Sample records for small plasma brain

  1. Effects on plasma and brain tryptophan in the rat of drugs and hormones that influence the concentration of unesterified fatty acid in the plasma

    PubMed Central

    Curzon, G.; Knott, P.J.

    1974-01-01

    1 The effects on tryptophan distribution and metabolism of drugs altering plasma unesterified fatty acid (UFA) concentration were investigated in the rat. 2 UFA and plasma free (i.e. ultrafilterable) tryptophan altered in the same direction. 3 Catecholamines and L-DOPA increased both plasma UFA and free tryptophan. L-DOPA also increased brain tryptophan and 5-hydroxyindoleacetic acid (5-HIAA) but decreased brain 5-hydroxytryptamine (5-HT). 4 Aminophylline increased plasma UFA and free tryptophan and also brain tryptophan, 5-HT and 5-HIAA. Food deprivation had qualitatively similar effects. 5 Insulin decreased plasma UFA and free tryptophan in both fed and food-deprived rats. However, while in fed rats these changes were associated with small decreases of brain indoles, in food-deprived animals small increases occurred. 6 Nicotinic acid had only small effects in fed rats but it opposed both the UFA and indole changes in food-deprived animals. Total plasma tryptophan increased in nicotinic acid treated, food-deprived rats. 7 There was a tendency towards inverse relations between changes of plasma free and total tryptophan. 8 The results suggest that drugs which influence plasma UFA through actions on cyclic AMP thereby alter the binding of tryptophan to plasma protein and that this leads to altered distribution and metabolism of tryptophan. PMID:4371899

  2. Pharmacokinetics of pericyte involvement in small-molecular drug transport across the blood-brain barrier.

    PubMed

    Mihajlica, Nebojsa; Betsholtz, Christer; Hammarlund-Udenaes, Margareta

    2018-06-19

    Pericytes are perivascular cells that play important roles in the regulation of the blood-brain barrier (BBB) properties. Pericyte-deficiency causes compromised BBB integrity and increase in permeability to different macromolecules mainly by upregulated transcytosis. The aim of the present study was to investigate pericyte involvement in the extent of small-molecular drug transport across the BBB. This was performed with five compounds: diazepam, digoxin, levofloxacin, oxycodone and paliperidone. Compounds were administered at low doses via subcutaneous injections as a cassette (simultaneously) to pericyte-deficient Pdgfb ret/ret mice and corresponding WT controls. Total drug partitioning across the BBB was calculated as the ratio of total drug exposures in brain tissue and plasma (K p,brain ). In addition, equilibrium dialysis experiments were performed to estimate unbound drug fractions in brain (f u,brain ) and plasma (f u,plasma ). This enabled estimation of unbound drug partitioning coefficients (K p,uu,brain ). The results indicated slight tendencies towards increase of total brain exposures in Pdgfb ret/ret mice as reflected in K p,brain values, which were within the 2-fold limit. Part of these differences could be explained by differences in plasma protein binding. No difference was found in brain tissue binding. The combined in vivo and in vitro data resulted in no differences in BBB transport in pericyte-deficiency, as described by similar K p,uu,brain values in Pdgfb ret/ret and control mice. In conclusion, these findings imply no influence of pericytes on the extent of BBB transport of small-molecular drugs, and suggest preserved BBB features relevant for handling of this type of molecules irrespective of pericyte presence at the brain endothelium. Copyright © 2018. Published by Elsevier B.V.

  3. Blood-brain barrier dysfunction and cerebral small vessel disease (arteriolosclerosis) in brains of older people.

    PubMed

    Bridges, Leslie R; Andoh, Joycelyn; Lawrence, Andrew J; Khoong, Cheryl H L; Poon, Wayne; Esiri, Margaret M; Markus, Hugh S; Hainsworth, Atticus H

    2014-11-01

    The blood-brain barrier protects brain tissue from potentially harmful plasma components. Small vessel disease (SVD; also termed arteriolosclerosis) is common in the brains of older people and is associated with lacunar infarcts, leukoaraiosis, and vascular dementia. To determine whether plasma extravasation is associated with SVD, we immunolabeled the plasma proteins fibrinogen and immunoglobulin G, which are assumed to reflect blood-brain barrier dysfunction, in deep gray matter (DGM; anterior caudate-putamen) and deep subcortical white matter (DWM) in the brains of a well-characterized cohort of donated brains with minimal Alzheimer disease pathology (Braak Stages 0-II) (n = 84; aged 65 years or older). Morphometric measures of fibrinogen labeling were compared between people with neuropathologically defined SVD and aged control subjects. Parenchymal cellular labeling with fibrinogen and immunoglobulin G was detectable in DGM and DWM in many subjects (>70%). Quantitative measures of fibrinogen were not associated with SVD in DGM or DWM; SVD severity was correlated between DGM and DWM (p < 0.0001). Fibrinogen in DGM showed a modest association with a history of hypertension; DWM fibrinogen was associated with dementia and cerebral amyloid angiopathy (all p < 0.05). In DWM, SVD was associated with leukoaraiosis identified in life (p < 0.05), but fibrinogen was not. Our data suggest that, in aged brains, plasma extravasation and hence local blood-brain barrier dysfunction are common but do not support an association with SVD.

  4. The distribution of lithium, sodium and magnesium in rat brain and plasma after various periods of administration of lithium in the diet.

    PubMed Central

    Bond, P A; Brooks, B A; Judd, A

    1975-01-01

    1 The tissue solubilizer Soluene-100 provides an efficient and easy means of preparing small amounts of rat tissue for cation analysis. 2 Administration of lithium ions to rats for two days to 42 days by the addition of lithium chloride to the diet at a concentration of 30 mmol/kg dry weight results in (a) the uniform distribution of lithium throughout the brain at a concentration comparable to that found in plasma; (b) decrease in the brain sodium concentration: (c) a decrease in brain magnesium concentration and an increase in plasma magnesium concentration; (d)no change in brain water content. 3 The inclusion of LiCl in the diet at a concentration of 30 mmol/kg dry food gives consistent and predictable plasma and brain levels of lithium in the rat without the occurrence of serious side effects over periods of up to 42 days. PMID:1148484

  5. Preclinical Evaluation of 18F-JNJ64349311, a Novel PET Tracer for Tau Imaging.

    PubMed

    Declercq, Lieven; Rombouts, Frederik; Koole, Michel; Fierens, Katleen; Mariën, Jonas; Langlois, Xavier; Andrés, José Ignacio; Schmidt, Mark; Macdonald, Gregor; Moechars, Diederik; Vanduffel, Wim; Tousseyn, Thomas; Vandenberghe, Rik; Van Laere, Koen; Verbruggen, Alfons; Bormans, Guy

    2017-06-01

    In this study, we have synthesized and evaluated 18 F-JNJ64349311, a tracer with high affinity for aggregated tau (inhibition constant value, 8 nM) and high (≥500×) in vitro selectivity for tau over β-amyloid, in comparison with the benchmark compound 18 F-AV1451 ( 18 F-T807) in mice, rats, and a rhesus monkey. Methods: In vitro binding characteristics were determined for Alzheimer's disease, progressive supranuclear palsy, and corticobasal degeneration patient brain tissue slices using autoradiography studies. Ex vivo biodistribution studies were performed in mice. Radiometabolites were quantified in the brain and plasma of mice and in the plasma of a rhesus monkey using high-performance liquid chromatography. Dynamic small-animal PET studies were performed in rats and a rhesus monkey to evaluate tracer pharmacokinetics in the brain. Results: Mouse biodistribution studies showed moderate initial brain uptake and rapid brain washout. Radiometabolite analyses after injection of 18 F-JNJ64349311 in mice showed the presence of a polar radiometabolite in plasma, but not in the brain. Semiquantitative autoradiography studies on postmortem tissue sections of human Alzheimer's disease brains showed highly displaceable binding to tau-rich regions. No specific binding was, however, found on human progressive supranuclear palsy and corticobasal degeneration brain slices. Small-animal PET scans of Wistar rats revealed moderate initial brain uptake (SUV, ∼1.5 at 1 min after injection) and rapid brain washout. Gradual bone uptake was, however, also observed. Blocking and displacement did not affect brain time-activity curves, suggesting no off-target specific binding of the tracer in the healthy rat brain. A small-animal PET scan of a rhesus monkey revealed moderate initial brain uptake (SUV, 1.9 at 1 min after injection) with a rapid washout. In the monkey, no bone uptake was detected during the 120-min scan. Conclusion: This biologic evaluation suggests that 18 F-JNJ64349311 is a promising tau PET tracer candidate, with a favorable pharmacokinetic profile, as compared with 18 F-AV1451. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  6. Plasma Amyloid-β Levels, Cerebral Small Vessel Disease, and Cognition: The Rotterdam Study.

    PubMed

    Hilal, Saima; Akoudad, Saloua; van Duijn, Cornelia M; Niessen, Wiro J; Verbeek, Marcel M; Vanderstichele, Hugo; Stoops, Erik; Ikram, M Arfan; Vernooij, Meike W

    2017-01-01

    Plasma amyloid-β (Aβ) levels are increasingly studied as a potential, accessible marker of cognitive impairment and dementia. The most common plasma Aβ isoforms, i.e., Aβ1-40 and Aβ1-42 have been linked with risk of Alzheimer's disease. However, it remains under-explored whether plasma Aβ levels including novel Aβ1-38 relate to vascular brain disease and cognition in a preclinical-phase of dementiaObjective:To examine the association of plasma Aβ levels (i.e., Aβ1-38, Aβ1-40, and Aβ1-42) with markers of cerebral small vessel disease (SVD) and cognition in a large population-based setting. We analyzed plasma Aβ1 levels in 1201 subjects from two independent cohorts of the Rotterdam Study. Markers of SVD [lacunes, white matter hyperintensity (WMH) volume] were assessed on brain MRI (1.5T). Cognition was assessed by a detailed neuropsychological battery. In each cohort, the association of Aβ levels with SVD and cognition was performed using regression models. Estimates were then pooled across cohorts using inverse variance meta-analysis with fixed effects. Higher levels of plasma Aβ1-38, Aβ1-40, Aβ1-42, and Aβ1-40/ Aβ1-42 ratio were associated with increasing lacunar and microbleeds counts. Moreover, higher levels of Aβ1-40 and Aβ1-40/ Aβ1-42 were significantly associated with larger WMH volumes. With regard to cognition, a higher level of Aβ1-38 Aβ1-40 and Aβ1-40/ Aβ1-42 was related to worse performance on cognitive test specifically in memory domain. Higher plasma levels of Aβ levels are associated with subclinical markers of vascular disease and poorer memory. Plasma Aβ levels thus mark the presence of vascular brain pathology.

  7. Whole-brain radiation fails to boost intracerebral gefitinib concentration in patients with brain metastatic non-small cell lung cancer: a self-controlled, pilot study.

    PubMed

    Fang, Luo; Sun, Xiaojiang; Song, Yu; Zhang, Yiwen; Li, Fanzhu; Xu, Yaping; Ma, Shenglin; Lin, Nengming

    2015-10-01

    Whole-brain radiation therapy (WBRT) is generally considered as an efficient strategy to improve blood-brain barrier (BBB) permeability by damaging BBB structure and is therefore, used as a promising pretreatment of chemotherapy. However, the impact of radiotherapy on leaky BBB is still controversial for the reason that BBB of metastatic brain tumor lesion had been breached by tumor metastasizing. Herein, we conducted a self-controlled study to evaluate the effect of WBRT on the permeability of BBB in non-small cell lung cancer (NSCLC) patients with brain metastases (BM). A prospective self-controlled research was performed. Radiation-naive NSCLC patients with BM were enrolled and treated with gefitinib for 2 weeks, and then concurrently combined with WBRT for 2 weeks. Plasma and cerebrospinal fluid (CSF) before and after WBRT were collected on day 15 and 29 after the initiation of gefitinib treatment. The concentrations of gefitinib in these samples were measured by HPLC. Three patients were enrolled and evaluated. The concentrations of gefitinib in plasma and CSF pre-WBRT were comparable to those of post-WBRT. Consequently, no significant change was noted in the CSF-to-plasma ratios of gefitinib before and after WBRT (2.79 ± 1.47 vs. 2.35 ± 1.74 %, p = 0.123). The WBRT may not affect the BBB permeability by determining the concentration of gefitinib in NSCLC patients with BM.

  8. The concentration of erlotinib in the cerebrospinal fluid of patients with brain metastasis from non-small-cell lung cancer

    PubMed Central

    DENG, YANMING; FENG, WEINENG; WU, JING; CHEN, ZECHENG; TANG, YICONG; ZHANG, HUA; LIANG, JIANMIAO; XIAN, HAIBING; ZHANG, SHUNDA

    2014-01-01

    It has been demonstrated that erlotinib is effective in treating patients with brain metastasis from non-small-cell lung cancer. However, the number of studies determining the erlotinib concentration in these patients is limited. The purpose of this study was to measure the concentration of erlotinib in the cerebrospinal fluid of patients with brain metastasis from non-small-cell lung carcinoma. Six patients were treated with the standard recommended daily dose of erlotinib (150 mg) for 4 weeks. All the patients had previously received chemotherapy, but no brain radiotherapy. At the end of the treatment period, blood plasma and cerebrospinal fluid samples were collected and the erlotinib concentration was determined by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The average erlotinib concentration in the blood plasma and the cerebrospinal fluid was 717.7±459.7 and 23.7±13.4 ng/ml, respectively. The blood-brain barrier permeation rate of erlotinib was found to be 4.4±3.2%. In patients with partial response (PR), stable disease (SD) and progressive disease (PD), the average concentrations of erlotinib in the cerebrospinal fluid were 35.5±19.0, 19.1±8.7 and 16.4±5.9 ng/ml, respectively. In addition, the efficacy rate of erlotinib for metastatic brain lesions was 33.3%, increasing to 50% in patients with EGFR mutations. However, erlotinib appeared to be ineffective in cases with wild-type EGFR. In conclusion, a relatively high concentration of erlotinib was detected in the cerebrospinal fluid of patients with brain metastases from non-small-cell lung cancer. Thus, erlotinib may be considered as a treatment option for this patient population. PMID:24649318

  9. Permeability and route of entry for lipid-insoluble molecules across brain barriers in developing Monodelphis domestica

    PubMed Central

    Ek, C Joakim; Habgood, Mark D; Dziegielewska, Katarzyna M; Potter, Ann; Saunders, Norman R

    2001-01-01

    We have studied the permeability of blood-brain barriers to small molecules such as [14C]sucrose, [3H]inulin, [14C]l-glucose and [3H]glycerol from early stages of development (postnatal day 6, P6) in South American opossums (Monodelphis domestica), using a litter-based method for estimating steady-state cerebrospinal fluid (CSF)/plasma and brain/plasma ratios of markers that were injected i.p.. Steady-state ratios for l-glucose, sucrose and inulin all showed progressive decreases during development. The rate of uptake of l-glucose into the brain and CSF, in short time course experiments (7–24 min) when age-related differences in CSF production can be considered negligible also decreased during development. These results indicate that there is a significant decrease in the permeability of brain barriers to small lipid-insoluble molecules during brain development. The steady-state blood/CSF ratio for 3000 Da lysine-fixable biotin-dextran following i.p. injection was shown to be consistent with diffusion from blood to CSF. It was therefore used to visualise the route of penetration for small lipid-insoluble molecules across brain barriers at P 0–30. The proportion of biotin-dextran-positive cells in the choroid plexuses declined in parallel with the age-related decline in permeability to the small-molecular-weight markers; the paracellular (tight junction) pathway for biotin-dextran appeared to be blocked, but biotin-dextran was easily detectable in the CSF. A transcellular route from blood to CSF was suggested by the finding that some choroid plexus epithelial cells contained biotin-dextran. Biotin-dextran was also taken up by cerebral endothelial cells in the youngest brains studied (P0), but in contrast to the CSF, could not be detected in the brain extracellular space (i.e. a significant blood-brain barrier to small-sized lipid-insoluble compounds was already present). However, in immature brains (P0–13) biotin-dextran was taken up by some cells in the brain. These cells generally had contact with the CSF, suggesting that it is likely to have been the 2source of their biotin-dextran. Since the quantitative permeability data suggest that biotin-dextran behaves similarly to the radiolabelled markers used in this study, it is suggested that these markers in the more immature brains were also present intracellularly. Thus, brain/plasma ratios may be a misleading indicator of blood-brain barrier permeability in very immature animals. The immunocytochemical staining for biotin-dextran in the CSF, in contrast to the lack of staining in the brain extracellular space, together with the quantitative permeability data showing that the radiolabelled markers penetrated more rapidly and to a much higher steady-state level in CSF than in the brain, suggests that lipid-insoluble molecules such as sucrose and inulin reach the immature brain predominantly via the CSF rather than directly across the very few blood vessels that are present at that time. PMID:11691876

  10. LC-MS/MS-based quantification of kynurenine metabolites, tryptophan, monoamines and neopterin in plasma, cerebrospinal fluid and brain.

    PubMed

    Fuertig, René; Ceci, Angelo; Camus, Sandrine M; Bezard, Erwan; Luippold, Andreas H; Hengerer, Bastian

    2016-09-01

    The kynurenine (KYN) pathway is implicated in diseases such as cancer, psychiatric, neurodegenerative and autoimmune disorders. Measurement of KYN metabolite levels will help elucidating the involvement of the KYN pathway in the disease pathology and inform drug development. Samples of plasma, cerebrospinal fluid or brain tissue were spiked with deuterated internal standards, processed and analyzed by LC-MS/MS; analytes were chromatographically separated by gradient elution on a C18 reversed phase analytical column without derivatization. We established an LC-MS/MS method to measure 11 molecules, namely tryptophan, KYN, 3-OH-KYN, 3-OH-anthranilic acid, quinolinic acid, picolinic acid, kynurenic acid, xanthurenic acid, serotonin, dopamine and neopterin within 5.5 min, with sufficient sensitivity to quantify these molecules in small sample volumes of plasma, cerebrospinal fluid and brain tissue.

  11. Repeated intraperitoneal injections of liposomes containing phosphatidic acid and cardiolipin reduce amyloid-β levels in APP/PS1 transgenic mice.

    PubMed

    Ordóñez-Gutiérrez, Lara; Re, Francesca; Bereczki, Erika; Ioja, Eniko; Gregori, Maria; Andersen, Alina J; Antón, Marta; Moghimi, S Moein; Pei, Jin-Jing; Masserini, Massimo; Wandosell, Francisco

    2015-02-01

    The accumulation of extracellular amyloid-beta (Aβ) peptide and intracellular neurofibrillary tangles in the brain are two major neuropathological hallmarks of Alzheimer's disease (AD). It is thought that an equilibrium exists between Aβ in the brain and in the peripheral blood and thus, it was hypothesized that shifting this equilibrium towards the blood by enhancing peripheral clearance might reduce Aβ levels in the brain: the 'sink effect'. We tested this hypothesis by intraperitoneally injecting APP/PS1 transgenic mice with small unilamellar vesicles containing either phosphatidic acid or cardiolipin over 3weeks. This treatment reduced significantly the amount of Aβ in the plasma and the brain levels of Aβ were lighter affected. Nevertheless, this dosing regimen did modulate tau phosphorylation and glycogen synthase kinase 3 activities in the brain, suggesting that the targeting of circulating Aβ may be therapeutically relevant in AD. Intraperitoneal injection of small unilamellar vesicles containing phosphatidic acid or cardiolipin significantly reduced the amount of amyloid-beta (Aß) peptide in the plasma in a rodent model. Brain levels of Aß were also affected - although to a lesser extent - suggesting that targeting of circulating Aß may be therapeutically relevant of Alzheimer's disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. [The blood-brain barrier in ageing persons].

    PubMed

    Haaning, Nina; Damsgaard, Else Marie; Moos, Torben

    2018-03-26

    Brain capillary endothelial cells (BECs) form the ultra-tight blood-brain barrier (BBB). The permeability of the BBB increases with increasing age and neurovascular and neurodegenerative diseases. Major defects of the BBB can be initiated by increased permeability to plasma proteins in small arteriosclerotic arteries and release of proteins from degenerating neurons into the brain extracellular space. These proteins deposit in perivascular spaces, and subsequently negatively influence the BECs leading to decreased expression of barrier proteins. Detection of BBB defects by the use of non-invasive techniques is relevant for clinical use in settings with advanced age and severe brain disorders.

  13. Intact blood-brain barrier transport of small molecular drugs in animal models of amyloid beta and alpha-synuclein pathology.

    PubMed

    Gustafsson, Sofia; Lindström, Veronica; Ingelsson, Martin; Hammarlund-Udenaes, Margareta; Syvänen, Stina

    2018-01-01

    Pathophysiological impairment of the neurovascular unit, including the integrity and dynamics of the blood-brain barrier (BBB), has been denoted both a cause and consequence of neurodegenerative diseases. Pathological impact on BBB drug delivery has also been debated. The aim of the present study was to investigate BBB drug transport, by determining the unbound brain-to-plasma concentration ratio (K p,uu,brain ), in aged AβPP-transgenic mice, α-synuclein transgenic mice, and wild type mice. Mice were dosed with a cassette of five compounds, including digoxin, levofloxacin (1 mg/kg, s.c.), paliperidone, oxycodone, and diazepam (0.25 mg/kg, s.c.). Brain and blood were collected at 0.5, 1, or 3 h after dosage. Drug concentrations were measured using LC-MS/MS. The total brain-to-plasma concentration ratio was calculated and equilibrium dialysis was used to determine the fraction of unbound drug in brain and plasma for all compounds. Together, these three measures were used to determine the K p,uu,brain value. Despite Aβ or α-synuclein pathology in the current animal models, no difference was observed in the extent of drug transport across the BBB compared to wild type animals for any of the compounds investigated. Hence, the present study shows that the concept of a leaking barrier within neurodegenerative conditions has to be interpreted with caution when estimating drug transport into the brain. The capability of the highly dynamic BBB to regulate brain drug exposure still seems to be intact despite the presence of pathology. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Brain Distribution of a Novel MEK Inhibitor E6201: Implications in the Treatment of Melanoma Brain Metastases.

    PubMed

    Gampa, Gautham; Kim, Minjee; Cook-Rostie, Nicholas; Laramy, Janice K; Sarkaria, Jann N; Paradiso, Linda; DePalatis, Louis; Elmquist, William F

    2018-05-01

    Clinically meaningful efficacy in the treatment of brain tumors, including melanoma brain metastases (MBM), requires selection of a potent inhibitor against a suitable target, and adequate drug distribution to target sites in the brain. Deregulated constitutive signaling of mitogen-activated protein kinase (MAPK) pathway has been frequently observed in melanoma, and mitogen-activated protein/extracellular signal-regulated kinase (MEK) has been identified to be an important target. E6201 is a potent synthetic small-molecule MEK inhibitor. The purpose of this study was to evaluate brain distribution of E6201, and examine the impact of active efflux transport at the blood-brain barrier on the central nervous system (CNS) exposure of E6201. In vitro studies utilizing transfected Madin-Darby canine kidney II (MDCKII) cells indicate that E6201 is not a substrate of P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp). In vivo studies also suggest a minimal involvement of P-gp and Bcrp in E6201's brain distribution. The total concentrations in brain were higher than in plasma, resulting in a brain-to-plasma AUC ratio (Kp) of 2.66 in wild-type mice. The brain distribution was modestly enhanced in Mdr1a/b -/- , Bcrp1 -/- , and Mdr1a/b -/- Bcrp1 -/- knockout mice. The nonspecific binding of E6201 was higher in brain compared with plasma. However, free-drug concentrations in brain following 40 mg/kg intravenous dose reach levels that exceed reported in vitro half-maximal inhibitory concentration (IC 50 ) values, suggesting that E6201 may be efficacious in inhibiting MEK-driven brain tumors. The brain distribution characteristics of E6201 make it an attractive targeted agent for clinical testing in MBM, glioblastoma, and other CNS tumors that may be effectively targeted with inhibition of MEK signaling. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  15. Severe traumatic brain injury management and clinical outcome using the Lund concept.

    PubMed

    Koskinen, L-O D; Olivecrona, M; Grände, P O

    2014-12-26

    This review covers the main principles of the Lund concept for treatment of severe traumatic brain injury. This is followed by a description of results of clinical studies in which this therapy or a modified version of the therapy has been used. Unlike other guidelines, which are based on meta-analytical approaches, important components of the Lund concept are based on physiological mechanisms for regulation of brain volume and brain perfusion and to reduce transcapillary plasma leakage and the need for plasma volume expanders. There have been nine non-randomized and two randomized outcome studies with the Lund concept or modified versions of the concept. The non-randomized studies indicated that the Lund concept is beneficial for outcome. The two randomized studies were small but showed better outcome in the groups of patients treated according to the modified principles of the Lund concept than in the groups given a more conventional treatment. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Pharmacokinetics and brain distribution of tetrahydropalmatine and tetrahydroberberine after oral administration of DA-9701, a new botanical gastroprokinetic agent, in rats.

    PubMed

    Jung, Ji Won; Kwon, Yong Sam; Jeong, Jin Seok; Son, Miwon; Kang, Hee Eun

    2015-01-01

    DA-9701, a new botanical gastroprokinetic agent, has potential for the management of delayed gastric emptying in Parkinson's disease if it has no central anti-dopaminergic activity. Therefore, we examined the pharmacokinetics of DA-9701 components having dopamine D2 receptor antagonizing activity, tetrahydropalmatine (THP) and tetrahydroberberine (THB), following various oral doses (80-328 mg/kg) of DA-9701. The distribution of THP and THB to the brain and/or other tissues was also evaluated after single or multiple oral administrations of DA-9701. Oral administration of DA-9701 yielded dose-proportional area under the plasma concentration-time curve (AUC0-8 h) and maximum plasma concentration (Cmax) values for THP and THB, indicating linear pharmacokinetics (except for THB at the lowest dose). THP and THB's large tissue-to-plasma concentration ratios indicated considerable tissue distribution. High concentrations of THP and THB in the stomach and small intestine suggest an explanation for DA-9701's potent gastroprokinetic activity. The maximum concentrations of THP and THB in brain following multiple oral DA-9701 for 7 d (150 mg/kg/d) was observed at 30 min after the last oral DA-9701 treatment: 131±67.7 ng/g for THP and 6.97±4.03 ng/g for THB. Although both THP and THB pass through the blood-brain barrier, as indicated by brain-to-plasma concentration ratios greater than unity (approximately 2-4), oral administration of DA-9701 at the effective dose in humans is not expected to lead to sufficient brain concentrations to exert central dopamine D2 receptor antagonism.

  17. Metabolomics analysis reveals elevation of 3-indoxyl sulfate in plasma and brain during chemically-induced acute kidney injury in mice: Investigation of nicotinic acid receptor agonists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zgoda-Pols, Joanna R., E-mail: joanna.pols@merck.com; Chowdhury, Swapan; Wirth, Mark

    2011-08-15

    An investigative renal toxicity study using metabolomics was conducted with a potent nicotinic acid receptor (NAR) agonist, SCH 900424. Liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) techniques were used to identify small molecule biomarkers of acute kidney injury (AKI) that could aid in a better mechanistic understanding of SCH 900424-induced AKI in mice. The metabolomics study revealed 3-indoxyl sulfate (3IS) as a more sensitive marker of SCH 900424-induced renal toxicity than creatinine or urea. An LC-MS assay for quantitative determination of 3IS in mouse matrices was also developed. Following treatment with SCH 900424, 3IS levels were markedly increasedmore » in murine plasma and brain, thereby potentially contributing to renal- and central nervous system (CNS)-related rapid onset of toxicities. Furthermore, significant decrease in urinary excretion of 3IS in those animals due to compromised renal function may be associated with the elevation of 3IS in plasma and brain. These data suggest that 3IS has a potential to be a marker of renal and CNS toxicities during chemically-induced AKI in mice. In addition, based on the metabolomic analysis other statistically significant plasma markers including p-cresol-sulfate and tryptophan catabolites (kynurenate, kynurenine, 3-indole-lactate) might be of toxicological importance but have not been studied in detail. This comprehensive approach that includes untargeted metabolomic and targeted bioanalytical sample analyses could be used to investigate toxicity of other compounds that pose preclinical or clinical development challenges in a pharmaceutical discovery and development. - Research Highlights: > Nicotinic acid receptor agonist, SCH 900424, caused acute kidney injury in mice. > MS-based metabolomics was conducted to identify potential small molecule markers of renal toxicity. > 3-indoxyl-sulfate was found to be as a more sensitive marker of renal toxicity than creatinine or urea. > 3-IS levels were increased not only in murine plasma but also in the brain. > 3-IS potentially contributes to renal-and CNS-related rapid onset of toxicities.« less

  18. Digitalis-like compounds in the toad Bufo viridis: tissue and plasma levels and significance in osmotic stress.

    PubMed

    Lichtstein, D; Gati, I; Haver, E; Katz, U

    1992-01-01

    Digitalis-like compounds (DLC), constituents of animal tissues, are possible regulators of the Na+, K(+)-ATPase implicated in water and salt homeostasis. The distribution of DLC in the toad (Bufo viridis) was determined following methanol extraction and partial purification. DLC highest levels were found in the skin but it was also detected in the plasma and many internal organs. Short term (hours) exposure of the toad to hypertonic shock (1.5% NaCl) induced an increase in plasma osmolarity due to an increase in Na+ and Cl- levels. This treatment induced a transient, three fold, increase of DLC levels in the brain and transient reduction of its levels in the ventral skin. Acclimation of the toads to burrowing conditions for six weeks resulted in an increase in plasma osmolarity due to a large increase in plasma urea with a small increase in ion concentrations. Under these conditions DLC levels in the dorsal skin increased by 100% without alteration of its levels in the plasma, brain and ventral skin. DLC levels in the toad brain of control animals, showed a significant dependence on season, being highest in the summer and lowest in the winter. DLC levels in the skin peaked in May while the levels in the plasma were season independent. The changes in DLC levels induced by the short- as well as long-term perturbations in the animal environmental salinity together with the seasonal differences suggest that DLC in the toad is involved in water and salt homeostasis of these animals, but may also participate in other unknown functions.

  19. Effect of aminophylline on tryptophan and other aromatic amino acids in plasma, brain and other tissues and on brain 5-hydroxytryptamine metabolism.

    PubMed

    Curzon, G; Fernando, J C

    1976-12-01

    1 Aminophylline and other methylxanthines increase brain tryptophan and hence 5-hydroxytryptamine turnover. The mechanism of this effect of aminophylline was investigated. 2 At lower doses (greater than 100 mg/kg i.p.) the brain tryptophan increase could be explained by the lipolytic action of the drug, i.e. increased plasma unesterified fatty acid freeing plasma tryptophan from protein binding so that it became available to the brain. 3 Plasma unesterified fatty acid did not increase when aminophylline (109 mg/kg i.p.) was given to nicotinamide-treated rats but as both plasma total and free tryptophan rose, a tryptophan increase in the brain still occurred. 4 The rise in brain tryptophan concentration following the injection of a higher dose of the drug (150 mg/kg i.p.) could no longer be explained by a rise of plasma free tryptophan as the ratio of brain tryptophan to plasma free tryptophan rose considerably. Plasma total tryptophan fell and the plasma insulin concentration rose. 5 The increase of brain tryptophan concentration after injection of 150 mg/kg aminophylline appeared specific for this amino acid as brain tyrosine and phenyllanine did not increase. However as their plasma concentrations fell the brain/plasma ratio for all three amino acids rose. 6 The higher dose of aminophylline increased the muscle concentration of tryptophan but that of tyrosine fell and that of phenylalanine remained unaltered. The liver concentrations were not affected. 7 The aminophylline-induced increase of the ratio of brain tryptophan of plasma free tryptophan no longer occurred when the drug was given to animals injected with the beta-adrenoreceptor blocking agent propranolol or the diabetogenic agent streptozotocin. 8 The changes in brain tryptophan upon aminophylline injection may be explained by (a) increased availability of plasma tryptophan to the brain due to increased lipolysis and (b) increased effectiveness of uptake of tryptophan by the brain due to increased insulin secretion.

  20. Plasma non-esterified docosahexaenoic acid is the major pool supplying the brain

    PubMed Central

    Chen, Chuck T.; Kitson, Alex P.; Hopperton, Kathryn E.; Domenichiello, Anthony F.; Trépanier, Marc-Olivier; Lin, Lauren E.; Ermini, Leonardo; Post, Martin; Thies, Frank; Bazinet, Richard P.

    2015-01-01

    Despite being critical for normal brain function, the pools that supply docosahexaenoic acid (DHA) to the brain are not agreed upon. Using multiple kinetic models in free-living adult rats, we first demonstrate that DHA uptake from the plasma non-esterified fatty acid (NEFA) pool predicts brain uptake of DHA upon oral administration, which enters the plasma NEFA pool as well as multiple plasma esterified pools. The rate of DHA loss by the brain is similar to the uptake from the plasma NEFA pool. Furthermore, upon acute iv administration, although more radiolabeled lysophosphatidylcholine (LPC)-DHA enters the brain than NEFA-DHA, this is due to the longer plasma half-life and exposure to the brain. Direct comparison of the uptake rate of LPC-DHA and NEFA-DHA demonstrates that uptake of NEFA-DHA into the brain is 10-fold greater than LPC-DHA. In conclusion, plasma NEFA-DHA is the major plasma pool supplying the brain. PMID:26511533

  1. P-glycoprotein (MDR1/ABCB1) restricts brain accumulation and Cytochrome P450-3A (CYP3A) limits oral availability of the novel ALK/ROS1 inhibitor lorlatinib.

    PubMed

    Li, Wenlong; Sparidans, Rolf W; Wang, Yaogeng; Lebre, Maria C; Wagenaar, Els; Beijnen, Jos H; Schinkel, Alfred H

    2018-05-09

    Lorlatinib (PF-06463922) is a promising oral anaplastic lymphoma kinase (ALK) and ROS1 inhibitor currently in Phase III clinical trials for treatment of non-small cell lung cancer (NSCLC) containing an ALK rearrangement. With therapy-resistant brain metastases a major concern in NSCLC, lorlatinib was designed to have high membrane and blood-brain barrier permeability. We investigated the roles of the multidrug efflux transporters ABCB1 and ABCG2, and the multispecific drug-metabolizing enzyme CYP3A in plasma pharmacokinetics and tissue distribution of lorlatinib using genetically modified mouse strains. In vitro, human ABCB1 and mouse Abcg2 modestly transported lorlatinib. Following oral lorlatinib administration (at 10 mg/kg), brain accumulation of lorlatinib, while relatively high in wild-type mice, was still 4-fold increased in Abcb1a/1b -/- and Abcb1a/1b;Abcg2 -/- mice, but not in single Abcg2 -/- mice. Lorlatinib plasma levels were not altered. Oral coadministration of the ABCB1/ABCG2 inhibitor elacridar increased the brain accumulation of lorlatinib in wild-type mice 4-fold, i.e. to the same level as in Abcb1a/1b;Abcg2 -/- mice, without altering plasma exposure. Similar results were obtained for lorlatinib testis accumulation. In Cyp3a -/- mice, the plasma exposure of lorlatinib was increased 1.3-fold, but was then 2-fold reduced upon transgenic over-expression of human CYP3A4 in liver and intestine, whereas relative tissue distribution of lorlatinib remained unaltered. Our data indicate that lorlatinib brain accumulation is substantially limited by P-glycoprotein in the blood-brain barrier, but this can be effectively reversed by elacridar coadministration. Moreover, oral availability of lorlatinib is markedly restricted by CYP3A4 activity. These insights may be used in optimizing the therapeutic application of lorlatinib. This article is protected by copyright. All rights reserved. © 2018 UICC.

  2. Small Quaternary Inhibitors K298 and K524: Cholinesterases Inhibition, Absorption, Brain Distribution, and Toxicity.

    PubMed

    Karasova, Jana Zdarova; Hroch, Milos; Musilek, Kamil; Kuca, Kamil

    2016-02-01

    Inhibitors of acetylcholinesterase (AChE) may be used in the treatment of various cholinergic deficits, among them being myasthenia gravis (MG). This paper describes the first in vivo data for promising small quaternary inhibitors (K298 and K524): acute toxicity study, cholinesterase inhibition, absorption, and blood-brain barrier penetration. The newly prepared AChE inhibitors (bis-quinolinium and quinolinium compounds) possess a positive charge in the molecule which ensures that anti-AChE action is restricted to peripheral effect. HPLC-MS was used for determination of real plasma and brain concentration in the pharmacokinetic part of the study, and standard non-compartmental analysis was performed. The maximum plasma concentrations were attained at 30 min (K298; 928.76 ± 115.20 ng/ml) and 39 min (K524; 812.40 ± 54.96 ng/ml) after i.m. Both compounds are in fact able to target the central nervous system. It seems that the difference in the CNS distribution profile depends on an active efflux system. The K524 brain concentration was actively decreased to below an effective level; in contrast, K298 progressively accumulated in brain tissue. Peripheral AChE inhibitors are still first-line treatment in the mild forms of MG. Commonly prescribed carbamates have many severe side effects related to AChE carbamylation. The search for new treatment strategies is still important. Unlike carbamates, these new compounds target AChE via apparent π-π or π-cationic interaction aside at the AChE catalytic site.

  3. Effects of sarizotan in animal models of ADHD: challenging pharmacokinetic-pharmacodynamic relationships.

    PubMed

    Danysz, Wojciech; Flik, Gunnar; McCreary, Andrew; Tober, Carsten; Dimpfel, Wilfried; Bizot, Jean C; Kostrzewa, Richard; Brown, Russell W; Jatzke, Claudia C; Greco, Sergio; Jenssen, Ann-Kristin; Parsons, Christopher G

    2015-09-01

    Sarizotan 1-[(2R)-3,4-dihydro-2H-chromen-2-yl]-N-[[5-(4-fluorophenyl) pyridin-3-yl]methyl] methenamine, showed an in vivo pharmaco-EEG profile resembling that of methylphenidate which is used in attention deficit/hyperactivity disorder (ADHD). In turn, we tested sarizotan against impulsivity in juvenile rats measuring the choice for large delayed vs. a small immediate reward in a T-maze and obtained encouraging results starting at 0.03 mg/kg (plasma levels of ~11 nM). Results from rats treated neonatally with 6-hydroxydopamine (6-OHDA), also supported anti-ADHD activity although starting at 0.3 mg/kg. However, microdialysis studies revealed that free brain concentration of sarizotan at active doses were below its affinity for 5-HT1A receptors, the assumed primary target. In contrast, electrophysiological experiments in mid-brain Raphé serotonergic cells paralleled by plasma sampling showed that there was ~60% inhibition of firing rate—indicating significant activation of 5-HT1A receptors—at a plasma concentration of 76 nM. In line with this, we observed that sarizotan concentrations in brain homogenates were similar to total blood levels but over 500 fold higher than free extracellular fluid (ECF) concentrations as measured using brain microdialysis. These data suggest that sarizotan may have potential anti-ADHD effects at low doses free of the previously reported side-effects. Moreover, in this case a classical pharmacokinetic-pharmacodynamic relationship based on free brain concentrations seems to be less appropriate than target engagement pharmacodynamic readouts.

  4. Characterization of the concurrent metabolic changes in brain and plasma during insulin-induced moderate hypoglycemia using 1H NMR spectroscopy in juvenile rats.

    PubMed

    Ennis, Kathleen; Lusczek, Elizabeth; Rao, Raghavendra

    2017-07-13

    Treatment of hypoglycemia in children is currently based on plasma glucose measurements. This approach may not ensure neuroprotection since plasma glucose does not reflect the dynamic state of cerebral energy metabolism. To determine whether cerebral metabolic changes during hypoglycemia could be better characterized using plasma metabolomic analysis, insulin-induced acute hypoglycemia was induced in 4-week-old rats. Brain tissue and concurrent plasma samples were collected from hypoglycemic (N=7) and control (N=7) rats after focused microwave fixation to prevent post-mortem metabolic changes. The concentration of 29 metabolites in brain and 34 metabolites in plasma were determined using 1 H NMR spectroscopy at 700MHz and examined using partial least squares-discriminant analysis. The sensitivity of plasma glucose for detecting cerebral energy failure was assessed by determining its relationship to brain phosphocreatine. The brain and plasma metabolite profiles of the hypoglycemia group were distinct from the control group (brain: R 2 =0.92, Q 2 =0.31; plasma: R 2 =0.95, Q 2 =0.74). Concentration differences in glucose, ketone bodies and amino acids were responsible for the intergroup separation. There was 45% concordance between the brain and plasma metabolite profiles. Brain phosphocreatine correlated with brain glucose (control group: R 2 =0.86; hypoglycemia group: R 2 =0.59; p<0.05), but not with plasma glucose. The results confirm that plasma glucose is an insensitive biomarker of cerebral energy changes during hypoglycemia and suggest that a plasma metabolite profile is superior for monitoring cerebral metabolism. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Corticosterone and dehydroepiandrosterone in songbird plasma and brain: effects of season and acute stress

    PubMed Central

    Newman, Amy E. M.; Soma, Kiran K.

    2010-01-01

    Prolonged increases in plasma glucocorticoids can exacerbate neurodegeneration. In rats, these neurodegenerative effects can be reduced by dehydroepiandrosterone (DHEA), an androgen precursor with anti-glucocorticoid actions. In song sparrows, season and acute restraint stress affect circulating levels of corticosterone and DHEA, and the effects of stress differ in plasma collected from the brachial and jugular veins. Jugular plasma is an indirect index of the neural steroidal milieu. Here, we directly measured corticosterone and DHEA in several brain regions and jugular plasma, and examined the effects of season and acute restraint stress (30 min) (n = 571 samples). Corticosterone levels were up to 10× lower in brain than in jugular plasma. In contrast, DHEA levels were up to 5× higher in brain than in jugular plasma and were highest in the hippocampus. Corticosterone and DHEA concentrations were strongly seasonally regulated in plasma but, surprisingly, not seasonally regulated in brain. Acute stress increased corticosterone levels in plasma and brain, except during the molt, when stress unexpectedly decreased corticosterone levels in the hippocampus. Acute stress increased DHEA levels in plasma during the molt but had no effects on DHEA levels in brain. This is the first study to measure (i) corticosterone or DHEA levels in the brain of adult songbirds and (ii) seasonal changes in corticosterone or DHEA levels in the brain of any species. These results highlight several critical differences between systemic and local steroid concentrations and the difficulty of using circulating steroid levels to infer local steroid levels within the brain. PMID:19473242

  6. Circulating Neprilysin Clears Brain Amyloid

    PubMed Central

    Liu, Yinxing; Studzinski, Christa; Beckett, Tina; Murphy, M. Paul; Klein, Ronald L.; Hersh, Louis B.

    2010-01-01

    The use of the peptidase neprilysin (NEP) as a therapeutic for lowering brain amyloid burden is receiving increasing attention. We have previously demonstrated that peripheral expression of NEP on the surface of hindlimb muscle lowers brain amyloid burden in a transgenic mouse model of Alzheimer’s disease. In this study we now show that using adeno-associated virus expressing a soluble secreted form of NEP (secNEP-AAV8), NEP secreted into plasma is effective in clearing brain Aβ. Soluble NEP expression in plasma was sustained over the 3-month time period it was measured. Secreted NEP decreased plasma Aβ by 30%, soluble brain Aβ by ~28%, insoluble brain Aβ by ~55%, and Aβ oligomers by 12%. This secNEP did not change plasma levels of substance P or bradykinin, nor did it alter blood pressure. No NEP was detected in CSF, nor did the AAV virus produce brain expression of NEP. Thus the lowering of brain Aβ was due to plasma NEP which altered blood-brain Aβ transport dynamics. Expressing NEP in plasma provides a convenient way to monitor enzyme activity during the course of its therapeutic testing. PMID:20558294

  7. Imaging Metals in Brain Tissue by Laser Ablation - Inductively Coupled Plasma - Mass Spectrometry (LA-ICP-MS)

    PubMed Central

    Hare, Dominic J.; Kysenius, Kai; Paul, Bence; Knauer, Beate; Hutchinson, Robert W.; O'Connor, Ciaran; Fryer, Fred; Hennessey, Tom P.; Bush, Ashley I.; Crouch, Peter J.; Doble, Philip A.

    2017-01-01

    Metals are found ubiquitously throughout an organism, with their biological role dictated by both their chemical reactivity and abundance within a specific anatomical region. Within the brain, metals have a highly compartmentalized distribution, depending on the primary function they play within the central nervous system. Imaging the spatial distribution of metals has provided unique insight into the biochemical architecture of the brain, allowing direct correlation between neuroanatomical regions and their known function with regard to metal-dependent processes. In addition, several age-related neurological disorders feature disrupted metal homeostasis, which is often confined to small regions of the brain that are otherwise difficult to analyze. Here, we describe a comprehensive method for quantitatively imaging metals in the mouse brain, using laser ablation - inductively coupled plasma - mass spectrometry (LA-ICP-MS) and specially designed image processing software. Focusing on iron, copper and zinc, which are three of the most abundant and disease-relevant metals within the brain, we describe the essential steps in sample preparation, analysis, quantitative measurements and image processing to produce maps of metal distribution within the low micrometer resolution range. This technique, applicable to any cut tissue section, is capable of demonstrating the highly variable distribution of metals within an organ or system, and can be used to identify changes in metal homeostasis and absolute levels within fine anatomical structures. PMID:28190025

  8. Antitumor activity of the selective ALK inhibitor alectinib in models of intracranial metastases.

    PubMed

    Kodama, Tatsushi; Hasegawa, Masami; Takanashi, Kenji; Sakurai, Yuji; Kondoh, Osamu; Sakamoto, Hiroshi

    2014-11-01

    The clinical efficacy of the anaplastic lymphoma kinase (ALK) inhibitor crizotinib has been demonstrated in ALK fusion-positive non-small cell lung cancer (NSCLC); however, brain metastases are frequent sites of initial failure in patients due to poor penetration of the central nervous system by crizotinib. Here, we examined the efficacy of a selective ALK inhibitor alectinib/CH5424802 in preclinical models of intracranial tumors. We established intracranial tumor implantation mouse models of EML4-ALK-positive NSCLC NCI-H2228 and examined the antitumor activity of alectinib in this model. Plasma distribution and brain distribution of alectinib were examined by quantitative whole-body autoradiography administrating a single oral dose of (14)C-labeled alectinib to rats. The drug permeability of alectinib was evaluated in Caco-2 cell. Alectinib resulted in regression of NCI-H2228 tumor in mouse brain and provided a survival benefit. In a pharmacokinetic study using rats, alectinib showed a high brain-to-plasma ratio, and in an in vitro drug permeability study using Caco-2 cells, alectinib was not transported by P-glycoprotein efflux transporter that is a key factor in blood-brain barrier penetration. We established intracranial tumor implantation models of EML4-ALK-positive NSCLC. Alectinib showed potent efficacy against intracranial EML4-ALK-positive tumor. These results demonstrated that alectinib might provide therapeutic opportunities for crizotinib-treated patients with brain metastases.

  9. Clinical characteristics of high plasma adiponectin and high plasma leptin as risk factors for arterial stiffness and related end-organ damage.

    PubMed

    Kohara, Katsuhiko; Ochi, Masayuki; Okada, Yoko; Yamashita, Taiji; Ohara, Maya; Kato, Takeaki; Nagai, Tokihisa; Tabara, Yasuharu; Igase, Michiya; Miki, Tetsuro

    2014-08-01

    The relationship between plasma levels of adiponectin and cardiovascular events is inconclusive. We evaluated the clinical characteristics of people with high plasma adiponectin and high plasma leptin levels. Thousand seven hundred participants recruited from visitors to the Anti-Aging Doc were divided into four groups by combining the bipartiles of plasma adiponectin and leptin levels in men and women separately: AL, high adiponectin and high leptin; Al, high adiponectin and low leptin; al, low adiponectin and low leptin; aL, low adiponectin and high leptin. Body composition, including visceral fat area and thigh muscle cross-sectional area (CSA), brachial-ankle pulse wave velocity (baPWV), periventricular hyperintensity, and urinary albumin excretion, were determined. Twenty percent of the studied population fell within the AL group. This group had a significantly higher visceral fat area than the Al group. Thigh muscle CSA was lowest in the AL group among groups. baPWV, brain white matter lesions, and albuminuria findings in the AL group were significantly higher than those of the Al group. Multiple and logistic regression analyses with confounding parameters further confirmed that plasma adiponectin was not an independent determinant for brain and renal small vessel-related disease. These findings suggest that the plasma level of adiponectin alone is not enough for the risk stratification of cardiovascular disease. Leptin resistance associated with skeletal muscle loss in addition to obesity may need to be addressed to identify high risk people with high plasma adiponectin levels. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Circulating neprilysin clears brain amyloid.

    PubMed

    Liu, Yinxing; Studzinski, Christa; Beckett, Tina; Murphy, M Paul; Klein, Ronald L; Hersh, Louis B

    2010-10-01

    The use of the peptidase neprilysin (NEP) as a therapeutic for lowering brain amyloid burden is receiving increasing attention. We have previously demonstrated that peripheral expression of NEP on the surface of hindlimb muscle lowers brain amyloid burden in a transgenic mouse model of Alzheimer's disease. In this study we now show that using adeno-associated virus expressing a soluble secreted form of NEP (secNEP-AAV8), NEP secreted into plasma is effective in clearing brain Abeta. Soluble NEP expression in plasma was sustained over the 3-month time period it was measured. Secreted NEP decreased plasma Abeta by 30%, soluble brain Abeta by approximately 28%, insoluble brain Abeta by approximately 55%, and Abeta oligomersby 12%. This secNEP did not change plasma levels of substance P or bradykinin, nor did it alter blood pressure. No NEP was detected in CSF, nor did the AAV virus produce brain expression of NEP. Thus the lowering of brain Abeta was due to plasma NEP which altered blood-brain Abeta transport dynamics. Expressing NEP in plasma provides a convenient way to monitor enzyme activity during the course of its therapeutic testing. Copyright 2010 Elsevier Inc. All rights reserved.

  11. Blood-Brain Glucose Transfer: Repression in Chronic Hyperglycemia

    NASA Astrophysics Data System (ADS)

    Gjedde, Albert; Crone, Christian

    1981-10-01

    Diabetic patients with increased plasma glucose concentrations may develop cerebral symptoms of hypoglycemia when their plasma glucose is rapidly lowered to normal concentrations. The symptoms may indicate insufficient transport of glucose from blood to brain. In rats with chronic hyperglycemia the maximum glucose transport capacity of the blood-brain barrier decreased from 400 to 290 micromoles per 100 grams per minute. When plasma glucose was lowered to normal values, the glucose transport rate into brain was 20 percent below normal. This suggests that repressive changes of the glucose transport mechanism occur in brain endothelial cells in response to increased plasma glucose.

  12. Hyperammonaemia, plasma aminoacid imbalance, and blood-brain aminoacid transport: a unified theory of portal-systemic encephalopathy.

    PubMed

    James, J H; Ziparo, V; Jeppsson, B; Fischer, J E

    1979-10-13

    It is proposed that hyperammonaemia in liver cirrhosis or after portacaval shunt contributes to plasma neutral aminoacid imbalance and to increased activity of the blood-brain neutral amino-acid transport system. Plasma neutral aminoacid concentrations are deranged, partly, but not completely, because ammonia stimulates glucagon secretion; a high rate of gluconeogenesis and hyperinsulinaemia follow. Brain uptake of neutral aminoacids rises because ammonia stimulates brain-glutamine synthesis, which results in rapid exchange of brain glutamine for plasma neutral aminoacids. Hyperammonaemia therefore contributes to encephalopathy indirectly, by raising the brain concentration of neutral aminoacids which after neurotransmitter metabolism, rather than directly, by toxic effects on neuronal metabolism.

  13. Tobacco Smoking and Brain Endogenous Opioid Release: More than Nicotine Alone.

    PubMed

    Domino, Edward F; Hirasawa-Fujita, Mika

    2018-03-05

    The effects of smoking denicotinized (denic) and average nicotine (avnic) tobacco cigarettes were studied on brain mu opioid receptor binding by positron emission tomography with 11C carfentanil. The results indicated the importance of physiological and psychological effects induced by denic smoking. Regional mu opioid binding potential (non-displaceable binding potential, BPND) was measured in 20 adult male overnight abstinent chronic tobacco smokers. The denic sessions were conducted about 8:00 AM followed by avnic sessions about 2 hours later. Venous plasma nicotine levels and scores of craving to smoke were assessed before and after each smoking session. Fagerstrom scores of nicotine dependence were determined. Pearson's and Spearman's correlation tests were used to examine associations between BPND and other smoking parameters. Surprisingly the very low plasma nicotine peak levels after denic smoking (mean±SD: 3.3±1.8 ng/ml) were significantly correlated with BPND after denic and avnic smoking. Equally surprising no association was found between nicotine levels after avnic smoking and BPND. Delta craving scores and Fagerstrom scores were correlated with both BPND after denic and avnic in several brain regions. Very small amounts of nicotine, psychological and behavioral effects of denic smoking appear to have important actions on the endogenous mu opioid system. Associations between very low venous plasma nicotine levels after denic smoking and regional brain mu opioid receptor availability are a surprising "placebo" effect. Delta craving and Fagerstrom scores were correlated with BPND in several brain regions including amygdala, hippocampus, insula, nucleus accumbens, putamen and ventral striatum. This study is limited by modest Power (mean 1-β=0.6) for all correlation analyses.

  14. Role of P-glycoprotein and breast cancer resistance protein-1 in the brain penetration and brain pharmacodynamic activity of the novel phosphatidylinositol 3-kinase inhibitor GDC-0941.

    PubMed

    Salphati, Laurent; Lee, Leslie B; Pang, Jodie; Plise, Emile G; Zhang, Xiaolin

    2010-09-01

    2-(1H-Indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-thieno[3,2-d]pyrimidine (GDC-0941) is a novel small molecule inhibitor of the phosphatidylinositol 3-kinase (PI3K) pathway currently evaluated in the clinic as an anticancer agent. The objectives of this study were to determine in vitro whether GDC-0941 was a substrate of P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp1) and to investigate the impact of these transporters on the pharmacokinetics, brain penetration, and activity of GDC-0941 in FVBn mice (wild-type) and Mdr1a/b(-/-), Bcrp1(-/-), and Mdr1a/b(-/-)/Bcrp1(-/-) knockout mice. Studies with Madin-Darby canine kidney cells transfected with P-gp or Bcrp1 established that this compound was a substrate of both transporters. After administrations to mice, GDC-0941 brain-to-plasma ratio ranged from 0.02 to 0.06 in the wild-type and Bcrp1(-/-) mice and was modestly higher in the Mdr1a/b(-/-) mice, ranging from 0.08 to 0.11. In contrast, GDC-0941 brain-to-plasma ratio in Mdr1a/b(-/-)/Bcrp1(-/-) triple knockout mice was 30-fold higher than in the wild-type mice. The plasma clearance of GDC-0941 was similar in wild-type and all knockout mice, ranging from 15 to 25 ml/(min . kg) in the wild-type mice and from 18 to 35 ml/(min . kg) in the knockout mice. Exposure after oral administration was comparable in the four strains of mice. The PI3K pathway was markedly inhibited in the brain of Mdr1a/b(-/-)/Bcrp1(-/-) mice for up to 6 h postdose, as evidenced by a 60% suppression of the phosphorylated Akt signal, whereas no inhibition was detected in the brain of wild-type mice. The concerted effects of P-gp and Bcrp1 in restricting GDC-0941 access and pathway modulation in mouse brain may have implications for the treatment of patients with brain tumors.

  15. Rapid and sensitive liquid chromatography-tandem mass spectrometry method for determination of protein-free pro-drug treosulfan and its biologically active monoepoxy-transformer in plasma and brain tissue.

    PubMed

    Romański, Michał; Teżyk, Artur; Zaba, Czesław; Główka, Franciszek K

    2014-09-01

    For the first time a high performance liquid chromatography method with tandem mass spectrometry detection (HPLC-MS/MS) was developed for simultaneous determination of a pro-drug treosulfan (TREO) and its active monoepoxide (S,S-EBDM) in biological matrices. Small volumes of rat plasma (50 μL) and the brain homogenate supernatant (100 μL), equivalent to 0.02 g of brain tissue, were required for the analysis. Protein-free TREO, S,S-EBDM and acetaminophen, internal standard (IS), were isolated from the samples by ultrafiltration. Complete resolution of the analytes and the IS was accomplished on Zorbax Eclipse column using an isocratic elution with a mobile phase composed of ammonium formate - formic acid buffer pH 4.0 and acetonitrile. Detection was performed on a triple-quadrupole MS via multiple-reaction-monitoring following electrospray ionization. The developed method was fully validated according to the current guidelines of the European Medicines Agency. Calibration curves were linear in ranges: TREO 0.2-5720 μM and S,S-EBDM 0.9-175 μM for plasma, and TREO 0.2-29 μM and S,S-EBDM 0.4-44 μM for the brain homogenate supernatant. The limits of quantitation of TREO and S,S-EBDM in the studied matrices were much lower in comparison to the previously used bioanalytical methods. The HPLC-MS/MS method was adequately precise (coefficient of variation≤12.2%), accurate (relative error≤8.6%), and provided no carry-over, acceptable matrix effect as well as dilution integrity. The analytes were stable in acidified plasma and the brain homogenate supernatant samples for 4 h at room temperature, for 4 months at-80°C as well as within two cycles of freezing and thawing, and demonstrated 18-24h autosampler stability. The validated method enabled determination of low concentrations of TREO and S,S-EBDM in incurred brain samples of the rats treated with TREO, which constitutes a novel bioanalytical application. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Determination of the neuropharmacological drug nodakenin in rat plasma and brain tissues by liquid chromatography tandem mass spectrometry: Application to pharmacokinetic studies.

    PubMed

    Song, Yingshi; Yan, Huiyu; Xu, Jingbo; Ma, Hongxi

    2017-09-01

    A rapid and sensitive liquid chromatography tandem mass spectrometry detection using selected reaction monitoring in positive ionization mode was developed and validated for the quantification of nodakenin in rat plasma and brain. Pareruptorin A was used as internal standard. A single step liquid-liquid extraction was used for plasma and brain sample preparation. The method was validated with respect to selectivity, precision, accuracy, linearity, limit of quantification, recovery, matrix effect and stability. Lower limit of quantification of nodakenin was 2.0 ng/mL in plasma and brain tissue homogenates. Linear calibration curves were obtained over concentration ranges of 2.0-1000 ng/mL in plasma and brain tissue homogenates for nodakenin. Intra-day and inter-day precisions (relative standard deviation, RSD) were <15% in both biological media. This assay was successfully applied to plasma and brain pharmacokinetic studies of nodakenin in rats after intravenous administration. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Plasma serotonin in autism.

    PubMed

    Connors, Susan L; Matteson, Karla J; Sega, Gary A; Lozzio, Carmen B; Carroll, Roger C; Zimmerman, Andrew W

    2006-09-01

    Serotonin is necessary for normal fetal brain development. Administration of serotonin inhibitors to pregnant rats results in offspring with abnormal behaviors, brain morphology, and serotonin receptor numbers. Low maternal plasma serotonin may contribute to abnormal brain development in autism. In this study, plasma serotonin levels in autism mothers and control mothers of typically developing children were compared, and plasma serotonin levels in children with autism (n = 17) and their family members were measured. Plasma serotonin levels in autism mothers were significantly lower than in mothers of normal children (P = 0.002). Plasma serotonin levels correlated between autism mothers and their children, but differed between autistic children and their fathers (P = 0.028) and siblings (P = 0.063). Low maternal plasma serotonin may be a risk factor for autism through effects on fetal brain development.

  18. The pathogenesis of small arterial lesions in nephrectomized rats by the administration of renin.

    PubMed Central

    Kai, M.; Kanaide, H.; Yamamoto, H.; Kurozumi, T.; Tanaka, K.; Nakamura, M.

    1981-01-01

    Intraperitoneal injection of purified hog renal renin produced a marked and sustained elevation of arterial pressure and lesions of the "fibrinoid necrosis" type in the small arteries and arterioles of the pancreas, heart and mesentery, but not of the brain, in bilaterally nephrectomized rats. Both the elevation of arterial pressure and the production of arterial lesions were completely prevented by pretreatment with oral SQ14225. Plasma renin clearance in bilaterally nephrectomized rats was markedly slower than that in sham-nephrectomized rats. Pre-treatment with oral SQ14225 did not affect renin clearance. It is suggested that sustained high blood pressure due to the sustained high plasma renin concentration in bilaterally nephrectomized rat was responsible for the production by renin of lesions of the fibrinoid necrosis type in the arteries. Images Fig. 1 Fig. 4 PMID:7016159

  19. Valine entry into rat brain after diet-induced changes in plasma amino acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tews, J.K.; Greenwood, J.; Pratt, O.E.

    1987-01-01

    Passage of amino acids across the blood-brain barrier is assumed to be modified by amino acid composition of the blood. To gain a better understanding of the effects of protein intake on brain amino acid uptake, the authors examined associations among diet, plasma amino acid patterns, and the rate of entry of valine into the brain. Rats were fed diets containing 6, 18, or 50% casein before receiving one meal of a diet containing 0, 6, 18, or 50% casein. After 4-7 h, they were anesthetized and infused intravenously with (/sup 14/C)valine for 5 min before plasma and brain samplesmore » were taken for determination of radioactivity and content of individual amino acids. As protein content of the meal was increased from 0 to 50% casein, plasma and brain concentrations of valine and most other large neutral amino acid (LNAA) increased severalfold; also the ratio of (/sup 14/C)valine in brain to that in plasma decreased by >50%, and the rate of valine entry into the brain increased 3.5-fold. The increase in valine flux slowed as plasma levels of LNAA, competitors for valine transport, increased. The results were far more dependent on protein content of the final meal than on that of the adaptation diet; thus changes in protein intake, as reflected in altered plasma amino acid patterns, markedly altered valine entry into the brain.« less

  20. Early plasma transfusion is associated with improved survival after isolated traumatic brain injury in patients with multifocal intracranial hemorrhage.

    PubMed

    Chang, Ronald; Folkerson, Lindley E; Sloan, Duncan; Tomasek, Jeffrey S; Kitagawa, Ryan S; Choi, H Alex; Wade, Charles E; Holcomb, John B

    2017-02-01

    Plasma-based resuscitation improves outcomes in trauma patients with hemorrhagic shock, while large-animal and limited clinical data suggest that it also improves outcomes and is neuroprotective in the setting of combined hemorrhage and traumatic brain injury. However, the choice of initial resuscitation fluid, including the role of plasma, is unclear for patients after isolated traumatic brain injury. We reviewed adult trauma patients admitted from January 2011 to July 2015 with isolated traumatic brain injury. "Early plasma" was defined as transfusion of plasma within 4 hours. Purposeful multiple logistic regression modeling was performed to analyze the relationship of early plasma and inhospital survival. After testing for interaction, subgroup analysis was performed based on the pattern of brain injury on initial head computed tomography: epidural hematoma, intraparenchymal contusion, subarachnoid hemorrhage, subdural hematoma, or multifocal intracranial hemorrhage. Of the 633 isolated traumatic brain injury patients included, 178 (28%) who received early plasma were injured more severely coagulopathic, hypoperfused, and hypotensive on admission. Survival was similar in the early plasma versus no early plasma groups (78% vs 84%, P = .08). After adjustment for covariates, early plasma was not associated with improved survival (odds ratio 1.18, 95% confidence interval 0.71-1.96). On subgroup analysis, multifocal intracranial hemorrhage was the largest subgroup with 242 patients. Of these, 61 (25%) received plasma within 4 hours. Within-group logistic regression analysis with adjustment for covariates found that early plasma was associated with improved survival (odds ratio 3.34, 95% confidence interval 1.20-9.35). Although early plasma transfusion was not associated with improved in-hospital survival for all isolated traumatic brain injury patients, early plasma was associated with increased in-hospital survival in those with multifocal intracranial hemorrhage. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Liquid chromatographic determination of minocycline in brain-to-plasma distribution studies in the rat.

    PubMed

    Colovic, Milena; Caccia, Silvio

    2003-07-05

    An isocratic reversed-phase high-performance liquid chromatographic procedure was developed for the determination of minocycline in rat plasma and brain and applied to brain-to-blood (plasma) distribution studies. The procedure is based on isolation of the compound and the internal standard (either demeclocycline or tetracycline may be used) from plasma and brain constituents using the Oasis HLB cartridge, with satisfactory recovery and specificity, and separation on a Symmetry Shield RP8 (15 cm x 4.6 mm, 3.5 microm) column coupled with a UV detector set at 350 nm. The assay was linear over a wide range, with a lower limit of quantification of 50 ng ml(-1) or g(-1), using 0.2 ml of plasma and about 200 mg of brain tissue. Precision and accuracy were acceptable. In the rat minocycline crossed the blood-brain barrier slowly, achieving mean brain concentrations between 30 and 40% of the equivalent systemic exposure, regardless of the dose and route of administration.

  2. Optimization of Evans blue quantitation in limited rat tissue samples

    PubMed Central

    Wang, Hwai-Lee; Lai, Ted Weita

    2014-01-01

    Evans blue dye (EBD) is an inert tracer that measures plasma volume in human subjects and vascular permeability in animal models. Quantitation of EBD can be difficult when dye concentration in the sample is limited, such as when extravasated dye is measured in the blood-brain barrier (BBB) intact brain. The procedure described here used a very small volume (30 µl) per sample replicate, which enabled high-throughput measurements of the EBD concentration based on a standard 96-well plate reader. First, ethanol ensured a consistent optic path length in each well and substantially enhanced the sensitivity of EBD fluorescence spectroscopy. Second, trichloroacetic acid (TCA) removed false-positive EBD measurements as a result of biological solutes and partially extracted EBD into the supernatant. Moreover, a 1:2 volume ratio of 50% TCA ([TCA final] = 33.3%) optimally extracted EBD from the rat plasma protein-EBD complex in vitro and in vivo, and 1:2 and 1:3 weight-volume ratios of 50% TCA optimally extracted extravasated EBD from the rat brain and liver, respectively, in vivo. This procedure is particularly useful in the detection of EBD extravasation into the BBB-intact brain, but it can also be applied to detect dye extravasation into tissues where vascular permeability is less limiting. PMID:25300427

  3. Optimization of Evans blue quantitation in limited rat tissue samples

    NASA Astrophysics Data System (ADS)

    Wang, Hwai-Lee; Lai, Ted Weita

    2014-10-01

    Evans blue dye (EBD) is an inert tracer that measures plasma volume in human subjects and vascular permeability in animal models. Quantitation of EBD can be difficult when dye concentration in the sample is limited, such as when extravasated dye is measured in the blood-brain barrier (BBB) intact brain. The procedure described here used a very small volume (30 µl) per sample replicate, which enabled high-throughput measurements of the EBD concentration based on a standard 96-well plate reader. First, ethanol ensured a consistent optic path length in each well and substantially enhanced the sensitivity of EBD fluorescence spectroscopy. Second, trichloroacetic acid (TCA) removed false-positive EBD measurements as a result of biological solutes and partially extracted EBD into the supernatant. Moreover, a 1:2 volume ratio of 50% TCA ([TCA final] = 33.3%) optimally extracted EBD from the rat plasma protein-EBD complex in vitro and in vivo, and 1:2 and 1:3 weight-volume ratios of 50% TCA optimally extracted extravasated EBD from the rat brain and liver, respectively, in vivo. This procedure is particularly useful in the detection of EBD extravasation into the BBB-intact brain, but it can also be applied to detect dye extravasation into tissues where vascular permeability is less limiting.

  4. Resuscitation with Pooled and Pathogen-Reduced Plasma Attenuates the Increase in Brain Water Content following Traumatic Brain Injury and Hemorrhagic Shock in Rats.

    PubMed

    Genét, Gustav Folmer; Bentzer, Peter; Ostrowski, Sisse Rye; Johansson, Pär Ingemar

    2017-03-01

    Traumatic brain injury and hemorrhagic shock is associated with blood-brain barrier (BBB) breakdown and edema formation. Recent animal studies have shown that fresh frozen plasma (FFP) resuscitation reduces brain swelling and improves endothelial function compared to isotonic NaCl (NS). The aim of this study was to investigate whether pooled and pathogen-reduced plasma (OctaplasLG ® [OCTA]; Octapharma, Stockholm, Sweden) was comparable to FFP with regard to effects on brain water content, BBB permeability, and plasma biomarkers of endothelial glycocalyx shedding and cell damage. After fluid percussion brain injury, hemorrhage (20 mL/kg), and 90-min shock, 48 male Sprague-Dawley rats were randomized to resuscitation with OCTA, FFP, or NS (n = 16/group). Brain water content (wet/dry weight) and BBB permeability (transfer constant for 51 Cr-EDTA) were measured at 24 h. Plasma osmolality, oncotic pressure, and biomarkers of systemic glycocalyx shedding (syndecan-1) and cell damage (histone-complexed DNA) were measured at 0 and 23 h. At 24 h, brain water content was 80.44 ± 0.39%, 80.82 ± 0.82%, and 81.15 ± 0.86% in the OCTA, FFP, and NS groups (lower in OCTA vs. NS; p = 0.026), with no difference in BBB permeability. Plasma osmolality and oncotic pressures were highest in FFP and OCTA resuscitated, and osmolality was further highest in OCTA versus FFP (p = 0.027). In addition, syndecan-1 was highest in FFP and OCTA resuscitated (p = 0.010). These results suggest that pooled solvent-detergent (SD)-treated plasma attenuates the post-traumatic increase in brain water content, and that this effect may, in part, be explained by a high crystalloid and colloid osmotic pressure in SD-treated plasma.

  5. Fluconazole penetration in cerebral parenchyma in humans at steady state.

    PubMed Central

    Thaler, F; Bernard, B; Tod, M; Jedynak, C P; Petitjean, O; Derome, P; Loirat, P

    1995-01-01

    We studied fluconazole penetration in the brain in five patients who had a deep cerebral tumor whose removal required the excision of healthy brain tissue. Plasma and brain samples were simultaneously obtained after oral ingestion of 400 mg of fluconazole daily for 4 days (90% of steady state). Fluconazole penetration in healthy cerebral parenchyma was determined. Plasma and brain samples were assayed by high-pressure liquid chromatography. Concentrations in plasma and brain tissue were 13.5 +/- 5.5 micrograms/ml and 17.6 +/- 6.6 micrograms/g, respectively. The average ratio of concentrations in the brain and plasma (four patients) was 1.33 (range, 0.70 to 2.39). Despite the lack of data concerning the penetration of fluconazole in brain abscesses, these results should permit the use of a daily dose of 400 mg of fluconazole in prospective clinical studies that evaluate the effectiveness of this drug in the treatment of brain abscesses due to susceptible species of fungi. PMID:7625804

  6. The frequently used intraperitoneal hyponatraemia model induces hypovolaemic hyponatraemia with possible model-dependent brain sodium loss.

    PubMed

    Overgaard-Steensen, Christian; Stødkilde-Jørgensen, Hans; Larsson, Anders; Tønnesen, Else; Frøkiaer, Jørgen; Ring, Troels

    2016-07-01

    What is the central question of this study? The brain response to acute hyponatraemia is usually studied in rodents by intraperitoneal instillation of hypotonic fluids (i.p. model). The i.p. model is described as 'dilutional' and 'syndrome of inappropriate ADH (SIADH)', but the mechanism has not been explored systematically and might affect the brain response. Therefore, in vivo brain and muscle response were studied in pigs. What is the main finding and its importance? The i.p. model induces hypovolaemic hyponatraemia attributable to sodium redistribution, not dilution. A large reduction in brain sodium is observed, probably because of the specific mechanism causing the hyponatraemia. This is not accounted for in current understanding of the brain response to acute hyponatraemia. Hyponatraemia is common clinically, and if it develops rapidly, brain oedema evolves, and severe morbidity and even death may occur. Experimentally, acute hyponatraemia is most frequently studied in small animal models, in which the hyponatraemia is produced by intraperitoneal instillation of hypotonic fluids (i.p. model). This hyponatraemia model is described as 'dilutional' or 'syndrome of inappropriate ADH (SIADH)', but seminal studies contradict this interpretation. To confront this issue, we developed an i.p. model in a large animal (the pig) and studied water and electrolyte responses in brain, muscle, plasma and urine. We hypothesized that hyponatraemia was induced by simple water dilution, with no change in organ sodium content. Moderate hypotonic hyponatraemia was induced by a single i.v. dose of desmopressin and intraperitoneal instillation of 2.5% glucose. All animals were anaesthetized and intensively monitored. In vivo brain and muscle water was determined by magnetic resonance imaging and related to the plasma sodium concentration. Muscle water content increased less than expected as a result of pure dilution, and muscle sodium content decreased significantly (by 28%). Sodium was redistributed to the peritoneal fluid, resulting in a significantly reduced plasma volume. This shows that the i.p. model induces hypovolaemic hyponatraemia and not dilutional/SIADH hyponatraemia. Brain oedema evolved, but brain sodium content decreased significantly (by 21%). To conclude, the i.p. model induces hypovolaemic hyponatraemia attributable to sodium redistribution and not water dilution. The large reduction in brain sodium is probably attributable to the specific mechanism that causes the hyponatraemia. This is not accounted for in the current understanding of the brain response to acute hyponatraemia. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.

  7. Striking differences in glucose and lactate levels between brain extracellular fluid and plasma in conscious human subjects: effects of hyperglycemia and hypoglycemia.

    PubMed

    Abi-Saab, Walid M; Maggs, David G; Jones, Tim; Jacob, Ralph; Srihari, Vinod; Thompson, James; Kerr, David; Leone, Paola; Krystal, John H; Spencer, Dennis D; During, Matthew J; Sherwin, Robert S

    2002-03-01

    Brain levels of glucose and lactate in the extracellular fluid (ECF), which reflects the environment to which neurons are exposed, have never been studied in humans under conditions of varying glycemia. The authors used intracerebral microdialysis in conscious human subjects undergoing electrophysiologic evaluation for medically intractable epilepsy and measured ECF levels of glucose and lactate under basal conditions and during a hyperglycemia-hypoglycemia clamp study. Only measurements from nonepileptogenic areas were included. Under basal conditions, the authors found the metabolic milieu in the brain to be strikingly different from that in the circulation. In contrast to plasma, lactate levels in brain ECF were threefold higher than glucose. Results from complementary studies in rats were consistent with the human data. During the hyperglycemia-hypoglycemia clamp study the relationship between plasma and brain ECF levels of glucose remained similar, but changes in brain ECF glucose lagged approximately 30 minutes behind changes in plasma. The data demonstrate that the brain is exposed to substantially lower levels of glucose and higher levels of lactate than those in plasma; moreover, the brain appears to be a site of significant anaerobic glycolysis, raising the possibility that glucose-derived lactate is an important fuel for the brain.

