01

    Nothosaurs form a subclade of the secondarily marine Sauropterygia that was well represented in late Early to early Late Triassic marine ecosystems. Here we present and discuss the internal skull anatomy of the small piscivorous nothosaur Nothosaurus marchicus from coastal to shallow marine Lower Muschelkalk deposits (Anisian) of Winterswijk, The Netherlands, which represents the oldest sauropterygian endocast visualized to date. The cranial endocast is only partially encapsulated by ossified braincase elements. Cranial flattening and lateral constriction by hypertrophied temporal musculature grant the brain a straight, tubular geometry that lacks particularly well-developed cerebral lobes but does potentially involve distinguishable optic lobes, suggesting vision may have represented an important sense during life. Despite large orbit size, the circuitous muscular pathway linking the basisphenoidal and orbital regions indicates poor oculomotor performance. This suggests a rather fixed ocular orientation, although eye placement and neck manoeuvrability could have enabled binocular if not stereoscopic vision. The proportionally large dorsal projection of the braincase endocast towards the well-developed pineal foramen advocates substantial dependence on the corresponding pineal system in vivo. Structures corroborating keen olfactory or acoustic senses were not identified. The likely atrophied vomeronasal organ argues against the presence of a forked tongue in Nothosaurus, and the relative positioning of external and internal nares contrasts respiratory configurations proposed for pistosauroid sauropterygians. The antorbital domain furthermore accommodates a putative rostral sensory plexus and pronounced lateral nasal glands that were likely exapted as salt glands. Previously proposed nothosaurian 'foramina eustachii' arose from architectural constraints on braincase development rather than representing functional foramina. Several modifications to brain shape and accessory organs were achieved through heterochronic development of the cranium, particularly the braincase. In summary, the cranium of Nothosaurus marchicus reflects important physiological and neurosensory adaptations that enabled the group's explosive invasion of shallow marine habitats in the late Early Triassic.

  9. Habitable Planets Around White and Brown Dwarfs: The Perils of a Cooling Primary

    PubMed Central

    Heller, René

    2013-01-01

    Abstract White and brown dwarfs are astrophysical objects that are bright enough to support an insolation habitable zone (IHZ). Unlike hydrogen-burning stars, they cool and become less luminous with time; hence their IHZ moves in with time. The inner edge of the IHZ is defined as the orbital radius at which a planet may enter a moist or runaway greenhouse, phenomena that can remove a planet's surface water forever. Thus, as the IHZ moves in, planets that enter it may no longer have any water and are still uninhabitable. Additionally, the close proximity of the IHZ to the primary leads to concern that tidal heating may also be strong enough to trigger a runaway greenhouse, even for orbital eccentricities as small as 10−6. Water loss occurs due to photolyzation by UV photons in the planetary stratosphere, followed by hydrogen escape. Young white dwarfs emit a large amount of these photons, as their surface temperatures are over 104 K. The situation is less clear for brown dwarfs, as observational data do not constrain their early activity and UV emission very well. Nonetheless, both types of planets are at risk of never achieving habitable conditions, but planets orbiting white dwarfs may be less likely to sustain life than those orbiting brown dwarfs. We consider the future habitability of the planet candidates KOI 55.01 and 55.02 in these terms and find they are unlikely to become habitable. Key Words: Extrasolar terrestrial planets—Habitability—Habitable zone—Tides—Exoplanets. Astrobiology 13, 279–291. PMID:23537137

  10. Using CubeSats to Monitor Debris Flux

    NASA Technical Reports Server (NTRS)

    Matney, Mark

    2016-01-01

    Recent updates to NASA's Orbital Debris Engineering Model (ORDEM 3.0) include a population of small particles (1-2 mm in size) composed of high-density materials (e.g., steel) that drive much of the predicted risk for satellites in the 700-1000 km altitude regime. This modeled population was based on the analysis of returned surfaces of the Shuttle, which flew below 600 km altitude. The cessation of Shuttle missions, plus the lack of in situ data above 600 km means that a data source is being sought to either confirm or modify this high-density population. One possible data source would be a database of anomalous sporadic changes in spacecraft orbit/orientation that might be due to momentum transfer from small particles too small to seriously damage the spacecraft. Because the momentum imparted from an impact would be tiny, it would most likely show up in the orbital behavior of cubesats and other small satellites. While such small satellites were few in number, this was not a particularly attractive option, but now with the proliferation of cubesats in multiple orbit planes and altitudes, the possible collecting area has increased significantly. This presentation will discuss the physics of momentum-transferring impacts from hypervelocity collisions, and make predictions about rates, directions, and locations of such impacts. In addition, it will include recommendations for satellite users on what kind of data might be worth archiving and investigating.

  11. Dynamical spreading of small bodies in 1:1 resonance with planets by the diurnal Yarkovsky effect

    NASA Astrophysics Data System (ADS)

    Wang, Xuefeng; Hou, Xiyun

    2017-10-01

    A simple model is introduced to describe the inherent dynamics of Trojans in the presence of the diurnal Yarkovsky effect. For different spin statuses, the orbital elements of the Trojans (mainly semimajor axis, eccentricity and inclination) undergo different variations. The variation rate is generally very small, but the total variation of the semimajor axis or the orbit eccentricity over the age of the Solar system may be large enough to send small Trojans out of the regular region (or, vice versa, to capture small bodies in the regular region). In order to demonstrate the analytical analysis, we first carry out numerical simulations in a simple model, and then generalize these to two 'real' systems, namely the Sun-Jupiter system and the Sun-Earth system. In the Sun-Jupiter system, where the motion of Trojans is regular, the Yarkovsky effect gradually alters the libration width or the orbit eccentricity, forcing the Trojan to move from regular regionsto chaotic regions, where chaos may eventually cause it to escape. In the Sun-Earth system, where the motion of Trojans is generally chaotic, our limited numerical simulations indicate that the Yarkovsky effect is negligible for Trojans of 100 m in size, and even for larger ones. The Yarkovsky effect on small bodies captured in other 1:1 resonance orbits is also briefly discussed.

  12. The Orbit of Transneptunian Binary Manwe and Thorondor and Their Upcoming Mutual Events

    NASA Technical Reports Server (NTRS)

    Grundy, W. M.; Benecchi, S. D.; Porter, S. B.; Noll, K. S.

    2014-01-01

    A new Hubble Space Telescope observation of the 7:4 resonant transneptunian binary system (385446) Manwe has shown that, of two previously reported solutions for the orbit of its satellite Thorondor, the prograde one is correct. The orbit has a period of 110.18 +/- 0.02 days, semimajor axis of 6670 +/- 40 km, and an eccentricity of 0.563 +/- 0.007. It will be viewable edge-on from the inner Solar System during 2015- 2017, presenting opportunities to observe mutual occultation and eclipse events. However, the number of observable events will be small, owing to the long orbital period and expected small sizes of the bodies relative to their separation. This paper presents predictions for events observable from Earth-based telescopes and discusses the associated uncertainties and challenges.

  13. Dressed photon-orbital states in a quantum dot: Intervalley spin resonance

    DOE PAGES

    Scarlino, P.; Kawakami, E.; Jullien, T.; ...

    2017-04-19

    Because of the symmetry in silicon quantum wells, silicon quantum dots have an extra degree of freedom leading to a small energy splitting called the valley splitting. This degree of freedom has been viewed alternately as a hazard, especially when the lowest valley-orbit splitting is small compared to the thermal energy, or as an asset, most prominently in proposals to use the valley degree of freedom itself as a qubit. Here we present experiments in which microwave electric field driving induces transitions between both valley-orbit and spin states. We show that this system is highly nonlinear and can be understoodmore » through the use of dressed photon-orbital states, enabling a unified understanding of six resonance lines we observe in these experiments.« less

  14. Laser space debris removal: now, not later

    NASA Astrophysics Data System (ADS)

    Phipps, Claude R.

    2015-02-01

    Small (1-10cm) debris in low Earth orbit (LEO) are extremely dangerous, because they spread the breakup cascade depicted in the movie "Gravity." Laser-Debris-Removal (LDR) is the only solution that can address both large and small debris. In this paper, we briefly review ground-based LDR, and discuss how a polar location can dramatically increase its effectiveness for the important class of sun-synchronous orbit (SSO) objects. No other solutions address the whole problem of large ( 1000cm, 1 ton) as well as small debris. Physical removal of small debris (by nets, tethers and so on) is impractical because of the energy cost of matching orbits. We also discuss a new proposal which uses a space-based station in low Earth orbit (LEO), and rapid, head-on interaction in 10- 40s rather than 4 minutes, with high-power bursts of 100ps, 355nm pulses from a 1.5m diameter aperture. The orbiting station employs "heat-capacity" laser mode with low duty cycle to create an adaptable, robust, dualmode system which can lower or raise large derelict objects into less dangerous orbits, as well as clear out the small debris in a 400-km thick LEO band. Time-average laser optical power is less than 15kW. The combination of short pulses and UV wavelength gives lower required energy density (fluence) on target as well as higher momentum coupling coefficient. This combination leads to much smaller mirrors and lower average power than the ground-based systems we have considered previously. Our system also permits strong defense of specific assets. Analysis gives an estimated cost of about 1k each to re-enter most small debris in a few months, and about 280k each to raise or lower 1-ton objects by 40km. We believe it can do this for 2,000 such large objects in about four years. Laser ablation is one of the few interactions in nature that propel a distant object without any significant reaction on the source.

  15. Early Program Development

    NASA Image and Video Library

    1970-01-01

    This 1970 artist's concept shows the Nuclear Shuttle and Space Tug operating in conjunction with other spacecraft to support lunar exploration. Marshall Space Flight Center plans during the late 1960s for lunar orbital and surface bases required extensive logistics operations in lunar orbit.

  16. Observations of Planet Crossing Asteroids

    NASA Technical Reports Server (NTRS)

    Tholen, David J.; Whiteley, Robert J.; Lambert, Joy; Connelley, Michael; Salyk, Colette

    2002-01-01

    The goals of this research were the physical and dynamical characterization of planet crossing asteroids (Earth crossers, Mars crossers, Centaurs, and Pluto crossers, meaning trans-Neptunian objects), including colorimetry, rotational studies, and astrometry. Highlights are listed as follows: 1) Produced one doctoral dissertation (R. J. Whiteley, A Compositional and Dynamical Survey of the Near-Earth Asteroids). A key result is the fraction of Q-type asteroids among the near-Earth population was found to be about one-third; 2) Had prediscovery image showing the binary nature of trans-Neptunian object 1998 WW31, which is the first TNO to have a satellite found in orbit around it; 3) Discovery of shortest known rotation period for any asteroid (2000 D08, rotation period 78 seconds); it is just one of several fast-rotating small asteroids observed during the course of this project; 4) Discovery of a Centaur asteroid (1998 QM107) with, at the time, the smallest known orbital eccentricity among the Centaurs (0.13) and nearly in a 1:1 resonance with Uranus (semimajor axis of 19.9 AU); 5) Discovery of Apollo-type asteroid 1999 OW3, with a surprisingly bright absolute magnitude of 14.6 (estimated diameter of 4.6 km), brightest Apollo found in that calendar year; 6) Discovery of Aten-type asteroid 2000 SG344, which has the highest cumulative Earth impact probability among the near-Earth asteroids and a very Earth-similar orbit; 7) Instrumental in repairing the orbit of a numbered near-Earth asteroid for which prediscovery observations had been mis-attributed to it (2000 VN2); 8) Second-opposition recovery of 30-meter diameter Apollo-type asteroid 1998 KY26 in early 2002 when it was at a favorable magnitude of 24.8; 9) Primary contributor of astrometric observations of the CONTOUR fragments to the CONTOUR project following the failure of the spacecraft s kick motor; and 10) Development of orbit and ephemeris computation code that handles short observational arcs, observations at small solar elongations where indeterminacy is a known problem, and a small number of observations (including just two). Starting in 2000 November, the Spaceguard Central Node began prioritizing near-Earth asteroids in need of astrometric observation. Our own follow-up efforts relied on these listings, with emphasis given to the faintest objects where the combination of a 2.2-m telescope and a site with subarcsecond seeing produces a limiting magnitude close to 25, which represents a unique and valuable capability. The attached table, last updated in August, demonstrates the arc-lengthening capabilities of a faint limiting magnitude. Tabulated are the arc lengths before and after our observation(s), whether our observation is the last one available for the object in question, and the approximate magnitude of the object at the time of the observation.

  17. Mission Success and Environmental Protection: Orbital Debris Considerations

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas

    2007-01-01

    The current U.S. National Space Policy specifically calls on U.S. Government entities "to follow the United States Government Orbital Debris Mitigation Standard Practices, consistent with mission requirements and cost effectiveness, in the procurement and operation of spacecraft, launch services, and the operation of tests and experiments in space. Early assessment (pre-PDR) of orbital debris mitigation compliance is essential to minimize development impacts. Orbital debris mitigation practices today are the most effective means to protect the near-Earth space environment for future missions.

  18. The Arctic Regional Communications Small SATellite (ARCSAT)

    NASA Technical Reports Server (NTRS)

    Casas, Joseph; Kress, Martin; Sims, William; Spehn, Stephen; Jaeger, Talbot; Sanders, Devon

    2013-01-01

    Traditional satellite missions are extremely complex and expensive to design, build, test, launch and operate. Consequently many complementary operational, exploration and research satellite missions are being formulated as a growing part of the future space community capabilities using formations of small, distributed, simple to launch and inexpensive highly capable small scale satellites. The Arctic Regional Communications small SATellite (ARCSAT) initiative would launch a Mini-Satellite "Mothership" into Polar or Sun Sync low-earth-orbit (LEO). Once on orbit, the Mothership would perform orbital insertion of four internally stored independently maneuverable nanosatellites, each containing electronically steerable antennas and reconfigurable software-defined radios. Unlike the traditional geostationary larger complex satellite communication systems, this LEO communications system will be comprised of initially a five small satellite formation that can be later incrementally increased in the total number of satellites for additional data coverage. ARCSAT will provide significant enabling capabilities in the Arctic for autonomous voice and data communications relay, Maritime Domain Awareness (MDA), data-extraction from unattended sensors, and terrestrial Search & Rescue (SAR) beacon detection missions throughout the "data starved desert" of the Arctic Region.

  19. Satellite Orbit Theory for a Small Computer.

    DTIC Science & Technology

    1983-12-15

    them across the pass. . Both sets of interpolating polynomials are finally used to provide osculating orbital elements at arbitrary times during the...polyno-iials are established for themt across the mass. Both sets of inter- polating polynomials are finally used to provide osculating orbital elements ...high Drecisicn orbital elements at epoch, a correspond ing set of initial mean eleme-nts must be determined for the samianalytical model. It is importan

  20. Planetary Migration and Kuiper Belt Dynamics

    NASA Astrophysics Data System (ADS)

    Malhotra, Renu

    The Kuiper belt holds memory of the dynamical processes that shaped the architecture of the solar system, including the orbital migration history of the giant planets. We propose studies of the orbital dynamics of the Kuiper Belt in order to understand the origin of its complex dynamical structure and its link to the orbital migration history of the giant planets. By means of numerical simulations, statistical tests, as well as analytical calculations we will (1) investigate the origin of resonant Kuiper belt objects to test alternative scenarios of Neptune's migration history, (2) investigate the long term dynamical evolution of the Haumea family of Kuiper Belt objects in order to improve the age estimate of this family, and (3) investigate resonance-sticking behavior and the Kozai-Lidov mechanism and its role in the origin of the extended scattered disk. These studies directly support the goals of the NASA-OSS program by improving our understanding of the origin of the solar system's architecture. Our results will provide constraints on the nature and timing of the dynamical excitation event that is thought to have occurred in early solar system history and to have determined the architecture of the present-day solar system; our results will also provide deeper theoretical understanding of sticky mean motion resonances which contribute greatly to the longevity of many small bodies, improve our understanding of dynamical transport of planetesimals in planetary systems, and help interpret observations of other planetary systems.

  1. [The role of ultrasonography exam in orbital-ocular tumors].

    PubMed

    Ciocâlteu, Alina Mihaela; Ardeleanu, S; Checheriţă, I A

    2011-01-01

    Ophthalmology is one of the specialties that have particularly benefited from the contribution of ultrasonography exam as a method of investigation. Ultrasonography is very much essential for diagnostic to complement other clinical and laboratory investigations, providing images in real time. The basic principle of diagnostic ultrasound is to study and to interpret the changes they undergo when crossing ultrasonic waves diverse biological properties different sound, and such injuries can be traced in the dynamics or can be documented on photographic paper and thus can diagnose correct certain eye diseases. The indications for performing ultrasound consist in: measurement of distances and volumes, examine difficult or inaccessible case of opaque media; ophthalmoscopic view of a mass lesion, examine the orbit or optic nerve. The advantages of ultrasound for orbital-ocular tumors are represented by the fact that ultrasound is a noninvasive method, safe, well tolerated, less expensive that the advantage of determining the position and distance from structures ocular tumor. High frequency ultrasound provides excellent resolution of 0-1 to 0.01 mm, and serial scans allow tracking progress and measuring lesion diameters tumor while allowing monitoring and evaluation of stereotactic radiation treatments applied to small tumors. In conclusion ultrasound allows not only early diagnosis of eye tumors, but accurate assessment of the proposed therapy and of the evolution of detected mass lesions or tumors.

  2. Orbital and Landing Operations at Near-Earth

    NASA Technical Reports Server (NTRS)

    Scheeres, D. J.

    1995-01-01

    Orbital and landing operations about near-Earth asteroids are different than classical orbital operations about large bodies. The major differences lie with the small mass of the asteroid, the lower orbital velocities, the larger Solar tide and radiation pressure perturbations, the irregular shape of the asteroid and the potential for non-uniform rotation of the asteroid. These differences change the nature of orbits about an asteroid to where it is often common to find trajectories that evolve from stable, near-circular orbits to crashing or escaping orbits in a matter of days. The understanding and control of such orbits is important if a human or robotic presence at asteroids is to be commonplace in the future.

  3. The Mars Climate Orbiter arrives at KSC to begin final preparations for launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Mars Climate Orbiter spacecraft is moved into the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) in KSC's industrial area. It arrived at the Shuttle Landing Facility aboard an Air Force C-17 cargo plane early this morning following its flight from the Lockheed Martin Astronautics plant in Denver, Colo. When it arrives at the red planet, the Mars Climate Orbiter will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (1.8 Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Delta II 7425 rocket.

  4. The Mars Climate Orbiter arrives at KSC to begin final preparations for launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Mars Climate Orbiter spacecraft is moved onto a flatbed for transport to the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). It arrived at KSC's Shuttle Landing Facility aboard an Air Force C-17 cargo plane early this morning following its flight from the Lockheed Martin Astronautics plant in Denver, Colo. When it arrives at the red planet, the Mars Climate Orbiter will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (1.8 Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Delta II 7425 rocket.

  5. Heliotropic dust rings for Earth climate engineering

    NASA Astrophysics Data System (ADS)

    Bewick, R.; Lücking, C.; Colombo, C.; Sanchez, J. P.; McInnes, C. R.

    2013-04-01

    This paper examines the concept of a Sun-pointing elliptical Earth ring comprised of dust grains to offset global warming. A new family of non-Keplerian periodic orbits, under the effects of solar radiation pressure and the Earth's J2 oblateness perturbation, is used to increase the lifetime of the passive cloud of particles and, thus, increase the efficiency of this geoengineering strategy. An analytical model is used to predict the orbit evolution of the dust ring due to solar-radiation pressure and the J2 effect. The attenuation of the solar radiation can then be calculated from the ring model. In comparison to circular orbits, eccentric orbits yield a more stable environment for small grain sizes and therefore achieve higher efficiencies when the orbit decay of the material is considered. Moreover, the novel orbital dynamics experienced by high area-to-mass ratio objects, influenced by solar radiation pressure and the J2 effect, ensure the ring will maintain a permanent heliotropic shape, with dust spending the largest portion of time on the Sun facing side of the orbit. It is envisaged that small dust grains can be released from a circular generator orbit with an initial impulse to enter an eccentric orbit with Sun-facing apogee. Finally, a lowest estimate of 1 × 1012 kg of material is computed as the total mass required to offset the effects of global warming.

  6. PyORBIT: A Python Shell For ORBIT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jean-Francois Ostiguy; Jeffrey Holmes

    2003-07-01

    ORBIT is code developed at SNS to simulate beam dynamics in accumulation rings and synchrotrons. The code is structured as a collection of external C++ modules for SuperCode, a high level interpreter shell developed at LLNL in the early 1990s. SuperCode is no longer actively supported and there has for some time been interest in replacing it by a modern scripting language, while preserving the feel of the original ORBIT program. In this paper, we describe a new version of ORBIT where the role of SuperCode is assumed by Python, a free, well-documented and widely supported object-oriented scripting language. Wemore » also compare PyORBIT to ORBIT from the standpoint of features, performance and future expandability.« less

  7. The Phase Space Structure Near Neptune Resonances in the Kuiper Belt

    NASA Technical Reports Server (NTRS)

    Malhotra, Renu

    1996-01-01

    The Solar system beyond Neptune is believed to house a population of small primordial bodies left over from the planet formation process. The region up to heliocentric distance -50 AU (a.k.a. the Kuiper Belt) may be the source of the observed short-period comets. In this region, the phase space structure near orbital resonances with Neptune is of special interest for the long-term stability of orbits. There is reason to believe that a significant fraction (perhaps most) of the Kuiper Belt objects reside preferentially in these resonance locations. This paper describes the dynamics of small objects near the major orbital resonances with Neptune. Estimates of the widths of stable resonance zones as well as the properties of resonant orbits are obtained from the circular, planar restricted three-body model. Although this model does not contain the full complexity of the long-term orbital dynamics of Kuiper Belt objects subject to the full N-body perturbations of all the planets, it does provide a baseline for the phase space structure and properties of resonant orbits in the trans-Neptunian Solar system.

  8. Growth in the Number of SSN Tracked Orbital Objects

    NASA Technical Reports Server (NTRS)

    Stansbery, Eugene G.

    2004-01-01

    The number of objects in earth orbit tracked by the US Space Surveillance Network (SSN) has experienced unprecedented growth since March, 2003. Approximately 2000 orbiting objects have been added to the "Analyst list" of tracked objects. This growth is primarily due to the resumption of full power/full time operation of the AN/FPS-108 Cobra Dane radar located on Shemya Island, AK. Cobra Dane is an L-band (23-cm wavelength) phased array radar which first became operational in 1977. Cobra Dane was a "Collateral Sensor" in the SSN until 1994 when its communication link with the Space Control Center (SCC) was closed. NASA and the Air Force conducted tests in 1999 using Cobra Dane to detect and track small debris. These tests confirmed that the radar was capable of detecting and maintaining orbits on objects as small as 5-cm diameter. Subsequently, Cobra Dane was reconnected to the SSN and resumed full power/full time space surveillance operations on March 4, 2003. This paper will examine the new data and its implications to the understanding of the orbital debris environment and orbital safety.

  9. Volatile inventory and early evolution of the planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Marov, Mikhail Ya.; Ipatov, Sergei I.

    Formation of atmospheres of the inner planets involved the concurrent processes of mantle degassing and collisions that culminated during the heavy bombardment. Volatile-rich icy planetesimals impacting on the planets as a late veneer strongly contributed to the volatile inventory. Icy remnants of the outer planet accretion significantly complemented the accumulation of the lithophile and atmophile elements forced out onto the surface of the inner planets from silicate basaltic magma enriched in volatiles. Orbital dynamics of small bodies, including near-Earth asteroids, comets, and bodies from the Edgeworth-Kuiper belt evolving to become inner planet crossers, is addressed to examine different plausible amounts of volatile accretion. The relative importance of comets and chondrites in the delivery of volatiles is constrained by the observed fractionation pattern of noble gas abundances in the atmospheres of inner planets. The following development of the early atmospheres depended on the amount of volatiles expelled from the interiors and deposited by impactors, while the position of the planet relative to the Sun and its mass affected its climatic evolution.

  10. Initiation of small-satellite formations via satellite ejector

    NASA Astrophysics Data System (ADS)

    McMullen, Matthew G

    Small satellites can be constructed at a fraction of the cost of a full-size satellite. One full-size satellite can be replaced with a multitude of small satellites, offering expanded area coverage through formation flight. However, the shortcoming to the smaller size is usually a lack of thrusting capabilities. Furthermore, current designs for small satellite deployment mechanisms are only capable of love deployment velocities (on the order of meters per second). Motivated to address this shortcoming, a conceived satellite ejector would offer a significant orbit change by ejecting the satellite at higher deployment velocities (125-200 m/s). Focusing on the applications of the ejector, it is sought to bridge the gap in prior research by offering a method to initiate formation flight. As a precursor to the initiation, the desired orbit properties to initiate the formation are specified in terms of spacing and velocity change vector. From this, a systematic method is developed to find the relationship among velocity change vector, the desired orbit's orientation, and the spacing required to initiate the formation.

  11. Evidence for the Absence of Gluon Orbital Angular Momentum in the Nucleon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, S.J.; Gardner, S.

    2006-08-23

    The Sivers mechanism for the single-spin asymmetry in unpolarized lepton scattering from a transversely polarized nucleon is driven by the orbital angular momentum carried by its quark and gluon constituents, combined with QCD final-state interactions. Both quark and gluon mechanisms can generate such a single-spin asymmetry, though only the quark mechanism can explain the small single-spin asymmetry measured by the COMPASS collaboration on the deuteron, suggesting the gluon mechanism is small relative to the quark mechanism. We detail empirical studies through which the gluon and quark orbital angular momentum contributions, quark-flavor by quark-flavor, can be elucidated.

  12. A methodology for small scale rural land use mapping in semi-arid developing countries using orbital imagery. Part 4: Review of land use surveys using orbital imagery outside of the USA

    NASA Technical Reports Server (NTRS)

    Vangenderen, J. L. (Principal Investigator); Lock, B. F.

    1976-01-01

    The author has identified the following significant results. Outside the U.S., various attempts were made to investigate the feasibility of utilizing orbital MSS imagery in the production of small scale land use maps. Overall, these studies are not as elaborate or extensive in their scope as the U.S. ones, and generally the non-U.S. investigators have employed nonsophisticated and less expensive techniques. A representative range of studies is presented to demonstrate the approaches and trends dealing with reprocessing, interpretation, classification, sampling, and ground truth procedures.

  13. Mars Relays Satellite Orbit Design Considerations for Global Support of Robotic Surface Missions

    NASA Technical Reports Server (NTRS)

    Hastrup, Rolf; Cesarone, Robert; Cook, Richard; Knocke, Phillip; McOmber, Robert

    1993-01-01

    This paper discusses orbit design considerations for Mars relay satellite (MRS)support of globally distributed robotic surface missions. The orbit results reported in this paper are derived from studies of MRS support for two types of Mars robotic surface missions: 1) the mars Environmental Survey (MESUR) mission, which in its current definition would deploy a global network of up to 16 small landers, and 2)a Small Mars Sample Return (SMSR) mission, which included four globally distributed landers, each with a return stage and one or two rovers, and up to four additional sets of lander/rover elements in an extended mission phase.

  14. ORDEM2010 and MASTER-2009 Modeled Small Debris Population Comparison

    NASA Technical Reports Server (NTRS)

    Krisko, Paula H.; Flegel, S.

    2010-01-01

    The latest versions of the two premier orbital debris engineering models, NASA s ORDEM2010 and ESA s MASTER-2009, have been publicly released. Both models have gone through significant advancements since inception, and now represent the state-of-the-art in orbital debris knowledge of their respective agencies. The purpose of these models is to provide satellite designers/operators and debris researchers with reliable estimates of the artificial debris environment in near-Earth orbit. The small debris environment within the size range of 1 mm to 1 cm is of particular interest to both human and robotic spacecraft programs. These objects are much more numerous than larger trackable debris but are still large enough to cause significant, if not catastrophic, damage to spacecraft upon impact. They are also small enough to elude routine detection by existing observation systems (radar and telescope). Without reliable detection the modeling of these populations has always coupled theoretical origins with supporting observational data in different degrees. This paper details the 1 mm to 1 cm orbital debris populations of both ORDEM2010 and MASTER-2009; their sources (both known and presumed), current supporting data and theory, and methods of population analysis. Fluxes on spacecraft for chosen orbits are also presented and discussed within the context of each model.

  15. Analytical energy gradient for the two-component normalized elimination of the small component method

    NASA Astrophysics Data System (ADS)

    Zou, Wenli; Filatov, Michael; Cremer, Dieter

    2015-06-01

    The analytical gradient for the two-component Normalized Elimination of the Small Component (2c-NESC) method is presented. The 2c-NESC is a Dirac-exact method that employs the exact two-component one-electron Hamiltonian and thus leads to exact Dirac spin-orbit (SO) splittings for one-electron atoms. For many-electron atoms and molecules, the effect of the two-electron SO interaction is modeled by a screened nucleus potential using effective nuclear charges as proposed by Boettger [Phys. Rev. B 62, 7809 (2000)]. The effect of spin-orbit coupling (SOC) on molecular geometries is analyzed utilizing the properties of the frontier orbitals and calculated SO couplings. It is shown that bond lengths can either be lengthened or shortened under the impact of SOC where in the first case the influence of low lying excited states with occupied antibonding orbitals plays a role and in the second case the jj-coupling between occupied antibonding and unoccupied bonding orbitals dominates. In general, the effect of SOC on bond lengths is relatively small (≤5% of the scalar relativistic changes in the bond length). However, large effects are found for van der Waals complexes Hg2 and Cn2, which are due to the admixture of more bonding character to the highest occupied spinors.

  16. Multi-stage depressed collector for small orbit gyrotrons

    DOEpatents

    Singh, Amarjit; Ives, R. Lawrence; Schumacher, Richard V.; Mizuhara, Yosuke M.

    1998-01-01

    A multi-stage depressed collector for receiving energy from a small orbit gyrating electron beam employs a plurality of electrodes at different potentials for sorting the individual electrons on the basis of their total energy level. Magnetic field generating coils, for producing magnetic fields and magnetic iron for magnetic field shaping produce adiabatic and controlled non-adiabatic transitions of the incident electron beam to further facilitate the sorting.

  17. Multi-stage depressed collector for small orbit gyrotrons

    DOEpatents

    Singh, A.; Ives, R.L.; Schumacher, R.V.; Mizuhara, Y.M.

    1998-07-14

    A multi-stage depressed collector for receiving energy from a small orbit gyrating electron beam employs a plurality of electrodes at different potentials for sorting the individual electrons on the basis of their total energy level. Magnetic field generating coils, for producing magnetic fields and magnetic iron for magnetic field shaping produce adiabatic and controlled non-adiabatic transitions of the incident electron beam to further facilitate the sorting. 9 figs.

  18. J-SSOD 4 Mission

    NASA Image and Video Library

    2015-09-17

    ISS045E014236 (09/17/2015) – A Japanese Small Satellite is deployed from outside the Japanese Experiment Module on Sept. 17, 2015. Two satellites were sent into Earth orbit by the Small Satellite Orbital Deployer. The first satellite is designed to observe the Ultraviolet (UV) spectrum during the Orionid meteor shower in October. The second satellite, sponsored by the University of Brasilia and the Brazilian government, focuses on meteorological data collection.

  19. First In-Orbit Experience of TerraSAR-X Flight Dynamics Operations

    NASA Technical Reports Server (NTRS)

    Kahle, R.; Kazeminejad, B.; Kirschner, M.; Yoon, Y.; Kiehling, R.; D'Amico, S.

    2007-01-01

    TerraSAR-X is an advanced synthetic aperture radar satellite system for scientific and commercial applications that is realized in a public-private partnership between the German Aerospace Center (DLR) and the Astrium GmbH. TerraSAR-X was launched at June 15, 2007 on top of a Russian DNEPR-1 rocket into a 514 km sun-synchronous dusk-dawn orbit with an 11-day repeat cycle and will be operated for a period of at least 5 years during which it will provide high resolution SAR-data in the X-band. Due to the objectives of the interferometric campaigns the satellite has to comply to tight orbit control requirements, which are formulated in the form of a 250 m toroidal tube around a pre-flight determined reference trajectory (see [1] for details). The acquisition of the reference orbit was one of the main and key activities during the Launch and Early Orbit Phase (LEOP) and had to compensate for both injection errors and spacecraft safe mode attitude control thruster activities. The paper summarizes the activities of GSOC flight dynamics team during both LEOP and early Commissioning Phase, where the main tasks have been 1) the first-acquisition support via angle-tracking and GPS-based orbit determination, 2) maneuver planning for target orbit acquisition and maintenance, and 3) precise orbit and attitude determination for SAR processing support. Furthermore, a presentation on the achieved results and encountered problems will be addressed.

  20. Early Paleogene Orbital Variations in Atmospheric CO2 and New Astronomical Solutions

    NASA Astrophysics Data System (ADS)

    Zeebe, R. E.

    2017-12-01

    Geologic records across the globe show prominent variations on orbital time scales during numerous epochs going back hundreds of millions of years. The origin of the Milankovic cycles are variations in orbital parameters of the bodies of the Solar System. On long time scales, the orbital variations can not be computed analytically because of the chaotic nature of the Solar System. Thus, numerical solutions are used to estimate changes in, e.g., Earth's orbital parameters in the past. The orbital solutions represent the backbone of cyclostratigraphy and astrochronology, now widely used in geology and paleoclimatology. Hitherto only two solutions for Earth's eccentricity appear to be used in paleoclimate studies, provided by two different groups that integrated the full Solar System equations over the past >100 Myr. In this presentation, I will touch on the basic physics behind, and present new results of, accurate Solar System integrations for Earth's eccentricity over the past hundred million years. I will discuss various limitations within the framework of the present simulations and compare the results to existing solutions. Furthermore, I will present new results from practical applications of such orbital solutions, including effects of orbital forcing on coupled climate- and carbon cycle variations. For instance, we have recently revealed a mechanism for a large lag between changes in carbon isotope ratios and eccentricity at the 400-kyr period, which has been observed in Paleocene, Oligocene, and Miocene sections. Finally, I will present the first estimates of orbital-scale variations in atmospheric CO2 during the early Paleogene.

  1. Performance assessment of FY-3C/MERSI on early orbit

    NASA Astrophysics Data System (ADS)

    Hu, Xiuqing; Xu, Na; Wu, Ronghua; Chen, Lin; Min, Min; Wang, Ling; Xu, Hanlie; Sun, Ling; Yang, Zhongdong; Zhang, Peng

    2014-11-01

    FY-3C/MERSI has some remarkable improvements compared to the previous MERSIs including better spectral response function (SRF) consistency of different detectors within one band, increasing the capability of lunar observation by space view (SV) and the improvement of radiometric response stability of solar bands. During the In-orbit verification (IOV) commissioning phase, early results that indicate the MERSI representative performance were derived, including the signal noise ratio (SNR), dynamic range, MTF, B2B registration, calibration bias and instrument stability. The SNRs at the solar bands (Bands 1-4 and 6-20) was largely beyond the specifications except for two NIR bands. The in-flight calibration and verification for these bands are also heavily relied on the vicarious techniques such as China radiometric calibration sites(CRCS), cross-calibration, lunar calibration, DCC calibration, stability monitoring using Pseudo Invariant Calibration Sites (PICS) and multi-site radiance simulation. This paper will give the results of the above several calibration methods and monitoring the instrument degradation in early on-orbit time.

  2. Coupled orbit-attitude dynamics and relative state estimation of spacecraft near small Solar System bodies

    NASA Astrophysics Data System (ADS)

    Misra, Gaurav; Izadi, Maziar; Sanyal, Amit; Scheeres, Daniel

    2016-04-01

    The effects of dynamical coupling between the rotational (attitude) and translational (orbital) motion of spacecraft near small Solar System bodies is investigated. This coupling arises due to the weak gravity of these bodies, as well as solar radiation pressure. The traditional approach assumes a point-mass spacecraft model to describe the translational motion of the spacecraft, while the attitude motion is considered to be completely decoupled from the translational motion. The model used here to describe the rigid-body spacecraft dynamics includes the non-uniform rotating gravity field of the small body up to second degree and order along with the attitude dependent terms, solar tide, and solar radiation pressure. This model shows that the second degree and order gravity terms due to the small body affect the dynamics of the spacecraft to the same extent as the orbit-attitude coupling due to the primary gravity (zeroth order) term. Variational integrators are used to simulate the dynamics of both the rigid spacecraft and the point mass. The small bodies considered here are modeled after Near-Earth Objects (NEO) 101955 Bennu, and 25143 Itokawa, and are assumed to be triaxial ellipsoids with uniform density. Differences in the numerically obtained trajectories of a rigid spacecraft and a point mass are then compared, to illustrate the impact of the orbit-attitude coupling on spacecraft dynamics in proximity of small bodies. Possible implications on the performance of model-based spacecraft control and on the station-keeping budget, if the orbit-attitude coupling is not accounted for in the model of the dynamics, are also discussed. An almost globally asymptotically stable motion estimation scheme based solely on visual/optical feedback that estimates the relative motion of the asteroid with respect to the spacecraft is also obtained. This estimation scheme does not require a model of the dynamics of the asteroid, which makes it perfectly suited for asteroids whose properties are not well known.

  3. Hydrodynamic escape from planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Tian, Feng

    Hydrodynamic escape is an important process in the formation and evolution of planetary atmospheres. Due to the existence of a singularity point near the transonic point, it is difficult to find transonic steady state solutions by solving the time-independent hydrodynamic equations. In addition to that, most previous works assume that all energy driving the escape flow is deposited in one narrow layer. This assumption not only results in less accurate solutions to the hydrodynamic escape problem, but also makes it difficult to include other chemical and physical processes in the hydrodynamic escape models. In this work, a numerical model describing the transonic hydrodynamic escape from planetary atmospheres is developed. A robust solution technique is used to solve the time dependent hydrodynamic equations. The method has been validated in an isothermal atmosphere where an analytical solution is available. The hydrodynamic model is applied to 3 cases: hydrogen escape from small orbit extrasolar planets, hydrogen escape from a hydrogen rich early Earth's atmosphere, and nitrogen/methane escape from Pluto's atmosphere. Results of simulations on extrasolar planets are in good agreement with the observations of the transiting extrasolar planet HD209458b. Hydrodynamic escape of hydrogen from other hypothetical close-in extrasolar planets are simulated and the influence of hydrogen escape on the long-term evolution of these extrasolar planets are discussed. Simulations on early Earth suggest that hydrodynamic escape of hydrogen from a hydrogen rich early Earth's atmosphere is about two orders magnitude slower than the diffusion limited escape rate. A hydrogen rich early Earth's atmosphere could have been maintained by the balance between the hydrogen escape and the supply of hydrogen into the atmosphere by volcanic outgassing. Origin of life may have occurred in the organic soup ocean created by the efficient formation of prebiotic molecules in the hydrogen rich early Earth's atmosphere. Simulations show that hydrodynamic escape of nitrogen from Pluto is able to remove a ~3 km layer of ice over the age of the solar system. The escape flux of neutral nitrogen may interact with the solar wind at Pluto's orbit and may be detected by the New Horizon mission.

  4. First Results from NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE)

    NASA Astrophysics Data System (ADS)

    Elphic, R. C.; Colaprete, A.; Horanyi, M.; Mahaffy, P. R.; Delory, G. T.; Noble, S. K.; Boroson, D.; Hine, B.; Salute, J.

    2013-12-01

    As of early August, 2013, the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission is scheduled for launch on a Minotaur V rocket from Wallops Flight Facility during a five-day launch period that opens on Sept. 6, 2013 (early Sept. 7 UTC). LADEE will address 40 year-old mysteries of the lunar atmosphere and the question of levitated lunar dust. It will also pioneer the next generation of optical space communications. LADEE will assess the composition of the lunar atmosphere and investigate the processes that control its distribution and variability, including sources, sinks, and surface interactions. LADEE will also determine whether dust is present in the lunar exosphere, and reveal its sources and variability. These investigations are relevant to our understanding of surface boundary exospheres and dust processes occurring at many objects throughout the solar system, address questions regarding the origin and evolution of lunar volatiles, and have potential implications for future exploration activities. Following a successful launch, LADEE will enter a series of phasing orbits, which allows the spacecraft to arrive at the Moon at the proper time and phase. This approach accommodates any dispersion in the Minotaur V launch injection. LADEE's arrival at the moon depends on the launch date, but with the Sept. 6 launch date it should arrive at the Moon in early October. The spacecraft will approach the moon from its leading edge, travel behind the Moon out of sight of the Earth, and then re-emerge and execute a three-minute Lunar Orbit Insertion maneuver. This will place LADEE in an elliptical retrograde equatorial orbit with an orbital period of approximately 24 hours. A series of maneuvers is then performed to reduce the orbit to become nearly circular with a 156-mile (250-kilometer) altitude. Spacecraft checkout and science instrument commissioning will commence in early-October and will nominally span 30 days but can be extended for an additional 30 days in the event of contingencies. Following commissioning, the 100-day Science Phase is performed at an orbit with periapsis between 20-60 km. This orbit must be constantly managed due to the Moon's highly inhomogeneous gravity field. During the Science Phase, the moon will rotate more than three times underneath the LADEE orbit. LADEE employs a high heritage instrument payload: a Neutral Mass Spectrometer (NMS) from Goddard Space Flight Center, an Ultraviolet/Visible Spectrometer (UVS) from Ames Research Center, and a dust detection experiment (LDEX) from the University of Colorado/LASP. It will also carry the Lunar Laser Communications Demonstration (LLCD) as a technology demonstration. The LLCD is funded by the Human Exploration Operations Mission Directorate (HEOMD), managed by GSFC, and built by the MIT Lincoln Lab. Contingent upon LADEE's successful lunar orbit insertion and checkout, we will report the early results from the science investigations.

  5. Single-stage soft tissue reconstruction and orbital fracture repair for complex facial injuries.

    PubMed

    Wu, Peng Sen; Matoo, Reshvin; Sun, Hong; Song, Li Yuan; Kikkawa, Don O; Lu, Wei

    2017-02-01

    Orbital fractures with open periorbital wounds cause significant morbidity. Timing of debridement with fracture repair and soft tissue reconstruction is controversial. This study focuses on the efficacy of early single-stage repair in combined bony and soft tissue injuries. Retrospective review. Twenty-three patients with combined open soft tissue wounds and orbital fractures were studied for single-stage orbital reconstruction and periorbital soft tissue repair. Inclusion criteria were open soft tissue wounds with clinical and radiographic evidence of orbital fractures and repair performed within 48 h after injury. Surgical complications and reconstructive outcomes were assessed over 6 months. The main outcome measures were enophthalmos, pre- and post-CT imaging of orbits, scar evaluation, presence of diplopia, and eyelid position. Enophthalmos was corrected in 16/19 cases and improved in 3/19 cases. 3D reconstruction of CT images showed markedly improved orbital alignment with objective measurements of the optic foramen to cornea distance (mm) in reconstructed orbits relative to intact orbits of 0.66, 95% confidence interval [CI] (lower 0.33, upper 0.99) mm. The mean baseline of Stony Brook Scar Evaluation Scale was 0.6, 95%CI (0.30-0.92), and for 6 months, the mean score was 3.4, 95%CI (3.05-3.73). Residual diplopia in secondary gazes was present in two patients; one patient had ectropion. Complications included one case of local wound infection. An early single-stage repair of combined soft tissue and orbital fractures yields satisfactory functional and aesthetic outcomes. Complications are low and likely related to trauma severity. Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  6. Orbiter/Space lab momentum management for POP orientations

    NASA Technical Reports Server (NTRS)

    Cox, J. W.

    1974-01-01

    An angular momentum management scheme applicable to the orbiter/spacelab is described. The basis of the scheme is to periodically maneuver the vehicle through a small angle thereby using the gravity gradient torque to dump momentum from the control moment gyro (CMG) control system. The orbiter is operated with its principal vehicle axis perpendicular to the orbital plane. Numerous case runs were conducted on the hybrid simulation and representative cases are included.

