Sample records for small partial pressure

  1. Effect of nitrogen-containing plasma on adherence, friction, and wear of radiofrequency-sputtered titanium carbide coatings

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.; Wheeler, D. R.

    1979-01-01

    Friction and wear experiments on 440C steel surfaces that were rf sputtered with titanium carbide when a small percentage of nitrogen was added to the plasma were conducted. Both X-ray photoelectron spectroscopy and X-ray diffraction were used to analyze the resultant coatings. Results indicate that the small partial pressure of nitrogen (approximately 0.5 percent) markedly improves the adherence, friction, and wear properties when compared with coatings applied to sputter-etched surfaces, oxidized surfaces, or in the presence of a small oxygen partial pressure. The improvements are related to the formation of an interface containing a mixture of the nitrides of titanium and iron, which are harder than their corresponding oxides.

  2. EXTINGUISHMENT OF ALKALI METAL FIRES

    DTIC Science & Technology

    Contents: Effect of inert gas nket and ow O2 partial pressures on alkali metal fires Extinguishment of small scale fires Extinguishment of alkali... metal fires using inorganic salt foam Alkali metal jet stream ignition at various pressure conditions

  3. Pressures of Partial Crystallization of Magmas Along Transforms: Implications for Crustal Accretion

    NASA Astrophysics Data System (ADS)

    Scott, J. L.; Zerda, C.; Brown, D.; Ciaramitaro, S. C.; Barton, M.

    2016-12-01

    Plate spreading at mid-ocean ridges is responsible for the creation of most of the crust on earth. The ridge system is very complex and many questions remain unresolved. Among these is the nature of magma plumbing systems beneath transform faults. Pervious workers have suggested that increased conductive cooling along transforms promotes higher pressures of partial crystallization, and that this explains the higher partial pressures of crystallization inferred for magmas erupted along slow spreading ridges compared to magmas erupted along faster spreading ridges. To test this hypothesis, we undertook a detailed analysis of pressures of partial crystallization for magmas erupted at 3 transforms along the fast to intermediate spreading East Pacific Rise(Blanco, Clipperton, and Siqueiros) and 3 transforms along the slow spreading Mid Atlantic Ridge(Famous Transform B, Kane, and 15°20'N). Pressures of partial crystallization were calculated from the compositions of glasses (quenched liquids) lying along the P (and T) dependent olivine, plagioclase, and augite cotectic using the method described by Kelley and Barton (2008). Published analyses of mid-ocean ridge basalt glasses sampled from these transforms and surrounding ridge segments were used as input data. Samples with anomalous chemical compositions and samples that yielded pressures associated with unrealistically large uncertainties were filtered out of the database. The pressures of partial crystallization for the remaining 916 samples ranged from 0 to 520 MPa with the great majority ( 95%) of sample returning pressures of less than 300 MPa. Pressures of < 300 MPa are within error of the pressure range associated with partial crystallization within oceanic crust with a thickness of 7 km. Higher (sub-crustal) pressures (>300 MPa) are associated with a small number of samples from the Pacific segments. Except for the Blanco, pressures of partial crystallization do not increase as transforms are approached. These observations contrast with those of previous workers, who reported anomalously high pressures (up to 1000 MPa) for a large number of samples erupted near both Atlantic and Pacific Transforms. We conclude that higher rates of cooling along transform does not have a major effect on the onset of partial crystallization along the mid-ocean ridges

  4. The effect of partial portal decompression on portal blood flow and effective hepatic blood flow in man: a prospective study.

    PubMed

    Rosemurgy, A S; McAllister, E W; Godellas, C V; Goode, S E; Albrink, M H; Fabri, P J

    1995-12-01

    With the advent of transjugular intrahepatic porta-systemic stent shunt and the wider application of the surgically placed small diameter prosthetic H-graft portacaval shunt (HGPCS), partial portal decompression in the treatment of portal hypertension has received increased attention. The clinical results supporting the use of partial portal decompression are its low incidence of variceal rehemorrhage due to decreased portal pressures and its low rate of hepatic failure, possibly due to maintenance of blood flow to the liver. Surprisingly, nothing is known about changes in portal hemodynamics and effective hepatic blood flow following partial portal decompression. To prospectively evaluate changes in portal hemodynamics and effective hepatic blood flow brought about by partial portal decompression, the following were determined in seven patients undergoing HGPCS: intraoperative pre- and postshunt portal vein pressures and portal vein-inferior vena cava pressure gradients, intraoperative pre- and postshunt portal vein flow, and pre- and postoperative effective hepatic blood flow. With HGPCS, portal vein pressures and portal vein-inferior vena cava pressure gradients decreased significantly, although portal pressures remained above normal. In contrast to the significant decreases in portal pressures, portal vein blood flow and effective hepatic blood flow do not decrease significantly. Changes in portal vein pressures and portal vein-inferior vena cava pressure gradients are great when compared to changes in portal vein flow and effective hepatic blood flow. Reduction of portal hypertension with concomitant maintenance of hepatic blood flow may explain why hepatic dysfunction is avoided following partial portal decompression.

  5. Methods and apparatus for reducing corrosion in refractory linings

    DOEpatents

    Poeppel, Roger B.; Greenberg, Sherman; Diercks, Dwight R.

    1987-01-01

    Methods and apparatus are provided for reducing corrosion in a refractory lining of a liquid-containing vessel used in direct steelmaking processes. The vessel operates at between about 1600.degree. C. and about 1800.degree. C. and an oxygen partial pressure of about 10.sup.-12 atmospheres, creating slag which is rich in FeO. The refractory lining includes a significant level of chromium oxide (Cr.sub.2 O.sub.3), and has small interconnected pores which may be filled with a gas mixture having a higher total pressure and oxygen partial pressure than the total pressure and oxygen partial pressure associted with the liquid against the lining of the vessel. The gas mixture is forced through the pores of the lining so that the pores are continuously filled with the mixture. In this manner, the gas mixture creates a blanket which increases the oxygen partial pressure at the lining enough to maintain the chromium in the lining in a selected valence state in which the chromium has decreased solubility in the FeO slag, thereby reducing corrosion by the FeO and increasing the useful life of the refractory lining.

  6. Method for sensing and measuring a concentration or partial pressure of a reactant used in a redox reaction

    DOEpatents

    Findl, E.

    1984-12-21

    A method for sensing or measuring the partial pressure or concentration of an electroactive species used in conjunction with an electrolyte, the method being characterized by providing a constant current between an anode and a cathode of an electrolyte-containing cell, while measuring changes in voltage that occur between either the anode and cathode or between a reference electrode and one of the main electrodes of the cell, thereby to determine the concentration or partial pressure of the electro-active species as a function of said measured voltage changes. The method of the invention can be practiced using either a cell having only an anode and a cathode, or using a cell having an anode and a cathode in combination with a reference electrode. Accurate measurements of small concentrations or partial pressures of electro-active species are obtainable with the method of the invention, by using constant currents of only a few microamperes between the anode and cathode of the cell, while the concentration-determining voltage is measured.

  7. Small, high-pressure, liquid oxygen turbopump

    NASA Technical Reports Server (NTRS)

    Csomor, A.

    1978-01-01

    A small, high-pressure, LOX turbopump was designed, fabricated, and tested. The pump was of a single-stage, centrifugal type; power to the pump was supplied by a single-stage, partial-admission, axial-impulse turbine. Design conditions included an operating speed of 7330 rad/sec (70,000 rpm) pump discharge pressure of 2977 N/sq cm (4318 psia), and a pump flowrate of 16.4 kg/s (36.21 lb/sec). The turbine was propelled by LOX/LH2 combustion products at 1041 K (1874 R) inlet temperature, and at a design pressure ratio of 1.424. Test data obtained with the turbopump are presented and mechanical performance is discussed.

  8. Infinite dilution partial molar volumes of platinum(II) 2,4-pentanedionate in supercritical carbon dioxide.

    PubMed

    Kong, Chang Yi; Siratori, Tomoya; Funazukuri, Toshitaka; Wang, Guosheng

    2014-10-03

    The effects of temperature and density on retention of platinum(II) 2,4-pentanedionate in supercritical fluid chromatography were investigated at temperatures of 308.15-343.15K and pressure range from 8 to 40MPa by the chromatographic impulse response method with curve fitting. The retention factors were utilized to derive the infinite dilution partial molar volumes of platinum(II) 2,4-pentanedionate in supercritical carbon dioxide. The determined partial molar volumes were small and positive at high pressures but exhibited very large and negative values in the highly compressible near critical region of carbon dioxide. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Oxygen vacancy induced phase formation and room temperature ferromagnetism in undoped and Co-doped TiO2 thin films

    NASA Astrophysics Data System (ADS)

    Mohanty, P.; Mishra, N. C.; Choudhary, R. J.; Banerjee, A.; Shripathi, T.; Lalla, N. P.; Annapoorni, S.; Rath, Chandana

    2012-08-01

    TiO2 and Co-doped TiO2 (CTO) thin films deposited at various oxygen partial pressures by pulsed laser deposition exhibit room temperature ferromagnetism (RTFM) independent of their phase. Films deposited at 0.1 mTorr oxygen partial pressure show a complete rutile phase confirmed from glancing angle x-ray diffraction and Raman spectroscopy. At the highest oxygen partial pressure, i.e. 300 mTorr, although the TiO2 film shows a complete anatase phase, a small peak corresponding to the rutile phase along with the anatase phase is identified in the case of CTO film. An increase in O to Ti/(Ti+Co) ratio with increase in oxygen partial pressure is observed from Rutherford backscattering spectroscopy. It is revealed from x-ray photoelectron spectroscopy (XPS) that oxygen vacancies are found to be higher in the CTO film than TiO2, while the valency of cobalt remains in the +2 state. Therefore, the CTO film deposited at 300 mTorr does not show a complete anatase phase unlike the TiO2 film deposited at the same partial pressure. We conclude that RTFM in both films is not due to impurities/contaminants, as confirmed from XPS depth profiling and cross-sectional transmission electron microscopy (TEM), but due to oxygen vacancies. The magnitude of moment, however, depends not only on the phase of TiO2 but also on the crystallinity of the films.

  10. Small, high-pressure liquid oxygen turbopump

    NASA Technical Reports Server (NTRS)

    Csomor, A.; Sutton, R.

    1977-01-01

    A small, high-pressure, liquid oxygen turbopump was designed, fabricated, and tested. The pump was of a single-stage, centrifugal type; power to the pump was supplied by a single-stage, partial emission, axial-impulse turbine. Design conditions included an operating speed of 70,000 rpm, pump discharge pressure of 2977 N/sq cm (4318 psia), and a pump flowrate of 16.4 kg/s (36.21 lb/sec). The turbine was propelled by LO2/LH2 combustion products at 1041 K (1874 R) inlet temperature, and at a design pressure ratio of 1.424. The approaches used in the detail analysis and design of the turbopump are described, and fabrication methods are discussed. Data obtained from gas generator tests, turbine performance calibration, and turbopump testing are presented.

  11. Water-hammer pressure waves interaction at cross-section changes in series in viscoelastic pipes

    NASA Astrophysics Data System (ADS)

    Meniconi, S.; Brunone, B.; Ferrante, M.

    2012-08-01

    In view of scarcity of both experimental data and numerical models concerning transient behavior of cross-section area changes in pressurized liquid flow, the paper presents laboratory data and numerical simulation of the interaction of a surge wave with a partial blockage by a valve, a single pipe contraction or expansion and a series of pipe contraction/expansion in close proximity.With regard to a single change of cross-section area, laboratory data point out the completely different behavior with respect to one of the partially closed in-line valves with the same area ratio. In fact, for the former the pressure wave interaction is not regulated by the steady-state local head loss. With regard to partial blockages, transient tests have shown that the smaller the length, the more intense the overlapping of pressure waves due to the expansion and contraction in series.Numerically, the need for taking into account both the viscoelasticity and unsteady friction is demonstrated, since the classical water-hammer theory does not simulate the relevant damping of pressure peaks and gives rise to a time shifting between numerical and laboratory data. The transient behavior of a single local head loss has been checked by considering tests carried out in a system with a partially closed in-line valve. As a result, the reliability of the quasi steady-state approach for local head loss simulation has been demonstrated in viscoelastic pipes. The model parameters obtained on the basis of transients carried out in single pipe systems have then been used to simulate transients in the more complex pipe systems. These numerical experiments show the great importance of the length of the small-bore pipe with respect to one of the large-bore pipes. Precisely, until a gradually flow establishes in the small-bore pipe, the smaller such a length, the better the quality of the numerical simulation.

  12. Lunar mass spectrometer test program

    NASA Technical Reports Server (NTRS)

    Torney, F. L.; Dobrott, J. R.

    1972-01-01

    The procedures are described along with results obtained in a test program conducted to demonstrate the performance of a candidate lunar mass spectrometer. The instrument was designed to sample and measure gases believed to exist in the lunar atmosphere at the surface. The subject instrument consists of a cold cathode ion source, a small quadrupole mass analyzer and an off axis electron multiplier ion counting detector. The major program emphasis was placed on demonstrating instrument resolution, sensitivity and S/N ratio over the mass range 0-150 amu and over a partial pressure range from 10 to the minus 9th power to 10 to the minus 13th power torr. Ultrahigh vacuum tests were conducted and the minimum detectable partial pressure for neon, argon, krypton and xenon was successfully determined for the spectrometer using isotopes of these gases. With the exception of neon, the minimum detectable partial pressure is approximately 4 x 10 to the minus 14th power torr for the above gases.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groenen, Rik; Smit, Jasper; Orsel, Kasper

    The oxidation of species in the plasma plume during pulsed laser deposition controls both the stoichiometry as well as the growth kinetics of the deposited SrTiO{sub 3} thin films, instead of the commonly assumed mass distribution in the plasma plume and the kinetic energy of the arriving species. It was observed by X-ray diffraction that SrTiO{sub 3} stoichiometry depends on the composition of the background gas during deposition, where in a relative small pressure range between 10{sup −2} mbars and 10{sup −1} mbars oxygen partial pressure, the resulting film becomes fully stoichiometric. Furthermore, upon increasing the oxygen (partial) pressure, themore » growth mode changes from 3D island growth to a 2D layer-by-layer growth mode as observed by reflection high energy electron diffraction.« less

  14. Measurement and Control of Oxygen Partial Pressure in an Electrostatic Levitator

    NASA Technical Reports Server (NTRS)

    SanSoucie, Michael P.; Rogers, Jan R.

    2014-01-01

    Recently the NASA Marshall Space Flight Center electrostatic levitation (ESL) laboratory has been upgraded to include an oxygen control system. This system allows the oxygen partial pressure within the vacuum chamber to be measured and controlled, at elevated temperatures, theoretically in the range from 10(exp -36) to 10(exp 0) bar. The role of active surface agents in liquid metals is fairly well known; however, published surface tension data typically has large scatter, which has been hypothesized to be caused by the presence of oxygen. The surface tension of metals is affected by even a small amount of adsorption of oxygen. It has even been shown that oxygen partial pressures may need to be as low as 10(exp -24) bar to avoid oxidation. While electrostatic levitation is done under high vacuum, oxide films or dissolved oxygen may have significant effects on materials properties, such as surface tension and viscosity. Therefore, the ability to measure and control the oxygen partial pressure within the chamber is highly desirable. The oxygen control system installed at MSFC contains a potentiometric sensor, which measures the oxygen partial pressure, and an oxygen ion pump. In the pump, a pulse-width modulated electric current is applied to yttrium-stabilized zirconia, resulting in oxygen transfer into or out of the system. Also part of the system is a control unit, which consists of temperature controllers for the sensor and pump, PID-based current loop for the ion pump, and a control algorithm. This system can be used to study the effects of oxygen on the thermophysical properties of metals, ceramics, glasses, and alloys. It can also be used to provide more accurate measurements by processing the samples at very low oxygen partial pressures. The oxygen control system will be explained in more detail and an overview of its use and limitations in an electrostatic levitator will be described. Some preliminary measurements have been made, and the results to date will be provided.

  15. Oxygen-Partial-Pressure Sensor for Aircraft Oxygen Mask

    NASA Technical Reports Server (NTRS)

    Kelly, Mark; Pettit, Donald

    2003-01-01

    A device that generates an alarm when the partial pressure of oxygen decreases to less than a preset level has been developed to help prevent hypoxia in a pilot or other crewmember of a military or other high-performance aircraft. Loss of oxygen partial pressure can be caused by poor fit of the mask or failure of a hose or other component of an oxygen distribution system. The deleterious physical and mental effects of hypoxia cause the loss of a military aircraft and crew every few years. The device is installed in the crewmember s oxygen mask and is powered via communication wiring already present in all such oxygen masks. The device (see figure) includes an electrochemical sensor, the output potential of which is proportional to the partial pressure of oxygen. The output of the sensor is amplified and fed to the input of a comparator circuit. A reference potential that corresponds to the amplified sensor output at the alarm oxygen-partial-pressure level is fed to the second input of the comparator. When the sensed partial pressure of oxygen falls below the minimum acceptable level, the output of the comparator goes from the low state (a few millivolts) to the high state (near the supply potential, which is typically 6.8 V for microphone power). The switching of the comparator output to the high state triggers a tactile alarm in the form of a vibration in the mask, generated by a small 1.3-Vdc pager motor spinning an eccentric mass at a rate between 8,000 and 10,000 rpm. The sensation of the mask vibrating against the crewmember s nose is very effective at alerting the crewmember, who may already be groggy from hypoxia and is immersed in an environment that is saturated with visual cues and sounds. Indeed, the sensation is one of rudeness, but such rudeness could be what is needed to stimulate the crewmember to take corrective action in a life-threatening situation.

  16. Hydromechanical drilling device

    DOEpatents

    Summers, David A.

    1978-01-01

    A hydromechanical drilling tool which combines a high pressure water jet drill with a conventional roller cone type of drilling bit. The high pressure jet serves as a tap drill for cutting a relatively small diameter hole in advance of the conventional bit. Auxiliary laterally projecting jets also serve to partially cut rock and to remove debris from in front of the bit teeth thereby reducing significantly the thrust loading for driving the bit.

  17. Derivation of intermediate to silicic magma from the basalt analyzed at the Vega 2 landing site, Venus.

    PubMed

    Shellnutt, J Gregory

    2018-01-01

    Geochemical modeling using the basalt composition analyzed at the Vega 2 landing site indicates that intermediate to silicic liquids can be generated by fractional crystallization and equilibrium partial melting. Fractional crystallization modeling using variable pressures (0.01 GPa to 0.5 GPa) and relative oxidation states (FMQ 0 and FMQ -1) of either a wet (H2O = 0.5 wt%) or dry (H2O = 0 wt%) parental magma can yield silicic (SiO2 > 60 wt%) compositions that are similar to terrestrial ferroan rhyolite. Hydrous (H2O = 0.5 wt%) partial melting can yield intermediate (trachyandesite to andesite) to silicic (trachydacite) compositions at all pressures but requires relatively high temperatures (≥ 950°C) to generate the initial melt at intermediate to low pressure whereas at high pressure (0.5 GPa) the first melts will be generated at much lower temperatures (< 800°C). Anhydrous partial melt modeling yielded mafic (basaltic andesite) and alkaline compositions (trachybasalt) but the temperature required to produce the first liquid is very high (≥ 1130°C). Consequently, anhydrous partial melting is an unlikely process to generate derivative liquids. The modeling results indicate that, under certain conditions, the Vega 2 composition can generate silicic liquids that produce granitic and rhyolitic rocks. The implication is that silicic igneous rocks may form a small but important component of the northeast Aphrodite Terra.

  18. Derivation of intermediate to silicic magma from the basalt analyzed at the Vega 2 landing site, Venus

    PubMed Central

    2018-01-01

    Geochemical modeling using the basalt composition analyzed at the Vega 2 landing site indicates that intermediate to silicic liquids can be generated by fractional crystallization and equilibrium partial melting. Fractional crystallization modeling using variable pressures (0.01 GPa to 0.5 GPa) and relative oxidation states (FMQ 0 and FMQ -1) of either a wet (H2O = 0.5 wt%) or dry (H2O = 0 wt%) parental magma can yield silicic (SiO2 > 60 wt%) compositions that are similar to terrestrial ferroan rhyolite. Hydrous (H2O = 0.5 wt%) partial melting can yield intermediate (trachyandesite to andesite) to silicic (trachydacite) compositions at all pressures but requires relatively high temperatures (≥ 950°C) to generate the initial melt at intermediate to low pressure whereas at high pressure (0.5 GPa) the first melts will be generated at much lower temperatures (< 800°C). Anhydrous partial melt modeling yielded mafic (basaltic andesite) and alkaline compositions (trachybasalt) but the temperature required to produce the first liquid is very high (≥ 1130°C). Consequently, anhydrous partial melting is an unlikely process to generate derivative liquids. The modeling results indicate that, under certain conditions, the Vega 2 composition can generate silicic liquids that produce granitic and rhyolitic rocks. The implication is that silicic igneous rocks may form a small but important component of the northeast Aphrodite Terra. PMID:29584745

  19. Carbon dioxide supersaturation in the surface waters of lakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, J.J.; Caraco, N.F.; Kling, G.W.

    1994-09-09

    Data on the partial pressure of carbon dioxide (CO{sub 2}) in the surface waters from a large number of lakes (1835) with a worldwide distribution show that only a small proportion of the 4665 samples analyzed (less than 10 percent) were within {+-}20 percent of equilibrium with the atmosphere and that most samples (87 percent) were supersaturated. The mean partial pressure of CO{sub 2} averaged 1036 microatmospheres, about three times the value in the overlying atmosphere, indicating that lakes are sources rather than sinks of atmospheric CO{sub 2}. On a global scale, the potential efflux of CO{sub 2} from lakesmore » (about 0.14 x 10{sup 15} grams of carbon per year) is about half as large as riverine transport of organic plus inorganic carbon to the ocean. Lakes are a small but potentially important conduit for carbon for terrestrial sources to the atmospheric sink. 18 refs., 2 figs., 1 tab.« less

  20. Role of partial miscibility on pressure buildup due to constant rate injection of CO2 into closed and open brine aquifers

    NASA Astrophysics Data System (ADS)

    Mathias, Simon A.; Gluyas, Jon G.; GonzáLez MartíNez de Miguel, Gerardo J.; Hosseini, Seyyed A.

    2011-12-01

    This work extends an existing analytical solution for pressure buildup because of CO2 injection in brine aquifers by incorporating effects associated with partial miscibility. These include evaporation of water into the CO2 rich phase and dissolution of CO2 into brine and salt precipitation. The resulting equations are closed-form, including the locations of the associated leading and trailing shock fronts. Derivation of the analytical solution involves making a number of simplifying assumptions including: vertical pressure equilibrium, negligible capillary pressure, and constant fluid properties. The analytical solution is compared to results from TOUGH2 and found to accurately approximate the extent of the dry-out zone around the well, the resulting permeability enhancement due to residual brine evaporation, the volumetric saturation of precipitated salt, and the vertically averaged pressure distribution in both space and time for the four scenarios studied. While brine evaporation is found to have a considerable effect on pressure, the effect of CO2 dissolution is found to be small. The resulting equations remain simple to evaluate in spreadsheet software and represent a significant improvement on current methods for estimating pressure-limited CO2 storage capacity.

  1. Pathophysiological appraisal of a rat model of total hepatic ischemia with an extracorporeal portosystemic shunt.

    PubMed

    Suzuki, S; Nakamura, S; Sakaguchi, T; Mitsuoka, H; Tsuchiya, Y; Kojima, Y; Konno, H; Baba, S

    1998-11-01

    Animal models of total hepatic ischemia (THI) and reperfusion injury are restricted by concomitant splanchnic congestion. This study was performed to determine the requirement suitable for an extracorporeal portosystemic shunt (PSS) to maintain the intestinal integrity in a rat model of THI. Using a polyethylene tube (0.86 or 1 mm i.d.), PSS was placed between the mesenteric and jugular veins. Comparison was done between THI models with or without PSS and a partial ischemia model with hepatectomy of the nonischemic lobes. Well-tolerated hepatic ischemic period, portal pressure after 10 min of hepatic ischemia, portal endotoxin levels at 1 h after reperfusion, histological features of the small bowel just before reperfusion, and local jejunal and ileal blood hemoglobin oxygen saturation index (ISO2) were compared among the models. Animals without PSS poorly tolerated 30 min of THI. Animals receiving THI with PSS or partial hepatic ischemia tolerated a longer ischemic period (60 min) with a significantly higher small bowel ISO2, lower portal pressure and endotoxin levels (P < 0.01), and less histological damage of the small bowel when compared to those receiving THI without PSS. Portal endotoxin levels after THI with PSS using a 1-mm i.d. tube as well as partial hepatic ischemia were significantly lower than those after THI with PSS using a 0.86-mm i.d. tube. THI with PSS using a 1-mm i.d. tube was strikingly similar to partial hepatic ischemia in the pathophysiological profile during hepatic ischemia. PSS with a tube 1 mm or more in inner diameter offers pathophysiological advantages in experiments on THI and reperfusion. Copyright 1998 Academic Press.

  2. Partial-Vacuum-Gasketed Electrochemical Corrosion Cell

    NASA Technical Reports Server (NTRS)

    Bonifas, Andrew P.; Calle, Luz M.; Hintze, Paul E.

    2006-01-01

    An electrochemical cell for making corrosion measurements has been designed to prevent or reduce crevice corrosion, which is a common source of error in prior such cells. The present cell (see figure) includes an electrolyte reservoir with O-ring-edged opening at the bottom. In preparation for a test, the reservoir, while empty, is pressed down against a horizontal specimen surface to form an O-ring seal. A purge of air or other suitable gas is begun in the reservoir, and the pressure in the reservoir is regulated to maintain a partial vacuum. While maintaining the purge and partial vacuum, and without opening the interior of the reservoir to the atmosphere, the electrolyte is pumped into the reservoir. The reservoir is then slowly lifted a short distance off the specimen. The level of the partial vacuum is chosen such that the differential pressure is just sufficient to keep the electrolyte from flowing out of the reservoir through the small O-ring/specimen gap. Electrochemical measurements are then made. Because there is no gasket (and, hence, no crevice between the specimen and the gasket), crevice corrosion is unlikely to occur.

  3. A miniature fiber optic pressure sensor for intradiscal pressure measurements of rodents

    NASA Astrophysics Data System (ADS)

    Nesson, Silas; Yu, Miao; Hsieh, Adam H.

    2007-04-01

    Lower back pain continues to be a leading cause of disability in people of all ages, and has been associated with degenerative disc disease. It is well accepted that mechanical stress, among other factors, can play a role in the development of disc degeneration. Pressures generated in the intervertebral disc have been measured both in vivo and in vitro for humans and animals. However, thus far it has been difficult to measure pressure experimentally in rodent discs due to their small size. With the prevalent use of rodent tail disc models in mechanobiology, it is important to characterize the intradiscal pressures generated with externally applied stresses. In this paper, a miniature fiber optic Fabry-Perot interferometric pressure sensor with an outer diameter of 360 μm was developed to measure intradiscal pressures in rat caudal discs. A low coherence interferometer based optical system was used, which includes a broadband light source, a high-speed spectrometer, and a Fabry-Perot sensor. The sensor employs a capillary tube, a flexible, polymer diaphragm coated with titanium as a partial mirror, and a fiber tip as another mirror. The pressure induced deformation of the diaphragm results in a cavity length change of the Fabry-Perot interferometer which can be calculated from the wavelength shift of interference fringes. The sensor exhibited good linearity with small applied pressures. Our validation experiments show that owing to the small size, inserting the sensor does not disrupt the annulus fibrosus and will not alter intradiscal pressures generated. Measurements also demonstrate the feasibility of using this sensor to quantify external load intradiscal pressure relationships in small animal discs.

  4. The effects of hindlimb unweighting on the capacitance of rat small mesenteric veins

    NASA Technical Reports Server (NTRS)

    Dunbar, S. L.; Berkowitz, D. E.; Brooks-Asplund, E. M.; Shoukas, A. A.

    2000-01-01

    Microgravity is associated with an impaired cardiac output response to orthostatic stress. Mesenteric veins are critical in modulating cardiac filling through venoconstriction. The purpose of this study was to determine the effects of simulated microgravity on the capacitance of rat mesenteric small veins. We constructed pressure-diameter relationships from vessels of 21-day hindlimb-unweighted (HLU) rats and control rats by changing the internal pressure and measuring the external diameter. Pressure-diameter relationships were obtained both before and after stimulation with norepinephrine (NE). The pressure-diameter curves of HLU vessels were shifted to larger diameters than control vessels. NE (10(-4) M) constricted veins from control animals such that the pressure-diameter relationship was significantly shifted downward (i.e., to smaller diameters at equal pressure). NE had no effect on vessels from HLU animals. These results indicate that, after HLU, unstressed vascular volume may be increased and can no longer decrease in response to sympathetic stimulation. This may partially underlie the mechanism leading to the exaggerated fall in cardiac output and stroke volume seen in astronauts during an orthostatic stress after exposure to microgravity.

  5. Adsorption of 2-propanol on ice probed by ambient pressure X-ray photoelectron spectroscopy

    DOE PAGES

    Newberg, John T.; Bluhm, Hendrik

    2015-08-18

    The interaction of 2-propanol with ice was examined via ambient pressure X-ray photoelectron spectroscopy (APXPS), a surface sensitive technique that probes the adsorbed 2-propanol directly with submonolayer resolution. Isothermal uptake experiments were performed on vapor deposited ice at 227 K in the presence of the equilibrium water vapor pressure of 0.05 Torr and 2-propanol partial pressures ranging from 5 × 10 -5 to 2 × 10 -3 Torr. The C 1s APXPS spectra of adsorbed 2-propanol showed two characteristic peaks associated with the C OH alcohol group and C Me methyl groups in a 1 : 2 ratio, respectively. Coveragemore » increased with 2-propanol partial pressure and followed first order Langmuir kinetics with a Langmuir constant of K = 6.3 × 10 3 Torr -1. The 1 : 2 ratio of C OH : C Me remained constant with increasing coverage, indicating there is no chemical reaction upon adsorption. The observed Langmuir kinetics using APXPS is consistent with previous observations of other small chain alcohols via indirect adsorption methods using, e.g., Knudsen cell and coated wall flow tube reactors.« less

  6. Thin film devices used as oxygen partial pressure sensors

    NASA Technical Reports Server (NTRS)

    Canady, K. S.; Wortman, J. J.

    1970-01-01

    Electrical conductivity of zinc oxide films to be used in an oxygen partial pressure sensor is measured as a function of temperature, oxygen partial pressure, and other atmospheric constituents. Time response following partial pressure changes is studied as a function of temperature and environmental changes.

  7. Factors associated with blood oxygen partial pressure and carbon dioxide partial pressure regulation during respiratory extracorporeal membrane oxygenation support: data from a swine model.

    PubMed

    Park, Marcelo; Mendes, Pedro Vitale; Costa, Eduardo Leite Vieira; Barbosa, Edzangela Vasconcelos Santos; Hirota, Adriana Sayuri; Azevedo, Luciano Cesar Pontes

    2016-01-01

    The aim of this study was to explore the factors associated with blood oxygen partial pressure and carbon dioxide partial pressure. The factors associated with oxygen - and carbon dioxide regulation were investigated in an apneic pig model under veno-venous extracorporeal membrane oxygenation support. A predefined sequence of blood and sweep flows was tested. Oxygenation was mainly associated with extracorporeal membrane oxygenation blood flow (beta coefficient = 0.036mmHg/mL/min), cardiac output (beta coefficient = -11.970mmHg/L/min) and pulmonary shunting (beta coefficient = -0.232mmHg/%). Furthermore, the initial oxygen partial pressure and carbon dioxide partial pressure measurements were also associated with oxygenation, with beta coefficients of 0.160 and 0.442mmHg/mmHg, respectively. Carbon dioxide partial pressure was associated with cardiac output (beta coefficient = 3.578mmHg/L/min), sweep gas flow (beta coefficient = -2.635mmHg/L/min), temperature (beta coefficient = 4.514mmHg/ºC), initial pH (beta coefficient = -66.065mmHg/0.01 unit) and hemoglobin (beta coefficient = 6.635mmHg/g/dL). In conclusion, elevations in blood and sweep gas flows in an apneic veno-venous extracorporeal membrane oxygenation model resulted in an increase in oxygen partial pressure and a reduction in carbon dioxide partial pressure 2, respectively. Furthermore, without the possibility of causal inference, oxygen partial pressure was negatively associated with pulmonary shunting and cardiac output, and carbon dioxide partial pressure was positively associated with cardiac output, core temperature and initial hemoglobin.

  8. Using small angle x-ray scattering to measure the homogeneous nucleation rates of n-propanol, n-butanol, and n-pentanol in supersonic nozzle expansions

    NASA Astrophysics Data System (ADS)

    Ghosh, David; Manka, Alexandra; Strey, Reinhard; Seifert, Soenke; Winans, Randall E.; Wyslouzil, Barbara E.

    2008-09-01

    In our earlier publication [M. Gharibeh et al., J. Chem. Phys. 122, 094512 (2005)] we determined the temperatures and partial pressures corresponding to the maximum nucleation rate for a series n-alcohols (CiH2i+lOH; i =3-5) during condensation in a supersonic nozzle. Although we were able to determine the characteristic time ΔtJmax corresponding to the peak nucleation rate, we were unable to measure the number density of the aerosol and, thus, unable to directly quantify the nucleation rate J. In this paper we report the results of our pioneering small angle x-ray scattering (SAXS) experiments of n-alcohol droplets formed in a supersonic nozzle together with a new series of complementary pressure trace measurements. By combining the SAXS and pressure trace measurement data we determine the nucleation rates as a function of temperature and supersaturation.

  9. Small for Size and Flow (SFSF) syndrome: An alternative description for posthepatectomy liver failure.

    PubMed

    Golriz, Mohammad; Majlesara, Ali; El Sakka, Saroa; Ashrafi, Maryam; Arwin, Jalal; Fard, Nassim; Raisi, Hanna; Edalatpour, Arman; Mehrabi, Arianeb

    2016-06-01

    Small for Size Syndrome (SFSS) syndrome is a recognizable clinical syndrome occurring in the presence of a reduced mass of liver, which is insufficient to maintain normal liver function. A definition has yet to be fully clarified, but it is a common clinical syndrome following partial liver transplantation and extended hepatectomy, which is characterized by postoperative liver dysfunction with prolonged cholestasis and coagulopathy, portal hypertension, and ascites. So far, this syndrome has been discussed with focus on the remnant size of the liver after partial liver transplantation or extended hepatectomy. However, the current viewpoints believe that the excessive flow of portal vein for the volume of the liver parenchyma leads to over-pressure, sinusoidal endothelial damages and haemorrhage. The new hypothesis declares that in both extended hepatectomy and partial liver transplantation, progression of Small for Size Syndrome is not determined only by the "size" of the liver graft or remnant, but by the hemodynamic parameters of the hepatic circulation, especially portal vein flow. Therefore, we suggest the term "Small for Size and Flow (SFSF)" for this syndrome. We believe that it is important for liver surgeons to know the pathogenesis and manifestation of this syndrome to react early enough preventing non-reversible tissue damages. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  10. Observational constraints on the global atmospheric CO2 budget

    NASA Technical Reports Server (NTRS)

    Tans, Pieter P.; Fung, Inez Y.; Takahashi, Taro

    1990-01-01

    Observed atmospheric concentrations of CO2 and data on the partial pressures of CO2 in surface ocean waters are combined to identify globally significant sources and sinks of CO2. The atmospheric data are compared with boundary layer concentrations calculated with the transport fields generated by a general circulation model (GCM) for specified source-sink distributions. In the model the observed north-south atmospheric concentration gradient can be maintained only if sinks for CO2 are greater in the Northern than in the Southern Hemisphere. The observed differences between the partial pressure of CO2 in the surface waters of the Northern Hemisphere and the atmosphere are too small for the oceans to be the major sink of fossil fuel CO2. Therefore, a large amount of the CO2 is apparently absorbed on the continents by terrestrial ecosystems.

  11. 21 CFR 868.1150 - Indwelling blood carbon dioxide partial pressure (PCO2) analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Indwelling blood carbon dioxide partial pressure....1150 Indwelling blood carbon dioxide partial pressure (PCO2) analyzer. (a) Identification. An indwelling blood carbon dioxide partial pressure PCO2 analyzer is a device that consists of a catheter-tip...

  12. 21 CFR 868.1150 - Indwelling blood carbon dioxide partial pressure (PCO2) analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Indwelling blood carbon dioxide partial pressure....1150 Indwelling blood carbon dioxide partial pressure (PCO2) analyzer. (a) Identification. An indwelling blood carbon dioxide partial pressure PCO2 analyzer is a device that consists of a catheter-tip...

  13. 21 CFR 868.1150 - Indwelling blood carbon dioxide partial pressure (PCO2) analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Indwelling blood carbon dioxide partial pressure....1150 Indwelling blood carbon dioxide partial pressure (PCO2) analyzer. (a) Identification. An indwelling blood carbon dioxide partial pressure PCO2 analyzer is a device that consists of a catheter-tip...

  14. 21 CFR 868.1150 - Indwelling blood carbon dioxide partial pressure (PCO2) analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Indwelling blood carbon dioxide partial pressure....1150 Indwelling blood carbon dioxide partial pressure (PCO2) analyzer. (a) Identification. An indwelling blood carbon dioxide partial pressure PCO2 analyzer is a device that consists of a catheter-tip...

  15. Factors associated with blood oxygen partial pressure and carbon dioxide partial pressure regulation during respiratory extracorporeal membrane oxygenation support: data from a swine model

    PubMed Central

    Park, Marcelo; Mendes, Pedro Vitale; Costa, Eduardo Leite Vieira; Barbosa, Edzangela Vasconcelos Santos; Hirota, Adriana Sayuri; Azevedo, Luciano Cesar Pontes

    2016-01-01

    Objective The aim of this study was to explore the factors associated with blood oxygen partial pressure and carbon dioxide partial pressure. Methods The factors associated with oxygen - and carbon dioxide regulation were investigated in an apneic pig model under veno-venous extracorporeal membrane oxygenation support. A predefined sequence of blood and sweep flows was tested. Results Oxygenation was mainly associated with extracorporeal membrane oxygenation blood flow (beta coefficient = 0.036mmHg/mL/min), cardiac output (beta coefficient = -11.970mmHg/L/min) and pulmonary shunting (beta coefficient = -0.232mmHg/%). Furthermore, the initial oxygen partial pressure and carbon dioxide partial pressure measurements were also associated with oxygenation, with beta coefficients of 0.160 and 0.442mmHg/mmHg, respectively. Carbon dioxide partial pressure was associated with cardiac output (beta coefficient = 3.578mmHg/L/min), sweep gas flow (beta coefficient = -2.635mmHg/L/min), temperature (beta coefficient = 4.514mmHg/ºC), initial pH (beta coefficient = -66.065mmHg/0.01 unit) and hemoglobin (beta coefficient = 6.635mmHg/g/dL). Conclusion In conclusion, elevations in blood and sweep gas flows in an apneic veno-venous extracorporeal membrane oxygenation model resulted in an increase in oxygen partial pressure and a reduction in carbon dioxide partial pressure 2, respectively. Furthermore, without the possibility of causal inference, oxygen partial pressure was negatively associated with pulmonary shunting and cardiac output, and carbon dioxide partial pressure was positively associated with cardiac output, core temperature and initial hemoglobin. PMID:27096671

  16. 21 CFR 868.1200 - Indwelling blood oxygen partial pressure (PO2) analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Indwelling blood oxygen partial pressure (PO2... Indwelling blood oxygen partial pressure (PO2) analyzer. (a) Identification. An indwelling blood oxygen... electrode) and that is used to measure, in vivo, the partial pressure of oxygen in blood to aid in...

  17. 21 CFR 868.1200 - Indwelling blood oxygen partial pressure (PO2) analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Indwelling blood oxygen partial pressure (PO2... Indwelling blood oxygen partial pressure (PO2) analyzer. (a) Identification. An indwelling blood oxygen... electrode) and that is used to measure, in vivo, the partial pressure of oxygen in blood to aid in...

  18. 21 CFR 868.1200 - Indwelling blood oxygen partial pressure (PO2) analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Indwelling blood oxygen partial pressure (PO2... Indwelling blood oxygen partial pressure (PO2) analyzer. (a) Identification. An indwelling blood oxygen... electrode) and that is used to measure, in vivo, the partial pressure of oxygen in blood to aid in...

  19. 21 CFR 868.1200 - Indwelling blood oxygen partial pressure (PO2) analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Indwelling blood oxygen partial pressure (PO2... Indwelling blood oxygen partial pressure (PO2) analyzer. (a) Identification. An indwelling blood oxygen... electrode) and that is used to measure, in vivo, the partial pressure of oxygen in blood to aid in...

  20. 21 CFR 868.1200 - Indwelling blood oxygen partial pressure (PO2) analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Indwelling blood oxygen partial pressure (PO2... Indwelling blood oxygen partial pressure (PO2) analyzer. (a) Identification. An indwelling blood oxygen... electrode) and that is used to measure, in vivo, the partial pressure of oxygen in blood to aid in...

  1. Zero added oxygen for high quality sputtered ITO. A data science investigation of reduced Sn-content and added Zr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peshek, Timothy J.; Burst, James M.; Coutts, Timothy J.

    Here, we demonstrate mobilities of >45 cm 2/V s for sputtered tin-doped indium oxide (ITO) films at zero added oxygen. All films were deposited with 5 wt. % SnO 2, instead of the more conventional 8–10 wt. %, and had varying ZrO 2 content from 0 to 3 wt. %, with a subsequent reduction in In 2O 3 content. Moreover, these films were deposited by radio-frequency magnetron sputtering from nominally stoichiometric targets with varying oxygen partial pressure in the sputter ambient. Anomalous behavior was discovered for films with no Zr-added, where a bimodality of high and low mobilities was discoveredmore » for nominally similar growth conditions. However, all films showed the lowest resistivity and highest mobilities when the oxygen partial pressure in the sputter ambient was zero. This result is contrasted with several other reports of ITO transport performance having a maximum for small but nonzero oxygen partial pressure. Our result is attributed to the reduced concentration of SnO 2. The addition of ZrO 2 yielded the highest mobilities at >55 cm 2/V s and the films showed a modest increase in optical transmission with increasing Zr-content.« less

  2. Zero added oxygen for high quality sputtered ITO. A data science investigation of reduced Sn-content and added Zr

    DOE PAGES

    Peshek, Timothy J.; Burst, James M.; Coutts, Timothy J.; ...

    2016-01-19

    Here, we demonstrate mobilities of >45 cm 2/V s for sputtered tin-doped indium oxide (ITO) films at zero added oxygen. All films were deposited with 5 wt. % SnO 2, instead of the more conventional 8–10 wt. %, and had varying ZrO 2 content from 0 to 3 wt. %, with a subsequent reduction in In 2O 3 content. Moreover, these films were deposited by radio-frequency magnetron sputtering from nominally stoichiometric targets with varying oxygen partial pressure in the sputter ambient. Anomalous behavior was discovered for films with no Zr-added, where a bimodality of high and low mobilities was discoveredmore » for nominally similar growth conditions. However, all films showed the lowest resistivity and highest mobilities when the oxygen partial pressure in the sputter ambient was zero. This result is contrasted with several other reports of ITO transport performance having a maximum for small but nonzero oxygen partial pressure. Our result is attributed to the reduced concentration of SnO 2. The addition of ZrO 2 yielded the highest mobilities at >55 cm 2/V s and the films showed a modest increase in optical transmission with increasing Zr-content.« less

  3. Intradiscal pressure study of percutaneous disc decompression with nucleoplasty in human cadavers.

    PubMed

    Chen, Yung C; Lee, Sang-heon; Chen, Darwin

    2003-04-01

    Intradiscal pressure was measured after percutaneous disc decompression by nucleoplasty in human cadavers with different degrees of disc degeneration. To assess intradiscal pressure change after disc decompression, and to analyze the influence of degeneration on the intradiscal pressure change. Partial removal of the nucleus has been shown to decompress herniated discs, relieving pressure on nerve roots and, in some cases, offering relief from disc pain. Nucleoplasty, a new minimally invasive procedure using patented Coblation technology, combines coagulation and ablation for partial removal of the nucleus. Coblated channels remove the tissue volume and may decrease the disc pressure. Three fresh human cadaver spinal specimens (T8-L5; age, 54-84 years; mean age, 70.7 years) were used in this investigation. The intradiscal pressure was measured at three points: before treatment, after each channel was created, and after treatment using a 25-guage 6-inch needle connected to a Merit Medical Systems Intellisystem Inflation Monitor. The needles were calibrated initially to approximately 30 pounds per square inch. For the control, the change in disc pressure was recorded by the same procedure without using Coblation energy. To evaluate the effectiveness of nucleoplasty, disc pressure changes were compared between treatment with and without Coblation energy. Intradiscal pressure was markedly reduced in the younger, healthy disc cadaver. In the older, degenerative disc cadavers, the change in intradiscal pressure after nucleoplasty was very small. There was an inverse correlation between the degree of disc degeneration and the change in intradiscal pressure. Pressure reduction through nucleoplasty is highly dependent on the degree of spine degeneration. Nucleoplasty markedly reduced intradiscal pressure in nondegenerative discs, but had a negligible effect on highly degenerative discs.

  4. Flame Movement and Pressure Development in an Engine Cylinder

    NASA Technical Reports Server (NTRS)

    Marvin, Charles F , Jr; Best, Robert D

    1932-01-01

    This investigation describes a visual method for making stroboscopic observations, through a large number of small windows, of the spread of flame throughout the combustion chamber of a gasoline engine. Data, secured by this method on a small engine burning gaseous fuels, are given to show the effects of mixture ratio, spark advance, engine speed, charge density, degree of dilution, compression ratio, and fuel composition on flame movement in the cylinder. Partial indicator diagrams showing pressure development during the combustion period are included. Although present knowledge is not sufficient to permit qualitative evaluation of the separate effects on flame movement of chemical reaction velocity, thermal expansion of burned gases, resonance, turbulence, and piston movement, the qualitative influence of certain of these factors on some of the diagrams is indicated.

  5. The Use of Spontaneous Raman Scattering for Hydrogen Leak Detection

    NASA Technical Reports Server (NTRS)

    Degroot, Wim A.

    1994-01-01

    A fiber optic probe has been built and demonstrated that utilizes back scattered spontaneous Raman spectroscopy to detect and identify gaseous species. The small probe, coupled to the laser and data acquisition equipment with optical fibers, has applications in gaseous leak detection and process monitoring. The probe design and data acquisition system are described. Raman scattering theory has been reviewed and the results of intensity calculations of hydrogen and nitrogen Raman scattering are given. Because the device is in its developmental stage, only preliminary experimental results are presented here. Intensity scans across the rotational-vibrational Raman lines of nitrogen and hydrogen are presented. Nitrogen at a partial pressure of 0.077 MPa was detected. Hydrogen at a partial pressure of 2 kPa approached the lower limit of detectability with the present apparatus. Potential instrument improvements that would allow more sensitive and rapid hydrogen detection are identified.

  6. Effect of hepatic venous sphincter contraction on transmission of central venous pressure to lobar and portal pressure.

    PubMed

    Lautt, W W; Legare, D J; Greenway, C V

    1987-11-01

    In dogs anesthetized with pentobarbital, central vena caval pressure (CVP), portal venous pressure (PVP), and intrahepatic lobar venous pressure (proximal to the hepatic venous sphincters) were measured. The objective was to determine some characteristics of the intrahepatic vascular resistance sites (proximal and distal to the hepatic venous sphincters) including testing predictions made using a recent mathematical model of distensible hepatic venous resistance. The stimulus used was a brief rise in CVP produced by transient occlusion of the thoracic vena cava in control state and when vascular resistance was elevated by infusions of norepinephrine or histamine, or by nerve stimulation. The percent transmission of the downstream pressure rise to upstream sites past areas of vascular resistance was elevated. Even small increments in CVP are partially transmitted upstream. The data are incompatible with the vascular waterfall phenomenon which predicts that venous pressure increments are not transmitted upstream until a critical pressure is overcome and then further increments would be 100% transmitted. The hepatic sphincters show the following characteristics. First, small rises in CVP are transmitted less than large elevations; as the CVP rises, the sphincters passively distend and allow a greater percent transmission upstream, thus a large rise in CVP is more fully transmitted than a small rise in CVP. Second, the amount of pressure transmission upstream is determined by the vascular resistance across which the pressure is transmitted. As nerves, norepinephrine, or histamine cause the hepatic sphincters to contract, the percent transmission becomes less and the distensibility of the sphincters is reduced. Similar characteristics are shown for the "presinusoidal" vascular resistance and the hepatic venous sphincter resistance.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Early history of high-altitude physiology.

    PubMed

    West, John B

    2016-02-01

    High-altitude physiology can be said to have begun in 1644 when Torricelli described the first mercury barometer and wrote the immortal words "We live submerged at the bottom of an ocean of the element air." Interestingly, the notion of atmospheric pressure had eluded his teacher, the great Galileo. Blaise Pascal was responsible for describing the fall in pressure with increasing altitude, and Otto von Guericke gave a dramatic demonstration of the enormous force that could be developed by atmospheric pressure. Robert Boyle learned of Guericke's experiment and, with Robert Hooke, constructed the first air pump that allowed small animals to be exposed to a low pressure. Hooke also constructed a small low-pressure chamber and exposed himself to a simulated altitude of about 2400 meters. With the advent of ballooning, humans were rapidly exposed to very low pressures, sometimes with tragic results. For example, the French balloon, Zénith, rose to over 8000 m, and two of the three aeronauts succumbed to the hypoxia. Paul Bert was the first person to clearly state that the deleterious effects of high altitude were caused by the low partial pressure of oxygen (PO2), and later research was accelerated by high-altitude stations and expeditions to high altitude. © 2015 New York Academy of Sciences.

  8. [A variant of island flaps for the covering of pressure sores: the hatchet flap. Apropos of 31 cases].

    PubMed

    Quillot, M; Lodde, J P; Pegorier, O; Reynaud, J P; Cormerais, A

    1994-08-01

    The authors propose a modification of the classical design of island flaps for cover of pressure sores, applied to gluteus maximus and tensor fascia lata muscles: the hatchet flap. 31 flaps have been used including 13 gluteus maximus superior flaps for sacral pressure sores, 9 gluteal inferior flaps for ischial pressure sores and 9 tensor fascia lata flaps for trochanteric pressure sores. A small partial necrosis and two cases of sepsis were observed in this series, but did not require surgical revision. The authors emphasize the value of this modification of the classical flap design, which preserves an even better musculocutaneous capital in these patients, who are often already multi-operated. The very rapid recovery of patients supports the authors' application of hatchet flaps to the surgery of pressure sores, and suggests the extension to other musculocutaneous flaps in the future.

  9. Calculations of separated 3-D flows with a pressure-staggered Navier-Stokes equations solver

    NASA Technical Reports Server (NTRS)

    Kim, S.-W.

    1991-01-01

    A Navier-Stokes equations solver based on a pressure correction method with a pressure-staggered mesh and calculations of separated three-dimensional flows are presented. It is shown that the velocity pressure decoupling, which occurs when various pressure correction algorithms are used for pressure-staggered meshes, is caused by the ill-conditioned discrete pressure correction equation. The use of a partial differential equation for the incremental pressure eliminates the velocity pressure decoupling mechanism by itself and yields accurate numerical results. Example flows considered are a three-dimensional lid driven cavity flow and a laminar flow through a 90 degree bend square duct. For the lid driven cavity flow, the present numerical results compare more favorably with the measured data than those obtained using a formally third order accurate quadratic upwind interpolation scheme. For the curved duct flow, the present numerical method yields a grid independent solution with a very small number of grid points. The calculated velocity profiles are in good agreement with the measured data.

  10. Partial Pressures of Te2 and Thermodynamic Properties of Ga-Te System

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Curreri, Peter A. (Technical Monitor)

    2001-01-01

    The partial pressures of Te2 in equilibrium with Ga(1-x)Te(x) samples were measured by optical absorption technique from 450 to 1100 C for compositions, x, between 0.333 and 0.612. To establish the relationship between the partial pressure of Te, and the measured optical absorbance, the calibration runs of a pure Te sample were also conducted to determine the Beer's Law constants. The partial pressures of Te2 in equilibrium with the GaTe(s) and Ga2Te3(s)compounds, or the so-called three-phase curves, were established. These partial pressure data imply the existence of the Ga3Te4(s) compound. From the partial pressures of Te2 over the Ga-Te melts, partial molar enthalpy and entropy of mixing for Te were derived and they agree reasonable well with the published data. The activities of Te in the Ga-Te melts were also derived from the measured partial pressures of Te2. These data agree well with most of the previous results. The possible reason for the high activity of Te measured for x less than 0.60 is discussed.

  11. Mass Spectrometric Identification of Si-O-H(g) Species from the Reaction of Silica with Water Vapor at Atmospheric Pressure

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Fox, Dennis S.; Jacobson, Nathan S.

    1997-01-01

    A high-pressure sampling mass spectrometer was used to detect the volatile species formed from SiO2 at temperatures between 1200C and 1400C in a flowing water vapor/oxygen gas mixture at 1 bar total pressure. The primary vapor species identified was Si(OH)4. The fragment ion Si(OH)3+,' was observed in quantities 3 to 5 times larger than the parent ion Si(OH)4+. The Si(OH)3+ intensity was found to have a small temperature dependence and to increase with the water vapor partial pressure as expected. In addition, SiO(OH)+ believed to be a fragment of SiO(OH)2, was observed. These mass spectral results were compared to the behavior of silicon halides.

  12. Oxygen Partial Pressure and Oxygen Concentration Flammability: Can They Be Correlated?

    NASA Technical Reports Server (NTRS)

    Harper, Susana A.; Juarez, Alfredo; Perez, Horacio, III; Hirsch, David B.; Beeson, Harold D.

    2016-01-01

    NASA possesses a large quantity of flammability data performed in ISS airlock (30% Oxygen 526mmHg) and ISS cabin (24.1% Oxygen 760 mmHg) conditions. As new programs develop, other oxygen and pressure conditions emerge. In an effort to apply existing data, the question arises: Do equivalent oxygen partial pressures perform similarly with respect to flammability? This paper evaluates how material flammability performance is impacted from both the Maximum Oxygen Concentration (MOC) and Maximum Total Pressures (MTP) perspectives. From these studies, oxygen partial pressures can be compared for both the MOC and MTP methods to determine the role of partial pressure in material flammability. This evaluation also assesses the influence of other variables on flammability performance. The findings presented in this paper suggest flammability is more dependent on oxygen concentration than equivalent partial pressure.

  13. Environmental Constraints in Earth-Space Propagaton.

    DTIC Science & Technology

    1980-11-20

    medium. The earth-space refractivity may be written N(s) - (n-l) x 106 - Nt + NJ 77.6 [p(s) + 81O e (s) 1 - 4o.28 x o-6 Ne(s) () T(s) [" T(s) f- 2 where...T(s) is the aIr temperature (OK), p(s) is the atmospheric pressure (mb), e (s) is the partial vapor pressure (mb , f is the radiofrequency (MHz), Ne is...to Predict the Total Atmospheric Bending of Radiowaves at Small Angles", Proc. IRE 45, 145-6. BEAN B. R. and R. E . MCGAVIN, 1965, "A Review of

  14. Pressure (Or No Royal Road)

    ERIC Educational Resources Information Center

    Bradley, J.

    1973-01-01

    Discusses how difficult the various problems of pressure, partial pressure, gas laws, and vapor pressure are for students. Outlines the evolution of the concept of pressure, the gas equation for a perfect gas, partial pressures, saturated vapor pressure, Avogadro's hypothesis, Raoult's law, and the vapor pressure of ideal solutions. (JR)

  15. Zero added oxygen for high quality sputtered ITO: A data science investigation of reduced Sn-content and added Zr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peshek, Timothy J.; Burst, James M.; Coutts, Timothy J.

    The authors demonstrate mobilities of >45 cm{sup 2}/V s for sputtered tin-doped indium oxide (ITO) films at zero added oxygen. All films were deposited with 5 wt. % SnO{sub 2}, instead of the more conventional 8–10 wt. %, and had varying ZrO{sub 2} content from 0 to 3 wt. %, with a subsequent reduction in In{sub 2}O{sub 3} content. These films were deposited by radio-frequency magnetron sputtering from nominally stoichiometric targets with varying oxygen partial pressure in the sputter ambient. Anomalous behavior was discovered for films with no Zr-added, where a bimodality of high and low mobilities was discovered for nominally similar growth conditions.more » However, all films showed the lowest resistivity and highest mobilities when the oxygen partial pressure in the sputter ambient was zero. This result is contrasted with several other reports of ITO transport performance having a maximum for small but nonzero oxygen partial pressure. This result is attributed to the reduced concentration of SnO{sub 2}. The addition of ZrO{sub 2} yielded the highest mobilities at >55 cm{sup 2}/V s and the films showed a modest increase in optical transmission with increasing Zr-content.« less

  16. Oxygen-depleted zones inside reproductive structures of Brassicaceae: implications for oxygen control of seed development

    NASA Technical Reports Server (NTRS)

    Porterfield, D. M.; Kuang, A.; Smith, P. J.; Crispi, M. L.; Musgrave, M. E.

    1999-01-01

    Growth of Arabidopsis thaliana (L.) Heynh. in decreasing oxygen partial pressures revealed a linear decrease in seed production below 15 kPa, with a complete absence of seed production at 2.5 kPa oxygen. This control of plant reproduction by oxygen had previously been attributed to an oxygen effect on the partitioning between vegetative and reproductive growth. However, plants grown in a series of decreasing oxygen concentrations produced progressively smaller embryos that had stopped developing at progressively younger stages, suggesting instead that their growth is limited by oxygen. Internal oxygen concentrations of buds, pistils, and developing siliques of Brassica rapa L. and siliques of Arabidopsis were measured using a small-diameter glass electrode that was moved into the structures using a micromanipulator. Oxygen partial pressures were found to be lowest in the developing perianth (11.1 kPa) and pistils (15.2 kPa) of the unopened buds. Pollination reduced oxygen concentration inside the pistils by 3 kPa after just 24 h. Inside Brassica silique locules, partial pressures of oxygen averaged 12.2 kPa in darkness, and increased linearly with increasing light levels to 16.2 kPa. Measurements inside Arabidopsis siliques averaged 6.1 kPa in the dark and rose to 12.2 kPa with light. Hypoxia in these microenvironments is postulated to be the point of control of plant reproduction by oxygen.

  17. Heating of the solar chromosphere by ionization pumping

    NASA Technical Reports Server (NTRS)

    Lindsey, C. A.

    1981-01-01

    A new theory is proposed to explain the heating of the solar chromosphere, and possibly the corona, by the dissipation of hydrodynamic compression waves. The basis of the dissipative mechanism, here referred to as ionization pumping, is hysteresis caused by irreversible relaxation of the chromospheric medium to ionization equilibrium following pressure perturbations. In the middle chromosphere, where hydrogen is partially ionized, it is shown that ionization pumping will cause strong dissipation of waves whose periods are 200s or less. This could cause heating of the chromosphere sufficient to compensate for the radiative losses. The mechanism retains a high efficiency for waves of arbitrarily small amplitude and, thus, can be more efficient than shock dissipation for small perturbations in pressure. The formation of shocks therefore is not required for the dissipation of waves whose periods are several minutes or less.

  18. Conversion of para and ortho hydrogen in the Jovian planets

    NASA Technical Reports Server (NTRS)

    Massie, S. T.; Hunten, D. M.

    1982-01-01

    A mechanism is proposed which partially equilibrates the para and ortho rotational levels of molecular hydrogen in the atmospheres of Jupiter, Saturn, and Uranus. Catalytic reactions between the free-radical surface sites of aerosol particles and hydrogen modecules yield significant equilibration near 1 bar pressure, if the efficiency of conversion per collision is between 10 to the -8th and 10 to the -10th and the effective eddy mixing coefficient is 10,000 sq cm/sec. At lower pressures the ortho-para ratio retains the value at the top of the cloud layer, except for a very small effect from conversion in the thermosphere. The influence of conversion on the specific heat and adiabatic lapse rate is also investigated. The effect is found to be generally small, though is can rise to 10% inside the aerosol layer.

  19. Fluid-dynamically coupled solid propellant combustion instability - cold flow simulation

    NASA Astrophysics Data System (ADS)

    Ben-Reuven, M.

    1983-10-01

    The near-wall processes in an injected, axisymmetric, viscous flow is examined. Solid propellant rocket instability, in which cold flow simulation is evaluated as a tool to elucidate possible instability driving mechanisms is studied. One such prominent mechanism seems to be visco-acoustic coupling. The formulation is presented in terms of a singular boundary layer problem, with detail (up to second order) given only to the near wall region. The injection Reynolds number is assumed large, and its inverse square root serves as an appropriate small perturbation quantity. The injected Mach number is also small, and taken of the same order as the aforesaid small quantity. The radial-dependence of the inner solutions up to second order is solved, in polynominal form. This leaves the (x,t) dependence to much simpler partial differential equations. Particular results demonstrate the existence of a first order pressure perturbation, which arises due to the dissipative near wall processes. This pressure and the associated viscous friction coefficient are shown to agree very well with experimental injected flow data.

  20. Interpretation of trace element and isotope features of basalts: relevance of field relations, petrology, major element data, phase equilibria, and magma chamber modeling in basalt petrogenesis

    NASA Astrophysics Data System (ADS)

    O'Hara, M. J.; Herzberg, C.

    2002-06-01

    The concentrations and ratios of the major elements determine the physical properties and the phase equilibria behavior of peridotites and basalts in response to the changing energy contents of the systems. The behavior of the trace elements and isotopic features are influenced in their turn by the phase equilibria, by the physical character of the partial melting and partial crystallization processes, and by the way in which a magma interacts with its wall rocks. Concentrating on the trace element and isotope contents of basalts to the exclusion of the field relations, petrology, major element data, and phase equilibria is as improvident as slaughtering the buffalo for the sake of its tongue. The crust is a cool boundary layer and a density filter, which impedes the upward transfer of hot, dense "primary" picritic and komatiitic liquids. Planetary crusts are sites of large-scale contamination and extensive partial crystallization of primitive melts striving to escape to the surface. Escape of truly unmodified primitive melts to the surface is a rare event, requiring the resolution of daunting problems in chemical and mechanical engineering. Primary status for volumetrically abundant basalts such as mid-ocean ridge basalt, ocean island basalt, and continental flood basalts is denied by their low-pressure cotectic character, first remarked upon on petrological grounds in 1928 and on experimental grounds in 1962. These basalt liquids are products of crystal-liquid separation at low pressure. Primary status for these common basalts is further denied by the phase equilibria of such compositions at elevated pressures, when the required residual mantle mineralogy (magnesian olivine and orthopyroxene) is not stable at the liquidus. It is also denied by the picritic or komatiitic nature of partial melts of candidate upper-mantle compositions at high pressures - a conclusion supported by calculation of the melt composition, which would need to be extracted in order to explain the chemical variation between fertile and residual peridotite in natural ultramafic rock suites. The subtleties of magma chamber partial crystallization processes can produce an astounding array of "pseudospidergrams," a small selection of which have been explored here. Major modification of the trace element geochemistry and trace element ratios, even those of the highly incompatible elements, must always be entertained whenever the evidence suggests the possibility of partial crystallization. At one extreme, periodically recharged, periodically tapped magma chambers might undergo partial crystallization by ˜95% consolidation of a succession of small packets of the magma. Refluxing of the 5% residual melts from such a process into the main body of melt would lead to eventual discrimination between highly incompatible elements in that residual liquid comparable with that otherwise achieved by 0.1 to 0.3% liquid extraction in equilibrium partial melting. Great caution needs to be exercised in attempting the reconstruction of more primitive compositions by addition of troctolite, gabbro, and olivine to apparently primitive lava compositions. Special attention is focussed on the phase equilibria involving olivine, plagioclase (i.e., troctolite), and liquid because a high proportion of erupted basalts carry these two phases as phenocrysts, yet the equilibria are restricted to crustal pressures and are only encountered by wide ranges of basaltic compositions at pressures less than 0.5 GPa. The mere presence of plagioclase phenocrysts may be sufficient to disqualify candidate primitive magmas. Determination of the actual contributions of crustal processes to petrogenesis requires a return to detailed field, experimental, and forensic petrologic studies of individual erupted basalt flows; of a multitude of cumulate gabbros and their contacts; and of upper-mantle outcrops.

  1. Homogeneous nucleation of ethanol and n-propanol in a shock tube

    NASA Technical Reports Server (NTRS)

    Peters, F.

    1982-01-01

    The condensation by homogeneous nucleation of ethanol (200 proof) and of n-propanol (99.98%) carried at small mole fraction in dry air (99.995%) was studied in the unsteady, isentropic expansion of a shock tube. Samples of the vapor at different partial pressures in dry air at room temperature were expanded into the liquid coexistence regime of the condensing species. A Kristler pressure transducer and Rayleigh light scattering were used to measure the pressure in the expansion and the onset of condensation. Condensation was observed at different locations between 0.15 and 1 m upstream of the diaphragm location, which correspond to different cooling rates of of the vapor samples about 50 to 10 C/ms.

  2. Influence of N2 partial pressure on structural and microhardness properties of TiN/ZrN multilayers deposited by Ar/N2 vacuum arc discharge

    NASA Astrophysics Data System (ADS)

    Naddaf, M.; Abdallah, B.; Ahmad, M.; A-Kharroub, M.

    2016-08-01

    The influence of N2 partial pressure on structural, mechanical and wetting properties of multilayered TiN/ZrN thin films deposited on silicon substrates by vacuum arc discharge of (N2 + Ar) gas mixtures is investigated. X-ray diffraction (XRD) results show that the average texturing coefficient of (1 1 1) orientation and the grain size of both TiN and ZrN individual layers increase with increasing the N2 partial pressure. The Rutherford back scattering (RBS) measurements and analysis reveal that incorporation of the nitrogen in the film increases with increasing the N2 partial pressure and both TiN and ZrN individual layers have a nitrogen over-stoichiometry for N2 partial pressure ⩾50%. The change in the film micro-hardness is correlated to the changes in crystallographic texture, grain size, stoichiometry and the residual stress in the film as a function of the N2 partial pressure. In particular, stoichiometry of ZrN and TiN individual is found to play the vital role in determining the multilayer hardness. The multilayer film deposited at N2 partial pressure of 25% has the best stoichiometric ratio of both TiN and ZrN layers and the highest micro-hardness of about 32 GPa. In addition, water contact angle (WCA) measurements and analysis show a decrease in the work of adhesion on increasing the N2 partial pressure.

  3. A physicochemical environmental control/life support system for the Mars transit vehicle

    NASA Technical Reports Server (NTRS)

    Sedej, Melaine M.

    1986-01-01

    The environmental control/life support system (ECLSS) must be small and maintenance free as possible to allow maximum mission flexibility. A physiocochemical ECLSS concept similar in many ways to several of the partially closed ECLSS concepts proposed for the space station is discussed. However, this concept elmininates several of the space station ECLSS subsystems and potentially eliminates the use of cryogenics and high-pressure gaseous storage.

  4. Insight into the Near-Conduction Band States at the Crystallized Interface between GaN and SiN x Grown by Low-Pressure Chemical Vapor Deposition.

    PubMed

    Liu, Xinyu; Wang, Xinhua; Zhang, Yange; Wei, Ke; Zheng, Yingkui; Kang, Xuanwu; Jiang, Haojie; Li, Junfeng; Wang, Wenwu; Wu, Xuebang; Wang, Xianping; Huang, Sen

    2018-06-12

    Constant-capacitance deep-level transient Fourier spectroscopy is utilized to characterize the interface between a GaN epitaxial layer and a SiN x passivation layer grown by low-pressure chemical vapor deposition (LPCVD). A near-conduction band (NCB) state E LP ( E C - E T = 60 meV) featuring a very small capture cross section of 1.5 × 10 -20 cm -2 was detected at 70 K at the LPCVD-SiN x /GaN interface. A partially crystallized Si 2 N 2 O thin layer was detected at the interface by high-resolution transmission electron microscopy. Based on first-principles calculations of crystallized Si 2 N 2 O/GaN slabs, it was confirmed that the NCB state E LP mainly originates from the strong interactions between the dangling bonds of gallium and its vicinal atoms near the interface. The partially crystallized Si 2 N 2 O interfacial layer might also give rise to the very small capture cross section of the E LP owing to the smaller lattice mismatch between the Si 2 N 2 O and GaN epitaxial layer and a larger mean free path of the electron in the crystallized portion compared with an amorphous interfacial layer.

  5. Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue.

    PubMed

    Sakadzić, Sava; Roussakis, Emmanuel; Yaseen, Mohammad A; Mandeville, Emiri T; Srinivasan, Vivek J; Arai, Ken; Ruvinskaya, Svetlana; Devor, Anna; Lo, Eng H; Vinogradov, Sergei A; Boas, David A

    2010-09-01

    Measurements of oxygen partial pressure (pO(2)) with high temporal and spatial resolution in three dimensions is crucial for understanding oxygen delivery and consumption in normal and diseased brain. Among existing pO(2) measurement methods, phosphorescence quenching is optimally suited for the task. However, previous attempts to couple phosphorescence with two-photon laser scanning microscopy have faced substantial difficulties because of extremely low two-photon absorption cross-sections of conventional phosphorescent probes. Here we report to our knowledge the first practical in vivo two-photon high-resolution pO(2) measurements in small rodents' cortical microvasculature and tissue, made possible by combining an optimized imaging system with a two-photon-enhanced phosphorescent nanoprobe. The method features a measurement depth of up to 250 microm, sub-second temporal resolution and requires low probe concentration. The properties of the probe allowed for direct high-resolution measurement of cortical extravascular (tissue) pO(2), opening many possibilities for functional metabolic brain studies.

  6. Effects of Chamber Pressure and Partial Pressure of Water Vapor on Secondary Drying in Lyophilization.

    PubMed

    Searles, James A; Aravapalli, Sridhar; Hodge, Cody

    2017-10-01

    Secondary drying is the final step of lyophilization before stoppering, during which water is desorbed from the product to yield the final moisture content. We studied how chamber pressure and partial pressure of water vapor during this step affected the time course of water content of aqueous solutions of polyvinylpyrrolidone (PVP) in glass vials. The total chamber pressure had no effect when the partial pressure of water vapor was very low. However, when the vapor phase contained a substantial fraction of water vapor, the PVP moisture content was much higher. We carried out dynamic vapor sorption experiments (DVS) to demonstrate that the higher PVP moisture content was a straightforward result of the higher water vapor content in the lyophilizer. The results highlight that the partial pressure of water vapor is extremely important during secondary drying in lyophilization, and that lower chamber pressure set points for secondary drying may sometimes be justified as a strategy for ensuring low partial pressure of water vapor, especially for lyophilizers that do not inject dry gas to control pressure. These findings have direct application for process transfers/scale ups from freeze-dryers that do not inject dry gas for pressure control to those that do, and vice versa.

  7. Applying Chemical Potential and Partial Pressure Concepts to Understand the Spontaneous Mixing of Helium and Air in a Helium-Inflated Balloon

    ERIC Educational Resources Information Center

    Jee-Yon Lee; Hee-Soo Yoo; Jong Sook Park; Kwang-Jin Hwang; Jin Seog Kim

    2005-01-01

    The spontaneous mixing of helium and air in a helium-inflated balloon is described in an experiment in which the partial pressure of the gases in the balloon are determined from the mole factions and the total pressure measured in the balloon. The results described provide a model for teaching concepts of partial pressure, chemical potential, and…

  8. Combined hydraulic and regenerative braking system

    DOEpatents

    Venkataperumal, R.R.; Mericle, G.E.

    1979-08-09

    A combined hydraulic and regenerative braking system and method for an electric vehicle is disclosed. The braking system is responsive to the applied hydraulic pressure in a brake line to control the braking of the vehicle to be completely hydraulic up to a first level of brake line pressure, to be partially hydraulic at a constant braking force and partially regenerative at a linearly increasing braking force from the first level of applied brake line pressure to a higher second level of brake line pressure, to be partially hydraulic at a linearly increasing braking force and partially regenerative at a linearly decreasing braking force from the second level of applied line pressure to a third and higher level of applied line pressure, and to be completely hydraulic at a linearly increasing braking force from the third level to all higher applied levels of line pressure.

  9. Combined hydraulic and regenerative braking system

    DOEpatents

    Venkataperumal, Rama R.; Mericle, Gerald E.

    1981-06-02

    A combined hydraulic and regenerative braking system and method for an electric vehicle, with the braking system being responsive to the applied hydraulic pressure in a brake line to control the braking of the vehicle to be completely hydraulic up to a first level of brake line pressure, to be partially hydraulic at a constant braking force and partially regenerative at a linearly increasing braking force from the first level of applied brake line pressure to a higher second level of brake line pressure, to be partially hydraulic at a linearly increasing braking force and partially regenerative at a linearly decreasing braking force from the second level of applied line pressure to a third and higher level of applied line pressure, and to be completely hydraulic at a linearly increasing braking force from the third level to all higher applied levels of line pressure.

  10. Standard partial molar volumes of some aqueous alkanolamines and alkoxyamines at temperatures up to 325 degrees C: functional group additivity in polar organic solutes under hydrothermal conditions.

    PubMed

    Bulemela, E; Tremaine, Peter R

    2008-05-08

    Apparent molar volumes of dilute aqueous solutions of monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), N,N-dimethylethanolamine (DMEA), ethylethanolamine (EAE), 2-diethylethanolamine (2-DEEA), and 3-methoxypropylamine (3-MPA) and their salts were measured at temperatures from 150 to 325 degrees C and pressures as high as 15 MPa. The results were corrected for the ionization and used to obtain the standard partial molar volumes, Vo2. A three-parameter equation of state was used to describe the temperature and pressure dependence of the standard partial molar volumes. The fitting parameters were successfully divided into functional group contributions at all temperatures to obtain the standard partial molar volume contributions. Including literature results for alcohols, carboxylic acids, and hydroxycarboxylic acids yielded the standard partial molar volume contributions of the functional groups >CH-, >CH2, -CH3, -OH, -COOH, -O-, -->N, >NH, -NH2, -COO-Na+, -NH3+Cl-, >NH2+Cl-, and -->NH+Cl- over the range (150 degrees C

  11. The Influence of Lithology on the Formation of Reaction Infiltration Instabilities in Mantle Rocks

    NASA Astrophysics Data System (ADS)

    Pec, M.; Holtzman, B. K.; Zimmerman, M. E.; Kohlstedt, D. L.