  8. Comparison of the pharmacokinetics of different analogs of 11C-labeled TZTP for imaging muscarinic M2 receptors with PET.

    PubMed

    Reid, Alicia E; Ding, Yu-Shin; Eckelman, William C; Logan, Jean; Alexoff, David; Shea, Colleen; Xu, Youwen; Fowler, Joanna S

    2008-04-01

    The only radiotracer available for the selective imaging of muscarinic M2 receptors in vivo is 3-(3-(3-[18F]fluoropropyl)thio)-1,2,5-thiadiazol-4-yl)-1,2,5,6-tetrahydro-1-methylpyridine) ([18F]FP-TZTP). We have prepared and labeled 3-(3-(3-fluoropropylthio)-1,2,5-thiadiazol-4-yl)-1,2,5,6-tetrahydro-1-methylpyridne (FP-TZTP, 3) and two other TZTP derivatives with 11C at the methylpyridine moiety to explore the potential of using 11C-labeled FP-TZTP for positron emission tomography imaging of M2 receptors and to compare the effect of small structural changes on tracer pharmacokinetics (PK) in brain and peripheral organs. 11C-radiolabeled FP-TZTP, 3-(3-propylthio)-TZTP (6) and 3,3,3-(3-(3-trifluoropropyl)-TZTP (10) were prepared, and log D, plasma protein binding (PPB), affinity constants, time-activity curves (TACs), area under the curve (AUC) for arterial plasma, distribution volumes (DV) and pharmacological blockade in baboons were compared. Values for log D, PPB and affinity constants were similar for 3, 6 and 10. The fraction of parent radiotracer in the plasma was higher and the AUC lower for 10 than for 3 and 6. TACs for brain regions were similar for 3 and 6, which showed PK similar to the 18F tracer, while 10 showed slower uptake and little clearance over 90 min. DVs for 3 and 6 were similar to the 18F tracer but higher for 10. Uptake of the three tracers was significantly reduced by coinjection of unlabeled 3 and 6. Small structural variations on the TZTP structure greatly altered the PK in brain and behavior in blood with little change in the log D, PPB or affinity. The study suggests that 11C-radiolabeled 3 will be a suitable alternative to [18F]FP-TZTP for translational studies in humans.

  9. Plasma brain-derived neurotrophic factor in women after bariatric surgery: a pilot study.

    PubMed

    Merhi, Zaher O; Minkoff, Howard; Lambert-Messerlian, Geralyn M; Macura, Jerzy; Feldman, Joseph; Seifer, David B

    2009-04-01

    Eighteen morbidly obese women had plasma brain-derived neurotrophic factor (BDNF) measured before bariatric surgery and 3 months postoperatively. We analyzed plasma BDNF levels in all the participants then subdivided according to menopausal status and type of surgery. Brain-derived neurotrophic factor decreased significantly in all the participants and in the premenopausal group when looked at in isolation.

  10. Metabonomic Profiling of TASTPM Transgenic Alzheimer's Disease Mouse Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Zeping; Browne, Edward R.; Liu, Tao

    2012-12-07

    Identification of molecular mechanisms underlying early stage Alzheimer’s disease (AD) is important for the development of new therapies against and diagnosis of AD. In this study, non-targeted metabotyping of TASTPM transgenic AD mice was performed. The metabolic profiles of both brain and plasma of TASTPM mice were characterized using gas chromatography-mass spectrometry and compared to those of wild type C57BL/6J mice. TASTPM mice were metabolically distinct compared to wild type mice (Q28 Y = 0.587 and 0.766 for PLS-DA models derived from brain and plasma, respectively). A number of metabolites were found to be perturbed in TASTPM mice in bothmore » brain (D11 fructose, L-valine, L-serine, L-threonine, zymosterol) and plasma (D-glucose, D12 galactose, linoleic acid, arachidonic acid, palmitic acid and D-gluconic acid). In addition, enzyme immunoassay confirmed that selected endogenous steroids were significantly perturbed in brain (androstenedione and 17-OH-progesterone) and plasma (cortisol and testosterone) of TASTPM mice. Ingenuity pathway analysis revealed that perturbations related to amino acid metabolism (brain), steroid biosynthesis (brain), linoleic acid metabolism (plasma) and energy metabolism (plasma) accounted for the differentiation of TASTPM and wild-type« less

  11. Improvement of Blood-Brain Barrier Integrity in Traumatic Brain Injury and Hemorrhagic Shock Following Treatment With Valproic Acid and Fresh Frozen Plasma.

    PubMed

    Nikolian, Vahagn C; Dekker, Simone E; Bambakidis, Ted; Higgins, Gerald A; Dennahy, Isabel S; Georgoff, Patrick E; Williams, Aaron M; Andjelkovic, Anuska V; Alam, Hasan B

    2018-01-01

    Combined traumatic brain injury and hemorrhagic shock are highly lethal. Following injuries, the integrity of the blood-brain barrier can be impaired, contributing to secondary brain insults. The status of the blood-brain barrier represents a potential factor impacting long-term neurologic outcomes in combined injuries. Treatment strategies involving plasma-based resuscitation and valproic acid therapy have shown efficacy in this setting. We hypothesize that a component of this beneficial effect is related to blood-brain barrier preservation. Following controlled traumatic brain injury, hemorrhagic shock, various resuscitation and treatment strategies were evaluated for their association with blood-brain barrier integrity. Analysis of gene expression profiles was performed using Porcine Gene ST 1.1 microarray. Pathway analysis was completed using network analysis tools (Gene Ontology, Ingenuity Pathway Analysis, and Parametric Gene Set Enrichment Analysis). Female Yorkshire swine were subjected to controlled traumatic brain injury and 2 hours of hemorrhagic shock (40% blood volume, mean arterial pressure 30-35 mmHg). Subjects were resuscitated with 1) normal saline, 2) fresh frozen plasma, 3) hetastarch, 4) fresh frozen plasma + valproic acid, or 5) hetastarch + valproic acid (n = 5 per group). After 6 hours of observation, brains were harvested for evaluation. Immunofluoroscopic evaluation of the traumatic brain injury site revealed significantly increased expression of tight-junction associated proteins (zona occludin-1, claudin-5) following combination therapy (fresh frozen plasma + valproic acid and hetastarch + valproic acid). The extracellular matrix protein laminin was found to have significantly improved expression with combination therapies. Pathway analysis indicated that valproic acid significantly modulated pathways involved in endothelial barrier function and cell signaling. Resuscitation with fresh frozen plasma results in improved expression of proteins essential for blood-brain barrier integrity. The addition of valproic acid provides significant improvement to these protein expression profiles. This is likely secondary to activation of key pathways related to endothelial functions.

  12. Pericytes as Inducers of Rapid, Matrix Metalloproteinase-9-Dependent Capillary Damage during Ischemia

    PubMed Central

    Underly, Robert G.; Levy, Manuel; Hartmann, David A.; Grant, Roger I.; Watson, Ashley N.

    2017-01-01

    Blood–brain barrier disruption (BBB) and release of toxic blood molecules into the brain contributes to neuronal injury during stroke and other cerebrovascular diseases. While pericytes are builders and custodians of the BBB in the normal brain, their impact on BBB integrity during ischemia remains unclear. We imaged pericyte-labeled transgenic mice with in vivo two-photon microscopy to examine the relationship between pericytes and blood plasma leakage during photothrombotic occlusion of cortical capillaries. Upon cessation of capillary flow, we observed that plasma leakage occurred with three times greater frequency in regions where pericyte somata adjoined the endothelium. Pericyte somata covered only 7% of the total capillary length in cortex, indicating that a disproportionate amount of leakage occurred from a small fraction of the capillary bed. Plasma leakage was preceded by rapid activation of matrix metalloproteinase (MMP) at pericyte somata, which was visualized at high resolution in vivo using a fluorescent probe for matrix metalloproteinase-2/9 activity, fluorescein isothiocyanate (FITC)-gelatin. Coinjection of an MMP-9 inhibitor, but not an MMP-2 inhibitor, reduced pericyte-associated FITC-gelatin fluorescence and plasma leakage. These results suggest that pericytes contribute to rapid and localized proteolytic degradation of the BBB during cerebral ischemia. SIGNIFICANCE STATEMENT Pericytes are a key component of the neurovascular unit and are essential for normal BBB function. However, during acute ischemia, we find that pericytes are involved in creating rapid and heterogeneous BBB disruption in the capillary bed. The mechanism by which pericytes contribute to BBB damage warrants further investigation, as it may yield new therapeutic targets for acute stroke injury and other neurological diseases involving capillary flow impairment. PMID:28053036

  13. Substrain and light regime effects on integrated anxiety-related behavioral z-scores in male C57BL/6 mice-Hypomagnesaemia has only a small effect on avoidance behavior.

    PubMed

    Labots, M; Zheng, X; Moattari, G; Lozeman-Van't Klooster, J G; Baars, J M; Hesseling, P; Lavrijsen, M; Kirchhoff, S; Ohl, F; van Lith, H A

    2016-06-01

    Magnesium (Mg) has been described to possess an anxiolytic function, but a number of studies present inconsistent results on this matter. In this study the effect of Mg deficiency on anxiety-related behavior, brain and blood plasma Mg in young adult male C57BL/6JOlaHsd and C57BL/6NCrl mice was studied. The animals were put on a control or Mg deficient diet from day 0 and significant hypomagnesaemia was evident from day 12 onwards in the test animals. Housing and test conditions were under either conventional light regime (white light behavioral test conditions) or reverse light regime (red light behavioral test conditions). The animals were tested in three tests for unconditioned anxiety: the modified Hole Board (day 14), the light-dark test (day 21) and the elevated plus maze (day 28). Overall integrated behavioral z-scores were calculated over these three behavioral tests. Mg showed a structure dependent distribution at the level of the brain, that differed between C57BL/6 substrain and light regime (conventional versus reverse), respectively. Likewise, total brain Mg did differ between substrain and light regime, but was not affected by the diet. Animals on the Mg deficient diet housed under conventional light regime had a higher final (day 28) blood plasma corticosterone level as compared to controls. Animals housed under reverse light regime exhibited no diet effect of plasma corticosterone levels. The significant hypomagnesaemia at blood plasma level resulted in an effect of Mg deficiency on avoidance, but not overall anxiety-related behavior. Significant differences regarding avoidance behavior were found between the two substrains and light regimes, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. A phase II study of icotinib and whole-brain radiotherapy in Chinese patients with brain metastases from non-small cell lung cancer.

    PubMed

    Fan, Yun; Huang, Zhiyu; Fang, Luo; Miao, Lulu; Gong, Lei; Yu, Haifeng; Yang, Haiyan; Lei, Tao; Mao, Weimin

    2015-09-01

    Icotinib is a new first-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors. A phase II study was conducted to evaluate the efficacy and safety of icotinib in combination with whole-brain radiotherapy (WBRT) in Chinese NSCLC patients with brain metastases (BMs); the cerebrospinal fluid (CSF)/plasma concentrations of icotinib were also investigated. Eligible patients had BMs from NSCLC, regardless of the EGFR status. Icotinib was administered at 125 mg orally 3 times/day until tumor progression or unacceptable toxicity, concurrently with WBRT (3.0 Gy per day, 5 days per week, to 30 Gy). CSF and plasma samples were collected simultaneously from 10 patients. Icotinib concentrations in the CSF and plasma were measured by high-performance liquid chromatography coupled with tandem mass spectrometry. Twenty patients were enrolled. The median follow-up time was 20.0 months. The overall response rate was 80.0%. The median progression-free survival time was 7.0 months (95% CI 1.2-13.2 months), and the median survival time (MST) was 14.6 months (95% CI 12.5-16.7 months). Of the 18 patients with known EGFR status, the MST was 22.0 months for those with an EGFR mutation and was 7.5 months for those with wild-type EGFR (P = 0.0001). The CSF concentration and penetration rate of icotinib were 11.6 ± 9.1 ng/mL and 1.4 ± 1.1%, respectively. No patient experienced ≥grade 4 toxicity. Icotinib was well tolerated in combination with WBRT and showed efficacy in patients with BMs from NSCLC. This clinical benefit was related to the presence of activating EGFR mutations.

  15. Dietary docosahexaenoic acid supplementation alters select physiological endocannabinoid-system metabolites in brain and plasma

    PubMed Central

    Wood, JodiAnne T.; Williams, John S.; Pandarinathan, Lakshmipathi; Janero, David R.; Lammi-Keefe, Carol J.; Makriyannis, Alexandros

    2010-01-01

    The endocannabinoid metabolome consists of a growing, (patho)physiologically important family of fatty-acid derived signaling lipids. Diet is a major source of fatty acid substrate for mammalian endocannabinoid biosynthesis. The principal long-chain PUFA found in mammalian brain, docosahexaenoic acid (DHA), supports neurological function, retinal development, and overall health. The extent to which dietary DHA supplementation influences endocannabinoid-related metabolites in brain, within the context of the circulating endocannabinoid profile, is currently unknown. We report the first lipidomic analysis of acute 2-week DHA dietary supplementation effects on the physiological state of 15 fatty-acid, N-acylethanolamine, and glycerol-ester endocannabinoid metabolome constituents in murine plasma and brain. The DHA-rich diet markedly elevated DHA, eicosapentaenoic acid, 2-eicosapentanoylglycerol (EPG), and docosahexanoylethanolamine in both compartments. Dietary DHA enhancement generally affected the synthesis of the N-acyl-ethanolamine and glycerol-ester metabolites to favor the docosahexaenoic and eicosapentaenoic vs. arachidonoyl and oleoyl homologs in both brain and plasma. The greater overall responsiveness of the endocannabinoid metabolome in plasma versus brain may reflect a more circumscribed homeostatic response range of brain lipids to dietary DHA supplementation. The ability of short-term DHA enhancement to modulate select constituents of the physiological brain and plasma endocannabinoid metabolomes carries metabolic and therapeutic implications. PMID:20071693

  16. Dietary docosahexaenoic acid supplementation alters select physiological endocannabinoid-system metabolites in brain and plasma.

    PubMed

    Wood, Jodianne T; Williams, John S; Pandarinathan, Lakshmipathi; Janero, David R; Lammi-Keefe, Carol J; Makriyannis, Alexandros

    2010-06-01

    The endocannabinoid metabolome consists of a growing, (patho)physiologically important family of fatty-acid derived signaling lipids. Diet is a major source of fatty acid substrate for mammalian endocannabinoid biosynthesis. The principal long-chain PUFA found in mammalian brain, docosahexaenoic acid (DHA), supports neurological function, retinal development, and overall health. The extent to which dietary DHA supplementation influences endocannabinoid-related metabolites in brain, within the context of the circulating endocannabinoid profile, is currently unknown. We report the first lipidomic analysis of acute 2-week DHA dietary supplementation effects on the physiological state of 15 fatty-acid, N-acylethanolamine, and glycerol-ester endocannabinoid metabolome constituents in murine plasma and brain. The DHA-rich diet markedly elevated DHA, eicosapentaenoic acid, 2-eicosapentanoylglycerol (EPG), and docosahexanoylethanolamine in both compartments. Dietary DHA enhancement generally affected the synthesis of the N-acyl-ethanolamine and glycerol-ester metabolites to favor the docosahexaenoic and eicosapentaenoic vs. arachidonoyl and oleoyl homologs in both brain and plasma. The greater overall responsiveness of the endocannabinoid metabolome in plasma versus brain may reflect a more circumscribed homeostatic response range of brain lipids to dietary DHA supplementation. The ability of short-term DHA enhancement to modulate select constituents of the physiological brain and plasma endocannabinoid metabolomes carries metabolic and therapeutic implications.

  17. Anti-tau antibody administration increases plasma tau in transgenic mice and patients with tauopathy

    PubMed Central

    Yanamandra, Kiran; Patel, Tirth K.; Jiang, Hong; Schindler, Suzanne; Ulrich, Jason D.; Boxer, Adam L.; Miller, Bruce L.; Kerwin, Diana R.; Gallardo, Gilbert; Stewart, Floy; Finn, Mary Beth; Cairns, Nigel J.; Verghese, Philip B.; Fogelman, Ilana; West, Tim; Braunstein, Joel; Robinson, Grace; Keyser, Jennifer; Roh, Joseph; Knapik, Stephanie S.; Hu, Yan; Holtzman, David M.

    2017-01-01

    Tauopathies are a group of disorders in which the cytosolic protein tau aggregates and accumulates in cells within the brain, resulting in neurodegeneration. A promising treatment being explored for tauopathies is passive immunization with anti-tau antibodies. We previously found that administration of an anti-tau antibody to human tau transgenic mice increased the concentration of plasma tau. We further explored the effects of administering an anti-tau antibody on plasma tau. After peripheral administration of an anti-tau antibody to human patients with tauopathy and to mice expressing human tau in the central nervous system, there was a dose-dependent increase in plasma tau. In mouse plasma, we found that tau had a short half-life of 8 min that increased to more than 3 hours after administration of anti-tau antibody. As tau transgenic mice accumulated insoluble tau in the brain, brain soluble and interstitial fluid tau decreased. Administration of anti-tau antibody to tau transgenic mice that had decreased brain soluble tau and interstitial fluid tau resulted in an increase in plasma tau, but this increase was less than that observed in tau transgenic mice without these brain changes. Tau transgenic mice subjected to acute neuronal injury using 3-nitropropionic acid showed increased interstitial fluid tau and plasma tau. These data suggest that peripheral administration of an anti-tau antibody results in increased plasma tau, which correlates with the concentration of extracellular and soluble tau in the brain. PMID:28424326

  18. Radioligand binding analysis of α 2 adrenoceptors with [11C]yohimbine in brain in vivo: Extended Inhibition Plot correction for plasma protein binding.

    PubMed

    Phan, Jenny-Ann; Landau, Anne M; Jakobsen, Steen; Wong, Dean F; Gjedde, Albert

    2017-11-22

    We describe a novel method of kinetic analysis of radioligand binding to neuroreceptors in brain in vivo, here applied to noradrenaline receptors in rat brain. The method uses positron emission tomography (PET) of [ 11 C]yohimbine binding in brain to quantify the density and affinity of α 2 adrenoceptors under condition of changing radioligand binding to plasma proteins. We obtained dynamic PET recordings from brain of Spraque Dawley rats at baseline, followed by pharmacological challenge with unlabeled yohimbine (0.3 mg/kg). The challenge with unlabeled ligand failed to diminish radioligand accumulation in brain tissue, due to the blocking of radioligand binding to plasma proteins that elevated the free fractions of the radioligand in plasma. We devised a method that graphically resolved the masking of unlabeled ligand binding by the increase of radioligand free fractions in plasma. The Extended Inhibition Plot introduced here yielded an estimate of the volume of distribution of non-displaceable ligand in brain tissue that increased with the increase of the free fraction of the radioligand in plasma. The resulting binding potentials of the radioligand declined by 50-60% in the presence of unlabeled ligand. The kinetic unmasking of inhibited binding reflected in the increase of the reference volume of distribution yielded estimates of receptor saturation consistent with the binding of unlabeled ligand.

  19. Brain biochemical correlates of the plasma homocysteine level: a proton magnetic resonance spectroscopy study in the elderly subjects.

    PubMed

    Chen, Cheng-Sheng; Kuo, Yu-Ting; Tsai, Hui-Yi; Li, Chun-Wei; Lee, Chen-Chang; Yen, Cheng-Fang; Lin, Hsiu-Fen; Ko, Chih-Hung; Juo, Suh-Hang Hank; Yeh, Yi-Chun; Liu, Gin-Chung

    2011-07-01

    An elevated plasma homocysteine level has been reported to be associated with various neuropsychiatric diseases. However, little is known about the brain biochemical changes associated with the higher plasma homocysteine level. The main goal of this study was to examine the sex difference in brain biochemical concentrations using brain proton magnetic resonance spectroscopy (H MRS), and to elucidate the biochemical changes associated with plasma homocysteine levels by sex in healthy elderly subjects. Seventy elderly subjects without any clinical psychiatric and neurological disease underwent 3-T brain H MRS. MRS spectra were acquired from voxels placed on the left side of the basal ganglia, frontal lobe, and hippocampus. Brain biochemical concentrations were compared between the elderly male and female participants. Correlations between these biochemical concentrations and plasma homocysteine levels by sex were analyzed. Female participants had significantly higher levels of choline in the left frontal lobe and hippocampus, and lower creatine and myo-inositol, in the left basal ganglia than did males. A higher homocysteine level was correlated with a lower N-acetylaspartate (NAA) concentration in the left hippocampus in elderly women (r = -0.44; p = 0.03) but not in elderly men. This study found that there was a sex difference in brain biochemical concentrations in the elderly participants. A higher plasma homocysteine level was associated with a lower NAA in the hippocampus of elderly women. The sex difference in association between brain biochemical concentrations and plasma homocysteine levels needs further investigation. We speculate that after menopause, women lose protection of estrogen from the neurotoxic effects of homocysteine in the hippocampus. Future studies are required to examine this speculation.

  20. Radiosurgery reduces plasma levels of angiogenic factors in brain arteriovenous malformation patients.

    PubMed

    Xu, Ming; Liu, Xiaoxia; Mei, Guanghai; Zhang, Junjie; Wang, Weixing; Xu, Hongzhi

    2018-05-09

    Aberrant expression of angiogenic factors has been anecdotally documented in brain arteriovenous malformation (AVM) nidus vessels; however, no data is available on the effect of radiosurgery on the levels of angiogenic factors in AVM patients. We sought to determine the plasma contents of VEGF, TGF-β, Ang-2 and bFGF in 28 brain AVM patients at baseline and post radiosurgery and further analyzed the relationship between plasma contents of these angiogenic factors with clinicopathologic variables of these patients. We enrolled brain AVM patients who underwent Cyberknife radiosurgery at our hospital between January 2014 and December 2015. Brain AVM was confirmed by cerebral angiography and radiosurgery was performed with Cyberknife irradiation. Plasma contents of VEGF, TGF-β, Ang-2 and bFGF were analyzed using commercially available enzyme-linked immunoassay (ELISA) kits. The baseline plasma VEGF content was 222.63 pg/mL (range 43.25-431.25 pg/mL). At three months post surgery, there was a significant -34.29% decline in plasma VEGF content versus baseline (P = 0.000). Furthermore, the median baseline plasma VEGF levels were higher in brain AVM with a nidus volume ≥ 10 cm 3 ) than those with a nidus volume < 10 cm 3 [median(IQR) 293.5 (186.5,359.25) vs. 202 (59.75, 270.75) pg/mL, P = 0.057]. The baseline plasma TGF-β content was 556.17 pg/mL (range 44.44-1486.11 pg/mL) and there was a significant -27.47% decline in plasma TGF-β content at 3 months post radiosurgery versus baseline (P = 0.015). Moreover, the baseline plasma ANG-2 content was 214.27 pg/mL (range 77.14-453.76 pg/mL). There was an immediate and significant -12.47% decline in plasma ANG-2 content post surgery versus baseline (P = 0.002). At three months post surgery, the plasma ANG-2 content still remained significantly depressed versus baseline (P = 0.002). In addition, the baseline plasma bFGF content was 9.17 pg/mL (range 3.67-36.78 pg/mL). No significant difference in plasma bFGF content was observed immediately post surgery and 3 months post surgery versus baseline (P = 0.05). Radiosurgery for brain AVM patients significantly reduced the plasma levels of angiogenic factors. The plasma angiogenic factors may be candidate markers for aberrant agniogenesis of brain AVM and patient response to radiosurgery. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Micronucleus formation induced by dielectric barrier discharge plasma exposure in brain cancer cells

    NASA Astrophysics Data System (ADS)

    Kaushik, Nagendra K.; Uhm, Hansup; Ha Choi, Eun

    2012-02-01

    Induction of micronucleus formation (cytogenetic damage) in brain cancer cells upon exposure of dielectric barrier discharge plasma has been investigated. We have investigated the influence of exposure and incubation times on T98G brain cancer cells by using growth kinetic, clonogenic, and micronucleus formation assay. We found that micronucleus formation rate directly depends on the plasma exposure time. It is also shown that colony formation capacity of cells has been inhibited by the treatment of plasma at all doses. Cell death and micronucleus formation are shown to be significantly elevated by 120 and 240 s exposure of dielectric barrier discharge plasma.

  2. Effects of Plasma Lipids and Statins on Cognitive Function.

    PubMed

    Li, Rui; Wang, Tian-Jun; Lyu, Pei-Yuan; Liu, Yang; Chen, Wei-Hong; Fan, Ming-Yue; Xu, Jing

    2018-02-20

    Dementia is the fourth most common cause of death in developed countries. The relationship between plasma lipids and cognitive function is complex and controversial. Due to the increasing life expectancy of the population, there is an urgent need to control vascular risk factors and to identify therapies to prevent and treat both cognitive impairment and dementia. Here, we reviewed the effects of plasma lipids and statins on cognitive function. We searched the PubMed database for research articles published through November 2017 with key words including "plasma lipids," "hyperlipidemia," "hypercholesterolemia," "statins," and "cognition function." Articles were retrieved and reviewed to analyze the effects of plasma lipids and statins on cognitive function and the mechanisms underlying these effects. Many studies have examined the relationship between plasma lipids and cognitive function, but no definitive conclusions can be drawn. The mechanisms involved may include blood-brain barrier injury, the influence on small blood vessels in the brain, the influence on amyloid deposition, and a neuroprotective effect. To date, most studies of statins and cognition have been observational, with few randomized controlled trials. Therefore, firm conclusions regarding whether mid- or long-term statin use affects cognition function and dementia remain elusive. However, increasing concern exists that statins may be a causative factor for cognitive problems. These adverse effects appear to be rare and likely represent a yet-to-be-defined vulnerability in susceptible individuals. The association between plasma lipids and cognition, the mechanism of the influence of plasma lipids on cognitive function, and the association between statins and cognitive function are complex issues and currently not fully understood. Future research aimed at identifying the mechanisms that underlie the effects of plasma lipids and statins on cognition will not only provide important insight into the causes and interdependencies of cognitive impairment and dementia, but also inspire novel strategies for treating and preventing these cognitive disorders.

  3. Detection of brain-directed autoantibodies in the serum of non-small cell lung cancer patients.

    PubMed

    Banjara, Manoj; Ghosh, Chaitali; Dadas, Aaron; Mazzone, Peter; Janigro, Damir

    2017-01-01

    Antibodies against brain proteins were identified in the plasma of cancer patients and are defined to cause paraneoplastic neurological syndromes. The profiles of brain-directed antibodies in non-small cell lung cancer (NSCLC) are largely unknown. Here, for the first time, we compared autoantibodies against brain proteins in NSCLC (n = 18) against those present in age-matched non-cancer control subjects (n = 18) with a similar life-style, habit, and medical history. Self-recognizing immunoglobulin (IgG) are primarily directed against cells in the cortex (P = 0.008), hippocampus (P = 0.003-0.05), and cerebellum (P = 0.02). More specifically, IgG targets were prominent in the pyramidal, Purkinje, and granule cell layers. Furthermore, autoimmune IgG signals were localized to neurons (81%), astrocytes (48%), and endothelial (29%) cells. While cancer sera yielded overall higher intensity signals, autoantigens of 100, 65, 45, 37, and 30 kDa molecular weights were the most represented. Additionally, a group of 100 kDa proteins seem more prevalent in female adenocarcinoma patients (4/5, 80%). In conclusion, our results revealed autoantigen specificity in NSCLC, which implicitly depends on patient's demographics and disease history. Patients at risk for lung cancer but with no active disease revealed that the immune profile in NSCLC is disease-dependent.

  4. Tyrosine kinase inhibitors show different anti-brain metastases efficacy in NSCLC: A direct comparative analysis of icotinib, gefitinib, and erlotinib in a nude mouse model.

    PubMed

    Tan, Jianlong; Li, Min; Zhong, Wen; Hu, Chengping; Gu, Qihua; Xie, Yali

    2017-11-17

    Brain metastasis is an increasing problem in non-small cell lung cancer (NSCLC) patients. Tyrosine kinase inhibitors (TKIs), including gefitinib, erlotinib, and icotinib, are reported to be effective in patients with brain metastases. However, direct comparative studies of the pharmacokinetics and efficacy of these three drugs in treating brain metastases are lacking. In the present investigation, we found that gefitinib penetrated the blood-tumor barrier and was distributed to brain metastases more effectively than erlotinib or icotinib in a nude mouse model. The 1-h ratio of brain metastases to plasma concentration for gefitinib, erlotinib, and icotinib was 9.82±1.03%, 4.83±0.25%, and 2.62±0.21%, respectively. The 2-h ratio of brain metastases to plasma concentration for gefitinib, erlotinib, and icotinib was 15.11±2.00%, 5.73±1.31%, and 2.69±0.31%, respectively. Gefitinib exhibited the strongest antitumor activity ( p gefitinib vs. erlotinib =0.005; p gefitinib vs. icotinib =0.002). Notably, erlotinib exhibited a better treatment efficacy than icotinib ( p =0.037). Consistently, immunohistochemical data showed that TKIs differentially inhibit the proliferation of metastatical tumor cells. Gefitinib and erlotinib markedly inhibited the proliferation of tumor cells, while there were more ki-67-positive tumor cells in the icotinib group. Additionally, gefitinib inhibited the phosphorylation of EGFR better than the other drugs, whereas pEGFR expression levels in erlotinib groups were lower than levels in the icotinib group ( p gefitinib vs. erlotinib =0.995; p gefitinib vs. icotinib =0.028; p erlotinib vs. icotinib =0.042).Altogether, our findings suggest that gefitinib and erlotinib can inhibit the growth of PC-9-luc brain tumors. Gefitinib demonstrated better antitumor activity and penetration rate in brain metastases than erlotinib or icotinib.

  5. Tyrosine kinase inhibitors show different anti-brain metastases efficacy in NSCLC: A direct comparative analysis of icotinib, gefitinib, and erlotinib in a nude mouse model

    PubMed Central

    Tan, Jianlong; Li, Min; Zhong, Wen; Hu, Chengping; Gu, Qihua; Xie, Yali

    2017-01-01

    Brain metastasis is an increasing problem in non-small cell lung cancer (NSCLC) patients. Tyrosine kinase inhibitors (TKIs), including gefitinib, erlotinib, and icotinib, are reported to be effective in patients with brain metastases. However, direct comparative studies of the pharmacokinetics and efficacy of these three drugs in treating brain metastases are lacking. In the present investigation, we found that gefitinib penetrated the blood-tumor barrier and was distributed to brain metastases more effectively than erlotinib or icotinib in a nude mouse model. The 1-h ratio of brain metastases to plasma concentration for gefitinib, erlotinib, and icotinib was 9.82±1.03%, 4.83±0.25%, and 2.62±0.21%, respectively. The 2-h ratio of brain metastases to plasma concentration for gefitinib, erlotinib, and icotinib was 15.11±2.00%, 5.73±1.31%, and 2.69±0.31%, respectively. Gefitinib exhibited the strongest antitumor activity (pgefitinib vs. erlotinib=0.005; pgefitinib vs. icotinib=0.002). Notably, erlotinib exhibited a better treatment efficacy than icotinib (p=0.037). Consistently, immunohistochemical data showed that TKIs differentially inhibit the proliferation of metastatical tumor cells. Gefitinib and erlotinib markedly inhibited the proliferation of tumor cells, while there were more ki-67-positive tumor cells in the icotinib group. Additionally, gefitinib inhibited the phosphorylation of EGFR better than the other drugs, whereas pEGFR expression levels in erlotinib groups were lower than levels in the icotinib group (pgefitinib vs. erlotinib=0.995; pgefitinib vs. icotinib=0.028; perlotinib vs. icotinib=0.042).Altogether, our findings suggest that gefitinib and erlotinib can inhibit the growth of PC-9-luc brain tumors. Gefitinib demonstrated better antitumor activity and penetration rate in brain metastases than erlotinib or icotinib. PMID:29228726

  6. Brain penetration of telmisartan, a unique centrally acting angiotensin II type 1 receptor blocker, studied by PET in conscious rhesus macaques.

    PubMed

    Noda, Akihiro; Fushiki, Hiroshi; Murakami, Yoshihiro; Sasaki, Hiroshi; Miyoshi, Sosuke; Kakuta, Hirotoshi; Nishimura, Shintaro

    2012-11-01

    Telmisartan is a widely used, long-acting antihypertensive agent. Known to be a selective angiotensin II type 1 (AT(1)) receptor (AT(1)R) blocker (ARB), telmisartan acts as a partial agonist of peroxisome proliferator-activated receptor-gamma (PPAR-γ) and inhibits centrally mediated effects of angiotensin II in rats following peripheral administration, although the brain penetration of telmisartan remains unclear. We investigated the brain concentration and localization of telmisartan using (11)C-labeled telmisartan and positron emission tomography (PET) in conscious rhesus macaques. Three male rhesus macaques were bolus intravenously administered [(11)C]telmisartan either alone or as a mixture with unlabeled telmisartan (1mg/kg). Dynamic PET images were acquired for 95min following administration. Blood samples were collected for the analysis of plasma concentration and metabolites, and brain and plasma concentrations were calculated from detected radioactivity using the specific activity of the administered drug preparation, in which whole blood radioactivity was used for the correction of intravascular blood radioactivity in brain. Telmisartan penetrated into the brain little but enough to block AT(1)R and showed a consistently increasing brain/plasma ratio within the PET scanning period, suggesting slow clearance of the compound from the brain compared to the plasma clearance. Brain/plasma ratios at 30, 60, and 90min were 0.06, 0.13, and 0.18, respectively. No marked localization according to the AT(1)R distribution was noted over the entire brain, even on tracer alone dosing. Telmisartan penetrated into the brain enough to block AT(1)R and showed a slow clearance from the brain in conscious rhesus macaques, supporting the long-acting and central responses of telmisartan as a unique property among ARBs. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Plasma Amyloid Is Associated with White Matter and Subcortical Alterations and Is Modulated by Age and Seasonal Rhythms in Mouse Lemur Primates.

    PubMed

    Gary, Charlotte; Hérard, Anne-Sophie; Hanss, Zoé; Dhenain, Marc

    2018-01-01

    Accumulation of amyloid-β (Aβ) peptides in the brain is a critical early event in the pathogenesis of Alzheimer's disease (AD), the most common age-related neurodegenerative disorder. There is increasing interest in measuring levels of plasma Aβ since this could help in diagnosis of brain pathology. However, the value of plasma Aβ in such a diagnosis is still controversial and factors modulating its levels are still poorly understood. The mouse lemur ( Microcebus murinus ) is a primate model of cerebral aging which can also present with amyloid plaques and whose Aβ is highly homologous to humans'. In an attempt to characterize this primate model and to evaluate the potential of plasma Aβ as a biomarker for brain alterations, we measured plasma Aβ 40 concentration in 21 animals aged from 5 to 9.5 years. We observed an age-related increase in plasma Aβ 40 levels. We then evaluated the relationships between plasma Aβ 40 levels and cerebral atrophy in these mouse lemurs. Voxel-based analysis of cerebral MR images (adjusted for the age/sex/brain size of the animals), showed that low Aβ 40 levels are associated with atrophy of several white matter and subcortical brain regions. These results suggest that low Aβ 40 levels in middle-aged/old animals are associated with brain deterioration. One special feature of mouse lemurs is that their metabolic and physiological parameters follow seasonal changes strictly controlled by illumination. We evaluated seasonal-related variations of plasma Aβ 40 levels and found a strong effect, with higher plasma Aβ 40 concentrations in winter conditions compared to summer. This question of seasonal modulation of Aβ plasma levels should be addressed in clinical studies. We also focused on the amplitude of the difference between plasma Aβ 40 levels during the two seasons and found that this amplitude increases with age. Possible mechanisms leading to these seasonal changes are discussed.

  8. Quantification of metabotropic glutamate subtype 5 receptors in the brain by an equilibrium method using 18F-SP203.

    PubMed

    Kimura, Yasuyuki; Siméon, Fabrice G; Zoghbi, Sami S; Zhang, Yi; Hatazawa, Jun; Pike, Victor W; Innis, Robert B; Fujita, Masahiro

    2012-02-01

    A new PET ligand, 3-fluoro-5-(2-(2-(18)F-(fluoromethyl)-thiazol-4-yl)ethynyl)benzonitrile (18F-SP203) can quantify metabotropic glutamate subtype 5 receptors (mGluR5) in human brain by a bolus injection and kinetic modeling. As an alternative approach to a bolus injection, binding can simply be measured as a ratio of tissue to metabolite-corrected plasma at a single time point under equilibrium conditions achieved by administering the radioligand with a bolus injection followed by a constant infusion. The purpose of this study was to validate the equilibrium method as an alternative to the standard kinetic method for measuring 18F-SP203 binding in the brain. Nine healthy subjects were injected with 18F-SP203 using a bolus plus constant infusion for 300 min. A single ratio of bolus-to-constant infusion (the activity of bolus equaled to that of infusion over 219 min) was applied to all subjects to achieve equilibrium in approximately 120 min. As a measure of ligand binding, we compared total distribution volume (VT) calculated by the equilibrium and kinetic methods in each scan. The equilibrium method calculated VT by the ratio of radioactivity in the brain to the concentration of 18F-SP203 in arterial plasma at 120 min, and the kinetic method calculated VT by a two-tissue compartment model using brain and plasma dynamic data from 0 to 120 min. VT obtained via the equilibrium method was highly correlated with VT obtained via kinetic modeling. Inter-subject variability of VT obtained via the equilibrium method was slightly smaller than VT obtained via the kinetic method. VT obtained via the equilibrium method was ~10% higher than VT obtained via the kinetic method, indicating a small difference between the measurements. Taken together, the results of this study show that using the equilibrium method is an acceptable alternative to the standard kinetic method when using 18F-SP203 to measure mGluR5. Although small differences in the measurements obtained via the equilibrium and kinetic methods exist, both methods consistently measured mGluR5 as indicated by the highly correlated VT values; the equilibrium method was slightly more precise, as indirectly measured by the smaller coefficient of variability across subjects. In addition, when using 18F-SP203, the equilibrium method is more efficient because it requires much less data. Copyright © 2011. Published by Elsevier Inc.

  9. A Method for Electrochemical Detection of Brain Derived Neurotrophic Factor (BDNF) in plasma.

    PubMed

    Bockaj, Marina; Fung, Barnabas; Tsoulis, Michael; Foster, Lauren Warren; Soleymani, Leyla

    2018-06-22

    Currently, a blood test for the diagnosis of endometriosis, a common estrogen-dependent gynecological disease, does not exist. Recent studies suggest that circulating concentrations of brain derived neurotrophic factor (BDNF) have potential for the diagnosis of endometriosis. However, at present BDNF can only be measured by ELISA which requires a clinic visit, a routine blood sample, and laboratory testing. Therefore, we developed a point-of-care device (EndoChip) for use with small blood volumes that can be collected through a finger prick. Specifically, the presented device is a polymer-based chip with a wrinkled nanoporous gold film acting as the electrode/sensing layer, allowing for the electrochemical detection of BDNF in plasma. Increasing concentrations of BDNF (0.25 - 2.0 ng/ml) induced significant differences in redox current. The biosensor produces a signal readout in a matter of seconds, and is ideal for realizing multiplexing. Blood samples were collected from women (n=20) with chronic pelvic pain undergoing a diagnostic laparoscopy. Plasma BDNF concentrations measured by commercial ELISA were positively correlated (r2=0.8216; p<0.001) with results from the EndoChip. Our results demonstrate a quick and reliable method for point-of-care quantification of circulating concentrations of BDNF and a promising diagnostic tool for endometriosis.

  10. Plasma Levels of Glucose and Insulin in Patients with Brain Tumors

    PubMed Central

    ALEXANDRU, OANA; ENE, L.; PURCARU, OANA STEFANA; TACHE, DANIELA ELISE; POPESCU, ALISA; NEAMTU, OANA MARIA; TATARANU, LIGIA GABRIELA; GEORGESCU, ADA MARIA; TUDORICA, VALERICA; ZAHARIA, CORNELIA; DRICU, ANICA

    2014-01-01

    In the last years there were many authors that suggest the existence of an association between different components of metabolic syndrome and various cancers. Two important components of metabolic syndrome are hyperglycemia and hyperinsulinemia. Both of them had already been linked with the increased risk of pancreatic, breast, endometrial or prostate cancer. However the correlation of the level of the glucose and insulin with various types and grades of brain tumors remains unclear. In this article we have analysed the values of plasma glucose and insulin in 267 patients, consecutively diagnosed with various types of brain tumors. Our results showed no correlation between the glycemia and brain tumor types or grades. High plasma levels of insulin were found in brain metastasis and astrocytomas while the other types of brain tumors (meningiomas and glioblastomas) had lower levels of the peptide. The levels of insulin were also higher in brain metastasis and grade 3 brain tumors when compared with grade 1, grade 2 and grade 4 brain tumors. PMID:24791202

  11. Time course of cholinesterase activity in plasma, brain and muscle of rat pretreated with physostigmine, and then soman

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giacobini, E.; Boyer, A.; Somani, S.M.

    1986-03-05

    Time course of /sup 3/H-physostigmine (Phy) concentration and cholinesterase (ChE) activity in plasma and tissues was studied in rats pretreated with Phy and then soman. Rats were dosed with Phy (100 ..mu..g/kg, i.v.), 5 or 15 min prior to soman (105 ..mu..g/kg, 1.5 LD/sub 50/, s.c.) treatment and were sacrificed at various times; Phys conc. and ChE activity were determined. BuChE activity in plasma was 5% of control from 7-30 min after Phy i.v. pretreatment and soman or soman alone treatment. Plasma Phy conc. steadily declined (32.6 ng/ml at 7 min) to 15 ng/ml at 30 min. ChE activity inmore » muscle was 60-50% of control for Phy pretreated but soman alone gave 85-72% activity from 2-30 min. Brain ChE activity was about 5% of control within 2 min after soman treatment; however, with Phy pretreatment, the activity was about 52% at 7 min, 40% at 22 min, which recovered to 45% of control at 35 min, indicating that Phy protected brain ChE. Brain Phy conc. steadily declined (58.6 ng/g at 7 min) to 11.7 ng/g at 30 min. However, pretreatment of rat with a higher dose of Phy and then soman showed BuChE in plasma and ChE in brain and muscle to be about 25, 35 and 51%, in comparison to about 5% in plasma and brain with soman alone treatment, indicating higher protection of ChE enzyme with higher conc. of Phy in plasma and brain.« less

  12. Acetate transport and utilization in the rat brain.

    PubMed

    Deelchand, Dinesh K; Shestov, Alexander A; Koski, Dee M; Uğurbil, Kâmil; Henry, Pierre-Gilles

    2009-05-01

    Acetate, a glial-specific substrate, is an attractive alternative to glucose for the study of neuronal-glial interactions. The present study investigates the kinetics of acetate uptake and utilization in the rat brain in vivo during infusion of [2-13C]acetate using NMR spectroscopy. When plasma acetate concentration was increased, the rate of brain acetate utilization (CMR(ace)) increased progressively and reached close to saturation for plasma acetate concentration > 2-3 mM, whereas brain acetate concentration continued to increase. The Michaelis-Menten constant for brain acetate utilization (K(M)(util) = 0.01 +/- 0.14 mM) was much smaller than for acetate transport through the blood-brain barrier (BBB) (K(M)(t) = 4.18 +/- 0.83 mM). The maximum transport capacity of acetate through the BBB (V(max)(t) = 0.96 +/- 0.18 micromol/g/min) was nearly twofold higher than the maximum rate of brain acetate utilization (V(max)(util) = 0.50 +/- 0.08 micromol/g/min). We conclude that, under our experimental conditions, brain acetate utilization is saturated when plasma acetate concentrations increase above 2-3 mM. At such high plasma acetate concentration, the rate-limiting step for glial acetate metabolism is not the BBB, but occurs after entry of acetate into the brain.

  13. Mechanical Injury Induces Brain Endothelial-Derived Microvesicle Release: Implications for Cerebral Vascular Injury during Traumatic Brain Injury.

    PubMed

    Andrews, Allison M; Lutton, Evan M; Merkel, Steven F; Razmpour, Roshanak; Ramirez, Servio H

    2016-01-01

    It is well established that the endothelium responds to mechanical forces induced by changes in shear stress and strain. However, our understanding of vascular remodeling following traumatic brain injury (TBI) remains incomplete. Recently published studies have revealed that lung and umbilical endothelial cells produce extracellular microvesicles (eMVs), such as microparticles, in response to changes in mechanical forces (blood flow and mechanical injury). Yet, to date, no studies have shown whether brain endothelial cells produce eMVs following TBI. The brain endothelium is highly specialized and forms the blood-brain barrier (BBB), which regulates diffusion and transport of solutes into the brain. This specialization is largely due to the presence of tight junction proteins (TJPs) between neighboring endothelial cells. Following TBI, a breakdown in tight junction complexes at the BBB leads to increased permeability, which greatly contributes to the secondary phase of injury. We have therefore tested the hypothesis that brain endothelium responds to mechanical injury, by producing eMVs that contain brain endothelial proteins, specifically TJPs. In our study, primary human adult brain microvascular endothelial cells (BMVEC) were subjected to rapid mechanical injury to simulate the abrupt endothelial disruption that can occur in the primary injury phase of TBI. eMVs were isolated from the media following injury at 2, 6, 24, and 48 h. Western blot analysis of eMVs demonstrated a time-dependent increase in TJP occludin, PECAM-1 and ICAM-1 following mechanical injury. In addition, activation of ARF6, a small GTPase linked to extracellular vesicle production, was increased after injury. To confirm these results in vivo, mice were subjected to sham surgery or TBI and blood plasma was collected 24 h post-injury. Isolation and analysis of eMVs from blood plasma using cryo-EM and flow cytometry revealed elevated levels of vesicles containing occludin following brain trauma. These results indicate that following TBI, the cerebral endothelium undergoes vascular remodeling through shedding of eMVs containing TJPs and endothelial markers. The detection of this shedding potentially allows for a novel methodology for real-time monitoring of cerebral vascular health (remodeling), BBB status and neuroinflammation following a TBI event.

  14. Insulin differentially affects the distribution kinetics of amyloid beta 40 and 42 in plasma and brain.

    PubMed

    Swaminathan, Suresh Kumar; Ahlschwede, Kristen M; Sarma, Vidur; Curran, Geoffry L; Omtri, Rajesh S; Decklever, Teresa; Lowe, Val J; Poduslo, Joseph F; Kandimalla, Karunya K

    2018-05-01

    Impaired brain clearance of amyloid-beta peptides (Aβ) 40 and 42 across the blood-brain barrier (BBB) is believed to be one of the pathways responsible for Alzheimer's disease (AD) pathogenesis. Hyperinsulinemia prevalent in type II diabetes was shown to damage cerebral vasculature and increase Aβ accumulation in AD brain. However, there is no clarity on how aberrations in peripheral insulin levels affect Aβ accumulation in the brain. This study describes, for the first time, an intricate relation between plasma insulin and Aβ transport at the BBB. Upon peripheral insulin administration in wild-type mice: the plasma clearance of Aβ40 increased, but Aβ42 clearance reduced; the plasma-to-brain influx of Aβ40 increased, and that of Aβ42 reduced; and the clearance of intracerebrally injected Aβ40 decreased, whereas Aβ42 clearance increased. In hCMEC/D3 monolayers (in vitro BBB model) exposed to insulin, the luminal uptake and luminal-to-abluminal permeability of Aβ40 increased and that of Aβ42 reduced; the abluminal-to-luminal permeability of Aβ40 decreased, whereas Aβ42 permeability increased. Moreover, Aβ cellular trafficking machinery was altered. In summary, Aβ40 and Aβ42 demonstrated distinct distribution kinetics in plasma and brain compartments, and insulin differentially modulated their distribution. Cerebrovascular disease and metabolic disorders may disrupt this intricate homeostasis and aggravate AD pathology.

  15. Fifty-ninth Christmas Bird Count. 176. Ocean City, Md

    USGS Publications Warehouse

    Rattner, B.A.; Michael, S.D.

    1983-01-01

    Some organophosphorus insecticides have been reported to interfere with reproduction and even cause the decline of small mammal populations. The effects of such anticholinesterases on plasma LH concentrations were examined in male mice (Peromyscus leucopus noveboracensis) intubated with water (OW) or acephate (50 and 100 mg/kg) and sacrificed after 4 h. Brain acetylcholinesterase (AChE) activity was inhibited by 45 and 56%, and basal LH levels were reduced by 29 and 25% in mice receiving the 2 doses of acephate. Responsiveness to LHRH did not appear to be affected 4 h after intubation with 100 mg/kg acephate, as 5 ug/kg LHRH ip evoked a comparable rise in plasma LH after 30 min (2.4 and 3.6 fold) in OW-control and treated mice. Subchronic dietary exposure to 0, 25, 100, and 400 ppm acephate for 5 days resulted in a dose-dependent decline in brain AChE activity (23, 42, and 57%), but did not affect LH concentration or the weights of testes and seminal vesicles. These findings suggest that acute exposure to organophosphorus insecticides may impair reproductive function by altering LH secretion.

  16. Plasma phospho-tau181 increases with Alzheimer's disease clinical severity and is associated with tau- and amyloid-positron emission tomography.

    PubMed

    Mielke, Michelle M; Hagen, Clinton E; Xu, Jing; Chai, Xiyun; Vemuri, Prashanthi; Lowe, Val J; Airey, David C; Knopman, David S; Roberts, Rosebud O; Machulda, Mary M; Jack, Clifford R; Petersen, Ronald C; Dage, Jeffrey L

    2018-04-04

    We examined and compared plasma phospho-tau181 (pTau181) and total tau: (1) across the Alzheimer's disease (AD) clinical spectrum; (2) in relation to brain amyloid β (Aβ) positron emission tomography (PET), tau PET, and cortical thickness; and (3) as a screening tool for elevated brain Aβ. Participants included 172 cognitively unimpaired, 57 mild cognitively impaired, and 40 AD dementia patients with concurrent Aβ PET (Pittsburgh compound B), tau PET (AV1451), magnetic resonance imaging, plasma total tau, and pTau181. Plasma total tau and pTau181 levels were higher in AD dementia patients than those in cognitively unimpaired. Plasma pTau181 was more strongly associated with both Aβ and tau PET. Plasma pTau181 was a more sensitive and specific predictor of elevated brain Aβ than total tau and was as good as, or better than, the combination of age and apolipoprotein E (APOE). Plasma pTau181 may have utility as a biomarker of AD pathophysiology and as a noninvasive screener for elevated brain Aβ. Copyright © 2018. Published by Elsevier Inc.

  17. Development of a Physiologically-Based Pharmacokinetic Model of the Rat Central Nervous System

    PubMed Central

    Badhan, Raj K. Singh; Chenel, Marylore; Penny, Jeffrey I.

    2014-01-01

    Central nervous system (CNS) drug disposition is dictated by a drug’s physicochemical properties and its ability to permeate physiological barriers. The blood–brain barrier (BBB), blood-cerebrospinal fluid barrier and centrally located drug transporter proteins influence drug disposition within the central nervous system. Attainment of adequate brain-to-plasma and cerebrospinal fluid-to-plasma partitioning is important in determining the efficacy of centrally acting therapeutics. We have developed a physiologically-based pharmacokinetic model of the rat CNS which incorporates brain interstitial fluid (ISF), choroidal epithelial and total cerebrospinal fluid (CSF) compartments and accurately predicts CNS pharmacokinetics. The model yielded reasonable predictions of unbound brain-to-plasma partition ratio (Kpuu,brain) and CSF:plasma ratio (CSF:Plasmau) using a series of in vitro permeability and unbound fraction parameters. When using in vitro permeability data obtained from L-mdr1a cells to estimate rat in vivo permeability, the model successfully predicted, to within 4-fold, Kpuu,brain and CSF:Plasmau for 81.5% of compounds simulated. The model presented allows for simultaneous simulation and analysis of both brain biophase and CSF to accurately predict CNS pharmacokinetics from preclinical drug parameters routinely available during discovery and development pathways. PMID:24647103

  18. Choline and its metabolites are differently associated with cardiometabolic risk factors, history of cardiovascular disease, and MRI-documented cerebrovascular disease in older adults12

    PubMed Central

    Zhang, Shucha; Bhadelia, Rafeeque A; Johnson, Elizabeth J; Lichtenstein, Alice H; Rogers, Gail T; Rosenberg, Irwin H; Smith, Caren E; Zeisel, Steven H

    2017-01-01

    Background: There is a potential role of choline in cardiovascular and cerebrovascular disease through its involvement in lipid and one-carbon metabolism. Objective: We evaluated the associations of plasma choline and choline-related compounds with cardiometabolic risk factors, history of cardiovascular disease, and cerebrovascular pathology. Design: A cross-sectional subset of the Nutrition, Aging, and Memory in Elders cohort who had undergone MRI of the brain (n = 296; mean ± SD age: 73 ± 8.1 y) was assessed. Plasma concentrations of free choline, betaine, and phosphatidylcholine were measured with the use of liquid-chromatography–stable-isotope dilution–multiple-reaction monitoring–mass spectrometry. A volumetric analysis of MRI was used to determine the cerebrovascular pathology (white-matter hyperintensities and small- and large-vessel infarcts). Multiple linear and logistic regression models were used to examine relations of plasma measures with cardiometabolic risk factors, history of cardiovascular disease, and radiologic evidence of cerebrovascular pathology. Results: Higher concentrations of plasma choline were associated with an unfavorable cardiometabolic risk-factor profile [lower high-density lipoprotein (HDL) cholesterol, higher total homocysteine, and higher body mass index (BMI)] and greater odds of large-vessel cerebral vascular disease or history of cardiovascular disease but lower odds of small-vessel cerebral vascular disease. Conversely, higher concentrations of plasma betaine were associated with a favorable cardiometabolic risk-factor profile [lower low-density lipoprotein (LDL) cholesterol and triglycerides] and lower odds of diabetes. Higher concentrations of plasma phosphatidylcholine were associated with characteristics of both a favorable cardiometabolic risk-factor profile (higher HDL cholesterol, lower BMI, lower C-reactive protein, lower waist circumference, and lower odds of hypertension and diabetes) and an unfavorable profile (higher LDL cholesterol and triglycerides). Conclusion: Choline and its metabolites have differential associations with cardiometabolic risk factors and subtypes of vascular disease, thereby suggesting differing roles in the pathogenesis of cardiovascular and cerebral large-vessel disease compared with that of small-vessel disease. PMID:28356272

  19. Lipid Nanoparticles: A novel approach for brain targeting.

    PubMed

    Shankar, Ravi; Joshi, Monika; Pathak, Kamla

    2018-06-10

    Brain is a delicate organ, separated from general circulation and is characterized by the presence of relatively impermeable Blood Brain Barrier (BBB). The BBB maintains homeostasis in the brain thus restricting the entrance of foreign bodies and several molecules from reaching the brain. As a result several promising molecules do not reach the target site and fail to produce in vivo response. Nevertheless, lipid nanoparticles are taken up readily by the brain because of their lipophilic nature. The bioacceptable and biodegradable nature of lipid nanoparticles makes them less toxic and suited for brain targeting. In the present review the BBB, mechanism of transport across the BBB, strategies to bypass the blood-brain barrier have been presented. The aptness of lipid nanoparticles for brain targeting has been highlighted. The proposed mechanism of uptake of the lipid nanoparticles, methods of prolonging the plasma retention and various methods of preparation for formulation of effective delivery systems for brain targeting have been included and dealt in this review. Lipid based formulations can be designated as the current and future generation of drug delivery systems as these possess tremendous potential to bypass BBB and reach the target site due to their small size and ability to dodge the reticular endothelial system. However, these nanostructures need to be investigated intensively to successfully reach the clinical trials stage. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Distribution Assessments of Coumarins from Angelicae Pubescentis Radix in Rat Cerebrospinal Fluid and Brain by Liquid Chromatography Tandem Mass Spectrometry Analysis.

    PubMed

    Yang, Yan-Fang; Zhang, Lei; Yang, Xiu-Wei

    2018-01-20

    Angelicae Pubescentis Radix (APR) is a widely-used traditional Chinese medicine. Pharmacological studies have begun to probe its biological activities on neurological disorders recently. To assess the brain penetration and distribution of APR, a validated ultra-performance liquid chromatography tandem mass spectrometry method was applied to the simultaneous determinations of the main coumarins from APR in the rat cerebrospinal fluid (CSF) and brain after oral administration of APR extract, including psoralen, xanthotoxin, bergapten, isoimperatorin, columbianetin, columbianetin acetate, columbianadin, oxypeucedanin hydrate, angelol B, osthole, meranzin hydrate and nodakenetin. Most of the tested coumarins entered the rat CSF and brain quickly, and double-peak phenomena in concentration-time curves were similar to those of their plasma pharmacokinetics. Columbianetin had the highest concentration in the CSF and brain, while psoralen and columbianetin acetate had the largest percent of CSF/plasma and brain/plasma, indicating that these three coumarins may be worthy of further research on the possible nervous effects. Correlations between the in vivo brain distributions and plasma pharmacokinetics of these coumarins were well verified. These results provided valuable information for the overall in vivo brain distribution characteristics of APR and also for its further studies on the active substances for the central nervous system.

  1. In vitro studies of the blood-brain barrier using isolated brain capillaries and cultured endothelial cells.

    PubMed

    Goldstein, G W; Betz, A L; Bowman, P D; Dorovini-Zis, K

    1986-01-01

    The endothelial cells in brain capillaries are the anatomic site of the blood-brain barrier. To learn more about the biology of these specialized cells, we developed methods to prepare suspensions of purified brain microvessels as well as primary cultures of endothelial cells in monolayer. These two preparations allow for direct investigation of the metabolism, transport properties, and receptor content of the brain capillary. We used isolated brain microvessels to study distribution of membrane carriers between the luminal and the abluminal plasma membrane of endothelial cells. We found that Na+K+-ATPase and the A-system amino-acid transport system are located predominantly on the abluminal surface of brain capillary endothelial cells. This distribution of transport carriers is consistent with the low permeability of potassium and small neutral amino acids in the blood-to-brain direction. It suggests, however, that both solutes can be actively transported across brain capillaries from the brain interstitial fluid to the blood. In tissue culture, the endothelial cells form continuous tight junctions with their neighbors. This results in a cellular layer impermeable to protein tracers. When exposed to hyperosmolar solutions, in an attempt to mimic the conditions that open the blood-brain barrier in vivo, we found a reversible separation of the tight junctions between contiguous endothelial cells. No indication of activation of pinocytosis was observed. In vitro systems provide a novel approach for studying the function of the blood-brain barrier and allow for observations not possible with intact animals.

  2. Distribution of lacosamide in the rat brain assessed by in vitro slice technique.

    PubMed

    Gáll, Zsolt; Vancea, Szende

    2018-01-01

    Lacosamide is a newer anticonvulsant and is the only one that enhances the slow inactivation of voltage gated sodium channels. It is also claimed to have disease-modifying potential, but its pharmacokinetic properties have been much less discussed in the literature. In rats, lacosamide shows restricted distribution to tissues, and the brain-to-plasma partition coefficient (K p ) is only 0.553. In this study, the brain disposition of lacosamide was evaluated in rat brains, and its neuropharmacokinetic parameters (i.e., protein binding and intracellular accumulation) were assessed using in vitro methods. Brain slice experiments and brain homogenate binding studies were performed for several drugs acting on the central nervous system, and drugs were assayed by using a liquid chromatography-mass spectrometry system. By applying a combined approach, it was found that (1) the unbound volume of distribution in the brain for lacosamide (V u,brain  = 1.37) was lower than that of other classical anticonvulsants; (2) the unbound fraction of lacosamide in the brain (0.899) was slightly lower than its unbound fraction in plasma (0.96); (3) the unbound intracellular-to-extracellular concentration ratio of lacosamide was 1.233, meaning that lacosamide was accumulated in the intracellular space because of its physicochemical properties and zwitterionic structure; and (4) the unbound brain-to-plasma concentration ratio of lacosamide was lower than the total brain-to-plasma concentration ratio (K p,uu,brain  = 0.42 vs. K p  = 0.553). In conclusion, the limited brain distribution of lacosamide is not related to its nonspecific protein-binding capacity; rather, an active transport mechanism across the blood-brain barrier may be involved, which reduces the anticonvulsant and/or antiepileptogenic actions of this drug.

  3. Stress-induced changes in brain serotonergic activity, plasma cortisol and aggressive behavior in Arctic charr (Salvelinus alpinus) is counteracted by L-DOPA.

    PubMed

    Höglund, E; Kolm, N; Winberg, S

    2001-10-01

    Arctic charr (Salvelinus alpinus) were tested for aggressive behavior using intruder tests, before and after 2 days of dyadic social interaction. Following social interaction, half of the dominant and half of the subordinate fish were given L-DOPA (10 mg/kg, orally), whereas the remaining dominant and subordinate fish were given vehicle. One hour following drug treatment, the fish were tested for aggressive behavior again in a third and final intruder test, after which blood plasma and brain tissue were sampled for analysis of plasma cortisol concentrations and brain levels of monoamines and monoamine metabolites. Subordinate fish showed a reduction in the number of attacks launched against the intruder, as well as an increase in attack latency, as compared to prior to dyadic social interactions. Social subordination also resulted in an elevation of brain serotonergic activity. Fish receiving L-DOPA prior to the final intruder test showed shorter attack latency than vehicle controls. Drug treatment was a stressful experience and vehicle controls showed elevated plasma cortisol levels and longer attack latency as compared to before treatment. L-DOPA-treated fish showed lower plasma levels of cortisol and lower serotonergic activity in certain brain areas than vehicle controls. These results suggest that L-DOPA counteracts the stress-induced inhibition of aggressive behavior, and at the same time inhibits stress-induced effects on brain serotonergic activity and plasma cortisol concentrations.

  4. Pharmacokinetic/Pharmacodynamic Relationship of Gabapentin in a CFA-induced Inflammatory Hyperalgesia Rat Model.

    PubMed

    Larsen, Malte Selch; Keizer, Ron; Munro, Gordon; Mørk, Arne; Holm, René; Savic, Rada; Kreilgaard, Mads

    2016-05-01

    Gabapentin displays non-linear drug disposition, which complicates dosing for optimal therapeutic effect. Thus, the current study was performed to elucidate the pharmacokinetic/pharmacodynamic (PKPD) relationship of gabapentin's effect on mechanical hypersensitivity in a rat model of CFA-induced inflammatory hyperalgesia. A semi-mechanistic population-based PKPD model was developed using nonlinear mixed-effects modelling, based on gabapentin plasma and brain extracellular fluid (ECF) time-concentration data and measurements of CFA-evoked mechanical hyperalgesia following administration of a range of gabapentin doses (oral and intravenous). The plasma/brain ECF concentration-time profiles of gabapentin were adequately described with a two-compartment plasma model with saturable intestinal absorption rate (K m  = 44.1 mg/kg, V max  = 41.9 mg/h∙kg) and dose-dependent oral bioavailability linked to brain ECF concentration through a transit compartment. Brain ECF concentration was directly linked to a sigmoid E max function describing reversal of hyperalgesia (EC 50, plasma  = 16.7 μg/mL, EC 50, brain  = 3.3 μg/mL). The proposed semi-mechanistic population-based PKPD model provides further knowledge into the understanding of gabapentin's non-linear pharmacokinetics and the link between plasma/brain disposition and anti-hyperalgesic effects. The model suggests that intestinal absorption is the primary source of non-linearity and that the investigated rat model provides reasonable predictions of clinically effective plasma concentrations for gabapentin.

  5. Effect of salt acclimation on digitalis-like compounds in the toad.

    PubMed

    Lichtstein, D; Gati, I; Babila, T; Haver, E; Katz, U

    1991-01-23

    Digitalis-like compounds (DLC) were shown to be a normal constituent of the skin and plasma of toads. In order to assess the possible physiological role of these compounds in the toad, their levels were determined in the brain, plasma and skin following acclimation in different NaCl solutions. We demonstrate that an increase in salt concentrations in the animal medium from 0 to 1.2% decreased the levels of DLC in the brain by 50% without altering significantly its levels in the plasma and skin. An increase in medium salt concentration to 1.5% resulted in a 50% increase of DLC levels in the skin without changing its levels in the plasma or brain. These results suggest that skin and brain DLC may participate in the long-term salt and water homeostasis in the toad, while the plasma compound either participates in the short-term regulations of salt and water homeostasis or have some other, unknown, function.

  6. Fructose levels are markedly elevated in cerebrospinal fluid compared to plasma in pregnant women.

    PubMed

    Hwang, Janice J; Johnson, Andrea; Cline, Gary; Belfort-DeAguiar, Renata; Snegovskikh, Denis; Khokhar, Babar; Han, Christina S; Sherwin, Robert S

    2015-01-01

    Fructose, unlike glucose, promotes feeding behavior in rodents and its ingestion exerts differential effects in the human brain. However, plasma fructose is typically 1/1000 th of glucose levels and it is unclear to what extent fructose crosses the blood-brain barrier. We investigated whether local endogenous central nervous system (CNS) fructose production from glucose via the polyol pathway (glucose → sorbitol → fructose) contributes to brain exposure to fructose. In this observational study, fasting glucose, sorbitol and fructose concentrations were measured using gas-chromatography-liquid mass spectroscopy in cerebrospinal fluid (CSF), maternal plasma, and venous cord blood collected from 25 pregnant women (6 lean, 10 overweight/obese, and 9 T2DM/gestational DM) undergoing spinal anesthesia and elective cesarean section. As expected, CSF glucose was ~ 60% of plasma glucose levels. In contrast, fructose was nearly 20-fold higher in CSF than in plasma (p < 0.001), and CSF sorbitol was ~ 9-times higher than plasma levels (p < 0.001). Moreover, CSF fructose correlated positively with CSF glucose (ρ 0.45, p = 0.02) and sorbitol levels (ρ 0.75, p < 0.001). Cord blood sorbitol was also ~ 7-fold higher than maternal plasma sorbitol levels (p = 0.001). There were no differences in plasma, CSF, and cord blood glucose, fructose, or sorbitol levels between groups. These data raise the possibility that fructose may be produced endogenously in the human brain and that the effects of fructose in the human brain and placenta may extend beyond its dietary consumption.

  7. Fructose Levels Are Markedly Elevated in Cerebrospinal Fluid Compared to Plasma in Pregnant Women

    PubMed Central

    Hwang, Janice J.; Johnson, Andrea; Cline, Gary; Belfort-DeAguiar, Renata; Snegovskikh, Denis; Khokhar, Babar; Han, Christina S.; Sherwin, Robert S.

    2015-01-01

    Background Fructose, unlike glucose, promotes feeding behavior in rodents and its ingestion exerts differential effects in the human brain. However, plasma fructose is typically 1/1000th of glucose levels and it is unclear to what extent fructose crosses the blood-brain barrier. We investigated whether local endogenous central nervous system (CNS) fructose production from glucose via the polyol pathway (glucose→sorbitol→fructose) contributes to brain exposure to fructose. Methods In this observational study, fasting glucose, sorbitol and fructose concentrations were measured using gas-chromatography-liquid mass spectroscopy in cerebrospinal fluid (CSF), maternal plasma, and venous cord blood collected from 25 pregnant women (6 lean, 10 overweight/obese, and 9 T2DM/gestational DM) undergoing spinal anesthesia and elective cesarean section. Results As expected, CSF glucose was ~60% of plasma glucose levels. In contrast, fructose was nearly 20-fold higher in CSF than in plasma (p < 0.001), and CSF sorbitol was ~9-times higher than plasma levels (p < 0.001). Moreover, CSF fructose correlated positively with CSF glucose (ρ 0.45, p = 0.02) and sorbitol levels (ρ 0.75, p < 0.001). Cord blood sorbitol was also ~7-fold higher than maternal plasma sorbitol levels (p = 0.001). There were no differences in plasma, CSF, and cord blood glucose, fructose, or sorbitol levels between groups. Conclusions These data raise the possibility that fructose may be produced endogenously in the human brain and that the effects of fructose in the human brain and placenta may extend beyond its dietary consumption. PMID:26035307

  8. The organic anion transport inhibitor probenecid increases brain concentrations of the NKCC1 inhibitor bumetanide.

    PubMed

    Töllner, Kathrin; Brandt, Claudia; Römermann, Kerstin; Löscher, Wolfgang

    2015-01-05

    Bumetanide is increasingly being used for experimental treatment of brain disorders, including neonatal seizures, epilepsy, and autism, because the neuronal Na-K-Cl cotransporter NKCC1, which is inhibited by bumetanide, is implicated in the pathophysiology of such disorders. However, use of bumetanide for treatment of brain disorders is associated with problems, including poor brain penetration and systemic adverse effects such as diuresis, hypokalemic alkalosis, and hearing loss. The poor brain penetration is thought to be related to its high ionization rate and plasma protein binding, which restrict brain entry by passive diffusion, but more recently brain efflux transporters have been involved, too. Multidrug resistance protein 4 (MRP4), organic anion transporter 3 (OAT3) and organic anion transporting polypeptide 2 (OATP2) were suggested to mediate bumetanide brain efflux, but direct proof is lacking. Because MRP4, OAT3, and OATP2 can be inhibited by probenecid, we studied whether this drug alters brain levels of bumetanide in mice. Probenecid (50 mg/kg) significantly increased brain levels of bumetanide up to 3-fold; however, it also increased its plasma levels, so that the brain:plasma ratio (~0.015-0.02) was not altered. Probenecid markedly increased the plasma half-life of bumetanide, indicating reduced elimination of bumetanide most likely by inhibition of OAT-mediated transport of bumetanide in the kidney. However, the diuretic activity of bumetanide was not reduced by probenecid. In conclusion, our study demonstrates that the clinically available drug probenecid can be used to increase brain levels of bumetanide and decrease its elimination, which could have therapeutic potential in the treatment of brain disorders. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Study of blood and brain lithium pharmacokinetics in the rat according to three different modalities of poisoning.

    PubMed

    Hanak, Anne-Sophie; Chevillard, Lucie; El Balkhi, Souleiman; Risède, Patricia; Peoc'h, Katell; Mégarbane, Bruno

    2015-01-01

    Lithium-induced neurotoxicity may be life threatening. Three patterns have been described, including acute, acute-on-chronic, and chronic poisoning, with unexplained discrepancies in the relationship between clinical features and plasma lithium concentrations. Our objective was to investigate differences in plasma, erythrocyte, cerebrospinal fluid, and brain lithium pharmacokinetics using a multicompartmental approach in rat models mimicking the three human intoxication patterns. We developed acute (intraperitoneal administration of 185 mg/kg Li₂CO₃ in naive rats), acute-on-chronic (intraperitoneal administration of 185 mg/kg Li₂CO₃ in rats receiving 800 mg/l Li₂CO₃ in water during 28 days), and chronic poisoning models (intraperitoneal administration of 74 mg/kg Li₂CO₃ during 5 days in rats with 15 mg/kg K₂Cr₂O₇-induced renal failure). Delayed absorption (4.03 vs 0.31 h), increased plasma elimination (0.65 vs 0.37 l/kg/h) and shorter half-life (1.75 vs 2.68 h) were observed in acute-on-chronically compared with acutely poisoned rats. Erythrocyte and cerebrospinal fluid kinetics paralleled plasma kinetics in both models. Brain lithium distribution was rapid (as early as 15 min), inhomogeneous and with delayed elimination (over 78 h). However, brain lithium accumulation was more marked in acute-on-chronically than acutely poisoned rats [area-under-the-curve of brain concentrations (379 ± 41 vs 295 ± 26, P < .05) and brain-to-plasma ratio (45 ± 10 vs 8 ± 2, P < .0001) at 54 h]. Moreover, brain lithium distribution was increased in chronically compared with acute-on-chronically poisoned rats (brain-to-plasma ratio: 9 ± 1 vs 3 ± 0, P < .01). In conclusion, prolonged rat exposure results in brain lithium accumulation, which is more marked in the presence of renal failure. Our data suggest that differences in plasma and brain kinetics may at least partially explain the observed variability between human intoxication patterns. © The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Fluoride Alteration of [3H]Glucose Uptake in Wistar Rat Brain and Peripheral Tissues.

    PubMed

    Rogalska, Anna; Kuter, Katarzyna; Żelazko, Aleksandra; Głogowska-Gruszka, Anna; Świętochowska, Elżbieta; Nowak, Przemysław

    2017-04-01

    The present study was designed to investigate the role of postnatal fluoride intake on [3H]glucose uptake and transport in rat brain and peripheral tissues. Sodium fluoride (NaF) in a concentration of 10 or 50 ppm was added to the drinking water of adult Wistar rats. The control group received distilled water. After 4 weeks, respective plasma fluoride levels were 0.0541 ± 0.0135 μg/ml (control), 0.0596 ± 0.0202 μg/ml (10 ppm), and 0.0823 ± 0.0199 μg/ml (50 ppm). Although plasma glucose levels were not altered in any group, the plasma insulin level in the fluoride (50 ppm) group was elevated (0.72 ± 0.13 μg/ml) versus the control group (0.48 ± 0.24 μg/ml) and fluoride (10 ppm) group. In rats receiving fluoride for 4 weeks at 10 ppm in drinking water, [3H]glucose uptake was unaltered in all tested parts of the brain. However, in rats receiving fluoride at 50 ppm, [3H]glucose uptake in cerebral cortex, hippocampus, and thalamus with hypothalamus was elevated, versus the saline group. Fluoride intake had a negligible effect on [3H]glucose uptake by peripheral tissues (liver, pancreas, stomach, small intestine, atrium, aorta, kidney, visceral tissue, lung, skin, oral mucosa, tongue, salivary gland, incisor, molars, and jawbone). In neither fluoride group was glucose transporter proteins 1 (GLUT 1) or 3 (GLUT 3) altered in frontal cortex and striatum versus control. On the assumption that increased glucose uptake (by neural tissue) reasonably reflects neuronal activity, it appears that fluoride damage to the brain results in a compensatory increase in glucose uptake and utilization without changes in GLUT 1 and GLUT 3 expression.

  11. Recovery of brain and plasma cholinesterase activities in ducklings exposed to organophosphorus pesticides

    USGS Publications Warehouse

    Fleming, W.J.