  7. Small, Low Cost, Launch Capability Development

    NASA Technical Reports Server (NTRS)

    Brown, Thomas

    2014-01-01

    A recent explosion in nano-sat, small-sat, and university class payloads has been driven by low cost electronics and sensors, wide component availability, as well as low cost, miniature computational capability and open source code. Increasing numbers of these very small spacecraft are being launched as secondary payloads, dramatically decreasing costs, and allowing greater access to operations and experimentation using actual space flight systems. While manifesting as a secondary payload provides inexpensive rides to orbit, these arrangements also have certain limitations. Small, secondary payloads are typically included with very limited payload accommodations, supported on a non interference basis (to the prime payload), and are delivered to orbital conditions driven by the primary launch customer. Integration of propulsion systems or other hazardous capabilities will further complicate secondary launch arrangements, and accommodation requirements. The National Aeronautics and Space Administration's Marshall Space Flight Center has begun work on the development of small, low cost launch system concepts that could provide dedicated, affordable launch alternatives to small, high risk university type payloads and spacecraft. These efforts include development of small propulsion systems and highly optimized structural efficiency, utilizing modern advanced manufacturing techniques. This paper outlines the plans and accomplishments of these efforts and investigates opportunities for truly revolutionary reductions in launch and operations costs. Both evolution of existing sounding rocket systems to orbital delivery, and the development of clean sheet, optimized small launch systems are addressed.

  8. Chaotic Zones around Rotating Small Bodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lages, José; Shevchenko, Ivan I.; Shepelyansky, Dima L., E-mail: jose.lages@utinam.cnrs.fr

    Small bodies of the solar system, like asteroids, trans-Neptunian objects, cometary nuclei, and planetary satellites, with diameters smaller than 1000 km usually have irregular shapes, often resembling dumb-bells or contact binaries. The spinning of such a gravitating dumb-bell creates around it a zone of chaotic orbits. We determine its extent analytically and numerically. We find that the chaotic zone swells significantly if the rotation rate is decreased; in particular, the zone swells more than twice if the rotation rate is decreased 10 times with respect to the “centrifugal breakup” threshold. We illustrate the properties of the chaotic orbital zones in examples ofmore » the global orbital dynamics about asteroid 243 Ida (which has a moon, Dactyl, orbiting near the edge of the chaotic zone) and asteroid 25143 Itokawa.« less

  9. ORDEM 3.0 and MASTER-2009 Modeled Small Debris Population Comparison

    NASA Technical Reports Server (NTRS)

    Krisko, P. H.; Flegel, S.

    2014-01-01

    The latest versions of the two premier orbital debris engineering models, NASA's ORDEM 3.0 and ESA's MASTER-2009, have been publically released. Both models have gone through significant advancements since inception, and now represent the state-of-the-art in orbital debris knowledge of their respective agencies. The purpose of these models is to provide satellite designers/operators and debris researchers with reliable estimates of the artificial debris environment in low Earth orbit (LEO) to geosynchronous orbit (GEO). The small debris environment within the size range of 1 mm to 1 cm is of particular interest to both human and robotic spacecraft programs, particularly in LEO. These objects are much more numerous than larger trackable debris and can have enough momentum to cause significant, if not catastrophic, damage to spacecraft upon impact. They are also small enough to elude routine detection by existing observation systems (radar and telescope). Without reliable detection the modeling of these populations has always coupled theoretical origins with supporting observational data in different degrees. In this paper, we present and detail the 1 mm to 1 cm orbital debris populations from both ORDEM 3.0 and MASTER-2009 in LEO. We review population categories: particle sources for MASTER-2009, particle densities for ORDEM 3.0. We describe data sources and their uses, and supporting models. Fluxes on spacecraft for chosen orbits are also presented and discussed within the context of each model.

  10. Prospecting for Habitable Worlds

    NASA Technical Reports Server (NTRS)

    Jenkins, Jon M.

    2017-01-01

    NASAs Kepler Mission was launched in March 2009 as NASAs first mission capable of finding Earth-size planets orbiting in the habitable zone of Sun-like stars, that range of distances for which liquid water would pool on the surface of a rocky planet. Kepler has discovered over 2200 planets and over 2200 candidate planets, many of them as small as the Earth. Forty nine of these are less than twice the size of Earth and orbit in the habitable zone of their stars, all of which are cooler and significantly smaller than the Sun.Today, Keplers amazing success seems to be a fait accompli to those unfamiliar with her history. But twenty years ago, there were no planets known outside our solar system, and few people believed it was possible to detect tiny Earth-size planets orbiting other stars. Indeed, demonstrating that the science was feasible took four proposals to NASAs Discovery Program and extensive research and laboratory demonstrations. Motivating NASA to select Kepler for launch required a confluence of the right detector technology, advances in signal processing and algorithms, and the power of supercomputing. On August 23 2015 we reported the discovery of Kepler-452b, the first small, possibly rocky planet in the habitable zone of a G2 star very similar to our own. Kepler-452b orbits its star once every 385 days in an orbit just 5 larger than that of Earth. This discovery represents an important step towards finding and characterizing small habitable worlds orbiting Sun-like stars.

  11. Change in Minimum Orbit Intersection Distance due to General Relativistic Precession in Small Solar System Bodies

    NASA Astrophysics Data System (ADS)

    Sekhar, Aswin; Valsecchi, Giovanni B.; Asher, David; Werner, Stephanie; Vaubaillon, Jeremie; Li, Gongjie

    2017-06-01

    One of the greatest successes of Einstein's General Theory of Relativity (GR) was the correct prediction of the perihelion precession of Mercury. The closed form expression to compute this precession tells us that substantial GR precession would occur only if the bodies have a combination of both moderately small perihelion distance and semi-major axis. Minimum Orbit Intersection Distance (MOID) is a quantity which helps us to understand the closest proximity of two orbits in space. Hence evaluating MOID is crucial to understand close encounters and collision scenarios better. In this work, we look at the possible scenarios where a small GR precession in argument of pericentre can create substantial changes in MOID for small bodies ranging from meteoroids to comets and asteroids.Previous works have looked into neat analytical techniques to understand different collision scenarios and we use those standard expressions to compute MOID analytically. We find the nature of this mathematical function is such that a relatively small GR precession can lead to drastic changes in MOID values depending on the initial value of argument of pericentre. Numerical integrations were done with the MERCURY package incorporating GR code to test the same effects. A numerical approach showed the same interesting relationship (as shown by analytical theory) between values of argument of pericentre and the peaks or dips in MOID values. There is an overall agreement between both analytical and numerical methods.We find that GR precession could play an important role in the calculations pertaining to MOID and close encounter scenarios in the case of certain small solar system bodies (depending on their initial orbital elements) when long term impact risk possibilities are considered. Previous works have looked into impact probabilities and collision scenarios on planets from different small body populations. This work aims to find certain sub-sets of small bodies where GR could play an interesting role. Certain parallels are drawn between the cases of asteroids, comets and small perihelion distance meteoroid streams.

  12. Three small transiting planets around the M-dwarf host star LP 358-499

    NASA Astrophysics Data System (ADS)

    Wells, R.; Poppenhaeger, K.; Watson, C. A.

    2018-01-01

    We report on the detection of three transiting small planets around the low-mass star LP 358-499 (K2-133), using photometric data from the Kepler-K2 mission. Using multiband photometry, we determine the host star to be an early M dwarf with an age likely older than a gigayear. The three detected planets K2-133 b, c and d have orbital periods of ca. 3, 4.9 and 11 d and transit depths of ca. 700, 1000 and 2000 ppm, respectively. We also report a planetary candidate EPIC 247887989.01 with a period of 26.6 d and a depth of ca. 1000 ppm, which may be at the inner edge of the stellar habitable zone, depending on the specific host star properties. Using the transit parameters and the stellar properties, we estimate that the innermost planet may be rocky. The system is suited for follow-up observations to measure planetary masses and JWST transmission spectra of planetary atmospheres.

  13. Sealing scientific probes against deep space and the Venusian environment A tough job

    NASA Technical Reports Server (NTRS)

    Pokras, J.; Reinert, R. P.; Switz, R. J.

    1978-01-01

    The Pioneer Venus mission evolved from studies conducted during the late 1960s and early 1970s. It was found that a need existed for low cost orbiters and landers to explore the planet. The considered mission was to be accomplished with six separate vehicles arriving at Venus nearly simultaneously in mid-December 1978. The probes are designed to survive entry and descent into the atmosphere. A description is presented of the approaches used to maintain sealing integrity for the large and small probes under the constraints imposed by the harsh Venusian environment. Attention is given to probe vehicle configuration, pressure vessel sealing requirements, material and configuration considerations, permanent seals, separable seals, development problems, and aspects of seal testing.

  14. Aladdin: Exploration and Sample Return from the Moons of Mars

    NASA Technical Reports Server (NTRS)

    Pieters, C.; Cheng, A.; Clark, B.; Murchie, S.; Mustard, J.; Zolensky, M.; Papike, J.

    2000-01-01

    Aladdin is a remote sensing and sample return mission focused on the two small moons of Mars, Phobos and Deimos. Understanding the moons of Mars will help us to understand the early history of Mars itself. Aladdin's primary objective is to acquire well documented, representative samples from both moons and return them to Earth for detailed analyses. Samples arrive at Earth within three years of launch. Aladdin addresses several of NASA's highest priority science objectives: the origin and evolution of the Martian system (one of two silicate planets with satellites) and the composition and nature of small bodies (the building blocks of the solar system). The Aladdin mission has been selected as a finalist in both the 1997 and 1999 Discovery competitions based on the high quality of science it would accomplish. The equivalent of Aladdin's Phase A development has been successfully completed, yielding a high degree of technical maturity. Aladdin uses an innovative flyby sample acquisition method, which has been validated experimentally and does not require soft landing or anchoring. An initial phasing orbit at Mars reduces mission propulsion requirements, enabling Aladdin to use proven, low-risk chemical propulsion with good mass margin. This phasing orbit is followed by a five month elliptical mission during which there are redundant opportunities for acquisition of samples and characterization of their geologic context using remote sensing. The Aladdin mission is a partnership between Brown University, the Johns Hopkins University Applied Physics Laboratory, Lockheed Martin Astronautics, and NASA Johnson Space Center.

  15. DRAGONS-A Micrometeoroid and Orbital Debris Impact Sensor on the ISS

    NASA Technical Reports Server (NTRS)

    Liou, J.-C.; Hamilton, J.; Liolios, S.; Anderson, C.; Sadilek, A.; Corsaro, R.; Giovane, F.; Burchell, M.

    2015-01-01

    The Debris Resistive/Acoustic Grid Orbital Navy-NASA Sensor (DRAGONS) is intended to be a large area impact sensor for in situ measurements of micrometeoroids and orbital debris (MMOD) in the sub-millimeter to millimeter size regime in the near Earth space environment. These MMOD particles are too small to be detected by ground-based radars and optical telescopes, but still large enough to be a serious threat to human space activities and robotic missions in the low Earth orbit (LEO) region. The nominal detection area of DRAGONS is 1 sq m, consisting of four 0.5 m × 0.5 m independent panels, but the dimensions of the panels can easily be modified to accommodate different payload constraints. The approach of the DRAGONS design is to combine three particle impact detection concepts to maximize information that can be extracted from each detected impact. The first is a resistive grid consisting of 75-micrometer-wide resistive lines, coated in parallel and separated by 75 micrometer gaps on a 25-micrometer thin film. When a particle a few hundred micrometers or larger strikes the grid, it would penetrate the film and sever some resistive lines. The size of the damage area can be estimated from the increased resistance. The second concept is based on polyvinylidene fluoride (PVDF) acoustic impact sensors. Multiple PVDF sensors are attached to the thin film to provide the impact timing information. From the different signal arrival times at different acoustic sensors, the impact location can be calculated via triangulation algorithms. The third concept employs a dual-layer film system where a second 25-micrometer film is placed 15 cm behind the resistive-grid film. Multiple PVDF acoustic sensors are also attached to the second film. The combination of impact timing and location information from the two films allows for direct measurements of the impact direction and speed. The DRAGONS technology development has been funded by several NASA organizations since 2002, first by the NASA Science Mission Directorate and the NASA Exploration Systems Mission Directorate, then by the NASA JSC Innovative Research and Development Program and the NASA Orbital Debris Program Office. The NASA Orbital Debris Program Office leads the effort with collaboration from the U.S. Naval Academy, Naval Research Laboratory, University of Kent at Canterbury in Great Britain, and Virginia Tech. The project recently reached a major milestone when DRAGONS was approved for a technology demonstration mission by the International Space Station (ISS) Program in October 2014. The plan is to deploy a 1 sq m DRAGONS on the ISS with the detection surface facing the ram-direction for 2 to 3 years. The tentative launch schedule is in early 2017. This mission will collect data on orbital debris in the sub-millimeter size regime to better define the small orbital debris environment at the ISS altitude. The mission will also advance the DRAGONS Technology Readiness Level to 9 and greatly enhance the opportunities to deploy DRAGONS on other spacecraft to high LEO orbits in the future.

  16. UV SURFACE ENVIRONMENT OF EARTH-LIKE PLANETS ORBITING FGKM STARS THROUGH GEOLOGICAL EVOLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rugheimer, S.; Sasselov, D.; Segura, A.

    2015-06-10

    The UV environment of a host star affects the photochemistry in the atmosphere, and ultimately the surface UV environment for terrestrial planets and therefore the conditions for the origin and evolution of life. We model the surface UV radiation environment for Earth-sized planets orbiting FGKM stars in the circumstellar Habitable Zone for Earth through its geological evolution. We explore four different types of atmospheres corresponding to an early-Earth atmosphere at 3.9 Gyr ago and three atmospheres covering the rise of oxygen to present-day levels at 2.0 Gyr ago, 0.8 Gyr ago, and modern Earth. In addition to calculating the UVmore » flux on the surface of the planet, we model the biologically effective irradiance, using DNA damage as a proxy for biological damage. We find that a pre-biotic Earth (3.9 Gyr ago) orbiting an F0V star receives 6 times the biologically effective radiation as around the early Sun and 3520 times the modern Earth–Sun levels. A pre-biotic Earth orbiting GJ 581 (M3.5 V) receives 300 times less biologically effective radiation, about 2 times modern Earth–Sun levels. The UV fluxes calculated here provide a grid of model UV environments during the evolution of an Earth-like planet orbiting a range of stars. These models can be used as inputs into photo-biological experiments and for pre-biotic chemistry and early life evolution experiments.« less

  17. On-Orbit Compressor Technology Program

    NASA Technical Reports Server (NTRS)

    Deffenbaugh, Danny M.; Svedeman, Steven J.; Schroeder, Edgar C.; Gerlach, C. Richard

    1990-01-01

    A synopsis of the On-Orbit Compressor Technology Program is presented. The objective is the exploration of compressor technology applicable for use by the Space Station Fluid Management System, Space Station Propulsion System, and related on-orbit fluid transfer systems. The approach is to extend the current state-of-the-art in natural gas compressor technology to the unique requirements of high-pressure, low-flow, small, light, and low-power devices for on-orbit applications. This technology is adapted to seven on-orbit conceptual designs and one prototype is developed and tested.

  18. Early on-orbit calibration results from Aqua MODIS

    NASA Astrophysics Data System (ADS)

    Xiong, Xiaoxiong; Barnes, William L.

    2003-04-01

    Aqua MODIS, also known as the MODIS Flight Model 1 (FM1), was launched on May 4, 2002. It opened its nadir aperture door (NAD) on June 24, 2002, beginning its Earth observing mission. In this paper, we present early results from Aqua MODIS on-orbit calibration and characterization and assess the instrument's overall performance. MODIS has 36 spectral bands located on four focal plane assemblies (FPAs). Bands 1-19, and 26 with wavelengths from 0.412 to 2.1 microns are the reflective solar bands (RSB) that are calibrated on-orbit by a solar diffuser (SD). The degradation of the SD is tracked using a solar diffuser stability monitor (SDSM). The bands 20-25, and 27-36 with wavelengths from 3.75 to 14.5 microns are the thermal emissive bands (TEB) that are calibrated on-orbit by a blackbody (BB). Early results indicate that the on-orbit performance has been in good agreement with the predications determined from pre-launch measurements. Except for band 21, the low gain fire band, band 6, known to have some inoperable detectors from pre-launch characterization, and one noisy detector in band 36, all of the detectors' noise characterizations are within their specifications. Examples of the sensor's short-term and limited long-term responses in both TEB and RSB will be provided to illustrate the sensor's on-orbit stability. In addition, we will show some of the improvements that Aqua MODIS made over its predecessor, Terra MODIS (Protoflight Model - PFM), such as removal of the optical leak into the long-wave infrared (LWIR) photoconductive (PC) bands and reduction of electronic crosstalk and out-of-band (OOB) thermal leak into the short-wave infrared (SWIR) bands.

  19. Mars lander survey

    NASA Technical Reports Server (NTRS)

    Stump, William R.; Babb, Gus R.; Davis, Hubert P.

    1986-01-01

    The requirements, issues, and design options are reviewed for manned Mars landers. Issues such as high 1/d versus low 1/d shape, parking orbit, and use of a small Mars orbit transfer vehicle to move the lander from orbit to orbit are addressed. Plots of lander mass as a function of Isp, destination orbit, and cargo up and down, plots of initial stack mass in low Earth orbit as a function of lander mass and parking orbit, detailed weight statements, and delta V tables for a variety of options are included. Lander options include a range from minimum landers up to a single stage reusable design. Mission options include conjunction and Venus flyby trajectories using all-cryogenic, hybrid, NERVA, and Mars orbit aerobraking propulsion concepts.

  20. Atlantis is lifted from its transporter in the VAB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- In the Vehicle Assembly Building, the orbiter Atlantis is being lifted from a transporter after rolling over from Orbiter Processing Facility bay 3. The orbiter will be raised to a vertical position, rotated and lifted into high bay 1, and stacked with its external tank and solid rocket boosters. Space Shuttle Atlantis is scheduled to launch on mission STS-104 in early July.

  1. The prevalence of resonances among large-a transneptunian objects

    NASA Astrophysics Data System (ADS)

    Gladman, Brett; Volk, Kathryn; Van Laerhoven, Christa

    2018-04-01

    The detached population consists of transneptunian objects (TNOs) with large semi-major axes and sufficiently high perihelia (roughly q>38 au, but there is no simple cut). However, what constitutes 'large semi-major axis' has been, and continues to be, unclear. Once beyond the apehlia of the classical Kuiper Belt (which extends out to about 60 au), objects with semimajor axes from a=60-150 au can be detached, but there are a reasonable number of objects in this range known to be in mean-motion resonances with Neptune. Beyond a=150 au, however, it is a widely-held belief that resonances become `unimportant', and that a q>38 au cut (or sometimes q>50 au) with a>150 au isolates a set of large semimajor axis detached objects. However, once semimajor axes become this large, the orbit determination of the object discovered near perihelion becomes a much harder task then for low-a TNOs. Because small velocity differences near the perihelion of large-a orbits cause large changes the fitted orbital in semimajor axis, extremely good and long baseline astrometry is required to reduce the semimajor axis uncertainty to be smaller than the few tenths of an astronomical unit widths of mean motion resonances. By carefully analyzing the astrometric data of all known large semimajor axis objects, we show that a very large fraction of the objects are in fact likely in high-order mean-motion resonances with Neptune. This prevealence for actually being resonant with Neptune would imply that hypothesized planets are problematic as they would remove the detached objects from these resonances. Instead, we favor a view in which the large-a population is the surviving remnant of a massive early scattering disk, whose surviving members are sculpted mostly by diffusive gravitational interactions with the four giant planets over the last four gigayears, but whose initial emplacement mechanism (in particular: perihelion lifting mechanism) is still unclear but of critical importance to the early Solar System's evolution.

  2. ALDH1A3 mutations cause recessive anophthalmia and microphthalmia.

    PubMed

    Fares-Taie, Lucas; Gerber, Sylvie; Chassaing, Nicolas; Clayton-Smith, Jill; Hanein, Sylvain; Silva, Eduardo; Serey, Margaux; Serre, Valérie; Gérard, Xavier; Baumann, Clarisse; Plessis, Ghislaine; Demeer, Bénédicte; Brétillon, Lionel; Bole, Christine; Nitschke, Patrick; Munnich, Arnold; Lyonnet, Stanislas; Calvas, Patrick; Kaplan, Josseline; Ragge, Nicola; Rozet, Jean-Michel

    2013-02-07

    Anophthalmia and microphthalmia (A/M) are early-eye-development anomalies resulting in absent or small ocular globes, respectively. A/M anomalies occur in syndromic or nonsyndromic forms. They are genetically heterogeneous, some mutations in some genes being responsible for both anophthalmia and microphthalmia. Using a combination of homozygosity mapping, exome sequencing, and Sanger sequencing, we identified homozygosity for one splice-site and two missense mutations in the gene encoding the A3 isoform of the aldehyde dehydrogenase 1 (ALDH1A3) in three consanguineous families segregating A/M with occasional orbital cystic, neurological, and cardiac anomalies. ALDH1A3 is a key enzyme in the formation of a retinoic acid gradient along the dorso-ventral axis during early eye development. Transitory expression of mutant ALDH1A3 open reading frames showed that both missense mutations reduce the accumulation of the enzyme, potentially leading to altered retinoic acid synthesis. Although the role of retinoic acid signaling in eye development is well established, our findings provide genetic evidence of a direct link between retinoic-acid-synthesis dysfunction and early-eye-development anomalies in humans. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  3. Mars’ Growth Stunted by an Early Giant Planet Instability

    NASA Astrophysics Data System (ADS)

    Clement, Matthew; Kaib, Nathan A.; Raymond, Sean N.; Walsh, Kevin J.

    2017-10-01

    Many dynamical aspects of the solar system can be explained by the outer planets experiencing a period of orbital instability. Though often correlated with a perceived delayed spike in the lunar cratering record known as the Late Heavy Bombardment (LHB), recent work suggests that this event may have occurred during the epoch of terrestrial planet formation. Though current simulations of terrestrial accretion can reproduce many observed qualities of the solar system, replicating the small mass of Mars requires modification to standard planet formation models. Here we use direct numerical simulations to show that an early instability in the outer solar system regularly yields properly sized Mars analogues. In 80% of simulations, we produce a Mars of the appropriate mass. Our most successful outcomes occur when the terrestrial planets evolve 10 million years (Myr), and accrete several Mars sized embryos in the Mars forming region before the instability takes place. Mars is left behind as a stranded embryo, while the remainder of these bodies are either ejected from the system or scattered towards the inner solar system where they deliver water to Earth. An early giant planet instability can thus replicate both the inner and outer solar system in a single model.

  4. SRTM is removed from Endeavour's payload bay to ease wiring inspections

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Inside orbiter Endeavour's payload bay, a crane lifts the Shuttle Radar Topography Mission (SRTM) for its transfer out of the orbiter to a payload canister. The payload on mission STS-99, SRTM is being removed to allow technicians access to the orbiter's midbody for planned wiring inspections. Endeavour is in the Orbiter Processing Facility. The entire fleet of orbiters is being inspected for wiring abrasions after the problem was first discovered in Columbia. Shuttle managers are reviewing several manifest options and could establish new target launch dates for the balance of 1999 next week. Shuttle Endeavour currently remains slated for launch in early October.

  5. Analyses of space environment effects on active fiber optic links orbited aboard the LDEF

    NASA Technical Reports Server (NTRS)

    Taylor, Edward W.; Monarski, T. W.; Berry, J. N.; Sanchez, A. D.; Padden, R. J.; Chapman, S. P.

    1993-01-01

    The results of the 'Preliminary Analysis of WL Experiment no. 701, Space Environment Effects on Operating Fiber Optic Systems,' is correlated with space simulated post retrieval terrestrial studies performed on the M0004 experiment. Temperature cycling measurements were performed on the active optical data links for the purpose of assessing link signal to noise ratio and bit error rate performance some 69 months following the experiment deployment in low Earth orbit. The early results indicate a high correlation between pre-orbit, orbit, and post-orbit functionality of the first known and longest space demonstration of operating fiber optic systems.

  6. Central region of SKKUCY-9 compact cyclotron

    NASA Astrophysics Data System (ADS)

    Jung, S. Y.; Kim, H. W.; Ghergherehchi, M.; Park, J. K.; Chai, J. S.; Kim, S. H.

    2014-04-01

    The development of a 9 MeV compact cyclotron for the production of radioisotopes for medical applications has been recently completed. The machine accelerates negative hydrogen ions generated from an internal PIG (Penning Ion Gauge) ion source following spiral orbits. Some of the structures designed for early beam acceleration, including a pair of center poles providing ions a circular direction, the head of the ion source, and the electrodes, are located in the center of the cyclotron. In this paper we discuss and evaluate the design of the central region that pulls the ions from the chimney of the ion source and directs them into the equilibrium orbit. The magnetic field produced by the center poles was analyzed using the magnetic solver in OPERA-3D TOSCA, and the phase error and ion equilibrium orbit, which is dependent on the kinetic energy within the designed field, were calculated using CYCLONE v8.4. The electric field produced in the acceleration gap was designed using an electrostatic solver. Then, the single beam trajectory was calculated by our own Cyclotron Beam Dynamics (CBD) code. The early orbits, vertical oscillation, acceptable RF phase and the energy gain during the early turns was evaluated. Final goal was to design the central region by the iterative optimization process and verify it with 1 MeV beam experiment.

  7. Fitting Orbits to Jupiter's Moons with a Spreadsheet.

    ERIC Educational Resources Information Center

    Bridges, Richard

    1995-01-01

    Describes how a spreadsheet is used to fit a circular orbit model to observations of Jupiter's moons made with a small telescope. Kepler's Third Law and the inverse square law of gravity are observed. (AIM)

  8. TADPOLE satellite. [low cost synchronous orbit satellite to evaluate small mercury bombardment ion thruster applications

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A low cost synchronous orbit satellite to evaluate small mercury bombardment ion thruster applications is described. The ion thrusters provide the satellite with precise north-south and east-west stationkeeping capabilities. In addition, the thrusters are used to unload the reaction wheels used for attitude control and for other purposes described in the report. The proposed satellite is named TADPOLE. (Technology Application Demonstration Program of Low Energy).

  9. Radiation forces on small particles in the solar system

    NASA Technical Reports Server (NTRS)

    Burns, J. A.; Lamy, P. L.; Soter, S.

    1979-01-01

    Solar radiation forces on small particles in the solar system are examined, and the resulting orbital evolution of interplanetary and circumplanetary dust is considered. An expression is derived for the effects of radiation pressure and Poynting-Robertson drag on small, spherical particles using the energy and momentum transformation laws of special relativity, and numerical examples are presented to illustrate that radiation pressure and Poynting-Robertson drag are only important for particles within a narrow size range. The orbital consequences of these radiation forces are considered both for heliocentric and planetocentric orbiting particles, and the coupling between particle sizes and dynamics is discussed. A qualitative derivation is presented for the differential Doppler effect, which is due to the differential Doppler shifting of radiation from approaching and receding solar hemispheres, and the Yarkovsky effect, which is important for rotating meter-to kilometer-sized particles, is briefly described.

  10. The Predicted Growth of the Low Earth Orbit Space Debris Environment: An Assessment of Future Risk for Spacecraft

    NASA Technical Reports Server (NTRS)

    Krisko, Paula H.

    2007-01-01

    Space debris is a worldwide-recognized issue concerning the safety of commercial, military, and exploration spacecraft. The space debris environment includes both naturally occuring meteoroids and objects in Earth orbit that are generated by human activity, termed orbital debris. Space agencies around the world are addressing the dangers of debris collisions to both crewed and robotic spacecraft. In the United States, the Orbital Debris Program Office at the NASA Johnson Space Center leads the effort to categorize debris, predict its growth, and formulate mitigation policy for the environment from low Earth orbit (LEO) through geosynchronous orbit (GEO). This paper presents recent results derived from the NASA long-term debris environment model, LEGEND. It includes the revised NASA sodium potassium droplet model, newly corrected for a factor of two over-estimation of the droplet population. The study indicates a LEO environment that is already highly collisionally active among orbital debris larger than 1 cm in size. Most of the modeled collision events are non-catastrophic (i.e., They lead to a cratering of the target, but no large scale fragmentation.). But they are potentially mission-ending, and take place between impactors smaller than 10 cm and targets larger than 10 cm. Given the small size of the impactor these events would likely be undetectable by present-day measurement means. The activity continues into the future as would be expected. Impact rates of about four per year are predicted by the current study within the next 30 years, with the majority of targets being abandoned intacts (spent upper stages and spacecraft). Still, operational spacecraft do show a small collisional activity, one that increases over time as the small fragment population increases.

  11. Early Program Development

    NASA Image and Video Library

    1971-01-01

    This 1971 artist's concept shows the Nuclear Shuttle in both its lunar logistics configuraton and geosynchronous station configuration. As envisioned by Marshall Space Flight Center Program Development persornel, the Nuclear Shuttle would deliver payloads to lunar orbits or other destinations then return to Earth orbit for refueling and additional missions.

  12. Satellite capture as a restricted 2 + 2 body problem

    NASA Astrophysics Data System (ADS)

    Kanaan, Wafaa; Farrelly, David; Lanchares, Víctor

    2018-04-01

    A restricted 2 + 2 body problem is proposed as a possible mechanism to explain the capture of small bodies by a planet. In particular, we consider two primaries revolving in a circular mutual orbit and two small bodies of equal mass, neither of which affects the motion of the primaries. If the small bodies are temporarily captured in the Hill sphere of the smaller primary, they may get close enough to each other to exchange energy in such a way that one of them becomes permanently captured. Numerical simulations show that capture is possible for both prograde and retrograde orbits.

  13. Multi-Year Elevation Changes Near the West Margin of the Greenland Ice Sheet from Satellite Radar Altimetry

    NASA Technical Reports Server (NTRS)

    Lingle, Craig S.; Brenner, Anita C.; Zwally, H. Jay; DiMarzio, John P.

    1991-01-01

    Mean changes in the surface elevation near the west margin of the Greenland ice sheet are measured using Seasat altimetry and altimetry from the Geosat Exact Repeat Mission (ERM). The Seasat data extend from early July through early October 1978. The ERM data extend from winter 1986-87 through fall 1988. Both seasonal and multi-year changes are measured using altimetry referenced to GEM T2 orbits. The possible effects of orbit error are minimized by adjusting the orbits into a common ocean surface. Seasonal mean changes in the surface height are recognizable during the Geosat ERM. The multi-year measurements indicate the surface was lower by 0.4 +/- 0.4 m on average in late summer 1987 than in late summer 1978. The surface was lower by 0.2 +/- 0.5 m on average in late summer 1988 than in late summer 1978. As a control case, the computations art also carried out using altimetry referenced to orbits not adjusted into a common ocean surface.

  14. The Mars Climate Orbiter arrives at KSC to begin final preparations for launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Mars Climate Orbiter spacecraft arrives at KSC's Shuttle Landing Facility aboard an Air Force C-17 cargo plane early this morning following its flight from the Lockheed Martin Astronautics plant in Denver, Colo. When the spacecraft arrives at the red planet, it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (1.8 Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Delta II 7425 rocket.

  15. KSC-98pc1048

    NASA Image and Video Library

    1998-09-11

    The Mars Climate Orbiter spacecraft is moved into the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) in KSC's industrial area. It arrived at the Shuttle Landing Facility aboard an Air Force C-17 cargo plane early this morning following its flight from the Lockheed Martin Astronautics plant in Denver, Colo. When it arrives at the red planet, the Mars Climate Orbiter will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (1.8 Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Delta II 7425 rocket

  16. KSC-98pc1047

    NASA Image and Video Library

    1998-09-11

    The Mars Climate Orbiter spacecraft is moved onto a flatbed for transport to the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). It arrived at KSC's Shuttle Landing Facility aboard an Air Force C-17 cargo plane early this morning following its flight from the Lockheed Martin Astronautics plant in Denver, Colo. When it arrives at the red planet, the Mars Climate Orbiter will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (1.8 Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Delta II 7425 rocket

  17. Orbital eccentricity in classical novae

    NASA Technical Reports Server (NTRS)

    Edwards, D. A.; Pringle, J. E.

    1987-01-01

    The effect on the orbital parameters of a classical nova of the ejection of mass during the nova explosion is considered. The most easily observable consequence is the generation of a small eccentricity in the orbit which leads to a luminosity modulation at a period just longer than the orbital period. Observation of such an effect would have implications not just for interpreting the dynamics of the explosion but also for measuring the secular effect of tidal interaction after the outburst.

  18. High-Temperature Rocket Engine

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Rosenberg, Sanders D.; Chazen, Melvin L.

    1994-01-01

    Two rocket engines that operate at temperature of 2,500 K designed to provide thrust for station-keeping adjustments of geosynchronous satellites, for raising and lowering orbits, and for changing orbital planes. Also useful as final propulsion stages of launch vehicles delivering small satellites to low orbits around Earth. With further development, engines used on planetary exploration missions for orbital maneuvers. High-temperature technology of engines adaptable to gas-turbine combustors, ramjets, scramjets, and hot components of many energy-conversion systems.

  19. Detail view of the port side of the payload bay ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of the port side of the payload bay of the Orbiter Discovery. This view shows Remote Manipulator System, Canadarm, sensors in the center of the image and a close-up view of a small segment of the orbiter's radiator panel. This photograph was taken in the Orbiter Processing Facility at the Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  20. High Earth orbit design for lunar assisted small Explorer class missions

    NASA Technical Reports Server (NTRS)

    Mathews, M.; Hametz, M.; Cooley, J.; Skillman, D.

    1994-01-01

    Small Expendable launch vehicles are capable of injecting modest payloads into high Earth orbits having apogee near the lunar distance. However, lunar and solar perturbations can quickly lower perigee and cause premature reentry. Costly perigee raising maneuvers by the spacecraft are required to maintain the orbit. In addition, the range of inclinations achievable is limited to those of launch sites unless costly spacecraft maneuvers are performed. This study investigates the use of a lunar swingby in a near-Hohmann transfer trajectory to raise perigee into the 8 to 25 solar radius range and reach a wide variety of inclinations without spacecraft maneuvers. It is found that extremely stable orbits can be obtained if the postencounter spacecraft orbital period is one-half of a lunar sidereal revolution and the Earth-vehicle-Moon geometry is within a specified range. Criteria for achieving stable orbits with various perigee heights and ecliptic inclinations are developed, and the sensitivity of the resulting mission orbits to transfer trajectory injection (TTI) errors is examined. It is shown that carefully designed orbits yield lifetimes of several years, with excellent ground station coverage characteristics and minimal eclipses. A phasing loop error correction strategy is considered with the spacecraft propulsion system delta V demand for TTI error correction and a postlunar encounter apogee trim maneuver typically in the 30 to 120 meters per second range.

  1. CRISM Views Phobos and Deimos

    NASA Technical Reports Server (NTRS)

    2007-01-01

    These two images taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) show Mars' two small moons, Phobos and Deimos, as seen from the Mars Reconnaissance Orbiter's low orbit around Mars. Both images were taken while the spacecraft was over Mars' night side, with the spacecraft turned off its normal nadir-viewing geometry to glimpse the moons. The image of Phobos, shown at the top, was taken at 0119 UTC on October 23 (9:19 p.m. EDT on Oct. 22), and shows features as small as 400 meters (1,320 feet) across. The image of Deimos, shown at the bottom, was taken at 2016 UTC (12:16 p.m. EDT) on June 7, 2007, and shows features as small as 1.3 kilometers (0.8 miles) across. Both CRISM images were taken in 544 colors covering 0.36-3.92 micrometers, and are displayed at twice the size in the original data for viewing purposes.

    Phobos and Deimos are about 21 and 12 kilometers (13.0 and 7.5 miles) in diameter and orbit Mars with periods of 7 hours, 39.2 minutes and 1 day, 6 hours, 17.9 minutes respectively. Because Phobos orbits Mars in a shorter time than Mars' 24 hour, 37.4-minute rotational period, to an observer on Mars' surface it would appear to rise in the west and set in the east. From Mars' surface, Phobos appears about one-third the diameter of the Moon from Earth, whereas Deimos appears as a bright star. The moons were discovered in 1877 by the astronomer Asaph Hall, and as satellites of a planet named for the Roman god of war, they were named for Greek mythological figures that personify fear and terror.

    The first spacecraft measurements of Phobos and Deimos, from the Mariner 9 and Viking Orbiter spacecraft, showed that both moons have dark surfaces reflecting only 5 to 7% of the sunlight that falls on them. The first reconstruction of the moons' spectrum of reflected sunlight was a difficult compilation from three different instruments, and appeared to show a flat, grayish spectrum resembling carbonaceous chondrite meteorites. Carbonaceous chondrites are primitive carbon-containing materials thought to originate in the outer part of the asteroid belt. This led to a commonly held view among planetary scientists that Mars' moons are primitive asteroids captured into Martian orbit early in the planet's history. More recent measurements have shown that the moons are in fact relatively red in their color, and resemble even more primitive D-type asteroids in the outer solar system. Those ultra-primitive bodies are also thought to contain carbon as well as water ice, but to have experienced even less geochemical processing than many carbonaceous chondrites.

    The version of the CRISM images shown here were constructed by displaying 0.90, 0.70, and 0.50 micrometer wavelengths in the red, green, and blue image planes. This is a broader range of colors than is visible to the human eye, but it accentuates color differences. Both moons are shown with colors scaled in the same way. Deimos is red-colored like most of Phobos. However, Phobos' surface contains a second material, grayer-colored ejecta from a 9-kilometer (5.6-mile) diameter crater. This crater, called Stickney, is located at the upper left limb of Phobos and the grayer-colored ejecta extends toward the lower right.

    These CRISM measurements are the first spectral measurements to resolve the disk of Deimos, and the first of this part of Phobos to cover the full wavelength range needed to assess the presence of iron-, water-, and carbon-containing minerals.

    CRISM is one of six science instruments on NASA's Mars Reconnaissance Orbiter. Led by The Johns Hopkins University Applied Physics Laboratory, Laurel, Md., the CRISM team includes expertise from universities, government agencies and small businesses in the United States and abroad. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter and the Mars Science Laboratory for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, built the orbiter.

  2. PHOTOMETRIC, SPECTROSCOPIC, AND ORBITAL PERIOD STUDY OF THREE EARLY-TYPE SEMI-DETACHED SYSTEMS: XZ AQL, UX HER, AND AT PEG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zola, S.; Baştürk, Ö.; Şenavcı, H. V.

    2016-08-01

    In this paper, we present a combined photometric, spectroscopic, and orbital period study of three early-type eclipsing binary systems: XZ Aql, UX Her, and AT Peg. As a result, we have derived the absolute parameters of their components and, on that basis, we discuss their evolutionary states. Furthermore, we compare their parameters with those of other binary systems and with theoretical models. An analysis of all available up-to-date times of minima indicated that all three systems studied here show cyclic orbital changes; their origin is discussed in detail. Finally, we performed a frequency analysis for possible pulsational behavior, and asmore » a result we suggest that XZ Aql hosts a δ Scuti component.« less

  3. Orbital debris: Technical issues and future directions

    NASA Technical Reports Server (NTRS)

    Potter, Andrew (Editor)

    1992-01-01

    An international conference on orbital debris sponsored jointly by the American Institute of Aeronautics and Astronautics, NASA, and the Department of Defense, was held in Baltimore, Maryland, 16-19 Apr. 1990. Thirty-three papers were presented. The papers were grouped into the areas of measurements, modeling, and implications of orbital debris for space flight. New radar and optical measurements of orbital debris were presented that showed the existence of a large population of small debris. Modeling of potential future environments showed that runaway growth of the debris population from random collisions was a real possibility. New techniques for shielding against orbital debris and methods for removal of satellites from orbit were discussed.

  4. 76 FR 81430 - Small Business Investment Companies-Early Stage SBICs; Public Webinars

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-28

    ... SMALL BUSINESS ADMINISTRATION 13 CFR Part 107 Small Business Investment Companies--Early Stage... Webinars regarding its proposed Early Stage Small Business Investment Companies (Early Stage SBIC) rule. The proposed Early Stage SBIC rule defines a new sub-category of small business investment companies...

  5. Study the Space Debris Impact in the Early Stages of the Nano-Satellite Design

    NASA Astrophysics Data System (ADS)

    Mahdi, Mohammed Chessab

    2016-12-01

    The probability of KufaSat collisions with different sizes of orbital debris and with other satellites which operating in the same orbit during orbital lifetime was determined. Apogee/Perigee Altitude History was used to graph apogee and perigee altitudes over KufaSat lifetime. The required change in velocity for maneuvers necessary to reentry atmospheric within 25 years was calculated. The prediction of orbital lifetime of KufaSat using orbital parameters and engineering specifications as inputs to the Debris Assessment Software (DAS) was done, it has been verified that the orbital lifetime will not be more than 25 years after end of mission which is compatible with recommendation of Inter-Agency Space Debris Coordination Committee (IADC).

  6. Low Earth Orbit (LEO) Commercial Market Projections

    DOT National Transportation Integrated Search

    1995-05-16

    This study assesses the possible number of small commercial satellites to be : launched to Low Earth Orbit (LEO) in the period 1995-2005. The information : provided reflects an Office of Commercial Space Transportation (OCST) : assessment of overall ...

  7. The dynamics and control of large flexible space structures. Part B: Development of continuum model and computer simulation

    NASA Technical Reports Server (NTRS)

    Bainum, P. M.; Kumar, V. K.; James, P. K.

    1978-01-01

    The equations of motion of an arbitrary flexible body in orbit were derived. The model includes the effects of gravity with all its higher harmonics. As a specific example, the motion of a long, slender, uniform beam in circular orbit was modelled. The example considers both the inplane and three dimensional motion of the beam in orbit. In the case of planar motion with only flexible vibrations, the pitch motion is not influenced by the elastic motion of the beam. For large values of the square of the ratio of the structural modal frequency to the orbital angular rate the elastic motion was decoupled from the pitch motion. However, for small values of the ratio and small amplitude pitch motion, the elastic motion was governed by a Hill's 3 term equation. Numerical simulation of the equation indicates the possibilities of instability for very low values of the square of the ratio of the modal frequency to the orbit angular rate. Also numerical simulations of the first order nonlinear equations of motion for a long flexible beam in orbit were performed. The effect of varying the initial conditions and the number of modes was demonstrated.

  8. FORMOSAT-3/COSMIC POD Data Processing and Initial Results

    NASA Astrophysics Data System (ADS)

    Tang, C.

    2006-12-01

    The six satellites of the collaborative Taiwan-U.S. FORMOSAT-3/COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate) space program were successfully launched from Vandenberg, U.S.A. on April 15, 2006. As of September 7, 2006, one satellite (FM5) has already been transferred to the 800-km final orbit, while the other five satellites (FM1-4 and FM6) are currently waiting in the ~520-km parking orbit for subsequent orbit raising deployment. There are two GPS antennas with different orientation onboard each satellite whose measurements are used specifically for precise orbit determination (POD). The received GPS signals by the POD antennas were rather sparse and unstable in the initial 5 weeks. Since then, the available GPS measurements have gradually increased from 10-20% in the early stage to almost 90% in 11 weeks after the launch. For the two POD antennas (POD+X and POD-X), one antenna can perform normally and record observations from up to 9 GPS satellites in view; however, the other antenna is programmed to track up to 4 GPS satellites due to onboard memory limitation. For this reason, we first performed orbit computation using zero-difference GPS phases collected by the normal antenna. For each day's orbit computation, we designed a 6-hr (25%) overlap for inner orbital accuracy assessment, and overlap analysis shows that the achievable 3D RMS was around 19 cm, or 11 cm per axis. In a separate effort, orbit computation based on the lesser antenna was also performed. The orbital difference between the results obtained from the two antennas was significant, with a 3D RMS value of 64 cm. The early results indicate that more work is needed in order to incorporate GPS data from both antennas into a unified solution.

  9. Orbital Verification of the CXO High-Resolution Mirror Assembly Alignment and Vignetting

    NASA Technical Reports Server (NTRS)

    Gaetz, T. J.; Jerius, D.; Edgar, R. J.; VanSpeybroeck, L. P.; Schwartz, D. A.; Markevitch, M.; Schulz, N. S.