    2017-12-01

    The formation of oceanic plates requires extraction of large volumes of melt from the mantle. Several lines of evidence suggest that melt extraction is rapid and, therefore, necessitates high-permeability pathways. Such pathways may form as a result of melt-rock reactions. We report the results of a series of Darcy-type experiments designed to study the development of channels due to melt-solid reactions in mantle lithologies. We sandwiched a partially molten rock between a melt source and a porous sink and annealed it at high pressure (P = 300 MPa) and high temperatures (T = 1200° or 1250°C) with a controlled pressure gradient (∂P/∂z = 0-100 MPa/mm). To study the influence of lithology on the channel formation, we synthesized partially molten rocks of harzburgitic (40:40:20 Ol - Opx - basalt), wehrlitic (40:40:20 Ol - Cpx - basalt) and lherzolitic (65:25:10 Ol - Opx - Cpx) composition. The melt source was a disk of alkali basalt. In all experiments, irrespective of the exact mineralogy, melt - undersaturated in silica - from the source dissolved pyroxene in the partially molten rock and precipitated olivine ( Fo82), thereby forming a dunite reaction layer at the interface between the source and the partially molten rock. In samples annealed under a small pressure gradient, the reaction layer was roughly planar. However, if the velocity of melt due to porous flow exceeded 0.1 µm/s, the reaction layer locally protruded into the partially molten rock forming finger-like, melt-rich channels in rocks of wehrlitic and harzburgitic composition. The lherzolitic rocks were generally impermeable to the melt except at highest-pressure gradients where a narrow fracture developed, forming a dyke which drained the melt reservoir. Three-dimensional reconstructions using micro-CT images revealed clear differences between the dyke (a narrow, through-going planar feature) and the channels formed by reactive infiltration (multiple sinuous finger-like features). Apparently, the fraction of soluble minerals together with the melt fraction in the partially molten rock control whether dykes or reactive channels develop. Our experiments demonstrate that melt-rock reactions can lead to channelization in mantle lithologies, and the observed lithological transformations broadly agree with those observed in nature

  12. Formation mechanisms of Si3N4 and Si2N2O in silicon powder nitridation

    NASA Astrophysics Data System (ADS)

    Yao, Guisheng; Li, Yong; Jiang, Peng; Jin, Xiuming; Long, Menglong; Qin, Haixia; Kumar, R. Vasant

    2017-04-01

    Commercial silicon powders are nitrided at constant temperatures (1453 K; 1513 K; 1633 K; 1693 K). The X-ray diffraction results show that small amounts of Si3N4 and Si2N2O are formed as the nitridation products in the samples. Fibroid and short columnar Si3N4 are detected in the samples. The formation mechanisms of Si3N4 and Si2N2O are analyzed. During the initial stage of silicon powder nitridation, Si on the outside of sample captures slight amount of O2 in N2 atmosphere, forming a thin film of SiO2 on the surface which seals the residual silicon inside. And the oxygen partial pressure between the SiO2 film and free silicon is decreasing gradually, so passive oxidation transforms to active oxidation and metastable SiO(g) is produced. When the SiO(g) partial pressure is high enough, the SiO2 film will crack, and N2 is infiltrated into the central section of the sample through cracks, generating Si2N2O and short columnar Si3N4 in situ. At the same time, metastable SiO(g) reacts with N2 and form fibroid Si3N4. In the regions where the oxygen partial pressure is high, Si3N4 is oxidized into Si2N2O.

  13. Simplified combustion noise theory yielding a prediction of fluctuating pressure level

    NASA Technical Reports Server (NTRS)

    Huff, R. G.

    1984-01-01

    The first order equations for the conservation of mass and momentum in differential form are combined for an ideal gas to yield a single second order partial differential equation in one dimension and time. Small perturbation analysis is applied. A Fourier transformation is performed that results in a second order, constant coefficient, nonhomogeneous equation. The driving function is taken to be the source of combustion noise. A simplified model describing the energy addition via the combustion process gives the required source information for substitution in the driving function. This enables the particular integral solution of the nonhomogeneous equation to be found. This solution multiplied by the acoustic pressure efficiency predicts the acoustic pressure spectrum measured in turbine engine combustors. The prediction was compared with the overall sound pressure levels measured in a CF6-50 turbofan engine combustor and found to be in excellent agreement.

  14. Structural, mechanical, electrical and wetting properties of ZrNx films deposited by Ar/N2 vacuum arc discharge: Effect of nitrogen partial pressure

    NASA Astrophysics Data System (ADS)

    Abdallah, B.; Naddaf, M.; A-Kharroub, M.

    2013-03-01

    Non-stiochiometric zirconium nitride (ZrNx) thin films have been deposited on silicon substrates by vacuum arc discharge of (N2 + Ar) gas mixtures at different N2 partial pressure ratio. The microstructure, mechanical, electrical and wetting properties of these films are studied by means of X-ray diffraction (XRD), micro-Raman spectroscopy, Rutherford back scattering (RBS) technique, conventional micro-hardness testing, electrical resistivity, atomic force microscopy (AFM) and contact angle (CA) measurements. RBS results and analysis show that the (N/Zr) ratio in the film increases with increasing the N2 partial pressure. A ZrNx film with (Zr/N) ratio in the vicinity of stoichiometric ZrN is obtained at N2 partial pressure of 10%. XRD and Raman results indicate that all deposited films have strained cubic crystal phase of ZrN, regardless of the N2 partial pressure. On increasing the N2 partial pressure, the relative intensity of (1 1 1) orientation with respect to (2 0 0) orientation is seen to decrease. The effect of N2 partial pressure on micro-hardness and the resistivity of the deposited film is revealed and correlated to the alteration of grain size, crystallographic texture, stoichiometry and residual stress developed in the film. In particular, it is found that residual stress and nitrogen incorporation in the film play crucial role in the alteration of micro-hardness and resistivity respectively. In addition, CA and AFM results demonstrate that as N2 partial pressure increases, both the surface hydrophobicity and roughness of the deposited film increase, leading to a significant decrease in the film surface free energy (SFE).

  15. Effect of methane partial pressure on the performance of a membrane biofilm reactor coupling methane-dependent denitrification and anammox.

    PubMed

    Cai, Chen; Hu, Shihu; Chen, Xueming; Ni, Bing-Jie; Pu, Jiaoyang; Yuan, Zhiguo

    2018-10-15

    Complete nitrogen removal has recently been demonstrated by integrating anaerobic ammonium oxidation (anammox) and denitrifying anaerobic methane oxidation (DAMO) processes. In this work, the effect of methane partial pressure on the performance of a membrane biofilm reactor (MBfR) consisting of DAMO and anammox microorganisms was evaluated. The activities of DAMO archaea and DAMO bacteria in the biofilm increased significantly with increased methane partial pressure, from 367 ± 9 and 58 ± 22 mg-N L -1 d -1 to 580 ± 12 and 222 ± 22 mg-N L -1 d -1 , respectively, while the activity of anammox bacteria only increased slightly, when the methane partial pressure was elevated from 0.24 to 1.39 atm in the short-term batch tests. The results were supported by a long-term (seven weeks) continuous test, when the methane partial pressure was dropped from 1.39 to 0.78 atm. The methane utilization efficiency was always above 96% during both short-term and long-term tests. Taken together, nitrogen removal rate (especially the nitrate reduction rate by DAMO archaea) and methane utilization efficiency could be maintained at high levels in a broad range of methane partial pressure (0.24-1.39 atm in this study). In addition, a previously established DAMO/anammox biofilm model was used to analyze the experimental data. The observed impacts of methane partial pressure on biofilm activity were well explained by the modeling results. These results suggest that methane partial pressure can potentially be used as a manipulated variable to control reaction rates, ultimately to maintain high nitrogen removal efficiency, according to nitrogen loading rate. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. An alternative continence tube for continent urinary reservoirs: evaluation of surgical technique, pressure and continence study in an ex-vivo model.

    PubMed

    Honeck, Patrick; Michel, Maurice Stephan; Trojan, Lutz; Alken, Peter

    2009-02-01

    Despite the large number of surgical techniques for continent cutaneous diversion described in literature, the creation of a reliable, continent and easily catheterizable continence mechanism remains a complex surgical procedure. Aim of this study was the evaluation of a new method for a catheterizable continence mechanism using stapled pig intestine. Small and large pig intestines were used for construction. A 3 or 6 cm double row stapling system was used. Three variations using small and large intestine segments were constructed. A 3 or 6 cm long stapler line was placed alongside a 12 Fr catheter positioned at the antimesenterial side creating a partially two-luminal segment. Construction time for the tube was measured. The created tube was then embedded into the pouch. Pressure evaluation of the continence mechanism was performed for each variation. Intermittent external manual compression was used to simulate sudden pressure exposure. All variations were 100% continent under filling volumes of up to 700 ml and pressure levels of 58 +/- 6 cm H(2)O for large intestine and 266 ml and 87 +/- 18 cm H(2)O for small intestine, respectively. With further filling above the mentioned capacity suture insufficiency occurred but no tube insufficiency. Construction time for all variations was less than 12 min. The described technique is an easy and fast method to construct a continence mechanism using small or large intestine. Our ex vivo experiments have shown sufficient continence situation in an ex-vivo model. Further investigations in an in-vivo model are needed to confirm these results.

  17. Vapor-liquid-solid epitaxial growth of Si 1-xGe x alloy nanowires. Composition dependence on precursor reactivity and morphology control for vertical forests

    DOE PAGES

    Choi, S. G.; Manandhar, P.; Picraux, S. T.

    2015-07-07

    The growth of high-density group IV alloy nanowire forests is critical for exploiting their unique functionalities in many applications. Here, the compositional dependence on precursor reactivity and optimized conditions for vertical growth are studied for Si 1- x Ge x alloy nanowires grown by the vapor-liquid-solid method. The nanowire composition versus gas partial-pressure ratio for germane-silane and germane-disilane precursor combinations is obtained at 350°C over a wide composition range (0.05 ≤ x ≤ 0.98) and a generalized model to predict composition for alloy nanowires is developed based on the relative precursor partial pressures and reactivity ratio. In combination with germane,more » silane provides more precise compositional control at high Ge concentrations (x > 0.7), whereas disilane greatly increases the Si concentration for a given gas ratio and enables more precise alloy compositional control at small Ge concentrations (x < 0.3). Vertically oriented, non-kinking nanowire forest growth on Si (111) substrates is then discussed for silane/germane over a wide range of compositions, with temperature and precursor partial pressure optimized by monitoring the nanowire growth front using in-situ optical reflectance. For high Ge compositions (x ≈ 0.9), a “two-step” growth approach with nucleation at higher temperatures results in nanowires with high-density and uniform vertical orientation. Furthermore, increasing Si content (x ≈ 0.8), the optimal growth window is shifted to higher temperatures, which minimizes nanowire kinking morphologies. For Si-rich Si 1- x Ge x alloys (x ≈ 0.25), vertical nanowire growth is enhanced by single-step, higher-temperature growth at reduced pressures.« less

  18. Hydro-isomerization of n-hexane on bi-functional catalyst: Effect of total and hydrogen partial pressures

    NASA Astrophysics Data System (ADS)

    Thoa, Dao Thi Kim; Loc, Luu Cam

    2017-09-01

    The effect of both total pressure and hydrogen partial pressure during n-hexane hydro-isomerization over platinum impregnated on HZSM-5 was studied. n-Hexane hydro-isomerization was conducted at atmospheric pressure and 0.7 MPa to observe the influence of total pressure. In order to see the effect of hydrogen partial pressure, the reaction was taken place at different partial pressure of hydrogen varied from 307 hPa to 718 hPa by dilution with nitrogen to keep the total pressure at 0.1 MPa. Physico-chemical characteristics of catalyst were determined by the methods of nitrogen physi-sorption BET, SEM, XRD, TEM, NH3-TPD, TPR, and Hydrogen Pulse Chemi-sorption. Activity of catalyst in the hydro-isomerization of n-hexane was studied in a micro-flow reactor in the temperature range of 225-325 °C; the molar ratio H2/ hydrocarbon: 5.92, concentration of n-hexane: 9.2 mol.%, GHSV 2698 h-1. The obtained catalyst expressed high acid density, good reducing property, high metal dispersion, and good balance between metallic and acidic sites. It is excellent contact for n-hexane hydro-isomerization. At 250 °C, n-hexane conversion and selectivity were as high as 59-76 % and 85-99 %, respectively. It was found that catalytic activity was promoted either by total pressure or hydrogen partial pressure. At total pressure of 0.7 MPa while hydrogen partial pressure of 718 hPa, catalyst produced 63 RON liquid product containing friendly environmental iso-paraffins which is superior blending stock for green gasoline. Hydrogen did not only preserve catalyst actives by depressing hydrocracking and removing coke precursors but also facilitated hydride transfer step in the bi-functional bi-molecular mechanism.

  19. Sulfur control in ion-conducting membrane systems

    DOEpatents

    Stein, VanEric Edward; Richards, Robin Edward; Brengel, David Douglas; Carolan, Michael Francis

    2003-08-05

    A method for controlling the sulfur dioxide partial pressure in a pressurized, heated, oxygen-containing gas mixture which is contacted with an ion-conducting metallic oxide membrane which permeates oxygen ions. The sulfur dioxide partial pressure in the oxygen-depleted non-permeate gas from the membrane module is maintained below a critical sulfur dioxide partial pressure, p.sub.SO2 *, to protect the membrane material from reacting with sulfur dioxide and reducing the oxygen flux of the membrane. Each ion-conducting metallic oxide material has a characteristic critical sulfur dioxide partial pressure which is useful in determining the required level of sulfur removal from the feed gas and/or from the fuel gas used in a direct-fired feed gas heater.

  20. Pressure Effects on Oxygen Concentration Flammability Thresholds of Materials for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Hirsch, David; Williams, Jim; Beeson, Harold

    2006-01-01

    Spacecraft materials selection is based on an upward flammability test conducted in a quiescent environment in the highest-expected oxygen-concentration environment. However, NASA s advanced space exploration program is anticipating using various habitable environments. Because limited data is available to support current program requirements, a different test logic is suggested to address these expanded atmospheric environments through the determination of materials self-extinguishment limits. This paper provides additional pressure effects data on oxygen concentration and partial pressure self-extinguishment limits under quiescent conditions. For the range of total pressures tested, the oxygen concentration and oxygen partial pressure flammability thresholds show a near linear function of total pressure. The oxygen concentration/oxygen partial pressure flammability thresholds depend on the total pressure and appear to increase with increasing oxygen concentration (and oxygen partial pressure). For the Constellation Program, the flammability threshold information will allow NASA to identify materials with increased flammability risk because of oxygen concentration and total pressure changes, minimize potential impacts, and allow for development of sound requirements for new spacecraft and extraterrestrial landers and habitats.

  1. Method and apparatus for monitoring oxygen partial pressure in air masks

    NASA Technical Reports Server (NTRS)

    Kelly, Mark E. (Inventor); Pettit, Donald R. (Inventor)

    2006-01-01

    Method and apparatus are disclosed for monitoring an oxygen partial pressure in an air mask and providing a tactile warning to the user. The oxygen partial pressure in the air mask is detected using an electrochemical sensor, the output signal from which is provided to a comparator. The comparator compares the output signal with a preset reference value or range of values representing acceptable oxygen partial pressures. If the output signal is different than the reference value or outside the range of values, the air mask is vibrated by a vibrating motor to alert the user to a potentially hypoxic condition.

  2. Effect of substrate temperature and oxygen partial pressure on RF sputtered NiO thin films

    NASA Astrophysics Data System (ADS)

    Cheemadan, Saheer; Santhosh Kumar, M. C.

    2018-04-01

    Nickel oxide (NiO) thin films were deposited by RF sputtering process and the physical properties were investigated for varying substrate temperatures and oxygen partial pressure. The variation of the crystallographic orientation and microstructure of the NiO thin films with an increase in substrate temperature were studied. It was observed that NiO thin films deposited at 350 °C shows relatively good crystalline characteristics with a preferential orientation along (111) plane. With the optimum substrate temperature of 350 °C, the NiO thin films were deposited under various oxygen partial pressures at the same experimental conditions. The structural, optical and electrical properties of NiO thin films under varying oxygen partial pressure of 10%–50% were investigated. From XRD it is clear that the films prepared in the pure argon atmosphere were amorphous while the films in oxygen partial pressure exhibited polycrystalline NiO phase. SEM and AFM investigations unveil that the higher substrate temperature improves the microstructure of the thin films. It is revealed that the NiO thin films deposited at oxygen partial pressure of 40% and a substrate temperature of 350 °C, showed higher electrical conductivity with p-type characteristics.

  3. Effect of impurity on high pressure behavior of nano indium titanate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chitnis, Abhishek, E-mail: abhishekchitnis87@gmail.com; Garg, Nandini; Mishra, A. K.

    2015-06-24

    Angle dispersive x-ray diffraction studies were carried out on a mixture of nano particles of indium titanate, indium oxide, and disordered TiO{sub 2} upto pressures of ∼ 45 GPa. Our studies show that indium titanate undergoes a partial decomposition to its constituent high pressure oxides. However, concomitantly a very small fraction of indium titanate transforms to a denser phase at ∼ 27.5 GPa. This transformation to new phase was found to be irreversible. At this pressure even cubic In{sub 2}O{sub 3} transformed to the In{sub 2}O{sub 3} (II) (iso-structural to Rh{sub 2}O{sub 3} (II)) phase, without any signature of themore » intermediate corundum phase. The high pressure In{sub 2}O{sub 3} (II) phase transforms to the corundum structure on release of pressure. These studies indicate that the presence of a large fraction of seed impurities could have facilitated the decomposition of indium titanate into its constituent oxides at the cost of its incomplete transformation to the high pressure denser phase.« less

  4. Morphology and chemistry of projectile residue in small experimental impact craters

    NASA Astrophysics Data System (ADS)

    Horz, F.; Fechtig, H.; Janicke, J.; Schneider, E.

    1983-11-01

    Small-scale impact craters (5-7 mm in diameter) were produced with a light gas gun in high purity Au and Cu targets using soda lime glass (SL) and man-made basalt glass (BG) as projectiles. Maximum impact velocity was 6.4 km/s resulting in peak pressures of approximately 120-150 GPa. Copious amounts of projectile melts are preserved as thin glass liners draping the entire crater cavity; some of this liner may be lost by spallation, however. SEM investigations reveal complex surface textures including multistage flow phenomena and distinct temporal deposition sequences of small droplets. Inasmuch as some of the melts were generated at peak pressures greater than 120 GPa, these glasses represent the most severely shocked silicates recovered from laboratory experiments to date. Major element analyses reveal partial loss of alkalis; Na2O loss of 10-15 percent is observed, while K2O loss may be as high as 30-50 percent. Although the observed volatile loss in these projectile melts is significant, it still remains uncertain whether target melts produced on planetary surfaces are severely fractionated by selective volatilization processes.

  5. Portable Unit for Metabolic Analysis

    NASA Technical Reports Server (NTRS)

    Dietrich, Daniel L.; Pitch, Nancy D.; Lewis, Mark E.; Juergens, Jeffrey R.; Lichter, Michael J.; Stuk, Peter M.; Diedrick, Dale M.; Valentine, Russell W.; Pettegrew, Richard D.

    2007-01-01

    The Portable Unit for Metabolic Analysis (PUMA) is an instrument that measures several quantities indicative of human metabolic function. Specifically, this instrument makes time-resolved measurements of temperature, pressure, flow, and the partial pressures of oxygen and carbon dioxide in breath during both inhalation and exhalation. Portable instruments for measuring these quantities have been commercially available, but the response times of those instruments are too long to enable temporal resolution of phenomena on the time scales of human respiration cycles. In contrast, the response time of the PUMA is significantly shorter than characteristic times of human respiration phenomena, making it possible to analyze varying metabolic parameters, not only on sequential breath cycles but also at successive phases of inhalation and exhalation within the same breath cycle. In operation, the PUMA is positioned to sample breath near the subject s mouth. Commercial off-the-shelf sensors are used for three of the measurements: a miniature pressure transducer for pressure, a thermistor for temperature, and an ultrasonic sensor for flow. Sensors developed at Glenn Research Center are used for measuring the partial pressures of oxygen and carbon dioxide: The carbon dioxide sensor exploits the relatively strong absorption of infrared light by carbon dioxide. Light from an infrared source passes through the stream of inhaled or exhaled gas and is focused on an infrared- sensitive photodetector. The oxygen sensor exploits the effect of oxygen in quenching the fluorescence of ruthenium-doped organic molecules in a dye on the tip of an optical fiber. A blue laser diode is used to excite the fluorescence, and the optical fiber carries the fluorescent light to a photodiode, the temporal variation of the output of which bears a known relationship with the rate of quenching of fluorescence and, hence, with the partial pressure of oxygen. The outputs of the sensors are digitized, preprocessed by a small onboard computer, and then sent wirelessly to a desktop computer, where the collected data are analyzed and displayed. In addition to the raw data on temperature, pressure, flow, and mole fractions of oxygen and carbon dioxide, the display can include volumetric oxygen consumption, volumetric carbon dioxide production, respiratory equivalent ratio, and volumetric flow rate of exhaled gas.

  6. Oxygen partial pressure effects on the RF sputtered p-type NiO hydrogen gas sensors

    NASA Astrophysics Data System (ADS)

    Turgut, Erdal; Çoban, Ömer; Sarıtaş, Sevda; Tüzemen, Sebahattin; Yıldırım, Muhammet; Gür, Emre

    2018-03-01

    NiO thin films were grown by Radio Frequency (RF) Magnetron Sputtering method under different oxygen partial pressures, which are 0.6 mTorr, 1.3 mTorr and 2.0 mTorr. The effects of oxygen partial pressures on the thin films were analyzed through Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS) and Hall measurements. The change in the surface morphology of the thin films has been observed with the SEM and AFM measurements. While nano-pyramids have been obtained on the thin film grown at the lowest oxygen partial pressure, the spherical granules lower than 60 nm in size has been observed for the samples grown at higher oxygen partial pressures. The shift in the dominant XRD peak is realized to the lower two theta angle with increasing the oxygen partial pressures. XPS measurements showed that the Ni2p peak involves satellite peaks and two oxidation states of Ni, Ni2+ and Ni3+, have been existed together with the corresponding splitting in O1s spectrum. P-type conductivity of the grown NiO thin films are confirmed by the Hall measurements with concentrations on the order of 1013 holes/cm-3. Gas sensor measurements revealed minimum of 10% response to the 10 ppm H2 level. Enhanced responsivity of the gas sensor devices of NiO thin films is shown as the oxygen partial pressure increases.

  7. Distribution of gases in the unsaturated zone at a low-level radioactive-waste disposal site near Sheffield, Illinois

    USGS Publications Warehouse

    Striegl, Robert G.

    1988-01-01

    The unsaturated zone is a medium that provides pneumatic communication for the movement of gases from wastes buried in landfills to the atmosphere, biota, and groundwater. Gases in unsaturated glacial and eolian deposits near a waste-disposal trench at the low-level radioactive-waste disposal site near Sheffield, Bureau County, Illinois, were identified, and the spatial and temporal distributions of the partial pressures of those gases were determined for the period January 1984 through January 1986. Methods for the collection and analyses of the gases are described, as are geologic and hydrologic characteristics of the unsaturated zone that affect gas transport. The identified gases, which are of natural and of waste origin, include nitrogen, oxygen, and argon, carbon dioxide, methane, propane, butane, tritiated water vapor, 14carbon dioxide, and 222 radon. Concentrations of methane and 14carbon dioxide originated at the waste, as shown by partial-pressure gradients of the gases; 14carbon dioxide partial pressures exceeded natural background partial pressures by factors greater than 1 million at some locations. Variations in partial pressures of oxygen and carbon dioxide were seasonal among piezometers because of increased root and soil-microbe respiration during summer. Variations in methane and 14carbon dioxide partial pressures were apparently related to discrete releases from waste sources at unpredictable intervals of time. No greater than background partial pressures for tritiated water vapor or 222 radon were measured. (USGS)

  8. [Effects of gap junction blocking on the oxygen partial pressure in acupoints of the bladder meridian].

    PubMed

    Wang, Qi; Yu, Wei-Chang; Jiang, Hong-Zhi; Chen, Sheng-Li; Zhang, Ming-Min; Kong, E-Sheng; Huang, Guang-Ying

    2010-12-01

    To explore the relation between gap junction and meridian phenomenon. The oxygen partial pressure in acupoints [see text for formula] and in their corresponding non-acupoints of the Bladder Meridian was observed with the needle-type tissue oxygen tension sensor in the gap junction blocking goats by 1-Heptanol injection and the Connexin 43 (Cx43) gene knockout mice. (1) The oxygen partial pressure in acupoints of Bladder Meridian on goats was higher than that in non-acupoints after 1-Heptanol injection with significant differences between them (both P < 0.01). (2) The oxygen partial pressure in acupoints of Bladder Meridian on goats increased significantly after injecting 1-Heptanol as compare with that either injecting normal saline or injecting nothing with significant differences between them (all P < 0.01). (3) The oxygen partial pressure in acupoints of the Bladder Meridian was significantly higher than that in the non-acupoint controls in Cx43 wild type (WT) mice (all P < 0.01). In Cx43 heterozygote (HT) mice, the oxygen partial pressure between acupoints and non-acupoint controls showed no significant differences (all P > 0.05). (4) In acupoints, the oxygen partial pressure in Cx43 WT mice was significantly higher than that in Cx43 HT mice (all P < 0.05), while in the corresponding non-acupoints, this difference had no statistically significant (all P > 0.05). Gap junction maybe the essential factor in signal transduction of acupuncture.

  9. Simulation of Anterior Cruciate Ligament Deficiency in a Musculoskeletal Model with Anatomical Knees

    PubMed Central

    Guess, Trent M; Stylianou, Antonis

    2012-01-01

    Abnormal knee kinematics and meniscus injury resulting from anterior cruciate ligament (ACL) deficiency are often implicated in joint degeneration even though changes in tibio-femoral contact location after injury are small, typically only a few millimeters. Ligament reconstruction surgery does not significantly reduce the incidence of early onset osteoarthritis. Increased knowledge of knee contact mechanics would increase our understanding of the effects of ACL injury and help guide ACL reconstruction methods. Presented here is a cadaver specific computational knee model combined with a body-level musculoskeletal model from a subject of similar height and weight as the cadaver donor. The knee model was developed in the multi-body framework and includes representation of the menisci. Experimental body-level measurements provided input to the musculoskeletal model. The location of tibio-menisco-femoral contact as well as contact pressures were compared for models with an intact ACL, partial ACL transection (posterolateral bundle transection), and full ACL transection during a muscle driven forward dynamics simulation of a dual limb squat. During the squat, small changes in femur motion relative to the tibia for both partial and full ACL transection push the lateral meniscus in the posterior direction at extension. The central-anterior region of the lateral meniscus then becomes “wedged” between the tibia and femur during knee flexion. This “wedging” effect does not occur for the intact knee. Peak contact pressure and contact locations are similar for the partial tear and complete ACL transection during the deep flexion portion of the squat, particularly on the lateral side. The tibio-femoral contact location on the tibia plateau shifts slightly to the posterior and lateral direction with ACL transection. PMID:22470411

  10. Analysis of the Pressure Rise in a Partially Filled Liquid Tank in Microgravity with Low Wall Heat Flux and Simultaneous Boiling and Condensation

    NASA Technical Reports Server (NTRS)

    Hasan, Mohammad M.; Balasubramaniam, R.

    2012-01-01

    Experiments performed with Freon 113 in the space shuttle have shown that in a pro- cess of very slow heating, high liquid superheats can be sustained for a long period in microgravity. In a closed system explosive vaporization of superheated liquid resulted in pressure spikes of varying magnitudes. In this paper, we analyze the pressure rise in a partially lled closed tank in which a large vapor bubble (i.e., ullage) is initially present, and the liquid is subjected to a low wall heat ux. The liquid layer adjacent to the wall becomes superheated until the temperature for nucleation of the bubbles (or the incipience of boiling) is achieved. In the absence of the gravity-induced convection large quantities of superheated liquid can accumulate over time near the heated surface. Once the incipience temperature is attained, explosive boiling occurs and the vapor bubbles that are produced on the heater surface tend to quickly raise the tank pressure. The liquid-vapor saturation temperature increases as well. These two e ects tend to induce condensation of the large ullage bubble that is initially present, and tends to mitigate the tank pressure rise. As a result, the tank pressure is predicted to rise sharply, attain a maximum, and subsequently decay slowly. The predicted pressure rise is compared with experimental results obtained in the microgravity environments of the space shuttle for Freon 113. The analysis is appli- cable, in general to heating of liquid in closed containers in microgravity and to cryogenic fuel tanks, in particular where small heat leaks into the tank are unavoidable.

  11. Stress distribution and mechanical properties of free and assembled Ni3Al nanoclusters

    NASA Astrophysics Data System (ADS)

    Zhurkin, E. E.; Hautier, G.; Hou, M.

    2006-03-01

    Classical molecular dynamics with a semiempirical N -body potential is used to study the distribution of local stress in bimetallic Ni3Al nanoparticles and in cluster-assembled materials. The materials considered are synthesized with these particles by low-energy deposition at 0.5eV per atom and by compaction with an external pressure of 2GPa , thus featuring different nanostructures. Both are nanoporous, the lowest density being obtained by deposition. Their mechanical response to a uniaxial external load is then studied and deformation mechanisms are identified and are found to be similar in both nanostructures. In the core of isolated clusters, the partial pressures on the nickel and aluminium subsystems are found to differ by several GPa and, as a balance to surface tension, the hydrostatic core pressure is positive and depends on the cluster size. The surface stress is tensile and, because of structural disorder, the partial pressures distributions on Ni and Al at the surface are scattered. When nanostructured systems are formed, strong and highly inhomogeneous shear stress appears, the cluster cores may become tensile, and the interfacial areas remain mainly tensile as well. The partial pressure difference between Ni and Al is somewhat reduced. It is shown that the effect of temperature is to reduce this difference still further and to homogenize the spatial stress distribution. When subjected to a uniaxial stress, both materials display an elastic and a plastic regime. The elastic limit is the lowest for the most porous material and decreases with increasing temperature. Plastic deformation is dominated by both grain boundary sliding and by the enlargement of the open volumes, without evidence for the nucleation of cracks. These open volumes are found to facilitate dislocation activity which is evidenced in grains with sizes as small as two nanometers. This dislocation activity is found to result in the production of stacking faults as well as to the recovery of defects induced by the deposition or by the compaction.

  12. The Effect of Oxygen Partial Pressure on Microstructure and Properties of Fe40Al Alloy Sintered under Vacuum

    PubMed Central

    Siemiaszko, Dariusz; Kowalska, Beata; Jóźwik, Paweł; Kwiatkowska, Monika

    2015-01-01

    This paper presents the results of studies on the influence of oxygen partial pressure (vacuum level in the chamber) on the properties of FeAl intermetallics. One of the problems in the application of classical methods of prepared Fe-Al intermetallic is the occurrence of oxides. Applying a vacuum during sintering should reduce this effect. In order to analyze the effect of oxygen partial pressure on sample properties, five samples were processed (by a pressure-assisted induction sintering—PAIS method) under the following pressures: 3, 8, 30, 80, and 300 mbar (corresponding to oxygen partial pressures of 0.63, 1.68, 6.3, 16.8, and 63 mbar, respectively). The chemical and phase composition, hardness, density, and microstructure observations indicate that applying a vacuum significantly impacts intermetallic samples. The compact sintered at pressure 3 mbar is characterized by the most homogeneous microstructure, the highest density, high hardness, and nearly homogeneous chemical composition. PMID:28788015

  13. High pressure furnace

    DOEpatents

    Morris, Donald E.

    1993-01-01

    A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  14. Dependence of magnetic anisotropy on MgO sputtering pressure in Co20Fe60B20/MgO stacks

    NASA Astrophysics Data System (ADS)

    Kaidatzis, A.; Serletis, C.; Niarchos, D.

    2017-10-01

    We investigated the dependence of magnetic anisotropy of Ta/Co20Fe60B20/MgO stacks on the Ar partial pressure during MgO deposition, in the range between 0.5 and 15 mTorr. The stacks are studied before and after annealing at 300°C and it is shown that magnetic anisotropy significantly depends on Ar partial pressure. High pressure results in stacks with very low perpendicular magnetic anisotropy even after annealing, while low pressure results in stacks with perpendicular anisotropy even at the as-deposited state. A monotonic increase of magnetic anisotropy energy is observed as Ar partial pressure is decreased.

  15. Influence of oxygen partial pressure on the microstructural and magnetic properties of Er-doped ZnO thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Wei-Bin; Li, Fei; Chen, Hong-Ming

    2015-06-15

    Er-doped ZnO thin films have been prepared by using inductively coupled plasma enhanced physical vapor deposition at different O{sub 2}:Ar gas flow ratio (R = 0:30, 1:30, 1:15, 1:10 and 1:6). The influence of oxygen partial pressure on the structural, optical and magnetic properties was studied. It is found that an appropriate oxygen partial pressure (R=1:10) can produce the best crystalline quality with a maximum grain size. The internal strain, estimated by fitting the X-ray diffraction peaks, varied with oxygen partial pressure during growth. PL measurements show that plenty of defects, especially zinc vacancy, exist in Er-doped ZnO films. Allmore » the samples show room-temperature ferromagnetism. Importantly, the saturation magnetization exhibits similar dependency on oxygen partial pressure with the internal strain, which indicates that internal strain has an important effect on the magnetic properties of Er-doped ZnO thin films.« less

  16. Effects of oxygen partial pressure on Li-air battery performance

    NASA Astrophysics Data System (ADS)

    Kwon, Hyuk Jae; Lee, Heung Chan; Ko, Jeongsik; Jung, In Sun; Lee, Hyun Chul; Lee, Hyunpyo; Kim, Mokwon; Lee, Dong Joon; Kim, Hyunjin; Kim, Tae Young; Im, Dongmin

    2017-10-01

    For application in electric vehicles (EVs), the Li-air battery system needs an air intake system to supply dry oxygen at controlled concentration and feeding rate as the cathode active material. To facilitate the design of such air intake systems, we have investigated the effects of oxygen partial pressure (≤1 atm) on the performance of the Li-air cell, which has not been systematically examined. The amounts of consumed O2 and evolved CO2 from the Li-air cell are measured with a custom in situ differential electrochemical gas chromatography-mass spectrometry (DEGC-MS). The amounts of consumed O2 suggest that the oxygen partial pressure does not affect the reaction mechanism during discharge, and the two-electron reaction occurs under all test conditions. On the other hand, the charging behavior varies by the oxygen partial pressure. The highest O2 evolution ratio is attained under 70% O2, along with the lowest CO2 evolution. The cell cycle life also peaks at 70% O2 condition. Overall, an oxygen partial pressure of about 0.5-0.7 atm maximizes the Li-air cell capacity and stability at 1 atm condition. The findings here indicate that the appropriate oxygen partial pressure can be a key factor when developing practical Li-air battery systems.

  17. Effects of Oxygen Partial Pressure on the Surface Tension of Liquid Nickel

    NASA Technical Reports Server (NTRS)

    SanSoucie, Michael P.; Rogers, Jan R.; Gowda, Vijaya Kumar Malahalli Shankare; Rodriguez, Justin; Matson, Douglas M.

    2015-01-01

    The NASA Marshall Space Flight Center's electrostatic levitation (ESL) laboratory has been recently upgraded with an oxygen partial pressure controller. This system allows the oxygen partial pressure within the vacuum chamber to be measured and controlled, theoretically in the range from 10-36 to 100 bar. The oxygen control system installed in the ESL laboratory's main chamber consists of an oxygen sensor, oxygen pump, and a control unit. The sensor is a potentiometric device that determines the difference in oxygen activity in two gas compartments (inside the chamber and the air outside of the chamber) separated by an electrolyte, which is yttria-stabilized zirconia. The pump utilizes coulometric titration to either add or remove oxygen. The system is controlled by a desktop control unit, which can also be accessed via a computer. The controller performs temperature control for the sensor and pump, PID-based current loop, and a control algorithm. Oxygen partial pressure has been shown to play a significant role in the surface tension of liquid metals. Oxide films or dissolved oxygen may lead to significant changes in surface tension. The effects of oxygen partial pressure on the surface tension of undercooled liquid nickel will be analyzed, and the results will be presented. The surface tension will be measured at several different oxygen partial pressures while the sample is undercooled. Surface tension will be measured using the oscillating drop method. While undercooled, each sample will be oscillated several times consecutively to investigate how the surface tension behaves with time while at a particular oxygen partial pressure.

  18. One-dimensional Ar-SF{sub 6} hydromodel at low-pressure in e-beam generated plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrov, George M., E-mail: george.petrov@nrl.navy.mil; Boris, David R.; Petrova, Tzvetelina B.

    2016-03-15

    A one-dimensional steady-state hydrodynamic model of electron beam generated plasmas produced in Ar-SF{sub 6} mixtures at low pressure in a constant magnetic field was developed. Simulations were performed for a range of SF{sub 6} partial pressures at constant 30 mTorr total gas pressure to determine the spatial distribution of species densities and fluxes. With the addition of small amount of SF{sub 6} (∼1%), the confining electrostatic field sharply decreases with respect to the pure argon case. This effect is due to the applied magnetic field inhibiting electron diffusion. The hallmark of electronegative discharge plasmas, positive ion—negative ion core and positivemore » ion—electron edge, was not observed. Instead, a plasma with large electronegativity (∼100) is formed throughout the volume, and only a small fraction (≈30%) of the parent SF{sub 6} molecules were dissociated to F{sub 2}, SF{sub 2}, and SF{sub 4}. Importantly, F radical densities were found to be very low, on the order of the ion density. Model predictions for the electron density, ion density, and plasma electronegativity are in good agreement with experimental data over the entire range of SF{sub 6} concentrations investigated.« less

  19. Sapwood development in Pinus radiata trees grown for three years at ambient and elevated carbon dioxide partial pressures.

    PubMed

    Atwell, B J; Henery, M L; Whitehead, D

    2003-01-01

    Clonal trees of Pinus radiata D. Don were grown in open-top chambers at a field site in New Zealand for 3 years at ambient (37 Pa) or elevated (65 Pa) carbon dioxide (CO2) partial pressure. Nitrogen (N) was supplied to half of the trees in each CO2 treatment, at 15 g N m-2 in the first year and 60 g N m-2 in the subsequent 2 years (high-N treatment). Trees in the low-N treatment were not supplied with N but received the same amount of other nutrients as trees in the high-N treatment. In the first year, stem basal area increased more in trees growing at elevated CO2 partial pressure and high-N supply than in control trees, suggesting a positive interaction between these resources. However, the relative rate of growth became the same across trees in all treatments after 450 days, resulting in trees growing at elevated CO2 partial pressure and high-N supply having larger basal areas than trees in the other treatments. Sapwood N content per unit dry mass was consistently about 0.09% in all treatments, indicating that N status was not suppressed by elevated CO2 partial pressure. Thus, during the first year of growth, an elevated CO2 partial pressure enhanced carbon (C) and N storage in woody stems, but there was no further stimulus to C and N deposition after the first year. The chemical composition of sapwood was unaffected by elevated CO2 partial pressure, indicating that no additional C was sequestered through lignification. However, independent of the treatments, early wood was 13% richer in lignin than late wood. Elevated CO2 partial pressure decreased the proportion of sapwood occupied by the lumina of tracheids by up to 12%, indicating increased sapwood density in response to CO2 enrichment. This effect was probably a result of thicker tracheid walls rather than narrower lumina.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, B.; The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610207; Wang, L.

    With large-scale molecular dynamics simulations, we investigate shock response of He nanobubbles in single crystal Cu. For sufficient bubble size or internal pressure, a prismatic dislocation loop may form around a bubble in unshocked Cu. The internal He pressure helps to stabilize the bubble against plastic deformation. However, the prismatic dislocation loops may partially heal but facilitate nucleation of new shear and prismatic dislocation loops. For strong shocks, the internal pressure also impedes internal jetting, while a bubble assists local melting; a high speed jet breaks a He bubble into pieces dispersed among Cu. Near-surface He bubbles may burst andmore » form high velocity ejecta containing atoms and small fragments, while the ejecta velocities do not follow the three-dimensional Maxwell-Boltzmann distributions expected for thermal equilibrium. The biggest fragment size deceases with increasing shock strength. With a decrease in ligament thickness or an increase in He bubble size, the critical shock strength required for bubble bursting decreases, while the velocity range, space extension and average velocity component along the shock direction, increase. Small bubbles are more efficient in mass ejecting. Compared to voids and perfect single crystal Cu, He bubbles have pronounced effects on shock response including bubble/void collapse, Hugoniot elastic limit (HEL), deformation mechanisms, and surface jetting. HEL is the highest for perfect single crystal Cu with the same orientations, followed by He bubbles without pre-existing prismatic dislocation loops, and then voids. Complete void collapse and shear dislocations occur for embedded voids, as opposed to partial collapse, and shear and possibly prismatic dislocations for He bubbles. He bubbles lower the threshhold shock strength for ejecta formation, and increase ejecta velocity and ejected mass.« less

  1. Vaporization and thermodynamics of forsterite-rich olivine and some implications for silicate atmospheres of hot rocky exoplanets

    NASA Astrophysics Data System (ADS)

    Costa, Gustavo C. C.; Jacobson, Nathan S.; Fegley, Bruce, Jr.

    2017-06-01

    We describe an experimental and theoretical study of olivine [Mg2SiO4 (Fo)-Fe2SiO4 (Fa)] vaporization. The vaporization behavior and thermodynamic properties of a fosterite-rich olivine (Fo95Fa5) have been explored by high-temperature Knudsen effusion mass spectrometry (KEMS) from 1750 to 2250 K. The gases observed (in order of decreasing partial pressure) are Fe, SiO, Mg, O2 and O. We measured the solidus temperature (∼2050 K), partial pressures of individual gases, the total vapor pressure, and thermodynamic activities and partial molar enthalpies of MgO, 'FeO', and SiO2 for the Fo95Fa5 olivine. The results are compared to other measurements and models of the olivine system. Our experimental data show olivine vaporizes incongruently. We discuss this system both as a psuedo-binary of Fo-Fa and a psuedo-ternary of MgO-'FeO'-SiO2. Iron/magnesium molar ratios in the sample before (∼0.05) and after (∼0.04) vaporization are consistent with the small positive deviations from ideality of fayalite (γ ∼ 1.17) in olivine of the composition studied (e.g., Nafziger and Muan, 1967). Our data for olivine + melt confirm prior theoretical models predicting fractional vaporization of Fe relative to Mg from molten silicates (Fegley and Cameron, 1987; Schaefer and Fegley, 2009; Ito et al., 2015). If loss of silicate atmospheres occurs from hot rocky exoplanets with magma oceans the residual planet may be enriched in magnesium relative to iron.

  2. Instrument for stable high temperature Seebeck coefficient and resistivity measurements under controlled oxygen partial pressure

    DOE PAGES

    Ihlefeld, Jon F.; Brown-Shaklee, Harlan James; Sharma, Peter Anand

    2015-04-28

    The transport properties of ceramic materials strongly depend on oxygen activity, which is tuned by changing the partial oxygen pressure (pO 2) prior to and during measurement. Within, we describe an instrument for highly stable measurements of Seebeck coefficient and electrical resistivity at temperatures up to 1300 K with controlled oxygen partial pressure. An all platinum construction is used to avoid potential materials instabilities that can cause measurement drift. Two independent heaters are employed to establish a small temperature gradient for Seebeck measurements, while keeping the average temperature constant and avoiding errors associated with pO 2-induced drifts in thermocouple readings.more » Oxygen equilibrium is monitored using both an O 2 sensor and the transient behavior of the resistance as a proxy. A pO 2 range of 10 -25–10 0 atm can be established with appropriate gas mixtures. Seebeck measurements were calibrated against a high purity platinum wire, Pt/Pt–Rh thermocouple wire, and a Bi 2Te3 Seebeck coefficient Standard Reference Material. To demonstrate the utility of this instrument for oxide materials we present measurements as a function of pO 2 on a 1 % Nb-doped SrTiO 3 single crystal, and show systematic changes in properties consistent with oxygen vacancy defect chemistry. Thus, an approximately 11% increase in power factor over a pO 2 range of 10 -19–10 -8 atm at 973 K for the donor-doped single crystals is observed.« less

  3. Generation and emplacement of shear-related highly mobile crustal melts: the synkinematic leucogranites from the Variscan Tormes Dome, Western Spain

    NASA Astrophysics Data System (ADS)

    López-Moro, Francisco Javier; López-Plaza, Miguel; Romer, Rolf L.

    2012-07-01

    The Tormes dome consists of S-type granites that intruded into Ordovician augen gneisses and Neoproterozoic-Lower Cambrian metapelites/metagreywackes at different extents of migmatization. S-type granites are mainly equigranular two-mica granites, occurring as: (1) enclave-laden subvertical feeder dykes, (2) small external sill-like bodies with size and shape relations indicative for self-similar pluton growth, and (3) as large pluton bodies, emplaced at higher levels than the external ones. These magmas were highly mobile as it is inferred from the high contents of fluxing components, the disintegration and alignment of pelitic xenoliths in feeder dykes and at the bottom of some sill-like bodies. Field relations relate this 311 Ma magmatism (U-Pb monazite) to the regional shearing of the D3 Variscan event. Partial melting modeling and the relatively high estimated liquidus temperatures indicate biotite-dehydration partial melting (800-840°C and 400-650 MPa) rather than water-fluxed melting, implying that there was no partial melting triggered by externally derived fluids in the shear zones. Instead, the subvertical shear zones favored extraction of melts that formed during the regional migmatization event around 320 Ma. Nd isotope variation among the granites might reflect disequilibrium partial melting or different protoliths. Mass-balance and trace element partial melting modeling strongly suggest two kinds of fertile crustal protoliths: augen gneisses and metapelites. Slight compositional variation among the leucogranites does not reflect different extent of protolith melting but is related to a small amount of fractional crystallization (<13% for the equigranular granites), which is generally more pronounced in shallower batholitic leucogranites than in the small and homogeneous sill-like bodies. The lower extent of fractional crystallization and the higher-pressure emplacement conditions of the sill-like bodies support a more restricted movement through the crust than for batholitic leucogranites.

  4. Using Dalton's Law of Partial Pressures to Determine the Vapor Pressure of a Volatile Liquid

    ERIC Educational Resources Information Center

    Hilgeman, Fred R.; Bertrand, Gary; Wilson, Brent

    2007-01-01

    This experiment, designed for a general chemistry laboratory, illustrates the use of Dalton's law of partial pressures to determine the vapor pressure of a volatile liquid. A predetermined volume of air is injected into a calibrated tube filled with a liquid whose vapor pressure is to be measured. The volume of the liquid displaced is greater than…

  5. Genetic Evolution of Shape-Altering Programs for Supersonic Aerodynamics

    NASA Technical Reports Server (NTRS)

    Kennelly, Robert A., Jr.; Bencze, Daniel P. (Technical Monitor)

    2002-01-01

    Two constrained shape optimization problems relevant to aerodynamics are solved by genetic programming, in which a population of computer programs evolves automatically under pressure of fitness-driven reproduction and genetic crossover. Known optimal solutions are recovered using a small, naive set of elementary operations. Effectiveness is improved through use of automatically defined functions, especially when one of them is capable of a variable number of iterations, even though the test problems lack obvious exploitable regularities. An attempt at evolving new elementary operations was only partially successful.

  6. Advances in Probes and Methods for Clinical EPR Oximetry

    PubMed Central

    Hou, Huagang; Khan, Nadeem; Jarvis, Lesley A.; Chen, Eunice Y.; Williams, Benjamin B.; Kuppusamy, Periannan

    2015-01-01

    EPR oximetry, which enables reliable, accurate, and repeated measurements of the partial pressure of oxygen in tissues, provides a unique opportunity to investigate the role of oxygen in the pathogenesis and treatment of several diseases including cancer, stroke, and heart failure. Building on significant advances in the in vivo application of EPR oximetry for small animal models of disease, we are developing suitable probes and instrumentation required for use in human subjects. Our laboratory has established the feasibility of clinical EPR oximetry in cancer patients using India ink, the only material presently approved for clinical use. We now are developing the next generation of probes, which are both superior in terms of oxygen sensitivity and biocompatibility including an excellent safety profile for use in humans. Further advances include the development of implantable oxygen sensors linked to an external coupling loop for measurements of deep-tissue oxygenations at any depth, overcoming the current limitation of 10 mm. This paper presents an overview of recent developments in our ability to make meaningful measurements of oxygen partial pressures in human subjects under clinical settings. PMID:24729217

  7. Oxygen partial pressure sensor

    DOEpatents

    Dees, D.W.

    1994-09-06

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured. 1 fig.

  8. Oxygen partial pressure sensor

    DOEpatents

    Dees, Dennis W.

    1994-01-01

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured.

  9. Tibiofemoral contact pressures in radial tears of the meniscus treated with all-inside repair, inside-out repair and partial meniscectomy.

    PubMed

    Zhang, Alan L; Miller, Stephanie L; Coughlin, Dezba G; Lotz, Jeffrey C; Feeley, Brian T

    2015-10-01

    To test contact pressures in the knee after treatment of a radial meniscus tear with an all-inside meniscal repair technique and compare the results with inside-out repair and partial meniscectomy. Six non-paired cadaveric knees were analyzed with intra-compartment pressures measured at loads of 250 N, 500 N and 1000 N at 0°, eight degrees, 15°, and 30° of knee flexion. Compartmental contact pressures were measured for the intact medial meniscus, radial tear in the posterior horn, all-inside repair using the NovoStitch suture passer device (Ceterix Orthopaedics Inc., Menlo Park, CA), inside-out repair method, and partial meniscectomy. One-way ANOVA was used for statistical analysis. The greatest differences in peak pressures between treatments were observed under 1000 N load at 30° flexion (0.8± (SD) 0.1 MPa (intact meniscus), 0.8± (SD) 0.1 MPa (all-inside), 0.9± (SD) 0.1 MPa (inside-out) and 1.6± (SD) 0.2 MPa (partial meniscectomy)). Treatment with partial meniscectomy resulted in the highest peak pressures compared to all other states (p<0.0001 at each angle). Repair of the radial tear using the all-inside technique as well as the inside-out technique resulted in significantly decreased compartment pressures compared to partial meniscectomies (p<0.0001 at each angle). There were no significant differences between peak pressures in the intact state and after repair with the all-inside or inside-out techniques. An all-inside repair technique using the NovoStitch suture passer can decrease contact pressures for a radial meniscus tear similarly to the inside-out repair technique when compared to partial meniscectomy. This novel arthroscopic suture passer warrants further analysis in the clinical setting as it may be a reliable method for repair of radial meniscal tears through an arthroscopic all-inside technique. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. The influence of participant characteristics on the relationship between cuff pressure and level of blood flow restriction.

    PubMed

    Hunt, Julie E A; Stodart, Clare; Ferguson, Richard A

    2016-07-01

    Previous investigations to establish factors influencing the blood flow restriction (BFR) stimulus have determined cuff pressures required for complete arterial occlusion, which does not reflect the partial restriction prescribed for this training technique. This study aimed to establish characteristics that should be accounted for when prescribing cuff pressures required for partial BFR. Fifty participants were subjected to incremental blood flow restriction of the upper and lower limbs by proximal pneumatic cuff inflation. Popliteal and brachial artery diameter, blood velocity and blood flow was assessed with Doppler ultrasound. Height, body mass, limb circumference, muscle-bone cross-sectional area, adipose thickness (AT) and arterial blood pressure were measured and used in different models of hierarchical linear regression to predict the pressure at which 60 % BFR (partial occlusion) occurred. Combined analysis revealed a difference in cuff pressures required to elicit 60 % BFR in the popliteal (111 ± 12 mmHg) and brachial arteries (101 ± 12 mmHg). MAP (r = 0.58) and AT (r = -0.45) were the largest independent determinants of lower and upper body partial occlusion pressures. However, greater variance was explained by upper and lower limb regression models composed of DBP and BMI (48 %), and arm AT and DBP (30 %), respectively. Limb circumference has limited impact on the cuff pressure required for partial blood flow restriction which is in contrast to its recognised relationship with complete arterial occlusion. The majority of the variance in partial occlusion pressure remains unexplained by the predictor variables assessed in the present study.

  11. Relationship of structure and function of the avian respiratory system to disease susceptibility.

    PubMed

    Fedde, M R

    1998-08-01

    The avian respiratory system exchanges oxygen and carbon dioxide between the gas and the blood utilizing a relatively small, rigid, flow-through lung, and a system of air sacs that act as bellows to move the gas through the lung. Gas movement through the paleopulmonic parabronchi, the main gas exchanging bronchi, in the lung is in the same direction during both inspiration and expiration, i.e., from the mediodorsal secondary bronchi to the medioventral secondary bronchi. During inspiration, acceleration of the gas at the segmentum accelerans of the primary bronchus increases gas velocity so it does not enter the medioventral secondary bronchi. During expiration, airway resistance is increased in he intrapulmonary primary bronchus because of dynamic compression causing gas to enter the mediodorsal secondary bronchi. Reduction in air flow velocity may decrease the efficiency of this aerodynamic valving and thereby decrease the efficiency of gas exchange. The convective gas flow in the avian parabronchus is orientated at a 90 degree angle with respect to the parabronchial blood flow; hence, the cross-current designation of this gas exchanger. With this design, the partial pressure of oxygen in the blood leaving the parabronchus can be higher than that in the gas exiting this structure, giving the avian lung a high gas exchange efficacy. The relationship of the partial pressure of oxygen in the moist inspired gas to that in the blood leaving the lung is dependent on he rate of ventilation. A low ventilation rate may produce a ow oxygen partial pressure in part of the parabronchus, thereby inducing hypoxic vasoconstriction in the pulmonary arterioles supplying this region. Inhaled foreign particles are removed by nasal mucociliary action, by escalator in the trachea, primary bronchi, and secondary bronchi. Small particles that enter parabronchi appear to be phagocytized by the epithelial cells in eh atria and infundibulum. These particles can e transported to interstitial macrophages but the disposition of the particles from this site is unknown. The predominant site of respiratory infections in the caudal air sacs, compared to other parts of the respiratory system, can be explained by the gas flow pathway and the mechanisms present in the parabronchi for particle removal.

  12. A potential new proxy for paleo-atmospheric pO2 from soil carbonate-hosted fluid inclusions applied to pristine Chinle soils from the Petrified Forest 1A core

    NASA Astrophysics Data System (ADS)

    Schaller, M. F.; Pettitt, E.; Knobbe, T.

    2017-12-01

    Proxies for the concentration of O2 in the ancient atmosphere are scarce. We have developed a potential new proxy for ancient atmospheric O2 content based on soil carbonate-hosted fluid inclusions. Soils are in continuous atmospheric communication, and relatively static equilibration between soil gas and atmospheric gas during formation, such that a predictable amount of atmosphere infiltrates a soil. This atmosphere is trapped by inclusions during carbonate precipitation. Here we show that carbonate hosted fluid inclusions are faithful recorders of soil gas concentrations and isotope ratios, and specifically that soil O2 partial pressures can be derived from the total gas contents of these inclusions. Using carbonate nodules from a span of depths in a modern vertisol near Dallas, TX, as a test case, we employ an online crushing technique to liberate gases from soil carbonates into a small custom-built quadrupole mass spectrometer where all gases are measured in real time. We quantify the total oxygen content of the gas using a matrix-matched calibration, and define each species as a partial pressure of the total gas released from the nodule. Atmospheric pO2 is very simply derived from the soil-nodule partial pressures by accounting for the static productivity of the soil (using a small correction based on the CO2 concentration). When corrected for aqueous solubility using Henry's Law, these soil-carbonate hosted gas results reveal soil O2 concentrations that are comparable to modern-day dry atmosphere. Armed with this achievement in modern soils, and as a test on the applicability of the approach to ancient samples, we successfully apply the new proxy to nodules from the Late Triassic Chinle formation from the Petrified Forest National Park Core, taken as part of the Colorado Plateau Coring Project. Analysis of soil O2 from soil gas monitoring wells paired with measurements from contemporaneous soil carbonate nodules is needed to precisely calibrate the new proxy.

  13. Alumina Volatility in Water Vapor at Elevated Temperatures: Application to Combustion Environments

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Myers, Dwight L.

    2003-01-01

    The volatility of alumina in high temperature water vapor was determined by measuring weight loss of sapphire coupons at temperatures between 1250 and 1500 C, water vapor partial pressures between 0.15 and 0.68 atm in oxygen, at one atmosphere total pressure, and a gas velocity of 4.4 centimeters per second. The variation of the volatility with water vapor partial pressure was consistent with Al(OH)3(g) formation. The enthalpy of reaction to form Al(OH)3(g) from alumina and water vapor was found to be 210 plus or minus 20 kJ/mol. Surface rearrangement of ground sapphire surfaces increased with water vapor partial pressure, temperature and volatility rate. Recession rates of alumina due to volatility were determined as a function of water vapor partial pressure and temperature to evaluate limits for use of alumina in long term applications in combustion environments.

  14. Non-invasive multiwavelength photoplethysmography under low partial pressure of oxygen.

    PubMed

    Fang, Yung Chieh; Tai, Cheng-Chi

    2016-08-01

    A reduction in partial pressure of oxygen in the environment may be caused by a gain in altitude, which reduces the atmospheric pressure; it may also be caused by the carbon dioxide generated from breathing in an enclosed space. Does inhaling oxygen of lower partial pressure affect the oxygen-carrying function of haemoglobin in vivo? This study uses non-invasive multiwavelength photoplethysmography to measure the effects that inhaling this type of oxygen can have on the plethysmography of the appendages of the body (fingertips). The results indicate that under low partial pressure of oxygen, be it the result of a gain in carbon dioxide concentration or altitude, the change in visible light absorption is the biggest for short wavelengths (approximately 620 or 640 nm) near deoxyhaemoglobin, which has higher absorption coefficient. Moreover, increasing carbon dioxide concentration from 5000 to 10,000 ppm doubly reduces the absorption rate of these short wavelengths.

  15. Report on ISS O2 Production, Gas Supply and Partial Pressure Management

    NASA Technical Reports Server (NTRS)

    Schaezler, Ryan N.; Cook, Anthony J.

    2015-01-01

    Oxygen is used on International Space Station (ISS) for metabolic support and denitrogenation procedures prior to Extra-Vehicular Activities. Nitrogen is used to maintain total pressure and account for losses associated with leakage and operational losses. Oxygen and nitrogen have been supplied by various visiting vehicles such as the Progress and Shuttle in addition to the on-orbit oxygen production capability. Starting in 2014, new high pressure oxygen/nitrogen tanks are available to launch on commercial cargo vehicles and will replace the high pressure gas source that Shuttle used to provide. To maintain a habitable atmosphere the oxygen and nitrogen partial pressures are controlled between upper and lower bounds. The full range of the allowable partial pressures along with the increased ISS cabin volume are utilized as a buffer allowing days to pass between oxygen production or direct addition of oxygen and nitrogen to the atmosphere from reserves. This paper summarizes the amount of gas supplied and produced from all of the sources and describes past experience of managing partial pressures along with the range of management options available to the ISS.

  16. Thermal equation of state of TiC: A synchrotron x-ray diffraction study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu Xiaohui; National Lab for Condensed Matter Physics, Institute of Physics, CAS, Beijing 100080; Department of Physics, University of Science and Technology of China, Hefei 230026

    2010-06-15

    The pressure-volume-temperature measurements were carried out for titanium carbide (TiC) at pressures and temperatures up to 8.1 GPa and 1273 K using energy-dispersive synchrotron x-ray diffraction. Thermoelastic parameters were derived for TiC based on a modified high-temperature Birch-Murnaghan equation of state and a thermal pressure approach. With the pressure derivative of the bulk modulus, K{sub 0}{sup '}, fixed at 4.0, we obtain: the ambient bulk modulus K{sub 0}=268(6) GPa, which is comparable to previously reported value; temperature derivative of bulk modulus at constant pressure ({partial_derivative}K{sub T}/{partial_derivative}T){sub P}=-0.026(9) GPa K{sup -1}, volumetric thermal expansivity {alpha}{sub T}(K{sup -1})=a+bT with a=1.62(12)x10{sup -5} K{supmore » -1} and b=1.07(17)x10{sup -8} K{sup -2}, pressure derivative of thermal expansion ({partial_derivative}{alpha}/{partial_derivative}P){sub T}=(-3.62{+-}1.14)x10{sup -7} GPa{sup -1} K{sup -1}, and temperature derivative of bulk modulus at constant volume ({partial_derivative}K{sub T}/{partial_derivative}T){sub V}=-0.015(8) GPa K{sup -1}. These results provide fundamental thermophysical properties for TiC for the first time and are important to theoretical and computational modeling of transition metal carbides.« less

  17. Thermal equation-of-state of TiC: a synchrotron x-ray diffraction study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Xiaohui; Lin, Zhijun; Zhang, Jianzhong

    2009-01-01

    The pressure (P)-volume (V)-temperature (T) measurements were carried out for titanium carbide at pressures and temperatures up to 8.1 GPa and 1273 K using energy-dispersive synchrotron x-ray diffraction. Thermoelastic parameters were derived for TiC based on a modified high-temperature Birch-Murnaghan equation of state and a thermal-pressure approach. With the pressure derivative of the bulk modulus, K'{sub 0}, fixed at 4.0, we obtain: the ambient bulk modulus K{sub 0} = 268(6) GPa, temperature derivative of bulk modulus at constant pressure ({partial_derivative}K{sub T}/{partial_derivative}T){sub p} = -0.026(9) GPa K{sup -1}, volumetric thermal expansivity a{sub T}(K{sup -1}) = a + bT with a =more » 1.62(12) x 10{sup -5} K{sup -1} and b = 1.07(17) x 10{sup -8} K{sup -2}, pressure derivative of thermal expansion ({partial_derivative}a/{partial_derivative}P){sub T} = (-3.62 {+-} 1.14) x 10{sup -7} GPa{sup -1} K{sup -1}, and temperature derivative of bulk modulus at constant volume ({partial_derivative}K{sub T}/{partial_derivative}T){sub v} = -0.015 (8) GPa K{sup -1}. These results provide fundamental thermo physical properties for TiC and are important to theoretical and computational modeling of transition metal carbides.« less

  18. Effect of O 2 gas partial pressure on structures and dielectric characteristics of rf sputtered ZrO 2 thin films

    NASA Astrophysics Data System (ADS)

    Ma, C. Y.; Lapostolle, F.; Briois, P.; Zhang, Q. Y.

    2007-08-01

    Amorphous and polycrystalline zirconium oxide thin films have been deposited by reactive rf magnetron sputtering in a mixed argon/oxygen or pure oxygen atmosphere with no intentional heating of the substrate. The films were characterized by high-resolution transmission electron microscopy (HR-TEM), atomic force microscopy (AFM), spectroscopic ellipsometry (SE), and capacitance versus voltage ( C- V) measurements to investigate the variation of structure, surface morphology, thickness of SiO 2-like interfacial layer as well as dielectric characteristics with different oxygen partial pressures. The films deposited at low oxygen partial pressures (less than 15%) are amorphous and dense with a smooth surface. In contrast, the films prepared at an oxygen partial pressure higher than 73% are crystallized with the microstructure changing from the mixture of monoclinic and tetragonal phases to a single monoclinic structure. The film structural transition is believed to be consequences of decrease in the oxygen vacancy concentration in the film and of increase of the energetically neutral particles in the plasma due to an increased oxygen partial pressure. SE measurements showed that significant interfacial SiO 2 growth has taken place above approximately 51%. The best C- V results in terms of relative dielectric constant values are obtained for thin films prepared at an oxygen partial pressure of 15%.

  19. 48 CFR 52.219-7 - Notice of Partial Small Business Set-Aside.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Clauses 52.219-7 Notice of Partial Small Business Set-Aside. As prescribed in 19.508(d), insert the following clause: Notice of Partial Small Business Set-Aside (JUN 2003) (a) Definitions. Small business..., and qualified as a small business under the size standards in this solicitation. (b) General. (1) A...

  20. 48 CFR 52.219-7 - Notice of Partial Small Business Set-Aside.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Clauses 52.219-7 Notice of Partial Small Business Set-Aside. As prescribed in 19.508(d), insert the following clause: Notice of Partial Small Business Set-Aside (JUN 2003) (a) Definitions. Small business..., and qualified as a small business under the size standards in this solicitation. (b) General. (1) A...

  1. 48 CFR 52.219-7 - Notice of Partial Small Business Set-Aside.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Clauses 52.219-7 Notice of Partial Small Business Set-Aside. As prescribed in 19.508(d), insert the following clause: Notice of Partial Small Business Set-Aside (JUN 2003) (a) Definitions. Small business..., and qualified as a small business under the size standards in this solicitation. (b) General. (1) A...

  2. 48 CFR 52.219-7 - Notice of Partial Small Business Set-Aside.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Clauses 52.219-7 Notice of Partial Small Business Set-Aside. As prescribed in 19.508(d), insert the following clause: Notice of Partial Small Business Set-Aside (JUN 2003) (a) Definitions. Small business..., and qualified as a small business under the size standards in this solicitation. (b) General. (1) A...

  3. 48 CFR 52.219-7 - Notice of Partial Small Business Set-Aside.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Clauses 52.219-7 Notice of Partial Small Business Set-Aside. As prescribed in 19.508(d), insert the following clause: Notice of Partial Small Business Set-Aside (JUN 2003) (a) Definitions. Small business..., and qualified as a small business under the size standards in this solicitation. (b) General. (1) A...

  4. Gas Exchange of Algae

    PubMed Central

    Ammann, Elizabeth C. B.; Lynch, Victoria H.

    1966-01-01

    Changes in the oxygen partial pressure of air over the range of 8 to 258 mm of Hg did not adversely affect the photosynthetic capacity of Chlorella pyrenoidosa. Gas exchange and growth measurements remained constant for 3-week periods and were similar to air controls (oxygen pressure of 160 mm of Hg). Oxygen partial pressures of 532 and 745 mm of Hg had an adverse effect on algal metabolism. Carbon dioxide consumption was 24% lower in the gas mixture containing oxygen at a pressure 532 mm of Hg than in the air control, and the growth rate was slightly reduced. Oxygen at a partial pressure of 745 mm of Hg decreased the photosynthetic rate 39% and the growth rate 37% over the corresponding rates in air. The lowered metabolic rates remained constant during 14 days of measurements, and the effect was reversible after this time. Substitution of helium or argon for the nitrogen in air had no effect on oxygen production, carbon dioxide consumption, or growth rate for 3-week periods. All measurements were made at a total pressure of 760 mm of Hg, and all gas mixtures were enriched with 2% carbon dioxide. Thus, the physiological functioning and reliability of a photosynthetic gas exchanger should not be adversely affected by: (i) oxygen partial pressures ranging from 8 to 258 mm of Hg; (ii) the use of pure oxygen at reduced total pressure (155 to 258 mm of Hg) unless pressure per se affects photosynthesis, or (iii) the inclusion of helium or argon in the gas environment (up to a partial pressure of 595 mm of Hg). PMID:5927028

  5. Steady-State Plant Model to Predict Hydroden Levels in Power Plant Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glatzmaier, Greg C.; Cable, Robert; Newmarker, Marc

    The National Renewable Energy Laboratory (NREL) and Acciona Energy North America developed a full-plant steady-state computational model that estimates levels of hydrogen in parabolic trough power plant components. The model estimated dissolved hydrogen concentrations in the circulating heat transfer fluid (HTF), and corresponding partial pressures within each component. Additionally for collector field receivers, the model estimated hydrogen pressure in the receiver annuli. The model was developed to estimate long-term equilibrium hydrogen levels in power plant components, and to predict the benefit of hydrogen mitigation strategies for commercial power plants. Specifically, the model predicted reductions in hydrogen levels within the circulatingmore » HTF that result from purging hydrogen from the power plant expansion tanks at a specified target rate. Our model predicted hydrogen partial pressures from 8.3 mbar to 9.6 mbar in the power plant components when no mitigation treatment was employed at the expansion tanks. Hydrogen pressures in the receiver annuli were 8.3 to 8.4 mbar. When hydrogen partial pressure was reduced to 0.001 mbar in the expansion tanks, hydrogen pressures in the receiver annuli fell to a range of 0.001 mbar to 0.02 mbar. When hydrogen partial pressure was reduced to 0.3 mbar in the expansion tanks, hydrogen pressures in the receiver annuli fell to a range of 0.25 mbar to 0.28 mbar. Our results show that controlling hydrogen partial pressure in the expansion tanks allows us to reduce and maintain hydrogen pressures in the receiver annuli to any practical level.« less

  6. Oxygen partial pressure influenced structural and optical properties of DC magnetron sputtered ZrO{sub 2} films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondaiah, P.; Madhavi, V.; Uthanna, S.

    2013-02-05

    Thin films of zirconium oxide (ZrO{sub 2}) were deposited on (100) p-silicon and quartz substrates by sputtering of metallic zirconium target under different oxygen partial pressures in the range 8 Multiplication-Sign 10{sup -3}-6 Multiplication-Sign 10{sup -2}Pa. The effect of oxygen partial pressure on the structural and optical properties of the deposited films was systematically investigated. The deposition rate of the films decreased from 3.3 to 1.83 nm/min with the increase of oxygen partial pressure from 8 Multiplication-Sign 10{sup -3}-6 Multiplication-Sign 10{sup -2}Pa respectively. The X-ray diffraction profiles revealed that the films exhibit (111) refection of zirconium oxide in monoclinic phase.more » The optical band gap of the films increased from 5.62 to 5.80 eV and refractive index increased from 2.01 to 2.08 with the increase of oxygen partial pressure from 8 Multiplication-Sign 10{sup -3}-6 Multiplication-Sign 10{sup -2}Pa respectively.« less

  7. Liquid oxygen turbopump technology

    NASA Technical Reports Server (NTRS)

    Nielson, C. E.

    1981-01-01

    A small, high-pressure, LOX turbopump was designed, fabricated and tested. The pump is a single-stage centrifugal type with power to the pump supplied by a single-stage partial-admission axial-impulse turbine. Design conditions included an operating speed of 7330 rad/s (70,000 rpm), pump discharge pressure of 2977 N/sqcm (4318 psia), and a pump flowrate of 16.4 Kg/s (36.21 lb/s). The turbopump contains a self-compensating axial thrust balance piston to eliminate axial thrust loads on the bearings during steady-state operation. Testing of the turbopump was achieved usng a gaseous hydrogen high-pressure flow to drive the turbine, which generally is propelled by LOX/LH2 combustion products, at 1041K (1874 R) inlet temperature and at a design pressure ratio of 1.424. Test data obtained with the turbopump are presented which include head-flow-efficiency performance, suction performance, balance piston performance and LOX seal performance. Mechanical performance of the turbopump is also discussed.

  8. High pressure oxygen furnace

    DOEpatents

    Morris, D.E.

    1992-07-14

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized, the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 5 figs.

  9. High pressure oxygen furnace

    DOEpatents

    Morris, Donald E.

    1992-01-01

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  10. High pressure furnace

    DOEpatents

    Morris, D.E.

    1993-09-14

    A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum)). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 19 figures.

  11. Effects of hydrogen partial pressure on autotrophic growth and product formation of Acetobacterium woodii.

    PubMed

    Kantzow, Christina; Weuster-Botz, Dirk

    2016-08-01

    Low aqueous solubility of the gases for autotrophic fermentations (e.g., hydrogen gas) results in low productivities in bioreactors. A frequently suggested approach to overcome mass transfer limitation is to increase the solubility of the limiting gas in the reaction medium by increasing the partial pressure in the gas phase. An increased inlet hydrogen partial pressure of up to 2.1 bar (total pressure of 3.5 bar) was applied for the autotrophic conversion of hydrogen and carbon dioxide with Acetobacterium woodii in a batch-operated stirred-tank bioreactor with continuous gas supply. Compared to the autotrophic batch process with an inlet hydrogen partial pressure of 0.4 bar (total pressure of 1.0 bar) the final acetate concentration after 3.1 days was reduced to 50 % (29.2 g L(-1) compared to 59.3 g L(-1)), but the final formate concentration was increased by a factor of 18 (7.3 g L(-1) compared to 0.4 g L(-1)). Applying recombinant A. woodii strains overexpressing either genes for enzymes in the methyl branch of the Wood-Ljungdahl pathway or the genes phosphotransacetylase and acetate kinase at an inlet hydrogen partial pressure of 1.4 bar reduced the final formate concentration by up to 40 % and increased the final dry cell mass and acetate concentrations compared to the wild type strain. Solely the overexpression of the two genes for ATP regeneration at the end of the Wood-Ljungdahl pathway resulted in an initial switch off of formate production at increased hydrogen partial pressure until the maximum of the hydrogen uptake rate was reached.

  12. Photosynthetic induction and its diffusional, carboxylation and electron transport processes as affected by CO2 partial pressure, temperature, air humidity and blue irradiance.

    PubMed

    Kaiser, Elias; Kromdijk, Johannes; Harbinson, Jeremy; Heuvelink, Ep; Marcelis, Leo F M

    2017-01-01

    Plants depend on photosynthesis for growth. In nature, factors such as temperature, humidity, CO 2 partial pressure, and spectrum and intensity of irradiance often fluctuate. Whereas irradiance intensity is most influential and has been studied in detail, understanding of interactions with other factors is lacking. We tested how photosynthetic induction after dark-light transitions was affected by CO 2 partial pressure (20, 40, 80 Pa), leaf temperatures (15·5, 22·8, 30·5 °C), leaf-to-air vapour pressure deficits (VPD leaf-air ; 0·5, 0·8, 1·6, 2·3 kPa) and blue irradiance (0-20 %) in tomato leaves (Solanum lycopersicum). Rates of photosynthetic induction strongly increased with CO 2 partial pressure, due to increased apparent Rubisco activation rates and reduced diffusional limitations. High leaf temperature produced slightly higher induction rates, and increased intrinsic water use efficiency and diffusional limitation. High VPD leaf-air slowed down induction rates and apparent Rubisco activation and (at 2·3 kPa) induced damped stomatal oscillations. Blue irradiance had no effect. Slower apparent Rubisco activation in elevated VPD leaf-air may be explained by low leaf internal CO 2 partial pressure at the beginning of induction. The environmental factors CO 2 partial pressure, temperature and VPD leaf-air had significant impacts on rates of photosynthetic induction, as well as on underlying diffusional, carboxylation and electron transport processes. Furthermore, maximizing Rubisco activation rates would increase photosynthesis by at most 6-8 % in ambient CO 2 partial pressure (across temperatures and humidities), while maximizing rates of stomatal opening would increase photosynthesis by at most 1-3 %. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Bulk YBa2Cu3O(x) superconductors through pressurized partial melt growth processing

    NASA Technical Reports Server (NTRS)

    Hu, S.; Hojaji, H.; Barkatt, A.; Boroomand, M.; Hung, M.; Buechele, A. C.; Thorpe, A. N.; Davis, D. D.; Alterescu, S.

    1992-01-01

    A novel pressurized partial melt growth process has been developed for producing large pieces of bulk Y-Ba-Cu-O superconductors. During long-time partial melt growth stage, an additional driving force for solidification is obtained by using pressurized oxygen gas. The microstructure and superconducting properties of the resulting samples were investigated. It was found that this new technique can eliminate porosity and inhomogeneity, promote large-scale grain-texturing, and improve interdomain coupling as well.

  14. Effect of some blocking drugs on the pressor response to physostigmine in the rat

    PubMed Central

    Gokhale, S. D.; Gulati, O. D.; Joshi, N. Y.

    1963-01-01

    Bretylium and guanethidine blocked the pressor effect of physostigmine and potentiated the responses to adrenaline and noradrenaline on the blood pressure of the rat. Morphine and atropine in small doses blocked the pressor effect of physostigmine without interfering with the actions of adrenaline and noradrenaline. Chlorpromazine in small doses (0.5 to 2.5 mg/kg) blocked the pressor effect of physostigmine and potentiated the responses to noradrenaline whilst those to adrenaline remained unaltered. 3,6-Di(3-diethylaminopropoxy)pyridazine di(methiodide) (Win 4981) blocked the pressor effect of physostigmine and, in its early stages, this block was partially reversed by choline chloride. N-Diethylaminoethyl-N-isopentyl-N'N'-diisopropylurea (P-286), in a dose that reduced the effect of dimethylphenylpiperazinium, had no effect on the pressor response to physostigmine or on the responses to adrenaline and noradrenaline. Hexamethonium, even in large doses (100 mg/kg), only blocked partially the effect of physostigmine while mecamylamine produced a complete block; the responses to adrenaline and noradrenaline were potentiated in both instances. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6 PMID:14081658

  15. Growth responses of Neurospora crassa to increased partial pressures of the noble gases and nitrogen.

    PubMed

    Buchheit, R G; Schreiner, H R; Doebbler, G F

    1966-02-01

    Buchheit, R. G. (Union Carbide Corp., Tonawanda, N.Y.), H. R. Schreiner, and G. F. Doebbler. Growth responses of Neurospora crassa to increased partial pressures of the noble gases and nitrogen. J. Bacteriol. 91:622-627. 1966.-Growth rate of the fungus Neurospora crassa depends in part on the nature of metabolically "inert gas" present in its environment. At high partial pressures, the noble gas elements (helium, neon, argon, krypton, and xenon) inhibit growth in the order: Xe > Kr> Ar > Ne > He. Nitrogen (N(2)) closely resembles He in inhibitory effectiveness. Partial pressures required for 50% inhibition of growth were: Xe (0.8 atm), Kr (1.6 atm), Ar (3.8 atm), Ne (35 atm), and He ( approximately 300 atm). With respect to inhibition of growth, the noble gases and N(2) differ qualitatively and quantitatively from the order of effectiveness found with other biological effects, i.e., narcosis, inhibition of insect development, depression of O(2)-dependent radiation sensitivity, and effects on tissue-slice glycolysis and respiration. Partial pressures giving 50% inhibition of N. crassa growth parallel various physical properties (i.e., solubilities, solubility ratios, etc.) of the noble gases. Linear correlation of 50% inhibition pressures to the polarizability and of the logarithm of pressure to the first and second ionization potentials suggests the involvement of weak intermolecular interactions or charge-transfer in the biological activity of the noble gases.