    1981-01-01

    Brain and plasma cholinesterase (ChE) activities were determined for mallard ducklings (Anas platyrhynchos) exposed to dicrotophos and fenthion. Recovery rates of brain ChE did not differ between ducklings administered a single oral dose vs. a 2-week dietary dose of these organophosphates. Exposure to the organophosphates, followed by recovery of brain ChE, did not significantly affect the degree of brain ChE inhibition or the recovery of ChE activity at a subsequent exposure. Recovery of brain ChE activity followed the general model Y = a + b(logX) with rapid recovery to about 50% of normal, followed by a slower rate of recovery until normal ChE activity levels were attained. Fenthion and dicrotophos-inhibited brain ChE were only slightly reactivated in vitro by pyridine-2-aldoxime methiodide, which suggested that spontaneous reactivation was not a primary method of recovery of ChE activity. Recovery of brain ChE activity can be modeled for interpretation of sublethal inhibition of brain ChE activities in wild birds following environmental applications of organophosphates. Plasma ChE activity is inferior to brain ChE activity for environmental monitoring, because of its rapid recovery and large degree of variation among individuals.

  12. Efficiency gains in tracer identification for nuclear imaging: can in vivo LC-MS/MS evaluation of small molecules screen for successful PET tracers?

    PubMed

    Joshi, Elizabeth M; Need, Anne; Schaus, John; Chen, Zhaogen; Benesh, Dana; Mitch, Charles; Morton, Stuart; Raub, Thomas J; Phebus, Lee; Barth, Vanessa

    2014-12-17

    Positron emission tomography (PET) imaging has become a useful noninvasive technique to explore molecular biology within living systems; however, the utility of this method is limited by the availability of suitable radiotracers to probe specific targets and disease biology. Methods to identify potential areas of improvement in the ability to predict small molecule performance as tracers prior to radiolabeling would speed the discovery of novel tracers. In this retrospective analysis, we characterized the brain penetration or peak SUV (standardized uptake value), binding potential (BP), and brain exposure kinetics across a series of known, nonradiolabeled PET ligands using in vivo LC-MS/MS (liquid chromatography coupled to mass spectrometry) and correlated these parameters with the reported PET ligand performance in nonhuman primates and humans available in the literature. The PET tracers studied included those reported to label G protein-coupled receptors (GPCRs), intracellular enzymes, and transporters. Additionally, data for each tracer was obtained from a mouse brain uptake assay (MBUA), previously published, where blood-brain barrier (BBB) penetration and clearance parameters were assessed and compared against similar data collected on a broad compound set of central nervous system (CNS) therapeutic compounds. The BP and SUV identified via nonradiolabeled LC-MS/MS, while different from the published values observed in the literature PET tracer data, allowed for an identification of initial criteria values we sought to facilitate increased potential for success from our early discovery screening paradigm. Our analysis showed that successful, as well as novel, clinical PET tracers exhibited BP of greater than 1.5 and peak SUVs greater than approximately 150% at 5 min post dose in rodents. The brain kinetics appeared similar between both techniques despite differences in tracer dose, suggesting linearity across these dose ranges. The assessment of tracers in a CNS exposure model, the mouse brain uptake assessment (MBUA), showed that those compound with initial brain-to-plasma ratios >2 and unbound fraction in brain homogenate >0.01 were more likely to be clinically successful PET ligands. Taken together, early incorporation of a LC/MS/MS cold tracer discovery assay and a parallel MBUA can be an useful screening paradigm to prioritize and rank order potential novel PET radioligands during early tracer discovery efforts. Compounds considered for continued in vivo PET assessments can be identified quickly by leveraging in vitro affinity and selectivity measures, coupled with data from a MBUA, primarily the 5 min brain-to-plasma ratio and unbound fraction data. Coupled utilization of these data creates a strategy to efficiently screen for the identification of appropriate chemical space to invest in for radiotracer discovery.

  13. Plasma membrane localization of multidrug resistance-associated protein homologs in brain capillary endothelial cells.

    PubMed

    Zhang, Yan; Schuetz, John D; Elmquist, William F; Miller, Donald W

    2004-11-01

    Several multidrug resistance-associated protein (MRP) homologs are expressed in brain microvessel endothelial cells forming the blood-brain barrier (BBB). The influence of these MRP transporters on BBB permeability will be dependent on their localization within the brain microvessel endothelial cells. Using two different and complementary approaches, the localization of various MPR homologs (MRP1, MRP4, and MRP5) was examined in primary cultured bovine brain microvessel endothelial cells (BBMECs). The first approach involved centrifugal separation of apical and basolateral plasma membranes of cultured BBMECs. The membrane fractions were then subjected to Western blot analysis for MRPs. The second approach used confocal laser scanning microscopy to determine membrane localization of MRPs in BBMECs. Results show a predominantly apical plasma membrane distribution for MRP1 and MRP5, and an almost equal distribution of MRP4 on the apical and basolateral plasma membrane of BBMECs. These studies provide the first demonstration of the localization of MRP1, MRP4, and MRP5 homologs in brain microvessel endothelial cells. The present studies also indicate that the localization of MRPs in the endothelial cells forming the BBB is different from that observed in polarized epithelial cells and thus may contribute to the reduced entry and enhanced elimination of organic anions and nucleotides in the brain.

  14. Flaxseed oil reduces oxidative stress and enhances brain monoamines release in streptozotocin-induced diabetic rats.

    PubMed

    Badawy, E A; Rasheed, W I; Elias, T R; Hussein, J; Harvi, M; Morsy, S; Mahmoud, Ya El-Latif

    2015-11-01

    This study was performed to investigate the biochemical effect of flaxseed oil on oxidative stress and brain monoamines release in streptozotocin-induced diabetic rats. Sixty male albino rats were divided into following four groups (15 for each group): control group, flaxseed oil group, diabetic group, and flaxseed oil-treated diabetic group. Serum glucose, insulin, pentosidine, plasma advanced oxidation protein products (AOPPs), and plasma total antioxidant capacity were estimated. Brain neurotransmitters, malondialdehyde (MDA), and nitric oxide (NO) were also determined. The mean values of serum pentosidine and plasma AOPP showed a significant decrease in treated diabetic group as compared to their values in the diabetic group. Also, brain neurotransmitters levels were improved after treatment with flaxseed. Brain MDA and NO were increased significantly in the diabetic group, while they were significantly decreased after treatment. Brain NO and brain MDA had a significant positive correlation with pentosidine, AOPP, and neurotransmitters. We concluded that flaxseed oil supplementation may be useful in the treatment of brain dysfunction in diabetes. © The Author(s) 2015.

  15. Sunitinib-ibuprofen drug interaction affects the pharmacokinetics and tissue distribution of sunitinib to brain, liver, and kidney in male and female mice differently.

    PubMed

    Lau, Christine Li Ling; Chan, Sook Tyng; Selvaratanam, Manimegahlai; Khoo, Hui Wen; Lim, Adeline Yi Ling; Modamio, Pilar; Mariño, Eduardo L; Segarra, Ignacio

    2015-08-01

    Tyrosine kinase inhibitor sunitinib (used in GIST, advanced RCC, and pancreatic neuroendocrine tumors) undergoes CYP3A4 metabolism and is an ABCB1B and ABCG2 efflux transporters substrate. We assessed the pharmacokinetic interaction with ibuprofen (an NSAID used by patients with cancer) in Balb/c male and female mice. Mice (study group) were coadministered (30 min apart) 30 mg/kg of ibuprofen and 60 mg/kg of sunitinib PO and compared with the control groups, which received sunitinib alone (60 mg/kg, PO). Sunitinib concentration in plasma, brain, kidney, and liver was measured by HPLC as scheduled and noncompartmental pharmacokinetic parameters estimated. In female control mice, sunitinib AUC0→∞ decreased in plasma (P < 0.05), was higher in liver and brain (P < 0.001), and lower in kidney (P < 0.001) vs. male control mice. After ibuprofen coadministration, female mice showed lower AUC0→∞ in plasma (P < 0.01), brain, liver, and kidney (all P < 0.001). However, in male mice, AUC0→∞ remained unchanged in plasma, increased in liver and kidney, and decreased in brain (all P < 0.001). The tissue-to-plasma AUC0→∞ ratio was similar between male and female control mice, but changed after ibuprofen coadministration: Male mice showed 1.6-fold higher liver-to-plasma ratio (P < 0.001) while remained unchanged in female mice and in kidney (male and female mice) but decreased 55% in brain (P < 0.05). The tissue-to-plasma partial AUC ratio, the drug tissue targeting index, and the tissue-plasma hysteresis-like plots also showed sex-based ibuprofen-sunitinib drug interaction differences. The results illustrate the relevance of this DDI on sunitinib pharmacokinetics and tissue uptake. These may be due to gender-based P450 and efflux/transporters differences. © 2015 Société Française de Pharmacologie et de Thérapeutique.

  16. Low plasma magnesium is associated with impaired brain metabolism in neonates with hypoxic-ischaemic encephalopathy.

    PubMed

    Chakkarapani, Elavazhagan; Chau, Vann; Poskitt, Kenneth J; Synnes, Anne; Kwan, Eddie; Roland, Elke; Miller, Steven P

    2016-09-01

    To determine the association between lowest plasma magnesium concentration and brain metabolism, and whether magnetic resonance imaging brain injury patterns moderated the association in hypoxic-ischemic encephalopathy. In 131 early (day-of-life 3) and 65 late (day-of-life 10) scans of term encephalopathic infants born between 2004 and 2012, we examined the association of lowest plasma magnesium (until day-of-life 3) on basal ganglia and white matter peak metabolite ratios on magnetic resonance spectroscopy independent of covariates, stratified by the predominant patterns of injury (normal, basal nuclei/total, watershed, multifocal) using multiple linear regression. Lowest plasma magnesium was associated with lower white matter N-acetyl-aspartate/choline in the multifocal pattern on early scan (regression-coefficient, β: 0.13; 95% CI: 0.04, 0.22) and in the basal nuclei/total pattern on late scan (β: 0.08; 95% CI: 0.02, 0.15), and was negatively associated with basal ganglia lactate/N-acetyl-aspartate (β: -0.16; 95% CI: -0.05, -0.28) and lactate/choline (β: -0.1; 95% CI: -0.03, -0.17) ratio in the basal nuclei/total pattern on late scan independent of hypomagnesaemia correction, cooling and postmenstrual age at scan. Lowest plasma magnesium was not associated with metabolite ratios in other brain injury patterns. In infants with hypoxic-ischaemic encephalopathy, predominant patterns of brain injury moderated the association between lowest plasma magnesium in the first three days of life and impaired brain metabolism. ©2016 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  17. Fourth ventricular thyrotropin induces satiety and increases body temperature in rats.

    PubMed

    Smedh, Ulrika; Scott, Karen A; Moran, Timothy H

    2018-05-01

    Besides its well-known action to stimulate thyroid hormone release, thyrotropin mRNA is expressed within the brain, and thyrotropin and its receptor have been shown to be present in brain areas that control feeding and gastrointestinal function. Here, the hypothesis that thyrotropin acts on receptors in the hindbrain to alter food intake and/or gastric function was tested. Fourth ventricular injections of thyrotropin (0.06, 0.60, and 6.00 µg) were given to rats with chronic intracerebroventricular cannulas aimed at the fourth ventricle. Thyrotropin produced an acute reduction of sucrose intake (30 min). The highest dose of thyrotropin caused inhibition of overnight solid food intake (22 h). In contrast, subcutaneous administration of corresponding thyrotropin doses had no effect on nutrient intake. The highest effective dose of fourth ventricular thyrotropin (6 µg) did not produce a conditioned flavor avoidance in a standardized two-bottle test, nor did it affect water intake or gastric emptying of glucose. Thyrotropin injected in the fourth ventricle produced a small but significant increase in rectal temperature and lowered plasma levels of tri-iodothyronin but did not affect plasma levels of thyroxine. In addition, there was a tendency toward a reduction in blood glucose 2 h after fourth ventricular thyrotropin injection ( P = 0.056). In conclusion, fourth ventricular thyrotropin specifically inhibits food intake, increases core temperature, and lowers plasma levels of tri-iodothyronin but does not affect gastromotor function.

  18. HPLC determination of strychnine and brucine in rat tissues and the distribution study of processed semen strychni.

    PubMed

    Chen, Jun; Hou, Ting; Fang, Yun; Chen, Zhi-peng; Liu, Xiao; Cai, Hao; Lu, Tu-lin; Yan, Guo-jun; Cai, Bao-chang

    2011-01-01

    A simple and low-cost HPLC method with UV absorbance detection was developed and validated to simultaneously determine strychnine and brucine, the most abundant alkaloids in the processed Semen Strychni, in rat tissues (kidney, liver, spleen, lung, heart, stomach, small intestine, brain and plasma). The tissue samples were treated with a simple liquid-liquid extraction prior to HPLC. The LOQs were in the range of 0.039-0.050 µg/ml for different tissue or plasma samples. The extraction recoveries varied from 71.63 to 98.79%. The linear range was 0.05-2 µg/ml with correlation coefficient of over 0.991. The intra- and inter-day precision was less than 15%. Then the method was used to measure the tissue distribution of strychnine and brucine after intravenous administration of 1 mg/kg crude alkaloids fraction (CAF) extracted from the processed Semen Strychni. The results revealed that strychnine and brucine possessed similar tissue distribution characterization. The highest level was observed in kidney, while the lowest level was found in brain. It was indicated that kidney might be the primary excretion organ of prototype strychnine and brucine. It was also deduced that strychnine and brucine had difficulty in crossing the blood-brain barrier. Furthermore, no long-term accumulation of strychnine and brucine was found in rat tissues.

  19. The acute effect of cannabis on plasma, liver and brain ammonia dynamics, a translational study.

    PubMed

    Abulseoud, Osama A; Zuccoli, Maria Laura; Zhang, Lifeng; Barnes, Allan; Huestis, Marilyn A; Lin, Da-Ting

    2017-07-01

    Recent reports of ammonia released during cannabis smoking raise concerns about putative neurotoxic effects. Cannabis (54mg) was administered in a double-blind, placebo-controlled design to healthy cannabis users (n=15) either orally, or through smoking (6.9%THC cigarette) or inhalation of vaporized cannabis (Volcano®). Serial assay of plasma ammonia concentrations at 0, 2, 4, 6, 8, 10, 15, 30, and 90min from onset of cannabis administration showed significant time (P=0.016), and treatment (P=0.0004) effects with robust differences between placebo and edible at 30 (P=0.002), and 90min (P=0.007) and between placebo and vaporized (P=0.02) and smoking routes (P=0.01) at 90min. Furthermore, plasma ammonia positively correlated with blood THC concentrations (P=0.03). To test the hypothesis that this delayed increase in plasma ammonia originates from the brain we administered THC (3 and 10mg/kg) to mice and measured plasma, liver, and brain ammonia concentrations at 1, 3, 5 and 30min post-injection. Administration of THC to mice did not cause significant change in plasma ammonia concentrations within the first 5min, but significantly reduced striatal glutamine-synthetase (GS) activity (P=0.046) and increased striatal ammonia concentration (P=0.016). Furthermore, plasma THC correlated positively with striatal ammonia concentration (P<0.001) and negatively with striatal GS activity (P=0.030). At 30min, we found marked increase in striatal ammonia (P<0.0001) associated with significant increase in plasma ammonia (P=0.042) concentration. In conclusion, the results of these studies demonstrate that cannabis intake caused time and route-dependent increases in plasma ammonia concentrations in human cannabis users and reduced brain GS activity and increased brain and plasma ammonia concentrations in mice. Published by Elsevier B.V.

  20. A Small Molecule Inhibitor of Plasminogen Activator Inhibitor-1 Reduces Brain Amyloid-β Load and Improves Memory in an Animal Model of Alzheimer's Disease.

    PubMed

    Akhter, Hasina; Huang, Wen-Tan; van Groen, Thomas; Kuo, Hui-Chien; Miyata, Toshio; Liu, Rui-Ming

    2018-01-01

    Alzheimer's disease (AD) is a major cause of dementia in the elderly with no effective treatment. Accumulation of amyloid-β peptide (Aβ) in the brain is a pathological hallmark of AD and is believed to be a central disease-causing and disease-promoting event. In a previous study, we showed that deletion of plasminogen activator inhibitor 1 (PAI-1), a primary inhibitor of tissue type and urokinase type plasminogen activators (tPA and uPA), significantly reduced brain Aβ load in APP/PS1 mice, an animal model of familial AD. In this study, we further show that oral administration of TM5275, a small molecule inhibitor of PAI-1, for a period of 6 weeks, inhibits the activity of PAI-1 and increases the activities of tPA and uPA as well as plasmin, which is associated with a reduction of Aβ load in the hippocampus and cortex and improvement of learning/memory function in APP/PS1 mice. Protein abundance of low density lipoprotein related protein-1 (LRP-1), a multi ligand endocytotic receptor involved in transporting Aβ out of the brain, as well as plasma Aβ42 are increased, whereas the expression and processing of full-length amyloid-β protein precursor is not affected by TM5275 treatment in APP/PS1 mice. In vitro studies further show that PAI-1 increases, whereas TM5275 reduces, Aβ40 level in the culture medium of SHSY5Y-APP neuroblastoma cells. Collectively, our data suggest that TM5275 improves memory function of APP/PS1 mice, probably by reducing brain Aβ accumulation through increasing plasmin-mediated degradation and LRP-1-mediated efflux of Aβ in the brain.

  1. Aquaporins: important but elusive drug targets

    PubMed Central

    Verkman, Alan S.; Anderson, Marc O.; Papadopoulos, Marios C.

    2014-01-01

    The aquaporins (AQPs) are a family of small, integral membrane proteins that facilitate water transport across the plasma membranes of cells in response to osmotic gradients. Data from knockout mice support the involvement of AQPs in epithelial fluid secretion, cell migration, brain oedema and adipocyte metabolism, which suggests that modulation of AQP function or expression could have therapeutic potential in oedema, cancer, obesity, brain injury, glaucoma and several other conditions. Moreover, loss-of-function mutations in human AQPs cause congenital cataracts (AQP0) and nephrogenic diabetes insipidus (AQP2), and autoantibodies against AQP4 cause the autoimmune demyelinating disease neuromyelitis optica. Although some potential AQP modulators have been identified, challenges associated with the development of better modulators include the druggability of the target and the suitability of the assay methods used to identify modulators. PMID:24625825

  2. Dispositional study of opioids in mice pretreated with sympathomimetic agents.

    PubMed

    Dambisya, Y M; Chan, K; Wong, C L

    1992-08-01

    Brain and plasma levels of morphine and codeine were determined by an assay method involving solid-phase extraction and ion-pair reversed phase HPLC. Detection was by a variable wavelength UV-detector (for codeine) and an amperometric electro-chemical detector (for morphine) coupled in series. Ephedrine or phenylpropanolamine pretreatment did not interfere with the plasma disposition of morphine, evidenced by overlapping plasma concentration-time profiles. Brain opioid levels were equally unaffected by sympathomimetic pretreatment. The relative ratios of brain to plasma concentrations at the time corresponding to the respective peak anti-nociceptive activity for morphine and codeine revealed no significant differences. It is concluded that single doses of ephedrine and phenylpropanolamine do not affect the disposition of morphine and codeine in mice.

  3. The neuropharmacokinetics of temozolomide in patients with resectable brain tumors: potential implications for the current approach to chemoradiation.

    PubMed

    Portnow, Jana; Badie, Behnam; Chen, Mike; Liu, An; Blanchard, Suzette; Synold, Timothy W

    2009-11-15

    Intracerebral microdialysis (ICMD) is an accepted method for monitoring changes in neurochemistry from acute brain injury. The goal of this pilot study was to determine the feasibility of using ICMD to examine the neuropharmacokinetics of temozolomide in brain interstitium following oral administration. Patients with primary or metastatic brain tumors had a microdialysis catheter placed in peritumoral brain tissue at the time of surgical debulking. Computerized tomography scan confirmed the catheter location. Patients received a single oral dose of temozolomide (150 mg/m2) on the first postoperative day, serial plasma and ICMD samples were collected over 24 hours, and temozolomide concentrations were determined by tandem mass spectrometry. Nine patients were enrolled. Dialysate and plasma samples were successfully collected from seven of the nine patients. The mean temozolomide areas under the concentration-time curve (AUC) in plasma and brain interstitium were 17.1 and 2.7 microg/mL x hour, with an average brain interstitium/plasma AUC ratio of 17.8%. The mean peak temozolomide concentration in the brain was 0.6 +/- 0.3 microg/mL, and the mean time to reach peak level in brain was 2.0 +/- 0.8 hours. The use of ICMD to measure the neuropharmacokinetics of systemically administered chemotherapy is safe and feasible. Concentrations of temozolomide in brain interstitium obtained by ICMD are consistent with published data obtained in a preclinical ICMD model, as well as from clinical studies of cerebrospinal fluid. However, the delayed time required to achieve maximum temozolomide concentrations in brain suggests that current chemoradiation regimens may be improved by administering temozolomide 2 to 3 hours before radiation.

  4. Increased brain and plasma oxytocin after nasal and peripheral administration in rats and mice.

    PubMed

    Neumann, Inga D; Maloumby, Rodrigue; Beiderbeck, Daniela I; Lukas, Michael; Landgraf, Rainer

    2013-10-01

    The possibility to improve socio-emotional behaviors in humans by intranasal administration of synthetic oxytocin (OXT) attracts increasing attention, but its uptake into the brain has never been demonstrated so far. Here we used simultaneous microdialysis in both the dorsal hippocampus and amygdala of rats and mice in combination with concomitant blood sampling from the jugular vein to study the dynamics of the neuropeptide in brain extracellular fluid and plasma after its nasal administration. OXT was found to be increased in microdialysates from both the hippocampus and amygdala with peak levels occurring 30-60min after nasal administration. Despite a similar temporal profile of OXT concentrations in plasma, peripheral OXT is unlikely to contribute to dialysate OXT as calculated from in vitro recovery data, indicating a central route of transport. Moreover, intraperitoneal administration of synthetic OXT in identical amounts caused rapid peak levels in brain dialysates and plasma during the first 30min after treatment and a subsequent return toward baseline. While the precise route(s) of central transport remain to be elucidated, our data provide the first evidence that nasally applied OXT indeed reaches behaviorally relevant brain areas, and this uptake is paralleled by changes in plasma OXT. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Regional rat brain noradrenaline turnover in response to restraint stress.

    PubMed

    Glavin, G B; Tanaka, M; Tsuda, A; Kohno, Y; Hoaki, Y; Nagasaki, N

    1983-08-01

    Male Wistar rats were starved for 12 hr and then subjected to either 2 hr of wire mesh "envelope" restraint at room temperature; 2 hr of supine restraint in a specially constructed harness at room temperature or were not restrained. Eight brain regions were examined for NA level and the level of its major metabolite, MHPG-SO4. Plasma corticosterone and gastric ulcer incidence were also measured. All restrained rats displayed marked elevations in MHPG-SO4 levels in most brain regions. In addition, several brain regions in restrained animals showed a reduction in NA level. All restrained rats showed elevated plasma corticosterone levels and evidence of gastric lesions. In general, supine restraint produced greater alterations in regional brain NA turnover, greater evidence of ulcer disease, and higher plasma corticosterone levels than did wire mesh restraint. These data suggest that acute but intense stress in the form of restraint causes markedly altered brain NA activity--a possible neurochemical mechanism underlying the phenomenon of stress-induced disease.

  6. Relationship of plasma N-terminal pro-brain natriuretic peptide concentrations to heart failure classification and cause of respiratory distress in dogs using a 2nd generation ELISA assay.

    PubMed

    Fox, P R; Oyama, M A; Hezzell, M J; Rush, J E; Nguyenba, T P; DeFrancesco, T C; Lehmkuhl, L B; Kellihan, H B; Bulmer, B; Gordon, S G; Cunningham, S M; MacGregor, J; Stepien, R L; Lefbom, B; Adin, D; Lamb, K

    2015-01-01

    Cardiac biomarkers provide objective data that augments clinical assessment of heart disease (HD). Determine the utility of plasma N-terminal pro-brain natriuretic peptide concentration [NT-proBNP] measured by a 2nd generation canine ELISA assay to discriminate cardiac from noncardiac respiratory distress and evaluate HD severity. Client-owned dogs (n = 291). Multicenter, cross-sectional, prospective investigation. Medical history, physical examination, echocardiography, and thoracic radiography classified 113 asymptomatic dogs (group 1, n = 39 without HD; group 2, n = 74 with HD), and 178 with respiratory distress (group 3, n = 104 respiratory disease, either with or without concurrent HD; group 4, n = 74 with congestive heart failure [CHF]). HD severity was graded using International Small Animal Cardiac Health Council (ISACHC) and ACVIM Consensus (ACVIM-HD) schemes without knowledge of [NT-proBNP] results. Receiver-operating characteristic curve analysis assessed the capacity of [NT-proBNP] to discriminate between dogs with cardiac and noncardiac respiratory distress. Multivariate general linear models containing key clinical variables tested associations between [NT-proBNP] and HD severity. Plasma [NT-proBNP] (median; IQR) was higher in CHF dogs (5,110; 2,769-8,466 pmol/L) compared to those with noncardiac respiratory distress (1,287; 672-2,704 pmol/L; P < .0001). A cut-off >2,447 pmol/L discriminated CHF from noncardiac respiratory distress (81.1% sensitivity; 73.1% specificity; area under curve, 0.84). A multivariate model comprising left atrial to aortic ratio, heart rate, left ventricular diameter, end-systole, and ACVIM-HD scheme most accurately associated average plasma [NT-proBNP] with HD severity. Plasma [NT-proBNP] was useful for discriminating CHF from noncardiac respiratory distress. Average plasma [NT-BNP] increased significantly as a function of HD severity using the ACVIM-HD classification scheme. Copyright © 2014 by the American College of Veterinary Internal Medicine.

  7. Evidence that formulations of the selective MAO-B inhibitor, selegiline, which bypass first-pass metabolism, also inhibit MAO-A in the human brain

    DOE PAGES

    Fowler, Joanna S.; Logan, Jean; Volkow, Nora D.; ...

    2015-10-29

    Selegiline (L-deprenyl) is a selective, irreversible inhibitor of monoamine oxidase B (MAO-B) at the conventional dose (10 mg/day oral) that is used in the treatment of Parkinson’s disease. However, controlled studies have demonstrated antidepressant activity for high doses of oral selegiline and for transdermal selegiline suggesting that when plasma levels of selegiline are elevated, brain MAO-A might also be inhibited. Zydis selegiline (Zelapar®) is an orally disintegrating formulation of selegiline, which is absorbed through the buccal mucosa producing higher plasma levels of selegiline and reduced amphetamine metabolites compared to equal doses of conventional selegiline. Although there is indirect evidence thatmore » Zydis selegiline at high doses loses its selectivity for MAO-B, there is no direct evidence that it also inhibits brain MAO-A in humans. We measured brain MAO-A in 18 healthy men after a 28-day treatment with Zydis selegiline (2.5, 5.0, or 10 mg/day) and in 3 subjects receiving the selegiline transdermal system (Emsam patch, 6 mg/day) using PET and the MAO-A radiotracer [¹¹C]clorgyline. We also measured dopamine transporter (DAT) availability in three subjects from the 10 mg group. The 10 mg Zydis selegiline dose significantly inhibited MAO-A (36.9 ± 19.7%, range 11–70%, p<0.007)) but not DAT; and while Emsam also inhibited MAO-A (33.2 ± 28.9 (range 9-68%) the difference did not reach significance (p=0.10)) presumably because of the small sample size. Our results provide the first direct evidence of brain MAO-A inhibition in humans by formulations of selegiline, which are currently postulated but not verified to target brain MAO-A in addition to MAO-B.« less

  8. Evidence that formulations of the selective MAO-B inhibitor, selegiline, which bypass first-pass metabolism, also inhibit MAO-A in the human brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, Joanna S.; Logan, Jean; Volkow, Nora D.

    Selegiline (L-deprenyl) is a selective, irreversible inhibitor of monoamine oxidase B (MAO-B) at the conventional dose (10 mg/day oral) that is used in the treatment of Parkinson’s disease. However, controlled studies have demonstrated antidepressant activity for high doses of oral selegiline and for transdermal selegiline suggesting that when plasma levels of selegiline are elevated, brain MAO-A might also be inhibited. Zydis selegiline (Zelapar®) is an orally disintegrating formulation of selegiline, which is absorbed through the buccal mucosa producing higher plasma levels of selegiline and reduced amphetamine metabolites compared to equal doses of conventional selegiline. Although there is indirect evidence thatmore » Zydis selegiline at high doses loses its selectivity for MAO-B, there is no direct evidence that it also inhibits brain MAO-A in humans. We measured brain MAO-A in 18 healthy men after a 28-day treatment with Zydis selegiline (2.5, 5.0, or 10 mg/day) and in 3 subjects receiving the selegiline transdermal system (Emsam patch, 6 mg/day) using PET and the MAO-A radiotracer [¹¹C]clorgyline. We also measured dopamine transporter (DAT) availability in three subjects from the 10 mg group. The 10 mg Zydis selegiline dose significantly inhibited MAO-A (36.9 ± 19.7%, range 11–70%, p<0.007)) but not DAT; and while Emsam also inhibited MAO-A (33.2 ± 28.9 (range 9-68%) the difference did not reach significance (p=0.10)) presumably because of the small sample size. Our results provide the first direct evidence of brain MAO-A inhibition in humans by formulations of selegiline, which are currently postulated but not verified to target brain MAO-A in addition to MAO-B.« less

  9. Low-density lipoprotein receptor-related protein 1: a physiological Aβ homeostatic mechanism with multiple therapeutic opportunities

    PubMed Central

    Sagare, Abhay P.; Deane, Rashid; Zlokovic, Berislav V.

    2012-01-01

    Low-density lipoprotein receptor-related protein-1 (LRP1) is the main cell surface receptor involved in brain and systemic clearance of the Alzheimer's disease (AD) toxin amyloid-beta (Aβ). In plasma, a soluble form of LRP1 (sLRP1) is the major transport protein for peripheral Aβ. LRP1 in brain endothelium and mural cells mediates Aβ efflux from brain by providing a transport mechanism for A across the blood-brain barrier (BBB). sLRP1 maintains a plasma ‘sink’ activity for Aβ through binding of peripheral Aβ which in turn inhibits re-entry of free plasma Aβ into the brain. LRP1 in the liver mediates systemic clearance of Aβ. In AD, LRP1 expression at the BBB is reduced and Aβ binding to circulating sLRP1 is compromised by oxidation. Cell surface LRP1 and circulating sLRP1 represent druggable targets which can be therapeutically modified to restore the physiological mechanisms of brain Aβ homeostasis. In this review, we discuss how increasing LRP1 expression at the BBB and liver with lifestyle changes, statins, plant-based active principles and/or gene therapy on one hand, and how replacing dysfunctional plasma sLRP1 on the other regulate Aβ clearance from brain ultimately controlling the onset and/or progression of AD. PMID:22820095

  10. Anticipation and consumption of food each increase the concentration of neuroactive steroids in rat brain and plasma.

    PubMed

    Pisu, Maria Giuseppina; Floris, Ivan; Maciocco, Elisabetta; Serra, Mariangela; Biggio, Giovanni

    2006-09-01

    Stressful stimuli and anxiogenic drugs increase the plasma and brain concentrations of neuroactive steroids. Moreover, in rats trained to consume their daily meal during a fixed period, the anticipation of food is associated with changes in the function of various neurotransmitter systems. We have now evaluated the effects of anticipation and consumption of food in such trained rats on the plasma and brain concentrations of 3alpha-hydroxy-5alpha-pregnan-20-one (3alpha,5alpha-TH PROG) and 3alpha,21-dihydroxy-5alpha-pregnan-20-one (3alpha,5alpha-TH DOC), two potent endogenous positive modulators of type A receptors for gamma-aminobutyric acid (GABA). The abundance of these neuroactive steroids was increased in both the cerebral cortex and plasma of the rats during both food anticipation and consumption. In contrast, the concentration of their precursor, progesterone, was increased in the brain only during food consumption, whereas it was increased in plasma only during food anticipation. Intraperitoneal administration of the selective agonist abecarnil (0.1 mg/kg) 40 min before food presentation prevented the increase in the brain levels of 3alpha,5alpha-TH PROG and 3alpha,5alpha-TH DOC during food anticipation but not that associated with consumption. The change in emotional state associated with food anticipation may thus result in an increase in the plasma and brain levels of 3alpha,5alpha-TH PROG and 3alpha,5alpha-TH DOC in a manner sensitive to the activation of GABA(A) receptor-mediated neurotransmission. A different mechanism, insensitive to activation of such transmission, may underlie the changes in the concentrations of these neuroactive steroids during food consumption.

  11. Effects of dehydration on plasma osmolality, thirst-related behavior, and plasma and brain angiotensin concentrations in Couch's spadefoot toad, Scaphiopus couchii.

    PubMed

    Johnson, W E; Propper, C R

    2000-05-01

    Under dehydrating conditions, many terrestrial vertebrates species exhibit increases in plasma osmolality and their drinking behavior. Under some circumstances, this behavioral change is accompanied by changes in plasma and central angiotensin concentrations, and it has been proposed that these changes in angiotensin levels induce the thirst-related behaviors. In response to dehydration, the spadefoot toad, Scaphiopus couchii, exhibits thirst-related behavior in the form of cutaneous drinking. This behavior has been termed water absorption response (WR) behavior. Spadefoot toads live in harsh desert environments and are subject annually to dehydrating conditions that may induce thirst-related behavior. We tested the hypothesis that an increase in WR behavior is associated with both an increase in plasma osmolality and an increase in plasma and brain angiotensin concentrations. First, we determined the degree of dehydration that was necessary to initiate WR behavior. Animals dehydrated to 85% of their standard bladder-empty weight via deprivation of water exhibited WR behavior more frequently than control toads left in home containers with water available. Next, using the same dehydration methods, we determined the plasma osmolality and sodium concentrations of dehydrated toads. Toads dehydrated to 85% standard weight also had a significant increase in plasma osmolality, but exhibited no overall change in plasma sodium concentrations, indicating that while an overall increase in plasma osmolality appears to be associated with WR behavior in S. couchii, changes in sodium concentrations alone are not sufficient to induce the behavior. Finally, plasma and brain angiotensin concentrations were measured in control toads and toads dehydrated to 85% standard weight. Plasma and brain angiotensin concentrations did not increase in dehydrated toads, indicating that dehydration-induced WR behavior that is associated with changes in plasma osmolality may not be induced by changes in endogenous angiotensin concentrations in S. couchii.

  12. STABLE FREE-RADICAL FORMS OF PLASMA PROTEINS OR SIMPLER RELATED STRUCTURES WHICH INDUCE BRAIN EXCITATORY EFFECTS

    PubMed Central

    Polis, B. David; Wyeth, John; Goldstein, Leonide; Graedon, Joe

    1969-01-01

    Stable free radicals have been prepared from purified plasma proteins, pituitary peptides, and simpler related structures like 5-OH tryptophan and melatonin by oxidation with the free-radical nitrosyl disulfonate in alkaline solution under controlled conditions. The presence of tyrosine or trytophan amino acid residues in the protein was found essential for free-radical formation. These red-colored, stable free radicals showed electron spin resonance spectra in aqueous solutions at room temperature and maintained this characteristic for weeks when stored at 5°C. Illumination, by visible light, of the free-radical proteins and peptides separated from excess nitrosyl disulfonate by salt fractionation or chromatography enhanced the free-radical concentration in the light. The increased signal decayed in the dark. Intravenous administration of the free-radical proteins or peptides into rabbits equipped with chronic cranial electrodes and sedated with a small dose of pentobarbital caused a sudden EEG arousal accompanied by behavioral changes indicative of brain excitation. Illumination of the free-radical compounds prior to administration enhanced the effects. Untreated control proteins or peptides had no effects. The observations are interpreted to suggest the involvement of free-radical structures in the transfer of energy in nervous tissue. PMID:4311379

  13. Peripheral Ammonia as a Mediator of Methamphetamine Neurotoxicity

    PubMed Central

    Halpin, Laura E.; Yamamoto, Bryan K.

    2012-01-01

    Ammonia is metabolized by the liver and has established neurological effects. The current study examined the possibility that ammonia contributes to the neurotoxic effects of methamphetamine (METH). The results show that a binge dosing regimen of METH to the rat increased plasma and brain ammonia concentrations that were paralleled by evidence of hepatotoxicity. The role of peripheral ammonia in the neurotoxic effects of METH was further substantiated by the demonstration that the enhancement of peripheral ammonia excretion blocked the increases in brain and plasma ammonia and attenuated the long term depletions of dopamine and serotonin typically produced by METH. Conversely, the localized perfusion of ammonia in combination with METH, but not METH alone or ammonia alone, into the striatum recapitulated the neuronal damage produced by the systemic administration of METH. Furthermore, this damage produced by the local administration of ammonia and METH was blocked by the GYKI 52466, an AMPA receptor antagonist. These findings highlight the importance of ammonia derived from the periphery as a small molecule mediator of METH neurotoxicity and more broadly emphasize the importance of peripheral organ damage as a possible mechanism that mediates the neuropathology produced by drugs of abuse and other neuroactive molecules. PMID:22993432

  14. Moderate whisky consumption in combination with an evening meal reduces tryptophan availability to the brain but does not influence performance in healthy volunteers.

    PubMed

    Markus, C Rob; Sierksma, Aafje; Verbeek, Cees; van Rooijen, Jan J M; Patel, Hamina J; Brand, A Nico; Hendriks, Henk F J

    2004-12-01

    Brain serotonin (5-HT) synthesis is controlled by nutrients that influence the availability of plasma tryptophan (Trp) as compared with the sum of the other large neutral amino acids (LNAA; Trp:LNAA). Alcohol consumption is found to change mood and performance and this might well be due to alterations in the plasma Trp:LNAA ratio and brain 5-HT. In the present study, we tested whether whisky consumption as part of a meal may alter the plasma Trp:LNAA ratio and influence mood and performance in healthy volunteers. Twenty-four healthy male subjects participated in a within-subjects cross-over study. Subjects consumed whisky (125 ml; 40 g alcohol) or water (125 ml) as part of a standard evening meal. Effects of whisky consumption were tested on mood and choice reaction time and blood samples were taken to measure changes in plasma amino acids, glucose and insulin. The plasma Trp:LNAA ratio showed a significant decline 2 h after whisky consumption of alcohol (P<0.001). No effects were found on choice reaction time or mood as compared with the control condition. The present findings reveal that whisky consumption alters available plasma Trp for uptake into the brain, whereas there were no effects on mood and performance.

  15. [Experimental and clinical data on the ability of bemetil to penetrate the hemato-encephalic barrier].

    PubMed

    Boĭko, S S; Bobkov, Iu G; Dobrokhotova, T A; Kniazeva, N A; Neznamov, G G

    1987-01-01

    Experimental and clinical data indicated bemetil ability to penetrate through the blood-brain barrier. Bemetil concentration in the rat brain tissue was found to be significantly higher than in the plasma. Its concentration in the cerebrospinal fluid of patients with craniocerebral trauma was lower than in the plasma; the latter however does not exclude the possibility of bemetil accumulation in the brain structures.

  16. Plasma levels of 24S-hydroxycholesterol reflect the balance between cerebral production and hepatic metabolism and are inversely related to body surface.

    PubMed

    Bretillon, L; Lütjohann, D; Ståhle, L; Widhe, T; Bindl, L; Eggertsen, G; Diczfalusy, U; Björkhem, I

    2000-05-01

    We have previously presented evidence that most of the 24S-hydroxycholesterol present in the circulation originates from the brain and that most of the elimination of this oxysterol occurs in the liver. Plasma 24S-hydroxycholesterol levels decline by a factor of about 5 during the first decades of life. The concentration of the enzyme cholesterol 24S-hydroxylase in the brain is, however, about constant from the first year of life, and reduced enzyme levels thus cannot explain the decreasing plasma levels during infancy. In the present work we tested the hypothesis that the plasma levels of 24S-hydroxycholesterol may reflect the size of the brain relative to the capacity of the liver to eliminate the substance. It is shown here that the age-dependent changes in absolute as well as cholesterol-related plasma level of 24S-hydroxycholesterol closely follow the changes in the ratio between estimated brain weight and estimated liver volume. The size of the brain is increased only about 50% whereas the size of the liver is increased by about 6-fold after the age of 1 year. Liver volume is known to be highly correlated to body surface, and in accordance with this the absolute as well as the cholesterol-related plasma level of 24S-hydroxycholesterol was found to be highly inversely correlated to body surface in 77 healthy subjects of varying ages (r(2) = 0.74). Two chondrodystrophic dwarves with normal size of the brain but with markedly reduced body area had increased levels of 24S-hydroxycholesterol when related to age but normal levels when related to body surface. It is concluded that the balance between cerebral production and hepatic metabolism is a critical determinant for plasma levels of 24S-hydroxycholesterol at different ages and that endocrinological factors are less important. The results are discussed in relation to the possibility to use 24S-hydroxycholesterol in the circulation as a marker for cholesterol homeostasis in the brain.

  17. Evaluation of chlorpyrifos toxicity through a 28-day study: Cholinesterase activity, oxidative stress responses, parent compound/metabolite levels, and primary DNA damage in blood and brain tissue of adult male Wistar rats.

    PubMed

    Kopjar, Nevenka; Žunec, Suzana; Mendaš, Gordana; Micek, Vedran; Kašuba, Vilena; Mikolić, Anja; Lovaković, Blanka Tariba; Milić, Mirta; Pavičić, Ivan; Čermak, Ana Marija Marjanović; Pizent, Alica; Lucić Vrdoljak, Ana; Želježić, Davor

    2018-01-05

    In this 28 day-study, we evaluated the effects of the insecticide chlorpyrifos orally administered to Wistar rats at doses 0.160, 0.015, and 0.010 mg/kg b. w./day. Following treatment, total cholinesterase activity and activities of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) were measured. Oxidative stress responses were evaluated using a battery of endpoints to establish lipid peroxidation, changes in total antioxidant capacity, level of reactive oxygen species (ROS), glutathione (GSH) level and activities of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase. Using HPLC-UV DAD analysis, levels of the parent compound and its main metabolite 3,5,6-trichloro-2-pyridinol in plasma and brain tissue were measured. The genotoxic effect was estimated using alkaline comet assay in leukocytes and brain tissue. The exposure did not result in significant effects on total cholinesterase, AChE and BChE activity in plasma and brain tissue. Lipid peroxidation slightly increased both in plasma and brain tissue. Total antioxidant capacity, ROS and GSH levels were marginally influenced by the exposure. Treatment led to significant increases of GSH-Px activity in blood, SOD activity in erythrocytes and a slight increase of catalase activity in plasma. HPLC-UV DAD analysis revealed the presence of both the parent compound and its main metabolite in the plasma of all of the experimental animals and brain tissue of the animals treated at the two higher doses. All of the tested doses of chlorpyrifos were slightly genotoxic, both to leukocytes and brain tissue. Our results call for further research using other sensitive biomarkers of effect, along with different exposure scenarios. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Metronidazole and hydroxymetronidazole central nervous system distribution: 1. microdialysis assessment of brain extracellular fluid concentrations in patients with acute brain injury.

    PubMed

    Frasca, Denis; Dahyot-Fizelier, Claire; Adier, Christophe; Mimoz, Olivier; Debaene, Bertrand; Couet, William; Marchand, Sandrine

    2014-01-01

    The distribution of metronidazole in the central nervous system has only been described based on cerebrospinal fluid data. However, extracellular fluid (ECF) concentrations may better predict its antimicrobial effect and/or side effects. We sought to explore by microdialysis brain ECF metronidazole distribution in patients with acute brain injury. Four brain-injured patients monitored by cerebral microdialysis received 500 mg of metronidazole over 0.5 h every 8 h. Brain dialysates and blood samples were collected at steady state over 8 h. Probe recoveries were evaluated by in vivo retrodialysis in each patient for metronidazole. Metronidazole and OH-metronidazole were assayed by high-pressure liquid chromatography, and a noncompartmental pharmacokinetic analysis was performed. Probe recovery was equal to 78.8% ± 1.3% for metronidazole in patients. Unbound brain metronidazole concentration-time curves were delayed compared to unbound plasma concentration-time curves but with a mean metronidazole unbound brain/plasma AUC0-τ ratio equal to 102% ± 19% (ranging from 87 to 124%). The unbound plasma concentration-time profiles for OH-metronidazole were flat, with mean average steady-state concentrations equal to 4.0 ± 0.7 μg ml(-1). This microdialysis study describes the steady-state brain distribution of metronidazole in patients and confirms its extensive distribution.

  19. Pharmacokinetics, brain distribution and plasma protein binding of carbamazepine and nine derivatives: new set of data for predictive in silico ADME models.

    PubMed

    Fortuna, Ana; Alves, Gilberto; Soares-da-Silva, Patrício; Falcão, Amílcar

    2013-11-01

    In silico approaches to predict absorption, distribution, metabolism and excretion (ADME) of new drug candidates are gaining a relevant importance in drug discovery programmes. When considering particularly the pharmacokinetics during the development of oral antiepileptic drugs (AEDs), one of the most prominent goals is designing compounds with good bioavailability and brain penetration. Thus, it is expected that in silico models able to predict these features may be applied during the early stages of AEDs discovery. The present investigation was mainly carried out in order to generate in vivo pharmacokinetic data that can be utilized for development and validation of in silico models. For this purpose, a single dose of each compound (1.4mmol/kg) was orally administered to male CD-1 mice. After quantifying the parent compound and main metabolites in plasma and brain up to 12h post-dosing, a non-compartmental pharmacokinetic analysis was performed and the corresponding brain/plasma ratios were calculated. Moreover the plasma protein binding was estimated in vitro applying the ultrafiltration procedure. The present in vivo pharmacokinetic characterization of the test compounds and corresponding metabolites demonstrated that the metabolism extensively compromised the in vivo activity of CBZ derivatives and their toxicity. Furthermore, it was clearly evidenced that the time to reach maximum peak concentration, bioavailability (given by the area under the curve) and metabolic stability (given by the AUC0-12h ratio of the parent compound and total systemic drug) influenced the in vivo pharmacological activities and must be considered as primary parameters to be investigated. All the test compounds presented brain/plasma ratios lower than 1.0, suggesting that the blood-brain barrier restricts drug entry into the brain. In agreement with in vitro studies already performed within our research group, CBZ, CBZ-10,11-epoxide and oxcarbazepine exhibited the highest brain/plasma ratios (>0.50), followed by eslicarbazepine, R-licarbazepine, trans-diol and BIA 2-024 (ratios within 0.05-0.50). BIA 2-265 was not found in the biophase, probably due to its high plasma-protein bound fraction (>90%) herein revealed for the first time. The comparative in vivo pharmacokinetic data obtained in the present work might be usefully applied in the context of discovery of new antiepileptic drugs that are derivatives of CBZ. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Brain Region-Specific Trafficking of the Dopamine Transporter

    PubMed Central

    Block, Ethan R.; Nuttle, Jacob; Balcita-Pedicino, Judith Joyce; Caltagarone, John; Watkins, Simon C.

    2015-01-01

    The dopamine (DA) transporter (DAT) controls dopaminergic neurotransmission by removing extracellular DA. Although DA reuptake is proposed to be regulated by DAT traffic to and from the cell surface, the membrane trafficking system involved in the endocytic cycling of DAT in the intact mammalian brain has not been characterized. Hence, we performed immunolabeling and quantitative analysis of the subcellular and regional distribution of DAT using the transgenic knock-in mouse expressing hemagglutinin (HA) epitope-tagged DAT (HA-DAT) and by using a combination of electron microscopy and a novel method for immunofluorescence labeling of HA-DAT in acute sagittal brain slices. Both approaches demonstrated that, in midbrain somatodendritic regions, HA-DAT was present in the plasma membrane, endoplasmic reticulum, and Golgi complex, with a small fraction in early and recycling endosomes and an even smaller fraction in late endosomes and lysosomes. In the striatum and in axonal tracts between the midbrain and striatum, HA-DAT was detected predominantly in the plasma membrane, and quantitative analysis revealed increased DAT density in striatal compared with midbrain plasma membranes. Endosomes were strikingly rare and lysosomes were absent in striatal axons, in which there was little intracellular HA-DAT. Acute administration of amphetamine in vivo (60 min) or to slices ex vivo (10–60 min) did not result in detectable changes in DAT distribution. Altogether, these data provide evidence for regional differences in DAT plasma membrane targeting and retention and suggest a surprisingly low level of endocytic trafficking of DAT in the striatum along with limited DAT endocytic activity in somatodendritic areas. SIGNIFICANCE STATEMENT The dopamine transporter (DAT) is the key regulator of the dopamine neurotransmission in the CNS. In the present study, we developed a new approach for studying DAT localization and dynamics in intact neurons in acute sagittal brain slices from the knock-in mouse expressing epitope-tagged DAT. For the first time, the fluorescence imaging analysis of DAT was combined with the immunogold labeling of DAT and quantitative electron microscopy. In contrast to numerous studies of DAT trafficking in heterologous expression systems and dissociated cultured neurons, studies in intact neurons revealed a surprisingly low amount of endocytic trafficking of DAT at steady state and after acute amphetamine treatment and suggested that non-vesicular transport could be the main mechanism establishing DAT distribution within the dopaminergic neuron. PMID:26377471

  1. Study of plasma-derived miRNAs mimic differences in Huntington's disease brain.

    PubMed

    Hoss, Andrew G; Lagomarsino, Valentina N; Frank, Samuel; Hadzi, Tiffany C; Myers, Richard H; Latourelle, Jeanne C

    2015-12-01

    Biomarkers for Huntington's disease progression could accelerate therapeutic developments and improve patient care. Brain microRNAs relating to clinical features of Huntington's disease may represent a potential Huntington's disease biomarker in blood. This study was undertaken to examine candidate microRNAs in plasma to determine whether changes observed in HD brains are detectable in peripheral samples. Four microRNAs from 26 manifest Huntington's disease, four asymptomatic Huntington's disease gene carriers, and eight controls were quantified in plasma using reverse transcription quantitative polymerase chain reaction. Linear regression was used to assess microRNA levels across control, asymptomatic gene carriers, and manifest patients. miR-10b-5p (P = 0.0068) and miR-486-5p (P = 0.044) were elevated in Huntington's disease plasma. miR-10b-5p was decreased in asymptomatic gene carriers as compared with patients with Huntington's disease (P = 0.049), but no difference between asymptomatic gene carriers and healthy controls was observed (P = 0.24). These findings suggest that microRNA changes observed in Huntington's disease brain may be detectable in plasma and have potential clinical utility. © 2015 International Parkinson and Movement Disorder Society.

  2. Choline and its metabolites are differently associated with cardiometabolic risk factors, history of cardiovascular disease, and MRI-documented cerebrovascular disease in older adults.

    PubMed

    Roe, Annie J; Zhang, Shucha; Bhadelia, Rafeeque A; Johnson, Elizabeth J; Lichtenstein, Alice H; Rogers, Gail T; Rosenberg, Irwin H; Smith, Caren E; Zeisel, Steven H; Scott, Tammy M

    2017-06-01

    Background: There is a potential role of choline in cardiovascular and cerebrovascular disease through its involvement in lipid and one-carbon metabolism. Objective: We evaluated the associations of plasma choline and choline-related compounds with cardiometabolic risk factors, history of cardiovascular disease, and cerebrovascular pathology. Design: A cross-sectional subset of the Nutrition, Aging, and Memory in Elders cohort who had undergone MRI of the brain ( n = 296; mean ± SD age: 73 ± 8.1 y) was assessed. Plasma concentrations of free choline, betaine, and phosphatidylcholine were measured with the use of liquid-chromatography-stable-isotope dilution-multiple-reaction monitoring-mass spectrometry. A volumetric analysis of MRI was used to determine the cerebrovascular pathology (white-matter hyperintensities and small- and large-vessel infarcts). Multiple linear and logistic regression models were used to examine relations of plasma measures with cardiometabolic risk factors, history of cardiovascular disease, and radiologic evidence of cerebrovascular pathology. Results: Higher concentrations of plasma choline were associated with an unfavorable cardiometabolic risk-factor profile [lower high-density lipoprotein (HDL) cholesterol, higher total homocysteine, and higher body mass index (BMI)] and greater odds of large-vessel cerebral vascular disease or history of cardiovascular disease but lower odds of small-vessel cerebral vascular disease. Conversely, higher concentrations of plasma betaine were associated with a favorable cardiometabolic risk-factor profile [lower low-density lipoprotein (LDL) cholesterol and triglycerides] and lower odds of diabetes. Higher concentrations of plasma phosphatidylcholine were associated with characteristics of both a favorable cardiometabolic risk-factor profile (higher HDL cholesterol, lower BMI, lower C-reactive protein, lower waist circumference, and lower odds of hypertension and diabetes) and an unfavorable profile (higher LDL cholesterol and triglycerides). Conclusion: Choline and its metabolites have differential associations with cardiometabolic risk factors and subtypes of vascular disease, thereby suggesting differing roles in the pathogenesis of cardiovascular and cerebral large-vessel disease compared with that of small-vessel disease. © 2017 American Society for Nutrition.

  3. Investigation of the Role of Breast Cancer Resistance Protein (Bcrp/Abcg2) on Pharmacokinetics and Central Nervous System Penetration of Abacavir and Zidovudine in the Mouse

    PubMed Central

    Giri, Nagdeep; Shaik, Naveed; Pan, Guoyu; Terasaki, Tetsuya; Mukai, Chisato; Kitagaki, Shinji; Miyakoshi, Naoki; Elmquist, William F.

    2016-01-01

    Many anti-human immunodeficiency virus 1 nucleoside reverse-transcriptase inhibitors have low central nervous system (CNS) distribution due in part to active efflux transport at the blood-brain barrier. We have previously shown that zidovudine (AZT) and abacavir (ABC) are in vitro substrates for the efflux transport protein breast cancer resistance protein (Bcrp) 1. We evaluated the influence of Bcrp1 on plasma pharmacokinetics and brain penetration of zidovudine and abacavir in wild-type and Bcrp1-deficient (Bcrp1−/−) FVB mice. There was no difference in either area under the concentration-time profiles for plasma (AUCplasma) or brain (AUCbrain) for zidovudine between the wild-type and Bcrp1−/− mice. The AUCplasma of abacavir was 20% lower in the Bcrp1−/− mice, whereas the AUCbrain was 20% greater. This difference resulted in a 1.5-fold increase in abacavir brain exposure in the Bcrp1−/− mice. The effect of selective and nonselective transport inhibitors on the ABC brain/plasma ratio at a single time point was evaluated. 3-(6-Isobutyl-9-methoxy-1,4-dioxo-1,2,3,4,6,7,12,12a-octahydropyrazino[1′,2′:1,6]pyrido[3,4-b]indol-3-yl)-propionicacid tert-butyl ester (Ko143), N[4[2-(6, 7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)ethyl]phenyl]-5-methoxy-9-oxo-10H-acridine-4-carboxamide (GF120918), probenecid, and Pluronic P85 increased abacavir plasma concentrations in the wild-type mice. Abacavir plasma concentrations in Bcrp1−/− mice were increased by (R)-4-((1aR,6R,10bS)-1,2-difluoro-1,1a,6,10b-tetrahydrodibenzo(a,e)cyclopropa(c)cycloheptan-6-yl)-α-((5-quinoloyloxy)methyl)-1-piperazineethanol trihydrochloride (LY335979), GF120918, and probenecid, but not by Ko143. Brain/plasma concentration ratios in both the wild-type and Bcrp1−/− mice were increased by the P-glycoprotein inhibitors LY335979 and GF120918, but not by BCRP-selective inhibitors. These data indicate that deletion of Bcrp1 has little influence on the pharmacokinetics or brain penetration of AZT. However, for abacavir, deletion of Bcrp1 reduces plasma exposure and enhances brain penetration. These findings suggest that Bcrp1 does not play a significant role in limiting the CNS distribution of zidovudine and abacavir; however, brain penetration of abacavir is dependent on P-glycoprotein-mediated efflux. PMID:18443033

  4. Simultaneous measurement of glucose transport and utilization in the human brain

    PubMed Central

    Shestov, Alexander A.; Emir, Uzay E.; Kumar, Anjali; Henry, Pierre-Gilles; Seaquist, Elizabeth R.

    2011-01-01

    Glucose is the primary fuel for brain function, and determining the kinetics of cerebral glucose transport and utilization is critical for quantifying cerebral energy metabolism. The kinetic parameters of cerebral glucose transport, KMt and Vmaxt, in humans have so far been obtained by measuring steady-state brain glucose levels by proton (1H) NMR as a function of plasma glucose levels and fitting steady-state models to these data. Extraction of the kinetic parameters for cerebral glucose transport necessitated assuming a constant cerebral metabolic rate of glucose (CMRglc) obtained from other tracer studies, such as 13C NMR. Here we present new methodology to simultaneously obtain kinetic parameters for glucose transport and utilization in the human brain by fitting both dynamic and steady-state 1H NMR data with a reversible, non-steady-state Michaelis-Menten model. Dynamic data were obtained by measuring brain and plasma glucose time courses during glucose infusions to raise and maintain plasma concentration at ∼17 mmol/l for ∼2 h in five healthy volunteers. Steady-state brain vs. plasma glucose concentrations were taken from literature and the steady-state portions of data from the five volunteers. In addition to providing simultaneous measurements of glucose transport and utilization and obviating assumptions for constant CMRglc, this methodology does not necessitate infusions of expensive or radioactive tracers. Using this new methodology, we found that the maximum transport capacity for glucose through the blood-brain barrier was nearly twofold higher than maximum cerebral glucose utilization. The glucose transport and utilization parameters were consistent with previously published values for human brain. PMID:21791622

  5. Intrahippocampal Infusion of Crotamine Isolated from Crotalus durissus terrificus Alters Plasma and Brain Biochemical Parameters †

    PubMed Central

    Gonçalves, Rithiele; Vargas, Liane S.; Lara, Marcus V. S.; Güllich, Angélica; Mandredini, Vanusa; Ponce-Soto, Luis; Marangoni, Sergio; Dal Belo, Cháriston A.; Mello-Carpes, Pâmela B.

    2014-01-01

    Crotamine is one of the main constituents of the venom of the South American rattlesnake Crotalus durissus terrificus. Here we sought to investigate the inflammatory and toxicological effects induced by the intrahippocampal administration of crotamine isolated from Crotalus whole venom. Adult rats received an intrahippocampal infusion of crotamine or vehicle and were euthanized 24 h or 21 days after infusion. Plasma and brain tissue were collected for biochemical analysis. Complete blood count, creatinine, urea, glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), creatine-kinase (CK), creatine kinase-muscle B (CK-MB) and oxidative parameters (assessed by DNA damage and micronucleus frequency in leukocytes, lipid peroxidation and protein carbonyls in plasma and brain) were quantified. Unpaired and paired t-tests were used for comparisons between saline and crotamine groups, and within groups (24 h vs. 21 days), respectively. After 24 h crotamine infusion promoted an increase of urea, GOT, GPT, CK, and platelets values (p ≤ 0.01), while red blood cells, hematocrit and leukocytes values decreased (p ≤ 0.01). Additionally, 21 days after infusion crotamine group showed increased creatinine, leukocytes, TBARS (plasma and brain), carbonyl (plasma and brain) and micronucleus compared to the saline-group (p ≤ 0.01). Our findings show that crotamine infusion alter hematological parameters and cardiac markers, as well as oxidative parameters, not only in the brain, but also in the blood, indicating a systemic pro-inflammatory and toxicological activity. A further scientific attempt in terms of preserving the beneficial activity over toxicity is required. PMID:25380458

  6. Sexually dimorphic brain fatty acid composition in low and high fat diet-fed mice.

    PubMed

    Rodriguez-Navas, Carlos; Morselli, Eugenia; Clegg, Deborah J

    2016-08-01

    In this study, we analyzed the fatty acid profile of brains and plasma from male and female mice fed chow or a western-style high fat diet (WD) for 16 weeks to determine if males and females process fatty acids differently. Based on the differences in fatty acids observed in vivo, we performed in vitro experiments on N43 hypothalamic neuronal cells to begin to elucidate how the fatty acid milieu may impact brain inflammation. Using a comprehensive mass spectrometry fatty acid analysis, which includes a profile for 52 different fatty acid isomers, we assayed the plasma and brain fatty acid composition of age-matched male and female mice maintained on chow or a WD. Additionally, using the same techniques, we determined the fatty acid composition of N43 hypothalamic cells following exposure to palmitic and linoleic acid, alone or in combination. Our data demonstrate there is a sexual dimorphism in brain fatty acid content both following the consumption of the chow diet, as well as the WD, with males having an increased percentage of saturated fatty acids and reductions in ω6-polyunsaturated fatty acids when compared to females. Interestingly, we did not observe a sexual dimorphism in fatty acid content in the plasma of the same mice. Furthermore, exposure of N43 cells to the ω6-PUFA linoleic acid, which is higher in female brains when compared to males, reduces palmitic acid-induced inflammation. Our data suggest male and female brains, and not plasma, differ in their fatty acid profile. This is the first time, to our knowledge, lipidomic analyses has been used to directly test the hypothesis there is a sexual dimorphism in brain and plasma fatty acid composition following consumption of the chow diet, as well as following exposure to the WD.

  7. Determination of (2)H-enrichment of rat brain interstitial fluid and rat plasma by headspace-gas-chromatography - quadrupole-mass-spectrometry.

    PubMed

    Eberl, Anita; Altendorfer-Kroath, Thomas; Kollmann, Denise; Birngruber, Thomas; Sinner, Frank; Raml, Reingard; Magnes, Christoph

    2016-09-15

    (2)H2O as nonradioactive, stable marker substance is commonly used in preclinical and clinical studies and the precise determination of (2)H2O concentration in biological samples is crucial. However, aside from isotope ratio mass spectrometry (IRMS), only a very limited number of methods to accurately measure the (2)H2O concentration in biological samples are routinely established until now. In this study, we present a straightforward method to accurately measure (2)H-enrichment of rat brain interstitial fluid (ISF) and rat plasma to determine the relative recovery of a cerebral open flow microperfusion (cOFM) probe, using headspace-gas-chromatography - quadrupole-mass-spectrometry. This method is based on basic-catalyzed hydrogen/deuterium exchange in acetone and detects the (2)H-labelled acetone directly by the headspace GC-MS. Small sample volumes and limited number of preparation steps make this method highly competitive. It has been fully validated. (2)H enriched to 8800 ppm in plasma showed an accuracy of 98.9% and %Relative Standard Deviation (RSD) of 3.1 with n = 18 over three days and with two operators. Similar performance was obtained for cerebral ISF enriched to 1100 ppm (accuracy: 96.5%, %RSD: 3.1). With this highly reproducible method we demonstrated the successful employment of (2)H2O as performance marker for a cOFM probe. Copyright © 2016. Published by Elsevier Inc.

  8. A neuropharmacokinetic assessment of bafetinib, a second generation dual BCR-Abl/Lyn tyrosine kinase inhibitor, in patients with recurrent high-grade gliomas.

    PubMed

    Portnow, Jana; Badie, Behnam; Markel, Susan; Liu, An; D'Apuzzo, Massimo; Frankel, Paul; Jandial, Rahul; Synold, Timothy W

    2013-05-01

    The primary objective of this study was to use intracerebral microdialysis (ICMD) to determine the neuropharmacokinetics of bafetinib, a dual BCR-Abl/Lyn tyrosine kinase inhibitor that may have activity against gliomas. A microdialysis catheter was placed into either peritumoural or enhancing brain tissue of seven patients at the time of tumour resection or biopsy. Twenty-four hours later, bafetinib was administered, 240 or 360 mg po, repeating the same dose 12 h later. Dialysate samples were continuously collected for 24h, with plasma samples obtained in parallel. One to two weeks after finishing ICMD, patients were allowed to resume taking bafetinib continuously while being observed for toxicity and tumour response. Twenty-six dialysate samples per patient were collected (n=6) and analysed for bafetinib by tandem mass spectrometry. Bafetinib concentrations in the brain were below the lower limit of detection of the assay (0.1 ng/ml) in all samples except one from a single subject that was 0.52 ng/ml. The mean plasma bafetinib maximum concentrations after dose 1 and 2 were 143±99 and 247±73 ng/ml, respectively. Only one patient remained on treatment past two cycles, and no radiographic responses were seen. Bafetinib does not sufficiently cross intact or disrupted blood-brain barrier, and therefore, systemic administration of bafetinib is not recommended when investigating this drug as a treatment for brain tumours. ICMD can be a valuable research tool in early drug development. Lead-in ICMD studies can be performed relatively quickly, requiring only a small number of patients, and without significantly disrupting standard cancer care. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Comparison of the performances of copeptin and multiple biomarkers in long-term prognosis of severe traumatic brain injury.

    PubMed

    Zhang, Zu-Yong; Zhang, Li-Xin; Dong, Xiao-Qiao; Yu, Wen-Hua; Du, Quan; Yang, Ding-Bo; Shen, Yong-Feng; Wang, Hao; Zhu, Qiang; Che, Zhi-Hao; Liu, Qun-Jie; Jiang, Li; Du, Yuan-Feng

    2014-10-01

    Enhanced blood levels of copeptin correlate with poor clinical outcomes after acute critical illness. This study aimed to compare the prognostic performances of plasma concentrations of copeptin and other biomarkers like myelin basic protein, glial fibrillary astrocyte protein, S100B, neuron-specific enolase, phosphorylated axonal neurofilament subunit H, Tau and ubiquitin carboxyl-terminal hydrolase L1 in severe traumatic brain injury. We recruited 102 healthy controls and 102 acute patients with severe traumatic brain injury. Plasma concentrations of these biomarkers were determined using enzyme-linked immunosorbent assay. Their prognostic predictive performances of 6-month mortality and unfavorable outcome (Glasgow Outcome Scale score of 1-3) were compared. Plasma concentrations of these biomarkers were statistically significantly higher in all patients than in healthy controls, in non-survivors than in survivors and in patients with unfavorable outcome than with favorable outcome. Areas under receiver operating characteristic curves of plasma concentrations of these biomarkers were similar to those of Glasgow Coma Scale score for prognostic prediction. Except plasma copeptin concentration, other biomarkers concentrations in plasma did not statistically significantly improve prognostic predictive value of Glasgow Coma Scale score. Copeptin levels may be a useful tool to predict long-term clinical outcomes after severe traumatic brain injury and have a potential to assist clinicians. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Vinorelbine Delivery and Efficacy in the MDA-MB-231BR Preclinical Model of Brain Metastases of Breast Cancer.

    PubMed

    Samala, Ramakrishna; Thorsheim, Helen R; Goda, Satyanarayana; Taskar, Kunal; Gril, Brunilde; Steeg, Patricia S; Smith, Quentin R

    2016-12-01

    To evaluate vinorelbine drug exposure and activity in brain metastases of the human MDA-MB-231BR breast cancer model using integrated imaging and analysis. Brain and systemic metastases were created by administration of cancer cells in female NuNu mice. After metastases developed, animals were administered vinorelbine at the maximal tolerated dose (12 mg/kg), and were evaluated thereafter for total and unbound drug pharmacokinetics, biomarker TUNEL staining, and barrier permeability to Texas red. Median brain metastasis drug exposure was 4-fold greater than normal brain, yet only ~8% of non-barrier systemic metastases, which suggests restricted brain exposure. Unbound vinorelbine tissue/plasma partition coefficient, K p,uu , equaled ~1.0 in systemic metastases, but 0.03-0.22 in brain metastases, documenting restricted equilibration. In select sub-regions of highest drug-uptake brain metastases, K p,uu approached 1.0, indicating complete focal barrier breakdown. Most vinorelbine-treated brain metastases exhibited little or no positive early apoptosis TUNEL staining in vivo. The in vivo unbound vinorelbine IC 50 for TUNEL-positive staining (56 nM) was 4-fold higher than that measured in vitro (14 nM). Consistent with this finding, P-glycoprotein expression was observed to be substantially upregulated in brain metastasis cells in vivo. Vinorelbine exposure at maximum tolerated dose was less than one-tenth that in systemic metastases in >70% of brain metastases, and was associated with negligible biomarker effect. In small subregions of the highest uptake brain metastases, compromise of blood-tumor barrier appeared complete. The results suggest that restricted delivery accounts for 80% of the compromise in drug efficacy for vinorelbine against this model.

  11. CD11c- and CD11b-expressing mouse leukocytes transport single Toxoplasma gondii tachyzoites to the brain

    PubMed Central

    Courret, Nathalie; Darche, Sylvie; Sonigo, Pierre; Milon, Geneviève; Buzoni-Gâtel, Dominique; Tardieux, Isabelle

    2006-01-01

    The protozoan parasite Toxoplasma gondii enters hosts through the intestinal mucosa and colonizes distant tissues such as the brain, where its progeny persists for a lifetime. We investigated the role of CD11c- and CD11b-expressing leukocytes in T gondii transport during the early step of parasitism from the mouse small intestine and during subsequent parasite localization in the brain. Following intragastric inoculation of cyst-containing parasites in mice, CD11c+ dendritic cells from the intestinal lamina propria, the Peyer patches, and the mesenteric lymph nodes were parasitized while in the blood, parasites were associated with the CD11c- CD11b+ monocytes. Using adoptive transfer experiments, we demonstrated that these parasitized cells triggered a parasitic process in the brain of naive recipient mice. Ex vivo analysis of parasitized leukocytes showed that single tachyzoites remained at the cell periphery, often surrounded by the host cell plasma membrane, but did not divide. Using either a dye that labels circulating leukocytes or an antibody known to prevent CD11b+ circulating leukocytes from leaving the microvascular bed lumen, and chimeric mice in which the hematopoietic cells expressed the green fluorescent protein, we established that T gondii zoites hijacked CD11b+ leukocytes to reach the brain extravascular space. PMID:16051744

  12. Rapid transport within cerebral perivascular spaces underlies widespread tracer distribution in the brain after intranasal administration.

    PubMed

    Lochhead, Jeffrey J; Wolak, Daniel J; Pizzo, Michelle E; Thorne, Robert G

    2015-03-01

    The intranasal administration route is increasingly being used as a noninvasive method to bypass the blood-brain barrier because evidence suggests small fractions of nasally applied macromolecules may reach the brain directly via olfactory and trigeminal nerve components present in the nasal mucosa. Upon reaching the olfactory bulb (olfactory pathway) or brainstem (trigeminal pathway), intranasally delivered macromolecules appear to rapidly distribute within the brains of rodents and primates. The mechanisms responsible for this distribution have yet to be fully characterized. Here, we have used ex vivo fluorescence imaging to show that bulk flow within the perivascular space (PVS) of cerebral blood vessels contributes to the rapid central distribution of fluorescently labeled 3 and 10 kDa dextran tracers after intranasal administration in anesthetized adult rats. Comparison of tracer plasma levels and fluorescent signal distribution associated with the PVS of surface arteries and internal cerebral vessels showed that the intranasal route results in unique central access to the PVS not observed after matched intravascular dosing in separate animals. Intranasal targeting to the PVS was tracer size dependent and could be regulated by modifying nasal epithelial permeability. These results suggest cerebral perivascular convection likely has a key role in intranasal drug delivery to the brain.

  13. Metronidazole and Hydroxymetronidazole Central Nervous System Distribution: 1. Microdialysis Assessment of Brain Extracellular Fluid Concentrations in Patients with Acute Brain Injury

    PubMed Central

    Frasca, Denis; Dahyot-Fizelier, Claire; Adier, Christophe; Mimoz, Olivier; Debaene, Bertrand; Couet, William

    2014-01-01

    The distribution of metronidazole in the central nervous system has only been described based on cerebrospinal fluid data. However, extracellular fluid (ECF) concentrations may better predict its antimicrobial effect and/or side effects. We sought to explore by microdialysis brain ECF metronidazole distribution in patients with acute brain injury. Four brain-injured patients monitored by cerebral microdialysis received 500 mg of metronidazole over 0.5 h every 8 h. Brain dialysates and blood samples were collected at steady state over 8 h. Probe recoveries were evaluated by in vivo retrodialysis in each patient for metronidazole. Metronidazole and OH-metronidazole were assayed by high-pressure liquid chromatography, and a noncompartmental pharmacokinetic analysis was performed. Probe recovery was equal to 78.8% ± 1.3% for metronidazole in patients. Unbound brain metronidazole concentration-time curves were delayed compared to unbound plasma concentration-time curves but with a mean metronidazole unbound brain/plasma AUC0–τ ratio equal to 102% ± 19% (ranging from 87 to 124%). The unbound plasma concentration-time profiles for OH-metronidazole were flat, with mean average steady-state concentrations equal to 4.0 ± 0.7 μg ml−1. This microdialysis study describes the steady-state brain distribution of metronidazole in patients and confirms its extensive distribution. PMID:24277041

  14. Association between cerebrospinal fluid and plasma neurodegeneration biomarkers with brain atrophy in Alzheimer's disease.

    PubMed

    Pereira, Joana B; Westman, Eric; Hansson, Oskar

    2017-10-01

    The aggregation and deposition of amyloid-β (Aβ) peptides into plaques is an early event in Alzheimer's disease (AD), which is followed by different aspects of neurodegeneration that can be measured in the cerebrospinal fluid (CSF) or plasma using neurofilament light (NFL), neurogranin (Ng), total Tau (T-Tau), and phosphorylated tau (P-Tau) levels. The relationship between these biomarkers and regional brain atrophy across the different stages of AD remains largely unexplored. In this study, we assessed whether NFL, Ng, T-Tau, and P-Tau levels in CSF and NFL in plasma are associated with cortical thinning and subcortical volume loss in cognitively normal, mild cognitive impairment, and AD subjects with and without Aβ pathology. Our main findings showed that CSF NFL levels were associated with brain atrophy in all groups, but plasma NFL only correlated with atrophy in symptomatic cases. In contrast, Ng was associated with regional brain atrophy only in individuals with Aβ pathology. Altogether, our main findings suggest that Ng is strongly associated with Aβ pathology, whereas NFL is more unspecific. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Reduction in levels of 24S-hydroxycholesterol by statin treatment in patients with Alzheimer disease.