    2000-01-01

    Prior to launch, the High Resolution Mirror Assembly (HRMA) of the Chandra X-ray Observatory underwent extensive ground testing at the X-ray Calibration Facility (XRCF) at the Marshall Space Flight Center in Huntsville. Observations made during the post-launch Orbital Activation and Calibration period, allow the on-orbit condition of the X-ray optics to be assessed. Based on these ground-based and on-orbit data, we examine the alignment of the x-ray optics based on the PSF, and the boresight and alignment of the optical axis alignment relative to the detectors. We examine the vignetting and the single reflection ghost suppression properties of the telescope. Slight imperfections in alignment lead to a small azimuthal dependence of the off-axis area; the morphology of off-axis images also shows an additional small azimuthal dependence varying as 1/2 the off-axis azimuth angle.

  10. Materials SIG quantification and characterization of surface contaminants

    NASA Technical Reports Server (NTRS)

    Crutcher, E. Russ

    1992-01-01

    When LDEF entered orbit its cleanliness was approximately a MIL-STD-1246B Level 2000C. Its burden of contaminants included particles from every part of its history including a relatively small contribution from the shuttle bay itself. Although this satellite was far from what is normally considered clean in the aerospace industry, contaminating events in orbit and from processing after recovery were easily detected. The molecular contaminants carried into orbit were dwarfed by the heavy deposition of UV polymerized films from outgassing urethane paints and silicone based materials. Impacts by relatively small objects in orbit could create particulate contaminants that easily dominated the particle counts within a centimeter of the impact site. During the recovery activities LDEF was 'sprayed' with a liquid high in organics and water soluble salts. With reentry turbulence, vibration, and gravitational loading particulate contaminants were redistributed about LDEF and the shuttle bay.

  11. Measuring Small Debris - What You Can't See Can Hurt You

    NASA Technical Reports Server (NTRS)

    Matney, Mark

    2016-01-01

    While modeling gives us a tool to better understand the Earth orbit debris environment, it is measurements that give us "ground truth" about what is happening in space. Assets that can detect orbital debris remotely from the surface of the Earth, such as radars and telescopes, give us a statistical view of how debris are distributed in space, how they are being created, and how they are evolving over time. In addition, in situ detectors in space are giving us a better picture of how the small particle environment is actually damaging spacecraft today. IN addition, simulation experiments on the ground help us to understand what we are seeing in orbit. This talk will summarize the history of space debris measurements, how it has changed our view of the Earth orbit environment, and how we are designing the experiments of tomorrow.

  12. Laser Remediation of Threats Posed by Small Orbital Debris

    NASA Technical Reports Server (NTRS)

    Fork, Richard L.; Rogers, Jan R.; Hovater, Mary A.

    2012-01-01

    The continually increasing amount of orbital debris in near Earth space poses an increasing challenge to space situational awareness. Recent collisions of spacecraft caused abrupt increases in the density of both large and small debris in near Earth space. An especially challenging class of threats is that due to the increasing density of small (1 mm to 10 cm dimension) orbital debris. This small debris poses a serious threat since: (1) The high velocity enables even millimeter dimension debris to cause serious damage to vulnerable areas of space assets, e.g., detector windows; (2) The small size and large number of debris elements prevent adequate detection and cataloguing. We have identified solutions to this threat in the form of novel laser systems and novel ways of using these laser systems. While implementation of the solutions we identify is challenging we find approaches offering threat mitigation within time frames and at costs of practical interest. We base our analysis on the unique combination of coherent light specifically structured in both space and time and applied in novel ways entirely within the vacuum of space to deorbiting small debris. We compare and contrast laser based small debris removal strategies using ground based laser systems with strategies using space based laser systems. We find laser systems located and used entirely within space offer essential and decisive advantages over groundbased laser systems.

  13. Rehabilitation of orbital cavity after orbital exenteration using polymethyl methacrylate orbital prosthesis.

    PubMed

    Jain, Sumeet; Jain, Parul

    2016-01-01

    Squamous cell carcinoma of the eyelid is the second most common malignant neoplasm of the eye with the incidence of 0.09 and 2.42 cases/100 000 people. Orbital invasion is a rare complication but, if recognized early, can be treated effectively with exenteration. Although with advancements in technology such as computer-aided design and computer-aided manufacturing, material science, and retentive methods like implants, orbital prosthesis with stock ocular prosthesis made of methyl methacrylate retained by anatomic undercuts is quiet effective and should not be overlooked and forgotten. This clinical report describes prosthetic rehabilitation of two male patients with polymethyl methacrylate resin orbital prosthesis after orbital exenteration, for squamous cell carcinoma of the upper eyelid. The orbital prosthesis was sufficiently retained by hard and soft tissue undercuts without any complications. The patients using the prosthesis are quite satisfied with the cosmetic results and felt comfortable attending the social events.

  14. Martian Moon Phobos in Thermal Infrared Image

    NASA Image and Video Library

    2017-10-04

    Colors in this image of the Martian moon Phobos indicate a range of surface temperatures detected by observing the moon on Sept. 29, 2017, with the Thermal Emission Imaging System (THEMIS) camera on NASA's Mars Odyssey orbiter. The left edge of the small moon was in darkness, and the right edge in morning sunlight. Phobos has an oblong shape with average diameter of about 14 miles (22 kilometers). Temperature information was derived from thermal-infrared imaging such as the grayscale image shown smaller at lower left with the moon in the same orientation. The color-coding merges information from THEMIS observations made in four thermal-infrared wavelength bands, centered from 11.04 microns to 14.88 microns. The scale bar correlates color-coding to the temperature range on the Kelvin scale, from 130 K (minus 226 degrees Fahrenheit) for dark purple to 270 K (26 degrees F) for red. Researchers will analyze the surface-temperature information from this observation and possible future THEMIS observations to learn how quickly the surface warms after sunup or cools after sundown. That could provide information about surface materials, because larger rocks heat or cool more slowly than smaller particles do. Researchers have been using THEMIS to examine Mars since early 2002, but the maneuver turning the orbiter around to point the camera at Phobos was developed only recently. Odyssey orbits Mars at an altitude of about 250 miles (400 kilometers), much closer to the planet than to Phobos, which orbits about 3,700 miles (6,000 kilometers) above the surface of Mars. The distance to Phobos from Odyssey during the observation was about 3,424 miles (5,511 kilometers). https://photojournal.jpl.nasa.gov/catalog/PIA21858

  15. SWIFT-BAT HARD X-RAY SKY MONITORING UNVEILS THE ORBITAL PERIOD OF THE HMXB IGR J18219–1347

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    La Parola, V.; Cusumano, G.; Segreto, A.

    2013-09-20

    IGR J18219–1347 is a hard X-ray source discovered by INTEGRAL in 2010. We have analyzed the X-ray emission of this source exploiting the Burst Alert Telescope (BAT) survey data up to 2012 March and the X-Ray Telescope (XRT) data that include also an observing campaign performed in early 2012. The source is detected at a significance level of ∼13 standard deviations in the 88 month BAT survey data, and shows a strong variability along the survey monitoring, going from high intensity to quiescent states. A timing analysis on the BAT data revealed an intensity modulation with a period of Pmore » {sub 0} = 72.44 ± 0.3 days. The significance of this modulation is about seven standard deviations in Gaussian statistics. We interpret it as the orbital period of the binary system. The light curve folded at P {sub 0} shows a sharp peak covering ∼30% of the period, superimposed to a flat level roughly consistent with zero. In the soft X-rays the source is detected only in 5 out of 12 XRT observations, with the highest recorded count rate corresponding to a phase close to the BAT folded light-curve peak. The long orbital period and the evidence that the source emits only during a small fraction of the orbit suggests that the IGR J18219–1347 binary system hosts a Be star. The broadband XRT+BAT spectrum is well modeled with a flat absorbed power law with a high-energy exponential cutoff at ∼11 keV.« less

  16. Infrared Spectroscopy of Symbiotic Stars. II. Orbits for Five S-Type Systems with Two-Year Periods

    NASA Astrophysics Data System (ADS)

    Fekel, Francis C.; Hinkle, Kenneth H.; Joyce, Richard R.; Skrutskie, Michael F.

    2000-12-01

    Infrared radial velocities have been used to determine orbital elements for the cool giants of five well-known symbiotic systems, Z And, AG Dra, V443 Her, AX Per, and FG Ser, all of which have orbital periods near the two-year mean period for S-type symbiotics. The new orbits are in general agreement with previous orbits derived from optical velocities. From the combined optical and infrared velocities, improved orbital elements for the five systems have been determined. Each of the orbital periods has been determined solely from the radial-velocity data. The orbits are circular and have quite small mass functions of 0.001-0.03 Msolar. The infrared velocities of AG Dra do not show the large orbital velocity residuals found for its optical radial velocities.

  17. Analytical energy gradient for the two-component normalized elimination of the small component method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Wenli; Filatov, Michael; Cremer, Dieter, E-mail: dcremer@smu.edu

    2015-06-07

    The analytical gradient for the two-component Normalized Elimination of the Small Component (2c-NESC) method is presented. The 2c-NESC is a Dirac-exact method that employs the exact two-component one-electron Hamiltonian and thus leads to exact Dirac spin-orbit (SO) splittings for one-electron atoms. For many-electron atoms and molecules, the effect of the two-electron SO interaction is modeled by a screened nucleus potential using effective nuclear charges as proposed by Boettger [Phys. Rev. B 62, 7809 (2000)]. The effect of spin-orbit coupling (SOC) on molecular geometries is analyzed utilizing the properties of the frontier orbitals and calculated SO couplings. It is shown thatmore » bond lengths can either be lengthened or shortened under the impact of SOC where in the first case the influence of low lying excited states with occupied antibonding orbitals plays a role and in the second case the jj-coupling between occupied antibonding and unoccupied bonding orbitals dominates. In general, the effect of SOC on bond lengths is relatively small (≤5% of the scalar relativistic changes in the bond length). However, large effects are found for van der Waals complexes Hg{sub 2} and Cn{sub 2}, which are due to the admixture of more bonding character to the highest occupied spinors.« less

  18. Small rocket research and technology

    NASA Technical Reports Server (NTRS)

    Schneider, Steven; Biaglow, James

    1993-01-01

    Small chemical rockets are used on nearly all space missions. The small rocket program provides propulsion technology for civil and government space systems. Small rocket concepts are developed for systems which encompass reaction control for launch and orbit transfer systems, as well as on-board propulsion for large space systems and earth orbit and planetary spacecraft. Major roles for on-board propulsion include apogee kick, delta-V, de-orbit, drag makeup, final insertions, north-south stationkeeping, orbit change/trim, perigee kick, and reboost. The program encompasses efforts on earth-storable, space storable, and cryogenic propellants. The earth-storable propellants include nitrogen tetroxide (NTO) as an oxidizer with monomethylhydrazine (MMH) or anhydrous hydrazine (AH) as fuels. The space storable propellants include liquid oxygen (LOX) as an oxidizer with hydrazine or hydrocarbons such as liquid methane, ethane, and ethanol as fuels. Cryogenic propellants are LOX or gaseous oxygen (GOX) as oxidizers and liquid or gaseous hydrogen as fuels. Improved performance and lifetime for small chemical rockets are sought through the development of new predictive tools to understand the combustion and flow physics, the introduction of high temperature materials to eliminate fuel film cooling and its associated combustion inefficiency, and improved component designs to optimize performance. Improved predictive technology is sought through the comparison of both local and global predictions with experimental data. Results indicate that modeling of the injector and combustion process in small rockets needs improvement. High temperature materials require the development of fabrication processes, a durability data base in both laboratory and rocket environments, and basic engineering property data such as strength, creep, fatigue, and work hardening properties at both room and elevated temperature. Promising materials under development include iridium-coated rhenium and a ceramic composite of mixed hafnium carbide and tantalum carbide reinforced with graphite fibers.

  19. Gravitational waveforms from unequal-mass binaries with arbitrary spins under leading order spin-orbit coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tessmer, Manuel

    This paper generalizes the structure of gravitational waves from orbiting spinning binaries under leading order spin-orbit coupling, as given in the work by Koenigsdoerffer and Gopakumar [Phys. Rev. D 71, 024039 (2005)] for single-spin and equal-mass binaries, to unequal-mass binaries and arbitrary spin configurations. The orbital motion is taken to be quasicircular and the fractional mass difference is assumed to be small against one. The emitted gravitational waveforms are given in analytic form.

  20. LRC-1967-B701_P-04028

    NASA Image and Video Library

    1967-04-28

    Small light colored area within the crater is Surveyor 1 on lunar surface photographed by Lunar Orbiter III. Published in the book "A Century at Langley" by Joseph Chambers. pg. 93 Moon Lunar Orbiter-Lunar Orbiter III: The hidden or dark side of the Moon was taken by Lunar Orbiter III During its mission to photograph potential lunar-landing sites for Apollo missions. -- Photograph published in Winds of Change, 75th Anniversary NASA publication (page 94), by James Schultz. Photo Number:67-H-328 is 1967-L-04026

  1. Catastrophe on the Horizon: A Scenario-Based Future Effect of Orbital Space Debris

    DTIC Science & Technology

    2010-04-01

    real. In fact, the preliminary results of a recent NASA risk assessment of the soon to be decommissioned Space Shuttle puts the risk of a manned...Section 1 – Introduction Orbital Space Debris Defined Orbital space debris can be defined as dead satellites, discarded rocket parts, or simply flecks...of paint or other small objects orbiting the earth. It is simply space ―junk,‖ but junk that can be extremely dangerous to space assets. Most of the

  2. Component-Level Electronic-Assembly Repair (CLEAR) Analysis of the Problem Reporting and Corrective Action (PRACA) Database of the International Space Station On-Orbit Electrical Systems

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Bradish, Martin A.; Juergens, Jeffrey R.; Lewis, Michael J.

    2011-01-01

    The NASA Constellation Program is investigating and developing technologies to support human exploration of the Moon and Mars. The Component-Level Electronic-Assembly Repair (CLEAR) task is part of the Supportability Project managed by the Exploration Technology Development Program. CLEAR is aimed at enabling a flight crew to diagnose and repair electronic circuits in space yet minimize logistics spares, equipment, and crew time and training. For insight into actual space repair needs, in early 2008 the project examined the operational experience of the International Space Station (ISS) program. CLEAR examined the ISS on-orbit Problem Reporting and Corrective Action database for electrical and electronic system problems. The ISS has higher than predicted reliability yet, as expected, it has persistent problems. A goal was to identify which on-orbit electrical problems could be resolved by a component-level replacement. A further goal was to identify problems that could benefit from the additional diagnostic and test capability that a component-level repair capability could provide. The study indicated that many problems stem from a small set of root causes that also represent distinct component problems. The study also determined that there are certain recurring problems where the current telemetry instrumentation and built-in tests are unable to completely resolve the problem. As a result, the root cause is listed as unknown. Overall, roughly 42 percent of on-orbit electrical problems on ISS could be addressed with a component-level repair. Furthermore, 63 percent of on-orbit electrical problems on ISS could benefit from additional external diagnostic and test capability. These results indicate that in situ component-level repair in combination with diagnostic and test capability can be expected to increase system availability and reduce logistics. The CLEAR approach can increase the flight crew s ability to act decisively to resolve problems while reducing dependency on Earth-supplied logistics for future Constellation Program missions.

  3. Fuel-efficient feedback control of orbital motion around irregular-shaped asteroids

    NASA Astrophysics Data System (ADS)

    Winkler, Timothy Michael

    Unmanned probes are the primary technologies used when exploring celestial bodies in our solar system. As these deep space exploration missions are becoming more and more complex, there is a need for advanced autonomous operation capabilities in order to meet mission objectives. These autonomous capabilities are required as ground-based guidance and navigation commands will not be able to be issued in real time due to the large distance from the Earth. For long-duration asteroid exploration missions, this also entails how to keep the spacecraft around or on the body in order for the mission to be successfully completed. Unlike with larger bodies such as planets, though, the dynamical environment around these smaller bodies can be difficult to characterize. The weak gravitational fields are not uniform due to irregular shapes and non-homogeneous mass distribution, especially when orbiting in close-proximity to the body. On top of that, small perturbation forces such as solar radiation pressure can be strong enough to destabilize an orbit around an asteroid. The best solution for keeping a spacecraft in orbit about a small body is to implement some form of control technique. With conventional propulsion thrusters, active control algorithms tend to have a higher than acceptable propellant requirements for long-duration asteroid exploration missions, which has led to much research being devoted to finding open-loop solutions to long-term stable orbits about small bodies. These solutions can prove to be highly sensitive to the orbit's initial conditions, making them potentially unreliable in the presence of orbit injection errors. This research investigates a fuel-efficient, active control scheme to safely control a spacecraft's orbit in close-proximity to an asteroid. First, three different gravitational models capable of simulating the non-homogeneous gravity fields of asteroids are presented: the polyhedron gravity shape model, a spherical harmonics expansion, and an inertia dyadic gravity model. Then a simple feedback controller augmented by a disturbance-accommodating filter is employed to ensure orbital stability. Using these models and controller, several orbiting cases as well as body-frame hovering are investigated to test the viability and fuel-efficiency of the proposed control system. The ultimate goal is to design an active orbit control system with minimum DeltaV expenditure.

  4. 3D Computational Mechanics Elucidate the Evolutionary Implications of Orbit Position and Size Diversity of Early Amphibians

    PubMed Central

    Marcé-Nogué, Jordi; Fortuny, Josep; De Esteban-Trivigno, Soledad; Sánchez, Montserrat; Gil, Lluís; Galobart, Àngel

    2015-01-01

    For the first time in vertebrate palaeontology, the potential of joining Finite Element Analysis (FEA) and Parametrical Analysis (PA) is used to shed new light on two different cranial parameters from the orbits to evaluate their biomechanical role and evolutionary patterns. The early tetrapod group of Stereospondyls, one of the largest groups of Temnospondyls is used as a case study because its orbits position and size vary hugely within the members of this group. An adult skull of Edingerella madagascariensis was analysed using two different cases of boundary and loading conditions in order to quantify stress and deformation response under a bilateral bite and during skull raising. Firstly, the variation of the original geometry of its orbits was introduced in the models producing new FEA results, allowing the exploration of the ecomorphology, feeding strategy and evolutionary patterns of these top predators. Secondly, the quantitative results were analysed in order to check if the orbit size and position were correlated with different stress patterns. These results revealed that in most of the cases the stress distribution is not affected by changes in the size and position of the orbit. This finding supports the high mechanical plasticity of this group during the Triassic period. The absence of mechanical constraints regarding the orbit probably promoted the ecomorphological diversity acknowledged for this group, as well as its ecological niche differentiation in the terrestrial Triassic ecosystems in clades as lydekkerinids, trematosaurs, capitosaurs or metoposaurs. PMID:26107295

  5. Orbit Stability of OSIRIS-REx in the Vicinity of Bennu Using a High-Fidelity Solar Radiation Model

    NASA Technical Reports Server (NTRS)

    Williams, Trevor; Hughes, Kyle; Mashiku, Alinda; Longuski, James

    2015-01-01

    The OSIRIS-REx mission (Origins Spectral Interpretation Resource Identification Security Regolith EXPlorer) is an asteroid sample return mission to Bennu (RQ36) that is scheduled to launch in 2016. The planned science operations precluding the small retrieval involve operations in terminator orbits (orbit plane is perpendicular to the sun). Over longer durations the solar radiation pressure (SRP) perturbs the orbit causing it to precess. Our work involves: modeling high fidelity SRP model to capture the perturbations during attitude changes; design a stable orbit from the high fidelity models to analyze the stability over time.

  6. A New Orbit for Comet C/1865 B1 (Great Southern Comet of 1865)

    NASA Astrophysics Data System (ADS)

    Branham, Richard L., Jr.

    2018-04-01

    Comet C/1865 B1 (Great southern comet of 1865), observed only in the southern hemisphere, is one of a large number of comets with parabolic orbits. Given that there are 202 observations in right ascension and 165 in declination it proves possible to calculate a better orbit than that Körber published in 1887, the orbit used in various catalogs and data bases. C/1865 B1's orbit is hyperbolic and statistically distinguishable from a parabola. This object, therefore, cannot be considered an NEO. The comet has a small perihelion distance of 0.026 AU.

  7. Late stages of accumulation and early evolution of the planets

    NASA Technical Reports Server (NTRS)

    Vityazev, Andrey V.; Perchernikova, G. V.

    1991-01-01

    Recently developed solutions of problems are discussed that were traditionally considered fundamental in classical solar system cosmogony: determination of planetary orbit distribution patterns, values for mean eccentricity and orbital inclinations of the planets, and rotation periods and rotation axis inclinations of the planets. Two important cosmochemical aspects of accumulation are examined: the time scale for gas loss from the terrestrial planet zone, and the composition of the planets in terms of isotope data. It was concluded that the early beginning of planet differentiation is a function of the heating of protoplanets during collisions with large (thousands of kilometers) bodies. Energetics, heat mass transfer processes, and characteristic time scales of these processes at the early stages of planet evolution are considered.

  8. Bantam System Technology Project Ground System Operations Concept and Plan

    NASA Technical Reports Server (NTRS)

    Moon, Jesse M.; Beveridge, James R.

    1997-01-01

    The Low Cost Booster Technology Program, also known as the Bantam Booster program, is a NASA sponsored initiative to establish a viable commercial technology to support the market for placing small payloads in low earth orbit. This market is currently served by large boosters which orbit a number of small payloads on a single launch vehicle, or by these payloads taking up available space on major commercial launches. Even by sharing launch costs, the minimum cost to launch one of these small satellites is in the 6 to 8 million dollar range. Additionally, there is a shortage of available launch opportunities which can be shared in this manner. The goal of the Bantam program is to develop two competing launch vehicles, with launch costs in the neighborhood of 1.5 million dollars to launch a 150 kg payload into low earth orbit (200 nautical mile sun synchronous). Not only could the cost of the launch be significantly less than the current situation, but the payload sponsor could expect better service for his expenditure, the ability to specify his own orbit, and a dedicated vehicle. By developing two distinct launch vehicles, market forces are expected to aid in keeping customer costs low.

  9. Temporary satellite capture of comets by Jupiter

    NASA Astrophysics Data System (ADS)

    Emel'yanenko, N. Yu.

    2012-05-01

    This paper studies the dynamical evolution of 97 Jupiter-family comets over an 800-year time period. More than two hundred encounters with Jupiter are investigated, with the observed comets moving during a certain period of time in an elliptic jovicentric orbit. In most cases this is an ordinary temporary satellite capture of a comet in Everhart's sense, not associated with a transition of the small body into Jupiter's family of satellites. The phenomenon occurs outside the Hill sphere with comets with a high Tisserand constant relative to Jupiter; the comets' orbits have a small inclination to the ecliptic plane. An analysis of 236 encounters has allowed the determination within the planar pair two-body problem of a region of orbits in the plane ( a, e) whose semimajor axes and eccentricities contribute to the phenomenon under study. Comets with orbits belonging to this region experience a temporary satellite capture during some of their encounters; the jovicentric distance function has several minima; and the encounters are characterized by reversions of the line of apsides and some others features of their combination that are intrinsic to comets in this region. Therefore, this region is called a region of comets with specific features in their encounters with Jupiter. Twenty encounters (out of 236), whereby the comet enters an elliptic jovicentric orbit in the Hill sphere, are identified and investigated. The size and shape of the elliptic heliocentric orbits enabling this transition are determined. It is found that in 11 encounters the motion of small bodies in the Hill sphere has features the most important of which is multiple minima of the jovicentric distance function. The study of these 20 encounters has allowed the introduction of the concept of temporary gravitational capture of a small body into the Hill sphere. An analysis of variations in the Tisserand constant in these (20) encounters of the observable comets shows that their motion is unstable in Hill's sense.

  10. On-Orbit Planetary Science Laboratories for Simulating Surface Conditions of Planets and Small Bodies

    NASA Astrophysics Data System (ADS)

    Thangavelautham, J.; Asphaug, E.; Schwartz, S.

    2017-02-01

    Our work has identified the use of on-orbit centrifuge science laboratories as a key enabler towards low-cost, fast-track physical simulation of off-world environments for future planetary science missions.

  11. Small Projects Rapid Integration and Test Environment (SPRITE): Application for Increasing Robutness

    NASA Technical Reports Server (NTRS)

    Lee, Ashley; Rakoczy, John; Heather, Daniel; Sanders, Devon

    2013-01-01

    Over the past few years interest in the development and use of small satellites has rapidly gained momentum with universities, commercial, and government organizations. In a few years we may see networked clusters of dozens or even hundreds of small, cheap, easily replaceable satellites working together in place of the large, expensive and difficult-to-replace satellites now in orbit. Standards based satellite buses and deployment mechanisms, such as the CubeSat and Poly Pico-satellite Orbital Deployer (P-POD), have stimulated growth in this area. The use of small satellites is also proving to be a cost effective capability in many areas traditionally dominated by large satellites, though many challenges remain. Currently many of these small satellites undergo very little testing prior to flight. As these small satellites move from technology demonstration and student projects toward more complex operational assets, it is expected that the standards for verification and validation will increase.

  12. Definition of technology development missions for early space station, orbit transfer vehicle servicing. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Orbital Transfer Vehicle (OTV) servicing study scope, propellant transfer, storage and reliquefaction technology development missions (TDM), docking and berthing TDM, maintenance TDM, OTV/payload integration TDM, combined TDMS design, summary space station accomodations, programmatic analysis, and TDM equipment operational usage are discussed.

  13. The Pluto-Charon System

    NASA Astrophysics Data System (ADS)

    Grundy, Will

    2018-05-01

    Pluto orbits the Sun at a mean distance of 39 AU, with an orbital period of 248 Earth years. Its orbit is just eccentric enough to cross that of Neptune. They never collide thanks to a 2:3 mean-motion resonance: Pluto completes two orbits of the Sun for every three by Neptune. The Pluto system consists of Pluto and its large satellite Charon, plus four small satellites: Styx, Nix, Kerberos, and Hydra. Pluto and Charon are spherical bodies, with diameters of 2377 and 1212 km, respectively. They are tidally locked to one another such that each spins about its axis with the same 6.39 day period as their mutual orbit about their common barycenter. Pluto's surface is dominated by frozen volatiles nitrogen, methane, and carbon monoxide. Their vapor pressure supports an atmosphere with multiple layers of photochemical hazes. Pluto's equator is marked by a belt of dark red maculae, where the photochemical haze has accumulated over time. Some regions are ancient and cratered, while others are geologically active via processes including sublimation and condensation, glaciation, and eruption of material from the subsurface. The surfaces of the satellites are dominated by water ice. Charon has dark red polar stains produced from chemistry fed by Pluto's escaping atmosphere. The existence of a planet beyond Neptune had been postulated by Percival Lowell and William Pickering in the early 20th century, to account for supposed clustering in comet aphelia and perturbations of the orbit of Uranus. Both lines of evidence turned out to be spurious, but they motivated a series of searches that culminated in Clyde Tombaugh's discovery of Pluto in 1930, at the observatory Lowell had founded in Arizona. Over subsequent decades, basic facts about Pluto were hard-won through application of technological advances in astronomical instrumentation. The progression from photographic plates, through photoelectric photometers, to digital array detectors, space-based telescopes, and ultimately, direct exploration by robotic spacecraft each revealed more about Pluto. A key breakthrough came in 1978 with the discovery of Charon by Christy and Harrington. Charon's orbit revealed the mass of the system. Observations of stellar occultations constrained the sizes of Pluto and Charon, and enabled the detection of Pluto's atmosphere in 1988. Spectroscopic instruments revealed Pluto's volatile ices. In a series of mutual events from 1985 through 1990, Pluto and Charon alternated in passing in front of the other as seen from Earth. Observations of these events provided additional constraints on their sizes and albedo patterns and revealed their distinct compositions. Hubble Space Telescope's vantage above Earth's atmosphere enabled further mapping of Pluto's albedo patterns and the discovery of the small satellites. NASA's New Horizons spacecraft flew through the system in 2015. Its instruments mapped the diversity and compositions of geological features on Pluto and Charon and provided detailed information on Pluto's atmosphere and its interaction with the solar wind.

  14. Influence of periodic orbits on the formation of giant planetary systems

    NASA Astrophysics Data System (ADS)

    Libert, Anne-Sophie; Sotiriadis, Sotiris; Antoniadou, Kyriaki I.

    2018-02-01

    The late-stage formation of giant planetary systems is rich in interesting dynamical mechanisms. Previous simulations of three giant planets initially on quasi-circular and quasi-coplanar orbits in the gas disc have shown that highly mutually inclined configurations can be formed, despite the strong eccentricity and inclination damping exerted by the disc. Much attention has been directed to inclination-type resonance, asking for large eccentricities to be acquired during the migration of the planets. Here we show that inclination excitation is also present at small to moderate eccentricities in two-planet systems that have previously experienced an ejection or a merging and are close to resonant commensurabilities at the end of the gas phase. We perform a dynamical analysis of these planetary systems, guided by the computation of planar families of periodic orbits and the bifurcation of families of spatial periodic orbits. We show that inclination excitation at small to moderate eccentricities can be produced by (temporary) capture in inclination-type resonance and the possible proximity of the non-coplanar systems to spatial periodic orbits contributes to maintaining their mutual inclination over long periods of time.

  15. Evidence for a Past High-Eccentricity Lunar Orbit

    NASA Technical Reports Server (NTRS)

    Garrick-Betthell, Ian; Wisdom, Jack; Zuber, Maria T.

    2007-01-01

    The large differences between the Moon's three principal moments of inertia have been mystery since Laplace considered them in 1799. Here we present calculations that show how past high eccentricity orbits can account for the moment differences, represented by the low-order lunar gravity field and libration parameters. One of our solutions is that the Moon may have once been in a 3:2 resonance of the orbit period to spin-period, similar to Mercury's present state. The possibility of past high-eccentricity orbits suggests a rich dynamical history and may influence our understanding of the early thermal evolution of the Moon.

  16. Planetary mission summaries. Volume 1: Introduction and overview

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Tabular synopses of twelve missions are presented along with the Mariner Jupiter/Saturn 1977 mission for comparison. Mission definitions considered include: Mars Polar Orbiter; Mars Surface Sample Return; Mars Rover; Marine Jupiter/Uranus 1979 with Uranus Entry Probe; Mariner Jupiter Orbiter; Mariner Mercury Orbiter 1978; Early Mariner Comet Flyby Solar Electric Encke Slow Flyby; Mariner Encke Ballistic Flyby; Solar Electric Encke Rendezvous 1981; Venus Orbital Imaging Radar; Solar Electric Out-of-the-Eliptic Probe 1979. Technical conclusions of mission studies are given in order that these results may interact with the broader questions of scope, pace, and priorities in the planetary exploration program.

  17. SRTM is removed from Endeavour's payload bay to ease wiring inspections

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Orbiter Processing Facility, workers observe as an overhead crane lowers the Shuttle Radar Topography Mission (SRTM) into a payload canister. The payload on mission STS-99, SRTM was removed from orbiter Endeavour's payload bay to allow technicians access to the orbiter's midbody for planned wiring inspections. The entire fleet of orbiters is being inspected for wiring abrasions after the problem was first discovered in Columbia. Shuttle managers are reviewing several manifest options and could establish new target launch dates for the balance of 1999 next week. Shuttle Endeavour currently remains slated for launch in early October.

  18. The Innisfree meteorite: Dynamical history of the orbit - Possible family of meteor bodies

    NASA Astrophysics Data System (ADS)

    Galibina, I. V.; Terent'eva, A. K.

    1987-09-01

    Evolution of the Innisfree meteorite orbit caused by secular perturbations is studied over the time interval of 500000 yrs (from the current epoch backwards). Calculations are made by the Gauss-Halphen-Gorjatschew method taking into account perturbations from the four outer planets - Jupiter, Saturn, Uranus and Neptune. In the above mentioned time interval the meteorite orbit has undergone no essential transformations. The Innisfree orbit intersected in 91 cases the Earth orbit and in 94 - the Mars orbit. A system of small and large meteor bodies (producing ordinary meteors and fireballs) which may be genetically related to the Innisfree meteorite has been found, i.e. there probably exists an Innisfree family of meteor bodies.

  19. Orbit analysis for coastal zone oceanography observations.

    NASA Technical Reports Server (NTRS)

    Harrison, E. F.; Green, R. N.

    1973-01-01

    A study has been performed to define the orbital characteristics of a satellite dedicated to monitoring the coastal zones of the United States. The primary area of coverage is the east coast with secondary coverage of the west coast. Since no one orbital inclination fits both coasts, the inclination was determined by the east coast to be 63 deg. This inclination was found to give better coverage of the east coast than either its retrograde counterpart or a sun synchronous orbit. The two coasts require quite different orbits to maximize the coverage. The use of a small propulsive maneuver could be used to compromise the coverage between the two coastlines and change from one type orbit to the other.

  20. Power considerations for an early manned Mars mission utilizing the space station

    NASA Technical Reports Server (NTRS)

    Valgora, Martin E.

    1987-01-01

    Power requirements and candidate electrical power sources were examined for the supporting space infrastructure for an early (2004) manned Mars mission. This two-year mission (60-day stay time) assumed a single six crew piloted vehicle with a Mars lander for four of the crew. The transportation vehicle was assumed to be a hydrogen/oxygen propulsion design with or without large aerobrakes and assembled and checked out on the LEO Space Station. The long transit time necessitated artificial gravity of the crew by rotating the crew compartments. This rotation complicates power source selection. Candidate power sources were examined for the Lander, Mars Orbiter, supporting Space Station, co-orbiting Propellant Storage Depot, and alternatively, a co-orbiting Propellant Generation (water electrolysis) Depot. Candidates considered were photovoltaics with regenerative fuel cells or batteries, solar dynamics, isotope dynamics, and nuclear power.

  1. The evolution of a binary in a retrograde circular orbit embedded in an accretion disk

    NASA Astrophysics Data System (ADS)

    Ivanov, P. B.; Papaloizou, J. C. B.; Paardekooper, S.-J.; Polnarev, A. G.

    2015-04-01

    Aims: Supermassive black hole binaries may form as a consequence of galaxy mergers. Both prograde and retrograde orbits have been proposed. We study a binary with a small mass ratio, q, in a retrograde orbit immersed in and interacting with a gaseous accretion disk in order to estimate the time scales for inward migration that leads to coalescence and the accretion rate to the secondary component. Methods: We employed both semi-analytic methods and two-dimensional numerical simulations, focusing on the case where the binary mass ratio is small but large enough to significantly perturb the disk. Results: We develop the theory of type I migration in this case and go on to determine the conditions for gap formation. We find that when this happens inward migration occurs on a time scale equal to the time required for one half of the secondary mass to be accreted through the unperturbed accretion disk. The accretion rate onto the secondary itself is found to only play a minor role in the orbital evolution as it is of the order of q1/3 of that to the primary. We obtain good general agreement between the semi-analytic and fully numerical approaches and note that the former can be applied to disks with a wide dynamic range on long time scales. Conclusions: We conclude that inward migration induced by interaction with the disk can enable the binary to migrate inwards, alleviating the so-called final parsec problem. When q is sufficiently small, there is no well-pronounced cavity inside the binary orbit, unlike the prograde case. The accretion rate to the secondary does not influence the binary orbital evolution much, but can lead to some interesting observational consequences, provided the accretion efficiency is sufficiently large. In this case the binary may be detected as, for example, two sources of radiation rotating around each other. However, the study should be extended to consider orbits with significant eccentricity and the effects of gravitational radiation at small length scales. Also, torques acting between a circumbinary accretion disk, which has a non-zero inclination with respect to a retrograde binary orbit at large distances, may cause the inclination to increase on a time scale that can be similar to, or smaller than, the time scale of orbital evolution, depending on the disk parameters and binary mass ratio. This is also an aspect for future study. The movies are available in electronic form at http://www.aanda.org

  2. N-Body Simulations of Planetary Accretion Around M Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Ogihara, Masahiro; Ida, Shigeru

    2009-07-01

    We have investigated planetary accretion from planetesimals in terrestrial planet regions inside the ice line around M dwarf stars through N-body simulations including tidal interactions with disk gas. Because of low luminosity of M dwarfs, habitable zones (HZs) are located in inner regions (~0.1 AU). In the close-in HZ, type-I migration and the orbital decay induced by eccentricity damping are efficient according to the high disk gas density in the small orbital radii. Since the orbital decay is terminated around the disk inner edge and the disk edge is close to the HZ, the protoplanets accumulated near the disk edge affect formation of planets in the HZ. Ice lines are also in relatively inner regions at ~0.3 AU. Due to the small orbital radii, icy protoplanets accrete rapidly and undergo type-I migration before disk depletion. The rapid orbital decay, the proximity of the disk inner edge, and large amount of inflow of icy protoplanets are characteristic in planetary accretion in terrestrial planet regions around M dwarfs. In the case of full efficiency of type-I migration predicted by the linear theory, we found that protoplanets that migrate to the vicinity of the host star undergo close scatterings and collisions, and four to six planets eventually remain in mutual mean-motion resonances and their orbits have small eccentricities (lsim0.01) and they are stable both before and after disk gas decays. In the case of slow migration, the resonant capture is so efficient that densely packed ~40 small protoplanets remain in mutual mean-motion resonances. In this case, they start orbit crossing, after the disk gas decays and eccentricity damping due to tidal interaction with gas is no more effective. Through merging of the protoplanets, several planets in widely separated non-resonant orbits with relatively large eccentricities (~0.05) are formed. Thus, the final orbital configurations (separations, resonant or non-resonant, eccentricity, and distribution) of the terrestrial planets around M dwarfs sensitively depend on strength of type-I migration. We also found that large amount of water-ice is delivered by type-I migration from outer regions and final planets near the inner disk edge around M dwarfs are generally abundant in water-ice except for the innermost one that is shielded by the outer planets, unless type-I migration speed is reduced by a factor of more than 100 from that predicted by the linear theory.

  3. Titanium Mesh Reconstruction of Orbital Roof Fracture with Traumatic Encephalocele: A Case Report and Review of Literature

    PubMed Central

    Mokal, Nitin J.; Desai, Mahinoor F.

    2012-01-01

    Orbital roof fractures are rare. Traumatic encephaloceles in the orbital cavity are even rarer, with only 21 cases published to date. Orbital roof fractures are generally encountered in males between 20 and 40 years of age following automobile collision. We report a case of an orbital roof fracture with traumatic encephalocele into the left orbit. Early diagnosis and treatment are very important because the raised intraorbital pressure may irreversibly damage the optic nerve. Computed tomography with 3-D reconstruction, the imaging modality of choice, showed the displaced fracture fragment deep into the orbit. Reconstruction of the orbital roof should be performed in every case. We used an extracranial approach to elevate the fracture with titanium mesh to stabilize the fragment. The cosmetic results were excellent but delay in treatment was responsible for delayed recovery of vision. The case report is followed by a brief overview of orbital roof fractures including pertinent review of literature. PMID:23450105

  4. Evaluation of calibration accuracy of magnetometer sensors of Aist small spacecraft

    NASA Astrophysics Data System (ADS)

    Sedelnikov, A. V.; Filippov, A. S.; Gorozhakina, A. S.

    2018-05-01

    In the paper the technique of estimation of calibration accuracy of magnetometer gauges by the example of an Aist small spacecraft is stated. According to the measurement of the Earth's magnetic field in the orbital flight of a small spacecraft, the parameters of its rotational motion around the center of mass are estimated and primary information is generated for the magnetic actuators of the orbital motion control system. Therefore, calibration of the magnetometer sensors at the ground test stage is essential for the successful execution of the flight program. The technique can be used at the stages of ground and flight tests of magnetic field measuring instruments.

  5. Early Assessment of VIIRS On-Orbit Calibration and Support Activities

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Chiang, Kwofu; McIntire, Jeffrey; Oudrari, Hassan; Wu, Aisheng; Schwaller, Mathew; Butler, James

    2012-01-01

    The Suomi National Polar-orbiting Partnership (S-NPP) satellite, formally the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP), provides a bridge between current and future low-Earth orbiting weather and environmental observation satellite systems. The NASA s NPP VIIRS Characterization Support Team (VCST) is designed to assess the long term geometric and radiometric performance of the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument onboard the S-NPP spacecraft and to support NPP Science Team Principal Investigators (PI) for their independent evaluation of VIIRS Environmental Data Records (EDRs). This paper provides an overview of Suomi NPP VIIRS on-orbit calibration activities and examples of sensor initial on-orbit performance. It focuses on the radiometric calibration support activities and capabilities provided by the NASA VCST.

  6. Intial orbit determination results for Jason-1: towards a 1-cm orbit

    NASA Technical Reports Server (NTRS)

    Haines, B. J.; Haines, B.; Bertiger, W.; Desai, S.; Kuang, D.; Munson, T.; Reichert, A.; Young, L.; Willis, P.

    2002-01-01

    The U.S/France Jason-1 oceanographic mission is carrying state-of-the-art radiometric tracking systems (GPS and Doris) to support precise orbit determination (POD) requirements. The performance of the systems is strongly reflected in the early POD results. Results of both internal and external (e.g., satellite laser ranging) comparisons support that the 2.5 cm radial Rh4S requirement is being readily met, and provide reasons for optimism that 1 cm can be achieved. We discuss the POD strategy underlying these orbits, as well as the challenging issues that bear on the understanding and characterization of an orbit solution at the l-cm level. We also describe a system for producing science quality orbits in near real time in order to support emerging applications in operational oceanography.

  7. Differentiation between inflammatory and neoplastic orbital conditions based on computed tomographic signs.

    PubMed

    Lederer, Kristina; Ludewig, Eberhard; Hechinger, Harald; Parry, Andrew T; Lamb, Christopher R; Kneissl, Sibylle

    2015-07-01

    To identify computed tomographic (CT) signs that could be used to differentiate inflammatory from neoplastic orbital conditions in small animals. Fifty-two animals (25 cats, 21 dogs, 4 rabbits, and 2 rodents). Case-control study in which CT images of animals with histopathologic diagnosis of inflammatory (n = 11), neoplastic orbital conditions (n = 31), or normal control animals (n = 10) were reviewed independently by five observers without the knowledge of the history or diagnosis. Observers recorded their observations regarding specific anatomical structures within the orbit using an itemized form containing the following characteristics: definitely normal; probably normal; equivocal; probably abnormal; and definitely abnormal. Results were statistically analyzed using Fleiss' kappa and logistic regression analyses. The overall level of agreement between observers about the presence or absence of abnormal CT signs in animals with orbital disease was poor to moderate, but was highest for observations concerning orbital bones (κ = 0.62) and involvement of the posterior segment (κ = 0.52). Significant associations between abnormalities and diagnosis were found for four structures: Abnormalities affecting orbital bones (odds ratio [OR], 1.7) and anterior ocular structures (OR, 1.5) were predictive of neoplasia, while abnormalities affecting extraconal fat (OR, 1.7) and skin (OR, 1.4) were predictive of inflammatory conditions. Orbital CT is an imaging test with high specificity. Fat stranding, a CT sign not previously emphasized in veterinary medicine, was significantly associated with inflammatory conditions. Low observer agreement probably reflects the limited resolution of CT for small orbital structures. © 2014 American College of Veterinary Ophthalmologists.

  8. Navigation for Rendezvous and Orbit Missions to Small Solar-System Bodies

    NASA Technical Reports Server (NTRS)

    Helfrich, C. E.; Scheeres, D. J.; Williams, B. G.; Bollman, W. E.; Davis, R. P.; Synnott, S. P.; Yeomans, D. K.

    1994-01-01

    All previous spacecraft encounters with small solar-system bodies, such as asteroids and comets, have been flybys (e.g. Galileo's flybys of the asteroids Gaspra and Ida). Several future projects plan to build on the flyby experience and progress to the next level with rendezvous and orbit missions to small bodies. This presents several new issues and challenges for navigation which have never been considered before. This paper addresses these challenges by characterizing the different phases of a small body rendezvous and by describing the navigation requirements and goals of each phase. Prior to the encounter with the small body, improvements to its ephemeris and initial estimates of its physical parameters, e.g. size, shape, mass, rotation rate, rotation pole, and possibly outgassing, are made as accurately as ground-based measurements allow. This characterization can take place over years...