  16. A System for Incubations at High Gas Partial Pressure

    PubMed Central

    Sauer, Patrick; Glombitza, Clemens; Kallmeyer, Jens

    2012-01-01

    High-pressure is a key feature of deep subsurface environments. High partial pressure of dissolved gasses plays an important role in microbial metabolism, because thermodynamic feasibility of many reactions depends on the concentration of reactants. For gases, this is controlled by their partial pressure, which can exceed 1 MPa at in situ conditions. Therefore, high hydrostatic pressure alone is not sufficient to recreate true deep subsurface in situ conditions, but the partial pressure of dissolved gasses has to be controlled as well. We developed an incubation system that allows for incubations at hydrostatic pressure up to 60 MPa, temperatures up to 120°C, and at high gas partial pressure. The composition and partial pressure of gasses can be manipulated during the experiment. To keep costs low, the system is mainly made from off-the-shelf components with only very few custom-made parts. A flexible and inert PVDF (polyvinylidene fluoride) incubator sleeve, which is almost impermeable for gases, holds the sample and separates it from the pressure fluid. The flexibility of the incubator sleeve allows for sub-sampling of the medium without loss of pressure. Experiments can be run in both static and flow-through mode. The incubation system described here is usable for versatile purposes, not only the incubation of microorganisms and determination of growth rates, but also for chemical degradation or extraction experiments under high gas saturation, e.g., fluid–gas–rock-interactions in relation to carbon dioxide sequestration. As an application of the system we extracted organic compounds from sub-bituminous coal using H2O as well as a H2O–CO2 mixture at elevated temperature (90°C) and pressure (5 MPa). Subsamples were taken at different time points during the incubation and analyzed by ion chromatography. Furthermore we demonstrated the applicability of the system for studies of microbial activity, using samples from the Isis mud volcano. We could detect an increase in sulfate reduction rate upon the addition of methane to the sample. PMID:22347218

  17. [An alternative continence mechanism for continent catheterisable micturation].

    PubMed

    Honeck, P; Alken, P

    2010-01-01

    The creation of a stable, reliable, continent and easily catheterisable continence mechanism is an essential prerequisite for the construction of a continent cutaneous urinary reservoir. Although a substantial number of surgical methods has been described, construction is still a complex surgical procedure. The aim of this study was the evaluation of a new method for a continence mechanism using stapled small or large intestine. Small and large pig intestine was used for construction. For stapling the tube a 3 cm or 6 cm double row stapling system was used. Two variations using small and large intestine segments were constructed (IL 1, COL 1, COL 2). A 3 or 6 cm long stapler line was placed alongside a 12 Fr catheter positioned at the antimesenterial side creating a partially two-luminal segment. The open end of the non-catheterised lumen and the opposite intestinal end were closed by continuous sutures. The created tube was then embedded into the pouch. Pressure evaluation was performed for each variation. Intermittent external manual compression was used to simulate sudden pressure exposure. Construction times for the IL 1 and COL 1 variations were 10 +/- 1.5 min and 6.2 +/- 1.3 min for COL 2. All variations showed no leakage during filling or external compression. The maximum capacity was lower for the IL 1 compared to the COL variation. The maximum pressure levels reached did not differ significantly. The described technique is an easy and fast method to construct a continent and easy to catheterize continence mechanism using small or large intestine.

  18. Thermal Equation of State of TiC: A Synchrotron X-ray Diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, X.; Lin, Z; Zhang, J

    2010-01-01

    The pressure-volume-temperature measurements were carried out for titanium carbide (TiC) at pressures and temperatures up to 8.1 GPa and 1273 K using energy-dispersive synchrotron x-ray diffraction. Thermoelastic parameters were derived for TiC based on a modified high-temperature Birch-Murnaghan equation of state and a thermal pressure approach. With the pressure derivative of the bulk modulus, K{prime}{sub 0}, fixed at 4.0, we obtain: the ambient bulk modulus K{sub 0} = 268(6) GPa, which is comparable to previously reported value; temperature derivative of bulk modulus at constant pressure ({partial_derivative}K{sub T}/{partial_derivative}T){sub P} = -0.026(9) GPa K{sup -1}, volumetric thermal expansivity {alpha}{sub T}(K{sup -1}) =more » a+b T with a = 1.62(12) x 10{sup -5} K{sup -1} and b = 1.07(17) x 10{sup -8}K{sup -2}, pressure derivative of thermal expansion ({partial_derivative}{sub {alpha}}/{partial_derivative}{sub P}){sub T} = (-3.62 {+-} 1.14) x 10{sup -7} GPa{sup -1} K{sup -1}, and temperature derivative of bulk modulus at constant volume ({partial_derivative}K{sub T}/{partial_derivative}T){sub V} = -0.015(8) GPa K{sup -1}. These results provide fundamental thermophysical properties for TiC for the first time and are important to theoretical and computational modeling of transition metal carbides.« less

  19. Spatial Characteristics of F/A-18 Vertical Tail Buffet Pressures Measured in Flight

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.; Shah, Gautam H.

    1998-01-01

    Buffeting is an aeroelastic phenomenon which plagues high performance aircraft, especially those with twin vertical tails, at high angles of attack. Previous wind-tunnel and flight tests were conducted to characterize the buffet loads on the vertical tails by measuring surface pressures, bending moments, and accelerations. Following these tests, buffeting estimates were computed using the measured buffet pressures and compared to the measured responses. The estimates did not match the measured data because the assumed spatial correlation of the buffet pressures was not correct. A better understanding of the partial (spatial) correlation of the differential buffet pressures on the tail was necessary to improve the buffeting estimates. Several wind-tunnel investigations were conducted for this purpose. When combined and compared, the results of these tests show that the partial correlation depends on and scales with flight conditions. One of the remaining questions is whether the windtunnel data is consistent with flight data. Presented herein, cross-spectra and coherence functions calculated from pressures that were measured on the high alpha research vehicle (HARV) indicate that the partial correlation of the buffet pressures in flight agrees with the partial correlation observed in the wind tunnel.

  20. Correlation of Fin Buffet Pressures on an F/A-18 with Scaled Wind-Tunnel Measurements

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.; Shah, Gautam H.

    1999-01-01

    Buffeting is an aeroelastic phenomenon occurring at high angles of attack that plagues high performance aircraft, especially those with twin vertical tails. Previous wind-tunnel and flight tests were conducted to characterize the buffet loads on the vertical tails by measuring surface pressures, bending moments, and accelerations. Following these tests, buffeting responses were computed using the measured buffet pressures and compared to the measured buffeting responses. The calculated results did not match the measured data because the assumed spatial correlation of the buffet pressures was not correct. A better understanding of the partial (spatial) correlation of the differential buffet pressures on the tail was necessary to improve the buffeting predictions. Several wind-tunnel investigations were conducted for this purpose. When compared, the results of these tests show that the partial correlation scales with flight conditions. One of the remaining questions is whether the wind-tunnel data is consistent with flight data. Presented herein, cross-spectra and coherence functions calculated from pressures that were measured on the High Alpha Research Vehicle indicate that the partial correlation of the buffet pressures in flight agrees with the partial correlation observed in the wind tunnel.

  1. Effect of pressure on the Raman-active modes of zircon (ZrSiO4): a first-principles study

    NASA Astrophysics Data System (ADS)

    Sheremetyeva, Natalya; Cherniak, Daniele J.; Watson, E. Bruce; Meunier, Vincent

    2018-02-01

    Density-functional theory (DFT) was employed in a first-principles study of the effects of pressure on the Raman-active modes of zircon (ZrSiO4), using both the generalized gradient and local density approximations (GGA and LDA, respectively). Beginning with the equilibrium structure at zero pressure, we conducted a calibration of the effect of pressure in a manner procedurally similar to an experimental calibration. For pressures between 0 and 7 GPa, we find excellent qualitative agreement of frequency-pressure slopes partial ω /partial P calculated from GGA DFT with results of previous experimental studies. In addition, we were able to rationalize the ω vs. P behavior based on details of the vibrational modes and their atomic displacements. Most of the partial ω /partial P slopes are positive as expected, but the symmetry of the zircon lattice also results in two negative slopes for modes that involve slight shearing and rigid rotation of SiO4 tetrahedra. Overall, LDA yields absolute values of the frequencies of the Raman-active modes in good agreement with experimental values, while GGA reproduces the shift in frequency with pressure especially well.

  2. Relating oxygen partial pressure, saturation and content: the haemoglobin-oxygen dissociation curve.

    PubMed

    Collins, Julie-Ann; Rudenski, Aram; Gibson, John; Howard, Luke; O'Driscoll, Ronan

    2015-09-01

    The delivery of oxygen by arterial blood to the tissues of the body has a number of critical determinants including blood oxygen concentration (content), saturation (S O2 ) and partial pressure, haemoglobin concentration and cardiac output, including its distribution. The haemoglobin-oxygen dissociation curve, a graphical representation of the relationship between oxygen satur-ation and oxygen partial pressure helps us to understand some of the principles underpinning this process. Historically this curve was derived from very limited data based on blood samples from small numbers of healthy subjects which were manipulated in vitro and ultimately determined by equations such as those described by Severinghaus in 1979. In a study of 3524 clinical specimens, we found that this equation estimated the S O2 in blood from patients with normal pH and S O2 >70% with remarkable accuracy and, to our knowledge, this is the first large-scale validation of this equation using clinical samples. Oxygen saturation by pulse oximetry (S pO2 ) is nowadays the standard clinical method for assessing arterial oxygen saturation, providing a convenient, pain-free means of continuously assessing oxygenation, provided the interpreting clinician is aware of important limitations. The use of pulse oximetry reduces the need for arterial blood gas analysis (S aO2 ) as many patients who are not at risk of hypercapnic respiratory failure or metabolic acidosis and have acceptable S pO2 do not necessarily require blood gas analysis. While arterial sampling remains the gold-standard method of assessing ventilation and oxygenation, in those patients in whom blood gas analysis is indicated, arterialised capillary samples also have a valuable role in patient care. The clinical role of venous blood gases however remains less well defined.

  3. High rate reactive sputtering of MoN(x) coatings

    NASA Technical Reports Server (NTRS)

    Rudnik, Paul J.; Graham, Michael E.; Sproul, William D.

    1991-01-01

    High rate reactive sputtering of MoN(x) films was performed using feedback control of the nitorgen partial pressure. Coatings were made at four different target powers: 2.5, 5.0, 7.5 and 10 kW. No hysteresis was observed in the nitrogen partial pressure vs. flow plot, as is typically seen for the Ti-N system. Four phases were determined by X-ray diffraction: molybdenum, Mo-N solid solution, Beta-Mo2N and gamma-Mo2N. The hardness of the coatings depended upon composition, substrate bias, and target power. The phases present in the hardest films differed depending upon deposition parameters. For example, the Beta-Mo2N phase was hardest (load 25 gf) at 5.0 kW with a value of 3200 kgf/sq mm, whereas the hardest coatings at 10 kW were the gamma-Mo2N phase (3000 kgf/sq mm). The deposition rate generally decreased with increasing nitrogen partial pressure, but there was a range of partial pressures where the rate was relatively constant. At a target power of 5.0 kW, for example, the deposition rates were 3300 A/min for a N2 partial pressure of 0.05 - 1.0 mTorr.

  4. Growth of the microalgae Neochloris oleoabundans at high partial oxygen pressures and sub-saturating light intensity.

    PubMed

    Sousa, Cláudia; de Winter, Lenneke; Janssen, Marcel; Vermuë, Marian H; Wijffels, René H

    2012-01-01

    The effect of partial oxygen pressure on growth of Neochloris oleoabundans was studied at sub-saturating light intensity in a fully-controlled stirred tank photobioreactor. At the three partial oxygen pressures tested (P(O)₂= 0.24; 0.63; 0.84 bar), the specific growth rate was 1.38; 1.36 and 1.06 day(-1), respectively. An increase of the P(CO)₂from 0.007 to 0.02 bar at P(O₂) of 0.84 bar resulted in an increase in the growth rate from 1.06 to 1.36 day(-1). These results confirm that the reduction of algal growth at high oxygen concentrations at sub-saturating light conditions is mainly caused by competitive inhibition of Rubisco. This negative effect on growth can be overcome by restoring the O(2)/CO(2) ratio by an increase in the partial carbon dioxide pressure. In comparison to general practice (P(O(2)) = 0.42 bar), working at partial O(2) pressure of 0.84 bar could reduce the energy requirement for degassing by a factor of 3-4. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. High pressure synthesis, crystal growth and magnetic properties of TiOF

    NASA Astrophysics Data System (ADS)

    Cumby, J.; Burchell, M. B.; Attfield, J. P.

    2018-06-01

    Polycrystalline samples of TiOF have been prepared at 1300 °C and 8 GPa, with small single crystals grown at the same conditions. The crystal structure remains tetragonal rutile-type down to at least 90 K (space group P42/mnm, a = 4.6533 (2) Å and c = 3.0143 (2) Å at 90 K) and the Ti(O,F)6 octahedra are slightly compressed, consistent with Jahn-Teller distortion of 3d1 Ti3+. Diffuse scattering reveals disordered structural correlations that may arise from local cis-order of oxide anions driven by covalency. TiOF is paramagnetic down to 5 K and observation of a small paramagnetic moment and a substantial Pauli term indicates that the d-electrons are partially delocalised.

  6. Decline in arterial partial pressure of oxygen after exercise: a surrogate marker of pulmonary vascular obstructive disease in patients with atrial septal defect and severe pulmonary hypertension.

    PubMed

    Laksmivenkateshiah, Srinivas; Singhi, Anil K; Vaidyanathan, Balu; Francis, Edwin; Karimassery, Sundaram R; Kumar, Raman K

    2011-06-01

    To examine the utility of decline in arterial partial pressure of oxygen after exercise as a marker of pulmonary vascular obstructive disease in patients with atrial septal defect and pulmonary hypertension. Treadmill exercise was performed in 18 patients with atrial septal defect and pulmonary hypertension. Arterial blood gas samples were obtained before and after peak exercise. A decline in the arterial pressure of oxygen of more than 10 millimetres of mercury after exercise was considered significant based on preliminary tests conducted on the controls. Cardiac catheterisation was performed in all patients and haemodynamic data sets were obtained on room air, oxygen, and a mixture of oxygen and nitric oxide (30-40 parts per million). There were 10 patients who had more than a 10 millimetres of mercury drop in arterial partial pressure of oxygen after exercise and who had a basal pulmonary vascular resistance index of more than 7 Wood units per square metre. Out of eight patients who had less than a 10 millimetres of mercury drop in arterial partial pressure of oxygen after exercise, seven had a basal pulmonary vascular resistance index of less than 7 Wood units per square metre, p equals 0.0001. A decline in arterial partial pressure of oxygen of more than 10 millimetres of mercury predicted a basal pulmonary vascular resistance index of more than 7 Wood units per square metre with a specificity of 100% and a sensitivity of 90%. A decline in arterial partial pressure of oxygen following exercise appears to predict a high pulmonary vascular resistance index in patients with atrial septal defect and pulmonary hypertension. This test is a useful non-invasive marker of pulmonary vascular obstructive disease in this subset.

  7. New Method of Producing Titanium Carbide, Monoxide, and Dioxide Grains in Laboratory

    NASA Astrophysics Data System (ADS)

    Kumamoto, Akihito; Kurumada, Mami; Kimura, Yuki; Kaito, Chihiro

    By making a carbon rod covered with Ti on the surface without exposure to air, TiC grains less than 10nm in diameter were predominantly produced. The introduction of a small amount of oxygen in Ar gas (partial pressure 1/1000), allowed the continuous formation of TiO2 and TiO-TiC. The infrared spectra of TiO2, TiO, and TiC were measured. An absorption feature attributed to TiO phase in oxidized TiC grains showed a characteristic peak at 14.7 μm.

  8. New Method of Producing Titanium Carbide, Monoxide, and Dioxide Grains in Laboratory

    NASA Astrophysics Data System (ADS)

    Kumamoto, Akihito; Kurumada, Mami; Kimura, Yuki; Kaito, Chihiro

    By making a carbon rod covered with Ti on the surface without exposure to air, TiC grains less than 10 nm in diameter were predominantly produced. The introduction of a small amount of oxygen in Ar gas (partial pressure 1/1000), allowed the continuous formation of TiO2 and TiO-TiC. The infrared spectra of TiO2, TiO, and TiC were measured. An absorption feature attributed to TiO phase in oxidized TiC grains showed a characteristic peak at 14.7 μm.

  9. Predictive sensor method and apparatus

    NASA Technical Reports Server (NTRS)

    Nail, William L. (Inventor); Koger, Thomas L. (Inventor); Cambridge, Vivien (Inventor)

    1990-01-01

    A predictive algorithm is used to determine, in near real time, the steady state response of a slow responding sensor such as hydrogen gas sensor of the type which produces an output current proportional to the partial pressure of the hydrogen present. A microprocessor connected to the sensor samples the sensor output at small regular time intervals and predicts the steady state response of the sensor in response to a perturbation in the parameter being sensed, based on the beginning and end samples of the sensor output for the current sample time interval.

  10. Subatmospheric vapor pressures for fluoromethane (R41), 1,1-difluoroethane (R152a), and 1,1,1-trifluoroethane (R143a) evaluated from internal-energy measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duarte-Garza, H.A.; Magee, J.W.

    1999-09-01

    Vapor pressures were evaluated from measured internal-energy changes {Delta}U{sup (2)} in the vapor + liquid two-phase region. The method employed a thermodynamic relationship between the derivative quantity ({partial_derivative}U{sup (2)}/{partial_derivative}V){sub T}, the vapor pressure p{sub {sigma}}, and its temperature derivative ({partial_derivative}p/{partial_derivative}T){sub {sigma}}. This method was applied at temperatures between the triple point and the normal boiling point of three substances: fluoromethane (R41), 1,1-difluoroethane (R152a), and 1,1,1-trifluoroethane (R143a). In the case of R41, vapor pressures up to 1 MPa were calculated to validate the technique at higher pressures. For R152a, the calculated vapor pressure at the triple-point temperature differed from a directmore » experimental measurement by less than the claimed uncertainty (5 Pa) of the measurement. The calculated vapor pressures for R41 helped to resolve discrepancies in several published vapor pressure sources. Agreement with experimentally measured vapor pressures for R152a and for R143a near the normal boiling point (101.325 kPa) was within the experimental uncertainty of approximately 0.04 kPa (0.04%) for the published measurements.« less

  11. Effect of partial meniscectomy at the medial posterior horn on tibiofemoral contact mechanics and meniscal hoop strains in human knees.

    PubMed

    Seitz, Andreas Martin; Lubomierski, Anja; Friemert, Benedikt; Ignatius, Anita; Dürselen, Lutz

    2012-06-01

    We examined the influence of partial meniscectomy of 10 mm width on 10 human cadaveric knee joints, as it is performed during the treatment of radial tears in the posterior horn of the medial meniscus, on maximum contact pressure, contact area (CA), and meniscal hoop strain in the lateral and medial knee compartments. In case of 0° and 30° flexion angle, 20% and 50% partial meniscectomy did not influence maximum contact pressure and area. Only in case of 60° knee flexion, 50% partial resection increased medial maximum contact pressure and decreased the medial CA statistically significant. However, 100% partial resection increased maximum contact pressure and decreased CA significantly in the meniscectomized medial knee compartment in all tested knee positions. No significant differences were noted for meniscal hoop strain. From a biomechanical point of view, our in vitro study suggests that the medial joint compartment is not in danger of accelerated cartilage degeneration up to a resection limit of 20% meniscal depth and 10 mm width. Contact mechanics are likely to be more sensitive to partial meniscectomy at higher flexion angles, which has to be further investigated. Copyright © 2011 Orthopaedic Research Society.

  12. Effect of PEEP and inhaled nitric oxide on pulmonary gas exchange during gaseous and partial liquid ventilation with small volumes of perfluorocarbon.

    PubMed

    Max, M; Kuhlen, R; Falter, F; Reyle-Hahn, M; Dembinski, R; Rossaint, R

    2000-04-01

    Partial liquid ventilation, positive end-expiratory pressure (PEEP) and inhaled nitric oxide (NO) can improve ventilation/perfusion mismatch in acute lung injury (ALI). The aim of the present study was to compare gas exchange and hemodynamics in experimental ALI during gaseous and partial liquid ventilation at two different levels of PEEP, with and without the inhalation of nitric oxide. Seven pigs (24+/-2 kg BW) were surfactant-depleted by repeated lung lavage with saline. Gas exchange and hemodynamic parameters were assessed in all animals during gaseous and subsequent partial liquid ventilation at two levels of PEEP (5 and 15 cmH2O) and intermittent inhalation of 10 ppm NO. Arterial oxygenation increased significantly with a simultaneous decrease in cardiac output when PEEP 15 cmH2O was applied during gaseous and partial liquid ventilation. All other hemodynamic parameters revealed no relevant changes. Inhalation of NO and instillation of perfluorocarbon had no additive effects on pulmonary gas exchange when compared to PEEP 15 cmH2O alone. In experimental lung injury, improvements in gas exchange are most distinct during mechanical ventilation with PEEP 15 cmH2O without significantly impairing hemodynamics. Partial liquid ventilation and inhaled NO did not cause an additive increase of PaO2.

  13. Point Defect Structure of Cr203

    DTIC Science & Technology

    1987-10-01

    Calculation of Electron Hole Mobility ........................ 104 6.2.3 Construction of the Defect Concentration vs. Oxygen Pressure Diagram...1000’ to 16000C ............ 123 7.7 Calculated diffusion coefficient vs. oxygen partial pressure diagram for pure Cr203 at 1100 0 C...127 7.10 Calculated parabolic rate constant vs. oxygen partial pressure diagram for pure Cr203 at

  14. Generation, ascent and eruption of magma on the Moon: New insights into source depths, magma supply, intrusions and effusive/explosive eruptions (Part 1: Theory)

    NASA Astrophysics Data System (ADS)

    Wilson, Lionel; Head, James W.

    2017-02-01

    We model the ascent and eruption of lunar mare basalt magmas with new data on crustal thickness and density (GRAIL), magma properties, and surface topography, morphology and structure (Lunar Reconnaissance Orbiter). GRAIL recently measured the broad spatial variation of the bulk density structure of the crust of the Moon. Comparing this with the densities of lunar basaltic and picritic magmas shows that essentially all lunar magmas were negatively buoyant everywhere within the lunar crust. Thus positive excess pressures must have been present in melts at or below the crust-mantle interface to enable them to erupt. The source of such excess pressures is clear: melt in any region experiencing partial melting or containing accumulated melt, behaves as though an excess pressure is present at the top of the melt column if the melt is positively buoyant relative to the host rocks and forms a continuously interconnected network. The latter means that, in partial melt regions, probably at least a few percent melting must have taken place. Petrologic evidence suggests that both mare basalts and picritic glasses may have been derived from polybaric melting of source rocks in regions extending vertically for at least a few tens of km. This is not surprising: the vertical extent of a region containing inter-connected partial melt produced by pressure-release melting is approximately inversely proportional to the acceleration due to gravity. Translating the ∼25 km vertical extent of melting in a rising mantle diapir on Earth to the Moon then implies that melting could have taken place over a vertical extent of up to 150 km. If convection were absent, melting could have occurred throughout any region in which heat from radioisotope decay was accumulating; in the extreme this could have been most of the mantle. The maximum excess pressure that can be reached in a magma body depends on its environment. If melt percolates upward from a partial melt zone and accumulates as a magma reservoir, either at the density trap at the base of the crust or at the rheological trap at the base of the elastic lithosphere, the excess pressure at the top of the magma body will exert an elastic stress on the overlying rocks. This will eventually cause them to fail in tension when the excess pressure has risen to close to twice the tensile strength of the host rocks, perhaps up to ∼10 MPa, allowing a dike to propagate upward from this point. If partial melting occurs in a large region deep in the mantle, however, connections between melt pockets and veins may not occur until a finite amount, probably a few percent, of melting has occurred. When interconnection does occur, the excess pressure at the top of the partial melt zone will rise abruptly to a high value, again initiating a brittle fracture, i.e. a dike. That sudden excess pressure is proportional to the vertical extent of the melt zone, the difference in density between the host rocks and the melt, and the acceleration due to gravity, and could readily be ∼100 MPa, vastly greater than the value needed to initiate a dike. We therefore explored excess pressures in the range ∼10 to ∼100 MPa. If eruptions take place through dikes extending upward from the base of the crust, the mantle magma pressure at the point where the dike is initiated must exceed the pressure due to the weight of the magmatic liquid column. This means that on the nearside the excess pressure must be at least ∼19 ± 9 MPa and on the farside must be ∼29 ± 15 MPa. If the top of the magma body feeding an erupting dike is a little way below the base of the crust, slightly smaller excess pressures are needed because the magma is positively buoyant in the part of the dike within the upper mantle. Even the smallest of these excess pressures is greater than the ∼10 MPa likely maximum value in a magma reservoir at the base of the crust or elastic lithosphere, but the values are easily met by the excess pressures in extensive partial melt zones deeper within the mantle. Thus magma accumulations at the base of the crust would have been able to intrude dikes part-way through the crust, but not able to feed eruptions to the surface; in order to be erupted, magma must have been extracted from deeper mantle sources, consistent with petrologic evidence. Buoyant dikes growing upward from deep mantle sources of partial melt can disconnect from their source regions and travel through the mantle as isolated bodies of melt that encounter and penetrate the crust-mantle density boundary. They adjust their lengths and internal pressure excesses so that the stress intensity at the lower tip is zero. The potential total vertical extent of the resulting melt body depends on the vertical extent of the source region from which it grew. For small source extents, the upper tip of the resulting dike crossing the crust-mantle boundary cannot reach the surface anywhere on the Moon and therefore can only form a dike intrusion; for larger source extents, the dike can reach the surface and erupt on the nearside but still cannot reach the surface on the farside; for even larger source extents, eruptions could occur on both the nearside and the farside. The paucity of farside eruptions therefore implies a restricted range of vertical extents of partial melt source region sizes, between ∼16 and ∼36 km. When eruptions can occur, the available pressure in excess of what is needed to support a static magma column to the surface gives the pressure gradient driving magma flow. The resulting typical turbulent magma rise speeds are ∼10 to a few tens of m s-1, dike widths are of order 100 m, and eruption rates from 1 to 10 km long fissure vents are of order 105 to 106 m3 s-1. Volume fluxes in lunar eruptions derived from lava flow thicknesses and surface slopes or rille lengths and depths are found to be of order 105 to 106 m3 s-1 for volume-limited lava flows and >104 to 105 m3 s-1 for sinuous rilles, with dikes widths of ∼50 m. The lower end of the volume flux range for sinuous rilles corresponds to magma rise speeds approaching the limit set by the fact that excessive cooling would occur during flow up a 30 km long dike kept open by a very low excess pressure. These eruptions were thus probably fed by partial melt zones deep in the mantle. Longer eruption durations, rather than any subtle topographic slope effects, appear to be the key to the ability of these flows to erode sinuous rille channels. We conclude that: (1) essentially all lunar magmas were negatively buoyant everywhere within the crust; (2) positive excess pressures of at least 20-30 MPa must have been present in mantle melts at or below the crust-mantle interface to drive magmas to the surface; (3) such pressures are easily produced in zones of partial melting by pressure-release during mantle convection or simple heat accumulation from radioisotopes; (4) magma volume fluxes available from dikes forming at the tops of partial melt zones are consistent with the 105 to 106 m3 s-1 volume fluxes implied by earlier analyses of surface flows; (5) eruptions producing thermally-eroded sinuous rille channels involved somewhat smaller volume fluxes of magma where the supply rate may be limited by the rate of extraction of melt percolating through partial melt zones.

  15. Growth Responses of Neurospora crassa to Increased Partial Pressures of the Noble Gases and Nitrogen

    PubMed Central

    Buchheit, R. G.; Schreiner, H. R.; Doebbler, G. F.

    1966-01-01

    Buchheit, R. G. (Union Carbide Corp., Tonawanda, N.Y.), H. R. Schreiner, and G. F. Doebbler. Growth responses of Neurospora crassa to increased partial pressures of the noble gases and nitrogen. J. Bacteriol. 91:622–627. 1966.—Growth rate of the fungus Neurospora crassa depends in part on the nature of metabolically “inert gas” present in its environment. At high partial pressures, the noble gas elements (helium, neon, argon, krypton, and xenon) inhibit growth in the order: Xe > Kr> Ar ≫ Ne ≫ He. Nitrogen (N2) closely resembles He in inhibitory effectiveness. Partial pressures required for 50% inhibition of growth were: Xe (0.8 atm), Kr (1.6 atm), Ar (3.8 atm), Ne (35 atm), and He (∼ 300 atm). With respect to inhibition of growth, the noble gases and N2 differ qualitatively and quantitatively from the order of effectiveness found with other biological effects, i.e., narcosis, inhibition of insect development, depression of O2-dependent radiation sensitivity, and effects on tissue-slice glycolysis and respiration. Partial pressures giving 50% inhibition of N. crassa growth parallel various physical properties (i.e., solubilities, solubility ratios, etc.) of the noble gases. Linear correlation of 50% inhibition pressures to the polarizability and of the logarithm of pressure to the first and second ionization potentials suggests the involvement of weak intermolecular interactions or charge-transfer in the biological activity of the noble gases. PMID:5883104

  16. Report on ISS Oxygen Production, Resupply, and Partial Pressure Management

    NASA Technical Reports Server (NTRS)

    Schaezler, Ryan; Ghariani, Ahmed; Leonard, Daniel; Lehman, Daniel

    2011-01-01

    The majority of oxygen used on International Space Station (ISS) is for metabolic support and denitrogenation procedures prior to Extra-Vehicular Activities. Oxygen is supplied by various visiting vehicles such as the Progress and Shuttle in addition to oxygen production capability on both the United States On-Orbit Segment (USOS) and Russian Segment (RS). To maintain a habitable atmosphere the oxygen partial pressure is controlled between upper and lower bounds. The full range of the allowable oxygen partial pressure along with the increased ISS cabin volume is utilized as a buffer allowing days to pass between oxygen production or direct addition of oxygen to the atmosphere from reserves. This paper summarizes amount of oxygen supplied and produced from all of the sources and describes past experience of managing oxygen partial pressure along with the range of management options available to the ISS.

  17. Thin film oxygen partial pressure sensor

    NASA Technical Reports Server (NTRS)

    Wortman, J. J.; Harrison, J. W.; Honbarrier, H. L.; Yen, J.

    1972-01-01

    The development is described of a laboratory model oxygen partial pressure sensor using a sputtered zinc oxide thin film. The film is operated at about 400 C through the use of a miniature silicon bar. Because of the unique resistance versus temperature relation of the silicon bar, control of the operational temperature is achieved by controlling the resistance. A circuit for accomplishing this is described. The response of sputtered zinc oxide films of various thicknesses to oxygen, nitrogen, argon, carbon dioxide, and water vapor caused a change in the film resistance. Over a large range, film conductance varied approximately as the square root of the oxygen partial pressure. The presence of water vapor in the gas stream caused a shift in the film conductance at a given oxygen partial pressure. A theoretical model is presented to explain the characteristic features of the zinc oxide response to oxygen.

  18. Partial pressures of oxygen, phosphorus and fluorine in some lunar lavas

    NASA Technical Reports Server (NTRS)

    Nash, W. P.; Hausel, W. D.

    1973-01-01

    Lunar sample 14310 is a feldspar-rich basalt which shows no evidence of shock deformation or recrystallization. Pyroxenes include Mg-rich orthopyroxene, pigeonite and augite; pyroxferroite occurs in the interstitial residuum. Plagioclase feldspars are zoned from An(96) to An(67), and variations in feldspar compositions do not necessarily indicate loss of Na during eruption of the lava. Opaque phases include ilmenite, ulvospinel, metallic iron, troilite, and schreibersite. Both whitlockite and apatite are present, and the interstitial residua contain baddeleyite, tranquillityite and barium-rich sanidine. Theoretical calculations provide estimates of partial pressures of oxygen, phosphorus, and fluorine in lunar magmas. In general, partial pressures of oxygen are restricted by the limiting assemblages of iron-wuestite and ilmenite-iron-rutile; phosphorus partial pressures are higher in lunar magmas than in terrestrial lavas. The occurrence of whitlockite indicates significantly lower fugacities of fluorine in lunar magmas than in terrestrial magmas.

  19. Influence of oxygen partial pressure on the composition and orientation of strontium-doped lead zirconate titanate thin films.

    PubMed

    Sriram, S; Bhaskaran, M; du Plessis, J; Short, K T; Sivan, V P; Holland, A S

    2009-01-01

    The influence of oxygen partial pressure during the deposition of piezoelectric strontium-doped lead zirconate titanate thin films is reported. The thin films have been deposited by RF magnetron sputtering in an atmosphere of high purity argon and oxygen (in the ratio of 9:1), on platinum-coated silicon substrates (heated to 650 degrees C). The influence of oxygen partial pressure is studied to understand the manner in which the stoichiometry of the thin films is modified, and to understand the influence of stoichiometry on the perovskite orientation. This article reports on the results obtained from films deposited at oxygen partial pressures of 1-5 mTorr. The thin films have been studied using a combination of X-ray photoelectron spectroscopy (XPS), glancing angle X-ray diffraction (GA-XRD), and atomic force microscopy (AFM). XPS analysis highlights the marked influence of variations in oxygen pressure during sputtering, observed by variations in oxygen concentration in the thin films, and in some cases by the undesirable decrease in lead concentration in the thin films. GA-XRD is used to study the relative variations in perovskite peak intensities, and has been used to determine the deposition conditions to attain the optimal combination of stoichiometry and orientation. AFM scans show the marked influence of the oxygen partial pressure on the film morphology.

  20. The e[sup [minus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holroyd, R.A.; Schwarz, H.A.; Stradowska, E.

    The rate constants for attachment of excess electrons to 1,3-butadiene (k[sub a]) and detachment from the butadiene anion (k[sub d]) in n-hexane are reported. The equilibrium constant, K[sub eq] = k[sub a]/k[sub d], increases rapidly with pressure and decreases as the temperature increases. At -7[degree]C attachment is observed at 1 bar. At high pressures the attachment rate is diffusion controlled. The activation energy for detachment is about 21 kcal/mol; detachment is facilitated by the large entropy of activation. The reaction volumes for attachment range from -181 cm[sup 3]/mol at 400 bar to-122 cm[sup 3]/mol at 1500 bar and are largelymore » attributed to the electrostriction volume of the butadiene anion ([Delta][bar V][sub el]). Values of [Delta][bar V][sub el] calculated by a model, which includes a glassy shell of solvent molecules around the ion, are in agreement with experimental reaction volumes. The analysis indicates the partial molar volume of the electron in hexane is small and probably negative. It is shown that the entropies of reaction are closely related to the partial molar volumes of reaction. 22 refs., 5 figs., 5 tabs.« less

  1. Measuring Ancient Air Pressure Using Fossilized Cyanobacteria

    NASA Astrophysics Data System (ADS)

    Silverman, S. N.; Som, S. M.; Gordon, R.; Bebout, B.

    2016-12-01

    The evolution of Earth's atmosphere has been governed by biological evolution. The dominant air component, nitrogen, has undergone substantial variation over geological time. Today, the partial pressure of nitrogen is 0.79 bar, but this value could have been much higher during early Earth1. The nitrogen partial pressure is postulated to have dropped to a maximum of 0.5 bar before the Great Oxidation Event 2.4 billion years ago, and subsequently recovered to the 0.8 bar value of our modern atmosphere over the next 330 million years2. We are placing constraints on the trajectory of this recovery by investigating how nitrogen partial pressure influences the morphology of a certain species of filamentous cyanobacteria that has been found fossilized in 2 billion year old rocks. These filamentous cyanobacteria convert nitrogen from its dissolved gaseous state (N2) to a biologically useful state (i.e. NH3) when the latter is present at growth-limiting concentrations in their aquatic environment. Such cyanobacteria develop heterocysts (specialized, visually distinct cells), which fix the nitrogen and laterally distribute it to neighboring cells along the one-dimensional filament. We suggest that the distance between heterocysts reflects the nitrogen partial pressure dissolved in water, which is related to atmospheric pN2 by Henry's law. In the laboratory, we are quantifying the relationship between heterocyst distance, variance and covariance to atmospheric pN2 by subjecting cyanobacteria (in media devoid of nitrate) to different partial pressures of N2 at a constant temperature and lighting for the representative species Anabaena variabilis. As far as we know, such experiments have not been previously conducted. This new geobarometer will complement existing methods of quantifying ancient nitrogen partial pressure. 1Goldblatt, Colin, et al. "Nitrogen-enhanced greenhouse warming on early Earth." Nature Geoscience 2 (2009): 891-896. 2Som, S., et al. "Earth's air pressure 2.7 billion years ago constrained to less than half of modern levels." Nature Geoscience 9 (2016): 448-451.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karabourniotis, D.; Couris, S.; Damelincourt, J.J.

    The partial pressure of thallium in high-pressure Hg-TlI discharges with different mercury, thallium, and electron pressures has been measured by using the optically thin line Tl 655 nm and the self-reversed line Tl 535 nm. The partial pressure of the arc axis has been measured from the line Tl 655nm. The effective partial pressure has been measured from the self-reversed line Tl 535 nm on the basis of the multiparameter method, and it has been calculated from the known axis pressure of thallium and the calculation of its radial variation by taking into account the chemical reactions. The experimental resultsmore » confirm the dispersion character of the blue wing of the line Tl 535 nm. The systematic difference obtained between the measured and calculated effective pressure, particularly at the moment of minimum electron density, may be interpreted by deviations from the local thermodynamic equilibrium (LTE) caused by overpopulation of the upper level of the line Tl 535 nm.« less

  3. Bubble formation in water with addition of a hydrophobic solute.

    PubMed

    Okamoto, Ryuichi; Onuki, Akira

    2015-07-01

    We show that phase separation can occur in a one-component liquid outside its coexistence curve (CX) with addition of a small amount of a solute. The solute concentration at the transition decreases with increasing the difference of the solvation chemical potential between liquid and gas. As a typical bubble-forming solute, we consider O2 in ambient liquid water, which exhibits mild hydrophobicity and its critical temperature is lower than that of water. Such a solute can be expelled from the liquid to form gaseous domains while the surrounding liquid pressure is higher than the saturated vapor pressure p cx. This solute-induced bubble formation is a first-order transition in bulk and on a partially dried wall, while a gas film grows continuously on a completely dried wall. We set up a bubble free energy ΔG for bulk and surface bubbles with a small volume fraction ϕ. It becomes a function of the bubble radius R under the Laplace pressure balance. Then, for sufficiently large solute densities above a threshold, ΔG exhibits a local maximum at a critical radius and a minimum at an equilibrium radius. We also examine solute-induced nucleation taking place outside CX, where bubbles larger than the critical radius grow until attainment of equilibrium.

  4. Incidence and Determinants of Port Occlusions in Cancer Outpatients: A Prospective Cohort Study.

    PubMed

    Milani, Alessandra; Mazzocco, Ketti; Gandini, Sara; Pravettoni, Gabriella; Libutti, Livio; Zencovich, Claudia; Sbriglia, Ada; Pari, Chiara; Magon, Giorgio; Saiani, Luisa

    Normal saline is considered a safe alternative for heparin as a locking solution in totally implantable venous access devices. The incidence rate of partial occlusion with the use of normal saline (easy injection, impossible aspiration) is estimated at 4%. The aim of this study was to investigate determinants of partial occlusions with the use of normal saline solution and the maintenance of positive pressure in the catheter. We enrolled 218 patients with different solid tumors who underwent pharmacologic treatment through the port with different frequencies: from once every week to at least once every month. The port was flushed with normal saline solution keeping a positive pressure in the catheter. We performed 4111 observations and documented normal port functioning in 99% of observations (n = 4057) and partial occlusions in 1% of observations (n = 54). Partial occlusions were significantly associated with frequency of port flushing (P < .05), chemotherapy (P < .001), and blood sample collection (P < .001). The use of positive pressure in addition to normal saline reduces the incidence rate of partial occlusions. The type of treatment, blood sample collection, and treatment schedule are important determinants of partial occlusions. Nurses play a key role in maintaining a functioning port using positive pressure during the flushing techniques. Certain risk factors must be monitored to prevent partial occlusions, and certain patients are more likely to present with port-related problems.

  5. Effects of Shock-Breakout Pressure on Ejection of Micron-Scale Material from Shocked Tin Surfaces

    NASA Astrophysics Data System (ADS)

    Zellner, Michael; Hammerberg, James; Hixson, Robert; Morley, Kevin; Obst, Andrew; Olson, Russell; Payton, Jeremy; Rigg, Paulo; Buttler, William; Grover, Michael; Iverson, Adam; Macrum, Gregory; Stevens, Gerald; Turley, William; Veeser, Lynn; Routley, Nathan

    2007-06-01

    Los Alamos National Lab (LANL) is actively engaged in the development of a model to predict the formation of micron-scale fragments ejected (ejecta) from shocked metal surfaces. The LANL ejecta model considers that the amount of ejecta is mainly related to the material's phase on shock release at the free-surface. This effort investigates the relation between ejecta production and shock-breakout pressure for Sn shocked with high explosives to pressures near the solid-on-release/partial-liquid-on-release phase transition region. We found that the amount of ejecta produced for shock-breakout pressures that resulted in partial-liquid-on-release increased significantly compared to that which resulted in solid-on-release. Additionally, we found that the amount of ejecta remained relatively constant within the partial-liquid-on-release, regardless of shock-breakout pressure.

  6. Pressure Effects on the Ejection of Material from Shocked Tin Surfaces

    NASA Astrophysics Data System (ADS)

    Zellner, M. B.; Grover, M.; Hammerberg, J. E.; Hixson, R. S.; Iverson, A. J.; Macrum, G. S.; Morley, K. B.; Obst, A. W.; Olson, R. T.; Payton, J. R.; Rigg, P. A.; Routley, N.; Stevens, G. D.; Turley, W. D.; Veeser, L.; Buttler, W. T.

    2007-12-01

    Los Alamos National Lab (LANL) is actively engaged in the development of a model to predict the formation of micron-scale fragments ejected (ejecta) from shocked metals that have surface defects. The LANL ejecta model considers that the amount of ejecta is mainly related to the material's phase on shock release at the free-surface. This effort investigates the relation between ejecta production and shock-breakout pressure for Sn shocked with high explosives to pressures near the solid-on-release/partial-liquid-on-release phase transition region. We found that the amount of ejecta produced for shock-breakout pressures that resulted in partial-liquid-on-release increased significantly compared to that which resulted in solid-on-release. Additionally, we found that the amount of ejecta remained relatively constant within the partial-liquid-on-release, regardless of shock-breakout pressure.

  7. Equivalent air depth: fact or fiction.

    PubMed

    Berghage, T E; McCraken, T M

    1979-12-01

    In mixed-gas diving theory, the equivalent air depth (EAD) concept suggests that oxygen does not contribute to the total tissue gas tension and can therefore be disregarded in calculations of the decompression process. The validity of this assumption has been experimentally tested by exposing 365 rats to various partial pressures of oxygen for various lengths of time. If the EAD assumption is correct, under a constant exposure pressure each incremental change in the oxygen partial pressure would produce a corresponding incremental change in pressure reduction tolerance. Results of this study suggest that the EAD concept does not adequately describe the decompression advantages obtained from breathing elevated oxygen partial pressures. The authors suggest that the effects of breathing oxygen vary in a nonlinear fashion across the range from anoxia to oxygen toxicity, and that a simple inert gas replacement concept is no longer tenable.

  8. Fuel cell serves as oxygen level detector

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Monitoring the oxygen level in the air is accomplished by a fuel cell detector whose voltage output is proportional to the partial pressure of oxygen in the sampled gas. The relationship between output voltage and partial pressure of oxygen can be calibrated.

  9. Method of enhancing selective isotope desorption from metals

    DOEpatents

    Knize, Randall J.; Cecchi, Joseph L.

    1984-01-01

    A method of enhancing the thermal desorption of a first isotope of a diatomic gas from a metal comprises the steps of (a) establishing a partial pressure of a second isotope of the diatomic gas in vicinity of the metal; heating the metal to a temperature such that the first isotope is desorbed from the metal; and reducing the partial pressure of the desorbed first isotope while maintaining the partial pressure of the second isotope substantially constant. The method is especially useful for enhancing the desorption of tritium from the Zr-Al getter in a plasma confinement device.

  10. Study on the intrinsic defects in ZnO by combing first-principle and thermodynamic calculations

    NASA Astrophysics Data System (ADS)

    Ma, Changmin; Liu, Tingyu; Chang, Qiuxiang

    2015-11-01

    In this paper, the intrinsic point defects in ZnO crystal have been studied by the approach that integrates first-principles, thermodynamic calculations and the contributions of vibrational entropy. With temperature increasing and oxygen partial pressure decreasing, the formation energies of oxygen vacancy (VO), zinc interstitial (Zni) and zinc anti-site (ZnO) are decreasing, while it increases for zinc vacancy (VZn), oxygen interstitial (Oi) and oxygen anti-site (OZn). They are more sensitive to temperature than oxygen partial pressure. There are two interesting phenomena. First, VO or VZn have the lowest formation energies for whole Fermi level at special environment condition (such as at T = 300K, about PO2 = 10-10atm or T = 1500K, about PO2 = 104atm) and intrinsic p-type doping of ZnO is possible by VZn at these special conditions. Second, VO as donors have lowest formation energy for all Fermi level at high temperature and low oxygen partial pressure (T = 1500K, PO2 = 10-10atm). According to our analysis, the VO could produce n-type doping in ZnO at these special conditions and change p-type ZnO to n-type ZnO at condition from low temperature and high oxygen partial pressure to high temperature and low oxygen partial pressure.

  11. Oxygen Partial Pressure Is a Rate-Limiting Parameter for Cell Proliferation in 3D Spheroids Grown in Physioxic Culture Condition.

    PubMed

    Gomes, Aurélie; Guillaume, Ludivine; Grimes, David Robert; Fehrenbach, Jérôme; Lobjois, Valérie; Ducommun, Bernard

    2016-01-01

    The in situ oxygen partial pressure in normal and tumor tissues is in the range of a few percent. Therefore, when studying cell growth in 3D culture systems, it is essential to consider how the physiological oxygen concentration, rather than the one in the ambient air, influences the proliferation parameters. Here, we investigated the effect of reducing oxygen partial pressure from 21% to 5% on cell proliferation rate and regionalization in a 3D tumor spheroid model. We found that 5% oxygen concentration strongly inhibited spheroid growth, changed the proliferation gradient and reduced the 50% In Depth Proliferation index (IDP50), compared with culture at 21% oxygen. We then modeled the oxygen partial pressure profiles using the experimental data generated by culturing spheroids in physioxic and normoxic conditions. Although hypoxia occurred at similar depth in spheroids grown in the two conditions, oxygen partial pressure was a major rate-limiting factor with a critical effect on cell proliferation rate and regionalization only in spheroids grown in physioxic condition and not in spheroids grown at atmospheric normoxia. Our findings strengthen the need to consider conducting experiment in physioxic conditions (i.e., tissue normoxia) for proper understanding of cancer cell biology and the evaluation of anticancer drugs in 3D culture systems.

  12. Vascular ATP-sensitive potassium channels are over-expressed and partially regulated by nitric oxide in experimental septic shock.

    PubMed

    Collin, Solène; Sennoun, Nacira; Dron, Anne-Gaëlle; de la Bourdonnaye, Mathilde; Montemont, Chantal; Asfar, Pierre; Lacolley, Patrick; Meziani, Ferhat; Levy, Bruno

    2011-05-01

    To study the activation and expression of vascular (aorta and small mesenteric arteries) potassium channels during septic shock with or without modulation of the NO pathway. Septic shock was induced in rats by peritonitis. Selective inhibitors of vascular K(ATP) (PNU-37883A) or BK(Ca) [iberiotoxin (IbTX)] channels were used to demonstrate their involvement in vascular hyporeactivity. Vascular response to phenylephrine was measured on aorta and small mesenteric arteries mounted on a wire myograph. Vascular expression of potassium channels was studied by PCR and Western blot, in the presence or absence of 1400W, an inducible NO synthase (iNOS) inhibitor. Aortic activation of the transcriptional factor nuclear factor-kappaB (NF-κB) was assessed by electrophoretic mobility shift assay. Arterial pressure as well as in vivo and ex vivo vascular reactivity were reduced by sepsis and improved by PNU-37883A but not by IbTX. Sepsis was associated with an up-regulation of mRNA and protein expression of vascular K(ATP) channels, while expression of vascular BK(Ca) channels remained unchanged. Selective iNOS inhibition blunted the sepsis-induced increase in aortic NO, decreased NF-κB activation, and down-regulated vascular K(ATP) channel expression. Vascular K(ATP) but not BK(Ca) channels are activated, over-expressed, and partially regulated by NO via NF-κB activation during septic shock. Their selective inhibition restores arterial pressure and vascular reactivity and decreases lactate concentration. The present data suggest that selective vascular K(ATP) channel inhibitors offer potential therapeutic perspectives for septic shock.

  13. Code Calibration Applied to the TCA High-Lift Model in the 14 x 22 Wind Tunnel (Simulation With and Without Model Post-Mount)

    NASA Technical Reports Server (NTRS)

    Lessard, Wendy B.

    1999-01-01

    The objective of this study is to calibrate a Navier-Stokes code for the TCA (30/10) baseline configuration (partial span leading edge flaps were deflected at 30 degs. and all the trailing edge flaps were deflected at 10 degs). The computational results for several angles of attack are compared with experimental force, moments, and surface pressures. The code used in this study is CFL3D; mesh sequencing and multi-grid were used to full advantage to accelerate convergence. A multi-grid approach was used similar to that used for the Reference H configuration allowing point-to-point matching across all the trailingedge block interfaces. From past experiences with the Reference H (ie, good force, moment, and pressure comparisons were obtained), it was assumed that the mounting system would produce small effects; hence, it was not initially modeled. However, comparisons of lower surface pressures indicated the post mount significantly influenced the lower surface pressures, so the post geometry was inserted into the existing grid using Chimera (overset grids).

  14. Reversible effects of oxygen partial pressure on genes associated with placental angiogenesis and differentiation in primary-term cytotrophoblast cell culture.

    PubMed

    Debiève, F; Depoix, C; Gruson, D; Hubinont, C

    2013-09-01

    Timely regulated changes in oxygen partial pressure are important for placental formation. Disturbances could be responsible for pregnancy-related diseases like preeclampsia and intrauterine growth restriction. We aimed to (i) determine the effect of oxygen partial pressure on cytotrophoblast differentiation; (ii) measure mRNA expression and protein secretion from genes associated with placental angiogenesis; and (iii) determine the reversibility of these effects at different oxygen partial pressures. Term cytotrophoblasts were incubated at 21% and 2.5% O2 for 96 hr, or were switched between the two oxygen concentrations after 48 hr. Real-time PCR and enzyme-linked immunosorbent assays (ELISAs) were used to evaluate cell fusion and differentiation, measuring transcript levels for those genes involved in cell fusion and placental angiogenesis, including VEGF, PlGF, VEGFR1, sVEGFR1, sENG, INHA, and GCM1. Cytotrophoblasts underwent fusion and differentiation in 2.5% O2 . PlGF expression was inhibited while sVEGFR1 expression increased. VEGF and sENG mRNA expressions increased in 2.5% compared to 21% O2 , but no protein was detected in the cell supernatants. Finally, GCM1 mRNA expression increased during trophoblast differentiation at 21% O2 , but was inhibited at 2.5% O2 . These mRNA expression effects were reversed by returning the cells to 21% O2 . Thus, low-oxygen partial pressure does not inhibit term-cytotrophoblast cell fusion and differentiation in vitro. Lowering the oxygen partial pressure from 21% to 2.5% caused normal-term trophoblasts to reversibly modify their expression of genes associated with placental angiogenesis. This suggests that modifications observed in pregnancy diseases such as preeclampsia or growth retardation are probably due to an extrinsic effect on trophoblasts. Copyright © 2013 Wiley Periodicals, Inc.

  15. Measurement of alveolar oxygen partial pressure in the rat lung using Carr-Purcell-Meiboom-Gill spin-spin relaxation times of hyperpolarized 3He and 129Xe at 74 mT.

    PubMed

    Kraayvanger, Ryan J; Bidinosti, Christopher P; Dominguez-Viqueira, William; Parra-Robles, Juan; Fox, Matthew; Lam, Wilfred W; Santyr, Giles E

    2010-11-01

    Regional measurement of alveolar oxygen partial pressure can be obtained from the relaxation rates of hyperpolarized noble gases, (3) He and (129) Xe, in the lungs. Recently, it has been demonstrated that measurements of alveolar oxygen partial pressure can be obtained using the spin-spin relaxation rate (R(2) ) of (3) He at low magnetic field strengths (<0.1 T) in vivo. R(2) measurements can be achieved efficiently using the Carr-Purcell-Meiboom-Gill pulse sequence. In this work, alveolar oxygen partial pressure measurements based on Carr-Purcell-Meiboom-Gill R(2) values of hyperpolarized (3) He and (129) Xe in vitro and in vivo in the rat lung at low magnetic field strength (74 mT) are presented. In vitro spin-spin relaxivity constants for (3) He and (129) Xe were determined to be (5.2 ± 0.6) × 10(-6) Pa(-1) sec(-1) and (7.3 ± 0.4) × 10(-6) Pa(-1) s(-1) compared with spin-lattice relaxivity constants of (4.0 ± 0.4) × 10(-6) Pa(-1) s(-1) and (4.3 ± 1.3) × 10(-6) Pa(-1) s(-1), respectively. In vivo experimental measurements of alveolar oxygen partial pressure using (3) He in whole rat lung show good agreement (r(2) = 0.973) with predictions based on lung volumes and ventilation parameters. For (129) Xe, multicomponent relaxation was observed with one component exhibiting an increase in R(2) with decreasing alveolar oxygen partial pressure. Copyright © 2010 Wiley-Liss, Inc.

  16. Development of an efficient, low cost, small-scale natural gas fuel reformer for residential scale electric power generation. Final report for the period October 1, 1998 - December 31, 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreutz, Thomas G; Ogden, Joan M

    2000-07-01

    In the final report, we present results from a technical and economic assessment of residential scale PEM fuel cell power systems. The objectives of our study are to conceptually design an inexpensive, small-scale PEMFC-based stationary power system that converts natural gas to both electricity and heat, and then to analyze the prospective performance and economics of various system configurations. We developed computer models for residential scale PEMFC cogeneration systems to compare various system designs (e.g., steam reforming vs. partial oxidation, compressed vs. atmospheric pressure, etc.) and determine the most technically and economically attractive system configurations at various scales (e.g., singlemore » family, residential, multi-dwelling, neighborhood).« less

  17. The effects of endothelin-1 on the cardiorespiratory physiology of the freshwater trout (Oncorhynchus mykiss) and the marine dogfish (Squalus acanthias).

    PubMed

    Perry, S F; Montpetit, C J; McKendry, J; Desforges, P R; Gilmour, K M; Wood, C M; Olson, K R

    2001-11-01

    The aim of the present study was to evaluate the effects of endothelin-l-elicited cardiovascular events on respiratory gas transfer in the freshwater rainbow trout (Oncorhynchus mykiss) and the marine dogfish (Squalus acanthias). In both species, endothelin-1 (666 pmol kg(-1)) caused a rapid (within 4 min) reduction (ca. 30-50 mmHg) in arterial blood partial pressure of O2. The effects of endothelin-1 on arterial blood partial pressure of CO2 were not synchronised with the changes in O2 partial pressure and the responses were markedly different in trout and dogfish. In trout, arterial CO2 partial pressure was increased transiently by approximately 1.0 mmHg but the onset of the response was delayed and occurred 12 min after endothelin-1 injection. In contrast, CO2 partial pressure remained more-or-less constant in dogfish after injection of endothelin-1 and was increased only slightly (approximately 0.1 mmHg) after 60 min. Pre-treatment of trout with bovine carbonic anhydrase (5 mg ml(-1)) eliminated the increase in CO2 partial pressure that was normally observed after endothelin-1 injection. In both species, endothelin-1 injection caused a decrease in arterial blood pH that mirrored the changes in CO2 partial pressure. Endothelin-1 injection was associated with transient (trout) or persistent (dogfish) hyperventilation as indicated by pronounced increases in breathing frequency and amplitude. In trout, arterial blood pressure remained constant or was decreased slightly and was accompanied by a transient increase in systemic resistance, and a temporary reduction in cardiac output. The decrease in cardiac output was caused solely by a reduction in cardiac frequency; cardiac stroke volume was unaffected. In dogfish, arterial blood pressure was lowered by approximately 10 mmHg at 6-10 min after endothelin-1 injection but then was rapidly restored to pre-injection levels. The decrease in arterial blood pressure reflected an increase in branchial vascular resistance (as determined using in situ perfused gill preparations) that was accompanied by simultaneous decreases in systemic resistance and cardiac output. Cardiac frequency and stroke volume were reduced by endothelin-1 injection and thus both variables contributed to the changes in cardiac output. We conclude that the net consequences of endothelin-1 on arterial blood gases result from the opposing effects of reduced gill functional surface area (caused by vasoconstriction) and an increase in blood residence time within the gill (caused by decreased cardiac output.

  18. Pressure Dependence of Insulator-Insulator Contact Charging

    NASA Technical Reports Server (NTRS)

    Hogue, Michael D.

    2005-01-01

    The mechanism of insulator-insulator triboelectric (contact) charging is being studied by the Electrostatics and Surface Physics Laboratory at KSC. The hypothesis that surface ion exchange is the primary mechanism is being tested experimentally. A two-phase model based on a small partial pressure of singly charged ions in an ambient ideal gas in equilibrium with a submonolayer adsorbed film will provide predictions about charging as a function Of ion mass, pressure, temperature, and surface adsorption energy. Interactions between ions will be considered in terms of coulombic and screened potential energies. This work is yielding better understanding of the triboelectrification of insulators, which is an important problem in. space exploration technology. The work is also relevant to important industrial processes such as xerography and the application of paints and coatings. Determining a better understanding of the fundamental mechanism of insulator-insulator triboelectrification will hopefully lead to better means of eliminating or at least mitigating its hazards and enhancing its useful applications.

  19. Theoretical study of hull-rotor aerodynamic interference on semibuoyant vehicles

    NASA Technical Reports Server (NTRS)

    Spangler, S. B.; Smith, C. A.

    1978-01-01

    Analytical methods are developed to predict the pressure distribution and overall loads on the hulls of airships which have close coupled, relatively large and/or high disk loading propulsors for attitude control, station keeping, and partial support of total weight as well as provision of thrust in cruise. The methods comprise a surface-singularity, potential-flow model for the hull and lifting surfaces (such as tails) and a rotor model which calculates the velocity induced by the rotor and its wake at points adjacent to the wake. Use of these two models provides an inviscid pressure distribution on the hull with rotor interference. A boundary layer separation prediction method is used to locate separation on the hull, and a wake pressure is imposed on the separated region for purposes of calculating hull loads. Results of calculations are shown to illustrate various cases of rotor-hull interference and comparisons with small scale data are made to evaluate the method.

  20. Airway exchange of highly soluble gases.

    PubMed

    Hlastala, Michael P; Powell, Frank L; Anderson, Joseph C

    2013-03-01

    Highly blood soluble gases exchange with the bronchial circulation in the airways. On inhalation, air absorbs highly soluble gases from the airway mucosa and equilibrates with the blood before reaching the alveoli. Highly soluble gas partial pressure is identical throughout all alveoli. At the end of exhalation the partial pressure of a highly soluble gas decreases from the alveolar level in the terminal bronchioles to the end-exhaled partial pressure at the mouth. A mathematical model simulated the airway exchange of four gases (methyl isobutyl ketone, acetone, ethanol, and propylene glycol monomethyl ether) that have high water and blood solubility. The impact of solubility on the relative distribution of airway exchange was studied. We conclude that an increase in water solubility shifts the distribution of gas exchange toward the mouth. Of the four gases studied, ethanol had the greatest decrease in partial pressure from the alveolus to the mouth at end exhalation. Single exhalation breath tests are inappropriate for estimating alveolar levels of highly soluble gases, particularly for ethanol.

  1. Airway exchange of highly soluble gases

    PubMed Central

    Powell, Frank L.; Anderson, Joseph C.

    2013-01-01

    Highly blood soluble gases exchange with the bronchial circulation in the airways. On inhalation, air absorbs highly soluble gases from the airway mucosa and equilibrates with the blood before reaching the alveoli. Highly soluble gas partial pressure is identical throughout all alveoli. At the end of exhalation the partial pressure of a highly soluble gas decreases from the alveolar level in the terminal bronchioles to the end-exhaled partial pressure at the mouth. A mathematical model simulated the airway exchange of four gases (methyl isobutyl ketone, acetone, ethanol, and propylene glycol monomethyl ether) that have high water and blood solubility. The impact of solubility on the relative distribution of airway exchange was studied. We conclude that an increase in water solubility shifts the distribution of gas exchange toward the mouth. Of the four gases studied, ethanol had the greatest decrease in partial pressure from the alveolus to the mouth at end exhalation. Single exhalation breath tests are inappropriate for estimating alveolar levels of highly soluble gases, particularly for ethanol. PMID:23305981

  2. Oxidation Behavior of Carbon Fiber-Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.

    2008-01-01

    OXIMAP is a numerical (FEA-based) solution tool capable of calculating the carbon fiber and fiber coating oxidation patterns within any arbitrarily shaped carbon silicon carbide composite structure as a function of time, temperature, and the environmental oxygen partial pressure. The mathematical formulation is derived from the mechanics of the flow of ideal gases through a chemically reacting, porous solid. The result of the formulation is a set of two coupled, non-linear differential equations written in terms of the oxidant and oxide partial pressures. The differential equations are solved simultaneously to obtain the partial vapor pressures of the oxidant and oxides as a function of the spatial location and time. The local rate of carbon oxidation is determined at each time step using the map of the local oxidant partial vapor pressure along with the Arrhenius rate equation. The non-linear differential equations are cast into matrix equations by applying the Bubnov-Galerkin weighted residual finite element method, allowing for the solution of the differential equations numerically.

  3. Effects of various oxygen partial pressures on Ti-doped ZnO thin film transistors fabricated on flexible plastic substrate

    NASA Astrophysics Data System (ADS)

    Cui, Guodong; Han, Dedong; Yu, Wen; Shi, Pan; Zhang, Yi; Huang, Lingling; Cong, Yingying; Zhou, Xiaoliang; Zhang, Xiaomi; Zhang, Shengdong; Zhang, Xing; Wang, Yi

    2016-04-01

    By applying a novel active layer of titanium zinc oxide (TiZO), we have successfully fabricated fully transparent thin-film transistors (TFTs) with a bottom gate structure fabricated on a flexible plastic substrate at low temperatures. The effects of various oxygen partial pressures during channel deposition were studied to improve the device performance. We found that the oxygen partial pressure during channel deposition has a significant impact on the performance of TiZO TFTs, and that the TFT developed under 10% oxygen partial pressure exhibits superior performance with a low threshold voltage (V th) of 2.37 V, a high saturation mobility (μsat) of 125.4 cm2 V-1 s-1, a steep subthreshold swing (SS) of 195 mV/decade and a high I on/I off ratio of 3.05 × 108. These results suggest that TiZO thin films are promising for high-performance fully transparent flexible TFTs and displays.

  4. [Correlation between the inspired fraction of oxygen, maternal partial oxygen pressure, and fetal partial oxygen pressure during cesarean section of normal pregnancies].

    PubMed

    Castro, Carlos Henrique Viana de; Cruvinel, Marcos Guilherme Cunha; Carneiro, Fabiano Soares; Silva, Yerkes Pereira; Cabral, Antônio Carlos Vieira; Bessa, Roberto Cardoso

    2009-01-01

    Despite changes in pulmonary function, maternal oxygenation is maintained during obstetric regional blocks. But in those situations, the administration of supplementary oxygen to parturients is a common practice. Good fetal oxygenation is the main justification; however, this has not been proven. The objective of this randomized, prospective study was to test the hypothesis of whether maternal hyperoxia is correlated with an increase in fetal gasometric parameters in elective cesarean sections. Arterial blood gases of 20 parturients undergoing spinal block with different inspired fractions of oxygen were evaluated and correlated with fetal arterial blood gases. An increase in maternal inspired fraction of oxygen did not show any correlation with an increase of fetal partial oxygen pressure. Induction of maternal hyperoxia by the administration of supplementary oxygen did not increase fetal partial oxygen pressure. Fetal gasometric parameters did not change even when maternal parameters changed, induced by hyperoxia, during cesarean section under spinal block.

  5. Respiratory gas exchange of high altitude adapted chick embryos

    NASA Technical Reports Server (NTRS)

    Wangensteen, O. D.; Rahn, H.; Burton, R. R.; Smith, A. H.

    1974-01-01

    Study of gas exchange by embryos from chickens acclimatized to an altitude of 3800 m. The oxygen partial pressure and carbon dioxide partial pressure differences across the egg shell were measured and found to be less than the values previously reported for sea-level eggs by about a factor of two. Further measurements of embryonic oxygen consumption and shell conductivity to oxygen indicated that, compared to eggs at sea level, oxygen consumption was reduced by a factor of 0.58 while conductivity to oxygen was increased only by a factor of 1.07 in the high-altitude eggs. These independent measurements predict the change in oxygen partial pressure across the egg shell of the high-altitude eggs to be only 0.54 times that of sea-level eggs; the directly measured factor was 0.53. The authors conclude that at high altitude, a major adaptation of the chick embryo is a reduced metabolism which decreases the change in oxygen partial pressure across the egg shell since its gas conductivity remains essentially unchanged.

  6. Biomass hydrolysis inhibition at high hydrogen partial pressure in solid-state anaerobic digestion.

    PubMed

    Cazier, E A; Trably, E; Steyer, J P; Escudie, R

    2015-08-01

    In solid-state anaerobic digestion, so-called ss-AD, biogas production is inhibited at high total solids contents. Such inhibition is likely caused by a slow diffusion of dissolved reaction intermediates that locally accumulate. In this study, we investigated the effect of H2 and CO2 partial pressure on ss-AD. Partial pressure of H2 and/or CO2 was artificially fixed, from 0 to 1 557mbars for H2 and from 0 to 427mbars for CO2. High partial pressure of H2 showed a significant effect on methanogenesis, while CO2 had no impact. At high [Formula: see text] , the overall substrate degradation decreased with no accumulation of metabolites from acidogenic bacteria, indicating that the hydrolytic activity was specifically impacted. Interestingly, such inhibition did not occur when CO2 was added with H2. This result suggests that CO2 gas transfer is probably a key factor in ss-AD from biomass. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Sound velocities in shocked liquid D2 to 28 GPa

    NASA Astrophysics Data System (ADS)

    Holmes, N. C.; Ross, M.; Nellis, W. J.

    1999-06-01

    Recent measurements of shock temperatures(N. C. Holmes, W. J. Nellis, and M. Ross, Phys. Rev.) B52, 15835 (1995). and laser-driven Hugoniot measurements(L. B. Da Silva, et al.), Phys. Rev. Lett. 78, 483 (1997). of shocked liquid deuterium strongly indicate that molecular dissociation is important above 20 GPa. Since the amount of expected dissociation is small on the Hugoniot at the 30 GPa limit of conventional impact experiments, other methods must be used to test our understanding of the physics of highly compressed deuterium in this regime. We have recently performed experiments to measure the sound velocity of deuterium which test the isentropic compressibility, c^2 = (partial P/partial ρ)_S. We used the shock overtake method to measure sound velocities at several shock pressures between 10--28 GPa. These data provide support for recently developed molecular dissociation models.

  8. Modeling of outgassing and matrix decomposition in carbon-phenolic composites

    NASA Technical Reports Server (NTRS)

    Mcmanus, Hugh L.

    1994-01-01

    Work done in the period Jan. - June 1994 is summarized. Two threads of research have been followed. First, the thermodynamics approach was used to model the chemical and mechanical responses of composites exposed to high temperatures. The thermodynamics approach lends itself easily to the usage of variational principles. This thermodynamic-variational approach has been applied to the transpiration cooling problem. The second thread is the development of a better algorithm to solve the governing equations resulting from the modeling. Explicit finite difference method is explored for solving the governing nonlinear, partial differential equations. The method allows detailed material models to be included and solution on massively parallel supercomputers. To demonstrate the feasibility of the explicit scheme in solving nonlinear partial differential equations, a transpiration cooling problem was solved. Some interesting transient behaviors were captured such as stress waves and small spatial oscillations of transient pressure distribution.

  9. Measurement of partial pressures in vacuum technology and vacuum physics

    NASA Technical Reports Server (NTRS)

    Huber, W. K.

    1986-01-01

    It is pointed out that the measurement of gaseous pressures of less than 0.0001 torr is based on the ionization of gas atoms and molecules due to collisions with electrons. The particle density is determined in place of the pressure. The ionization cross sections for molecules of various gases are discussed. It is found that the true pressure in a vacuum system cannot be determined with certainty if it is unknown which gas is present. Effects of partial pressure determination on the condition of the vacuum system are discussed together with ion sources, systems of separation, and ion detection.

  10. Partial Molar Volumes of Aqua Ions from First Principles.

    PubMed

    Wiktor, Julia; Bruneval, Fabien; Pasquarello, Alfredo

    2017-08-08

    Partial molar volumes of ions in water solution are calculated through pressures obtained from ab initio molecular dynamics simulations. The correct definition of pressure in charged systems subject to periodic boundary conditions requires access to the variation of the electrostatic potential upon a change of volume. We develop a scheme for calculating such a variation in liquid systems by setting up an interface between regions of different density. This also allows us to determine the absolute deformation potentials for the band edges of liquid water. With the properly defined pressures, we obtain partial molar volumes of a series of aqua ions in very good agreement with experimental values.

  11. Densification and Electrical Properties of Zinc Oxide Varistors Microwave-Sintered Under Different Oxygen Partial Pressures

    NASA Astrophysics Data System (ADS)

    Lin, Cong; Wang, Bo; Xu, Zheng; Peng, Hu

    2012-11-01

    ZnO varistors were prepared by microwave sintering under different oxygen partial pressures. The temperature profile and the densification behavior in different atmospheres were investigated. It was found that the density of ZnO varistors during sintering was the key factor affecting the absorption of microwave energy. The electrical properties, including the nonlinear properties and capacitance-voltage ( C- V) characteristics, were also carefully studied. The results showed that the oxygen partial pressure has significant effects on the electrical properties of ZnO varistors by changing the concentration of defects through a series of reactions involving oxygen during sintering.

  12. Control of magnetization reversal in oriented strontium ferrite thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Debangsu, E-mail: debangsu@physics.iisc.ernet.in; Anil Kumar, P. S.

    2014-02-21

    Oriented Strontium Ferrite films with the c axis orientation were deposited with varying oxygen partial pressure on Al{sub 2}O{sub 3}(0001) substrate using Pulsed Laser Deposition technique. The angle dependent magnetic hysteresis, remanent coercivity, and temperature dependent coercivity had been employed to understand the magnetization reversal of these films. It was found that the Strontium Ferrite thin film grown at lower (higher) oxygen partial pressure shows Stoner-Wohlfarth type (Kondorsky like) reversal. The relative importance of pinning and nucleation processes during magnetization reversal is used to explain the type of the magnetization reversal with different oxygen partial pressure during growth.

  13. DEVICE FOR CONTROL OF OXYGEN PARTIAL PRESSURE

    DOEpatents

    Bradner, H.; Gordon, H.S.

    1957-12-24

    A device is described that can sense changes in oxygen partial pressure and cause a corresponding mechanical displacement sufficient to actuate meters, valves and similar devices. A piston and cylinder arrangement contains a charge of crystalline metal chelate pellets which have the peculiar property of responding to variations in the oxygen content of the ambient atmosphere by undergoing a change in dimension. A lever system amplifies the relative displacement of the piston in the cylinder, and actuates the controlled valving device. This partial pressure oxygen sensing device is useful in controlled chemical reactions or in respiratory devices such as the oxygen demand meters for high altitude aircraft.

  14. Mass separation of deuterium and helium with conventional quadrupole mass spectrometer by using varied ionization energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Yaowei; Hu, Jiansheng, E-mail: hujs@ipp.ac.cn; Wan, Zhao

    2016-03-15

    Deuterium pressure in deuterium-helium mixture gas is successfully measured by a common quadrupole mass spectrometer (model: RGA200) with a resolution of ∼0.5 atomic mass unit (AMU), by using varied ionization energy together with new developed software and dedicated calibration for RGA200. The new software is developed by using MATLAB with the new functions: electron energy (EE) scanning, deuterium partial pressure measurement, and automatic data saving. RGA200 with new software is calibrated in pure deuterium and pure helium 1.0 × 10{sup −6}–5.0 × 10{sup −2} Pa, and the relation between pressure and ion current of AMU4 under EE = 25 eVmore » and EE = 70 eV is obtained. From the calibration result and RGA200 scanning with varied ionization energy in deuterium and helium mixture gas, both deuterium partial pressures (P{sub D{sub 2}}) and helium partial pressure (P{sub He}) could be obtained. The result shows that deuterium partial pressure could be measured if P{sub D{sub 2}} > 10{sup −6} Pa (limited by ultimate pressure of calibration vessel), and helium pressure could be measured only if P{sub He}/P{sub D{sub 2}} > 0.45, and the measurement error is evaluated as 15%. This method is successfully employed in EAST 2015 summer campaign to monitor deuterium outgassing/desorption during helium discharge cleaning.« less

  15. Pneumatosis cystoides intestinalis, four cases of a rare disease.

    PubMed

    Rennenberg, R J M W; Koek, G H; Van Hootegem, Ph; Stockbrügger, R W

    2002-03-01

    Pneumatosis cystoides intestinalis (PCI) is a disease in which small gas-filled cysts appear in the intestinal wall. Four cases presented here demonstrate the diversity of the associated diseases. In two of the patients constipation probably played a role; in the third patient decreased colonic motility, elevated intestinal pressure and increased mucosal permeability in the context of enteritis treated with codeine was the underlying problem; in the fourth high protein feeding and bowel ischaemia was diagnosed. Various aetiologies are presented in the literature. There is no specific history and physical or laboratory findings do not help to diagnose PCI. Plain abdominal film, ultrasound, computer tomography, magnetic resonance imaging, barium contrast studies and/or endoscopy may be necessary for diagnosis. Therapy is based on enhancing partial oxygen pressure in the bowel wall. PCI usually runs a benign course.