    PubMed

    Vega, Gloria Lena; Weiner, Myron F; Lipton, Anne M; Von Bergmann, Klaus; Lutjohann, Dieter; Moore, Carol; Svetlik, Doris

    2003-04-01

    The statin treatment of dyslipidemia is associated with a reduced risk of development of Alzheimer disease (AD). The effect may be mediated by a reduction in cholesterol biosynthesis in the brain, by lowering levels of apolipoprotein E (apo E)-containing lipoproteins, or by pleitropic effects such as reduction in beta-amyloid production. In the brain, cholesterol from damaged or dying neurons is converted to 24S-hydroxycholesterol by cholesterol 24-hydroxylase (CYP46). The oxysterol is subsequently transferred across the blood-brain barrier, transported to the liver by low-density lipoproteins (LDLs), and excreted as bile acids. Most of plasma 24S-hydroxycholesterol is derived from brain cholesterol; consequently, plasma levels of the oxysterol reflect brain cholesterol catabolism. To examine the effect of 3 statins and a nonstatin hypolipidemic agent on plasma levels of 24S-hydroxycholesterol and apo E in patients with AD. The study had a sequential parallel design. It was open-labeled and involved lipoprotein and 24S-hydroxycholesterol evaluations at baseline and at 6 weeks of treatment with 40 mg of lovastatin, simvastatin, or pravastatin sodium per day, or 1 g of extended-release niacin per day. Blood samples were drawn after a 12-hour fast for measurement of plasma sterols, oxysterols, lipoprotein cholesterol, and levels of apo E, plasma transaminases, and glucose. Measurements were made at baseline and during treatment. Statin treatment reduced levels of plasma lathosterol by 49.5%, 24S-hydroxycholesterol by 21.4%, LDL cholesterol by 34.9%, and total cholesterol by 25%. The ratios of lathosterol-campesterol and 24S-hydroxycholesterol-LDL cholesterol were reduced significantly, but the ratio of 24S-hydroxycholesterol-total cholesterol was unchanged. Extended-release niacin also significantly reduced levels of 24S-hydroxycholesterol by 10% and LDL cholesterol by 18.1%. None of the agents lowered plasma concentration of apo E. Statins lowered levels of plasma 24S-hydroxycholesterol without affecting levels of apo E. The LDL lowering was more pronounced than 24S-hydroxycholesterol reductions. The effect of statins on LDL partially explains the reduction of plasma oxysterol level.

  16. Simultaneous quantitative analyses of indole and oxindole alkaloids of Uncaria Hook in rat plasma and brain after oral administration of the traditional Japanese medicine Yokukansan using high-performance liquid chromatography with tandem mass spectrometry.

    PubMed

    Kushida, Hirotaka; Fukutake, Miwako; Tabuchi, Masahiro; Katsuhara, Takao; Nishimura, Hiroaki; Ikarashi, Yasushi; Kanitani, Masanao; Kase, Yoshio

    2013-12-01

    Uncaria Hook (UH) alkaloids are involved in the beneficial effects of Yokukansan. However, the pharmacokinetics of UH alkaloids after oral administration of Yokukansan has not yet been sufficiently investigated. Therefore, we developed and validated a sensitive and specific high-performance liquid chromatography with tandem mass spectrometry (LC/MS/MS) method for the simultaneous quantitation of seven UH alkaloids (corynoxeine, isocorynoxeine, rhynchophylline, isorhynchophylline, hirsutine, hirsuteine and geissoschizine methyl ether) in rat plasma and brain. After protein precipitation with acetonitrile, chromatographic separation was performed using an Ascentis Express RP-amide column, with gradient elution with 0.2% formic acid and acetonitrile at 0.3 mL/min. All analytes in the plasma and brain showed good linearity over a wide concentration range (r > 0.995). Intra-day and inter-day variations of each constituent were 8.6 and 8.0% or less in the plasma, and 14.9 and 15.0% or less in the brain, respectively. The validated LC/MS/MS method was applied in the pharmacokinetic studies of UH alkaloids after oral administration of Yokukansan to rats. In the plasma, rhynchophylline, hirsutine, hirsuteine and geissoschizine methyl ether were detected, but only geissoschizine methyl ether was detected in the brain. These results suggest that geissoschizine methyl ether is an important constituent of the pharmacological effects of Yokukansan. Copyright © 2013 John Wiley & Sons, Ltd.

  17. The plasma and cerebrospinal fluid pharmacokinetics of erlotinib and its active metabolite (OSI-420) after intravenous administration of erlotinib in non-human primates.

    PubMed

    Meany, Holly J; Fox, Elizabeth; McCully, Cynthia; Tucker, Chris; Balis, Frank M

    2008-08-01

    Erlotinib hydrochloride is a small molecule inhibitor of epidermal growth factor receptor (EGFR). EGFR is over-expressed in primary brain tumors and solid tumors that metastasize to the central nervous system. We evaluated the plasma and cerebrospinal fluid (CSF) pharmacokinetics of erlotinib and its active metabolite OSI-420 after an intravenous (IV) dose in a non-human primate model. Erlotinib was administered as a 1 h IV infusion to four adult rhesus monkeys. Serial blood and CSF samples were drawn over 48 h and erlotinib and OSI-420 were quantified with an HPLC/tandem mass spectroscopic assay. Pharmacokinetic parameters were estimated using non-compartmental and compartmental methods. CSF penetration was calculated from the AUC(CSF):AUC(plasma). Erlotinib disappearance from plasma after a short IV infusion was biexponential with a mean terminal half-life of 5.2 h and a mean clearance of 128 ml/min per m(2). OSI-420 exposure (AUC) in plasma was 30% (range 12-59%) of erlotinib, and OSI-420 clearance was more than 5-fold higher than erlotinib. Erlotinib and OSI-420 were detectable in CSF. The CSF penetration (AUC(CSF):AUC(plasma)) of erlotinib and OSI-420 was <5% relative to total plasma concentration, but CSF drug exposure was approximately 30% of plasma free drug exposure, which was calculated from published plasma protein binding values. The IV administration of erlotinib was well tolerated. Erlotinib and its active metabolite OSI-420 are measurable in CSF after an IV dose. The drug exposure (AUC) in the CSF is limited relative to total plasma concentrations but is substantial relative the free drug exposure in plasma.

  18. Validation and use of three complementary analytical methods (LC-FLS, LC-MS/MS and ICP-MS) to evaluate the pharmacokinetics, biodistribution and stability of motexafin gadolinium in plasma and tissues.

    PubMed

    Miles, Dale R; Mesfin, Mimi; Mody, Tarak D; Stiles, Mark; Lee, Jean; Fiene, John; Denis, Bernie; Boswell, Garry W

    2006-05-01

    Liquid chromatography-fluorescence (LC-FLS), liquid chromatography-tandem mass spectrometry (LC-MS/MS) and inductively coupled plasma-mass spectrometry (ICP-MS) methods were developed and validated for the evaluation of motexafin gadolinium (MGd, Xcytrin) pharmacokinetics and biodistribution in plasma and tissues. The LC-FLS method exhibited the greatest sensitivity (0.0057 microg mL(-1)), and was used for pharmacokinetic, biodistribution, and protein binding studies with small sample sizes or low MGd concentrations. The LC-MS/MS method, which exhibited a short run time and excellent selectivity, was used for routine clinical plasma sample analysis. The ICP-MS method, which measured total Gd, was used in conjunction with LC methods to assess MGd stability in plasma. All three methods were validated using human plasma. The LC-FLS method was also validated using plasma, liver and kidneys from mice and rats. All three methods were shown to be accurate, precise and robust for each matrix validated. For three mice, the mean (standard deviation) concentration of MGd in plasma/tissues taken 5 hr after dosing with 23 mg kg(-1) MGd was determined by LC-FLS as follows: plasma (0.025+/-0.002 microg mL(-1)), liver (2.89+/-0.45 microg g(-1)), and kidney (6.09+/-1.05 microg g(-1)). Plasma samples from a subset of patients with brain metastases from extracranial tumors were analyzed using both LC-MS/MS and ICP-MS methods. For a representative patient, > or = 90% of the total Gd in plasma was accounted for as MGd over the first hour post dosing. By 24 hr post dosing, 63% of total Gd was accounted for as MGd, indicating some metabolism of MGd.

  19. A Recombinant Humanized Anti-Cocaine Monoclonal Antibody Inhibits the Distribution of Cocaine to the Brain in Rats

    PubMed Central

    Gooden, Felicia C. T.; Tabet, Michael R.; Ball, William J.

    2014-01-01

    The monoclonal antibody (mAb), h2E2, is a humanized version of the chimeric human/murine anti-cocaine mAb 2E2. The recombinant h2E2 protein was produced in vitro from a transfected mammalian cell line and retained high affinity (4 nM Kd) and specificity for cocaine over its inactive metabolites benzoylecgonine (BE) and ecgonine methyl ester. In rats, pharmacokinetic studies of h2E2 (120 mg/kg i.v.) showed a long terminal elimination half-life of 9.0 days and a low volume of distribution at steady state (Vdss) of 0.3 l/kg. Pretreatment with h2E2 produced a dramatic 8.8-fold increase in the area under the plasma cocaine concentration-time curve (AUC) and in brain a concomitant decrease of 68% of cocaine’s AUC following an i.v. injection of an equimolar cocaine dose. Sequestration of cocaine in plasma by h2E2, shown via reduction of cocaine’s Vdss, indicates potential clinical efficacy. Although the binding of cocaine to h2E2 in plasma should inhibit distribution and metabolism, the elimination of cocaine remained multicompartmental and was still rapidly eliminated from plasma despite the presence of h2E2. BE was the major cocaine metabolite, and brain BE concentrations were sixfold higher than in plasma, indicating that cocaine is normally metabolized in the brain. In the presence of h2E2, brain BE concentrations were decreased and plasma BE was increased, consistent with the observed h2E2-induced changes in cocaine disposition. The inhibition of cocaine distribution to the brain confirms the humanized mAb, h2E2, as a lead candidate for development as an immunotherapy for cocaine abuse. PMID:24733787

  20. Decreased Plasma Brain-Derived Neurotrophic Factor and Vascular Endothelial Growth Factor Concentrations during Military Training

    PubMed Central

    Nibuya, Masashi; Ishida, Toru; Yamamoto, Tetsuo; Mukai, Yasuo; Mitani, Keiji; Tsumatori, Gentaro; Scott, Daniel; Shimizu, Kunio

    2014-01-01

    Decreased concentrations of plasma brain-derived neurotrophic factor (BDNF) and serum BDNF have been proposed to be a state marker of depression and a biological indicator of loaded psychosocial stress. Stress evaluations of participants in military mission are critically important and appropriate objective biological parameters that evaluate stress are needed. In military circumstances, there are several problems to adopt plasma BDNF concentration as a stress biomarker. First, in addition to psychosocial stress, military missions inevitably involve physical exercise that increases plasma BDNF concentrations. Second, most participants in the mission do not have adequate quality or quantity of sleep, and sleep deprivation has also been reported to increase plasma BDNF concentration. We evaluated plasma BDNF concentrations in 52 participants on a 9-week military mission. The present study revealed that plasma BDNF concentration significantly decreased despite elevated serum enzymes that escaped from muscle and decreased quantity and quality of sleep, as detected by a wearable watch-type sensor. In addition, we observed a significant decrease in plasma vascular endothelial growth factor (VEGF) during the mission. VEGF is also neurotrophic and its expression in the brain has been reported to be up-regulated by antidepressive treatments and down-regulated by stress. This is the first report of decreased plasma VEGF concentrations by stress. We conclude that decreased plasma concentrations of neurotrophins can be candidates for mental stress indicators in actual stressful environments that include physical exercise and limited sleep. PMID:24586790

  1. Meal composition and plasma amino acid ratios: Effect of various proteins or carbohydrates, and of various protein concentrations

    NASA Technical Reports Server (NTRS)

    Yokogoshi, Hidehiko; Wurtman, Richard J.

    1986-01-01

    The effects of meals containing various proteins and carbohydrates, and of those containing various proportions of protein (0 percent to 20 percent of a meal, by weight) or of carbohydrate (0 percent to 75 percent), on plasma levels of certain large neutral amino acids (LNAA) in rats previously fasted for 19 hours were examined. Also the plasma tryptophan ratios (the ratio of the plasma trytophan concentration to the summed concentrations of the other large neutral amino acids) and other plasma amino acid ratios were calculated. (The plasma tryptophan ratio has been shown to determine brain tryptophan levels and, thereby, to affect the synthesis and release of the neurotransmitter serotonin). A meal containing 70 percent to 75 percent of an insulin-secreting carbohydrate (dextrose or dextrin) increased plasma insulin levels and the tryptophan ratio; those containing 0 percent or 25 percent carbohydrate failed to do so. Addition of as little as 5 percent casein to a 70 percent carbohydrate meal fully blocked the increase in the plasma tryptophan ratio without affecting the secretion of insulin - probably by contributing much larger quantities of the other LNAA than of tryptophan to the blood. Dietary proteins differed in their ability to suppress the carbohydrate-induced rise in the plasma tryptophan ratio. Addition of 10 percent casein, peanut meal, or gelatin fully blocked this increase, but lactalbumin failed to do so, and egg white did so only partially. (Consumption of the 10 percent gelatin meal also produced a major reduction in the plasma tyrosine ratio, and may thereby have affected brain tyrosine levels and catecholamine synthesis.) These observations suggest that serotonin-releasing neurons in brains of fasted rats are capable of distinguishing (by their metabolic effects) between meals poor in protein but rich in carbohydrates that elicit insulin secretion, and all other meals. The changes in brain serotonin caused by carbohydrate-rich, protein-poor meals may affect subsequent food choice and various serotonin-mediated behaviors.

  2. THE NEUROPHARMACOKINETICS OF TEMOZOLOMIDE IN PATIENTS WITH RESECTABLE BRAIN TUMORS: POTENTIAL IMPLICATIONS FOR THE CURRENT APPROACH TO CHEMORADIATION

    PubMed Central

    Portnow, Jana; Badie, Behnam; Chen, Mike; Liu, An; Blanchard, Suzette; Synold, Timothy W.

    2010-01-01

    Purpose Intracerebral microdialysis (ICMD) is an accepted methodology for monitoring changes in neurochemistry from acute brain injury. The goal of this pilot study was to determine the feasibility of using ICMD to examine the neuropharmacokinetics (nPK) of temozolomide (TMZ) in brain interstitium (BI) following oral administration. Experimental Design Patients with primary or metastatic brain tumors had a microdialysis catheter placed in peritumoral brain tissue at the time of surgical debulking. CT scan confirmed the catheter location. Patients received a single oral dose of TMZ (150 mg/m2) on the first post-operative day, serial plasma and ICMD samples were collected over 24 hrs, and TMZ concentrations were determined by tandem mass spectrometry. Results Nine patients were enrolled. Dialysate and plasma samples were successfully collected from 7 of the 9 patients. The mean TMZ area-under-the-concentration-time-curve (AUC) in plasma and BI were 17.1 and 2.7 μg/ml × hr, with an average BI/plasma AUC ratio of 17.8%. The mean peak TMZ concentration in brain was 0.6 ± 0.3 μg/ml, and the mean time to reach peak level in brain was 2.0 ± 0.8 hrs. Conclusions The use of ICMD to measure the nPK of systemically administered chemotherapy is safe and feasible. Concentrations of TMZ in BI obtained by ICMD are consistent with published data obtained in a pre-clinical ICMD model, as well as from clinical studies of cerebrospinal fluid. However, the delayed time required to achieve maximum TMZ concentrations in brain suggests that current chemoradiation regimens may be improved by administering TMZ 2-3 hours before radiation. PMID:19861433

  3. Simultaneous measurement of glucose transport and utilization in the human brain.

    PubMed

    Shestov, Alexander A; Emir, Uzay E; Kumar, Anjali; Henry, Pierre-Gilles; Seaquist, Elizabeth R; Öz, Gülin

    2011-11-01

    Glucose is the primary fuel for brain function, and determining the kinetics of cerebral glucose transport and utilization is critical for quantifying cerebral energy metabolism. The kinetic parameters of cerebral glucose transport, K(M)(t) and V(max)(t), in humans have so far been obtained by measuring steady-state brain glucose levels by proton ((1)H) NMR as a function of plasma glucose levels and fitting steady-state models to these data. Extraction of the kinetic parameters for cerebral glucose transport necessitated assuming a constant cerebral metabolic rate of glucose (CMR(glc)) obtained from other tracer studies, such as (13)C NMR. Here we present new methodology to simultaneously obtain kinetic parameters for glucose transport and utilization in the human brain by fitting both dynamic and steady-state (1)H NMR data with a reversible, non-steady-state Michaelis-Menten model. Dynamic data were obtained by measuring brain and plasma glucose time courses during glucose infusions to raise and maintain plasma concentration at ∼17 mmol/l for ∼2 h in five healthy volunteers. Steady-state brain vs. plasma glucose concentrations were taken from literature and the steady-state portions of data from the five volunteers. In addition to providing simultaneous measurements of glucose transport and utilization and obviating assumptions for constant CMR(glc), this methodology does not necessitate infusions of expensive or radioactive tracers. Using this new methodology, we found that the maximum transport capacity for glucose through the blood-brain barrier was nearly twofold higher than maximum cerebral glucose utilization. The glucose transport and utilization parameters were consistent with previously published values for human brain.

  4. Whey protein rich in alpha-lactalbumin increases the ratio of plasma tryptophan to the sum of the other large neutral amino acids and improves cognitive performance in stress-vulnerable subjects.

    PubMed

    Markus, C Rob; Olivier, Berend; de Haan, Edward H F

    2002-06-01

    Cognitive performance often declines under chronic stress exposure. The negative effect of chronic stress on performance may be mediated by reduced brain serotonin function. The uptake of the serotonin precursor tryptophan into the brain depends on nutrients that influence the availability of tryptophan by changing the ratio of plasma tryptophan to the sum of the other large neutral amino acids (Trp-LNAA ratio). In addition, a diet-induced increase in tryptophan may increase brain serotonergic activity levels and improve cognitive performance, particularly in high stress-vulnerable subjects. We tested whether alpha-lactalbumin, a whey protein with a high tryptophan content, would increase the plasma Trp-LNAA ratio and improve cognitive performance in high stress- vulnerable subjects. Twenty-three high stress-vulnerable subjects and 29 low stress-vulnerable subjects participated in a double-blind, placebo-controlled, crossover study. All subjects conducted a memory-scanning task after the intake of a diet enriched with either alpha-lactalbumin (alpha-lactalbumin diet) or sodium caseinate (control diet). Blood samples were taken to measure the effect of dietary manipulation on the plasma Trp-LNAA ratio. A significantly greater increase in the plasma Trp-LNAA ratio after consumption of the alpha-lactalbumin diet than after the control diet (P = 0.0001) was observed; memory scanning improved significantly only in the high stress-vulnerable subjects (P = 0.019). Because an increase in the plasma Trp-LNAA ratio is considered to be an indirect indication of increased brain serotonin function, the results suggest that dietary protein rich in alpha-lactalbumin improves cognitive performance in stress-vulnerable subjects via increased brain tryptophan and serotonin activities.

  5. Effect of thyroxine on brain microstructure in extremely premature babies: magnetic resonance imaging findings in the TIPIT study.

    PubMed

    Ng, Sze May; Turner, Mark A; Gamble, Carrol; Didi, Mohammed; Victor, Suresh; Atkinson, Jessica; Sluming, Vanessa; Parkes, Laura M; Tietze, Anna; Abernethy, Laurence J; Weindling, Alan Michael

    2014-08-01

    In order to assess relationships between thyroid hormone status and findings on brain MRI, a subset of babies was recruited to a multi-centre randomised, placebo-controlled trial of levothyroxine (LT4) supplementation for babies born before 28 weeks' gestation (known as the TIPIT study, for Thyroxine supplementation In Preterm InfanTs). These infants were imaged at term-equivalence. Forty-five TIPIT participants had brain MRI using diffusion tensor imaging (DTI) to estimate white matter development by apparent diffusion coefficient (ADC), fractional anisotropy (FA) and tractography metrics of number and length of streamlines. We made comparisons between babies with the lowest and highest plasma FT4 concentrations during the initial 4 weeks after birth. There were no differences in DTI metrics between babies who had received LT4 supplementation and those who had received a placebo. Among recipients of a placebo, babies in the lowest quartile of plasma-free thyroxine (FT4) concentrations had significantly higher apparent diffusion coefficient measurements in the posterior corpus callosum and streamlines that were shorter and less numerous in the right internal capsule. Among LT4-supplemented babies, those who had plasma FT4 concentrations in the highest quartile had significantly lower apparent diffusion coefficient values in the left occipital lobe, higher fractional anisotropy in the anterior corpus callosum and longer and more numerous streamlines in the anterior corpus callosum. DTI variables were not associated with allocation of placebo or thyroid supplementation. Markers of poorly organised brain microstructure were associated with low plasma FT4 concentrations after birth. The findings suggest that plasma FT4 concentrations affect brain development in very immature infants and that the effect of LT4 supplementation for immature babies with low FT4 plasma concentrations warrants further study.

  6. Concentrating mixtures of neuroactive pharmaceuticals and altered neurotransmitter levels in the brain of fish exposed to a wastewater effluent.

    PubMed

    David, Arthur; Lange, Anke; Tyler, Charles R; Hill, Elizabeth M

    2018-04-15

    Fish can be exposed to a variety of neuroactive pharmaceuticals via the effluent discharges from wastewater treatment plants and concerns have arisen regarding their potential impacts on fish behaviour and ecology. In this study, we investigated the uptake of 14 neuroactive pharmaceuticals from a treated wastewater effluent into blood plasma and brain regions of roach (Rutilus rutilus) after exposure for 15days. We show that a complex mixture of pharmaceuticals including, 6 selective serotonin reuptake inhibitors, a serotonin-noradrenaline reuptake inhibitor, 3 atypical antipsychotics, 2 tricyclic antidepressants and a benzodiazepine, concentrate in different regions of the brain including the telencephalon, hypothalamus, optic tectum and hindbrain of effluent-exposed fish. Pharmaceuticals, with the exception of nordiazepam, were between 3-40 fold higher in brain compared with blood plasma, showing these neuroactive drugs are readily uptaken, into brain tissues in fish. To assess for the potential for any adverse ecotoxicological effects, the effect ratio was calculated from human therapeutic plasma concentrations (HtPCs) and the measured or predicted fish plasma concentrations of pharmaceuticals. After accounting for a safety factor of 1000, the effect ratios indicated that fluoxetine, norfluoxetine, sertraline, and amitriptyline warrant prioritisation for risk assessment studies. Furthermore, although plasma concentrations of all the pharmaceuticals were between 33 and 5714-fold below HtPCs, alterations in serotonin, glutamate, acetylcholine and tryptophan concentrations were observed in different brain regions of effluent-exposed fish. This study highlights the importance of determining the potential health effects arising from the concentration of complex environmental mixtures in risk assessment studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Monitoring vigabatrin in head injury patients by cerebral microdialysis: obtaining pharmacokinetic measurements in a neurocritical care setting.

    PubMed

    Shannon, Richard J; Timofeev, Ivan; Nortje, Jürgens; Hutchinson, Peter J; Carpenter, Keri L H

    2014-11-01

    The aims were to determine blood-brain barrier penetration and brain extracellular pharmacokinetics for the anticonvulsant vigabatrin (VGB; γ-vinyl-γ-aminobutyric acid) in brain extracellular fluid and plasma from severe traumatic brain injury (TBI) patients, and to measure the response of γ-aminobutyric acid (GABA) concentration in brain extracellular fluid. Severe TBI patients (n = 10) received VGB (0.5 g enterally, every 12 h). Each patient had a cerebral microdialysis catheter; two patients had a second catheter in a different region of the brain. Plasma samples were collected 0.5 h before and 2, 4 and 11.5 h after the first VGB dose. Cerebral microdialysis commenced before the first VGB dose and continued through at least three doses of VGB. Controls were seven severe TBI patients with microdialysis, without VGB. After the first VGB dose, the maximum concentration of VGB (Cmax ) was 31.7 (26.9-42.6) μmol l(-1) (median and interquartile range for eight patients) in plasma and 2.41 (2.03-5.94) μmol l(-1) in brain microdialysates (nine patients, 11 catheters), without significant plasma-brain correlation. After three doses, median Cmax in microdialysates increased to 5.22 (4.24-7.14) μmol l(-1) (eight patients, 10 catheters). Microdialysate VGB concentrations were higher close to focal lesions than in distant sites. Microdialysate GABA concentrations increased modestly in some of the patients after VGB administration. Vigabatrin, given enterally to severe TBI patients, crosses the blood-brain barrier into the brain extracellular fluid, where it accumulates with multiple dosing. Pharmacokinetics suggest delayed uptake from the blood. © 2014 The Authors. British Journal of Clinical Pharmacology published by John Wiley & Sons Ltd on behalf of The British Pharmacological Society.

  8. Genetic Restoration of Plasma ApoE Improves Cognition and Partially Restores Synaptic Defects in ApoE-Deficient Mice

    PubMed Central

    Wong, Wen Mai; Durakoglugil, Murat S.; Wasser, Catherine R.; Jiang, Shan; Xian, Xunde

    2016-01-01

    Alzheimer's disease (AD) is the most common form of dementia in individuals over the age of 65 years. The most prevalent genetic risk factor for AD is the ε4 allele of apolipoprotein E (ApoE4), and novel AD treatments that target ApoE are being considered. One unresolved question in ApoE biology is whether ApoE is necessary for healthy brain function. ApoE knock-out (KO) mice have synaptic loss and cognitive dysfunction; however, these findings are complicated by the fact that ApoE knock-out mice have highly elevated plasma lipid levels, which may independently affect brain function. To bypass the effect of ApoE loss on plasma lipids, we generated a novel mouse model that expresses ApoE normally in peripheral tissues, but has severely reduced ApoE in the brain, allowing us to study brain ApoE loss in the context of a normal plasma lipid profile. We found that these brain ApoE knock-out (bEKO) mice had synaptic loss and dysfunction similar to that of ApoE KO mice; however, the bEKO mice did not have the learning and memory impairment observed in ApoE KO mice. Moreover, we found that the memory deficit in the ApoE KO mice was specific to female mice and was fully rescued in female bEKO mice. Furthermore, while the AMPA/NMDA ratio was reduced in ApoE KO mice, it was unchanged in bEKO mice compared with controls. These findings suggest that plasma lipid levels can influence cognition and synaptic function independent of ApoE expression in the brain. SIGNIFICANCE STATEMENT One proposed treatment strategy for Alzheimer's disease (AD) is the reduction of ApoE, whose ε4 isoform is the most common genetic risk factor for the disease. A major concern of this strategy is that an animal model of ApoE deficiency, the ApoE knock-out (KO) mouse, has reduced synapses and cognitive impairment; however, these mice also develop dyslipidemia and severe atherosclerosis. Here, we have shown that genetic restoration of plasma ApoE to wild-type levels normalizes plasma lipids in ApoE KO mice. While this does not rescue synaptic loss, it does completely restore learning and memory in the mice, suggesting that both CNS and plasma ApoE are independent parameters that affect brain health. PMID:27683909

  9. Genetics Home Reference: COL4A1-related brain small-vessel disease

    MedlinePlus

    ... COL4A1-related brain small-vessel disease COL4A1-related brain small-vessel disease Printable PDF Open All Close ... view the expand/collapse boxes. Description COL4A1 -related brain small-vessel disease is part of a group ...

  10. Prolonged continuous intravenous infusion of the dipeptide L-alanine- L-glutamine significantly increases plasma glutamine and alanine without elevating brain glutamate in patients with severe traumatic brain injury

    PubMed Central

    2014-01-01

    Introduction Low plasma glutamine levels are associated with worse clinical outcome. Intravenous glutamine infusion dose- dependently increases plasma glutamine levels, thereby correcting hypoglutaminemia. Glutamine may be transformed to glutamate which might limit its application at a higher dose in patients with severe traumatic brain injury (TBI). To date, the optimal glutamine dose required to normalize plasma glutamine levels without increasing plasma and cerebral glutamate has not yet been defined. Methods Changes in plasma and cerebral glutamine, alanine, and glutamate as well as indirect signs of metabolic impairment reflected by increased intracranial pressure (ICP), lactate, lactate-to-pyruvate ratio, electroencephalogram (EEG) activity were determined before, during, and after continuous intravenous infusion of 0.75 g L-alanine-L-glutamine which was given either for 24 hours (group 1, n = 6) or 5 days (group 2, n = 6) in addition to regular enteral nutrition. Lab values including nitrogen balance, urea and ammonia were determined daily. Results Continuous L-alanine-L-glutamine infusion significantly increased plasma and cerebral glutamine as well as alanine levels, being mostly sustained during the 5 day infusion phase (plasma glutamine: from 295 ± 62 to 500 ± 145 μmol/ l; brain glutamine: from 183 ± 188 to 549 ± 120 μmol/ l; plasma alanine: from 327 ± 91 to 622 ± 182 μmol/ l; brain alanine: from 48 ± 55 to 89 ± 129 μmol/ l; p < 0.05, ANOVA, post hoc Dunn’s test). Plasma glutamate remained unchanged and cerebral glutamate was decreased without any signs of cerebral impairment. Urea and ammonia were significantly increased within normal limits without signs of organ dysfunction (urea: from 2.7 ± 1.6 to 5.5 ± 1.5 mmol/ l; ammonia: from 12 ± 6.3 to 26 ± 8.3 μmol/ l; p < 0.05, ANOVA, post hoc Dunn’s test). Conclusions High dose L-alanine-L-glutamine infusion (0.75 g/ kg/ d up to 5 days) increased plasma and brain glutamine and alanine levels. This was not associated with elevated glutamate or signs of potential glutamate-mediated cerebral injury. The increased nitrogen load should be considered in patients with renal and hepatic dysfunction. Trial registration Clinicaltrials.gov NCT02130674. Registered 5 April 2014 PMID:24992948

  11. Carbohydrate management, anaerobic metabolism, and adenosine levels in the armoured catfish, Liposarcus pardalis (castelnau), during hypoxia.

    PubMed

    Maccormack, Tyson James; Lewis, Johanne Mari; Almeida-Val, Vera Maria Fonseca; Val, Adalberto Luis; Driedzic, William Robert

    2006-04-01

    The armoured catfish, Liposarcus pardalis, tolerates severe hypoxia at high temperatures. Although this species can breathe air, it also has a strong anaerobic metabolism. We assessed tissue to plasma glucose ratios and glycogen and lactate in a number of tissues under "natural" pond hypoxia, and severe aquarium hypoxia without aerial respiration. Armour lactate content and adenosine in brain and heart were also investigated. During normoxia, tissue to plasma glucose ratios in gill, brain, and heart were close to one. Hypoxia increased plasma glucose and decreased tissue to plasma ratios to less than one, suggesting glucose phosphorylation is activated more than uptake. High normoxic white muscle glucose relative to plasma suggests gluconeogenesis or active glucose uptake. Excess muscle glucose may serve as a metabolic reserve since hypoxia decreased muscle to plasma glucose ratios. Mild pond hypoxia changed glucose management in the absence of lactate accumulation. Lactate was elevated in all tissues except armour following aquarium hypoxia; however, confinement in aquaria increased armour lactate, even under normoxia. A stress-associated acidosis may contribute to armour lactate sequestration. High plasma lactate levels were associated with brain adenosine accumulation. An increase in heart adenosine was triggered by confinement in aquaria, although not by hypoxia alone.

  12. [The predictive value of plasma B-type natriuretic peptide levels on outcome in children with pulmonary hypertension undergoing congenital heart surgery].

    PubMed

    Baysal, Ayse; Saşmazel, Ahmet; Yildirim, Ayse; Ozyaprak, Buket; Gundogus, Narin; Kocak, Tuncer

    2014-01-01

    In children undergoing congenital heart surgery, plasma brain natriuretic peptide levels may have a role in development of low cardiac output syndrome that is defined as a combination of clinical findings and interventions to augment cardiac output in children with pulmonary hypertension. In a prospective observational study, fifty-one children undergoing congenital heart surgery with preoperative echocardiographic study showing pulmonary hypertension were enrolled. The plasma brain natriuretic peptide levels were collected before operation, 12, 24 and 48h after operation. The patients enrolled into the study were divided into two groups depending on: (1) Development of LCOS which is defined as a combination of clinical findings or interventions to augment cardiac output postoperatively; (2) Determination of preoperative brain natriuretic peptide cut-off value by receiver operating curve analysis for low cardiac output syndrome. The secondary end points were: (1) duration of mechanical ventilation ≥72h, (2) intensive care unit stay >7days, and (3) mortality. The differences in preoperative and postoperative brain natriuretic peptide levels of patients with or without low cardiac output syndrome (n=35, n=16, respectively) showed significant differences in repeated measurement time points (p=0.0001). The preoperative brain natriuretic peptide cut-off value of 125.5pgmL-1 was found to have the highest sensitivity of 88.9% and specificity of 96.9% in predicting low cardiac output syndrome in patients with pulmonary hypertension. A good correlation was found between preoperative plasma brain natriuretic peptide level and duration of mechanical ventilation (r=0.67, p=0.0001). In patients with pulmonary hypertension undergoing congenital heart surgery, 91% of patients with preoperative plasma brain natriuretic peptide levels above 125.5pgmL-1 are at risk of developing low cardiac output syndrome which is an important postoperative outcome. Copyright © 2013 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  13. Discovery of a Small Molecule Probe That Post-Translationally Stabilizes the Survival Motor Neuron Protein for the Treatment of Spinal Muscular Atrophy.

    PubMed

    Rietz, Anne; Li, Hongxia; Quist, Kevin M; Cherry, Jonathan J; Lorson, Christian L; Burnett, Barrington G; Kern, Nicholas L; Calder, Alyssa N; Fritsche, Melanie; Lusic, Hrvoje; Boaler, Patrick J; Choi, Sungwoon; Xing, Xuechao; Glicksman, Marcie A; Cuny, Gregory D; Androphy, Elliot J; Hodgetts, Kevin J

    2017-06-08

    Spinal muscular atrophy (SMA) is the leading genetic cause of infant death. We previously developed a high-throughput assay that employs an SMN2-luciferase reporter allowing identification of compounds that act transcriptionally, enhance exon recognition, or stabilize the SMN protein. We describe optimization and characterization of an analog suitable for in vivo testing. Initially, we identified analog 4m that had good in vitro properties but low plasma and brain exposure in a mouse PK experiment due to short plasma stability; this was overcome by reversing the amide bond and changing the heterocycle. Thiazole 27 showed excellent in vitro properties and a promising mouse PK profile, making it suitable for in vivo testing. This series post-translationally stabilizes the SMN protein, unrelated to global proteasome or autophagy inhibition, revealing a novel therapeutic mechanism that should complement other modalities for treatment of SMA.

  14. Evidence for brain glucose dysregulation in Alzheimer's disease.

    PubMed

    An, Yang; Varma, Vijay R; Varma, Sudhir; Casanova, Ramon; Dammer, Eric; Pletnikova, Olga; Chia, Chee W; Egan, Josephine M; Ferrucci, Luigi; Troncoso, Juan; Levey, Allan I; Lah, James; Seyfried, Nicholas T; Legido-Quigley, Cristina; O'Brien, Richard; Thambisetty, Madhav

    2018-03-01

    It is unclear whether abnormalities in brain glucose homeostasis are associated with Alzheimer's disease (AD) pathogenesis. Within the autopsy cohort of the Baltimore Longitudinal Study of Aging, we measured brain glucose concentration and assessed the ratios of the glycolytic amino acids, serine, glycine, and alanine to glucose. We also quantified protein levels of the neuronal (GLUT3) and astrocytic (GLUT1) glucose transporters. Finally, we assessed the relationships between plasma glucose measured before death and brain tissue glucose. Higher brain tissue glucose concentration, reduced glycolytic flux, and lower GLUT3 are related to severity of AD pathology and the expression of AD symptoms. Longitudinal increases in fasting plasma glucose levels are associated with higher brain tissue glucose concentrations. Impaired glucose metabolism due to reduced glycolytic flux may be intrinsic to AD pathogenesis. Abnormalities in brain glucose homeostasis may begin several years before the onset of clinical symptoms. Copyright © 2017 the Alzheimer's Association. All rights reserved.

  15. Progranulin plasma levels predict the presence of GRN mutations in asymptomatic subjects and do not correlate with brain atrophy: results from the GENFI study.

    PubMed

    Galimberti, Daniela; Fumagalli, Giorgio G; Fenoglio, Chiara; Cioffi, Sara M G; Arighi, Andrea; Serpente, Maria; Borroni, Barbara; Padovani, Alessandro; Tagliavini, Fabrizio; Masellis, Mario; Tartaglia, Maria Carmela; van Swieten, John; Meeter, Lieke; Graff, Caroline; de Mendonça, Alexandre; Bocchetta, Martina; Rohrer, Jonathan D; Scarpini, Elio

    2018-02-01

    We investigated whether progranulin plasma levels are predictors of the presence of progranulin gene (GRN) null mutations or of the development of symptoms in asymptomatic at risk members participating in the Genetic Frontotemporal Dementia Initiative, including 19 patients, 64 asymptomatic carriers, and 77 noncarriers. In addition, we evaluated a possible role of TMEM106B rs1990622 as a genetic modifier and correlated progranulin plasma levels and gray-matter atrophy. Plasma progranulin mean ± SD plasma levels in patients and asymptomatic carriers were significantly decreased compared with noncarriers (30.5 ± 13.0 and 27.7 ± 7.5 versus 99.6 ± 24.8 ng/mL, p < 0.00001). Considering the threshold of >61.55 ng/mL, the test had a sensitivity of 98.8% and a specificity of 97.5% in predicting the presence of a mutation, independent of symptoms. No correlations were found between progranulin plasma levels and age, years from average age at onset in each family, or TMEM106B rs1990622 genotype (p > 0.05). Plasma progranulin levels did not correlate with brain atrophy. Plasma progranulin levels predict the presence of GRN null mutations independent of proximity to symptoms and brain atrophy. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. Pharmacokinetics and safety in rhesus monkeys of a monoclonal antibody-GDNF fusion protein for targeted blood-brain barrier delivery.

    PubMed

    Pardridge, William M; Boado, Ruben J

    2009-10-01

    Glial-derived neurotrophic factor (GDNF) is a potential therapy for stroke, Parkinson's disease, or drug addiction. However, GDNF does not cross the blood-brain barrier (BBB). GDNF is re-engineered as a fusion protein with a chimeric monoclonal antibody (MAb) to the human insulin receptor (HIR), which acts as a molecular Trojan horse to deliver the GDNF across the BBB. The pharmacokinetics (PK), toxicology, and safety pharmacology of the HIRMAb-GDNF fusion protein were investigated in Rhesus monkeys. The fusion protein was administered as an intravenous injection at doses up to 50 mg/kg over a 60 h period to 56 Rhesus monkeys. The plasma concentration of the HIRMAb-GDNF fusion protein was measured with a 2-site sandwich ELISA. No adverse events were observed in a 2-week terminal toxicology study, and no neuropathologic changes were observed. The PK analysis showed a linear relationship between plasma AUC and dose, a large systemic volume of distribution, as well as high clearance rates of 8-10 mL/kg/min. A no-observable-adverse-effect level is established in the Rhesus monkey for the acute administration of the HIRMAb-GDNF fusion protein. The fusion protein targeting the insulin receptor has a PK profile similar to a classical small molecule.

  17. Brain and gonadal aromatase activity and steroid hormone levels in female and polymorphic males of the peacock blenny Salaria pavo.

    PubMed

    Gonçalves, David; Teles, Magda; Alpedrinha, João; Oliveira, Rui F

    2008-11-01

    In the peacock blenny Salaria pavo large males with well-developed secondary sexual characters establish nests and attract females while small "sneaker" males mimic female sexual displays in order to approach the nests of larger males and parasitically fertilize eggs. These alternative reproductive tactics are sequential, as sneakers irreversibly switch into nesting males. This transition involves major morphologic and behavioral changes and is likely to be mediated by hormones. This study focuses on the role of aromatase, an enzyme that catalyses the conversion of androgens into estrogens, in the regulation of male sexual polymorphism in S. pavo. For this, sex steroid plasma levels and aromatase activity (AA) in gonads, whole brain and brain macroareas were determined in sneakers, transitional males (i.e. sneakers undergoing the transition into nesting males), nesting males and females collected in the field. AA was much higher in ovarian tissue than in testicular tissue and accordingly circulating estradiol levels were highest in females. This supports the view that elevated AA and estradiol levels are associated with the development of a functional ovary. Transitional males are in a non-reproductive phase and had underdeveloped testes when compared with sneakers and nesting males. Testicular AA was approximately 10 times higher in transitional males when compared with sneakers and nesting males, suggesting high AA has a suppressive effect on testicular development. Nesting males had significantly higher plasma levels of both testosterone (T) and 11-ketotestosterone when compared with the other male morphs and previous studies demonstrated that these androgens suppress female-like displays in sneakers. In the brain, AA was highest in macroareas presumably containing hypothalamic nuclei traditionally associated with the regulation of reproductive behaviors. Overall, females presented the highest levels of brain AA. In male morphs AA increased from sneakers, to transitional males, to nesting males in all brain macroareas. These results suggest that the transition into the nesting male tactic is accompanied both by an increase in testicular androgen production and by a higher conversion of androgens into estrogens in the brain. The increase in androgen production is likely to mediate the development of male secondary sexual characters while the increase in brain AA may be related to the behavioral changes associated with tactic transition.

  18. Changes in Neuroactive Steroid Concentrations After Preterm Delivery in the Guinea Pig

    PubMed Central

    Hirst, Jonathan J.; Palliser, Hannah K.

    2013-01-01

    Background: Preterm birth is a major cause of neurodevelopmental disorders. Allopregnanolone, a key metabolite of progesterone, has neuroprotective and developmental effects in the brain. The objectives of this study were to measure the neuroactive steroid concentrations following preterm delivery in a neonatal guinea pig model and assess the potential for postnatal progesterone replacement therapy to affect neuroactive steroid brain and plasma concentrations in preterm neonates. Methods: Preterm (62-63 days) and term (69 days) guinea pig pups were delivered by cesarean section and tissue was collected at 24 hours. Plasma progesterone, cortisol, allopregnanolone, and brain allopregnanolone concentrations were measured by immunoassay. Brain 5α-reductase (5αR) expression was determined by Western blot. Neurodevelopmental maturity of preterm neonates was assessed by immunohistochemistry staining for myelination, glial cells, and neurons. Results: Brain allopregnanolone concentrations were significantly reduced after birth in both preterm and term neonates. Postnatal progesterone treatment in preterm neonates increased brain and plasma allopregnanolone concentrations. Preterm neonates had reduced myelination, low birth weight, and high mortality compared to term neonates. Brain 5αR expression was also significantly reduced in neonates compared to fetal expression. Conclusions: Delivery results in a loss of neuroactive steroid concentrations resulting in a premature reduction in brain allopregnanolone in preterm neonates. Postnatal progesterone therapy reestablished neuroactive steroid levels in preterm brains, a finding that has implications for postnatal growth following preterm birth that occurs at a time of neurodevelopmental immaturity. PMID:23585339

  19. Human umbilical cord plasma proteins revitalize hippocampal function in aged mice

    PubMed Central

    Castellano, Joseph M.; Mosher, Kira I.; Abbey, Rachelle J.; McBride, Alisha A.; James, Michelle L.; Berdnik, Daniela; Shen, Jadon C.; Zou, Bende; Xie, Xinmin S.; Tingle, Martha; Hinkson, Izumi V.; Angst, Martin S.; Wyss-Coray, Tony

    2017-01-01

    Ageing drives changes in neuronal and cognitive function, the decline of which is a major feature of many neurological disorders. The hippocampus, a brain region subserving roles of spatial and episodic memory and learning, is sensitive to the detrimental effects of ageing at morphological and molecular levels. With advancing age, synapses in various hippocampal subfields exhibit impaired long-term potentiation1, an electrophysiological correlate of learning and memory. At the molecular level, immediate early genes are among the synaptic plasticity genes that are both induced by long-term potentiation2, 3, 4 and downregulated in the aged brain5, 6, 7, 8. In addition to revitalizing other aged tissues9, 10, 11, 12, 13, exposure to factors in young blood counteracts age-related changes in these central nervous system parameters14, 15, 16, although the identities of specific cognition-promoting factors or whether such activity exists in human plasma remains unknown17. We hypothesized that plasma of an early developmental stage, namely umbilical cord plasma, provides a reservoir of such plasticity-promoting proteins. Here we show that human cord plasma treatment revitalizes the hippocampus and improves cognitive function in aged mice. Tissue inhibitor of metalloproteinases 2 (TIMP2), a blood-borne factor enriched in human cord plasma, young mouse plasma, and young mouse hippocampi, appears in the brain after systemic administration and increases synaptic plasticity and hippocampal-dependent cognition in aged mice. Depletion experiments in aged mice revealed TIMP2 to be necessary for the cognitive benefits conferred by cord plasma. We find that systemic pools of TIMP2 are necessary for spatial memory in young mice, while treatment of brain slices with TIMP2 antibody prevents long-term potentiation, arguing for previously unknown roles for TIMP2 in normal hippocampal function. Our findings reveal that human cord plasma contains plasticity-enhancing proteins of high translational value for targeting ageing- or disease-associated hippocampal dysfunction. PMID:28424512

  20. A comprehensive non-clinical evaluation of the CNS penetration potential of antimuscarinic agents for the treatment of overactive bladder

    PubMed Central

    Callegari, Ernesto; Malhotra, Bimal; Bungay, Peter J; Webster, Rob; Fenner, Katherine S; Kempshall, Sarah; LaPerle, Jennifer L; Michel, Martin C; Kay, Gary G

    2011-01-01

    AIMS To assess and compare the mechanisms of central nervous system (CNS) penetration of antimuscarinic overactive bladder (OAB) agents. METHODS Physical properties were computed or compiled from the literature. Rats were administered 5-hydroxymethyl tolterodine (HMT), darifenacin, oxybutynin, solifenacin, tolterodine or trospium subcutaneously. At 1 h postdose, plasma, brain and cerebrospinal fluid (CSF) concentrations were determined using LC-MS/MS assays. Brain and plasma protein binding were determined in vitro. Permeability in the presence and absence of the efflux transporter P-glycoprotein (P-gp) was assessed in RRCK and MDCK-MDR1 transwell assays. RESULTS Oxybutynin displayed extensive CNS penetration, with brain : plasma ratios (B : P), unbound brain : unbound plasma ratios (Kp,free) and CSF : free plasma ratios each >1. Tolterodine (B : P = 2.95, Kp,free = 0.23 and CSF : free plasma = 0.16) and solifenacin (B : P = 3.04, Kp,free = 0.28 and CSF : free plasma = 1.41) showed significant CNS penetration but with some restriction from CNS as indicated by Kp,free values significantly <1. 5-HMT, darifenacin and trospium displayed much lower B : P (0.03–0.16), Kp,free (0.01–0.04) and CSF : free plasma (0.004–0.06), consistent with poor CNS penetration. Permeability in RRCK cells was low for trospium (0.63 × 10−6 cm s−1), moderate for 5-HMT (11.7 × 10−6 cm s−1) and high for darifenacin, solifenacin, tolterodine and oxybutynin (21.5–38.2 × 10−6 cm s−1). In MDCK-MDR1 cells 5-HMT, darifenacin and trospium, were P-gp substrates, whereas oxybutynin, solifenacin and tolterodine were not P-gp substrates. CONCLUSIONS Brain penetration was low for antimuscarinics that are P-gp substrates (5-HMT, darifenacin and trospium), and significant for those that are not P-gp substrates (oxybutynin, solifenacin and tolterodine). CNS adverse events reported in randomized controlled clinical trials show general alignment with the preclinical data described in this study. PMID:21392072

  1. Increased MMP-9 and TIMP-1 in mouse neonatal brain and plasma and in human neonatal plasma after hypoxia-ischemia: a potential marker of neonatal encephalopathy.

    PubMed

    Bednarek, Nathalie; Svedin, Pernilla; Garnotel, Roselyne; Favrais, Géraldine; Loron, Gauthier; Schwendiman, Leslie; Hagberg, Henrik; Morville, Patrice; Mallard, Carina; Gressens, Pierre

    2012-01-01

    To implement neuroprotective strategies in newborns, sensitive and specific biomarkers are needed for identifying those who are at risk for brain damage. We evaluated the effectiveness of matrix metalloproteinases (MMPs) and their naturally occurring tissue inhibitors of metalloproteinases (TIMPs) in predicting neonatal encephalopathy (NE) damage in newborns. Plasma MMP-9 and TIMP-1 levels were upregulated as early as 1 h after the HI insult but not did not show such elevations after other types of injury (ibotenate-induced excitotoxicity, hypoxia, lipopolysaccharide-induced inflammation), and brain levels reflected this increase soon thereafter. We confirmed these results by carrying out plasma MMP-9 and TIMP-1 measurements in human newborns with NE. In these infants, protein levels of MMP-9 and TIMP-1 were found to be elevated during a short window up to 6 h after birth. This feature is particularly useful in identifying newborns in need of neuroprotection. A second peak observed 72 h after birth is possibly related to the second phase of energy failure after a HI insult. Our data, although preliminary, support the use of MMP-9 and TIMP-1 as early biomarkers for the presence and extent of perinatal brain injury in human term newborns. We first used a mouse model of neonatal HI injury to explore mechanistic aspects such as the time course of these markers after the hypoxia-ischemia event, and the correlation between the levels of these candidate markers in brain and plasma.

  2. Stress-induced changes of neurosteroid profiles in rat brain and plasma under immobilized condition.

    PubMed

    Park, Myeong Hyeon; Rehman, Shaheed Ur; Kim, In Sook; Choi, Min Sun; Yoo, Hye Hyun

    2017-05-10

    In this study, various neurosteroids in brain and plasma were simultaneously determined using liquid chromatography-tandem mass spectrometry and their profile changes in a stress-induced rats were investigated. The investigated neurosteroids are as follows: progesterone (P4), 5α-dihydroprogesterone (5α-DHP), 5β-dihydroprogesterone, estrone, androstenedione (AE), cortisol, cortisone, corticosterone (CORT), dehydroepiandrosterone (DHEA), pregnanolone (3α,5β-THP), allopregnanolone (ALLO), 11-deoxycorticosterone (DOC), 11-deoxycortisol, pregnenolone (PREG), and 5α/5β-tetrahydrodeoxycorticosterone (5α/5β-THDOC). Brain and plasma samples were processed using solid-phase extraction with methanol and acetic acid (99:1), and derivatized with a hydroxylamine reagent. Separation was achieved within 13min at a flow rate of 0.4mL/min with a C18 column (3.0×50mm, 2.7μm). The triple quadrupole mass spectrometer was operated in the positive electrospray ionization mode. Using this method, the neurosteroid level variation was quantitated and investigated in the brain and plasma upon immobilization stress in rats. As a result, AE, CORT, DOC, P4, 5α-DHP, 5α/5β-THDOC, DHEA, 3α,5β-THP, ALLO, and PREG levels were significantly altered in both the brain and plasma samples when stress was induced. These findings demonstrated that stress leads to the alteration of the GABAergic neurosteroid profile. The present results will be helpful for furthering an understanding of the role of neurosteroids in stressed conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Blood metabolite markers of cognitive performance and brain function in aging.

    PubMed

    Simpson, Brittany N; Kim, Min; Chuang, Yi-Fang; Beason-Held, Lori; Kitner-Triolo, Melissa; Kraut, Michael; Lirette, Seth T; Windham, B Gwen; Griswold, Michael E; Legido-Quigley, Cristina; Thambisetty, Madhav

    2016-07-01

    We recently showed that Alzheimer's disease patients have lower plasma concentrations of the phosphatidylcholines (PC16:0/20:5; PC16:0/22:6; and PC18:0/22:6) relative to healthy controls. We now extend these findings by examining associations between plasma concentrations of these PCs with cognition and brain function (measured by regional resting state cerebral blood flow; rCBF) in non-demented older individuals. Within the Baltimore Longitudinal Study of Aging neuroimaging substudy, participants underwent cognitive assessments and brain (15)O-water positron emission tomography. Plasma phosphatidylcholines concentrations (PC16:0/20:5, PC16:0/22:6, and PC18:0/22:6), cognition (California Verbal Learning Test (CVLT), Trail Making Test A&B, the Mini-Mental State Examination, Benton Visual Retention, Card Rotation, and Fluencies-Category and Letter), and rCBF were assessed. Lower plasma phosphatidylcholine concentrations were associated with lower baseline memory performance (CVLT long delay recall task-PC16:0/20:5: -2.17-1.39-0.60 p = 0.001 (β with 95% confidence interval subscripts)) and lower rCBF in several brain regions including those associated with memory performance and higher order cognitive processes. Our findings suggest that lower plasma concentrations of PC16:0/20:5, PC16:0/22:6, and PC18:0/22:6 are associated with poorer memory performance as well as widespread decreases in brain function during aging. Dysregulation of peripheral phosphatidylcholine metabolism may therefore be a common feature of both Alzheimer's disease and age-associated differences in cognition. © The Author(s) 2015.

  4. Comparative pharmacokinetics of two prodrugs of zidovudine in rabbits: enhanced levels of zidovudine in brain tissue.

    PubMed

    Lupia, R H; Ferencz, N; Lertora, J J; Aggarwal, S K; George, W J; Agrawal, K C

    1993-04-01

    The pharmacokinetics of two prodrugs of zidovudine (AZT), 1,4-dihydro-1-methyl-3-[(pyridylcarbonyl)oxy] ester and isoleucinyl ester (DPAZT and IAZT, respectively), were investigated in a rabbit model to determine their potential utility as drugs against human immunodeficiency virus. Drugs were administered by intravenous infusion over 5 min at doses equal to 10 mg of AZT per kg of body weight. The levels of the prodrugs and of released AZT in plasma, cerebrospinal fluid (CSF), and brain were determined by high-performance liquid chromatography analysis. DPAZT disappeared rapidly from plasma, whereas IAZT maintained a sustained level in plasma for up to 4 h. The levels in plasma of AZT released from DPAZT were consistently lower than the levels of AZT released from IAZT or AZT itself. At 75 min after infusion of AZT, DPAZT, and IAZT, the CSF plasma AZT ratios were 0.23, 0.30, and 0.25, while the brain/CSF AZT ratios were 0.32, 0.63, and 0.64, respectively. These results indicate that the administration of each of the prodrugs produced a higher concentration of AZT in the brain than did the direct administration of AZT. Both prodrugs therefore may be superior to AZT itself with respect to achieving anti-human immunodeficiency virus concentrations within the central nervous system.

  5. Comparative pharmacokinetics of two prodrugs of zidovudine in rabbits: enhanced levels of zidovudine in brain tissue.

    PubMed Central

    Lupia, R H; Ferencz, N; Lertora, J J; Aggarwal, S K; George, W J; Agrawal, K C

    1993-01-01

    The pharmacokinetics of two prodrugs of zidovudine (AZT), 1,4-dihydro-1-methyl-3-[(pyridylcarbonyl)oxy] ester and isoleucinyl ester (DPAZT and IAZT, respectively), were investigated in a rabbit model to determine their potential utility as drugs against human immunodeficiency virus. Drugs were administered by intravenous infusion over 5 min at doses equal to 10 mg of AZT per kg of body weight. The levels of the prodrugs and of released AZT in plasma, cerebrospinal fluid (CSF), and brain were determined by high-performance liquid chromatography analysis. DPAZT disappeared rapidly from plasma, whereas IAZT maintained a sustained level in plasma for up to 4 h. The levels in plasma of AZT released from DPAZT were consistently lower than the levels of AZT released from IAZT or AZT itself. At 75 min after infusion of AZT, DPAZT, and IAZT, the CSF plasma AZT ratios were 0.23, 0.30, and 0.25, while the brain/CSF AZT ratios were 0.32, 0.63, and 0.64, respectively. These results indicate that the administration of each of the prodrugs produced a higher concentration of AZT in the brain than did the direct administration of AZT. Both prodrugs therefore may be superior to AZT itself with respect to achieving anti-human immunodeficiency virus concentrations within the central nervous system. PMID:8494380

  6. Cell-cell interactions of isolated and cultured oligodendrocytes: formation of linear occluding junctions and expression of peculiar intramembrane particles.

    PubMed

    Massa, P T; Szuchet, S; Mugnaini, E

    1984-12-01

    Oligodendrocytes were isolated from lamb brain. Freshly isolated cells and cultured cells, either 1- to 4-day-old unattached or 1- to 5-week-old attached, were examined by thin section and freeze-fracture electron microscopy. Freeze-fracture of freshly isolated oligodendrocytes showed globular and elongated intramembrane particles similar to those previously described in oligodendrocytes in situ. Enrichment of these particles was seen at sites of inter-oligodendrocyte contact. Numerous gap junctions and scattered linear tight junctional arrays were apparent. Gap junctions were connected to blebs of astrocytic plasma membrane sheared off during isolation, whereas tight junctions were facing extracellular space or blebs of oligodendrocytic plasma membrane. Thin sections of cultured, unattached oligodendrocytes showed rounded cell bodies touching one another at points without forming specialized cell junctions. Cells plated on polylysine-coated aclar dishes attached, emanated numerous, pleomorphic processes, and expressed galactocerebroside and myelin basic protein, characteristic markers for oligodendrocytes. Thin sections showed typical oligodendrocyte ultrastructure but also intermediate filaments not present in unattached cultures. Freeze-fracture showed intramembrane particles similar to but more numerous, and with a different fracture face repartition, than those seen in oligodendrocytes, freshly isolated or in situ. Gap junctions were small and rare. Apposed oligodendrocyte plasma membrane formed linear tight junctions which became more numerous with time in culture. Thus, cultured oligodendrocytes isolated from ovine brains develop and maintain features characteristic of mature oligodendrocytes in situ and can be used to explore formation and maintenance of tight junctions and possibly other classes of cell-cell interactions important in the process of myelination.

  7. Inadequate Antioxidative Responses in Kidneys of Brain-Dead Rats.

    PubMed

    Hoeksma, Dane; Rebolledo, Rolando A; Hottenrott, Maximilia; Bodar, Yves S; Wiersema-Buist, Janneke J; Van Goor, Harry; Leuvenink, Henri G D

    2017-04-01

    Brain death (BD)-related lipid peroxidation, measured as serum malondialdehyde (MDA) levels, correlates with delayed graft function in renal transplant recipients. How BD affects lipid peroxidation is not known. The extent of BD-induced organ damage is influenced by the speed at which intracranial pressure increases. To determine possible underlying causes of lipid peroxidation, we investigated the renal redox balance by assessing oxidative and antioxidative processes in kidneys of brain-dead rats after fast and slow BD induction. Brain death was induced in 64 ventilated male Fisher rats by inflating a 4.0F Fogarty catheter in the epidural space. Fast and slow inductions were achieved by an inflation speed of 0.45 and 0.015 mL/min, respectively, until BD confirmation. Healthy non-brain-dead rats served as reference values. Brain-dead rats were monitored for 0.5, 1, 2, or 4 hours, after which organs and blood were collected. Increased MDA levels became evident at 2 hours of slow BD induction at which increased superoxide levels, decreased glutathione peroxidase (GPx) activity, decreased glutathione levels, increased inducible nitric oxide synthase and heme-oxygenase 1 expression, and increased plasma creatinine levels were evident. At 4 hours after slow BD induction, superoxide, MDA, and plasma creatinine levels increased further, whereas GPx activity remained decreased. Increased MDA and plasma creatinine levels also became evident after 4 hours fast BD induction. Brain death leads to increased superoxide production, decreased GPx activity, decreased glutathione levels, increased inducible nitric oxide synthase and heme-oxygenase 1 expression, and increased MDA and plasma creatinine levels. These effects were more pronounced after slow BD induction. Modulation of these processes could lead to decreased incidence of delayed graft function.

  8. Role of brain allopregnanolone in the plasticity of γ-aminobutyric acid type A receptor in rat brain during pregnancy and after delivery

    PubMed Central

    Concas, A.; Mostallino, M. C.; Porcu, P.; Follesa, P.; Barbaccia, M. L.; Trabucchi, M.; Purdy, R. H.; Grisenti, P.; Biggio, G.

    1998-01-01

    The relation between changes in brain and plasma concentrations of neurosteroids and the function and structure of γ-aminobutyric acid type A (GABAA) receptors in the brain during pregnancy and after delivery was investigated in rats. In contrast with plasma, where all steroids increased in parallel, the kinetics of changes in the cerebrocortical concentrations of progesterone, allopregnanolone (AP), and allotetrahydrodeoxycorticosterone (THDOC) diverged during pregnancy. Progesterone was already maximally increased between days 10 and 15, whereas AP and allotetrahydrodeoxycorticosterone peaked around day 19. The stimulatory effect of muscimol on 36Cl− uptake by cerebrocortical membrane vesicles was decreased on days 15 and 19 of pregnancy and increased 2 days after delivery. Moreover, the expression in cerebral cortex and hippocampus of the mRNA encoding for γ2L GABAA receptor subunit decreased during pregnancy and had returned to control values 2 days after delivery. Also α1,α2, α3, α4, β1, β2, β3, and γ2S mRNAs were measured and failed to change during pregnancy. Subchronic administration of finasteride, a 5α-reductase inhibitor, to pregnant rats reduced the concentrations of AP more in brain than in plasma as well as prevented the decreases in both the stimulatory effect of muscimol on 36Cl− uptake and the decrease of γ2L mRNA observed during pregnancy. These results indicate that the plasticity of GABAA receptors during pregnancy and after delivery is functionally related to fluctuations in endogenous brain concentrations of AP whose rate of synthesis/metabolism appears to differ in the brain, compared with plasma, in pregnant rats. PMID:9789080

  9. Distribution of renin activity and angiotensinogen in rat brain. Effects of dietary sodium chloride intake on brain renin.

    PubMed Central

    Genain, C P; Van Loon, G R; Kotchen, T A

    1985-01-01

    The purpose of this study was to investigate the biochemistry and the regulation of the brain renin-angiotensin system in the Sprague-Dawley rat. Renin activity and angiotensinogen concentrations (direct and indirect radioimmunoassays) were measured in several brain areas and in neuroendocrine glands. Regional renin activities were measured in separate groups of rats on high and low NaCl diets. Mean tissue renin activities ranged from 2.2 +/- 0.6 to 54.4 +/- 19.7 fmol/mg protein per h (mean of 7 +/- SD), with the highest amounts in pineal, pituitary, and pons-medulla. NaCl depletion increased renin activity in selected regions; based on estimates of residual plasma contamination (despite perfusion of brains with saline), increased renin activity of pineal gland and posterior pituitary was attributed to higher plasma renin. To eliminate contamination by plasma renin, 16-h-nephrectomized rats were also studied. In anephric rats, NaCl depletion increased renin activity by 92% in olfactory bulbs and by 97% in anterior pituitary compared with NaCl-replete state. These elevations could not be accounted for by hyperreninemia. Brain renin activity was low and was unaffected by dietary NaCl in amygdala, hypothalamus, striatum, frontal cortex, and cerebellum. In contrast to renin, highest angiotensinogen concentrations were measured in hypothalamus and cerebellum. Overall, angiotensinogen measurements with the direct and the indirect assays were highly correlated (n = 56, r = 0.96, P less than 0.001). We conclude that (a) NaCl deprivation increases renin in olfactory bulbs and anterior pituitary of the rat, unrelated to contamination by plasma renin; and (b) the existence of angiotensinogen, the precursor of angiotensins, is demonstrated by direct radioimmunoassay throughout the brain and in neuroendocrine glands. PMID:3902894

  10. Aging aggravates ischemic stroke-induced brain damage in mice with chronic peripheral infection.

    PubMed

    Dhungana, Hiramani; Malm, Tarja; Denes, Adam; Valonen, Piia; Wojciechowski, Sara; Magga, Johanna; Savchenko, Ekaterina; Humphreys, Neil; Grencis, Richard; Rothwell, Nancy; Koistinaho, Jari

    2013-10-01

    Ischemic stroke is confounded by conditions such as atherosclerosis, diabetes, and infection, all of which alter peripheral inflammatory processes with concomitant impact on stroke outcome. The majority of the stroke patients are elderly, but the impact of interactions between aging and inflammation on stroke remains unknown. We thus investigated the influence of age on the outcome of stroke in animals predisposed to systemic chronic infection. Th1-polarized chronic systemic infection was induced in 18-22 month and 4-month-old C57BL/6j mice by administration of Trichuris muris (gut parasite). One month after infection, mice underwent permanent middle cerebral artery occlusion and infarct size, brain gliosis, and brain and plasma cytokine profiles were analyzed. Chronic infection increased the infarct size in aged but not in young mice at 24 h. Aged, ischemic mice showed altered plasma and brain cytokine responses, while the lesion size correlated with plasma prestroke levels of RANTES. Moreover, the old, infected mice exhibited significantly increased neutrophil recruitment and upregulation of both plasma interleukin-17α and tumor necrosis factor-α levels. Neither age nor infection status alone or in combination altered the ischemia-induced brain microgliosis. Our results show that chronic peripheral infection in aged animals renders the brain more vulnerable to ischemic insults, possibly by increasing the invasion of neutrophils and altering the inflammation status in the blood and brain. Understanding the interactions between age and infections is crucial for developing a better therapeutic regimen for ischemic stroke and when modeling it as a disease of the elderly. © 2013 The Anatomical Society and John Wiley & Sons Ltd.

  11. Kinetic Analysis and Quantification of [11C]Martinostat for in vivo HDAC Imaging of the Brain

    PubMed Central

    Wey, Hsiao-Ying; Wang, Changning; Schroeder, Frederick A.; Logan, Jean; Price, Julie C.; Hooker, Jacob M.

    2015-01-01

    Epigenetic mechanisms mediated by histone deacetylases (HDACs) have been implicated in a wide-range of CNS disorders and may offer new therapeutic opportunities. In vivo evaluation of HDAC density and drug occupancy has become possible with [11C]Martinostat, which exhibits selectivity for a subset of class I/IIb HDAC enzymes. In this study, we characterize the kinetic properties of [11C]Martinostat in the nonhuman primate (NHP) brain in preparation for human neuroimaging studies. The goal of this work was to determine whether classic compartmental analysis techniques were appropriate and to further determine if arterial plasma is required for future NHP studies. Using an arterial plasma input function, several analysis approaches were evaluated for robust outcome measurements. [11C]Martinostat showed high baseline distribution volume (VT) ranging from 29.9–54.4 mL/cm3 in the brain and large changes in occupancy (up to 99%) with a blocking dose approaches full enzyme saturation. An averaged nondisplaceable tissue uptake (VND) of 8.6 ± 3.7 mL/cm3 suggests high specific binding of [11C]Martinostat. From a two-tissue compartment model, [11C]Martinostat exhibits a high K1 (averaged K1 of 0.65 mL/cm3/min) and a small k4 (average of 0.0085 min−1). Our study supports that [11C]Martinostat can be used to detect changes in HDAC density and occupancy in vivo and that simplified analysis not using arterial blood could be appropriate. PMID:25768025

  12. Kinetic Analysis and Quantification of [ 11C]Martinostat for in Vivo HDAC Imaging of the Brain

    DOE PAGES

    Wey, Hsiao-Ying; Wang, Changning; Schroeder, Frederick A.; ...

    2015-03-13

    We report that epigenetic mechanisms mediated by histone deacetylases (HDACs) have been implicated in a wide-range of CNS disorders and may offer new therapeutic opportunities. In vivo evaluation of HDAC density and drug occupancy has become possible with [ 11C]Martinostat, which exhibits selectivity for a subset of class I/IIb HDAC enzymes. In this study, we characterize the kinetic properties of [ 11C]Martinostat in the nonhuman primate (NHP) brain in preparation for human neuroimaging studies. The goal of this work was to determine whether classic compartmental analysis techniques were appropriate and to further determine if arterial plasma is required for futuremore » NHP studies. Using an arterial plasma input function, several analysis approaches were evaluated for robust outcome measurements. [ 11C]Martinostat showed high baseline distribution volume (V T) ranging from 29.9 to 54.4 mL/cm 3 in the brain and large changes in occupancy (up to 99%) with a blocking dose approaching full enzyme saturation. An averaged nondisplaceable tissue uptake (VND) of 8.6 ± 3.7 mL/cm 3 suggests high specific binding of [ 11C]Martinostat. From a two-tissue compartment model, [ 11C]Martinostat exhibits a high K 1 (averaged K 1 of 0.65 mL/cm 3/min) and a small k 4 (average of 0.0085 min –1). In conclusion, our study supports that [ 11C]Martinostat can be used to detect changes in HDAC density and occupancy in vivo and that simplified analysis not using arterial blood could be appropriate.« less

  13. Upregulation of Aβ42 in the Brain and Bodily Fluids of Rhesus Monkeys with Aging.

    PubMed

    Zhao, Qiao; Lu, Jing; Yao, Zitong; Wang, Shubo; Zhu, Liming; Wang, Ju; Chen, Baian

    2017-01-01

    The cerebral accumulation of amyloid beta (Aβ) is one of the key pathological hallmarks of Alzheimer's disease (AD). Aβ is also found in bodily fluids such as the cerebrospinal fluid (CSF) and plasma. However, the significance of Aβ accumulation in the brain and different bodily pools, as well as its correlation with aging and cerebral amyloid pathology, is not completely understood. To better understand this question, we selected the rhesus monkey, which is phylogenetically and physiologically highly similar to the human, as a model to study. We quantified the levels of the two main Aβ isoforms (Aβ42 and Aβ40) in different sections of the brain (frontal cortex, temporal cortex, and hippocampus) and bodily fluids (CSF and plasma) of rhesus monkeys at different developmental phases (young, 5-9 years of age; mature, 10-19 years of age; and old, 21-24 years of age). We found that the levels of neuronal and insoluble Aβ42 increased significantly in the brain with aging, suggesting that this specific isoform might be directly involved in aging and AD-like pathophysiology. There was no significant change in the Aβ40 level in the brain with aging. In addition, the Aβ42 level, but not the Aβ40 level, in both the CSF and plasma increased with aging. We also identified a positive correlation between Aβ42 in the CSF and plasma and Aβ42 in the brain. Taken collectively, our results indicate that there is an association between Aβ accumulation and age. These results support the increased incidence of AD with aging.

  14. Prototype of an opto-capacitive probe for non-invasive sensing cerebrospinal fluid circulation

    NASA Astrophysics Data System (ADS)

    Myllylä, Teemu; Vihriälä, Erkki; Pedone, Matteo; Korhonen, Vesa; Surazynski, Lukasz; Wróbel, Maciej; Zienkiewicz, Aleksandra; Hakala, Jaakko; Sorvoja, Hannu; Lauri, Janne; Fabritius, Tapio; Jedrzejewska-Szczerska, Małgorzata; Kiviniemi, Vesa; Meglinski, Igor

    2017-03-01

    In brain studies, the function of the cerebrospinal fluid (CSF) awakes growing interest, particularly related to studies of the glymphatic system in the brain, which is connected with the complex system of lymphatic vessels responsible for cleaning the tissues. The CSF is a clear, colourless liquid including water (H2O) approximately with a concentration of 99 %. In addition, it contains electrolytes, amino acids, glucose, and other small molecules found in plasma. The CSF acts as a cushion behind the skull, providing basic mechanical as well as immunological protection to the brain. Disturbances of the CSF circulation have been linked to several brain related medical disorders, such as dementia. Our goal is to develop an in vivo method for the non-invasive measurement of cerebral blood flow and CSF circulation by exploiting optical and capacitive sensing techniques simultaneously. We introduce a prototype of a wearable probe that is aimed to be used for long-term brain monitoring purposes, especially focusing on studies of the glymphatic system. In this method, changes in cerebral blood flow, particularly oxy- and deoxyhaemoglobin, are measured simultaneously and analysed with the response gathered by the capacitive sensor in order to distinct the dynamics of the CSF circulation behind the skull. Presented prototype probe is tested by measuring liquid flows inside phantoms mimicking the CSF circulation.

  15. PCB disruption of the hypothalamus-pituitary-interrenal axis involves brain glucocorticoid receptor downregulation in anadromous Arctic charr

    USGS Publications Warehouse

    Aluru, N.; Jorgensen, E.H.; Maule, A.G.; Vijayan, M.M.

    2004-01-01

    We examined whether brain glucocorticoid receptor (GR) modulation by polychlorinated biphenyls (PCBs) was involved in the abnormal cortisol response to stress seen in anadromous Arctic charr (Salvelinus alpinus). Fish treated with Aroclor 1254 (0, 1, 10, and 100 mg/kg body mass) were maintained for 5 mo without feeding in the winter to mimic their seasonal fasting cycle, whereas a fed group with 0 and 100 mg/kg Aroclor was maintained for comparison. Fasting elevated plasma cortisol levels and brain GR content but depressed heat shock protein 90 (hsp90) and interrenal cortisol production capacity. Exposure of fasted fish to Aroclor 1254 resulted in a dose-dependent increase in brain total PCB content. This accumulation in fish with high PCB dose was threefold higher in fasted fish compared with fed fish. PCBs depressed plasma cortisol levels but did not affect in vitro interrenal cortisol production capacity in fasted charr. At high PCB dose, the brain GR content was significantly lower in the fasted fish and this corresponded with a lower brain hsp70 and hsp90 content. The elevation of plasma cortisol levels and upregulation of brain GR content may be an important adaptation to extended fasting in anadromous Arctic charr, and this response was disrupted by PCBs. Taken together, the hypothalamus-pituitary- interrenal axis is a target for PCB impact during winter emaciation in anadromous Arctic charr.

  16. Ketogenic Medium Chain Triglycerides Increase Brain Energy Metabolism in Alzheimer's Disease.

    PubMed

    Croteau, Etienne; Castellano, Christian-Alexandre; Richard, Marie Anne; Fortier, Mélanie; Nugent, Scott; Lepage, Martin; Duchesne, Simon; Whittingstall, Kevin; Turcotte, Éric E; Bocti, Christian; Fülöp, Tamàs; Cunnane, Stephen C

    2018-06-09

    In Alzheimer's disease (AD), it is unknown whether the brain can utilize additional ketones as fuel when they are derived from a medium chain triglyceride (MCT) supplement. To assess whether brain ketone uptake in AD increases in response to MCT as it would in young healthy adults. Mild-moderate AD patients sequentially consumed 30 g/d of two different MCT supplements, both for one month: a mixture of caprylic (55%) and capric acids (35%) (n = 11), followed by a wash-out and then tricaprylin (95%; n = 6). Brain ketone (11C-acetoacetate) and glucose (FDG) uptake were quantified by PET before and after each MCT intervention. Brain ketone consumption doubled on both types of MCT supplement. The slope of the relationship between plasma ketones and brain ketone uptake was the same as in healthy young adults. Both types of MCT increased total brain energy metabolism by increasing ketone supply without affecting brain glucose utilization. Ketones from MCT compensate for the brain glucose deficit in AD in direct proportion to the level of plasma ketones achieved.