  9. Electric propulsion reliability: Statistical analysis of on-orbit anomalies and comparative analysis of electric versus chemical propulsion failure rates

    NASA Astrophysics Data System (ADS)

    Saleh, Joseph Homer; Geng, Fan; Ku, Michelle; Walker, Mitchell L. R.

    2017-10-01

    With a few hundred spacecraft launched to date with electric propulsion (EP), it is possible to conduct an epidemiological study of EP's on orbit reliability. The first objective of the present work was to undertake such a study and analyze EP's track record of on orbit anomalies and failures by different covariates. The second objective was to provide a comparative analysis of EP's failure rates with those of chemical propulsion. Satellite operators, manufacturers, and insurers will make reliability- and risk-informed decisions regarding the adoption and promotion of EP on board spacecraft. This work provides evidence-based support for such decisions. After a thorough data collection, 162 EP-equipped satellites launched between January 1997 and December 2015 were included in our dataset for analysis. Several statistical analyses were conducted, at the aggregate level and then with the data stratified by severity of the anomaly, by orbit type, and by EP technology. Mean Time To Anomaly (MTTA) and the distribution of the time to (minor/major) anomaly were investigated, as well as anomaly rates. The important findings in this work include the following: (1) Post-2005, EP's reliability has outperformed that of chemical propulsion; (2) Hall thrusters have robustly outperformed chemical propulsion, and they maintain a small but shrinking reliability advantage over gridded ion engines. Other results were also provided, for example the differentials in MTTA of minor and major anomalies for gridded ion engines and Hall thrusters. It was shown that: (3) Hall thrusters exhibit minor anomalies very early on orbit, which might be indicative of infant anomalies, and thus would benefit from better ground testing and acceptance procedures; (4) Strong evidence exists that EP anomalies (onset and likelihood) and orbit type are dependent, a dependence likely mediated by either the space environment or differences in thrusters duty cycles; (5) Gridded ion thrusters exhibit both infant and wear-out failures, and thus would benefit from a reliability growth program that addresses both these types of problems.

  10. Traumatic orbital CSF leak

    PubMed Central

    Borumandi, Farzad

    2013-01-01

    Compared to the cerebrospinalfluid (CSF) leak through the nose and ear, the orbital CSF leak is a rare and underreported condition following head trauma. We present the case of a 49-year-old woman with oedematous eyelid swelling and ecchymosis after a seemingly trivial fall onto the right orbit. Apart from the above, she was clinically unremarkable. The CT scan revealed a minimally displaced fracture of the orbital roof with no emphysema or intracranial bleeding. The fractured orbital roof in combination with the oedematous eyelid swelling raised the suspicion for orbital CSF leak. The MRI of the neurocranium demonstrated a small-sized CSF fistula extending from the anterior cranial fossa to the right orbit. The patient was treated conservatively and the lid swelling resolved completely after 5 days. Although rare, orbital CSF leak needs to be included in the differential diagnosis of periorbital swelling following orbital trauma. PMID:24323381

  11. Orbital embryonal rhabdomyosarcoma with metastasis in a young dog.

    PubMed

    Kato, Y; Notake, H; Kimura, J; Murakami, M; Hirata, A; Sakai, H; Yanai, T

    2012-01-01

    A 2-year-old male Welsh corgi dog was brought to an animal hospital because of left upper eyelid enlargement with lachrymal gland protrusion. The lachrymal and orbital cavity mass was removed surgically. Microscopically, the orbital mass consisted of a mixture of large rhabdomyoblastic and small round tumour cells. Immunohistochemically, the rhabdomyoblastic cells expressed desmin and myoglobin and the small round cells expressed desmin, myogenin and MyoD1. A diagnosis of embryonal rhabdomyosarcoma (ERS) was made. One month later, multiple masses throughout the body were identified, in particular around the cervical region. One of these lesions was sampled and diagnosed as metastatic ERS. The dog died 84 days after the time of first admission. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Earth imaging and scientific observations by SSTI ``Clark'' a NASA technology demonstration spacecraft

    NASA Astrophysics Data System (ADS)

    Hayduk, Robert J.; Scott, Walter S.; Walberg, Gerald D.; Butts, James J.; Starr, Richard D.

    1997-01-01

    The Small Satellite Technology Initiative (SSTI) is a National Aeronautics and Space Administration (NASA) program to demonstrate smaller, high technology satellites constructed rapidly and less expensively. Under SSTI, NASA funded the development of ``Clark,'' a high technology demonstration satellite to provide 3-m resolution panchromatic and 15-m resolution multispectral images, as well as collect atmospheric constituent and cosmic x-ray data. The 690-lb. satellite, to be launched in early 1997, will be in a 476 km, circular, sun-synchronous polar orbit. This paper describes the program objectives, the technical characteristics of the sensors and satellite, image processing, archiving and distribution. Data archiving and distribution will be performed by NASA Stennis Space Center and by the EROS Data Center, Sioux Falls, South Dakota, USA.

  13. Collisional dynamics of perturbed particle disks in the solar system

    NASA Technical Reports Server (NTRS)

    Roberts, W. W.; Stewart, G. R.

    1987-01-01

    Investigations of the collisional evolution of particulate disks subject to the gravitational perturbation of a more massive particle orbiting within the disk are underway. Both numerical N-body simulations using a novel collision algorithm and analytical kinetic theory are being employed to extend our understanding of perturbed disks in planetary rings and during the formation of the solar system. Particular problems proposed for investigation are: (1) The development and testing of general criteria for a small moonlet to clear a gap and produce observable morphological features in planetary rings; (2) The development of detailed models of collisional damping of the wavy edges observed on the Encke division of Saturn's A ring; and (3) The determination of the extent of runaway growth of the few largest planetesimals during the early stages of planetary accretion.

  14. The ESA RADGLASS activity: a radiation study of non rad-hard glasses

    NASA Astrophysics Data System (ADS)

    Manolis, Ilias; Bézy, Jean-Loup; Costantino, Alessandra; Vink, Ramon; Deep, Atul; Ahmad, Munadi; Amorim, Emmanuel; Miranda, Micael D.; Meynart, Roland

    2015-10-01

    Only a small set of radiation hardened optical glasses are currently offered in the market, thus drastically limiting the optical design choices available to the engineers at the early phases of an instrument development. Furthermore, availability of those glasses cannot be easily guaranteed for the long term horizon of future space instrument developments. Radiation tests on conventional glasses on the other hand have shown significant sensitivity to high radiation levels but such levels are not necessarily representative of typical low Earth (LEO) orbits. We have conducted irradiation campaigns on several different types of conventional, non-radiation hard glasses, selected from the wider pool of the Schott "new" arsenic and lead free series (N-*) and characterized their spectral transmission properties before and after ionizing dose deposition. We report our first findings here.

  15. Uncertainty Requirement Analysis for the Orbit, Attitude, and Burn Performance of the 1st Lunar Orbit Insertion Maneuver

    NASA Astrophysics Data System (ADS)

    Song, Young-Joo; Bae, Jonghee; Kim, Young-Rok; Kim, Bang-Yeop

    2016-12-01

    In this study, the uncertainty requirements for orbit, attitude, and burn performance were estimated and analyzed for the execution of the 1st lunar orbit insertion (LOI) maneuver of the Korea Pathfinder Lunar Orbiter (KPLO) mission. During the early design phase of the system, associate analysis is an essential design factor as the 1st LOI maneuver is the largest burn that utilizes the onboard propulsion system; the success of the lunar capture is directly affected by the performance achieved. For the analysis, the spacecraft is assumed to have already approached the periselene with a hyperbolic arrival trajectory around the moon. In addition, diverse arrival conditions and mission constraints were considered, such as varying periselene approach velocity, altitude, and orbital period of the capture orbit after execution of the 1st LOI maneuver. The current analysis assumed an impulsive LOI maneuver, and two-body equations of motion were adapted to simplify the problem for a preliminary analysis. Monte Carlo simulations were performed for the statistical analysis to analyze diverse uncertainties that might arise at the moment when the maneuver is executed. As a result, three major requirements were analyzed and estimated for the early design phase. First, the minimum requirements were estimated for the burn performance to be captured around the moon. Second, the requirements for orbit, attitude, and maneuver burn performances were simultaneously estimated and analyzed to maintain the 1st elliptical orbit achieved around the moon within the specified orbital period. Finally, the dispersion requirements on the B-plane aiming at target points to meet the target insertion goal were analyzed and can be utilized as reference target guidelines for a mid-course correction (MCC) maneuver during the transfer. More detailed system requirements for the KPLO mission, particularly for the spacecraft bus itself and for the flight dynamics subsystem at the ground control center, are expected to be prepared and established based on the current results, including a contingency trajectory design plan.

  16. Space shuttle engineering and operations support. Avionics system engineering

    NASA Technical Reports Server (NTRS)

    Broome, P. A.; Neubaur, R. J.; Welsh, R. T.

    1976-01-01

    The shuttle avionics integration laboratory (SAIL) requirements for supporting the Spacelab/orbiter avionics verification process are defined. The principal topics are a Spacelab avionics hardware assessment, test operations center/electronic systems test laboratory (TOC/ESL) data processing requirements definition, SAIL (Building 16) payload accommodations study, and projected funding and test scheduling. Because of the complex nature of the Spacelab/orbiter computer systems, the PCM data link, and the high rate digital data system hardware/software relationships, early avionics interface verification is required. The SAIL is a prime candidate test location to accomplish this early avionics verification.

  17. The Exploration of the Pluto System by New Horizons

    NASA Astrophysics Data System (ADS)

    Weaver, Harold; Stern, S. Alan

    2016-07-01

    The New Horizons (NH) mission was selected by NASA in November 2001 to conduct the first in situ reconnaissance of Pluto and the Kuiper belt. The NH spacecraft was launched on 2006 January 19, received a gravity assist from Jupiter during closest approach on 2007 February 28, and flew 12,500 km above Pluto's surface on 2015 July 14. NH carried a sophisticated suite of seven scientific instruments, altogether weighing less than 30 kg and drawing less than 30 W of power, that includes panchromatic and color imagers, ultraviolet and infrared spectral imagers, a radio science package, plasma and charged particle sensors, and a dust counting experiment. The NH flyby of the Pluto system executed flawlessly, providing unprecedented detail on the Pluto-Charon binary and Pluto's four small moons (Styx, Nix, Kerberos, and Hydra, in order of their orbital distance from Pluto). Pluto's surface displays diverse landforms, terrain ages, albedos, colors, and composition gradients. Evidence is found for a water-ice crust, geologically young surface units, surface ice convection, wind streaks, volatile transport, and glacial flow. NH discovered trace hydrocarbons in Pluto's atmosphere, multiple global haze layers, and a surface pressure near 10 microbars. Pluto's diverse surface geology and long term activity raise fundamental questions about how small planets remain active many billions of years (Gyr) after formation. Charon displays tectonics, evidence for a heterogeneous crustal composition, and a puzzling giant hood of dark material covering its North Pole. Crater density statistics for Charon's surface give a crater retention age of 4-4.5 Ga, indicating that Charon's geological evolution largely ceased early in its history. Nix and Hydra have high albedos suggestive of H2O-ice covered surfaces. Crater densities on Nix and Hydra indicate surface ages > 4 Ga. All the small satellites have highly elongated shapes and are rotating much faster then synchronous with their orbital periods, with rotational poles clustered near the Pluto-Charon orbital plane. The NH spacecraft remains healthy and was targeted toward the flyby of a small (~30-40 km diameter) KBO in late-2015, enabling the study of an object (2014 MU69) in a completely different dynamical class (cold classical) than Pluto, if NASA approves an Extended Mission phase. The proposed Extended Mission would also include observations of more than 20 other KBOs at resolutions and geometries not feasible from Earth, and studies of the heliospheric plasma, neutral H and He, and the dust environment out to 50 AU from the Sun.

  18. The Hot Orbit: Orbital Cellulitis

    PubMed Central

    Chaudhry, Imtiaz A.; Al-Rashed, Waleed; Arat, Yonca O.

    2012-01-01

    Orbital cellulitis is an uncommon condition previously associated with severe complications. If untreated, orbital cellulitis can be potentially sight and life threatening. It can affect both adults and children but has a greater tendency to occur in the pediatric age group. The infection most commonly originates from sinuses, eyelids or face, retained foreign bodies, or distant soources by hematogenous spread. It is characterized by eyelid edema, erythema, chemosis, proptosis, blurred vision, fever, headache, and double vision. A history of upper respiratory tract infection prior to the onset is very common especially in children. In the era prior to antibiotics, vision loss from orbital cellulitis was a dreaded complication. Currently, imaging studies for detection of orbital abcess, the use of antibiotics and early drainage have mitigated visual morbidity significantly. The purpose of this review is to describe current investigative strategies and management options in the treatment of orbital cellulitis, establish their effectiveness and possible complications due to late intervention. PMID:22346113

  19. Small Project Rapid Integration and Test Environment (SPRITE) An Innovation Space for Small Projects Design, Development, Integration, and Test

    NASA Technical Reports Server (NTRS)

    Lee, Ashley; Rackoczy, John; Heater, Daniel; Sanders, Devon; Tashakkor, Scott

    2013-01-01

    Over the past few years interest in the development and use of small satellites has rapidly gained momentum with universities, commercial, and government organizations. In a few years we may see networked clusters of dozens or even hundreds of small, cheap, easily replaceable satellites working together in place of the large, expensive and difficult-to-replace satellites now in orbit. Standards based satellite buses and deployment mechanisms, such as the CubeSat and Poly Pico-satellite Orbital Deployer (P-POD), have stimulated growth in this area. The use of small satellites is also proving to be a cost effective capability in many areas traditionally dominated by large satellites, though many challenges remain. Currently many of these small satellites undergo very little testing prior to flight. As these small satellites move from technology demonstration and student projects toward more complex operational assets, it is expected that the standards for verification and validation will increase.

  20. Morphology and kinematics of orbital components in CALIFA galaxies across the Hubble sequence

    NASA Astrophysics Data System (ADS)

    Zhu, Ling; van de Ven, Glenn; Méndez-Abreu, Jairo; Obreja, Aura

    2018-06-01

    Based on the stellar orbit distribution derived from orbit-superposition Schwarzschild models, we decompose each of 250 representative present-day galaxies into four orbital components: cold with strong rotation, warm with weak rotation, hot with dominant random motion and counter-rotating (CR). We rebuild the surface brightness (Σ) of each orbital component and we present in figures and tables a quantification of their morphologies using the Sersic index n, concentration C = log {(Σ _{0.1R_e}/Σ _{R_e})} and intrinsic flattening qRe and qRmax, with Re the half-light-radius and Rmax the CALIFA data coverage. We find that: (1) kinematic hotter components are generally more concentrated and rounder than colder components, and (2) all components become more concentrated and thicker/rounder in more massive galaxies; they change from disk-like in low mass late-type galaxies to bulge-like in high-mass early type galaxies. Our findings suggest that Sersic n is not a good discriminator between rotating bulges and non-rotating bulges. The luminosity fraction of cold orbits fcold is well correlated with the photometrically-decomposed disk fraction fdisk as f_{cold} = 0.14 + 0.23f_{disk}. Similarly, the hot orbit fraction fhot is correlated with the bulge fraction fbulge as f_{hot} = 0.19 + 0.31f_{bulge}. The warm orbits mainly contribute to disks in low-mass late-type galaxies, and to bulges in high-mass early-type galaxies. The cold, warm, and hot components generally follow the same morphology (ɛ = 1 - qRmax) versus kinematics (σ _z^2/\\overline{V_{tot}^2}) relation as the thin disk, thick disk/pseudo bulge, and classical bulge identified from cosmological simulations.

  1. Characterization of spacecraft and environmental disturbances on a SmallSat

    NASA Technical Reports Server (NTRS)

    Johnson, Thomas A.; Nguyen, Dung Phu Chi; Cuda, Vince; Freesland, Doug

    1994-01-01

    The objective of this study is to model the on-orbit vibration environment encountered by a SmallSat. Vibration control issues are common to the Earth observing, imaging, and microgravity communities. A spacecraft may contain dozens of support systems and instruments each a potential source of vibration. The quality of payload data depends on constraining vibration so that parasitic disturbances do not affect the payload's pointing or microgravity requirement. In practice, payloads are designed incorporating existing flight hardware in many cases with nonspecific vibration performance. Thus, for the development of a payload, designers require a thorough knowledge of existing mechanical devices and their associated disturbance levels. This study evaluates a SmallSat mission and seeks to answer basic questions concerning on-orbit vibration. Payloads were considered from the Earth observing, microgravity, and imaging communities. Candidate payload requirements were matched to spacecraft bus resources of present day SmallSats. From the set of candidate payloads, the representative payload GLAS (Geoscience Laser Altimeter System) was selected. The requirements of GLAS were considered very stringent for the 150 - 500 kg class of payloads. Once the payload was selected, a generic SmallSat was designed in order to accommodate the payload requirements (weight, size, power, etc.). This study seeks to characterize the on-orbit vibration environment of a SmallSat designed for this type of mission and to determine whether a SmallSat can provide the precision pointing and jitter control required for earth observing payloads.

  2. Erosion Patterns May Guide Mars Rover to Rocks Recently Exposed

    NASA Image and Video Library

    2013-12-09

    These two images come from the HiRISE camera on NASA Mars Reconnaissance Orbiter. Images of locations in Gale Crater taken from orbit around Mars reveal evidence of erosion in recent geological times and development of small scarps, or vertical surfaces

  3. Orbital and Ventromedial Prefrontal Cortex Functioning in Parkinson's Disease: Neuropsychological Evidence

    ERIC Educational Resources Information Center

    Poletti, Michele; Bonuccelli, Ubaldo

    2012-01-01

    A recent paper (Zald & Andreotti, 2010) reviewed neuropsychological tasks that assess the function of the orbital and ventromedial portions of the prefrontal cortex (OMPFC). Neuropathological studies have shown that the function of the OMPFC should be preserved in the early stages of Parkinson's disease (PD) but becomes affected in the advanced…

  4. The Results of Complex Research of GSS "SBIRS-Geo 2" Behavior in the Orbit

    NASA Astrophysics Data System (ADS)

    Sukhov, P. P.; Epishev, V. P.; Sukhov, K. P.; Karpenko, G. F.; Motrunich, I. I.

    2017-04-01

    The new generation of geosynchronous satellites SBIRS of US Air Force early warning system series (Satellite Early Warning System) replaced the previous DSP-satellite series (Defense Support Program). Currently from the territory of Ukraine, several GSS of DSP series and one "SBIRS-Geo 2" are available to observation. During two years of observations, we have received and analyzed for two satellites more than 30 light curves in B, V, R photometric system. As a result of complex research, we propose a model of "SBIRS-Geo" 2 orbital behavior compared with the same one of the DSP-satellite. To control the entire surface of the Earth with 15-16 sec interval, including the polar regions, 4 SBIRS satellites located every 90 deg. along the equator are enough in GEO orbit. Since DSP-satellites provide the coverage of the Earth's surface to 83 deg. latitudes with a period of 50 sec, DSP-satellites should be 8. All the conclusions were made based on an analysis of photometric and coordinate observations using the simulation of the dynamics of their orbital behavior.

  5. Calculations of electric dipole moments and static dipole polarizabilities based on the two-component normalized elimination of the small component method.

    PubMed

    Yoshizawa, Terutaka; Zou, Wenli; Cremer, Dieter

    2016-11-14

    The analytical energy gradient and Hessian of the two-component Normalized Elimination of the Small Component (2c-NESC) method with regard to the components of the electric field are derived and used to calculate spin-orbit coupling (SOC) corrected dipole moments and dipole polarizabilities of molecules, which contain elements with high atomic number. Calculated 2c-NESC dipole moments and isotropic polarizabilities agree well with the corresponding four-component-Dirac Hartree-Fock or density functional theory values. SOC corrections for the electrical properties are in general small, but become relevant for the accurate prediction of these properties when the molecules in question contain sixth and/or seventh period elements (e.g., the SO effect for At 2 is about 10% of the 2c-NESC polarizability). The 2c-NESC changes in the electric molecular properties are rationalized in terms of spin-orbit splitting and SOC-induced mixing of frontier orbitals with the same j = l + s quantum numbers.

  6. Kalman filter implementation for small satellites using constraint GPS data

    NASA Astrophysics Data System (ADS)

    Wesam, Elmahy M.; Zhang, Xiang; Lu, Zhengliang; Liao, Wenhe

    2017-06-01

    Due to the increased need for autonomy, an Extended Kalman Filter (EKF) has been designed to autonomously estimate the orbit using GPS data. A propagation step models the satellite dynamics as a two body with J2 (second zonal effect) perturbations being suitable for orbits in altitudes higher than 600 km. An onboard GPS receiver provides continuous measurement inputs. The continuity of measurements decreases the errors of the orbit determination algorithm. Power restrictions are imposed on small satellites in general and nanosatellites in particular. In cubesats, the GPS is forced to be shut down most of the mission’s life time. GPS is turned on when experiments like atmospheric ones are carried out and meter level accuracy for positioning is required. This accuracy can’t be obtained by other autonomous sensors like magnetometer and sun sensor as they provide kilometer level accuracy. Through simulation using Matlab and satellite tool kit (STK) the position accuracy is analyzed after imposing constrained conditions suitable for small satellites and a very tight one suitable for nanosatellite missions.

  7. Calculations of electric dipole moments and static dipole polarizabilities based on the two-component normalized elimination of the small component method

    NASA Astrophysics Data System (ADS)

    Yoshizawa, Terutaka; Zou, Wenli; Cremer, Dieter

    2016-11-01

    The analytical energy gradient and Hessian of the two-component Normalized Elimination of the Small Component (2c-NESC) method with regard to the components of the electric field are derived and used to calculate spin-orbit coupling (SOC) corrected dipole moments and dipole polarizabilities of molecules, which contain elements with high atomic number. Calculated 2c-NESC dipole moments and isotropic polarizabilities agree well with the corresponding four-component-Dirac Hartree-Fock or density functional theory values. SOC corrections for the electrical properties are in general small, but become relevant for the accurate prediction of these properties when the molecules in question contain sixth and/or seventh period elements (e.g., the SO effect for At2 is about 10% of the 2c-NESC polarizability). The 2c-NESC changes in the electric molecular properties are rationalized in terms of spin-orbit splitting and SOC-induced mixing of frontier orbitals with the same j = l + s quantum numbers.

  8. The Yarkovsky and YORP Effects

    NASA Astrophysics Data System (ADS)

    Vokrouhlický, D.; Bottke, W. F.; Chesley, S. R.; Scheeres, D. J.; Statler, T. S.

    The Yarkovsky effect describes a small but significant force that affects the orbital motion of meteoroids and asteroids smaller than 30-40 km in diameter. It is caused by sunlight; when these bodies heat up in the Sun, they eventually reradiate the energy away in the thermal waveband, which in turn creates a tiny thrust. This recoil acceleration is much weaker than solar and planetary gravitational forces, but it can produce measurable orbital changes over decades and substantial orbital effects over millions to billions of years. The same physical phenomenon also creates a thermal torque that, complemented by a torque produced by scattered sunlight, can modify the rotation rates and obliquities of small bodies as well. This rotational variant has been coined the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect. During the past decade or so, the Yarkovsky and YORP effects have been used to explore and potentially resolve a number of unsolved mysteries in planetary science dealing with small bodies. Here we review the main results to date, and preview the goals for future work.

  9. Orbital debris research at NASA Johnson Space Center, 1986-1988

    NASA Technical Reports Server (NTRS)

    Reynolds, Robert C.; Potter, Andrew E., Jr.

    1989-01-01

    Research on orbital debris has intensified in recent years as the number of debris objects in orbit has grown. The population of small debris has now reached the level that orbital debris has become an important design factor for the Space Station. The most active center of research in this field has been the NASA Lyndon B. Johnson Space Center. Work is being done on the measurement of orbital debris, development of models of the debris population, and development of improved shielding against hypervelocity impacts. Significant advances have been made in these areas. The purpose of this document is to summarize these results and provide references for further study.

  10. Orbital Debris: Quarterly News, Volume 14, Issue 2

    NASA Technical Reports Server (NTRS)

    Liou, J. C. (Editor); Shoots, Debi (Editor)

    2010-01-01

    This bulletin contains articles from the Orbital Debris Program office. This issue's articles are: "Orbital Debris Success Story --A Decade in the Making", "Old and New Satellite Breakups Identified," "Update on Three Major Debris Clouds," and "MMOD Inspection of the HST Bay 5 Multi-Layer Insulation Panel" about micrometeoroid and orbital debris (MMOD) inspection of the Hubble Space Telescope (HST) insulation panel. A project review is also included (i.e., "Small Debris Observations from the Iridium 33/Cosmos 2251 Collision.") There are also abstra cts of conference papers from the staff of the program office.

  11. The periodic dynamics of the irregular heterogeneous celestial bodies

    NASA Astrophysics Data System (ADS)

    Lan, Lei; Yang, Mo; Baoyin, Hexi; Li, Junfeng

    2017-02-01

    In this paper, we develop a methodology to study the periodic dynamics of irregular heterogeneous celestial bodies. Heterogeneous bodies are not scarce in space. It has been found that bodies, such as 4 Vesta, 624 Hektor, 87 Sylvia, 16 Psyche and 25143 Itokawa, may all have varied internal structures. They can be divided into large-scale and small-scale cases. The varied internal structures of large-scale bodies always result from gradient pressure inside, which leads to compactness differences of the inner material. However, the heterogeneity of a small-scale body is always reflected by the different densities of different areas, which may originate from collision formation from multiple objects. We propose a modeling procedure for the heterogeneous bodies derived from the conventional polyhedral method and then compare its dynamical characteristics with those of the homogeneous case. It is found that zero-velocity curves, positions of equilibrium points, types of bifurcations in the continuation of the orbital family and the stabilities of periodic orbits near the heterogeneous body are different from those in the homogeneous case. The suborbicular orbits near the equatorial plane are potential parking orbits for a future mission, so we discuss the switching of the orbital stability of the family because it has fundamental significance to orbit maintenance and operations around actual asteroids.

  12. Autonomous formation flying based on GPS — PRISMA flight results

    NASA Astrophysics Data System (ADS)

    D'Amico, Simone; Ardaens, Jean-Sebastien; De Florio, Sergio

    2013-01-01

    This paper presents flight results from the early harvest of the Spaceborne Autonomous Formation Flying Experiment (SAFE) conducted in the frame of the Swedish PRISMA technology demonstration mission. SAFE represents one of the first demonstrations in low Earth orbit of an advanced guidance, navigation and control system for dual-spacecraft formations. Innovative techniques based on differential GPS-based navigation and relative orbital elements control are validated and tuned in orbit to fulfill the typical requirements of future distributed scientific instruments for remote sensing.

  13. Integrated orbital servicing study follow-on. Volume 2: Technical analysis and system design

    NASA Technical Reports Server (NTRS)

    1978-01-01

    In-orbit service functional and physical requirements to support both low and high Earth orbit servicing/maintenance operations were defined, an optimum servicing system configuration was developed and mockups and early prototype hardware were fabricated to demonstrate and validate the concepts selected. Significant issues addressed include criteria for concept selection; representative mission equipment and approaches to their design for serviceability; significant serviceable spacecraft design aspects; servicer mechanism operation in one-g; approaches for the demonstration/simulation; and service mechanism structure design approach.

  14. KSC-99pp0441

    NASA Image and Video Library

    1999-04-26

    In this broad view, the new full-color, flat panel Multifunction Electronic Display Subsystem (MEDS) is shown in the cockpit of the orbiter Atlantis. It is often called the "glass cockpit." The recently installed MEDS upgrade improves crew/orbiter interaction with easy-to-read, graphic portrayals of key flight indicators like attitude display and mach speed. The installation makes Atlantis the most modern orbiter in the fleet and equals the systems on current commercial jet airliners and military aircraft. Atlantis is scheduled to fly on mission STS-101 in early December

  15. Illusion and reality in the atmospheres of exoplanets

    NASA Astrophysics Data System (ADS)

    Deming, L. Drake; Seager, Sara

    2017-01-01

    The atmospheres of exoplanets reveal all their properties beyond mass, radius, and orbit. Based on bulk densities, we know that exoplanets larger than 1.5 Earth radii must have gaseous envelopes and, hence, atmospheres. We discuss contemporary techniques for characterization of exoplanetary atmospheres. The measurements are difficult, because—even in current favorable cases—the signals can be as small as 0.001% of the host star's flux. Consequently, some early results have been illusory and not confirmed by subsequent investigations. Prominent illusions to date include polarized scattered light, temperature inversions, and the existence of carbon planets. The field moves from the first tentative and often incorrect conclusions, converging to the reality of exoplanetary atmospheres. That reality is revealed using transits for close-in exoplanets and direct imaging for young or massive exoplanets in distant orbits. Several atomic and molecular constituents have now been robustly detected in exoplanets as small as Neptune. In our current observations, the effects of clouds and haze appear ubiquitous. Topics at the current frontier include the measurement of heavy element abundances in giant planets, detection of carbon-based molecules, measurement of atmospheric temperature profiles, definition of heat circulation efficiencies for tidally locked planets, and the push to detect and characterize the atmospheres of super-Earths. Future observatories for this quest include the James Webb Space Telescope and the new generation of extremely large telescopes on the ground. On a more distant horizon, NASA's study concepts for the Habitable Exoplanet Imaging Mission (HabEx) and the Large UV/Optical/Infrared Surveyor (LUVOIR) missions could extend the study of exoplanetary atmospheres to true twins of Earth.

  16. A resonant family of dynamically cold small bodies in the near-Earth asteroid belt

    NASA Astrophysics Data System (ADS)

    de la Fuente Marcos, C.; de la Fuente Marcos, R.

    2013-07-01

    Near-Earth objects (NEOs) moving in resonant, Earth-like orbits are potentially important. On the positive side, they are the ideal targets for robotic and human low-cost sample return missions and a much cheaper alternative to using the Moon as an astronomical observatory. On the negative side and even if small in size (2-50 m), they have an enhanced probability of colliding with the Earth causing local but still significant property damage and loss of life. Here, we show that the recently discovered asteroid 2013 BS45 is an Earth co-orbital, the sixth horseshoe librator to our planet. In contrast with other Earth's co-orbitals, its orbit is strikingly similar to that of the Earth yet at an absolute magnitude of 25.8, an artificial origin seems implausible. The study of the dynamics of 2013 BS45 coupled with the analysis of NEO data show that it is one of the largest and most stable members of a previously undiscussed dynamically cold group of small NEOs experiencing repeated trappings in the 1:1 commensurability with the Earth. This new resonant family is well constrained in orbital parameter space and it includes at least 10 other transient members: 2003 YN107, 2006 JY26, 2009 SH2 and 2012 FC71 among them. 2012 FC71 represents the best of both worlds as it is locked in a Kozai resonance and is unlikely to impact the Earth. These objects are not primordial and may have originated within the Venus-Earth-Mars region or in the main-belt, then transition to Amor-class asteroid before entering Earth's co-orbital region. Objects in this group could be responsible for the production of Earth's transient irregular natural satellites.

  17. High-precision broad-band linear polarimetry of early-type binaries. I. Discovery of variable, phase-locked polarization in HD 48099

    NASA Astrophysics Data System (ADS)

    Berdyugin, A.; Piirola, V.; Sadegi, S.; Tsygankov, S.; Sakanoi, T.; Kagitani, M.; Yoneda, M.; Okano, S.; Poutanen, J.

    2016-06-01

    Aims: We investigate the structure of the O-type binary system HD 48099 by measuring linear polarization that arises due to light scattering process. High-precison polarimetry provides independent estimates of the orbital parameters and gives important information on the properties of the system. Methods: Linear polarization measurements of HD 48099 in the B, V and R passbands with the high-precision Dipol-2 polarimeter have been carried out. The data have been obtained with the 60 cm KVA (Observatory Roque de los Muchachos, La Palma, Spain) and T60 (Haleakala, Hawaii, USA) remotely controlled telescopes during 31 observing nights. Polarimetry in the optical wavelengths has been complemented by observations in the X-rays with the Swift space observatory. Results: Optical polarimetry revealed small intrinsic polarization in HD 48099 with ~0.1% peak to peak variation over the orbital period of 3.08 d. The variability pattern is typical for binary systems, showing strong second harmonic of the orbital period. We apply our model code for the electron scattering in the circumstellar matter to put constraints on the system geometry. A good model fit is obtained for scattering of light on a cloud produced by the colliding stellar winds. The geometry of the cloud, with a broad distribution of scattering particles away from the orbital plane, helps in constraining the (low) orbital inclination. We derive from the polarization data the inclination I = 17° ± 2° and the longitude of the ascending node Ω = 82° ± 1° of the binary orbit. The available X-ray data provide additional evidence for the existence of the colliding stellar winds in the system. Another possible source of the polarized light could be scattering from the stellar photospheres. The models with circumstellar envelopes, or matter confined to the orbital plane, do not provide good constraints on the low inclination, better than I ≤ 27°, as is already suggested by the absence of eclipses. The polarization data for HD 48099 are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/591/A92

  18. Spectral properties of minimal-basis-set orbitals: Implications for molecular electronic continuum states

    NASA Astrophysics Data System (ADS)

    Langhoff, P. W.; Winstead, C. L.

    Early studies of the electronically excited states of molecules by John A. Pople and coworkers employing ab initio single-excitation configuration interaction (SECI) calculations helped to simulate related applications of these methods to the partial-channel photoionization cross sections of polyatomic molecules. The Gaussian representations of molecular orbitals adopted by Pople and coworkers can describe SECI continuum states when sufficiently large basis sets are employed. Minimal-basis virtual Fock orbitals stabilized in the continuous portions of such SECI spectra are generally associated with strong photoionization resonances. The spectral attributes of these resonance orbitals are illustrated here by revisiting previously reported experimental and theoretical studies of molecular formaldehyde (H2CO) in combination with recently calculated continuum orbital amplitudes.

  19. Confirmation of Earth-Mass Planets Orbiting the Millisecond Pulsar PSR B1257 + 12.

    PubMed

    Wolszczan, A

    1994-04-22

    The discovery of two Earth-mass planets orbiting an old ( approximately 10(9) years), rapidly spinning neutron star, the 6.2-millisecond radio pulsar PSR B1257+12, was announced in early 1992. It was soon pointed out that the approximately 3:2 ratio of the planets' orbital periods should lead to accurately predictable and possibly measurable gravitational perturbations of their orbits. The unambiguous detection of this effect, after 3 years of systematic timing observations of PSR B1257+12 with the 305-meter Arecibo radiotelescope, as well as the discovery of another, moon-mass object in orbit around the pulsar, constitutes irrefutable evidence that the first planetary system around a star other than the sun has been identified.

  20. Using Solar Radiation Pressure to Control L2 Orbits

    NASA Technical Reports Server (NTRS)

    Tene, Noam; Richon, Karen; Folta, David

    1998-01-01

    The main perturbations at the Sun-Earth Lagrange points L1 and L2 are from solar radiation pressure (SRP), the Moon and the planets. Traditional approaches to trajectory design for Lagrange-point orbits use maneuvers every few months to correct for these perturbations. The gravitational effects of the Moon and the planets are small and periodic. However, they cannot be neglected because small perturbations in the direction of the unstable eigenvector are enough to cause exponential growth within a few months. The main effect of a constant SRP is to shift the center of the orbit by a small distance. For spacecraft with large sun-shields like the Microwave Anisotropy Probe (MAP) and the Next Generation Space Telescope (NGST), the SRP effect is larger than all other perturbations and depends mostly on spacecraft attitude. Small variations in the spacecraft attitude are large enough to excite or control the exponential eigenvector. A closed-loop linear controller based on the SRP variations would eliminate one of the largest errors to the orbit and provide a continuous acceleration for use in controlling other disturbances. It is possible to design reference trajectories that account for the periodic lunar and planetary perturbations and still satisfy mission requirements. When such trajectories are used the acceleration required to control the unstable eigenvector is well within the capabilities of a continuous linear controller. Initial estimates show that by using attitude control it should be possible to minimize and even eliminate thruster maneuvers for station keeping.

  1. Microbial shaping of sedimentary wrinkle structures

    NASA Astrophysics Data System (ADS)

    Mariotti, G.; Pruss, S. B.; Perron, J. T.; Bosak, T.

    2014-10-01

    Wrinkle structures on sandy bed surfaces were present in some of the earliest sedimentary environments, but are rare in modern environments. These enigmatic millimetre- to centimetre-scale ridges or pits are particularly common in sediments that harbour trace fossils and imprints of early animals, and appeared in the aftermath of some large mass extinctions. Wrinkle structures have been interpreted as possible remnants of microbial mats, but the formation mechanism and associated palaeoenvironmental and palaeoecological implications of these structures remain debated. Here we show that microbial aggregates can form wrinkle structures on a bed of bare sand in wave tank experiments. Waves with a small orbital amplitude at the bed surface do not move sand grains directly. However, they move millimetre-size, light microbial fragments and thereby produce linear sand ridges and rounded scour pits at the wavelengths observed in nature within hours. We conclude that wrinkle structures are morphological biosignatures that form at the sediment-water interface in wave-dominated environments, and not beneath microbial mats as previously thought. During early animal evolution, grazing by eukaryotic organisms may have temporarily increased the abundance of microbial fragments and thus the production of wrinkle structures.

  2. The Global Precipitation Measurement (GPM) Microwave Imager (GMI): Instrument Overview and Early On-Orbit Performance

    NASA Technical Reports Server (NTRS)

    Draper, David W.; Newell, David A.; Wentz, Frank J.; Krimchansky, Sergey; Jackson, Gail

    2015-01-01

    The Global Precipitation Measurement (GPM) mission is an international satellite mission that uses measurements from an advanced radar/radiometer system on a core observatory as reference standards to unify and advance precipitation estimates made by a constellation of research and operational microwave sensors. The GPM core observatory was launched on February 27, 2014 at 18:37 UT in a 65? inclination nonsun-synchronous orbit. GPM focuses on precipitation as a key component of the Earth's water and energy cycle, and has the capability to provide near-real-time observations for tracking severe weather events, monitoring freshwater resources, and other societal applications. The GPM microwave imager (GMI) on the core observatory provides the direct link to the constellation radiometer sensors, which fly mainly in polar orbits. The GMI sensitivity, accuracy, and stability play a crucial role in unifying the measurements from the GPM constellation of satellites. The instrument has exhibited highly stable operations through the duration of the calibration/validation period. This paper provides an overview of the GMI instrument and a report of early on-orbit commissioning activities. It discusses the on-orbit radiometric sensitivity, absolute calibration accuracy, and stability for each radiometric channel. Index Terms-Calibration accuracy, passive microwave remote sensing, radiometric sensitivity.

  3. Chaotic evolution of the long-period Milankovitch cycle during the early Mesozoic: independent evidences from the Newark lacustrine sequence (North America) and the pelagic bedded chert sequence (Japan)

    NASA Astrophysics Data System (ADS)

    Ikeda, M.; Olsen, P. E.; Tada, R.

    2012-12-01

    The correlation of Earth's orbital parameters with climatic variations has been used to generate astronomically calibrated geologic time scales of high accuracy. However, because of the chaotic behavior of the solar planets, the orbital models have a large uncertainty beyond several tens of million years in the past. This chaotic behavior also causes the long-period astronomical cycles (> 0.5 Myr periodicity) to modulate their frequency and amplitude. In other words, their modulation patterns could be potential constraints for the orbital models. Here we report the first geologic constraints on the timing of frequency transition and amplitude modulation of the ~ 2 Myr long eccentricity cycles during the early Mesozoic. We examined the lake level records of the early Mesozoic Newark lacustrine sequence in North America and the biogenic silica burial rate of the pelagic bedded chert sequence in the Inuyama area, Japan, which are proven to be reflect the astronomical cycle (Olsen, 1986; Olsen and Kent, 1996; Ikeda et al., 2010). The time scales of the two sequences were orbitally calibrated with the end-Triassic mass extinction interval as the age anchor, covering ~ 30 Myr and ~ 65 Myr, respectively (Olsen et al., 2011; Ikeda et al., 2010, in prep). We find that the frequency modulation of ~ 2 Myr cycle between 2.4 Myr to 1.6 Myr cycle have occurred at least the Middle to Late Triassic. In addition, the ~ 2 Myr cycle modulate its amplitude with ~ 10 Myr periodicity with in-phase relation between the two. Similar modulation patterns of ~ 2 Myr cycles from the two independent geologic records indicate convincing evidences for the chaotic behavior of the Solar planets. Because these modulation patterns are different from the results of the orbital models by Laskar et al. (2004, 2011), our records will provide the new and challenging constraints for the orbital models in terms of chaotic behavior of Solar planets.

  4. Orbit of the Patroclus-Menoetius Binary, a Lucy Mission Target

    NASA Astrophysics Data System (ADS)

    Noll, Keith

    2016-10-01

    We are proposing to observe Trojan binary asteroid (617) Patroclus-Menoetius, one of the targets of the Lucy mission. Lucy was selected as the next Discovery mission on January 4, 2017, for launch in October 2021. Observations this year are needed to establish the mutual orbit of the binary, which is of critical importance for mission planning. The mutual orbit phase is essentially undetermined from the accumulation of orbit period uncertainty since last measured in 2010. Orbital phase is needed in order to be able to predict the timing of mutual events that will begin late in 2017. These mutual events are essential to planning for the Lucy mission, especially in establishing the precise orientation of the mutual orbit plane and ascending node that is critical to early planning for flyby encounter design and capabilities.

  5. Space Shuttle Projects

    NASA Image and Video Library

    1991-08-01

    The free-flying Tracking and Data Relay Satellite-E (TDRS-E), still attached to an Inertial Upper Stage (IUS), was photographed by one of the crewmembers during the STS-43 mission. The TDRS-E was boosted by the IUS into geosynchronous orbit and positioned to remain stationary 22,400 miles above the Pacific Ocean southwest of Hawaii. The TDRS system provides almost uninterrupted communications with Earth-orbiting Shuttles and satellites, and had replaced the intermittent coverage provided by globe-encircling ground tracking stations used during the early space program. The TDRS can transmit and receive data, and track a user spacecraft in a low Earth orbit. The IUS is an unmarned transportation system designed to ferry payloads from low Earth orbit to higher orbits that are unattainable by the Shuttle. The Space Shuttle Orbiter Atlantis for the STS-43 mission was launched on August 2, 1991.

  6. Noise Control in Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.

    2009-01-01

    Acoustic limits in habitable space enclosures are required to ensure crew safety, comfort, and habitability. Noise control is implemented to ensure compliance with the acoustic requirements. The purpose of this paper is to describe problems with establishing acoustic requirements and noise control efforts, and present examples of noise control treatments and design applications used in the Space Shuttle Orbiter. Included is the need to implement the design discipline of acoustics early in the design process, and noise control throughout a program to ensure that limits are met. The use of dedicated personnel to provide expertise and oversight of acoustic requirements and noise control implementation has shown to be of value in the Space Shuttle Orbiter program. It is concluded that to achieve acceptable and safe noise levels in the crew habitable space, early resolution of acoustic requirements and implementation of effective noise control efforts are needed. Management support of established acoustic requirements and noise control efforts is essential.

  7. KSC-98pc1046

    NASA Image and Video Library

    1998-09-11

    The Mars Climate Orbiter spacecraft arrives at KSC's Shuttle Landing Facility aboard an Air Force C-17 cargo plane early this morning following its flight from the Lockheed Martin Astronautics plant in Denver, Colo. When the spacecraft arrives at the red planet, it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (1.8 Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Delta II 7425 rocket

  8. Small-scale martian polygonal terrain: Implications for liquid surface water

    USGS Publications Warehouse

    Seibert, N.M.; Kargel, J.S.