  16. Synthesis and Characterization of Hexagonal Boron Nitride as a Gate Dielectric

    PubMed Central

    Jang, Sung Kyu; Youn, Jiyoun; Song, Young Jae; Lee, Sungjoo

    2016-01-01

    Two different growth modes of large-area hexagonal boron nitride (h-BN) film, a conventional chemical vapor deposition (CVD) growth mode and a high-pressure CVD growth mode, were compared as a function of the precursor partial pressure. Conventional self-limited CVD growth was obtained below a critical partial pressure of the borazine precursor, whereas a thick h-BN layer (thicker than a critical thickness of 10 nm) was grown beyond a critical partial pressure. An interesting coincidence of a critical thickness of 10 nm was identified in both the CVD growth behavior and in the breakdown electric field strength and leakage current mechanism, indicating that the electrical properties of the CVD h-BN film depended significantly on the film growth mode and the resultant film quality. PMID:27458024

  17. UV absorption control of thin film growth

    DOEpatents

    Biefeld, Robert M.; Hebner, Gregory A.; Killeen, Kevin P.; Zuhoski, Steven P.

    1991-01-01

    A system for monitoring and controlling the rate of growth of thin films in an atmosphere of reactant gases measures the UV absorbance of the atmosphere and calculates the partial pressure of the gases. The flow of reactant gases is controlled in response to the partial pressure.

  18. Photosynthesis and growth response of almond to increased atmospheric ozone partial pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Retzlaff, W.A.; Williams, L.E.; DeJong, T.M.

    Uniform nursery stock of five almond cultivars [Prunus dulcis (Mill) D.A. Webb syn. P. amygdalus Batsch, cv. Butte, Carmel, Mission, Nonpareil, and Sonora] propagated on peach (P. domstica L. Batsch.) rootstock were exposed to three different atmospheric ozone (O[sub 3]) partial pressures. The trees were planted in open-top fumigation chambers on 19 Apr. 1989 at the University of California Kearny Agricultural Center located in the San Joaquin Valley of California. Exposures of the trees to three atmospheric O[sub 3] partial pressures lasted from 1 June to 2 Nov. 1989. The mean 12-h [0800-2000 h Pacific Daylight Time (PDT)] O[sub 3]more » partial pressures measured in the open-top chambers during the experimental period were 0.038, 0.060, and 0.112 [mu]Pa Pa[sup [minus]1] O[sub 3] in the charcoal filtered, ambient, and ambient + O[sub 3] treatments, respectively. Leaf net CO[sub 2] assimilation, trunk cross-sectional area growth, and root, trunk, foliage, and total dry weight of Nonpareil were reduced by increased atmospheric O[sub 3] partial pressures. Mission was unaffected by O[sub 3] and Butte, Carmel, and Sonora were intermediate in their responses. Foliage of Nonpareil also abscised prematurely in the ambient and ambient + O[sub 3] treatments. The results indicate that there are almond cultivars that are sensitive to O[sub 3] exposure.« less

  19. Oxygen Partial Pressure Is a Rate-Limiting Parameter for Cell Proliferation in 3D Spheroids Grown in Physioxic Culture Condition

    PubMed Central

    Gomes, Aurélie; Guillaume, Ludivine; Grimes, David Robert; Fehrenbach, Jérôme; Lobjois, Valérie; Ducommun, Bernard

    2016-01-01

    The in situ oxygen partial pressure in normal and tumor tissues is in the range of a few percent. Therefore, when studying cell growth in 3D culture systems, it is essential to consider how the physiological oxygen concentration, rather than the one in the ambient air, influences the proliferation parameters. Here, we investigated the effect of reducing oxygen partial pressure from 21% to 5% on cell proliferation rate and regionalization in a 3D tumor spheroid model. We found that 5% oxygen concentration strongly inhibited spheroid growth, changed the proliferation gradient and reduced the 50% In Depth Proliferation index (IDP50), compared with culture at 21% oxygen. We then modeled the oxygen partial pressure profiles using the experimental data generated by culturing spheroids in physioxic and normoxic conditions. Although hypoxia occurred at similar depth in spheroids grown in the two conditions, oxygen partial pressure was a major rate-limiting factor with a critical effect on cell proliferation rate and regionalization only in spheroids grown in physioxic condition and not in spheroids grown at atmospheric normoxia. Our findings strengthen the need to consider conducting experiment in physioxic conditions (i.e., tissue normoxia) for proper understanding of cancer cell biology and the evaluation of anticancer drugs in 3D culture systems. PMID:27575790

  20. Modeling a CO2 mineralization experiment of fractured peridotite from the Semail ophiolite/ Oman

    NASA Astrophysics Data System (ADS)

    Muller, Nadja; Zhang, Guoxiang; van Noort, Reinier; Spiers, Chris; Ten Grotenhuis, Saskia; Hoedeman, Gerco

    2010-05-01

    Most geologic CO2 sequestration technologies focus on sedimentary rocks, where the carbon dioxide is stored in a fluid phase. A possible alternative is to trap it as a mineral in the subsurface (in-situ) in basaltic or even (ultra)mafic rocks. Carbon dioxide in aqueous solution reacts with Mg-, Ca-, and Fe-bearing silicate minerals, precipitates as (MgCa,Fe)CO3 (carbonate), and can thus be permanently sequestered. The cation donors are silicate minerals such as olivine and pyroxene which are abundant in (ultra)mafic rocks, such as peridotite. Investigations are underway to evaluate the sequestration potential of the Semail Ophiolite in Oman, utilizing the large volumes of partially serpentinized peridotite that are present. Key factors are the rate of mineralization due to dissolution of the peridotite and precipitation of carbonate, the extent of the natural and hydraulic fracture network and the accessibility of the rock to reactive fluids. To quantify the influence of dissolution rates on the overall CO2 mineralization process, small, fractured peridotite samples were exposed to supercritical CO2 and water in laboratory experiments. The samples are cored from a large rock sample in the dimension of small cylinders with 1 cm in height and diameter, with a mass of ~2g. Several experimental conditions were tested with different equipment, from large volume autoclave to small volume cold seal vessel. The 650 ml autoclave contained 400-500g of water and a sample under 10 MPa of partial CO2 pressure up to 150. The small capsules in the cold seal vessel held 1-1.5g of water and the sample under CO2 partial pressure from 15MPa to 70 MPa and temperature from 60 to 200°C. The samples remained for two weeks in the reaction vessels. In addition, bench acid bath experiments in 150 ml vials were performed open to the atmosphere at 50-80°C and pH of ~3. The main observation was that the peridotite dissolved two orders of magnitude slower in the high pressure and temperature cell of the cold seal vessel than comparative experiments in large volume autoclaves and bench acid bath vials under lower and atmospheric pressure conditions. We attributed this observation to the limited water availability in the cold seal vessel, limiting the aqueous reaction of bi-carbonate formation and magnesite precipitation. To test this hypothesis, one of the cold seal vessel experiments at 20 MPa and 100°C was simulated with a reactive transport model, using TOUGHREACT. To simulate the actual experimental conditions, the model used a grid on mm and 100's of μm scale and a fractured peridotite medium with serpentine filling the fractures. The simulation produced dissolution comparable to the experiment and showed an effective shut down of the bi-carbonation reaction within one day after the start of the experiment. If the conditions of limited water supply seen in our experiments are applicable in a field setting, we could expect dissolution may be limited by the buffering of the pH and shut down of the bi-carbonate formation. Under field conditions water and CO2 will only flow in hydraulic induced fractures and the natural fracture network that is filled with serpentine and some carbonate. The simulation result and potential implication for the field application will require further experimental investigation in the lab or field in the future.

  1. Stability and growth of continental shields in mantle convection models including recurrent melt production

    NASA Astrophysics Data System (ADS)

    de Smet, J. H.; van den Berg, A. P.; Vlaar, N. J.

    1998-10-01

    The long-term growth and stability of compositionally layered continental upper mantle has been investigated by numerical modelling. We present the first numerical model of a convecting mantle including differentiation through partial melting resulting in a stable compositionally layered continental upper mantle structure. This structure includes a continental root extending to a depth of about 200 km. The model covers the upper mantle including the crust and incorporates physical features important for the study of the continental upper mantle during secular cooling of the Earth since the Archaean. Among these features are: a partial melt generation mechanism allowing consistent recurrent melting, time-dependent non-uniform radiogenic heat production, and a temperature- and pressure-dependent rheology. The numerical results reveal a long-term growth mechanism of the continental compositional root. This mechanism operates through episodical injection of small diapiric upwellings from the deep layer of undepleted mantle into the continental root which consists of compositionally distinct depleted mantle material. Our modelling results show the layered continental structure to remain stable during at least 1.5 Ga. After this period mantle differentiation through partial melting ceases due to the prolonged secular cooling and small-scale instabilities set in through continental delamination. This stable period of 1.5 Ga is related to a number of limitations in our model. By improving on these limitations in the future this stable period will be extended to more realistic values.

  2. Germination and growth of lettuce (Lactuca sativa) at low atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Spanarkel, Robert; Drew, Malcolm C.

    2002-01-01

    The response of lettuce (Lactuca sativa L. cv. Waldmann's Green) to low atmospheric pressure was examined during the initial 5 days of germination and emergence, and also during subsequent growth to vegetative maturity at 30 days. Growth took place inside a 66-l-volume low pressure chamber maintained at 70 kPa, and plant response was compared to that of plants in a second, matching chamber that was at ambient pressure (approximately 101 kPa) as a control. In other experiments, to determine short-term effects of low pressure transients, plants were grown at ambient pressure until maturity and then subjected to alternating periods of 24 h of low and ambient atmospheric pressures. In all treatments the partial pressure of O2 was maintained at 21 kPa (approximately the partial pressure in air at normal pressure), and the partial pressure of CO2 was in the range 66.5-73.5 Pa (about twice that in normal air) in both chambers, with the addition of CO2 during the light phase. With continuous exposure to low pressure, shoot and root growth was at least as rapid as at ambient pressure, with an overall trend towards slightly greater performance at the lower pressure. Dark respiration rates were greater at low pressure. Transient periods at low pressure decreased transpiration and increased dark respiration but only during the period of exposure to low pressure. We conclude that long-term or short-term exposure to subambient pressure (70 kPa) was without detectable detriment to vegetative growth and development.

  3. Measurements of Pressure Distributions and Force Coefficients in a Squeeze Film Damper. Part 1: Fully Open Ended Configuration

    NASA Technical Reports Server (NTRS)

    Jung, S. Y.; Sanandres, Luis A.; Vance, J. M.

    1991-01-01

    Measurements of pressure distributions and force coefficients were carried out in two types of squeeze film dampers, executing a circular centered orbit, an open-ended configuration, and a partially sealed one, in order to investigate the effect of fluid inertia and cavitation on pressure distributions and force coefficients. Dynamic pressure measurements were carried out for two orbit radii, epsilon 0.5 and 0.8. It was found that the partially sealed configuration was less influenced by fluid inertia than the open ended configuration.

  4. Gas pressure and electron density at the level of the active zone of hollow cathode arc discharges

    NASA Technical Reports Server (NTRS)

    Minoo, M. H.

    1984-01-01

    A model for the longitudinal variations of the partial pressures of electrons, ions, and neutral particles is proposed as a result of an experimental study of pressure variations at the level of the active zone as a function of the various discharge parameters of a hollow cathode arc. The cathode region where the temperature passes through its maximum is called active zone. The proposed model embodies the very important variations which the partial electron and neutral particles pressures undergo at the level of the active zone.

  5. Arthroscopic repair of partial-thickness and small full-thickness rotator cuff tears: tendon quality as a prognostic factor for repair integrity.

    PubMed

    Chung, Seok Won; Kim, Jae Yoon; Yoon, Jong Pil; Lyu, Seong Hwa; Rhee, Sung Min; Oh, Se Bong

    2015-03-01

    The healing failure rate is high for partial-thickness or small full-thickness rotator cuff tears. To retrospectively evaluate and compare outcomes after arthroscopic repair of high-grade partial-thickness and small full-thickness rotator cuff tears and factors affecting rotator cuff healing. Cohort study; Level of evidence, 3. Included in the study were 55 consecutive patients (mean age, 57.9 ± 7.2 years) who underwent arthroscopic repair for high-grade partial-thickness (n = 34) and small full-thickness (n = 21) rotator cuff tears. The study patients also underwent magnetic resonance imaging (MRI) preoperatively and computed tomography arthrography (CTA) at least 6 months postoperatively, and their functional outcomes were evaluated preoperatively and at the last follow-up (>24 months). All partial-thickness tears were repaired after being converted to full-thickness tears; thus, the repair process was almost the same as for small full-thickness tears. The tendinosis of the torn tendon was graded from the MRI images using a 4-point scale, and the reliabilities were assessed. The outcomes between high-grade partial-thickness tears that were converted to small full-thickness tears and initially small full-thickness tears were compared, and factors affecting outcomes were evaluated. The inter- and intraobserver reliabilities of the tendinosis grade were good (intraclass correlation coefficient, 0.706 and 0.777, respectively). Failure to heal as determined by CTA was observed in 12 patients with a high-grade partial-thickness tear (35.3%; complete failure in 4 and partial failure in 8) and in 3 patients with a small full-thickness tear (14.3%; complete failure in 1 and partial failure in 2). The patients with high-grade partial-thickness rotator cuff tears showed a higher tendinosis grade than did those with small full-thickness tears (P = .014), and the severity of the tendinosis was related to the failure to heal (P = .037). Tears with a higher tendinosis grade showed a 7.64-times higher failure rate (95% CI, 1.43-36.04) than did those with a lower tendinosis grade (P = .013). All functional outcome scores improved after surgery (all P < .001); however, there was no difference between groups. The high-grade partial-thickness rotator cuff tears showed more severe tendinosis compared with the small full-thickness tears in this study. Contrary to previous impressions that tear size or fatty infiltration is the factor that most influences healing, tendinosis severity assessed by preoperative MRI was the only factor associated with failure to heal, given the numbers available for analysis, in patients with partial-thickness and small full-thickness rotator cuff tears. Surgeons should pay more attention to tendon quality during repair surgery or rehabilitation in smaller rotator cuff tears, especially in high-grade partial-thickness tears with severe tendinosis. © 2014 The Author(s).

  6. Solubility of oxygen in a seawater medium in equilibrium with a high-pressure oxy-helium atmosphere.

    PubMed

    Taylor, C D

    1979-06-01

    The molar oxygen concentration in a seawater medium in equilibrium with a high-pressure oxygen-helium atmosphere was measured directly in pressurized subsamples, using a modified version of the Winkler oxygen analysis. At a partial pressure of oxygen of 1 atm or less, its concentration in the aqueous phase was adequately described by Henry's Law at total pressures up to 600 atm. This phenomenon, which permits a straightforward determination of dissolved oxygen within hyperbaric systems, resulted from pressure-induced compensatory alterations in the Henry's Law variables rather than from a true obedience to the Ideal Gas Law. If the partial pressure of a gas contributes significantly to the hydrostatic pressure, Henry's Law is no longer adequate for determining its solubility within the compressed medium.

  7. Inertial Navigation System/Doppler Velocity Log (INS/DVL) Fusion with Partial DVL Measurements

    PubMed Central

    Tal, Asaf; Klein, Itzik; Katz, Reuven

    2017-01-01

    The Technion autonomous underwater vehicle (TAUV) is an ongoing project aiming to develop and produce a small AUV to carry on research missions, including payload dropping, and to demonstrate acoustic communication. Its navigation system is based on an inertial navigation system (INS) aided by a Doppler velocity log (DVL), magnetometer, and pressure sensor (PS). In many INSs, such as the one used in TAUV, only the velocity vector (provided by the DVL) can be used for aiding the INS, i.e., enabling only a loosely coupled integration approach. In cases of partial DVL measurements, such as failure to maintain bottom lock, the DVL cannot estimate the vehicle velocity. Thus, in partial DVL situations no velocity data can be integrated into the TAUV INS, and as a result its navigation solution will drift in time. To circumvent that problem, we propose a DVL-based vehicle velocity solution using the measured partial raw data of the DVL and additional information, thereby deriving an extended loosely coupled (ELC) approach. The implementation of the ELC approach requires only software modification. In addition, we present the TAUV six degrees of freedom (6DOF) simulation that includes all functional subsystems. Using this simulation, the proposed approach is evaluated and the benefit of using it is shown. PMID:28241410

  8. Inertial Navigation System/Doppler Velocity Log (INS/DVL) Fusion with Partial DVL Measurements.

    PubMed

    Tal, Asaf; Klein, Itzik; Katz, Reuven

    2017-02-22

    The Technion autonomous underwater vehicle (TAUV) is an ongoing project aiming to develop and produce a small AUV to carry on research missions, including payload dropping, and to demonstrate acoustic communication. Its navigation system is based on an inertial navigation system (INS) aided by a Doppler velocity log (DVL), magnetometer, and pressure sensor (PS). In many INSs, such as the one used in TAUV, only the velocity vector (provided by the DVL) can be used for aiding the INS, i.e., enabling only a loosely coupled integration approach. In cases of partial DVL measurements, such as failure to maintain bottom lock, the DVL cannot estimate the vehicle velocity. Thus, in partial DVL situations no velocity data can be integrated into the TAUV INS, and as a result its navigation solution will drift in time. To circumvent that problem, we propose a DVL-based vehicle velocity solution using the measured partial raw data of the DVL and additional information, thereby deriving an extended loosely coupled (ELC) approach. The implementation of the ELC approach requires only software modification. In addition, we present the TAUV six degrees of freedom (6DOF) simulation that includes all functional subsystems. Using this simulation, the proposed approach is evaluated and the benefit of using it is shown.

  9. Randomized trial of low versus high carbon dioxide insufflation pressures in posterior retroperitoneoscopic adrenalectomy.

    PubMed

    Fraser, Sheila; Norlén, Olov; Bender, Kyle; Davidson, Joanne; Bajenov, Sonya; Fahey, David; Li, Shawn; Sidhu, Stan; Sywak, Mark

    2018-05-01

    Posterior retroperitoneoscopic adrenalectomy has gained widespread acceptance for the removal of benign adrenal tumors. Higher insufflation pressures using carbon dioxide (CO 2 ) are required, although the ideal starting pressure is unclear. This prospective, randomized, single-blinded, study aims to compare physiologic differences with 2 different CO 2 insufflation pressures during posterior retroperitoneoscopic adrenalectomy. Participants were randomly assigned to a starting insufflation pressure of 20 mm Hg (low pressure) or 25 mm Hg (high pressure). The primary outcome measure was partial pressure of arterial CO 2 at 60 minutes. Secondary outcomes included end-tidal CO 2 , arterial pH, blood pressure, and peak airway pressure. Breaches of protocol to change insufflation pressure were permitted if required and were recorded. A prospective randomized trial including 31 patients (low pressure: n = 16; high pressure: n = 15) was undertaken. At 60 minutes, the high pressure group had greater mean partial pressure of arterial CO 2 (64 vs 50 mm Hg, P = .003) and end-tidal CO 2 (54 vs 45 mm Hg, P = .008) and a lesser pH (7.21 vs 7.29, P = .0005). There were no significant differences in base excess, peak airway pressure, operative time, or duration of hospital stay. Clinically indicated protocol breaches were more common in the low pressure than the high pressure group (8 vs 3, P = .03). In posterior retroperitoneoscopic adrenalectomy, greater insufflation pressures are associated with greater partial pressure of arterial CO 2 and end-tidal CO 2 and lesser pH at 60 minutes, be significant. Commencing with lesser CO 2 insufflation pressures decreases intraoperative acidosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Pressure dependence of the electro-optic response function in partially exposed polymer dispersed ferroelectric liquid crystals

    NASA Technical Reports Server (NTRS)

    Parmar, D. S.; Holmes, H. K.

    1993-01-01

    Ferroelectric liquid crystals in a new configuration, termed partially exposed polymer dispersed ferroelectric liquid crystal (PEPDFLC), respond to external pressures and demonstrate pressure-induced electro-optic switching response. When the PEPDFLC thin film is sandwiched between two transparent conducting electrodes, one a glass plate and the other a flexible sheet such as polyvenylidene fluoride, the switching characteristics of the thin film are a function of the pressure applied to the flexible transparent electrode and the bias voltage across the electrodes. Response time measurements reveal a linear dependence of the change in electric field with external pressure.

  11. A new technique to assess dermal absorption of volatile chemicals in vitro by thermal gravimetric analysis.

    PubMed

    Rauma, Matias; Isaksson, Tina S; Johanson, Gunnar

    2006-10-01

    Potential health hazards of dermal exposure, variability in reported dermal absorption rates and potential losses from the skin by evaporation indicate a need for a simple, inexpensive and standardized procedure to measure dermal absorption and desorption of chemical substances. The aim of this study was to explore the possibility to measure dermal absorption and desorption of volatile chemicals using a new gravimetric technique, namely thermal gravimetric analysis (TGA), and trypsinated stratum corneum from pig. Changes in skin weight were readily detected before, during and after exposure to vapours of water, 2-propanol, methanol and toluene. The shape and height of the weight curves differed between the four chemicals, reflecting differences in diffusivity and partial pressure and skin:air partitioning, respectively. As the skin weight is highly sensitive to the partial pressure of volatile chemicals, including water, this technique requires carefully controlled conditions with respect to air flow, temperature, chemical vapour generation and humidity. This new technique may help in the assessment of dermal uptake of volatile chemicals. Only a small piece of skin is needed and skin integrity is not necessary, facilitating the use of human samples. The high resolution weight-time curves obtained may also help to elucidate the characteristics of absorption, desorption and diffusion of chemicals in skin.

  12. Analysis of Arterial and Venous Blood Gases in Healthy Gyr Falcons ( Falco rusticolus ) Under Anesthesia.

    PubMed

    Raghav, Raj; Middleton, Rachael; BSc, Rinshiya Ahamed; Arjunan, Raji; Caliendo, Valentina

    2015-12-01

    Arterial and venous blood gas analysis is useful in the assessment of tissue oxygenation and ventilation and in diagnosis of metabolic and respiratory derangements. It can be performed with a relatively small volume of blood in avian patients under emergency situations. Arterial and venous blood gas analysis was performed in 30 healthy gyr falcons ( Falco rusticolus ) under anaesthesia to establish temperature-corrected reference intervals for arterial blood gas values and to compare them to temperature-corrected venous blood gas values with a portable point-of-care blood gas analyzer (i-STAT 1, Abbott Laboratories, Abbott Park, IL, USA). Statistically significant differences were observed between the temperature-corrected values of pH, partial pressure of carbon dioxide (Pco2), and partial pressure of oxygen (Po2) and the corresponding nontemperature-corrected values of these parameters in both arterial and venous blood. Values of temperature-corrected pH, temperature-corrected Pco2, bicarbonate concentrations, and base excess of extra cellular fluid did not differ significantly between arterial and venous blood, suggesting that, in anesthetized gyr falcons, venous blood gas analysis can be used in place of arterial blood gas analysis in clinical situations. Values for hematocrit, measured by the point-of-care analyzer, were significantly lower compared with those obtained by the microhematocrit method.

  13. The relationship between partial upper-airway obstruction and inter-breath transition period during sleep.

    PubMed

    Mann, Dwayne L; Edwards, Bradley A; Joosten, Simon A; Hamilton, Garun S; Landry, Shane; Sands, Scott A; Wilson, Stephen J; Terrill, Philip I

    2017-10-01

    Short pauses or "transition-periods" at the end of expiration and prior to subsequent inspiration are commonly observed during sleep in humans. However, the role of transition periods in regulating ventilation during physiological challenges such as partial airway obstruction (PAO) has not been investigated. Twenty-nine obstructive sleep apnea patients and eight controls underwent overnight polysomnography with an epiglottic catheter. Sustained-PAO segments (increased epiglottic pressure over ≥5 breaths without increased peak inspiratory flow) and unobstructed reference segments were manually scored during apnea-free non-REM sleep. Nasal pressure data was computationally segmented into inspiratory (T I , shortest period achieving 95% inspiratory volume), expiratory (T E , shortest period achieving 95% expiratory volume), and inter-breath transition period (T Trans , period between T E and subsequent T I ). Compared with reference segments, sustained-PAO segments had a mean relative reduction in T Trans (-24.7±17.6%, P<0.001), elevated T I (11.8±10.5%, P<0.001), and a small reduction in T E (-3.9±8.0, P≤0.05). Compensatory increases in inspiratory period during PAO are primarily explained by reduced transition period and not by reduced expiratory period. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Molybdenum Nitrogenase Catalyzes the Reduction and Coupling of CO to Form Hydrocarbons*♦

    PubMed Central

    Yang, Zhi-Yong; Dean, Dennis R.; Seefeldt, Lance C.

    2011-01-01

    The molybdenum-dependent nitrogenase catalyzes the multi-electron reduction of protons and N2 to yield H2 and 2NH3. It also catalyzes the reduction of a number of non-physiological doubly and triply bonded small molecules (e.g. C2H2, N2O). Carbon monoxide (CO) is not reduced by the wild-type molybdenum nitrogenase but instead inhibits the reduction of all substrates catalyzed by nitrogenase except protons. Here, we report that when the nitrogenase MoFe protein α-Val70 residue is substituted by alanine or glycine, the resulting variant proteins will catalyze the reduction and coupling of CO to form methane (CH4), ethane (C2H6), ethylene (C2H4), propene (C3H6), and propane (C3H8). The rates and ratios of hydrocarbon production from CO can be adjusted by changing the flux of electrons through nitrogenase, by substitution of other amino acids located near the FeMo-cofactor, or by changing the partial pressure of CO. Increasing the partial pressure of CO shifted the product ratio in favor of the longer chain alkanes and alkenes. The implications of these findings in understanding the nitrogenase mechanism and the relationship to Fischer-Tropsch production of hydrocarbons from CO are discussed. PMID:21454640

  15. Geometry of α-Cr2O3(0001) as a Function of H2O Partial Pressure

    PubMed Central

    2015-01-01

    Surface X-ray diffraction has been employed to elucidate the surface structure of α-Cr2O3(0001) as a function of water partial pressure at room temperature. In ultra high vacuum, following exposure to ∼2000 Langmuir of H2O, the surface is found to be terminated by a partially occupied double layer of chromium atoms. No evidence of adsorbed OH/H2O is found, which is likely due to either adsorption at minority sites, or X-ray induced desorption. At a water partial pressure of ∼30 mbar, a single OH/H2O species is found to be bound atop each surface Cr atom. This adsorption geometry does not agree with that predicted by ab initio calculations, which may be a result of some differences between the experimental conditions and those modeled. PMID:26877825

  16. 21 CFR 868.1150 - Indwelling blood carbon dioxide partial pressure (PCO2) analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Indwelling blood carbon dioxide partial pressure (PCO2) analyzer. 868.1150 Section 868.1150 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... “Class II Special Controls Guidance Document: Indwelling Blood Gas Analyzers; Final Guidance for Industry...

  17. Classifying Acute Respiratory Distress Syndrome Severity: Correcting the Arterial Oxygen Partial Pressure to Fractional Inspired Oxygen at Altitude.

    PubMed

    Pérez-Padilla, Rogelio; Hernández-Cárdenas, Carmen Margarita; Lugo-Goytia, Gustavo

    2016-01-01

    In the well-known Berlin definition of acute respiratory distress syndrome (ARDS), there is a recommended adjustment for arterial oxygen partial pressure to fractional inspired oxygen (PaO2/FIO2) at altitude, but without a reference as to how it was derived.

  18. Solubility of carbon dioxide in aqueous mixtures of alkanolamines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawodu, O.F.; Meisen, A.

    1994-07-01

    The solubility of CO[sub 2] in water + N-methyldiethanolamine + monoethanolamine (MDEA + MEA) and water + N-methyldiethanolamine + diethanolamine (MDEA + DEA) are reported at two compositions of 3.4 M MDEA + 0.8 M MEA or DEA and 2.1 M MDEA + 2.1 M MEA or DEA at temperatures from 70 to 180 C and CO[sub 2] partial pressures from 100 to 3,850 kPa. The solubility of CO[sub 2] in the blends decreased with an increase in temperature but increased with an increase in CO[sub 2] partial pressure. At low partial pressures of CO[sub 2] and the same totalmore » amine concentration, the equilibrium CO[sub 2] loadings were in the order MDEA + MEA > MDEA + DEA > MDEA. However, at high CO[sub 2] partial pressures, the equilibrium CO[sub 2] loadings in the MDEA solutions were higher than those of the MDEA + MEA and MDEA + DEA blends of equal molar strengths due to the stoichiometric loading limitations of MEA and DEA. The nonadditivity of the equilibrium loadings for single amine systems highlights the need for independent measurements on amine blends.« less

  19. Oxidation of C/SiC Composites at Reduced Oxygen Partial Pressures

    NASA Technical Reports Server (NTRS)

    Opila, E. J.; Serra, J. L.

    2007-01-01

    T-300 carbon fibers and T-300 carbon fiber reinforced silicon carbide composites (C/SiC) were oxidized in flowing reduced oxygen partial pressure environments at a total pressure of one atmosphere (0.5 atm O2, 0.05 atm O2 and 0.005 atm O2, balance argon). Experiments were conducted at four temperatures (816deg, 1149deg, 1343deg, and 1538 C). The oxidation kinetics were monitored using thermogravimetric analysis. T-300 fibers were oxidized to completion for times between 0.6 and 90 h. Results indicated that fiber oxidation kinetics were gas phase diffusion controlled. Oxidation rates had an oxygen partial pressure dependence with a power law exponent close to one. In addition, oxidation rates were only weakly dependent on temperature. The C/SiC coupon oxidation kinetics showed some variability, attributed to differences in the number and width of cracks in the SiC seal coat. In general, weight losses were observed indicating oxidation of the carbon fibers dominated the oxidation behavior. Low temperatures and high oxygen pressures resulted in the most rapid consumption of the carbon fibers. At higher temperatures, the lower oxidation rates were primarily attributed to crack closure due to SiC thermal expansion, rather than oxidation of SiC since these reduced rates were observed even at the lowest oxygen partial pressures where SiC oxidation is minimal.

  20. Jumonji Domain Containing Protein 6: A Novel Oxygen Sensor in the Human Placenta.

    PubMed

    Alahari, Sruthi; Post, Martin; Caniggia, Isabella

    2015-08-01

    Persistent low oxygen is implicated in the pathogenesis of placental-associated pathologies such as preeclampsia, a serious disorder of pregnancy. Emerging evidence implicates a novel family of Jumonji C catalytic domain proteins as mediators of hypoxic gene expression. Here, we investigated the regulatory relationship between Jumonji C domain containing protein 6 (JMJD6) and hypoxia-inducible factor (HIF)1A in the human placenta at physiological and pathological conditions. JMJD6 expression inversely correlated with changes in oxygen tension during early placental development, ie, high at 7-9 weeks when-partial pressure of O2 is low and declining afterwards when-partial pressure of O2 increases. Moreover, JMJD6 protein was significantly elevated in early-onset preeclamptic placentae, localizing to the syncytiotrophoblast layer and syncytial knots. Exposure of primary isolated trophoblast cells, human villous explants, and JEG3 choriocarcinoma cells to low oxygen (3%) and sodium nitroprusside (inducer of oxidative stress) also resulted in elevated JMJD6 levels, which was abrogated by HIF1A knockdown. In normoxia, knockdown of JMJD6 in JEG3 cells stabilized HIF1A with a concomitant decrease in von Hippel-Lindau (VHL) tumor suppressor protein, a negative regulator of HIF1A stability. In contrast, overexpression of JMJD6 enhanced VHL expression and destabilized HIF1A. JMJD6 regulation of VHL stability did not involve the ubiquitin-proteasome system but likely occurred through lysyl hydroxylation and small ubiquitin-like modifier 1-dependent small ubiquitin-like modifierylation. In summary, our data signify a novel role for JMJD6 as an oxygen sensor in the human placenta, and alterations in the JMJD6-VHL-HIF1A feedback loop may indirectly contribute to elevated HIF1A found in preeclampsia.

  1. Pressure effects on the structure, kinetic, and thermodynamic properties of heat-induced aggregation of protein studied by FT-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Taniguchi, Y.; Okuno, A.; Kato, M.

    2010-03-01

    Pressure can retrain the heat-induced aggregation and dissociate the heat-induced aggregates. We observed the aggregation-preventing pressure effect and the aggregates-dissociating pressure effect to characterize the heat-induced aggregation of equine serum albumin (ESA) by FT-IR spectroscopy. The results suggest the α-helical structure collapses at the beginning of heat-induced aggregation through the swollen structure, and then the rearrangement of structure to the intermolecular β-sheet takes place through partially unfolded structure. We determined the activation volume for the heat-induced aggregation (ΔV# = +93 ml/mol) and the partial molar volume difference between native state and heat-induced aggregates (ΔV=+32 ml/mol). This positive partial molar volume difference suggests that the heat-induced aggregates have larger internal voids than the native structure. Moreover, the positive volume change implies that the formation of the intermolecular β-sheet is unfavorable under high pressure.

  2. Optimizing the physical ergonomics indices for the use of partial pressure suits.

    PubMed

    Ding, Li; Li, Xianxue; Hedge, Alan; Hu, Huimin; Feathers, David; Qin, Zhifeng; Xiao, Huajun; Xue, Lihao; Zhou, Qianxiang

    2015-03-01

    This study developed an ergonomic evaluation system for the design of high-altitude partial pressure suits (PPSs). A total of twenty-one Chinese males participated in the experiment which tested three types of ergonomics indices (manipulative mission, operational reach and operational strength) were studied using a three-dimensional video-based motion capture system, a target-pointing board, a hand dynamometer, and a step-tread apparatus. In total, 36 ergonomics indices were evaluated and optimized using regression and fitting analysis. Some indices that were found to be linearly related and redundant were removed from the study. An optimal ergonomics index system was established that can be used to conveniently and quickly evaluate the performance of different pressurized/non-pressurized suit designs. The resulting ergonomics index system will provide a theoretical basis and practical guidance for mission planners, suit designers and engineers to design equipment for human use, and to aid in assessing partial pressure suits. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  3. Effects of Environmental Oxygen Content and Dissolved Oxygen on the Surface Tension and Viscosity of Liquid Nickel

    NASA Astrophysics Data System (ADS)

    SanSoucie, M. P.; Rogers, J. R.; Kumar, V.; Rodriguez, J.; Xiao, X.; Matson, D. M.

    2016-07-01

    The NASA Marshall Space Flight Center's electrostatic levitation (ESL) laboratory has recently added an oxygen partial pressure controller. This system allows the oxygen partial pressure within the vacuum chamber to be measured and controlled in the range from approximately 10^{-28} {to} 10^{-9} bar, while in a vacuum atmosphere. The oxygen control system installed in the ESL laboratory's main chamber consists of an oxygen sensor, oxygen pump, and a control unit. The sensor is a potentiometric device that determines the difference in oxygen activity in two gas compartments (inside the chamber and the air outside of the chamber) separated by an electrolyte. The pump utilizes coulometric titration to either add or remove oxygen. The system is controlled by a desktop control unit, which can also be accessed via a computer. The controller performs temperature control for the sensor and pump, has a PID-based current loop and a control algorithm. Oxygen partial pressure has been shown to play a significant role in the surface tension of liquid metals. Oxide films or dissolved oxygen may lead to significant changes in surface tension. The effects on surface tension and viscosity by oxygen partial pressure in the surrounding environment and the melt dissolved oxygen content will be evaluated, and the results will be presented. The surface tension and viscosity will be measured at several different oxygen partial pressures while the sample is undercooled. Surface tension and viscosity will be measured using the oscillating droplet method.

  4. Analyzing the dependence of oxygen incorporation current density on overpotential and oxygen partial pressure in mixed conducting oxide electrodes.

    PubMed

    Guan, Zixuan; Chen, Di; Chueh, William C

    2017-08-30

    The oxygen incorporation reaction, which involves the transformation of an oxygen gas molecule to two lattice oxygen ions in a mixed ionic and electronic conducting solid, is a ubiquitous and fundamental reaction in solid-state electrochemistry. To understand the reaction pathway and to identify the rate-determining step, near-equilibrium measurements have been employed to quantify the exchange coefficients as a function of oxygen partial pressure and temperature. However, because the exchange coefficient contains contributions from both forward and reverse reaction rate constants and depends on both oxygen partial pressure and oxygen fugacity in the solid, unique and definitive mechanistic assessment has been challenging. In this work, we derive a current density equation as a function of both oxygen partial pressure and overpotential, and consider both near and far from equilibrium limits. Rather than considering specific reaction pathways, we generalize the multi-step oxygen incorporation reaction into the rate-determining step, preceding and following quasi-equilibrium steps, and consider the number of oxygen ions and electrons involved in each. By evaluating the dependence of current density on oxygen partial pressure and overpotential separately, one obtains the reaction orders for oxygen gas molecules and for solid-state species in the electrode. We simulated the oxygen incorporation current density-overpotential curves for praseodymium-doped ceria for various candidate rate-determining steps. This work highlights a promising method for studying the exchange kinetics far away from equilibrium.

  5. Efficient absorption of SO2 with low-partial pressures by environmentally benign functional deep eutectic solvents.

    PubMed

    Zhang, Kai; Ren, Shuhang; Hou, Yucui; Wu, Weize

    2017-02-15

    Sulfur dioxide (SO 2 ) emitted from the burning of fossil fuels is one of the main air contaminants. In this work, we found that environmentally benign solvents, deep eutectic solvents (DESs) could be designed with a function to absorb low-partial pressure SO 2 from simulated flue gas. Two kinds of biodegradable functional DESs based on betaine (Bet) and l-carnitine (L-car) as hydrogen bond accepters (HBA) and ethylene glycol (EG) as a hydrogen bond donor (HBD) were prepared with mole ratios of HBA to HBD from 1:3 to 1:5, and they were investigated to absorb SO 2 with different partial pressures at various temperatures. The results showed that the two DESs could absorb low-partial pressure SO 2 efficiently. SO 2 absorption capacities of the DESs with HBA/HBD mole ratio of 1:3 were 0.332mol SO 2 /mol HBA for Bet+EG DES and 0.820mol SO 2 /mol HBA for L-car+EG DES at 40°C with a SO 2 partial pressure of 0.02atm. In addition, the regeneration experiments demonstrated that the absorption capacities of DESs did not change after five absorption and desorption cycles. Furthermore, the absorption mechanism of SO 2 by DESs was studied by FT-IR, 1 H NMR and 13 C NMR spectra. It was found that there are strong acid-base interactions between SO 2 and -COO - on HBA. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Effects of oxygen on responses to heating in two lizard species sampled along an elevational gradient.

    PubMed

    DuBois, P Mason; Shea, Tanner K; Claunch, Natalie M; Taylor, Emily N

    2017-08-01

    Thermal tolerance is an important variable in predictive models about the effects of global climate change on species distributions, yet the physiological mechanisms responsible for reduced performance at high temperatures in air-breathing vertebrates are not clear. We conducted an experiment to examine how oxygen affects three variables exhibited by ectotherms as they heat-gaping threshold, panting threshold, and loss of righting response (the latter indicating the critical thermal maximum)-in two lizard species along an elevational (and therefore environmental oxygen partial pressure) gradient. Oxygen partial pressure did not impact these variables in either species. We also exposed lizards at each elevation to severely hypoxic gas to evaluate their responses to hypoxia. Severely low oxygen partial pressure treatments significantly reduced the gaping threshold, panting threshold, and critical thermal maximum. Further, under these extreme hypoxic conditions, these variables were strongly and positively related to partial pressure of oxygen. In an elevation where both species overlapped, the thermal tolerance of the high elevation species was less affected by hypoxia than that of the low elevation species, suggesting the high elevation species may be adapted to lower oxygen partial pressures. In the high elevation species, female lizards had higher thermal tolerance than males. Our data suggest that oxygen impacts the thermal tolerance of lizards, but only under severely hypoxic conditions, possibly as a result of hypoxia-induced anapyrexia. Copyright © 2017. Published by Elsevier Ltd.

  7. Phase development in the Bi 2Sr 2CaCu 2O y system . Effects of oxygen pressure

    NASA Astrophysics Data System (ADS)

    List, F. A.; Hsu, H.; Cavin, O. B.; Porter, W. D.; Hubbard, C. R.; Kroeger, D. M.

    1992-11-01

    Studies have been undertaken using thermal analysis, in conjunction with high-temperature and room temperature X-ray diffraction, fraction, to elucidate phase relationships during thermal processing of thick films of initially phase pure Bi 2Sr 2CaCu 2O y (2212) on silver substrates in various oxygen-containing atmospheres (0.001 to 100% O 2). Exothermic events on cooling at 10°C/min from a partially liquid state vary with oxygen partial pressure and can be grouped into three sets (I-III). Set I is prominent for 0.001% and 0.1% O 2 in the range of 740-775°C and is believed to be associated with the crystallization of a Cu-free ∼ Bi 5Sr 3Ca 1 oxide phase. Set II results from the crystallization of 2212; it is observed for p(O 2)≥1.0% in the temperature range 800-870°C. Set III appears for 21% and 100% O 2 in the temperature range 880-910°C, and its origin is not clear from the results of this study. Subsequent room temperature X-ray diffraction from these samples suggests that in general high oxygen partial pressures (100% O 2) tend to favor the formation of Bi 2Sr 2CuO 6 (2201), whereas low oxygen partial pressures (0.001-0.1% O 2) lead to the formation of a Cu-free, Bi-Sr-Ca oxide phase. The 2212 phase forms at this cooling rate predominantly for intermediate oxygen partial pressures (7.6-21% O 2). High-temperature X-ray diffraction during cooling (2°C/h) from the partially liquid state shows a pronounced dependence of the order of evolution of crystalline 2212 and 2201 phases on p(O 2). For an oxygen partial pressure of 1.0% the formation of 2212 precedes that of 2201, whereas for 0.01% O 2 2201 crystallizes at a higher temperature than 2212. The implications of these results pertaining to thermal processing of thick 2212 films are discussed.

  8. Reproducing early Martian atmospheric carbon dioxide partial pressure by modeling the formation of Mg-Fe-Ca carbonate identified in the Comanche rock outcrops on Mars

    NASA Astrophysics Data System (ADS)

    Berk, Wolfgang; Fu, Yunjiao; Ilger, Jan-Michael

    2012-10-01

    The well defined composition of the Comanche rock's carbonate (Magnesite0.62Siderite0.25Calcite0.11Rhodochrosite0.02) and its host rock's composition, dominated by Mg-rich olivine, enable us to reproduce the atmospheric CO2partial pressure that may have triggered the formation of these carbonates. Hydrogeochemical one-dimensional transport modeling reveals that similar aqueous rock alteration conditions (including CO2partial pressure) may have led to the formation of Mg-Fe-Ca carbonate identified in the Comanche rock outcrops (Gusev Crater) and also in the ultramafic rocks exposed in the Nili Fossae region. Hydrogeochemical conditions enabling the formation of Mg-rich solid solution carbonate result from equilibrium species distributions involving (1) ultramafic rocks (ca. 32 wt% olivine; Fo0.72Fa0.28), (2) pure water, and (3) CO2partial pressures of ca. 0.5 to 2.0 bar at water-to-rock ratios of ca. 500 molH2O mol-1rock and ca. 5°C (278 K). Our modeled carbonate composition (Magnesite0.64Siderite0.28Calcite0.08) matches the measured composition of carbonates preserved in the Comanche rocks. Considerably different carbonate compositions are achieved at (1) higher temperature (85°C), (2) water-to-rock ratios considerably higher and lower than 500 mol mol-1 and (3) CO2partial pressures differing from 1.0 bar in the model set up. The Comanche rocks, hosting the carbonate, may have been subjected to long-lasting (>104 to 105 years) aqueous alteration processes triggered by atmospheric CO2partial pressures of ca. 1.0 bar at low temperature. Their outcrop may represent a fragment of the upper layers of an altered olivine-rich rock column, which is characterized by newly formed Mg-Fe-Ca solid solution carbonate, and phyllosilicate-rich alteration assemblages within deeper (unexposed) units.

  9. Electrical conductivity of cobalt doped La 0.8Sr 0.2Ga 0.8Mg 0.2O 3- δ

    NASA Astrophysics Data System (ADS)

    Wang, Shizhong; Wu, Lingli; Liang, Ying

    La 0.8Sr 0.2Ga 0.8Mg 0.2O 3- δ (LSGM8282), La 0.8Sr 0.2Ga 0.8Mg 0.15Co 0.05O 3- δ (LSGMC5) and La 0.8Sr 0.2Ga 0.8Mg 0.115Co 0.085O 3- δ (LSGMC8.5) were prepared using a conventional solid-state reaction. Electrical conductivities and electronic conductivities of the samples were measured using four-probe impedance spectrometry, four-probe dc polarization and Hebb-Wagner polarization within the temperature range of 973-1173 K. The electrical conductivities in LSGMC5 and LSGMC8.5 increased with decreasing oxygen partial pressures especially in the high (>10 -5 atm) and low oxygen partial pressure regions (<10 -15 atm). However, the electrical conductivity in LSGM8282 had no dependency on the oxygen partial pressure. At temperatures higher than 1073 K, PO2 dependencies of the free electron conductivities in LSGM8282, LSGMC5 and LSGMC8.5 were about -1/4, and PO2 dependencies of the electron hole conductivities were about 0.25, 0.12 and 0.07, respectively. Oxygen ion conductivities in LSGMC5 and LSGMC8.5 increased with decreasing oxygen partial pressures especially in the high and low oxygen partial pressure regions, which was due to the increase in the concentration of oxygen vacancies. The change in the concentration of oxygen vacancies and the valence of cobalt with oxygen partial pressure were determined using a thermo-gravimetric technique. Both the electronic conductivity and oxygen ion conductivity in cobalt doped lanthanum gallate samples increased with increasing concentration of cobalt, suggesting that the concentration of cobalt should be optimized carefully to maintain a high electrical conductivity and close to 1 oxygen ion transference number.

  10. Carbon Monoxide, Hydrogen, and Formate Metabolism during Methanogenesis from Acetate by Thermophilic Cultures of Methanosarcina and Methanothrix Strains.

    PubMed

    Zinder, S H; Anguish, T

    1992-10-01

    CO and H(2) have been implicated in methanogenesis from acetate, but it is unclear whether they are directly involved in methanogenesis or electron transfer in acetotrophic methanogens. We compared metabolism of H(2), CO, and formate by cultures of the thermophilic acetotrophic methanogens Methanosarcina thermophila TM-1 and Methanothrix sp. strain CALS-1. M. thermophila accumulated H(2) to partial pressures of 40 to 70 Pa (1 Pa = 0.987 x 10 atm), as has been previously reported for this and other Methanosarcina cultures. In contrast, Methanothrix sp. strain CALS-1 accumulated H(2) to maximum partial pressures near 1 Pa. Growing cultures of Methanothrix sp. strain CALS-1 initially accumulated CO, which reached partial pressures near 0.6 Pa (some CO came from the rubber stopper) during the middle of methanogenesis; this was followed by a decrease in CO partial pressures to less than 0.01 Pa by the end of methanogenesis. Accumulation or consumption of CO by cultures of M. thermophila growing on acetate was not detected. Late-exponential-phase cultures of Methanothrix sp. strain CALS-1, in which the CO partial pressure was decreased by flushing with N(2)-CO(2), accumulated CO to 0.16 Pa, whereas cultures to which ca. 0.5 Pa of CO was added consumed CO until it reached this partial pressure. Cyanide (1 mM) blocked CO consumption but not production. High partial pressures of H(2) (40 kPa) inhibited methanogenesis from acetate by M. thermophila but not by Methanothrix sp. strain CALS-1, and 2 kPa of CO was not inhibitory to M. thermophila but was inhibitory to Methanothrix sp. strain CALS-1. Levels of CO dehydrogenase, hydrogenase, and formate dehydrogenase in Methanothrix sp. strain CALS-1 were 9.1, 0.045, and 5.8 mumol of viologen reduced min mg of protein. These results suggest that CO plays a role in Methanothrix sp. strain CALS-1 similar to that of H(2) in M. thermophila and are consistent with the conclusion that CO is an intermediate in a catabolic or anabolic pathway in Methanothrix sp. strain CALS-1; however, they could also be explained by passive equilibration of CO with a metabolic intermediate.

  11. Carbon Monoxide, Hydrogen, and Formate Metabolism during Methanogenesis from Acetate by Thermophilic Cultures of Methanosarcina and Methanothrix Strains

    PubMed Central

    Zinder, S. H.; Anguish, T.

    1992-01-01

    CO and H2 have been implicated in methanogenesis from acetate, but it is unclear whether they are directly involved in methanogenesis or electron transfer in acetotrophic methanogens. We compared metabolism of H2, CO, and formate by cultures of the thermophilic acetotrophic methanogens Methanosarcina thermophila TM-1 and Methanothrix sp. strain CALS-1. M. thermophila accumulated H2 to partial pressures of 40 to 70 Pa (1 Pa = 0.987 × 10-5 atm), as has been previously reported for this and other Methanosarcina cultures. In contrast, Methanothrix sp. strain CALS-1 accumulated H2 to maximum partial pressures near 1 Pa. Growing cultures of Methanothrix sp. strain CALS-1 initially accumulated CO, which reached partial pressures near 0.6 Pa (some CO came from the rubber stopper) during the middle of methanogenesis; this was followed by a decrease in CO partial pressures to less than 0.01 Pa by the end of methanogenesis. Accumulation or consumption of CO by cultures of M. thermophila growing on acetate was not detected. Late-exponential-phase cultures of Methanothrix sp. strain CALS-1, in which the CO partial pressure was decreased by flushing with N2-CO2, accumulated CO to 0.16 Pa, whereas cultures to which ca. 0.5 Pa of CO was added consumed CO until it reached this partial pressure. Cyanide (1 mM) blocked CO consumption but not production. High partial pressures of H2 (40 kPa) inhibited methanogenesis from acetate by M. thermophila but not by Methanothrix sp. strain CALS-1, and 2 kPa of CO was not inhibitory to M. thermophila but was inhibitory to Methanothrix sp. strain CALS-1. Levels of CO dehydrogenase, hydrogenase, and formate dehydrogenase in Methanothrix sp. strain CALS-1 were 9.1, 0.045, and 5.8 μmol of viologen reduced min-1 mg of protein-1. These results suggest that CO plays a role in Methanothrix sp. strain CALS-1 similar to that of H2 in M. thermophila and are consistent with the conclusion that CO is an intermediate in a catabolic or anabolic pathway in Methanothrix sp. strain CALS-1; however, they could also be explained by passive equilibration of CO with a metabolic intermediate. PMID:16348788

  12. Spatial and Temporal Variations in the Partial Pressure and Emission of CO2 and CH4 in and Amazon Floodplain Lake

    NASA Astrophysics Data System (ADS)

    Forsberg, B. R.; Amaral, J. H.; Barbosa, P.; Kasper, D.; MacIntyre, S.; Cortes, A.; Sarmento, H.; Borges, A. V.; Melack, J. M.; Farjalla, V.

    2015-12-01

    The Amazon floodplain contains a variety of wetland environments which contribute CO2 and CH4 to the regional and global atmospheres. The partial pressure and emission of these greenhouse gases (GHGs) varies: 1) between habitats, 2) seasonally, as the characteristics these habitats changes and 3) diurnally, in response to diurnal stratification. In this study, we investigated the combined influence of these factors on the partial pressure and emission of GHGs in Lago Janauacá, a central Amazon floodplain lake (3o23' S; 60o18' O). All measurements were made between August of 2014 and April of 2015 at two different sites and in three distinct habitats: open water, flooded forest, flooded macrophytes. Concentrations of CO2 and CH4 in air were measured continuously with a cavity enhanced absorption spectrometer, Los Gatos Research´s Ultraportable Greenhouse Gas Analyzer (UGGA). Vertical profiles o pCO2 and pCH4 were measured using the UGGA connected to an electric pump and equilibrator. Diffusive surface emissions were estimated with the UGGA connected to a static floating chamber. To investigate the influence of vertical stratification and mixing on GHG partial pressure and emissions, a meteorological station and submersible sensor chain were deployed at each site. Meteorological sensors included wind speed and direction. The submersible chains included thermistors and oxygen sensors. Depth profiles of partial pressure and diffusive emissions for both CO2 and CH4 varied diurnally, seasonally and between habitats. Both pCO2 and pCH4 were consistently higher in bottom than surface waters with the largest differences occurring at high water when thermal stratification was most stable. Methane emissions and partial pressures were highest at low water while pCO2 and CO2 fluxes were highest during high water periods, with 35% of CO2 fluxes at low water being negative. The highest average surface value of pCO2 (5491 μatm), encountered during rising water, was ~3 times higher than that encountered at low water (1708 μatm). Partial pressures and emissions of both CO2 and CH4 were greatest in open water habitats and consistently higher at night. These patterns reflected the higher levels of wind driven mixing and turbulence in open water environments and higher convective mixing at night which promoted diffusive emission.

  13. High-pressure NaCl-phase of tetrahedral compounds

    NASA Astrophysics Data System (ADS)

    Soma, T.; -Matsuo Kagaya, H.

    1984-04-01

    The phase transition of tetrahedral compounds such as GaP, InP, ZnS, ZnSe, ZnTe and CdTe under pressure is investigated from the electronic theory of solids by using our recently presented binding force, which includes mainly covalent interactions in the pseudopotential formalism and partially ionic interactions. The partially ionic forces give the important contributions to the high-pressure phase and stabilize the NaCl-type structure for the high-pressure phase of these compounds, although not reported for GaP experimentally. Then, the numerical results such as the transition pressure, the volume-discontinuity, the transition heat with respect to the pressure-induced phase transition from the zinc-blende-to the NaCl-type lattice are obtained theoretically.

  14. Design and Synthesis of Novel Small-molecule Inhibitors of the Hypoxia Inducible Factor Pathway

    PubMed Central

    Mooring, Suazette Reid; Jin, Hui; Devi, Narra S.; Jabbar, Adnan A.; Kaluz, Stefan; Liu, Yuan; Van Meir, Erwin G.; Wang, Binghe

    2012-01-01

    Hypoxia, a reduction in partial oxygen pressure, is a salient property of solid tumors. Hypoxia drives malignant progression and metastasis in tumors and participates in tumor resistance to radio- and chemotherapies. Hypoxia activates the hypoxia-inducible factor (HIF) family of transcription factors, which induce target genes that regulate adaptive biological processes such as anaerobic metabolism, cell motility and angiogenesis. Clinical evidence has demonstrated that expression of HIF-1 is strongly associated with poor patient prognosis and activation of HIF-1 contributes to malignant behavior and therapeutic resistance. Consequently, HIF-1 has become an important therapeutic target for inhibition by small molecules. Herein, we describe the design and synthesis of small molecules that inhibit the HIF-1 signaling pathway. Many of these compounds exhibit inhibitory activity in the nanomolar range. Separate mechanistic studies indicate that these inhibitors do not alter HIF-1 levels, but interfere with the HIF-1α/HIF-1β/p300/CBP complex formation by interacting with p300 and CBP. PMID:22032632

  15. Drop impact upon micro- and nanostructured superhydrophobic surfaces.

    PubMed

    Tsai, Peichun; Pacheco, Sergio; Pirat, Christophe; Lefferts, Leon; Lohse, Detlef

    2009-10-20

    We experimentally investigate drop impact dynamics onto different superhydrophobic surfaces, consisting of regular polymeric micropatterns and rough carbon nanofibers, with similar static contact angles. The main control parameters are the Weber number We and the roughness of the surface. At small We, i.e., small impact velocity, the impact evolutions are similar for both types of substrates, exhibiting Fakir state, complete bouncing, partial rebouncing, trapping of an air bubble, jetting, and sticky vibrating water balls. At large We, splashing impacts emerge forming several satellite droplets, which are more pronounced for the multiscale rough carbon nanofiber jungles. The results imply that the multiscale surface roughness at nanoscale plays a minor role in the impact events for small We less than or approximately equal 120 but an important one for large We greater than or approximately equal 120. Finally, we find the effect of ambient air pressure to be negligible in the explored parameter regime We less than or approximately equal 150.

  16. Dynamics of multiple double layers in high pressure glow discharge in a simple torus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar Paul, Manash, E-mail: manashkr@gmail.com; Sharma, P. K.; Thakur, A.

    2014-06-15

    Parametric characterization of multiple double layers is done during high pressure glow discharge in a toroidal vessel of small aspect ratio. Although glow discharge (without magnetic field) is known to be independent of device geometry, but the toroidal boundary conditions are conducive to plasma growth and eventually the plasma occupy the toroidal volume partially. At higher anode potential, the visibly glowing spots on the body of spatially extended anode transform into multiple intensely luminous spherical plasma blob structures attached to the tip of the positive electrode. Dynamics of multiple double layers are observed in argon glow discharge plasma in presencemore » of toroidal magnetic field. The radial profiles of plasma parameters measured at various toroidal locations show signatures of double layer formation in our system. Parametric dependence of double layer dynamics in presence of toroidal magnetic field is presented here.« less

  17. Testing of Alternative Materials for Advanced Suit Bladders

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Orndoff, Evelyne; Makinen, Janice; Tang, Henry

    2011-01-01

    Several candidate advanced pressure bladder membrane materials have been developed for NASA Johnson Space Center by DSM Biomedical for selective permeability of carbon dioxide and water vapor. These materials were elasthane and two other formulations of thermoplastic polyether polyurethane. Each material was tested in two thicknesses for permeability to carbon dioxide, oxygen and water vapor. Although oxygen leaks through the suit bladder would amount to only about 60 cc/hr in a full size suit, significant amounts of carbon dioxide would not be rejected by the system to justify its use. While the ratio of carbon dioxide to oxygen permeability is about 48 to 1, this is offset by the small partial pressure of carbon dioxide in acceptable breathing atmospheres of the suit. Humidity management remains a possible use of the membranes depending on the degree to which the water permeability is inhibited by cations in the sweat. Tests are underway to explore cation fouling from sweat.

  18. Contrast Gain Control in Auditory Cortex

    PubMed Central

    Rabinowitz, Neil C.; Willmore, Ben D.B.; Schnupp, Jan W.H.; King, Andrew J.

    2011-01-01

    Summary The auditory system must represent sounds with a wide range of statistical properties. One important property is the spectrotemporal contrast in the acoustic environment: the variation in sound pressure in each frequency band, relative to the mean pressure. We show that neurons in ferret auditory cortex rescale their gain to partially compensate for the spectrotemporal contrast of recent stimulation. When contrast is low, neurons increase their gain, becoming more sensitive to small changes in the stimulus, although the effectiveness of contrast gain control is reduced at low mean levels. Gain is primarily determined by contrast near each neuron's preferred frequency, but there is also a contribution from contrast in more distant frequency bands. Neural responses are modulated by contrast over timescales of ∼100 ms. By using contrast gain control to expand or compress the representation of its inputs, the auditory system may be seeking an efficient coding of natural sounds. PMID:21689603

  19. The Relationship of Mucus Concentration (Hydration) to Mucus Osmotic Pressure and Transport in Chronic Bronchitis

    PubMed Central

    Coakley, Raymond D.; Button, Brian; Henderson, Ashley G.; Zeman, Kirby L.; Alexis, Neil E.; Peden, David B.; Lazarowski, Eduardo R.; Davis, C. William; Bailey, Summer; Fuller, Fred; Almond, Martha; Qaqish, Bahjat; Bordonali, Elena; Rubinstein, Michael; Bennett, William D.; Kesimer, Mehmet; Boucher, Richard C.

    2015-01-01

    Rationale: Chronic bronchitis (CB) is characterized by persistent cough and sputum production. Studies were performed to test whether mucus hyperconcentration and increased partial osmotic pressure, in part caused by abnormal purine nucleotide regulation of ion transport, contribute to the pathogenesis of CB. Objectives: We tested the hypothesis that CB is characterized by mucus hyperconcentration, increased mucus partial osmotic pressures, and reduced mucus clearance. Methods: We measured in subjects with CB as compared with normal and asymptomatic smoking control subjects indices of mucus concentration (hydration; i.e., percentage solids) and sputum adenine nucleotide/nucleoside concentrations. In addition, sputum partial osmotic pressures and mucus transport rates were measured in subjects with CB. Measurements and Results: CB secretions were hyperconcentrated as indexed by an increase in percentage solids and total mucins, in part reflecting decreased extracellular nucleotide/nucleoside concentrations. CB mucus generated concentration-dependent increases in partial osmotic pressures into ranges predicted to reduce mucus transport. Mucociliary clearance (MCC) in subjects with CB was negatively correlated with mucus concentration (percentage solids). As a test of relationships between mucus concentration and disease, mucus concentrations and MCC were compared with FEV1, and both were significantly correlated. Conclusions: Abnormal regulation of airway surface hydration may slow MCC in CB and contribute to disease pathogenesis. PMID:25909230

  20. Oxygen partial pressure influence on the character of InGaZnO thin films grown by PLD

    NASA Astrophysics Data System (ADS)

    Lu, Yi; Wang, Li

    2012-11-01

    The amorphous oxide semiconductors (AOSs) are promising for emerging large-area optoelectronic applications because of capability of large-area, uniform deposition at low temperatures such as room temperature (RT). Indium-gallium-zinc oxide (InGaZnO) thin film is a promising amorphous semiconductors material in thin film transistors (TFT) for its excellent electrical properties. In our work, the InGaZnO thin films are fabricated on the SiO2 glass using pulsed laser deposition (PLD) in the oxygen partial pressure altered from 1 to 10 Pa at RT. The targets were prepared by mixing Ga2O3, In2O3, and ZnO powder at a mol ratio of 1: 7: 2 before the solid-state reactions in a tube furnace at the atmospheric pressure. The targets were irradiated by an Nd:YAG laser(355nm). Finally, we have three films of 270nm, 230nm, 190nm thick for 1Pa, 5Pa, 10Pa oxygen partial pressure. The product thin films were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), Hall-effect investigation. The comparative study demonstrated the character changes of the structure and electronic transport properties, which is probably occurred as a fact of the different oxygen partial pressure used in the PLD.

  1. Positive airway pressure adherence and subthreshold adherence in posttraumatic stress disorder patients with comorbid sleep apnea

    PubMed Central

    Krakow, Barry J; Obando, Jessica J; Ulibarri, Victor A; McIver, Natalia D

    2017-01-01

    Study objectives Patients with comorbid posttraumatic stress disorder (PTSD) and obstructive sleep apnea (OSA) manifest low adherence to continuous positive airway pressure (CPAP) due to fixed, pressure-induced expiratory pressure intolerance (EPI), a subjective symptom and objective sign aggravated by anxiety sensitivity and somatosensory amplification. As advanced PAP therapy modes (ie, auto-bilevel PAP [ABPAP] or adaptive servo-ventilation [ASV]) may address these side effects, we hypothesized such treatment would be associated with decreased expiratory intolerance and increased adherence in posttraumatic stress patients with co-occurring OSA. Methods We reviewed charts of 147 consecutive adult patients with moderately severe posttraumatic stress symptoms and objectively diagnosed OSA. All patients failed or rejected CPAP and were manually titrated on auto-adjusting, dual-pressure ABPAP or ASV modes in the sleep laboratory, a technique to eliminate flow limitation breathing events while resolving EPI. Patients were then prescribed either mode of therapy. Follow-up encounters assessed patient use, and objective data downloads (ODDs) measured adherence. Results Of 147 charts reviewed, 130 patients were deemed current PAP users, and 102 provided ODDs: 64 used ASV and 38 used ABPAP. ODDs yielded three groups: 59 adherent per insurance conventions, 19 subthreshold compliant partial users, and 24 noncompliant. Compliance based on available downloads was 58%, notably higher than recently reported rates in PTSD patients with OSA. Among the 19 partial users, 17 patients were minutes of PAP use or small percentages of nights removed from meeting insurance compliance criteria for PAP devices. Conclusion Research is warranted on advanced PAP modes in managing CPAP failure in PTSD patients with comorbid OSA. Subthreshold adherence constructs may inform clinical care in a patient-centric model distinct from insurance conventions. Speculatively, clinical application of this transitional zone (“subthreshold” number of hours) may increase PAP use and eventual adherence. PMID:29200833

  2. Markers of Successful Extubation in Extremely Preterm Infants, and Morbidity After Failed Extubation

    PubMed Central

    Chawla, Sanjay; Natarajan, Girija; Shankaran, Seetha; Carper, Benjamin; Brion, Luc P.; Keszler, Martin; Carlo, Waldemar A.; Ambalavanan, Namasivayam; Gantz, Marie G.; Das, Abhik; Finer, Neil; Goldberg, Ronald N.; Cotten, C. Michael; Higgins, Rosemary D.

    2017-01-01

    Objectives To identify variables associated with successful elective extubation, and to determine neonatal morbidities associated with extubation failure in extremely preterm neonates. Study design This study was a secondary analysis of the National Institute of Child Health and Human Development Neonatal Research Network’s Surfactant, Positive Pressure, and Oxygenation Randomized Trial that included extremely preterm infants born at 240/7 to 276/7 weeks’ gestation. Patients were randomized either to a permissive ventilatory strategy (continuous positive airway pressure group) or intubation followed by early surfactant (surfactant group). There were prespecified intubation and extubation criteria. Extubation failure was defined as reintubation within 5 days of extubation. Results Of 1316 infants in the trial, 1071 were eligible; 926 infants had data available on extubation status; 538 were successful and 388 failed extubation. The rate of successful extubation was 50% (188/374) in the continuous positive airway pressure group and 63% (350/552) in the surfactant group. Successful extubation was associated with higher 5-minute Apgar score, and pH prior to extubation, lower peak fraction of inspired oxygen within the first 24 hours of age and prior to extubation, lower partial pressure of carbon dioxide prior to extubation, and non-small for gestational age status after adjustment for the randomization group assignment. Infants who failed extubation had higher adjusted rates of mortality (OR 2.89), bronchopulmonary dysplasia (OR 3.06), and death/bronchopulmonary dysplasia (OR 3.27). Conclusions Higher 5-minute Apgar score, and pH prior to extubation, lower peak fraction of inspired oxygen within first 24 hours of age, lower partial pressure of carbon dioxide and fraction of inspired oxygen prior to extubation, and nonsmall for gestational age status were associated with successful extubation. Failed extubation was associated with significantly higher likelihood of mortality and morbidities. Trial registration ClinicalTrials.gov: NCT00233324. PMID:28600154

  3. Markers of Successful Extubation in Extremely Preterm Infants, and Morbidity After Failed Extubation.

    PubMed

    Chawla, Sanjay; Natarajan, Girija; Shankaran, Seetha; Carper, Benjamin; Brion, Luc P; Keszler, Martin; Carlo, Waldemar A; Ambalavanan, Namasivayam; Gantz, Marie G; Das, Abhik; Finer, Neil; Goldberg, Ronald N; Cotten, C Michael; Higgins, Rosemary D

    2017-10-01

    To identify variables associated with successful elective extubation, and to determine neonatal morbidities associated with extubation failure in extremely preterm neonates. This study was a secondary analysis of the National Institute of Child Health and Human Development Neonatal Research Network's Surfactant, Positive Pressure, and Oxygenation Randomized Trial that included extremely preterm infants born at 24 0/7 to 27 6/7 weeks' gestation. Patients were randomized either to a permissive ventilatory strategy (continuous positive airway pressure group) or intubation followed by early surfactant (surfactant group). There were prespecified intubation and extubation criteria. Extubation failure was defined as reintubation within 5 days of extubation. Of 1316 infants in the trial, 1071 were eligible; 926 infants had data available on extubation status; 538 were successful and 388 failed extubation. The rate of successful extubation was 50% (188/374) in the continuous positive airway pressure group and 63% (350/552) in the surfactant group. Successful extubation was associated with higher 5-minute Apgar score, and pH prior to extubation, lower peak fraction of inspired oxygen within the first 24 hours of age and prior to extubation, lower partial pressure of carbon dioxide prior to extubation, and non-small for gestational age status after adjustment for the randomization group assignment. Infants who failed extubation had higher adjusted rates of mortality (OR 2.89), bronchopulmonary dysplasia (OR 3.06), and death/ bronchopulmonary dysplasia (OR 3.27). Higher 5-minute Apgar score, and pH prior to extubation, lower peak fraction of inspired oxygen within first 24 hours of age, lower partial pressure of carbon dioxide and fraction of inspired oxygen prior to extubation, and nonsmall for gestational age status were associated with successful extubation. Failed extubation was associated with significantly higher likelihood of mortality and morbidities. ClinicalTrials.gov: NCT00233324. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. O 1s core levels in Bi2Sr2CaCu2O8+δ single crystals

    NASA Astrophysics Data System (ADS)

    Parmigiani, F.; Shen, Z. X.; Mitzi, D. B.; Lindau, I.; Spicer, W. E.; Kapitulnik, A.

    1991-02-01

    High-quality Bi2Sr2CaCu2O8+δ superconducting single crystals, annealed at different oxygen partial pressures, have been studied using angular-resolved x-ray photoelectron spectroscopy with a resolution higher than that used in any previous study. Two states of the oxygen, separated by ~=0.7 eV, are unambiguously observed. Examining these components at different angles makes it possible to distinguish bulk from surface components. Using this capability we discover that annealing under lower oxygen partial pressure (1 atm) results in oxygen intercalation beneath the Bi-O surface layer of the crystal, whereas for higher-pressure anneals (12 atm) additional oxygen is found on the Bi-O surfaces. This steplike intercalation mechanism is also confirmed by the changes observed in the Cu and Bi core lines as a function of the annealing oxygen partial pressure.

  5. Theoretical study of the partial molar volume change associated with the pressure-induced structural transition of ubiquitin

    PubMed Central

    Imai, Takashi; Ohyama, Shusaku; Kovalenko, Andriy; Hirata, Fumio

    2007-01-01

    The partial molar volume (PMV) change associated with the pressure-induced structural transition of ubiquitin is analyzed by the three-dimensional reference interaction site model (3D-RISM) theory of molecular solvation. The theory predicts that the PMV decreases upon the structural transition, which is consistent with the experimental observation. The volume decomposition analysis demonstrates that the PMV reduction is primarily caused by the decrease in the volume of structural voids in the protein, which is partially canceled by the volume expansion due to the hydration effects. It is found from further analysis that the PMV reduction is ascribed substantially to the penetration of water molecules into a specific part of the protein. Based on the thermodynamic relation, this result implies that the water penetration causes the pressure-induced structural transition. It supports the water penetration model of pressure denaturation of proteins proposed earlier. PMID:17660257

  6. Theoretical study of the partial molar volume change associated with the pressure-induced structural transition of ubiquitin.

    PubMed

    Imai, Takashi; Ohyama, Shusaku; Kovalenko, Andriy; Hirata, Fumio

    2007-09-01

    The partial molar volume (PMV) change associated with the pressure-induced structural transition of ubiquitin is analyzed by the three-dimensional reference interaction site model (3D-RISM) theory of molecular solvation. The theory predicts that the PMV decreases upon the structural transition, which is consistent with the experimental observation. The volume decomposition analysis demonstrates that the PMV reduction is primarily caused by the decrease in the volume of structural voids in the protein, which is partially canceled by the volume expansion due to the hydration effects. It is found from further analysis that the PMV reduction is ascribed substantially to the penetration of water molecules into a specific part of the protein. Based on the thermodynamic relation, this result implies that the water penetration causes the pressure-induced structural transition. It supports the water penetration model of pressure denaturation of proteins proposed earlier.

  7. Spatial Distribution of Oxygen Chemical Potential under Potential Gradients and Theoretical Maximum Power Density with 8YSZ Electrolyte

    NASA Astrophysics Data System (ADS)

    Lim, Dae-Kwang; Im, Ha-Ni; Song, Sun-Ju

    2016-01-01

    The maximum power density of SOFC with 8YSZ electrolyte as the function of thickness was calculated by integrating partial conductivities of charge carriers under various DC bias conditions at a fixed oxygen chemical potential gradient at both sides of the electrolyte. The partial conductivities were successfully taken using the Hebb-Wagner polarization method as a function of temperature and oxygen partial pressure, and the spatial distribution of oxygen partial pressure across the electrolyte was calculated based on Choudhury and Patterson’s model by considering zero electrode polarization. At positive voltage conditions corresponding to SOFC and SOEC, the high conductivity region was expanded, but at negative cell voltage condition, the low conductivity region near n-type to p-type transition was expanded. In addition, the maximum power density calculated from the current-voltage characteristic showed approximately 5.76 W/cm2 at 700 oC with 10 μm thick-8YSZ, while the oxygen partial pressure of the cathode and anode sides maintained ≈0.21 and 10-22 atm.

  8. The Role of the Pressure in the Partial Regularity Theory for Weak Solutions of the Navier-Stokes Equations

    NASA Astrophysics Data System (ADS)

    Chamorro, Diego; Lemarié-Rieusset, Pierre-Gilles; Mayoufi, Kawther

    2018-04-01

    We study the role of the pressure in the partial regularity theory for weak solutions of the Navier-Stokes equations. By introducing the notion of dissipative solutions, due to D uchon and R obert (Nonlinearity 13:249-255, 2000), we will provide a generalization of the Caffarelli, Kohn and Nirenberg theory. Our approach sheels new light on the role of the pressure in this theory in connection to Serrin's local regularity criterion.

  9. Solubility of carbon monoxide in n-hexane between 293 and 473 K and CO pressures up to 200 bar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koelliker, R.; Thies, H.

    The solubility of carbon monoxide, CO, in n-hexane was measured at 293, 323, 373, 423, and 473 K for CO partial pressures up to 200 bar. The enthalpy of solution was calculated between 293 and 473 K. Using the Krichevsky-Ilinskaya equation of state, the solubility of CO in n-hexane can be calculated between 293 and 423 K for CO partial pressures up to 200 bar with an accuracy better than 5%.

  10. Tibiofemoral Contact Mechanics with Horizontal Cleavage Tear and Resection of the Medial Meniscus in the Human Knee.

    PubMed

    Koh, Jason L; Yi, Seung Jin; Ren, Yupeng; Zimmerman, Todd A; Zhang, Li-Qun

    2016-11-02

    The meniscus is known to increase the contact area and decrease contact pressure in the tibiofemoral compartments of the knee. Radial tears of the meniscal root attachment along with partial resections of the torn meniscal tissue decrease the contact area and increase pressure; however, there is a lack of information on the effects of a horizontal cleavage tear (HCT) and partial leaf meniscectomy of such tears on tibiofemoral contact pressure and contact area. Twelve fresh-frozen human cadaveric knees were tested under 10 conditions: 5 serial conditions of posterior medial meniscectomy (intact meniscus, HCT, repaired HCT, inferior leaf resection, and resection of both inferior and superior leaves), each at 2 knee flexion angles (0° and 60°) under an 800-N axial load. Tekscan sensors (model 4000) were used to measure the contact pressure and contact area. HCT and HCT repair resulted in small changes in the contact area and an increase in contact pressure compared with the intact condition. Resection of the inferior leaf resulted in significantly decreased contact area (to a mean 82.3% of the intact condition at 0° of flexion and 81.8% at 60° of flexion; p < 0.05) and increased peak contact pressure (a mean 36.3% increase at 0° flexion and 43.2% increase at 60° flexion; p < 0.05) in the medial compartment. Further resection of the remaining superior leaf resulted in additional significant decreases in contact area (to a mean 60.1% of the intact condition at 0° of flexion and 49.7% at 60° of flexion; p < 0.05) and increases in peak contact pressure (a mean 79.2% increase at 0° of flexion and 74.9% increase at 60° of flexion; p < 0.05). Resection of meniscal tissue forming the inferior leaf of an HCT resulted in substantially decreased contact area and increased contact pressure. Additional resection of the superior leaf resulted in a further significant decrease in contact area and increase in contact pressure in the medial compartment. Repair or minimal resection of meniscal tissue of an HCT may be preferred to complete leaf resection to maintain knee tibiofemoral contact mechanics. Copyright © 2016 by The Journal of Bone and Joint Surgery, Incorporated.