  17. Locomotor activity and tissue levels following acute administration of lambda- and gamma-cyhalothrin in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moser, Virginia C., E-mail: Moser.ginger@epa.gov

    Pyrethroids produce neurotoxicity that depends, in part, on the chemical structure. Common behavioral effects include locomotor activity changes and specific toxic syndromes (types I and II). In general these neurobehavioral effects correlate well with peak internal dose metrics. Products of cyhalothrin, a type II pyrethroid, include mixtures of isomers (e.g., λ-cyhalothrin) as well as enriched active isomers (e.g., γ-cyhalothrin). We measured acute changes in locomotor activity in adult male rats and directly correlated these changes to peak brain and plasma concentrations of λ- and γ-cyhalothrin using a within-subject design. One-hour locomotor activity studies were conducted 1.5 h after oral gavagemore » dosing, and immediately thereafter plasma and brains were collected for analyzing tissue levels using LC/MS/MS methods. Both isomers produced dose-related decreases in activity counts, and the effective dose range for γ-cyhalothrin was lower than for λ-cyhalothrin. Doses calculated to decrease activity by 50% were 2-fold lower for the γ-isomer (1.29 mg/kg) compared to λ-cyhalothrin (2.65 mg/kg). Salivation, typical of type II pyrethroids, was also observed at lower doses of γ-cyhalothrin. Administered dose correlated well with brain and plasma concentrations, which furthermore showed good correlations with activity changes. Brain and plasma levels were tightly correlated across doses. While γ-cyhalothrin was 2-fold more potent based on administered dose, the differences based on internal concentrations were less, with γ-cyhalothrin being 1.3- to 1.6-fold more potent than λ-cyhalothrin. These potency differences are consistent with the purity of the λ-isomer (approximately 43%) compared to the enriched isomer γ-cyhalothrin (approximately 98%). Thus, administered dose as well as differences in cyhalothrin isomers is a good predictor of behavioral effects. - Highlights: • Acute changes in locomotor activity were produced by λ- and γ-cyhalothrin. • γ-Cyhalothrin was about 2-fold more potent than λ-cyhalothrin. • Brain and plasma levels were tightly correlated across doses. • Activity changes correlated well with brain and plasma concentrations.« less

  18. Altered blood-brain barrier permeability in rats with prehepatic portal hypertension turns to normal when portal pressure is lowered

    PubMed Central

    Eizayaga, Francisco; Scorticati, Camila; Prestifilippo, Juan P; Romay, Salvador; Fernandez, Maria A; Castro, José L; Lemberg, Abraham; Perazzo, Juan C

    2006-01-01

    AIM: To study the blood-brain barrier integrity in prehepatic portal hypertensive rats induced by partial portal vein ligation, at 14 and 40 d after ligation when portal pressure is spontaneously normalized. METHODS: Adult male Wistar rats were divided into four groups: Group I: Sham14d , sham operated; Group II: PH14d , portal vein stenosis; (both groups were used 14 days after surgery); Group III: Sham40d, Sham operated and Group IV: PH40d Portal vein stenosis (Groups II and IV used 40 d after surgery). Plasma ammonia, plasma and cerebrospinal fluid protein and liver enzymes concentrations were determined. Trypan and Evans blue dyes, systemically injected, were investigated in hippocampus to study blood-brain barrier integrity. Portal pressure was periodically recorded. RESULTS: Forty days after stricture, portal pressure was normalized, plasma ammonia was moderately high, and both dyes were absent in central nervous system parenchyma. All other parameters were reestablished. When portal pressure was normalized and ammonia level was lowered, but not normal, the altered integrity of blood-brain barrier becomes reestablished. CONCLUSION: The impairment of blood-brain barrier and subsequent normalization could be a mechanism involved in hepatic encephalopathy reversibility. Hemodynamic changes and ammonia could trigger blood-brain barrier alterations and its reestablishment. PMID:16552803

  19. Resuscitation with Lyophilized Plasma Is Safe and Improves Neurological Recovery in a Long-Term Survival Model of Swine Subjected to Traumatic Brain Injury, Hemorrhagic Shock, and Polytrauma.

    PubMed

    Georgoff, Patrick E; Nikolian, Vahagn C; Halaweish, Ihab; Chtraklin, Kiril; Bruhn, Peter J; Eidy, Hassan; Rasmussen, Monica; Li, Yongqing; Srinivasan, Ashok; Alam, Hasan B

    2017-07-01

    We have shown previously that fresh frozen plasma (FFP) and lyophilized plasma (LP) decrease brain lesion size and improve neurological recovery in a swine model of traumatic brain injury (TBI) and hemorrhagic shock (HS). In this study, we examine whether these findings can be validated in a clinically relevant model of severe TBI, HS, and polytrauma. Female Yorkshire swine were subjected to TBI (controlled cortical impact), hemorrhage (40% volume), grade III liver and splenic injuries, rib fracture, and rectus abdominis crush. The animals were maintained in a state of shock (mean arterial pressure 30-35 mm Hg) for 2 h, and then randomized to resuscitation with normal saline (NS), FFP, or LP (n = 5 swine/group). Animals were recovered and monitored for 30 d, during which time neurological recovery was assessed. Brain lesion sizes were measured via magnetic resonance imaging (MRI) on post-injury days (PID) three and 10. Animals were euthanized on PID 30. The severity of shock and response to resuscitation was similar in all groups. When compared with NS-treated animals, plasma-treated animals (FFP and LP) had significantly lower neurologic severity scores (PID 1-7) and a faster return to baseline neurological function. There was no significant difference in brain lesion sizes between groups. LP treatment was well tolerated and similar to FFP. In this clinically relevant large animal model of severe TBI, HS, and polytrauma, we have shown that plasma-based resuscitation strategies are safe and result in neurocognitive recovery that is faster than recovery after NS-based resuscitation.

  20. A chimeric human/murine anticocaine monoclonal antibody inhibits the distribution of cocaine to the brain in mice.

    PubMed

    Norman, Andrew B; Tabet, Michael R; Norman, Mantana K; Buesing, William R; Pesce, Amadeo J; Ball, William J

    2007-01-01

    The predominantly human sequence, high-affinity anticocaine monoclonal antibody (mAb) 2E2 was cleared slowly from mouse blood by a first-order process with an elimination t(1/2) of 8.1 days. Infused 2E2 also produced a dramatic dose-dependent increase in plasma cocaine concentrations and a concomitant decrease in the brain cocaine concentrations produced by an i.v. injection of cocaine HCl (0.56 mg/kg). At the highest dose of 2E2 tested (3:1, mAb/drug), cocaine was not detectable in the brain. Pharmacokinetic studies showed that the normal disappearance of cocaine from plasma was described by a two-compartment pharmacokinetic model with distribution t(1/2alpha) and terminal elimination t(1/2beta) values of 1.9 and 26.1 min, respectively. In the presence of an equimolar dose of mAb 2E2, there was a 26-fold increase in the area under the plasma cocaine concentration-time curve (AUC) relative to the AUC in the absence of 2E2. Consequently, 2E2 decreased the volume of distribution of cocaine from 6.0 to 0.20 l/kg, which approximated that of 2E2 (0.28 l/kg). However, cocaine was still rapidly cleared from plasma, and its elimination was now described by a single-compartment model with an elimination t(1/2) of 17 min. Importantly, 2E2 also produced a 4.5-fold (78%) decrease in the cocaine AUC in the brain. Therefore, the effect of 2E2 on plasma and brain cocaine concentrations was predominantly caused by a change in the distribution of cocaine with negligible effects on its rate of clearance. These data support the concept of immunotherapy for drug abuse.

  1. Albumin elicits calcium signals from astrocytes in brain slices from neonatal rat cortex

    PubMed Central

    Nadal, Angel; Sul, Jai-Yoon; Valdeolmillos, Miguel; McNaughton, Peter A

    1998-01-01

    Albumin causes calcium signals and mitosis in cultured astrocytes, but it has not been established whether astrocytes in intact brain also respond to albumin. The effect of albumin on intracellular calcium concentration ([Ca2+]i) in single cells was therefore studied in acutely isolated cortical brain slices from the neonatal rat.Physiological concentrations of albumin from plasma and from serum produced an increase in [Ca2+]i in a subpopulation of cortical cells. Trains of transient elevations in [Ca2+]i (Ca2+ spikes) were seen in 41 % of these cells.The cells responding to albumin are identified as astrocytes because the neurone-specific agonist NMDA caused much smaller and slower responses in these cells. On the other hand NMDA-responsive cells, which are probably neurones, exhibited only small and slow responses to albumin. The residual responses of astrocytes to NMDA and neurones to albumin are likely to be due to crosstalk with adjacent neurones and astrocytes, respectively.Methanol extraction of albumin removes a polar lipid and abolishes the ability of albumin to increase intracellular calcium.Astrocyte calcium signalling caused by albumin may have important physiological consequences when the blood-brain barrier breaks down and allows albumin to enter the CNS. PMID:9596793

  2. Changes in plasma phenylalanine, isoleucine, leucine, and valine are associated with significant changes in intracranial pressure and jugular venous oxygen saturation in patients with severe traumatic brain injury.

    PubMed

    Vuille-Dit-Bille, Raphael N; Ha-Huy, Riem; Stover, John F

    2012-09-01

    Changes in plasma aromatic amino acids (AAA = phenylalanine, tryptophan, tyrosine) and branched chain amino acids (BCAA = isoleucine, leucine, valine) levels possibly influencing intracranial pressure (ICP) and cerebral oxygen consumption (SjvO(2)) were investigated in 19 sedated patients up to 14 days following severe traumatic brain injury (TBI). Compared to 44 healthy volunteers, jugular venous plasma BCAA were significantly decreased by 35% (p < 0.001) while AAA were markedly increased in TBI patients by 19% (p < 0.001). The BCAA to AAA ratio was significantly decreased by 55% (p < 0.001) which persisted during the entire study period. Elevated plasma phenylalanine was associated with decreased ICP and increased SjvO(2), while higher plasma isoleucine and leucine levels were associated with increased ICP and higher plasma leucine and valine were linked to decreased SjvO(2). The amount of enterally administered amino acids was associated with significantly increased plasma levels with the exception of phenylalanine. Contrary to the initial assumption that elevated AAA and decreased BCAA levels are detrimental, increased plasma phenylalanine levels were associated with beneficial signs in terms of decreased ICP and reduced cerebral oxygen consumption reflected by increased SjvO(2); concomitantly, elevated plasma isoleucine and leucine levels were associated with increased ICP while leucine and valine were associated with decreased SjvO(2) following severe TBI, respectively. The impact of enteral nutrition on this observed pattern must be examined prospectively to determine if higher amounts of phenylalanine should be administered to promote beneficial effects on brain metabolism and if normalization of plasma BCAA levels is without cerebral side effects.

  3. Increased permeability-glycoprotein inhibition at the human blood-brain barrier can be safely achieved by performing PET during peak plasma concentrations of tariquidar.

    PubMed

    Kreisl, William C; Bhatia, Ritwik; Morse, Cheryl L; Woock, Alicia E; Zoghbi, Sami S; Shetty, H Umesha; Pike, Victor W; Innis, Robert B

    2015-01-01

    The permeability-glycoprotein (P-gp) efflux transporter is densely expressed at the blood-brain barrier, and its resultant spare capacity requires substantial blockade to increase the uptake of avid substrates, blunting the ability of investigators to measure clinically meaningful alterations in P-gp function. This study, conducted in humans, examined 2 P-gp inhibitors (tariquidar, a known inhibitor, and disulfiram, a putative inhibitor) and 2 routes of administration (intravenous and oral) to maximally increase brain uptake of the avid and selective P-gp substrate (11)C-N-desmethyl-loperamide (dLop) while avoiding side effects associated with high doses of tariquidar. Forty-two (11)C-dLop PET scans were obtained from 37 healthy volunteers. PET was performed with (11)C-dLop under the following 5 conditions: injected under baseline conditions without P-gp inhibition, injected 1 h after intravenous tariquidar infusion, injected during intravenous tariquidar infusion, injected after oral tariquidar, and injected after disulfiram. (11)C-dLop uptake was quantified with kinetic modeling using metabolite-corrected arterial input function or by measuring the area under the time-activity curve in the brain from 10 to 30 min. Neither oral tariquidar nor oral disulfiram increased brain uptake of (11)C-dLop. Injecting (11)C-dLop during tariquidar infusion, when plasma tariquidar concentrations reach their peak, resulted in a brain uptake of the radioligand approximately 5-fold greater than baseline. Brain uptake was similar with 2 and 4 mg of intravenous tariquidar per kilogram; however, the lower dose was better tolerated. Injecting (11)C-dLop after tariquidar infusion also increased brain uptake, though higher doses (up to 6 mg/kg) were required. Brain uptake of (11)C-dLop increased fairly linearly with increasing plasma tariquidar concentrations, but we are uncertain whether maximal uptake was achieved. We sought to increase the dynamic range of P-gp function measured after blockade. Performing (11)C-dLop PET during peak plasma concentrations of tariquidar, achieved with concurrent administration of intravenous tariquidar, resulted in greater P-gp inhibition at the human blood-brain barrier than delayed administration and allowed the use of a lower, more tolerable dose of tariquidar. On the basis of prior monkey studies, we suspect that plasma concentrations of tariquidar did not fully block P-gp; however, higher doses of tariquidar would likely be associated with unacceptable side effects. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  4. Impact of P-Glycoprotein (ABCB1) and Breast Cancer Resistance Protein (ABCG2) on the Brain Distribution of a Novel BRAF Inhibitor: Vemurafenib (PLX4032)

    PubMed Central

    Mittapalli, Rajendar K.; Vaidhyanathan, Shruthi; Sane, Ramola

    2012-01-01

    Vemurafenib [N-(3-{[5-(4-chlorophenyl)-1H-pyrrolo[2,3-b]pyridin-3-yl]carbonyl}-2,4-difluorophenyl)propane-1-sulfonamide(PLX4032)] is a novel small-molecule BRAF inhibitor, recently approved by the Food and Drug Administration for the treatment of patients with metastatic melanoma with a BRAFV600E mutation. The objective of this study was to investigate the role of P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) in the distribution of vemurafenib to the central nervous system. In vitro studies conducted in transfected Madin-Darby canine kidney II cells show that the intracellular accumulation of vemurafenib is significantly restricted because of active efflux by P-gp and BCRP. Bidirectional flux studies indicated greater transport in the basolateral-to-apical direction than the apical-to-basolateral direction because of active efflux by P-gp and BCRP. The selective P-gp and BCRP inhibitors zosuquidar and (3S,6S,12aS)-1,2,3,4,6,7,12,12a-octahydro-9-methoxy-6-(2-methylpropyl)-1,4-dioxopyrazino(1′,2′:1,6)pyrido(3,4-b)indole-3-propanoic acid-1,1-dimethylethyl ester (Ko143) were able to restore the intracellular accumulation and bidirectional net flux of vemurafenib. The in vivo studies revealed that the brain distribution coefficient (area under the concentration time profile of brain/area under the concentration time profile of plasma) of vemurafenib was 0.004 in wild-type mice. The steady-state brain-to-plasma ratio of vemurafenib was 0.035 ± 0.009 in Mdr1a/b(−/−) mice, 0.009 ± 0.006 in Bcrp1(−/−) mice, and 1.00 ± 0.19 in Mdr1a/b(−/−)Bcrp1(−/−) mice compared with 0.012 ± 0.004 in wild-type mice. These data indicate that the brain distribution of vemurafenib is severely restricted at the blood-brain barrier because of active efflux by both P-gp and BCRP. This finding has important clinical significance given the ongoing trials examining the efficacy of vemurafenib in brain metastases of melanoma. PMID:22454535

  5. Monitoring vigabatrin in head injury patients by cerebral microdialysis: obtaining pharmacokinetic measurements in a neurocritical care setting

    PubMed Central

    Shannon, Richard J; Timofeev, Ivan; Nortje, Jürgens; Hutchinson, Peter J; Carpenter, Keri L H

    2014-01-01

    Aims The aims were to determine blood–brain barrier penetration and brain extracellular pharmacokinetics for the anticonvulsant vigabatrin (VGB; γ-vinyl-γ-aminobutyric acid) in brain extracellular fluid and plasma from severe traumatic brain injury (TBI) patients, and to measure the response of γ-aminobutyric acid (GABA) concentration in brain extracellular fluid. Methods Severe TBI patients (n = 10) received VGB (0.5 g enterally, every 12 h). Each patient had a cerebral microdialysis catheter; two patients had a second catheter in a different region of the brain. Plasma samples were collected 0.5 h before and 2, 4 and 11.5 h after the first VGB dose. Cerebral microdialysis commenced before the first VGB dose and continued through at least three doses of VGB. Controls were seven severe TBI patients with microdialysis, without VGB. Results After the first VGB dose, the maximum concentration of VGB (Cmax) was 31.7 (26.9–42.6) μmol l−1 (median and interquartile range for eight patients) in plasma and 2.41 (2.03–5.94) μmol l−1 in brain microdialysates (nine patients, 11 catheters), without significant plasma–brain correlation. After three doses, median Cmax in microdialysates increased to 5.22 (4.24–7.14) μmol l−1 (eight patients, 10 catheters). Microdialysate VGB concentrations were higher close to focal lesions than in distant sites. Microdialysate GABA concentrations increased modestly in some of the patients after VGB administration. Conclusions Vigabatrin, given enterally to severe TBI patients, crosses the blood–brain barrier into the brain extracellular fluid, where it accumulates with multiple dosing. Pharmacokinetics suggest delayed uptake from the blood. PMID:24802902

  6. Pharmacokinetics and brain penetration of carbapenems in mice.

    PubMed

    Matsumoto, Kazuaki; Kurihara, Yuji; Kuroda, Yuko; Hori, Seiji; Kizu, Junko

    2016-05-01

    An adverse effect associated with the administration of carbapenems is central nervous system (CNS) toxicity, with higher brain concentrations of carbapenems being linked to an increased risk of seizures. However, the pharmacokinetics and brain penetration of carbapenems have not yet been examined. Thus, the aim of this in vivo investigation was to determine the pharmacokinetics and brain penetration of carbapenems in mice. Blood samples and brain tissue samples were obtained 10, 20, 30, 60, and 120 min after the subcutaneous administration of carbapenems (91 mg/kg). We obtained the following values for the pharmacokinetic parameters of carbapenems in mice: 1.20-1.71 L/h/kg for CLtotal/F, 1.41-2.03 h(-1) for Ke, 0.34-0.51 h for T1/2, 0.66-0.95 L/kg for Vss/F, 0.49-0.73 h for MRT, 83.46-110.58 μg/mL for Cmax, plasma, and 0.28-0.83 μg/g for Cmax, brain tissue. The AUC0-∞ of the carbapenems tested in plasma were in the following order: doripenem > meropenem > biapenem > imipenem, and in brain tissue were: imipenem > doripenem > meropenem > biapenem. The degrees of brain tissue penetration, defined as the AUC0-∞, brain tissue/fAUC0-∞, plasma ratio, were 0.016 for imipenem, 0.004 for meropenem, 0.002 for biapenem, and 0.008 for doripenem. The results of the present study demonstrated that, of the carbapenems examined, imipenem penetrated brain tissue to the greatest extent. Copyright © 2015 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  7. Significant Reduction of Brain Cysts Caused by Toxoplasma gondii after Treatment with Spiramycin Coadministered with Metronidazole in a Mouse Model of Chronic Toxoplasmosis

    PubMed Central

    Chew, Wai Kit; Ambu, Stephen; Mak, Joon Wah

    2012-01-01

    Toxoplasma gondii is a parasite that generates latent cysts in the brain; reactivation of these cysts may lead to fatal toxoplasmic encephalitis, for which treatment remains unsuccessful. We assessed spiramycin pharmacokinetics coadministered with metronidazole, the eradication of brain cysts and the in vitro reactivation. Male BALB/c mice were fed 1,000 tachyzoites orally to develop chronic toxoplasmosis. Four weeks later, infected mice underwent different treatments: (i) infected untreated mice (n = 9), which received vehicle only; (ii) a spiramycin-only group (n = 9), 400 mg/kg daily for 7 days; (iii) a metronidazole-only group (n = 9), 500 mg/kg daily for 7 days; and (iv) a combination group (n = 9), which received both spiramycin (400 mg/kg) and metronidazole (500 mg/kg) daily for 7 days. An uninfected control group (n = 10) was administered vehicle only. After treatment, the brain cysts were counted, brain homogenates were cultured in confluent Vero cells, and cysts and tachyzoites were counted after 1 week. Separately, pharmacokinetic profiles (plasma and brain) were assessed after a single dose of spiramycin (400 mg/kg), metronidazole (500 mg/kg), or both. Metronidazole treatment increased the brain spiramycin area under the concentration-time curve from 0 h to ∞ (AUC0–∞) by 67% without affecting its plasma disposition. Metronidazole plasma and brain AUC0–∞ values were reduced 9 and 62%, respectively, after spiramycin coadministration. Enhanced spiramycin brain exposure after coadministration reduced brain cysts 15-fold (79 ± 23 for the combination treatment versus 1,198 ± 153 for the untreated control group [P < 0.05]) and 10-fold versus the spiramycin-only group (768 ± 125). Metronidazole alone showed no effect (1,028 ± 149). Tachyzoites were absent in the brain. Spiramycin reduced in vitro reactivation. Metronidazole increased spiramycin brain penetration, causing a significant reduction of T. gondii brain cysts, with potential clinical translatability for chronic toxoplasmosis treatment. PMID:22271863

  8. Effect of beta-endorphin imprinting during late pregnancy on the brain serotonin and plasma nocistatin levels of adult male rats.

    PubMed

    Tekes, K; Gyenge, M; Hantos, M; Csaba, G

    2007-07-01

    Female rats were treated with 10 microg of beta-endorphin on the 19th day of pregnancy. Offspring were studied when five months old. Serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) content in four brain regions were determined by HPLC-EC and the nocistatin levels of blood plasma using RIA methods. In each brain region studied, the 5-HT levels were highly significantly reduced and that of 5-HIAA in three regions was highly significantly increased. When 5HIAA/5HT ratios, as a measure of serotonin turnover, were calculated, imprinted animals showed extremely high values. Plasma nocistatin level was also significantly elevated. The results call attention to the effect of perinatal endorphin imprinting and its long-term consequences (e.g., setting of aggressiveness, pain tolerance).

  9. Determination of pharmacological levels of harmane, harmine and harmaline in mammalian brain tissue, cerebrospinal fluid and plasma by high-performance liquid chromatography with fluorimetric detection.

    PubMed

    Moncrieff, J

    1989-11-24

    Increased blood aldehyde levels, as occur in alcohol intoxication, could lead to the formation of beta-carbolines such as harmane by condensation with indoleamines. Endogenous beta-carbolines, therefore, should occur in specific brain areas where indoleamine concentrations are high, whilst exogenous beta-carbolines should exhibit an even distribution. The author presents direct and sensitive methods for assaying the beta-carbolines harmane, harmine and harmaline in brain tissue, cerebrospinal fluid and plasma at picogram sample concentrations using reversed-phase high-performance liquid chromatography with fluorimetric detection and minimal sample preparation. Using these assay methods, it was found that the distribution of beta-carbolines from a source exogenous to the brain results in a relatively even distribution within the brain tissue.

  10. Simultaneous Determination of Seven Neuroactive Steroids Associated with Depression in Rat Plasma and Brain by High Performance Liquid Chromatography-Tandem Mass Spectrometry.

    PubMed

    Wang, Youqiong; Tang, Lipeng; Yin, Wei; Chen, Jiesi; Leng, Tiandong; Zheng, Xiaoke; Zhu, Wenbo; Zhang, Haipeng; Qiu, Pengxin; Yang, Xiaoxiao; Yan, Guangmei; Hu, Haiyan

    2016-01-01

    Sensitive and specific biomarkers are required for the diagnosis and treatment of depression because the existing diagnostic criteria are subjective and could produce false positives or negatives. Some endogenous neuroactive steroids that have shown either antidepressant effects or concentration changes in individuals with depression could provide potential biomarkers. In this study, a simple and specific method was developed to simultaneously determine seven endogenous neuroactive steroids in biological samples: cortisone, cortisol, dehydroepiandrosterone, estradiol, progesterone, pregnenolone, and testosterone. After liquid-liquid extraction, chromatographic separation was achieved on a C18 column with gradient elution using water-methanol at a flow rate of 300 μL min(-1). Detection and quantitation were performed by tandem mass spectrometry with atmospheric pressure chemical ionization and selected reaction monitoring. Plasma and brain neuroactive steroid levels were then determined in control rats and rats exposed to forced swimming, a classical rodent model of depression. The results showed that the plasma concentrations of testosterone, pregnenolone, and progesterone significantly increased in rats exposed to the forced swimming test. In contrast, brain homogenate levels of cortisol, estradiol, and progesterone decreased, while pregnenolone levels were elevated in this model of depression. In conclusion, a new method to quantify neuroactive steroids was successfully developed and applied to their investigation in rat plasma and brain. The findings of this study indicated that plasma testosterone, pregnenolone, and progesterone levels could provide potential biomarkers for the diagnosis and treatment of depression.

  11. Plasma copeptin level predicts acute traumatic coagulopathy and progressive hemorrhagic injury after traumatic brain injury.

    PubMed

    Yang, Ding-Bo; Yu, Wen-Hua; Dong, Xiao-Qiao; Du, Quan; Shen, Yong-Feng; Zhang, Zu-Yong; Zhu, Qiang; Che, Zhi-Hao; Liu, Qun-Jie; Wang, Hao; Jiang, Li; Du, Yuan-Feng

    2014-08-01

    Higher plasma copeptin levels correlate with poor clinical outcomes after traumatic brain injury. Nevertheless, their links with acute traumatic coagulopathy and progressive hemorrhagic injury are unknown. Therefore, we aimed to investigate the relationship between plasma copeptin levels, acute traumatic coagulopathy and progressive hemorrhagic injury in patients with severe traumatic brain injury. We prospectively studied 100 consecutive patients presenting within 6h from head trauma. Progressive hemorrhagic injury was present when the follow-up computerized tomography scan reported any increase in size or number of the hemorrhagic lesion, including newly developed ones. Acute traumatic coagulopathy was defined as an activated partial thromboplastic time greater than 40s and/or international normalized ratio greater than 1.2 and/or a platelet count less than 120×10(9)/L. We measured plasma copeptin levels on admission using an enzyme-linked immunosorbent assay in a blinded fashion. In multivariate logistic regression analysis, plasma copeptin level emerged as an independent predictor of progressive hemorrhagic injury and acute traumatic coagulopathy. Using receiver operating characteristic curves, we calculated areas under the curve for progressive hemorrhagic injury and acute traumatic coagulopathy. The predictive performance of copeptin was similar to that of Glasgow Coma Scale score. However, copeptin did not obviously improve the predictive value of Glasgow Coma Scale score. Thus, copeptin may help in the prediction of progressive hemorrhagic injury and acute traumatic coagulopathy after traumatic brain injury. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Effect of tryptophan-rich egg protein hydrolysate on brain tryptophan availability, stress and performance.

    PubMed

    Markus, C Rob; Verschoor, E; Firk, C; Kloek, J; Gerhardt, C C

    2010-10-01

    Reduced brain serotonin function is involved in stress-related disturbances and may particularly occur under chronic stress. Although serotonin production directly depends on the availability of its plasma dietary amino acid precursor tryptophan (TRP), previously described effects of tryptophan-rich food sources on stress-related behavior are rather modest. Recently, an egg protein hydrolysate (EPH) was developed that showed a much greater effect on brain TRP availability than pure TRP and other TRP-food sources and therefore may be more effective for performance under stress. The aim of the present study was to investigate the effects of EPH compared to placebo protein on plasma amino acids, stress coping and performance in subjects with high and low chronic stress vulnerabilities. In a placebo-controlled, double-blind, crossover study, 17 participants with high and 18 participants with low chronic stress vulnerabilities were monitored for mood and performance under acute stress exposure either following intake of EPH or placebo. EPH significantly increased plasma TRP availability for uptake into the brain, decreased depressive mood in all subjects and improved perceptual-motor and vigilance performance only in low chronic stress-vulnerable subjects. The acute use of a TRP-rich egg protein hydrolysate (EPH) is an adequate method to increase plasma TRP for uptake into the brain and may be beneficial for perceptual-motor and vigilance performance in healthy volunteers. Copyright © 2010 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  13. P-Glycoprotein (ABCB1) limits the brain distribution of YQA-14, a novel dopamine D3 receptor antagonist.

    PubMed

    Liu, Fei; Wang, Xiaoqing; Li, Zheng; Li, Jin; Zhuang, Xiaomei; Zhang, Zhenqing

    2015-01-01

    YQA-14 is a promising agent for treating addiction to cocaine and opioids. However, previous studies have showed there is marked contrast between the relatively small differences in pharmacological action in vivo and the large differences in their respective receptor binding properties in vitro. We hypothesized that the conflict between the in vivo and in vitro outcomes was attributable to poor brain exposure to YQA-14 caused by drug efflux transporters. To address this issue, we investigated the directional flux of YQA-14 across Caco-2 cells at 37°C or 4°C and the bidirectional transport in the presence and absence of transporter chemical inhibitors. These phenomena were further investigated by an in vivo determination of the brain and blood pharmacokinetics (PK) profile of YQA-14 following intraperitoneal administration with and without inhibitor. The efflux ratio of YQA-14 on Caco-2 cell monolayers was 2.39 and the efflux was temperature-dependent. When co-incubated with GF120918 or LY335979, the efflux of YQA-14 was markedly decreased. However, there was no significant difference in the permeability of YQA-14 when the cells were treated with Ko143. In vivo experiments showed that the brain-to-plasma ratio increased by more than 75-fold and 20-fold with co-administration of GF120918 and LY335979, respectively. Use of Ko143 did not change the brain-to-blood ratio of YQA-14. The results indicate that the brain distribution of YQA-14 was restricted because of active efflux transport at the blood brain barrier. In addition, P-glycoprotein (P-gp) played a dominant role in limiting the distribution of YQA-14 to the brain.

  14. A close look at brain dynamics: cells and vessels seen by in vivo two-photon microscopy.

    PubMed

    Fumagalli, Stefano; Ortolano, Fabrizio; De Simoni, Maria-Grazia

    2014-10-01

    The cerebral vasculature has a unique role in providing a constant supply of oxygen and nutrients to ensure normal brain functions. Blood vessels that feed the brain are far from being simply channels for passive transportation of fluids. They form complex structures made up of different cell types. These structures regulate blood supply, local concentrations of O2 and CO2, transport of small molecules, trafficking of plasma cells and fine cerebral functions in normal and diseased brains. Until few years ago, analysis of these functions has been typically based on post mortem techniques, whose interpretation is limited by the need for tissue processing at specific times. For a reliable and effective picture of the dynamic processes in the central nervous system, real-time information in vivo is required. There are now few in vivo systems, among which two-photon microscopy (2-PM) is a truly innovative tool for studying the brain. 2-PM has been used to dissect specific aspects of vascular and immune cell dynamics in the context of neurological diseases, providing exciting results that could not have been obtained with conventional methods. This review summarizes the latest findings on vascular and immune system action in the brain, with particular focus on the dynamic responses after ischemic brain injury. 2-PM has helped define the hierarchical architecture of the brain vasculature, the dynamic interaction between the vasculature and immune cells recruited to lesion sites, the effects of blood flow on neuronal and microglial activity and the ability of cells of the neurovascular unit to regulate blood flow. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Effect of the Mediterranean diet on cognition and brain morphology and function: a systematic review of randomized controlled trials.

    PubMed

    Radd-Vagenas, Sue; Duffy, Shantel L; Naismith, Sharon L; Brew, Bruce J; Flood, Victoria M; Fiatarone Singh, Maria A

    2018-03-01

    Observational studies of the Mediterranean diet suggest cognitive benefits, potentially reducing dementia risk. We performed the first published review to our knowledge of randomized controlled trials (RCTs) investigating Mediterranean diet effects on cognition or brain morphology and function, with an additional focus on intervention diet quality and its relation to "traditional" Mediterranean dietary patterns. We searched 9 databases from inception (final update December 2017) for RCTs testing a Mediterranean compared with alternate diet for cognitive or brain morphology and function outcomes. Analyses were based on 66 cognitive tests and 1 brain function outcome from 5 included studies (n = 1888 participants). The prescribed Mediterranean diets varied considerably between studies, particularly with regards to quantitative food advice. Only 8/66 (12.1%) of individual cognitive outcomes at trial level significantly favored a Mediterranean diet for cognitive performance, with effect sizes (ESs) ranging from small (0.32) to large (1.66), whereas 2 outcomes favored controls. Data limitations precluded a meta-analysis. Of 8 domain composite cognitive scores from 2 studies, the 3 (Memory, Frontal, and Global function) from PREDIMED (PREvención con DIeta MEDiterránea) were significant, with ESs ranging from 0.39 to 1.29. A posttest comparison at a second PREDIMED site found that the Mediterranean diet modulates the effect of several genotypes associated with dementia risk for some cognitive outcomes, with mixed results. Finally, the risk of low-plasma brain-derived neurotrophic factor was reduced by 78% (OR = 0.22; 95% CI: 0.05, 0.90) in those who consumed a Mediterranean diet compared to control diet at 3 y in this trial. There was no benefit of the Mediterranean diet for incident cognitive impairment or dementia. Five RCTs of the Mediterranean diet and cognition have been published to date. The data are mostly nonsignificant, with small ESs. However, the significant improvements in cognitive domain composites in the most robustly designed study warrant additional research.

  16. An Investigation of the Differences and Similarities between Generated Small-World Networks for Right- and Left-Hand Motor Imageries.

    PubMed

    Zhang, Jiang; Li, Yuyao; Chen, Huafu; Ding, Jurong; Yuan, Zhen

    2016-11-04

    In this study, small-world network analysis was performed to identify the similarities and differences between functional brain networks for right- and left-hand motor imageries (MIs). First, Pearson correlation coefficients among the nodes within the functional brain networks from healthy subjects were calculated. Then, small-world network indicators, including the clustering coefficient, the average path length, the global efficiency, the local efficiency, the average node degree, and the small-world index, were generated for the functional brain networks during both right- and left-hand MIs. We identified large differences in the small-world network indicators between the functional networks during MI and in the random networks. More importantly, the functional brain networks underlying the right- and left-hand MIs exhibited similar small-world properties in terms of the clustering coefficient, the average path length, the global efficiency, and the local efficiency. By contrast, the right- and left-hand MI brain networks showed differences in small-world characteristics, including indicators such as the average node degree and the small-world index. Interestingly, our findings also suggested that the differences in the activity intensity and range, the average node degree, and the small-world index of brain networks between the right- and left-hand MIs were associated with the asymmetry of brain functions.

  17. Decreased brain choline uptake in older adults. An in vivo proton magnetic resonance spectroscopy study.

    PubMed

    Cohen, B M; Renshaw, P F; Stoll, A L; Wurtman, R J; Yurgelun-Todd, D; Babb, S M

    1995-09-20

    To test the hypothesis that uptake of circulating choline into the brain decreases with age, because alterations in metabolism of choline may be a factor contributing to age-related degenerative changes in the brain. Cohort comparison in younger and older adults. Subjects were chosen consecutively from lists of healthy volunteers screened by medical and psychiatric interviews and laboratory tests. Younger adults (n = 12) were between the ages of 20 and 40 years (mean age, 32 years), and older adults (n = 16) were between the ages of 60 and 85 years (mean age, 73 years). After fasting overnight, subjects received choline, as the bitartrate, to yield free choline equal to 50 mg/kg of body weight. Blood was drawn for determination of plasma choline concentration by high-performance liquid chromatography, and proton magnetic resonance spectroscopy (1H-MRS) was performed to determine the relative concentration of cytosolic choline-containing compounds in the brain at baseline and after ingestion of choline. Plasma choline and cytosolic choline-containing compounds in the brain, estimated as the ratio of the choline resonance to the creatine resonance on 1H-MRS scans of the basal ganglia, were compared following blinded analyses of data from subject cohorts studied at baseline and 3 hours after choline ingestion. Levels of plasma choline and cytosolic choline-containing compounds in brain were similar at baseline in younger and older subjects. Following ingestion of choline, plasma choline concentration increased by similar proportions (76% and 80%) in both younger and older subjects. Brain cytosolic choline--containing compounds increased substantially in younger subjects (mean increase, 60%; P < .001 vs baseline). Older subjects showed a much smaller increase in brain choline-containing compounds (mean, 16%; P < .001 vs the increase in younger subjects). Uptake of circulating choline into the brain decreases with age. Given the key role of choline in neuronal structure and function, this change may be a contributing factor in onset in late life of neurodegenerative, particularly dementing, illnesses in which cholinergic neurons show particular susceptibility to loss.

  18. Determination of 1-(4'-aminophenyl)-4-methyl-7,8-methylene-dioxy-2,3-benzodiazepine by high-performance liquid chromatography-diode array detection in plasma and brain in healthy and hypoxic-ischaemic rats.

    PubMed

    Nayak, P K; Zhang, H; Kerr, D S

    2013-03-01

    Previously we showed that 1-(4'-aminophenyl)-4-methyl-7,8-methylene-dioxy-2,3-benzodiazepine (GYKI-52466), an ionotropic AMPA receptor antagonist, can trigger strong, presumably metabotropic, protection against seizures and stroke at very low doses. To date, no study has determined brain and plasma concentrations of GYKI-52466 following subcutaneous administration in animals with or without brain damage. Here we developed and validated a rapid method of high-performance liquid chromatography with diode array detection. Chromatographic separation was achieved by a Luna C18 column using a mixture of 25 mM phosphate buffer (pH 7.0)-methanol-acetonitrile (40:37.5:22.5, v/v/v) as the mobile phase at a flow rate of 1.2 mL/min. The method showed acceptable precision and accuracy and allowed a precise quantification of 25 ng/mL GYKI-52466 in the plasma and brain. Recovery of GYKI-52466 from the plasma and brain was >87%, and GYKI was stable at room temperature and during prolonged storage at -20 °C. The method was successfully applied in measuring levels of GYKI-52466 following administration of 3 and 20 mg/kg of GYKI-52466 in control and brain damaged rats. A low brain concentration of 0.56 μM GYKI-52466 was observed with 3mg/kg compared to 10.7 μM with 20 mg/kg at 90 min post drug administration. Severe ataxia was observed with the 20mg/kg dose for up to 90 min. Furthermore, in ischaemic animals, there was no evidence of a 'surge' in brain GYKI concentrations at the injury site, confirming the integrity of the blood-brain barrier in the region of infarct. Taken together, our findings support a metabotropic mode of action underlying the low-dose neuroprotective efficacy of GYKI-52466. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Oral uridine-5'-monophosphate (UMP) increases brain CDP-choline levels in gerbils.

    PubMed

    Cansev, Mehmet; Watkins, Carol J; van der Beek, Eline M; Wurtman, Richard J

    2005-10-05

    We examined the biochemical pathways whereby oral uridine-5'-monophosphate (UMP) increases membrane phosphatide synthesis in brains of gerbils. We previously showed that supplementing PC12 cells with uridine caused concentration-related increases in CDP-choline levels, and that this effect was mediated by elevations in intracellular uridine triphosphate (UTP) and cytidine triphosphate (CTP). In the present study, adult gerbils received UMP (1 mmol/kg), a constituent of human breast milk and infant formulas, by gavage, and plasma samples and brains were collected for assay between 5 min and 8 h thereafter. Thirty minutes after gavage, plasma uridine levels were increased from 6.6 +/- 0.58 to 32.7 +/- 1.85 microM (P < 0.001), and brain uridine from 22.6 +/- 2.9 to 89.1 +/- 8.82 pmol/mg tissue (P < 0.001). UMP also significantly increased plasma and brain cytidine levels; however, both basally and following UMP, these levels were much lower than those of uridine. Brain UTP, CTP, and CDP-choline were all elevated 15 min after UMP (from 254 +/- 31.9 to 417 +/- 50.2, [P < 0.05]; 56.8 +/- 1.8 to 71.7 +/- 1.8, [P < 0.001]; and 11.3 +/- 0.5 to 16.4 +/- 1, [P < 0.001] pmol/mg tissue, respectively), returning to basal levels after 20 and 30 min. The smallest UMP dose that significantly increased brain CDP-choline was 0.05 mmol/kg. These results show that oral UMP, a uridine source, enhances the synthesis of CDP-choline, the immediate precursor of PC, in gerbil brain.

  20. Neurotoxic and teratogenic effects of an organophosphorus insecticide (phenyl phosphonothioic acid-O-ethyl -O-[4-nitrophenyl] ester) on mallard development

    USGS Publications Warehouse

    Hoffman, D.J.; Sileo, L.

    1984-01-01

    Phenyl phosphonothioic acid-O-ethyl-O-[4-nitrophenyl] ester (EPN) is one of the 10 most frequently used organophosphorus insecticides and causes delayed neurotoxicity in adult chickens and mallards. Small amounts of organophosphorus insecticides placed on birds' eggs are embryotoxic and teratogenic. For this reason, the effects of topical egg application on EPN were examined on mallard (Anas platyrhynchos) embryo development. Mallard eggs were treated topically at 72 hr of incubation with 25 microliter of a nontoxic oil vehicle or with EPN in the vehicle at concentrations of approximately 12, 36, or 108 micrograms/g egg, equivalent to one, three, and nine times the agricultural level of application used to spray crops. Treatment with EPN resulted in 22 to 44% mortality over this dose range by 18 days of development compared with 4 and 5% for untreated and vehicle-treated controls. EPN impaired embryonic growth and was highly teratogenic: 37-42% of the surviving embryos at 18 days were abnormal with cervical and axial scoliosis as well as severe edema. Brain weights were significantly lower in EPN-treated groups at different stages of development including hatchlings. Brain neurotoxic esterase (NTE) activity was inhibited by as much as 91% at 11 days, 81% at 18 days, and 79% in hatchlings. Examination of brain NTE activity during the course of normal development revealed an increase of nearly sixfold from Day 11 through hatching. The most rapid increase occurred between Day 20 and hatching. Brain acetylcholinesterase (AChE) activity was inhibited by as much as 41% at 11 days, 47% at 18 days, and 20% in hatchlings. Plasma cholinesterase and alkaline phosphatase activities were inhibited and plasma aspartate aminotransferase activity was increased at one or more stages of development. Hatchlings from EPN-treated eggs were weaker and slower to right themselves. Histopathological examination did not reveal demyelination and axonopathy of the spinal cord that was characteristic of delayed neurotoxicity in adult birds.

  1. Brain microvascular endothelium induced-annexin A1 secretion contributes to small cell lung cancer brain metastasis.

    PubMed

    Liu, Yi; Liu, Yong-Shuo; Wu, Peng-Fei; Li, Qiang; Dai, Wu-Min; Yuan, Shuai; Xu, Zhi-Hua; Liu, Ting-Ting; Miao, Zi-Wei; Fang, Wen-Gang; Chen, Yu-Hua; Li, Bo

    2015-09-01

    Small cell lung cancer is the most aggressive histologic subtype of lung cancer, with a strong predilection for metastasizing to brain early. However, the cellular and molecular basis is poorly known. Here, we provided evidence to reveal the role of annexin A1 in small cell lung cancer metastasis to brain. Firstly, the elevated annexin A1 serum levels in small cell lung cancer patients were associated with brain metastasis. The levels of annexin A1 were also upregulated in NCI-H446 cells, a small cell lung cancer cell line, upon migration into the mice brain. More interestingly, annexin A1 was secreted by NCI-H446 cells in a time-dependent manner when co-culturing with human brain microvascular endothelial cells, which was identified with the detections of annexin A1 in the co-cultured cellular supernatants by ELISA and western blot. Further results showed that blockage of annexin A1 in the co-cultured cellular supernatants using a neutralized antibody significantly inhibited NCI-H446 cells adhesion to brain endothelium and its transendothelial migration. Conversely, the addition of Ac2-26, an annexin A1 mimic peptide, enhanced these effects. Furthermore, knockdown of annexin A1 in NCI-H446 cells prevented its transendothelial migration in vitro and metastasis to mice brain in vivo. Our data showed that small cell lung cancer cell in brain microvasculature microenvironment could express much more annexin A1 and release it outside, which facilitated small cell lung cancer cell to gain malignant properties of entry into brain. These findings provided a potential target for the management of SCLC brain metastasis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Selenium attenuates apoptosis, inflammation and oxidative stress in the blood and brain of aged rats with scopolamine-induced dementia.

    PubMed

    Demirci, Kadir; Nazıroğlu, Mustafa; Övey, İshak Suat; Balaban, Hasan

    2017-04-01

    A potent antioxidant, selenium might modulate dementia-induced progression of brain and blood oxidative and apoptotic injuries. The present study explores whether selenium protects against experimental dementia (scopolamine, SCOP)-induced brain, and blood oxidative stress, apoptosis levels, and cytokine production in rats. Thirty-two rats were equally divided into four groups. The first group was used as an untreated control. The second group was treated with SCOP to induce dementia. The third and fourth groups received 1.5 mg/kg selenium (sodium selenite) and SCOP + selenium, respectively. Dementia was induced in the second and forth groups by intraperitoneal SCOP (1 mg/kg) administration. Brain, plasma, and erythrocyte lipid peroxidation levels as well as plasma TNF-α, interleukin (IL)-1β, and IL-4 levels were high in the SCOP group though they were low in selenium treatments. Selenium and selenium + SCOP treatments increased the lowered glutathione peroxidase activity, reduced glutathione, vitamins A and E concentrations in the brain, erythrocytes and plasma of the SCOP group. Apoptotic value expressions as active caspase-3, procaspase-9, and PARP were also increased by SCOP, while they were decreased by selenium and selenium + SCOP treatments. In conclusion, selenium induced protective effects against experimental dementia-induced brain, and blood oxidative injuries and apoptosis through regulation of cytokine production, vitamin E, glutathione concentrations, and glutathione peroxidase activity.

  3. Assessment of cardiotoxicity during haemopoietic stem cell transplantation with plasma brain natriuretic peptide.

    PubMed

    Snowden, J A; Hill, G R; Hunt, P; Carnoutsos, S; Spearing, R L; Espiner, E; Hart, D N

    2000-08-01

    Cardiac failure is a known complication of haemopoietic stem cell transplantation (HSCT) and is often difficult to diagnose as patients may have multiple medical problems. Since brain natriuretic peptide (BNP) is largely a hormone of cardiac ventricular origin and is released early in the course of ventricular dysfunction, we have examined the value of serial plasma BNP levels for detecting cardiac failure in patients undergoing cytotoxic conditioning for HSCT. Fifteen patients undergoing HSCT were evaluated (10 undergoing autologous HSCT; five undergoing allogeneic HSCT). BNP was measured by radioimmunoassay prior to therapy and weekly for 5 weeks. Seven patients had a significant rise in BNP level (above a previously established threshold of 43 pmol/l associated with cardiac failure), occurring 1-4 weeks post commencement of conditioning. In three of these patients, cardiac failure was subsequently diagnosed clinically 3, 9 and 23 days after a BNP level of 43 pmol/l had been detected. These three patients had the highest peak BNP levels for the group and in each case elevation in BNP level occurred for a period exceeding 1 week. Although numbers were relatively small, a BNP >43 pmol/l was significantly associated with the inclusion of high-dose cyclophosphamide in the preparative regimen (P = 0.02). BNP levels showed no relationship to febrile episodes. In conclusion, these results show that plasma BNP may be used as a marker for early detection of cardiac dysfunction in patients undergoing HSCT, particularly if levels are increased for periods exceeding 1 week. Measurement of BNP during HSCT may be helpful in patients at risk of cardiac failure, in complex clinical situations and in monitoring the cardiotoxicity of preparative regimens.

  4. Hypericum perforatum: a 'modern' herbal antidepressant: pharmacokinetics of active ingredients.

    PubMed

    Wurglics, Mario; Schubert-Zsilavecz, Manfred

    2006-01-01

    Hypericum perforatum (St John's Wort [SJW]) counts among the most favourite herbal drugs, and is the only herbal alternative to classic synthetic antidepressants in the therapy of mild to moderate depression. Several clinical studies have been conducted to verify the effectiveness of ethanolic or methanolic extracts of SJW. Alcoholic SJW extracts are a mixture of substances with widely varying physical and chemical properties and activities. Hyperforin, a phloroglucinol derivative, is the main source of pharmacological effects caused by the consumption of alcoholic extracts of SJW in the therapy of depression. However, several studies indicate that flavone derivatives, e.g. rutin, and also the naphthodianthrones hypericin and pseudohypericin, take part in the antidepressant efficacy. In contrast to the amount of documentation concerning clinical efficacy, oral bioavailability and pharmacokinetic data about the active components are rather scarce. The hyperforin plasma concentration in humans was investigated in a small number of studies. The results of these studies indicate a relevant plasma concentration, comparable with that used in in vitro tests. Furthermore, hyperforin is the only ingredient of H. perforatum that could be determined in the brain of rodents after oral administration of alcoholic extracts. The plasma concentrations of the hypericins were, compared with hyperforin, only one-tenth and, until now, the hypericins could not be found in the brain after oral administration of alcoholic H. perforatum extracts or pure hypericin. Until now, the pharmacokinetic profile of the flavonoids in humans after oral administration of an alcoholic H. perforatum extract has been investigated in only one study. More data are available for rutin and the aglycone quercetin after administration of pure substances or other flavonoid sources.

  5. Brain Targeting of a Water Insoluble Antipsychotic Drug Haloperidol via the Intranasal Route Using PAMAM Dendrimer.

    PubMed

    Katare, Yogesh K; Daya, Ritesh P; Sookram Gray, Christal; Luckham, Roger E; Bhandari, Jayant; Chauhan, Abhay S; Mishra, Ram K

    2015-09-08

    Delivery of therapeutics to the brain is challenging because many organic molecules have inadequate aqueous solubility and limited bioavailability. We investigated the efficiency of a dendrimer-based formulation of a poorly aqueous soluble drug, haloperidol, in targeting the brain via intranasal and intraperitoneal administration. Aqueous solubility of haloperidol was increased by more than 100-fold in the developed formulation. Formulation was assessed via different routes of administration for behavioral (cataleptic and locomotor) responses, and for haloperidol distribution in plasma and brain tissues. Dendrimer-based formulation showed significantly higher distribution of haloperidol in the brain and plasma compared to a control formulation of haloperidol administered via intraperitoneal injection. Additionally, 6.7 times lower doses of the dendrimer-haloperidol formulation administered via the intranasal route produced behavioral responses that were comparable to those induced by haloperidol formulations administered via intraperitoneal injection. This study demonstrates the potential of dendrimer in improving the delivery of water insoluble drugs to brain.

  6. Daily ethanol exposure during late ovine pregnancy: physiological effects in the mother and fetus in the apparent absence of overt fetal cerebral dysmorphology.

    PubMed

    Kenna, Kelly; De Matteo, Robert; Hanita, Takushi; Rees, Sandra; Sozo, Foula; Stokes, Victoria; Walker, David; Bocking, Alan; Brien, James; Harding, Richard

    2011-10-01

    High levels of ethanol (EtOH) consumption during pregnancy adversely affect fetal development; however, the effects of lower levels of exposure are less clear. Our objectives were to assess the effects of daily EtOH exposure (3.8 USA standard drinks) on fetal-maternal physiological variables and the fetal brain, particularly white matter. Pregnant ewes received daily intravenous infusions of EtOH (0.75 g/kg maternal body wt over 1 h, 8 fetuses) or saline (8 fetuses) from 95 to 133 days of gestational age (DGA; term ∼145 DGA). Maternal and fetal arterial blood was sampled at 131-133 DGA. At necropsy (134 DGA) fetal brains were collected for analysis. Maternal and fetal plasma EtOH concentrations reached similar maximal concentration (∼0.11 g/dl) and declined at the same rate. EtOH infusions produced mild reductions in fetal arterial oxygenation but there were no changes in maternal oxygenation, maternal and fetal Pa(CO(2)), or in fetal mean arterial pressure or heart rate. Following EtOH infusions, plasma lactate levels were elevated in ewes and fetuses, but arterial pH fell only in ewes. Fetal body and brain weights were similar between groups. In three of eight EtOH-exposed fetuses there were small subarachnoid hemorrhages in the cerebrum and cerebellum associated with focal cortical neuronal death and gliosis. Overall, there was no evidence of cystic lesions, inflammation, increased apoptosis, or white matter injury. We conclude that daily EtOH exposure during the third trimester-equivalent of ovine pregnancy has modest physiological effects on the fetus and no gross effects on fetal white matter development.

  7. Dietary sodium deprivation evokes activation of brain regional neurons and down-regulation of angiotensin II type 1 receptor and angiotensin-convertion enzyme mRNA expression.

    PubMed

    Lu, B; Yang, X J; Chen, K; Yang, D J; Yan, J Q

    2009-12-15

    Previous studies have indicated that the renin-angiotensin-aldosterone system (RAAS) is implicated in the induction of sodium appetite in rats and that different dietary sodium intakes influence the mRNA expression of central and peripheral RAAS components. To determine whether dietary sodium deprivation activates regional brain neurons related to sodium appetite, and changes their gene expression of RAAS components of rats, the present study examined the c-Fos expression after chronic exposure to low sodium diet, and determined the relationship between plasma and brain angiotensin I (ANG I), angiotensin II (ANG II) and aldosterone (ALD) levels and the sodium ingestive behavior variations, as well as the effects of prolonged dietary sodium deprivation on ANG II type 1 (AT1) and ANG II type 2 (AT2) receptors and angiotensin-convertion enzyme (ACE) mRNA levels in the involved brain regions using the method of real-time polymerase chain reaction (PCR). Results showed that the Fos immunoreactivity (Fos-ir) expression in forebrain areas such as subfornical organ (SFO), paraventricular hypothalamic nuclei (PVN), supraoptic nucleus (SON) and organum vasculosum laminae terminalis (OVLT) all increased significantly and that the levels of ANG I, ANG II and ALD also increased in plasma and forebrain in rats fed with low sodium diet. In contrast, AT1, ACE mRNA in PVN, SON and OVLT decreased significantly in dietary sodium depleted rats, while AT2 mRNA expression did not change in the examined areas. These results suggest that many brain areas are activated by increased levels of plasma and/or brain ANG II and ALD, which underlies the elevated preference for hypertonic salt solution after prolonged exposure to low sodium diet, and that the regional AT1 and ACE mRNA are down-regulated after dietary sodium deprivation, which may be mediated by increased ANG II in plasma and/or brain tissue.

  8. Saturable active efflux by p-glycoprotein and breast cancer resistance protein at the blood-brain barrier leads to nonlinear distribution of elacridar to the central nervous system.

    PubMed

    Sane, Ramola; Agarwal, Sagar; Mittapalli, Rajendar K; Elmquist, William F

    2013-04-01

    The study objective was to investigate factors that affect the central nervous system (CNS) distribution of elacridar. Elacridar inhibits transport mediated by P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) and has been used to study the influence of transporters on brain distribution of chemotherapeutics. Adequate distribution of elacridar across the blood-brain barrier (BBB) and into the brain parenchyma is necessary to target tumor cells in the brain that overexpress transporters and reside behind an intact BBB. We examined the role of P-gp and Bcrp on brain penetration of elacridar using Friend leukemia virus strain B wild-type, Mdr1a/b(-/-), Bcrp1(-/-), and Mdr1a/b(-/-)Bcrp1(-/-) mice. Initially, the mice were administered 2.5 mg/kg of elacridar intravenously, and the plasma and brain concentrations were determined. The brain-to-plasma partition coefficient of elacridar in the wild-type mice was 0.82, as compared with 3.5 in Mdr1a/b(-/-) mice, 6.6 in Bcrp1(-/-) mice, and 15 in Mdr1a/b(-/-)Bcrp1(-/-) mice, indicating that both P-gp and Bcrp limit the brain distribution of elacridar. The four genotypes were then administered increasing doses of elacridar, and the CNS distribution of elacridar was determined. The observed and model predicted maximum brain-to-plasma ratios (Emax) at the highest dose were not significantly different in all genotypes. However, the ED50 was lower for Mdr1a/b(-/-) mice compared with Bcrp1(-/-) mice. These findings correlate with the relative expression of P-gp and Bcrp at the BBB in these mice and demonstrate the quantitative enhancement in elacridar CNS distribution as a function of its dose. Overall, this study provides useful concepts for future applications of elacridar as an adjuvant therapy to improve targeting of chemotherapeutic agents to tumor cells in the brain parenchyma.

  9. BDNF Val66Met polymorphism and plasma levels in Chinese Han population with obsessive-compulsive disorder and generalized anxiety disorder.

    PubMed

    Wang, Yuan; Zhang, Haiyin; Li, Ying; Wang, Zhen; Fan, Qing; Yu, Shunying; Lin, Zhiguang; Xiao, Zeping

    2015-11-01

    Anxiety disorders are a category of mental disorders characterized by feelings of anxiety and fear, which include generalized anxiety disorder (GAD). Obsessive-Compulsive Disorder (OCD) used to be categorized as anxiety disorder in DSM-IV. However OCD was no longer included in anxiety disorders and came into its own category titled as Obsessive-Compulsive and Related Disorders (OCRD) in DSM-5. It will be interesting to explore is there any different biological characteristics between OCD and anxiety disorders. Brain-derived neurotrophic factor (BDNF) was a potential candidate gene in both OCD and GAD. The results of genetic association studies between BDNF and OCD have been inconsistent. BDNF plasma/serum levels in OCD have been found lower than those in healthy controls. However the heritable reason of the lowered BDNF levels was not well elucidated. The amount of studies about BDNF and GAD were relatively small. The aims of this study were to determine whether single nucleotide polymorphism Val66Met of BDNF was associated with OCD and GAD, to examine BDNF plasma levels in OCD and GAD, and to explore whether Val66Met variation influences BDNF plasma levels. We genotyped Val66Met variation in 148 OCD patients, 108 GAD patients and 99 healthy controls. Within the same sample, BDNF plasma levels were determined in 113 OCD patients, 102 GAD patients and 63 healthy controls. Val66Met variation was not associated with OCD or GAD. BDNF plasma levels in OCD and GAD patients were significant lower than those in healthy controls. Val66Met variation had no influence on BDNF plasma levels. No difference was found between OCD and GAD. Results do not change no matter taking OCD and GAD as one group or separated two. First, the sample size for genotyping was relatively small, which leaded to a low statistical power of the genetic part in this study. Second, we genotyped just one SNP in BDNF gene. Third, parts of the participants did not be assayed for BDNF plasma levels. Our findings support the hypothesis that BDNF is involved in the pathophysiology of mental disorders, not only OCD but also GAD. OCD and GAD patients both show lower BDNF plasma levels compared to healthy controls. The BDNF plasma levels are not associated with Val66Met variation. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jomary, C.; Beaudet, A.; Gairin, J.E.

    Distribution of {kappa} opioid receptors was examined by EM radioautography in sections of guinea pig neostriatum with the selective {sup 125}I-labeled dynorphin analog (D-Pro{sup 10})dynorphin-(1-11). Most specifically labeled binding sites were found by probability circle analysis to be associated with neuronal membrane appositions. Because of limitations in resolution of the method, the radioactive sources could not be ascribed directly to either one of the apposed plasma membranes. Nevertheless, three lines of evidence favored a predominant association of ligand with dendrites of intrinsic striatal neurons: (1) the high frequency with which labeled interfaces implicated a dendrite, (2) the enrichment of dendrodendriticmore » interfaces, and (3) the occurrence of dendritic profiles labeled at several contact points along their plasma membranes. A small proportion of labeled sites was associated with axo-axonic interfaces, which may subserve the {kappa} opioid-induced regulation of presynaptic dopamine and acetylcholine release documented in guinea pig neostriatum. These results support the hypothesis that in mammalian brain {kappa} opioid receptors are conformationally and functionally distinct from {mu} and {delta} types.« less

  11. Brain anatomical networks in early human brain development.

    PubMed

    Fan, Yong; Shi, Feng; Smith, Jeffrey Keith; Lin, Weili; Gilmore, John H; Shen, Dinggang

    2011-02-01

    Recent neuroimaging studies have demonstrated that human brain networks have economic small-world topology and modular organization, enabling efficient information transfer among brain regions. However, it remains largely unknown how the small-world topology and modular organization of human brain networks emerge and develop. Using longitudinal MRI data of 28 healthy pediatric subjects, collected at their ages of 1 month, 1 year, and 2 years, we analyzed development patterns of brain anatomical networks derived from morphological correlations of brain regional volumes. The results show that the brain network of 1-month-olds has the characteristically economic small-world topology and nonrandom modular organization. The network's cost efficiency increases with the brain development to 1 year and 2 years, so does the modularity, providing supportive evidence for the hypothesis that the small-world topology and the modular organization of brain networks are established during early brain development to support rapid synchronization and information transfer with minimal rewiring cost, as well as to balance between local processing and global integration of information. Copyright © 2010. Published by Elsevier Inc.

  12. Predicting Drug Concentration‐Time Profiles in Multiple CNS Compartments Using a Comprehensive Physiologically‐Based Pharmacokinetic Model

    PubMed Central

    Yamamoto, Yumi; Välitalo, Pyry A.; Huntjens, Dymphy R.; Proost, Johannes H.; Vermeulen, An; Krauwinkel, Walter; Beukers, Margot W.; van den Berg, Dirk‐Jan; Hartman, Robin; Wong, Yin Cheong; Danhof, Meindert; van Hasselt, John G. C.

    2017-01-01

    Drug development targeting the central nervous system (CNS) is challenging due to poor predictability of drug concentrations in various CNS compartments. We developed a generic physiologically based pharmacokinetic (PBPK) model for prediction of drug concentrations in physiologically relevant CNS compartments. System‐specific and drug‐specific model parameters were derived from literature and in silico predictions. The model was validated using detailed concentration‐time profiles from 10 drugs in rat plasma, brain extracellular fluid, 2 cerebrospinal fluid sites, and total brain tissue. These drugs, all small molecules, were selected to cover a wide range of physicochemical properties. The concentration‐time profiles for these drugs were adequately predicted across the CNS compartments (symmetric mean absolute percentage error for the model prediction was <91%). In conclusion, the developed PBPK model can be used to predict temporal concentration profiles of drugs in multiple relevant CNS compartments, which we consider valuable information for efficient CNS drug development. PMID:28891201

  13. Nuclear PTEN deficiency causes microcephaly with decreased neuronal soma size and increased seizure susceptibility.

    PubMed

    Igarashi, Atsushi; Itoh, Kie; Yamada, Tatsuya; Adachi, Yoshihiro; Kato, Takashi; Murata, Daisuke; Sesaki, Hiromi; Iijima, Miho

    2018-06-15

    Defects in phosphatase and tensin homolog (PTEN) are associated with neurological disorders and tumors. PTEN functions at two primary intracellular locations: the plasma membrane and the nucleus. At the membrane, PTEN functions as a phosphatidylinositol (3,4,5)-trisphosphate phosphatase and suppresses PI 3-kinase signaling that drives cell growth and tumorigenesis. However, the in vivo function of nuclear PTEN is unclear. Here, using CRISPR/Cas9, we generated a mouse model in which PTEN levels in the nucleus are decreased. Nuclear PTEN-deficient mice were born with microcephaly and maintained a small brain during adulthood. The size of neuronal soma was significantly smaller in the cerebellum, cerebral cortex, and hippocampus. Also, these mice were prone to seizure. No changes in PI 3-kinase signaling were observed. By contrast, the size of other organs was unaffected. Therefore, nuclear PTEN is essential for the health of the brain by promoting the growth of neuronal soma size during development. © 2018 Igarashi et al.

  14. Relationships between extraction and metabolism of glucose, blood flow, and tissue blood volume in regions of rat brain.

    PubMed

    Cremer, J E; Cunningham, V J; Seville, M P

    1983-09-01

    Studies were made on the relationships between the rate of glucose metabolism, the transport of glucose between plasma and brain, cerebral blood flow, and blood content. Conscious control rats were compared with rats with intense tremors induced with cismethrin. The influence of plasma glucose concentration was studied by fasting some animals overnight prior to the induction of tremors. Mean plasma glucose was 8.83 mM in controls, 12.57 mM in fed rats with tremors, and 4.94 mM in rats fasted overnight prior to induction of tremors. Of 12 brain regions studied, nine showed an increased rate of glucose utilization in both fed and fasted trembling rats. Cerebellum had the highest percentage increase (200%). Rates of unidirectional glucose influx in fed trembling rats were significantly greater than those in controls in eight regions. In fasted animals, rates were the same as in controls, except in cerebellum, where it was 1.6 times higher. These high rates of glucose influx at low plasma glucose concentrations were indicative of a change in kinetic parameters of glucose transport. Unidirectional glucose influx rates were transformed to estimates of maximal transport rates (Tmax), based on the Michaelis-Menten equation. Average plasma glucose concentrations in regional capillaries (c) were calculated and shown to be maintained at values close to arterial plasma glucose concentrations (Ca), in all brain regions of each group. In trembling rats, Tmax for each brain region was higher than that in controls. In fasted rats with tremors, Tmax was higher in several brain regions than in fed rats. Tmax in cerebellum was 3.37, 4.71, and 7.89 mumol g-1 min-1 in control, fed trembling, and fasted trembling rats, respectively. Blood flow increased significantly in all regions in rats with tremors and was higher in fasted than in fed animals. There was only a weak correlation between blood flow and Tmax. Blood content of several regions increased in rats with tremors, and there was a strong correlation between Tmax and tissue blood volume. Results are consistent with localized regulatory links between blood flow, capillary surface area, and glucose transport in response to metabolic demand and hypoglycaemia. These involve changes in the linear velocity of blood through capillaries and in the extent of capillary recruitment.

  15. Anti-IL-6 neutralizing antibody modulates blood-brain barrier function in the ovine fetus.

    PubMed

    Zhang, Jiyong; Sadowska, Grazyna B; Chen, Xiaodi; Park, Seon Yeong; Kim, Jeong-Eun; Bodge, Courtney A; Cummings, Erin; Lim, Yow-Pin; Makeyev, Oleksandr; Besio, Walter G; Gaitanis, John; Banks, William A; Stonestreet, Barbara S

    2015-05-01

    Impaired blood-brain barrier function represents an important component of hypoxic-ischemic brain injury in the perinatal period. Proinflammatory cytokines could contribute to ischemia-related blood-brain barrier dysfunction. IL-6 increases vascular endothelial cell monolayer permeability in vitro. However, contributions of IL-6 to blood-brain barrier abnormalities have not been examined in the immature brain in vivo. We generated pharmacologic quantities of ovine-specific neutralizing anti-IL-6 mAbs and systemically infused mAbs into fetal sheep at 126 days of gestation after exposure to brain ischemia. Anti-IL-6 mAbs were measured by ELISA in fetal plasma, cerebral cortex, and cerebrospinal fluid, blood-brain barrier permeability was quantified using the blood-to-brain transfer constant in brain regions, and IL-6, tight junction proteins, and plasmalemma vesicle protein (PLVAP) were detected by Western immunoblot. Anti-IL-6 mAb infusions resulted in increases in mAb (P < 0.05) in plasma, brain parenchyma, and cerebrospinal fluid and decreases in brain IL-6 protein. Twenty-four hours after ischemia, anti-IL-6 mAb infusions attenuated ischemia-related increases in blood-brain barrier permeability and modulated tight junction and PLVAP protein expression in fetal brain. We conclude that inhibiting the effects of IL-6 protein with systemic infusions of neutralizing antibodies attenuates ischemia-related increases in blood-brain barrier permeability by inhibiting IL-6 and modulates tight junction proteins after ischemia. © FASEB.

  16. Impact of whole brain radiation therapy on CSF penetration ability of Icotinib in EGFR-mutated non-small cell lung cancer patients with brain metastases: Results of phase I dose-escalation study.

    PubMed

    Zhou, Lin; He, Jiazhuo; Xiong, Weijie; Liu, Yongmei; Xiang, Jing; Yu, Qin; Liang, Maozhi; Zhou, Xiaojuan; Ding, Zhenyu; Huang, Meijuan; Ren, Li; Zhu, Jiang; Li, Lu; Hou, Mei; Ding, Lieming; Tan, Fenlai; Lu, You

    2016-06-01

    Whole-brain radiation therapy (WBRT) and epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are both treatment options for EGFR-mutated non-small cell lung cancer (NSCLC) patients with brain metastases. However, the dose-escalation toxicity and efficacy of combination therapy, and the effect of WBRT on cerebrospinal fluid (CSF) penetration of EGFR-TKIs are still unclear. EGFR-mutated NSCLC patients with brain metastases were enrolled in this study, and the cohorts were constructed with a 3+3 design. The patients received icotinib with escalating doses (125-625mg, tid), and the concurrent WBRT (37.5Gy/15f/3weeks) started a week later. The CSF penetration rates of icotinib were tested before, immediately after, and 4 weeks after WBRT, respectively. Potential toxicities and benefits from dose-escalation treatment were analyzed. Fifteen patients were included in this study, 3 at each dose level from 125mg-375mg and 6 at 500mg with 3 occurred dose-limiting toxicities. The maximal tolerated dose of icotinib was 375mg tid in this combination therapy. There was a significant correlation between icotinib concentration in the CSF and plasma (R(2)=0.599, P<0.001). The CSF penetration rate of icotinib, from 1.2% to 9.7%, reached a maximum at 375mg (median, 6.1%). There was no significant difference for CSF penetration rates among the three test points (median, 4.1% vs. 2.8% vs. 2.8%, P=0.16). The intracranial objective response rate and median intracranial progression free survival are 80% and 18.9 months. WBRT plus concurrent icotinib is well tolerated in EGFR-mutated NSCLC patients with brain metastases, up to an icotinib dose of 375mg tid. The icotinib CSF concentration seemed to have a potential ceiling effect with the dose escalation, and WBRT seemed to have no significant impact on CSF penetration of icotinib till 4 weeks after the treatment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Chronic antidepressant administration alleviates frontal and hippocampal BDNF deficits in CUMS rat.

    PubMed

    Zhang, Yang; Gu, Fenghua; Chen, Jia; Dong, Wenxin

    2010-12-17

    Stress activates the hypothalamo-pituitary-adrenal (HPA) axis, regulates the expression of brain-derived neurotrophic factor (BDNF) in the brain, and mediates mood. Antidepressants alleviate stress and up-regulate BDNF gene expression. In this study, we investigated the effect of chronic unpredictable mild stress (CUMS) and the different kinds of antidepressant treatments on the HPA axis and the BDNF expression in the rat brain. Adult Wistar male rats were exposed to a six-week CUMS procedure and received different antidepressant treatments including venlafaxine, mirtazapine, and fluoxetine. Immunohistochemistry and real-time PCR were used to measure BDNF expression levels in the rat brain, and ELISAs were used to investigate the plasma corticosterone (CORT) and adrenocorticotropic hormone (ACTH) levels. CUMS significantly decreased the BDNF protein level in the DG, CA1, and CA3 of the hippocampus and increased plasma CORT level. Chronic antidepressant treatments all significantly increased BDNF protein levels in the hippocampus and the pre-frontal cortex. In addition, venlafaxine and mirtazapine inhibited the increase of plasma CORT level. These results suggested that an increase in the BDNF level in the brain could be a pivotal mechanism of various antidepressants to exert their therapeutic effects. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Abnormal amyloid β42 expression and increased oxidative stress in plasma of CKD patients with cognitive dysfunction: A small scale case control study comparison with Alzheimer's disease.

    PubMed

    Vinothkumar, G; Kedharnath, C; Krishnakumar, S; Sreedhar, S; Preethikrishnan, K; Dinesh, S; Sundaram, A; Balakrishnan, D; Shivashekar, G; Sureshkumar; Venkataraman, P

    2017-12-01

    Cognitive dysfunction has been increasingly recognized in chronic kidney disease (CKD) patients. Senile plaques are important pathophysiological characteristic of cognitive dysfunction. The major component of plaques is the amyloid β (Aβ) peptide released from proteolytic cleavage of amyloid precursor protein (APP). Plasma Aβ has been a focus of the growing literature on blood based biomarkers for cognitive dysfunction. Oxidative stress is prevalent in CKD and it plays an important role in cognitive dysfunction. Increased oxidative stress leads to cause cleavage of APP and Aβ production. The aim of this study is to assess the antioxidant status and Aβ 42 levels in plasma of CKD patients with cognitive dysfunction compared to CKD without cognitive dysfunction. A total of 60 subjects divided into 30 CKD without cognitive dysfunction and 30 CKD with cognitive dysfunction based on neuropsychological assessment tests. To compare antioxidant status and Aβ 42 levels in plasma, the following groups such as healthy subjects (n = 30), normocytic normochromic anemia (n = 30) and Alzheimer's disease (AD, n = 10) patients were also maintained. Plasma Superoxide dismutase (SOD), Catalase (CAT), Glutathione peroxidase (GPx), Reduced glutathione (GSH) and lipid peroxidation (LPO) were determined by spectrophotometrically. Aβ level was determined by immunoblotting method. The parameters were statistically compared with healthy, normocytic normochromic anemia and AD subjects. Like AD subjects, significantly increased Aβ and LPO level while decreased SOD, CAT, GPx and GSH levels were observed in plasma of CKD patients with cognitive dysfunction when compared to healthy, CKD without cognitive dysfunction and normocytic normochromic anemic subjects. Results suggest that elevated plasma oxidative stress and Aβ were seen in CKD patients with cognitive dysfunction may be attributed to pathological changes within the brain.

  19. Plasma exosomal α-synuclein is likely CNS-derived and increased in Parkinson’s disease

    PubMed Central

    Cook, Travis J.; Bullock, Kristin M.; Zhao, Yanchun; Ginghina, Carmen; Li, Yanfei; Aro, Patrick; Dator, Romel; He, Chunmei; Hipp, Michael J.; Zabetian, Cyrus P.; Peskind, Elaine R.; Hu, Shu-Ching; Quinn, Joseph F.; Galasko, Douglas R.; Banks, William A.; Zhang, Jing

    2014-01-01

    Extracellular α-synuclein is important in the pathogenesis of Parkinson disease (PD) and also as a potential biomarker when tested in the cerebrospinal fluid (CSF). The performance of blood plasma or serum α-synuclein as a biomarker has been found to be inconsistent and generally ineffective, largely due to the contribution of peripherally derived α-synuclein. In this study, we discovered, via an intracerebroventricular injection of radiolabeled α-synuclein into mouse brain, that CSF α-synuclein was readily transported to blood, with a small portion being contained in exosomes that are relatively specific to the central nervous system (CNS). Consequently, we developed a technique to evaluate the levels of α-synuclein in these exosomes in individual plasma samples. When applied to a large cohort of clinical samples (267 PD, 215 controls), we found that in contrast to CSF α-synuclein concentrations, which are consistently reported to be lower in PD patients compared to controls, the levels of plasma exosomal α-synuclein were substantially higher in PD patients, suggesting an increased efflux of the protein to the peripheral blood of these patients. Furthermore, although no association was observed between plasma exosomal and CSF α-synuclein, a significant correlation between plasma exosomal α-synuclein and disease severity (r=0.176, p=0.004) was observed, and the diagnostic sensitivity and specificity achieved by plasma exosomal α-synuclein were comparable to those determined by CSF α-synuclein. Further studies are clearly needed to elucidate the mechanism involved in the transport of CNS α-synuclein to the periphery, which may lead to a more convenient and robust assessment of PD clinically. PMID:24997849

  20. Locomotor activity and tissue levels following acute ...

    EPA Pesticide Factsheets

    Pyrethroids produce neurotoxicity that depends, in part, on the chemical structure. Common behavioral effects include locomotor activity changes and specific toxic syndromes (types I and II). In general these neurobehavioral effects correlate well with peak internal dose metrics. Products of cyhalothrin, a type II pyrethroid, include mixtures of isomers (e.g., λ-cyhalothrin) as well as enriched active isomers (e.g., γ-cyhalothrin). We measured acute changes in locomotor activity in adult male rats and directly correlated these changes to peak brain and plasma concentrations of λ- and γ-cyhalothrin using a within-subject design. One-hour locomotor activity studies were conducted 1.5 h after oral gavage dosing, and immediately thereafter plasma and brains were collected for analyzing tissue levels using LC/MS/MS methods. Both isomers produced dose-related decreases in activity counts, and the effective dose range for γ-cyhalothrin was lower than for λ-cyhalothrin. Doses calculated to decrease activity by 50% were 2-fold lower for the γ-isomer (1.29 mg/kg) compared to λ-cyhalothrin (2.65 mg/kg). Salivation, typical of type II pyrethroids, was also observed at lower doses of γ-cyhalothrin. Administered dose correlated well with brain and plasma concentrations, which furthermore showed good correlations with activity changes. Brain and plasma levels were tightly correlated across doses. While γ-cyhalothrin was 2-fold more potent based on administ

  1. A multi-matrix HILIC-MS/MS method for the quantitation of endogenous small molecule neurological biomarker N-acetyl aspartic acid (NAA).