    2001-01-01

    Images from the Mars Orbiter Camera (MOC) through August 1999 were analyzed for the global distribution of small-scale polygonal terrain not clearly resolved in Viking Orbiter imagery. With very few exceptions, small-scale polygonal terrain occurs at middle to high latitudes of the northern and southern hemisphere in Hesperian-age geologic units. The largest concentration of this terrain occurs in the Utopia basin in close association with scalloped depressions (interpreted as thermokarst) and appears to represent an Amazonia event. The morphology and occurence of small polygonal terrain suggest they are either mud desiccation cracks or ice-wedge polygons. Because the small-scale polygons in Utopia and Argyre Planitiae are associated with other cold-climate permafrost or glacial features, an ice-wedge model is preferred for these areas. Both cracking mechanisms work most effectively in water- or ice-rich finegrained material and may imply the seasonal or episodic existence of liquid water at the surface.

  9. Combined orbits and clocks from IGS second reprocessing

    NASA Astrophysics Data System (ADS)

    Griffiths, Jake

    2018-05-01

    The Analysis Centers (ACs) of the International GNSS Service (IGS) have reprocessed a large global network of GPS tracking data from 1994.0 until 2014.0 or later. Each AC product time series was extended uniformly till early 2015 using their weekly operational IGS contributions so that the complete combined product set covers GPS weeks 730 through 1831. Three ACs also included GLONASS data from as early as 2002 but that was insufficient to permit combined GLONASS products. The reprocessed terrestrial frame combination procedures and results have been reported already, and those were incorporated into the ITRF2014 multi-technique global frame released in 2016. This paper describes the orbit and clock submissions and their multi-AC combinations and assessments. These were released to users in early 2017 in time for the adoption of IGS14 for generating the operational IGS products. While the reprocessing goal was to enable homogeneous modeling, consistent with the current operational procedures, to be applied retrospectively to the full history of observation data in order to achieve a more suitable reference for geophysical studies, that objective has only been partially achieved. Ongoing AC analysis changes and a lack of full participation limit the consistency and precision of the finished IG2 products. Quantitative internal measures indicate that the reprocessed orbits are somewhat less precise than current operational orbits or even the later orbits from the first IGS reprocessing campaign. That is even more apparent for the clocks where a lack of robust AC participation means that it was only possible to form combined 5-min clocks but not the 30-s satellite clocks published operationally. Therefore, retrospective precise point positioning solutions by users are not recommended using the orbits and clocks. Nevertheless, the orbits do support long-term stable user solutions when used with network processing with either double differencing or explicit clock estimation. Among the main benefits of the reprocessing effort is a more consistent long product set to analyze for sources of systematic error and accuracy. Work to do that is underway but the reprocessing experience already points to a number of ways future IGS performance and reprocessing campaigns can be improved.

  10. Definition of satellite servicing technology development missions for early space stations. Volume 2: Technical

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Early space station accommodation, build-up of space station manipulator capability, on-orbit spacecraft assembly test and launch, large antenna structure deployment, service/refurbish satellite, and servicing of free-flying materials processing platform are discussed.

  11. Mars Telecom Orbiter mission operations concepts

    NASA Technical Reports Server (NTRS)

    Deutsch, Marie-Jose; Komarek, Tom; Lopez, Saturnino; Townes, Steve; Synnott, Steve; Austin, Richard; Guinn, Joe; Varghese, Phil; Edwards, Bernard; Bondurant, Roy; hide

    2004-01-01

    The Mars Telecom Orbiter (MTO) relay capability enables next decadal missions at Mars, collecting gigabits of data a day to be relayed back at speeds exceeding 4 Mbps and it facilitates small missions whose limited resources do not permit them to have a direct link to Earth.

  12. [Therapy of orbital neoplasms in small animals].

    PubMed

    Spiess, B M; Rühli, M B; Bauer, G A

    1995-10-01

    The incidence, clinical signs and diagnostic work-up of orbital neoplasms is briefly discussed. The surgical management of such tumors is discussed in detail on the basis of three clinical cases. Long-term functional and cosmetic results are shown. Intraoperative and postoperative complications are discussed.

  13. Update on Progress of Space Station Integrated Kinetic Launcher for Orbital Payload Systems (SSIKLOPS) - Cyclops

    NASA Technical Reports Server (NTRS)

    Newswander, Daniel; Smith, James P.; Lamb, Craig R.; Ballard, Perry G.

    2014-01-01

    The Space Station Integrated Kinetic Launcher for Orbital Payload Systems (SSIKLOPS), known as "Cyclops" to the International Space Station (ISS) community, was introduced last August (2013) during Technical Session V: From Earth to Orbit of the 27th Annual AIAA/USU Conference on Small Satellites. Cyclops is a collaboration between the NASA ISS Program, NASA Johnson Space Center Engineering, and Department of Defense (DoD) Space Test Program (STP) communities to develop a dedicated 50-100 kg class ISS small satellite deployment system. This paper will address the progress of Cyclops through its fabrication, assembly, flight certification, and on-orbit demonstration phases. It will also go into more detail regarding its anatomy, its satellite deployment concept of operations, and its satellite interfaces and requirements. Cyclops is manifested to fly on Space-X 4 which is currently scheduled in July 2014 with its initial satellite deployment demonstration of DoD STP's SpinSat and UT/TAMU's Lonestar satellites being late summer or fall of 2014.

  14. The impacts of the quantum-dot confining potential on the spin-orbit effect.

    PubMed

    Li, Rui; Liu, Zhi-Hai; Wu, Yidong; Liu, C S

    2018-05-09

    For a nanowire quantum dot with the confining potential modeled by both the infinite and the finite square wells, we obtain exactly the energy spectrum and the wave functions in the strong spin-orbit coupling regime. We find that regardless of how small the well height is, there are at least two bound states in the finite square well: one has the σ x [Formula: see text] = -1 symmetry and the other has the σ x [Formula: see text] = 1 symmetry. When the well height is slowly tuned from large to small, the position of the maximal probability density of the first excited state moves from the center to x ≠ 0, while the position of the maximal probability density of the ground state is always at the center. A strong enhancement of the spin-orbit effect is demonstrated by tuning the well height. In particular, there exists a critical height [Formula: see text], at which the spin-orbit effect is enhanced to maximal.

  15. Twelve inequivalent Dirac cones in two-dimensional ZrB2

    NASA Astrophysics Data System (ADS)

    Lopez-Bezanilla, Alejandro

    2018-01-01

    Theoretical evidence of the existence of 12 inequivalent Dirac cones at the vicinity of the Fermi energy in monolayered ZrB2 is presented. Two-dimensional ZrB2 is a mechanically stable d - and p -orbital compound exhibiting a unique electronic structure with two Dirac cones out of high-symmetry points in the irreducible Brillouin zone with a small electron-pocket compensation. First-principles calculations demonstrate that while one of the cones is insensitive to lattice expansion, the second cone vanishes for small perturbation of the vertical Zr position. Internal symmetry breaking with external physical stimuli, along with the relativistic effect of spin-orbit coupling, is able to remove selectively the Dirac cones. A rational explanation in terms of d - and p -orbital mixing is provided to elucidate the origin of the infrequent Dirac cones in a flat structure. The versatility of transition-metal d orbitals combined with the honeycomb lattice provided by the B atoms yields particular features in a two-dimensional material.

  16. Twelve inequivalent Dirac cones in two-dimensional ZrB 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez-Bezanilla, Alejandro

    Theoretical evidence of the existence of 12 inequivalent Dirac cones at the vicinity of the Fermi energy in monolayered ZrB 2 is presented. Two-dimensional ZrB 2 is a mechanically stable d- and p-orbital compound exhibiting a unique electronic structure with two Dirac cones out of high-symmetry points in the irreducible Brillouin zone with a small electron-pocket compensation. First-principles calculations demonstrate that while one of the cones is insensitive to lattice expansion, the second cone vanishes for small perturbation of the vertical Zr position. Internal symmetry breaking with external physical stimuli, along with the relativistic effect of spin-orbit coupling, is ablemore » to remove selectively the Dirac cones. A rational explanation in terms of d- and p-orbital mixing is provided to elucidate the origin of the infrequent Dirac cones in a flat structure. In conclusion, the versatility of transition-metal d orbitals combined with the honeycomb lattice provided by the B atoms yields particular features in a two-dimensional material.« less

  17. Further evidence on the anatomical placement of the human eyeball for facial approximation and craniofacial superimposition.

    PubMed

    Stephan, Carl N; Huang, Anne J R; Davidson, Paavi L

    2009-03-01

    Recently a small sampled cadaver study (n = 4) suggested that the human eyeballs are placed closer to the orbital roof and lateral orbital wall as first reported in the anatomical literature many years previously. This contrasts with central positioning of the eyeball within the orbit as advocated by the facial approximation literature. Given the limits of such small samples, this study re-examined globe position in nine new cadavers to help clarify which relationship is accurate. The results essentially confirm prior empirical findings except that the mean lateral divergences from the orbit center were found to be larger--the eyeball was found to be "displaced" 1.4 mm superiorly and 2.4 mm laterally. Medians calculated across all 13 cadavers from this study and the above-mentioned recent report refine these measurements to 1.4 and 2.3 mm respectively. Globe projection values were identical to those observed for living individuals (c. 16 mm).

  18. Twelve inequivalent Dirac cones in two-dimensional ZrB 2

    DOE PAGES

    Lopez-Bezanilla, Alejandro

    2018-01-29

    Theoretical evidence of the existence of 12 inequivalent Dirac cones at the vicinity of the Fermi energy in monolayered ZrB 2 is presented. Two-dimensional ZrB 2 is a mechanically stable d- and p-orbital compound exhibiting a unique electronic structure with two Dirac cones out of high-symmetry points in the irreducible Brillouin zone with a small electron-pocket compensation. First-principles calculations demonstrate that while one of the cones is insensitive to lattice expansion, the second cone vanishes for small perturbation of the vertical Zr position. Internal symmetry breaking with external physical stimuli, along with the relativistic effect of spin-orbit coupling, is ablemore » to remove selectively the Dirac cones. A rational explanation in terms of d- and p-orbital mixing is provided to elucidate the origin of the infrequent Dirac cones in a flat structure. In conclusion, the versatility of transition-metal d orbitals combined with the honeycomb lattice provided by the B atoms yields particular features in a two-dimensional material.« less

  19. Origin of Martian Moons from Binary Asteroid Dissociation

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Lyons, Valerie J. (Technical Monitor)

    2001-01-01

    The origin of the Martian moons Deimos and Phobos is controversial. A common hypothesis for their origin is that they are captured asteroids, but the moons show no signs of having been heated by passage through a (hypothetical) thick martian atmosphere, and the mechanism by which an asteroid in solar orbit could shed sufficient orbital energy to be captured into Mars orbit has not been previously elucidated. Since the discovery by the space probe Galileo that the asteroid Ida has a moon 'Dactyl', a significant number of asteroids have been discovered to have smaller asteroids in orbit about them. The existence of asteroid moons provides a mechanism for the capture of the Martian moons (and the small moons of the outer planets). When a binary asteroid makes a close approach to a planet, tidal forces can strip the moon from the asteroid. Depending on the phasing, either or both can then be captured. Clearly, the same process can be used to explain the origin of any of the small moons in the solar system.

  20. Early Mission Maneuver Operations for the Deep Space Climate Observatory

    NASA Technical Reports Server (NTRS)

    Roberts, Craig; Case, Sara; Reagoso, John

    2015-01-01

    DSCOVR Lissajous Orbit sized such that orbit track never extends beyond 15 degrees from Earth-Sun line (as seen from Earth). Requiring delta-V maneuvers, control orbit to obey a Solar Exclusion Zone (SEZ) cone of half-angle 4 degrees about the Earth-Sun line. Spacecraft should never be less than 4 degrees from solar center as seen from Earth. Following Lissajous Orbit Insertion (LOI), DSCOVR should be in an opening phase that just skirts the 4-degree SEZ. Maximizes time to the point where a closing Lissajous will require avoidance maneuvers to keep it out of the SEZ. Station keeping maneuvers should take no more than 15 minutes

  1. Early Program Development

    NASA Image and Video Library

    1989-01-01

    This 1989 artist's rendering shows how a Shuttle-C would look during launch. As envisioned by Marshall Space Flight Center plarners, the Shuttle-C would be an unmanned heavy-lift cargo vehicle derived from Space Shuttle elements. The vehicle would utilize the basic Shuttle propulsion units (Solid Rocket Boosters, Space Shuttle Main Engine, External Tank), but would replace the Orbiter with an unmanned Shuttle-C Cargo Element (SCE). The SCE would have a payload bay lenght of eighty-two feet, compared to sixty feet for the Orbiter cargo bay, and would be able to deliver 170,000 pound payloads to low Earth orbit, more than three times the Orbiter's capacity.

  2. ORDEM 3.0 and MASTER-2009 Modeled Small Debris Population Comparison

    NASA Technical Reports Server (NTRS)

    Krisko, P. H.; Flegel, S.

    2012-01-01

    The latest versions of the two premier orbital debris engineering models, NASA's ORDEM 3.0 and ESA's MASTER-2009, have been publicly released within the last year. Both models have gone through significant advancements since inception, and now represent the state-of-the-art in orbital debris knowledge of their respective agencies. The purpose of these models is to provide satellite designers/operators and debris researchers with reliable estimates of the artificial debris environment in near-Earth orbit. The small debris environment within the size range of 1 mm to 1 cm is of particular interest to both human and robotic spacecraft programs. These objects are much more numerous than larger trackable debris but are still large enough to cause significant, if not catastrophic, damage to spacecraft upon impact. They are also small enough to elude routine detection by existing observation systems (radar and telescope). Without reliable detection the modeling of these populations has always coupled theoretical origins with supporting observational data in different degrees. This paper describes the population generation and categorization of both ORDEM 3.0 and MASTER-2009; their sources (both known and presumed), current supporting data and theory, and methods of population verification. Fluxes on spacecraft for chosen orbits are presented and discussed. Future collaborative analysis is noted.

  3. Techniques for debris control

    NASA Technical Reports Server (NTRS)

    Petro, Andrew J.

    1990-01-01

    This paper will summarize a range of techniques which have been proposed for controlling the growth of man-made debris in earth orbit. Several techniques developed in studies at the Johnson Space Center will be described in detail. These techniques include the retrieval of inoperative satellites with an orbital maneuvering vehicle and self-disposal devices for satellites and upper stages. Self-disposal devices include propulsive deorbit motors and passive drag-augmentation devices. Concepts for sweeping small debris from the orbital environment will also be described. An evaluation of the technical feasibility and economic practicality of the various control methods will be summarized. In general, methods which prevent the accumulation of large debris objects were found to provide greater promise for control of the debris problem than methods of removing small debris particles.

  4. Status and Design Concepts for the Hydrogen On-Orbit Storage and Supply Experiment

    NASA Technical Reports Server (NTRS)

    Chato, David J.; VanDyke, Melissa; Batty, J. Clair; Schick, Scott

    1998-01-01

    This paper studies concepts for the Hydrogen On-Orbit Storage and Supply Experiment (HOSS). HOSS is a space flight experiment whose objectives are: Show stable gas supply for storage and direct gain solar-thermal thruster designs; and evaluate and compare low-g performance of active and passive pressure control via a thermodynamic vent system (TVS) suitable for solar-thermal upper stages. This paper shows that the necessary experimental equipment for HOSS can be accommodated in a small hydrogen dewar of 36 to 80 liter. Thermal designs for these dewars which meet the on-orbit storage requirements can be achieved. Furthermore ground hold insulation and shielding concepts are achieved which enable storing initially subcooled liquid hydrogen in these small dewars without venting in excess of 144 hours.

  5. Sizing of "Mother Ship and Catcher" Missions for LEO Small Debris and for GEO Large Object Capture

    NASA Technical Reports Server (NTRS)

    Bacon, John B.

    2009-01-01

    Most LEO debris lies in a limited number of inclination "bands" associated with specific useful orbits. Objects in such narrow inclination bands have all possible Right Ascensions of Ascending Node (RAANs), creating a different orbit plane for nearly every piece of debris. However, a low-orbiting satellite will always phase in RAAN faster than debris objects in higher orbits at the same inclination, potentially solving the problem. Such a low-orbiting base can serve as a "mother ship" that can tend and then send small, disposable common individual catcher/deboost devices--one for each debris object--as the facility drifts into the same RAAN as each higher object. The dV necessary to catch highly-eccentric orbit debris in the center of the band alternatively allows the capture of less-eccentric debris in a wider inclination range around the center. It is demonstrated that most LEO hazardous debris can be removed from orbit in three years, using a single LEO launch of one mother ship--with its onboard magazine of freeflying low-tech catchers--into each of ten identified bands, with second or potentially third launches into only the three highest-inclination bands. The nearly 1000 objects near the geostationary orbit present special challenges in mass, maneuverability, and ultimate disposal options, leading to a dramatically different architecture and technology suite than the LEO solution. It is shown that the entire population of near-GEO derelict objects can be gathered and tethered together within a 3 year period for future scrap-yard operations using achievable technologies and only two earth launches.

  6. Searching for co-orbital planets by combining transit and radial-velocity measurements

    NASA Astrophysics Data System (ADS)

    Robutel, p.; Leleu, A.; Correia, A.; Lillo-Box, J.

    2017-09-01

    Co-orbital planetary systems consist of two planets orbiting with the same period a central star. If co-orbital bodies are common in the solar system and are also a natural output of planetary formation models, so far none have been found in extrasolar systems. This lack may be due to observational biases, since the main detection methods are unable to spot co-orbital companions when they are small or near the Lagrangian equilibrium points. We propose a simple method, based on an idea from Ford & Gaudi (2006), that allows the detection of co-orbital companions, and relies on a single parameter proportional to the mass ratio of the two planets. This method is applied to archival radial velocity data of 46 close-in transiting planets among which a few are strong candidates to harbor a co-orbital companion.

  7. General Relativistic Precession in Small Solar System Bodies

    NASA Astrophysics Data System (ADS)

    Sekhar, Aswin; Werner, Stephanie; Hoffmann, Volker; Asher, David; Vaubaillon, Jeremie; Hajdukova, Maria; Li, Gongjie

    2016-10-01

    Introduction: One of the greatest successes of the Einstein's General Theory of Relativity (GR) was the correct prediction of the precession of perihelion of Mercury. The closed form expression to compute this precession tells us that substantial GR precession would occur only if the bodies have a combination of both moderately small perihelion distance and semi-major axis. Minimum Orbit Intersection Distance (MOID) is a quantity which helps us to understand the closest proximity of two orbits in space. Hence evaluating MOID is crucial to understand close encounters and collision scenarios better. In this work, we look at the possible scenarios where a small GR precession in argument of pericentre (ω) can create substantial changes in MOID for small bodies ranging from meteoroids to comets and asteroids.Analytical Approach and Numerical Integrations: Previous works have looked into neat analytical techniques to understand different collision scenarios and we use those standard expressions to compute MOID analytically. We find the nature of this mathematical function is such that a relatively small GR precession can lead to drastic changes in MOID values depending on the initial value of ω. Numerical integrations were done with package MERCURY incorporating the GR code to test the same effects. Numerical approach showed the same interesting relationship (as shown by analytical theory) between values of ω and the peaks/dips in MOID values. Previous works have shown that GR precession suppresses Kozai oscillations and this aspect was verified using our integrations. There is an overall agreement between both analytical and numerical methods.Summary and Discussion: We find that GR precession could play an important role in the calculations pertaining to MOID and close encounter scenarios in the case of certain small solar system bodies (depending on their initial orbital elements). Previous works have looked into impact probabilities and collision scenarios on planets from different small body populations. This work aims to find certain sub-sets of orbits where GR could play an interesting role. Certain parallels are drawn between the cases of asteroids, comets and small perihelion distance meteoroid streams.

  8. Angles between orthogonal spd bond orbitals with maximum strength.

    PubMed

    Pauling, L

    1976-05-01

    An equation is derived for values of bond angles for two equivalent best spd hybrid bond orbitals with given amounts of s, p, and d character, and is applied in the discussion of structures of transargononic compounds, including the xenon and halogen fluorides. Bond orbitals with a rather small amount of d character tend to lie at angles 90 degrees and 180 degrees , and those with a larger amount, at somewhat smaller angles.

  9. Early Phase Contingency Trajectory Design for the Failure of the First Lunar Orbit Insertion Maneuver: Direct Recovery Options

    NASA Astrophysics Data System (ADS)

    Song, Young-Joo; Bae, Jonghee; Kim, Young-Rok; Kim, Bang-Yeop

    2017-12-01

    To ensure the successful launch of the Korea pathfinder lunar orbiter (KPLO) mission, the Korea Aerospace Research Institute (KARI) is now performing extensive trajectory design and analysis studies. From the trajectory design perspective, it is crucial to prepare contingency trajectory options for the failure of the first lunar brake or the failure of the first lunar orbit insertion (LOI) maneuver. As part of the early phase trajectory design and analysis activities, the required time of flight (TOF) and associated delta-V magnitudes for each recovery maneuver (RM) to recover the KPLO mission trajectory are analyzed. There are two typical trajectory recovery options, direct recovery and low energy recovery. The current work is focused on the direct recovery option. Results indicate that a quicker execution of the first RM after the failure of the first LOI plays a significant role in saving the magnitudes of the RMs. Under the conditions of the extremely tight delta-V budget that is currently allocated for the KPLO mission, it is found that the recovery of the KPLO without altering the originally planned mission orbit (a 100 km circular orbit) cannot be achieved via direct recovery options. However, feasible recovery options are suggested within the boundaries of the currently planned delta-V budget. By changing the shape and orientation of the recovered final mission orbit, it is expected that the KPLO mission may partially pursue its scientific mission after successful recovery, though it will be limited.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Yoonyoung; Ishiguro, Masateru; Usui, Fumihiko

    We investigated the population of asteroids in comet-like orbits using available asteroid size and albedo catalogs of data taken with the Infrared Astronomical Satellite, AKARI, and the Wide-field Infrared Survey Explorer on the basis of their orbital properties (i.e., the Tisserand parameter with respect to Jupiter, T{sub J}, and the aphelion distance, Q). We found that (1) there are 123 asteroids in comet-like orbits by our criteria (i.e., Q > 4.5 AU and T{sub J} < 3), (2) 80% of them have low albedo, p{sub v} < 0.1, consistent with comet nuclei, (3) the low-albedo objects among them have amore » size distribution shallower than that of active comet nuclei, that is, the power index of the cumulative size distribution is around 1.1, and (4) unexpectedly, a considerable number (i.e., 25 by our criteria) of asteroids in comet-like orbits have high albedo, p{sub v} > 0.1. We noticed that such high-albedo objects mostly consist of small (D < 3 km) bodies distributed in near-Earth space (with perihelion distance of q < 1.3 AU). We suggest that such high-albedo, small objects were susceptible to the Yarkovsky effect and drifted into comet-like orbits via chaotic resonances with planets.« less

  11. Robust superconductivity with nodes in the superconducting topological insulator CuxBi2Se3 : Zeeman orbital field and nonmagnetic impurities

    NASA Astrophysics Data System (ADS)

    Nagai, Yuki

    2015-02-01

    We study the robustness against nonmagnetic impurities in the topological superconductor with point nodes, focusing on an effective model of CuxBi2Se3 . We find that the topological superconductivity with point nodes is not fragile against nonmagnetic impurities, although the superconductivity with nodes in past studies is usually fragile. Exchanging the role of spin with the one of orbital, and vice versa, we find that in the "dual" space the topological superconductor with point nodes is regarded as the intraorbital spin-singlet s -wave one. From the viewpoint of the dual space, we deduce that the point-node state is not fragile against nonmagnetic impurity, when the orbital imbalance in the normal states is small. Since the spin imbalance is induced by the Zeeman magnetic field, we shall name this key quantity for the impurity effects the Zeeman "orbital" field. The numerical calculations support that the deduction is correct. If the Zeeman orbital field is small, the topological superconductivity is not fragile in dirty materials, even with nodes. Thus, the topological superconductors cannot be simply regarded as one of the conventional unconventional superconductors.

  12. Use of magnetic resonance imaging for the investigation of orbital disease in small animals.

    PubMed

    Dennis, R

    2000-04-01

    Twenty-five small animal patients presenting with signs of orbital disease were investigated using magnetic resonance imaging (MRI) in an attempt to assess the value of this imaging technique for diagnosis. All patients were also examined using ultrasonography, and skull radiography was performed in 20 of these animals. The final diagnoses included neoplasia, inflammatory disease and foreign body penetration. MRI produced detailed images of orbital tissues and provided more information about the extent of pathology than the other imaging techniques; a correct diagnosis based solely on the MRI scan was made in 22 cases. Radiography was found to be helpful only in cases in which neoplastic disease extended markedly beyond the confines of the orbit into the nasal chamber and paranasal sinuses. Radiographic changes other than soft tissue swelling were not evident in other orbital disease processes. Ultrasonography gave both false negative and false positive diagnoses for neoplastic masses, although it allowed the correct diagnosis of both cases of foreign bodies and one of the three cases of retrobulbar abscesses in this series. MRI is recommended for patients in which radiography and ultrasonography fall to produce a confident diagnosis or for which surgery is proposed.

  13. Probing the Solar System

    ERIC Educational Resources Information Center

    Wilkinson, John

    2013-01-01

    Humans have always had the vision to one day live on other planets. This vision existed even before the first person was put into orbit. Since the early space missions of putting humans into orbit around Earth, many advances have been made in space technology. We have now sent many space probes deep into the Solar system to explore the planets and…

  14. Symmetry and Circularization in the Damped Kepler Problem

    NASA Astrophysics Data System (ADS)

    Crescimanno, Michael; Hamilton, Brian

    2007-05-01

    Generically, a Hamiltonian system to which damping (non-Hamiltonian) forces are added loses its symmetry. It is a non-trivial fact that the eccentricity vector of lightly damped Kepler orbits is a constant for linear damping only. We describe the group theoretic background necessary to understand this fact and to relate it to that analogue of the Landau criterion for superfluidity associated with the general problem of orbit circularization. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.OSS07.C2.4

  15. 2004 EW95: A Phyllosilicate-bearing Carbonaceous Asteroid in the Kuiper Belt

    NASA Astrophysics Data System (ADS)

    Seccull, Tom; Fraser, Wesley C.; Puzia, Thomas H.; Brown, Michael E.; Schönebeck, Frederik

    2018-03-01

    Models of the Solar System’s dynamical evolution predict the dispersal of primitive planetesimals from their formative regions among the gas-giant planets due to the early phases of planetary migration. Consequently, carbonaceous objects were scattered both into the outer asteroid belt and out to the Kuiper Belt. These models predict that the Kuiper Belt should contain a small fraction of objects with carbonaceous surfaces, though to date, all reported visible reflectance spectra of small Kuiper Belt Objects (KBOs) are linear and featureless. We report the unusual reflectance spectrum of a small KBO, (120216) 2004 EW95, exhibiting a large drop in its near-UV reflectance and a broad shallow optical absorption feature centered at ∼700 nm, which is detected at greater than 4σ significance. These features, confirmed through multiple epochs of spectral photometry and spectroscopy, have respectively been associated with ferric oxides and phyllosilicates. The spectrum bears striking resemblance to those of some C-type asteroids, suggesting that 2004 EW95 may share a common origin with those objects. 2004 EW95 orbits the Sun in a stable mean motion resonance with Neptune, at relatively high eccentricity and inclination, suggesting it may have been emplaced there by some past dynamical instability. These results appear consistent with the aforementioned model predictions and are the first to show a reliably confirmed detection of silicate material on a small KBO.

  16. Smallsats, Cubesats and Scientific Exploration

    NASA Astrophysics Data System (ADS)

    Stofan, E. R.

    2015-12-01

    Smallsats (including Cubesats) have taken off in the aerospace research community - moving beyond simple tools for undergraduate and graduate students and into the mainstream of science research. Cubesats started the "smallsat" trend back in the late 1990's early 2000's, with the first Cubesats launching in 2003. NASA anticipates a number of future benefits from small satellite missions, including lower costs, more rapid development, higher risk tolerance, and lower barriers to entry for universities and small businesses. The Agency's Space Technology Mission Directorate is currently addressing technology gaps in small satellite platforms, while the Science Mission Directorate pursues miniaturization of science instruments. Launch opportunities are managed through the Cubesat Launch Initiative, and the Agency manages these projects as sub-orbital payloads with little program overhead. In this session we bring together scientists and technologists to discuss the current state of the smallsat field. We explore ideas for new investments, new instruments, or new applications that NASA should be investing in to expand the utility of smallsats. We discuss the status of a NASA-directed NRC study on the utility of small satellites. Looking to the future, what does NASA need to invest in now, to enable high impact ("decadal survey" level) science with smallsats? How do we push the envelope? We anticipate smallsats will contribute significantly to a more robust exploration and science program for NASA and the country.

  17. Modeling Indications of Technology in Planetary Transit Light Curves-Dark-side Illumination

    NASA Astrophysics Data System (ADS)

    Korpela, Eric J.; Sallmen, Shauna M.; Leystra Greene, Diana

    2015-08-01

    We analyze potential effects of an extraterrestrial civilization’s use of orbiting mirrors to illuminate the dark side of a synchronously rotating planet on planetary transit light curves. Previous efforts to detect civilizations based on side effects of planetary-scale engineering have focused on structures affecting the host star output (e.g., Dyson spheres). However, younger civilizations are likely to be less advanced in their engineering efforts, yet still capable of sending small spacecraft into orbit. Since M dwarfs are the most common type of star in the solar neighborhood, it seems plausible that many of the nearest habitable planets orbit dim, low-mass M stars, and will be in synchronous rotation. Logically, a civilization evolving on such a planet may be inspired to illuminate their planet’s dark side by placing a single large mirror at the L2 Lagrangian point, or launching a fleet of small thin mirrors into planetary orbit. We briefly examine the requirements and engineering challenges of such a collection of orbiting mirrors, then explore their impact on transit light curves. We incorporate stellar limb darkening and model a simplistic mirror fleet’s effects for transits of Earth-like (R = 0.5 to 2 {R}{Earth}) planets which would be synchronously rotating for orbits within the habitable zone of their host star. Although such an installation is undetectable in Kepler data, the James Webb Space Telescope will provide the sensitivity necessary to detect a fleet of mirrors orbiting Earth-like habitable planets around nearby stars.

  18. Stability of Multi-Planet Systems Orbiting in the Alpha Centauri AB System

    NASA Astrophysics Data System (ADS)

    Lissauer, Jack

    2018-04-01

    We evaluate how closely-spaced planetary orbits in multiple planet systems can be and still survive for billion-year timescales within the alpha Centauri AB system. Although individual planets on nearly circular, coplanar orbits can survive throughout the habitable zones of both stars, perturbations from the companion star imply that the spacing of such planets in multi-planet systems must be significantly larger than the spacing of similar systems orbiting single stars in order to be long-lived. Because the binary companion induces a forced eccentricity upon circumstellar planets, stable orbits with small initial eccentricities aligned with the binary orbit are possible to slightly larger initial semimajor axes than are initially circular orbits. Initial eccentricities close to the appropriate forced eccentricity can have a much larger affect on how closely planetary orbits can be spaced, on how many planets may remain in the habitable zones, although the required spacing remains significantly higher than for planets orbiting single stars.

  19. Time scale controversy: Accurate orbital calibration of the early Paleogene

    NASA Astrophysics Data System (ADS)

    Roehl, U.; Westerhold, T.; Laskar, J.

    2012-12-01

    Timing is crucial to understanding the causes and consequences of events in Earth history. The calibration of geological time relies heavily on the accuracy of radioisotopic and astronomical dating. Uncertainties in the computations of Earth's orbital parameters and in radioisotopic dating have hampered the construction of a reliable astronomically calibrated time scale beyond 40 Ma. Attempts to construct a robust astronomically tuned time scale for the early Paleogene by integrating radioisotopic and astronomical dating are only partially consistent. Here, using the new La2010 and La2011 orbital solutions, we present the first accurate astronomically calibrated time scale for the early Paleogene (47-65 Ma) uniquely based on astronomical tuning and thus independent of the radioisotopic determination of the Fish Canyon standard. Comparison with geological data confirms the stability of the new La2011 solution back to 54 Ma. Subsequent anchoring of floating chronologies to the La2011 solution using the very long eccentricity nodes provides an absolute age of 55.530 ± 0.05 Ma for the onset of the Paleocene/Eocene Thermal Maximum (PETM), 54.850 ± 0.05 Ma for the early Eocene ash -17, and 65.250 ± 0.06 Ma for the K/Pg boundary. The new astrochronology presented here indicates that the intercalibration and synchronization of U/Pb and 40Ar/39Ar radioisotopic geochronology is much more challenging than previously thought.

  20. Time scale controversy: Accurate orbital calibration of the early Paleogene

    NASA Astrophysics Data System (ADS)

    Westerhold, Thomas; RöHl, Ursula; Laskar, Jacques

    2012-06-01

    Timing is crucial to understanding the causes and consequences of events in Earth history. The calibration of geological time relies heavily on the accuracy of radioisotopic and astronomical dating. Uncertainties in the computations of Earth's orbital parameters and in radioisotopic dating have hampered the construction of a reliable astronomically calibrated time scale beyond 40 Ma. Attempts to construct a robust astronomically tuned time scale for the early Paleogene by integrating radioisotopic and astronomical dating are only partially consistent. Here, using the new La2010 and La2011 orbital solutions, we present the first accurate astronomically calibrated time scale for the early Paleogene (47-65 Ma) uniquely based on astronomical tuning and thus independent of the radioisotopic determination of the Fish Canyon standard. Comparison with geological data confirms the stability of the new La2011 solution back to ˜54 Ma. Subsequent anchoring of floating chronologies to the La2011 solution using the very long eccentricity nodes provides an absolute age of 55.530 ± 0.05 Ma for the onset of the Paleocene/Eocene Thermal Maximum (PETM), 54.850 ± 0.05 Ma for the early Eocene ash -17, and 65.250 ± 0.06 Ma for the K/Pg boundary. The new astrochronology presented here indicates that the intercalibration and synchronization of U/Pb and 40Ar/39Ar radioisotopic geochronology is much more challenging than previously thought.

  1. GGA + U studies of the early actinide mononitrides and dinitrides

    NASA Astrophysics Data System (ADS)

    Obodo, K. O.; Chetty, N.

    2013-11-01

    We present a detailed comparative study of the electronic and mechanical properties of the early actinide mononitrides and dinitrides within the framework of the Perdew-Burke-Ernzerhof generalized gradient approximation (GGA [PBE]) and GGA + U implementations of density functional theory with the inclusion of spin-orbit coupling. The dependence of selected observables of these materials on the effective U-parameter is investigated in detail. The properties include the lattice constant, bulk modulus, charge density distribution, hybridization of the atomic orbitals, energy of formation and the lattice dynamics. The inclusion of the Hubbard U parameter results in a proper description of the 5f electrons, and is subsequently used in the determination of the structural and electronic properties of these compounds. The mononitrides and dinitrides of the early actinides are metallic except for UN2, which is a semiconductor. These actinide nitrides are non-magnetic with the exception of UN, NpN, PuN, NpN2 and PuN2 that are magnetic systems with orbital-dependent magnetic moments oriented in the z-axis. We observed that ThN2 is elastically unstable to isotropic pressure. We discovered that UN2 is thermodynamically unstable, but may be stabilized by N vacancy formation.

  2. Determination of celestial bodies orbits and probabilities of their collisions with the Earth

    NASA Astrophysics Data System (ADS)

    Medvedev, Yuri; Vavilov, Dmitrii

    In this work we have developed a universal method to determine the small bodies orbits in the Solar System. In the method we consider different planes of body’s motion and pick up which is the most appropriate. Given an orbit plane we can calculate geocentric distances at time of observations and consequence determinate all orbital elements. Another technique that we propose here addresses the problem of estimation probability of collisions celestial bodies with the Earth. This technique uses the coordinate system associated with the nominal osculating orbit. We have compared proposed technique with the Monte-Carlo simulation. Results of these methods exhibit satisfactory agreement, whereas, proposed method is advantageous in time performance.

  3. Capture-ejector satellites

    NASA Technical Reports Server (NTRS)

    Macconochie, I. O.; Eldred, C. H.; Martin, J. A.

    1983-01-01

    A satellite in the form of a large rotating rim which can be used to boost spacecraft from low-Earth orbit to higher orbits is described. The rim rotates in the plane of its orbit such that the lower portion of the rim is traveling at suborbital velocity, while the upper portion is travelling at greater than orbital velocity. Ascending spacecraft or payloads arrive at the lowest portion of the rim at suborbital velocities, where the payloads are released on a trajectory for higher orbits; descending payloads employ the reverse procedure. Electric thrusters placed on the rim maintain rim rotational speed and altitude. From the standpoint of currently known materials, the capture-ejector concept may be useful for relatively small velocity increments.

  4. RST-FIRES, an exportable algorithm for early/small fires detection: field validation and algorithm inter-comparison by using MSG-SEVIRI data over Italian Regions

    NASA Astrophysics Data System (ADS)

    Lisi, M.; Paciello, R.; Filizzola, C.; Corrado, R.; Marchese, F.; Mazzeo, G.; Pergola, N.; Tramutoli, V.

    2016-12-01

    Fire detection by sensors on-board polar orbiting platforms, due to their relatively low temporal resolution (hours), could results decidedly not adequate to detect short-living events or fires characterized by a strong diurnal cycle and rapid evolution times. The challenge is therefore to try to exploit the very high temporal resolution offered by the geostationary sensors (from 30 to 2,5 minutes) to guarantee a continuous monitoring. Over the last years, many algorithms have been adapted from polar to (or have been specifically designed for) geostationary sensors. Most of them are based on fixed thresholds tests which, to avoid false alarm proliferation, are generally set up in the most conservative way. The result is a low algorithm sensitivity (i.e. only large and/or extremely intense events are generally detected) which could drastically affect Global Fire Emission (GFE) estimate: small fires were recognized to contribute for more than 35% to the global biomass burning carbon emissions. This work describes the multi-temporal change-detection technique named RST-FIRES (Robust Satellite Techniques for FIRES detection and monitoring) which, try to overcome the above mentioned issues being, moreover, immediately exportable on different geographic area and sensors. Its performance in terms of reliability and sensitivity was verified by more than 20,000 SEVIRI images collected throughout the day during a four-year-collaboration with the Regional Civil Protection Departments and Local Authorities of two Italian regions which provided about 950 near real-time ground and aerial checks of the RST-FIRES detections. This study fully demonstrates the added value of the RST-FIRES technique for the detection of early/small fires and a sensitivity from 3 to 70 times higher than any other similar SEVIRI-based products.

  5. Craniofacial morphology of Homo floresiensis: description, taxonomic affinities, and evolutionary implication.

    PubMed

    Kaifu, Yousuke; Baba, Hisao; Sutikna, Thomas; Morwood, Michael J; Kubo, Daisuke; Saptomo, E Wahyu; Jatmiko; Awe, Rokhus Due; Djubiantono, Tony

    2011-12-01

    This paper describes in detail the external morphology of LB1/1, the nearly complete and only known cranium of Homo floresiensis. Comparisons were made with a large sample of early groups of the genus Homo to assess primitive, derived, and unique craniofacial traits of LB1 and discuss its evolution. Principal cranial shape differences between H. floresiensis and Homo sapiens are also explored metrically. The LB1 specimen exhibits a marked reductive trend in its facial skeleton, which is comparable to the H. sapiens condition and is probably associated with reduced masticatory stresses. However, LB1 is craniometrically different from H. sapiens showing an extremely small overall cranial size, and the combination of a primitive low and anteriorly narrow vault shape, a relatively prognathic face, a rounded oval foramen that is greatly separated anteriorly from the carotid canal/jugular foramen, and a unique, tall orbital shape. Whereas the neurocranium of LB1 is as small as that of some Homo habilis specimens, it exhibits laterally expanded parietals, a weak suprameatal crest, a moderately flexed occipital, a marked facial reduction, and many other derived features that characterize post-habilis Homo. Other craniofacial characteristics of LB1 include, for example, a relatively narrow frontal squama with flattened right and left sides, a marked frontal keel, posteriorly divergent temporal lines, a posteriorly flexed anteromedial corner of the mandibular fossa, a bulbous lateral end of the supraorbital torus, and a forward protruding maxillary body with a distinct infraorbital sulcus. LB1 is most similar to early Javanese Homo erectus from Sangiran and Trinil in these and other aspects. We conclude that the craniofacial morphology of LB1 is consistent with the hypothesis that H. floresiensis evolved from early Javanese H. erectus with dramatic island dwarfism. However, further field discoveries of early hominin skeletal remains from Flores and detailed analyses of the finds are needed to understand the evolutionary history of this endemic hominin species. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. RL-10 Based Combined Cycle For A Small Reusable Single-Stage-To-Orbit Launcher

    NASA Technical Reports Server (NTRS)

    Balepin, Vladimir; Price, John; Filipenco, Victor

    1999-01-01

    This paper discusses a new application of the combined propulsion known as the KLIN(TM) cycle, consisting of a thermally integrated deeply cooled turbojet (DCTJ) and liquid rocket engine (LRE). If based on the RL10 rocket engine family, the KLIN (TM) cycle makes a small single-stage-to-orbit (SSTO) reusable launcher feasible and economically very attractive. Considered in this paper are the concept and parameters of a small SSTO reusable launch vehicle (RLV) powered by the KLIN (TM) cycle (sSSTO(TM)) launcher. Also discussed are the benefits of the small launcher, the reusability, and the combined cycle application. This paper shows the significant reduction of the gross take off weight (GTOW) and dry weight of the KLIN(TM) cycle-powered launcher compared to an all-rocket launcher.

  7. Observing orbital debris using space-based telescopes. I - Mission orbit considerations

    NASA Technical Reports Server (NTRS)

    Reynolds, Robert C.; Talent, David L.; Vilas, Faith

    1989-01-01

    In this paper, mission orbit considerations are addressed for using the Space Shuttle as a telescope platform for observing man-made orbital debris. Computer modeling of various electrooptical systems predicts that such a space-borne system will be able to detect particles as small as 1-mm diameter. The research is meant to support the development of debris- collision warning sensors through the acquisition of spatial distribution and spectral characteristics for debris and testing of detector combinations on a shuttle-borne telescopic experiment. The technique can also be applied to low-earth-orbit-debris environment monitoring systems. It is shown how the choice of mission orbit, season of launch, and time of day of launch may be employed to provide extended periods of favorable observing conditions.

  8. Atomic-scale visualization of surface-assisted orbital order

    PubMed Central

    Kim, Howon; Yoshida, Yasuo; Lee, Chi-Cheng; Chang, Tay-Rong; Jeng, Horng-Tay; Lin, Hsin; Haga, Yoshinori; Fisk, Zachary; Hasegawa, Yukio

    2017-01-01

    Orbital-related physics attracts growing interest in condensed matter research, but direct real-space access of the orbital degree of freedom is challenging. We report a first, real-space, imaging of a surface-assisted orbital ordered structure on a cobalt-terminated surface of the well-studied heavy fermion compound CeCoIn5. Within small tip-sample distances, the cobalt atoms on a cleaved (001) surface take on dumbbell shapes alternatingly aligned in the [100] and [010] directions in scanning tunneling microscopy topographies. First-principles calculations reveal that this structure is a consequence of the staggered dxz-dyz orbital order triggered by enhanced on-site Coulomb interaction at the surface. This so far overlooked surface-assisted orbital ordering may prevail in transition metal oxides, heavy fermion superconductors, and other materials. PMID:28948229

  9. Space shuttle orbiter trimmed center-of-gravity extension study. Volume 3: Impact of retrofits for center-of-gravity extension on orbiter thermal-protection system

    NASA Technical Reports Server (NTRS)

    Dunavant, J. C.

    1979-01-01

    Heat transfer studies were conducted at Mach 10.3 on space shuttle orbiter models with the S-2 fillet and C-4 canard retrofit moldlines which were generated in aerodynamic and system design studies to increase the allowable c.g. range of the orbiter. Areas of orbiter most strongly affected were the sides where a shear layer which separated along the wing leading edge impinged. Analytical studies of the heating effect on the thermal-protection system were made which indicated that scar weight on the orbiter sides due to allowances for retrofits of the S-2 fillet and C-4 canard is small (less than about 90 kg (200 lbs) in comparison to the total weight of the retrofit).