  11. Effect of CH4 on the CO2 breakthrough pressure and permeability of partially saturated low-permeability sandstone in the Ordos Basin, China

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Yu, Qingchun

    2018-01-01

    The behavior of CO2 that coexists with CH4 and the effect of CH4 on the CO2 stream need to be deeply analyzed and studied, especially in the presence of water. Our previous studies investigated the breakthrough pressure and permeability of pure CO2 in five partially saturated low-permeability sandstone core samples from the Ordos Basin, and we concluded that rocks with a small pore size and low permeability show considerable sealing capacity even under unsaturated conditions. In this paper, we selected three of these samples for CO2-CH4 gas-mixture breakthrough experiments under various degrees of water saturation. The breakthrough experiments were performed by increasing the gas pressure step by step until breakthrough occurred. Then, the effluent gas mixture was collected for chromatographic partitioning analysis. The results indicate that CH4 significantly affects the breakthrough pressure and permeability of CO2. The presence of CH4 in the gas mixture increases the interfacial tension and, thus, the breakthrough pressure. Therefore, the injected gas mixture that contains the highest (lowest) mole fraction of CH4 results in the largest (smallest) breakthrough pressure. The permeability of the gas mixture is greater than that for pure CO2 because of CH4, and the effective permeability decreases with increased breakthrough pressure. Chromatographic partitioning of the effluent mixture gases indicates that CH4 breaks through ahead of CO2 as a result of its weaker solubility in water. Correlations are established between (1) the breakthrough pressure and water saturation, (2) the effective permeability and water saturation, (3) the breakthrough pressure and effective permeability, and (4) the mole fraction of CO2/CH4 in the effluent mixture gases and water saturation. These results deepen our understanding of the multi-phase flow behavior in the porous media under unsaturated conditions, which have implications for formulating emergency response plans for gas leakage into unsaturated zones. Finally, knowing the flow characteristic of gas mixture can guide CO2 storage, CO2-EOR and CO2-ECBM projects. Future studies should pay attention to the effects of saline water with different salt types and concentrations on the multi-phase flow behavior with applications to geological CO2 storage and energy storage using CH4.

  12. Variable range hopping in ZnO films

    NASA Astrophysics Data System (ADS)

    Ali, Nasir; Ghosh, Subhasis

    2018-04-01

    We report the variable range hopping in ZnO films grown by RF magnetron sputtering in different argon and oxygen partial pressure. It has been found that Mott variable range hopping dominant over Efros variable range hopping in all ZnO films. It also has been found that hopping distance and energy increases with increasing oxygen partial pressure.

  13. [Device to assess in-socket pressure distribution for partial foot amputation].

    PubMed

    Alvarez-Camacho, Michelín; Urrusti, José Luis; Acero, María Del Carmen; Galván Duque-Gastélum, Carlos; Rodríguez-Reyes, Gerardo; Mendoza-Cruz, Felipe

    2014-07-01

    A device for dynamic acquisition and distribution analysis of in-socket pressure for patients with partial foot amputation is presented in this work. By using the developed system, we measured and generated pressure distribution graphs, obtained maximal pressure, and calculated pressure-time integral (PTI) of three subjects with partial foot amputation and of a group of Healthy subjects (Hs) (n = 10). Average maximal pressure in the healthy group was 19.4 ± 4.11 PSI, while for the three amputated patients, this was 27.8 ± 1.38, 17.6 ± 1.15, 29.10 ± 3.9 PSI, respectively. Maximal pressure-time integral for healthy subjects was 11.56 ± 2.83 PSI*s, and for study subjects was 19.54 ± 1.9, 12.35 ± 1.48, and 13.17 ± 1.31 PSI*s, respectively. The results of the control group agree with those previously reported in the literature. The pressure distribution pattern showed clear differences between study subjects and those of the control group; these graphs allowed us to identify the pressure in regions-of-interest that could be critical, such as surgical scars. The system presented in this work will aid to assess the effectiveness with which prosthetic systems distribute load, given that the formation of ulcers is highly linked to the pressure exercised at the point of contact; in addition, these results will help to investigate the comfort perception of the prosthesis, a factor directly influenced by the stump's pressure distribution.

  14. A high pressure study of calmodulin-ligand interactions using small-angle X-ray and elastic incoherent neutron scattering.

    PubMed

    Cinar, Süleyman; Al-Ayoubi, Samy; Sternemann, Christian; Peters, Judith; Winter, Roland; Czeslik, Claus

    2018-01-31

    Calmodulin (CaM) is a Ca 2+ sensor and mediates Ca 2+ signaling through binding of numerous target ligands. The binding of ligands by Ca 2+ -saturated CaM (holo-CaM) is governed by attractive hydrophobic and electrostatic interactions that are weakened under high pressure in aqueous solutions. Moreover, the potential formation of void volumes upon ligand binding creates a further source of pressure sensitivity. Hence, high pressure is a suitable thermodynamic variable to probe protein-ligand interactions. In this study, we compare the binding of two different ligands to holo-CaM as a function of pressure by using X-ray and neutron scattering techniques. The two ligands are the farnesylated hypervariable region (HVR) of the K-Ras4B protein, which is a natural binding partner of holo-CaM, and the antagonist trifluoperazine (TFP), which is known to inhibit holo-CaM activity. From small-angle X-ray scattering experiments performed up to 3000 bar, we observe a pressure-induced partial unfolding of the free holo-CaM in the absence of ligands, where the two lobes of the dumbbell-shaped protein are slightly swelled. In contrast, upon binding TFP, holo-CaM forms a closed globular conformation, which is pressure stable at least up to 3000 bar. The HVR of K-Ras4B shows a different binding behavior, and the data suggest the dissociation of the holo-CaM/HVR complex under high pressure, probably due to a less dense protein contact of the HVR as compared to TFP. The elastic incoherent neutron scattering experiments corroborate these findings. Below 2000 bar, pressure induces enhanced atomic fluctuations in both holo-CaM/ligand complexes, but those of the holo-CaM/HVR complex seem to be larger. Thus, the inhibition of holo-CaM by TFP is supported by a low-volume ligand binding, albeit this is not associated with a rigidification of the complex structure on the sub-ns Å-scale.

  15. 13 CFR 121.412 - What are the size procedures for partial small business set-asides?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Requirements for Government Procurement § 121.412 What are the size procedures for partial small business set... portion of a procurement, and is not required to qualify as a small business for the unrestricted portion. ...

  16. Aerodynamic forces and flows of the full and partial clap-fling motions in insects

    PubMed Central

    Sun, Mao

    2017-01-01

    Most of the previous studies on Weis-Fogh clap-fling mechanism have focused on the vortex structures and velocity fields. Detailed pressure distribution results are provided for the first time in this study to reveal the differences between the full and the partial clap-fling motions. The two motions are studied by numerically solving the Navier–Stokes equations in moving overset grids. The Reynolds number is set to 20, relevant to the tiny flying insects. The following has been shown: (1) During the clap phase, the wings clap together and create a high pressure region in the closing gap between wings, greatly increasing the positive pressure on the lower surface of wing, while pressure on the upper surface is almost unchanged by the interaction; during the fling phase, the wings fling apart and create a low pressure region in the opening gap between wings, greatly increasing the suction pressure on the upper surface of wing, while pressure on the lower surface is almost unchanged by the interaction; (2) The interference effect between wings is most severe at the end of clap phase and the start of the fling phase: two sharp force peaks (8–9 times larger than that of the one-winged case) are generated. But the total force peaks are manifested mostly as drag and barely as lift of the wing, owing to the vertical orientation of the wing section; (3) The wing–wing interaction effect in the partial clap-fling case is much weaker than that in the full clap-fling case, avoiding the generation of huge drag. Compared with a single wing flapping with the same motion, mean lift in the partial case is enhanced by 12% without suffering any efficiency degradation, indicating that partial clap-fling is a more practical choice for tiny insects to employ. PMID:28289562

  17. NBS: Materials measurements

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Measurements in an Auger spectrometer of surface impurity concentrations on liquid gallium showed that the principle impurities were oxygen and carbon. The impurities showed a tendency to collect into plates or clumps. In Pb rich Pb-Sn off eutectic alloys, macrosegration caused by solutal convection was not reduced by vertical or horizontal fields of 0.1 T, but downward solidification virtually eliminated macrosegration in small diameter samples. Phase assemblages of selected compositions on the joints K(Fe0.5 Si-0.5) O2 -SiO2 and KFeO2 - SiO2 were determined over a large range of oxygen partial pressures and the temperature range 800 C to 1400 C.

  18. Multimodal optical imaging system for in vivo investigation of cerebral oxygen delivery and energy metabolism

    PubMed Central

    Yaseen, Mohammad A.; Srinivasan, Vivek J.; Gorczynska, Iwona; Fujimoto, James G.; Boas, David A.; Sakadžić, Sava

    2015-01-01

    Improving our understanding of brain function requires novel tools to observe multiple physiological parameters with high resolution in vivo. We have developed a multimodal imaging system for investigating multiple facets of cerebral blood flow and metabolism in small animals. The system was custom designed and features multiple optical imaging capabilities, including 2-photon and confocal lifetime microscopy, optical coherence tomography, laser speckle imaging, and optical intrinsic signal imaging. Here, we provide details of the system’s design and present in vivo observations of multiple metrics of cerebral oxygen delivery and energy metabolism, including oxygen partial pressure, microvascular blood flow, and NADH autofluorescence. PMID:26713212

  19. The solubility of hydrogen in rhodium, ruthenium, iridium and nickel.

    NASA Technical Reports Server (NTRS)

    Mclellan, R. B.; Oates, W. A.

    1973-01-01

    The temperature variation of the solubility of hydrogen in rhodium, ruthenium, iridium, and nickel in equilibrium with H2 gas at 1 atm pressure has been measured by a technique involving saturating the solvent metal with hydrogen, quenching, and analyzing in resultant solid solutions. The solubilities determined are small (atom fraction of H is in the range from 0.0005 to 0.00001, and the results are consistent with the simple quasi-regular model for dilute interstitial solid solutions. The relative partial enthalpy and excess entropy of the dissolved hydrogen atoms have been calculated from the solubility data and compared with well-known correlations between these quantities.

  20. Thermodynamic models for bounding pressurant mass requirements of cryogenic tanks

    NASA Technical Reports Server (NTRS)

    Vandresar, Neil T.; Haberbusch, Mark S.

    1994-01-01

    Thermodynamic models have been formulated to predict lower and upper bounds for the mass of pressurant gas required to pressurize a cryogenic tank and then expel liquid from the tank. Limiting conditions are based on either thermal equilibrium or zero energy exchange between the pressurant gas and initial tank contents. The models are independent of gravity level and allow specification of autogenous or non-condensible pressurants. Partial liquid fill levels may be specified for initial and final conditions. Model predictions are shown to successfully bound results from limited normal-gravity tests with condensable and non-condensable pressurant gases. Representative maximum collapse factor maps are presented for liquid hydrogen to show the effects of initial and final fill level on the range of pressurant gas requirements. Maximum collapse factors occur for partial expulsions with large final liquid fill fractions.

  1. Uncertainty and sensitivity analysis for two-phase flow in the vicinity of the repository in the 1996 performance assessment for the Waste Isolation Pilot Plant: Disturbed conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HELTON,JON CRAIG; BEAN,J.E.; ECONOMY,K.

    2000-05-22

    Uncertainty and sensitivity analysis results obtained in the 1996 performance assessment (PA) for the Waste Isolation Pilot Plant (WIPP) are presented for two-phase flow in the vicinity of the repository under disturbed conditions resulting from drilling intrusions. Techniques based on Latin hypercube sampling, examination of scatterplots, stepwise regression analysis, partial correlation analysis and rank transformations are used to investigate brine inflow, gas generation repository pressure, brine saturation and brine and gas outflow. Of the variables under study, repository pressure and brine flow from the repository to the Culebra Dolomite are potentially the most important in PA for the WIPP. Subsequentmore » to a drilling intrusion repository pressure was dominated by borehole permeability and generally below the level (i.e., 8 MPa) that could potentially produce spallings and direct brine releases. Brine flow from the repository to the Culebra Dolomite tended to be small or nonexistent with its occurrence and size also dominated by borehole permeability.« less

  2. Pretest analysis document for Test S-NH-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Streit, J.E.; Owca, W.A.

    This report documents the pretest analysis calculation completed with the RELAP5/MOD2/CY3601 code for Semiscale MOD-2C Test S-NH-2. The test will simulate the transient that results from the shear in a small diameter penetration of a cold leg, equivalent to 2.1% of the cold leg flow area. The high pressure injection system is assumed to be inoperative throughout the transient. The recovery procedure consists of latching open both steam generator atmospheric dump valves, supplying both steam generators with auxiliary feedwater system is assumed to be partially inoperative so the auxiliary feedwater flow is degraded. Recovery will be initiated upon a peakmore » cladding temperature of 811/sup 0/K (1000/sup 0/F). The test will be terminated when primary pressure has been reduced to the low pressure injection system setpoint of 1.38 MPa (200 psia). The calculated results indicate that the test objectives can be achieved and the proposed test scenario poses no threat to personnel or to plant integrity. 7 refs., 16 figs., 2 tabs.« less

  3. The effects of meptazinol in comparison with pentazocine, morphine and naloxone in a rat model of anaphylactic shock.

    PubMed Central

    Paciorek, P. M.; Todd, M. H.; Waterfall, J. F.

    1985-01-01

    The actions of meptazinol, pentazocine, morphine and naloxone on the cardiovascular changes accompanying anaphylactic shock were evaluated in ovalbumin-sensitized anaesthetized rats. Pretreatment with meptazinol and pentazocine prevented the fall in mean arterial pressure associated with antigen challenge, whereas morphine and naloxone attenuated but did not completely prevent, this change. None of the drugs significantly altered the antigen-induced decreases in heart rate. All the drugs partially reversed the fall in mean arterial pressure when given after antigen challenge although the activity of naloxone was less marked. Pretreatment with reserpine prevented the restoration of blood pressure by all drugs. Additional experiments with meptazinol showed that pretreatment with phentolamine prevented its pressor action. In pithed non-sensitized rats the frequency-pressor response curve to splanchnic stimulation was shifted to the left by meptazinol and shifted to the right by pentazocine, but the changes were small Morphine and naloxone had no significant effects. It was concluded that opioid mixed agonist-antagonists reverse the cardiovascular changes associated with anaphylactic shock. These effects appear to be mediated by facilitation of sympathetic neurotransmission. PMID:3978318

  4. The effects of meptazinol in comparison with pentazocine, morphine and naloxone in a rat model of anaphylactic shock.

    PubMed

    Paciorek, P M; Todd, M H; Waterfall, J F

    1985-02-01

    The actions of meptazinol, pentazocine, morphine and naloxone on the cardiovascular changes accompanying anaphylactic shock were evaluated in ovalbumin-sensitized anaesthetized rats. Pretreatment with meptazinol and pentazocine prevented the fall in mean arterial pressure associated with antigen challenge, whereas morphine and naloxone attenuated but did not completely prevent, this change. None of the drugs significantly altered the antigen-induced decreases in heart rate. All the drugs partially reversed the fall in mean arterial pressure when given after antigen challenge although the activity of naloxone was less marked. Pretreatment with reserpine prevented the restoration of blood pressure by all drugs. Additional experiments with meptazinol showed that pretreatment with phentolamine prevented its pressor action. In pithed non-sensitized rats the frequency-pressor response curve to splanchnic stimulation was shifted to the left by meptazinol and shifted to the right by pentazocine, but the changes were small Morphine and naloxone had no significant effects. It was concluded that opioid mixed agonist-antagonists reverse the cardiovascular changes associated with anaphylactic shock. These effects appear to be mediated by facilitation of sympathetic neurotransmission.

  5. Separating the roles of nitrogen and oxygen in high pressure-induced blood-borne microparticle elevations, neutrophil activation, and vascular injury in mice.

    PubMed

    Yang, Ming; Bhopale, Veena M; Thom, Stephen R

    2015-08-01

    An elevation in levels of circulating microparticles (MPs) due to high air pressure exposure and the associated inflammatory changes and vascular injury that occur with it may be due to oxidative stress. We hypothesized that these responses arise due to elevated partial pressures of N2 and not because of high-pressure O2. A comparison was made among high-pressure air, normoxic high-pressure N2, and high-pressure O2 in causing an elevation in circulating annexin V-positive MPs, neutrophil activation, and vascular injury by assessing the leakage of high-molecular-weight dextran in a murine model. After mice were exposed for 2 h to 790 kPa air, there were over 3-fold elevations in total circulating MPs as well as subgroups bearing Ly6G, CD41, Ter119, CD31, and CD142 surface proteins-evidence of neutrophil activation; platelet-neutrophil interaction; and vascular injury to brain, omentum, psoas, and skeletal muscles. Similar changes were found in mice exposed to high-pressure N2 using a gas mixture so that O2 partial pressure was the same as that of ambient air, whereas none of these changes occurred after exposures to 166 kPa O2, the same partial pressure that occurs during high-pressure air exposures. We conclude that N2 plays a central role in intra- and perivascular changes associated with exposure to high air pressure and that these responses appear to be a novel form of oxidative stress. Copyright © 2015 the American Physiological Society.

  6. Calibration Of Partial-Pressure-Of-Oxygen Sensors

    NASA Technical Reports Server (NTRS)

    Yount, David W.; Heronimus, Kevin

    1995-01-01

    Report and analysis of, and discussion of improvements in, procedure for calibrating partial-pressure-of-oxygen sensors to satisfy Spacelab calibration requirements released. Sensors exhibit fast drift, which results in short calibration period not suitable for Spacelab. By assessing complete process of determining total drift range available, calibration procedure modified to eliminate errors and still satisfy requirements without compromising integrity of system.

  7. Real-Time Monitoring of Singlet Oxygen and Oxygen Partial Pressure During the Deep Photodynamic Therapy In Vitro.

    PubMed

    Li, Weitao; Huang, Dong; Zhang, Yan; Liu, Yangyang; Gu, Yueqing; Qian, Zhiyu

    2016-09-01

    Photodynamic therapy (PDT) is an effective noninvasive method for the tumor treatment. The major challenge in current PDT research is how to quantitatively evaluate therapy effects. To our best knowledge, this is the first time to combine multi-parameter detection methods in PDT. More specifically, we have developed a set of system, including the high-sensitivity measurement of singlet oxygen, oxygen partial pressure and fluorescence image. In this paper, the detection ability of the system was validated by the different concentrations of carbon quantum dots. Moreover, the correlation between singlet oxygen and oxygen partial pressure with laser irradiation was observed. Then, the system could detect the signal up to 0.5 cm tissue depth with 660 nm irradiation and 1 cm tissue depth with 980 nm irradiation by using up-conversion nanoparticles during PDT in vitro. Furthermore, we obtained the relationship among concentration of singlet oxygen, oxygen partial pressure and tumor cell viability under certain conditions. The results indicate that the multi-parameter detection system is a promising asset to evaluate the deep tumor therapy during PDT. Moreover, the system might be potentially used for the further study in biology and molecular imaging.

  8. Positron beam study of indium tin oxide films on GaN

    NASA Astrophysics Data System (ADS)

    Cheung, C. K.; Wang, R. X.; Beling, C. D.; Djurisic, A. B.; Fung, S.

    2007-02-01

    Variable energy Doppler broadening spectroscopy has been used to study open-volume defects formed during the fabrication of indium tin oxide (ITO) thin films grown by electron-beam evaporation on n-GaN. The films were prepared at room temperature, 200 and 300 °C without oxygen and at 200 °C under different oxygen partial pressures. The results show that at elevated growth temperatures the ITO has fewer open volume sites and grows with a more crystalline structure. High temperature growth, however, is not sufficient in itself to remove open volume defects at the ITO/GaN interface. Growth under elevated temperature and under partial pressure of oxygen is found to further reduce the vacancy type defects associated with the ITO film, thus improving the quality of the film. Oxygen partial pressures of 6 × 10-3 mbar and above are found to remove open volume defects associated with the ITO/GaN interface. The study suggests that, irrespective of growth temperature and oxygen partial pressure, there is only one type of defect in the ITO responsible for trapping positrons, which we tentatively attribute to the oxygen vacancy.

  9. 48 CFR 19.502-3 - Partial set-asides.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... non-set-aside part of the acquisition shall have first priority with respect to negotiations for the... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Partial set-asides. 19.502... SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Set-Asides for Small Business 19.502-3 Partial set-asides. (a...

  10. Effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks

    NASA Astrophysics Data System (ADS)

    Sun, Xiaojuan; Perc, Matjaž; Kurths, Jürgen

    2017-05-01

    In this paper, we study effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks. Our focus is on the impact of two parameters, namely the time delay τ and the probability of partial time delay pdelay, whereby the latter determines the probability with which a connection between two neurons is delayed. Our research reveals that partial time delays significantly affect phase synchronization in this system. In particular, partial time delays can either enhance or decrease phase synchronization and induce synchronization transitions with changes in the mean firing rate of neurons, as well as induce switching between synchronized neurons with period-1 firing to synchronized neurons with period-2 firing. Moreover, in comparison to a neuronal network where all connections are delayed, we show that small partial time delay probabilities have especially different influences on phase synchronization of neuronal networks.

  11. Effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks.

    PubMed

    Sun, Xiaojuan; Perc, Matjaž; Kurths, Jürgen

    2017-05-01

    In this paper, we study effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks. Our focus is on the impact of two parameters, namely the time delay τ and the probability of partial time delay p delay , whereby the latter determines the probability with which a connection between two neurons is delayed. Our research reveals that partial time delays significantly affect phase synchronization in this system. In particular, partial time delays can either enhance or decrease phase synchronization and induce synchronization transitions with changes in the mean firing rate of neurons, as well as induce switching between synchronized neurons with period-1 firing to synchronized neurons with period-2 firing. Moreover, in comparison to a neuronal network where all connections are delayed, we show that small partial time delay probabilities have especially different influences on phase synchronization of neuronal networks.

  12. Measurement of Local Partial Pressure of Oxygen in the Brain Tissue under Normoxia and Epilepsy with Phosphorescence Lifetime Microscopy.

    PubMed

    Zhang, Cong; Bélanger, Samuel; Pouliot, Philippe; Lesage, Frédéric

    2015-01-01

    In this work a method for measuring brain oxygen partial pressure with confocal phosphorescence lifetime microscopy system is reported. When used in conjunction with a dendritic phosphorescent probe, Oxyphor G4, this system enabled minimally invasive measurements of oxygen partial pressure (pO2) in cerebral tissue with high spatial and temporal resolution during 4-AP induced epileptic seizures. Investigating epileptic events, we characterized the spatio-temporal distribution of the "initial dip" in pO2 near the probe injection site and along nearby arterioles. Our results reveal a correlation between the percent change in the pO2 signal during the "initial dip" and the duration of seizure-like activity, which can help localize the epileptic focus and predict the length of seizure.

  13. Oxidation of C/SiC Composites at Reduced Oxygen Partial Pressures

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Serra, Jessica

    2009-01-01

    Carbon-fiber reinforced SiC (C/SiC) composites are proposed for leading edge applications of hypersonic vehicles due to the superior strength of carbon fibers at high temperatures (greater than 1500 C). However, the vulnerability of the carbon fibers in C/SiC to oxidation over a wide range of temperatures remains a problem. Previous oxidation studies of C/SiC have mainly been conducted in air or oxygen, so that the oxidation behavior of C/SiC at reduced oxygen partial pressures of the hypersonic flight regime are less well understood. In this study, both carbon fibers and C/SiC composites were oxidized over a wide range of temperatures and oxygen partial pressures to facilitate the understanding and modeling of C/SiC oxidation kinetics for hypersonic flight conditions.

  14. Pressure induced swelling in microporous materials

    DOEpatents

    Vogt, Thomas; Hriljac, Joseph A.; Lee, Yongjae

    2006-07-11

    A method for capturing specified materials which includes contacting a microporous material with a hydrostatic fluid having at least one specified material carried therein, under pressure which structurally distorts the lattice sufficiently to permit entry of the at least one specified material. The microporous material is capable of undergoing a temporary structural distortion which alters resting lattice dimensions under increased ambient pressure and at least partially returning to rest lattice dimensions when returned to ambient pressure. The pressure of the fluid is then reduced to permit return to at least partial resting lattice dimension while the at least one specified material is therein. By this method, at least one specified material is captured in the microporous material to form a modified microporous material.

  15. On the nature of the material surrounding VEGA

    NASA Astrophysics Data System (ADS)

    Harper, D. A.; Loewenstein, R. F.; Davidson, J. A.

    1984-10-01

    Observations of Vega at 193 microns indicate that the far-infrared emission from the circumstellar material discovered by IRAS (Aumann et al. 1984) may decline more rapidly than a Planck spectrum at wavelengths greater than 100 microns. This suggests that the emitting particles may be smaller than the millimeter-sized objects proposed by Aumann et al. (1984). Small grains would be driven from the stellar system by radiation pressure, or their orbits would decay as a result of Poynting -Robertson drag. In order to maintain a state of dynamic equilibrium, a continuous supply of new particles would be required. It is hypothesized that the small grains are ejected by sublimation of volatile material from larger comet-like bodies in a partially coalesced preplanetary disk. A reservoir containing less than a few hundred earth masses could sustain the source over the lifetime of the star.

  16. Compositional dependent partial molar volume and compressibility of CO2 in rhyolite, phonolite and basalt glasses

    NASA Astrophysics Data System (ADS)

    Lerch, P.; Seifert, R.; Malfait, W. J.; Sanchez-Valle, C.

    2012-12-01

    Carbon dioxide is the second most abundant volatile in magmatic systems and plays an important role in many magmatic processes, e.g. partial melting, volatile saturation, outgassing. Despite this relevance, the volumetric properties of carbon-bearing silicates at relevant pressure and temperature conditions remain largely unknown because of considerable experimental difficulties associated with in situ measurements. Density and elasticity measurements on quenched glasses can provide an alternative source of information. For dissolved water, such measurements indicate that the partial molar volume is independent of compositions at ambient pressure [1], but the partial molar compressibility is not [2, 3]. Thus the partial molar volume of water may depend on melt composition at elevated pressure. For dissolved CO2, no such data is available. In order to constrain the effect of magma composition on the partial molar volume and compressibility of dissolved carbon, we determined the density and elasticity for three series of carbon-bearing basalt, phonolite and rhyolite glasses, quenched from 3.5 GPa and relaxed at ambient pressure. The CO2 content varies between 0 to 3.90 wt% depending on the glass composition. Glass densities were determined using the sink/float method in a diiodomethane (CH2I2) - acetone mixture. Brillouin measurements were conducted on relaxed and unrelaxed silicate glasses in platelet geometry to determine the compressional (VP) and shear (VS) wave velocities and elastic moduli. The partial molar volume of CO2 in rhyolite, phonolite and basalt glasses is 25.4 ± 0.9, 22.1 ± 0.6 and 26.6 ±1.8 cm3/mol, respectively. Thus, unlike for dissolved water, the partial molar volume of CO2 displays a resolvable compositional effect. Although the composition and CO2/carbonate speciation of the phonolite glasses is intermediate between that of the rhyolite and basalt glasses, the molar volume is not. Similar to dissolved water, the partial molar bulk modulus of CO2 displays a strong compositional effect. If these compositional dependencies persist in the analogue melts, the partial molar volume of dissolved CO2 will depend on melt composition, both at low and elevated pressure. Thus, for CO2-bearing melts, a full quantitative understanding of density dependent magmatic processes, such as crystal fractionation, magma mixing and melt extraction will require in situ measurements for a range of melt compositions. [1] Richet, P. et al., 2000, Contrib Mineral Petrol, 138, 337-347. [2] Malfait et al. 2011, Am. Mineral. 96, 1402-1409. [3] Whittington et al., 2012, Am. Mineral. 97, 455-467.

  17. Clinical recommendations for high altitude exposure of individuals with pre-existing cardiovascular conditions

    PubMed Central

    Parati, Gianfranco; Agostoni, Piergiuseppe; Basnyat, Buddha; Bilo, Grzegorz; Brugger, Hermann; Coca, Antonio; Festi, Luigi; Giardini, Guido; Lironcurti, Alessandra; Luks, Andrew M; Maggiorini, Marco; Modesti, Pietro A; Swenson, Erik R; Williams, Bryan; Bärtsch, Peter; Torlasco, Camilla

    2018-01-01

    Abstract Take home figureAdapted from Bärtsch and Gibbs2 Physiological response to hypoxia. Life-sustaining oxygen delivery, in spite of a reduction in the partial pressure of inhaled oxygen between 25% and 60% (respectively at 2500 m and 8000 m), is ensured by an increase in pulmonary ventilation, an increase in cardiac output by increasing heart rate, changes in vascular tone, as well as an increase in haemoglobin concentration. BP, blood pressure; HR, heart rate; PaCO2, partial pressure of arterial carbon dioxide. PMID:29340578

  18. Petrologic Constraints on Magma Plumbing Systems Beneath Hawaiian Volcanoes

    NASA Astrophysics Data System (ADS)

    Li, Y.; Peterman, K. J.; Scott, J. L.; Barton, M.

    2016-12-01

    We have calculated the pressures of partial crystalliztion of basaltic magmas from Hawaii using a petrological method. A total of 1576 major oxide analyses of glasses from four volcanoes (Kilauea and the Puna Ridge, Loihi, Mauna Loa, and Mauna Kea, on the Big Island) were compiled and used as input data. Glasses represent quenched liquid compositions and are ideal for calculation of pressures of partial crystallization. The results were filtered to exclude samples that yielded unrealistic high errors associated with the calculated pressure or negative value of pressure, and to exclude samples with non-basaltic compositions. Calculated pressures were converted to depths of partial crystallization. The majority (68.2%) of pressures for the shield-stage subaerial volcanoes Kilauea, Mauna Loa, and Mauna Kea, fall in the range 0-140 MPa, corresponding to depths of 0-5 km. Glasses from the Puna Ridge yield pressures ranging from 18 to 126 MPa and are virtually identical to pressures determined from glasses from Kilauea (0 to 129 MPa). These results are consistent with the presence of magma reservoirs at depths of 0-5 km beneath the large shield volcanoes. The inferred depth of the magma reservoir beneath the summit of Kilauea (average = 1.8 km, maximum = 5 km) agrees extremely well with depths ( 2-6 km) estimated from seismic studies. The results for Kilauea and Mauna Kea indicate that significant partial crystallization also occurs beneath the summit reservoirs at depths up to 11 km. These results are consistent with seismic evidence for the presence of a magma reservoir at 8-11 km beneath Kilauea at the base of the volcanic pile. The results for Loihi indicate crystallization at higher average pressures (100-400 MPa) and depths (3-14 km) than the large shield volcanoes, suggesting that the plumbing system is not yet fully developed, and that the Hawaiian volcanic plumbing systems evolve over time.

  19. Double and multiple contacts of similar elastic materials

    NASA Astrophysics Data System (ADS)

    Sundaram, Narayan K.

    Ongoing fretting fatigue research has focussed on developing robust contact mechanics solutions for complicated load histories involving normal, shear, moment and bulk loads. For certain indenter profiles and applied loads, the contact patch separates into two disconnected regions. Existing Singular Integral Equation (SIE) techniques do not address these situations. A fast numerical tool is developed to solve such problems for similar elastic materials for a wide range of profiles and load paths including applied moments and remote bulk-stress effects. This tool is then used to investigate two problems in double contacts. The first, to determine the shear configuration space for a biquadratic punch for the generalized Cattaneo-Mindlin problem. The second, to obtain quantitative estimates of the interaction between neighboring cylindrical contacts for both the applied normal load and partial slip problems up to the limits of validity of the halfspace assumption. In double contact problems without symmetry, obtaining a unique solution requires the satisfaction of a condition relating the contact ends, rigid-body rotation and profile function. This condition has the interpretation that a rigid-rod connecting the inner contact ends of an equivalent frictionless double contact of a rigid indenter and halfspace may only undergo rigid body motions. It is also found that the ends of stick-zones, local slips and remote-applied strains in double contact problems are related by an equation expressing tangential surface-displacement continuity. This equation is essential to solve partial-slip problems without contact equivalents. Even when neighboring cylindrical contacts may be treated as non-interacting for the purpose of determining the pressure tractions, this is not generally true if a shear load is applied. The mutual influence of neighboring contacts in partial slip problems is largest at small shear load fractions. For both the pressure and partial slip problems, the interactions are stronger with increasing strength of loading and contact proximity. A new contact algorithm is developed and the SIE method extended to tackle contact problems with an arbitrary number of contact patches with no approximations made about contact interactions. In the case of multiple contact problems determining the correct contact configuration is significantly more complicated than in double contacts, necessitating a new approach. Both the normal contact and partial slip problems are solved. The tool is then used to study contacts of regular rough cylinders, a flat with rounded punch with superimposed sinusoidal roughness and is also applied to analyze the contact of an experimental rough surface with a halfspace. The partial slip results for multiple-contacts are generally consistent with Cattaneo-Mindlin continuum scale results, in that the outermost contacts tend to be in full sliding. Lastly, the influence of plasticity on frictionless multiple contact problems is studied using FEM for two common steel and aluminum alloys. The key findings are that the plasticity decreases the peak pressure and increases both real and apparent contact areas, thus 'blunting' the sharp pressures caused by the contact asperities in pure elasticity. Further, it is found that contact plasticity effects and load for onset of first yield are strongly dependent on roughness amplitude, with higher plasticity effects and lower yield-onset load at higher roughness amplitudes.

  20. Compaction Around a Spherical Inclusion in Partially Molten Rock

    NASA Astrophysics Data System (ADS)

    Alisic, Laura; Rhebergen, Sander; Rudge, John F.; Katz, Richard F.; Wells, Garth N.

    2015-04-01

    Conservation laws that describe the behavior of partially molten mantle rock have been established for several decades, but the associated rheology remains poorly understood. Constraints on the rheology may be obtained from recently published torsion experiments involving deformation of partially molten rock around a rigid, spherical inclusion. These experiments give rise to patterns of melt segregation that exhibit the competing effects of pressure shadows around the inclusion and melt-rich bands through the medium. Such patterns provide an opportunity to infer rheological parameters through comparison with models based on the conservation laws and constitutive relations that hypothetically govern the system. To this end, we have developed software tools using the automated code generation package FEniCS to simulate finite strain, two-phase flow around a rigid, spherical inclusion in a three-dimensional configuration that mirrors the laboratory experiments. The equations for compaction and advection-diffusion of a porous medium are solved utilising newly developed matrix preconditioning techniques. Simulations indicate that the evolution of porosity and therefore of melt distribution is predominantly controlled by the non-linear porosity-weakening exponent of the shear viscosity and the poorly known bulk viscosity. In the simulations presented here, we find that the balance of pressure shadows and melt-rich bands observed in experiments only occurs for bulk-to-shear viscosity ratio of less than about five. However, the evolution of porosity in simulations with such low bulk viscosity exceeds physical bounds at unrealistically small strain due to the unchecked, exponential growth of the porosity variations. Processes that limit or balance porosity localization will have to be incorporated in the formulation of the model to produce results that are consistent with the porosity evolution in experiments.

  1. LIF measurements and chemical kinetic analysis of methylidyne formation in high-pressure counter-flow partially premixed and non-premixed flames

    NASA Astrophysics Data System (ADS)

    Naik, S. V.; Laurendeau, N. M.

    2004-11-01

    We report quantitative, spatially resolved, linear laser-induced fluorescence (LIF) measurements of methylidyne concentration ([CH]) in laminar, methane air, counter-flow partially premixed and non-premixed flames using excitation near 431.5 nm in the A X (0,0) band. For partially premixed flames, fuel-side equivalence ratios (ϕB) of 1.45, 1.6 and 2.0 are studied at pressures of 1, 3, 6, 9 and 12 atm. For non-premixed flames, the fuel-side mixture consists of 25% CH4 and 75% N2; measurements are obtained at pressures of 1, 2, 3, 4, 5, 6, 9 and 12 atm. The quantitative CH measurements are compared with predictions from an opposed-flow flame code utilizing two GRI chemical kinetic mechanisms (versions 2.11 and 3.0). LIF measurements of [CH] are corrected for variations in the quenching rate coefficient by using major species concentrations and temperatures generated by the code along with suitable quenching cross sections for CH available from the literature. A pathway analysis provides relative contributions from important elementary reactions to the total amount of CH produced at various pressures. Key reactions controlling peak CH concentrations are also identified by using a sensitivity analysis. For the partially premixed flames, measured CH profiles are reproduced reasonably well by GRI 3.0, although some quantitative disagreement exists at all pressures. Two CH radical peaks are observed for ϕB=1.45 and ϕB=1.6 at pressures above 3 atm. Peak CH concentrations for the non-premixed flames are significantly underpredicted by GRI 3.0. The latter agrees with previously reported NO concentrations, which are also underpredicted in these same high-pressure counter-flow diffusion flames.

  2. Introduction to total- and partial-pressure measurements in vacuum systems

    NASA Technical Reports Server (NTRS)

    Outlaw, R. A.; Kern, F. A.

    1989-01-01

    An introduction to the fundamentals of total and partial pressure measurement in the vacuum regime (760 x 10 to the -16th power Torr) is presented. The instrument most often used in scientific fields requiring vacuum measurement are discussed with special emphasis on ionization type gauges and quadrupole mass spectrometers. Some attention is also given to potential errors in measurement as well as calibration techniques.

  3. A negative feedback mechanism for the long-term stabilization of the earth's surface temperature

    NASA Technical Reports Server (NTRS)

    Walker, J. C. G.; Hays, P. B.; Kasting, J. F.

    1981-01-01

    It is suggested that the partial pressure of carbon dioxide in the atmosphere is buffered, over geological time scales, by a negative feedback mechanism, in which the rate of weathering of silicate minerals (followed by deposition of carbonate minerals) depends on surface temperature, which in turn depends on the carbon dioxide partial pressure through the greenhouse effect. Although the quantitative details of this mechanism are speculative, it appears able to partially stabilize the earth's surface temperature against the steady increase of solar luminosity, believed to have occurred since the origin of the solar system.

  4. Design development and test: Two-gas atmosphere control subsystem

    NASA Technical Reports Server (NTRS)

    Jackson, J. K.

    1974-01-01

    An atmosphere control subsystem (ACS) was developed for NASA-IBJSC which is designed to measure the major atmospheric constituents in the manned cabin of the space shuttle orbiter and control the addition of oxygen and nitrogen to maintain the partial pressures of these gases within very close limits. The ACS includes a mass spectrometer sensor (MSS) which analyzes the atmosphere of a shuttle vehicle pressurized cabin, and an electronic control assembly (ECA). The MSS was built and tested to meet the requirements for flight equipment for the M-171 Metabolic Analyzer experiment for the Skylab flight program. The instrument analyzes an atmospheric gas sample and produces continuous 0-5 vdc analog signals proportional to the partial pressures of H2, O2, N2, H2O, CO2 and total hydrocarbons having a m/e ratio between 50 and 120. It accepts signals from the MSS proportional to the partial pressures of N2 and O2 and controls the supply of these gases to the closed cabin.

  5. Preflight studies on tolerance of pocket mice to oxygen and heat. IV - Observations on the brain

    NASA Technical Reports Server (NTRS)

    Bailey, O. T.; Ordy, J. M.; Haymaker, W.

    1975-01-01

    Experiments designed to ascertain the effects of oxygen at 8, 10, and 12 psi partial pressure on the brains of pocket mice (Perognathus longimembris) were carried out at room temperature (24 C, 75 F) and at 32 C (90 F). The animals exposed to 8-12 psi at 32 C had been in earlier KO2 oxygen tests. Five animals exposed either to 10 or 12 psi (517 mm or 620 mm Hg) O2 partial pressure at 32 C died during the course of the tests, possibly as a consequence of injury sustained by the earlier O2 partial pressure testing. Autopsy was not carried out. In the other 36 exposed animals, no pathological changes were observed in the brain. It is thus highly probable that oxygen pressures at the hyperbaric levels to which the pocket mice would be exposed during the Apollo XVII mission would not result in any lesions in the brain.

  6. An ion interaction model for the volumetric properties of natural waters: Density of the solution and partial molal volumes of electrolytes to high concentrations at 25°C

    NASA Astrophysics Data System (ADS)

    Monnin, Christophe

    1989-06-01

    Literature density data for binary and common ion ternary solutions in the Na-K-Ca-Mg-Cl-SO 4-HCO 3-CO3-H 2O system at 25°C have been analysed with Pitzer's ion interaction model, which provides an adequate representation of the experimental data for binary and common ion ternary solutions up to high concentration. This analysis yields Pitzer's interaction parameters for the apparent and partial molal volumes, which are the first derivatives with respect to pressure of the interaction parameters for the free energy. From this information, densities of natural waters as well as partial molal volumes of their solutes can be predicted with good accuracy, as shown by several comparisons of calculated and measured values. It is shown that V¯MX - V¯0mx, the excess partial molal volume of the salt MX, depends more on the type of salt than on the electrolyte itself and that it increases with the charges of the salt components. The influence of concentration and composition on the variation of activity coefficients with pressure and on the partial molal volumes of the salts is discussed, using as an example the partial molal volume of CaSO 4(aq) in solutions of various compositions. The increase of V¯CaSO 4, with ionic strength is very large but is not very different for a NaCl-dominated natural water like the Red Sea lower brine than for a simple NaCl solution. Although the variation of activity coefficients with pressure is usually ignored for moderate pressures, like those found in hydrothermal environments, the present example shows that it can be as large as 30% for a 2-2 salt for a pressure increase from 1 to 500 bars at high ionic strength.

  7. Study of Chromium Oxide Activities in EAF Slags

    NASA Astrophysics Data System (ADS)

    Yan, Baijun; Li, Fan; Wang, Hui; Sichen, Du

    2016-02-01

    The activity coefficients of chromium in Cu-Cr melts were determined by equilibrating liquid copper with solid Cr2O3 in CO-CO2 atmosphere. The temperature dependence of the activity coefficients of chromium in Cu-Cr melts could be expressed as lg γ_{Cr}(s)^{0} = { 3 2 5 9( ± 1 8 6} )/T - 0. 5 9( { ± 0. 1} ). Based on the above results, the activities of bivalent and trivalent chromium oxide in some slags at 1873 K (1600 °C) were measured. The slags were equilibrated with Cu-Cr melts under two oxygen partial pressures ( {p_{O}_{ 2} }} } = 6.9 × 10-4 and 1.8 × 10-6 Pa, respectively). The morphology of the quenched slags and the solubility of chromium oxide in the melts were investigated by EPMA, SEM, and XRD. Under both oxygen partial pressures, the slags were saturated by the solid solution MgAl2- x Cr x O4- δ . At the low oxygen partial pressure (1.8 × 10-6 Pa), the content of Cr in the liquid phase varied from 0.4 to 1.6 mass pct with the total Cr content in the slags increasing from 1.3 to 10.8 mass pct. At the high oxygen partial pressure (6.9 × 10-4 Pa), the content of Cr in the liquid phase decreased to the level of 0.2 to 0.6 mass pct. Both the activities of CrO and Cr2O3 in slag were found to increase approximately linearly with the increase of the total Cr content in slag. While the oxygen partial pressure had minor effect on the activity of Cr2O3 in the slag, it had significant effect on the activity of CrO.

  8. Oxygen supply in aquatic ectotherms: partial pressure and solubility together explain biodiversity and size patterns.

    PubMed

    Verberk, Wilco C E P; Bilton, David T; Calosi, Piero; Spicer, John I

    2011-08-01

    Aquatic ectotherms face the continuous challenge of capturing sufficient oxygen from their environment as the diffusion rate of oxygen in water is 3 x 10(5) times lower than in air. Despite the recognized importance of oxygen in shaping aquatic communities, consensus on what drives environmental oxygen availability is lacking. Physiologists emphasize oxygen partial pressure, while ecologists emphasize oxygen solubility, traditionally expressing oxygen in terms of concentrations. To resolve the question of whether partial pressure or solubility limits oxygen supply in nature, we return to first principles and derive an index of oxygen supply from Fick's classic first law of diffusion. This oxygen supply index (OSI) incorporates both partial pressure and solubility. Our OSI successfully explains published patterns in body size and species across environmental clines linked to differences in oxygen partial pressure (altitude, organic pollution) or oxygen solubility (temperature and salinity). Moreover, the OSI was more accurately and consistently related to these ecological patterns than other measures of oxygen (oxygen saturation, dissolved oxygen concentration, biochemical oxygen demand concentrations) and similarly outperformed temperature and altitude, which covaried with these environmental clines. Intriguingly, by incorporating gas diffusion rates, it becomes clear that actually more oxygen is available to an organism in warmer habitats where lower oxygen concentrations would suggest the reverse. Under our model, the observed reductions in aerobic performance in warmer habitats do not arise from lower oxygen concentrations, but instead through organismal oxygen demand exceeding supply. This reappraisal of how organismal thermal physiology and oxygen demands together shape aerobic performance in aquatic ectotherms and the new insight of how these components change with temperature have broad implications for predicting the responses of aquatic communities to ongoing global climate shifts.

  9. Measurements of Pressure Distributions and Force Coefficients in a Squeeze Film Damper. Part 2: Partially Sealed Configuration

    NASA Technical Reports Server (NTRS)

    Jung, S. Y.; Sanandres, Luis A.; Vance, J. M.

    1991-01-01

    Experimental results from a partially sealed squeeze film damper (SFD) test rig, executing a circular centered orbit are presented and discussed. A serrated piston ring is installed at the damper exit. This device involves a new sealing concept which produces high damping values while allowing for oil flow to cool the damper. In the partially sealed damper, large cavitation regions are observed in the pressure fields at orbit radii epsilon equals 0.5 and epsilon equals 0.8. The cavitated pressure distributions and the corresponding force coefficients are compared with a cavitated bearing solution. The experimental results show the significance of fluid inertia and vapor cavitation in the operation of squeeze film dampers. Squeeze film Reynolds numbers tested reach up to Re equals 50, spanning the range of contemporary applications.

  10. Measurement of Local Partial Pressure of Oxygen in the Brain Tissue under Normoxia and Epilepsy with Phosphorescence Lifetime Microscopy

    PubMed Central

    Zhang, Cong; Bélanger, Samuel; Pouliot, Philippe; Lesage, Frédéric

    2015-01-01

    In this work a method for measuring brain oxygen partial pressure with confocal phosphorescence lifetime microscopy system is reported. When used in conjunction with a dendritic phosphorescent probe, Oxyphor G4, this system enabled minimally invasive measurements of oxygen partial pressure (pO2) in cerebral tissue with high spatial and temporal resolution during 4-AP induced epileptic seizures. Investigating epileptic events, we characterized the spatio-temporal distribution of the "initial dip" in pO2 near the probe injection site and along nearby arterioles. Our results reveal a correlation between the percent change in the pO2 signal during the "initial dip" and the duration of seizure-like activity, which can help localize the epileptic focus and predict the length of seizure. PMID:26305777

  11. Gas concentration measurement instrument based on the effects of a wave-mixing interference on stimulated emissions

    DOEpatents

    Garrett, W. Ray

    1997-01-01

    A method and apparatus for measuring partial pressures of gaseous components within a mixture. The apparatus comprises generally at least one tunable laser source, a beam splitter, mirrors, optical filter, an optical spectrometer, and a data recorder. Measured in the forward direction along the path of the laser, the intensity of the emission spectra of the gaseous component, at wavelengths characteristic of the gas component being measured, are suppressed. Measured in the backward direction, the peak intensities characteristic of a given gaseous component will be wavelength shifted. These effects on peak intensity wavelengths are linearly dependent on the partial pressure of the compound being measured, but independent of the partial pressures of other gases which are present within the sample. The method and apparatus allow for efficient measurement of gaseous components.

  12. Gas concentration measurement instrument based on the effects of a wave-mixing interference on stimulated emissions

    DOEpatents

    Garrett, W.R.

    1997-11-11

    A method and apparatus are disclosed for measuring partial pressures of gaseous components within a mixture. The apparatus comprises generally at least one tunable laser source, a beam splitter, mirrors, optical filter, an optical spectrometer, and a data recorder. Measured in the forward direction along the path of the laser, the intensity of the emission spectra of the gaseous component, at wavelengths characteristic of the gas component being measured, are suppressed. Measured in the backward direction, the peak intensities characteristic of a given gaseous component will be wavelength shifted. These effects on peak intensity wavelengths are linearly dependent on the partial pressure of the compound being measured, but independent of the partial pressures of other gases which are present within the sample. The method and apparatus allow for efficient measurement of gaseous components. 9 figs.

  13. Isochoric Burn, an Internally Consistent Method for the Reactant to Product Transformation in Reactive Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reaugh, J E; Lee, E L

    2002-07-01

    Mixture rules for partially reacted explosives differ amongst various models. For instance, JWL++ uses a partial pressure addition to compute an average zonal pressure, Ignition and Growth requires pressure equilibration and thermal equilibration of temperature dependent JWL EOSs, CHEETAH In Line RF also assumes temperature and pressure equilibration. It has been suggested in the past that a more realistic equilibration scheme should comprise isentropic pressure equilibration of the separate reacted and unreacted phases. This turns out not to be a proper path for equilibration. Rather, we find that the only internally consistent method is the evaluation of the equilibrium pressuremore » that satisfies the particular conditions of reactant and product resulting from deflagration in a fixed volume.« less

  14. 75 FR 25844 - Class Deviation From FAR 52.219-7, Notice of Partial Small Business Set-Aside

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-10

    ... Small Business Set-Aside AGENCY: Defense Logistics Agency, DoD. ACTION: Notice. SUMMARY: This is to...) regarding partial small business set-asides for Defense Logistics Agency (DLA), Defense Energy Support Center (DESC) bulk fuels solicitations and resulting contract awards. DLA is requesting Department of...

  15. Feasibility of Lettuce Growth at Hypoxic and Sub-Ambient Total Gas Pressures

    NASA Technical Reports Server (NTRS)

    Hoffman, Anne

    1997-01-01

    Lettuce (Lactuca saliva L. cv. 'Waldmann's Green') plants were grown (1) either from seed to 5 days old to study the effect of low atmospheric pressure (70 kPa) on their germination and early growth, or (2) until maturity at 30 days old to determine any long-term growth effects. The data were compared to plants grown in a second matching chamber which was maintained at ambient pressure (101 kPa) that served as a control. In other experiments, plants were grown at ambient pressure until maturity and then subjected to low atmospheric pressure for periods of 24 hours to determine possible effects of intermittent low pressure. The O2 and CO2 partial pressures in the low pressure chamber were adjusted to levels equal to those in the ambient pressure chamber to prevent differences in plant response which would have resulted from differences in the partial pressure of those gasses. The O2 partial pressure in the ambient chamber was maintained at 21 kPa and provision was made for additional CO2 during the fight phase. The germination rate and early seedling growth were insensitive to a low pressure environment. The rate of root elongation of plants grown at 70 kPa and at 101 kPa was also approximately the same. The rate of net carbon assimilation (per unit leaf area) of plants grown at low atmospheric pressure was unaffected at all growth stages even though plants grown at 70 kPa had slightly greater fresh and dry weights. There were consistent differences in assimilate partitioning, as shown by higher root/shoot ratios of plants grown at low pressure. Transpiration rates of plants grown until maturity under either constant or intermittent low pressure were reduced. Dark respiration rates of plants grown until maturity under either constant or intermittent low pressure were approximately 20% higher than the control plants.

  16. Filterability of freshly-collected sickle erythrocytes under venous oxygen pressure without exposure to air.

    PubMed

    Shah, Siddharth; Acholonu, Rhonda Graves; Ohene-Frempong, Kwaku; Asakura, Toshio

    2015-12-01

    We previously found that blood samples collected from steady-state patients with sickle cell disease (SCD) without exposure to air contain a new type of reversibly sickled cells (RSCs) with blunt edges at a level of as high as 78%. Since partial oxygenation of once-deoxygenated sickled cells with pointy edges to near venous oxygen pressure generates similar sickled cells with blunt edges in vitro, we named them as partially oxygenated sickled cells (POSCs). On the other hand, partial deoxygenation of once-oxygenated SS cells to venous oxygen pressure generates partially deoxygenated sickled cells (PDSCs) with pointy edges. In this study, we obtained blood samples from 6 steady-state patients with SCD under venous oxygen pressure without exposure to air, subjected them to various oxygenation/deoxygenation/reoxygenation cycles, and studied their filterability through a membrane filter with pore diameter of 3μm, the theoretical minimum diameter of a capillary. Our results indicated that discocytes, POSCs with blunt edges, and irreversibly sickled cells could deform and pass through the filter, while PDSCs with pointy edges were rigid and could not. The filterability of SS cells seems to be related to the length and amount of deoxy-hemoglobin S fibers in the cells. Copyright © 2015. Published by Elsevier Inc.

  17. Novel application of lower body positive-pressure in the rehabilitation of an individual with multiple lower extremity fractures.

    PubMed

    Takacs, Judit; Leiter, Jeff R S; Peeler, Jason D

    2011-06-01

    Lower extremity fractures, if not treated appropriately, can increase the risk of morbidity. Partial weight-bearing after surgical repair is recommended; however, current methods of partial weight-bearing may cause excessive loads through the lower extremity. A new rehabilitation tool that uses lower body positive-pressure is described, that may allow partial weight-bearing while preventing excessive loads, thereby improving functional outcomes. A patient with multiple lower extremity fractures underwent a 6-month rehabilitation programme using bodyweight support technology 3 times per week, post-surgery. The patient experienced a reduction in pain and an improvement in ankle range of motion (p=0.002), walking speed (p>0.05) and physical function (p=0.004), as assessed by the Foot and Ankle Module of the American Academy of Orthopaedic Surgeons Lower Limb Outcomes Assessment Instrument. Training did not appear to affect fracture healing, as was evident on radiograph. The effect of lower body positive-pressure on effusion, which has not previously been reported in the literature, was also investigated. No significant difference in effusion of the foot and ankle when using lower body positive-pressure was found. Initial results suggest that this new technology may be a useful rehabilitation tool that allows partial weight-bearing during the treatment of lower extremity injuries.

  18. Effects of hypobaria and hypoxia on seed germination of six plant species

    NASA Astrophysics Data System (ADS)

    Tang, Yongkang; Gao, Feng; Guo, Shuangsheng; Li, Fang

    2014-10-01

    Hypobaria (low pressure) is typically associated with hypoxia (low oxygen partial pressure). There are several advantages of growing higher plants under hypobaria in the moon or mars habitat. The objectives of this research were to investigate the seed germination of six plant species under hypobaric and ambient total pressure conditions. Seeds were sown and germinated under three levels of total atmospheric pressure (101, 30 and 10 kPa) and three levels of oxygen partial pressures (21, 6 and 2 kPa) in an 8-day study. Hypoxia (6 or 2 kPa) significantly inhibited all seed germination under three levels of total atmospheric pressure by increasing the electrical conductivity and the optical density, decreasing the seed germination percentage and seed dehydrogenase activity and inhibiting the growth of the shoots and roots. Hypobaria (30 or 10 kPa) markedly improved seed germination and root growth by enhancing the oxygen diffusion rate under hypoxic conditions (6 or 2 kPa). The seeds of three dicot plants (lettuce, Chinese cabbage and cucumber) were more sensitive to hypoxia caused by hypobaria than were those of three monocot plants (maize, wheat and rice); lettuce and cucumber seeds had the highest sensitivity, whereas rice seeds had the lowest sensitivity. This research demonstrates that six experimental seeds can germinate normally under hypobaria (30 kPa), but the oxygen partial pressure should not be less than 6 kPa.

  19. Melt-Vapor Phase Diagram of the Te-S System

    NASA Astrophysics Data System (ADS)

    Volodin, V. N.; Trebukhov, S. A.; Kenzhaliyev, B. K.; Nitsenko, A. V.; Burabaeva, N. M.

    2018-03-01

    The values of partial pressure of saturated vapor of the constituents of the Te-S system are determined from boiling points. The boundaries of the melt-vapor phase transition at atmospheric pressure and in vacuum of 2000 and 100 Pa are calculated on the basis of partial pressures. A phase diagram that includes vapor-liquid equilibrium fields whose boundaries allow us to assess the behavior of elements upon distillation fractioning is plotted. It is established that the separation of elements is possible at the first evaporation-condensation cycle. Complications can be caused by crystallization of a sulfur solid solution in tellurium.

  20. Dynamic calibration of fast-response probes in low-pressure shock tubes

    NASA Astrophysics Data System (ADS)

    Persico, G.; Gaetani, P.; Guardone, A.

    2005-09-01

    Shock tube flows resulting from the incomplete burst of the diaphragm are investigated in connection with the dynamic calibration of fast-response pressure probes. As a result of the partial opening of the diaphragm, pressure disturbances are observed past the shock wave and the measured total pressure profile deviates from the envisaged step signal required by the calibration process. Pressure oscillations are generated as the initially normal shock wave diffracts from the diaphragm's orifice and reflects on the shock tube walls, with the lowest local frequency roughly equal to the ratio of the sound speed in the perturbed region to the shock tube diameter. The energy integral of the perturbations decreases with increasing distance from the diaphragm, as the diffracted leading shock and downwind reflections coalesce into a single normal shock. A procedure is proposed to calibrate fast-response pressure probes downwind of a partially opened shock tube diaphragm.

  1. Transport of dissolved gases through unsaturated porous media

    NASA Astrophysics Data System (ADS)

    Maryshev, B. S.

    2017-06-01

    The natural porous media (e.g. soil, sand, peat etc.) usually are partially saturated by groundwater. The saturation of soil depends on hydrostatic pressure which is linearly increased with depth. Often some gases (e.g. nitrogen, oxygen, carbon dioxide, methane etc.) are dissolved into the groundwater. The solubility of gases is very small because of that two assumptions is applied: I. The concentration of gas is equal to solubility, II. Solubility depends only on pressure (for isothermal systems). In this way some part of dissolved gas transfers from the solution to the bubble phase. The gas bubbles are immovably trapped in a porous matrix by surface-tension forces and the dominant mechanism of transport of gas mass becomes the diffusion of gas molecules through the liquid. If the value of water content is small then the transport of gas becomes slow and gas accumulates into bubble phase. The presence of bubble phase additionally decreases the water content and slows down the transport. As result the significant mass of gas should be accumulated into the massif of porous media. We derive the transport equations and find the solution which is demonstrated the accumulation of gases. The influence of saturation, porosity and filtration velocity to accumulation process is investigated and discussed.

  2. Electron-stimulated desorption study of hydrogen-exposed aluminum films

    NASA Technical Reports Server (NTRS)

    Park, CH.; Bujor, M.; Poppa, H.

    1984-01-01

    H2 adsorption of evaporated clean and H2-exposed aluminum films is investigated by using the electron-stimulated desorption (ESD) method. A strong H(+)ESD signal is observed on a freshly evaporated aluminum surface which is clean according to previously proposed cleanlines criteria. An increased H(+) yield on H2 exposure is also observed. However, the increasing rate of H(+) emission could be directly correlated with small increases in H2O partial pressure during H2 exposure. It is proposed that the oxidation of aluminum by water vapor and subsequent adsorption of H2 or water is the primary process of the enhanced high H(+) yield during H2 exposure.

  3. Semiconductor grade, solar silicon purification project

    NASA Technical Reports Server (NTRS)

    Ingle, W. M.; Chaney, R.; Thompson, S.

    1977-01-01

    The potential for a three step SiF2 polymer transport purification process was examined. The process involves reacting low cost mg silicon with SiF4 to yield SiF2 gas which is condensed to form polymeric (SiF2)x. The polymer is then heated above 400 C to yield Si, SiF4 and higher Si sub n F sub 2n+2 homologues. This report presents and discusses continuing progress on (1) observations on (SiF2)x polymer formation and depolymerization on the small coil, (2) mass balance studies, (3) partial pressures of SiF2 and SiF4, (4) AlF3 mass spectral studies, and (5) material analysis studies.

  4. Partial pressure analysis in space testing

    NASA Technical Reports Server (NTRS)

    Tilford, Charles R.

    1994-01-01

    For vacuum-system or test-article analysis it is often desirable to know the species and partial pressures of the vacuum gases. Residual gas or Partial Pressure Analyzers (PPA's) are commonly used for this purpose. These are mass spectrometer-type instruments, most commonly employing quadrupole filters. These instruments can be extremely useful, but they should be used with caution. Depending on the instrument design, calibration procedures, and conditions of use, measurements made with these instruments can be accurate to within a few percent, or in error by two or more orders of magnitude. Significant sources of error can include relative gas sensitivities that differ from handbook values by an order of magnitude, changes in sensitivity with pressure by as much as two orders of magnitude, changes in sensitivity with time after exposure to chemically active gases, and the dependence of the sensitivity for one gas on the pressures of other gases. However, for most instruments, these errors can be greatly reduced with proper operating procedures and conditions of use. In this paper, data are presented illustrating performance characteristics for different instruments and gases, operating parameters are recommended to minimize some errors, and calibrations procedures are described that can detect and/or correct other errors.

  5. A unique noninvasive approach to monitoring dissolved O2 and CO2 in cell culture.

    PubMed

    Chatterjee, Madhubanti; Ge, Xudong; Uplekar, Shaunak; Kostov, Yordan; Croucher, Leah; Pilli, Manohar; Rao, Govind

    2015-01-01

    Although online monitoring of dissolved oxygen (DO) and carbon dioxide (DCO2 ) is highly desirable in bioprocesses, small-scale bioreactors are usually not monitored due to the lack of suitable sensors. Traditional electrochemical sensors are usually not used because they are bulky and invasive. Disposable optical sensors are small and only partially invasive, but there are concerns regarding the toxicity of the patch and the phototoxicity of the illuminating light. Here we present a novel, noninvasive, rate-based technique for monitoring DO and DCO2 in cell cultures. A silicone sampling loop which allowed the diffusion of O2 and CO2 through its wall was inserted inside a bioreactor, and then flushed with N2 until the CO2 and O2 inside the loop were completely removed. The gas inside the loop was then allowed to recirculate through gas impermeable tubing to the O2 and CO2 sensors. We have shown that by measuring the initial diffusion rate we were able to determine the partial pressures of the two gases in the culture. The technique could be readily automated and measurements could be made in minutes. It was tested in demonstration experiments by growing murine hybridoma cells in a T-flask and a spinner-flask at 37°C. The results were comparable to those measured with commercially available fluorescence-based patch sensors. These results show that the rate-based method is an effective way to monitor small-scale cell cultures. This measurement mechanism can be easily built into disposable cell culture vessels for facile use. © 2014 Wiley Periodicals, Inc.

  6. Oxygen stoichiometry, phase stability, and thermodynamic behavior of the lead-doped Bi-2223 and Ag/Bi-2223 systems

    NASA Astrophysics Data System (ADS)

    Tetenbaum, M.; Hash, M.; Tani, B. S.; Luo, J. S.; Maroni, V. A.

    1995-02-01

    Electromotive-force (EMF) measurements of oxygen fugacities as a function of stoichiometry have been made in the lead-doped Bi-2223 superconducting system in the temperature range 700-815°C by means of an oxygen titration technique that employs an yttria-stabilized zirconia electrolyte. The results of our studies indicate that processing or annealing lead-doped Bi-2223 at temperatures ranging from 750 to 815°C and at oxygen partial pressures ranging from ∼ 0.02 to 0.2 atm should preserve Bi-2223 as essentially single-phase material. Thermodynamic assessments of the partial molar quantities ΔS¯( O2) andΔH¯( O2) indicate that the plateau regions in the plot of oxygen partial pressure versus oxygen stoichiometry ( x) can be represented by the diphasic CuOCu 2O system. In accord with the EMF measurements, it was found that lead-doped Bi-2223 in a silver sheath is stable at 815°C for oxygen partial pressures between 0.02 and 0.13 atm.

  7. Thermodynamic and nonstoichiometric behavior of the lead-doped Bi-2223 system

    NASA Astrophysics Data System (ADS)

    Tetenbaum, M.; Hash, M.; Tani, B. S.; Luo, J. S.; Maroni, V. A.

    1994-12-01

    Electromotive force (EMF) measurements of oxygen fugacities as a function of stoichiometry have been made in the lead-doped Bi-2223 superconducting system in the temperature range 700-815°C by means of an oxygen titration technique. The results of our studies indicate that processing or annealing lead-doped Bi-2223 at temperatures ranging from 700 to 815°C and at oxygen partial pressures ranging from ∼0.02 to 0.2 atm should tend to preserve Bi-2223 as essentially single-phase material. Thermodynamic assessments of partial molar quantities indicate that the plateau regions can be represented by the diphasic CuOCu 2O system. In accord with the EMF measurements, it was found that lead-doped Bi-2223 in a silver sheath is stable at 815°C for oxygen partial pressures between 0.02 and 0.13 atm. Long-duration post anneals of silver-clad Bi-2223 filaments at 825°C and an oxygen partial pressure of 0.075 atm eliminated Bi-2212 intergrowths with a concomitant increase in the superconducting transition sharpness.

  8. Focal cartilage defect compromises fluid-pressure dependent load support in the knee joint.

    PubMed

    Dabiri, Yaghoub; Li, LePing

    2015-06-01

    A focal cartilage defect involves tissue loss or rupture. Altered mechanics in the affected joint may play an essential role in the onset and progression of osteoarthritis. The objective of the present study was to determine the compromised load support in the human knee joint during defect progression from the cartilage surface to the cartilage-bone interface. Ten normal and defect cases were simulated with a previously tested 3D finite element model of the knee. The focal defects were considered in both condyles within high load-bearing regions. Fluid pressurization, anisotropic fibril-reinforcement, and depth-dependent mechanical properties were considered for the articular cartilages and menisci. The results showed that a small cartilage defect could cause 25% reduction in the load support of the knee joint due to a reduced capacity of fluid pressurization in the defect cartilage. A partial-thickness defect could cause a fluid pressure decrease or increase in the remaining underlying cartilage depending on the defect depth. A cartilage defect also increased the shear strain at the cartilage-bone interface, which was more significant with a full-thickness defect. The effect of cartilage defect on the fluid pressurization also depended on the defect sites and contact conditions. In conclusion, a focal cartilage defect causes a fluid-pressure dependent load reallocation and a compromised load support in the joint, which depend on the defect depth, site, and contact condition. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Influence of defunctionalization and mechanical forces on intestinal epithelial wound healing

    PubMed Central

    Kovalenko, Pavlo L.; Flanigan, Thomas L.; Chaturvedi, Lakshmi

    2012-01-01

    The influence on mucosal healing of luminal nutrient flow and the forces it creates are poorly understood. We hypothesized that altered deformation and extracellular pressure mediate, in part, the effects of defunctionalization on mucosal healing. We created patent or partially obstructing defunctionalizing jejunal Roux-en-Y anastomoses in rats to investigate mucosal healing in the absence or presence of luminal nutrient flow and measured luminal pressures to document partial obstruction. We used serosal acetic acid to induce ulcers in the proximal, distal, and defunctionalized intestinal segments. After 3 days, we assessed ulcer area, proliferation, and phosphorylated ERK. In vitro, we measured proliferation and migration in Caco-2 and IEC-6 intestinal epithelial cells subjected to cyclic strain, increased extracellular pressure, or strain and pressure together. Defunctionalization of intestine without obstruction reduced phosphorylated ERK, slowed ulcer healing, and inhibited mucosal proliferation. This outcome was blocked by PD-98059. Partial obstruction delayed ulcer healing but stimulated proliferation independently of ERK. In vitro, strain increased Caco-2 and IEC-6 proliferation and reduced migration across collagen but reduced proliferation and increased migration across fibronectin. In contrast, increased pressure and the combination of pressure and strain increased proliferation and reduced migration independently of substrate. PD-98059 reduced basal migration but increased migration under pressure. These results suggest that loss of the repetitive distension may decrease mucosal healing in defunctionalized bowel, while increased luminal pressure above anastomoses or in spastic bowel disease could further inhibit mucosal healing, despite peristaltic repetitive strain. ERK may mediate the effects of repetitive deformation but not the effects of pressure. PMID:22997197

  10. Large-scale numerical simulations of polydisperse particle flow in a silo

    NASA Astrophysics Data System (ADS)

    Rubio-Largo, S. M.; Maza, D.; Hidalgo, R. C.

    2017-10-01

    Very recently, we have examined experimentally and numerically the micro-mechanical details of monodisperse particle flows through an orifice placed at the bottom of a silo (Rubio-Largo et al. in Phys Rev Lett 114:238002, 2015). Our findings disentangled the paradoxical ideas associated to the free-fall arch concept, which has historically served to justify the dependence of the flow rate on the outlet size. In this work, we generalize those findings examining large-scale polydisperse particle flows in silos. In the range of studied apertures, both velocity and density profiles at the aperture are self-similar, and the obtained scaling functions confirm that the relevant scale of the problem is the size of the aperture. Moreover, we find that the contact stress monotonically decreases when the particles approach the exit and vanish at the outlet. The behavior of this magnitude is practically independent of the size of the orifice. However, the total and partial kinetic stress profiles suggest that the outlet size controls the propagation of the velocity fluctuations inside the silo. Examining this magnitude, we conclusively argue that indeed there is a well-defined transition region where the particle flow changes its nature. The general trend of the partial kinetic pressure profiles and the location of the transition region results the same for all particle types. We find that the partial kinetic stress is larger for bigger particles. However, the small particles carry a higher fraction of kinetic stress respect to their concentration, which suggest that the small particles have larger velocity fluctuations than the large ones and showing lower strength of correlation with the global flow. Our outcomes explain why the free-fall arch picture has served to describe the polydisperse flow rate in the discharge of silos.

  11. Flow-independent dynamics in aneurysm (FIDA): pressure measurements following partial and complete flow impairment in experimental aneurysm model

    PubMed Central

    Watanabe, Masaki; Chaudhry, Saqib A; Qureshi, Adnan I

    2014-01-01

    Background: There have been growing concerns regarding delayed aneurysm rupture subsequent to the flow-diverting stent deployment. Therefore, more investigations are needed regarding hemodynamic changes secondary to flow-diverting stent deployment. Objective: To study intra-aneurysmal and perianeurysmal pressures after partial and complete flow impairment into the aneurysm. Methods A silicone model of an 8-mm-sized aneurysm (neck diameter: 5 mm, vessel size: 4 mm) was used. The aneurysm wall was encapsulated and sealed within a 5 ml syringe filled with saline and a pressure sensor guide wire (ComboWire, Volcano Corp.) to detect pressure changes in the perivascular compartment (outer aneurysm wall). A second pressure sensor guide wire was advanced inside the aneurysm sac. Both pressure sensors were continuously measuring pressure inside and outside the aneurysm under pulsatile flow under the following conditions: 1) baseline (reference); 2) a 16 mm by 3.75 mm flow-diverting stent (ev3/Covidien Vascular, Mansfield, MA) deployed in front of the aneurysm; 3) two flow-diverting stents (16 mm by 3.5 mm) were deployed; and 4) a covered stent (4 mm by 16 mm VeriFlex coronary artery stent covered with rubber sheet) was deployed. Results: Mean (±SD) baseline pressures inside and outside the aneurysm were 53.9 (±2.4) mmHg (range 120–40 mmHg) and 15.4 (±0.7) mmHg (range 40–8mmHg), respectively. There was no change in pressure inside and outside the aneurysm after deploying the first and second flow-diverting stents (partial flow impairment) and it remained at 53.9 (±2.7) mmHg and 14.9 (±1) mmHg for the pressure inside and outside the aneurysm, respectively. The pressure recording from outside the aneurysm dropped from 15.4 (±0.7) mmHg to 0.3 (±0.7) mmHg after deploying the covered stent (complete flow impairment). There was no change in pressure inside the aneurysm after deploying the covered stent. Mean (±SD) pressure within the aneurysm was 55.1 (±1.7) mmHg and it remained 54.7 (±1.7) mmHg after covered stent deployment. Conclusion: Our findings suggest a major discordance between the pressures within the aneurysm and partial or complete flow impairment (flow independent). The outer wall pressure is reduced after covered stent placement. These finding may assist clinicians in better understanding of aneurysm hemodynamics and rupture after flow-diverting stent deployment. PMID:25298859

  12. Biological nitrogen fixation under primordial Martian partial pressures of dinitrogen

    NASA Technical Reports Server (NTRS)

    Klingler, J. M.; Mancinelli, R. L.; White, M. R.

    1989-01-01

    One of the most striking differences between the conditions on early Mars and earth was a low (18 mb) partial pressure of N2 (pN2) on early Mars, as opposed to 780 mb N2 on earth. To investigate the possibility of biological nitrogen fixation under conditions of early Mars, experiments were carried out on the growth of Azotobacter vinelandii and Azomonas agilis in nitrogen-free synthetic medium under various partial pressures of N2 (ranging from 780 to 0 mb). It was found that, although the biomass, cell number, and growth rate of these bacteria decreased with decreasing pN2 values below pN2 of 400 mb, both microorganisms were capable of growing at pN2 as low as 5 mb (but not at of below 1 mb), indicating that biological fixation of nitrogen could have occurred on primordial Mars.

  13. [Generation of Superoxide Radicals by Complex III in Heart Mitochondria and Antioxidant Effect of Dinitrosyl Iron Complexes at Different Partial Pressure of Oxygen].

    PubMed

    Dudylina, A L; Ivanova, M V; Shumaev, K B; Ruuge, E K

    2016-01-01

    The EPR spin-trapping technique and EPR-oximetry were used to study generation of superoxide radicals in heart mitochondria isolated from Wistar rats under conditions of variable oxygen concentration. Lithium phthalocyanine and TEMPONE-15N-D16 were chosen to determine oxygen content in a gas-permeable capillary tube containing mitochondria. TIRON was used as a spin trap. We investigated the influence of different oxygen concentrations in incubation mixture and demonstrated that heart mitochondria can generate superoxide in complex III at different partial pressure of oxygen as well as under the conditions of deep hypoxia (< 5% O2). Dinitrosyl iron complexes with glutathione (the pharmaceutical drug "Oxacom") exerted an antioxidant effect, regardless of the value of the partial pressure of oxygen, but the magnitude and kinetic characteristics of the effect depended on the concentration of the drug.

  14. Method for forming bismuth-based superconducting ceramics

    DOEpatents

    Maroni, Victor A.; Merchant, Nazarali N.; Parrella, Ronald D.

    2005-05-17

    A method for reducing the concentration of non-superconducting phases during the heat treatment of Pb doped Ag/Bi-2223 composites having Bi-2223 and Bi-2212 superconducting phases is disclosed. A Pb doped Ag/Bi-2223 composite having Bi-2223 and Bi-2212 superconducting phases is heated in an atmosphere having an oxygen partial pressure not less than about 0.04 atmospheres and the temperature is maintained at the lower of a non-superconducting phase take-off temperature and the Bi-2223 superconducting phase grain growth take-off temperature. The oxygen partial pressure is varied and the temperature is varied between about 815.degree. C. and about 835.degree. C. to produce not less than 80 percent conversion to Pb doped Bi-2223 superconducting phase and not greater than about 20 volume percent non-superconducting phases. The oxygen partial pressure is preferably varied between about 0.04 and about 0.21 atmospheres. A product by the method is disclosed.

  15. Oxygen partial pressure modulates 67-kDa laminin receptor expression, leading to altered activity of the green tea polyphenol, EGCG.

    PubMed

    Tsukamoto, Shuntaro; Yamashita, Shuya; Kim, Yoon Hee; Kumazoe, Motofumi; Huang, Yuhui; Yamada, Koji; Tachibana, Hirofumi

    2012-09-21

    (-)-Epigallocatechin-3-O-gallate (EGCG) exhibits anti-tumor activity mediated via the 67-kDa laminin receptor (67LR). In this study, we found that 67LR protein levels are reduced by exposure to low O(2) levels (5%), without affecting the expression of HIF-1α. We also found that EGCG-induced anti-cancer activity is abrogated under low O(2) levels (5%) in various cancer cells. Notably, treatment with the proteasome inhibitor, prevented down-regulation of 67LR and restored sensitivity to EGCG under 5% O(2). In summary, 67LR expression is highly sensitive to O(2) partial pressure, and the activity of EGCG can be regulated in cancer cells by O(2) partial pressure. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  16. The change of steel surface chemistry regarding oxygen partial pressure and dew point

    NASA Astrophysics Data System (ADS)

    Norden, Martin; Blumenau, Marc; Wuttke, Thiemo; Peters, Klaus-Josef

    2013-04-01

    By investigating the surface state of a Ti-IF, TiNb-IF and a MnCr-DP after several series of intercritical annealing, the impact of the annealing gas composition on the selective oxidation process is discussed. On behalf of the presented results, it can be concluded that not the general oxygen partial pressure in the annealing furnace, which is a result of the equilibrium reaction of water and hydrogen, is the main driving force for the selective oxidation process. It is shown that the amounts of adsorbed gases at the strip surface and the effective oxygen partial pressure resulting from the adsorbed gases, which is mainly dependent on the water content of the annealing furnace, is driving the selective oxidation processes occurring during intercritical annealing. Thus it is concluded, that for industrial applications the dew point must be the key parameter value for process control.