    PubMed

    Sangaraju, Dewakar; Shahidi-Latham, Sheerin K; Burgess, Braydon L; Dean, Brian; Ding, Xiao

    2017-06-05

    A multi-matrix hydrophilic interaction liquid chromatography tandem mass spectrometric method (HILIC-MS/MS) was developed for the quantitation of N-Acetyl Aspartic acid (NAA) using stable isotope labeled internal standard, D3-NAA in various biological matrices such as human plasma, human CSF, mouse plasma, brain and spinal cord. A high throughput 96-well plate format supported liquid extraction (SLE) procedure was developed and used for sample preparation. Mass spectrometric analysis of NAA was performed using selected reaction monitoring transitions in positive electrospray ionization mode. As NAA is endogenously present, a surrogate matrix approach was used for quantitation of NAA and the method was qualified over linear calibration curve range of 0.01-10μg/mL. Intra and inter assay precision indicated by percent relative standard deviation (%RSD) was less than 7.1% for low, medium, medium high and high QCs. The accuracy of the method ranged from 92.6-107.0% of nominal concentration for within-run and between-run for the same QCs. Extraction recovery of NAA and D3-NAA was greater than 76%. Stability of NAA was established in the above biological matrices under bench top (RT, 5h), freeze thaw (-20±10°C, 3 cycles) and moues/human plasma sample collection (Wet ice, RT) conditions. HILIC-MS/MS method was then used to quantify and compare the NAA levels in human plasma and CSF of ALS patients versus control human subjects. NAA CSF levels in control human subjects (73.3±31.0ng/mL,N=10) were found to be slightly higher than ALS patients (46.1±22.6ng/mL, N=10) (P=0.04). No differences were observed in NAA plasma levels in human control subjects (49.7±13.8ng/mL,N=9) as compared to ALS patients (49.6±8.1ng/mL, N=10) (P=0.983). NAA endogenous concentrations in mouse plasma, brain and spinal cord were found to be 243.8±56.8ng/mL (N=6), 1029.8±115.2μg/g tissue weight (N=5) and 487.6±178.4μg/g tissue weight (N=5) respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Brain serotonin content - Increase following ingestion of carbohydrate diet.

    NASA Technical Reports Server (NTRS)

    Fernstrom, J. D.; Wurtman, R. J.

    1971-01-01

    In the rat, the injection of insulin or the consumption of carbohydrate causes sequential increases in the concentrations of tryptophan in the plasma and the brain and of serotonin in the brain. Serotonin-containing neurons may thus participate in systems whereby the rat brain integrates information about the metabolic state in its relation to control of homeostasis and behavior.

  3. Investigation of lithium distribution in the rat brain ex vivo using lithium-7 magnetic resonance spectroscopy and imaging at 17.2 T.

    PubMed

    Stout, Jacques; Hanak, Anne-Sophie; Chevillard, Lucie; Djemaï, Boucif; Risède, Patricia; Giacomini, Eric; Poupon, Joël; Barrière, David André; Bellivier, Frank; Mégarbane, Bruno; Boumezbeur, Fawzi

    2017-11-01

    Lithium is the first-line mood stabilizer for the treatment of patients with bipolar disorder. However, its mechanisms of action and transport across the blood-brain barrier remain poorly understood. The contribution of lithium-7 magnetic resonance imaging ( 7 Li MRI) to investigate brain lithium distribution remains limited because of the modest sensitivity of the lithium nucleus and the expected low brain concentrations in humans and animal models. Therefore, we decided to image lithium distribution in the rat brain ex vivo using a turbo-spin-echo imaging sequence at 17.2 T. The estimation of lithium concentrations was performed using a phantom replacement approach accounting for B 1 inhomogeneities and differential T 1 and T 2 weighting. Our MRI-derived lithium concentrations were validated by comparison with inductively coupled plasma-mass spectrometry (ICP-MS) measurements ([Li] MRI  = 1.18[Li] MS , R = 0.95). Overall, a sensitivity of 0.03 mmol/L was achieved for a spatial resolution of 16 μL. Lithium distribution was uneven throughout the brain (normalized lithium content ranged from 0.4 to 1.4) and was mostly symmetrical, with consistently lower concentrations in the metencephalon (cerebellum and brainstem) and higher concentrations in the cortex. Interestingly, low lithium concentrations were also observed close to the lateral ventricles. The average brain-to-plasma lithium ratio was 0.34 ± 0.04, ranging from 0.29 to 0.39. Brain lithium concentrations were reasonably correlated with plasma lithium concentrations, with Pearson correlation factors ranging from 0.63 to 0.90. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Functional consequences of an arginine180 to glutamine mutation in factor IX Hilo.

    PubMed

    Monroe, D M; McCord, D M; Huang, M N; High, K A; Lundblad, R L; Kasper, C K; Roberts, H R

    1989-05-01

    Factor IX Hilo is a variant factor IX molecule that has no detectable coagulant activity. The defect in factor IX Hilo arises from a point mutation in the gene such that in the protein Arg180 is converted to a Gln. Activation of factor IX Hilo by factor Xla was monitored using the fluorescent active site probe p-aminobenzamidine. Normal factor IX showed complete activation in one hour as determined by measuring the increase in fluorescence when p-aminobenzamidine bound to activated factor IX. Factor IX Hilo showed no increase in fluorescence even after 24 hours, indicating that the active site was not exposed. Polyacrylamide gel electrophoresis showed that factor IX Hilo was cleaved to a light chain plus a larger peptide with a molecular weight equivalent to a heavy chain covalently linked to an activation peptide. Amino terminal amino acid sequencing of factor IX Hilo cleaved by factor Xla showed cleavage only at Arg145-Ala146, indicating that the Gln180-Val181 bond was not cleaved and that the active site was thus not exposed. The presence of factor IX Hilo in patient plasma was responsible for the patient having a very long ox brain prothrombin time characteristic of severe hemophilia Bm. Patient plasma had an ox brain prothrombin time of 100 seconds using a Thrombotest kit, significantly prolonged over the normal control value of 45 seconds. When factor IX Hilo was depleted from patient plasma using an immunoaffinity column, the ox brain prothrombin time decreased to 41 seconds. When factor IX Hilo was added back to depleted patient plasma, to normal plasma depleted of factor IX by the same affinity column, or to plasma from a CRM- hemophilia B patient, the ox brain prothrombin time was significantly prolonged. We conclude that the Arg180 to Gln mutation in factor IX Hilo results in a molecule that cannot be activated by factor Xla. Further, our data suggest that the mutation results in a molecule that interacts with components of the extrinsic pathway to give a prolonged ox brain prothrombin time.

  5. Suppression of phase mixing in drift-kinetic plasma turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, J. T., E-mail: joseph.parker@stfc.ac.uk; OCIAM, Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG; Brasenose College, Radcliffe Square, Oxford OX1 4AJ

    2016-07-15

    Transfer of free energy from large to small velocity-space scales by phase mixing leads to Landau damping in a linear plasma. In a turbulent drift-kinetic plasma, this transfer is statistically nearly canceled by an inverse transfer from small to large velocity-space scales due to “anti-phase-mixing” modes excited by a stochastic form of plasma echo. Fluid moments (density, velocity, and temperature) are thus approximately energetically isolated from the higher moments of the distribution function, so phase mixing is ineffective as a dissipation mechanism when the plasma collisionality is small.

  6. An easy-to-use liquid chromatography assay for the analysis of lamotrigine in rat plasma and brain samples using microextraction by packed sorbent: Application to a pharmacokinetic study.

    PubMed

    Ventura, Sandra; Rodrigues, Márcio; Pousinho, Sarah; Falcão, Amílcar; Alves, Gilberto

    2016-11-01

    A simple and rapid high-performance liquid chromatography method with diode-array detection (HPLC-DAD) using microextraction by packed sorbent (MEPS) during the sample preparation step was developed and validated to quantify lamotrigine (LTG) in rat plasma and brain samples. MEPS variables such as pH, number of draw-eject cycles, and washing and desorption conditions were optimized. The chromatographic resolution of LTG and chloramphenicol, used as internal standard (IS), was accomplished in less than 5min on a C18 column, at 35°C, using an isocratic elution with acetonitrile (13%), methanol (13%) and water-triethylamine (99.7:0.3, v/v; pH 6.0) pumped at a flow rate of 1mL/min. Detection was performed at 215nm. Calibration curves were linear over the range of 0.1-20μg/mL (r 2 ≥0.9947) for LTG in both rat plasma and brain homogenate samples. The intra and interday imprecision did not exceed 8.6% and the intra and interday inaccuracy ranged from -8.1 to 13.5%. LTG was extracted from rat plasma and brain homogenate samples with an average absolute recovery ranging from 68.0 to 86.7%, and its stability was demonstrated in the assayed conditions. No interferences were observed at the retention times of the analyte (LTG) and IS. To the best of our knowledge, this is the first bioanalytical assay that uses MEPS procedure for the determination of LTG not only in rat plasma but also in tissue (brain) samples. This novel method was successfully applied to a preliminary pharmacokinetic study in rats and it seems to be a cost-effective tool to support non-clinical pharmacokinetic-based studies involving LTG treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Influence of altered gravity on brain cellular energy and plasma membrane metabolism of developing lower aquatic vertebrates

    NASA Astrophysics Data System (ADS)

    Slenzka, K.; Appel, R.; Kappel, Th.; Rahmann, H.

    Biochemical analyses of the brain of cichlid fish larvae, exposed for 7 days to increased acceleration of 3g (hyper-g), revealed an increase in energy availability (succinate dehydrogenase activity, SDH), and in mitochondrial energy transformation (creatine kinase, Mi_a-CK), but no changes in an energy consumptive process (high-affinity Ca^2+-ATPase). Brain glucose-6-phosphate dehydrogenase (G6PDH) of developing fish was previously found to be increased after hyper-g exposure. Three respectively 5 hours thereafter dramatic fluctuations in enzyme activity were registered. Analysing the cytosolic or plasma membrane-located brain creatine kinase (BB-CK) of clawed toad larvae after long-term hyper-g exposure a significant increase in enzyme activity was demonstrated, whereas the activity of a high affinity Ca^2+-ATPase remained unaffected.

  8. Biochemical and hematological effects of lead ingestion in nestling American kestrels (Falco sparverius)

    USGS Publications Warehouse

    Hoffman, D.J.; Franson, J.C.; Pattee, O.H.; Bunck, C.M.; Murray, H.C.

    1985-01-01

    1. One-day old American kestrel (Faico sparverius) nestlings were orally dosed daily with 5 μl/g of corn oil (controls), 25, 125 or 625 mg/kg of metallic lead in corn oil for 10 days.2. Forty per cent of the nestlings receiving 625 mg/kg of lead died after 6 days and growth rates were significantly depressed in the two highest lead dosed groups. At 10 days hematocrit values were significantly lower in the two highest lead treated groups, and hemoglobin content and red blood cell (δ-aminolevulinic acid dehydratase (ALAD) activity was depressed in all lead treated groups. Plasma creatine phosphokinase decreased in the two highest treatment groups.3. Brain, liver and kidney ALAD activities, brain RNA to protein ratio and liver protein concentration decreased after lead exposure whereas liver DNA, DNA to RNA ratio and DNA to protein ratio increased. Brain monoamine oxidase and ATPase were not significantly altered.4. Measurements of the ontogeny of hematological variants and enzymes in normal development, using additional untreated nestlings, revealed decreases in red blood cell ALAD, plasma aspartate amino transferase, lactate dehydrogenase, brain DNA and RNA and liver DNA, whereas hematocrit, hemoglobin, plasma alkaline phosphatase, brain monoamine oxidase, brain ALAD and liver ALAD increased during the first 10 days of posthatching development.5. Biochemical and hematological alterations were more severe than those reported in adult kestrels or precocial young birds exposed to lead. Alterations may be due in part to delayed development.

  9. Cholinesterase activity in Japanese quail dusted with carbaryl

    USGS Publications Warehouse

    Hill, E.F.

    1979-01-01

    Japanese quail (Coturnix coturnix japonica) were dusted with 5% carbaryl to determine if this topical treatment would alter plasma and brain cholinesterase activities. Within 6 hours after dusting, plasma cholinesterase activity was depressed compared with controls, the depression averaging 20% for females and 27% for males. By 24 hours the cholinesterase activity of females had returned to normal, but the cholinesterase activity of males remained depressed. Brain cholinesterase activity was not affected by the treatment, and there were no overt toxic signs.

  10. N-(Pivaloyloxy)alkoxy-carbonyl Prodrugs of the Glutamine Antagonist 6-Diazo-5-oxo-l-norleucine (DON) as a Potential Treatment for HIV Associated Neurocognitive Disorders.

    PubMed

    Nedelcovych, Michael T; Tenora, Lukáš; Kim, Boe-Hyun; Kelschenbach, Jennifer; Chao, Wei; Hadas, Eran; Jančařík, Andrej; Prchalová, Eva; Zimmermann, Sarah C; Dash, Ranjeet P; Gadiano, Alexandra J; Garrett, Caroline; Furtmüller, Georg; Oh, Byoungchol; Brandacher, Gerald; Alt, Jesse; Majer, Pavel; Volsky, David J; Rais, Rana; Slusher, Barbara S

    2017-08-24

    Aberrant excitatory neurotransmission associated with overproduction of glutamate has been implicated in the development of HIV-associated neurocognitive disorders (HAND). The glutamine antagonist 6-diazo-5-oxo-l-norleucine (DON, 14) attenuates glutamate synthesis in HIV-infected microglia/macrophages, offering therapeutic potential for HAND. We show that 14 prevents manifestation of spatial memory deficits in chimeric EcoHIV-infected mice, a model of HAND. 14 is not clinically available, however, because its development was hampered by peripheral toxicities. We describe the synthesis of several substituted N-(pivaloyloxy)alkoxy-carbonyl prodrugs of 14 designed to circulate inert in plasma and be taken up and biotransformed to 14 in the brain. The lead prodrug, isopropyl 6-diazo-5-oxo-2-(((phenyl(pivaloyloxy)methoxy)carbonyl)amino)hexanoate (13d), was stable in swine and human plasma but liberated 14 in swine brain homogenate. When dosed systemically in swine, 13d provided a 15-fold enhanced CSF-to-plasma ratio and a 9-fold enhanced brain-to-plasma ratio relative to 14, opening a possible clinical path for the treatment of HAND.

  11. Complex Actions of Estradiol-3-Sulfate in Late Gestation Fetal Brain

    PubMed Central

    Winikor, Jared; Schlaerth, Christine; Rabaglino, Maria Belen; Cousins, Roderick; Sutherland, Monique

    2011-01-01

    The most abundant form of estrogen circulating in fetal plasma is sulfo-conjugated estrogen; for example, estradiol-3-sulfate (E2SO4) is more highly abundant than estradiol (E2). The present study investigated the ontogeny of the deconjugating (steroid sulfatase [STS]) and conjugating (estrogen sulfotransferase [STF]) enzymes in ovine fetal brain and tested the hypothesis that treatment with E2SO4 would alter the expression of one or both enzymes. Steroid sulfatase was more highly expressed than STF, and both changed as a function of gestational age. Estradiol-3-sulfate infused intracerebroventricularly (icv) significantly increased plasma adrenocorticotropic hormone (ACTH) and cortisol concentrations. Plasma E2 and E2SO4 were increased, and brain expression of estrogen receptor α was decreased. The proteins STS and STF were up- and downregulated, respectively. Pituitary proopiomelanocortin (POMC) and follicle-stimulating hormone (FSH) and hypothalamic corticotrophin-releasing hormone (CRH) messenger RNA (mRNA) was decreased. We conclude that E2SO4 has complex actions on the fetal brain, which might involve deconjugation by STS, but that the net result of direct E2SO4 icv infusion is more complex than can be accounted for by infusion of E2 alone. PMID:21273638

  12. On the Transport and Radiative Properties of Plasmas with Small-Scale Electromagnetic Fluctuations

    NASA Astrophysics Data System (ADS)

    Keenan, Brett D.

    Plasmas with sub-Larmor-scale ("small-scale") electromagnetic fluctuations are a feature of a wide variety of high-energy-density environments, and are essential to the description of many astrophysical/laboratory plasma phenomena. Radiation from particles, whether they be relativistic or non-relativistic, moving through small-scale electromagnetic turbulence has spectral characteristics distinct from both synchrotron and cyclotron radiation. The radiation, carrying information on the statistical properties of the turbulence, is also intimately related to the particle diffusive transport. We investigate, both theoretically and numerically, the transport of non-relativistic and transrelativistic particles in plasmas with high-amplitude isotropic sub-Larmor-scale magnetic turbulence---both with and without a mean field component---and its relation to the spectra of radiation simultaneously produced by these particles. Furthermore, the transport of particles through small-scale electromagnetic turbulence---under certain conditions---resembles the random transport of particles---via Coulomb collisions---in collisional plasmas. The pitch-angle diffusion coefficient, which acts as an effective "collision" frequency, may be substantial in these, otherwise, collisionless environments. We show that this effect, colloquially referred to as the plasma "quasi-collisionality", may radically alter the expected radiative transport properties of candidate plasmas. We argue that the modified magneto-optic effects in these plasmas provide an attractive, novel, diagnostic tool for the exploration and characterization of small-scale electromagnetic turbulence. Lastly, we speculate upon the manner in which quasi-collisions may affect inertial confinement fusion (ICF), and other laser-plasma experiments. Finally, we show that mildly relativistic jitter radiation, from laser-produced plasmas, may offer insight into the underlying electromagnetic turbulence. Here we investigate the prospects for, and demonstrate the feasibility of, such direct radiative diagnostics for mildly relativistic, solid-density laser plasmas produced in lab experiments. In effect, we demonstrate how the diffusive and radiative properties of plasmas with small-scale, turbulent, electromagnetic fluctuations may serve as a powerful tool for the diagnosis of laboratory, astrophysical, and space plasmas.

  13. A mathematical model of a recombinant humanized anti-cocaine monoclonal antibody's effects on cocaine pharmacokinetics in mice.

    PubMed

    Wetzel, Hanna N; Zhang, Tongli; Norman, Andrew B

    2017-09-01

    A recombinant humanized anti-cocaine monoclonal antibody (mAb), h2E2, is at an advanced stage of pre-clinical development as an immunotherapy for cocaine abuse. It is hypothesized that h2E2 binds to and sequesters cocaine in the blood. A three-compartment model of the effects of h2E2 on cocaine's distribution was constructed. The model assumes that h2E2 binds to cocaine and that the h2E2-cocaine complex does not enter the brain but distributes between the central and peripheral compartments. Free cocaine is eliminated from both the central and peripheral compartments, and h2E2 and the h2E2-cocaine complex are eliminated from the central compartment only. This model was tested against a new dataset measuring cocaine concentrations in the brain and plasma over 1h in the presence and absence of h2E2. The mAb significantly increased plasma cocaine concentrations with a concomitant significant decrease in brain concentration. Plasma concentrations declined over the 1-hour sampling period in both groups. With a set of parameters within reasonable physiological ranges, the three-compartment model was able to qualitatively and quantitatively simulate the increased plasma concentration in the presence of the antibody and the decreased peak brain concentration in the presence of antibody. Importantly, the model explained the decline in plasma concentrations over time as distribution of the cocaine-h2E2 complex into a peripheral compartment. This model will facilitate the targeting of ideal mAb PK/PD properties thus accelerating the identification of lead candidate anti-drug mAbs. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Alteration in plasma corticosterone levels following long term oral administration of lead produces depression like symptoms in rats.

    PubMed

    Haider, Saida; Saleem, Sadia; Tabassum, Saiqa; Khaliq, Saima; Shamim, Saima; Batool, Zehra; Parveen, Tahira; Inam, Qurat-ul-ain; Haleem, Darakhshan J

    2013-03-01

    Lead toxicity is known to induce a broad range of physiological, biochemical and behavioral dysfunctions that may result in adverse effects on several organs, including the central nervous system. Long-term exposure to low levels of lead (Pb(2+)) has been shown to produce behavioral deficits in rodents and humans by affecting hypothalamic-pituitary-adrenal (HPA) axis. These deficits are thought to be associated with altered brain monoamine neurotransmission and due to changes in glucocorticoids levels. This study was designed to investigate the effects of Pb(2+)exposure on growth rate, locomotor activity, anxiety, depression, plasma corticosterone and brain serotonin (5-HT) levels in rats. Rats were exposed to lead in drinking water (500 ppm; lead acetate) for 5 weeks. The assessment of depression was done using the forced swimming test (FST). Estimation of brain 5-HT was determined by high-performance liquid chromatography with electrochemical detection. Plasma corticosterone was determined by spectrofluorimetric method. The present study showed that long term exposure to Pb(2+) significantly decreased the food intake followed by the decrease in growth rate in Pb(2+)exposed rats as compared to control group. No significant changes in open field activity were observed following Pb(2+)exposure while significant increase in anxiogenic effect was observed. Increased plasma corticosterone and decreased 5-HT levels were exhibited by Pb(2+)exposed rats as compared to controls. A significant increase in depressive like symptoms was exhibited by Pb(2+)exposed rats as compared to control rats. The results are discussed in the context of Pb(2+) inducing a stress-like response in rats leading to changes in plasma corticosterone and brain 5-HT levels via altering tryptophan pyrrolase activity.

  15. Pharmacokinetics and Metabolism of 4R-Cembranoid.

    PubMed

    Vélez-Carrasco, Wanda; Green, Carol E; Catz, Paul; Furimsky, Anna; O'Loughlin, Kathleen; Eterović, Vesna A; Ferchmin, P A

    2015-01-01

    4R-cembranoid (4R) is a natural cyclic diterpenoid found in tobacco leaves that displays neuroprotective activity. 4R protects against NMDA, paraoxon (POX), and diisopropylfluorophosphate (DFP) damage in rat hippocampal slices and against DFP in rats in vivo. The purpose of this study was to examine the metabolism and pharmacokinetics of 4R as part of its preclinical development as a neuroprotective drug. 10 µM 4R was found to be very stable in plasma for up to 1 hr incubation. 4R metabolism in human microsomes was faster than in the rat. Ten metabolites of 4R were detected in the microsomal samples; 6 dihydroxy and 4 monohydroxy forms of 4R. Male rats received a single dose of 4R at 6 mg/kg i.v., i.m., or s.c. The i.v. group had the highest plasma concentration of 1017 ng/mL. The t1/2 was 36 min and reached the brain within 10 min. The brain peak concentration was 6516 ng/g. The peak plasma concentration in the i.m. group was 163 ng/mL compared to 138 ng/mL in the s.c. group. The t1/2 of 4R after i.m. and s.c. administration was approximately 1.5 hr. The brain peak concentration was 329 ng/g in the i.m. group and 323 ng/g for the s.c. group. The brain to plasma ratio in the i.v. group was 6.4, reached 10 min after dose, whereas in the i.m. and s.c. groups was 2.49 and 2.48, respectively, at 90 min after dose. Our data show that 4R crosses the BBB and concentrates in the brain where it exerts its neuroprotective effect.

  16. Pharmacokinetics and Metabolism of 4R-Cembranoid

    PubMed Central

    Vélez-Carrasco, Wanda; Green, Carol E.; Catz, Paul; Furimsky, Anna; O’Loughlin, Kathleen; Eterović, Vesna A.; Ferchmin, P. A.

    2015-01-01

    4R-cembranoid (4R) is a natural cyclic diterpenoid found in tobacco leaves that displays neuroprotective activity. 4R protects against NMDA, paraoxon (POX), and diisopropylfluorophosphate (DFP) damage in rat hippocampal slices and against DFP in rats in vivo. The purpose of this study was to examine the metabolism and pharmacokinetics of 4R as part of its preclinical development as a neuroprotective drug. 10 µM 4R was found to be very stable in plasma for up to 1 hr incubation. 4R metabolism in human microsomes was faster than in the rat. Ten metabolites of 4R were detected in the microsomal samples; 6 dihydroxy and 4 monohydroxy forms of 4R. Male rats received a single dose of 4R at 6 mg/kg i.v., i.m., or s.c. The i.v. group had the highest plasma concentration of 1017 ng/mL. The t1/2 was 36 min and reached the brain within 10 min. The brain peak concentration was 6516 ng/g. The peak plasma concentration in the i.m. group was 163 ng/mL compared to 138 ng/mL in the s.c. group. The t1/2 of 4R after i.m. and s.c. administration was approximately 1.5 hr. The brain peak concentration was 329 ng/g in the i.m. group and 323 ng/g for the s.c. group. The brain to plasma ratio in the i.v. group was 6.4, reached 10 min after dose, whereas in the i.m. and s.c. groups was 2.49 and 2.48, respectively, at 90 min after dose. Our data show that 4R crosses the BBB and concentrates in the brain where it exerts its neuroprotective effect. PMID:25811857

  17. Primary Blast-Induced Traumatic Brain Injury in Rats Leads to Increased Prion Protein in Plasma: A Potential Biomarker for Blast-Induced Traumatic Brain Injury

    PubMed Central

    Pham, Nam; Sawyer, Thomas W.; Wang, Yushan; Jazii, Ferdous Rastgar; Vair, Cory

    2015-01-01

    Abstract Traumatic brain injury (TBI) is deemed the “signature injury” of recent military conflicts in Afghanistan and Iraq, largely because of increased blast exposure. Injuries to the brain can often be misdiagnosed, leading to further complications in the future. Therefore, the use of protein biomarkers for the screening and diagnosis of TBI is urgently needed. In the present study, we have investigated the plasma levels of soluble cellular prion protein (PrPC) as a novel biomarker for the diagnosis of primary blast-induced TBI (bTBI). We hypothesize that the primary blast wave can disrupt the brain and dislodge extracellular localized PrPC, leading to a rise in concentration within the systemic circulation. Adult male Sprague–Dawley rats were exposed to single pulse shockwave overpressures of varying intensities (15-30 psi or 103.4–206.8 kPa] using an advanced blast simulator. Blood plasma was collected 24 h after insult, and PrPC concentration was determined with a modified commercial enzyme-linked immunosorbent assay (ELISA) specific for PrPC. We provide the first report that mean PrPC concentration in primary blast exposed rats (3.97 ng/mL±0.13 SE) is significantly increased compared with controls (2.46 ng/mL±0.14 SE; two tailed test p<0.0001). Furthermore, we report a mild positive rank correlation between PrPC concentration and increasing blast intensity (psi) reflecting a plateaued response at higher pressure magnitudes, which may have implications for all military service members exposed to blast events. In conclusion, it appears that plasma levels of PrPC may be a novel biomarker for the detection of primary bTBI. PMID:25058115

  18. Prolonged effect of stress at weaning on the brain serotonin metabolism and sexuality of female rats.

    PubMed

    Tekes, K; Hantos, M; Gyenge, M; Karabélyos, Cs; Csaba, G

    2006-12-01

    Weanling female rats were stressed (by water and food deprivation for two days) and three months later the following indexes were studied: 5-HT and 5-HIAA levels in five brain regions, blood plasma and cerebrospinal fluid (CSF), sexual activity and nocistatin level of the plasma and CSF. The 5-HIAA content of hypothalamus and brainstem was significantly decreased (in the brainstem with one third) and in the striatum significantly increased. Plasma nocistatin level was significantly increased. Meyerson index and lordosis quotient were similar to control, but the estrus frequency almost doubled in the stressed animals. Much more defense reactions were observed in the stressed females during trials of mating. The results demonstrate that, 1) the perinatal period is not only sensitive to the remote-effects of stress but later could also be stress-sensitive critical periods, and 2) the continuously differentiating (e.g. bone marrow) cells are sensitive to late imprinting by stress, as well as to the brain and the sexual system.

  19. Recovery of cholinesterase activity in mallard ducklings administered organophosphorus pesticides

    USGS Publications Warehouse

    Fleming, W.J.; Bradbury, S.P.

    1981-01-01

    Oral doses of the organophosphorus pesticides acephate, dicrotophos, fensulfothion, fonofos, malathion, and parathion were administered to mallard ducklings (Anas platyrhynchos), and brain and plasma cholinesterase (ChE) activities were determined for up to 77 d after dosing. In vivo recovery of brain ChE activity to within 2 standard deviations of the mean activity of undosed birds occurred within 8 d, after being depressed an average of 25-58% at 24 h after dosing. In vivo recovery of plasma ChE appeared as fast as or faster than that of brain, but the pattern of recovery was more erratic and therefore statistical comparison with brain ChE recovery was not attempted. In vitro tests indicated that the potential for dephosphorylation to contribute to in vivo recovery of inhibited brain ChE differed among chemical treatments. Some ducklings died as a result of organophosphate dosing. In an experiment in which ducklings within each treatment group received the same dose (mg/kg), the brain ChE activity in birds that died was less than that in birds that survived. Brain ChE activities in ducklings that died were significantly different among pesticide treatments: fensulfothion > parathion> acephate > malathion (p < 0.05).

  20. Influence of acute and chronic treadmill exercise on rat plasma lactate and brain NPY, L-ENK, DYN A1-13.

    PubMed

    Chen, Jia-Xu; Zhao, Xin; Yue, Guang-Xin; Wang, Zhu-Feng

    2007-02-01

    This study was designed to investigate the effect of acute and chronic high-intensity treadmill exercise on changes in plasma lactate and brain neuropeptide (NPY), leucine-enkephalin (L-ENK), and dynorphin A(1-13) (DYN A(1-13)). Avidin-biotin complex (ABC) immunohistochemistry and image pattern analysis were used to observe the effect of chronic (total 7 weeks) and acute treadmill exercise (an initial speed of 15 m min(-1) gradually increased to 35 m min(-1) with 0 degrees, 20-25 min per day duration) on the changes of NPY, L-ENK, and DYN A(1-13) in different areas of rat brain. Plasma lactate was also measured in response to such exercise. Compared with preexercise control (P < 0.01), plasma lactate concentration significantly increased in the immediate postexercise; but it returned to the normal level soon after the 30 min postexercise. The content of NPY in paraventricular (PVN), dorsomedial (DMN), and ventromedial (VMN) hypothalamic nuclei continued to increase in 0, 30, and 180 min postexercise compared with preexercise control (P < 0.01). The content of L-ENK in caudate-putamen (CPu) significantly increased in the immediate postexercise compared with preexercise control (P < 0.01), but it gradually returned to the normal level after the 180 min postexercise. However, the content of DYN A(1-13) in PVN rose substantially only in 30 min postexercise in comparison with the preexercise control (P < 0.01). Thus, different changes of NPY, L-ENK, and DYN A(1-13) in response to such high-intensity exercise depend on the brain region and the time examined, especially, the contents of NPY in different brain regions continuously remain at a high level after such high-intensity exercise. And this high level might reduce energy expenditure and thus contribute to the stimulation of brain NPY neurons.

  1. Disposition in the rat of buprenorphine administered parenterally and as a subcutaneous implant.

    PubMed

    Pontani, R B; Vadlamani, N L; Misra, A L

    1985-04-01

    Disposition of [15, 16(n)-3H]buprenorphine in the rat has been investigated after a single 0.2 mg/kg i.v. bolus dose and continuous administration via a s.c. implantable long-acting delivery system. After the i.v. injection, the tri-exponential decay of drug from brain occurred with t1/2 values of 0.6, 2.3 and 7.2 h, respectively (plasma t1/2 0.5, 1.4 h, third phase not estimated due to sustained concn.) Decay of drug from another high-affinity binding site in brain occurred with t1/2 values of 1.1 and 68.7 h, respectively. Fat and lung had higher concn. than other tissues and plasma. No metabolites of drug were detected in brain. Unmetabolized drug excreted in urine and faeces one week after i.v. injection were 1.9 and 22.4% of dose, respectively, and 92% of the dose was accounted for in one week. Urinary metabolites (%) were: conjugated buprenorphine 0.9; norbuprenorphine (free 9.4, conjugated 5.2); tentative 6-O-desmethylnorbuprenorphine (free 5.4, conjugated 15.9). Peak plasma concn. of buprenorphine occurred four weeks after s.c. implantation of a long-acting 10 mg 3H-buprenorphine pellet, and apparent dissociation half-lives of drug from low- and high-affinity binding sites in brain were 4.6 and 6.8 weeks, respectively. Fat, spleen and skeletal muscle had higher concn. than other tissues and plasma. No significant difference in brain morphine concn. was observed in placebo and nonlabelled buprenorphine-pelleted animals after a 2 mg/kg i.v. challenge dose of 3H-morphine. This study emphasizes the importance of high-affinity binding of buprenorphine in brain and subsequent slow dissociation as a prime factor in its prolonged agonist/antagonist effects and higher potency than other narcotic agonists.

  2. Long-acting κ opioid antagonists nor-BNI, GNTI and JDTic: pharmacokinetics in mice and lipophilicity.

    PubMed

    Munro, Thomas A; Berry, Loren M; Van't Veer, Ashlee; Béguin, Cécile; Carroll, F Ivy; Zhao, Zhiyang; Carlezon, William A; Cohen, Bruce M

    2012-05-29

    Nor-BNI, GNTI and JDTic induce κ opioid antagonism that is delayed by hours and can persist for months. Other effects are transient. It has been proposed that these drugs may be slowly absorbed or distributed, and may dissolve in cell membranes, thus slowing elimination and prolonging their effects. Recent evidence suggests, instead, that they induce prolonged desensitization of the κ opioid receptor. To evaluate these hypotheses, we measured relevant physicochemical properties of nor-BNI, GNTI and JDTic, and the timecourse of brain and plasma concentrations in mice after intraperitoneal administration (using LC-MS-MS). In each case, plasma levels were maximal within 30 min and declined by >80% within four hours, correlating well with previously reported transient effects. A strong negative correlation was observed between plasma levels and the delayed, prolonged timecourse of κ antagonism. Brain levels of nor-BNI and JDTic peaked within 30 min, but while nor-BNI was largely eliminated within hours, JDTic declined gradually over a week. Brain uptake of GNTI was too low to measure accurately, and higher doses proved lethal. None of the drugs were highly lipophilic, showing high water solubility (> 45 mM) and low distribution into octanol (log D7.4 < 2). Brain homogenate binding was within the range of many shorter-acting drugs (>7% unbound). JDTic showed P-gp-mediated efflux; nor- BNI and GNTI did not, but their low unbound brain uptake suggests efflux by another mechanism. The negative plasma concentration-effect relationship we observed is difficult to reconcile with simple competitive antagonism, but is consistent with desensitization. The very slow elimination of JDTic from brain is surprising given that it undergoes active efflux, has modest affinity for homogenate, and has a shorter duration of action than nor-BNI under these conditions. We propose that this persistence may result from entrapment in cellular compartments such as lysosomes.

  3. HPLC analysis of para-aminosalicylic acid and its metabolite in plasma, cerebrospinal fluid and brain tissues

    PubMed Central

    Hong, Lan; Jiang, Wendy; Zheng, Wei; Zeng, Su

    2011-01-01

    Para-aminosalicylic acid (PAS), an approved drug for treatment of tuberculosis, is a promising therapeutic agent for treatment of manganese (Mn)-induced parkinsonian syndromes. Lack of a quantifying method, however, has hindered the clinical evaluation of its efficacy and thereupon new drug development. This study was aimed at developing a simple and effective method to quantify PAS and its major metabolite, N-acetyl-para-aminosalicylic acid (AcPAS), in plasma, cerebrospinal fluid (CSF) and tissues. Biological samples underwent one-step protein precipitation. The supernatant was fractionated on a reversed-phase C18 column with a gradient mobile system, followed by on-line fluorescence detection. The lower limits of quantification for both PAS and AcPAS were 50 ng/ml of plasma and 17 ng/g of tissues. The intra-day and inter-day precision values did not exceed 5% and 8%, respectively, in all three matrices. The method was used to quantify PAS and AcPAS in rat plasma and brain following a single iv injection of PAS. Data showed a greater amount of PAS than AcPAS in plasma, while a greater amount of AcPAS than PAS was found in brain tissues. The method has been proven to be sensitive, reproducible, and practically useful for laboratory and clinical investigations of PAS in treatment of Mn Parkinsonism. PMID:21159459

  4. MicroRNA-134 plasma levels before and after treatment with valproic acid for epilepsy patients

    PubMed Central

    Wang, Xiaofeng; Luo, Yifeng; Liu, Shuangxi; Tan, Liming; Wang, Sanhu; Man, Rongyong

    2017-01-01

    Background Temporal lobe epilepsy is the second most common neurological disorders characterized by recurrent spontaneous seizures. MicroRNAs play a vital role in regulating synaptic plasticity, brain development and post-transcriptional expression of proteins. In both animal models of epilepsy and human patients, miR-134, a brain-specific microRNA has recently been identified as a potential regulator of epileptogenesis. Methods microRNA identified as targets for the actions of valproic acid (VPA) are known to have important effects in brain function. In this study, 59 new-onset epilepsy patients and 20 controls matched by sex and age were enrolled. Patients with a score < 3 were allocated into the mild group, 3-5 into the moderate group and >5 into the severe group. The plasma miRNA-134 level was quantitatively measured using real-time PCR. Results Plasma miRNA-134 level in new-onset epilepsy patients was significantly up-regulated when compared with that in healthy controls, and then considerably down-regulated after oral intake of valproic acid medication. The up-regulated plasma miRNA-134 levels may be directly associated with the pathophysiology and severity of epilepsy. Conclusion Plasma miRNA-134 in epilepsy may be considered as a potential peripheral biomarker that responds to the incidence of epilepsy and associates with use of anti-epilepsy drugs. PMID:29069823

  5. Olympic boxing is associated with elevated levels of the neuronal protein tau in plasma.

    PubMed

    Neselius, Sanna; Zetterberg, Henrik; Blennow, Kaj; Randall, Jeffrey; Wilson, David; Marcusson, Jan; Brisby, Helena

    2013-01-01

    The aim of this study was to investigate if olympic (amateur) boxing is associated with elevation of brain injury biomarkers in peripheral blood compared to controls. Thirty olympic boxers competing in at least 47 bouts were compared to 25 controls. Blood was collected from the controls at one occasion and from the boxers within 1-6 days after a bout and after a rest period of at least 14 days. Tau concentration in plasma was determined using a novel single molecule ELISA assay and S-100B, glial fibrillary acidic protein, brain-derived neurotrophic factor and amyloid β 1-42 were determined using standard immunoassays. None of the boxers had been knocked-out during the bout. Plasma-tau was significantly increased in the boxers after a bout compared to controls (mean ± SD, 2.46 ± 5.10 vs. 0.79 ± 0.961 ng L(-1), p = 0.038). The other brain injury markers did not differ between the groups. Plasma-tau decreased significantly in the boxers after a resting period compared to after a bout (p = 0.030). Olympic boxing is associated with elevation of tau in plasma. The repetitive minimal head injury in boxing may lead to axonal injuries that can be diagnosed with a blood test.

  6. Pharmacokinetic modelling of interleukin-1 receptor antagonist in plasma and cerebrospinal fluid of patients following subarachnoid haemorrhage.

    PubMed

    Gueorguieva, Ivelina; Clark, Simon R; McMahon, Catherine J; Scarth, Sylvia; Rothwell, Nancy J; Tyrrell, Pippa J; Tyrell, Pippa J; Hopkins, Stephen J; Rowland, Malcolm

    2008-03-01

    What is already known about this subject? The naturally occurring interlukin-1 receptor antagonist (IL-1RA) markedly protects rodents against ischaemic, excitotoxic and traumatic brain injury, suggesting it may be of therapeutic value. When administered intravenously to patients soon after stroke, IL-1RA is safe and reduces the peripheral inflammatory response. However, IL-1RA is a large protein (17 kDa), which may limit brain penetration, thereby limiting its potential utility in brain injury. What this study adds. The purpose of these experiments was to determine the pharmacokinetics of IL-1RA in cerebrospinal fluid (CSF) of patients, to allow modelling that would aid development of therapeutic regimens. Peripherally administered IL-1RA crosses slowly into and out of the CSF of patients with subarachnoid haemorrhage and, at steady state, CSF IL-1RA concentration (range 115-886 ng ml(-1)) was similar to that found to be neuroprotective in rats (range 91-232 ng ml(-1)), although there was considerable variability among patients. However, there is a large concentration gradient of IL-1RA between plasma and CSF. These CSF:plasma data are consistent with very low permeation of IL-1RA into the CSF and elimination kinetics from it controlled by the volumetric turnover of CSF. The naturally occurring interlukin-1 receptor antagonist (IL-1RA) markedly protects rodents against ischaemic, excitotoxic and traumatic brain injury, suggesting it may be of therapeutic value. The aim was to determine the pharmacokinetics of IL-1RA in cerebrospinal fluid (CSF) of patients, to allow modelling that would aid development of therapeutic regimens. When administered intravenously to patients soon after stroke, IL-1RA is safe and reduces the peripheral inflammatory response. However, IL-1RA is a large protein (17 kDa), which may limit brain penetration, thereby limiting its potential utility in brain injury. In seven patients with subarchnoid haemorrhage (SAH), IL-1RA was administered by intravenous bolus, then infusion for 24 h, and both blood and CSF, via external ventricular drains, were sampled during and after stopping the infusion. Plasma steady-state concentrations were rapidly attained and maintained throughout the infusion, whereas CSF concentrations rose slowly towards a plateau during the 24-h infusion, reaching at best only 4% of that in plasma. Plasma kinetic parameters were within the literature range. Modelling of the combined data yielded rate constants entering and leaving the CSF of 0.0019 h(-1)[relative standard error (RSE) = 19%] and 0.1 h(-1) (RSE = 19%), respectively. Peripherally administered IL-1RA crosses slowly into and out of the CSF of patients with SAH. However, there is a large concentration gradient of IL-1RA between plasma and CSF. These CSF:plasma data are consistent with very low permeation of IL-1RA into the CSF and elimination kinetics from it controlled by the volumetric turnover of CSF.

  7. Kinetics and metabolism of physostigmine in rat in the presence of soman

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalique, A.; Somani, S.M.

    1986-03-01

    The effect of soman (105 ..mu..g/kg; 1.5 LD/sub 50/ s.c.) administration on pharmacokinetics and metabolism of /sup 3/H-physostigmine (Phy) was studied in rats. The rats were pretreated with either Phy 100 ..mu..g/kg i.v. or 500 ..mu..g/kg i.m., 5 or 15 min prior to soman administration. Phy and metabolites were determined in plasma and brain by HPLC. The half-life of Phy in plasma after i.v. administration was 15.5 min both in the presence and absence of soman, however the t/sub 1/2/ in brain was 11 min and 13 min, respectively. Clearance was 71.4 ml/min/kg in the Phy treated rat and 90more » ml/min/kg in the presence of soman. The half-life of Phy in plasma was 18 min and 17 min, and in brain 17 min and 15 min, respectively in the absence and presence of soman after i.m. dose of Phy. Clearance after Phy treatment was 85.2 mlmin/kg however in the presence of soman, it was 66.7 ml/min/kg. Phy was slightly less metabolized to eseroline and two other metabolites, M/sub 1/ and M/sub 2/, in the presence of soman after i.v. as well as after i.m. administration in plasma and brain. The soman administration does not change the pharmacokinetics of Phy by the two different dosages and routes of administration.« less

  8. RO4929097 and Whole-Brain Radiation Therapy or Stereotactic Radiosurgery in Treating Patients With Brain Metastases From Breast Cancer

    ClinicalTrials.gov

    2015-01-22

    Estrogen Receptor-negative Breast Cancer; Extensive Stage Small Cell Lung Cancer; HER2-negative Breast Cancer; HER2-positive Breast Cancer; Male Breast Cancer; Recurrent Breast Cancer; Recurrent Melanoma; Recurrent Non-small Cell Lung Cancer; Recurrent Small Cell Lung Cancer; Stage IV Breast Cancer; Stage IV Melanoma; Stage IV Non-small Cell Lung Cancer; Tumors Metastatic to Brain; Unspecified Adult Solid Tumor, Protocol Specific

  9. The BDNF Val66Met polymorphism and plasma brain-derived neurotrophic factor levels in Han Chinese heroin-dependent patients.

    PubMed

    Chen, Shiou-Lan; Lee, Sheng-Yu; Chang, Yun-Hsuan; Wang, Tzu-Yun; Chen, Shih-Heng; Chu, Chun-Hsien; Chen, Po See; Yang, Yen Kuang; Hong, Jau-Shyong; Lu, Ru-Band

    2015-02-02

    BDNF and its gene polymorphism may be important in synaptic plasticity and neuron survival, and may become a key target in the physiopathology of long-term heroin use. Thus, we investigated the relationships between brain-derived neurotrophic factor (BDNF) plasma concentrations and the BDNF Val66Met nucleotide polymorphism (SNP) in heroin-dependent patients. The pretreatment expression levels of plasma BDNF and the BDNF Val66Met SNP in 172 heroin-dependent patients and 102 healthy controls were checked. BDNF levels were significantly lower in patients (F = 52.28, p < 0.0001), but the distribution of the SNP was not significantly different. Nor were plasma BDNF levels significantly different between Met/Met, Met/Val, and Val/Val carriers in each group, which indicated that the BDNF Val66Met SNP did not affect plasma BDNF levels in our participants. In heroin-dependent patients, plasma BDNF levels were negatively correlated with the length of heroin dependency. Long-term (>15 years) users had significantly lower plasma BDNF levels than did short-term (<5 years) users. We conclude that plasma BDNF concentration in habitual heroin users are not affected by BDNF Val66Met gene variants, but by the length of the heroin dependency.

  10. The BDNF Val66Met polymorphism and plasma brain-derived neurotrophic factor levels in Han Chinese heroin-dependent patients

    PubMed Central

    Chen, Shiou-Lan; Lee, Sheng-Yu; Chang, Yun-Hsuan; Wang, Tzu-Yun; Chen, Shih-Heng; Chu, Chun-Hsien; Chen, Po See; Yang, Yen Kuang; Hong, Jau-Shyong; Lu, Ru-Band

    2015-01-01

    BDNF and its gene polymorphism may be important in synaptic plasticity and neuron survival, and may become a key target in the physiopathology of long-term heroin use. Thus, we investigated the relationships between brain-derived neurotrophic factor (BDNF) plasma concentrations and the BDNF Val66Met nucleotide polymorphism (SNP) in heroin-dependent patients. The pretreatment expression levels of plasma BDNF and the BDNF Val66Met SNP in 172 heroin-dependent patients and 102 healthy controls were checked. BDNF levels were significantly lower in patients (F = 52.28, p < 0.0001), but the distribution of the SNP was not significantly different. Nor were plasma BDNF levels significantly different between Met/Met, Met/Val, and Val/Val carriers in each group, which indicated that the BDNF Val66Met SNP did not affect plasma BDNF levels in our participants. In heroin-dependent patients, plasma BDNF levels were negatively correlated with the length of heroin dependency. Long-term (>15 years) users had significantly lower plasma BDNF levels than did short-term (<5 years) users. We conclude that plasma BDNF concentration in habitual heroin users are not affected by BDNF Val66Met gene variants, but by the length of the heroin dependency. PMID:25640280

  11. Evaluation of plasma biomarkers of inflammation in patients with maple syrup urine disease.

    PubMed

    Scaini, Giselli; Tonon, Tássia; Moura de Souza, Carolina F; Schuck, Patricia F; Ferreira, Gustavo C; Quevedo, João; Neto, João Seda; Amorim, Tatiana; Camelo, Jose S; Margutti, Ana Vitoria Barban; Hencke Tresbach, Rafael; Sperb-Ludwig, Fernanda; Boy, Raquel; de Medeiros, Paula F V; Schwartz, Ida Vanessa D; Streck, Emilio Luiz

    2018-05-08

    Maple syrup urine disease (MSUD) is an autosomal recessive inherited disorder that affects branched-chain amino acid (BCAA) catabolism and is associated with acute and chronic brain dysfunction. Recent studies have shown that inflammation may be involved in the neuropathology of MSUD. However, these studies have mainly focused on single or small subsets of proteins or molecules. Here we performed a case-control study, including 12 treated-MSUD patients, in order to investigate the plasmatic biomarkers of inflammation, to help to establish a possible relationship between these biomarkers and the disease. Our results showed that MSUD patients in treatment with restricted protein diets have high levels of pro-inflammatory cytokines [IFN-γ, TNF-α, IL-1β and IL-6] and cell adhesion molecules [sICAM-1 and sVCAM-1] compared to the control group. However, no significant alterations were found in the levels of IL-2, IL-4, IL-5, IL-7, IL-8, and IL-10 between healthy controls and MSUD patients. Moreover, we found a positive correlation between number of metabolic crisis and IL-1β levels and sICAM-1 in MSUD patients. In conclusion, our findings in plasma of patients with MSUD suggest that inflammation may play an important role in the pathogenesis of MSUD, although this process is not directly associated with BCAA blood levels. Overall, data reported here are consistent with the working hypothesis that inflammation may be involved in the pathophysiological mechanism underlying the brain damage observed in MSUD patients.

  12. Miglustat Improves Purkinje Cell Survival and Alters Microglial Phenotype in Feline Niemann-Pick Disease Type C

    PubMed Central

    Stein, Veronika M.; Crooks, Alexandra; Ding, Wenge; Prociuk, Maria; O’Donnell, Patricia; Bryan, Caroline; Sikora, Tracey; Dingemanse, Jasper; Vanier, Marie T.; Walkley, Steven U.; Vite, Charles H.

    2012-01-01

    Niemann-Pick disease type C (NPC disease) is an incurable cellular lipid trafficking disorder characterized by neurodegeneration and intralysosomal accumulation of cholesterol and glycosphingolipids. Treatment with miglustat, a small imino sugar that reversibly inhibits glucosylceramide synthase, which is necessary for glycosphingolipid synthesis, has been shown to benefit patients with NPC disease. The mechanism(s) and extent of brain cellular changes underlying this benefit are not understood. To investigate the basis of the efficacy of miglustat, cats with disease homologous to the juvenile-onset form of human NPC disease received daily miglustat orally beginning at 3 weeks of age. The plasma half-life of miglustat was 6.6 ± 1.1 hours, with a tmax, Cmax, and area under the plasma concentration-time curve of 1.7 ± 0.6 hours, 20.3 ± 4.6 μg/ml, and 104.1 ± 16.6 μg hours/ml, respectively. Miglustat delayed the onset of neurological signs and increased the lifespan of treated cats, and was associated with decreased GM2 ganglioside accumulation in the cerebellum and improved Purkinje cell survival. Ex vivo examination of microglia from the brains of treated cats revealed normalization of CD1c and class II major histocompatibility complex expression, as well as generation of reactive oxygen species. Together, these results suggest that prolonged Purkinje cell survival, reduced glycosphingolipid accumulation, and/or the modulation of microglial immunophenotype and function contribute to miglustat-induced neurological improvement in treated cats. PMID:22487861

  13. Impact of dietary induced precocious gut maturation on cecal microbiota and its relation to the blood-brain barrier during the postnatal period in rats.

    PubMed

    Marungruang, N; Arévalo Sureda, E; Lefrançoise, A; Weström, B; Nyman, M; Prykhodko, O; Fåk Hållenius, F

    2018-06-01

    Precocious maturation of the gastrointestinal barrier (GIB) in newborn mammals can be induced by dietary provocation, but how this affects the gut microbiota and the gut-brain axis remains unknown. The objective of this study was to investigate effects of induced GIB maturation on gut microbiota composition and blood-brain barrier (BBB) permeability. Suckling rats were studied at 72 h after gavage with phytohemagglutinin (PHA) or microbial protease (PT) to induce maturation of GIB. For comparison, untreated suckling and weaned rats were included (n = 10). Human serum albumin (HSA) was administered orally and analyzed in blood to assess permeability of the GIB, while intraperitoneally injected bovine serum albumin (BSA) was measured in the brain tissue for BBB permeability. The cecal microbial composition, plasma lipopolysaccharide-binding protein (LBP) levels and short-chain fatty acids in serum and brain were analyzed. Cessation of HSA passage to blood after PHA or PT treatment was similar to that seen in weaned rats. Interestingly, concomitant increases in cecal Bacteroidetes and plasma LBP levels were observed after both PHA and PT treatments. The BBB passage of BSA was surprisingly elevated after weaning, coinciding with lower plasma LBP levels and specific microbial taxa and increased acetate uptake into the brain. This study provides evidence that the gut microbiota alteration following induced precocious GIB maturation may induce low-grade systemic inflammation and alter SCFAs utilization in the brain which may also play a potential role in GIB-BBB dysfunction disorders in neonates. © 2018 The Authors. Neurogastroenterology & Motility Published by John Wiley & Sons Ltd.

  14. Inverse relationship between brain glucose and ketone metabolism in adults during short-term moderate dietary ketosis: A dual tracer quantitative positron emission tomography study.

    PubMed

    Courchesne-Loyer, Alexandre; Croteau, Etienne; Castellano, Christian-Alexandre; St-Pierre, Valérie; Hennebelle, Marie; Cunnane, Stephen C

    2017-07-01

    Ketones (principally β-hydroxybutyrate and acetoacetate (AcAc)) are an important alternative fuel to glucose for the human brain, but their utilisation by the brain remains poorly understood. Our objective was to use positron emission tomography (PET) to assess the impact of diet-induced moderate ketosis on cerebral metabolic rate of acetoacetate (CMRa) and glucose (CMRglc) in healthy adults. Ten participants (35 ± 15 y) received a very high fat ketogenic diet (KD) (4.5:1; lipid:protein plus carbohydrates) for four days. CMRa and CMRglc were quantified by PET before and after the KD with the tracers, 11 C-AcAc and 18 F-fluorodeoxyglucose ( 18 F-FDG), respectively. During the KD, plasma ketones increased 8-fold ( p = 0.005) while plasma glucose decreased by 24% ( p = 0.005). CMRa increased 6-fold ( p = 0.005), whereas CMRglc decreased by 20% ( p = 0.014) on the KD. Plasma ketones were positively correlated with CMRa (r = 0.93; p < 0.0001). After four days on the KD, CMRa represented 17% of whole brain energy requirements in healthy adults with a 2-fold difference across brain regions (12-24%). The CMR of ketones (AcAc and β-hydroxybutyrate combined) while on the KD was estimated to represent about 33% of brain energy requirements or approximately double the CMRa. Whether increased ketone availability raises CMR of ketones to the same extent in older people as observed here or in conditions in which chronic brain glucose hypometabolism is present remains to be determined.

  15. The role of the polymorphic efflux transporter P-glycoprotein on the brain accumulation of d-methylphenidate and d-amphetamine.

    PubMed

    Zhu, Hao-Jie; Wang, Jun-Sheng; DeVane, C Lindsay; Williard, Robin L; Donovan, Jennifer L; Middaugh, Lawrence D; Gibson, Brian B; Patrick, Kennerly S; Markowitz, John S

    2006-07-01

    The psychostimulant medications methylphenidate (MPH) and amphetamine (AMP), available in various ratios or enantiopure formulations of their respective active dextrorotary isomers, constitute the majority of agents used in the treatment of attention-deficit/hyperactivity disorder (ADHD). Substantial interindividual variability occurs in their pharmacokinetics and tolerability. Little is known regarding the potential role of drug transporters such as P-glycoprotein (P-gp) in psychostimulant pharmacokinetics and response. Therefore, experiments were carried out in P-gp knockout (KO) mice versus wild-type (WT) mice after intraperitoneal dosing (2.5 mg/kg) of d-MPH or (3.0 mg/kg) of d-AMP. After the administration of each psychostimulant, locomotor activity was assessed at 30-min intervals for 2 h. Total brain-to-plasma drug concentration ratios were determined at 10-, 30-, and 80-min postdosing time-points. The results showed no statistically supported genotypic difference in d-AMP-induced locomotor activity stimulation or in brain-to-plasma ratio of d-AMP. As for d-MPH, the P-gp KO mice had 33% higher brain concentrations (p < 0.05) and 67.5% higher brain-to-plasma ratios (p < 0.01) than WT controls at the 10-min postdosing timepoint. However, in spite of elevated brain concentrations, d-MPH-induced locomotor activity increase was attenuated for P-gp compared with that for WT mice. These data indicate that P-gp has no apparent effect on the pharmacokinetics and pharmacodynamics of d-AMP. In addition, d-MPH is a relatively weak P-gp substrate, and its entry into the brain may be limited by P-gp. Furthermore, the mechanism by which d-MPH-induced locomotor activity was attenuated in P-gp KO mice remains to be elucidated.

  16. Lyso-GM2 ganglioside: a possible biomarker of Tay-Sachs disease and Sandhoff disease.

    PubMed

    Kodama, Takashi; Togawa, Tadayasu; Tsukimura, Takahiro; Kawashima, Ikuo; Matsuoka, Kazuhiko; Kitakaze, Keisuke; Tsuji, Daisuke; Itoh, Kohji; Ishida, Yo-Ichi; Suzuki, Minoru; Suzuki, Toshihiro; Sakuraba, Hitoshi

    2011-01-01

    To find a new biomarker of Tay-Sachs disease and Sandhoff disease. The lyso-GM2 ganglioside (lyso-GM2) levels in the brain and plasma in Sandhoff mice were measured by means of high performance liquid chromatography and the effect of a modified hexosaminidase (Hex) B exhibiting Hex A-like activity was examined. Then, the lyso-GM2 concentrations in human plasma samples were determined. The lyso-GM2 levels in the brain and plasma in Sandhoff mice were apparently increased compared with those in wild-type mice, and they decreased on intracerebroventricular administration of the modified Hex B. The lyso-GM2 levels in plasma of patients with Tay-Sachs disease and Sandhoff disease were increased, and the increase in lyso-GM2 was associated with a decrease in Hex A activity. Lyso-GM2 is expected to be a potential biomarker of Tay-Sachs disease and Sandhoff disease.

  17. Lyso-GM2 Ganglioside: A Possible Biomarker of Tay-Sachs Disease and Sandhoff Disease

    PubMed Central

    Kodama, Takashi; Togawa, Tadayasu; Tsukimura, Takahiro; Kawashima, Ikuo; Matsuoka, Kazuhiko; Kitakaze, Keisuke; Tsuji, Daisuke; Itoh, Kohji; Ishida, Yo-ichi; Suzuki, Minoru; Suzuki, Toshihiro; Sakuraba, Hitoshi

    2011-01-01

    To find a new biomarker of Tay-Sachs disease and Sandhoff disease. The lyso-GM2 ganglioside (lyso-GM2) levels in the brain and plasma in Sandhoff mice were measured by means of high performance liquid chromatography and the effect of a modified hexosaminidase (Hex) B exhibiting Hex A-like activity was examined. Then, the lyso-GM2 concentrations in human plasma samples were determined. The lyso-GM2 levels in the brain and plasma in Sandhoff mice were apparently increased compared with those in wild-type mice, and they decreased on intracerebroventricular administration of the modified Hex B. The lyso-GM2 levels in plasma of patients with Tay-Sachs disease and Sandhoff disease were increased, and the increase in lyso-GM2 was associated with a decrease in Hex A activity. Lyso-GM2 is expected to be a potential biomarker of Tay-Sachs disease and Sandhoff disease. PMID:22205997

  18. Metronidazole and hydroxymetronidazole central nervous system distribution: 2. cerebrospinal fluid concentration measurements in patients with external ventricular drain.

    PubMed

    Frasca, Denis; Dahyot-Fizelier, Claire; Adier, Christophe; Mimoz, Olivier; Debaene, Bertrand; Couet, William; Marchand, Sandrine

    2014-01-01

    This study explored metronidazole and hydroxymetronidazole distribution in the cerebrospinal fluid (CSF) of brain-injured patients. Four brain-injured patients with external ventricular drain received 500 mg of metronidazole over 0.5 h every 8 h. CSF and blood samples were collected at steady state over 8 h, and the metronidazole and hydroxymetronidazole concentrations were assayed by high-pressure liquid chromatograph. A noncompartmental analysis was performed. Metronidazole is distributed extensively within CSF, with a mean CSF to unbound plasma AUC0-τ ratio of 86% ± 16%. However, the concentration profiles in CSF were mostly flat compared to the plasma profiles. Hydroxymetronidazole concentrations were much lower than those of metronidazole both in plasma and in CSF, with a corresponding CSF/unbound plasma AUC0-τ ratio of 79% ± 16%. We describe here for the first time in detail the pharmacokinetics of metronidazole and hydroxymetronidazole in CSF.

  19. Tissue-specific induction of Hsp90 mRNA and plasma cortisol response in chinook salmon following heat shock, seawater challenge, and handling challenge

    USGS Publications Warehouse

    Palmisano, Aldo N.; Winton, J.R.; Dickhoff, Walton W.

    2000-01-01

    In studying the whole-body response of chinook salmon (Oncorhynchus tshawytscha) to various stressors, we found that 5-hour exposure to elevated temperature (mean 21.6??C; + 10.6??C over ambient) induced a marked increase in Hsp90 messenger RNA accumulation in heart, brain, gill, muscle, liver, kidney, and tail fin tissues. The most vital tissues (heart, brain, gill, and muscle) showed the greatest Hsp90-mRNA response, with heart tissue increasing approximately 35-fold, Heat shock induced no increase in plasma cortisol. In contrast, a standard handling challenge induced high plasma cortisol levels, but no elevation in Hsp90 mRNA in any tissue, clearly separating the physiological and cellular stress responses. We saw no increase either in tissue Hsp90 mRNA levels or in plasma cortisol concentrations after exposing the fish to seawater overnight.

  20. Recombinant antibodies generated from both clonal and less abundant plasma cell immunoglobulin G sequences in subacute sclerosing panencephalitis brain are directed against measles virus

    PubMed Central

    Burgoon, Mark P; Caldas, Yupanqui A; Keays, Kathryne M; Yu, Xiaoli; Gilden, Donald H; Owens, Gregory P

    2012-01-01

    Increased immunoglobulin G (IgG) and intrathecally produced oligoclonal bands (OGBs) are characteristic of a limited number of inflammatory central nervous system (CNS) diseases and are often directed against the cause of disease. In subacute sclerosing panencephalitis (SSPE), the cause of disease and the target of the oligoclonal response is measles virus (MV). The authors previously showed that clonally expanded populations of CD38+ plasma cells in SSPE brain, the likely source of OGBs, are directed against MV. In characterizing the breadth of the plasma cell reactivities, the authors found that a large proportion of the less abundant plasma cells are also directed against MV. The intrathecal response may be useful in determining the causes of other inflammatory CNS diseases, such as multiple sclerosis, Behcet’s disease, and neurosarcoidosis. PMID:17065133

  1. IMAGING BRAIN SIGNAL TRANSDUCTION AND METABOLISM VIA ARACHIDONIC AND DOCOSAHEXAENOIC ACID IN ANIMALS AND HUMANS

    PubMed Central

    Basselin, Mireille; Ramadan, Epolia; Rapoport, Stanley I.

    2012-01-01

    The polyunsaturated fatty acids (PUFAs), arachidonic acid (AA, 20:4n-6) and docosahexaenoic acid (DHA, 22:6n-3), important second messengers in brain, are released from membrane phospholipid following receptor-mediated activation of specific phospholipase A2 (PLA2) enzymes. We developed an in vivo method in rodents using quantitative autoradiography to image PUFA incorporation into brain from plasma, and showed that their incorporation rates equal their rates of metabolic consumption by brain. Thus, quantitative imaging of unesterified plasma AA or DHA incorporation into brain can be used as a biomarker of brain PUFA metabolism and neurotransmission. We have employed our method to image and quantify effects of mood stabilizers on brain AA/DHA incorporation during neurotransmission by muscarinic M1,3,5, serotonergic 5-HT2A/2C, dopaminergic D2-like (D2, D3, D4) or glutamatergic N-methyl-D-aspartic acid (NMDA) receptors, and effects of inhibition of acetylcholinesterase, of selective serotonin and dopamine reuptake transporter inhibitors, of neuroinflammation (HIV-1 and lipopolysaccharide) and excitotoxicity, and in genetically modified rodents. The method has been extended for the use with positron emission tomography (PET), and can be employed to determine how human brain AA/DHA signaling and consumption are influenced by diet, aging, disease and genetics. PMID:22178644

  2. Diagnostic and prognostic value of preoperative combined GFAP, IGFBP-2, and YKL-40 plasma levels in patients with glioblastoma.

    PubMed

    Gállego Pérez-Larraya, Jaime; Paris, Sophie; Idbaih, Ahmed; Dehais, Caroline; Laigle-Donadey, Florence; Navarro, Soledad; Capelle, Laurent; Mokhtari, Karima; Marie, Yannick; Sanson, Marc; Hoang-Xuan, Khê; Delattre, Jean-Yves; Mallet, Alain

    2014-12-15

    Circulating proteins released by tumor cells have recently been investigated as potential single surrogate biomarkers for glioblastoma multiforme (GBM). The aim of the current hypothesis-generating study was to evaluate the diagnostic and prognostic role of preoperative insulin-like growth factor-binding protein 2 (IGFBP-2), chitinase-3-like protein 1 (YKL-40), and glial fibrillary acidic protein (GFAP) plasma levels in patients with GBM, both as single markers and as a combined profile. Plasma samples from 111 patients with GBM and a subset of 40 patients with nonglial brain tumors were obtained preoperatively. Plasma from 99 healthy controls was also analyzed. IGFBP-2, YKL-40, and GFAP levels were determined using enzyme-linked immunoadsorbent assay tests. Their association with histological and radiological variables was assessed. Circulating levels of all 3 proteins were found to be significantly higher in patients with GBM compared with healthy controls (P < .01). Only YKL-40 and GFAP were found to demonstrate significant differences between patients with GBM and nonglial brain tumors (P = .04). GFAP was undetectable (<0.02 ng/mL) in all patients without GBM. A receiver operating characteristic analysis accounting for a 2-step diagnostic procedure including the 3 biomarkers afforded an area under the curve of 0.77 for differentiating patients with GBM from those with nonglial brain tumors. There was a significant correlation between tumor volume and plasma IGFBP-2 level (Spearman Rho correlation coefficient, 0.22; P = .025) and GFAP (Spearman Rho correlation coefficient, 0.36; P < .001) among patients with GBM. Preoperative plasma IGFBP-2 levels were found to be independently associated with worse overall survival among patients with GBM (hazard ratio, 1.3; P = .05). A combined profile of preoperative IGFBP-2, GFAP, and YKL-40 plasma levels could serve as an additional diagnostic tool for patients with inoperable brain lesions suggestive of GBM. In addition, IGFBP-2 levels appear to constitute an independent prognostic factor in patients with GBM. © 2014 American Cancer Society.

  3. Saturable Active Efflux by P-Glycoprotein and Breast Cancer Resistance Protein at the Blood-Brain Barrier Leads to Nonlinear Distribution of Elacridar to the Central Nervous System

    PubMed Central

    Sane, Ramola; Agarwal, Sagar; Mittapalli, Rajendar K.

    2013-01-01

    The study objective was to investigate factors that affect the central nervous system (CNS) distribution of elacridar. Elacridar inhibits transport mediated by P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) and has been used to study the influence of transporters on brain distribution of chemotherapeutics. Adequate distribution of elacridar across the blood-brain barrier (BBB) and into the brain parenchyma is necessary to target tumor cells in the brain that overexpress transporters and reside behind an intact BBB. We examined the role of P-gp and Bcrp on brain penetration of elacridar using Friend leukemia virus strain B wild-type, Mdr1a/b(−/−), Bcrp1(−/−), and Mdr1a/b(−/−)Bcrp1(−/−) mice. Initially, the mice were administered 2.5 mg/kg of elacridar intravenously, and the plasma and brain concentrations were determined. The brain-to-plasma partition coefficient of elacridar in the wild-type mice was 0.82, as compared with 3.5 in Mdr1a/b(−/−) mice, 6.6 in Bcrp1(−/−) mice, and 15 in Mdr1a/b(−/−)Bcrp1(−/−) mice, indicating that both P-gp and Bcrp limit the brain distribution of elacridar. The four genotypes were then administered increasing doses of elacridar, and the CNS distribution of elacridar was determined. The observed and model predicted maximum brain-to-plasma ratios (Emax) at the highest dose were not significantly different in all genotypes. However, the ED50 was lower for Mdr1a/b(−/−) mice compared with Bcrp1(−/−) mice. These findings correlate with the relative expression of P-gp and Bcrp at the BBB in these mice and demonstrate the quantitative enhancement in elacridar CNS distribution as a function of its dose. Overall, this study provides useful concepts for future applications of elacridar as an adjuvant therapy to improve targeting of chemotherapeutic agents to tumor cells in the brain parenchyma. PMID:23397054

  4. Anti–IL-6 neutralizing antibody modulates blood-brain barrier function in the ovine fetus

    PubMed Central

    Zhang, Jiyong; Sadowska, Grazyna B.; Chen, Xiaodi; Park, Seon Yeong; Kim, Jeong-Eun; Bodge, Courtney A.; Cummings, Erin; Lim, Yow-Pin; Makeyev, Oleksandr; Besio, Walter G.; Gaitanis, John; Banks, William A.; Stonestreet, Barbara S.

    2015-01-01

    Impaired blood-brain barrier function represents an important component of hypoxic-ischemic brain injury in the perinatal period. Proinflammatory cytokines could contribute to ischemia-related blood-brain barrier dysfunction. IL-6 increases vascular endothelial cell monolayer permeability in vitro. However, contributions of IL-6 to blood-brain barrier abnormalities have not been examined in the immature brain in vivo. We generated pharmacologic quantities of ovine-specific neutralizing anti-IL-6 mAbs and systemically infused mAbs into fetal sheep at 126 days of gestation after exposure to brain ischemia. Anti–IL-6 mAbs were measured by ELISA in fetal plasma, cerebral cortex, and cerebrospinal fluid, blood-brain barrier permeability was quantified using the blood-to-brain transfer constant in brain regions, and IL-6, tight junction proteins, and plasmalemma vesicle protein (PLVAP) were detected by Western immunoblot. Anti–IL-6 mAb infusions resulted in increases in mAb (P < 0.05) in plasma, brain parenchyma, and cerebrospinal fluid and decreases in brain IL-6 protein. Twenty-four hours after ischemia, anti–IL-6 mAb infusions attenuated ischemia-related increases in blood-brain barrier permeability and modulated tight junction and PLVAP protein expression in fetal brain. We conclude that inhibiting the effects of IL-6 protein with systemic infusions of neutralizing antibodies attenuates ischemia-related increases in blood-brain barrier permeability by inhibiting IL-6 and modulates tight junction proteins after ischemia.—Zhang, J., Sadowska, G. B., Chen, X., Park, S. Y., Kim, J.-E., Bodge, C. A., Cummings, E., Lim, Y.-P., Makeyev, O., Besio, W. G., Gaitanis, J., Banks, W. A., Stonestreet, B. S. Anti–IL-6 neutralizing antibody modulates blood-brain barrier function in the ovine fetus. PMID:25609424

  5. Blood-brain barrier drug delivery of IgG fusion proteins with a transferrin receptor monoclonal antibody.

    PubMed

    Pardridge, William M

    2015-02-01

    Biologic drugs are large molecules that do not cross the blood- brain barrier (BBB). Brain penetration is possible following the re-engineering of the biologic drug as an IgG fusion protein. The IgG domain is a MAb against an endogenous BBB receptor such as the transferrin receptor (TfR). The TfRMAb acts as a molecular Trojan horse to ferry the fused biologic drug into the brain via receptor-mediated transport on the endogenous BBB TfR. This review discusses TfR isoforms, models of BBB transport of transferrin and TfRMAbs, and the genetic engineering of TfRMAb fusion proteins, including BBB penetrating IgG-neurotrophins, IgG-decoy receptors, IgG-lysosomal enzyme therapeutics and IgG-avidin fusion proteins, as well as BBB transport of bispecific antibodies formed by fusion of a therapeutic antibody to a TfRMAb targeting antibody. Also discussed are quantitative aspects of the plasma pharmacokinetics and brain uptake of TfRMAb fusion proteins, as compared to the brain uptake of small molecules, and therapeutic applications of TfRMAb fusion proteins in mouse models of neural disease, including Parkinson's disease, stroke, Alzheimer's disease and lysosomal storage disorders. The review covers the engineering of TfRMAb-avidin fusion proteins for BBB targeted delivery of biotinylated peptide radiopharmaceuticals, low-affinity TfRMAb Trojan horses and the safety pharmacology of chronic administration of TfRMAb fusion proteins. The BBB delivery of biologic drugs is possible following re-engineering as a fusion protein with a molecular Trojan horse such as a TfRMAb. The efficacy of this technology will be determined by the outcome of future clinical trials.

  6. Effects of running the Bostom Marathon on plasma concentrations of large neutral amino acids

    NASA Technical Reports Server (NTRS)

    Conlay, L. A.; Wurtman, R. J.; Lopez G-Coviella, I.; Blusztajn, J. K.; Vacanti, C. A.; Logue, M.; During, M.; Caballero, B.; Maher, T. J.; Evoniuk, G.