  10. Spin dynamics and orbital state in LaTiO3

    PubMed

    Keimer; Casa; Ivanov; Lynn; Zimmermann; Hill; Gibbs; Taguchi; Tokura

    2000-10-30

    A neutron scattering study of the Mott-Hubbard insulator LaTiO3 ( T(N) = 132 K) reveals a spin wave spectrum that is well described by a nearest-neighbor superexchange constant J = 15.5 meV and a small Dzyaloshinskii-Moriya interaction ( D = 1.1 meV). The nearly isotropic spin wave spectrum is surprising in view of the absence of a static Jahn-Teller distortion that could quench the orbital angular momentum, and it may indicate strong orbital fluctuations. A resonant x-ray scattering study has uncovered no evidence of orbital order in LaTiO3.

  11. The Mars Reconnaissance Orbiter Mission: From Launch to the Primary Science Orbit

    NASA Technical Reports Server (NTRS)

    Johnston, Martin D.; Graf, James E.; Zurek, Richard W.; Eisen, Howard J.; Jai, Benhan; Erickson, James K.

    2007-01-01

    The Mars Reconnaissance Orbiter (MRO) was launched from Cape Canaveral Air Force Station, Florida, USA, aboard an Atlas V-401 launch vehicle on August 12, 2005. The MRO spacecraft carries a very sophisticated scientific payload. Its primary science mission is to to provide global, regional survey, and targeted observations from a low altitude orbit for one Martian year (687 Earth days). After a seven month interplanetary transit, the spacecraft fired its six main engines and established a highly elliptical capture orbit at Mars. During the post-MOI early check-out period, four instruments acquired engineering-quality data. This was followed by five months of aerobraking operations. After aerobraking was terminated, a series of propulsive maneuvers were used to establish the desired low altitude science orbit. As the spacecraft is readied for its primary science mission, spacecraft and instrument checkout and deployment activities have continued.

  12. Space Shuttle Projects

    NASA Image and Video Library

    1991-08-01

    The primary payload of the STS-43 mission, Tracking and Data Relay Satellite-E (TDRS-E) attached to an Inertial Upper Stage (IUS) was photographed at the moment of its release from the cargo bay of the Space Shuttle Orbiter Atlantis. The TDRS-E was boosted by the IUS into geosynchronous orbit and positioned to remain stationary 22,400 miles above the Pacific Ocean southwest of Hawaii. The TDRS system provides almost uninterrupted communications with Earth-orbiting Shuttles and satellites, and had replaced the intermittent coverage provided by globe-encircling ground tracking stations used during the early space program. The TDRS can transmit and receive data, and track a user spacecraft in a low Earth orbit. The IUS is an unmarned transportation system designed to ferry payloads from low Earth orbit to higher orbits that are unattainable by the Shuttle. The launch of STS-43 occurred on August 2, 1991.

  13. Stanford automatic photogrammetry research

    NASA Technical Reports Server (NTRS)

    Quam, L. H.; Hannah, M. J.

    1974-01-01

    A feasibility study on the problem of computer automated aerial/orbital photogrammetry is documented. The techniques investigated were based on correlation matching of small areas in digitized pairs of stereo images taken from high altitude or planetary orbit, with the objective of deriving a 3-dimensional model for the surface of a planet.

  14. Exploration of Near-Earth Objects from the Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Dunham, D. W.; Stakkestad, K.; Vedder, P.; McAdams, J.; Horsewood, J.; Genova, A. L.

    2018-02-01

    The paper will show how clever use of orbital dynamics can lower delta-V costs to enable scientifically interesting missions. The high-energy Deep Space Gateway orbits can be used to reach NEOs, a trans node for crews, or to deploy small sats. Examples are given.

  15. Computer Controlled Optical Surfacing With Orbital Tool Motion

    NASA Astrophysics Data System (ADS)

    Jones, Robert A.

    1985-11-01

    Asymmetric aspheric optical surfaces are very difficult to fabricate using classical techniques and laps the same size as the workpiece. Opticians can produce such surfaces by hand grinding and polishing, using small laps with orbital tool motion. However, this is a time consuming process unsuitable for large optical elements.

  16. Diagrams for comprehensive molecular orbital-based chemical reaction analyses: reactive orbital energy diagrams.

    PubMed

    Tsuneda, Takao; Singh, Raman Kumar; Chattaraj, Pratim Kumar

    2018-05-15

    Reactive orbital energy diagrams are presented as a tool for comprehensively performing orbital-based reaction analyses. The diagrams rest on the reactive orbital energy theory, which is the expansion of conceptual density functional theory (DFT) to an orbital energy-based theory. The orbital energies on the intrinsic reaction coordinates of fundamental reactions are calculated by long-range corrected DFT, which is confirmed to provide accurate orbital energies of small molecules, combining with a van der Waals (vdW) correlation functional, in order to examine the vdW effect on the orbital energies. By analysing the reactions based on the reactive orbital energy theory using these accurate orbital energies, it is found that vdW interactions significantly affect the orbital energies in the initial reaction processes and that more than 70% of reactions are determined to be initially driven by charge transfer, while the remaining structural deformation (dynamics)-driven reactions are classified into identity, cyclization and ring-opening, unimolecular dissociation, and H2 reactions. The reactive orbital energy diagrams, which are constructed using these results, reveal that reactions progress so as to delocalize the occupied reactive orbitals, which are determined as contributing orbitals and are usually not HOMOs, by hybridizing the unoccupied reactive orbitals, which are usually not LUMOs. These diagrams also raise questions about conventional orbital-based diagrams such as frontier molecular orbital diagrams, even for the well-established interpretation of Diels-Alder reactions.

  17. Distant retrograde orbits for the Moon's exploration

    NASA Astrophysics Data System (ADS)

    Sidorenko, Vladislav

    We discuss the properties of the distant retrograde orbits (which are called quasi-satellite orbits also) around Moon. For the first time the distant retrograde orbits were described by J.Jackson in studies on restricted three body problem at the beginning of 20th century [1]. In the synodic (rotating) reference frame distant retrograde orbit looks like an ellipse whose center is slowly drifting in the vicinity of minor primary body while in the inertial reference frame the third body is orbiting the major primary body. Although being away the Hill sphere the third body permanently stays close enough to the minor primary. Due to this reason the distant retrograde orbits are called “quasi-satellite” orbits (QS-orbits) too. Several asteroids in solar system are in a QS-orbit with respect to one of the planet. As an example we can mention the asteroid 2002VE68 which circumnavigates Venus [2]. Attention of specialists in space flight mechanics was attracted to QS-orbits after the publications of NASA technical reports devoted to periodic moon orbits [3,4]. Moving in QS-orbit the SC remains permanently (or at least for long enough time) in the vicinity of small celestial body even in the case when the Hill sphere lies beneath the surface of the body. The properties of the QS-orbit can be studied using the averaging of the motion equations [5,6,7]. From the theoretical point of view it is a specific case of 1:1 mean motion resonance. The integrals of the averaged equations become the parameters defining the secular evolution of the QS-orbit. If the trajectory is robust enough to small perturbations in the simplified problem (i.e., restricted three body problem) it may correspond to long-term stability of the real-world orbit. Our investigations demonstrate that under the proper choice of the initial conditions the QS-orbits don’t escape from Moon or don’t impact Moon for long enough time. These orbits can be recommended as a convenient technique for the large scale browsing of the Moon’s environment. [1] Jackson, J. (1913) MNRAS, 74, 62-82. [2] Mikkola, S., Brasser, R., Wiegert, P., Innanen, K. (2004) MNRAS, 351, L63-L65. [3] Broucke, R.A. (1968) NASA Technical Report 32-1168, JPL. [4] Broucke, R.A. (1969) NASA Technical Report 32-1360, JPL. [5] Kogan, A.I. (1989) Cosmic Research, 26, 705-710. [6] Namouni, F. (1999) Icarus, 6, 293-314. [7] Sidorenko, V.V., Neishtadt, A.I., Artemyev, A.V., Zelenyi, L.M. (2013) Doklady Physics, 58, 207-211.

  18. Detection of Intermediate-Period Transiting Planets with a Network of Small Telescopes: transitsearch.org

    NASA Astrophysics Data System (ADS)

    Seagroves, Scott; Harker, Justin; Laughlin, Gregory; Lacy, Justin; Castellano, Tim

    2003-12-01

    We describe a project (transitsearch.org) currently attempting to discover transiting intermediate-period planets orbiting bright parent stars, and we simulate that project's performance. The discovery of such a transit would be an important astronomical advance, bridging the critical gap in understanding between HD 209458b and Jupiter. However, the task is made difficult by intrinsically low transit probabilities and small transit duty cycles. This project's efficient and economical strategy is to photometrically monitor stars that are known (from radial velocity surveys) to bear planets, using a network of widely spaced observers with small telescopes. These observers, each individually capable of precision (1%) differential photometry, monitor candidates during the time windows in which the radial velocity solution predicts a transit if the orbital inclination is close to 90°. We use Monte Carlo techniques to simulate the performance of this network, performing simulations with different configurations of observers in order to optimize coordination of an actual campaign. Our results indicate that transitsearch.org can reliably rule out or detect planetary transits within the current catalog of known planet-bearing stars. A distributed network of skilled amateur astronomers and small college observatories is a cost-effective method for discovering the small number of transiting planets with periods in the range 10 days

  19. Angles between orthogonal spd bond orbitals with maximum strength*

    PubMed Central

    Pauling, Linus

    1976-01-01

    An equation is derived for values of bond angles for two equivalent best spd hybrid bond orbitals with given amounts of s, p, and d character, and is applied in the discussion of structures of transargononic compounds, including the xenon and halogen fluorides. Bond orbitals with a rather small amount of d character tend to lie at angles 90° and 180°, and those with a larger amount, at somewhat smaller angles. PMID:16592315

  20. Pediatric Orbital Fractures

    PubMed Central

    Oppenheimer, Adam J.; Monson, Laura A.; Buchman, Steven R.

    2013-01-01

    It is wise to recall the dictum “children are not small adults” when managing pediatric orbital fractures. In a child, the craniofacial skeleton undergoes significant changes in size, shape, and proportion as it grows into maturity. Accordingly, the craniomaxillofacial surgeon must select an appropriate treatment strategy that considers both the nature of the injury and the child's stage of growth. The following review will discuss the management of pediatric orbital fractures, with an emphasis on clinically oriented anatomy and development. PMID:24436730

  1. LAREDO: LAunching, REndezvous and DOcking Simulation Tool

    DTIC Science & Technology

    2006-08-01

    the Clohessy - Wiltshire equation for small eccentricities and relative distances, as shown in Eq. (12). z 2 y x 2 azz ax2y ay2x3x +−= +−= ++= ω ω...ωω && &&& &&& (12) In case of circular orbits, the LAREDO tool orbital maneuvers are all based on the Clohessy - Wiltshire equations4, where the set...Elliptical maneuvers guidance and control The Clohessy - Wiltshire equations described in the above section cannot be applied when the orbits have a

  2. Real-time precise orbit determination of LEO satellites using a single-frequency GPS receiver: Preliminary results of Chinese SJ-9A satellite

    NASA Astrophysics Data System (ADS)

    Sun, Xiucong; Han, Chao; Chen, Pei

    2017-10-01

    Spaceborne Global Positioning System (GPS) receivers are widely used for orbit determination of low-Earth-orbiting (LEO) satellites. With the improvement of measurement accuracy, single-frequency receivers are recently considered for low-cost small satellite missions. In this paper, a Schmidt-Kalman filter which processes single-frequency GPS measurements and broadcast ephemerides is proposed for real-time precise orbit determination of LEO satellites. The C/A code and L1 phase are linearly combined to eliminate the first-order ionospheric effects. Systematic errors due to ionospheric delay residual, group delay variation, phase center variation, and broadcast ephemeris errors, are lumped together into a noise term, which is modeled as a first-order Gauss-Markov process. In order to reduce computational complexity, the colored noise is considered rather than estimated in the orbit determination process. This ensures that the covariance matrix accurately represents the distribution of estimation errors without increasing the dimension of the state vector. The orbit determination algorithm is tested with actual flight data from the single-frequency GPS receiver onboard China's small satellite Shi Jian-9A (SJ-9A). Preliminary results using a 7-h data arc on October 25, 2012 show that the Schmidt-Kalman filter performs better than the standard Kalman filter in terms of accuracy.

  3. Joint Polar Satellite System

    NASA Technical Reports Server (NTRS)

    Trenkle, Timothy; Driggers, Phillip

    2011-01-01

    The Joint Polar Satellite System (JPSS) is a joint NOAA/NASA mission comprised of a series of polar orbiting weather and climate monitoring satellites which will fly in a sun-synchronous orbit, with a 1330 equatorial crossing time. JPSS resulted from the decision to reconstitute the National Polar-orbiting Operational Environmental Satellite System (NPOESS) into two separate programs, one to be run by the Department of Defense (DOD) and the other by NOAA. This decision was reached in early 2010, after numerous development issues caused a series of unacceptable delays in launching the NPOESS system.

  4. RNA-Sequencing Gene Expression Profiling of Orbital Adipose-Derived Stem Cell Population Implicate HOX Genes and WNT Signaling Dysregulation in the Pathogenesis of Thyroid-Associated Orbitopathy.

    PubMed

    Tao, Wensi; Ayala-Haedo, Juan A; Field, Matthew G; Pelaez, Daniel; Wester, Sara T

    2017-12-01

    The purpose of this study was to characterize the intrinsic cellular properties of orbital adipose-derived stem cells (OASC) from patients with thyroid-associated orbitopathy (TAO) and healthy controls. Orbital adipose tissue was collected from a total of nine patients: four controls and five patients with TAO. Isolated OASC were characterized with mesenchymal stem cell-specific markers. Orbital adipose-derived stem cells were differentiated into three lineages: chondrocytes, osteocytes, and adipocytes. Reverse transcription PCR of genes involved in the adipogenesis, chondrogenesis, and osteogenesis pathways were selected to assay the differentiation capacities. RNA sequencing analysis (RNA-seq) was performed and results were compared to assess for differences in gene expression between TAO and controls. Selected top-ranked results were confirmed by RT-PCR. Orbital adipose-derived stem cells isolated from orbital fat expressed high levels of mesenchymal stem cell markers, but low levels of the pluripotent stem cell markers. Orbital adipose-derived stem cells isolated from TAO patients exhibited an increase in adipogenesis, and a decrease in chondrogenesis and osteogenesis. RNA-seq disclosed 54 differentially expressed genes. In TAO OASC, expression of early neural crest progenitor marker (WNT signaling, ZIC genes and MSX2) was lost. Meanwhile, ectopic expression of HOXB2 and HOXB3 was found in the OASC from TAO. Our results suggest that there are intrinsic genetic and cellular differences in the OASC populations derived from TAO patients. The upregulation in adipogenesis in OASC of TAO may be is consistent with the clinical phenotype. Downregulation of early neural crest markers and ectopic expression of HOXB2 and HOXB3 in TAO OASC demonstrate dysregulation of developmental and tissue patterning pathways.

  5. RNA-Sequencing Gene Expression Profiling of Orbital Adipose-Derived Stem Cell Population Implicate HOX Genes and WNT Signaling Dysregulation in the Pathogenesis of Thyroid-Associated Orbitopathy

    PubMed Central

    Tao, Wensi; Ayala-Haedo, Juan A.; Field, Matthew G.; Pelaez, Daniel; Wester, Sara T.

    2017-01-01

    Purpose The purpose of this study was to characterize the intrinsic cellular properties of orbital adipose-derived stem cells (OASC) from patients with thyroid-associated orbitopathy (TAO) and healthy controls. Methods Orbital adipose tissue was collected from a total of nine patients: four controls and five patients with TAO. Isolated OASC were characterized with mesenchymal stem cell–specific markers. Orbital adipose-derived stem cells were differentiated into three lineages: chondrocytes, osteocytes, and adipocytes. Reverse transcription PCR of genes involved in the adipogenesis, chondrogenesis, and osteogenesis pathways were selected to assay the differentiation capacities. RNA sequencing analysis (RNA-seq) was performed and results were compared to assess for differences in gene expression between TAO and controls. Selected top-ranked results were confirmed by RT-PCR. Results Orbital adipose-derived stem cells isolated from orbital fat expressed high levels of mesenchymal stem cell markers, but low levels of the pluripotent stem cell markers. Orbital adipose-derived stem cells isolated from TAO patients exhibited an increase in adipogenesis, and a decrease in chondrogenesis and osteogenesis. RNA-seq disclosed 54 differentially expressed genes. In TAO OASC, expression of early neural crest progenitor marker (WNT signaling, ZIC genes and MSX2) was lost. Meanwhile, ectopic expression of HOXB2 and HOXB3 was found in the OASC from TAO. Conclusion Our results suggest that there are intrinsic genetic and cellular differences in the OASC populations derived from TAO patients. The upregulation in adipogenesis in OASC of TAO may be is consistent with the clinical phenotype. Downregulation of early neural crest markers and ectopic expression of HOXB2 and HOXB3 in TAO OASC demonstrate dysregulation of developmental and tissue patterning pathways. PMID:29214313

  6. [Orbital compartment syndrome. The most frequent cause of blindness following facial trauma].

    PubMed

    Klenk, Gusztáv; Katona, József; Kenderfi, Gábor; Lestyán, János; Gombos, Katalin; Hirschberg, Andor

    2017-09-01

    Although orbital compartment syndrome is a rare condition, it is still the most common cause of blindness following simple or complicated facial fractures. Its pathomechanism is similar to the compartment syndrome in the limb. Little extra fluid (blood, oedema, brain, foreign body) in a non-space yielding space results with increasingly higher pressures within a short period of time. Unless urgent surgical intervention is performed the blocked circulation of the central retinal artery will result irreversible ophthalmic nerve damage and blindness. Aim, material and method: A retrospective analysis of ten years, 2007-2017, in our hospital among those patients referred to us with facial-head trauma combined with blindness. 571 patients had fractures involving the orbit. 23 patients become blind from different reasons. The most common cause was orbital compartment syndrome in 17 patients; all had retrobulbar haematomas as well. 6 patients with retrobulbar haematoma did not develop compartment syndrome. Compartment syndrome was found among patient with extensive and minimal fractures such as with large and minimal haematomas. Early lateral canthotomy and decompression saved 7 patients from blindness. We can not predict and do not know why some patients develop orbital compartment syndrome. Compartment syndrome seems independent from fracture mechanism, comminution, dislocation, amount of orbital bleeding. All patients are in potential risk with midface fractures. We have a high suspicion that orbital compartment syndrome has been somehow missed out in the recommended textbooks of our medical universities and in the postgraduate trainings. Thus compartment syndrome is not recognized. Teaching, training and early surgical decompression is the only solution to save the blind eye. Orv Hetil. 2017; 158(36): 1410-1420.

  7. Spin-orbit coupling and the static polarizability of single-wall carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diniz, Ginetom S., E-mail: ginetom@gmail.com; Ulloa, Sergio E.

    2014-07-14

    We calculate the static longitudinal polarizability of single-wall carbon tubes in the long wavelength limit taking into account spin-orbit effects. We use a four-orbital orthogonal tight-binding formalism to describe the electronic states and the random phase approximation to calculate the dielectric function. We study the role of both the Rashba as well as the intrinsic spin-orbit interactions on the longitudinal dielectric response, i.e., when the probing electric field is parallel to the nanotube axis. The spin-orbit interaction modifies the nanotube electronic band dispersions, which may especially result in a small gap opening in otherwise metallic tubes. The bandgap size andmore » state features, the result of competition between Rashba and intrinsic spin-orbit interactions, result in drastic changes in the longitudinal static polarizability of the system. We discuss results for different nanotube types and the dependence on nanotube radius and spin-orbit couplings.« less

  8. An interstellar origin for Jupiter's retrograde co-orbital asteroid

    NASA Astrophysics Data System (ADS)

    Namouni, F.; Morais, M. H. M.

    2018-06-01

    Asteroid (514107) 2015 BZ509 was discovered recently in Jupiter's co-orbital region with a retrograde motion around the Sun. The known chaotic dynamics of the outer Solar system have so far precluded the identification of its origin. Here, we perform a high-resolution statistical search for stable orbits and show that asteroid (514107) 2015 BZ509 has been in its current orbital state since the formation of the Solar system. This result indicates that (514107) 2015 BZ509 was captured from the interstellar medium 4.5 billion years in the past as planet formation models cannot produce such a primordial large-inclination orbit with the planets on nearly coplanar orbits interacting with a coplanar debris disc that must produce the low-inclination small-body reservoirs of the Solar system such as the asteroid and Kuiper belts. This result also implies that more extrasolar asteroids are currently present in the Solar system on nearly polar orbits.

  9. Optimal four-impulse rendezvous between coplanar elliptical orbits

    NASA Astrophysics Data System (ADS)

    Wang, JianXia; Baoyin, HeXi; Li, JunFeng; Sun, FuChun

    2011-04-01

    Rendezvous in circular or near circular orbits has been investigated in great detail, while rendezvous in arbitrary eccentricity elliptical orbits is not sufficiently explored. Among the various optimization methods proposed for fuel optimal orbital rendezvous, Lawden's primer vector theory is favored by many researchers with its clear physical concept and simplicity in solution. Prussing has applied the primer vector optimization theory to minimum-fuel, multiple-impulse, time-fixed orbital rendezvous in a near circular orbit and achieved great success. Extending Prussing's work, this paper will employ the primer vector theory to study trajectory optimization problems of arbitrary eccentricity elliptical orbit rendezvous. Based on linearized equations of relative motion on elliptical reference orbit (referred to as T-H equations), the primer vector theory is used to deal with time-fixed multiple-impulse optimal rendezvous between two coplanar, coaxial elliptical orbits with arbitrary large eccentricity. A parameter adjustment method is developed for the prime vector to satisfy the Lawden's necessary condition for the optimal solution. Finally, the optimal multiple-impulse rendezvous solution including the time, direction and magnitudes of the impulse is obtained by solving the two-point boundary value problem. The rendezvous error of the linearized equation is also analyzed. The simulation results confirmed the analyzed results that the rendezvous error is small for the small eccentricity case and is large for the higher eccentricity. For better rendezvous accuracy of high eccentricity orbits, a combined method of multiplier penalty function with the simplex search method is used for local optimization. The simplex search method is sensitive to the initial values of optimization variables, but the simulation results show that initial values with the primer vector theory, and the local optimization algorithm can improve the rendezvous accuracy effectively with fast convergence, because the optimal results obtained by the primer vector theory are already very close to the actual optimal solution. If the initial values are taken randomly, it is difficult to converge to the optimal solution.

  10. Small Friends of Hot Jupiters

    NASA Astrophysics Data System (ADS)

    Nunez, Luis Ernesto; Johnson, John A.

    2017-01-01

    Hot Jupiters are Jupiter-sized gas giant exoplanets that closely orbit their host star in periods of about 10 days or less. Early models hypothesized that these exoplanets formed away from the star, then over time drifted to their characteristically closer locations. However, new theories predict that Hot Jupiters form at their close proximity during the process of core accretion (Batygin et al. 2015). In fact, a super-Earth and a Neptune-sized exoplanet have already been detected in the Hot Jupiter-hosting star WASP-47 (Becker et al. 2015). We will present our analysis of radial velocity time series plots to determine whether low-mass, short-period planets have been previously overlooked in systems of stars which host Hot Jupiters.The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851.

  11. Increasing the usefulness of Shuttle with SPACEHAB

    NASA Astrophysics Data System (ADS)

    Stone, Barbara A.; Rossi, David A.

    1992-08-01

    SPACEHAB is a pressurized laboratory, approximately 10 feet long and 13 feet in diameter, which fits in the forward position of the Shuttle payload bay and connects to the crew compartment through the Orbiter airlock. SPACEHAB modules may contain up to 61 standard middeck lockers, providing 1100 cubic feet of pressurized work space. SPACEHAB'S capacity offers crew-tended access to the microgravity environment for experimentation, technology development, and small-scale production. The modules are designed to facilitate the user's ability to quickly and inexpensively develop and integrate a microgravity payload. Payloads are typically integrated into the SPACEHAB module in standard SPACEHAB lockers or SPACEHAB racks. Lockers are designed to offer identical user interfaces as standard Space Shuttle middeck lockers. SPACEHAB racks are interchangeable with Space Station Freedom racks, allowing hardware to be qualified for early station use.

  12. SAR sensors onboard small satellites - Problems and prospectives

    NASA Astrophysics Data System (ADS)

    Perrotta, Giorgio

    A system concept based on a constellation of 4 to 6 lightsats in low inclined circular orbits is presented. Each satellite carries a SAR sensor with two antennas, resulting in 5-m resolution and continuous coverage of the earth belt between 50 deg N and 50 deg S latitude, with typical revisit intervals of a few hours. Such a system appears highly suitable for tactical applications and can be adapted to the needs of conventional disarmament verification. The system can be used for: surface and subsurface sea traffic surveillance; near real-time tracking of oil spills; early warning of events preceding natural disasters; and rapid assessment of postdisaster damage. The system can also support and complement other remote sensing satellites providing, for example, the HF components of the effects of the interaction between meteorological events and soil, vegetation, and national resources in general.

  13. Deadly Sunflower Orbits

    NASA Astrophysics Data System (ADS)

    Hamilton, Douglas P.

    2018-04-01

    Solar radiation pressure is usually very effective at removing hazardous millimeter-sized debris from distant orbits around asteroidsand other small solar system bodies (Hamilton and Burns 1992). Theprimary loss mechanism, driven by the azimuthal component of radiationpressure, is eccentricity growth followed by a forced collision withthe central body. One large class of orbits, however, neatly sidestepsthis fate. Orbits oriented nearly perpendicular to the solar directioncan maintain their face-on geometry, oscillating slowly around a stableequilibrium orbit. These orbits, designated sunflower orbits, arerelated to terminator orbits studied by spacecraft mission designers(Broschart etal. 2014).Destabilization of sunflower orbits occurs only for particles smallenough that radiation pressure is some tens of percent the strength ofthe central body's direct gravity. This greatly enhanced stability,which follows from the inability of radiation incident normal to theorbit to efficiently drive eccentricities, presents a threat tospacecraft missions, as numerous dangerous projectiles are potentiallyretained in orbit. We have investigated sunflower orbits insupport of the New Horizons, Aida, and Lucy missions and find thatthese orbits are stable for hazardous particle sizes at asteroids,comets, and Kuiper belt objects of differing dimensions. Weinvestigate the sources and sinks for debris that might populate suchorbits, estimate timescales and equilibrium populations, and willreport on our findings.

  14. Orbital Resonances in the Solar Nebula: Strengths and Weaknesses

    NASA Technical Reports Server (NTRS)

    Malhotra, Renu

    1993-01-01

    A planetesimal moving in the Solar Nebula experiences an aero- dynamic drag which causes its orbit to circularize and shrink. However, resonant perturbations from a protoplanet interior to the planetesimal's orbit ran counteract both the orbital decay and the damping of the eccentricity: the planetesimal can be captured into an orbital resonance and its eccentricity pumped up to a modestly high equilibrium value. Thus, orbital resonances constitute (partial) barriers to the delivery of planetesimals into the feeding zone of the protoplanet. We have established the characteristics of the phenomenon of resonance capture by gas drag in the circular restricted three-body approximation. We have determined the strengths of the equilibrium resonant orbits with respect to impulsive velocity perturbations. We conclude that planetesimals captured in orbital resonances are quite vulnerable to being dislocated from these orbits by mutual planetesimal interactions, but that the resonances are effective in slowing down the rate of orbital decay of planetesimals. Only very small bodies, less or approx. equal to 100 m, are able to reach a approx. 1 mass of the earth protoplanet without being slowed down by resonances.

  15. Comet and asteroid hazard to the terrestrial planets

    NASA Astrophysics Data System (ADS)

    Ipatov, S. I.; Mather, J. C.

    2004-01-01

    We estimated the rate of comet and asteroid collisions with the terrestrial planets by calculating the orbits of 13,000 Jupiter-crossing objects (JCOs) and 1300 resonant asteroids and computing the probabilities of collisions based on random-phase approximations and the orbital elements sampled with a 500 years step. The Bulirsh-Stoer and a symplectic orbit integrator gave similar results for orbital evolution, but may give different collision probabilities with the Sun. A small fraction of former JCOs reached orbits with aphelia inside Jupiter's orbit and some reached Apollo orbits with semi-major axes less than 2 AU, Aten orbits and inner-Earth orbits (with aphelia less than 0.983 AU) and remained there for millions of years. Though less than 0.1% of the total, these objects were responsible for most of the collision probability of former JCOs with Earth and Venus. We conclude that a significant fraction of near-Earth objects could be extinct comets that came from the trans-Neptunian region or most of such comets disintegrated during their motion in near-Earth object orbits.

  16. Hi, Hokusai!

    NASA Image and Video Library

    2017-12-08

    This dramatic image features Hokusai in the foreground, famous for its extensive set of rays, some of which extend for over a thousand kilometers across Mercury's surface. The extensive, bright rays indicate that Hokusai is one of the youngest large craters on Mercury. Check out previously featured images to see high-resolution details of its central peaks, rim and ejecta blanket, and impact melt on its floor. This image was acquired as part of MDIS's high-incidence-angle base map. The high-incidence-angle base map complements the surface morphology base map of MESSENGER's primary mission that was acquired under generally more moderate incidence angles. High incidence angles, achieved when the Sun is near the horizon, result in long shadows that accentuate the small-scale topography of geologic features. The high-incidence-angle base map was acquired with an average resolution of 200 meters/pixel. The MESSENGER spacecraft is the first ever to orbit the planet Mercury, and the spacecraft's seven scientific instruments and radio science investigation are unraveling the history and evolution of the Solar System's innermost planet. During the first two years of orbital operations, MESSENGER acquired over 150,000 images and extensive other data sets. MESSENGER is capable of continuing orbital operations until early 2015. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. Swift X-ray monitoring of stellar coronal variability

    NASA Astrophysics Data System (ADS)

    Miller, Brendan; Hagen, Cedric; Gallo, Elena; Wright, Jason T.

    2018-01-01

    We used California Planet Search Ca II H and K core emission measurements to identify and characterize chromospheric activity cycles in a sample of main-sequence FGK stars. About a dozen of these with existing ROSAT archival data were targeted with Swift to obtain a current epoch X-ray flux. We find that coronal variability by a factor of several is common on decade-long timescales (we attempt to link to the chromospheric cycle phase) but can also occur on short timescales between Swift visits to a given target, presumably related to stellar rotation and coronal inhomogeneity or to small flares. Additionally, we present new Swift monitoring observations of two M dwarfs with known exoplanets: GJ 15A and GJ 674. GJ 15A b is around 5.3 Earth masses with an 11.4 day orbital period, while GJ 674 is around 11.1 Earth masses with a 4.7 day orbital period. GJ 15A was observed several times in late 2014 and then monitored at approximately weekly intervals for several months in early 2016, for a total exposure of 18 ks. GJ 674 was monitored at approximately weekly intervals for most of 2016, for a total exposure of 40 ks. We provide light curves and hardness ratios for both sources, and also compare to earlier archival X-ray data. Both sources show significant X-ray variability, including between consecutive observations. We quantify the energy distribution for coronal flaring, and compare to optical results for M dwarfs from Kepler. Finally, we discuss the implications of M dwarf coronal activity for exoplanets orbiting within the nominal habitable zone.

  18. Swift X-ray monitoring of stellar coronal variability

    NASA Astrophysics Data System (ADS)

    Miller, Brendan P.; Gallo, Elena; Wright, Jason; Hagen, Cedric

    2017-08-01

    We used California Planet Search Ca II H and K core emission measurements to identify and characterize chromospheric activity cycles in a sample of main-sequence FGK stars. About a dozen of these with existing ROSAT archival data were targeted with Swift to obtain a current epoch X-ray flux. We find that coronal variability by a factor of several is common on decade-long timescales (we attempt to link to the chromospheric cycle phase) but can also occur on short timescales between Swift visits to a given target, presumably related to stellar rotation and coronal inhomogeneity or to small flares.Additionally, we present new Swift monitoring observations of two M dwarfs with known exoplanets: GJ 15A and GJ 674. GJ 15A b is around 5.3 Earth masses with an 11.4 day orbital period, while GJ 674 is around 11.1 Earth masses with a 4.7 day orbital period. GJ 15A was observed several times in late 2014 and then monitored at approximately weekly intervals for several months in early 2016, for a total exposure of 18 ks. GJ 674 was monitored at approximately weekly intervals for most of 2016, for a total exposure of 40 ks. We provide light curves and hardness ratios for both sources, and also compare to earlier archival X-ray data. Both sources show significant X-ray variability, including between consecutive observations. We quantify the energy distribution for coronal flaring, and compare to optical results for M dwarfs from Kepler. Finally, we discuss the implications of M dwarf coronal activity for exoplanets orbiting within the nominal habitable zone.

  19. Correlation of the Hubble Space Telescope (HST) Space Telescope Imaging Spectrometer (STIS) On-Orbit Data with Pre-launch Predictions and Ground Contamination Controls

    NASA Technical Reports Server (NTRS)

    Hansen, Patricia A.

    2003-01-01

    The Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS) was deployed on-orbit in February 1997. The contamination program for STIS was stringently controlled as the five-year end-of-life deposition was set at 158, per optical element. Contamination was controlled through materials selection, extensive vacuum outgassing certifications, cleaning techniques, and environmental controls. In addition to ground contamination controls, on-orbit contamination controls were implemented for both the HST servicing mission activities and early post-servicing mission checkout. The extensive contamination control program will be discussed and the STIS on-orbit data will be correlated with the prelaunch analytical predictions.

  20. Feasibility study of a zero-gravity (orbital) atmospheric cloud physics experiments laboratory

    NASA Technical Reports Server (NTRS)

    Hollinden, A. B.; Eaton, L. R.

    1972-01-01

    A feasibility and concepts study for a zero-gravity (orbital) atmospheric cloud physics experiment laboratory is discussed. The primary objective was to define a set of cloud physics experiments which will benefit from the near zero-gravity environment of an orbiting spacecraft, identify merits of this environment relative to those of groundbased laboratory facilities, and identify conceptual approaches for the accomplishment of the experiments in an orbiting spacecraft. Solicitation, classification and review of cloud physics experiments for which the advantages of a near zero-gravity environment are evident are described. Identification of experiments for potential early flight opportunities is provided. Several significant accomplishments achieved during the course of this study are presented.

  1. A comparative DFT study of interactions of Au and small gold clusters Aun (n = 2-4) with CH3S and CH2 radicals

    NASA Astrophysics Data System (ADS)

    Blaško, Martin; Rajský, Tomáš; Urban, Miroslav

    2017-03-01

    We compare DFT binding energies (BEs) of Au and small gold clusters interacting with CH3S and CH2 ligands (Aun-L complexes, n = 1-4). The spin state and the binding mechanism in Aun-L varies with the participation of singly occupied non-bonding orbitals or doubly occupied lone-pair orbitals of a ligand and on the number of atoms (even or odd) of Aun. The highest BE, 354 kJ/mol, exhibits the Au3-CH2 complex with the covalent bond in which participate two singly occupied orbitals of the triplet state of CH2. With CH3S the highest BE (277 kJ/mol) is calculated for Au3-SCH3 with the single Au-S bond.

  2. Microscopic description of orbital-selective spin ordering in BaMn2As2

    NASA Astrophysics Data System (ADS)

    Craco, L.; Carara, S. S.

    2018-05-01

    Using generalized gradient approximation+dynamical mean-field theory, we provide a microscopic description of orbital-selective spin ordering in the tetragonal manganese pnictide BaMn2As2 . We demonstrate the coexistence of local moments and small band-gap electronic states in the parent compound. We also explore the role played by electron/hole doping, showing that the Mott insulating state is rather robust to small removal of electron charge carriers similar to cuprate oxide superconductors. Good qualitative accord between theory and angle-resolved photoemission as well as electrical transport provides support to our view of orbital-selective spin ordering in BaMn2As2 . Our proposal is expected to be an important step to understanding the emergent correlated electronic structure of materials with persisting ordered localized moments coexisting with Coulomb reconstructed nonmagnetic electronic states.

  3. Graben and Pyroclastics in SW Mare Humorum

    NASA Image and Video Library

    2010-04-09

    Two small black arrows on today image taken by NASA Lunar Reconnaissance Orbiter show the location of a small graben 28 meters in width in a pyroclastic mantling deposit in the SW portion of Mare Humorum.

  4. The Impact Imperative: A Space Infrastructure Enabling a Multi-Tiered Earth Defense

    NASA Technical Reports Server (NTRS)

    Campbell, Jonathan W.; Phipps, Claude; Smalley, Larry; Reilly, James; Boccio, Dona

    2003-01-01

    Impacting at hypervelocity, an asteroid struck the Earth approximately 65 million years ago in the Yucatan Peninsula a m . This triggered the extinction of almost 70% of the species of life on Earth including the dinosaurs. Other impacts prior to this one have caused even greater extinctions. Preventing collisions with the Earth by hypervelocity asteroids, meteoroids, and comets is the most important immediate space challenge facing human civilization. This is the Impact Imperative. We now believe that while there are about 2000 earth orbit crossing rocks greater than 1 kilometer in diameter, there may be as many as 200,000 or more objects in the 100 m size range. Can anything be done about this fundamental existence question facing our civilization? The answer is a resounding yes! By using an intelligent combination of Earth and space based sensors coupled with an infrastructure of high-energy laser stations and other secondary mitigation options, we can deflect inbound asteroids, meteoroids, and comets and prevent them &om striking the Earth. This can be accomplished by irradiating the surface of an inbound rock with sufficiently intense pulses so that ablation occurs. This ablation acts as a small rocket incrementally changing the shape of the rock's orbit around the Sun. One-kilometer size rocks can be moved sufficiently in about a month while smaller rocks may be moved in a shorter time span. We recommend that space objectives be immediately reprioritized to start us moving quickly towards an infrastructure that will support a multiple option defense capability. Planning and development for a lunar laser facility should be initiated immediately in parallel with other options. All mitigation options are greatly enhanced by robust early warning, detection, and tracking resources to find objects sufficiently prior to Earth orbit passage in time to allow significant intervention. Infrastructure options should include ground, LEO, GEO, Lunar, and libration point laser and sensor stations for providing early warning, tracking, and deflection. Other options should include space interceptors that will carry both laser and nuclear ablators for close range work. Response options must be developed to deal with the consequences of an impact should we move too slowly.

  5. Atlantis is lifted from its transporter in the VAB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- In the transfer aisle of the Vehicle Assembly Building, the orbiter Atlantis is suspended vertically via overhead cranes. The orbiter will be rotated and lifted into high bay 1 where it will be stacked with its external tank and solid rocket boosters. Space Shuttle Atlantis is scheduled to launch on mission STS-104 in early July.

  6. Direct Simulation Monte Carlo Calculations in Support of the Columbia Shuttle Orbiter Accident Investigation

    NASA Technical Reports Server (NTRS)

    Gallis, Michael A.; LeBeau, Gerald J.; Boyles, Katie A.

    2003-01-01

    The Direct Simulation Monte Carlo method was used to provide 3-D simulations of the early entry phase of the Shuttle Orbiter. Undamaged and damaged scenarios were modeled to provide calibration points for engineering "bridging function" type of analysis. Currently the simulation technology (software and hardware) are mature enough to allow realistic simulations of three dimensional vehicles.

  7. Early Program Development

    NASA Image and Video Library

    1970-01-01

    Managed by Marshall Space Flight Center, the Space Tug was a reusable multipurpose space vehicle designed to transport payloads to different orbital inclinations. Utilizing mission-specific combinations of its three primary modules (crew, propulsion, and cargo) and a variety of supplementary kits, the Space Tug was capable of numerous space applications. This 1970 artist's concept depicts the Tug's propulsion module launching a space probe into lunar orbit.

  8. Early Program Development

    NASA Image and Video Library

    1989-01-01

    In June 1989 the Marshall Space Flight Center initiated studies of Space Transfer Vehicle (STV) concepts. A successor to the Orbital Transfer Vehicle (OTV) concept, the STV would be a high-performance space vehicle capable of transferring automated payloads from a Space Station to geosynchronous orbits, the Moon, or planets. Illustrated in this artist's concept are two STV's undergoing aerobraking maneuvers as they approach a Space Station.

  9. Atlantis is lifted from its transporter in the VAB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- This closeup shows the workers, standing on lifts, who are checking the bolts on the apparatus holding the orbiter Atlantis. The orbiter will be rotated and lifted into high bay 1 where it will be stacked with its external tank and solid rocket boosters. Space Shuttle Atlantis is scheduled to launch on mission STS-104 in early July.

  10. Diachronous high-latitude North Atlantic temperature evolution across the last interglaciation

    NASA Astrophysics Data System (ADS)

    Carlson, A. E.; He, F.; Clark, P. U.

    2017-12-01

    A direct response of Northern Hemisphere temperatures to last interglacial boreal summer insolation forcing and atmospheric carbon dioxide concentration would predict early interglacial warmth followed by a gradual cooling trend across the last interglaciation (128-116 ka). In contrast, some Labrador and Greenland-Iceland-Norwegian (GIN) sea surface temperature (SST) records show relatively cool early last-interglacial SSTs followed by warming in the latter part of the interglaciation. This phenomenon has sometimes been attributed to meltwater forcing from continued retreat of the Greenland ice sheet through the last interglaciation that suppressed North Atlantic overturning circulation, in agreement with proxy records. Here we investigate this observation with the first fully-coupled transient general circulation model simulation of the last interglacial period using CCSM3. Termination II deglacial meltwater forcing is stopped at 129 ka and the subsequent simulation is forced by changing orbital parameters and atmospheric greenhouse gases. We find that Labrador and GIN SSTs remain relatively cool followed by warming to peak interglacial temperatures after 124 ka. We show that this delayed warming is due to reduced convection in the GIN sea, despite a cessation of meltwater forcing at 129 ka, with convection onset at 124 ka and attendant sea-ice retreat in response to orbital- and greenhouse gas-forcing alone. Our results demonstrate that delayed high-latitude North Atlantic SST warming during the last interglaciation does not necessitate meltwater forcing from the Greenland ice sheet, rectifying the apparent disconnect between a small meltwater forcing (<2.5 m of sea-level rise over 8 ka, or <0.004 Sverdrups into the Labrador and GIN seas) and a relatively large North Atlantic overturning response.

  11. The CALorimetric Electron Telescope (CALET) Launch and Early On-Orbit Performance

    NASA Astrophysics Data System (ADS)

    Guzik, T. Gregory; Calet Collaboration

    2016-03-01

    The CALET space experiment, has been developed by collaborators in Japan, Italy and the United States, will study electrons to 20 TeV, gamma rays above 10 GeV and nuclei with Z =1 to 40 up to 1,000 TeV during a five-year mission on the International Space Station. The instrument consists of a particle charge identification module, a thin imaging calorimeter (3 r.l. in total) with tungsten plates interleaving scintillating fiber planes, and a thick calorimeter (27 r.l.) composed of lead tungstate logs. CALET has the depth, imaging capabilities and energy resolution for excellent separation between hadrons, electrons and gamma rays. The instrument was launched into orbit on August 19, 2015 and on August 25, 2015 was mounted as an attached payload on the International Space Station (ISS) Japanese Experiment Module - Exposed Facility (JEM-EF). The experiment has successfully completed on-orbit checkout and has now been transitioned to normal science operations. This presentation summarizes the instrument design, science goals and early on-orbit performance. This effort is supported by NASA in the United States, by JAXA in Japan, and ASI in Italy.