  17. Two Phase Flow Modeling: Summary of Flow Regimes and Pressure Drop Correlations in Reduced and Partial Gravity

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Rame, E.; Kizito, J.; Kassemi, M.

    2006-01-01

    The purpose of this report is to provide a summary of state-of-the-art predictions for two-phase flows relevant to Advanced Life Support. We strive to pick out the most used and accepted models for pressure drop and flow regime predictions. The main focus is to identify gaps in predictive capabilities in partial gravity for Lunar and Martian applications. Following a summary of flow regimes and pressure drop correlations for terrestrial and zero gravity, we analyze the fully developed annular gas-liquid flow in a straight cylindrical tube. This flow is amenable to analytical closed form solutions for the flow field and heat transfer. These solutions, valid for partial gravity as well, may be used as baselines and guides to compare experimental measurements. The flow regimes likely to be encountered in the water recovery equipment currently under consideration for space applications are provided in an appendix.

  18. A defect model for UO2+x based on electrical conductivity and deviation from stoichiometry measurements

    NASA Astrophysics Data System (ADS)

    Garcia, Philippe; Pizzi, Elisabetta; Dorado, Boris; Andersson, David; Crocombette, Jean-Paul; Martial, Chantal; Baldinozzi, Guido; Siméone, David; Maillard, Serge; Martin, Guillaume

    2017-10-01

    Electrical conductivity of UO2+x shows a strong dependence upon oxygen partial pressure and temperature which may be interpreted in terms of prevailing point defects. A simulation of this property along with deviation from stoichiometry is carried out based on a model that takes into account the presence of impurities, oxygen interstitials, oxygen vacancies, holes, electrons and clusters of oxygen atoms. The equilibrium constants for each defect reaction are determined to reproduce the experimental data. An estimate of defect concentrations and their dependence upon oxygen partial pressure can then be determined. The simulations carried out for 8 different temperatures (973-1673 K) over a wide range of oxygen partial pressures are discussed and resulting defect equilibrium constants are plotted in an Arrhenius diagram. This provides an estimate of defect formation energies which may further be compared to other experimental data or ab-initio and empirical potential calculations.

  19. Development of a three-man preprototype CO2 collection subsystem for spacecraft application

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Wynveen, R. A.; Quattrone, P. D.; Marshall, R. D.

    1977-01-01

    Future long-duration manned space missions will require regenerable carbon dioxide (CO2) collection concepts such as the Electrochemical Depolarized CO2 Concentrator (EDC). A three-man-capacity preprototype CO2 Collection Subsystem (CS-3) is being developed for eventual flight demonstration as part of the Air Revitalization System (ARS) of the Regenerative Life Support Evaluation (RLSE) experiment. The CS-3 employs an EDC to concentrate CO2 from the low partial-pressure levels required of spacecraft atmospheres to high partial-pressure levels needed for oxygen (O2) recovery through CO2 reduction processes. The CS-3 is sized to remove a nominal 3.0 kg/day (6.6 lb/day) of the CO2 to maintain the CO2 partial pressure (pCO2) of the cabin atmosphere at 400 Pa (3 mm Hg) or less. This paper presents the preprototype design, configuration, operation, and projected performance characteristics.

  20. Inclusions in Minerals: the Importance of Host Mineral Composition, Pressure and Temperature for Potential Inclusion Alteration

    NASA Astrophysics Data System (ADS)

    Marquardt, K.; Markl, G.

    2017-12-01

    Inclusions in minerals are used to decipher details of the host mineral/rock history. They frequently originate from the time of mineral formation; be it diamond, garnet or `common' feldspar. Thus protected they survive changing pressure and temperature for different durations compared to their non-enclosed counterparts. Inclusions may (partially) equilibrate at a later point in history, and thus provide complementary information on past processes and alteration pathways less commonly discussed. The study investigates partially altered pyroxene inclusions in feldspars indicative of high-p-T fluid transport during granulite facies metamorphism in charnockites from the Lofoten Islands in Northern Norway. The protoliths formed about 1750 Ma ago, at about 800 - 900°C and 4 kbar. During crustal thickening, they reached high-pressure granulite-facies conditions of about 8-11 kbar at 700°C (1). While this event caused large magmatic pyroxenes to react with an infiltrating fluid to form corona textures of amphibole; pyroxenes inside feldspars behaved very differently. Pyroxenes enclosed in orthoclase-rich feldspar were partially hydrated to amphiboles. Contrastingly, feldspar with lower orthoclase content protected the magmatic pyroxenes efficiently. Transport and transformation mechanisms recorded in these µm to nm textures were studied by EMPA and TEM. Focused Ion Beam (FIB) prepared TEM-foils revealed that pyroxenes, when spatially connected to albite exsolution lamellae, show dissolution features. Based on composition, nanostructures and the known p-T-history, we propose the following succession of events. Ternary feldspar containing small magmatic pyroxenes began to exsolve between about 800 and 700°C. The exsolution changed from coherent to incoherent and a fluid infiltrated the feldspar accompanied by a formation of nanotunnels. Gradually the tunnels grew larger so that finally whole film perthites acted as pathways. When the fluid had access to pyroxene, reaction took place and amphibole formed. nm-scale observations need to be considered in studies on fluid mobility and for total reaction rates. Ref: Fitz Gerald, J. D., Parsons, I., & Cayzer, N. (2006). American Mineralogist, 91, 772-783. Markl, G., & Bucher, K. (1998). Nature, 391, 781-783.

  1. Pathophysiological effect of fat embolism in a canine model of pulmonary contusion.

    PubMed

    Elmaraghy, A W; Aksenov, S; Byrick, R J; Richards, R R; Schemitsch, E H

    1999-08-01

    The objective of this study was to determine the individual and combined effects of pulmonary contusion and fat embolism on the hemodynamics and pulmonary pathophysiology in a canine model of acute traumatic pulmonary injury. After a thoracotomy, twenty-one skeletally mature dogs were randomly assigned to one of three groups. Unilateral pulmonary contusion alone was produced in Group 1 (seven dogs); pulmonary contusion and fat embolism, in Group 2 (seven dogs); and fat embolism alone, in Group 3 (seven dogs). Pulmonary contusion was produced by standardized compression of the left lung with a piezoelectric force transducer. Fat embolism was produced by femoral and tibial reaming followed by pressurization of the intramedullary canals. Cardiac output, systolic blood pressure, peak airway pressure, pulmonary arterial pressure, pulmonary capillary wedge pressure, partial pressure of arterial oxygen, and partial pressure of carbon dioxide were monitored for all groups. From these data, several outcome parameters were calculated: total thoracic compliance, alveolar-arterial oxygen gradient, and ratio of partial pressure of arterial oxygen to fractional inspired oxygen concentration. All of the dogs were killed after eight hours, and tissue samples were obtained from the brain, kidneys, and lungs for histological analysis. Lung samples were assigned scores for pulmonary edema (the presence of fluid in the alveoli) and inflammation (the presence of neutrophils or hyaline membranes, or both). The percentage of the total area occupied by fat was determined. Pulmonary contusion alone caused a significant increase in the alveolar-arterial oxygen gradient but only after seven hours (p = 0.034). Fat embolism alone caused a significant transient decrease in systolic blood pressure (p = 0.001) and a significant transient increase in pulmonary arterial pressure (p = 0.01) and pulmonary capillary wedge pressure (p = 0.015). Fat embolism alone also caused a significant sustained decrease in the ratio of partial pressure of arterial oxygen to fractional inspired oxygen concentration (p = 0.0001) and a significant increase in the alveolar-arterial oxygen gradient (p = 0.0001). The combination of pulmonary contusion and fat embolism caused a significant transient increase in pulmonary capillary wedge pressure (p = 0.0013) as well as a significant sustained decrease in partial pressure of arterial oxygen (p = 0.0001) and a significant decrease in systolic blood pressure (p = 0.001) that lasted for an hour. Pulmonary contusion followed by fat embolism caused a significant increase in peak airway pressure (p = 0.015), alveolar-arterial oxygen gradient (p = 0.0001), and pulmonary arterial pressure (p = 0.01), and these effects persisted for five hours. Total thoracic compliance was decreased 6.4 percent by pulmonary contusion alone, 4.6 percent by fat embolism alone, and 23.5 percent by pulmonary contusion followed by fat embolism. The ratio of partial pressure of arterial oxygen to fractional inspired oxygen concentration was decreased 23.7 percent by pulmonary contusion alone, 52.3 percent by fat embolism alone, and 65.8 percent by pulmonary contusion followed by fat embolism. The mean pulmonary edema score was significantly higher with the combined injury than with either injury alone (p = 0.0001). None of the samples from the lungs demonstrated inflammation. Fat embolism combined with pulmonary contusion resulted in a significantly greater mean percentage of the area occupied by fat in the noncontused right lung than in the contused left lung (p = 0.001); however, no significant difference between the right and left lungs could be detected with fat embolism alone. The mean percentage of the glomerular and cerebral areas occupied by fat was greater with fat embolism combined with pulmonary contusion than with fat embolism alone (p = 0.0001 and p = 0.01, respectively). (ABSTRACT TRUNCATED)

  2. Effect of Nitrogen Content on Physical and Chemical Properties of TiN Thin Films Prepared by DC Magnetron Sputtering with Supported Discharge

    NASA Astrophysics Data System (ADS)

    Kavitha, A.; Kannan, R.; Gunasekhar, K. R.; Rajashabala, S.

    2017-10-01

    Amorphous titanium nitride (TiN) thin films have been prepared on silicon (Si) and glass substrates by direct-current (DC) reactive magnetron sputtering with a supported discharge (triode). Nitrogen gas (N2) at partial pressure of 0.3 Pa, 0.4 Pa, 0.5 Pa, and 0.6 Pa was used to prepare the TiN thin films, maintaining total pressure of argon and N2 of about 0.7 Pa. The chemical, microstructural, optical, and electrical properties of the TiN thin films were systematically studied. Presence of different phases of Ti with nitrogen (N), oxygen (O2), and carbon (C) elements was revealed by x-ray photoelectron spectroscopy characterization. Increase in the nitrogen pressure from 0.3 Pa to 0.6 Pa reduced the optical bandgap of the TiN thin film from 2.9 eV to 2.7 eV. Photoluminescence study showed that TiN thin film deposited at N2 partial pressure of 0.3 Pa exhibited three shoulder peaks at 330 nm, 335 nm, and 340 nm, which disappeared when the sample was deposited with N2 partial pressure of 0.6 Pa. Increase in the nitrogen content decreased the electrical resistivity of the TiN thin film from 3200 μΩ cm to 1800 μΩ cm. Atomic force microscopy studies of the TiN thin films deposited with N2 partial pressure of 0.6 Pa showed a uniform surface pattern associated with accumulation of fine grains. The results and advantages of this method of preparing TiN thin films are also reported.

  3. Predicting Intracranial Pressure and Brain Tissue Oxygen Crises in Patients With Severe Traumatic Brain Injury.

    PubMed

    Myers, Risa B; Lazaridis, Christos; Jermaine, Christopher M; Robertson, Claudia S; Rusin, Craig G

    2016-09-01

    To develop computer algorithms that can recognize physiologic patterns in traumatic brain injury patients that occur in advance of intracranial pressure and partial brain tissue oxygenation crises. The automated early detection of crisis precursors can provide clinicians with time to intervene in order to prevent or mitigate secondary brain injury. A retrospective study was conducted from prospectively collected physiologic data. intracranial pressure, and partial brain tissue oxygenation crisis events were defined as intracranial pressure of greater than or equal to 20 mm Hg lasting at least 15 minutes and partial brain tissue oxygenation value of less than 10 mm Hg for at least 10 minutes, respectively. The physiologic data preceding each crisis event were used to identify precursors associated with crisis onset. Multivariate classification models were applied to recorded data in 30-minute epochs of time to predict crises between 15 and 360 minutes in the future. The neurosurgical unit of Ben Taub Hospital (Houston, TX). Our cohort consisted of 817 subjects with severe traumatic brain injury. Our algorithm can predict the onset of intracranial pressure crises with 30-minute advance warning with an area under the receiver operating characteristic curve of 0.86 using only intracranial pressure measurements and time since last crisis. An analogous algorithm can predict the start of partial brain tissue oxygenation crises with 30-minute advanced warning with an area under the receiver operating characteristic curve of 0.91. Our algorithms provide accurate and timely predictions of intracranial hypertension and tissue hypoxia crises in patients with severe traumatic brain injury. Almost all of the information needed to predict the onset of these events is contained within the signal of interest and the time since last crisis.

  4. [Effect of oxygen tubing connection site on percutaneous oxygen partial pressure and percutaneous carbon dioxide partial pressure in patients with chronic obstructive pulmonary disease during noninvasive positive pressure ventilation].

    PubMed

    Mi, S; Zhang, L M

    2017-04-12

    Objective: We evaluated the effects of administering oxygen through nasal catheters inside the mask or through the mask on percutaneous oxygen partial pressure (PcO(2))and percutaneous carbon dioxide partial pressure (PcCO(2)) during noninvasive positive pressure ventilation (NPPV) to find a better way of administering oxygen, which could increase PcO(2) by increasing the inspired oxygen concentration. Methods: Ten healthy volunteers and 9 patients with chronic obstructive pulmonary disease complicated by type Ⅱ respiratory failure were included in this study. Oxygen was administered through a nasal catheter inside the mask or through the mask (oxygen flow was 3 and 5 L/min) during NPPV. PcO(2) and PcCO(2) were measured to evaluate the effects of administering oxygen through a nasal catheter inside the mask or through the mask, indirectly reflecting the effects of administering oxygen through nasal catheter inside the mask or through the mask on inspired oxygen concentration. Results: Compared to administering oxygen through the mask during NPPV, elevated PcO(2) was measured in administering oxygen through the nasal catheter inside the mask, and the differences were statistically significant ( P <0.05). At the same time, there was no significant change in PcCO(2) ( P >0.05). Conclusion: Administering oxygen through a nasal catheter inside the mask during NPPV increased PcO(2) by increasing the inspired oxygen concentration but did not increase PcCO(2). This method of administering oxygen could conserve oxygen and be suitable for family NPPV. Our results also provided theoretical basis for the development of new masks.

  5. Chemical strain engineering of magnetism in PrVO3 thin films

    NASA Astrophysics Data System (ADS)

    Prellier, Wilfrid; Copie, Olivier; Varignon, Julien; Rotella, Helene; Steciuk, Gwladys; Boullay, Philippe; Pautrat, Alain; David, Adrian; Mercey, Bernard; Ghosez, Philippe

    Transition metal oxides having a perovskite structure present a wide range of functional properties ranging from insulator-to-metal, ferroelectricity, colossal magnetoresistance, high-temperature superconductivity and multiferroicity. Such systems are generally characterized by strong electronic correlations, complex phase diagrams and competing ground states. In addition, small perturbation induced by external stimuli (electric or magnetic field, temperature, strain, pressure..) may change structure, and ultimately modify the physical properties. Here, we synthetize an orthorhombic perovskite praseodymium vanadate (PrVO3), which is grown on strontium titanate substrate. We show that the control of the content of oxygen vacancies, the so-called chemical strain, can indeed result in unexpected properties. We further demonstrate that the Néel temperature can be tuned using the same substrate in agreement with first-principles calculations, and demonstrate that monitoring the concentration of oxygen vacancies through the oxygen partial pressure or the growth temperature can produce a substantial macroscopic tensile strain of a few percents.

  6. Carbon dioxide exchange of lettuce plants under hypobaric conditions

    NASA Technical Reports Server (NTRS)

    Corey, K. A.; Bates, M. E.; Adams, S. L.; MacElroy, R. D. (Principal Investigator)

    1996-01-01

    Growth of plants in a Controlled Ecological Life Support System (CELSS) may involve the use of hypobaric pressures enabling lower mass requirements for atmospheres and possible enhancement of crop productivity. A controlled environment plant growth chamber with hypobaric capability designed and built at Ames Research Center was used to determine if reduced pressures influence the rates of photosynthesis (Ps) and dark respiration (DR) of hydroponically grown lettuce plants. The chamber, referred to as a plant volatiles chamber (PVC), has a growing area of about 0.2 m2, a total gas volume of about 0.7 m3, and a leak rate at 50 kPa of <0.1%/day. When the pressure in the chamber was reduced from ambient to 51 kPa, the rate of net Ps increased by 25% and the rate of DR decreased by 40%. The rate of Ps increased linearly with decreasing pressure. There was a greater effect of reduced pressure at 41 Pa CO2 than at 81 Pa CO2. This is consistent with reports showing greater inhibition of photorespiration (Pr) in reduced O2 at low CO2 concentrations. When the partial pressure of O2 was held constant but the total pressure was varied between 51 and 101 kPa, the rate of CO2 uptake was nearly constant, suggesting that low pressure enhancement of Ps may be mainly attributable to lowered partial pressure of O2 and the accompanying reduction in Pr. The effects of lowered partial pressure of O2 on Ps and DR could result in substantial increases in the rates of biomass production, enabling rapid throughput of crops or allowing flexibility in the use of mass and energy resources for a CELSS.

  7. Low Pressure Flame Blowoff from the Forward Stagnation Region of a Blunt-Nosed Cast PMMA Cylinder in Axial Mixed Convective Flow

    NASA Technical Reports Server (NTRS)

    Marcum, J. W.; Rachow, P.; Ferkul, P. V.; Olson, S. L.

    2017-01-01

    Low-pressure blowoff experiments were conducted with a stagnation flame stabilized on the forward tip of cast PMMA rods in a vertical wind tunnel. Pressure, forced flow velocity, gravity, and ambient oxygen concentration were varied. Stagnation flame blowoff is determined from a time-stamped video recording of the test. The blowoff pressure is determined from test section pressure transducer data that is synchronized with the time stamp. The forced flow velocity is also determined from the choked flow orifice pressure. Most of the tests were performed in normal gravity, but a handful of microgravity tests were also conducted to determine the influence of buoyant flow velocity on the blowoff limits. The blowoff limits are found to have a linear dependence between the partial pressure of oxygen and the total pressure, regardless of forced flow velocity and gravity level. The flow velocity (forced and/or buoyant) affects the blowoff pressure through the critical Damkohler number residence time, which dictates the partial pressure of oxygen at blowoff. This is because the critical stretch rate increases linearly with increasing pressure at low pressure (sub-atmospheric pressures) since a second-order overall reaction rate with two-body reactions dominates in this pressure range.

  8. PH2O and simulated hypobaric hypoxia.

    PubMed

    Conkin, Johnny

    2011-12-01

    Some manufacturers of reduced oxygen (O2) breathing devices claim a comparable hypobaric hypoxia (HH) training experience by providing F1O2 < 0.209 at or near sea level pressure to match the ambient oxygen partial pressure (iso-PO2) of the target altitude. I conclude after a review of literature from investigators and manufacturers that these devices may not properly account for the 47 mmHg of water vapor partial pressure that reduces the inspired partial pressure of oxygen (P1O2), which is substantial at higher altitude relative to sea level. Consequently, some devices claiming an equivalent HH experience under normobaric conditions would significantly overestimate the HH condition, especially when simulating altitudes above 10,000 ft (3048 m). At best, the claim should be that the devices provide an approximate HH experience since they only duplicate the ambient PO2 at sea level as at altitude. An approach to reduce the overestimation and standardize the operation is to at least provide machines that create the same P1O2 conditions at sea level as at the target altitude, a simple software upgrade.

  9. Formulation of steam-methane reforming rate in Ni-YSZ porous anode of solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Sugihara, Shinichi; Kawamura, Yusuke; Iwai, Hiroshi

    2018-02-01

    The steam-methane reforming reaction on a Ni-YSZ (yttria-stabilized zirconia) cermet was experimentally investigated under atmospheric pressure and in the temperature range from 650 to 750 °C. We examined the effects of the partial pressures of methane and steam in the supply gas on the reaction rate. The experiments were conducted with a low Ni contained Ni-YSZ cermet sheet of thickness 0.1 mm. Its porous microstructure and accompanied parameters were quantified using the FIB-SEM (focused ion beam scanning electron microscopy) technique. A power-law-type rate equation incorporating the reaction-rate-limiting conditions was obtained on the basis of the unit surface area of the Ni-pore contact surface in the cermet. The kinetics indicated a strong positive dependence on the methane partial pressure and a negative dependence on the steam partial pressure. The obtained rate equation successfully reproduced the experimental results for Ni-YSZ samples having different microstructures in the case of low methane consumption. The equation also reproduced the limiting-reaction behaviours at different temperatures.

  10. 30 CFR 75.1106-6 - Exemption of small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Exemption of small low pressure gas cylinders... STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1106-6 Exemption of small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures. Small low pressure gas cylinders containing...

  11. 30 CFR 75.1106-6 - Exemption of small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Exemption of small low pressure gas cylinders... STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1106-6 Exemption of small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures. Small low pressure gas cylinders containing...

  12. 30 CFR 75.1106-6 - Exemption of small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Exemption of small low pressure gas cylinders... STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1106-6 Exemption of small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures. Small low pressure gas cylinders containing...

  13. 30 CFR 75.1106-6 - Exemption of small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Exemption of small low pressure gas cylinders... STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1106-6 Exemption of small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures. Small low pressure gas cylinders containing...

  14. 30 CFR 75.1106-6 - Exemption of small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Exemption of small low pressure gas cylinders... STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1106-6 Exemption of small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures. Small low pressure gas cylinders containing...

  15. A multivariate time-frequency method to characterize the influence of respiration over heart period and arterial pressure

    NASA Astrophysics Data System (ADS)

    Orini, Michele; Bailón, Raquel; Laguna, Pablo; Mainardi, Luca T.; Barbieri, Riccardo

    2012-12-01

    Respiratory activity introduces oscillations both in arterial pressure and heart period, through mechanical and autonomic mechanisms. Respiration, arterial pressure, and heart period are, generally, non-stationary processes and the interactions between them are dynamic. In this study we present a methodology to robustly estimate the time course of cross spectral indices to characterize dynamic interactions between respiratory oscillations of heart period and blood pressure, as well as their interactions with respiratory activity. Time-frequency distributions belonging to Cohen's class are used to estimate time-frequency (TF) representations of coherence, partial coherence and phase difference. The characterization is based on the estimation of the time course of cross spectral indices estimated in specific TF regions around the respiratory frequency. We used this methodology to describe the interactions between respiration, heart period variability (HPV) and systolic arterial pressure variability (SAPV) during tilt table test with both spontaneous and controlled respiratory patterns. The effect of selective autonomic blockade was also studied. Results suggest the presence of common underling mechanisms of regulation between cardiovascular signals, whose interactions are time-varying. SAPV changes followed respiratory flow both in supine and standing positions and even after selective autonomic blockade. During head-up tilt, phase differences between respiration and SAPV increased. Phase differences between respiration and HPV were comparable to those between respiration and SAPV during supine position, and significantly increased during standing. As a result, respiratory oscillations in SAPV preceded respiratory oscillations in HPV during standing. Partial coherence was the most sensitive index to orthostatic stress. Phase difference estimates were consistent among spontaneous and controlled breathing patterns, whereas coherence was higher in spontaneous breathing. Parasympathetic blockade did not affect interactions between respiration and SAPV, reduced the coherence between SAPV and HPV and between respiration and HPV. Our results support the hypothesis that non-autonomic, possibly mechanically mediated, mechanisms also contributes to the respiratory oscillations in HPV. A small contribution of sympathetic activity on HPV-SAPV interactions around the respiratory frequency was also observed.

  16. Structural and thermodynamic properties of WB at high pressure and high temperature

    NASA Astrophysics Data System (ADS)

    Chen, Hai-Hua; Bi, Yan; Cheng, Yan; Ji, Guangfu; Peng, Fang; Hu, Yan-Fei

    2012-12-01

    The structure parameters and electronic structures of tungsten boride (WB) have been investigated by using the density functional theory (DFT). Our calculating results display the bulk modulus of WB are 352±2 GPa (K‧0=4.29) and 322±3 GPa (K‧0=4.21) by LDA and GGA methods, respectively. We have analyzed the probable reason of the discrepancy from the bulk modulus between theoretical and experimental results. The compression behavior of the unit cell axes is anisotropic, with the c-axis being more compressible than the a-axis. By analyzing the bond lengths information, it also demonstrated that WB has a lower compressibility at high pressure. From the partial densities of states (PDOS) of WB, we found that the Fermi lever is mostly contributed by the d states of W atom and p states of B atom and that the contributions from the s, p states of W atom and s states of B atom are small. Moreover, using the Gibbs 2 program, the thermodynamic properties of WB are obtained in a wide temperature range at high pressure for the first time in this work.

  17. Unusual small subunit that is not expressed in photosynthetic cells alters the catalytic properties of rubisco in rice.

    PubMed

    Morita, Koichi; Hatanaka, Tomoko; Misoo, Shuji; Fukayama, Hiroshi

    2014-01-01

    Rubisco small subunits (RbcSs) are encoded by a nuclear multigene family in plants. Five RbcS genes, OsRbcS1, OsRbcS2, OsRbcS3, OsRbcS4, and OsRbcS5, have been identified in rice (Oryza sativa). Among them, the amino acid sequence of OsRbcS1 differs notably from those of other rice RbcSs. Phylogenetic analysis showed that OsRbcS1 is genetically distant from other rice RbcS genes and more closely related to RbcS from a fern and two woody plants. Reverse transcription-PCR and promoter β-glucuronidase analyses revealed that OsRbcS1 was not expressed in leaf blade, a major photosynthetic organ in rice, but was expressed in leaf sheath, culm, anther, and root central cylinder. In leaf blade of transgenic rice overexpressing OsRbcS1 and leaf sheath of nontransgenic rice, OsRbcS1 was incorporated into the Rubisco holoenzyme. Incorporation of OsRbcS1 into Rubisco increased the catalytic turnover rate and Km for CO2 of the enzyme and slightly decreased the specificity for CO2, indicating that the catalytic properties were shifted to those of a high-activity type Rubisco. The CO2 assimilation rate at low CO2 partial pressure was decreased in overexpression lines but was not changed under ambient and high CO2 partial pressure compared with nontransgenic rice. Although the Rubisco content was increased, Rubisco activation state was decreased in overexpression lines. These results indicate that the catalytic properties of Rubisco can be altered by ectopic expression of OsRbcS1, with substantial effects on photosynthetic performance in rice. We believe this is the first demonstration of organ-specific expression of individual members of the RbcS gene family resulting in marked effects on Rubisco catalytic activity.

  18. Unusual Small Subunit That Is Not Expressed in Photosynthetic Cells Alters the Catalytic Properties of Rubisco in Rice1[C][W][OPEN

    PubMed Central

    Morita, Koichi; Hatanaka, Tomoko; Misoo, Shuji; Fukayama, Hiroshi

    2014-01-01

    Rubisco small subunits (RbcSs) are encoded by a nuclear multigene family in plants. Five RbcS genes, OsRbcS1, OsRbcS2, OsRbcS3, OsRbcS4, and OsRbcS5, have been identified in rice (Oryza sativa). Among them, the amino acid sequence of OsRbcS1 differs notably from those of other rice RbcSs. Phylogenetic analysis showed that OsRbcS1 is genetically distant from other rice RbcS genes and more closely related to RbcS from a fern and two woody plants. Reverse transcription-PCR and promoter β-glucuronidase analyses revealed that OsRbcS1 was not expressed in leaf blade, a major photosynthetic organ in rice, but was expressed in leaf sheath, culm, anther, and root central cylinder. In leaf blade of transgenic rice overexpressing OsRbcS1 and leaf sheath of nontransgenic rice, OsRbcS1 was incorporated into the Rubisco holoenzyme. Incorporation of OsRbcS1 into Rubisco increased the catalytic turnover rate and Km for CO2 of the enzyme and slightly decreased the specificity for CO2, indicating that the catalytic properties were shifted to those of a high-activity type Rubisco. The CO2 assimilation rate at low CO2 partial pressure was decreased in overexpression lines but was not changed under ambient and high CO2 partial pressure compared with nontransgenic rice. Although the Rubisco content was increased, Rubisco activation state was decreased in overexpression lines. These results indicate that the catalytic properties of Rubisco can be altered by ectopic expression of OsRbcS1, with substantial effects on photosynthetic performance in rice. We believe this is the first demonstration of organ-specific expression of individual members of the RbcS gene family resulting in marked effects on Rubisco catalytic activity. PMID:24254313

  19. Measured pressure distributions inside nonaxisymmetric nozzles with partially deployed thrust reversers

    NASA Technical Reports Server (NTRS)

    Green, Robert S.; Carson, George T., Jr.

    1987-01-01

    An investigation was conducted in the Langley 16-Foot Transonic Tunnel at static conditions to measure the pressure distributions inside a nonaxisymmetric nozzle with simultaneous partial thrust reversing (50-percent deployment) and thrust vectoring of the primary (forward-thrust) nozzle flow. Geometric forward-thrust-vector angles of 0 and 15 deg. were tested. Test data were obtained at static conditions while nozzle pressure ratio was varied from 2.0 to 4.0. Results indicate that, unlike the 0 deg. vector angle nozzle, a complicated, asymmetric exhaust flow pattern exists in the primary-flow exhaust duct of the 15 deg. vectored nozzle.

  20. Hydrostatic Paradox: Experimental Verification of Pressure Equilibrium

    ERIC Educational Resources Information Center

    Kodejška, C.; Ganci, S.; Ríha, J.; Sedlácková, H.

    2017-01-01

    This work is focused on the experimental verification of the balance between the atmospheric pressure acting on the sheet of paper, which encloses the cylinder completely or partially filled with water from below, where the hydrostatic pressure of the water column acts against the atmospheric pressure. First of all this paper solves a theoretical…

  1. 40 CFR 86.344-79 - Humidity calculations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... = Molecular weight of air = 28.9645 M H2O = Molecular weight of water = 18.01534 P DB = Saturation vapor pressure of water at the dry bulb temperature (Pa) P DP = saturation vapor pressure of water at the dewpoint temperature (Pa) P v = partial pressure of water vapor (Pa) P WB = saturation vapor pressure of...

  2. 40 CFR 86.344-79 - Humidity calculations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... = Molecular weight of air = 28.9645 M H2O = Molecular weight of water = 18.01534 P DB = Saturation vapor pressure of water at the dry bulb temperature (Pa) P DP = saturation vapor pressure of water at the dewpoint temperature (Pa) P v = partial pressure of water vapor (Pa) P WB = saturation vapor pressure of...

  3. Effects of ambient temperature and water vapor on chamber pressure and oxygen level during low atmospheric pressure stunning of poultry.

    PubMed

    Holloway, Paul H; Pritchard, David G

    2017-08-01

    The characteristics of the vacuum used in a low atmospheric pressure stunning system to stun (render unconscious) poultry prior to slaughter are described. A vacuum chamber is pumped by a wet screw compressor. The vacuum pressure is reduced from ambient atmospheric pressure to an absolute vacuum pressure of ∼250 Torr (∼33 kPa) in ∼67 sec with the vacuum gate valve fully open. At ∼250 Torr, the sliding gate valve is partially closed to reduce effective pumping speed, resulting in a slower rate of decreasing pressure. Ambient temperature affects air density and water vapor pressure and thereby oxygen levels and the time at the minimum total pressure of ∼160 Torr (∼21 kPa) is varied from ∼120 to ∼220 sec to ensure an effective stun within the 280 seconds of each cycle. The reduction in total pressure results in a gradual reduction of oxygen partial pressure that was measured by a solid-state electrochemical oxygen sensor. The reduced oxygen pressure leads to hypoxia, which is recognized as a humane method of stunning poultry. The system maintains an oxygen concentration of <5% for at least 2 minutes, which ensures that birds are irreversibly stunned. Calculated pump down (pressure versus time) data match experimental data very closely because the programmable logic controller and the human machine interface enable precise and accurate control. The vacuum system operates in the turbulent viscous flow regime, and is best characterized by absolute vacuum pressure rather than gauge pressure. Neither the presence of broiler chickens nor different fore-line pipe designs of four parallel commercial systems affected the pressure-time data. Water in wet air always reduces the oxygen concentrations to a value lower than in dry air. The partial pressure of water and oxygen were found to depend on the pump down parameters due to the formation of fog in the chamber and desorption of water from the birds and the walls of the vacuum chamber. © The Author 2017. Published by Oxford University Press on behalf of Poultry Science Association.

  4. Effects of ambient temperature and water vapor on chamber pressure and oxygen level during low atmospheric pressure stunning of poultry

    PubMed Central

    Holloway, Paul H.; Pritchard, David G.

    2017-01-01

    Abstract The characteristics of the vacuum used in a low atmospheric pressure stunning system to stun (render unconscious) poultry prior to slaughter are described. A vacuum chamber is pumped by a wet screw compressor. The vacuum pressure is reduced from ambient atmospheric pressure to an absolute vacuum pressure of ∼250 Torr (∼33 kPa) in ∼67 sec with the vacuum gate valve fully open. At ∼250 Torr, the sliding gate valve is partially closed to reduce effective pumping speed, resulting in a slower rate of decreasing pressure. Ambient temperature affects air density and water vapor pressure and thereby oxygen levels and the time at the minimum total pressure of ∼160 Torr (∼21 kPa) is varied from ∼120 to ∼220 sec to ensure an effective stun within the 280 seconds of each cycle. The reduction in total pressure results in a gradual reduction of oxygen partial pressure that was measured by a solid-state electrochemical oxygen sensor. The reduced oxygen pressure leads to hypoxia, which is recognized as a humane method of stunning poultry. The system maintains an oxygen concentration of <5% for at least 2 minutes, which ensures that birds are irreversibly stunned. Calculated pump down (pressure versus time) data match experimental data very closely because the programmable logic controller and the human machine interface enable precise and accurate control. The vacuum system operates in the turbulent viscous flow regime, and is best characterized by absolute vacuum pressure rather than gauge pressure. Neither the presence of broiler chickens nor different fore-line pipe designs of four parallel commercial systems affected the pressure-time data. Water in wet air always reduces the oxygen concentrations to a value lower than in dry air. The partial pressure of water and oxygen were found to depend on the pump down parameters due to the formation of fog in the chamber and desorption of water from the birds and the walls of the vacuum chamber. PMID:28521045

  5. Cullin 5 Expression in the Rat: Cellular and Tissue Distribution, and Changes in Response to Water Deprivation and Hemorrhagic Shock

    DTIC Science & Technology

    2003-02-28

    of Health p53 tumor suppressor PBS phosphate buffered saline PCO2 partial pressure of carbon dioxide PO2 partial pressure of oxygen PCR...buffered saline TTBS tween-20 tris buffered saline TonEBP tonicity-response enhancer binding protein TSNRP TriService Nursing Research Program...growth and metabolism (Hochstrasser, 1995; Deshaies, 1999). Although traditionally seen as no more than a means of eliminating no longer needed

  6. A partial pressure monitor and controller for stable ozone flow from a silica gel trap

    NASA Astrophysics Data System (ADS)

    Stevens, R. E.; Hsiao, C.-W.; Le, Linh; Curro, N. J.; Monton, B. J.; Chang, B.-Y.; Kung, C.-Y.; Kittrell, C.; Kinsey, J. L.

    1998-06-01

    A new ozone trapping system designed for safe and consistent delivery to a reaction vessel is described. Silica gel is used to trap the ozone because of its known safety advantages over traps that store ozone in liquid form. The new design is free of any liquid baths, such as freon or flammable solvents. A circuit design for monitoring and controlling the ozone partial pressure of 6-25 Torr is also described.

  7. A new approach to non-invasive oxygenated mixed venous PCO(sub)2

    NASA Technical Reports Server (NTRS)

    Fisher, Joseph A.; Ansel, Clifford A.

    1986-01-01

    A clinically practical technique was developed to calculate mixed venous CO2 partial pressure for the calculation of cardiac output by the Fick technique. The Fick principle states that the cardiac output is equal to the CO2 production divided by the arterio-venous CO2 content difference of the pulmonary vessels. A review of the principles involved in the various techniques used to estimate venous CO2 partial pressure is presented.

  8. Modeling the Effect of Modified Atmospheres on Conidial Germination of Fungi from Dairy Foods

    PubMed Central

    Nguyen Van Long, Nicolas; Vasseur, Valérie; Couvert, Olivier; Coroller, Louis; Burlot, Marion; Rigalma, Karim; Mounier, Jérôme

    2017-01-01

    Modified atmosphere packaging (MAP) is commonly applied to extend food shelf-life. Despite growth of a wide variety of fungal contaminants has been previously studied in relation to modified-atmospheres, few studies aimed at quantifying the effects of dioxygen (O2) and carbon dioxide (CO2) partial pressures on conidial germination in solid agar medium. In the present study, an original culture method was developed, allowing microscopic monitoring of conidial germination under modified-atmospheres in static conditions. An asymmetric model was utilized to describe germination kinetics of Paecilomyces niveus, Mucor lanceolatus, Penicillium brevicompactum, Penicillium expansum, and Penicillium roquefoti, using two main parameters, i.e., median germination time (τ) and maximum germination percentage (Pmax). These two parameters were subsequently modeled as a function of O2 partial pressure ranging from 0 to 21% and CO2 partial pressure ranging from 0.03 to 70% (8 tested levels for both O2 and CO2). Modified atmospheres with residual O2 or CO2 partial pressures below 1% and up to 70%, respectively, were not sufficient to totally inhibit conidial germination,. However, O2 levels < 1% or CO2 levels > 20% significantly increased τ and/or reduced Pmax, depending on the fungal species. Overall, the present method and results are of interest for predictive mycology applied to fungal spoilage of MAP food products. PMID:29163403

  9. Mechanical Integrity of Flexible In-Zn-Sn-O Film for Flexible Transparent Electrode

    NASA Astrophysics Data System (ADS)

    Kim, Young Sung; Oh, Se-In; Choa, Sung-Hoon

    2013-05-01

    The mechanical integrity of transparent In-Zn-Sn-O (IZTO) films is investigated using outer/inner bending, stretching, and twisting tests. Amorphous IZTO films are grown using a pulsed DC magnetron sputtering system with an IZTO target on a polyimide substrate at room temperature. Changes in the optical and electrical properties of IZTO films depend on the oxygen partial pressure applied during the film deposition process. In the case of 3% oxygen partial pressure, the IZTO films exhibit s resistivity of 8.3×10-4 Ω cm and an optical transmittance of 86%. The outer bending test shows that the critical bending radius decreases from 10 to 7.5 mm when the oxygen partial pressure is increased from 1 to 3%. The inner bending test reveals that the critical bending radius of all IZTO films is 3.5 mm regardless of oxygen partial pressure. The IZTO films also show excellent mechanical reliability in the bending fatigue tests of more than 10,000 cycles. In the uniaxial stretching tests, the electrical resistance of the IZTO film does not change until a strain of 2.4% is reached. The twisting tests demonstrate that the electrical resistance of IZTO films remains unchanged up to 25°. These results suggest that IZTO films have excellent mechanical durability and flexibility in comparison with already reported crystallized indium tin oxide (ITO) films.

  10. Oxygen availability and spreading depolarizations provide complementary prognostic information in neuromonitoring of aneurysmal subarachnoid hemorrhage patients.

    PubMed

    Winkler, Maren Kl; Dengler, Nora; Hecht, Nils; Hartings, Jed A; Kang, Eun J; Major, Sebastian; Martus, Peter; Vajkoczy, Peter; Woitzik, Johannes; Dreier, Jens P

    2017-05-01

    Multimodal neuromonitoring in neurocritical care increasingly includes electrocorticography to measure epileptic events and spreading depolarizations. Spreading depolarization causes spreading depression of activity (=isoelectricity) in electrically active tissue. If the depression is long-lasting, further spreading depolarizations occur in still isoelectric tissue where no activity can be suppressed. Such spreading depolarizations are termed isoelectric and are assumed to indicate energy compromise. However, experimental and clinical recordings suggest that long-lasting spreading depolarization-induced depression and isoelectric spreading depolarizations are often recorded outside of the actual ischemic zones, allowing the remote diagnosis of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Here, we analyzed simultaneous electrocorticography and tissue partial pressure of oxygen recording in 33 aneurysmal subarachnoid hemorrhage patients. Multiple regression showed that both peak total depression duration per recording day and mean baseline tissue partial pressure of oxygen were independent predictors of outcome. Moreover, tissue partial pressure of oxygen preceding spreading depolarization was similar and differences in tissue partial pressure of oxygen responses to spreading depolarization were only subtle between isoelectric spreading depolarizations and spreading depressions. This further supports that, similar to clustering of spreading depolarizations, long spreading depolarization-induced periods of isoelectricity are useful to detect energy compromise remotely, which is valuable because the exact location of future developing pathology is unknown at the time when the neurosurgeon implants recording devices.

  11. SSMILES.

    ERIC Educational Resources Information Center

    Sunal, Dennis W., Ed.; Tracy, Dyanne M., Ed.

    1993-01-01

    Describes an activity in which the students utilize the mathematics concepts of ratio, proportion, and data tabulation to examine the relationship between air pressure, temperature, and humidity. Students learn to approximate partial pressure by using humidity and temperature readings and by interpolating from the vapor pressure-temperature table.…

  12. Method to Estimate the Dissolved Air Content in Hydraulic Fluid

    NASA Technical Reports Server (NTRS)

    Hauser, Daniel M.

    2011-01-01

    In order to verify the air content in hydraulic fluid, an instrument was needed to measure the dissolved air content before the fluid was loaded into the system. The instrument also needed to measure the dissolved air content in situ and in real time during the de-aeration process. The current methods used to measure the dissolved air content require the fluid to be drawn from the hydraulic system, and additional offline laboratory processing time is involved. During laboratory processing, there is a potential for contamination to occur, especially when subsaturated fluid is to be analyzed. A new method measures the amount of dissolved air in hydraulic fluid through the use of a dissolved oxygen meter. The device measures the dissolved air content through an in situ, real-time process that requires no additional offline laboratory processing time. The method utilizes an instrument that measures the partial pressure of oxygen in the hydraulic fluid. By using a standardized calculation procedure that relates the oxygen partial pressure to the volume of dissolved air in solution, the dissolved air content is estimated. The technique employs luminescent quenching technology to determine the partial pressure of oxygen in the hydraulic fluid. An estimated Henry s law coefficient for oxygen and nitrogen in hydraulic fluid is calculated using a standard method to estimate the solubility of gases in lubricants. The amount of dissolved oxygen in the hydraulic fluid is estimated using the Henry s solubility coefficient and the measured partial pressure of oxygen in solution. The amount of dissolved nitrogen that is in solution is estimated by assuming that the ratio of dissolved nitrogen to dissolved oxygen is equal to the ratio of the gas solubility of nitrogen to oxygen at atmospheric pressure and temperature. The technique was performed at atmospheric pressure and room temperature. The technique could be theoretically carried out at higher pressures and elevated temperatures.

  13. Contributions of aortic pulse wave velocity and backward wave pressure to variations in left ventricular mass are independent of each other.

    PubMed

    Bello, Hamza; Norton, Gavin R; Ballim, Imraan; Libhaber, Carlos D; Sareli, Pinhas; Woodiwiss, Angela J

    2017-05-01

    Aortic pulse wave velocity (PWV) and backward waves, as determined from wave separation analysis, predict cardiovascular events beyond brachial blood pressure. However, the extent to which these aortic hemodynamic variables contribute independent of each other is uncertain. In 749 randomly selected participants of African ancestry, we therefore assessed the extent to which relationships between aortic PWV or backward wave pressures (Pb) (and hence central aortic pulse pressure [PPc]) and left ventricular mass index (LVMI) occur independent of each other. Aortic PWV, PPc, forward wave pressure (Pf), and Pb were determined using radial applanation tonometry and SphygmoCor software and LVMI using echocardiography; 44.5% of participants had an increased left ventricular mass indexed to height 1.7 . With adjustments for age, brachial systolic blood pressure or PP, and additional confounders, PPc and Pb, but not Pf, were independently related to LVMI and left ventricular hypertrophy (LVH) in both men and women. However, PWV was independently associated with LVMI in women (partial r = 0.16, P < .001), but not in men (partial r = 0.03), and PWV was independently associated with LVH in women (P < .05), but not in men (P = .07). With PWV and Pb included in the same multivariate regression models, PWV (partial r = 0.14, P < .005) and Pb (partial r = 0.10, P < .05) contributed to a similar extent to variations in LVMI in women. In addition, with PWV and Pb included in the same multivariate regression models, PWV (P < .05) and Pb (P < .02) contributed to LVH in women. In conclusion, aortic PWV and Pb (and hence pulse pressure) although both associated with LVMI and LVH produce effects which are independent of each other. Copyright © 2017 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  14. Scaling of Two-Phase Flows to Partial-Earth Gravity

    NASA Technical Reports Server (NTRS)

    Hurlbert, Kathryn M.; Witte, Larry C.

    2003-01-01

    A report presents a method of scaling, to partial-Earth gravity, of parameters that describe pressure drops and other characteristics of two-phase (liquid/ vapor) flows. The development of the method was prompted by the need for a means of designing two-phase flow systems to operate on the Moon and on Mars, using fluid-properties and flow data from terrestrial two-phase-flow experiments, thus eliminating the need for partial-gravity testing. The report presents an explicit procedure for designing an Earth-based test bed that can provide hydrodynamic similarity with two-phase fluids flowing in partial-gravity systems. The procedure does not require prior knowledge of the flow regime (i.e., the spatial orientation of the phases). The method also provides for determination of pressure drops in two-phase partial-gravity flows by use of a generalization of the classical Moody chart (previously applicable to single-phase flow only). The report presents experimental data from Mars- and Moon-activity experiments that appear to demonstrate the validity of this method.

  15. A Theoretical Study of Methanol Oxidation on RuO 2(110): Bridging the Pressure Gap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latimer, Allegra A.; Abild-Pedersen, Frank; Norskov, Jens K.

    Partial oxidation catalysis is often fraught with selectivity problems, largely because there is a tendency of oxidation products to be more reactive than the starting material. One industrial process that has successfully overcome this problem is partial oxidation of methanol to formaldehyde. This process has become a global success, with an annual production of 30 million tons. Although ruthenium catalysts have not shown activity as high as the current molybdena or silver-based industrial standards, the study of ruthenium systems has the potential to elucidate which catalyst properties facilitate the desired partial oxidation reaction as opposed to deep combustion due tomore » a pressure-dependent selectivity “switch” that has been observed in ruthenium-based catalysts. In this work, we find that we are able to successfully rationalize this “pressure gap” using near-ab initio steady-state microkinetic modeling on RuO 2(110). We obtain molecular desorption prefactors from experiment and determine all other energetics using density functional theory. We show that, under ambient pressure conditions, formaldehyde production is favored on RuO 2(110), whereas under ultrahigh vacuum pressure conditions, full combustion to CO 2 takes place. We glean from our model several insights regarding how coverage effects, oxygen activity, and rate-determining steps influence selectivity and activity. As a result, we believe the understanding gained in this work might advise and inspire the greater partial oxidation community and be applied to other catalytic processes which have not yet found industrial success.« less

  16. In situ metrology to characterize water vapor delivery during atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmido, Tariq, E-mail: tariq.ahmido@nist.gov; Kimes, William A.; Sperling, Brent A.

    Water is often employed as the oxygen source in metal oxide atomic layer deposition (ALD) processes. It has been reported that variations in the amount of water delivered during metal oxide ALD can impact the oxide film properties. Hence, one contribution to optimizing metal oxide ALD processes would be to identify methods to better control water dose. The development of rapid, quantitative techniques for in situ water vapor measurements during ALD processes would be beneficial to achieve this goal. In this report, the performance of an in situ tunable diode laser absorption spectroscopy (TDLAS) scheme for performing rapid, quantitative watermore » partial pressure measurements in a representative quarter-inch ALD delivery line is described. This implementation of TDLAS, which utilizes a near-infrared distributed-feedback diode laser and wavelength modulation spectroscopy, provides measurements of water partial pressure on a timescale comparable to or shorter than the timescale of the gas dynamics in typical ALD systems. Depending on the degree of signal averaging, this TDLAS system was capable of measuring the water partial pressure with a detection limit in the range of ∼0.80 to ∼0.08 Pa. The utility of this TDLAS scheme was demonstrated by using it to identify characteristics of a representative water delivery system that otherwise would have been difficult to predict. Those characteristics include (1) the magnitude and time dependence of the pressure transient that can occur during water injection, and (2) the dependence of the steady-state water partial pressure on the carrier gas flow rate and the setting of the water ampoule flow restriction.« less

  17. A Theoretical Study of Methanol Oxidation on RuO 2(110): Bridging the Pressure Gap

    DOE PAGES

    Latimer, Allegra A.; Abild-Pedersen, Frank; Norskov, Jens K.

    2017-05-26

    Partial oxidation catalysis is often fraught with selectivity problems, largely because there is a tendency of oxidation products to be more reactive than the starting material. One industrial process that has successfully overcome this problem is partial oxidation of methanol to formaldehyde. This process has become a global success, with an annual production of 30 million tons. Although ruthenium catalysts have not shown activity as high as the current molybdena or silver-based industrial standards, the study of ruthenium systems has the potential to elucidate which catalyst properties facilitate the desired partial oxidation reaction as opposed to deep combustion due tomore » a pressure-dependent selectivity “switch” that has been observed in ruthenium-based catalysts. In this work, we find that we are able to successfully rationalize this “pressure gap” using near-ab initio steady-state microkinetic modeling on RuO 2(110). We obtain molecular desorption prefactors from experiment and determine all other energetics using density functional theory. We show that, under ambient pressure conditions, formaldehyde production is favored on RuO 2(110), whereas under ultrahigh vacuum pressure conditions, full combustion to CO 2 takes place. We glean from our model several insights regarding how coverage effects, oxygen activity, and rate-determining steps influence selectivity and activity. As a result, we believe the understanding gained in this work might advise and inspire the greater partial oxidation community and be applied to other catalytic processes which have not yet found industrial success.« less

  18. Water entry and exit of horizontal circular cylinders

    NASA Astrophysics Data System (ADS)

    Greenhow, M.; Moyo, S.

    This paper describes fully nonlinear two-dimensional numerical calculations of the free-surface deformations of initially calm water caused by the forced motion of totally or partially submerged horizontal circular cylinders. The paper considers the following. (i) Totally submerged cylinders moving with constant velocity in vertical, horizontal or combined motions. Results are compared with the small-time asymptotic solution obtained by Tyvand and Milohin 1995. Their results, which are taken to third-order (which is when gravity terms first appear in the expansions), are in excellent agreement with the numerical calculations for small times; beyond this only the numerical method gives accurate results until the free surface breaks or the cylinder emerges from the free surface. Breaking can occur during exit due to strongly negative pressures arising on the cylinder surface, or during the downwards motion causing a free-surface depression which closes up rapidly, forming splashes. Downwards motion is also shown to give rise to high-frequency waves in some cases. (ii) The free-surface deformations, pressures and forces acting on a cylinder in vertical or oblique forced motion during engulfment when it submerges from being initially half-submerged. The initial stages, when the cylinder still pierces the free surface, specify the initial conditions for a separate program for a completely submerged body, thereby allowing complete engulfment to be studied. The free surface closes up violently over the top of the cylinder resulting in jet flow, which, while difficult to handle numerically, has been shown to be insignificant for the bulk flow and the cylinder pressures and forces.

  19. Flight test evaluation of an RAF high altitude partial pressure protective assembly

    NASA Technical Reports Server (NTRS)

    Ashworth, G. R.; Putnam, T. W.; Dana, W. J.; Enevoldson, E. K.; Winter, W. R.

    1979-01-01

    A partial pressure suit was evaluated during tests in an F-104 and F-15 as a protective garment for emergency descents. The garment is an pressure jerkin and modified anti-g suit combined with an oronasal mask. The garment can be donned and doffed at the aircraft to minimize thermal buildup. The oronasal mask was favored by the pilots due to its immobility on the face during high g-loading. The garment was chosen to provide optimum dexterity for the pilot, which is not available in a full pressure suit, while protecting the pilot at altitudes up to 18,288 meters, during a cabin decompression, and subsequent aircraft descent. During cabin decompressions in the F-104 and F-15, cabin pressure altitude was measured at various aircraft angles of attack, Mach numbers, and altitudes to determine the effect of the aerodynamic slipstream on the cabin altitude.

  20. Diaphragm electrical activity during negative lower torso pressure in quadriplegic men.

    PubMed

    Banzett, R B; Inbar, G F; Brown, R; Goldman, M; Rossier, A; Mead, J

    1981-09-01

    We recorded the diaphragm electromyogram (EMG) of quadriplegic men before and during exposure of the lower torso to continuous negative pressure, which caused shortening of the inspiratory muscles by expanding the respiratory system by one tidal volume. The moving-time-averaged diaphragm EMG was larger during expansion of the respiratory system. When we repeated the experiment with subjects who breathed through a mouthpiece, we found qualitatively similar EMG changes and little or no change in tidal volume or end-tidal CO2 partial pressure. When the pressure was applied or removed rapidly, changes in EMG occurred within one or two breaths. Because end-tidal CO2 partial pressure did not increase, and because the response was rapid, we suggest that the response results from proprioceptive, rather than chemoreceptive, reflexes. As most of these men had complete spinal lesions at C6 or C7 the afferent pathways are likely to be vagal or phrenic.

  1. Glaucoma (image)

    MedlinePlus

    Glaucoma is a condition of increased fluid pressure inside the eye. The increased pressure causes compression of ... nerve which can eventually lead to nerve damage. Glaucoma can cause partial vision loss, with blindness as ...

  2. Role of low O 2 pressure and growth temperature on electrical transport of PLD grown ZnO thin films on Si substrates

    NASA Astrophysics Data System (ADS)

    Pandis, Ch.; Brilis, N.; Tsamakis, D.; Ali, H. A.; Krishnamoorthy, S.; Iliadis, A. A.

    2006-06-01

    Undoped ZnO thin films have been grown on (100) Si substrates by pulsed laser deposition. The effect of growth parameters such as temperature, O 2 partial pressure and laser fluence on the structural and electrical properties of the films has been investigated. It is shown that the well-known native n-type conductivity, attributed to the activation of hydrogenic donor states, exhibits a conversion from n-type to p-type when the O 2 partial pressure is reduced from 10 -4 to 10 -7 Torr at growth temperatures lower than 400 °C. The p-type conductivity could be attributed to the dominant role of the acceptor Zn vacancies for ZnO films grown at very low O 2 pressures.

  3. Oxygen transport membrane based advanced power cycle with low pressure synthesis gas slip stream

    DOEpatents

    Kromer, Brian R.; Litwin, Michael M.; Kelly, Sean M.

    2016-09-27

    A method and system for generating electrical power in which a high pressure synthesis gas stream generated in a gasifier is partially oxidized in an oxygen transport membrane based reactor, expanded and thereafter, is combusted in an oxygen transport membrane based boiler. A low pressure synthesis gas slip stream is split off downstream of the expanders and used as the source of fuel in the oxygen transport membrane based partial oxidation reactors to allow the oxygen transport membrane to operate at low fuel pressures with high fuel utilization. The combustion within the boiler generates heat to raise steam to in turn generate electricity by a generator coupled to a steam turbine. The resultant flue gas can be purified to produce a carbon dioxide product.

  4. Simultaneous velocity and pressure quantification using pressure-sensitive flow tracers in air

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Peterson, Sean; Porfiri, Maurizio

    2017-11-01

    Particle-based measurement techniques for assessing the velocity field of a fluid have advanced rapidly over the past two decades. Full-field pressure measurement techniques have remained elusive, however. In this work, we aim to demonstrate the possibility of direct simultaneous planar velocity and pressure measurement of a high speed aerodynamic flow by employing novel pressure-sensitive tracer particles for particle image velocimetry (PIV). Specifically, the velocity and pressure variations of an airflow through a converging-diverging channel are studied. Polystyrene microparticles embedded with a pressure-sensitive phosphorescent dye-platinum octaethylporphyrin (PtOEP)-are used as seeding particles. Due to the oxygen quenching effect, the emission lifetime of PtOEP is highly sensitive to the oxygen concentration, that is, the partial pressure of oxygen, in the air. Since the partial pressure of oxygen is linearly proportional to the air pressure, we can determine the air pressure through the phosphorescence emission lifetime of the dye. The velocity field is instead obtained using traditional PIV methods. The particles have a pressure resolution on the order of 1 kPa, which may be improved by optimizing the particle size and dye concentration to suit specific flow scenarios. This work was supported by the National Science Foundation under Grant Number CBET-1332204.

  5. Cystic fibrosis airway secretions exhibit mucin hyperconcentration and increased osmotic pressure

    PubMed Central

    Henderson, Ashley G.; Ehre, Camille; Button, Brian; Abdullah, Lubna H.; Cai, Li-Heng; Leigh, Margaret W.; DeMaria, Genevieve C.; Matsui, Hiro; Donaldson, Scott H.; Davis, C. William; Sheehan, John K.; Boucher, Richard C.; Kesimer, Mehmet

    2014-01-01

    The pathogenesis of mucoinfective lung disease in cystic fibrosis (CF) patients likely involves poor mucus clearance. A recent model of mucus clearance predicts that mucus flow depends on the relative mucin concentration of the mucus layer compared with that of the periciliary layer; however, mucin concentrations have been difficult to measure in CF secretions. Here, we have shown that the concentration of mucin in CF sputum is low when measured by immunologically based techniques, and mass spectrometric analyses of CF mucins revealed mucin cleavage at antibody recognition sites. Using physical size exclusion chromatography/differential refractometry (SEC/dRI) techniques, we determined that mucin concentrations in CF secretions were higher than those in normal secretions. Measurements of partial osmotic pressures revealed that the partial osmotic pressure of CF sputum and the retained mucus in excised CF lungs were substantially greater than the partial osmotic pressure of normal secretions. Our data reveal that mucin concentration cannot be accurately measured immunologically in proteolytically active CF secretions; mucins are hyperconcentrated in CF secretions; and CF secretion osmotic pressures predict mucus layer–dependent osmotic compression of the periciliary liquid layer in CF lungs. Consequently, mucin hypersecretion likely produces mucus stasis, which contributes to key infectious and inflammatory components of CF lung disease. PMID:24892808

  6. Observations of Martian surface winds at the Viking Lander 1 site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, J.R.; Leovy, C.B.; Tillman, J.E.

    1990-08-30

    Partial failure of the wind instrumentation on the Viking Lander 1 (VL1) in the Martian subtropics (22.5{degree}N) has limited previous analyses of meteorological data for this site. The authors describe a method for reconstructing surface winds using data from the partially failed sensor and present and analyze a time series of wind, pressure, and temperature at the site covering 350 Mars days (sols). At the beginning of the mission during early summer, winds were controlled by regional topography, but they soon underwent a transition to a regime controlled by the Hadley circulation. Diurnal and semidiurnal wind oscillations and synoptic variationsmore » have been analyzed and compared with the corresponding variations at the Viking Lander 2 middle latitude site (48{degree}N). Diurnal wind oscillations were controlled primarily by regional topography and boundary layer forcing, although a global mode may have been influencing them during two brief episodes. Semidiurnal wind oscillations were controlled by the westward propagating semidiurnal tide from sol 210 onward. Comparison of the synoptic variations at the two sites suggests that the same eastward propagating wave trains were present at both sites, at least following the first 1977 great dust storm, but discordant inferred zonal wave numbers and phase speeds at the two sites cast doubt on the zonal wave numbers deduced from analyses of combined wind and pressure data, particularly at the VL1 site where the signal to noise ratio of the dominant synoptic waves is relatively small.« less

  7. A Double-Blinded, Randomized Comparison of Medetomidine-Tiletamine-Zolazepam and Dexmedetomidine-Tiletamine-Zolazepam Anesthesia in Free-Ranging Brown Bears (Ursus Arctos)

    PubMed Central

    Cattet, Marc; Zedrosser, Andreas; Stenhouse, Gordon B.; Küker, Susanne; Evans, Alina L.; Arnemo, Jon M.

    2017-01-01

    We compared anesthetic features, blood parameters, and physiological responses to either medetomidine-tiletamine-zolazepam or dexmedetomidine-tiletamine-zolazepam using a double-blinded, randomized experimental design during 40 anesthetic events of free-ranging brown bears (Ursus arctos) either captured by helicopter in Sweden or by culvert trap in Canada. Induction was smooth and predictable with both anesthetic protocols. Induction time, the need for supplemental drugs to sustain anesthesia, and capture-related stress were analyzed using generalized linear models, but anesthetic protocol did not differentially affect these variables. Arterial blood gases and acid-base status, and physiological responses were examined using linear mixed models. We documented acidemia (pH of arterial blood < 7.35), hypoxemia (partial pressure of arterial oxygen < 80 mmHg), and hypercapnia (partial pressure of arterial carbon dioxide ≥ 45 mmHg) with both protocols. Arterial pH and oxygen partial pressure were similar between groups with the latter improving markedly after oxygen supplementation (p < 0.001). We documented dose-dependent effects of both anesthetic protocols on induction time and arterial oxygen partial pressure. The partial pressure of arterial carbon dioxide increased as respiratory rate increased with medetomidine-tiletamine-zolazepam, but not with dexmedetomidine-tiletamine-zolazepam, demonstrating a differential drug effect. Differences in heart rate, respiratory rate, and rectal temperature among bears could not be attributed to the anesthetic protocol. Heart rate increased with increasing rectal temperature (p < 0.001) and ordinal day of capture (p = 0.002). Respiratory rate was significantly higher in bears captured by helicopter in Sweden than in bears captured by culvert trap in Canada (p < 0.001). Rectal temperature significantly decreased over time (p ≤ 0.05). Overall, we did not find any benefit of using dexmedetomidine-tiletamine-zolazepam instead of medetomidine-tiletamine-zolazepam in the anesthesia of brown bears. Both drug combinations appeared to be safe and reliable for the anesthesia of free-ranging brown bears captured by helicopter or by culvert trap. PMID:28118413

  8. Partial melting of TTG gneisses: crustal contamination and the production of granitic melts

    NASA Astrophysics Data System (ADS)

    Meade, F. C.; Masotta, M.; Troll, V. R.; Freda, C.; Johnson, T. E.; Dahren, B.

    2011-12-01

    Understanding partial melting of ancient TTG gneiss terranes is crucial when considering crustal contamination in volcanic systems, as these rocks are unlikely to melt completely at magmatic temperatures (1000-1200 °C) and crustal pressures (<500 MPa). Variations in the bulk composition of the gneiss, magma temperature, pressure (depth) and the composition and abundance of any fluids present will produce a variety of melt compositions, from partial melts enriched in incompatible elements to more complete melts, nearing the bulk chemistry of the parent gneiss. We have used piston cylinder experiments to simulate partial melting in a suite of 12 gneisses from NW Scotland (Lewisian) and Eastern Greenland (Ammassalik, Liverpool Land) under magma chamber temperature and pressure conditions (P=200 MPa, T=975 °C). These gneisses form the basement to much of the North Atlantic Igneous Province, where crustal contamination of magmas was commonplace but the composition of the crustal partial melts are poorly constrained [1]. The experiments produced partial melts in all samples (e.g. Fig 1). Electron microprobe analyses of glasses indicate they are compositionally heterogeneous and are significantly different from the whole rock chemistry of the parent gneisses. The melts have variably evolved compositions but are typically trachy-dacitic to rhyolitic (granitic). This integrated petrological, experimental and in-situ geochemical approach allows quantification of the processes of partial melting of TTG gneiss in a volcanic context, providing accurate major/trace element and isotopic (Sr, Pb) end-members for modeling crustal contamination. The experimental melts and restites will be compared geochemically with a suite of natural TTG gneisses, providing constraints on the extent to which the gneisses have produced and subsequently lost melt. [1] Geldmacher et al. (2002) Scottish Journal of Geology, v.38, p.55-61.

  9. Trueness and precision of digital impressions obtained using an intraoral scanner with different head size in the partially edentulous mandible.

    PubMed

    Hayama, Hironari; Fueki, Kenji; Wadachi, Juro; Wakabayashi, Noriyuki

    2018-03-01

    It remains unclear whether digital impressions obtained using an intraoral scanner are sufficiently accurate for use in fabrication of removable partial dentures. We therefore compared the trueness and precision between conventional and digital impressions in the partially edentulous mandible. Mandibular Kennedy Class I and III models with soft silicone simulated-mucosa placed on the residual edentulous ridge were used. The reference models were converted to standard triangulated language (STL) file format using an extraoral scanner. Digital impressions were obtained using an intraoral scanner with a large or small scanning head, and converted to STL files. For conventional impressions, pressure impressions of the reference models were made and working casts fabricated using modified dental stone; these were converted to STL file format using an extraoral scanner. Conversion to STL file format was performed 5 times for each method. Trueness and precision were evaluated by deviation analysis using three-dimensional image processing software. Digital impressions had superior trueness (54-108μm), but inferior precision (100-121μm) compared to conventional impressions (trueness 122-157μm, precision 52-119μm). The larger intraoral scanning head showed better trueness and precision than the smaller head, and on average required fewer scanned images of digital impressions than the smaller head (p<0.05). On the color map, the deviation distribution tended to differ between the conventional and digital impressions. Digital impressions are partially comparable to conventional impressions in terms of accuracy; the use of a larger scanning head may improve the accuracy for removable partial denture fabrication. Copyright © 2018 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  10. STRUCTURE AND PHYSICAL PROPERTIES OF SOLID AND LIQUID VANADIUM PENTOXIDE.

    DTIC Science & Technology

    The electrical resistivity of near-stoichiometric crystalline V2O5 was measured as a function of crystal orientation and oxygen partial pressure from...25C to 300C. Conductivity is insensitive to ambient atmosphere. The activation energy for conduction is 0.20 ev. Molten V2O5 , however, is...sensitive to oxygen partial pressure. Its conductivity is proportional to P-O2 to the -1/6th power. Anomalously high electrical resistivity was observed for glassy V2O5 films. (Author)

  11. Assessment of Correlation of Distal Mean Arterial Pressure with Aortic Blood Flow during Partial Resuscitative Endovascular Balloon Aortic Occlusion (P-REBOA) in a Swine (Sus scrofa) Controlled Hemorrhage Model

    DTIC Science & Technology

    2017-11-06

    60th Medical Group (AMC), Travis AFB, CA INSTITUTIONAL ANIMAL CARE AND USE COMMITTEE (IACUC) FINAL REPORT SUMMARY (Please type all information. Use...Pressure with Aortic Blood Flow during Partial Resuscitative Endovascular Balloon Aortic Occlusion (P-REBOA) in a Swine (Sus scrofa) Controlled Hemorrhage...to Date Sus scrofa 8 8 2. PROTOCOL TYPE /CHARACTERISTICS: (Check all applicable terms in EACH column) _ Training: Live Animal Medical Readiness

  12. Shear Banding in a Partially Molten Mantle

    NASA Astrophysics Data System (ADS)

    Alisic, L.; Rudge, J. F.; Wells, G.; Katz, R. F.; Rhebergen, S.

    2013-12-01

    We investigate the nonlinear behaviour of partially molten mantle material under shear. Numerical models of compaction and advection-diffusion of a porous matrix with a spherical inclusion are built using the automated code generation package FEniCS. The time evolution of melt distribution with increasing shear in these models is compared to laboratory experiments that show high-porosity shear banding in the medium and pressure shadows around the inclusion. We focus on understanding the interaction between these shear bands and pressure shadows as a function of rheological parameters.

  13. Floods of December 1961 in Mississippi and adjoining states

    USGS Publications Warehouse

    Shell, James D.

    1962-01-01

    Widespread floods occurred over parts of Mississippi, Louisiana, and Alabama after heavy rains during December 18, 1961. A series of low-pressure systems produced as much as 19 inches of rainfall in some areas. Heavy rainfall, 7 to 11 inches, on December 10 resulted in outstanding floods on small streams in southern Mississippi and southwestern Alabama. Subsequent rains produced multiple floods on small streams and outstanding floods of prolonged duration along the Big Black, upper Pearl, and lower Tombigbee Rivers in Mississippi. At Jackson, Miss., the Pearl River reached the highest stage known. Along the east bank, flood waters topped or breached some of the levee system protecting the Flowood industrial area, but other parts were saved by extensive reinforcement and by emergency operation of the partially completed dam 10 miles upstream. Additional heavy damage to commercial and industrial property was prevented as a result of these measures. Elsewhere, damage was restricted primarily to secondary highways and bridges. Two lives were lost.

  14. Parsing partial molar volumes of small molecules: a molecular dynamics study.

    PubMed

    Patel, Nisha; Dubins, David N; Pomès, Régis; Chalikian, Tigran V

    2011-04-28

    We used molecular dynamics (MD) simulations in conjunction with the Kirkwood-Buff theory to compute the partial molar volumes for a number of small solutes of various chemical natures. We repeated our computations using modified pair potentials, first, in the absence of the Coulombic term and, second, in the absence of the Coulombic and the attractive Lennard-Jones terms. Comparison of our results with experimental data and the volumetric results of Monte Carlo simulation with hard sphere potentials and scaled particle theory-based computations led us to conclude that, for small solutes, the partial molar volume computed with the Lennard-Jones potential in the absence of the Coulombic term nearly coincides with the cavity volume. On the other hand, MD simulations carried out with the pair interaction potentials containing only the repulsive Lennard-Jones term produce unrealistically large partial molar volumes of solutes that are close to their excluded volumes. Our simulation results are in good agreement with the reported schemes for parsing partial molar volume data on small solutes. In particular, our determined interaction volumes() and the thickness of the thermal volume for individual compounds are in good agreement with empirical estimates. This work is the first computational study that supports and lends credence to the practical algorithms of parsing partial molar volume data that are currently in use for molecular interpretations of volumetric data.

  15. The development of a three-dimensional partially elliptic flow computer program for combustor research

    NASA Technical Reports Server (NTRS)

    Pan, Y. S.

    1978-01-01

    A three dimensional, partially elliptic, computer program was developed. Without requiring three dimensional computer storage locations for all flow variables, the partially elliptic program is capable of predicting three dimensional combustor flow fields with large downstream effects. The program requires only slight increase of computer storage over the parabolic flow program from which it was developed. A finite difference formulation for a three dimensional, fully elliptic, turbulent, reacting, flow field was derived. Because of the negligible diffusion effects in the main flow direction in a supersonic combustor, the set of finite-difference equations can be reduced to a partially elliptic form. Only the pressure field was governed by an elliptic equation and requires three dimensional storage; all other dependent variables are governed by parabolic equations. A numerical procedure which combines a marching integration scheme with an iterative scheme for solving the elliptic pressure was adopted.

  16. Measuring N2 Pressure Using Cyanobacteria

    NASA Astrophysics Data System (ADS)

    Silverman, S. N.; Kopf, S.; Gordon, R.; Bebout, B.; Som, S.

    2017-11-01

    We have shown that cyanobacteria can record information about N2 partial pressure both morphologically and isotopically, and thus may serve as useful geobarometers to help us better understand Earth's ancient atmosphere.

  17. Effects of changing body position on oxygenation and arterial blood pressures in foals anesthetized with guaifenesin, ketamine, and xylazine.

    PubMed

    Braun, Christina; Trim, Cynthia M; Eggleston, Randy B

    2009-01-01

    To investigate the impact of a change in body position on blood gases and arterial blood pressures in foals anesthetized with guaifenesin, ketamine, and xylazine. Prospective, randomized experimental study. Twelve Quarter Horse foals, age of 5.4 +/-0.9 months and weighing 222 +/- 48 kg. Foals were anesthetized with guaifenesin, ketamine, and xylazine for 40 minutes in lateral recumbency and then assigned to a change in lateral recumbency after hoisting (Group 1, n = 6), or no change (Group 2, n = 6). Oxygen 15 L minute(-1) was insufflated into the endotracheal tube throughout anesthesia. Arterial blood pressure, heart rate, respiratory rate (f(R)), inspired fraction of oxygen (FIO(2)), and end-tidal carbon dioxide (PE'CO(2)) were measured every 5 minutes. Arterial pH and blood gases [arterial partial pressure of oxygen (PaO(2)), arterial partial pressure of carbon dioxide (PaCO(2))] were measured at 10, 30, and 40 minutes after induction, and 5 minutes after hoisting. Alveolar dead space ventilation and PaO(2)/FIO(2) were calculated. Two repeated measures models were used. All hypothesis tests were two-sided and significance level was alpha = 0.05. All values are presented as least square means +/- SE. Values at time-matched points from the two groups were not significantly different so they were combined. Arterial partial pressure of oxygen decreased significantly from 149 +/- 14.4 mmHg before hoisting to 92 +/- 11.6 mmHg after hoisting (p = 0.0013). The PaO(2)/FIO(2) ratio decreased from 275 +/- 30 to 175 +/- 24 (p = 0.0055). End-tidal carbon dioxide decreased significantly from 48.7 +/- 1.6 to 44.5 +/- 1.2 mmHg (p = 0.021). Arterial partial pressure of carbon dioxide, blood pressures and heart rates measured 5 minutes after hoisting were not different from measurements obtained before hoisting. Hoisting decreased PaO(2) in anesthetized healthy foals. Administration of supplemental oxygen is recommended to counter the decrease in oxygenation and PaO(2) measurement is necessary to detect early changes.

  18. The System Forsterite-Diopside-Enstatite up to 70 kbar and its Significance to the Genesis of Komatiites

    NASA Astrophysics Data System (ADS)

    Dasgupta, S.; Gupta, A. K.

    2011-12-01

    Liquidus phase relations in the system forsterite-diopside-enstatite has been made at 70 kbar under anhydrous conditions using a Walker-type multi-anvil high pressure apparatus. Positions of the pseudoeutectic/ invariant, minimum points and amount of solid solutions of appearing phases are summarized in table 1. Comparison of these phase relations with those conducted by previous investigators at lower pressures and temperatures shows that the fosterite-pyroxene liquidus boundary shifts toward forsterite and away from the diopside apex with increasing pressure. Microprobe analyses indicate that the maximum amount of MgSiO3 that can be incorporated in diopside increases with pressure, and at the solidus (70 kbar, 2010°C), it is about 82%. On the basis of EPMA analyses of coexisting liquid and crystalline phases, three-phase triangles have been constructed. It is observed that at 70 kbar, the early partial melt generated from a model peridotite does not precipitate orthopyroxene. If such a melt instead of crystallizing in-situ, ascend to the surface, then the polybaric-polythermal crystallization path should never intersect the liquidus phase field of orthopyroxene, enstatitess may then appear in the solidus as an exsolution product. Our calculation shows that at 31% partial melting of a model mantle, orthopyroxene should appear as a liquidus phase. With further increase in the degree of partial melting (42-60%), proportion of orthopyroxene crystallizing from the melt progressively increases. With reference to the above discussion we propose that the Gorgona komatiites which are primarily orthopyroxene-deficient komatiites, are an outcome of low degree of partial melting, whereas the orthopyroxene-bearing Commondale komatiites of the southern Kaapvaal Craton, South Africa, are the outcome of a larger degree of partial melting, both generated from melting of an anhydrous mantle.

  19. Gd Ba Cu O bulk superconductors fabricated by a seeded infiltration growth technique under reduced oxygen partial pressure

    NASA Astrophysics Data System (ADS)

    Iida, K.; Babu, N. H.; Shi, Y. H.; Cardwell, D. A.; Murakami, M.