    1989-01-01

    Plasma large neutral amino acid concentrations were measured in thirty-seven subjects before and after completing the Boston Marathon. Concentrations of tyrosine, phenylalanine, and methionine increased, as did their 'plasma ratios' (i.e., the ratio of each amino acid's concentration to the summed plasma concentrations of the other large neutral amino acids which compete with it for brain uptake). No changes were noted in the plasma concentrations of tryptophan, leucine, isoleucine, nor valine; however, the 'plasma ratios' of valine, leucine, and isoleucine all decreased. These changes in plasma amino acid patterns may influence neurotransmitter synthesis.

  7. Effect of clozapine and molindone on plasma and brain levels of mescaline in mice.

    PubMed

    Shah, N S; Gulati, O D

    1984-01-01

    Levels of unchanged mescaline were examined in the plasma and brain of albino Swiss-Webster mice pretreated with various doses of either clozapine or molindone. In clozapine treated mice, the mescaline levels were statistically significantly higher at 2 and 3 h with 7.5 and 15.0 mg/kg and at 1, 2 and 3 h with 30 mg/kg. Molindone at 4.0 and 8.0 mg/kg produced no significant effect; at 16.0 and 48.0 mg/kg, the levels were significantly higher at 1 and 2 h. Elevated brain levels of mescaline by clozapine and molindone indicate an adverse metabolic interaction between a hallucinogen and drugs that are commonly used to treat mescaline-induced psychosis.

  8. Brief Report: Antibodies Reacting to Brain Tissue in Basque Spanish Children with Autism Spectrum Disorder and Their Mothers

    ERIC Educational Resources Information Center

    Rossi, Christy C.; Fuentes, Joaquin; Van de Water, Judy; Amaral, David G.

    2014-01-01

    Previous investigations found that a subset of children with autism spectrum disorder (ASD) in California possessed plasma autoantibodies that reacted intensely with brain interneurons or other neural profiles. Moreover, for several cohorts of American women, maternal autoantibody reactivity to specific fetal brain proteins was highly specific to…

  9. Plasma tau in Alzheimer disease.

    PubMed

    Mattsson, Niklas; Zetterberg, Henrik; Janelidze, Shorena; Insel, Philip S; Andreasson, Ulf; Stomrud, Erik; Palmqvist, Sebastian; Baker, David; Tan Hehir, Cristina A; Jeromin, Andreas; Hanlon, David; Song, Linan; Shaw, Leslie M; Trojanowski, John Q; Weiner, Michael W; Hansson, Oskar; Blennow, Kaj

    2016-10-25

    To test whether plasma tau is altered in Alzheimer disease (AD) and whether it is related to changes in cognition, CSF biomarkers of AD pathology (including β-amyloid [Aβ] and tau), brain atrophy, and brain metabolism. This was a study of plasma tau in prospectively followed patients with AD (n = 179), patients with mild cognitive impairment (n = 195), and cognitive healthy controls (n = 189) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and cross-sectionally studied patients with AD (n = 61), mild cognitive impairment (n = 212), and subjective cognitive decline (n = 174) and controls (n = 274) from the Biomarkers for Identifying Neurodegenerative Disorders Early and Reliably (BioFINDER) study at Lund University, Sweden. A total of 1284 participants were studied. Associations were tested between plasma tau and diagnosis, CSF biomarkers, MRI measures, 18 fluorodeoxyglucose-PET, and cognition. Higher plasma tau was associated with AD dementia, higher CSF tau, and lower CSF Aβ 42 , but the correlations were weak and differed between ADNI and BioFINDER. Longitudinal analysis in ADNI showed significant associations between plasma tau and worse cognition, more atrophy, and more hypometabolism during follow-up. Plasma tau partly reflects AD pathology, but the overlap between normal aging and AD is large, especially in patients without dementia. Despite group-level differences, these results do not support plasma tau as an AD biomarker in individual people. Future studies may test longitudinal plasma tau measurements in AD. © 2016 American Academy of Neurology.

  10. High homocysteine induces betaine depletion

    PubMed Central

    Imbard, Apolline; Benoist, Jean-François; Esse, Ruben; Gupta, Sapna; Lebon, Sophie; de Vriese, An S; de Baulny, Helene Ogier; Kruger, Warren; Schiff, Manuel; Blom, Henk J.

    2015-01-01

    Betaine is the substrate of the liver- and kidney-specific betaine-homocysteine (Hcy) methyltransferase (BHMT), an alternate pathway for Hcy remethylation. We hypothesized that BHMT is a major pathway for homocysteine removal in cases of hyperhomocysteinaemia (HHcy). Therefore, we measured betaine in plasma and tissues from patients and animal models of HHcy of genetic and acquired cause. Plasma was collected from patients presenting HHcy without any Hcy interfering treatment. Plasma and tissues were collected from rat models of HHcy induced by diet and from a mouse model of cystathionine β-synthase (CBS) deficiency. S-adenosyl-methionine (AdoMet), S-adenosyl-homocysteine (AdoHcy), methionine, betaine and dimethylglycine (DMG) were quantified by ESI—LC–MS/MS. mRNA expression was quantified using quantitative real-time (QRT)-PCR. For all patients with diverse causes of HHcy, plasma betaine concentrations were below the normal values of our laboratory. In the diet-induced HHcy rat model, betaine was decreased in all tissues analysed (liver, brain, heart). In the mouse CBS deficiency model, betaine was decreased in plasma, liver, heart and brain, but was conserved in kidney. Surprisingly, BHMT expression and activity was decreased in liver. However, in kidney, BHMT and SLC6A12 expression was increased in CBS-deficient mice. Chronic HHcy, irrespective of its cause, induces betaine depletion in plasma and tissues (liver, brain and heart), indicating a global decrease in the body betaine pool. In kidney, betaine concentrations were not affected, possibly due to overexpression of the betaine transporter SLC6A12 where betaine may be conserved because of its crucial role as an osmolyte. PMID:26182429

  11. High homocysteine induces betaine depletion.

    PubMed

    Imbard, Apolline; Benoist, Jean-François; Esse, Ruben; Gupta, Sapna; Lebon, Sophie; de Vriese, An S; de Baulny, Helene Ogier; Kruger, Warren; Schiff, Manuel; Blom, Henk J

    2015-04-28

    Betaine is the substrate of the liver- and kidney-specific betaine-homocysteine (Hcy) methyltransferase (BHMT), an alternate pathway for Hcy remethylation. We hypothesized that BHMT is a major pathway for homocysteine removal in cases of hyperhomocysteinaemia (HHcy). Therefore, we measured betaine in plasma and tissues from patients and animal models of HHcy of genetic and acquired cause. Plasma was collected from patients presenting HHcy without any Hcy interfering treatment. Plasma and tissues were collected from rat models of HHcy induced by diet and from a mouse model of cystathionine β-synthase (CBS) deficiency. S-adenosyl-methionine (AdoMet), S-adenosyl-homocysteine (AdoHcy), methionine, betaine and dimethylglycine (DMG) were quantified by ESI-LC-MS/MS. mRNA expression was quantified using quantitative real-time (QRT)-PCR. For all patients with diverse causes of HHcy, plasma betaine concentrations were below the normal values of our laboratory. In the diet-induced HHcy rat model, betaine was decreased in all tissues analysed (liver, brain, heart). In the mouse CBS deficiency model, betaine was decreased in plasma, liver, heart and brain, but was conserved in kidney. Surprisingly, BHMT expression and activity was decreased in liver. However, in kidney, BHMT and SLC6A12 expression was increased in CBS-deficient mice. Chronic HHcy, irrespective of its cause, induces betaine depletion in plasma and tissues (liver, brain and heart), indicating a global decrease in the body betaine pool. In kidney, betaine concentrations were not affected, possibly due to overexpression of the betaine transporter SLC6A12 where betaine may be conserved because of its crucial role as an osmolyte. © 2015 Author(s).

  12. Changes of ammonia, urea contents and transaminase activity in the body during aerial exposure and ammonia loading in Chinese loach Paramisgurnus dabryanus.

    PubMed

    Zhang, Yun-Long; Zhang, Hai-Long; Wang, Ling-Yu; Gu, Bei-Yi; Fan, Qi-Xue

    2017-04-01

    The Paramisgurnus dabryanus was exposed to 30 mmol L -1 NH 4 Cl solution and air to assessing the change of body ammonia and urea contents and the activities of alanine aminotransferase (ALT) and aspartate transaminase (AST). After 48 h of ammonia exposure, ammonia concentration in the plasma, brain, liver and muscle were 3.3-fold, 5.6-fold, 3.5-fold and 4.2-fold, respectively, those of the control values. Plasma, brain, liver and muscle ammonia concentrations increased to 2.2-fold, 3.3-fold, 2.5-fold and 2.9-fold, respectively, those of control values in response to 48 h of aerial exposure. Within the given treatment (ammonia or aerial exposure), there was no change in plasma, brain and liver urea concentrations between exposure durations. The plasma ALT activity was significantly affected by exposure time during aerial exposure, while the liver ALT activity was not affected by ammonia or aerial exposure. Exposure to NH 4 Cl or air had no effect on either plasma or liver AST activity. Our results suggested that P. dabryanus could accumulate quite high level of internal ammonia because of the high ammonia tolerance in its cells and tissues, and NH 3 volatilization would be a possible ammonia detoxification strategy in P. dabryanus. Urea synthesis was not an effective mechanism to deal with environmental or internal ammonia problem. The significant increase of ALT activity in plasma during aerial exposure, indicating that alanine synthesis through certain amino acid catabolism may be subsistent in P. dabryanus.

  13. Longitudinal performance of plasma neurofilament light and tau in professional fighters: The Professional Fighters Brain Health Study.

    PubMed

    Bernick, Charles; Zetterberg, Henrik; Shan, Guogen; Banks, Sarah; Blennow, Kaj

    2018-04-02

    The objective of this study is to evaluate longitudinal change in plasma neurofilament light (NF-L) and tau levels in relationship to clinical and radiological measures in professional fighters. Participants (active and retired professional fighters and control group) underwent annual blood sampling, 3 Tesla MRI brain imaging, computerized cognitive testing, and assessment of exposure to head trauma. Plasma tau and NF-L concentrations were measured using Simoa assays. Multiple linear regression models were used to compare the difference across groups in regard to baseline measurements, while mixed linear models was used for the longitudinal data with multiple measurements for each participant. Plasma samples were available on 471 participants. Baseline NF-L measures differed across groups (F_3,393=6.99, p=0.0001), with the active boxers having the highest levels. Higher NF-L levels at baseline were correlated with lower baseline MRI regional volumes and lower cognitive scores. The number of sparring rounds completed by the active fighters was correlated with NF-L (95% CI 0.0116-0.4053, p=0.0381), but not tau, levels. Among 126 subjects having multiple yearly samples, there was a significant difference in average yearly percentage change in tau across groups (F_3,83=3.87, p=0.0121).). We conclude that plasma NF-L and tau behave differently in a group of active and retired fighters; NF-L better reflects acute exposure whereas the role of plasma tau levels in signifying chronic change in brain structure over time requires further study.

  14. Plasma Concentration of Prolactin, Testosterone Might Be Associated with Brain Response to Visual Erotic Stimuli in Healthy Heterosexual Males

    PubMed Central

    Seo, Younghee; Kim, Ji-Woong; Choi, Jeewook

    2009-01-01

    Objective Many studies have showed that excess or lack of sexual hormones, such as prolactin and testosterone, induced the sexual dysfunction in humans. Little, however, is known about the role of sexual hormones showing normal range in, especially, the basal state unexposed to any sexual stimulation. We hypothesized sexual hormones in the basal state may affect sexual behavior. Methods We investigated the association of the sexual hormones level in the basal hormonal state before visual sexual stimulation with the sexual response-related brain activity during the stimulation. Twelve heterosexual men were recorded the functional MRI signals of their brain activation elicited by passive viewing erotic (ERO), happy-faced (HA) couple, food and nature pictures. Both plasma prolacitn and testosterone concentrations were measured before functional MR scanning. A voxel wise regression analyses were performed to investigate the relationship between the concentration of sexual hormones in basal state and brain activity elicited by ERO minus HA, not food minus nature, contrast. Results The plasma concentration of prolactin in basal state showed positive association with the activity of the brain involving cognitive component of sexual behavior including the left middle frontal gyrus, paracingulate/superior frontal/anterior cingulate gyri, bilateral parietal lobule, right angular, bilateral precuneus and right cerebellum. Testosterone in basal state was positively associated with the brain activity of the bilateral supplementary motor area which related with motivational component of sexual behavior. Conclusion Our results suggested sexual hormones in basal state may have their specific target regions or network associated with sexual response. PMID:20046395

  15. Targeted deletion of kynurenine 3-monooxygenase in mice: a new tool for studying kynurenine pathway metabolism in periphery and brain.

    PubMed

    Giorgini, Flaviano; Huang, Shao-Yi; Sathyasaikumar, Korrapati V; Notarangelo, Francesca M; Thomas, Marian A R; Tararina, Margarita; Wu, Hui-Qiu; Schwarcz, Robert; Muchowski, Paul J

    2013-12-20

    Kynurenine 3-monooxygenase (KMO), a pivotal enzyme in the kynurenine pathway (KP) of tryptophan degradation, has been suggested to play a major role in physiological and pathological events involving bioactive KP metabolites. To explore this role in greater detail, we generated mice with a targeted genetic disruption of Kmo and present here the first biochemical and neurochemical characterization of these mutant animals. Kmo(-/-) mice lacked KMO activity but showed no obvious abnormalities in the activity of four additional KP enzymes tested. As expected, Kmo(-/-) mice showed substantial reductions in the levels of its enzymatic product, 3-hydroxykynurenine, in liver, brain, and plasma. Compared with wild-type animals, the levels of the downstream metabolite quinolinic acid were also greatly decreased in liver and plasma of the mutant mice but surprisingly were only slightly reduced (by ∼20%) in the brain. The levels of three other KP metabolites: kynurenine, kynurenic acid, and anthranilic acid, were substantially, but differentially, elevated in the liver, brain, and plasma of Kmo(-/-) mice, whereas the liver and brain content of the major end product of the enzymatic cascade, NAD(+), did not differ between Kmo(-/-) and wild-type animals. When assessed by in vivo microdialysis, extracellular kynurenic acid levels were found to be significantly elevated in the brains of Kmo(-/-) mice. Taken together, these results provide further evidence that KMO plays a key regulatory role in the KP and indicate that Kmo(-/-) mice will be useful for studying tissue-specific functions of individual KP metabolites in health and disease.

  16. Tilapia (Oreochromis mossambicus) brain cells respond to hyperosmotic challenge by inducing myo-inositol biosynthesis

    PubMed Central

    Gardell, Alison M.; Yang, Jun; Sacchi, Romina; Fangue, Nann A.; Hammock, Bruce D.; Kültz, Dietmar

    2013-01-01

    SUMMARY This study aimed to determine the regulation of the de novo myo-inositol biosynthetic (MIB) pathway in Mozambique tilapia (Oreochromis mossambicus) brain following acute (25 ppt) and chronic (30, 60 and 90 ppt) salinity acclimations. The MIB pathway plays an important role in accumulating the compatible osmolyte, myo-inositol, in cells in response to hyperosmotic challenge and consists of two enzymes, myo-inositol phosphate synthase and inositol monophosphatase. In tilapia brain, MIB enzyme transcriptional regulation was found to robustly increase in a time (acute acclimation) or dose (chronic acclimation) dependent manner. Blood plasma osmolality and Na+ and Cl− concentrations were also measured and significantly increased in response to both acute and chronic salinity challenges. Interestingly, highly significant positive correlations were found between MIB enzyme mRNA and blood plasma osmolality in both acute and chronic salinity acclimations. Additionally, a mass spectrometry assay was established and used to quantify total myo-inositol concentration in tilapia brain, which closely mirrored the hyperosmotic MIB pathway induction. Thus, myo-inositol is a major compatible osmolyte that is accumulated in brain cells when exposed to acute and chronic hyperosmotic challenge. These data show that the MIB pathway is highly induced in response to environmental salinity challenge in tilapia brain and that this induction is likely prompted by increases in blood plasma osmolality. Because the MIB pathway uses glucose-6-phosphate as a substrate and large amounts of myo-inositol are being synthesized, our data also illustrate that the MIB pathway likely contributes to the high energetic demand posed by salinity challenge. PMID:24072790

  17. Plasma concentration of prolactin, testosterone might be associated with brain response to visual erotic stimuli in healthy heterosexual males.

    PubMed

    Seo, Younghee; Jeong, Bumseok; Kim, Ji-Woong; Choi, Jeewook

    2009-09-01

    Many studies have showed that excess or lack of sexual hormones, such as prolactin and testosterone, induced the sexual dysfunction in humans. Little, however, is known about the role of sexual hormones showing normal range in, especially, the basal state unexposed to any sexual stimulation. We hypothesized sexual hormones in the basal state may affect sexual behavior. We investigated the association of the sexual hormones level in the basal hormonal state before visual sexual stimulation with the sexual response-related brain activity during the stimulation. Twelve heterosexual men were recorded the functional MRI signals of their brain activation elicited by passive viewing erotic (ERO), happy-faced (HA) couple, food and nature pictures. Both plasma prolacitn and testosterone concentrations were measured before functional MR scanning. A voxel wise regression analyses were performed to investigate the relationship between the concentration of sexual hormones in basal state and brain activity elicited by ERO minus HA, not food minus nature, contrast. The plasma concentration of prolactin in basal state showed positive association with the activity of the brain involving cognitive component of sexual behavior including the left middle frontal gyrus, paracingulate/superior frontal/anterior cingulate gyri, bilateral parietal lobule, right angular, bilateral precuneus and right cerebellum. Testosterone in basal state was positively associated with the brain activity of the bilateral supplementary motor area which related with motivational component of sexual behavior. Our results suggested sexual hormones in basal state may have their specific target regions or network associated with sexual response.

  18. N-terminal-pro brain natriuretic peptides in dogs and cats: A technical and clinical review

    PubMed Central

    de Lima, Gabriela Vieira; Ferreira, Felipp da Silveira

    2017-01-01

    Biomarkers are quantitative indicators of biological processes performed by an organ or system. In recent years, natriuretic peptides (NPs) have emerged as important tools in the diagnosis and therapeutic monitoring of heart diseases. Research has shown that serum and plasma levels of N-terminal pro brain NP (NT-proBNP) in dogs and cats are the only biomarkers that afford to diagnose and monitor congestive processes and, indirectly, the myocardial function of small animals. The present review discusses the peer-reviewed specialized literature about NT-proBNP and presents and compares the potential clinical applications of this NP in veterinary medicine of small animals, considering diagnosis, follow-up, and prognosis of myocardial or systemic diseases. The relevance of NT-proBNP is associated with sample stability, easy determination in laboratory, sensitivity, accuracy, and the possibility to analyze myocardial function. These advantages are specially important when NT-proBNP is compared with other cardiac biomarkers, mostly those that indicate the integrity of the myocardial cell. Fast NT-proBNP assays are marketed today and may be used in association with complementary tests. Together, these methods are an important source of information in differential diagnosis of heart and lung diseases as well in the early diagnosis of cardiopathy in dogs and cats, proving valuable tools in treatment and prognosis. PMID:29062197

  19. Collective backscattering of gyrotron radiation by small-scale plasma density fluctuations in large helical device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kharchev, Nikolay; Batanov, German; Petrov, Alexandr

    2008-10-15

    A version of the collective backscattering diagnostic using gyrotron radiation for small-scale turbulence is described. The diagnostic is used to measure small-scale (k{sub s}{approx_equal}34 cm{sup -1}) plasma density fluctuations in large helical device experiments on the electron cyclotron heating of plasma with the use of 200 kW 82.7 GHz heating gyrotron. A good signal to noise ratio during plasma production phase was obtained, while contamination of stray light increased during plasma build-up phase. The effect of the stray radiation was investigated. The available quasioptical system of the heating system was utilized for this purpose.

  20. Radiosynthesis and radiopharmacological evaluation of [N-methyl-11C]Org 34850 as a glucocorticoid receptor (GR)-binding radiotracer.

    PubMed

    Wuest, Frank; Kniess, Torsten; Henry, Brian; Peeters, Bernardus W M M; Wiegerinck, Peter H G; Pietzsch, Jens; Bergmann, Ralf

    2009-02-01

    The radiosynthesis of [N-methyl-(11)C]Org 34850 as a potential brain glucocorticoid receptor (GR)-binding radiotracer is described. The radiosynthesis was accomplished via N-methylation of the corresponding desmethyl precursor with [(11)C]methyl triflate in a remotely controlled synthesis module to give the desired compound in a radiochemical yield of 23+/-5% (decay-corrected, based upon [(11)C]CO(2)) at a specific activity of 47+/-12 GBq/micromol (n=15) at the end-of-synthesis (EOS). The radiochemical purity after semi-preparative HPLC purification exceeded 95%. The total synthesis time was 35-40 min after end-of-bombardment (EOB). The radiotracer is rapidly metabolized in rat plasma leading to the formation of two more hydrophilic metabolites as the major metabolites. Radiopharmacological evaluation involving biodistribution and small animal PET imaging in normal Wistar rats showed that the compound [N-methyl-(11)C]Org 34850 is not able to sufficiently penetrate the blood-brain barrier. Therefore, compound [N-methyl-(11)C]Org 34850 seems not to be a suitable PET radiotracer for imaging rat brain GRs. However, involvement of Pgp or species differences requires further clarification to establish whether the radiotracer [N-methyl-(11)C]Org 34850 may still represent a suitable candidate for imaging GRs in humans.

  1. The PET radioligand [carbonyl-(11)C]desmethyl-WAY-100635 binds to 5-HT(1A) receptors and provides a higher radioactive signal than [carbonyl-(11)C]WAY-100635 in the human brain.

    PubMed

    Andrée, Bengt; Halldin, Christer; Pike, Victor W; Gunn, Roger N; Olsson, Hans; Farde, Lars

    2002-03-01

    5-Hydroxytryptamine (serotonin)-1A (5-HT(1A)) receptors are of key interest in research on the pathophysiology and treatment of psychiatric disorders. The PET radioligand [carbonyl-(11)C]WAY-100635 ((11)C-WAY), where WAY-100635 is (3)H-(N-(2-(1-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-N-(2-pyridyl) cyclohexane-carboxamide, is commonly used for quantitation of 5-HT(1A) receptors in the human brain. The aim of this PET study was to compare (11)C-WAY with the putative metabolite and selective radioligand [carbonyl-(11)C]desmethyl-WAY-100635 ((11)C-DWAY). A PET examination was performed on each of 5 healthy male volunteers after intravenous injection of (11)C-WAY and (11)C-DWAY on separate occasions. Radioactive metabolites in plasma were determined with high-performance liquid chromatography. The plasma metabolite--corrected input function was used in a kinetic compartment analysis. The simplified reference tissue model and peak equilibrium method, using the cerebellum as reference region, was applied for comparison of data. For both radioligands, the highest radioactivity was observed in the neocortex and the raphe nuclei, whereas radioactivity was low in the cerebellum. The regional binding potentials were similar for the 2 radioligands. The brain uptake was more than 2-fold higher for (11)C-DWAY than for (11)C-WAY, in part because of higher delivery (first-order rate constant K(1), 0.38 vs. 0.16). The time--activity curves were well described by a 3-compartment model for all regions, whereas uptake in the cerebellum could not be described by a 2-compartment model, supporting the existence of kinetically distinguishable nonspecific binding in the cerebellum or radioactive metabolites in the brain for both radioligands. Both radioligands were rapidly metabolized, and <10% of the radioactivity in plasma represented unchanged (11)C-WAY or (11)C-DWAY at 10 min after injection. The metabolic pattern was similar for both radioligands, with the formation of radiolabeled cyclohexanecarboxylic acid and more polar components. For (11)C-WAY, small amounts of an additional labeled metabolite comigrated with reference desmethyl-WAY-100635. The advantages of (11)C-DWAY over (11)C-WAY for research on central 5-HT(1A) receptors is supported by a significantly higher radioactivity signal at equipotent doses, providing improved imaging statistics and advantages in biomathematic modeling and the preclusion of (11)C-DWAY as a metabolite interfering with PET measurements.

  2. Organophosphorus insecticide induced decrease in plasma luteinizing hormone concentration in white-footed mice

    USGS Publications Warehouse

    Rattner, B.A.; Michael, S.D.

    1985-01-01

    Oral intubation of 50 and 100 mg/kg acephate inhibited brain acetylcholinesterase (AChE) activity by 45% and 56%, and reduced basal luteinizing hormone (LH) concentration by 29% and 25% after 4 h in white-footed mice (Peromyscus leucopus noveboracensis). Dietary exposure to 25, 100, and 400 ppm acephate for 5 days substantially inhibited brain AChE activity, but did not affect plasma LH concentration. These preliminary findings suggest that acute exposure to organophosphorus insecticides may affect LH secretion and possibly reproductive function.

  3. Tissue distribution and effects of fasting and obesity on the ghrelin axis in mice.

    PubMed

    Morash, Michael G; Gagnon, Jeffrey; Nelson, Stephanie; Anini, Younes

    2010-08-09

    Ghrelin is a 28 amino acid peptide hormone derived from the 117 amino acid proghrelin, following cleavage by proprotein convertase 1 (PC1). In this study, we comprehensively assessed the tissue distribution and the effect of fasting and obesity on preproghrelin, Exon-4D, PC1 and GOAT expression and proghrelin-derived peptide (PGDP) secretion. The stomach was the major source of preproghrelin expression and PDGPs, followed by the small intestine. The remaining peripheral tissues (including the brain and pancreas) contained negligible expression levels. We detected obestatin in all stomach proghrelin cells, however, 22% of proghrelin cells in the small intestine did not express obestatin. There were strain differences in ghrelin secretion in response to fasting between CD1 and C57BL/6 mice. After a 24 hour-fast, CD1 mice had increased plasma levels of total ghrelin and obestatin with no change in preproghrelin mRNA or PGDP tissues levels. C57BL/6 mice showed a different response to a 24 hour-fast having increased proghrelin mRNA expression, stomach acylated ghrelin peptide and no change in plasma obestatin in C57BL/6 mice. In obese mice (ob/ob and diet-induced obesity (DIO)) there was a significant increase in preproghrelin mRNA levels while tissue and plasma PGDP levels were significantly reduced. Fasting did not affect PGDP in obese mice. Obese models displayed differences in GOAT expression, which was elevated in DIO mice, but reduced in ob/ob mice. We did not find co-localization of the leptin receptor in ghrelin expressing stomach cells, ruling out a direct effect of leptin on stomach ghrelin synthesis and secretion. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  4. Positron Emission Tomography studies with [11C]PBR28 in the Healthy Rodent Brain: Validating SUV as an Outcome Measure of Neuroinflammation.

    PubMed

    Tóth, Miklós; Doorduin, Janine; Häggkvist, Jenny; Varrone, Andrea; Amini, Nahid; Halldin, Christer; Gulyás, Balázs

    2015-01-01

    Molecular imaging of the 18 kD Translocator protein (TSPO) with positron emission tomography (PET) is of great value for studying neuroinflammation in rodents longitudinally. Quantification of the TSPO in rodents is, however, quite challenging. There is no suitable reference region and the use of plasma-derived input is not an option for longitudinal studies. The aim of this study was therefore to evaluate the use of the standardized uptake value (SUV) as an outcome measure for TSPO imaging in rodent brain PET studies, using [11C]PBR28. In the first part of the study, healthy male Wistar rats (n = 4) were used to determine the correlation between the distribution volume (VT, calculated with Logan graphical analysis) and the SUV. In the second part, healthy male Wistar rats (n = 4) and healthy male C57BL/6J mice (n = 4), were used to determine the test-retest variability of the SUV, with a 7-day interval between measurements. Dynamic PET scans of 63 minutes were acquired with a nanoScan PET/MRI and nanoScan PET/CT. An MRI scan was made for anatomical reference with each measurement. The whole brain VT of [11C]PBR28 in rats was 42.9 ± 1.7. A statistically significant correlation (r2 = 0.96; p < 0.01) was found between the VT and the SUV. The test-retest variability in 8 brain region ranged from 8 to 20% in rats and from 7 to 23% in mice. The interclass correlation coefficient (ICC) was acceptable to excellent for rats, but poor to acceptable for mice. The SUV of [11C]PBR28 showed a high correlation with VT as well as good test-retest variability. For future longitudinal small animal PET studies the SUV can thus be used to describe [11C]PBR28 uptake in healthy brain tissue. Based on the present observations, further studies are needed to explore the applicability of this approach in small animal disease models, with special regard to neuroinflammatory models.

  5. Deoxynucleoside stress exacerbates the phenotype of a mouse model of mitochondrial neurogastrointestinal encephalopathy

    PubMed Central

    Garcia-Diaz, Beatriz; Garone, Caterina; Barca, Emanuele; Mojahed, Hamed; Gutierrez, Purification; Pizzorno, Giuseppe; Tanji, Kurenai; Arias-Mendoza, Fernando; Quinzii, Caterina M.

    2014-01-01

    Balanced pools of deoxyribonucleoside triphosphate precursors are required for DNA replication, and alterations of this balance are relevant to human mitochondrial diseases including mitochondrial neurogastrointestinal encephalopathy. In this disease, autosomal recessive TYMP mutations cause severe reductions of thymidine phosphorylase activity; marked elevations of the pyrimidine nucleosides thymidine and deoxyuridine in plasma and tissues, and somatic multiple deletions, depletion and site-specific point mutations of mitochondrial DNA. Thymidine phosphorylase and uridine phosphorylase double knockout mice recapitulated several features of these patients including thymidine phosphorylase activity deficiency, elevated thymidine and deoxyuridine in tissues, mitochondrial DNA depletion, respiratory chain defects and white matter changes. However, in contrast to patients with this disease, mutant mice showed mitochondrial alterations only in the brain. To test the hypothesis that elevated levels of nucleotides cause unbalanced deoxyribonucleoside triphosphate pools and, in turn, pathogenic mitochondrial DNA instability, we have stressed double knockout mice with exogenous thymidine and deoxyuridine, and assessed clinical, neuroradiological, histological, molecular, and biochemical consequences. Mutant mice treated with exogenous thymidine and deoxyuridine showed reduced survival, body weight, and muscle strength, relative to untreated animals. Moreover, in treated mutants, leukoencephalopathy, a hallmark of the disease, was enhanced and the small intestine showed a reduction of smooth muscle cells and increased fibrosis. Levels of mitochondrial DNA were depleted not only in the brain but also in the small intestine, and deoxyribonucleoside triphosphate imbalance was observed in the brain. The relative proportion, rather than the absolute amount of deoxyribonucleoside triphosphate, was critical for mitochondrial DNA maintenance. Thus, our results demonstrate that stress of exogenous pyrimidine nucleosides enhances the mitochondrial phenotype of our knockout mice. Our mouse studies provide insights into the pathogenic role of thymidine and deoxyuridine imbalance in mitochondrial neurogastrointestinal encephalopathy and an excellent model to study new therapeutic approaches. PMID:24727567

  6. Development of very small-diameter, inductively coupled magnetized plasma device

    NASA Astrophysics Data System (ADS)

    Kuwahara, D.; Mishio, A.; Nakagawa, T.; Shinohara, S.

    2013-10-01

    In order to miniaturize a high-density, inductively coupled magnetized plasma or helicon plasma to be applied to, e.g., an industrial application and an electric propulsion field, small helicon device has been developed. The specifications of this device along with the experimental results are described. We have succeeded in generating high-density (˜1019 m-3) plasmas using quartz tubes with very small diameters of 10 and 20 mm, with a radio frequency power ˜1200 and 700 W, respectively, in the presence of the magnetic field less than 1 kG.

  7. Development of very small-diameter, inductively coupled magnetized plasma device.

    PubMed

    Kuwahara, D; Mishio, A; Nakagawa, T; Shinohara, S

    2013-10-01

    In order to miniaturize a high-density, inductively coupled magnetized plasma or helicon plasma to be applied to, e.g., an industrial application and an electric propulsion field, small helicon device has been developed. The specifications of this device along with the experimental results are described. We have succeeded in generating high-density (~10(19) m(-3)) plasmas using quartz tubes with very small diameters of 10 and 20 mm, with a radio frequency power ~1200 and 700 W, respectively, in the presence of the magnetic field less than 1 kG.

  8. 123I-5-IA-85380 SPECT measurement of nicotinic acetylcholine receptors in human brain by the constant infusion paradigm: feasibility and reproducibility.

    PubMed

    Staley, Julie K; van Dyck, Christopher H; Weinzimmer, David; Brenner, Eric; Baldwin, Ronald M; Tamagnan, Gilles D; Riccardi, Patrizia; Mitsis, Effie; Seibyl, John P

    2005-09-01

    (123)I-5-IA-85380 ((123)I-5-IA; [(123)I]-5-iodo-3-[2(S)-azetidinylmethoxy]pyridine) is a promising SPECT radiotracer for imaging beta(2)-containing nicotinic acetylcholine receptors (beta(2)-nAChRs) in brain. Beta(2)-nAChRs are the initial site of action of nicotine and are implicated in various neuropsychiatric disorders. The feasibility and reproducibility of the bolus-plus-constant-infusion paradigm for equilibrium modeling of (123)I-5-IA using SPECT in healthy nonsmokers was studied. Ten healthy nonsmokers (mean age +/- SD, 43.7 +/- 9.9 y) underwent two (123)I-5-IA SPECT scans within 4 wk. (123)I-5-IA was administered as a bolus (125.8 +/- 14.6 MBq) plus constant infusion (18.1 +/- 1.5 MBq/h). SPECT acquisitions (30 min) and venous blood sampling were performed every 60 min throughout the infusion (10-14 h). The test-retest variability and reliability of plasma activity (kBq/mL), the regional brain activity reflected by units of kBq/mL and %ID/mL (injected dose/mL brain tissue), and the equilibrium outcome measures V(T)' (ratio of total uptake to total plasma parent concentration) and V(T) (ratio of total uptake to free plasma parent concentration) were evaluated in 4 brain areas, including thalamus, striatum, cortex, and cerebellum. Linear regression analysis revealed that time-activity curves for both plasma and brain (123)I-5-IA activity stabilized by 5 h, with an average change of [2.5%/h between 6 and 8 h of infusion, permitting equilibrium modeling. The plasma free fraction (f(1)), total parent, and clearance demonstrated good test-retest variability (mean, 10.9%-12.5%), whereas the variability of free parent was greater (mean, 24.3%). Regional brain activity (kBq/mL) demonstrated good test-retest variability (11.1%-16.4%) that improved when corrected for infusion rate (mean, 8.2%-9.9%) or for injected dose (mean, 9.5%-13.3%). V(T)' demonstrated better test-retest variability (mean, 7.0%-8.9%) than V(T) (mean, 12.9%-14.6%). Reliability assessed by the intraclass correlation coefficient (ICC) was superior for kBq/mL (ICC = 0.83-0.90) and %ID/mL (ICC = 0.93-0.96) compared with V(T)' (ICC = 0.30-0.64) and V(T) (ICC = 0.28-0.60). The lower reliability of V(T) was attributed to the poor reliability of the free fraction (ICC = 0.35) and free parent (ICC = 0.68). These results support the feasibility and reproducibility of equilibrium imaging with (123)I-5-IA for measurement of beta(2)-nAChRs in human brain.

  9. Plasma soluble CD163 is associated with postmortem brain pathology in human immunodeficiency virus infection.

    PubMed

    Bryant, Alex K; Moore, David J; Burdo, Tricia H; Lakritz, Jessica R; Gouaux, Ben; Soontornniyomkij, Virawudh; Achim, Cristian L; Masliah, Eliezer; Grant, Igor; Levine, Andrew J; Ellis, Ronald J

    2017-04-24

    Higher plasma soluble cluster of differentiation (CD)163 (sCD163), shed by monocytes and macrophages, correlates with neurocognitive impairment in HIV infection. We hypothesized that higher antemortem plasma or cerebrospinal fluid (CSF) sCD163 would be associated with greater postmortem neurodegeneration and/or microgliosis. Retrospective, postmortem observational study. We measured sCD163 levels in antemortem plasma (n = 54) and CSF (n = 32) samples from 74 HIV-seropositive participants (median 5 months before death) who donated their brains to research at autopsy. Postmortem, we quantified markers of synaptodendritic damage (microtubule-associated protein 2, synaptophysin), microgliosis [human leukocyte antigen DR (HLA-DR), ionized calcium-binding adaptor molecule 1], astrocytosis (glial fibrillary acidic protein), and impaired protein clearance (β-amyloid) in frontal cortex, hippocampus, putamen, and internal capsule. Multivariable least-squares regression was used to evaluate the association between plasma or CSF sCD163 and histological measures, correcting for multiple comparisons. Higher plasma sCD163 was associated with lower microtubule-associated protein 2 in frontal cortex [B = -0.23, 95% confidence interval (CI) -0.41 to -0.06, P = 0.04], putamen (B = 0.32, 95% CI -0.52 to -0.12, P = 0.02), and hippocampus (B = -0.23, 95% CI -0.35 to -0.10, P = 0.01), and with lower synaptophysin in hippocampus (B = -0.25, 95% CI -0.42 to -0.03, P = 0.02) but not putamen or frontal cortex (P > 0.05). Higher plasma sCD163 was associated with higher HLA-DR in putamen (B = 0.17, 95% CI 0.08 to 0.26, P = 0.008). CSF sCD163 was not associated with any histological measure (P > 0.05). Higher plasma sCD163 in life is associated with greater synaptodendritic damage and microglial activation in cortical and subcortical brain regions.

  10. Chemically treated plasma Aβ is a potential blood-based biomarker for screening cerebral amyloid deposition.

    PubMed

    Park, Jong-Chan; Han, Sun-Ho; Cho, Hyun Jin; Byun, Min Soo; Yi, Dahyun; Choe, Young Min; Kang, Seokjo; Jung, Eun Sun; Won, Su Jin; Kim, Eun Hye; Kim, Yu Kyeong; Lee, Dong Young; Mook-Jung, Inhee

    2017-03-22

    Plasma β-amyloid (Aβ) is a potential candidate for an Alzheimer's disease (AD) biomarker because blood is an easily accessible bio-fluid, which can be collected routinely, and Aβ is one of the major hallmarks of AD pathogenesis in the brain. However, the association between plasma Aβ levels and AD diagnosis is still unclear due to the instability and inaccurate measurements of plasma Aβ levels in the blood of patients with AD. If a consistent value of plasma Aβ from the blood can be obtained, this might help determine whether plasma Aβ is a potential biomarker for AD diagnosis. We predicted the brain amyloid deposit by measuring the plasma Aβ levels. This cross-sectional study included 353 participants (215 cognitively normal, 79 with mild cognitive impairment, and 59 with AD dementia) who underwent Pittsburgh-compound B positron emission tomography (PiB-PET) scans. We treated a mixture of protease inhibitors and phosphatase inhibitors (MPP) and detected plasma Aβ42 and Aβ40 (MPP-Aβ42 and MPP-Aβ40) in a stable manner using xMAP technology. MPP-Aβ40 and MPP-Aβ42/40 (MPP-Aβs) were significantly different between subjects with positive amyloid deposition (PiB+) and those with negative amyloid deposition (PiB-) (P < 0.0001). Furthermore, MPP-Aβ40 (P < 0.0001, r = 0.23) and MPP-Aβ42/40 ratio (P < 0.0001, r = -0.23) showed significant correlation with global PiB deposition (standardized uptake value ratio). In addition, our integrated multivariable (MPP-Aβ42/40, gender, age, and apolipoprotein E genotypes) logistic regression model proposes a new standard for the prediction of cerebral amyloid deposition. MPP-Aβ might be one of the potential blood biomarkers for the prediction of PiB-PET positivity in the brain.

  11. Revisiting atenolol as a low passive permeability marker.

    PubMed

    Chen, Xiaomei; Slättengren, Tim; de Lange, Elizabeth C M; Smith, David E; Hammarlund-Udenaes, Margareta

    2017-10-31

    Atenolol, a hydrophilic beta blocker, has been used as a model drug for studying passive permeability of biological membranes such as the blood-brain barrier (BBB) and the intestinal epithelium. However, the extent of S-atenolol (the active enantiomer) distribution in brain has never been evaluated, at equilibrium, to confirm that no transporters are involved in its transport at the BBB. To assess whether S-atenolol, in fact, depicts the characteristics of a low passive permeable drug at the BBB, a microdialysis study was performed in rats to monitor the unbound concentrations of S-atenolol in brain extracellular fluid (ECF) and plasma during and after intravenous infusion. A pharmacokinetic model was developed, based on the microdialysis data, to estimate the permeability clearance of S-atenolol into and out of brain. In addition, the nonspecific binding of S-atenolol in brain homogenate was evaluated using equilibrium dialysis. The steady-state ratio of unbound S-atenolol concentrations in brain ECF to that in plasma (i.e., K p,uu,brain ) was 3.5% ± 0.4%, a value much less than unity. The unbound volume of distribution in brain (V u, brain ) of S-atenolol was also calculated as 0.69 ± 0.10 mL/g brain, indicating that S-atenolol is evenly distributed within brain parenchyma. Lastly, equilibrium dialysis showed limited nonspecific binding of S-atenolol in brain homogenate with an unbound fraction (f u,brain ) of 0.88 ± 0.07. It is concluded, based on K p,uu,brain being much smaller than unity, that S-atenolol is actively effluxed at the BBB, indicating the need to re-consider S-atenolol as a model drug for passive permeability studies of BBB transport or intestinal absorption.

  12. Elevated brain serotonin turnover in patients with depression: effect of genotype and therapy.

    PubMed

    Barton, David A; Esler, Murray D; Dawood, Tye; Lambert, Elisabeth A; Haikerwal, Deepak; Brenchley, Celia; Socratous, Florentia; Hastings, Jacqueline; Guo, Ling; Wiesner, Glen; Kaye, David M; Bayles, Richard; Schlaich, Markus P; Lambert, Gavin W

    2008-01-01

    The biological basis for the development of major depressive disorder (MDD) remains incompletely understood. To quantify brain serotonin (5-hydroxytryptamine [5-HT]) turnover in patients with MDD. Patients with depression were studied both untreated and during administration of a selective serotonin reuptake inhibitor (SSRI) in an unblinded study of sequential design. Healthy volunteers were examined on only 1 occasion. Direct internal jugular venous blood sampling was used to directly quantify brain serotonin turnover. The effect of serotonin transporter (5-HTT) genotype on brain serotonin turnover was evaluated and the influence of SSRI therapy on serotonin turnover was investigated. Participants were recruited from the general community following media advertisement. Experimental procedures were performed in the research catheterization laboratory of a major training hospital and medical research institute. Studies were performed in 21 patients fulfilling the DSM-IV and International Statistical Classification of Diseases, 10th Revision diagnostic criteria for MDD and in 40 healthy volunteers. Treatment for patients consisted of SSRI administration for approximately 12 weeks. Brain serotonin turnover before and after SSRI therapy. Brain serotonin turnover was significantly elevated in unmedicated patients with MDD compared with healthy subjects (mean [SD] internal jugular venoarterial 5-hydroxyindoleacetic acid plasma concentration difference, 4.4 [4.3] vs 1.6 [2.4] nmol/L, respectively; P = .003). Analysis of the influence of the 5-HTT genotype in MDD indicated that carriage of the s allele compared with the l allele was associated with greater than a 2-fold increase in brain serotonin turnover (mean [SD] internal jugular venoarterial 5-hydroxyindoleacetic acid plasma concentration difference, 6.5 [4.7] vs 2.7 [2.9] nmol/L, respectively; P = .04). Following SSRI therapy, brain serotonin turnover was substantially reduced (mean [SD] internal jugular venoarterial 5-hydroxyindoleacetic acid plasma concentration difference, 6.0 [4.0] nmol/L prior to treatment vs 2.0 [3.3] nmol/L following therapy; P = .008). Brain serotonin turnover is elevated in unmedicated patients with MDD and is influenced by the 5-HTT genotype. The marked reduction in serotonin turnover following SSRI treatment and the accompanying improvement in symptoms suggest that high brain serotonin turnover may be a biological substrate of MDD.

  13. Hypoxia-ischemia brain damage disrupts brain cholesterol homeostasis in neonatal rats.

    PubMed

    Yu, Z; Li, S; Lv, S H; Piao, H; Zhang, Y H; Zhang, Y M; Ma, H; Zhang, J; Sun, C K; Li, A P

    2009-08-01

    The first 3 weeks of life is the peak time of oligodendrocytes development and also the critical period of cholesterol increasing dramatically in central nervous system in rats. Neonatal hypoxia-ischemia (HI) brain damage happening in this period may disturb the brain cholesterol balance as well as white matter development. To test this hypothesis, postnatal day 7 (P7) Sprague-Dawley rats were subjected to HI insult. Cholesterol concentrations from brain and plasma were measured. White matter integrity was evaluated by densitometric analysis of myelin basic protein (MBP) immunostaining and electron microscopy. Brain TNF-alpha and IL-6 levels were also measured. HI-induced brain cholesterol, but not the plasma cholesterol, levels decreased significantly during the first three days after HI compared with naïve and sham operated rats (p<0.05). Obvious hypomyelination was indicated by marked reductions in MBP immunostaining on both P10 and P14 (p<0.01) and less and thinner myelinated axons were detected on P21 by electron microscopy observation. High expressions of brain TNF-alpha and IL-6 12 h after HI (p<0.05) were also observed. The present work provides evidence that HI insult destroyed brain cholesterol homeostasis, which might be important in the molecular pathology of hypoxic-ischemic white matter injury. Proinflammatory cytokines insulting oligodendrocytes, may cause cholesterol unbalance. Furthermore, specific therapeutic interventions to maintain brain cholesterol balance may be effective for the recovery of white matter function. Georg Thieme Verlag KG Stuttgart New York.

  14. Brain Barrier Disruption and Region-Specific Neuronal Degeneration during Necrotizing Enterocolitis in Preterm Pigs.

    PubMed

    Brunse, Anders; Abbaspour, Afrouz; Sangild, Per Torp

    2018-06-06

    Necrotizing enterocolitis (NEC) increases the risk of brain injury and impaired neurodevelopment. Rapid brain maturation prior to birth may explain why preterm brains are particularly vulnerable to serious infections. Using pigs as models, we hypothesized that preterm birth was associated with altered blood-cerebrospinal fluid (CSF) barrier (BCSFB) function and cerebral structural deficits, and that NEC was associated with systemic inflammation, BCSFB disruption, and neuroinflammation. First, cesarean-delivered preterm and term pigs (n = 43-44) were euthanized at birth to investigate BCSFB function and markers of brain structural maturation, or on day 5 to measure markers of blood-brain barrier maturation in the hippocampus and striatum (experiment 1). Next, preterm pigs (n = 162) were fed increasing volumes of infant formula to assess NEC lesions, systemic inflammation, BCSFB permeability, cerebral histopathology, hippocampal micro-glial density, and cytokine levels on day 5 (experiments 2 and 3). In experiment 1, preterm newborns had increased CSF-plasma ratios of albumin and raffinose, reduced CSF glucose levels, as well as increased cerebral hydration and reduced white matter myelination compared with term animals. We observed lower hippocampal (but not striatal) perivascular astrocyte coverage for the first 5 days after preterm birth, accompanied by altered cell junction protein levels. In experiments 2 and- 3, piglets with severe NEC lesions showed reduced blood thrombocytes and increased plasma C-reactive protein and interleukin-6 levels. NEC was associated with increased CSF-plasma albumin and raffinose ratios, reduced CSF leukocyte numbers, and increased cerebral hydration. In the hippocampus, NEC was associated with pyramidal neuron loss and increased interleukin-6 levels. In the short term, NEC did not affect cerebral myelination or microglia density. In conclusion, altered BCSFB properties and brain structural deficits were observed in pigs after preterm birth. Acute gastrointestinal NEC lesions were associated with systemic inflammation, increased BCSFB permeability and region-specific neuronal damage. The results demonstrate the importance of early interventions against NEC to prevent brain injury in preterm infants. © 2018 S. Karger AG, Basel.

  15. ABC transporters P-gp and Bcrp do not limit the brain uptake of the novel antipsychotic and anticonvulsant drug cannabidiol in mice

    PubMed Central

    Brzozowska, Natalia; Li, Kong M.; Wang, Xiao Suo; Booth, Jessica; Stuart, Jordyn; McGregor, Iain S.

    2016-01-01

    Cannabidiol (CBD) is currently being investigated as a novel therapeutic for the treatment of CNS disorders like schizophrenia and epilepsy. ABC transporters such as P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) mediate pharmacoresistance in these disorders. P-gp and Bcrp are expressed at the blood brain barrier (BBB) and reduce the brain uptake of substrate drugs including various antipsychotics and anticonvulsants. It is therefore important to assess whether CBD is prone to treatment resistance mediated by P-gp and Bcrp. Moreover, it has become common practice in the drug development of CNS agents to screen against ABC transporters to help isolate lead compounds with optimal pharmacokinetic properties. The current study aimed to assess whether P-gp and Bcrp impacts the brain transport of CBD by comparing CBD tissue concentrations in wild-type (WT) mice versus mice devoid of ABC transporter genes. P-gp knockout (Abcb1a/b−∕−), Bcrp knockout (Abcg2−∕−), combined P-gp/Bcrp knockout (Abcb1a/b−∕−Abcg2−∕−) and WT mice were injected with CBD, before brain and plasma samples were collected at various time-points. CBD results were compared with the positive control risperidone and 9-hydroxy risperidone, antipsychotic drugs that are established ABC transporter substrates. Brain and plasma concentrations of CBD were not greater in P-gp, Bcrp or P-gp/Bcrp knockout mice than WT mice. In comparison, the brain/plasma concentration ratios of risperidone and 9-hydroxy risperidone were profoundly higher in P-gp knockout mice than WT mice. These results suggest that CBD is not a substrate of P-gp or Bcrp and may be free from the complication of reduced brain uptake by these transporters. Such findings provide favorable evidence for the therapeutic development of CBD in the treatment of various CNS disorders. PMID:27257556

  16. ABC transporters P-gp and Bcrp do not limit the brain uptake of the novel antipsychotic and anticonvulsant drug cannabidiol in mice.

    PubMed

    Brzozowska, Natalia; Li, Kong M; Wang, Xiao Suo; Booth, Jessica; Stuart, Jordyn; McGregor, Iain S; Arnold, Jonathon C

    2016-01-01

    Cannabidiol (CBD) is currently being investigated as a novel therapeutic for the treatment of CNS disorders like schizophrenia and epilepsy. ABC transporters such as P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) mediate pharmacoresistance in these disorders. P-gp and Bcrp are expressed at the blood brain barrier (BBB) and reduce the brain uptake of substrate drugs including various antipsychotics and anticonvulsants. It is therefore important to assess whether CBD is prone to treatment resistance mediated by P-gp and Bcrp. Moreover, it has become common practice in the drug development of CNS agents to screen against ABC transporters to help isolate lead compounds with optimal pharmacokinetic properties. The current study aimed to assess whether P-gp and Bcrp impacts the brain transport of CBD by comparing CBD tissue concentrations in wild-type (WT) mice versus mice devoid of ABC transporter genes. P-gp knockout (Abcb1a/b (-∕-)), Bcrp knockout (Abcg2 (-∕-)), combined P-gp/Bcrp knockout (Abcb1a/b (-∕-) Abcg2 (-∕-)) and WT mice were injected with CBD, before brain and plasma samples were collected at various time-points. CBD results were compared with the positive control risperidone and 9-hydroxy risperidone, antipsychotic drugs that are established ABC transporter substrates. Brain and plasma concentrations of CBD were not greater in P-gp, Bcrp or P-gp/Bcrp knockout mice than WT mice. In comparison, the brain/plasma concentration ratios of risperidone and 9-hydroxy risperidone were profoundly higher in P-gp knockout mice than WT mice. These results suggest that CBD is not a substrate of P-gp or Bcrp and may be free from the complication of reduced brain uptake by these transporters. Such findings provide favorable evidence for the therapeutic development of CBD in the treatment of various CNS disorders.

  17. VEGF-121 plasma level as biomarker for response to anti-angiogenetic therapy in recurrent glioblastoma.

    PubMed

    Martini, Maurizio; de Pascalis, Ivana; D'Alessandris, Quintino Giorgio; Fiorentino, Vincenzo; Pierconti, Francesco; Marei, Hany El-Sayed; Ricci-Vitiani, Lucia; Pallini, Roberto; Larocca, Luigi Maria

    2018-05-10

    Vascular endothelial growth factor (VEGF) isoforms, particularly the diffusible VEGF-121, could play a major role in the response of recurrent glioblastoma (GB) to anti-angiogenetic treatment with bevacizumab. We hypothesized that circulating VEGF-121 may reduce the amount of bevacizumab available to target the heavier isoforms of VEGF, which are the most clinically relevant. We assessed the plasma level of VEGF-121 in a brain xenograft model, in human healthy controls, and in patients suffering from recurrent GB before and after bevacizumab treatment. Data were matched with patients' clinical outcome. In athymic rats with U87MG brain xenografts, the level of plasma VEGF-121 relates with tumor volume and it significantly decreases after iv infusion of bevacizumab. Patients with recurrent GB show higher plasma VEGF-121 than healthy controls (p = 0.0002) and treatment with bevacizumab remarkably reduced the expression of VEGF-121 in plasma of these patients (p = 0.0002). Higher plasma level of VEGF-121 was significantly associated to worse PFS and OS (p = 0.0295 and p = 0.0246, respectively). Quantitative analysis of VEGF-121 isoform in the plasma of patients with recurrent GB could be a promising predictor of response to anti-angiogenetic treatment.

  18. Brain-derived neurotrophic factor Val66met polymorphism and plasma levels in road traffic accident survivors.

    PubMed

    van den Heuvel, Leigh; Suliman, Sharain; Malan-Müller, Stefanie; Hemmings, Sian; Seedat, Soraya

    2016-11-01

    Alterations in brain-derived neurotrophic factor (BDNF) expression and release may play a role in the pathogenesis of post-traumatic stress disorder (PTSD). This study evaluated road traffic accident (RTA) survivors to determine whether PTSD and trauma-related factors were associated with plasma BDNF levels and BDNF Val66Met carrier status following RTA exposure. One hundred and twenty-three RTA survivors (mean age 33.2 years, SD = 10.6 years; 56.9% male) were assessed 10 (SD = 4.9) days after RTA exposure. Acute stress disorder (ASD), as assessed with the Acute Stress Disorder Scale, was present in 50 (42.0%) of the participants. Plasma BDNF levels were measured with enzyme-linked immunosorbent assay and BDNF Val66Met genotyping was performed. PTSD, as assessed with the Clinician-Administered PTSD Scale, was present in 10 (10.8%) participants at 6 months follow-up. Neither BDNF Val66Met genotype nor plasma BDNF was significantly associated with the presence or severity of ASD or PTSD. Plasma BDNF levels were, however, significantly correlated with the lifetime number of trauma exposures. In RTA survivors, plasma BDNF levels increased with increasing number of prior trauma exposures. Plasma BDNF may, therefore, be a marker of trauma load.

  19. Changes in plasma thrombospondin-1 concentrations following acute intracerebral hemorrhage.

    PubMed

    Dong, Xiao-Qiao; Yu, Wen-Hua; Zhu, Qiang; Cheng, Zhen-Yu; Chen, Yi-Hua; Lin, Xiao-Feng; Ten, Xian-Lin; Tang, Xiao-Bing; Chen, Juan

    2015-10-23

    Angiogenesis is a fundamental process for brain development and repair. Thrombospondin-1 is the first identified endogenous angiogenesis inhibitor. Its expression in rat brain is upregulated after intracerebral hemorrhage (ICH). We determined whether plasma thrombospondin-1 concentrations are associated with injury severity and prognosis in ICH patients. This observational, prospective study recruited 110 patients and 110 age- and gender-matched healthy controls. Blood samples were collected from the patients at admission and from the healthy controls at study entry to measure plasma thrombospondin-1 concentrations. The endpoints included 1-week mortality, 6-month mortality, 6-month overall survival and 6-month unfavorable outcome (modified Rankin Scale score >2). Plasma thrombospondin-1 concentrations were markedly higher in patients than in healthy controls. Thrombospondin-1 was an independent predictive factor for all endpoints and plasma thrombospondin-1 concentrations were highly associated with injury severity reflected by hematoma volume and National Institutes of Health Stroke Scale score. Under receiver operating characteristic curves, plasma thrombospondin-1 concentrations had similar predictive values compared with hematoma volume and National Institutes of Health Stroke Scale score. Increased plasma thrombospondin-1 concentrations following ICH are independently associated with injury severity and short-term and long-term clinical outcomes. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Relationships between serum brain-derived neurotrophic factor, plasma catecholamine metabolites, cytokines, cognitive function and clinical symptoms in Japanese patients with chronic schizophrenia treated with atypical antipsychotic monotherapy.

    PubMed

    Hori, Hikaru; Yoshimura, Reiji; Katsuki, Asuka; Atake, Kiyokazu; Igata, Ryohei; Konishi, Yuki; Nakamura, Jun

    2017-08-01

    Catecholamines, brain-derived neurotrophic factor (BDNF) and cytokines may be involved in the pathophysiology of schizophrenia. The aim of this study was to examine the associations between serum BDNF levels, plasma catecholamine metablolites, cytokines and the cognitive functions of patients with schizophrenia treated with atypical antipsychotic monotherapy. One hundred and forty-six patients with schizophrenia and 51 age- and sex-matched healthy controls were examined for peripheral biological markers and neurocognitive test. There were positive correlations between serum BDNF levels and scores for verbal memory and attention and processing speed as well as between serum BDNF levels and negative symptoms. Furthermore, there was a negative correlation between the plasma homovanillic acid (HVA) level and motor function and a positive correlation between the plasma 3-methoxy-4-hydroxyphenylglycol (MHPG) level and attention and processing speed. There were no significant correlations between interleukin-6 or tumour necrosis factor alpha and cognitive function. Moreover, there were no significant correlations between the plasma levels of HVA, MHPG, cytokines and clinical symptoms. Serum BDNF levels are positively related to the impairment of verbal memory and attention, plasma HVA levels are positively related to motor function, and plasma MHPG levels are positively related to attention in patients with schizophrenia.

  1. Determination of cyanidin 3-glucoside in rat brain, liver and kidneys by UPLC/MS-MS and its application to a short-term pharmacokinetic study.

    PubMed

    Fornasaro, Stefano; Ziberna, Lovro; Gasperotti, Mattia; Tramer, Federica; Vrhovšek, Urška; Mattivi, Fulvio; Passamonti, Sabina

    2016-03-11

    Anthocyanins exert neuroprotection in various in vitro and in vivo experimental models. However, no details regarding their brain-related pharmacokinetics are so far available to support claims about their direct neuronal bioactivity as well as to design proper formulations of anthocyanin-based products. To gather this missing piece of knowledge, we intravenously administered a bolus of 668 nmol cyanidin 3-glucoside (C3G) in anaesthetized Wistar rats and shortly after (15 s to 20 min) we collected blood, brain, liver, kidneys and urine samples. Extracts thereof were analysed for C3G and its expected metabolites using UPLC/MS-MS. The data enabled to calculate a set of pharmacokinetics parameters. The main finding was the distinctive, rapid distribution of C3G in the brain, with an apparently constant plasma/brain ratio in the physiologically relevant plasma concentration range (19-355 nM). This is the first report that accurately determines the distribution pattern of C3G in the brain, paving the way to the rational design of future tests of neuroprotection by C3G in animal models and humans.

  2. Determination of cyanidin 3-glucoside in rat brain, liver and kidneys by UPLC/MS-MS and its application to a short-term pharmacokinetic study

    PubMed Central

    Fornasaro, Stefano; Ziberna, Lovro; Gasperotti, Mattia; Tramer, Federica; Vrhovšek, Urška; Mattivi, Fulvio; Passamonti, Sabina

    2016-01-01

    Anthocyanins exert neuroprotection in various in vitro and in vivo experimental models. However, no details regarding their brain-related pharmacokinetics are so far available to support claims about their direct neuronal bioactivity as well as to design proper formulations of anthocyanin-based products. To gather this missing piece of knowledge, we intravenously administered a bolus of 668 nmol cyanidin 3-glucoside (C3G) in anaesthetized Wistar rats and shortly after (15 s to 20 min) we collected blood, brain, liver, kidneys and urine samples. Extracts thereof were analysed for C3G and its expected metabolites using UPLC/MS-MS. The data enabled to calculate a set of pharmacokinetics parameters. The main finding was the distinctive, rapid distribution of C3G in the brain, with an apparently constant plasma/brain ratio in the physiologically relevant plasma concentration range (19–355 nM). This is the first report that accurately determines the distribution pattern of C3G in the brain, paving the way to the rational design of future tests of neuroprotection by C3G in animal models and humans. PMID:26965389

  3. Inhibition of P-glycoprotein enhances transport of imipramine across the blood-brain barrier: microdialysis studies in conscious freely moving rats.

    PubMed

    O'Brien, F E; Clarke, G; Fitzgerald, P; Dinan, T G; Griffin, B T; Cryan, J F

    2012-06-01

    Recent studies indicate that efflux of antidepressants by the multidrug resistance transporter P-glycoprotein (P-gp) at the blood-brain barrier (BBB) may contribute to treatment-resistant depression (TRD) by limiting intracerebral antidepressant concentrations. In addition, clinical experience shows that adjunctive treatment with the P-gp inhibitor verapamil may improve the clinical outcome in TRD. Therefore, the present study aimed to investigate the effect of P-gp inhibition on the transport of the tricyclic antidepressant imipramine and its active metabolite desipramine across the BBB. Intracerebral microdialysis in rats was used to monitor brain levels of imipramine and desipramine following i.v. imipramine administration, with or without pretreatment with one of the P-gp inhibitors verapamil or cyclosporin A (CsA). Plasma drug levels were also determined at regular intervals. Pretreatment with either verapamil or CsA resulted in significant increases in imipramine concentrations in the microdialysis samples, without altering imipramine plasma pharmacokinetics. Furthermore, pretreatment with verapamil, but not CsA, led to a significant elevation in plasma and brain levels of desipramine. The present study demonstrated that P-gp inhibition enhanced the intracerebral concentration of imipramine , thus supporting the hypothesis that P-gp activity restricts brain levels of certain antidepressants, including imipramine. These findings may help to explain reports of a beneficial response to adjunctive therapy with verapamil in TRD. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  4. Focused Ultrasound-Induced Blood–Brain Barrier Opening to Enhance Temozolomide Delivery for Glioblastoma Treatment: A Preclinical Study

    PubMed Central

    Wei, Kuo-Chen; Chu, Po-Chun; Wang, Hay-Yan Jack; Huang, Chiung-Yin; Chen, Pin-Yuan; Tsai, Hong-Chieh; Lu, Yu-Jen; Lee, Pei-Yun; Tseng, I-Chou; Feng, Li-Ying; Hsu, Peng-Wei; Yen, Tzu-Chen; Liu, Hao-Li

    2013-01-01

    The purpose of this study is to assess the preclinical therapeutic efficacy of magnetic resonance imaging (MRI)-monitored focused ultrasound (FUS)-induced blood-brain barrier (BBB) disruption to enhance Temozolomide (TMZ) delivery for improving Glioblastoma Multiforme (GBM) treatment. MRI-monitored FUS with microbubbles was used to transcranially disrupt the BBB in brains of Fisher rats implanted with 9L glioma cells. FUS-BBB opening was spectrophotometrically determined by leakage of dyes into the brain, and TMZ was quantitated in cerebrospinal fluid (CSF) and plasma by LC-MS\\MS. The effects of treatment on tumor progression (by MRI), animal survival and brain tissue histology were investigated. Results demonstrated that FUS-BBB opening increased the local accumulation of dyes in brain parenchyma by 3.8-/2.1-fold in normal/tumor tissues. Compared to TMZ alone, combined FUS treatment increased the TMZ CSF/plasma ratio from 22.7% to 38.6%, reduced the 7-day tumor progression ratio from 24.03 to 5.06, and extended the median survival from 20 to 23 days. In conclusion, this study provided preclinical evidence that FUS BBB-opening increased the local concentration of TMZ to improve the control of tumor progression and animal survival, suggesting its clinical potential for improving current brain tumor treatment. PMID:23527068

  5. Determination of protein-unbound rhynchiphylline brain distribution by microdialysis and ultra-performance liquid chromatography with tandem mass spectrometry.

    PubMed

    Lee, Chia-Jung; Hsueh, Thomas Y; Lin, Lie-Chwen; Tsai, Tung-Hu

    2014-06-01

    The stem with hook of Uncaria rhynchophylla (Chinese herbal name Gou-Teng) is a traditional Chinese medicine that has been ethnopharmacologically used to extinguish wind and clean interior heat. Rhynchophylline (RHY), a tetracyclic oxindole alkaloid isolated from U. rhynchophylla, displays significant antineuroinflammatory effects. However, there is no evidence to indicate that rhynchophylline can cross the blood-brain barrier and be detected in the brain. In this study, an in vivo microdialysis sampling method coupled with UPLC/MS/MS was employed for the continuous simultaneous monitoring of unbound RHY in rat blood and brain. The precursor ion → product ion transition at m/z 385.2 → 160.0 for rhynchophylline was monitored. A calibration curve gave good linearity (r>0.996) over the concentration range from 0.5 to 1000 ng/mL. The results demonstrated that rhynchophylline could be detected in the brain and plasma from 15 min to 6 h after its administration (1 or 10 mg/kg, i.v.). All the pharmacokinetic parameters of rhynchophylline in the brain and plasma were obtained. These results show that rhynchophylline can cross the blood-brain barrier and they provide useful clinical information. Copyright © 2014 John Wiley & Sons, Ltd.

  6. Valnoctamide, which reduces rat brain arachidonic acid turnover, is a potential non-teratogenic valproate substitute to treat bipolar disorder.

    PubMed

    Modi, Hiren R; Ma, Kaizong; Chang, Lisa; Chen, Mei; Rapoport, Stanley I

    2017-08-01

    Valproic acid (VPA), used for treating bipolar disorder (BD), is teratogenic by inhibiting histone deacetylase. In unanaesthetized rats, chronic VPA, like other mood stabilizers, reduces arachidonic acid (AA) turnover in brain phospholipids, and inhibits AA activation to AA-CoA by recombinant acyl-CoA synthetase-4 (Acsl-4) in vitro. Valnoctamide (VCD), a non-teratogenic constitutional isomer of VPA amide, reported effective in BD, also inhibits recombinant Acsl-4 in vitro. VCD like VPA will reduce brain AA turnover in unanaesthetized rats. A therapeutically relevant (50mg/kg i.p.) dose of VCD or vehicle was administered daily for 30 days to male rats. AA turnover and related parameters were determined using our kinetic model, following intravenous [1- 14 C]AA in unanaesthetized rats for 10min, and measuring labeled and unlabeled lipids in plasma and high-energy microwaved brain. VCD, compared with vehicle, increased λ, the ratio of brain AA-CoA to unesterified plasma AA specific activities; and decreased turnover of AA in individual and total brain phospholipids. VCD's ability like VPA to reduce rat brain AA turnover and inhibit recombinant Acsl-4, and its efficacy in BD, suggest that VCD be further considered as a non-teratogenic VPA substitute for treating BD. Published by Elsevier B.V.

  7. A novel Alzheimer's disease drug candidate targeting inflammation and fatty acid metabolism.

    PubMed

    Daugherty, Daniel; Goldberg, Joshua; Fischer, Wolfgang; Dargusch, Richard; Maher, Pamela; Schubert, David

    2017-07-14

    CAD-31 is an Alzheimer's disease (AD) drug candidate that was selected on the basis of its ability to stimulate the replication of human embryonic stem cell-derived neural precursor cells as well as in APPswe/PS1ΔE9 AD mice. To move CAD-31 toward the clinic, experiments were undertaken to determine its neuroprotective and pharmacological properties, as well as to assay its therapeutic efficacy in a rigorous mouse model of AD. CAD-31 has potent neuroprotective properties in six distinct nerve cell assays that mimic toxicities observed in the old brain. Pharmacological and preliminary toxicological studies show that CAD-31 is brain-penetrant and likely safe. When fed to old, symptomatic APPswe/PS1ΔE9 AD mice starting at 10 months of age for 3 additional months in a therapeutic model of the disease, there was a reduction in the memory deficit and brain inflammation, as well as an increase in the expression of synaptic proteins. Small-molecule metabolic data from the brain and plasma showed that the major effect of CAD-31 is centered on fatty acid metabolism and inflammation. Pathway analysis of gene expression data showed that CAD-31 had major effects on synapse formation and AD energy metabolic pathways. All of the multiple physiological effects of CAD-31 were favorable in the context of preventing some of the toxic events in old age-associated neurodegenerative diseases.

  8. Potential roles of cell-derived microparticles in ischemic brain disease.

    PubMed

    Horstman, Lawrence L; Jy, Wenche; Bidot, Carlos J; Nordberg, Mary L; Minagar, Alireza; Alexander, J Steven; Kelley, Roger E; Ahn, Yeon S

    2009-10-01

    The objective of this study is to review the role of cell-derived microparticles in ischemic cerebrovascular diseases. An extensive PubMed search of literature pertaining to this study was performed in April 2009 using specific keyword search terms related to cell-derived microparticles and ischemic stroke. Some references are not cited here as it is not possible to be all inclusive or due to space limitation. Cell-derived microparticles are small membranous vesicles released from the plasma membranes of platelets, leukocytes, red cells and endothelial cells in response to diverse biochemical agents or mechanical stresses. They are the main carriers of circulating tissue factor, the principal initiator of intravascular thrombosis, and are implicated in a variety of thrombotic and inflammatory disorders. This review outlines evidence suggesting that cell-derived microparticles are involved predominantly with microvascular, as opposed to macrovascular, thrombosis. More specifically, cell-derived microparticles may substantially contribute to ischemic brain disease in several settings, as well as to neuroinflammatory conditions. If further work confirms this hypothesis, novel therapeutic strategies for minimizing cell-derived microparticles-mediated ischemia are available or can be developed, as discussed.

  9. Peripheral Administration of a Long-Acting Peptide Oxytocin Receptor Agonist Inhibits Fear-Induced Freezing.

    PubMed

    Modi, Meera E; Majchrzak, Mark J; Fonseca, Kari R; Doran, Angela; Osgood, Sarah; Vanase-Frawley, Michelle; Feyfant, Eric; McInnes, Heather; Darvari, Ramin; Buhl, Derek L; Kablaoui, Natasha M

    2016-08-01

    Oxytocin (OT) modulates the expression of social and emotional behaviors and consequently has been proposed as a pharmacologic treatment of psychiatric diseases, including autism spectrum disorders and schizophrenia; however, endogenous OT has a short half-life in plasma and poor permeability across the blood-brain barrier. Recent efforts have focused on the development of novel drug delivery methods to enhance brain penetration, but few efforts have aimed at improving its half-life. To explore the behavioral efficacy of an OT analog with enhanced plasma stability, we developed PF-06655075 (PF1), a novel non-brain-penetrant OT receptor agonist with increased selectivity for the OT receptor and significantly increased pharmacokinetic stability. PF-06478939 was generated with only increased stability to disambiguate changes to selectivity versus stability. The efficacy of these compounds in evoking behavioral effects was tested in a conditioned fear paradigm. Both central and peripheral administration of PF1 inhibited freezing in response to a conditioned fear stimulus. Peripheral administration of PF1 resulted in a sustained level of plasma concentrations for greater than 20 hours but no detectable accumulation in brain tissue, suggesting that plasma or cerebrospinal fluid exposure was sufficient to evoke behavioral effects. Behavioral efficacy of peripherally administered OT receptor agonists on conditioned fear response opens the door to potential peripheral mechanisms in other behavioral paradigms, whether they are mediated by direct peripheral activation or feed-forward responses. Compound PF1 is freely available as a tool compound to further explore the role of peripheral OT in behavioral response. Copyright © 2016 The Author(s).

  10. The role of neurotrophins related to stress in saliva and salivary glands.

    PubMed

    Saruta, Juri; Sato, Sadao; Tsukinoki, Keiichi

    2010-10-01

    Nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are well-studied neurotrophins involved in neurogenesis, differentiation, growth, and maintenance of selected peripheral and central populations of neuronal cells during development and adulthood. Neurotrophins, in concert with the hypothalamic-pituitary-adrenal (HPA) axis, play key roles in modulating brain plasticity and behavioral coping, especially during ontogenetic critical periods, when the developing brain is particularly sensitive to external stimuli. Early life events, such as psychophysical stress, affect NGF and BDNF levels and induce dysregulation of the HPA axis, thereby affecting brain development and contributing to inter-individual differences in vulnerability to stress or psychiatric disorders. Immobilization stress modifies BDNF mRNA expression in some organs. We studied the effect of immobilization stress on BDNF and its receptor tyrosine receptor kinase B (TrkB) in rat submandibular glands, and found increased BDNF expression in duct cells under immobilization stress. Upon further investigation on the influence of salivary glands on plasma BDNF using an acute immobilization stress model, we found that acute immobilization stress lasting 60 min significantly increases the plasma BDNF level. However, plasma BDNF elevation is markedly suppressed in bilaterally sialoadenectomized rats. This suggests that salivary glands may be the primary source of plasma BDNF under acute immobilization stress. This report reviews the structure of salivary glands, the role of neurotrophins in salivary glands, and the significance of BDNF in saliva and salivary glands, followed by a summary of the evidence that indicates the relationship between immobilization stress and BDNF expression within salivary glands.

  11. Advancement of In-Flight Alumina Powder Spheroidization Process with Water Droplet Injection Using a Small Power DC-RF Hybrid Plasma Flow System

    NASA Astrophysics Data System (ADS)

    Jang, Juyong; Takana, Hidemasa; Park, Sangkyu; Nishiyama, Hideya

    2012-09-01

    The correlation between plasma thermofluid characteristics and alumina powder spheroidization processes with water droplet injection using a small power DC-RF hybrid plasma flow system was experimentally clarified. Micro-sized water droplets with a low water flow rate were injected into the tail of thermal plasma flow so as not to disturb the plasma flow directly. Injected water droplets were vaporized in the thermal plasma flow and were transported upstream in the plasma flow to the torch by the backflow. After dissociation of water, the production of hydrogen was detected by the optical emission spectroscopy in the downstream RF plasma flow. The emission area of the DC plasma jet expanded and elongated in the vicinity of the RF coils. Additionally, the emission area of RF plasma flow enlarged and was visible as red emission in the downstream RF plasma flow in the vicinity below the RF coils due to hydrogen production. Therefore, the plasma flow mixed with produced hydrogen increased the plasma enthalpy and the highest spheroidization rate of 97% was obtained at a water flow rate of 15 Sm l/min and an atomizing gas flow rate of 8 S l/min using a small power DC-RF hybrid plasma flow system.