  12. Seasonal modulation of the Asian summer monsoon between the Medieval Warm Period and Little Ice Age: a multi model study

    NASA Astrophysics Data System (ADS)

    Kamae, Youichi; Kawana, Toshi; Oshiro, Megumi; Ueda, Hiroaki

    2017-12-01

    Instrumental and proxy records indicate remarkable global climate variability over the last millennium, influenced by solar irradiance, Earth's orbital parameters, volcanic eruptions and human activities. Numerical model simulations and proxy data suggest an enhanced Asian summer monsoon during the Medieval Warm Period (MWP) compared to the Little Ice Age (LIA). Using multiple climate model simulations, we show that anomalous seasonal insolation over the Northern Hemisphere due to a long cycle of orbital parameters results in a modulation of the Asian summer monsoon transition between the MWP and LIA. Ten climate model simulations prescribing historical radiative forcing that includes orbital parameters consistently reproduce an enhanced MWP Asian monsoon in late summer and a weakened monsoon in early summer. Weakened, then enhanced Northern Hemisphere insolation before and after June leads to a seasonally asymmetric temperature response over the Eurasian continent, resulting in a seasonal reversal of the signs of MWP-LIA anomalies in land-sea thermal contrast, atmospheric circulation, and rainfall from early to late summer. This seasonal asymmetry in monsoon response is consistently found among the different climate models and is reproduced by an idealized model simulation forced solely by orbital parameters. The results of this study indicate that slow variation in the Earth's orbital parameters contributes to centennial variability in the Asian monsoon transition.[Figure not available: see fulltext.

  13. Cassini's motions and resonant librations of synchronous satellites of big planets

    NASA Astrophysics Data System (ADS)

    Barkin, Yu. V.

    2008-09-01

    Introduction. In the paper the rotations of synchronous satellites of the Jupiter, Saturn, Uran and Neptune are studied. On the base theory of resonant rotation of the rigid satellite on precessing elliptical orbit [1], [2] parameters of Cassini's motions and periods of free resonant librations have been determined for big grope of satellites of planets considered as rigid non-spherical bodies. Here I use observed values of coefficients of second harmonics of gravitational potensials ( 2 J and 22 C ) and of dimension less moment of inertia I = C / ?mr 2 ? of Io, Europa, Ganimede, Callisto and also Rhea and Titan, obtained on the base of data of space missions to these bodies [3]. Here C is the polar moment of inertia, m and r is the mass and the mean radius of satellite. Mentioned parameters 2 J , 22 C and I also have been evaluated for a wide set of another's satellites of big planets for their models as homogeneous ellipsoids of known forms and sizes (www.nasa.gov). These models also have been obtained here effective applications. For corresponding models the notation (e) is used here. For another from considered satellites (without indexes) we use also ellipsoidal models of hydrostatic equilibrium state of synchronous satellite [4]. The full list of discussed parameters for satellites of planets is presented in the paper [5]. Perturbed orbital motions of considered satellites we discribe by mean orbital elements reffered to local Laplacian planes of corresponding satellites ( http://ssd.jpl.nasa. gov/sat_elem. html). From them: the eccentricity ( e ), the inclination of orbit plane ( i ), the mean orbital motion and its period ( n and n T ), the angular velocity and period of preseccion of orbit plane of satellite on local Laplacian plane ( n? and T? ). In our approach all mentioned parameters are considered as constants and more fine effects in orbital motions of satellites do not take into account in this paper. The purpose of paper is to study syncronous motions of satellites in Solar system and for each of them to determine the values of the basic Cassini's parameter 0 ? (it is the average angle of inclination of the axis of rotation relatively to normal of the precessing orbit plane) and the periods of resonant librations in the longitude ( g T ), in the pole wobble ( l T ) and period of space precession ( h T ) (and their errors). Here we use the analytical formulas for mentioned parameters which were developed by study of the Moon Cassini's motion in my early papers [1], [2]. Specially for the case of small eccentricities and inclinations of orbits of synchronous satellites we have obtained the simple reduced formulas for all four considered parameters.

  14. Early Program Development

    NASA Image and Video Library

    1969-01-01

    As part of the Space Task Group's recommendations for more commonality and integration in America's space program, Marshall Space Flight Center engineers proposed an orbiting propellant storage facility to augment Space Shuttle missions. In this artist's concept from 1969 an early version of the Space Shuttle is shown refueling at the facility.

  15. Outstanding performance of configuration interaction singles and doubles using exact exchange Kohn-Sham orbitals in real-space numerical grid method

    NASA Astrophysics Data System (ADS)

    Lim, Jaechang; Choi, Sunghwan; Kim, Jaewook; Kim, Woo Youn

    2016-12-01

    To assess the performance of multi-configuration methods using exact exchange Kohn-Sham (KS) orbitals, we implemented configuration interaction singles and doubles (CISD) in a real-space numerical grid code. We obtained KS orbitals with the exchange-only optimized effective potential under the Krieger-Li-Iafrate (KLI) approximation. Thanks to the distinctive features of KLI orbitals against Hartree-Fock (HF), such as bound virtual orbitals with compact shapes and orbital energy gaps similar to excitation energies; KLI-CISD for small molecules shows much faster convergence as a function of simulation box size and active space (i.e., the number of virtual orbitals) than HF-CISD. The former also gives more accurate excitation energies with a few dominant configurations than the latter, even with many more configurations. The systematic control of basis set errors is straightforward in grid bases. Therefore, grid-based multi-configuration methods using exact exchange KS orbitals provide a promising new way to make accurate electronic structure calculations.

  16. Lunar prospector mission design and trajectory support

    NASA Technical Reports Server (NTRS)

    Lozier, David; Galal, Ken; Folta, David; Beckman, Mark

    1998-01-01

    The Lunar Prospector mission is the first dedicated NASA lunar mapping mission since the Apollo Orbiter program which was flown over 25 years ago. Competitively selected under the NASA Discovery Program, Lunar Prospector was launched on January 7, 1998 on the new Lockheed Martin Athena 2 launch vehicle. The mission design of Lunar Prospector is characterized by a direct minimum energy transfer trajectory to the moon with three scheduled orbit correction maneuvers to remove launch and cislunar injection errors prior to lunar insertion. At lunar encounter, a series of three lunar orbit insertion maneuvers and a small circularization burn were executed to achieve a 100 km altitude polar mapping orbit. This paper will present the design of the Lunar Prospector transfer, lunar insertion and mapping orbits, including maneuver and orbit determination strategies in the context of mission goals and constraints. Contingency plans for handling transfer orbit injection and lunar orbit insertion anomalies are also summarized. Actual flight operations results are discussed and compared to pre-launch support analysis.

  17. PSR J1740-3052: a pulsar with a massive companion

    NASA Astrophysics Data System (ADS)

    Stairs, I. H.; Manchester, R. N.; Lyne, A. G.; Kaspi, V. M.; Camilo, F.; Bell, J. F.; D'Amico, N.; Kramer, M.; Crawford, F.; Morris, D. J.; Possenti, A.; McKay, N. P. F.; Lumsden, S. L.; Tacconi-Garman, L. E.; Cannon, R. D.; Hambly, N. C.; Wood, P. R.

    2001-08-01

    We report on the discovery of a binary pulsar, PSR J1740-3052, during the Parkes multibeam survey. Timing observations of the 570-ms pulsar at Jodrell Bank and Parkes show that it is young, with a characteristic age of 350kyr, and is in a 231-d, highly eccentric orbit with a companion whose mass exceeds 11Msolar. An accurate position for the pulsar was obtained using the Australia Telescope Compact Array. Near-infrared 2.2-μm observations made with the telescopes at the Siding Spring observatory reveal a late-type star coincident with the pulsar position. However, we do not believe that this star is the companion of the pulsar, because a typical star of this spectral type and required mass would extend beyond the orbit of the pulsar. Furthermore, the measured advance of periastron of the pulsar suggests a more compact companion, for example, a main-sequence star with radius only a few times that of the Sun. Such a companion is also more consistent with the small dispersion measure variations seen near periastron. Although we cannot conclusively rule out a black hole companion, we believe that the companion is probably an early B star, making the system similar to the binary PSR J0045-7319.

  18. Enhancement of the Accretion of Jupiters Core by a Voluminous Low-Mass Envelope

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; D'angelo, Gennaro; Weidenschilling, Stuart John; Bodenheimer, Peter; Hubickyj, Olenka

    2013-01-01

    We present calculations of the early stages of the formation of Jupiter via core nucleated accretion and gas capture. The core begins as a seed body of about 350 kilometers in radius and orbits in a swarm of planetesimals whose initial radii range from 15 meters to 100 kilometers. We follow the evolution of the swarm by accounting for growth and fragmentation, viscous and gravitational stirring, and for drag-induced migration and velocity damping. Gas capture by the core substantially enhances the cross-section of the planet for accretion of small planetesimals. The dust opacity within the atmosphere surrounding the planetary core is computed self-consistently, accounting for coagulation and sedimentation of dust particles released in the envelope as passing planetesimals are ablated. The calculation is carried out at an orbital semi-major axis of 5.2 AU and an initial solids' surface density of 10/g/cm^2 at that distance. The results give a core mass of 7 Earth masses and an envelope mass of approximately 0.1 Earth mass after 500,000 years, at which point the envelope growth rate surpasses that of the core. The same calculation without the envelope gives a core mass of only 4 Earth masses.

  19. The formation of Pluto's low-mass satellites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenyon, Scott J.; Bromley, Benjamin C., E-mail: skenyon@cfa.harvard.edu, E-mail: bromley@physics.utah.edu

    Motivated by the New Horizons mission, we consider how Pluto's small satellites—currently Styx, Nix, Kerberos, and Hydra—grow in debris from the giant impact that forms the Pluto-Charon binary. After the impact, Pluto and Charon accrete some of the debris and eject the rest from the binary orbit. During the ejection, high-velocity collisions among debris particles produce a collisional cascade, leading to the ejection of some debris from the system and enabling the remaining debris particles to find stable orbits around the binary. Our numerical simulations of coagulation and migration show that collisional evolution within a ring or a disk ofmore » debris leads to a few small satellites orbiting Pluto-Charon. These simulations are the first to demonstrate migration-induced mergers within a particle disk. The final satellite masses correlate with the initial disk mass. More massive disks tend to produce fewer satellites. For the current properties of the satellites, our results strongly favor initial debris masses of 3-10 × 10{sup 19} g and current satellite albedos A ≈ 0.4-1. We also predict an ensemble of smaller satellites, R ≲ 1-3 km, and very small particles, R ≈ 1-100 cm and optical depth τ ≲ 10{sup –10}. These objects should have semimajor axes outside the current orbit of Hydra.« less

  20. Structure of transition-metal cluster compounds: Use of an additional orbital resulting from the f, g character of spd bond orbitals*

    PubMed Central

    Pauling, Linus

    1977-01-01

    A general theory of the structure of complexes of the transition metals is developed on the basis of the enneacovalence of the metals and the requirements of the electroneutrality principle. An extra orbital may be provided through the small but not negligible amount of f and g character of spd bond orbitals, and an extra electron or electron pair may be accepted in this orbital for a single metal or a cluster to neutralize the positive electric charge resulting from the partial ionic character of the bonds with ligands, such as the carbonyl group. Examples of cluster compounds of cobalt, ruthenium, rhodium, osmium, and gold are discussed. PMID:16592470

  1. Structure of transition-metal cluster compounds: Use of an additional orbital resulting from the f, g character of spd bond orbitals.

    PubMed

    Pauling, L

    1977-12-01

    A general theory of the structure of complexes of the transition metals is developed on the basis of the enneacovalence of the metals and the requirements of the electroneutrality principle. An extra orbital may be provided through the small but not negligible amount of f and g character of spd bond orbitals, and an extra electron or electron pair may be accepted in this orbital for a single metal or a cluster to neutralize the positive electric charge resulting from the partial ionic character of the bonds with ligands, such as the carbonyl group. Examples of cluster compounds of cobalt, ruthenium, rhodium, osmium, and gold are discussed.

  2. Integrated Orbit and Attitude Control for a Nanosatellite with Power Constraints

    NASA Technical Reports Server (NTRS)

    Naasz, Bo; Hall, Christopher; Berry, Matthew; Hy-Young, Kim

    2003-01-01

    Small satellites tend to be power-limited, so that actuators used to control the orbit and attitude must compete with each other as well as with other subsystems for limited electrical power. The Virginia Tech nanosatellite project, HokieSat, must use its limited power resources to operate pulsed-plasma thrusters for orbit control and magnetic torque coils for attitude control, while also providing power to a GPS receiver, a crosslink transceiver, and other subsystems. The orbit and attitude control strategies were developed independently. The attitude control system is based on an application of Linear Quadratic Regulator (LQR) to an averaged system of equations, whereas the orbit control is based on orbit element feedback. In this paper we describe the strategy for integrating these two control systems and present simulation results to verify the strategy.

  3. Orbital implant exposure treatment with porcine dermal collagen patching.

    PubMed

    Alwitry, A; Burns, S J; Abercrombie, L C

    2006-09-01

    To present a small case series of orbital implant exposures treated with porcine dermal collagen (Permacol, Tissue Science Laboratories PLC, Aldershot, Hants, UK) patching. A retrospective chart review of three cases of orbital implant exposure treated with Permacol patching. Three cases were identified. There were 4 operative episodes of Permacol patching (one socket had two attempts at permacol patching). In all 4 cases the patch rapidly failed and melted away leaving behind the orbital implant exposure. All 3 patients required implant removal. Orbital implant exposure remains a major long-term complication of evisceration and enucleation procedures. On the basis of our experience, we would not recommend using Permacol as a non-autologous material for covering exposed Medpor (Medpor, Porex Surgical, Atlanta, Georgia, USA) orbital implants. Further study is required to fully assess the safety and efficacy profile of Permacol in socket surgery.

  4. Using an Iterative Fourier Series Approach in Determining Orbital Elements of Detached Visual Binary Stars

    NASA Astrophysics Data System (ADS)

    Tupa, Peter R.; Quirin, S.; DeLeo, G. G.; McCluskey, G. E., Jr.

    2007-12-01

    We present a modified Fourier transform approach to determine the orbital parameters of detached visual binary stars. Originally inspired by Monet (ApJ 234, 275, 1979), this new method utilizes an iterative routine of refining higher order Fourier terms in a manner consistent with Keplerian motion. In most cases, this approach is not sensitive to the starting orbital parameters in the iterative loop. In many cases we have determined orbital elements even with small fragments of orbits and noisy data, although some systems show computational instabilities. The algorithm was constructed using the MAPLE mathematical software code and tested on artificially created orbits and many real binary systems, including Gliese 22 AC, Tau 51, and BU 738. This work was supported at Lehigh University by NSF-REU grant PHY-9820301.

  5. The Orbital Design of Alpha Centauri Exoplanet Satellite (ACESat)

    NASA Technical Reports Server (NTRS)

    Weston, Sasha; Belikov, Rus; Bendek, Eduardo

    2015-01-01

    Exoplanet candidates discovered by Kepler are too distant for biomarkers to be detected with foreseeable technology. Alpha Centauri has high separation from other stars and is of close proximity to Earth, which makes the binary star system 'low hanging fruit' for scientists. Alpha Centauri Exoplanet Satellite (ACESat) is a mission proposed to Small Explorer Program (SMEX) that will use a coronagraph to search for an orbiting planet around one of the stars of Alpha Centauri. The trajectory design for this mission is presented here where three different trajectories are considered: Low Earth Orbit (LEO), Geosynchronous Orbit (GEO) and a Heliocentric Orbit. Uninterrupted stare time to Alpha Centauri is desirable for meeting science requirements, or an orbit that provides 90% stare time to the science target. The instrument thermal stability also has stringent requirements for proper function, influencing trajectory design.

  6. Microgravity and Macromolecular Crystallography

    NASA Technical Reports Server (NTRS)

    Kundrot, Craig E.; Judge, Russell A.; Pusey, Marc L.; Snell, Edward H.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Macromolecular crystal growth has been seen as an ideal experiment to make use of the reduced acceleration environment provided by an orbiting spacecraft. The experiments are small, simply operated and have a high potential scientific and economic impact. In this review we examine the theoretical reasons why microgravity should be a beneficial environment for crystal growth and survey the history of experiments on the Space Shuttle Orbiter, on unmanned spacecraft, and on the Mir space station. Finally we outline the direction for optimizing the future use of orbiting platforms.

  7. Space Debris-de-Orbiting by Vaporization Impulse using Short Pulse Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Early, J; Bibeau, C; Claude, P

    Space debris constitutes a significant hazard to low earth orbit satellites and particularly to manned spacecraft. A quite small velocity decrease from vaporization impulses is enough to lower the perigee of the debris sufficiently for atmospheric drag to de-orbit the debris. A short pulse (picosecond) laser version of the Orion concept can accomplish this task in several years of operation. The ''Mercury'' short pulse Yb:S-FAP laser being developed at LLNL for laser fusion is appropriate for this task.

  8. Evolution of Cometary Dust Particles to the Orbit of the Earth: Particle Size, Shape, and Mutual Collisions

    NASA Astrophysics Data System (ADS)

    Yang, Hongu; Ishiguro, Masateru

    2018-02-01

    In this study, we numerically investigated the orbital evolution of cometary dust particles, with special consideration of the initial size–frequency distribution (SFD) and different evolutionary tracks according to the initial orbit and particle shape. We found that close encounters with planets (mostly Jupiter) are the dominating factor determining the orbital evolution of dust particles. Therefore, the lifetimes of cometary dust particles (∼250,000 yr) are shorter than the Poynting–Robertson lifetime, and only a small fraction of large cometary dust particles can be transferred into orbits with small semimajor axes. The exceptions are dust particles from 2P/Encke and, potentially, active asteroids that have little interaction with Jupiter. We also found that the effects of dust shape, mass density, and SFD were not critical in the total mass supply rate to the interplanetary dust particle (IDP) cloud complex when these quantities are confined by observations of zodiacal light brightness and SFD around the Earth’s orbit. When we incorporate a population of fluffy aggregates discovered in the Earth’s stratosphere and the coma of 67P/Churyumov–Gerasimenko within the initial ejection, the initial SFD measured at the comae of comets (67P and 81P/Wild 2) can produce the observed SFD around the Earth’s orbit. Considering the above effects, we derived the probability of mutual collisions among dust particles within the IDP cloud for the first time in a direct manner via numerical simulation and concluded that mutual collisions can mostly be ignored.

  9. Orbital alignment of circumbinary planets that form in misaligned circumbinary discs: the case of Kepler-413b

    NASA Astrophysics Data System (ADS)

    Pierens, A.; Nelson, R. P.

    2018-06-01

    Although most of the circumbinary planets detected by the Kepler spacecraft are on orbits that are closely aligned with the binary orbital plane, the systems Kepler-413 and Kepler-453 exhibit small misalignments of ˜2.5°. One possibility is that these planets formed in a circumbinary disc whose midplane was inclined relative to the binary orbital plane. Such a configuration is expected to lead to a warped and twisted disc, and our aim is to examine the inclination evolution of planets embedded in these discs. We employed 3D hydrodynamical simulations that examine the disc response to the presence of a modestly inclined binary with parameters that match the Kepler-413 system, as a function of disc parameters and binary inclinations. The discs all develop slowly varying warps, and generally display very small amounts of twist. Very slow solid body precession occurs because a large outer disc radius is adopted. Simulations of planets embedded in these discs resulted in the planet aligning with the binary orbit plane for disc masses close to the minimum mass solar nebular, such that nodal precession of the planet was controlled by the binary. For higher disc masses, the planet maintains near coplanarity with the local disc midplane. Our results suggest that circumbinary planets born in tilted circumbinary discs should align with the binary orbit plane as the disc ages and loses mass, even if the circumbinary disc remains misaligned from the binary orbit. This result has important implications for understanding the origins of the known circumbinary planets.

  10. An investigation of the needs and the design of an orbiting space station with growth capabilities

    NASA Technical Reports Server (NTRS)

    Dossey, J. R.; Trotti, G.

    1977-01-01

    An architectural approach to the evolutionary growth of an orbiting space station from a small manned satellite to a fully independent, self-sustainable space colony facility is presented. Social and environmental factors, ease of transportation via the space shuttle, and structural design are considered.

  11. Operating Small Sat Swarms as a Single Entity: Introducing SODA

    NASA Technical Reports Server (NTRS)

    Conn, Tracie; Plice, Laura; Dono Perez, Andres; Ho, Michael

    2017-01-01

    NASA's decadal survey determined that simultaneous measurements from a 3D volume of space are advantageous for a variety of studies in space physics and Earth science. Therefore, swarm concepts with multiple spacecraft in close proximity are a growing topic of interest in the small satellite community. Among the capabilities needed for swarm missions is a means to maintain operator-specified geometry, alignment, or separation. Swarm stationkeeping poses a planning challenge due to the limited scalability of ground resources. To address scalable control of orbital dynamics, we introduce SODA - Swarm Orbital Dynamics Advisor - a tool that accepts high-level configuration commands and provides the orbital maneuvers needed to achieve the desired type of swarm relative motion. Rather than conventional path planning, SODA's innovation is the use of artificial potential functions to define boundaries and keepout regions. The software architecture includes high fidelity propagation, accommodates manual or automated inputs, displays motion animations, and returns maneuver commands and analytical results. Currently, two swarm types are enabled: in-train distribution and an ellipsoid volume container. Additional swarm types, simulation applications, and orbital destinations are in planning stages.

  12. System design of the Pioneer Venus spacecraft. Volume 11: Launch vehicle utilization

    NASA Technical Reports Server (NTRS)

    Varga, R. J.

    1973-01-01

    A summary of the spacecraft descriptions; the probe bus, large probe, small probe, and orbiter is presented. The highlights on the designs of the Atlas/Centaur spacecraft as compared to the corresponding Thor/Delta spacecraft designs are contained. A comparison is made of the two Atlas/Centaur spacecraft for reference. The major differences are the replacement of the probes of the forward end of the probe bus with the mechanically despun antenna of the orbiter and the replacement of the bicone antenna on the aft end with the orbit insertion motor. The cross sections of the large and small probes are compared. The major features of each probe are described. The Thor/Delta and Atlas/Centaur designs for the probe bus and orbiter are analyzed. The usable spacecraft mass for the Atlas/Centaur is roughly twice that for the Thor/Delta if the Type I trajectory is assumed. It is somewhat less for the Type II trajectory in the designated launch years. This additional mass capability leads to cost savings in many areas which are described.

  13. Reduction of variance in spectral estimates for correction of ultrasonic aberration.

    PubMed

    Astheimer, Jeffrey P; Pilkington, Wayne C; Waag, Robert C

    2006-01-01

    A variance reduction factor is defined to describe the rate of convergence and accuracy of spectra estimated from overlapping ultrasonic scattering volumes when the scattering is from a spatially uncorrelated medium. Assuming that the individual volumes are localized by a spherically symmetric Gaussian window and that centers of the volumes are located on orbits of an icosahedral rotation group, the factor is minimized by adjusting the weight and radius of each orbit. Conditions necessary for the application of the variance reduction method, particularly for statistical estimation of aberration, are examined. The smallest possible value of the factor is found by allowing an unlimited number of centers constrained only to be within a ball rather than on icosahedral orbits. Computations using orbits formed by icosahedral vertices, face centers, and edge midpoints with a constraint radius limited to a small multiple of the Gaussian width show that a significant reduction of variance can be achieved from a small number of centers in the confined volume and that this reduction is nearly the maximum obtainable from an unlimited number of centers in the same volume.

  14. An orbit determination algorithm for small satellites based on the magnitude of the earth magnetic field

    NASA Astrophysics Data System (ADS)

    Zagorski, P.; Gallina, A.; Rachucki, J.; Moczala, B.; Zietek, S.; Uhl, T.

    2018-06-01

    Autonomous attitude determination systems based on simple measurements of vector quantities such as magnetic field and the Sun direction are commonly used in very small satellites. However, those systems always require knowledge of the satellite position. This information can be either propagated from orbital elements periodically uplinked from the ground station or measured onboard by dedicated global positioning system (GPS) receiver. The former solution sacrifices satellite autonomy while the latter requires additional sensors which may represent a significant part of mass, volume, and power budget in case of pico- or nanosatellites. Hence, it is thought that a system for onboard satellite position determination without resorting to GPS receivers would be useful. In this paper, a novel algorithm for determining the satellite orbit semimajor-axis is presented. The methods exploit only the magnitude of the Earth magnetic field recorded onboard by magnetometers. This represents the first step toward an extended algorithm that can determine all orbital elements of the satellite. The method is validated by numerical analysis and real magnetic field measurements.

  15. Effects of aerodynamic heating and TPS thermal performance uncertainties on the Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Goodrich, W. D.; Derry, S. M.; Maraia, R. J.

    1980-01-01

    A procedure for estimating uncertainties in the aerodynamic-heating and thermal protection system (TPS) thermal-performance methodologies developed for the Shuttle Orbiter is presented. This procedure is used in predicting uncertainty bands around expected or nominal TPS thermal responses for the Orbiter during entry. Individual flowfield and TPS parameters that make major contributions to these uncertainty bands are identified and, by statistical considerations, combined in a manner suitable for making engineering estimates of the TPS thermal confidence intervals and temperature margins relative to design limits. Thus, for a fixed TPS design, entry trajectories for future Orbiter missions can be shaped subject to both the thermal-margin and confidence-interval requirements. This procedure is illustrated by assessing the thermal margins offered by selected areas of the existing Orbiter TPS design for an entry trajectory typifying early flight test missions.

  16. The Taurus Boundary of Stellar/Substellar (TBOSS) Survey. II. Disk Masses from ALMA Continuum Observations

    NASA Astrophysics Data System (ADS)

    Ward-Duong, K.; Patience, J.; Bulger, J.; van der Plas, G.; Ménard, F.; Pinte, C.; Jackson, A. P.; Bryden, G.; Turner, N. J.; Harvey, P.; Hales, A.; De Rosa, R. J.

    2018-02-01

    We report 885 μm ALMA continuum flux densities for 24 Taurus members spanning the stellar/substellar boundary with spectral types from M4 to M7.75. Of the 24 systems, 22 are detected at levels ranging from 1.0 to 55.7 mJy. The two nondetections are transition disks, though other transition disks in the sample are detected. Converting ALMA continuum measurements to masses using standard scaling laws and radiative transfer modeling yields dust mass estimates ranging from ∼0.3 to 20 M ⊕. The dust mass shows a declining trend with central object mass when combined with results from submillimeter surveys of more massive Taurus members. The substellar disks appear as part of a continuous sequence and not a distinct population. Compared to older Upper Sco members with similar masses across the substellar limit, the Taurus disks are brighter and more massive. Both Taurus and Upper Sco populations are consistent with an approximately linear relationship in M dust to M star, although derived power-law slopes depend strongly upon choices of stellar evolutionary model and dust temperature relation. The median disk around early-M stars in Taurus contains a comparable amount of mass in small solids as the average amount of heavy elements in Kepler planetary systems on short-period orbits around M-dwarf stars, with an order of magnitude spread in disk dust mass about the median value. Assuming a gas-to-dust ratio of 100:1, only a small number of low-mass stars and brown dwarfs have a total disk mass amenable to giant planet formation, consistent with the low frequency of giant planets orbiting M dwarfs.

  17. Polarized single crystal neutron diffraction study of the zero-magnetization ferromagnet Sm1 -xGdxAl2 (x =0.024 )

    NASA Astrophysics Data System (ADS)

    Chatterji, T.; Stunault, A.; Brown, P. J.

    2018-02-01

    We have determined the temperature evolution of the spin and orbital moments in the zero-magnetization ferromagnet Sm1 -xGdxAl2 (x = 0.024) by combining polarized and unpolarized single crystal neutron diffraction data. The sensitivity of the polarized neutron technique has allowed the moment values to be determined with a precision of ≈0.1 μB . Our results clearly demonstrate that, when magnetized by a field of 8 T, the spin and orbital moments in Sm1 -xGdxAl2 are oppositely directed, so that the net magnetization is very small. Below 60 K the contributions from spin and orbital motions are both about 2 μB , with that due to orbital motion being slightly larger than that due to spin. Between 60 and 65 K the contributions of each to the magnetization fall rapidly and change sign at Tcomp ≈67 K , above which the aligned moments recover but with the orbital magnetization still slightly higher than the spin one. These results imply that above Tcomp the small resultant magnetization of the Sm3 + ion is oppositely directed to the magnetizing field. It is suggested that this anomaly is due to polarization of conduction electron spin associated with the doping Gd3 + ions.

  18. Using the orbiting companion to trace WR wind structures in the 29d WC8d + O8-9IV binary CV Ser

    NASA Astrophysics Data System (ADS)

    David-Uraz, Alexandre; Moffat, Anthony F. J.

    2011-07-01

    We have used continuous, high-precision, broadband visible photometry from the MOST satellite to trace wind structures in the WR component of CV Ser over more than a full orbit. Most of the small-scale light-curve variations are likely due to extinction by clumps along the line of sight to the O companion as it orbits and shines through varying columns of the WR wind. Parallel optical spectroscopy from the Mont Megantic Observatory is used to refine the orbital and wind-collision parameters, as well as to reveal line emission from clumps.

  19. Development of the NASA MCAT Auxiliary Telescope for Orbital Debris Research

    NASA Technical Reports Server (NTRS)

    Frith, James; Lederer, Susan; Cowardin, Heather; Buckalew, Brent; Hickson, Paul; Anz-Meador, Phillip

    2016-01-01

    The National Aeronautical and Space Administration (NASA) has recently deployed the Meter Class Autonomous Telescope (MCAT) to Ascension Island. MCAT will provide NASA with a dedicated optical sensor for observations of orbital debris with the goal of statistically sampling the orbital and photometric characteristics of the population from low Earth to Geosynchronous orbits. Additionally, a small auxiliary telescope, co-located with MCAT, is being deployed to augment its observations by providing near-simultaneous photometry and astrometry, as well as offloading low priority targets from MCAT's observing queue. It will also be available to provide observational measurements to the Space Surveillance Network for the United States Air Force.

  20. The long-term motion of comet Halley

    NASA Technical Reports Server (NTRS)

    Yeomans, D. K.; Kiang, T.

    1981-01-01

    The orbital motion of comet Halley is numerically integrated back to 1404 BC. Starting with an orbit based on the 1759, 1682, and 1607 observations of the comet, the integration was run back in time with full planetary perturbations and nongravitational forces taken into account at each 0.5 day time-step. Small empirical corrections were made to the computed perihelion passage time in 837 and to the osculating orbital eccentricity in 800. In nine cases, the perihelion passage times calculated by Kiang (1971) from Chinese observations have been redetermined, and osculating orbital elements are given at each apparition from 1910 back to 1404 BC.

  1. The globe and orbit in Laron syndrome.

    PubMed

    Kornreich, L; Konen, O; Lilos, P; Laron, Z

    2011-09-01

    Patients with LS have an inborn growth hormone resistance, resulting in failure to generate IGF-1. The purpose of this study was to evaluate the size of the eye and orbit in LS. We retrospectively reviewed the MR imaging of the brain in 9 patients with LS for the following parameters: axial diameter of the globe, interzygomatic distance, perpendicular distance from the interzygomatic line to margins of the globe, medial-to-lateral diameter of the orbit at the anterior orbital rim, distance from the anterior orbital rim to the anterior globe, maximal distance between the medial walls of the orbits, lateral orbital wall angle, lateral orbital wall length, and mediolateral thickness of the intraorbital fat in the most cranial image of the orbit. All measurements were made bilaterally. Twenty patients referred for MR imaging for unrelated reasons served as control subjects. Compared with the control group, the patients with LS had a significantly smaller maximal globe diameter and shallower but wider orbits due to a shorter lateral wall, a smaller medial distance between the orbits, and a larger angle of the orbit. The ratio between the most anterior orbital diameter and the globe was greater than that in controls. The position of the globe was more anterior in relation to the interzygomatic line. Shallow and wide orbits and small globes relative to orbital size are seen in LS and may be secondary to IGF-1 deficiency.

  2. Scattering of trajectories of hazardous asteroids

    NASA Astrophysics Data System (ADS)

    Sokolov, Leonid; Petrov, Nikita; Kuteeva, Galina; Vasilyev, Andrey

    2018-05-01

    Early detection of possible collisions of asteroids with the Earth is necessary to exept the asteroid-comet hazard. Many collisions associate with resonant returns after preceding approaches. The difficulty of collisions prediction is associated with a resonant returns after encounters with the Earth due to loss of precision in these predictions. On the other hand, we can use the fly-by effect to avoid hazardous asteroid from collision. The main research object is the asteroid Apophis (99942), for which we found about 100 orbits of possible impacts with the Earth and more than 10 - with the Moon. It is shown that the early (before 2029) change of the Apophis orbit allows to avoid all main impacts with the Earth in 21st century, associated with resonant returns, and such a change of the orbit, in principle, is feasible. The scattering of possible trajectories of Apophis after 2029 and after 2051, as well as 2015 RN35 and other dangerous objects, is discussed.

  3. Predictions of asteroid hazard to the Earth for the 21st century

    NASA Astrophysics Data System (ADS)

    Petrov, Nikita; Sokolov, Leonid; Polyakhova, Elena; Oskina, Kristina

    2018-05-01

    Early detection and investigation of possible collisions and close approaches of asteroids with the Earth are necessary to exept the asteroid-comet hazard. The difficulty of prediction of close approaches and collisions associated with resonant returns after encounters with the Earth due to loss of precision in these encounters. The main research object is asteroid Apophis (99942), for which we found many possible orbits of impacts associated with resonant returns. It is shown that the early orbit change of Apophis allows to avoid main impacts, associated with resonant returns. Such a change of the orbit, in principle, is feasible. We also study the possible impacts with the Ground asteroid 2015 RN35. We present 21 possible collisions in this century, including 7 collisions with large gaps presented in NASA website. The results of observations by the telescope ZA-320M at Pulkovo Obser-vatory of the three near-Earth asteroids, namely, 7822, 20826, 68216, two of which 7822 and 68216 are potentially hazardous, are presented.

  4. The 3D-HST Survey: An Introduction

    NASA Astrophysics Data System (ADS)

    Momcheva, Ivelina G.; Van Dokkum, P. G.; Brammer, G.; Franx, M.; Skelton, R.; Lundgren, B.; Whitaker, K. E.; 3D-HST Team

    2013-01-01

    3D-HST is a near-IR spectroscopic survey with the Hubble Space Telescope designed to study galaxy evolution at 11. In this talk, I will review the observational details, reduction pipeline, data quality and the wide range of public data products, including added-value photometric and spectroscopic catalogs. Data from the 3D-HST survey are non-proprietary and are useful for a wide variety of science investigations. Our first public data release will be in early 2013 and we would like to advertise this unique data set to the community.

  5. Sirenum Fossae Trough

    NASA Technical Reports Server (NTRS)

    2000-01-01

    [figure removed for brevity, see original site]

    The Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) orbits the red planet twelve times each day. The number of pictures that MOC can take varies from orbit to orbit, depending upon whether the data are being stored in MGS's onboard tape recorder for playback at a later time, or whether the data are being sent directly back to Earth via a real-time radio link. More data can be acquired during orbits with real-time downlink.

    During real-time orbits, the MOC team often will take a few random or semi-random pictures in between the carefully-selected, hand-targeted images. On rare occasions, one of these random pictures will surprise the MOC team. The picture shown here is an excellent example, because the high resolution view (top) is centered so nicely on a trough and an adjacent, shallow crater that it is as if someone very carefully selected the target for MOC. The high-resolution view covers an area only 1.1 km (0.7 mi) wide by 2.3 km (1.4 mi) long. Hitting a target such as this with such a small image is very difficult to do, on purpose, because there are small uncertainties in the predicted orbit, the maps used to select targets, and the minor adjustments of spacecraft pointing at any given moment. Nevertheless, a very impressive image was received.

    The high resolution view crosses one of the troughs of the Sirenum Fossae near 31.2oS, 152.3oW. The context image (above) was acquired at the same time as the high resolution view on July 23, 2000. The small white box shows the location of the high resolution picture. The lines running diagonally across the context image from upper right toward lower left are the Sirenum Fossae troughs, formed by faults that are radial to the volcanic region of Tharsis. Both pictures are illuminated from the upper left. The scene shows part of the martian southern hemisphere nearly autumn.

  6. Small- and Large-scale Morphology of the Near-Earth Energetic Charged Particle Environment from a Ten-element CubeSat Constellation

    NASA Astrophysics Data System (ADS)

    Klumpar, D. M.; Gunderson, A.

    2014-12-01

    A 10-satellite constellation placed in Low Earth Orbit (LEO) will carry high geometric factor omnidirectional integrating energetic particle detectors responsive to electrons greater than ~500 keV to characterize the near-Earth distribution of Van Allen Belt electrons precipitating or mirroring at altitudes between ~350 and ~500 km. The full constellation will be constructed by two deployments of identical 1.5U CubeSats into LEO. The first launch will deploy eight satellites into a polar sun-synchronous orbit from the Island of Kauai in the Hawaiian Islands to form the NASA/Ames Research Center "Edison Demonstration of Smallsat Networks" (EDSN) swarm of satellites. The on-board Energetic Particle Integrating Space Environment Monitor (EPISEM) instrument built by the Space Science and Engineering Laboratory at Montana State University consists of a cylindrical 12 cm*2-ster omnidirectional Geiger counter sensitive to electrons above about 500 keV. The eight EDSN satellites are expected to deploy in late November 2014 into an 410 x 485 km orbit at ~92 degrees inclination forming two slowly-separating groups of four measurement platforms each to set up the initial 8-satellite swarm. Separately, two additional copies of the EDSN satellites will deploy from the International Space Station as elements of the NODES mission into a 52 degree inclination orbit at about 375 km altitude. Together the 10 satellites will characterize the distribution of low altitude penetrating electrons over spatial scales from 10's to thousands of km. The paper will describe the mission concept, the implementation of the spacecraft, and the unusual operations concept that allows stored science data to be collected from all eight satellites of the EDSN swarm through an intersatellite communications link and transferred to the ground by a single member of the swarm. The EDSN satellites operate completely autonomously without ground uplink. The paper will also include early scientific results if available by mid-December, 2014.

  7. Sex Differences in Early Childhood, Adolescence, and Adulthood on Cognitive Tasks that Rely on Orbital Prefrontal Cortex

    ERIC Educational Resources Information Center

    Overman, William H.

    2004-01-01

    Through the use of several tests of cognition we have documented sex differences in young children, adolescents, and adults on tasks that rely on the integrity of the orbital prefrontal cortex. In children under three years of age, males performed with significantly fewer errors than did females on tests of object reversals. No significant sex…

  8. Orbital cellulitis demands early recognition, urgent admission and aggressive management.

    PubMed Central

    Tole, D M; Anderton, L C; Hayward, J M

    1995-01-01

    Orbital cellulitis is an emergency. Confusion still exists between the diagnosis of this serious condition and that of preseptal cellulitis. Delay in treatment may cause blindness and progression to life-threatening sequelae such as brain abscess, meningitis or cavernous sinus thrombosis. We report a case in which, despite late referral, emergency surgical intervention was sight saving. Images Fig. 1 Fig. 2 PMID:7582417

  9. Early On-Orbit Operation of the Loop Heat Pipe System on the Swift BAT Instrument

    NASA Technical Reports Server (NTRS)

    Ottenstein, Laura; Ku, Jentung; Choi, Mike; Feenan, Dave

    2005-01-01

    The Burst Alert Telescope (BAT) is one of three instruments on the Swift satellite. Two Loop Heat Pipes (LHP's), one at either side of the BAT's Detector Array Plate (DAP), transfer heat to a common radiator for rejection to space. This viewgraph presentation provides information on LHP design for the BAT, and the performance of the LHPs in orbit.

  10. Collisional Cascades Following Triton's Capture

    NASA Astrophysics Data System (ADS)

    Cuk, Matija; Hamilton, Douglas P.; Stewart-Mukhopadhyay, Sarah T.

    2017-10-01

    Neptune's moon Triton is widely thought to have been captured from heliocentric orbit, most likely through binary dissociation (Agnor and Hamilton, 2006). Triton's original eccentric orbit must have been subsequently circularized by satellite tides (Goldreich et al. 1989). Cuk and Gladman (2005) found that Kozai oscillations make early tidal evolution inefficient, and have proposed that collisions between Triton and debris from pre-existing satellites was the dominant mechanism of shrinking Triton's large post-capture orbit. However, Cuk and Hamilton (DPS 2016), using numerical simulations and results of Stewart and Leinhardt (2012), have found that collisions between regular satellites are unlikely to be destructive, while collisions between prograde moons and Triton are certainly erosive if not catastrophic. An obvious outcome would be pre-existing moon material gradually grinding down Triton and making it reaccrete in the local Laplace plane, in conflict with Triton's large current inclination. We propose that the crucial ingredient for understanding the early evolution of the Neptunian system are the collisions between the moons and the prograde and retrograde debris originating from the pre-existing moons and Triton. In particular, we expect early erosive impact(s) on Triton to generate debris that will, in subsequent collisions, disrupt the regular satellites. If the retrograde material were to dominate at some planetocentric distances, the end result may be a large cloud or disk of retrograde debris that would be accreted by Triton, shrinking Triton's orbit. Some of the prograde debris could survive in a compact disk interior to Triton's pericenter, eventually forming the inner moons of Neptune. We will present results of numerical modeling of these complex dynamical processes at the meeting.

  11. Analytic theory of orbit contraction

    NASA Technical Reports Server (NTRS)

    Vinh, N. X.; Longuski, J. M.; Busemann, A.; Culp, R. D.

    1977-01-01

    The motion of a satellite in orbit, subject to atmospheric force and the motion of a reentry vehicle are governed by gravitational and aerodynamic forces. This suggests the derivation of a uniform set of equations applicable to both cases. For the case of satellite motion, by a proper transformation and by the method of averaging, a technique appropriate for long duration flight, the classical nonlinear differential equation describing the contraction of the major axis is derived. A rigorous analytic solution is used to integrate this equation with a high degree of accuracy, using Poincare's method of small parameters and Lagrange's expansion to explicitly express the major axis as a function of the eccentricity. The solution is uniformly valid for moderate and small eccentricities. For highly eccentric orbits, the asymptotic equation is derived directly from the general equation. Numerical solutions were generated to display the accuracy of the analytic theory.

  12. The Small Size Debris Population at GEO from Optical Observations

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Barker, Ed; Buckalew, Brent; Burkhardt, Andrew; Cowardin, Heather; Frith, James; Kaleida, Catherine; Lederer, Susan M.; Lee, Chris H.

    2017-01-01

    We have observed the geosynchronous orbit (GEO) debris population at sizes smaller than 10 cm using optical observations with the 6.5-m Magellan telescope 'Walter Baade' at the Las Campanas Observatory in Chile. The IMACS f/2 imaging camera with a 0.5-degree diameter field of view has been used in small area surveys of the GEO regime to study the population of optically faint GEO debris. The goal is to estimate the population of GEO debris that is fainter than can be studied with 1-meter class telescopes. A significant population of objects fainter than R = 19th magnitude has been found. These objects have observed with angular rates consistent with circular orbits and orbital inclinations up to 15 degrees at GEO. A sizeable number of these objects have significant brightness variations ("flashes") during the 5-second exposure, which suggest rapid changes in the albedo-projected size product.

  13. Design Concepts Studied for the Hydrogen On-Orbit Storage and Supply Experiment

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    1998-01-01

    The NASA Lewis Research Center, in conjunction with the Utah State University Space Dynamics Laboratory, studied concepts for the Hydrogen On-Orbit Storage and Supply Experiment (HOSS). HOSS is a space flight experiment whose objectives are (1) to show stable gas supply for solar-thermal thruster designs by using both storage and direct-gain approaches and (2) to evaluate and compare the low-gravity performance of active and passive pressure control via a thermodynamic vent system (TVS) suitable for solar-thermal upper stages. This study showed that the necessary experimental equipment for HOSS can be accommodated in a small hydrogen Dewar (36 to 80 liter). Thermal designs can be achieved that meet the on-orbit storage requirements for these Dewars. Furthermore, ground hold insulation concepts are easily achieved that can store liquid hydrogen in these small Dewars for more than 144 hr without venting.