    2006-06-01

    Single-grain Gd-Ba-Cu-O (GdBCO) bulk superconductors have been grown by a seeded infiltration and growth (SIG) technique under a 1% O2+N2 atmosphere using a generic MgO-doped Nd-Ba-Cu-O (MgO-NdBCO) seed placed on the sample surface at room temperature (the so-called the cold-seeding method). Partial melting of the MgO-NdBCO seeds fabricated in air under notionally identical thermal processing conditions, however, limited the reliability of this bulk GdBCO single-grain process. The observed seed decomposition is attributed to the dependence of the peritectic temperature Tp of MgO-doped Nd1+xBa2-xCu3Oy solid solution (MgO-doped Nd-123ss, where ss indicates solid solution) compounds on both oxygen partial pressure during the melt process and the level of solid solution (x). The peritectic decomposition temperature of MgO-doped Nd-123ss, with x ranging from 0 to 0.5 under p(O2) = 1.00 atm, was observed to remain constant at 1120 °C. Tp was observed to decrease linearly as a function of solid solution level, on the other hand, under oxygen partial pressures of both p(O2) = 0.21 and 0.01 atm. Based on these results, MgO-doped NdBCO seed crystals should be grown under reduced oxygen partial pressure in order to obtain a stable MgO-doped NdBCO seed crystal suitable for cold-seeding processes of large-grain (RE)BCO bulk superconductors (where RE is a rare earth element).

  20. The Use of Heavy Gas for Increased Reynolds Numbers in Transonic Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Anders, J. B.; Anderson, W. K.; Murthy, A. V.

    1998-01-01

    The use of a high molecular weight test gas to increase the Reynolds number range of transonic wind tunnels is explored. Modifications to a small transonic wind tunnel are described and the real gas properties of the example heavy gas (sulfur hexafluoride) are discussed. Sulfur hexafluoride is shown to increase the test Reynolds number by a factor of more than 2 over air at the same Mach number. Experimental and computational pressure distributions on an advanced supercritical airfoil configuration at Mach 0.7 in both sulfur hexafluoride and nitrogen are presented. Transonic similarity theory is shown to be partially successful in transforming the heavy gas results to equivalent nitrogen (air) results, provided the correct definition of gamma is used.

  1. Computation of transonic flow past projectiles at angle of attack

    NASA Technical Reports Server (NTRS)

    Reklis, R. P.; Sturek, W. B.; Bailey, F. R.

    1978-01-01

    Aerodynamic properties of artillery shell such as normal force and pitching moment reach peak values in a narrow transonic Mach number range. In order to compute these quantities, numerical techniques have been developed to obtain solutions to the three-dimensional transonic small disturbance equation about slender bodies at angle of attack. The computation is based on a plane relaxation technique involving Fourier transforms to partially decouple the three-dimensional difference equations. Particular care is taken to assure accurate solutions near corners found in shell designs. Computed surface pressures are compared to experimental measurements for circular arc and cone cylinder bodies which have been selected as test cases. Computed pitching moments are compared to range measurements for a typical projectile shape.

  2. Studying pressure denaturation of a protein by molecular dynamics simulations.

    PubMed

    Sarupria, Sapna; Ghosh, Tuhin; García, Angel E; Garde, Shekhar

    2010-05-15

    Many globular proteins unfold when subjected to several kilobars of hydrostatic pressure. This "unfolding-up-on-squeezing" is counter-intuitive in that one expects mechanical compression of proteins with increasing pressure. Molecular simulations have the potential to provide fundamental understanding of pressure effects on proteins. However, the slow kinetics of unfolding, especially at high pressures, eliminates the possibility of its direct observation by molecular dynamics (MD) simulations. Motivated by experimental results-that pressure denatured states are water-swollen, and theoretical results-that water transfer into hydrophobic contacts becomes favorable with increasing pressure, we employ a water insertion method to generate unfolded states of the protein Staphylococcal Nuclease (Snase). Structural characteristics of these unfolded states-their water-swollen nature, retention of secondary structure, and overall compactness-mimic those observed in experiments. Using conformations of folded and unfolded states, we calculate their partial molar volumes in MD simulations and estimate the pressure-dependent free energy of unfolding. The volume of unfolding of Snase is negative (approximately -60 mL/mol at 1 bar) and is relatively insensitive to pressure, leading to its unfolding in the pressure range of 1500-2000 bars. Interestingly, once the protein is sufficiently water swollen, the partial molar volume of the protein appears to be insensitive to further conformational expansion or unfolding. Specifically, water-swollen structures with relatively low radii of gyration have partial molar volume that are similar to that of significantly more unfolded states. We find that the compressibility change on unfolding is negligible, consistent with experiments. We also analyze hydration shell fluctuations to comment on the hydration contributions to protein compressibility. Our study demonstrates the utility of molecular simulations in estimating volumetric properties and pressure stability of proteins, and can be potentially extended for applications to protein complexes and assemblies. Proteins 2010. (c) 2009 Wiley-Liss, Inc.

  3. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L.

    1983-01-01

    An apparatus is described in which effects of pressure, volume, and temperature changes on a gas can be observed simultaneously. Includes use of the apparatus in demonstrating Boyle's, Gay-Lussac's, and Charles' Laws, attractive forces, Dalton's Law of Partial pressures, and in illustrating measurable vapor pressures of liquids and some solids.…

  4. High pressure effects on U L 3 x-ray absorption in partial fluorescence yield mode and single crystal x-ray diffraction in the heavy fermion compound UCd 11

    DOE PAGES

    Nasreen, Farzana; Antonio, Daniel; VanGennep, Derrick; ...

    2016-02-15

    © 2016 IOP Publishing Ltd. We report a study of high pressure x-ray absorption (XAS) performed in the partial fluorescence yield mode (PFY) at the U L 3 edge (0-28.2 GPa) and single crystal x-ray diffraction (SXD) (0-20 GPa) on the UCd 11 heavy fermion compound at room temperature. Under compression, the PFY-XAS results show that the white line is shifted by +4.1(3) eV at the highest applied pressure of 28.2 GPa indicating delocalization of the 5f electrons. The increase in full width at half maxima and decrease in relative amplitude of the white line with respect to the edgemore » jump point towards 6d band broadening under high pressure. A bulk modulus of K 0 = 62(1) GPa and its pressure derivative, = 4.9(2) was determined from high pressure SXD results. Both the PFY-XAS and diffraction results do not show any sign of a structural phase transition in the applied pressure range.« less

  5. High pressure fiber optic sensor system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guida, Renato; Xia, Hua; Lee, Boon K

    2013-11-26

    The present application provides a fiber optic sensor system. The fiber optic sensor system may include a small diameter bellows, a large diameter bellows, and a fiber optic pressure sensor attached to the small diameter bellows. Contraction of the large diameter bellows under an applied pressure may cause the small diameter bellows to expand such that the fiber optic pressure sensor may measure the applied pressure.

  6. Effect of prolonged hypokinesia on resistance of resistive vessels in rats

    NASA Technical Reports Server (NTRS)

    Saltykova, V. A.

    1982-01-01

    Under the effect of prolonged hypokinesia, the perfusion pressure in resistive vessels, measured under conditions of deep anesthesia and complete denervation, increased by approximately the same degree as arterial pressure in non-anesthetized animals. The increase in arterial, perfusion pressure and the resistance of resistive vessels in animals subjected to prolonged hypokinesia was accompanied by an increase in adrenoreactivity. During prolonged hypokinesia, partial obliteration of the vascular bed of the skeletal muscles plays a significant role in the observed increase in resistance of vessels of the extremities. The increase in adrenoreactivity of the vessels during hypokinesia may be realized as a partial case of an increase in the adrenoreactivity of structures whose innervation is disturbed.

  7. Mass flow and velocity profiles in Neurospora hyphae: partial plug flow dominates intra-hyphal transport.

    PubMed

    Abadeh, Aryan; Lew, Roger R

    2013-11-01

    Movement of nuclei, mitochondria and vacuoles through hyphal trunks of Neurospora crassa were vector-mapped using fluorescent markers and green fluorescent protein tags. The vectorial movements of all three were strongly correlated, indicating the central role of mass (bulk) flow in cytoplasm movements in N. crassa. Profiles of velocity versus distance from the hyphal wall did not match the parabolic shape predicted by the ideal Hagen-Poiseuille model of flow at low Reynolds number. Instead, the profiles were flat, consistent with a model of partial plug flow due to the high concentration of organelles in the flowing cytosol. The intra-hyphal pressure gradients were manipulated by localized external osmotic treatments to demonstrate the dependence of velocity (and direction) on pressure gradients within the hyphae. The data support the concept that mass transport, driven by pressure gradients, dominates intra-hyphal transport. The transport occurs by partial plug flow due to the organelles in the cytosol.

  8. Undergraduate students' misconceptions about respiratory physiology.

    PubMed

    Michael, J A; Richardson, D; Rovick, A; Modell, H; Bruce, D; Horwitz, B; Hudson, M; Silverthorn, D; Whitescarver, S; Williams, S

    1999-12-01

    Approximately 700 undergraduates studying physiology at community colleges, a liberal arts college, and universities were surveyed to determine the prevalence of our misconceptions about respiratory phenomena. A misconception about the changes in breathing frequency and tidal volume (physiological variables whose changes can be directly sensed) that result in increased minute ventilation was found to be present in this population with comparable prevalence (approximately 60%) to that seen in a previous study. Three other misconceptions involving phenomena that cannot be experienced directly and therefore were most likely learned in some educational setting were found to be of varying prevalence. Nearly 90% of the students exhibited a misconception about the relationship between arterial oxygen partial pressure and hemoglobin saturation. Sixty-six percent of the students believed that increasing alveolar oxygen partial pressure leads to a decrease in alveolar carbon dioxide partial pressure. Nearly 33% of the population misunderstood the relationship between metabolism and ventilation. The possible origins of these respiratory misconceptions are discussed and suggestions for how to prevent and/or remediate them are proposed.

  9. Nanocrystalline films for gas-reactive applications

    DOEpatents

    Eastman, Jeffrey A.; Thompson, Loren J.

    2004-02-17

    A gas sensor for detection of oxidizing and reducing gases, including O.sub.2, CO.sub.2, CO, and H.sub.2, monitors the partial pressure of a gas to be detected by measuring the temperature rise of an oxide-thin-film-coated metallic line in response to an applied electrical current. For a fixed input power, the temperature rise of the metallic line is inversely proportional to the thermal conductivity of the oxide coating. The oxide coating contains multi-valent cation species that change their valence, and hence the oxygen stoichiometry of the coating, in response to changes in the partial pressure of the detected gas. Since the thermal conductivity of the coating is dependent on its oxygen stoichiometry, the temperature rise of the metallic line depends on the partial pressure of the detected gas. Nanocrystalline (<100 nm grain size) oxide coatings yield faster sensor response times than conventional larger-grained coatings due to faster oxygen diffusion along grain boundaries rather than through grain interiors.

  10. A comparative study on NbOx films reactively sputtered from sintered and cold gas sprayed targets

    NASA Astrophysics Data System (ADS)

    Lorenz, Roland; O'Sullivan, Michael; Fian, Alexander; Sprenger, Dietmar; Lang, Bernhard; Mitterer, Christian

    2018-04-01

    The aim of this work is to evaluate novel cold gas sprayed Nb targets in a reactive sputter deposition process of thin films with respect to the widely used sintered Nb targets. With the exception of a higher target discharge voltage of ∼100 V for the cold gas sprayed targets and the thus higher film growth rate compared to sintered targets, NbOx films with comparable microstructure and properties were obtained for both target variants. The amorphous films with thicknesses between 2.9 and 4.9 μm present an optical shift from dark and non-transparent towards transparent properties, as the oxygen partial pressure increases. X-ray photoelectron spectroscopy confirms the occurrence of the Nb5+ oxidation state for the highest oxygen partial pressure, while Nb4+ is additionally present at lower oxygen partial pressure settings. With a maximal transparency of ∼80% and a refractive index of ∼2.5, the transparent films show characteristics similar to Nb2O5.

  11. A flowing liquid test system for assessing the linearity and time-response of rapid fibre optic oxygen partial pressure sensors.

    PubMed

    Chen, R; Hahn, C E W; Farmery, A D

    2012-08-15

    The development of a methodology for testing the time response, linearity and performance characteristics of ultra fast fibre optic oxygen sensors in the liquid phase is presented. Two standard medical paediatric oxygenators are arranged to provide two independent extracorporeal circuits. Flow from either circuit can be diverted over the sensor under test by means of a system of rapid cross-over solenoid valves exposing the sensor to an abrupt change in oxygen partial pressure, P O2. The system is also capable of testing the oxygen sensor responses to changes in temperature, carbon dioxide partial pressure P CO2 and pH in situ. Results are presented for a miniature fibre optic oxygen sensor constructed in-house with a response time ≈ 50 ms and a commercial fibre optic sensor (Ocean Optics Foxy), when tested in flowing saline and stored blood. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Chemical reactions and morphological stability at the Cu/Al2O3 interface.

    PubMed

    Scheu, C; Klein, S; Tomsia, A P; Rühle, M

    2002-10-01

    The microstructures of diffusion-bonded Cu/(0001)Al2O3 bicrystals annealed at 1000 degrees C at oxygen partial pressures of 0.02 or 32 Pa have been studied with various microscopy techniques ranging from optical microscopy to high-resolution transmission electron microscopy. The studies revealed that for both oxygen partial pressures a 20-35 nm thick interfacial CuAlO2 layer formed, which crystallises in the rhombohedral structure. However, the CuAlO2 layer is not continuous, but interrupted by many pores. In the samples annealed in the higher oxygen partial pressure an additional reaction phase with a needle-like structure was observed. The needles are several millimetres long, approximately 10 microm wide and approximately 1 microm thick. They consist of CuAlO2 with alternating rhombohedral and hexagonal structures. Solid-state contact angle measurements were performed to derive values for the work of adhesion. The results show that the adhesion is twice as good for the annealed specimen compared to the as-bonded sample.

  13. Experimental study of catalytic hydrogenation by using an in-situ hydrogen measuring technique. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiang, S.H.; Klinzing, G.E.; Cheng, Y.S.

    1984-12-01

    An in-situ technique for measuring hydrogen concentration (partial pressure) had been previously used to measure static properties (hydrogen solubilities, vapor pressures of hydrocarbons, etc.). Because of its good precision (2% relative error) and relatively short respond time (9.7 to 2.0 seconds at 589 to 728K), the technique was successfully applied to a dynamic study of hydrogenation reactions in this work. Furthermore, the technique is to be tested for industrial uses. Hydrogen/1-methylnaphthalene system was experimentally investigated in a one-liter autoclave equipped with a magnetically driven stirrer and temperature controlling devices. Catalytic hydrogenation of 1-methylnaphthalene was studied in the presence of sulfidedmore » Co-Mo-Al2O3 catalyst. In addition, the vapor/liquid equilibrium relationship was determined by using this technique. Hydrogenation reaction runs were performed at temperatures of 644.1, 658.0 and 672.0K and pressures up to 9.0 MPa. The ring hydrogenation, resulting in 1- and 5-methyltetralin, was found to be the dominant reaction. This is in agreement with cited literature. Effects of hydrogen partial pressure, operating temperature, as well as presulfided catalyst are also investigated and discussed in this work. The vapor pressure of 1-methylnaphthalene was measured over a temperature range of 555.2 to 672.0K. The results are in good agreement with literature data. Measurements for hydrogen solubility in 1-methylnaphthalene were conducted over temperature and pressure range of 598 to 670K and 5.2 to 8.8 MPa, respectively. Similar to previously reported results, the hydrogen solubility increases with increasing temperature when total pressure is held constant. A linear relation is found between the hydrogen solubility and hydrogen partial pressure. 21 refs., 13 figs., 10 tabs.« less

  14. Comparison of cardiorespiratory variables in dorsally recumbent horses anesthetized with guaifenesin-ketamine-xylazine spontaneously breathing 50% or maximal oxygen concentrations.

    PubMed

    Karrasch, Nicole M; Hubbell, John A E; Aarnes, Turi K; Bednarski, Richard M; Lerche, Phillip

    2015-04-01

    This study compared cardiorespiratory variables in dorsally recumbent horses anesthetized with guaifenesin-ketamine-xylazine and spontaneously breathing 50% or maximal (> 90%) oxygen (O2) concentrations. Twelve healthy mares were randomly assigned to breathe 50% or maximal O2 concentrations. Horses were sedated with xylazine, induced to recumbency with ketamine-diazepam, and anesthesia was maintained with guaifenesin-ketamine-xylazine to effect. Heart rate, arterial blood pressures, respiratory rate, lithium dilution cardiac output (CO), inspired and expired O2 and carbon dioxide partial pressures, and tidal volume were measured. Arterial and mixed-venous blood samples were collected prior to sedation (baseline), during 30 minutes of anesthesia, 10 minutes after disconnection from O2, and 30 minutes after standing. Shunt fraction, O2 delivery, and alveolar-arterial O2 partial pressures difference [P(A-a)O2] were calculated. Recovery times were recorded. There were no significant differences between groups in cardiorespiratory parameters or in P(A-a)O2 at baseline or 30 minutes after standing. Oxygen partial pressure difference in the 50% group was significantly less than in the maximal O2 group during anesthesia.

  15. Comparison of cardiorespiratory variables in dorsally recumbent horses anesthetized with guaifenesin-ketamine-xylazine spontaneously breathing 50% or maximal oxygen concentrations

    PubMed Central

    Karrasch, Nicole M.; Hubbell, John A.E.; Aarnes, Turi K.; Bednarski, Richard M.; Lerche, Phillip

    2015-01-01

    This study compared cardiorespiratory variables in dorsally recumbent horses anesthetized with guaifenesin-ketamine-xylazine and spontaneously breathing 50% or maximal (> 90%) oxygen (O2) concentrations. Twelve healthy mares were randomly assigned to breathe 50% or maximal O2 concentrations. Horses were sedated with xylazine, induced to recumbency with ketamine-diazepam, and anesthesia was maintained with guaifenesin-ketamine-xylazine to effect. Heart rate, arterial blood pressures, respiratory rate, lithium dilution cardiac output (CO), inspired and expired O2 and carbon dioxide partial pressures, and tidal volume were measured. Arterial and mixed-venous blood samples were collected prior to sedation (baseline), during 30 minutes of anesthesia, 10 minutes after disconnection from O2, and 30 minutes after standing. Shunt fraction, O2 delivery, and alveolar-arterial O2 partial pressures difference [P(A-a)O2] were calculated. Recovery times were recorded. There were no significant differences between groups in cardiorespiratory parameters or in P(A-a)O2 at baseline or 30 minutes after standing. Oxygen partial pressure difference in the 50% group was significantly less than in the maximal O2 group during anesthesia. PMID:25829559

  16. Experimental petrology and origin of rocks from the Descartes Highlands

    NASA Technical Reports Server (NTRS)

    Walker, D.; Longhi, J.; Grove, T. L.; Stolper, E.; Hays, J. F.

    1973-01-01

    Petrographic studies of Apollo 16 samples indicate that rocks 62295 and 68415 are crystallization products of highly aluminous melts. 60025 is a shocked, crushed and partially annealed plagioclase cumulate. 60315 is a recrystallized noritic breccia of disputed origin. 60335 is a feldspathic basalt filled with xenoliths and xenocrysts of anorthosite, breccia, and anorthite. The Fe/(Fe+Mg) of plagioclase appears to be a relative crystallization index. Low pressure melting experiments with controlled Po2 indicate that the igneous samples crystallized at oxygen fugacities well below the Fe/FeO buffer. Crystallization experiments at various pressures suggest that the 62295 and 68415 compositions were produced by partial or complete melting of lunar crustal materials, and not by partial melting of the deep lunar interior.

  17. Chronic ETA antagonist reverses hypertension and impairment of structure and function of peripheral small arteries in aortic stiffening.

    PubMed

    Guo, Xiaomei; Chen, Huan; Han, Ling; Haulon, Stephan; Kassab, Ghassan S

    2018-02-15

    Arterial stiffness may contribute to the pathogenesis of hypertension. The goal of this study is to elucidate the role of Endothelin-1 (ET-1) in aortic stiffening-induced hypertension through ET A receptor activation. An increase in aortic stiffness was created by use of a non-constrictive restraint, NCR on the abdominal aortic surface. A group of rats underwent aortic NCR or sham operation for 12 weeks and were then treated with ET A receptor antagonist BQ-123 for 3 weeks. We found that 12 weeks of aortic NCR significantly increased pulse and mean pressure and altered peripheral flow pattern, accompanied by an increased serum ET-1 level (p < 0.05). The increase in aortic stiffness (evidenced by an elevated pulse wave velocity) caused hypertrophic structural remodeling and decreased arterial compliance, along with an impaired endothelial function in peripheral small arteries. BQ-123 treatment only partially attenuated peripheral arterial hypertrophy and restored arterial compliance, but completely recovered endothelium function, and consequently restored local flow and lowered blood pressure. Our findings underscore the hemodynamic coupling between aortic stiffening and peripheral arterial vessels and flow dynamics through an ET A -dependent mechanism. ET A receptor blockade may have therapeutic potential for improving peripheral vessel structure and function in the treatment of aortic stiffness-induced hypertension.

  18. Buffer Gas Experiments in Mercury (Hg+) Ion Clock

    NASA Technical Reports Server (NTRS)

    Chung, Sang K.; Prestage, John D.; Tjoelker, Robert L.; Maleki, Lute

    2004-01-01

    We describe the results of the frequency shifts measured from various buffer gases that might be used as a buffer gas to increase the loading efficiency and cooling of ions trapped in a small mercury ion clock. The small mass, volume and power requirement of space clock precludes the use of turbo pumps. Hence, a hermetically sealed vacuum system, incorporating a suitable getter material with a fixed amount of inert buffer gas may be a practical alternative to the groundbased system. The collision shifts of 40,507,347.996xx Hz clock transition for helium, neon and argon buffer gases were measured in the ambient earth magnetic field. In addition to the above non-getterable inert gases we also measured the frequency shifts due to getterable, molecular hydrogen and nitrogen gases which may be used as buffer gases when incorporated with a miniature ion pump. We also examined the frequency shift due to the low methane gas partial pressure in a fixed higher pressure neon buffer gas environment. Methane gas interacted with mercury ions in a peculiar way as to preserve the ion number but to relax the population difference in the two hyperfine clock states and thereby reducing the clock resonance signal. The same population relaxation was also observed for other molecular buffer gases (N H,) but at much reduced rate.

  19. Solubilities of carbon dioxide in aqueous potassium carbonate solutions mixed with physical solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, S.B.; Lee, H.; Lee, K.H.

    1998-09-01

    The removal of acidic gases such as CO{sub 2}, H{sub 2}S, and COS from gas streams is a very important operation for petrochemical, oil refineries, ammonia manufacture, coal gasification, and natural gas purification plants. Here, the solubilities of carbon dioxide in aqueous potassium carbonate (K{sub 2}CO{sub 3}) solutions mixed with physical solvents were measured at 298.2 and 323.2 K with a CO{sub 2} partial-pressure range of 5 kPa to 2 MPa. 1,2-propanediol and propylene carbonate were selected as physical solvents. The aqueous solutions treated in this study were 5 mass% K{sub 2}CO{sub 3}-15 mass% 1,2-propanediol and propylene carbonate were selectedmore » as physical solvents. The aqueous solutions treated in this study were 5 mass% K{sub 2}CO{sub 3}-15 mass% propylene carbonate. The experimental solubility results were presented by the mole ratio of CO{sub 2} and K{sub 2}CO{sub 3} contained in the liquid mixture. The addition of 1,2-propanediol to 5 mass% K{sub 2}CO{sub 3} solution lowered the solubility of CO{sub 2} at constant temperature and pressure conditions when CO{sub 2} partial-pressure range of 5 kPa to 2 MPa. In the case of propylene carbonate the addition of propylene carbonate increased the experimental solubilities in the region of low CO{sub 2} partial pressures and decreased as the CO{sub 2} partial pressure was increased above atmospheric. The solubilities of CO{sub 2} decreased with increasing temperature in the range of 298.2 to 323.2 K.« less

  20. Hyperoxia is Associated with Increased Mortality in Patients Treated with Mild Therapeutic Hypothermia after Sudden Cardiac Arrest

    PubMed Central

    Janz, David R.; Hollenbeck, Ryan D.; Pollock, Jeremy S.; McPherson, John A.; Rice, Todd W.

    2012-01-01

    Objective To determine if higher levels of partial pressure of arterial oxygen are associated with in-hospital mortality and poor neurologic status at hospital discharge in patients treated with mild therapeutic hypothermia after sudden cardiac arrest. Design Retrospective analysis of a prospective cohort study Patients A total of 170 consecutive patients treated with therapeutic hypothermia in the cardiovascular care unit of an academic tertiary care hospital. Interventions None. Measurements and Main Results Of 170 patients, 77 (45.2%) survived to hospital discharge. Survivors had a significantly lower maximum partial pressure of arterial oxygen(198 mmHg, IQR 152.5–282) measured in the first 24 hours following cardiac arrest compared to nonsurvivors (254 mmHg, IQR 172–363, p = .022). A multivariable analysis including age, time to return of spontaneous circulation, the presence of shock, bystander CPR, and initial rhythm revealed that higher levels of the partial pressure of arterial oxygen were significantly associated with increased in-hospital mortality (odds ratio 1.439, 95% confidence interval 1.028–2.015, p = 0.034) and poor neurologic status at hospital discharge (odds ratio 1.485, 95% confidence interval 1.032–2.136, p = 0.033). Conclusions Higher levels of the maximum measured partial pressure of arterial oxygen are associated with increased in-hospital mortality and poor neurologic status on hospital discharge in patients treated with mild therapeutic hypothermia after sudden cardiac arrest. PMID:22971589

  1. Hydromechanics in dentine: role of dentinal tubules and hydrostatic pressure on mechanical stress-strain distribution.

    PubMed

    Kishen, A; Vedantam, S

    2007-10-01

    This investigation is to understand the role of free water in the dentinal tubules on the mechanical integrity of bulk dentine. Three different experiments were conducted in this study. In experiment 1, three-dimensional models of dentine with gradient elastic modulus, homogenous elastic modulus, and with and without hydrostatic pressure were simulated using the finite element method. Static compressive loads of 15, 50 and 100 N were applied and the distribution of the principal stresses, von Mises stresses, and strains in loading direction were determined. In experiment 2, experimental compression testing of fully hydrated and partially dehydrated dentine (21 degrees C for 72 h) was conducted using a Universal testing machine. In experiment 3, Fourier transform infrared spectroscopic analysis of hydrated and partially dehydrated dentine was carried out. The finite element analysis revealed that the dentine model with simulated hydrostatic pressure displayed residual tensile stresses and strains in the inner region adjacent to the root canal. When external compressive loads were applied to the model, the residual stresses and strains counteracted the applied loads. Similarly the hydrated specimens subjected to experimental compression loads showed greater toughness when compared to the partially dehydrated specimens. The stress at fracture was significantly higher in partially dehydrated specimens (p=0.014), while the strain at fracture was significantly higher in hydrated dentine specimens (p=0.037). These experiments highlighted the distinct role of free water in the dentinal tubules and hydrostatic pressure on the stress-strain distribution within the bulk dentine.

  2. Influence of Oxygen Partial Pressure during Processing on the Thermoelectric Properties of Aerosol-Deposited CuFeO₂.

    PubMed

    Stöcker, Thomas; Exner, Jörg; Schubert, Michael; Streibl, Maximilian; Moos, Ralf

    2016-03-24

    In the field of thermoelectric energy conversion, oxide materials show promising potential due to their good stability in oxidizing environments. Hence, the influence of oxygen partial pressure during synthesis on the thermoelectric properties of Cu-Delafossites at high temperatures was investigated in this study. For these purposes, CuFeO₂ powders were synthetized using a conventional mixed-oxide technique. X-ray diffraction (XRD) studies were conducted to determine the crystal structures of the delafossites associated with the oxygen content during the synthesis. Out of these powders, films with a thickness of about 25 µm were prepared by the relatively new aerosol-deposition (AD) coating technique. It is based on a room temperature impact consolidation process (RTIC) to deposit dense solid films of ceramic materials on various substrates without using a high-temperature step during the coating process. On these dense CuFeO₂ films deposited on alumina substrates with electrode structures, the Seebeck coefficient and the electrical conductivity were measured as a function of temperature and oxygen partial pressure. We compared the thermoelectric properties of both standard processed and aerosol deposited CuFeO₂ up to 900 °C and investigated the influence of oxygen partial pressure on the electrical conductivity, on the Seebeck coefficient and on the high temperature stability of CuFeO₂. These studies may not only help to improve the thermoelectric material in the high-temperature case, but may also serve as an initial basis to establish a defect chemical model.

  3. Zero-Boil-Off Tank (ZBOT) Experiment: Ground-Based Validation of Self-Pressurization and Pressure Control Two-Phase CFD Model

    NASA Technical Reports Server (NTRS)

    Kassemi, Mohammad; Hylton, Sonya; Kartuzova, Olga

    2017-01-01

    Integral to all phases of NASA's projected space and planetary expeditions is affordable and reliable cryogenic fluid storage for use in propellant or life support systems. Cryogen vaporization due to heat leaks into the tank from its surroundings and support structure can cause self-pressurization relieved through venting. This has led to a desire to develop innovative pressure control designs based on mixing of the bulk tank fluid together with some form of active or passive cooling to allow storage of the cryogenic fluid with zero or reduced boil-off. The Zero-Boil-Off Tank (ZBOT) Experiments are a series of small scale tank pressurization and pressure control experiments aboard the International Space Station (ISS) that use a transparent volatile simulant fluid in a transparent sealed tank to delineate various fundamental fluid flow, heat and mass transport, and phase change phenomena that control storage tank pressurization and pressure control in microgravity. The hardware for ZBOT-1 flew to ISS on the OA-7 flight in April 2017 and operations are planned to begin in September 2017, encompassing more than 90 tests. This paper presents preliminary results from ZBOT's ground-based research delineating both pressurization and pressure reduction trends in the sealed test tank. Tank self-pressurization tests are conducted under three modes: VJ heating, strip heating and simultaneous VJ and strip heating in attempt to simulate heat leaks from the environment, the support structure and both. The jet mixing pressure control studies are performed either from an elevated uniform temperature condition or from thermally stratified conditions following a self-pressurization run. Jet flow rates are varied from 2-25 cm/s spanning a range of jet Re number in laminar, transitional, and turbulent regimes and a range of Weber numbers covering no ullage penetration, partial penetration and complete ullage penetration and break-up (only in microgravity). Numerical prediction of a two-phase CFD model are compared to experimental 1g results to both validate the model and also indicate the effect of the residual non-condensable gas on evolution of pressure and temperature distributions in the tank during pressurization and pressure control.

  4. Compaction and Permeability Reduction of Castlegate Sandstone under Pore Pressure Cycling

    NASA Astrophysics Data System (ADS)

    Bauer, S. J.

    2014-12-01

    We investigate time-dependent compaction and permeability changes by cycling pore pressure with application to compressed air energy storage (CAES) in a reservoir. Preliminary experiments capture the impacts of hydrostatic stress, pore water pressure, pore pressure cycling, chemical, and time-dependent considerations near a borehole in a CAES reservoir analog. CAES involves creating an air bubble in a reservoir. The high pressure bubble serves as a mechanical battery to store potential energy. When there is excess grid energy, bubble pressure is increased by air compression, and when there is energy needed on the grid, stored air pressure is released through turbines to generate electricity. The analog conditions considered are depth ~1 km, overburden stress ~20 MPa and a pore pressure ~10MPa. Pore pressure is cycled daily or more frequently between ~10 MPa and 6 MPa, consistent with operations of a CAES facility at this depth and may continue for operational lifetime (25 years). The rock can vary from initially fully-to-partially saturated. Pore pressure cycling changes the effective stress.Jacketed, room temperature tap water-saturated samples of Castlegate Sandstone are hydrostatically confined (20 MPa) and subjected to a pore pressure resulting in an effective pressure of ~10 MPa. Pore pressure is cycled between 6 to 10 MPa. Sample displacement measurements yielded determinations of volumetric strain and from water flow measurements permeability was determined. Experiments ran for two to four weeks, with 2 to 3 pore pressure cycles per day. The Castlegate is a fluvial high porosity (>20%) primarily quartz sandstone, loosely calcite cemented, containing a small amount of clay.Pore pressure cycling induces compaction (~.1%) and permeability decreases (~20%). The results imply that time-dependent compactive processes are operative. The load path, of increasing and decreasing pore pressure, may facilitate local loosening and grain readjustments that results in the compaction and permeability decreases observed. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Dept. of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.SAND2014-16586A

  5. Experimental validation of Critical Temperature-Pressure theory of scuffing

    NASA Astrophysics Data System (ADS)

    Lee, Si C.; Chen, Huanliang

    1995-07-01

    A series of experiments was conducted for validating a newly developed theory of scuffing. The Critical temperature-Pressure (CTP) theory is based on the physisorption behavior of lubricants and is capable of predicting the onset of scuffing failures over a wide range of operating conditions, including the contacts operating in the boundary lubrication and in the partial elastohydrodynamic lubrication (EHL) regimes. According to the CTP theory, failures occur when the contact temperature exceeds a certain critical value which is a function of the lubricant pressure generated by the hydrodynamic action of the EHL contact. A special device capable of simulating the ambient conditions of the partial EHL conjunctions (of contact temperature, pressure, and the lubricant pressure) was constructed. A ball-on-flat type wear tester was put inside a pressure vessel, completely immersed in a highly pressurized bath of mineral oil. The temperature on the flat specimen was gradually increased while the ball was slowly traversed. At a certain critical temmperature, the friction force abruptly jumped indicating the incipiency of the lubrication breakdown. This experiment was repeated for several levels of hydrostatic pressure and the corresponding critical temperatures were obtained. The test results showed an excellent correlation with the newly developed CTP theory.

  6. [Clinical efficacy of partial resection of puborectalis combined with mutilation of internal anal sphincter in the treatment of puborectalis syndrome with high anal pressure].

    PubMed

    Ye, Hui; Liu, Weicheng; Qian, Qun; Liu, Zhisu; Jiang, Congqing; Zheng, Keyan; Qin, Qianbo; Ding, Zhao; Gong, Zhilin

    2017-03-25

    To explore the efficacy of partial resection of puborectalis combined with mutilation of internal anal sphincter(IAS) in the treatment of puborectalis syndrome with high anal pressure. Twenty-five cases of puborectalis syndrome with high anal resting pressure in the preoperative examination received the operation of partial resection of puborectalis combined with mutilation of IAS in Zhongnan Hospital of Wuhan University between January 2013 and May 2015. The position of puborectalis was confirmed by touching with the exposure under the transfixion device, and a transverse incision was made by electrotome between 3 and 5 o'clock direction of puborectalis, then partial puborectalis was lifted by vessel clamp at 5 o'clock direction, and about 0.5 cm of muscular tissue was resected. Between 8 to 10 o'clock direction of anal tube, about 1 cm length of transverse incision was made by electrotome, then partial IAS was lifted by vessel clamp and cut off. Preoperative and postoperative 3-month anorectal manometry and defecography were carried out. Wexner constipation score and Cleveland Clinic incontinence score were implemented before surgery and 3, 6, 12 months after operation. This study was registered in the Chinese Clinical Trial Registry (registration number: ChiCTR-ORB-16007695). Of the 25 cases, 18 were male and 7 were female, the average age was 55 years old and the average course of disease was 9 years. Compared with pre-operation, the postoperative 3-month anal resting pressure and maximal squeeze pressure were significantly decreased [(53.56±9.05) mmHg vs. (92.44±7.06) mmHg, (142.80±20.35) mmHg vs. (210.88±20.56) mmHg, respectively, both P=0.000]; anorectal angulation at resting state and forced defecation state increased significantly [(102.32±4.96)degree vs. (95.88±4.01)degree, (117.88±5.95)degree vs. (89.52±3.25)degree, respectively, both P=0.000]. Wexner constipation score of postoperative 3-month, 6-month, 12-month (8.28±3.91, 7.40±3.64 and 8.04±4.74) was significantly lower than the preoperative score (16.00±3.69, all P<0.05), while the score was not significantly different among 3 time points after operation (P>0.05). Cleveland Clinic incontinence score was 0 at postoperative 6 and 12 months, and revealed 20 cases were effective among all the surgical patients(80%). Partial resection of puborectalis combined with mutilation of internal anal sphincter can effectively reduce anal pressure and improve symptoms of outlet obstruction, which is an effective method in the treatment of puborectalis syndrome with high anal pressure.

  7. 3D seismic modeling in geothermal reservoirs with a distribution of steam patch sizes, permeabilities and saturations, including ductility of the rock frame

    NASA Astrophysics Data System (ADS)

    Carcione, José M.; Poletto, Flavio; Farina, Biancamaria; Bellezza, Cinzia

    2018-06-01

    Seismic propagation in the upper part of the crust, where geothermal reservoirs are located, shows generally strong velocity dispersion and attenuation due to varying permeability and saturation conditions and is affected by the brittleness and/or ductility of the rocks, including zones of partial melting. From the elastic-plastic aspect, the seismic properties (seismic velocity, quality factor and density) depend on effective pressure and temperature. We describe the related effects with a Burgers mechanical element for the shear modulus of the dry-rock frame. The Arrhenius equation combined to the octahedral stress criterion define the Burgers viscosity responsible of the brittle-ductile behaviour. The effects of permeability, partial saturation, varying porosity and mineral composition on the seismic properties is described by a generalization of the White mesoscopic-loss model to the case of a distribution of heterogeneities of those properties. White model involves the wave-induced fluid flow attenuation mechanism, by which seismic waves propagating through small-scale heterogeneities, induce pressure gradients between regions of dissimilar properties, where part of the energy of the fast P-wave is converted to slow P (Biot)-wave. We consider a range of variations of the radius and size of the patches and thin layers whose probability density function is defined by different distributions. The White models used here are that of spherical patches (for partial saturation) and thin layers (for permeability heterogeneities). The complex bulk modulus of the composite medium is obtained with the Voigt-Reuss-Hill average. Effective pressure effects are taken into account by using exponential functions. We then solve the 3D equation of motion in the space-time domain, by approximating the White complex bulk modulus with that of a set of Zener elements connected in series. The Burgers and generalized Zener models allows us to solve the equations with a direct grid method by the introduction of memory variables. The algorithm uses the Fourier pseudospectral method to compute the spatial derivatives. It is tested against an analytical solution obtained with the correspondence principle. We consider two main cases, namely the same rock frame (uniform porosity and permeability) saturated with water and a distribution of steam patches, and water-saturated background medium with thin layers of dissimilar permeability. Our model indicates how seismic properties change with the geothermal reservoir temperature and pressure, showing that both seismic velocity and attenuation can be used as a diagnostic tool to estimate the in situ conditions.

  8. The Effects of Bougie Diameters on Tissue Oxygen Levels After Sleeve Gastrectomy: A Randomized Experimental Trial

    PubMed

    Konca, Can; Yılmaz, Ali Abbas; Çelik, Süleyman Utku; Kayılıoğlu, Selami Ilgaz; Paşaoğlu, Özge Tuğçe; Ceylan, Halil Arda; Genç, Volkan

    2018-05-29

    Staple-line leak is the most frightening complication of laparoscopic sleeve gastrectomy and several predisposing factors such as using improper staple sizes regardless of gastric wall thickness, narrower bougie diameter and ischemia of the staple line are asserted. To evaluate the effects of different bougie diameters on tissue oxygen partial pressure at the esophagogastric junction after sleeve gastrectomy. A randomized and controlled animal experiment with 1:1:1:1 allocation ratio. Thirty-two male Wistar Albino rats were randomly divided into 4 groups of 8 each. While 12-Fr bougies were used in groups 1 and 3, 8-Fr bougies were used in groups 2 and 4. Fibrin sealant application was also carried out around the gastrectomy line after sleeve gastrectomy in groups 3 and 4. Burst pressure of gastrectomy line, tissue oxygen partial pressure and hydroxyproline levels at the esophagogastric junction were measured and compared among groups. Mortality was detected in 2 out of 32 rats (6.25%) and one of them was in group 2 and the cause of this mortality was gastric leak. Gastric leak was detected in 2 out of 32 rats (6.25%). There was no significant difference in terms of burst pressures, tissue oxygen partial pressure and tissue hydroxyproline levels among the 4 groups. The use of narrower bougie along with fibrin sealant has not had a negative effect on tissue perfusion and wound healing.

  9. 40 CFR 61.341 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to industrial organic chemicals, organic pesticide products, pharmaceutical preparations, paint and allied products, fertilizers, and agricultural chemicals. Examples of chemical manufacturing plants...). Maximum organic vapor pressure means the equilibrium partial pressure exerted by the waste at the...

  10. EXTINGUISHMENT OF ALKALI METAL FIRES

    DTIC Science & Technology

    low O2 partial pressures on alkali metal fires Extinguishment of alkali metal fires using in organic salt mixtures Extinguishment of alkali metal ... fires using inorganic salt foams Alkali metal jet stream ignition at various pressure conditions Bibliography

  11. Pressure relief and other joint rehabilitation techniques

    DOT National Transportation Integrated Search

    1987-02-01

    A study of four major concrete pavement joint rehabilitation techniques has been conducted, including: pressure relief joints, full-depth repairs, partial-depth repairs and joint resealing. The products of this research include the following for each...

  12. Toxicity of elevated partial pressures of carbon dioxide to invasive New Zealand mudsnails

    USGS Publications Warehouse

    Nielson, R. Jordan; Moffitt, Christine M.; Watten, Barnaby J.

    2012-01-01

    The authors tested the efficacy of elevated partial pressures of CO2 to kill invasive New Zealand mudsnails. The New Zealand mudsnails were exposed to 100 kPa at three water temperatures, and the survival was modeled versus dose as cumulative °C-h. We estimated an LD50 of 59.4°C-h for adult and juvenile New Zealand mudsnails. The results suggest that CO2 may be an effective and inexpensive lethal tool to treat substrates, tanks, or materials infested with New Zealand mudsnails.

  13. Methods for enhancing P-type doping in III-V semiconductor films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Feng; Stringfellow, Gerald; Zhu, Junyi

    2017-08-01

    Methods of doping a semiconductor film are provided. The methods comprise epitaxially growing the III-V semiconductor film in the presence of a dopant, a surfactant capable of acting as an electron reservoir, and hydrogen, under conditions that promote the formation of a III-V semiconductor film doped with the p-type dopant. In some embodiments of the methods, the epitaxial growth of the doped III-V semiconductor film is initiated at a first hydrogen partial pressure which is increased to a second hydrogen partial pressure during the epitaxial growth process.

  14. Influence of hydrostatic pressure on dynamics and spatial distribution of protein partial molar volume: time-resolved surficial Kirkwood-Buff approach.

    PubMed

    Yu, Isseki; Tasaki, Tomohiro; Nakada, Kyoko; Nagaoka, Masataka

    2010-09-30

    The influence of hydrostatic pressure on the partial molar volume (PMV) of the protein apomyoglobin (AMb) was investigated by all-atom molecular dynamics (MD) simulations. Using the time-resolved Kirkwood-Buff (KB) approach, the dynamic behavior of the PMV was identified. The simulated time average value of the PMV and its reduction by 3000 bar pressurization correlated with experimental data. In addition, with the aid of the surficial KB integral method, we obtained the spatial distributions of the components of PMV to elucidate the detailed mechanism of the PMV reduction. New R-dependent PMV profiles identified the regions that increase or decrease the PMV under the high pressure condition. The results indicate that besides the hydration in the vicinity of the protein surface, the outer space of the first hydration layer also significantly influences the total PMV change. These results provide a direct and detailed picture of pressure induced PMV reduction.

  15. Thermodynamic Equilibrium Solubility of Diethanolamine – N-Butyl-1-Methylpyrrolidinium Dicyanamide [DEABMPYRR DCA] Mixtures for Carbon Dioxide Capture

    NASA Astrophysics Data System (ADS)

    Salleh, R. M.; Jamaludin, S. N.

    2018-05-01

    Solubility data of carbon dioxide (CO2) in aqueous Diethanolamine (DEA) blended with pyrrolidinium-based ionic liquid: N-Butyl-1-Methylpyrrolidinium Dıcyanamıde [Bmpyrr][DCA] are presented at various temperatures (313.15K-333.15K) and pressure up to about 700 psi. The concentration of [Bmpyrr][DCA] ranges from 0-10wt% and 30-40wt% for DEA. The solubility of CO2 was evaluated by measuring the pressure drop in high pressure stirred absorption cell reactor. The CO2 loading in all studied mixtures increases with an increase in CO2 partial pressure and decreases with temperature. It was also found that the CO2 loading capacity decrease as the concentration of [Bmpyrr][DCA] increases. The experimental data were correlated as a function of temperature and CO2 partial pressure to predict the solubility of CO2 in the mixtures. It was found that the model predicted results in a good agreement with experimental value.

  16. Low-Tidal-Volume Ventilation in the Acute Respiratory Distress Syndrome

    PubMed Central

    Malhotra, Atul

    2008-01-01

    A 55-year-old man who is 178 cm tall and weighs 95 kg is hospitalized with community-acquired pneumonia and progressively severe dyspnea. His arterial oxygen saturation while breathing 100% oxygen through a face mask is 76%; a chest radiograph shows diffuse alveolar infiltrates with air bronchograms. He is intubated and receives mechanical ventilation; ventilator settings include a tidal volume of 1000 ml, a positive end-expiratory pressure (PEEP) of 5 cm of water, and a fraction of inspired oxygen (FiO2) of 0.8. With these settings, peak airway pressure is 50 to 60 cm of water, plateau airway pressure is 38 cm of water, partial pressure of arterial oxygen is 120 mm Hg, partial pressure of carbon dioxide is 37 mm Hg, and arterial blood pH is 7.47. The diagnosis of the acute respiratory distress syndrome (ARDS) is made. An intensive care specialist evaluates the patient and recommends changing the current ventilator settings and implementing a low-tidal-volume ventilation strategy. PMID:17855672

  17. Large boron--epoxy filament-wound pressure vessels

    NASA Technical Reports Server (NTRS)

    Jensen, W. M.; Bailey, R. L.; Knoell, A. C.

    1973-01-01

    Advanced composite material used to fabricate pressure vessel is prepeg (partially cured) consisting of continuous, parallel boron filaments in epoxy resin matrix arranged to form tape. To fabricate chamber, tape is wound on form which must be removable after composite has been cured. Configuration of boron--epoxy composite pressure vessel was determined by computer program.

  18. The gaseous explosive reaction at constant pressure : the reaction order and reaction rate

    NASA Technical Reports Server (NTRS)

    Stevens, F W

    1931-01-01

    The data given in this report covers the explosive limits of hydrocarbon fuels. Incidental to the purpose of the investigation here reported, the explosive limits will be found to be expressed for the condition of constant pressure, in the fundamental terms of concentrations (partial pressures) of fuel and oxygen.

  19. REVIEW: High pressure NMR study of proteins - seeking roots for function, evolution, disease and food applications

    NASA Astrophysics Data System (ADS)

    Akasaka, Kazuyuki

    2010-12-01

    NMR experiments at variable pressure reveal a wide range of conformation of a globular protein spanning from within the folded ensemble to the fully unfolded ensemble, herewith collectively called "high-energy conformers". The observation of "high-energy conformers" in a wide variety of globular proteins has led to the "volume theorem": the partial molar volume of a protein decreases with the decrease in its conformational order. Since "high-energy conformers" are intrinsically more reactive than the basic folded conformer, they could play decisive roles in all phenomena of proteins, namely function, environmental adaptation and misfolding. Based on the information on high-energy conformers and the rules on their partial volume in its monomeric state and amyloidosis, one may have a general view on what is happening on proteins under pressure. Moreover, one may even choose a high-energy conformer of a protein with pressure as variable for a particular purpose. Bridging "high-energy conformers" to macroscopic pressure effects could be a key to success in pressure application to biology, medicine, food technology and industry in the near future.

  20. Mathematical modeling of human brain physiological data

    NASA Astrophysics Data System (ADS)

    Böhm, Matthias; Faltermeier, Rupert; Brawanski, Alexander; Lang, Elmar W.

    2013-12-01

    Recently, a mathematical model of the basic physiological processes regulating the cerebral perfusion and oxygen supply was introduced [Jung , J. Math. Biol.JMBLAJ0303-681210.1007/s00285-005-0343-5 51, 491 (2005)]. Although this model correctly describes the interdependence of arterial blood pressure (ABP) and intracranial pressure (ICP), it fails badly when it comes to explaining certain abnormal correlations seen in about 80% of the recordings of ABP together with ICP and the partial oxygen pressure (TiPO2) of the neuronal tissue, taken at an intensive care unit during neuromonitoring of patients with a severe brain trauma. Such recordings occasionally show segments, where the mean arterial blood pressure is correlated with the partial oxygen pressure in tissue but anticorrelated with the intracranial pressure. The origin of such abnormal correlations has not been fully understood yet. Here, two extensions to the previous approach are proposed which can reproduce such abnormal correlations in simulations quantitatively. Furthermore, as the simulations are based on a mathematical model, additional insight into the physiological mechanisms from which such abnormal correlations originate can be gained.

  1. Effect of water on the composition of partial melts of greenstone and amphibolite

    NASA Technical Reports Server (NTRS)

    Beard, James S.; Lofgren, Gary E.

    1989-01-01

    Closed-system partial melts of hydrated, metamorphosed arc basalts and andesites (greenstones and amphibolites), where only water structurally bound in metamorphic minerals is available for melting (dehydration melting), are generally water-undersaturated, coexist with plagioclase-rich, anhydrous restites, and have compositions like island arc tonalites. In contrast, water-saturated melting at water pressures of 3 kilobars yields strongly peraluminous, low iron melts that coexist with an amphibole-bearing, plagioclase-poor restite. These melt compositions are unlike those of most natural silicic rocks. Thus, dehydration melting over a range of pressures in the crust of island arcs is a plausible mechanism for the petrogenesis of islands arc tonalite, whereas water-saturated melting at pressure of 3 kilobars and above is not.

  2. The feasibility of desorption on Zeolite-water pair using dry gas

    NASA Astrophysics Data System (ADS)

    Oktariani, E.; Nakashima, K.; Noda, A.; Xue, B.; Tahara, K.; Nakaso, K.; Fukai, J.

    2018-04-01

    The increase in temperature, reduction in partial pressure, reduction in concentration, purging with an inert fluid, and displacement with a more strongly adsorbing species are the basic things that occur in the practical method of desorption. In this study, dry gas at constant temperature and pressure was employed as the aid to reduce the partial pressure in the water desorption on the zeolite 13X. The objective of this study is to confirm the feasibility of desorption using dry gas experimentally and numerically. The implication of heat and mass transfers were numerically investigated to find the most influential. The results of numerical simulation agree with the experimental ones for the distribution of local temperature and average water adsorbed in the packed bed.

  3. Carbon acceptor incorporation in GaAs grown by metalorganic chemical vapor deposition: Arsine versus tertiarybutylarsine

    NASA Astrophysics Data System (ADS)

    Watkins, S. P.; Haacke, G.

    1991-10-01

    Undoped p-type GaAs epilayers were grown by low-pressure metalorganic chemical vapor deposition (MOCVD) at 650 °C and 76 Torr using either arsine or tertiarybutylarsine (TBA), and trimethylgallium (TMG). Extremely high-purity precursors were used in order to eliminate extrinsic doping effects. Carbon acceptors from the TMG were the dominant residual electrical impurities under all growth conditions. Temperature-dependent Hall measurements were used to make a quantitative comparison of the carbon acceptor concentrations for arsine- and TBA-grown epilayers over a range of As partial pressures. For a given group V partial pressure, we report a significant reduction in carbon acceptor incorporation using TBA compared with arsine under identical growth conditions.

  4. Compact Water Vapor Exchanger for Regenerative Life Support Systems

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Anderson, Molly; Hodgson, Edward

    2012-01-01

    Thermal and environmental control systems for future exploration spacecraft must meet challenging requirements for efficient operation and conservation of resources. Regenerative CO2 removal systems are attractive for these missions because they do not use consumable CO2 absorbers. However, these systems also absorb and vent water to space along with carbon dioxide. This paper describes an innovative device designed to minimize water lost from regenerative CO2 control systems. Design studies and proof-of-concept testing have shown the feasibility of a compact, efficient membrane water vapor exchanger (WVX) that will conserve water while meeting challenging requirements for operation on future spacecraft. Compared to conventional WVX designs, the innovative membrane WVX described here has the potential for high water recovery efficiency, compact size, and very low pressure losses. The key innovation is a method for maintaining highly uniform flow channels in a WVX core built from water-permeable membranes. The proof-of-concept WVX incorporates all the key design features of a prototypical unit, except that it is relatively small scale (1/23 relative to a unit sized for a crew of six) and some components were fabricated using non-prototypical methods. The proof-of-concept WVX achieved over 90% water recovery efficiency in a compact core in good agreement with analysis models. Furthermore the overall pressure drop is very small (less than 0.5 in. H2O, total for both flow streams) and meets requirements for service in environmental control and life support systems on future spacecraft. These results show that the WVX provides very uniform flow through flow channels for both the humid and dry streams. Measurements also show that CO2 diffusion through the water-permeable membranes will have negligible effect on the CO2 partial pressure in the spacecraft atmosphere.

  5. An Investigation Into Low Fuel Pressure Warnings on a Macchi-Viper Aircraft

    DTIC Science & Technology

    1988-05-01

    was sufficient To activate the low pressure warning light. The pressure switch is normally set to a differential of between 2.5 - 3 psi. Partial...only a 2.1 psig margin for light illumination, if the pressure switch is set at 3 psig, and gives little scope for extra pipe or filter losses when... pressure switch is set between 2.5 - 3 psig. Any untoward pressure resistance in the fuel delivery line and filtering system would soon erode this

  6. Pressure relief and other joint rehabilitation techniques : appendices

    DOT National Transportation Integrated Search

    1987-02-01

    Appendices of a study of four major concrete pavement joint rehabilitation techniques has been conducted, including: pressure relief joints, full-depth repairs, partial-depth repairs and joint resealing. The products of this research include the foll...

  7. Rare-gas effects on metabolism and inert gas narcosis

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The detailed examination is reported of the theory that narcosis results from expansion of the cell membrane under high partial pressures. The research is partially based on the hypothesis that, like oxygen toxicity, the mechanism of metabolic effects of rare gases may be similar at both low and high pressures and are simply more observable at high pressures. Using adult female goats, the parameters measured include oxygen consumption, CO2 production, respiration rate, heart rate, rectal and skin temperatures and the analysis of electroencephalograms and evoked response. Additionally, the specific activity is measured of plasma glucose subsequent to injection of glucose-UL-C-14, intravenous infusion, specific activity of expired CO2, unesterified fatty acid levels and whole blood lactate-to-pyruvate ratios. Also studied were the effects of acetylsalicylic acid, vitamin E and cationic detergents (which alleviate narcosis) upon metabolic changes induced by high pressure narcosis.

  8. Curved and conformal high-pressure vessel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croteau, Paul F.; Kuczek, Andrzej E.; Zhao, Wenping

    A high-pressure vessel is provided. The high-pressure vessel may comprise a first chamber defined at least partially by a first wall, and a second chamber defined at least partially by the first wall. The first chamber and the second chamber may form a curved contour of the high-pressure vessel. A modular tank assembly is also provided, and may comprise a first mid tube having a convex geometry. The first mid tube may be defined by a first inner wall, a curved wall extending from the first inner wall, and a second inner wall extending from the curved wall. The firstmore » inner wall may be disposed at an angle relative to the second inner wall. The first mid tube may further be defined by a short curved wall opposite the curved wall and extending from the second inner wall to the first inner wall.« less

  9. Two dimensional radial gas flows in atmospheric pressure plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Kim, Gwihyun; Park, Seran; Shin, Hyunsu; Song, Seungho; Oh, Hoon-Jung; Ko, Dae Hong; Choi, Jung-Il; Baik, Seung Jae

    2017-12-01

    Atmospheric pressure (AP) operation of plasma-enhanced chemical vapor deposition (PECVD) is one of promising concepts for high quality and low cost processing. Atmospheric plasma discharge requires narrow gap configuration, which causes an inherent feature of AP PECVD. Two dimensional radial gas flows in AP PECVD induces radial variation of mass-transport and that of substrate temperature. The opposite trend of these variations would be the key consideration in the development of uniform deposition process. Another inherent feature of AP PECVD is confined plasma discharge, from which volume power density concept is derived as a key parameter for the control of deposition rate. We investigated deposition rate as a function of volume power density, gas flux, source gas partial pressure, hydrogen partial pressure, plasma source frequency, and substrate temperature; and derived a design guideline of deposition tool and process development in terms of deposition rate and uniformity.

  10. Water Vapor Effects on Silica-Forming Ceramics

    NASA Technical Reports Server (NTRS)

    Opila, E. J.; Greenbauer-Seng, L. (Technical Monitor)

    2000-01-01

    Silica-forming ceramics such as SiC and Si3N4 are proposed for applications in combustion environments. These environments contain water vapor as a product of combustion. Oxidation of silica-formers is more rapid in water vapor than in oxygen. Parabolic oxidation rates increase with the water vapor partial pressure with a power law exponent value close to one. Molecular water vapor is therefore the mobile species in silica. Rapid oxidation rates and large amounts of gases generated during the oxidation reaction in high water vapor pressures may result in bubble formation in the silica and nonprotective scale formation. It is also shown that silica reacts with water vapor to form Si(OH)4(g). Silica volatility has been modeled using a laminar flow boundary layer controlled reaction equation. Silica volatility depends on the partial pressure of water vapor, the total pressure, and the gas velocity. Simultaneous oxidation and volatilization reactions have been modeled with paralinear kinetics.

  11. Dual pore-connectivity and flow-paths affect shale hydrocarbon production

    NASA Astrophysics Data System (ADS)

    Hayman, N. W.; Daigle, H.; Kelly, E. D.; Milliken, K. L.; Jiang, H.

    2016-12-01

    Aided with integrated characterization approaches of droplet contact angle measurement, mercury intrusion capillary pressure, low-pressure gas physisorption, scanning electron microscopy, and small angle neutron scattering, we have systematically studied how pore connectivity and wettability are associated with mineral and organic matter phases of shales (Barnett, Bakken, Eagle Ford), as well as their influence on macroscopic fluid flow and hydrocarbon movement, from the following complementary tests: vacuum saturation with vacuum-pulling on dry shale followed with tracer introduction and high-pressure intrusion, tracer diffusion into fluid-saturated shale, fluid and tracer imbibition into partially-saturated shale, and Wood's metal intrusion followed with imaging and elemental mapping. The first three tests use tracer-bearing fluids (hydrophilic API brine and hydrophobic n-decane) fluids with a suite of wettability tracers of different sizes and reactivities developed in our laboratory. These innovative and integrated approaches indicate a Dalmatian wettability behavior at a scale of microns, limited connectivity (<500 microns from shale sample edge) shale pores, and disparity of well-connected hydrophobic pore network ( 10 nm) and sparsely connected hydrophilic pore systems (>50-100 nm), which is linked to the steep initial decline and low overall recovery because of the limited connection of hydrocarbon molecules in the shale matrix to the stimulated fracture network.

  12. Safety, Tolerability, and Antihypertensive Effect of SER100, an Opiate Receptor-Like 1 (ORL-1) Partial Agonist, in Patients With Isolated Systolic Hypertension.

    PubMed

    Kantola, Ilkka; Scheinin, Mika; Gulbrandsen, Trygve; Meland, Nils; Smerud, Knut T

    2017-11-01

    The purpose of the present trial was to evaluate safety, tolerability, and effect on systolic blood pressure (SBP) of SER100 in a small group of patients with isolated systolic hypertension (ISH) in treatment with at least 1 antihypertensive drug. Eligible patients were randomized to either SER100 (10 mg) or placebo in a crossover design, and 2 doses were given subcutaneously (SC), 8 hours apart, on 2 consecutive days. On all treatment days patients were monitored with an ambulatory blood pressure measurement device for 12 daytime hours. Seventeen patients completed treatment. There were no serious or severe adverse events. Relative to placebo SER100 induced an average reduction of SBP during the 2 treatment days of 7.0 mm Hg (P = 0.0032), whereas the average reduction of diastolic blood pressure (DBP) over the same period was 3.8 mm Hg (P = 0.0011). For patients with ISH, this short-term cross-over study of SC SER100 demonstrated an acceptable safety profile and consistent, significant lowering of SBP and DBP. As initial clinical proof of concept for a new class of drugs, a nociceptin agonist peptide, the results were encouraging and warrant further research. © 2016, The American College of Clinical Pharmacology.

  13. Atmospheric-Pressure Chemical Vapor Deposition of Iron Pyrite Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, Nicholas; Cheng, Ming; Perkins, Craig L.

    2012-10-23

    Iron pyrite (cubic FeS{sub 2}) is a promising candidate absorber material for earth-abundant thin-film solar cells. In this report, single-phase, large-grain, and uniform polycrystalline pyrite thin films are fabricated on glass and molybdenum-coated glass substrates by atmospheric-pressure chemical vapor deposition (AP-CVD) using the reaction of iron(III) acetylacetonate and tert-butyl disulfide in argon at 300 C, followed by sulfur annealing at 500--550 C to convert marcasite impurities to pyrite. The pyrite-marcasite phase composition depends strongly on the concentration of sodium in the growth substrate and the sulfur partial pressure during annealing. Phase and elemental composition of the films are characterized bymore » X-ray diffraction, Raman spectroscopy, Auger electron spectroscopy, secondary ion mass spectrometry, Rutherford backscattering spectrometry, and X-ray photoelectron spectroscopy. The in-plane electrical properties are surprisingly insensitive to phase and elemental impurities, with all films showing p-type, thermally activated transport with a small activation energy ({approx}30 meV), a room- temperature resistivity of {approx}1 {Omega} cm, and low mobility. These ubiquitous electrical properties may result from robust surface effects. These CVD pyrite thin films are well suited to fundamental electrical studies and the fabrication of pyrite photovoltaic device stacks.« less

  14. The erosion/corrosion of small superalloy turbine rotors operating in the effluent of a PFB coal combustor

    NASA Technical Reports Server (NTRS)

    Zellars, G. R.; Benfold, S. M.; Rowe, A. P.; Lowell, C. E.

    1979-01-01

    Superalloy turbine rotors in a single stage turbine with 6 percent partial admittance were operated in the effluent of a pressurized fluidized bed coal combustor for up to 164 hours. Total mass flow was 300 kg/hr and average particulate loadings ranged from 600 to 2800 ppm for several coal/sorbent combinations. A 5.5 atm turbine inlet gas pressure and inlet gas temperatures from 700 to 800 C yielded absolute gas velocities at the stator exit of about 500 m/s. The angular rotation speed (40,000 rpm) of the six inch diameter rotors was equivalent to a tip speed of about 300 m/s, and average gas velocities relative to the rotating surface ranged from 260 to 330 m/s at mean radius. The rotor erosion pattern reflects heavy particle separation with severe (5 to 500 cm/yr) erosion at the leading edge, pressure side center, and suction side trailing edge at the tip. The erosion distribution pattern provides a spectrum of erosion/oxidation/deposition as a function of blade position. This spectrum includes enhanced oxidation (10 to 100 x air), mixed oxides in exposed depletion zones, sulfur rich oxides in deposition zones, and rugged areas of erosive oxide removal.

  15. Measurement of the resistivity of porous materials with an alternating air-flow method.

    PubMed

    Dragonetti, Raffaele; Ianniello, Carmine; Romano, Rosario A

    2011-02-01

    Air-flow resistivity is a main parameter governing the acoustic behavior of porous materials for sound absorption. The international standard ISO 9053 specifies two different methods to measure the air-flow resistivity, namely a steady-state air-flow method and an alternating air-flow method. The latter is realized by the measurement of the sound pressure at 2 Hz in a small rigid volume closed partially by the test sample. This cavity is excited with a known volume-velocity sound source implemented often with a motor-driven piston oscillating with prescribed area and displacement magnitude. Measurements at 2 Hz require special instrumentation and care. The authors suggest an alternating air-flow method based on the ratio of sound pressures measured at frequencies higher than 2 Hz inside two cavities coupled through a conventional loudspeaker. The basic method showed that the imaginary part of the sound pressure ratio is useful for the evaluation of the air-flow resistance. Criteria are discussed about the choice of a frequency range suitable to perform simplified calculations with respect to the basic method. These criteria depend on the sample thickness, its nonacoustic parameters, and the measurement apparatus as well. The proposed measurement method was tested successfully with various types of acoustic materials.

  16. Concepts and data-collection techniques used in a study of the unsaturated zone at a low-level radioactive-waste disposal site near Sheffield, Illinois

    USGS Publications Warehouse

    Healy, R.W.; DeVries, M.P.; Striegl, Robert G.

    1986-01-01

    A study of water and radionuclide movement through the unsaturated zone is being conducted at the low level radioactive waste disposal site near Sheffield, Illinois. Included in the study are detailed investigations of evapotranspiration, movement of water through waste trench covers, and movement of water and radionuclides (dissolved and gaseous) from the trenches. An energy balance/Bowen ratio approach is used to determine evapotranspiration. Precipitation, net radiation, soil-heat flux, air temperature and water vapor content gradients, wind speed, and wind direction are measured. Soil water tension is measured with tensiometers which are connected to pressure transducers. Meteorological sensors and tensiometers which are connected to pressure transducers. Meteorological sensors and tensiometers are monitored with automatic data loggers. Soil moisture contents are measured through small-diameter access tubes with neutron and gamma-ray attenuation gages. Data beneath the trenches are obtained through a 130-meter-long tunnel which extends under four of the trenches. Water samples are obtained with suction lysimeters, and samples of the geologic material are obtained with core tubes. These samples are analyzed for radiometric and inorganic chemistry. Gas samples are obtained from gas piezometers and analyzed for partial pressures of major constituents, Radon-222, tritiated water vapor, and carbon-14 dioxide. (USGS)

  17. Internal friction quality-factor Q under confining pressure. [of lunar rocks

    NASA Technical Reports Server (NTRS)

    Tittmann, B. R.; Ahlberg, L.; Nadler, H.; Curnow, J.; Smith, T.; Cohen, E. R.

    1977-01-01

    It has been found in previous studies that small amounts of adsorbed volatiles can have a profound effect on the internal friction quality-factor Q of rocks and other porous media. Pandit and Tozer (1970) have suggested that the laboratory-measured Q of volatile-free rocks should be similar to the in situ seismic Q values of near-surface lunar rocks which according to Latham et al. (1970) are in the range of 3000-5000. Observations of dramatic increases in Q with outgassing up to values approaching 2000 in the seismic frequency range confirm this supposition. Measurements under confining pressures with the sample encapsulated under hard vacuum are reported to aid in the interpretation of seismic data obtained below the lunar surface. It has been possible to achieve in the experiments Q values just under 2000 at about 1 kbar for a terrestrial analog of lunar basalt. It was found that a well-outgassed sample maintains a high Q whereas one exposed to moisture maintains a low Q as the confining pressure is raised to 2.5 kbar. This result suggests that volatiles can indeed affect Q when cracks are partially closed and the high lunar seismic Q values reported are concomitant with very dry rock down to depths of at least 50 km.

  18. Dual pore-connectivity and flow-paths affect shale hydrocarbon production

    NASA Astrophysics Data System (ADS)

    Hu, Q.; Barber, T.; Zhang, Y.; Md Golam, K.

    2017-12-01

    Aided with integrated characterization approaches of droplet contact angle measurement, mercury intrusion capillary pressure, low-pressure gas physisorption, scanning electron microscopy, and small angle neutron scattering, we have systematically studied how pore connectivity and wettability are associated with mineral and organic matter phases of shales (Barnett, Bakken, Eagle Ford), as well as their influence on macroscopic fluid flow and hydrocarbon movement, from the following complementary tests: vacuum saturation with vacuum-pulling on dry shale followed with tracer introduction and high-pressure intrusion, tracer diffusion into fluid-saturated shale, fluid and tracer imbibition into partially-saturated shale, and Wood's metal intrusion followed with imaging and elemental mapping. The first three tests use tracer-bearing fluids (hydrophilic API brine and hydrophobic n-decane) fluids with a suite of wettability tracers of different sizes and reactivities developed in our laboratory. These innovative and integrated approaches indicate a Dalmatian wettability behavior at a scale of microns, limited connectivity (<500 microns from shale sample edge) shale pores, and disparity of well-connected hydrophobic pore network ( 10 nm) and sparsely connected hydrophilic pore systems (>50-100 nm), which is linked to the steep initial decline and low overall recovery because of the limited connection of hydrocarbon molecules in the shale matrix to the stimulated fracture network.

  19. Hydraulic effects in a radiative atmosphere with ionization

    NASA Astrophysics Data System (ADS)

    Bhat, P.; Brandenburg, A.

    2016-03-01

    Context. In his 1978 paper, Eugene Parker postulated the need for hydraulic downward motion to explain magnetic flux concentrations at the solar surface. A similar process has also recently been seen in simplified (e.g., isothermal) models of flux concentrations from the negative effective magnetic pressure instability (NEMPI). Aims: We study the effects of partial ionization near the radiative surface on the formation of these magnetic flux concentrations. Methods: We first obtain one-dimensional (1D) equilibrium solutions using either a Kramers-like opacity or the H- opacity. The resulting atmospheres are then used as initial conditions in two-dimensional (2D) models where flows are driven by an imposed gradient force that resembles a localized negative pressure in the form of a blob. To isolate the effects of partial ionization and radiation, we ignore turbulence and convection. Results: Because of partial ionization, an unstable stratification always forms near the surface. We show that the extrema in the specific entropy profiles correspond to the extrema in the degree of ionization. In the 2D models without partial ionization, strong flux concentrations form just above the height where the blob is placed. Interestingly, in models with partial ionization, such flux concentrations always form at the surface well above the blob. This is due to the corresponding negative gradient in specific entropy. Owing to the absence of turbulence, the downflows reach transonic speeds. Conclusions: We demonstrate that, together with density stratification, the imposed source of negative pressure drives the formation of flux concentrations. We find that the inclusion of partial ionization affects the entropy profile dramatically, causing strong flux concentrations to form closer to the surface. We speculate that turbulence effects are needed to limit the strength of flux concentrations and homogenize the specific entropy to a stratification that is close to marginal.

  20. Toward multiscale modelings of grain-fluid systems

    NASA Astrophysics Data System (ADS)

    Chareyre, Bruno; Yuan, Chao; Montella, Eduard P.; Salager, Simon

    2017-06-01

    Computationally efficient methods have been developed for simulating partially saturated granular materials in the pendular regime. In contrast, one hardly avoid expensive direct resolutions of 2-phase fluid dynamics problem for mixed pendular-funicular situations or even saturated regimes. Following previous developments for single-phase flow, a pore-network approach of the coupling problems is described. The geometry and movements of phases and interfaces are described on the basis of a tetrahedrization of the pore space, introducing elementary objects such as bridge, meniscus, pore body and pore throat, together with local rules of evolution. As firmly established local rules are still missing on some aspects (entry capillary pressure and pore-scale pressure-saturation relations, forces on the grains, or kinetics of transfers in mixed situations) a multi-scale numerical framework is introduced, enhancing the pore-network approach with the help of direct simulations. Small subsets of a granular system are extracted, in which multiphase scenario are solved using the Lattice-Boltzman method (LBM). In turns, a global problem is assembled and solved at the network scale, as illustrated by a simulated primary drainage.

  1. Plasma processes in water under effect of short duration pulse discharges

    NASA Astrophysics Data System (ADS)

    Gurbanov, Elchin

    2013-09-01

    It is very important to get a clear water without any impurities and bacteria by methods, that don't change the physical and chemical indicators of water now. In this article the plasma processes during the water treatment by strong electric fields and short duration pulse discharges are considered. The crown discharge around an electrode with a small radius of curvature consists of plasma leader channels with a high conductivity, where the thermo ionization processes and UV-radiation are taken place. Simultaneously the partial discharges around potential electrode lead to formation of atomic oxygen and ozone. The spark discharge arises, when plasma leader channels cross the all interelectrode gap, where the temperature and pressure are strongly grown. As a result the shock waves and dispersing liquid streams in all discharge gap are formed. The plasma channels extend, pressure inside it becomes less than hydrostatic one and the collapse and UV-radiation processes are started. The considered physical processes can be successfully used as a basis for development of pilot-industrial installations for conditioning of drinking water and to disinfecting of sewage.

  2. High rates of non-adherence to antihypertensive treatment revealed by high-performance liquid chromatography-tandem mass spectrometry (HP LC-MS/MS) urine analysis

    PubMed Central

    Tomaszewski, Maciej; White, Christobelle; Patel, Prashanth; Masca, Nicholas; Damani, Ravi; Hepworth, Joanne; Samani, Nilesh J; Gupta, Pankaj; Madira, Webster; Stanley, Adrian; Williams, Bryan

    2014-01-01

    Objectives Non-adherence to therapy is an important cause of suboptimal blood pressure control but few practical tools exist to accurately and routinely detect it. We used a simple urine-based assay to evaluate the prevalence of antihypertensive treatment non-adherence and its impact on blood pressure in a specialist hypertension centre. Methods 208 hypertensive patients (125 new referrals, 66 follow-up patients with inadequate blood pressure control and 17 renal denervation referrals) underwent assessment of antihypertensive drug intake using high-performance liquid chromatography-tandem mass spectrometry (HP LC-MS/MS) urine analysis at the time of clinical appointment. A total of 40 most commonly prescribed antihypertensive medications (or their metabolites) were screened for in spot urine samples. Results Overall, 25% of patients were totally or partially non-adherent to antihypertensive treatment (total non-adherence 10.1%, partial non-adherence 14.9%). The highest prevalence of partial and total non-adherence was among follow-up patients with inadequate blood pressure control (28.8%) and those referred for consideration of renal denervation (23.5%), respectively. There was a linear relationship between blood pressure and the numerical difference in detected/prescribed antihypertensive medications—every unit increase in this difference was associated with 3.0 (1.1) mm Hg, 3.1 (0.7) mm Hg and 1.9 (0.7) mm Hg increase in adjusted clinic systolic blood pressure, clinic diastolic blood pressure (DBP) and 24 h mean daytime DBP (p=0.0051, p=8.62×10−6, p=0.0057), respectively. Conclusions Non-adherence to blood pressure lowering therapy is common, particularly in patients with suboptimal blood pressure control and those referred for renal denervation. HP LC-MS/MS urine analysis could be used to exclude non-adherence and better stratify further investigations and intervention. PMID:24694797

  3. Plant and environment interactions: Growth and yield response of commercial bearing-age {open_quote}Casselman{close_quote} plum trees to various ozone partial pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Retzlaff, W.A.; Williams, L.E.; DeJong, T.M.