  14. In-orbit verification of small optical transponder (SOTA): evaluation of satellite-to-ground laser communication links

    NASA Astrophysics Data System (ADS)

    Takenaka, Hideki; Koyama, Yoshisada; Akioka, Maki; Kolev, Dimitar; Iwakiri, Naohiko; Kunimori, Hiroo; Carrasco-Casado, Alberto; Munemasa, Yasushi; Okamoto, Eiji; Toyoshima, Morio

    2016-03-01

    Research and development of space optical communications is conducted in the National Institute of Information and Communications Technology (NICT). The NICT developed the Small Optical TrAnsponder (SOTA), which was embarked on a 50kg-class satellite and launched into a low earth orbit (LEO). The space-to-ground laser communication experiments have been conducted with the SOTA. Atmospheric turbulence causes signal fadings and becomes an issue to be solved in satellite-to-ground laser communication links. Therefore, as error-correcting functions, a Reed-Solomon (RS) code and a Low-Density Generator Matrix (LDGM) code are implemented in the communication system onboard the SOTA. In this paper, we present the in-orbit verification results of SOTA including the characteristic of the functions, the communication performance with the LDGM code via satellite-to-ground atmospheric paths, and the link budget analysis and the comparison between theoretical and experimental results.

  15. X-Ray Pulsar Studies With RXTE

    NASA Technical Reports Server (NTRS)

    Rappaport, Saul

    2004-01-01

    Our activities here at MIT have largely concentrated on four different binary X-ray pulsars: LMC X-4; 4UO352+3O/XPer; 4U0115+63; and X1908+075. We have also recently initiated a search for millisecond X-ray pulsations in RXTE archival data for several bright LMXBs using a new technique. Since this study is just getting under way, we will not report any results here. Using RXTE timing observations of LMC X-4 we have definitively measured, for the first time, the orbital decay of this high-mass X-ray binary. The e-folding decay time scale is very close to lo6 years, comparable to, but somewhat longer than, the corresponding orbital decay times for SMC X-1 and Cen X-3. We find that the orbital decay in LMC X-4 is likely driven by tidal interactions, where the asynchronism between the orbital motion and the rotation of the companion star is maintained by the evolutionary expansion of the companion. Under NASA grant NAGS7479 we carried out RXTE observations of X Per/4U0352+30 in order to track the pulse phase over a one year interval. This effort was successful in tentatively identifying a N 250-day orbital period. However, due to the fact that the observing interval was only somewhat longer than the orbital period, we asked for the observations of X Per to continue as public, or non-proprietary observations. Dr. Jean Swank kindly agreed to the continuation of the observations and they were carried out on a less frequent basis over the next year and a half. After 72 separate observations of X Per, we have the orbital period and semimajor axis firmly determined. In addition, we were able to measure the orbital eccentricity-which turns out to be remarkably small (e = 0.10) for such a wide binary orbit. This has led us establish the birth of a neutron star with a very small (or zero) natal kick.

  16. Observations Regarding Small Eolian Dunes and Large Ripples on Mars

    NASA Technical Reports Server (NTRS)

    Edgett, Kenneth S.

    2001-01-01

    Eolian bedforms occur at the interface between a planetary surface and its atmosphere; they present a proxy record of the influence of climate, expressed in sediment transport, over that surface. High resolution images (1.5 - 12 m/pixel) from the Mars Global Surveyor (MGS) Mars Orbiter Camera provide glimpses of the most recent events shaping the martian landscape. Thousands of images exhibit small transverse dunes or large eolian ripples that have crest-to-crest spacings of 10 to 60 m, heights of a few to 10 m. Bedforms of the size and patterns seen in the Mars photographs are rarely described among Earth's eolian landforms; in terms of size and morphology, most of these fall between traditional definitions of "ripples" and "dunes". Dunes are composed chiefly of materials transported by saltation, ripples are smaller forms moved along by the impact of saltating grains (traction). The largest reported eolian ripples on Earth (granule ripples, megaripples) are typically smaller than the bedforms observed on Mars; likewise, most dunes are typically larger. The small dunes and large ripples on Mars come in a variety of relative albedos, despite an early MGS impression that they are all of high albedo. Some ripples occur on the surfaces of sand dunes; these are most likely true granule ripples. However, most of these bedforms occur in troughs, pits, craters, and on deflated plains. Despite impressions early in the MGS mission, they do not occur everywhere (e.g., they are rare on the northern plains) but they do occur at a range of elevations from the highest volcanoes to the deepest basins. Where they occur on a hard substrate among larger sand dunes, the big dunes have over-ridden the smaller bedforms, indicating that the smaller features are older and perhaps indurated or very coarse-grained. At other locales, the small bedforms have been mantled by material settled from suspension, in other cases they are being exhumed and may be lithified. Still other examples are peppered with small impact craters, implying considerable age. These bedforms present a complicated record of the geologically-recent past, one that has involved changes in climate, sediment transport capabilities, and sediment sources and sinks over time.

  17. Anaerobic orbital cellulitis: a clinical and experimental study.

    PubMed Central

    Jedrzynski, M S; Bullock, J D; McGuire, T W; Elder, B L; Bullock, J D

    1991-01-01

    In this article we have reviewed the clinical and bacteriologic aspects of anaerobic orbital cellulitis and have presented six patients to illustrate these points. Physicians who treat patients with orbital cellulitis should have a high index of suspicion for possible instances involving anaerobes, so that appropriate management can be started early. To investigate this problem further, we created an animal model of anaerobic orbital cellulitis. This model may be useful in future studies of the pathogenesis and treatment of this serious and often devastating disease. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 8 FIGURE 9 FIGURE 10 FIGURE 11 FIGURE 12 FIGURE 13 FIGURE 14 FIGURE 15 FIGURE 16 FIGURE 17 FIGURE 18 FIGURE 19 PMID:1808813

  18. Characterization of the 20-Ah nickel-cadmium cell used for energy storage on the Orbiting Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Ford, F. E.

    1972-01-01

    Tests were conducted on 20-Ah sealed nickel cadmium cells to evaluate initial and long-term performance at various charge rates, temperatures and voltage-control levels. An average ampere-hour recharge of 103 percent per orbit at 13 C was able to maintain cell capacity; required watt-hour recharge on an orbital basis was 8 to 10 percent greater than required ampere-hour recharge. Cells exhibited an early life burn-in characteristic. A discharge after periods of repetitive cycling yielded two voltage plateaus which were temporarily eliminated by the discharge.

  19. Orbital penetration associated with tooth extraction.

    PubMed

    Smith, Mark M; Smith, Eric M; La Croix, Noelle; Mould, John

    2003-03-01

    Three cats and 2 dogs were evaluated for ophthalmologic complications associated with tooth extraction procedures. Orbital penetration leading to ocular and, in one case, brain trauma was secondary to iatrogenic injury from a dental elevator. Outcomes included enucleation of the affected eye in 3 cases, and death from brain abscessation in 1 case. Early treatment or, preferably, referral to a veterinary ophthalmology specialist may prevent such outcomes. Awareness of the anatomical proximity of caudal maxillary tooth roots and the orbit, appropriate interpretation of diagnostic intraoral dental radiographs, and technical proficiency in tooth extraction techniques will minimize these complications in veterinary dental practice.

  20. Orbital Spacecraft Consumables Resupply System (OSCRS). Volume 3: Program Cost Estimate

    NASA Technical Reports Server (NTRS)

    Perry, D. L.

    1986-01-01

    A cost analysis for the design, development, qualification, and production of the monopropellant and bipropellant Orbital Spacecraft Consumable Resupply System (OSCRS) tankers, their associated avionics located in the Orbiter payload bay, and the unique ground support equipment (GSE) and airborne support equipment (ASE) required to support operations is presented. Monopropellant resupply for the Gamma Ray Observatory (GRO) in calendar year 1991 is the first defined resupply mission with bipropellant resupply missions expected in the early to mid 1990's. The monopropellant program estimate also includes contractor costs associated with operations support through the first GRO resupply mission.

  1. [Epoxide acrylate maleic resin and hydroxyapatite composite material as a bone graft substitute in surgical correction of orbital reconstruction].

    PubMed

    Mu, X; Dong, J; Wang, W

    1995-11-01

    This paper illustrates the results of surgical correction in 11 cases with orbital deformities such as periorbital deficiency after orbitotomy for retinoblastoma and orbital malposition after facial trauma. EH composite material, mixture of hydroxyapatite and epoxide acrylate maleic resin in constant proportion, was used as a good bone graft substitute in all 11 cases. This material was easier to be molded during surgery, safe to human body, had no toxic effects, no irritation and no implant-related complications. The early results obtained in these patients are encouraging.

  2. Orbital metastasis secondary to pulmonary adenocarcinoma treated with gefitinib: a case report.

    PubMed

    Koma, Yasuko; Goto, Keiko; Yoshida, Chihiro; Kimura, Kengo; Matsumoto, Yusuke; Koyama, Midori; Nakashima, Nariyasu; Masuya, Daiki; Matsuoka, Hirofumi; Yoshimatsu, Harukazu; Azumi, Atsushi; Suzuki, Yujiro

    2012-10-18

    Orbital metastases of lung cancer are rare. However, because the number of patients diagnosed with lung cancer is increasing, the probability that a physician will see a patient with an orbital metastasis is also increasing. Unfortunately, the clinical course and response of these patients to cytotoxic chemotherapy are generally poor and keeping a patient's quality of vision is difficult. In recent years, gefitinib, an epidermal growth factor receptor tyrosine kinase inhibitor, has brightened the outlook for patients with advanced non-small cell lung cancer, especially for those who carry epidermal growth factor receptor-activating mutations. A 62-year-old Japanese man presented with swelling of the eyelid margin and ptosis of his right eye. A physical examination revealed double vision in his right eye and an alteration in elevator muscle mobility. A magnetic resonance image demonstrated a right intra-orbital mass (18 × 16mm). Screening examinations were carried out because this mass was suspected to be a metastasis from another organ. Chest computed tomography revealed a 42 × 37mm mass shadow on the left side of the hilum with mediastinal lymph node metastases. Adenocarcinoma with an epidermal growth factor receptor gene mutation (exon 19 deletion L747-E749; A750P) was detected in a transbronchial biopsy specimen; the patient was diagnosed with stage IV (T2N2M1) non-small cell lung cancer.Gefitinib (250mg/day) was chosen as first-line chemotherapy because there was no pre-existing interstitial shadow. After two months of treatment, the patient's right eye opened completely and follow-up magnetic resonance imaging revealed a marked reduction of the intra-orbital mass to 14 × 13mm. Three months after treatment initiation, a follow-up computed tomography showed a marked reduction in the size of the primary lesion to 23 × 20mm. The patient is continuing gefitinib treatment without any adverse effects noted on computed tomography, physical, or laboratory examination. We report the case of a patient with an orbital non-small cell lung cancer metastasis with epidermal growth factor receptor-activating mutations. This metastasis, as well as the primary lesion, showed a marked response to the molecular targeting drug gefitinib, and the patient's vision was kept without an invasive procedure. Gefitinib may be a good first choice for patients with orbital non-small cell lung cancer metastasis harboring epidermal growth factor receptor-activating mutations.

  3. Orbital evolution of small binary asteroids

    NASA Astrophysics Data System (ADS)

    Ćuk, Matija; Nesvorný, David

    2010-06-01

    About 15% of both near-Earth and main-belt asteroids with diameters below 10 km are now known to be binary. These small asteroid binaries are relatively uniform and typically contain a fast-spinning, flattened primary and a synchronously rotating, elongated secondary that is 20-40% as large (in diameter) as the primary. The principal formation mechanism for these binaries is now thought to be YORP (Yarkovsky-O'Keefe-Radzievskii-Paddack) effect induced spin-up of the primary followed by mass loss and accretion of the secondary from the released material. It has previously been suggested (Ćuk, M. [2007]. Astrophys. J. 659, L57-L60) that the present population of small binary asteroids is in a steady state between production through YORP and destruction through binary YORP (BYORP), which should increase or decrease secondary's orbit, depending on the satellite's shape. However, BYORP-driven evolution has not been directly modeled until now. Here we construct a simple numerical model of the binary's orbital as well the secondary's rotational dynamics which includes BYORP and selected terms representing main solar perturbations. We find that many secondaries should be vulnerable to chaotic rotation even for relatively low-eccentricity mutual orbits. We also find that the precession of the mutual orbit for typical small binary asteroids might be dominated by the perturbations from the prolate and librating secondary, rather than the oblate primary. When we evolve the mutual orbit by BYORP we find that the indirect effects on the binary's eccentricity (through the coupling between the orbit and the secondary's spin) dominate over direct ones caused by the BYORP acceleration. In particular, outward evolution causes eccentricity to increase and eventually triggers chaotic rotation of the secondary. We conclude that the most likely outcome will be reestablishing of the synchronous lock with a "flipped" secondary which would then evolve back in. For inward evolution we find an initial decrease of eccentricity and secondary's librations, to be followed by later increase. We think that it is likely that various forms of dissipation we did not model may damp the secondary's librations close to the primary, allowing for further inward evolution and a possible merger. We conclude that a merger or a tidal disruption of the secondary are the most likely outcomes of the BYORP evolution. Dissociation into heliocentric pairs by BYORP alone should be very difficult, and satellite loss might be restricted to the minority of systems containing more than one satellite at the time.

  4. Enceladus: a craddle of the life?

    NASA Astrophysics Data System (ADS)

    Czechowski, Leszek

    2015-04-01

    Introduction: Enceladus is a medium sized icy satellite (MIS) of Saturn. MIS are built of mixtures of rocks and ices. Enceladus with its radius of 250 km is one of the smallest of MIS, however, contrary to the rest of them, it is geologically active. According to [1]: 'For life to have emerged [...] on the early Earth, a sustained source of chemically transducible energy was essential. The serpentinization process is emerging as an increasingly likely source of that energy. Serpentinization of ultramafic crust would have continuously supplied hydrogen, methane, [...] to off-ridge alkaline hydrothermal springs that interfaced with the metal-rich carbonic Hadean Ocean' (see also [2]). We consider here conditions for origin of life in the early Enceladus and possible proliferation of the life. Mass of serpentinite: The serpentinization on the Earth is often considered with hydrothermal activity in neovolcanic zones along mid-oceanic spreading centers. The total length of present spreading centers is ~80 000 km. However, only in small part of them the hydrothermal activity really occurs. Even if in Hadean oceans the hydrothermal activity was more widespread, still only small part of terrestrial rocks could be serpentinized. After [3] we consider the following reaction of serpentinization: Mg2SiO4 (forsterite) + MgSiO3 (enstatite) + 2H2O -> Mg3Si2O5(OH)4 (antigorite). This reaction releases 241 000 J per kg of serpentine produced. A simple calculations (e.g. [4]) indicate that mass fraction of silicatesfmas in Enceladus is ~0.646, hence the total mass of its silicate is ~6.97 1019 kg. [4] considered the process of differentiation and core forming in Enceladus. He found that the result of differentiation is a relatively cold core of loosely packed grains with water between them. At that time, there is not mechanism of removing the water. Since terrestrial rocks are permeable up to the pressure of ~300 MPa then the entire core of Enceladus was probably permeable for liquids and gases. This could lead to formation of extensive hydrothermal convective systems. Note that in Enceladus most of silicate could be serpentinized (contrary to the Earth). It indicates that total mass of serpentinized silicate in Enceladus could be larger than on the Earth. T-p conditions in Enceladus: The pressure in the center of Enceladus is ~2.3 107 Pa that correspond to pressure on the depth 2300 m in the terrestrial ocean. The evolution of temperature in the Enceladus interior for the first a few hundreds Myr is considered by [4] (no tidal heating is included). If Enceladus accreted later than 2.4 Myr after formation of CAI then the temperature allows for existing the life even in the center of the satellite. It is possible that for hundreds of Myr the conditions in the interior of Enceladus were more favorable for origin of life than on the Earth [5, 6]. Proliferation of life: We do not know the probability of life origin. The life could be a common phenomenon originating in relatively short time if conditions are favorable. However, it is possible also that the life had originated only one time in the Universe. If this option is true then the transport of primitive organism is critical. From the core to the surface. The volcanic activity offers occasion to transport organisms from the core to the surface of early Enceladus. The form of this activity could be essentially the same as present . From the surface to E-ring. The existence of E-ring is an evidence that cryo-volcanic jets could eject gas and solid particles (possibly with primitive organism) into orbit around Saturn. From E-ring to an orbit around Sun. The mechanism of gravity assist could be responsible for acceleration of some particles from the orbit around the Saturn into orbit around the Sun. The existence of several satellites of Saturn increases the probability of this mechanism. The sequence of close encounters with these satellites could eventually transfer enough energy to the grains to leave the orbit around Saturn. From orbit of Saturn to terrestrial planets. To reach the terrestrial planets from the orbit close to Saturn the grain must be substantially decelerated. There are a few possible mechanisms of loosing energy: Poynting-Robertson mechanism (for grains larger than a few μm), Yarkovsky diurnal effect (if the grain is a retrograde rotator) and Yarkovsky seasonal effect (for grains of diameter of a few meters); e.g. [7]. Deceleration leads the particle to move closer to the Earth and other terrestrial planets. After [6] we consider here the Poynting-Robertson effect which is effective for the grains size of E-ring particles. Assume the grain on the circular orbit of with radius R and the photons radially emitted by the Sun. In a grain's frame of reference the photons have some tangent component of the velocity. It gives rise to tangential force opposite to the velocity of the grain. This force is given by formula (e.g. [7]): FPR = vW/c2, (1) where v is orbital velocity of the grain, W is the power of Sun's radiation and c is speed of light. The power of drag is: Pdrag= -FPRv = v2D/(R2c2). (2) Note that D = CSunESgr (RE)2, where CSunE= 1350 W m-2 is the Solar constant at the Earth orbit,Sgr= π rgr2 is the cross section of the grain, rgr is the grain radius andRE is the radius of the Earth's orbit. Note also that the orbital energy of the grain is given by: Eorb = -1 /2 G Mm/R . (3) Comparison of dEorb/dt and Pdrag and integration indicate that time of falling from the orbit with radius Ri to the orbit with radius Re is given by: t =[D/(4 mc2)](Ri2 - Re2) , (4) where m is the mass of the grain. For the grain's radius of 10 μm the time of reaching Earth's orbit from the Saturnian one is ~650 000 yr. Note that for large grains (e.g. ~1 m) other processes, like Yarkovsky effect, could be more effective than the Poynting-Robertson effect. Decelaration in the upper atmosphere. Small ratio of mass of the considered particles to their cross section makes possible to decelerate them in upper atmospheres of terrestrial planets without substantial increase of temperature - e.g. [7]. During deceleration of larger bodies the dissipation of heat could be high, but cooling effect of ablation would reduce the temperature. Acknowledgments: This work was partially supported by the National Science Centre (grant 2011/01/B/ST10/06653). References: [1] Russell, M. J., Hall, A. J., And Martin W. (2010). Geobiology (2010), 8, 355-371. [2] Izawa M.R.M. et al. (2010). Planet. Space Sci. 58, 583-591. [3] Abramov, O., Mojzsis, S.J., (2011) Icarus 213, 273-279. [4] Czechowski, L. (2014) Planet. Sp. Sc. 104, 185-199. [5] Czechowski, L. (2014). Enceladus, a cradle of life of the Solar System. Presented in EGU 2014, Vienna. [6] Czechowski, L. (2014) Enceladus as a place of origin of the life in the Solar System. - submitted. [7] Pater (de), I, and Lissauer J.J., (2001). Planetary Sciences, Cambridge University Press, Cambridge, UK, pp. 528. [8] Wainwright, M., Wickramasinghe N. Ch., Rose, Ch. E., Baker, A. J., (2014). Astrobiology & Outreach, http://dx.doi.org/ 10.4172/2332-2519.1000110.

  5. First Numerical Simulations of Turbulent Dynamos Driven by Libration, Precession and Tides in Triaxial Ellipsoids - An Alternative Route for Planetary Magnetism

    NASA Astrophysics Data System (ADS)

    Le Bars, M.; Kanuganti, S. R.; Favier, B.

    2017-12-01

    Most of the time, planetary dynamos are - tacitly or not - associated with thermo-solutal convection. The convective dynamo model has indeed proven successful to explain the current Earth's magnetic field. However, its results are sometimes difficult to reconcile with observational data and its validity can be questioned for several celestial bodies. For instance, the small size of the Moon and Ganymede makes it difficult to maintain a sufficient temperature gradient to sustain convection and to explain their past and present magnetic fields, respectively. The same caveat applies to the growing number of planetesimals shown to have generated magnetic fields in their early history. Finally, the energy budget of the early Earth is difficult to reconcile with a convective dynamo before the onset of inner core growth. Significant effort has thus been put into finding new routes for planetary dynamo. In particular, the rotational dynamics of planets, moons and small bodies, where their average spinning motion is periodically perturbed by the small mechanical forcings of libration, precession and/or tides, is now widely accepted as an efficient source of core turbulence. The underlying mechanism relies on a parametric instability where the inertial waves of the rotating fluid core are resonantly excited by the small forcing, leading to exponential growth and bulk filling intense motions, pumping their energy from the orbital dynamics. Dynamos driven by mechanical forcing have been suggested for the Moon, Mars, Io, the early Earth, etc. However, the real dynamo capacity of the corresponding flows has up-to-now been studied only in very limited cases, with simplified spherical/spheroidal geometries and/or overly viscous fluids. We will present here the first numerical simulations of dynamos driven by libration, precession and tides, in the triaxial ellipsoidal geometry and in the turbulent regime relevant for planetary cores. We will describe the numerical techniques required to tackle this challenge and present the first results describing the associated magnetic field in terms of amplitude, energy budget, and spatiotemporal signature. We hope to motivate others to participate in the exploration of the wide parameter space, a necessary work for addressing the variety of observed past and present magnetic fields.

  6. XMM flying beautifully

    NASA Astrophysics Data System (ADS)

    1999-12-01

    The early orbit phase came to an end on 16 December after XMM had been manoeuvred to its final orbit. This required four firings of its thrusters, on successive passages at apogee, in order to increase XMM's velocity, thus elongating its orbit and raising the perigee from 826 km to 7,365 km. One burn was then made to fine tune the apogee to around 114,000km. The spacecraft, being tracked by ground stations in Perth, Kourou and Villafranca, is now circling the Earth in this highly elliptical orbit once every 48 hours. The XMM flight operations staff have found themselves controlling a spacecraft that responds exceptionally well. During these first orbits, the satellite has been oriented several times with razor-sharp precision. On board systems have responded without incident to several thousand instructions sent by controllers. "XMM is flying so beautifully" says Dietmar Heger, XMM Spacecraft Operations Manager. "The satellite is behaving better in space than all our pre-launch simulations and we have been able to adjust our shifts to this more relaxed situation". On his return from French Guiana, Robert Lainé, XMM Project Manager immediately visited the Darmstadt Mission Control Centre, at ESOC. "The perfect behaviour of XMM at this early stage reflects the constructive cooperation of European industrial companies and top scientists. Spacecraft operations are in the hands of professionals who will endeavour to fulfill the expectations of the astronomers and astrophysicists of the world. I am very happy that ESA could provide them with such a wonderful precision tool". During the early orbit phase, controllers have activated part of XMM's science payload. The three EPIC X-ray cameras have been switched on and vented. On 17 December the telescope doors were opened allowing the spacecraft's golden X-ray Multi Mirror modules to see the sky. The Optical Monitor telescope door was opened on 18 December. During this last weekend, XMM's Radiation Monitor which records the flux of cosmic particles and radiations was switched on. Mission controllers have now placed XMM in a quiescent mode for the Christmas and New Year period. Full operations will resume on 4 January with the start of the spacecraft commissioning phase due to last until 15 February. ESA's XMM Science Operations Centre at Villafranca will be brought online early January allowing the start of the exhaustive calibration and performance verification phase of XMM's science instruments. Progress on this calibration should allow the telescope to target and take "firstlight pictures" of its first X-ray sources next March.

  7. Effect of the stellar spin history on the tidal evolution of close-in planets

    NASA Astrophysics Data System (ADS)

    Bolmont, E.; Raymond, S. N.; Leconte, J.; Matt, S. P.

    2012-08-01

    Context. The spin rate of stars evolves substantially during their lifetime, owing to the evolution of their internal structure and to external torques arising from the interaction of stars with their environments and stellar winds. Aims: We investigate how the evolution of the stellar spin rate affects, and is affected by, planets in close orbits via star-planet tidal interactions. Methods: We used a standard equilibrium tidal model to compute the orbital evolution of single planets orbiting both Sun-like stars and very low-mass stars (0.1 M⊙). We tested two stellar spin evolution profiles, one with fast initial rotation (1.2 day rotation period) and one with slow initial rotation (8 day period). We tested the effect of varying the stellar and planetary dissipations, and the planet's mass and initial orbital radius. Results: For Sun-like stars, the different tidal evolution between initially rapidly and slowly rotating stars is only evident for extremely close-in gas giants orbiting highly dissipative stars. However, for very low-mass stars the effect of the initial rotation of the star on the planet's evolution is apparent for less massive (1 M⊕) planets and typical dissipation values. We also find that planetary evolution can have significant effects on the stellar spin history. In particular, when a planet falls onto the star, it can cause the star to spin up. Conclusions: Tidal evolution allows us to differentiate between the early behaviors of extremely close-in planets orbiting either a rapidly rotating star or a slowly rotating star. The early spin-up of the star allows the close-in planets around fast rotators to survive the early evolution. For planets around M-dwarfs, surviving the early evolution means surviving on Gyr timescales, whereas for Sun-like stars the spin-down brings about late mergers of Jupiter planets. In the light of this study, we can say that differentiating one type of spin evolution from another given the present position of planets can be very tricky. Unless we can observe some markers of former evolution, it is nearly impossible to distinguish the two very different spin profiles, let alone intermediate spin-profiles. Nevertheless, some conclusions can still be drawn about statistical distributions of planets around fully convective M-dwarfs. If tidal evolution brings about a merger late in the stellar history, it can also entail a noticeable acceleration of the star at late ages, so that it is possible to have old stars that spin rapidly. This raises the question of how the age of stars can be more tightly constrained.

  8. Long-Term Stability of Planets in the Alpha Centauri System

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack; Quarles, Billy

    2015-01-01

    The alpha Centauri system is billions of years old, so planets are only expected to be found in regions where their orbits are long-lived. We evaluate the extent of the regions within the alpha Centauri AB star system where small planets are able to orbit for billion-year timescales, and we map the positions in the sky plane where planets on stable orbits about either stellar component may appear. We confirm the qualitative results of Wiegert & Holman (Astron. J. 113, 1445, 1997) regarding the approximate size of the regions of stable orbits of a single planet, which are larger for retrograde orbits relative to the binary than for pro-grade orbits. Additionally, we find that mean motion resonances with the binary orbit leave an imprint on the limits of orbital stability, and the effects of the Lidov-Kozai mechanism are also readily apparent. Overall, orbits of a single planet in the habitable zones near the plane of the binary are stable, whereas high-inclination orbits are short-lived. However, even well within regions where single planets are stable, multiple planet systems must be significantly more widely-spaced than they need to be around an isolated star in order to be long-lived.

  9. Effects of solar radiation on the orbits of small particles

    NASA Technical Reports Server (NTRS)

    Lyttleton, R. A.

    1976-01-01

    A modification of the Robertson (1937) equations of particle motion in the presence of solar radiation is developed which allows for partial reflection of sunlight as a result of rapid and varying particle rotations caused by interaction with the solar wind. The coefficients and forces in earlier forms of the equations are compared with those in the present equations, and secular rates of change of particle orbital elements are determined. Orbital dimensions are calculated in terms of time, probable sizes and densities of meteoric and cometary particles are estimated, and times of infall to the sun are computed for a particle moving in an almost circular orbit and a particle moving in an elliptical orbit of high eccentricity. Changes in orbital elements are also determined for particles from a long-period sun-grazing comet. The results show that the time of infall to the sun from a highly eccentric orbit is substantially shorter than from a circular orbit with a radius equal to the mean distance in the eccentric orbit. The possibility is considered that the free orbital kinetic energy of particles drawn into the sun may be the energy source for the solar corona.

  10. Finding and characterizing candidate targets for the Asteroid Redirect Mission (ARM)

    NASA Astrophysics Data System (ADS)

    Chodas, P.

    2014-07-01

    NASA's proposed Asteroid Redirect Mission (ARM) leverages key on-going activities in Human Exploration and Space Technology to advance NASA's goals in these areas. One primary objective of ARM would be to develop and demonstrate a high-power Solar Electric Propulsion (SEP) vehicle which would have the capability of moving significant amounts of mass around the solar system. SEP would be a key technology for robust future missions to deep space destinations, possibly including human missions to asteroids or to Mars. ARM would use the SEP vehicle to redirect up to hundreds of tons of material from a near-Earth asteroid into a stable lunar orbit, where a crew flying in an Orion vehicle would rendezvous and dock with it. The crew would perform an extra-vehicular activity (EVA), sample the material, and bring it back to the Earth; follow-on visits would also be possible. Two ARM mission concepts are being studied: one is to go to a small 4-10-meter-diameter asteroid, capture the entire asteroid and guide it into lunar orbit; the other is to go to a large 100-500 meter asteroid, remove a 1-10 meter boulder, and bring the boulder back into lunar orbit. A planetary defense demonstration could be included under either concept. Although some candidate targets are already known for both mission concepts, an observation campaign has been organized to identify more mission candidates. This campaign naturally leverages off of NASA's NEO Observations Program. Enhancements to asteroid search capabilities which will come online soon should increase the discovery rates for ARM candidates and hazardous asteroids alike. For the small-asteroid ARM concept, candidate targets must be smaller than about 12 meters, must follow Earth-like orbits and must naturally approach the Earth closely in the early 2020s, providing the opportunity for a low-velocity capture into the Earth/Moon system. About a dozen candidates are known with absolute magnitudes in the right range and with orbits suitable for missions launching no earlier than June 2019; the maximum asteroid return masses for these range from 45 to 800 tons according to the orbit. Unfortunately, many of the currently known candidates have not had their sizes, masses and spin rates adequately constrained in order to provide confidence that they are within the capability of the ARM vehicle to return. Still, three candidates have been characterized well enough, two by the Spitzer Space Telescope, 2009 BD and 2011 MD, and one by radar, 2013 EC_{20}. 2009 BD was not actually detected by Spitzer, indicating it was smaller than expected, about 4 meters; similarly, 2013 EC_{20} turned out to be smaller than desired, less than 3 meters. A fourth candidate, 2008 HU_4, should be characterized with radar in 2016 when it passes near the Earth. In general, physical characterization of these very small asteroids is best performed immediately after discovery, while they are still very near the Earth. Radar is important for characterizing size and rotation state, while long-arc high-precision astrometry can help characterize mass through estimation of the area-to-mass ratio. Rapid-response characterization for an ARM candidate was successfully demonstrated last year for 2013 EC_{20}, mentioned earlier. More candidates for the small-asteroid concept are expected: new potential candidates should be detected at the rate of 3 to 5 per year, based on extrapolations from past discovery rates. For the large-asteroid ARM concept, there is an additional characterization challenge: the surface of the asteroid must be observed with enough resolution that the presence of ˜3-meter boulders can be either directly seen or inferred from high-SNR radar. The maximum size and mass of the returnable boulders depends on the asteroid orbit in much the same way as for the other concept. Asteroid Itokawa is a strong candidate because it has already been well characterized by the Japanese Hayabusa spacecraft. The future targets of the OSIRIS-REx and Hayabusa 2 missions, Bennu and 1999 JU_3, should also become strong candidates in 2018. Also considered a valid candidate is 2008 EV_5: radar detected decameter-scale boulders on its surface, from which the presence of returnable ˜3-meter boulders can be inferred. The characterization rate for large-asteroid concept candidates using high-SNR radar is about 1 per year. NASA plans to choose between the two ARM concepts, capture an entire small asteroid versus pick up a boulder from a large one, within about a year.

  11. Emirates Mars Mission Planetary Protection Plan

    NASA Astrophysics Data System (ADS)

    Awadhi, Mohsen Al

    2016-07-01

    The United Arab Emirates is planning to launch a spacecraft to Mars in 2020 as part of the Emirates Mars Mission (EMM). The EMM spacecraft, Amal, will arrive in early 2021 and enter orbit about Mars. Through a sequence of subsequent maneuvers, the spacecraft will enter a large science orbit and remain there throughout the primary mission. This paper describes the planetary protection plan for the EMM mission. The EMM science orbit, where Amal will conduct the majority of its operations, is very large compared to other Mars orbiters. The nominal orbit has a periapse altitude of 20,000 km, an apoapse altitude of 43,000 km, and an inclination of 25 degrees. From this vantage point, Amal will conduct a series of atmospheric investigations. Since Amal's orbit is very large, the planetary protection plan is to demonstrate a very low probability that the spacecraft will ever encounter Mars' surface or lower atmosphere during the mission. The EMM team has prepared methods to demonstrate that (1) the launch vehicle targets support a 0.01% probability of impacting Mars, or less, within 50 years; (2) the spacecraft has a 1% probability or less of impacting Mars during 20 years; and (3) the spacecraft has a 5% probability or less of impacting Mars during 50 years. The EMM mission design resembles the mission design of many previous missions, differing only in the specific parameters and final destination. The following sequence describes the mission: 1.The mission will launch in July, 2020. The launch includes a brief parking orbit and a direct injection to the interplanetary cruise. The launch targets are specified by the hyperbolic departure's energy C3, and the hyperbolic departure's direction in space, captured by the right ascension and declination of the launch asymptote, RLA and DLA, respectively. The targets of the launch vehicle are biased away from Mars such that there is a 0.01% probability or less that the launch vehicle arrives onto a trajectory that impacts Mars. 2.The spacecraft is deployed from the launch vehicle and powers on. 3.Within the first month, the spacecraft executes a trajectory correction maneuver to remove the launch bias. The target of this maneuver may still have a small bias to further reduce the probability of inadvertently impacting Mars. 4.Four additional trajectory correction maneuvers are scheduled and planned in the interplanetary cruise in order to target the precise arrival conditions at Mars. The targeted arrival conditions are specified by an altitude above the surface of Mars and an inclination relative to Mars' equator. The closest approach to Mars during the Mars Orbit Insertion (MOI) is over 600 km and the periapsis altitude of the first orbit about Mars is nominally 500 km. The inclination of the first orbit about Mars is nominally around 18 degrees. 5.The Mars Orbit Insertion is performed as a pitch-over burn, approaching no closer than approximately 600 km, and targeting a capture orbit period of 35-40 hours. 6.The spacecraft Capture Orbit has a nominal periapse altitude of 500 km, a nominal apoapse altitude of approximately 45,000 km, and a nominal period of approximately 35 hours. The mission expects that this orbit will be somewhat different after executing the real MOI due to maneuver execution errors. The full range of expected Capture Orbit sizes is acceptable from a planetary protection perspective. 7.The spacecraft remains in the Capture Orbit for two months. 8.The spacecraft then executes three maneuvers in the Transition to Science phase, raising the orbital periapse, raising the orbit inclination, adjusting the apoapse, and placing the argument of periapse near a value of 177 deg. The three maneuvers are nominally one week apart. The first maneuver is large and will raise the periapse significantly, thereafter significantly reducing the probability of Amal impacting Mars in the future.

  12. Multi-sun-synchronous (MSS) orbits for earth observation

    NASA Astrophysics Data System (ADS)

    Ulivieri, Carlo; Anselmo, Luciano

    1992-08-01

    A case study is outlined for a remote-sensing mission at low and middle latitudes based on multi-sun-synchronous (MSS) orbits. The scenario involves the use of small payloads in low-earth posigrade orbits that would overfly the Mediterranean region. A 600-kg spacecraft is considered in an orbit that is 571 km in altitude and at an inclination of 42.5 deg. The orbit is analyzed in terms of mission characteristics, and two years of operation is shown to be feasible with a fuel-consumption rate of less than three kg/yr of hydrazine. The mission could be based on the use of a Scout solid-propellant rockets into an MSS orbit, and only a limited number of ground stations are required for good data collection. A remote-sensing mission at low/middle latitudes is shown to be efficient in terms of both revisit frequency, fuel consumption, and data acquisition.

  13. Quantifying Mapping Orbit Performance in the Vicinity of Primitive Bodies

    NASA Technical Reports Server (NTRS)

    Pavlak, Thomas A.; Broschart, Stephen B.; Lantoine, Gregory

    2015-01-01

    Predicting and quantifying the capability of mapping orbits in the vicinity of primitive bodies is challenging given the complex orbit geometries that exist and the irregular shape of the bodies themselves. This paper employs various quantitative metrics to characterize the performance and relative effectiveness of various types of mapping orbits including terminator, quasi-terminator, hovering, pingpong, and conic-like trajectories. Metrics of interest include surface area coverage, lighting conditions, and the variety of viewing angles achieved. The metrics discussed in this investigation are intended to enable mission designers and project stakeholders to better characterize candidate mapping orbits during preliminary mission formulation activities.The goal of this investigation is to understand the trade space associated with carrying out remotesensing campaigns at small primitive bodies in the context of a robotic space mission. Specifically,this study seeks to understand the surface viewing geometries, ranges, etc. that are available fromseveral commonly proposed mapping orbits architectures.

  14. Quantifying Mapping Orbit Performance in the Vicinity of Primitive Bodies

    NASA Technical Reports Server (NTRS)

    Pavlak, Thomas A.; Broschart, Stephen B.; Lantoine, Gregory

    2015-01-01

    Predicting and quantifying the capability of mapping orbits in the vicinity of primitive bodies is challenging given the complex orbit geometries that exist and the irregular shape of the bodies themselves. This paper employs various quantitative metrics to characterize the performance and relative effectiveness of various types of mapping orbits including terminator, quasi-terminator, hovering, ping pong, and conic-like trajectories. Metrics of interest include surface area coverage, lighting conditions, and the variety of viewing angles achieved. The metrics discussed in this investigation are intended to enable mission designers and project stakeholders to better characterize candidate mapping orbits during preliminary mission formulation activities. The goal of this investigation is to understand the trade space associated with carrying out remote sensing campaigns at small primitive bodies in the context of a robotic space mission. Specifically, this study seeks to understand the surface viewing geometries, ranges, etc. that are available from several commonly proposed mapping orbits architectures

  15. Geomorphic classification of Icelandic and Martian volcanoes: Limitations of comparative planetology research from LANDSAT and Viking orbiter images

    NASA Technical Reports Server (NTRS)

    Williams, R. S., Jr.

    1985-01-01

    Some limitations in using orbital images of planetary surfaces for comparative landform analyses are discussed. The principal orbital images used were LANDSAT MSS images of Earth and nominal Viking Orbiter images of Mars. Both are roughly comparable in having a pixel size which corresponds to about 100 m on the planetary surface. A volcanic landform on either planet must have a horizontal dimension of at least 200 m to be discernible on orbital images. A twofold bias is directly introduced into any comparative analysis of volcanic landforms on Mars versus those in Iceland because of this scale limitation. First, the 200-m cutoff of landforms may delete more types of volcanic landforms on Earth than on Mars or vice versa. Second, volcanic landforms in Iceland, too small to be resolved or orbital images, may be represented by larger counterparts on Mars or vice versa.

  16. Orbital variability in the eclipsing pulsar binary PSR B1957+20

    NASA Technical Reports Server (NTRS)

    Arzoumanian, Z.; Fruchter, A. S.; Taylor, J. H.

    1994-01-01

    We have conducted timing observations of the eclipsing millisecond binary pulsar PSR B1957+20, extending the span of data on this pulsar to more than five years. During this time the orbital period of the system has varied by roughly Delta P(sub b)/P(sub b) = 1.6 x 10(exp -7), changing quardratically with time and displaying with time and displaying an orbital period second derivative of P(sub b) = (1.43 +/- 0.08) x 10(exp -18)/sec. The previous measurement of a large negative orbital period derivative reflected only the short-term behavior of the system during the early observations; the orbital period derivative is now positive. If, as we suspect, the PSR B1957+20 system is undergoing quasi-cyclic orbital period variations similar to those found in other close binaries such as Algol and RS CVn, then the 0.025 solar mass companion to PSR B1957+20 is most likely non-degenerate, convective, and magnetically active.

  17. Design of the Recovery Trajectory for JAXA Venus Orbiter Akatsuki

    NASA Astrophysics Data System (ADS)

    Campagnola, Stefano; Kawakatsu, Yasuhiro

    2015-12-01

    Akatsuki ("dawn" in Japanese) is the JAXA Venus orbiter that was scheduled to enter orbit around Venus on Dec. 7 th , 2010. Following the failure of the main engine during the orbit insertion maneuver, the spacecraft escaped Venus on a 200-day orbit around the Sun, only to return in early 2017. This paper presents the design and implementation of the recovery trajectory, which involves perihelion maneuvers to re-encounter Venus in late 2015. Relying only on the onboard propellant, the trajectory rescued the mission by (1) anticipating the beginning of the science phase within the nominal lifetime of the spacecraft, and (2) halving the Δ v requirements for the orbit insertion maneuver. Several trajectories are designed with an innovative use of a technique called non-tangent V-Infinity Leveraging Transfers (VILTs). Candidate solutions are then recomputed in higher fidelity models, and one solution is finally selected for its low Δv requirements and for programmatic reasons. The results of the perihelion maneuver campaign are also presented.

  18. Technology requirements for future Earth-to-geosynchronous orbit transportation systems. Volume 2: Technical results

    NASA Technical Reports Server (NTRS)

    Caluori, V. A.

    1980-01-01

    Technologies either critical to performance of offering cost advantages compared to the investment required to bring them to usable confidence levels are identified. A total transportation system is used as an evaluation yardstick. Vehicles included in the system are a single stage to orbit launch vehicle used in a priority cargo role, a matching orbit transfer vehicle, a heavy lift launch vehicle with a low Earth orbit delivery capability of 226, 575 kg, and a matching solar electric cargo orbit transfer vehicle. The system and its reference technology level are consistent with an initial operational capability in 1990. The 15 year mission scenario is based on early space industrialization leading to the deployment of large systems such as power satellites. Life cycle cost benefits in discounted and undiscounted dollars for each vehicle, technology advancement, and the integrated transportation system are calculated. A preliminary functional analysis was made of the operational support requirements for ground based and space based chemical propulsion orbit transfer vehicles.

  19. Dawn Orbit Determination Team: Trajectory and Gravity Prediction Performance During Vesta Science Phases

    NASA Technical Reports Server (NTRS)

    Kennedy, Brian; Abrahamson, Matt; Ardito, Alessandro; Han, Dongsuk; Haw, Robert; Mastrodemos, Nicholas; Nandi, Sumita; Park, Ryan; Rush, Brian; Vaughan, Andrew

    2013-01-01

    The Dawn spacecraft was launched on September 27th, 2007. Its mission is to consecutively rendezvous with and observe the two largest bodies in the asteroid belt, Vesta and Ceres. It has already completed over a year's worth of direct observations of Vesta (spanning from early 2011 through late 2012) and is currently on a cruise trajectory to Ceres, where it will begin scientific observations in mid-2015. Achieving this data collection required careful planning and execution from all spacecraft teams. Dawn's Orbit Determination (OD) team was tasked with accurately predicting the trajectory of the Dawn spacecraft during the Vesta science phases, and also determining the parameters of Vesta to support future science orbit design. The future orbits included the upcoming science phase orbits as well as the transfer orbits between science phases. In all, five science phases were executed at Vesta, and this paper will describe some of the OD team contributions to the planning and execution of those phases.

  20. Introductory Molecular Orbital Theory: An Honors General Chemistry Computational Lab as Implemented Using Three-Dimensional Modeling Software

    ERIC Educational Resources Information Center

    Ruddick, Kristie R.; Parrill, Abby L.; Petersen, Richard L.

    2012-01-01

    In this study, a computational molecular orbital theory experiment was implemented in a first-semester honors general chemistry course. Students used the GAMESS (General Atomic and Molecular Electronic Structure System) quantum mechanical software (as implemented in ChemBio3D) to optimize the geometry for various small molecules. Extended Huckel…

Top