    1997-05-01

    Nursery stock of plum (Prunus salicina Lindel., cv. Casselman) was planted 1 Apr. 1988 in an experimental orchard at the Univ. of California Kearney Agricultural Center near Fresno, CA. Trees in this study were enclosed in open-top fumigation chambers on 1 May 1989, and exposed to three atmospheric ozone partial pressures (charcoal filtered air, ambient air, and ambient air + ozone) during the 1989 through 1992 growing seasons (typically 1 Apr. - 1 Nov.). A nonchamber treatment plot was used to assess chamber effects on tree performance. This study details the results of the exposures during the initial commercial bearingmore » period (1991 through 1993) in this orchard. The mean 12-h (0800-2000 h Pacific Daylight Time [PDT]) ozone partial pressures during the experimental periods in the charcoal filtered, ambient, ambient + ozone, and nonchamber treatments averaged 0.031, 0.048, 0.091, and 0.056 {mu}Pa Pa{sup {minus}1} in 1991 and 1992, respectively. Fruit number per tree decreased as atmospheric ozone partial pressure increased from the charcoal filtered to ambient + ozone treatment, significantly affecting yield. Yield of plum trees averaged 23.6, 19.8, 13.7, and 17.9 kg tree{sup {minus}1} in 1991 and 1992 in the charcoal filtered, ambient, ambient + ozone, and nonchamber treatments, respectively. Only one out of the five original treatment plots was exposed to ozone treatments during the 1993 growing season. Yield of plum trees in this single replicate in 1993 was reduced by increased atmospheric ozone partial pressure. Yield of plum trees in the four remaining unexposed treatment plots in 1993 was 16.7, 17.9, and 16.0 kg tree{sup {minus}1} in the previous charcoal filtered, ambient, and ambient + ozone treatments respectively. The similarity in yield of the post-chamber treatments indicates that a change in air quality in the current growing season can affect yield of Casselman plum trees. 26 refs., 6 figs., 4 tabs.« less

  4. Partial melting of deeply subducted eclogite from the Sulu orogen in China

    PubMed Central

    Wang, Lu; Kusky, Timothy M.; Polat, Ali; Wang, Songjie; Jiang, Xingfu; Zong, Keqing; Wang, Junpeng; Deng, Hao; Fu, Jianmin

    2014-01-01

    We report partial melting of an ultrahigh pressure eclogite in the Mesozoic Sulu orogen, China. Eclogitic migmatite shows successive stages of initial intragranular and grain boundary melt droplets, which grow into a three-dimensional interconnected intergranular network, then segregate and accumulate in pressure shadow areas and then merge to form melt channels and dikes that transport magma to higher in the lithosphere. Here we show, using zircon U–Pb dating and petrological analyses, that partial melting occurred at 228–219 Myr ago, shortly after peak metamorphism at 230 Myr ago. The melts and residues are complimentarily enriched and depleted in light rare earth element (LREE) compared with the original rock. Partial melting of deeply subducted eclogite is an important process in determining the rheological structure and mechanical behaviour of subducted lithosphere and its rapid exhumation, controlling the flow of deep lithospheric material, and for generation of melts from the upper mantle, potentially contributing to arc magmatism and growth of continental crust. PMID:25517619

  5. Ru nucleation and thin film smoothness improvement with ammonia during chemical vapor deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Wen; Ekerdt, John G., E-mail: ekerdt@utexas.edu

    This study reports the use of ammonia to inhibit the growth of previously nucleated ruthenium islands and force the nucleation of additional islands such that thinner films form as the islands coalesce with continued growth. Ruthenium films are grown at 448 K in a chemical vapor deposition process on SiO{sub 2}/Si(001) using triruthenium dodecacarbonyl, Ru{sub 3}(CO){sub 12}, with and without a constant partial pressure of ammonia. Film growth was performed at a Ru{sub 3}(CO){sub 12}/Ar pressure of 47.2 mTorr. The ammonia partial pressure varied from 0 to 27.8 mTorr. X-ray photoelectron spectroscopy was used to analyze the samples in situ. Exmore » situ characterization included scanning electron microscopy, atomic force microscopy, and x-ray diffraction and x-ray reflectivity. Nucleation studies limited to the first 10 min of growth revealed the maximum nanoparticle (island) density of 8.1 × 10{sup 11 }cm{sup −2} occurred at an intermediate ammonia pressure (5.25 mTorr) compared to a density of 3.1 × 10{sup 11 }cm{sup −2} for no ammonia addition. Extending film growth to 120 min and varying the ammonia partial pressure during the first 10 min followed by 5.25 mTorr ammonia pressure for the final 110 min reveals the importance of nucleation on film smoothness. A model describing the inhibition effects of ammonia during nucleation and growth is presented.« less

  6. Sea-level haemoglobin concentration is associated with greater exercise capacity in Tibetan males at 4200 m.

    PubMed

    Wagner, P D; Simonson, T S; Wei, G; Wagner, H E; Wuren, T; Qin, G; Yan, M; Ge, R L

    2015-11-01

    What is the topic of this review? Recent developments link relatively lower hemoglobin concentration in Tibetans at high altitude to exercise capacity and components of oxygen transport. What advances does it highlight? Haemoglobin concentration (ranging from 15.2 to 22.9 g dl(-1) ) in Tibetan males was negatively associated with peak oxygen (O2 ) uptake per kilogram, cardiac output and muscle O2 diffusion conductance. Most variance in the peak O2 uptake per kilogram of Tibetan males was attributed to cardiac output, muscle diffusional conductance and arterial partial pressure of CO2 . The mechanisms underlying these differences in oxygen transport in Tibetans require additional analyses. Despite residence at >4000 m above sea level, many Tibetan highlanders, unlike Andean counterparts and lowlanders at altitude, exhibit haemoglobin concentration ([Hb]) within the typical sea-level range. Genetic adaptations in Tibetans are associated with this relatively low [Hb], yet the functional relevance of the lower [Hb] remains unknown. To address this, we examined each major step of the oxygen transport cascade [ventilation (VE), cardiac output (QT) and diffusional conductance in lung (DL) and muscle (DM)] in Tibetan males at maximal exercise on a cycle ergometer. Ranging from 15.2 to 22.9 g dl(-1) , [Hb] was negatively associated with peak O2 uptake per kilogram (r = -0.45, P < 0.05) and both cardiac output (QT/kg: r = -0.54, P < 0.02) and muscle O2 diffusion conductance (DM/kg: r = -0.44, P < 0.05) but not ventilation, arterial partial pressure of O2 or pulmonary diffusing capacity. Most variance in peak O2 uptake per kilogram was attributed to QT, DM and arterial partial pressure of CO2 (r(2)  = 0.90). In summary, lack of polycythaemia in Tibetans is associated with increased exercise capacity, which is explained by elevated cardiac, muscle and, to a small extent, ventilatory responses rather than pulmonary gas exchange. Whether lower [Hb] is the cause or result of these changes in O2 transport or is causally unrelated will require additional study. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.

  7. Field ion microscopic studies of the CO oxidation on platinum: Bistability and oscillations

    NASA Astrophysics Data System (ADS)

    Gorodetskii, V.; Drachsel, W.; Ehsasi, M.; Block, J. H.

    1994-05-01

    The oscillating CO oxidation is investigated on a Pt-field emitter tip by using the field ion mode of surface imaging of Oad sites with O2 as imaging gas. Based on data of the titration reactions [V. Gorodetskii, W. Drachsel, and J. H. Block, J. Chem. Phys. 100, C. E. UPDATE (1994)], external control parameters for the regions of bistability and of self-sustained isothermal oscillations could be found. On a field emitter tip, oscillations can be generated in a rather large parameter space. The anticlockwise hysteresis of O+2 ion currents in temperature cycles occurs in agreement with results on single crystal planes. Unexpected regular oscillation sequences could occasionally be obtained on the small surface areas of a field emitter tip and measured as function of the CO partial pressure and of the temperature. Different stages within oscillating cycles were documented by field ion images. Oscillations of total ion currents are correlated with variations in the spatial brightness of field ion images. In the manifold of single crystal planes of a field emitter {331} planes around the {011} regions are starting points for oscillations which mainly proceed along [100] vicinals. This excludes the {111} regions from autonomous oscillations. With slightly increased CO partial pressures fast local oscillations at a few hundred surface sites of the Pt(001) plane display short-living CO islands of 40 to 50 Å diameter. Temporal oscillations of the total O+2 ion current are mainly caused by surface plane specific spatial oscillations. The synchronization is achieved by diffusion reaction fronts rather than by gas phase synchronization.

  8. The defect chemistry of UO2 ± x from atomistic simulations

    NASA Astrophysics Data System (ADS)

    Cooper, M. W. D.; Murphy, S. T.; Andersson, D. A.

    2018-06-01

    Control of the defect chemistry in UO2 ± x is important for manipulating nuclear fuel properties and fuel performance. For example, the uranium vacancy concentration is critical for fission gas release and sintering, while all oxygen and uranium defects are known to strongly influence thermal conductivity. Here the point defect concentrations in thermal equilibrium are predicted using defect energies from density functional theory (DFT) and vibrational entropies calculated using empirical potentials. Electrons and holes have been treated in a similar fashion to other charged defects allowing for structural relaxation around the localized electronic defects. Predictions are made for the defect concentrations and non-stoichiometry of UO2 ± x as a function of oxygen partial pressure and temperature. If vibrational entropy is omitted, oxygen interstitials are predicted to be the dominant mechanism of excess oxygen accommodation over only a small temperature range (1265 K-1350 K), in contrast to experimental observation. Conversely, if vibrational entropy is included oxygen interstitials dominate from 1165 K to 1680 K (Busker potential) or from 1275 K to 1630 K (CRG potential). Below these temperature ranges, excess oxygen is predicted to be accommodated by uranium vacancies, while above them the system is hypo-stoichiometric with oxygen deficiency accommodated by oxygen vacancies. Our results are discussed in the context of oxygen clustering, formation of U4O9, and issues for fuel behavior. In particular, the variation of the uranium vacancy concentrations as a function of temperature and oxygen partial pressure will underpin future studies into fission gas diffusivity and broaden the understanding of UO2 ± x sintering.

  9. Inaccuracy of a physical strain trainer for the monitoring of partial weight bearing.

    PubMed

    Pauser, Johannes; Jendrissek, Andreas; Swoboda, Bernd; Gelse, Kolja; Carl, Hans-Dieter

    2011-11-01

    To investigate the use of a physical strain trainer for the monitoring of partial weight bearing. Case series with healthy volunteers. Orthopedic clinic. Healthy volunteers (N=10) with no history of foot complaints. Volunteers were taught to limit weight bearing to 10% body weight (BW) and 50% BW, monitored by a physical strain trainer. The parameters peak pressure, maximum force, force-time integral, and pressure-time integral were assessed by dynamic pedobarography when volunteers walked with full BW (condition 1), 50% BW (condition 2), and 10% BW (condition 3). With 10% BW (condition 3), forces with normative gait (condition 1) were statistically significantly reduced under the hindfoot where the physical strain trainer is placed. All pedobarographic parameters were, however, exceeded when the total foot was measured. A limitation to 10% BW with the physical strain trainer (condition 3) was equal to a bisection of peak pressure and maximum force for the total foot with normative gait (condition 1). Halved BW (condition 2) left a remaining mean 82% of peak pressure and mean 59% of maximum force from full BW (condition 1). The concept of controlling partial weight bearing with the hindfoot-addressing device does not represent complete foot loading. Such devices may be preferably applied in cases when the hindfoot in particular must be off-loaded. Other training devices (eg, biofeedback soles) that monitor forces of the total foot have to be used to control partial weight bearing of the lower limb accurately. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  10. Sensor for measuring hydrogen partial pressure in parabolic trough power plant expansion tanks

    NASA Astrophysics Data System (ADS)

    Glatzmaier, Greg C.; Cooney, Daniel A.

    2017-06-01

    The National Renewable Energy Laboratory and Acciona Energy North America are working together to design and implement a process system that provides a permanent solution to the issue of hydrogen buildup at parabolic trough power plants. We are pursuing a method that selectively removes hydrogen from the expansion tanks that serve as reservoirs for the heat transfer fluid (HTF) that circulates in the collector field and power block components. Our modeling shows that removing hydrogen from the expansion tanks at a design rate reduces and maintains dissolved hydrogen in the circulating HTF to a selected target level. Our collaborative work consists of several tasks that are needed to advance this process concept to a development stage, where it is ready for implementation at a commercial power plant. Our main effort is to design and evaluate likely process-unit operations that remove hydrogen from the expansion tanks at a specified rate. Additionally, we designed and demonstrated a method and instrumentation to measure hydrogen partial pressure and concentration in the expansion-tank headspace gas. We measured hydrogen partial pressure in the headspace gas mixture using a palladium-alloy membrane, which is permeable exclusively to hydrogen. The membrane establishes a pure hydrogen gas phase that is in equilibrium with the hydrogen in the gas mixture. We designed and fabricated instrumentation, and demonstrated its effectiveness in measuring hydrogen partial pressures over a range of three orders of magnitude. Our goal is to install this instrument at the Nevada Solar One power plant and to demonstrate its effectiveness in measuring hydrogen levels in the expansion tanks under normal plant operating conditions.

  11. Average rainwater pH, concepts of atmospheric acidity, and buffering in open systems

    NASA Astrophysics Data System (ADS)

    Liljestrand, Howard M.

    The system of water equilibrated with a constant partial pressure of CO 2, as a reference point for pH acidity-alkalinity relationships, has nonvolatile acidity and alkalinity components as conservative quantities, but not [H +]. Simple algorithms are presented for the determination of the average pH for combinations of samples both above and below pH 5.6. Averaging the nonconservative quantity [H +] yields erroneously low mean pH values. To extend the open CO 2 system to include other volatile atmospheric acids and bases distributed among the gas, liquid and particulate matter phases, a theoretical framework for atmospheric acidity is presented. Within certain oxidation-reduction limitations, the total atmospheric acidity (but not free acidity) is a conservative quantity. The concept of atmospheric acidity is applied to air-water systems approximating aerosols, fogwater, cloudwater and rainwater. The buffer intensity in hydrometeors is described as a function of net strong acidity, partial pressures of acid and base gases and the water to air ratio. For high liquid to air volume ratios, the equilibrium partial pressures of trace acid and base gases are set by the pH or net acidity controlled by the nonvolatile acid and base concentrations. For low water to air volume ratios as well as stationary state systems such as precipitation scavenging with continuous emissions, the partial pressures of trace gases (NH 3, HCl, HNO 3, SO 2 and CH 3COOH) appear to be of greater or equal importance as carbonate species as buffers in the aqueous phase.

  12. Impact of the hydrogen partial pressure on lactate degradation in a coculture of Desulfovibrio sp. G11 and Methanobrevibacter arboriphilus DH1.

    PubMed

    Junicke, H; Feldman, H; van Loosdrecht, M C M; Kleerebezem, R

    2015-04-01

    In this study, the impact of the hydrogen partial pressure on lactate degradation was investigated in a coculture of Desulfovibrio sp. G11 and Methanobrevibacter arboriphilus DH1. To impose a change of the hydrogen partial pressure, formate was added to the reactor. Hydrogen results from the bioconversion of formate besides lactate in the liquid phase. In the presence of a hydrogen-consuming methanogen, this approach allows for a better estimation of low dissolved hydrogen concentrations than under conditions where hydrogen is supplied externally from the gas phase, resulting in a more accurate determination of kinetic parameters. A change of the hydrogen partial pressure from 1,200 to 250 ppm resulted in a threefold increase of the biomass-specific lactate consumption rate. The 50 % inhibition constant of hydrogen on lactate degradation was determined as 0.692 ± 0.064 μM dissolved hydrogen (831 ± 77 ppm hydrogen in the gas phase). Moreover, for the first time, the maximum biomass-specific lactate consumption rate of Desulfovibrio sp. G11 (0.083 ± 0.006 mol-Lac/mol-XG11/h) and the affinity constant for hydrogen uptake of Methanobrevibacter arboriphilus DH1 (0.601 ± 0.022 μM dissolved hydrogen) were determined. Contrary to the widely established view that the biomass-specific growth rate of a methanogenic coculture is determined by the hydrogen-utilizing partner; here, it was found that the hydrogen-producing bacterium determined the biomass-specific growth rate of the coculture grown on lactate and formate.

  13. Electrical and optical properties of nitrogen doped SnO{sub 2} thin films deposited on flexible substrates by magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Feng, E-mail: fangfeng@seu.edu.cn; Zhang, Yeyu; Wu, Xiaoqin

    2015-08-15

    Graphical abstract: The best SnO{sub 2}:N TCO film: about 80% transmittance and 9.1 × 10{sup −4} Ω cm. - Highlights: • Nitrogen-doped tin oxide film was deposited on PET by RF-magnetron sputtering. • Effects of oxygen partial pressure on the properties of thin films were investigated. • For SnO{sub 2}:N film, visible light transmittance was 80% and electrical resistivity was 9.1 × 10{sup −4} Ω cm. - Abstract: Nitrogen-doped tin oxide (SnO{sub 2}:N) thin films were deposited on flexible polyethylene terephthalate (PET) substrates at room temperature by RF-magnetron sputtering. Effects of oxygen partial pressure (0–4%) on electrical and optical propertiesmore » of thin films were investigated. Experimental results showed that SnO{sub 2}:N films were amorphous state, and O/Sn ratios of SnO{sub 2}:N films were deviated from the standard stoichiometry 2:1. Optical band gap of SnO{sub 2}:N films increased from approximately 3.10 eV to 3.42 eV as oxygen partial pressure increased from 0% to 4%. For SnO{sub 2}:N thin films deposited on PET, transmittance was about 80% in the visible light region. The best transparent conductive oxide (TCO) deposited on flexible PET substrates was SnO{sub 2}:N thin films preparing at 2% oxygen partial pressure, the transmittance was about 80% and electrical conductivity was about 9.1 × 10{sup −4} Ω cm.« less

  14. Influence of Oxygen Partial Pressure during Processing on the Thermoelectric Properties of Aerosol-Deposited CuFeO2

    PubMed Central

    Stöcker, Thomas; Exner, Jörg; Schubert, Michael; Streibl, Maximilian; Moos, Ralf

    2016-01-01

    In the field of thermoelectric energy conversion, oxide materials show promising potential due to their good stability in oxidizing environments. Hence, the influence of oxygen partial pressure during synthesis on the thermoelectric properties of Cu-Delafossites at high temperatures was investigated in this study. For these purposes, CuFeO2 powders were synthetized using a conventional mixed-oxide technique. X-ray diffraction (XRD) studies were conducted to determine the crystal structures of the delafossites associated with the oxygen content during the synthesis. Out of these powders, films with a thickness of about 25 µm were prepared by the relatively new aerosol-deposition (AD) coating technique. It is based on a room temperature impact consolidation process (RTIC) to deposit dense solid films of ceramic materials on various substrates without using a high-temperature step during the coating process. On these dense CuFeO2 films deposited on alumina substrates with electrode structures, the Seebeck coefficient and the electrical conductivity were measured as a function of temperature and oxygen partial pressure. We compared the thermoelectric properties of both standard processed and aerosol deposited CuFeO2 up to 900 °C and investigated the influence of oxygen partial pressure on the electrical conductivity, on the Seebeck coefficient and on the high temperature stability of CuFeO2. These studies may not only help to improve the thermoelectric material in the high-temperature case, but may also serve as an initial basis to establish a defect chemical model. PMID:28773351

  15. Incorporating partially identified sample segments into acreage estimation procedures: Estimates using only observations from the current year

    NASA Technical Reports Server (NTRS)

    Sielken, R. L., Jr. (Principal Investigator)

    1981-01-01

    Several methods of estimating individual crop acreages using a mixture of completely identified and partially identified (generic) segments from a single growing year are derived and discussed. A small Monte Carlo study of eight estimators is presented. The relative empirical behavior of these estimators is discussed as are the effects of segment sample size and amount of partial identification. The principle recommendations are (1) to not exclude, but rather incorporate partially identified sample segments into the estimation procedure, (2) try to avoid having a large percentage (say 80%) of only partially identified segments, in the sample, and (3) use the maximum likelihood estimator although the weighted least squares estimator and least squares ratio estimator both perform almost as well. Sets of spring small grains (North Dakota) data were used.

  16. Proximate nutritional composition of CELSS crops grown at different CO2 partial pressures

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Mackowiak, C. L.; Sager, J. C.; Knott, W. M.; Berry, W. L.

    1994-01-01

    Two Controlled Ecological Life Support System (CELSS) candidate crops, soybean (Glycine max) and potato (Solanum tuberosum), were grown hydroponically in controlled environments maintained at carbon dioxide (CO2) partial pressures ranging from 0.05 to 1.00 kPa (500 to 10,000 ppm at 101 kPa atmospheric pressure). Plants were harvested at maturity (90 days for soybean and 105 days for potato) and all tissues analyzed for proximate nutritional composition (i.e. protein, fat, carbohydrate, crude fiber, and ash content). Soybean seed ash and crude fiber were higher and carbohydrate was lower than values reported for field-grown seed. Potato tubers showed little difference from field-grown tubers. Crude fiber of soybean stems and leaves increased with increased CO2, as did soybean leaf protein (total nitrogen). Potato leaf and stem (combined) protein levels also increased with increased CO2, while leaf and stem carbohydrates decreased. Values for leaf and stem protein and ash were higher than values generally reported for field-grown plants for both species. Results suggest that CO2 partial pressure should have little influence on proximate composition of potato tubers or soybean seed, but that high ash and protein levels might be expected from leaves and stems of crops grown in controlled environments of a CELSS.

  17. Cardiovascular autonomic adaptation in lunar and martian gravity during parabolic flight.

    PubMed

    Widjaja, Devy; Vandeput, Steven; Van Huffel, Sabine; Aubert, André E

    2015-06-01

    Weightlessness has a well-known effect on the autonomic control of the cardiovascular system. With future missions to Mars in mind, it is important to know what the effect of partial gravity is on the human body. We aim to study the autonomic response of the cardiovascular system to partial gravity levels, as present on the Moon and on Mars, during parabolic flight. ECG and blood pressure were continuously recorded during parabolic flight. A temporal analysis of blood pressure and heart rate to changing gravity was conducted to study the dynamic response. In addition, cardiovascular autonomic control was quantified by means of heart rate (HR) and blood pressure (BP) variability measures. Zero and lunar gravity presented a biphasic cardiovascular response, while a triphasic response was noted during martian gravity. Heart rate and blood pressure are positively correlated with gravity, while the general variability of HR and BP, as well as vagal indices showed negative correlations with increasing gravity. However, the increase in vagal modulation during weightlessness is not in proportion when compared to the increase during partial gravity. Correlations were found between the gravity level and modulations in the autonomic nervous system during parabolic flight. Nevertheless, with future Mars missions in mind, more studies are needed to use these findings to develop appropriate countermeasures.

  18. Effect of oxygen partial pressure on oxidation of Mo-metal

    NASA Astrophysics Data System (ADS)

    Sharma, Rabindar Kumar; Kumar, Prabhat; Singh, Megha; Gopal, Pawar; Reddy, G. B.

    2018-05-01

    This report explains the effect of oxygen partial pressure (PO2 ) on oxidation of Mo-metal in oxygen plasma. XRD results indulge that oxide layers formed on Mo-surfaces at different oxygen partial pressures have two different oxide phases (i.e. orthorhombic MoO3 and monoclinic Mo8O23). Intense XRD peaks at high pressure (i.e. 2.0×10-1 Torr) points out the formation of thick oxide layer on Mo-surface due to presence of large oxygen species in chamber and less oxide volatilization. Whereas, at low PO2 (6.5×10-2 and 7.5×10-2 Torr.) the reduced peak strength is owing to high oxide volatilization rate. SEM micrographs and thickness measurements also support XRD results and confirm that the optimum -2value of PO2 to deposited thicker and uniform oxide film on glass substrate is 7.5×10-2 Torr through plasma assistedoxidation process. Further to study the compositional properties, EDX of the sample M2 (the best sample) is carried out, which confirms that the stoichiometric ratio is less than 3 (i.e. 2.88). Less stoichiometric ratio again confirms the presence of sub oxides in oxide layers on Mo metal as evidenced by XRD results. All the observed results are well in consonance with each other.

  19. Joining of alumina via copper/niobium/copper interlayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marks, Robert A.; Chapman, Daniel R.; Danielson, David T.

    2000-03-15

    Alumina has been joined at 1150 degrees C and 1400 degrees C using multilayer copper/niobium/copper interlayers. Four-point bend strengths are sensitive to processing temperature, bonding pressure, and furnace environment (ambient oxygen partial pressure). Under optimum conditions, joints with reproducibly high room temperature strengths (approximately equal 240 plus/minus 20 MPa) can be produced; most failures occur within the ceramic. Joints made with sapphire show that during bonding an initially continuous copper film undergoes a morphological instability, resulting in the formation of isolated copper-rich droplets/particles at the sapphire/interlayer interface, and extensive regions of direct bonding between sapphire and niobium. For optimized aluminamore » bonds, bend tests at 800 degrees C-1100 degrees C indicate significant strength is retained; even at the highest test temperature, ceramic failure is observed. Post-bonding anneals at 1000 degrees C in vacuum or in gettered argon were used to assess joint stability and to probe the effect of ambient oxygen partial pressure on joint characteristics. Annealing in vacuum for up to 200 h causes no significant decrease in room temperature bend strength or change in fracture path. With increasing anneal time in a lower oxygen partial pressure environment, the fracture strength decreases only slightly, but the fracture path shifts from the ceramic to the interface.« less

  20. Ballooning instabilities in tokamaks with sheared toroidal flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waelbroeck, F.L.; Chen, L.

    1990-11-01

    The stability of ballooning modes in the presence of sheared toroidal flows is investigated. The eigenmodes are shown to be related by a Fourier transformation to the non-exponentially growing Floquet solutions found by Cooper. It is further shown that the problem cannot be reduced further than to a two dimensional partial differential equation. Next, the generalized ballooning equation is solved analytically for a circular tokamak equilibrium with sonic flows, but with a small rotation shear compared to the sound speed. With this ordering, the centrifugal forces are comparable to the pressure gradient forces driving the instability, but coupling of themore » mode with the sound wave is avoided. A new stability criterion is derived which explicitly demonstrates that flow shear is stabilizing at constant centrifugal force gradient. 34 refs.« less

  1. Changes in Contact Area in Meniscus Horizontal Cleavage Tears Subjected to Repair and Resection.

    PubMed

    Beamer, Brandon S; Walley, Kempland C; Okajima, Stephen; Manoukian, Ohan S; Perez-Viloria, Miguel; DeAngelis, Joseph P; Ramappa, Arun J; Nazarian, Ara

    2017-03-01

    To assess the changes in tibiofemoral contact pressure and contact area in human knees with a horizontal cleavage tear before and after treatment. Ten human cadaveric knees were tested. Pressure sensors were placed under the medial meniscus and the knees were loaded at twice the body weight for 20 cycles at 0°, 10°, and 20° of flexion. Contact area and pressure were recorded for the intact meniscus, the meniscus with a horizontal cleavage tear, after meniscal repair, after partial meniscectomy (single leaflet), and after subtotal meniscectomy (double leaflet). The presence of a horizontal cleavage tear significantly increased average peak contact pressure and reduced effective average tibiofemoral contact area at all flexion angles tested compared with the intact state (P < .03). There was approximately a 70% increase in contact pressure after creation of the horizontal cleavage tear. Repairing the horizontal cleavage tear restored peak contact pressures and areas to within 15% of baseline, statistically similar to the intact state at all angles tested (P < .05). Partial meniscectomy and subtotal meniscectomy significantly increased average peak contact pressure and reduced average contact area at all degrees of flexion compared with the intact state (P < .05). The presence of a horizontal cleavage tear in the medial meniscus causes a significant reduction in contact area and a significant elevation in contact pressure. These changes may accelerate joint degeneration. A suture-based repair of these horizontal cleavage tears returns the contact area and contact pressure to nearly normal, whereas both partial and subtotal meniscectomy lead to significant reductions in contact area and significant elevations in contact pressure within the knee. Repairing horizontal cleavage tears may lead to improved clinical outcomes by preserving meniscal tissue and the meniscal function. Understanding contact area and peak contact pressure resulting from differing strategies for treating horizontal cleavage tears will allow the surgeon to evaluate the best strategy for treating his or her patients who present with this meniscal pathology. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  2. Film evaporation MEMS thruster array for micropropulsion

    NASA Astrophysics Data System (ADS)

    Cofer, Anthony G.

    Current small sat propulsion systems require a substantial mass fraction of the vehicle involving tradeoffs between useful payload mass and maneuverability. This is also an issue with available attitude control systems which are either quickly saturated reaction wheels or movable high drag surfaces with long response times. What is needed is a low mass low power self-contained propulsion unit that can be easily installed and modeled. The proposed Film-Evaporation MEMS Tunable Array (FEMTA), exploits the small scale surface tension effect in conjunction with temperature dependent vapor pressure to realize a thermal valving system. The local vapor pressure is increased by resistive film heating until it exceeds meniscus strength in the nozzle inducing vacuum boiling which provides a stagnation pressure equal to vapor pressure at that point which is used for propulsion. The heat of vaporization is drawn from the bulk fluid and is replaced by either an integrated heater or waste heat from the vehicle. Proof of concept was initially achieved with a macroscale device made possible by using ethylene glycol, which has a low vapor pressure and high surface tension, as the working fluid. Both the thermal valving effect and cooling feature were demonstrated though at reduced performance than would be expected for water. Three generations of prototype FEMTA devices have been fabricated at Birck Nanotechnology Center on 200 and 500 micrometer thick silicon wafers. Preliminary testing on first generation models had tenuously demonstrated behavior consistent with the macroscale tests but there was not enough data for solid confirmation. Some reliability issues had arisen with the integrated heaters which were only partially alleviated in the second generation of FEMTAs. This led to a third generation and two changes in heater material until a chemically resilient material was found. The third generation of microthrusters were tested on the microNewton thrust stand at Purdue's High Vacuum Lab and confirmed the thermal valving concept. The microthrusters will also undergo thermal testing at the Goddard Space Flight Centers' ThermalVac environmental testing facility whenever device lifetime can be extended to the several week time frame needed to provide reliable data.

  3. Cerebral Hemodynamic Effects of Acute Hyperoxia and Hyperventilation after Severe Traumatic Brain Injury

    PubMed Central

    Rangel-Castilla, Leonardo; Lara, Lucia Rivera; Gopinath, Shankar; Swank, Paul R.; Valadka, Alex

    2010-01-01

    Abstract The purpose of this study was to examine the effects of hyperventilation or hyperoxia on cerebral hemodynamic parameters over time in patients with severe traumatic brain injury (TBI). We prospectively studied 186 patients with severe TBI. CO2 and O2 reactivity tests were conducted twice a day on days 1–5 and once daily on days 6–10 after injury. During hyperventilation there was a significant decrease in intracranial pressure (ICP), mean arterial pressure (MAP), jugular venous oxygen saturation (Sjvo2), brain tissue Po2 (Pbto2), and flow velocity (FV). During hyperoxia there was an increase in Sjvo2 and Pbto2, and a small but consistent decrease in ICP, end-tidal carbon dioxide (etco2), partial arterial carbon dioxide pressure (Paco2), and FV. Brain tissue oxygen reactivity during the first 12 h after injury averaged 19.7 ± 3.0%, and slowly decreased over the next 7 days. The autoregulatory index (ARI; normal = 5.3 ± 1.3) averaged 2.2 ± 1.5 on day 1 post-injury, and gradually improved over the 10 days of monitoring. The ARI significantly improved during hyperoxia, by an average of 0.4 ± 1.8 on the left, and by 0.5 ± 1.8 on the right. However, the change in ARI with hyperoxia was much smaller than that observed with hyperventilation. Hyperventilation increased ARI by an average of 1.3 ± 1.9 on the left, and 1.5 ± 2.0 on the right. Pressure autoregulation, as assessed by dynamic testing, was impaired in these head-injured patients. Acute hyperoxia significantly improved pressure autoregulation, although the effect was smaller than that induced by hyperventilation. The very small change in Paco2 induced by hyperoxia does not appear to explain this finding. Rather, the vasoconstriction induced by acute hyperoxia may allow the cerebral vessels to respond better to transient hypotension. Further studies are needed to define the clinical significance of these observations. PMID:20684672

  4. Morphological studies of laser-induced photoacoustic damage

    NASA Astrophysics Data System (ADS)

    Flotte, Thomas J.; Yashima, Yutaka; Watanabe, Shinichi; McAuliffe, Daniel J., Sr.; Jacques, Steven L.

    1990-06-01

    Argon-fluoride excimer laser ablation of stratum comeum causes deeper tissue damage than expected for thermal or photochemical mechanisms, suggesting thatphotoacoustic waves have arole in tissue damage. Laserirradiation (193 nm, 14 ns pulses, 1-2 Hz) attworadiantexposures, 60 and 160 mJ/cm2perpulse was usedto ablate the stratumcomeumofskin. Light and electron microscopy ofimmediate biopsies demonstrated damage to fibroblasts as deep as 88 and 220 jun, respectively, below the ablation site. Ablation throughwaterwas usedtoinertially confine the ablation zone. Partial ablationofs.c. through airproducedno damage, whereas partial ablation through water damaged skin to amean depth of 1 14.5 8.8( Full thickness ablation of s.c. through air and water produced damage zones measuring 192.2 16.2 and 293.0 71.6 rim, respectively (p <0.05). The increased depth ofdamage in the presence ofinertial confinementprovided by the layer of water strongly supports a photoacoustic mechanism ofdamage. The depths ofdamage for thelarge spot, line, and small spots were 43 1 164 urn, 269 96xni, andno damage. The spot size dependence ofthedepthofdamage is consistentwiththe geometric attenuation one would expect to be present from a pressure wave related phenomena. Sequential biopsies were taken over a 7 day period for light and transmission electron microscopy. At 24 hours, there was necrosis of the epidermis and papillary dermis subjacent to the ablation site, with neutrophils surrounding and demarcating the affected area. The necrotic zone sloughedby48 hours. Thereepithelializationwas completeby7 days. The sequenceofrepairis similartoknife wound healing which we have previously studied, and is analogous to other wound healing processes. We have used an experimental model of ArF excimer laser ablation of stratum corneum to investigate laser-induced photoacoustic damage. The evidence for the injury being due to pressure transients is indirectbutcompelling. Whether these pressuretransients are acoustic transients orshockwaves has notbeendetermined, although itis ourprejudicethatshockwaves are the predominant force under these conditions. It is important to consider the possible effects of pressure transients in evaluating laser-tissue interactions, particularly when using short pulse, high peak power lasers.

  5. Sickling of red blood cells through rapid oxygen exchange in microfluidic drops.

    PubMed

    Abbyad, Paul; Tharaux, Pierre-Louis; Martin, Jean-Louis; Baroud, Charles N; Alexandrou, Antigoni

    2010-10-07

    We have developed a microfluidic approach to study the sickling of red blood cells associated with sickle cell anemia by rapidly varying the oxygen partial pressure within flowing microdroplets. By using the perfluorinated carrier oil as a sink or source of oxygen, the oxygen level within the water droplets quickly equilibrates through exchange with the surrounding oil. This provides control over the oxygen partial pressure within an aqueous drop ranging from 1 kPa to ambient partial pressure, i.e. 21 kPa. The dynamics of the oxygen exchange is characterized through fluorescence lifetime measurements of a ruthenium compound dissolved in the aqueous phase. The gas exchange is shown to occur primarily during and directly after droplet formation, in 0.1 to 0.5 s depending on the droplet diameter and speed. The controlled deoxygenation is used to trigger the polymerization of hemoglobin within sickle red blood cells, encapsulated in drops. This process is observed using polarization microscopy, which yields a robust criterion to detect polymerization based on transmitted light intensity through crossed polarizers.

  6. Effect of oxygen partial pressure on the density of antiphase boundaries in Fe3O4 thin films on Si(100)

    NASA Astrophysics Data System (ADS)

    Singh, Suraj Kumar; Husain, Sajid; Kumar, Ankit; Chaudhary, Sujeet

    2018-02-01

    Polycrystalline Fe3O4 thin films were grown on Si(100) substrate by reactive DC sputtering at different oxygen partial pressures PO2 for controlling the growth associated density of antiphase boundaries (APBs). The micro-Raman analyses were performed to study the structural and electronic properties in these films. The growth linked changes in the APBs density are probed by electron-phonon coupling strength (λ) and isothermal magnetization measurements. The estimated values of λ are found to vary from 0.39 to 0.56 with the increase in PO2 from 2.2 × 10-5 to 3.0 × 10-5 Torr, respectively. The saturation magnetization (saturation field) values are found to increase (decrease) from 394 (5.9) to 439 (3.0) emu/cm3 (kOe) with the increase in PO2 . The sharp Verwey transition (∼120 K), low saturation field, high saturation magnetization and low value of λ (comparable to the bulk value ∼0.51) clearly affirm the negligible amount of APBs in the high oxygen partial pressure deposited thin films.

  7. Oxygen partial pressure dependence of thermoelectric power factor in polycrystalline n-type SrTiO3: Consequences for long term stability in thermoelectric oxides

    NASA Astrophysics Data System (ADS)

    Sharma, Peter A.; Brown-Shaklee, Harlan J.; Ihlefeld, Jon F.

    2017-04-01

    The Seebeck coefficient and electrical conductivity have been measured as functions of oxygen partial pressure over the range of 10-22 to 10-1 atm at 1173 K for a 10% niobium-doped SrTiO3 ceramic with a grain size comparable to the oxygen diffusion length. Temperature-dependent measurements performed from 320 to 1275 K for as-prepared samples reveal metallic-like conduction and good thermoelectric properties. However, upon exposure to progressively increasing oxygen partial pressure, the thermoelectric power factor decreased over time scales of 24 h, culminating in a three order of magnitude reduction over the entire operating range. Identical measurements on single crystal samples show negligible changes in the power factor so that the instability of ceramic samples is primarily tied to the kinetics of grain boundary diffusion. This work provides a framework for understanding the stability of thermoelectric properties in oxides under different atmospheric conditions. The control of the oxygen atmosphere remains a significant challenge in oxide thermoelectrics.

  8. A Model for the Oxidation of Carbon Silicon Carbide Composite Structures

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.

    2004-01-01

    A mathematical theory and an accompanying numerical scheme have been developed for predicting the oxidation behavior of carbon silicon carbide (C/SiC) composite structures. The theory is derived from the mechanics of the flow of ideal gases through a porous solid. The result of the theoretical formulation is a set of two coupled nonlinear differential equations written in terms of the oxidant and oxide partial pressures. The differential equations are solved simultaneously to obtain the partial vapor pressures of the oxidant and oxides as a function of the spatial location and time. The local rate of carbon oxidation is determined using the map of the local oxidant partial vapor pressure along with the Arrhenius rate equation. The nonlinear differential equations are cast into matrix equations by applying the Bubnov-Galerkin weighted residual method, allowing for the solution of the differential equations numerically. The numerical method is demonstrated by utilizing the method to model the carbon oxidation and weight loss behavior of C/SiC specimens during thermogravimetric experiments. The numerical method is used to study the physics of carbon oxidation in carbon silicon carbide composites.

  9. Surface reconstruction of GaAs(001) nitrided under the controlled As partial pressure [rapid communication

    NASA Astrophysics Data System (ADS)

    Imayoshi, Takahiro; Oigawa, Haruhiro; Shigekawa, Hidemi; Tokumoto, Hiroshi

    2003-08-01

    Under the controlled As partial pressure, the nitridation process of GaAs(0 0 1)-(2 × 4) surface was studied using a scanning tunneling microscope (STM) combined with an electron cyclotron resonance plasma-assisted molecular beam epitaxy system. With either prolonging the nitridation time or decreasing the As partial pressure, the previously reported (3 × 3) structure with two dimers per surface cell ((3 × 3)-2D) was found to progressively convert into a new (3 × 3) structure characterized by one dimer per surface cell ((3 × 3)-1D). Reversely the exposure to arsenic transformed the structure from (3 × 3)-1D to (3 × 3)-2D, suggesting that the topmost layer is composed of As 2-dimers. Based on these STM images together with the X-ray photoelectron spectroscopy data, we propose the new As 2-dimer coverage models to explain both (3 × 3)-1D and -2D structures involving the exchange reaction of arsenic with nitrogen in the subsurface region of GaAs.

  10. Impact of Partial Time Delay on Temporal Dynamics of Watts-Strogatz Small-World Neuronal Networks

    NASA Astrophysics Data System (ADS)

    Yan, Hao; Sun, Xiaojuan

    2017-06-01

    In this paper, we mainly discuss effects of partial time delay on temporal dynamics of Watts-Strogatz (WS) small-world neuronal networks by controlling two parameters. One is the time delay τ and the other is the probability of partial time delay pdelay. Temporal dynamics of WS small-world neuronal networks are discussed with the aid of temporal coherence and mean firing rate. With the obtained simulation results, it is revealed that for small time delay τ, the probability pdelay could weaken temporal coherence and increase mean firing rate of neuronal networks, which indicates that it could improve neuronal firings of the neuronal networks while destroying firing regularity. For large time delay τ, temporal coherence and mean firing rate do not have great changes with respect to pdelay. Time delay τ always has great influence on both temporal coherence and mean firing rate no matter what is the value of pdelay. Moreover, with the analysis of spike trains and histograms of interspike intervals of neurons inside neuronal networks, it is found that the effects of partial time delays on temporal coherence and mean firing rate could be the result of locking between the period of neuronal firing activities and the value of time delay τ. In brief, partial time delay could have great influence on temporal dynamics of the neuronal networks.

  11. 46 CFR 39.30-1 - Operational requirements-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... oxygen content of each area of that tank formed by each partial bulkhead must be measured at a point one... the requirements of this part. (b) The pressure drop through the vapor collection system from the most... rate versus the pressure drop. (c) If a vessel carries vapor hoses, the pressure drop through the hoses...

  12. On the formation of continental silicic melts in thermochemical mantle convection models: implications for early Earth

    NASA Astrophysics Data System (ADS)

    van Thienen, P.; van den Berg, A. P.; Vlaar, N. J.

    2004-12-01

    Important constituents of Archean cratons, formed in the early and hot history of the Earth, are Tonalite-Trondhjemite-Granodiorite (TTG) plutons and greenstone belts. The formation of these granite-greenstone terrains is often ascribed to plate-tectonic processes. Buoyancy considerations, however, do not allow plate tectonics to take place in a significantly hotter Earth. We therefore propose an alternative mechanism for the coeval and proximate production of TTG plutons and greenstone-like crustal successions. That is, when a locally anomalously thick basaltic crust has been produced by continued addition of extrusive or intrusive basalts due to partial melting of the underlying convecting mantle, the transition of a sufficient amount of basalt in the lower crust to eclogite may trigger a resurfacing event, in which a complete crustal section of over 1000 km long sinks into the mantle in less than 2 million years. Pressure release partial melting in the complementary upwelling mantle produces large volumes of basaltic material replacing the original crust. Partial melting at the base of this newly produced crust may generate felsic melts which are added as intrusives and/or extrusives to the generally mafic crustal succession, adding to what resembles a greenstone belt. Partial melting of metabasalt in the sinking crustal section produces a significant volume of TTG melt which is added to the crust directly above the location of 'subduction', presumably in the form of a pluton. This scenario is self-consistently produced by numerical thermochemical mantle convection models, presented in this paper, including partial melting of mantle peridotite and crustal (meta)basalt. The metamorphic p, T conditions under which partial melting of metabasalt takes place in this scenario are consistent with geochemical trace element data for TTGs, which indicate melting under amphibolite rather than eclogite facies. Other geodynamical settings which we have also investigated, including partial melting in small scale delaminations of the lower crust, at the base of a anomalously thick crust and due to the influx of a lower mantle diapir fail to reproduce this behavior unequivocally and mostly show melting of metabasalt in the eclogite stability field instead.

  13. Biomechanical analysis of articular-sided partial-thickness rotator cuff tear and repair.

    PubMed

    Mihata, Teruhisa; McGarry, Michelle H; Ishihara, Yoko; Bui, Christopher N H; Alavekios, Damon; Neo, Masashi; Lee, Thay Q

    2015-02-01

    Articular-sided partial-thickness rotator cuff tears are common injuries in throwing athletes. The superior shoulder capsule beneath the supraspinatus and infraspinatus tendons works as a stabilizer of the glenohumeral joint. To assess the effect of articular-sided partial-thickness rotator cuff tear and repair on shoulder biomechanics. The hypothesis was that shoulder laxity might be changed because of superior capsular plication in transtendon repair of articular-sided partial-thickness rotator cuff tears. Controlled laboratory study. Nine fresh-frozen cadaveric shoulders were tested by using a custom shoulder-testing system at the simulated late-cocking phase and acceleration phase of throwing motion. Maximum glenohumeral external rotation angle, anterior translation, position of the humeral head apex with respect to the glenoid, internal impingement area, and glenohumeral and subacromial contact pressures were measured. Each specimen underwent 3 stages of testing: stage 1, with the intact shoulder; stage 2, after creation of articular-sided partial-thickness tears of the supraspinatus and infraspinatus tendons; and stage 3, after transtendon repair of the torn tendons by using 2 suture anchors. Articular-sided partial-thickness tears did not significantly change any of the shoulder biomechanical measurements. In the simulated late-cocking phase, transtendon rotator cuff repair resulted in decreased maximum external rotation angle by 4.2° (P = .03), posterior shift of the humeral head (1.1-mm shift; P = .02), decreased glenohumeral contact pressure by 1.7 MPa (56%; P = .004), and decreased internal impingement area by 26.4 mm(2) (65%; P < .001) compared with values in the torn shoulder. In the acceleration phase, the humeral head shifted inferiorly (1.2-mm shift; P = .03 vs torn shoulder), and glenohumeral anterior translation (1.5-mm decrease; P = .03 vs torn shoulder) and subacromial contact pressure (32% decrease; P = .004 vs intact shoulder) decreased significantly after transtendon repair. Transtendon repair of articular-sided partial-thickness supraspinatus and infraspinatus tears decreased glenohumeral and subacromial contact pressures at time zero; these changes might lead to reduced secondary subacromial and internal impingements and consequently progression to full-thickness rotator cuff tear. However, repair of the tendons decreased anterior translation and external rotation and changed the positional relationship between the humeral head and the glenoid. Careful attention should be paid to shoulder laxity and range of motion when transtendon repair is chosen to treat articular-sided partial-thickness rotator cuff tears, specifically in throwing athletes. © 2014 The Author(s).

  14. Surface Complexation Modeling of Calcite Zeta Potential Measurement in Mixed Brines for Carbonate Wettability Characterization

    NASA Astrophysics Data System (ADS)

    Song, J.; Zeng, Y.; Biswal, S. L.; Hirasaki, G. J.

    2017-12-01

    We presents zeta potential measurements and surface complexation modeling (SCM) of synthetic calcite in various conditions. The systematic zeta potential measurement and the proposed SCM provide insight into the role of four potential determining cations (Mg2+, SO42- , Ca2+ and CO32-) and CO2 partial pressure in calcite surface charge formation and facilitate the revealing of calcite wettability alteration induced by brines with designed ionic composition ("smart water"). Brines with varying potential determining ions (PDI) concentration in two different CO2 partial pressure (PCO2) are investigated in experiments. Then, a double layer SCM is developed to model the zeta potential measurements. Moreover, we propose a definition for contribution of charged surface species and quantitatively analyze the variation of charged species contribution when changing brine composition. After showing our model can accurately predict calcite zeta potential in brines containing mixed PDIs, we apply it to predict zeta potential in ultra-low and pressurized CO2 environments for potential applications in carbonate enhanced oil recovery including miscible CO2 flooding and CO2 sequestration in carbonate reservoirs. Model prediction reveals that pure calcite surface will be positively charged in all investigated brines in pressurized CO2 environment (>1atm). Moreover, the sensitivity of calcite zeta potential to CO2 partial pressure in the various brine is found to be in the sequence of Na2CO3 > Na2SO4 > NaCl > MgCl2 > CaCl2 (Ionic strength=0.1M).

  15. Clinical recommendations for high altitude exposure of individuals with pre-existing cardiovascular conditions: A joint statement by the European Society of Cardiology, the Council on Hypertension of the European Society of Cardiology, the European Society of Hypertension, the International Society of Mountain Medicine, the Italian Society of Hypertension and the Italian Society of Mountain Medicine.

    PubMed

    Parati, Gianfranco; Agostoni, Piergiuseppe; Basnyat, Buddha; Bilo, Grzegorz; Brugger, Hermann; Coca, Antonio; Festi, Luigi; Giardini, Guido; Lironcurti, Alessandra; Luks, Andrew M; Maggiorini, Marco; Modesti, Pietro A; Swenson, Erik R; Williams, Bryan; Bärtsch, Peter; Torlasco, Camilla

    2018-05-01

    Take home figureAdapted from Bärtsch and Gibbs2 Physiological response to hypoxia. Life-sustaining oxygen delivery, in spite of a reduction in the partial pressure of inhaled oxygen between 25% and 60% (respectively at 2500 m and 8000 m), is ensured by an increase in pulmonary ventilation, an increase in cardiac output by increasing heart rate, changes in vascular tone, as well as an increase in haemoglobin concentration. BP, blood pressure; HR, heart rate; PaCO2, partial pressure of arterial carbon dioxide.

  16. [Peroxynitrite effect on the haemoglobin oxygen affinity in vitro in presence of different partial pressure of carbon dioxide].

    PubMed

    Stepuro, T L; Zinchuk, V V

    2011-08-01

    Peroxynitrite (ONOO-) besides its toxic possesses regulatory action that includes the modulation of oxygen binding properties of blood. The aim of this work was to estimate ONOO- effect on the haemoglobin oxygen affinity (HOA) in vitro in presence of different partial pressure of carbon dioxide (CO2). The ONOO- presence in venous blood in conditions of hypercapnia induced oxyhaemoglobin dissociation curve shift leftward while in hypocapnic conditions the result of a different character was obtained. The revealed effect of ONOO- is realized, possibly, through various modifications ofhaemoglobin whose formation is dependent on the CO2 pressure. The ONOO- influences the HOA in different manner that can be important in regulation of blood oxygenation in lungs and maintenance of oxygen consumption in tissues.

  17. Acute pressure on the sciatic nerve results in rapid inhibition of the wide dynamic range neuronal response

    PubMed Central

    2012-01-01

    Background Acute pressure on the sciatic nerve has recently been reported to provide rapid short-term relief of pain in patients with various pathologies. Wide dynamic range (WDR) neurons transmit nociceptive information from the dorsal horn to higher brain centers. In the present study, we examined the effect of a 2-min application of sciatic nerve pressure on WDR neuronal activity in anesthetized male Sprague–Dawley rats. Results Experiments were carried out on 41 male Sprague–Dawley albino rats weighing 160–280 grams. Dorsal horn WDR neurons were identified on the basis of characteristic responses to mechanical stimuli applied to the cutaneous receptive field. Acute pressure was applied for 2 min to the sciatic nerve using a small vascular clip. The responses of WDR neurons to three mechanical stimuli applied to the cutaneous receptive field were recorded before, and 2, 5 and 20 min after cessation of the 2-min pressure application on the sciatic nerve. Two-min pressure applied to the sciatic nerve caused rapid attenuation of the WDR response to pinching, pressure and brushing stimuli applied to the cutaneous receptive field. Maximal attenuation of the WDR response to pinching and pressure was noted 5 min after release of the 2-min pressure on the sciatic nerve. The mean firing rate decreased from 31.7±1.7 Hz to 13±1.4 Hz upon pinching (p < 0.001), from 31.2±2.3 Hz to 10.9±1.4 Hz (p < 0.001) when pressure was applied, and from 18.9±1.2 Hz to 7.6±1.1 Hz (p < 0.001) upon brushing. Thereafter, the mean firing rates gradually recovered. Conclusions Our results indicate that acute pressure applied to the sciatic nerve exerts a rapid inhibitory effect on the WDR response to both noxious and innocuous stimuli. Our results may partially explain the rapid analgesic effect of acute sciatic nerve pressure noted in clinical studies, and also suggest a new model for the study of pain. PMID:23211003

  18. 77 FR 59374 - Certain Small Diameter Carbon and Alloy Seamless Standard, Line and Pressure Pipe (Under 41/2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-27

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-588-851] Certain Small Diameter Carbon and Alloy Seamless Standard, Line and Pressure Pipe (Under 4\\1/2\\ Inches) From Japan: Rescission... antidumping order on certain small diameter carbon and alloy seamless standard, line and pressure pipe (under...

  19. Fiber-Optic Based Compact Gas Leak Detection System

    NASA Technical Reports Server (NTRS)

    deGroot, Wim A.

    1995-01-01

    A propellant leak detection system based on Raman scattering principles is introduced. The proposed system is flexible and versatile as the result of the use of optical fibers. It is shown that multiple species can be monitored simultaneously. In this paper oxygen, nitrogen, carbon monoxide, and hydrogen are detected and monitored. The current detection sensitivity for both hydrogen and carbon monoxide is 1% partial pressure at ambient conditions. The sensitivity for oxygen and nitrogen is 0.5% partial pressure. The response time to changes in species concentration is three minutes. This system can be used to monitor multiple species at several locations.

  20. [Diagnostic importance of the alveolar-arterial oxygen gradient].

    PubMed

    Weinans, Marije A E; Drost-de Klerck, Amanda M; ter Maaten, Jan C

    2012-01-01

    The alveolar-arterial (A-a) oxygen gradient is the difference between the partial pressure of oxygen in the alveoli and the partial pressure of arterial oxygen and can be elevated in the case of pulmonary disease. We describe a 41-year-old patient with pneumonia who presented with abdominal pain, in whom calculation of the A-a gradient could have led to earlier diagnosis. The A-a oxygen gradient is mainly of diagnostic importance and the presented nomogram allows easy and quick interpretation. This might lead to a more frequent use of the A-a oxygen gradient in the future.

  1. Operation and testing of Mark 10 Mod 3 underwater breathing apparatus

    NASA Technical Reports Server (NTRS)

    Milwee, W. I., Jr.

    1972-01-01

    Performance tests on a closed circuit, mixed gas underwater breathing apparatus are reported. The equipment is designed to provide a minimum diving duration of four hours at 1500 ft below sea surface; it senses oxygen partial pressure in the breathing gas mix and controls oxygen content of the breathing gas within narrow limits about a preset value. The breathing circuit subsystem provides respirable gas to the diver and removes carbon dioxide and moisture from the expired gas. Test results indicate undesirable variations in oxygen partial pressure with oxygen addition and insufficient carbon dioxide absorption.

  2. Molecular Layer Deposition of Hybrid Organic-Inorganic Alucone Polymer Films Using a Three-Step ABC Reaction Sequence

    DTIC Science & Technology

    2009-11-02

    versus TMA exposure at 150 C is shown in Figure 4a. The TMA exposure is defined by the number of TMA microdoses . EachTMAmicrodosewas a 0.5 s exposure...at 80mTorr of partial pressure. Figure 4a indicates that the TMA reac- tion is self-limiting and reaches completion after 10 TMA microdoses . The...of EA microdoses . Each EA microdose was a 0.5 s exposure at 20 mTorr of partial pressure. Figure 4b indicates that the EA reaction is self-limiting

  3. Oxygen stoichiometry, phase stability, and thermodynamic behavior of the lead-doped and lead-free Bi-2212 systems

    NASA Astrophysics Data System (ADS)

    Tetenbaum, M.; Hash, M.; Tani, B. S.; Maroni, V. A.

    1996-02-01

    Electromotive-force (EMF) measurements of oxygen fugacities as a function of stoichiometry have been made on lead-doped and lead-free Bi 2- zPb zSr 2Ca 1Cu 2O x superconducting ceramics in the temperature range ≈ 700-815°C by means of an oxygen-titration techique that employs an yttria-stabilized zirconia electrolyte. Equations for the variation of oxygen partial pressure with composition and temperature have been derived from our EMF measurements. Thermodynamic assessments of the partial molar quantities Δ overlineH(O 2) and Δ overlineS(O 2) for lead-doped Bi-2212 and lead-free Bi-2212 indicate that the solid-state decomposition of these bismuth cuprates at low oxygen partial pressure can be represented by the diphasic CuOCu 2O system.

  4. Some aspects of the thermodynamic behaviour of the lead-doped Bi-2223 system

    NASA Astrophysics Data System (ADS)

    Tetenbaum, M.; Maroni, V. A.

    1996-02-01

    A thermodynamic assessment of lead-doped Bi-2223 with emphasis on compositions and oxygen partial pressures within the homogeneity region prior to solid-state decomposition is presented. Equations for the variation of oxygen partial pressure with composition and temperature have been derived from our EMF measurements. Long-term metastability was indicated during cycling over a temperature range of ∼ 700-815°C of a lead-doped Bi-2223 sample having an oxygen-deficient stoichiometry of 9.64 prior to solid-state decomposition corresponding to the diphasic CuOCu 2O system. A trend of increasing negative values of the partial molar enthalpy Δ overlineH( O 2) and entropy Δ overlineS( O2 with increasing oxygen deficiency of the condensed phase indicated an increase in ordering of the cuprate structure prior to solid-state decomposition.

  5. Nonflat equilibrium liquid shapes on flat surfaces.

    PubMed

    Starov, Victor M

    2004-01-15

    The hydrostatic pressure in thin liquid layers differs from the pressure in the ambient air. This difference is caused by the actions of surface forces and capillary pressure. The manifestation of the surface force action is the disjoining pressure, which has a very special S-shaped form in the case of partial wetting (aqueous thin films and thin films of aqueous electrolyte and surfactant solutions, both free films and films on solid substrates). In thin flat liquid films the disjoining pressure acts alone and determines their thickness. However, if the film surface is curved then both the disjoining and the capillary pressures act simultaneously. In the case of partial wetting their simultaneous action results in the existence of nonflat equilibrium liquid shapes. It is shown that in the case of S-shaped disjoining pressure isotherm microdrops, microdepressions, and equilibrium periodic films exist on flat solid substrates. Criteria are found for both the existence and the stability of these nonflat equilibrium liquid shapes. It is shown that a transition from thick films to thinner films can go via intermediate nonflat states, microdepressions and periodic films, which both can be more stable than flat films within some range of hydrostatic pressure. Experimental investigations of shapes of the predicted nonflat layers can open new possibilities of determination of disjoining pressure in the range of thickness in which flat films are unstable.

  6. SYNTHESIZING ALCOHOLS AND KETONES BY PHOTOINDUCED CATALYTIC PARTIAL-OXIDATION OF HYDROCARBONS IN TI02 FILM REACTORS PREPARED BY THREE DIFFERENT METHODS

    EPA Science Inventory

    The partial oxidation of cyclohexane to cyclohexanol and cyclohexanone on UV irradiated titanium dioxide films in the presence of molecular oxygen at ambient temperatures and pressures was studied. Three different coating methodologies (dip coating using titanium isopropoxide an...

  7. Saturated fluorescence measurements of the hydroxyl radical in laminar high-pressure flames

    NASA Technical Reports Server (NTRS)

    Carter, Campbell D.; King, Galen B.; Laurendeau, Normand M.

    1990-01-01

    The efficacy of laser saturated fluorescence (LSF) for OH concentration measurements in high pressure flames was studied theoretically and experimentally. Using a numerical model describing the interaction of hydroxyl with nonuniform laser excitation, the effect of pressure on the validity of the balanced cross-rate model was studied along with the sensitivity of the depopulation of the laser-coupled levels to the ratio of rate coefficients describing: (1) electronic quenching to (sup 2) Sigma (+) (v double prime greater than 0), and (2) vibrational relaxation from v double prime greater than 0 to v double prime = 0. At sufficiently high pressures and near-saturated conditions, the total population of the laser-coupled levels reaches an asymptotic value, which is insensitive to the degree of saturation. When the ratio of electronic quenching to vibrational relaxation is small and the rate of coefficients for rotational transfer in the ground and excited electronic states are nearly the same, the balanced cross-rate model remains a good approximation for all pressures. When the above ratio is large, depopulation of the laser-coupled levels becomes significant at high pressures, and thus the balanced cross-rate model no longer holds. Under these conditions, however, knowledge of the depletion of the laser-coupled levels can be used to correct the model. A combustion facility for operation up to 20 atm was developed to allow LSF measurements of OH in high pressure flames. Using this facility, partial saturation in laminar high pressure (less than or equal to 12.3 atm) C2H6/O2/N2 flames was achieved. To evaluate the limits of the balanced cross-rate model, absorption and calibrated LSF measurements at 3.1 and 6.1 atm were compared. The fluorescence voltages were calibrated with absorption measurements in an atmospheric flame and corrected for their finite sensitivity to quenching with: (1) estimated quenching rate coefficients, and (2) an in situ measurement from a technique employing two fluorescence detection geometries.

  8. Partial discharge detection and analysis in low pressure environments

    NASA Astrophysics Data System (ADS)

    Liu, Xin

    Typical aerospace vehicles (aircraft and spacecraft) experience a wide range of operating pressures during ascending and returning to earth. Compared to the sea-level atmospheric pressure (760 Torr), the pressure at about 60 km altitude is 2 Torr. The performance of the electric power system components of the aerospace vehicles must remain reliable even under such sub-atmospheric operating conditions. It is well known that the dielectric strength of gaseous insulators, while the electrode arrangement remains unchanged, is pressure dependent. Therefore, characterization of the performance and behavior of the electrical insulation in flight vehicles in low-pressure environments is extremely important. Partial discharge testing is one of the practical methods for evaluating the integrity of electrical insulation in aerospace vehicles. This dissertation describes partial discharge (PD) measurements performed mainly with 60 Hz ac energization in air, argon and helium, for pressures between 2 and 760 Torr. Two main electrode arrangements were used. One was a needle-plane electrode arrangement with a Teflon insulating barrier. The other one was a twisted pair of insulated conductors taken from a standard aircraft wiring harness. The measurement results are presented in terms of typical PD current pulse waveforms and waveform analysis for both main electrode arrangements. The evaluation criteria are the waveform polarity, magnitude, shape, rise time, and phase angle (temporal location) relative to the source voltage. Two-variable histograms and statistical averages of the PD parameters are presented. The PD physical mechanisms are analyzed. For PD pattern recognition, both statistical methods (such as discharge parameter dot pattern representation, discharge parameter phase distribution, statistical operator calculations, and PD fingerprint development) and wavelet transform applications are investigated. The main conclusions of the dissertation include: (1) The PD current pulse waveforms are dependent on the pressure. (2) The rise time of the waveform is another effective PD current pulse characteristic indicator. (3) PD fingerprint patterns that are already available for atmospheric pressure (760 Torr) conditions are inadequate for the evaluation of PD pulses at low pressures. (4) Various wavelet transform techniques can be used effectively for PD pulse signal denoising purposes, and for PD pulse waveform transient feature recognition.

  9. Long-term results of small-diameter proximal splenorenal venous shunt: A retrospective study

    PubMed Central

    Chen, Hao; Yang, Wei-Ping; Yan, Ji-Qi; Li, Qin-Yu; Ma, Di; Li, Hong-Wei

    2011-01-01

    AIM: To investigate recurrent variceal hemorrhage and long-term survival rates of patients treated with partial proximal splenorenal venous shunt. METHODS: Patients with variceal hemorrhage who were treated with small-diameter proximal splenorenal venous shunt in Ruijin Hospital between 1996 and 2009 were included in this study. Shunt diameter was determined before operation using Duplex Doppler ultrasonography. Peri-operative and long-term results in term of rehemorrhage, encephalopathy and mortality were followed up. RESULTS: Ninety-eight patients with Child A and B variceal hemorrhage received small-diameter proximal splenorenal venous shunt with a diameter of 7-10 mm. After operation, the patients’ mean free portal pressure (P < 0.01) and the flow rate of main portal vein (P < 0.01) decreased significantly compared with that before operation. The rates of rebleeding and mortality were 6.12% (6 cases) and 2.04% (2 cases), respectively. Ninety-one patients were followed up for 7 mo-14 years (median, 48.57 mo). Long-term rates of rehemorrhage and encephalopathy were 4.40% (4 cases) and 3.30% (3 cases), respectively. Thirteen patients (14.29%) died mainly due to progressive hepatic dysfunction. Five- and ten-year survival rates were 82.12% and 71.24%, respectively. CONCLUSION: Small-diameter proximal splenorenal venous shunt affords protection against variceal rehemorrhage with a low occurrence of encephalopathy in patients with normal liver function. PMID:21876638

  10. Multi-scale diffuse interface modeling of multi-component two-phase flow with partial miscibility

    NASA Astrophysics Data System (ADS)

    Kou, Jisheng; Sun, Shuyu

    2016-08-01

    In this paper, we introduce a diffuse interface model to simulate multi-component two-phase flow with partial miscibility based on a realistic equation of state (e.g. Peng-Robinson equation of state). Because of partial miscibility, thermodynamic relations are used to model not only interfacial properties but also bulk properties, including density, composition, pressure, and realistic viscosity. As far as we know, this effort is the first time to use diffuse interface modeling based on equation of state for modeling of multi-component two-phase flow with partial miscibility. In numerical simulation, the key issue is to resolve the high contrast of scales from the microscopic interface composition to macroscale bulk fluid motion since the interface has a nanoscale thickness only. To efficiently solve this challenging problem, we develop a multi-scale simulation method. At the microscopic scale, we deduce a reduced interfacial equation under reasonable assumptions, and then we propose a formulation of capillary pressure, which is consistent with macroscale flow equations. Moreover, we show that Young-Laplace equation is an approximation of this capillarity formulation, and this formulation is also consistent with the concept of Tolman length, which is a correction of Young-Laplace equation. At the macroscopical scale, the interfaces are treated as discontinuous surfaces separating two phases of fluids. Our approach differs from conventional sharp-interface two-phase flow model in that we use the capillary pressure directly instead of a combination of surface tension and Young-Laplace equation because capillarity can be calculated from our proposed capillarity formulation. A compatible condition is also derived for the pressure in flow equations. Furthermore, based on the proposed capillarity formulation, we design an efficient numerical method for directly computing the capillary pressure between two fluids composed of multiple components. Finally, numerical tests are carried out to verify the effectiveness of the proposed multi-scale method.

  11. Multi-scale diffuse interface modeling of multi-component two-phase flow with partial miscibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kou, Jisheng; Sun, Shuyu, E-mail: shuyu.sun@kaust.edu.sa; School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049

    2016-08-01

    In this paper, we introduce a diffuse interface model to simulate multi-component two-phase flow with partial miscibility based on a realistic equation of state (e.g. Peng–Robinson equation of state). Because of partial miscibility, thermodynamic relations are used to model not only interfacial properties but also bulk properties, including density, composition, pressure, and realistic viscosity. As far as we know, this effort is the first time to use diffuse interface modeling based on equation of state for modeling of multi-component two-phase flow with partial miscibility. In numerical simulation, the key issue is to resolve the high contrast of scales from themore » microscopic interface composition to macroscale bulk fluid motion since the interface has a nanoscale thickness only. To efficiently solve this challenging problem, we develop a multi-scale simulation method. At the microscopic scale, we deduce a reduced interfacial equation under reasonable assumptions, and then we propose a formulation of capillary pressure, which is consistent with macroscale flow equations. Moreover, we show that Young–Laplace equation is an approximation of this capillarity formulation, and this formulation is also consistent with the concept of Tolman length, which is a correction of Young–Laplace equation. At the macroscopical scale, the interfaces are treated as discontinuous surfaces separating two phases of fluids. Our approach differs from conventional sharp-interface two-phase flow model in that we use the capillary pressure directly instead of a combination of surface tension and Young–Laplace equation because capillarity can be calculated from our proposed capillarity formulation. A compatible condition is also derived for the pressure in flow equations. Furthermore, based on the proposed capillarity formulation, we design an efficient numerical method for directly computing the capillary pressure between two fluids composed of multiple components. Finally, numerical tests are carried out to verify the effectiveness of the proposed multi-scale method.« less

  12. Hydrogen Permeability of Incoloy 800H, Inconel 617, and Haynes 230 Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pattrick Calderoni

    A potential issue in the design of the NGNP reactor and high-temperature components is the permeation of fission generated tritium and hydrogen product from downstream hydrogen generation through high-temperature components. Such permeation can result in the loss of fission-generated tritium to the environment and the potential contamination of the helium coolant by permeation of product hydrogen into the coolant system. The issue will be addressed in the engineering design phase, and requires knowledge of permeation characteristics of the candidate alloys. Of three potential candidates for high-temperature components of the NGNP reactor design, the hydrogen permeability has been documented well onlymore » for Incoloy 800H, but at relatively high partial pressures of hydrogen. Hydrogen permeability data have been published for Inconel 617, but only in two literature reports and for partial pressures of hydrogen greater than one atmosphere, far higher than anticipated in the NGNP reactor. The hydrogen permeability of Haynes 230 has not been published. To support engineering design of the NGNP reactor components, the hydrogen permeability of Inconel 617 and Haynes 230 were determined using a measurement system designed and fabricated at the Idaho National Laboratory. The performance of the system was validated using Incoloy 800H as reference material, for which the permeability has been published in several journal articles. The permeability of Incoloy 800H, Inconel 617 and Haynes 230 was measured in the temperature range 650 to 950 °C and at hydrogen partial pressures of 10-3 and 10-2 atm, substantially lower pressures than used in the published reports. The measured hydrogen permeability of Incoloy 800H and Inconel 617 were in good agreement with published values obtained at higher partial pressures of hydrogen. The hydrogen permeability of Inconel 617 and Haynes 230 were similar, about 50% greater than for Incoloy 800H and with similar temperature dependence.« less

  13. Early differentiation of the Moon: Experimental and modeling studies

    NASA Technical Reports Server (NTRS)

    Longhi, J.

    1986-01-01

    Major accomplishments include the mapping out of liquidus boundaries of lunar and meteoritic basalts at low pressure; the refinement of computer models that simulate low pressure fractional crystallization; the development of a computer model to calculate high pressure partial melting of the lunar and Martian interiors; and the proposal of a hypothesis of early lunar differentiation based upon terrestrial analogs.

  14. 49 CFR 176.907 - Polymeric Beads and Plastic Molding Compounds.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...: (1) Packed in hermetically sealed packagings or IBC's which conform to packing group II performance level for liquid dangerous goods with a total pressure in the packaging (i.e., the vapor pressure of the material plus the partial pressure of air or other inert gases, less 100kPa (15 psia)) at 55 °C (131 °F...

  15. 49 CFR 176.907 - Polymeric Beads and Plastic Molding Compounds.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...: (1) Packed in hermetically sealed packagings or IBC's which conform to packing group II performance level for liquid dangerous goods with a total pressure in the packaging (i.e., the vapor pressure of the material plus the partial pressure of air or other inert gases, less 100kPa (15 psia)) at 55 °C (131 °F...

  16. Real-Time Grazing Incidence Small Angle X-Ray Scattering Studies of the Growth Kinetics of Sputter-Deposited Silicon Thin Films

    NASA Astrophysics Data System (ADS)

    Demasi, Alexander; Erdem, Gozde; Chinta, Priya; Headrick, Randall; Ludwig, Karl

    2012-02-01

    The fundamental kinetics of thin film growth remains an active area of investigation. In this study, silicon thin films were grown at room temperature on silicon substrates via both on-axis and off-axis plasma sputter deposition, while the evolution of surface morphology was measured in real time with in-situ grazing incidence small angle x-ray scattering (GISAXS) at the National Synchrotron Light Source. GISAXS is a surface-sensitive, non-destructive technique, and is therefore ideally suited to a study of this nature. In addition to investigating the effect of on-axis versus off-axis bombardment, the effect of sputter gas partial pressure was examined. Post-facto, ex-situ atomic force microscopy (AFM) was used to measure the final surface morphology of the films, which could subsequently be compared with the surface morphology determined by GISAXS. Comparisons are made between the observed surface evolution during growth and theoretical predictions. This work was supported by the Department of Energy, Office of Basic Energy Sciences.

  17. Mechanochemical formation of heterogeneous diamond structures during rapid uniaxial compression in graphite

    NASA Astrophysics Data System (ADS)

    Kroonblawd, Matthew P.; Goldman, Nir

    2018-05-01

    We predict mechanochemical formation of heterogeneous diamond structures from rapid uniaxial compression in graphite using quantum molecular dynamics simulations. Ensembles of simulations reveal the formation of different diamondlike products starting from thermal graphite crystal configurations. We identify distinct classes of final products with characteristic probabilities of formation, stress states, and electrical properties and show through simulations of rapid quenching that these products are nominally stable and can be recovered at room temperature and pressure. Some of the diamond products exhibit significant disorder and partial closure of the energy gap between the highest-occupied and lowest-unoccupied molecular orbitals (i.e., the HOMO-LUMO gap). Seeding atomic vacancies in graphite significantly biases toward forming products with small HOMO-LUMO gap. We show that a strong correlation between the HOMO-LUMO gap and disorder in tetrahedral bonding configurations informs which kinds of structural defects are associated with gap closure. The rapid diffusionless transformation of graphite is found to lock vacancy defects into the final diamond structure, resulting in configurations that prevent s p3 bonding and lead to localized HOMO and LUMO states with a small gap.

  18. Adaptation of mesenteric lymphatic vessels to prolonged changes in transmural pressure.

    PubMed

    Dongaonkar, R M; Nguyen, T L; Quick, C M; Hardy, J; Laine, G A; Wilson, E; Stewart, R H

    2013-07-15

    In vitro studies have revealed that acute increases in transmural pressure increase lymphatic vessel contractile function. However, adaptive responses to prolonged changes in transmural pressure in vivo have not been reported. Therefore, we developed a novel bovine mesenteric lymphatic partial constriction model to test the hypothesis that lymphatic vessels exposed to higher transmural pressures adapt functionally to become stronger pumps than vessels exposed to lower transmural pressures. Postnodal mesenteric lymphatic vessels were partially constricted for 3 days. On postoperative day 3, constricted vessels were isolated, and divided into upstream (UP) and downstream (DN) segment groups, and instrumented in an isolated bath. Although there were no differences between the passive diameters of the two groups, both diastolic diameter and systolic diameter were significantly larger in the UP group than in the DN group. The pump index of the UP group was also higher than that in the DN group. In conclusion, this is the first work to report how lymphatic vessels adapt to prolonged changes in transmural pressure in vivo. Our results suggest that vessel segments upstream of the constriction adapt to become both better fluid conduits and lymphatic pumps than downstream segments.

  19. Absorption of Carbon Dioxide in the aqueous solution of Diethanolamine (DEA) blended with 1-Butyl-1-Methylpyrrolidinium Trifluoromethanesulfonate [BmPyrr][OTf] at high pressure

    NASA Astrophysics Data System (ADS)

    Jamaludin, S. N.; Salleh, R. M.

    2018-03-01

    Solubility data of carbon dioxide (CO2) in aqueous Diethanolamine (DEA) blended with 1-Butyl-1-Methylpyrrolidinium Trifluoromethanesulfonate [Bmpyrr][OTf] were measured at temperature 313.15K, 323.15K, 333.15K and pressure from 500psi up to 700 psi. The experiments covered over the concentration range of 0-10wt% for [Bmpyrr][OTf] and 30-40wt% for DEA. The solubility of CO2 was evaluated by measuring the pressure drop in high pressure stirred absorption cell reactor. The experimental results showed that CO2 loading in all DEA-[BmPyrr][OTf] mixtures studied increases with increasing of CO2 partial pressure and temperature. It was also found that the CO2 loading capacity increase significantly as the concentration of [Bmpyrr][OTf] increases. Jou and Mather model was used to predict the solubility of CO2 in the mixtures where the experimental data were correlated as a function of temperature and CO2 partial pressure. It was found that the model was successful in predicting the solubility behavior of the aqueous DEA-[Bmpyrr][OTf] systems considered in this study.

  20. Two Regimes of Bandgap Red Shift and Partial Ambient Retention in Pressure-Treated Two-Dimensional Perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Gang; Kong, Lingping; Guo, Peijun

    The discovery of elevated environmental stability in two-dimensional (2D) Ruddlesden–Popper hybrid perovskites represents a significant advance in low-cost, high-efficiency light absorbers. In comparison to 3D counterparts, 2D perovskites of organo-lead-halides exhibit wider, quantum-confined optical bandgaps that reduce the wavelength range of light absorption. Here, we characterize the structural and optical properties of 2D hybrid perovskites as a function of hydrostatic pressure. We observe bandgap narrowing with pressure of 633 meV that is partially retained following pressure release due to an atomic reconfiguration mechanism. We identify two distinct regimes of compression dominated by the softer organic and less compressible inorganic sublattices.more » Our findings, which also include PL enhancement, correlate well with density functional theory calculations and establish structure–property relationships at the atomic scale. These concepts can be expanded into other hybrid perovskites and suggest that pressure/strain processing could offer a new route to improved materials-by-design in applications.« less

Top