  12. Piracetam induces plasma membrane depolarization in rat brain synaptosomes.

    PubMed

    Fedorovich, Sergei V

    2013-10-11

    Piracetam is a cyclic derivative of γ-aminobutyric acid (GABA). It was the first nootropic drug approved for clinical use. However, mechanism of its action is still not clear. In present paper, I investigated effects of piracetam on neurotransmitter release, plasma membrane potential monitored by fluorescent dye DiSC3(5) and chloride transport monitored by fluorescent dye SPQ in rat brain synaptosomes. It was shown that piracetam (1 mM) induces slow weak plasma membrane depolarization. This effect was decreased on 43% and 58% by both AMPA/kainate receptor blockers NBQX (10 μM) and CNQX (100 μM), respectively, on 84% by GABA ionotropic receptor blocker picrotoxin (50 μM) and on 91% upon withdrawal of HCO(3-) ions from incubation medium. GABA (1 mM) and kainate (100 μM) were found not to produce changes of plasma membrane potential. Also, it was found that piracetam induces chloride efflux which seems to be the reason of depolarization. Thereby, piracetam induces depolarization of plasma membrane of isolated neuronal presynaptic endings by picrotoxin-sensitive way. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Stereotactic radiosurgery for small brain metastases and implications regarding management with systemic therapy alone.

    PubMed

    Trifiletti, Daniel M; Hill, Colin; Cohen-Inbar, Or; Xu, Zhiyuan; Sheehan, Jason P

    2017-09-01

    While stereotactic radiosurgery (SRS) has been shown effective in the management of brain metastases, small brain metastases (≤10 mm) can pose unique challenges. Our aim was to investigate the efficacy of SRS in the treatment of small brain metastases, as well as elucidate clinically relevant factors impacting local failure (LF). We utilized a large, single-institution cohort to perform a retrospective analysis of patients with brain metastases up to 1 cm in maximal dimension. Clinical and radiosurgical parameters were investigated for an association with LF and compared using a competing risk model to calculate cumulative incidence functions, with death and whole brain radiotherapy serving as competing risks. 1596 small brain metastases treated with SRS among 424 patients were included. Among these tumors, 33 developed LF during the follow-up period (2.4% at 12 months following SRS). Competing risk analysis demonstrated that LF was dependent on tumor size (0.7% if ≤2 mm and 3.0% if 2-10 mm at 12 months, p = 0.016). Other factors associated with increasing risk of LF were the decreasing margin dose, increasing maximal tumor diameter, volume, and radioresistant tumors (each p < 0.01). 22 tumors (0.78%) developed radiographic radiation necrosis following SRS, and this incidence did not differ by tumor size (≤2 mm and 2-10 mm, p = 0.200). This large analysis confirms that SRS remains an effective modality in treatment of small brain metastases. In light of the excellent local control and relatively low risk of toxicity, patients with small brain metastases who otherwise have a reasonable expected survival should be considered for radiosurgical management.

  14. Preservation of mitochondrial functional integrity in mitochondria isolated from small cryopreserved mouse brain areas.

    PubMed

    Valenti, Daniela; de Bari, Lidia; De Filippis, Bianca; Ricceri, Laura; Vacca, Rosa Anna

    2014-01-01

    Studies of mitochondrial bioenergetics in brain pathophysiology are often precluded by the need to isolate mitochondria immediately after tissue dissection from a large number of brain biopsies for comparative studies. Here we present a procedure of cryopreservation of small brain areas from which mitochondrial enriched fractions (crude mitochondria) with high oxidative phosphorylation efficiency can be isolated. Small mouse brain areas were frozen and stored in a solution containing glycerol as cryoprotectant. Crude mitochondria were isolated by differential centrifugation from both cryopreserved and freshly explanted brain samples and were compared with respect to their ability to generate membrane potential and produce ATP. Intactness of outer and inner mitochondrial membranes was verified by polarographic ascorbate and cytochrome c tests and spectrophotometric assay of citrate synthase activity. Preservation of structural integrity and oxidative phosphorylation efficiency was successfully obtained in crude mitochondria isolated from different areas of cryopreserved mouse brain samples. Long-term cryopreservation of small brain areas from which intact and phosphorylating mitochondria can be isolated for the study of mitochondrial bioenergetics will significantly expand the study of mitochondrial defects in neurological pathologies, allowing large comparative studies and favoring interlaboratory and interdisciplinary analyses. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Pharmacokinetic modelling of interleukin-1 receptor antagonist in plasma and cerebrospinal fluid of patients following subarachnoid haemorrhage

    PubMed Central

    Gueorguieva, Ivelina; Clark, Simon R; McMahon, Catherine J; Scarth, Sylvia; Rothwell, Nancy J; Tyrell, Pippa J; Hopkins, Stephen J; Rowland, Malcolm

    2008-01-01

    Aim The naturally occurring interlukin-1 receptor antagonist (IL-1RA) markedly protects rodents against ischaemic, excitotoxic and traumatic brain injury, suggesting it may be of therapeutic value. The aim was to determine the pharmacokinetics of IL-1RA in cerebrospinal fluid (CSF) of patients, to allow modelling that would aid development of therapeutic regimens. Methods When administered intravenously to patients soon after stroke, IL-1RA is safe and reduces the peripheral inflammatory response. However, IL-1RA is a large protein (17 kDa), which may limit brain penetration, thereby limiting its potential utility in brain injury. In seven patients with subarchnoid haemorrhage (SAH), IL-1RA was administered by intravenous bolus, then infusion for 24 h, and both blood and CSF, via external ventricular drains, were sampled during and after stopping the infusion. Results Plasma steady-state concentrations were rapidly attained and maintained throughout the infusion, whereas CSF concentrations rose slowly towards a plateau during the 24-h infusion, reaching at best only 4% of that in plasma. Plasma kinetic parameters were within the literature range. Modelling of the combined data yielded rate constants entering and leaving the CSF of 0.0019 h−1[relative standard error (RSE) = 19%] and 0.1 h−1 (RSE = 19%), respectively. Conclusions Peripherally administered IL-1RA crosses slowly into and out of the CSF of patients with SAH. However, there is a large concentration gradient of IL-1RA between plasma and CSF. These CSF:plasma data are consistent with very low permeation of IL-1RA into the CSF and elimination kinetics from it controlled by the volumetric turnover of CSF. What is already known about this subject? The naturally occurring interlukin-1 receptor antagonist (IL-1RA) markedly protects rodents against ischaemic, excitotoxic and traumatic brain injury, suggesting it may be of therapeutic value.When administered intravenously to patients soon after stroke, IL-1RA is safe and reduces the peripheral inflammatory response.However, IL-1RA is a large protein (17 kDa), which may limit brain penetration, thereby limiting its potential utility in brain injury. What this study adds The purpose of these experiments was to determine the pharmacokinetics of IL-1RA in cerebrospinal fluid (CSF) of patients, to allow modelling that would aid development of therapeutic regimens.Peripherally administered IL-1RA crosses slowly into and out of the CSF of patients with subarachnoid haemorrhage and, at steady state, CSF IL-1RA concentration (range 115–886 ng ml−1) was similar to that found to be neuroprotective in rats (range 91–232 ng ml−1), although there was considerable variability among patients.However, there is a large concentration gradient of IL-1RA between plasma and CSF.These CSF:plasma data are consistent with very low permeation of IL-1RA into the CSF and elimination kinetics from it controlled by the volumetric turnover of CSF. PMID:17875190

  16. Caffeine intake increases plasma ketones: an acute metabolic study in humans.

    PubMed

    Vandenberghe, Camille; St-Pierre, Valérie; Courchesne-Loyer, Alexandre; Hennebelle, Marie; Castellano, Christian-Alexandre; Cunnane, Stephen C

    2017-04-01

    Brain glucose uptake declines during aging and is significantly impaired in Alzheimer's disease. Ketones are the main alternative brain fuel to glucose so they represent a potential approach to compensate for the brain glucose reduction. Caffeine is of interest as a potential ketogenic agent owing to its actions on lipolysis and lipid oxidation but whether it is ketogenic in humans is unknown. This study aimed to evaluate the acute ketogenic effect of 2 doses of caffeine (2.5; 5.0 mg/kg) in 10 healthy adults. Caffeine given at breakfast significantly stimulated ketone production in a dose-dependent manner (+88%; +116%) and also raised plasma free fatty acids. Whether caffeine has long-term ketogenic effects or could enhance the ketogenic effect of medium chain triglycerides remains to be determined.

  17. A Ketone Ester Diet Increases Brain Malonyl-CoA and Uncoupling Proteins 4 and 5 while Decreasing Food Intake in the Normal Wistar Rat*

    PubMed Central

    Kashiwaya, Yoshihiro; Pawlosky, Robert; Markis, William; King, M. Todd; Bergman, Christian; Srivastava, Shireesh; Murray, Andrew; Clarke, Kieran; Veech, Richard L.

    2010-01-01

    Three groups of male Wistar rats were pair fed NIH-31 diets for 14 days to which were added 30% of calories as corn starch, palm oil, or R-3-hydroxybutyrate-R-1,3-butanediol monoester (3HB-BD ester). On the 14th day, animal brains were removed by freeze-blowing, and brain metabolites measured. Animals fed the ketone ester diet had elevated mean blood ketone bodies of 3.5 mm and lowered plasma glucose, insulin, and leptin. Despite the decreased plasma leptin, feeding the ketone ester diet ad lib decreased voluntary food intake 2-fold for 6 days while brain malonyl-CoA was increased by about 25% in ketone-fed group but not in the palm oil fed group. Unlike the acute effects of ketone body metabolism in the perfused working heart, there was no increased reduction in brain free mitochondrial [NAD+]/[NADH] ratio nor in the free energy of ATP hydrolysis, which was compatible with the observed 1.5-fold increase in brain uncoupling proteins 4 and 5. Feeding ketone ester or palm oil supplemented diets decreased brain l-glutamate by 15–20% and GABA by about 34% supporting the view that fatty acids as well as ketone bodies can be metabolized by the brain. PMID:20529850

  18. A ketone ester diet increases brain malonyl-CoA and Uncoupling proteins 4 and 5 while decreasing food intake in the normal Wistar Rat.

    PubMed

    Kashiwaya, Yoshihiro; Pawlosky, Robert; Markis, William; King, M Todd; Bergman, Christian; Srivastava, Shireesh; Murray, Andrew; Clarke, Kieran; Veech, Richard L

    2010-08-20

    Three groups of male Wistar rats were pair fed NIH-31 diets for 14 days to which were added 30% of calories as corn starch, palm oil, or R-3-hydroxybutyrate-R-1,3-butanediol monoester (3HB-BD ester). On the 14th day, animal brains were removed by freeze-blowing, and brain metabolites measured. Animals fed the ketone ester diet had elevated mean blood ketone bodies of 3.5 mm and lowered plasma glucose, insulin, and leptin. Despite the decreased plasma leptin, feeding the ketone ester diet ad lib decreased voluntary food intake 2-fold for 6 days while brain malonyl-CoA was increased by about 25% in ketone-fed group but not in the palm oil fed group. Unlike the acute effects of ketone body metabolism in the perfused working heart, there was no increased reduction in brain free mitochondrial [NAD(+)]/[NADH] ratio nor in the free energy of ATP hydrolysis, which was compatible with the observed 1.5-fold increase in brain uncoupling proteins 4 and 5. Feeding ketone ester or palm oil supplemented diets decreased brain L-glutamate by 15-20% and GABA by about 34% supporting the view that fatty acids as well as ketone bodies can be metabolized by the brain.

  19. 24h withdrawal following repeated administration of caffeine attenuates brain serotonin but not tryptophan in rat brain: implications for caffeine-induced depression.

    PubMed

    Haleem, D J; Yasmeen, A; Haleem, M A; Zafar, A

    1995-01-01

    Caffeine injected at doses of 20, 40 and 80 mg/kg increased brain levels of tryptophan, 5-hydroxytryptamine (5-HT) and 5-hydroxyindole acetic acid (5-HIAA) in rat brain. In view of a possible role of 5-HT in caffeine-induced depression the effects of repeated administration of high doses of caffeine on brain 5-HT metabolism are investigated in rats. Caffeine was injected at doses of 80 mg/kg daily for five days. Control animals were injected with saline daily for five days. On the 6th day caffeine (80 mg/kg) injected to 5 day saline injected rats increased brain levels of tryptophan, 5-HT and 5-HIAA. Plasma total tryptophan levels were not affected and free tryptophan increased. Brain levels of 5-HT and 5-HIAA but not tryptophan decreased in 5 day caffeine injected rats injected with saline on the 6th day. Plasma total and free tryptophan were not altered in these rats. Caffeine-induced increases of brain tryptophan but not 5-HT and 5-HIAA were greater in 5 day caffeine than 5 day saline injected rats. The findings are discussed as repeated caffeine administration producing adaptive changes in the serotonergic neurons to decrease the conversion of tryptophan to 5-HT and this may precipitate depression particularly in conditions of caffeine withdrawal.

  20. Mechanism and developmental changes in iron transport across the blood-brain barrier.

    PubMed

    Morgan, Evan H; Moos, Torben

    2002-01-01

    Transferrin and iron uptake by the brain were measured using [(59)Fe-(125)I]transferrin injected intravenously in rats aged from 15 days to 22 weeks. The values for both decreased with age. In rats aged 18 and 70 days the uptake was measured at short time intervals after the injection. When expressed as the volume of distribution (Vd), which represents the volume of plasma from which the transferrin and iron were derived, the results for iron were greater than those of transferrin as early as 7 min after injection and the difference increased rapidly with time, especially in the younger animals. A very similar time course was found for uptake by bone marrow (femurs) where iron uptake involves receptor-mediated endocytosis of Fe-transferrin, release of iron in the cell and recycling of apo-transferrin to the blood. It is concluded that, during transport of transferrin-bound plasma iron into the brain, a similar process occurs in brain capillary endothelial cells (BCECs) and that transcytosis of transferrin into the brain interstitium is only a minor pathway. Also, the high rate of iron transport into the brain in young animals, when iron requirements are high due to rapid growth of the brain, is a consequence of the level of expression and rate of recycling of transferrin receptors on BCECs. As the animal and brain mature both decrease. Copyright 2002 S. Karger AG, Basel

  1. Influence of administration vehicles and drug formulations on the pharmacokinetic profile of lamotrigine in rats.

    PubMed

    Castel-Branco, M M; Figueiredo, I V; Falcão, A C; Macedo, T R A; Caramona, M M

    2002-10-01

    Given that administration vehicles and drug formulations can affect drug bioavailability, their influence on the pharmacokinetic profile of lamotrigine (LTG), a new-generation anti-epileptic drug, was studied in rats. Three different formulations administered intraperitoneally at a dose of 10 mg/kg were used: (1) LTG suspended in a 0.25% methylcelulose solution, (2) LTG dissolved in a 50% propylene glycol solution, and (3) LTG isethionate dissolved in distilled water. Plasma and brain homogenate levels were determined in order to evaluate vehicle-dependent drug absorption. The results demonstrated rapid absorption of LTG when it was administered as an aqueous solution, in contrast to a slower and more erratic absorption after the injection of either the lipophilic solution or the suspension. A plasma peak was achieved 15 min post-dose with the aqueous solution, with a brain peak being achieved 15 min later, while with the other formulations both plasma and brain homogenate peaks were reached 2 h after LTG administration. This study suggests that LTG isethionate dissolved in distilled water is the most suitable formulation for successful LTG pharmacokinetic studies in rats.

  2. Disrupted Small-World Networks in Schizophrenia

    ERIC Educational Resources Information Center

    Liu, Yong; Liang, Meng; Zhou, Yuan; He, Yong; Hao, Yihui; Song, Ming; Yu, Chunshui; Liu, Haihong; Liu, Zhening; Jiang, Tianzi

    2008-01-01

    The human brain has been described as a large, sparse, complex network characterized by efficient small-world properties, which assure that the brain generates and integrates information with high efficiency. Many previous neuroimaging studies have provided consistent evidence of "dysfunctional connectivity" among the brain regions in…

  3. Hoyeraal-Hreidarsson syndrome: magnetic resonance imaging findings.

    PubMed

    Kuwashima, Shigeko

    2009-10-01

    Hoyeraal-Hreidarsson syndrome (HH) has been defined as a severe variant of dyskeratosis congenita (DKC). We report here a case of a 6-year-old girl with HH who presented with bone marrow hypoplasia, skin pigmentation, nail dystrophy, growth retardation, and bilateral retinal hemorrhage. Brain MRI revealed cerebellar hypoplasia, hypoplasia of the corpus callosum, a small pituitary gland, a small brain stem, and focal long T2 lesions in the thalamus and brain stem. A brain computed tomography scan revealed intracranial calcification as well. To the best of our knowledge, a small pituitary gland and focal long T2 lesions in the thalamus and brain stem have never been reported as a feature of HH.

  4. Macro- and microelements in the rat liver, kidneys, and brain tissues; sex differences and effect of blood removal by perfusion in vivo.

    PubMed

    Orct, Tatjana; Jurasović, Jasna; Micek, Vedran; Karaica, Dean; Sabolić, Ivan

    2017-03-01

    Concentrations of macro- and microelements in animal organs indicate the animal health status and represent reference data for animal experiments. Their levels in blood and tissues could be different between sexes, and could be different with and without blood in tissues. To test these hypotheses, in adult female and male rats the concentrations of various elements were measured in whole blood, blood plasma, and tissues from blood-containing (nonperfused) and blood-free liver, kidneys, and brain (perfused in vivo with an elements-free buffer). In these samples, 6 macroelements (Na, Mg, P, S, K, Ca) and 14 microelements (Fe, Mn, Co, Cu, Zn, Se, I, As, Cd, Hg, Pb, Li, B, Sr) were determined by inductively coupled plasma mass spectrometry following nitric acid digestion. In blood and plasma, female- or male-dominant sex differences were observed for 6 and 5 elements, respectively. In nonperfused organs, sex differences were observed for 3 (liver, brain) or 9 (kidneys) elements, whereas in perfused organs, similar differences were detected for 9 elements in the liver, 5 in the kidneys, and none in the brain. In females, perfused organs had significantly lower concentrations of 4, 5, and 2, and higher concentrations of 10, 4, and 7 elements, respectively, in the liver, kidneys, and brain. In males, perfusion caused lower concentrations of 4, 7, and 2, and higher concentrations of 1, 1, and 7 elements, respectively, in the liver, kidneys, and brain. Therefore, the residual blood in organs can significantly influence tissue concentrations of various elements and their sex-dependency. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. Plasma and brain pharmacokinetic profile of cannabidiol (CBD), cannabidivarine (CBDV), Δ⁹-tetrahydrocannabivarin (THCV) and cannabigerol (CBG) in rats and mice following oral and intraperitoneal administration and CBD action on obsessive-compulsive behaviour.

    PubMed

    Deiana, Serena; Watanabe, Akihito; Yamasaki, Yuki; Amada, Naoki; Arthur, Marlene; Fleming, Shona; Woodcock, Hilary; Dorward, Patricia; Pigliacampo, Barbara; Close, Steve; Platt, Bettina; Riedel, Gernot

    2012-02-01

    Phytocannabinoids are useful therapeutics for multiple applications including treatments of constipation, malaria, rheumatism, alleviation of intraocular pressure, emesis, anxiety and some neurological and neurodegenerative disorders. Consistent with these medicinal properties, extracted cannabinoids have recently gained much interest in research, and some are currently in advanced stages of clinical testing. Other constituents of Cannabis sativa, the hemp plant, however, remain relatively unexplored in vivo. These include cannabidiol (CBD), cannabidivarine (CBDV), Δ(9)-tetrahydrocannabivarin (Δ(9)-THCV) and cannabigerol (CBG). We here determined pharmacokinetic profiles of the above phytocannabinoids after acute single-dose intraperitoneal and oral administration in mice and rats. The pharmacodynamic-pharmacokinetic relationship of CBD (120 mg/kg, ip and oral) was further assessed using a marble burying test in mice. All phytocannabinoids readily penetrated the blood-brain barrier and solutol, despite producing moderate behavioural anomalies, led to higher brain penetration than cremophor after oral, but not intraperitoneal exposure. In mice, cremophor-based intraperitoneal administration always attained higher plasma and brain concentrations, independent of substance given. In rats, oral administration offered higher brain concentrations for CBD (120 mg/kg) and CBDV (60 mg/kg), but not for Δ(9)-THCV (30 mg/kg) and CBG (120 mg/kg), for which the intraperitoneal route was more effective. CBD inhibited obsessive-compulsive behaviour in a time-dependent manner matching its pharmacokinetic profile. These data provide important information on the brain and plasma exposure of new phytocannabinoids and guidance for the most efficacious administration route and time points for determination of drug effects under in vivo conditions.

  6. Effects of selected OATP and/or ABC transporter inhibitors on the brain and whole-body distribution of glyburide.

    PubMed

    Tournier, Nicolas; Saba, Wadad; Cisternino, Salvatore; Peyronneau, Marie-Anne; Damont, Annelaure; Goutal, Sébastien; Dubois, Albertine; Dollé, Frédéric; Scherrmann, Jean-Michel; Valette, Héric; Kuhnast, Bertrand; Bottlaender, Michel

    2013-10-01

    Glyburide (glibenclamide, GLB) is a widely prescribed antidiabetic with potential beneficial effects in central nervous system injury and diseases. In vitro studies show that GLB is a substrate of organic anion transporting polypeptide (OATP) and ATP-binding cassette (ABC) transporter families, which may influence GLB distribution and pharmacokinetics in vivo. In the present study, we used [(11)C]GLB positron emission tomography (PET) imaging to non-invasively observe the distribution of GLB at a non-saturating tracer dose in baboons. The role of OATP and P-glycoprotein (P-gp) in [(11)C]GLB whole-body distribution, plasma kinetics, and metabolism was assessed using the OATP inhibitor rifampicin and the dual OATP/P-gp inhibitor cyclosporine. Finally, we used in situ brain perfusion in mice to pinpoint the effect of ABC transporters on GLB transport at the blood-brain barrier (BBB). PET revealed the critical role of OATP on liver [(11)C]GLB uptake and its subsequent impact on [(11)C]GLB metabolism and plasma clearance. OATP-mediated uptake also occurred in the myocardium and kidney parenchyma but not the brain. The inhibition of P-gp in addition to OATP did not further influence [(11)C]GLB tissue and plasma kinetics. At the BBB, the inhibition of both P-gp and breast cancer resistance protein (BCRP) was necessary to demonstrate the role of ABC transporters in limiting GLB brain uptake. This study demonstrates that GLB distribution, metabolism, and elimination are greatly dependent on OATP activity, the first step in GLB hepatic clearance. Conversely, P-gp, BCRP, and probably multidrug resistance protein 4 work in synergy to limit GLB brain uptake.

  7. A microwave interferometer for small and tenuous plasma density measurements.

    PubMed

    Tudisco, O; Lucca Fabris, A; Falcetta, C; Accatino, L; De Angelis, R; Manente, M; Ferri, F; Florean, M; Neri, C; Mazzotta, C; Pavarin, D; Pollastrone, F; Rocchi, G; Selmo, A; Tasinato, L; Trezzolani, F; Tuccillo, A A

    2013-03-01

    The non-intrusive density measurement of the thin plasma produced by a mini-helicon space thruster (HPH.com project) is a challenge, due to the broad density range (between 10(16) m(-3) and 10(19) m(-3)) and the small size of the plasma source (2 cm of diameter). A microwave interferometer has been developed for this purpose. Due to the small size of plasma, the probing beam wavelength must be small (λ = 4 mm), thus a very high sensitivity interferometer is required in order to observe the lower density values. A low noise digital phase detector with a phase noise of 0.02° has been used, corresponding to a density of 0.5 × 10(16) m(-3).

  8. [Experimental study on the possibility of brain damage induced by chronic treatment with phenobarbital, clonazepam, valproic acid and topiramate in immature rats].

    PubMed

    Zhu, Hai-xia; Cai, Fang-cheng; Zhang, Xiao-ping

    2007-02-01

    To explore the possibility of brain damage induced by several anti-epileptic drugs (AEDs) at therapeutic level to immature brain of rat. Totally 160 healthy Spraque-Dawley (SD) rats selected for the study were divided into infant and adult groups. Each age group was treated with phenobarbital (PB), clonazepam (CZP), valproic acid (VPA), topiramate (TPM) or normal saline respectively for 2 or 5 weeks with 8 rats in each group. The steady-state plasma concentrations of AEDs at the experimental dosage were coincided with the range of clinical therapeutic concentrations. Drug levels in plasma were determined by fluorescence polarization. Body and brain weights were measured when the rats were sacrificed. Histological studies on the tissues of frontal lobes and hippocampus were performed by Nissl staining. And ultrastructural changes of brain were observed by the transmission electron microscopy. Plasma neuron-specific enolase (NSE) was determined by ELISA. Expression of apoptosis-related proteins Bcl-2 and Bax in neurons was detected by immunohistochemistry. Neuronal apoptosis was detected by terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL). (1) There were no significant differences in brain weight among all adults groups. While remarkable reduction of brain weight was observed in immature rats exposed to CZP or PB (P < 0.01) for long term. (2) Significant neurodegeneration, neuronal necrosis and decrease in the number of neurons can be observed in the immature rats exposed to CZP or PB for long period. (3) For immature rats, concentration of plasma NSE was increased even after short-term treatment with PB [(8.84 +/- 2.10) nmol/L] compared with control group [(6.27 +/- 1.27) nmol/L] (P < 0.01). And it was increased in immature rats exposed to CZP [(8.15 +/- 1.67) nmol/L] or PB [(8.07 +/- 1.27) nmol/L] for long term compared with controls [(6.02 +/- 1.20) nmol/L] (P < 0.01). But there were no significant differences between AEDs-treated adult rats and control rats. (4) The expression of Bcl-2 and Bax protein in mature brain did not change at therapeutic level. In contrast, expression of Bax protein in the frontal lobe was increased significantly in immature rats receiving CZP and PB for long period compared with control. (5) The number of TUNEL positive cells in immature rats exposed to CZP or PB for long term was obviously increased. PB and CZP may result in remarkable histological abnormalities, neuronal apoptosis and necrosis in immature brain. The brain damage induced by PB was more serious and persistent than that induced by CZP.

  9. Prehospital plasma resuscitation associated with improved neurologic outcomes after traumatic brain injury.

    PubMed

    Hernandez, Matthew C; Thiels, Cornelius A; Aho, Johnathon M; Habermann, Elizabeth B; Zielinski, Martin D; Stubbs, James A; Jenkins, Donald H; Zietlow, Scott P

    2017-09-01

    Trauma-related hypotension and coagulopathy worsen secondary brain injury in patients with traumatic brain injuries (TBIs). Early damage control resuscitation with blood products may mitigate hypotension and coagulopathy. Preliminary data suggest resuscitation with plasma in large animals improves neurologic function after TBI; however, data in humans are lacking. We retrospectively identified all patients with multiple injuries age >15 years with head injuries undergoing prehospital resuscitation with blood products at a single Level I trauma center from January 2002 to December 2013. Inclusion criteria were prehospital resuscitation with either packed red blood cells (pRBCs) or thawed plasma as sole colloid resuscitation. Patients who died in hospital and those using anticoagulants were excluded. Primary outcomes were Glasgow Outcomes Score Extended (GOSE) and Disability Rating Score (DRS) at dismissal and during follow-up. Of 76 patients meeting inclusion criteria, 53% (n = 40) received prehospital pRBCs and 47% (n = 36) received thawed plasma. Age, gender, injury severity or TBI severity, arrival laboratory values, and number of prehospital units were similar (all p > 0.05). Patients who received thawed plasma had an improved neurologic outcome compared to those receiving pRBCs (median GOSE 7 [7-8] vs. 5.5 [3-7], p < 0.001). Additionally, patients who received thawed plasma had improved functionality compared to pRBCs (median DRS 2 [1-3.5] vs. 9 [3-13], p < 0.001). Calculated GOSE and DRS scores during follow-up, median 6 [5-7] months, demonstrated increased function in those resuscitated with thawed plasma compared to pRBCs by both median GOSE (8 [7-8] vs. 6 [6-7], p < 0.001) and DRS (0 [0-1] vs. 4 [2-8], p < 0.001). In critically injured trauma patients with TBI, early resuscitation with thawed plasma is associated with improved neurologic and functional outcomes at discharge and during follow-up compared to pRBCs alone. These preliminary data support the further investigation and use of plasma in the resuscitation of critically injured TBI patients. Therapeutic, level V.

  10. The blood-cerebrospinal fluid barrier: structure and functional significance.

    PubMed

    Johanson, Conrad E; Stopa, Edward G; McMillan, Paul N

    2011-01-01

    The choroid plexus (CP) of the blood-CSF barrier (BCSFB) displays fundamentally different properties than blood-brain barrier (BBB). With brisk blood flow (10 × brain) and highly permeable capillaries, the human CP provides the CNS with a high turnover rate of fluid (∼400,000 μL/day) containing micronutrients, peptides, and hormones for neuronal networks. Renal-like basement membranes in microvessel walls and underneath the epithelium filter large proteins such as ferritin and immunoglobulins. Type IV collagen (α3, α4, and α5) in the subepithelial basement membrane confers kidney-like permselectivity. As in the glomerulus, so also in CP, the basolateral membrane utrophin A and colocalized dystrophin impart structural stability, transmembrane signaling, and ion/water homeostasis. Extensive infoldings of the plasma-facing basal labyrinth together with lush microvilli at the CSF-facing membrane afford surface area, as great as that at BBB, for epithelial solute and water exchange. CSF formation occurs by basolateral carrier-mediated uptake of Na+, Cl-, and HCO3-, followed by apical release via ion channel conductance and osmotic flow of water through AQP1 channels. Transcellular epithelial active transport and secretion are energized and channeled via a highly dense organelle network of mitochondria, endoplasmic reticulum, and Golgi; bleb formation occurs at the CSF surface. Claudin-2 in tight junctions helps to modulate the lower electrical resistance and greater permeability in CP than at BBB. Still, ratio analyses of influx coefficients (Kin) for radiolabeled solutes indicate that paracellular diffusion of small nonelectrolytes (e.g., urea and mannitol) through tight junctions is restricted; molecular sieving is proportional to solute size. Protein/peptide movement across BCSFB is greatly limited, occurring by paracellular leaks through incomplete tight junctions and low-capacity transcellular pinocytosis/exocytosis. Steady-state concentration ratios, CSF/plasma, ranging from 0.003 for IgG to 0.80 for urea, provide insight on plasma solute penetrability, barrier permeability, and CSF sink action to clear substances from CNS.

  11. Characteristics of voxel prediction power in full-brain Granger causality analysis of fMRI data

    NASA Astrophysics Data System (ADS)

    Garg, Rahul; Cecchi, Guillermo A.; Rao, A. Ravishankar

    2011-03-01

    Functional neuroimaging research is moving from the study of "activations" to the study of "interactions" among brain regions. Granger causality analysis provides a powerful technique to model spatio-temporal interactions among brain regions. We apply this technique to full-brain fMRI data without aggregating any voxel data into regions of interest (ROIs). We circumvent the problem of dimensionality using sparse regression from machine learning. On a simple finger-tapping experiment we found that (1) a small number of voxels in the brain have very high prediction power, explaining the future time course of other voxels in the brain; (2) these voxels occur in small sized clusters (of size 1-4 voxels) distributed throughout the brain; (3) albeit small, these clusters overlap with most of the clusters identified with the non-temporal General Linear Model (GLM); and (4) the method identifies clusters which, while not determined by the task and not detectable by GLM, still influence brain activity.

  12. [Changes in brain serotonin biosynthesis in rats with diabetes mellitus induced by streptozocin: effect of insulin treatment].

    PubMed

    Manjarrez-Gutiérrez, G; Rocío Herrera-Márquez, J R; Bueno-Santoyo, S; González-Ramírez, M; Hernández, J

    2000-01-01

    To investigate if the changes in the activity of the tryptophan-5-hydroxylase and in brain serotonin synthesis provoked by diabetes mellitus persist or return to normal in the diabetic rats submitted to treatment with insulin. Diabetes induced by the administration of streptozotocin in rats and their treatment with insulin was the paradigm used. At days 7, 14 and 21 of evolution, the brain serotonergic biosynthetic activity was evaluated. The diabetic rats showed a significant decrease of body weight. Also, they showed a low concentration of I-tryptophan, as well as a diminution in the activity of the key enzyme tryptophan-5-hydroxylase and its product serotonin in the cerebral cortex and brainstem. Interestingly, the activity of the enzyme was higher in the brainstem from day 14, accompanied with an elevation of the neurotransmitter. The diabetic rats submitted to treatment with insulin showed a complete physical recovery and a return to normal of plasma and brain I-tryptophan. The activity of the enzyme not only normalized but was elevated and with an increase of serotonin in the brainstem and cerebral cortex. The present findings confirm that diabetes mellitus produced a chronic anabolic deficit and a decrease in some brain regions of serotonin synthesis. Also, demonstrate that the diabetic rats under specific treatment with insulin had a complete physical recovery and a return to normal of the serotonin precursor in the blood and brain. However, the activity of the limiting enzyme TrpOH case was elevated with an increase of the neurotransmitter in all regions studied. Since the diabetic animal, insulin treated, does recover metabolically, the mechanism of activation of the serotonin biosynthetic path in the brain may not be dependent on the decreased availability of its precursor the free plasma I-tryptophan. Instead, it might be due to a change in the kinetics of tryptophan-5-hydroxylase, since its activity remains significantly increased in spite of plasma and brain normalization of its substrate. Altogether these changes in the biosynthesis of an important brain neurotransmitter may be of relevance in the pathophysiology of the psychoneurological complications in diabetic patients.

  13. Pharmacokinetic Assessment of Cooperative Efflux of the Multitargeted Kinase Inhibitor Ponatinib Across the Blood-Brain Barrier.

    PubMed

    Laramy, Janice K; Kim, Minjee; Parrish, Karen E; Sarkaria, Jann N; Elmquist, William F

    2018-05-01

    A compartmental blood-brain barrier (BBB) model describing drug transport across the BBB was implemented to evaluate the influence of efflux transporters on the rate and extent of the multikinase inhibitor ponatinib penetration across the BBB. In vivo pharmacokinetic studies in wild-type and transporter knockout mice showed that two major BBB efflux transporters, P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp), cooperate to modulate the brain exposure of ponatinib. The total and unbound (free) brain-to-plasma ratios were approximately 15-fold higher in the triple knockout mice lacking both P-gp and Bcrp [ Mdr1a/b(-/-)Bcrp1(-/-) ] compared with the wild-type mice. The triple knockout mice had a greater than an additive increase in the brain exposure of ponatinib when compared with single knockout mice [ Bcrp1(-/-) or Mdr1a/b(-/-) ], suggesting functional compensation of transporter-mediated drug efflux. Based on the BBB model characterizing the observed brain and plasma concentration-time profiles, the brain exit rate constant and clearance out of the brain were approximately 15-fold higher in the wild-type compared with Mdr1a/b(-/-)Bcrp1(-/-) mice, resulting in a significant increase in the mean transit time (the average time spent by ponatinib in the brain in a single passage) in the absence of efflux transporters (P-gp and Bcrp). This study characterized transporter-mediated drug efflux from the brain, a process that reduces the duration and extent of ponatinib exposure in the brain and has critical implications for the use of targeted drug delivery for brain tumors. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  14. Influence of peptide transporter 2 (PEPT2) on the distribution of cefadroxil in mouse brain: A microdialysis study.

    PubMed

    Chen, Xiaomei; Keep, Richard F; Liang, Yan; Zhu, Hao-Jie; Hammarlund-Udenaes, Margareta; Hu, Yongjun; Smith, David E

    2017-05-01

    Peptide transporter 2 (PEPT2) is a high-affinity low-capacity transporter belonging to the proton-coupled oligopeptide transporter family. Although many aspects of PEPT2 structure-function are known, including its localization in choroid plexus and neurons, its regional activity in brain, especially extracellular fluid (ECF), is uncertain. In this study, the pharmacokinetics and regional brain distribution of cefadroxil, a β-lactam antibiotic and PEPT2 substrate, were investigated in wildtype and Pept2 null mice using in vivo intracerebral microdialysis. Cefadroxil was infused intravenously over 4h at 0.15mg/min/kg, and samples obtained from plasma, brain ECF, cerebrospinal fluid (CSF) and brain tissue. A permeability-surface area experiment was also performed in which 0.15mg/min/kg cefadroxil was infused intravenously for 10min, and samples obtained from plasma and brain tissues. Our results showed that PEPT2 ablation significantly increased the brain ECF and CSF levels of cefadroxil (2- to 2.5-fold). In contrast, there were no significant differences between wildtype and Pept2 null mice in the amount of cefadroxil in brain cells. The unbound volume of distribution of cefadroxil in brain was 60% lower in Pept2 null mice indicating an uptake function for PEPT2 in brain cells. Finally, PEPT2 did not affect the influx clearance of cefadroxil, thereby, ruling out differences between the two genotypes in drug entry across the blood-brain barriers. These findings demonstrate, for the first time, the impact of PEPT2 on brain ECF as well as the known role of PEPT2 in removing peptide-like drugs, such as cefadroxil, from the CSF to blood. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Methyl parathion and fenvalerate toxicity in American kestrels: Acute physiological responses and effects of cold

    USGS Publications Warehouse

    Rattner, B.A.; Franson, J.C.

    1984-01-01

    Physiological and toxicological effects of p.o. methyl parathion (0.375-3.0 mg/kg) or fenvalerate (1000-4000 mg/kg) were examined over a 10-h period in American kestrels (Falco sparverius) maintained in thermoneutral (22?C) and cold (-5?C) environments. Methyl parathion was highly toxic (estimated median lethal dose of 3.08 mg/kg, 95% confidence limits of 2.29 -4.14 mg/kg), producing dose-dependent inhibition of brain and plasma cholinesterase activity, hyperglycemia, and elevated plasma corticosterone concentration. Brain and plasma cholinesterase inhibition in excess of 50% was associated with transient but pronounced hypothermia 2 h after intubation, although the magnitude of this response was yariable. Fenvalerate, at doses far exceeding those encountered in the environment, caused mild intoxication and elevated plasma alanine aminotransferase activity. Cold intensified methyl parathion toxicity, but did not affect that of fenvalerate. Thus, it would appear that organophosphorus insecticides pose far greater hazard than pyrethroids to raptorial birds.

  16. Metronidazole and Hydroxymetronidazole Central Nervous System Distribution: 2. Cerebrospinal Fluid Concentration Measurements in Patients with External Ventricular Drain

    PubMed Central

    Frasca, Denis; Dahyot-Fizelier, Claire; Adier, Christophe; Mimoz, Olivier; Debaene, Bertrand; Couet, William

    2014-01-01

    This study explored metronidazole and hydroxymetronidazole distribution in the cerebrospinal fluid (CSF) of brain-injured patients. Four brain-injured patients with external ventricular drain received 500 mg of metronidazole over 0.5 h every 8 h. CSF and blood samples were collected at steady state over 8 h, and the metronidazole and hydroxymetronidazole concentrations were assayed by high-pressure liquid chromatograph. A noncompartmental analysis was performed. Metronidazole is distributed extensively within CSF, with a mean CSF to unbound plasma AUC0–τ ratio of 86% ± 16%. However, the concentration profiles in CSF were mostly flat compared to the plasma profiles. Hydroxymetronidazole concentrations were much lower than those of metronidazole both in plasma and in CSF, with a corresponding CSF/unbound plasma AUC0–τ ratio of 79% ± 16%. We describe here for the first time in detail the pharmacokinetics of metronidazole and hydroxymetronidazole in CSF. PMID:24277050

  17. Measurement of plasma homovanillic acid concentrations in schizophrenic patients.

    PubMed

    Kaminski, R; Powchick, P; Warne, P A; Goldstein, M; McQueeney, R T; Davidson, M

    1990-01-01

    1. Several lines of evidence suggest that abnormalities of central dopaminergic transmission may be involved in the expression of some schizophrenic symptoms. However, elucidation of the role of dopamine (DA) in schizophrenia has eluded investigative efforts partially because no accurate and easily repeatable measure of brain DA activity exists. 2. The development of a technique to measure homovanillic acid in plasma has offered the possibility of performing serial measurements of this major DA metabolite. 3. Assuming that plasma homovanillic acid (PHVA) concentrations is an index of brain DA activity, measurement of PHVA can play a role in elucidating the DA abnormality in schizophrenia. 4. Results to date suggest that plasma homovanillic acid concentrations are lower in chronic schizophrenic patients compared to normal controls, and that PHVA values correlate with schizophrenic symptom severity. 5. In addition, PHVA levels were shown to initially rise and subsequently decline during chronic neuroleptic administration in treatment responsive but not in treatment refractory schizophrenic patients.

  18. Clinical data from the real world: efficacy of Crizotinib in Chinese patients with advanced ALK-rearranged non-small cell lung cancer and brain metastases.

    PubMed

    Xing, Puyuan; Wang, Shouzheng; Hao, Xuezhi; Zhang, Tongtong; Li, Junling

    2016-12-20

    Brain metastasis in non small cell lung cancer (NSCLC) patients is often considered as a terminal stage of advanced disease. Crizotinib is a small-molecule tyrosine kinase inhibitor (TKI) for ALK-rearranged NSCLC patients. Herein, we conducted a retrospective study to explore how Crizotinib affects the control of brain metastases and the overall prognosis in advanced ALK-rearranged NSCLC patients with brain metastases in Chinese population. A total of 34 patients were enrolled, of whom 20 (58.8%) patients had baseline brain metastases before Crizotinib treatment. Among patients with brain metastases before Crizotinib, overall survival (OS) after brain metastases was significantly longer than that of patients with brain metastases after Crizotinib (median OS, not reached vs. 10.3 months, respectively, p = 0.001). There was also a significant difference in systemic progression-free survival (PFS) between patients developing brain metastases before and after Crizotinib treatment (21.2 months vs. 13.9 months, p = 0.003). In conclusion, ALK-rearranged NSCLC patients with brain metastases before Crizotinib may benefit more from Crizotinib than those developing brain metastases during Crizotinib treatment.

  19. Brain insulin lowers circulating BCAA levels by inducing hepatic BCAA catabolism

    PubMed Central

    Shin, Andrew C.; Fasshauer, Martin; Filatova, Nika; Grundell, Linus A.; Zielinski, Elizabeth; Zhou, Jian-Ying; Scherer, Thomas; Lindtner, Claudia; White, Phillip J.; Lapworth, Amanda L.; Ilkayeva, Olga; Knippschild, Uwe; Wolf, Anna M.; Scheja, Ludger; Grove, Kevin L.; Smith, Richard D.; Qian, Wei-Jun; Lynch, Christopher J.; Newgard, Christopher B.; Buettner, Christoph

    2014-01-01

    Summary Circulating branched-chain amino acid (BCAA) levels are elevated in obesity/diabetes and are a sensitive predictor for type 2 diabetes. Here we show in rats that insulin dose-dependently lowers plasma BCAA levels through induction of hepatic protein expression and activity of branched-chain α keto-acid dehydrogenase (BCKDH), the rate-limiting enzyme in the BCAA degradation pathway. Selective induction of hypothalamic insulin signaling in rats and genetic modulation of brain insulin receptors in mice demonstrate that brain insulin signaling is a major regulator of BCAA metabolism by inducing hepatic BCKDH. Short-term overfeeding impairs the ability of brain insulin to lower BCAAs in rats. High-fat feeding in non-human primates and obesity and/or diabetes in humans is associated with reduced BCKDH protein in liver. These findings support the concept that decreased hepatic BCKDH is a major cause of increased plasma BCAAs, and that hypothalamic insulin resistance may account for impaired BCAA metabolism in obesity and diabetes. PMID:25307860

  20. Brain insulin lowers circulating BCAA levels by inducing hepatic BCAA catabolism.

    PubMed

    Shin, Andrew C; Fasshauer, Martin; Filatova, Nika; Grundell, Linus A; Zielinski, Elizabeth; Zhou, Jian-Ying; Scherer, Thomas; Lindtner, Claudia; White, Phillip J; Lapworth, Amanda L; Ilkayeva, Olga; Knippschild, Uwe; Wolf, Anna M; Scheja, Ludger; Grove, Kevin L; Smith, Richard D; Qian, Wei-Jun; Lynch, Christopher J; Newgard, Christopher B; Buettner, Christoph

    2014-11-04

    Circulating branched-chain amino acid (BCAA) levels are elevated in obesity/diabetes and are a sensitive predictor for type 2 diabetes. Here we show in rats that insulin dose-dependently lowers plasma BCAA levels through induction of hepatic protein expression and activity of branched-chain α-keto acid dehydrogenase (BCKDH), the rate-limiting enzyme in the BCAA degradation pathway. Selective induction of hypothalamic insulin signaling in rats and genetic modulation of brain insulin receptors in mice demonstrate that brain insulin signaling is a major regulator of BCAA metabolism by inducing hepatic BCKDH. Short-term overfeeding impairs the ability of brain insulin to lower BCAAs in rats. High-fat feeding in nonhuman primates and obesity and/or diabetes in humans is associated with reduced BCKDH protein in liver. These findings support the concept that decreased hepatic BCKDH is a major cause of increased plasma BCAAs and that hypothalamic insulin resistance may account for impaired BCAA metabolism in obesity and diabetes. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. [Osmotic demyelination syndrome in Addison crisis and severe hyponatremia].

    PubMed

    Andersen, Signe Elisabeth Bødker; Stausbøl-Grøn, Brian; Rasmussen, Torsten Bloch

    2008-12-08

    Acute adrenal insufficiency is a life threatening disease with dehydration, hypotension, cerebral dysfunction and gastrointestinal symptoms accompanied by low plasma sodium and high plasma potassium. Osmotic demyelination syndrome (ODS) can occur rarely following correction of plasma sodium. We describe a case with extremely low plasma sodium and subsequent development of ODS. Correction which is too slow may lead to cerebral oedema, brain stem herniation and low sodium encephalopathy. Correction which is too fast may cause ODS. The dilemma is accentuated by concomitant Addison crisis.

  2. A follow-up ¹⁸F-FDG brain PET study in a case of Hashimoto's encephalopathy causing drug-resistant status epilepticus treated with plasmapheresis.

    PubMed

    Pari, Elisa; Rinaldi, Fabrizio; Premi, Enrico; Codella, Maria; Rao, Renata; Paghera, Barbara; Panarotto, Maria Beatrice; De Maria, Giovanni; Padovani, Alessandro

    2014-04-01

    Hashimoto's encephalopathy (HE) is a rare neuropsychiatric syndrome associated with antithyroid antibodies. It may have an acute onset (episodes of cerebral ischemia, seizure, and psychosis) or it may present as an indolent form (depression, cognitive decline, myoclonus, tremors, and fluctuations in level of consciousness). We here describe a case of encephalopathy presenting as non-convulsive status epilepticus associated with Hashimoto's thyroiditis (HT), unresponsive to corticosteroid therapy, with improvement after plasma exchange treatment. A previously healthy 19-year-old woman, presented generalized tonic-clonic seizures. About a month later, she manifested a speech disorder characterized by difficulties in the production and comprehension of language. Within a few days she also developed confusion and difficulties in recognizing familiar places, with gradual worsening over time. EEG revealed a non-convulsive status epilepticus (NCSE). CSF examination showed slightly elevated cell count and four oligoclonal bands. MRI was unremarkable, and (18)F-FDG brain PET showed widespread hypometabolism, mostly in posterior regions bilaterally. Laboratory and ultrasound findings showed signs of HT. Treatment with steroid was introduced without any improvement. After five sessions of plasma exchange there was a decrease of antithyroid antibodies, as well as EEG and clinical improvement. Three months after discharge (18)F-FDG brain PET showed a complete normalization of the picture, and the patient was asymptomatic. This report emphasizes the successful treatment of HE with plasma exchange in a patient who presented with NCSE. Based on the actual evidence, the term "Encephalopathy associated with Hashimoto's thyroiditis" may be the most proper. Furthermore, to our knowledge, this is the first case of an adult patient studied twice with an (18)F-FDG brain PET: prior to treatment with plasma exchange, and at 3 months follow-up when the patient was clinically completely asymptomatic. Studies in more patients are needed to clarify the relevance of (18)F-FDG brain PET as a possible diagnostic tool for HE.

  3. The effect of cyclodextrin-solubilized curcuminoids on amyloid plaques in Alzheimer transgenic mice: brain uptake and metabolism after intravenous and subcutaneous injection

    PubMed Central

    2013-01-01

    Introduction Curcuminoids may improve pathological conditions associated with Alzheimer's disease. However, their therapeutic potential is limited by their exceedingly low bioavailability after oral administration. A method to deliver solubilized curcuminoids by injection was evaluated in Alzheimer transgenic mice. Methods Amyloid protein precursor (APP)SWE, PS1dE9 mice were intravenously or subcutaneously injected at weekly intervals between the ages of 4 and 12 months with serum- or cyclodextrin-solubilized curcuminoids to assess their potential for plaque prevention. Alternatively, mice between the ages of 11 and 12 months were intravenously injected with cyclodextrin-solubilized curcuminoids at biweekly intervals to evaluate their ability to eliminate existing plaques. Plasma and brain levels of curcuminoids and their metabolites were also determined after subcutaneous and intravenous injection. Results Weekly long-term injections did not result in a significant plaque load reduction. However, intravenous injection of cyclodextrin-solubilized curcuminoids at higher curcuminoid concentrations and at a biweekly frequency between the ages of 11 and 12 months reduced the plaque load to approximately 70% of the control value. After intravenous injection, plasma levels of 100 μM curcuminoids and brain levels of 47 nmol/g could initially be achieved that declined to essentially undetectable levels within 20 minutes. The primary curcuminoid metabolites in plasma were the conjugates of glucuronide or sulfate and hexahydrocurcuminoids as reduction products. In the brain, both hexahydrocurcuminoids and octahydrocurcuminoids were detected as major metabolites. After subcutaneous injection, maximal curcuminoid plasma levels of 23 μM and brain levels of 8 nmol/g were observed at 30 minutes after injection and curcuminoids remained detectable for 2 to 3 h. Conclusion Curcuminoids are rapidly metabolized after injection and their effect on reducing plaque load associated with Alzheimer's disease may be dependent on the frequency of administration. PMID:23537472

  4. Development of Terahertz Rayleigh Scattering Diagnostics for a Solid Rocket Exhaust Plume

    DTIC Science & Technology

    2010-10-28

    experiment. Many of these experiments involve a diagnostic of a plasma which while different from strictly particles, still provides insight into the...investigate the properties of small plasma objects. Their study developed a method that could be used as a diagnostic for small scale plasmas such...as laser sparks, avalanche-streamer transitions, and resonance-enhanced multi- photon ionizations processes. They treated a plasma as a source of

  5. A thermocouple thermode for small animals

    NASA Technical Reports Server (NTRS)

    Williams, B. A.

    1972-01-01

    Thermode composed of two thin-walled stainless steel hypodermic needles and cooper-constantan thermocouple or small thermistor to indicate temperature at point of perfusion is used to measure brain temperature in animals. Because of relatively small size of thermode, structural damage to brain is minimized.

  6. Comparison of analytical methods of brain [18F]FDG-PET after severe traumatic brain injury.

    PubMed

    Madsen, Karine; Hesby, Sara; Poulsen, Ingrid; Fuglsang, Stefan; Graff, Jesper; Larsen, Karen B; Kammersgaard, Lars P; Law, Ian; Siebner, Hartwig R

    2017-11-01

    Loss of consciousness has been shown to reduce cerebral metabolic rates of glucose (CMRglc) measured by brain [ 18 F]FDG-PET. Measurements of regional metabolic patterns by normalization to global cerebral metabolism or cerebellum may underestimate widespread reductions. The aim of this study was to compare quantification methods of whole brain glucose metabolism, including whole brain [18F]FDG uptake normalized to uptake in cerebellum, normalized to injected activity, normalized to plasma tracer concentration, and two methods for estimating CMRglc. Six patients suffering from severe traumatic brain injury (TBI) and ten healthy controls (HC) underwent a 10min static [ 18 F]FDG-PET scan and venous blood sampling. Except from normalizing to cerebellum, all quantification methods found significant lower level of whole brain glucose metabolism of 25-33% in TBI patients compared to HC. In accordance these measurements correlated to level of consciousness. Our study demonstrates that the analysis method of the [ 18 F]FDG PET data has a substantial impact on the estimated whole brain cerebral glucose metabolism in patients with severe TBI. Importantly, the SUVR method which is often used in a clinical setting was not able to distinguish patients with severe TBI from HC at the whole-brain level. We recommend supplementing a static [ 18 F]FDG scan with a single venous blood sample in future studies of patients with severe TBI or reduced level of consciousness. This can be used for simple semi-quantitative uptake values by normalizing brain activity uptake to plasma tracer concentration, or quantitative estimates of CMRglc. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Well-mixed plasma and tissue viral populations in RT-SHIV-infected macaques implies a lack of viral replication in the tissues during antiretroviral therapy.

    PubMed

    Kearney, Mary F; Anderson, Elizabeth M; Coomer, Charles; Smith, Luke; Shao, Wei; Johnson, Nicholas; Kline, Christopher; Spindler, Jonathan; Mellors, John W; Coffin, John M; Ambrose, Zandrea

    2015-11-11

    Determining the anatomic compartments that contribute to plasma HIV-1 is critical to understanding the sources of residual viremia during combination antiretroviral therapy (ART). We analyzed viral DNA and RNA populations in the plasma and tissues from macaques infected with SIV containing HIV-1 RT (RT-SHIV) to identify possible sources of persistent viremia and to investigate the effect of ART on viral replication in tissues. Tissues were collected at necropsy from four pigtailed macaques infected for 30 weeks with a diverse population of RT-SHIV. Two animals (6760 and 8232) were untreated and two animals (8030 and 8272) were treated with efavirenz, tenofovir, and emtricitabine for 20 weeks. A total of 1800 single-genome RT-SHIV pol and env DNA and RNA sequences were analyzed from the plasma, PBMCs, axillary and mesenteric lymph nodes, spleen, thymus, small intestine, bone marrow, lung, and brain. Analyses of intracellular DNA and RNA populations revealed that the majority of proviruses in tissues from untreated animal 8232 were not expressed, whereas a greater proportion of proviruses in tissues were expressed from 6760. Few intracellular RNA sequences were detected in treated animals and most contained inactivating mutations, such as frame shifts or large deletions. Phylogenetics showed that RT-SHIV DNA populations in tissues were not different from virus in contemporary plasma samples in the treated or untreated animals, demonstrating a lack of anatomic compartmentalization and suggesting that plasma viremia is derived from multiple tissue sources. No sequence divergence was detected in the plasma or between tissues in the treated animals after 20 weeks of ART indicating a lack of ongoing replication in tissues during treatment. Virus populations in plasma and tissues did not differ significantly in either treated or untreated macaques, suggesting frequent exchange of virus or infected cells between tissues and plasma, consistent with non-compartmentalized and widely disseminated infection. There was no genetic evidence of ongoing replication in tissues during suppressive ART.

  8. Subcellular localization and distribution of the reduced folate carrier in normal rat tissues.

    PubMed

    Hinken, M; Halwachs, S; Kneuer, C; Honscha, W

    2011-01-27

    The reduced folate carrier (Rfc1; Slc19a1) mediated transport of reduced folates and antifolate drugs such as methotrexate (MTX) play an essential role in physiological folate homeostasis and MTX cancer chemotherapy. As no systematic reports are as yet available correlating Rfc1 gene expression and protein levels in all tissues crucial for folate and antifolate uptake, storage or elimination, we investigated gene and protein expression of rat Rfc1 (rRfc1) in selected tissues. This included the generation of a specific anti-rRfc1 antibody. Rabbits were immunised with isolated rRfc1 peptides producing specific anti-rRfc1 antiserum targeted to the intracellular C-terminus of the carrier. Using RT-PCR analysis, high rRfc1 transcript levels were detected in colon, kidney, brain, thymus, and spleen. Moderate rRfc1 gene expression was observed in small intestine, liver, bone marrow, lung, and testes whereas transcript levels were negligible in heart, skeletal muscle or leukocytes. Immunohistochemical analyses revealed strong carrier expression in the apical membrane of tunica mucosa epithelial cells of small intestine and colon, in the brush-border membrane of choroid plexus epithelial cells or in endothelial cells of small vessels in brain and heart. Additionally, high rRfc1 protein levels were localized in the basolateral membrane of renal tubular epithelial cells, in the plasma membrane of periportal hepatocytes, and sertoli cells of the testes. Taken together, our results demonstrated that rRfc1 is expressed almost ubiquitously but to very different levels. The predominant tissue distribution supports the essential role of Rfc1 in physiological folate homeostasis. Moreover, our results may contribute to understand antifolate pharmacokinetics and selected organ toxicity associated with MTX chemotherapy.

  9. Dietary Exposure to 2,2′,4,4′-Tetrabromodiphenyl Ether (PBDE-47) Alters Thyroid Status and Thyroid Hormone–Regulated Gene Transcription in the Pituitary and Brain

    PubMed Central

    Lema, Sean C.; Dickey, Jon T.; Schultz, Irvin R.; Swanson, Penny

    2008-01-01

    Background Polybrominated diphenyl ether (PBDE) flame retardants have been implicated as disruptors of the hypothalamic-pituitary-thyroid axis. Animals exposed to PBDEs may show reduced plasma thyroid hormone (TH), but it is not known whether PBDEs impact TH-regulated pathways in target tissues. Objective We examined the effects of dietary exposure to 2,2′,4,4′-tetrabromodiphenyl ether (PBDE-47)—commonly the highest concentrated PBDE in human tissues—on plasma TH levels and on gene transcripts for glycoprotein hormone α-subunit (GPHα) and thyrotropin β-subunit (TSHβ) in the pituitary gland, the autoinduced TH receptors α and β in the brain and liver, and the TH-responsive transcription factor basic transcription element-binding protein (BTEB) in the brain. Methods Breeding pairs of adult fathead minnows (Pimephales promelas) were given dietary PBDE-47 at two doses (2.4 μg/pair/day or 12.3 μg/pair/day) for 21 days. Results Minnows exposed to PBDE-47 had depressed plasma thyroxine (T4), but not 3,5,3′-triiodothyronine (T3). This decline in T4 was accompanied by elevated mRNA levels for TStHβ (low dose only) in the pituitary. PBDE-47 intake elevated transcript for TH receptor αin the brain of females and decreased mRNA for TH receptor β in the brain of both sexes, without altering these transcripts in the liver. In males, PBDE-47 exposure also reduced brain transcripts for BTEB. Conclusions Our results indicate that dietary exposure to PBDE-47 alters TH signaling at multiple levels of the hypothalamic-pituitary-thyroid axis and provide evidence that TH-responsive pathways in the brain may be particularly sensitive to disruption by PBDE flame retardants. PMID:19079722

  10. Astrocyte–endothelial interactions and blood–brain barrier permeability*

    PubMed Central

    Abbott, N Joan

    2002-01-01

    The blood–brain barrier (BBB) is formed by brain endothelial cells lining the cerebral microvasculature, and is an important mechanism for protecting the brain from fluctuations in plasma composition, and from circulating agents such as neurotransmitters and xenobiotics capable of disturbing neural function. The barrier also plays an important role in the homeostatic regulation of the brain microenvironment necessary for the stable and co-ordinated activity of neurones. The BBB phenotype develops under the influence of associated brain cells, especially astrocytic glia, and consists of more complex tight junctions than in other capillary endothelia, and a number of specific transport and enzyme systems which regulate molecular traffic across the endothelial cells. Transporters characteristic of the BBB phenotype include both uptake mechanisms (e.g. GLUT-1 glucose carrier, L1 amino acid transporter) and efflux transporters (e.g. P-glycoprotein). In addition to a role in long-term barrier induction and maintenance, astrocytes and other cells can release chemical factors that modulate endothelial permeability over a time-scale of seconds to minutes. Cell culture models, both primary and cell lines, have been used to investigate aspects of barrier induction and modulation. Conditioned medium taken from growing glial cells can reproduce some of the inductive effects, evidence for involvement of diffusible factors. However, for some features of endothelial differentiation and induction, the extracellular matrix plays an important role. Several candidate molecules have been identified, capable of mimicking aspects of glial-mediated barrier induction of brain endothelium; these include TGFβ, GDNF, bFGF, IL-6 and steroids. In addition, factors secreted by brain endothelial cells including leukaemia inhibitory factor (LIF) have been shown to induce astrocytic differentiation. Thus endothelium and astrocytes are involved in two-way induction. Short-term modulation of brain endothelial permeability has been shown for a number of small chemical mediators produced by astrocytes and other nearby cell types. It is clear that endothelial cells are involved in both long- and short-term chemical communication with neighbouring cells, with the perivascular end feet of astrocytes being of particular importance. The role of barrier induction and modulation in normal physiology and in pathology is discussed. PMID:12162730

  11. Functional Interplay between Small Non-Coding RNAs and RNA Modification in the Brain.

    PubMed

    Leighton, Laura J; Bredy, Timothy W

    2018-06-07

    Small non-coding RNAs are essential for transcription, translation and gene regulation in all cell types, but are particularly important in neurons, with known roles in neurodevelopment, neuroplasticity and neurological disease. Many small non-coding RNAs are directly involved in the post-transcriptional modification of other RNA species, while others are themselves substrates for modification, or are functionally modulated by modification of their target RNAs. In this review, we explore the known and potential functions of several distinct classes of small non-coding RNAs in the mammalian brain, focusing on the newly recognised interplay between the epitranscriptome and the activity of small RNAs. We discuss the potential for this relationship to influence the spatial and temporal dynamics of gene activation in the brain, and predict that further research in the field of epitranscriptomics will identify interactions between small RNAs and RNA modifications which are essential for higher order brain functions such as learning and memory.

  12. Optical mapping of prefrontal brain connectivity and activation during emotion anticipation.

    PubMed

    Wang, Meng-Yun; Lu, Feng-Mei; Hu, Zhishan; Zhang, Juan; Yuan, Zhen

    2018-09-17

    Accumulated neuroimaging evidence shows that the dorsal lateral prefrontal cortex (dlPFC) is activated during emotion anticipation. The aim of this work is to examine the brain connectivity and activation differences in dlPFC between the positive, neutral and negative emotion anticipation by using functional near-infrared spectroscopy (fNIRS). The hemodynamic responses were first assessed for all subjects during the performance of various emotion anticipation tasks. And then small-world analysis was performed, in which the small-world network indicators including the clustering coefficient, average path length, average node degree, and measure of small-world index were calculated for the functional brain networks associated with the positive, neutral and negative emotion anticipation, respectively. We discovered that compared to negative and neutral emotion anticipation, the positive one exhibited enhanced brain activation in the left dlPFC. Although the functional brain networks for the three emotion anticipation cases manifested the small-world properties regarding the clustering coefficient, average path length, average node degree, and measure of small-world index, the positive one showed significantly higher clustering coefficient and shorter average path length than those from the neutral and negative cases. Consequently, the small-world network indicators and brain activation in dlPPC were able to distinguish well between the positive, neutral and negative emotion anticipation. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Stress hormonal changes in the brain and plasma after acute noise exposure in mice.

    PubMed

    Jin, Sang Gyun; Kim, Min Jung; Park, So Young; Park, Shi Nae

    2017-06-01

    To investigate the effects of acute noise stress on two amine stress hormones, norepinephrine (NE) and 5-hydroxyindoleacetic acid (5-HIAA) in the brain and plasma of mice after noise exposure. Mice were grouped into the control and noise groups. Mice in the noise group were exposed to white noise of 110dB sound pressure level for 60min. Auditory brainstem response thresholds, distortion product otoacoustic emissions, the organ of Corti grading scores, western blots of NE/5-HIAA in the whole brain and hippocampus, and the plasma levels of NE/5-HIAA were compared between the two groups. Significant hearing loss and cochlear damage were demonstrated in the noise group. NE and 5-HIAA in the hippocampus were elevated in the noise group (p=0.019/0.022 for NE/5-HIAA vs. the control). Plasma levels of NE and 5-HIAA were not statistically different between the groups (p=0.052/0.671 for NE/5-HIAA). Hearing loss with outer hair cell dysfunction and morphological changes of the organ of Corti after noise exposure in C57BL/6 mice proved the reliability of our animal model as an acute noise stress model. NE and 5-HIAA are suggested to be the potential biomarkers for acute noise stress in the hippocampus. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Plasma and brain angiotensin concentrations associated with water response behavior in the desert anuran, Scaphiopus couchii under natural conditions in the field.

    PubMed

    Johnson, William E; Hillyard, Stanley D; Propper, Catherine R

    2010-12-01

    Terrestrial amphibians obtain water by absorption across a specialized region of the ventral skin and exhibit a behavior, the water absorption response (WR) to place that region in contact with moist surfaces. Spadefoot toads (Scaphiopus couchii) spend dry months of the year in burrows, then emerge during brief periods of summer rainfall and seek water sources for rehydration and reproduction. We tested the hypothesis that these toads have changes in plasma and/or central angiotensin concentrations that are associated with seasonal emergence and WR behavior. Immunoreactive concentrations of combined angiotensin II and III (ir-ANG) were measured in plasma samples and microdissected regions of brain tissue taken from toads moving across the road or toads showing WR behavior in shallow puddles on the road. Plasma ir-ANG concentrations were not significantly different between these groups, but were significantly higher in the periventricular region of the hypothalamus in toads showing WR behavior. Concentrations in other brain regions, while highly variable among individuals, were not different between groups. Within the context of the natural history of a specialized desert toad, these results support the hypothesis that ir-ANG is associated with WR behavior in spadefoot toads in a manner analogous to oral drinking exhibited by other vertebrate clades. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Cerebrospinal fluid concentrations of vemurafenib in patients treated for brain metastatic BRAF-V600 mutated melanoma.

    PubMed

    Sakji-Dupré, Lilia; Le Rhun, Emilie; Templier, Carole; Desmedt, Eve; Blanchet, Benoit; Mortier, Laurent

    2015-08-01

    Anti-BRAF agents, including vemurafenib, have modified the prognosis for patients with melanoma. However, a difference can still be observed between extracerebral and cerebral responses. The aim of this study was to investigate the diffusion of vemurafenib in cerebrospinal fluid (CSF) from patients treated for brain metastatic BRAF-V600 mutated melanoma. Six patients treated with vemurafenib 960 mg twice daily were included. These patients had undergone a lumbar puncture because of suspicions of leptomeningeal metastasis, along with simultaneous blood sampling to measure vemurafenib level. The concentrations of vemurafenib in the CSF and the plasma were measured by high-performance liquid chromatography. The mean plasma and CSF concentrations of vemurafenib were 53.4±26.2 and 0.47±0.37 mg/l, respectively. The mean ratio of the CSF : plasma concentration was 0.98±0.84%. No relationship was found between plasma and CSF concentrations (P=0.8). In conclusion, our preliminary results highlight for the first time a low CSF vemurafenib penetration rate associated with a large interindividual variability in patients treated for metastatic BRAF-V600 mutated melanoma and brain metastases. Further investigations with larger cohorts are required to study the relationship between CSF vemurafenib concentrations and cerebral response. Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.

  16. Effect of different tryptophan sources on amino acids availability to the brain and mood in healthy volunteers.

    PubMed

    Markus, C Rob; Firk, Christine; Gerhardt, Cindy; Kloek, Joris; Smolders, Gertjan F

    2008-11-01

    Reduced brain serotonin function is acknowledged as a vulnerability factor for affective disturbances. Since the production of serotonin is limited by the availability of its plasma dietary amino acid precursor tryptophan (TRP), the beneficial effects of tryptophan-rich alpha-lactalbumin whey protein (ALAC) have recently been studied. The effects of ALAC remain rather modest, and alternative protein sources of tryptophan may be more effective. We tested whether hydrolyzed protein (HPROT) has greater effects on the plasma TRP/large neutral amino acids (LNAA) ratio and mood than intact ALAC protein in healthy volunteers. In a double-blind, randomized cross-over study, plasma amino acids and mood were repeatedly measured in 18 healthy subjects before and after intake of ALAC and HPROT as well as after placebo protein, pure tryptophan, and a tryptophan-containing synthetic peptide. Except for the placebo protein, all interventions contained 0.8 g TRP. Significantly faster and greater increases in plasma TRP/LNAA were found after HPROT than after ALAC. In addition, the effects of HPROT on plasma TRP/LNAA were comparable with the effects of the tryptophan-containing synthetic peptide and even exceeded the effect of pure tryptophan. Sixty minutes after intake, mood was improved only following intake of HPROT and pure tryptophan, whereas longer-lasting mood effects were only found after intake of HPROT. The use of a tryptophan-rich hydrolyzed protein source may be more adequate to increase brain tryptophan and 5-HT function compared with intact alpha-lactalbumin protein or pure tryptophan.

  17. Plasma level-dependent effects of methylphenidate on task-related functional magnetic resonance imaging signal changes.

    PubMed

    Müller, Ulrich; Suckling, J; Zelaya, F; Honey, G; Faessel, H; Williams, S C R; Routledge, C; Brown, J; Robbins, T W; Bullmore, E T

    2005-08-01

    Methylphenidate (MPH) is a dopamine and noradrenaline enhancing drug used to treat attentional deficits. Understanding of its cognition-enhancing effects and the neurobiological mechanisms involved, especially in elderly people, is currently incomplete. The aim of this study was to investigate the relationship between MPH plasma levels and brain activation during visuospatial attention and movement preparation. Twelve healthy elderly volunteers were scanned twice using functional magnetic resonance imaging (fMRI) after oral administration of MPH 20 mg or placebo in a within-subject design. The cognitive paradigm was a four-choice reaction time task presented at two levels of difficulty (with and without spatial cue). Plasma MPH levels were measured at six time points between 30 and 205 min after dosing. FMRI data were analysed using a linear model to estimate physiological response to the task and nonparametric permutation tests for inference. Lateral premotor and medial posterior parietal cortical activation was increased by MPH, on average, over both levels of task difficulty. There was considerable intersubject variability in the pharmacokinetics of MPH. Greater area under the plasma concentration-time curve was positively correlated with strength of activation in motor and premotor cortex, temporoparietal cortex and caudate nucleus during the difficult version of the task. This is the first pharmacokinetic/pharmacodynamic study to find an association between plasma levels of MPH and its modulatory effects on brain activation measured using fMRI. The results suggest that catecholaminergic mechanisms may be important in brain adaptivity to task difficulty and in task-specific recruitment of spatial attention systems.

  18. Vitamin D receptor activation induces P-glycoprotein and increases brain efflux of quinidine: an intracerebral microdialysis study in conscious rats.

    PubMed

    Durk, Matthew R; Fan, Jianghong; Sun, Huadong; Yang, Yingbo; Pang, Henrianna; Pang, K Sandy; de Lannoy, Inés A M

    2015-03-01

    Since the vitamin D receptor (VDR) was found to up-regulate cerebral P-glycoprotein expression in vitro and in mice, we extend our findings to rats by assessing the effect of rat Vdr activation on brain efflux of quinidine, a P-gp substrate that is eliminated primarily by cytochrome P450 3a. We treated rats with vehicle or the active VDR ligand, 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] (4.8 or 6.4 nmol/kg i.p. every 2nd day × 4) and examined P-gp expression and cerebral quinidine disposition via microdialysis in control and treatment studies conducted longitudinally in the same rat. The 6.4 nmol/kg 1,25(OH)2D3 dose increased cerebral P-gp expression 1.75-fold whereas hepatic Cyp3a remained unchanged. Although there was no change in systemic clearance elicited by 1,25(OH)2D3, brain extracellular fluid quinidine concentrations were lower in treated rats. We noted that insertion of indwelling catheters increased plasma protein binding of quinidine and serial sampling decreased the blood:plasma concentration ratio, factors that alter distribution ratios in microdialysis studies. After appropriate correction, KECF/P,uu and KECF/B,uu, or ratios of quinidine unbound concentrations in brain extracellular fluid to plasma or blood at steady-state, were more than halved. We demonstrate that VDR activation increases cerebral P-gp expression and delimits brain penetration of P-gp substrates.

  19. Role of DHA in aging-related changes in mouse brain synaptic plasma membrane proteome.

    PubMed

    Sidhu, Vishaldeep K; Huang, Bill X; Desai, Abhishek; Kevala, Karl; Kim, Hee-Yong

    2016-05-01

    Aging has been related to diminished cognitive function, which could be a result of ineffective synaptic function. We have previously shown that synaptic plasma membrane proteins supporting synaptic integrity and neurotransmission were downregulated in docosahexaenoic acid (DHA)-deprived brains, suggesting an important role of DHA in synaptic function. In this study, we demonstrate aging-induced synaptic proteome changes and DHA-dependent mitigation of such changes using mass spectrometry-based protein quantitation combined with western blot or messenger RNA analysis. We found significant reduction of 15 synaptic plasma membrane proteins in aging brains including fodrin-α, synaptopodin, postsynaptic density protein 95, synaptic vesicle glycoprotein 2B, synaptosomal-associated protein 25, synaptosomal-associated protein-α, N-methyl-D-aspartate receptor subunit epsilon-2 precursor, AMPA2, AP2, VGluT1, munc18-1, dynamin-1, vesicle-associated membrane protein 2, rab3A, and EAAT1, most of which are involved in synaptic transmission. Notably, the first 9 proteins were further reduced when brain DHA was depleted by diet, indicating that DHA plays an important role in sustaining these synaptic proteins downregulated during aging. Reduction of 2 of these proteins was reversed by raising the brain DHA level by supplementing aged animals with an omega-3 fatty acid sufficient diet for 2 months. The recognition memory compromised in DHA-depleted animals was also improved. Our results suggest a potential role of DHA in alleviating aging-associated cognitive decline by offsetting the loss of neurotransmission-regulating synaptic proteins involved in synaptic function. Published by Elsevier Inc.

  20. Targeted Deletion of Kynurenine 3-Monooxygenase in Mice

    PubMed Central

    Giorgini, Flaviano; Huang, Shao-Yi; Sathyasaikumar, Korrapati V.; Notarangelo, Francesca M.; Thomas, Marian A. R.; Tararina, Margarita; Wu, Hui-Qiu; Schwarcz, Robert; Muchowski, Paul J.

    2013-01-01

    Kynurenine 3-monooxygenase (KMO), a pivotal enzyme in the kynurenine pathway (KP) of tryptophan degradation, has been suggested to play a major role in physiological and pathological events involving bioactive KP metabolites. To explore this role in greater detail, we generated mice with a targeted genetic disruption of Kmo and present here the first biochemical and neurochemical characterization of these mutant animals. Kmo−/− mice lacked KMO activity but showed no obvious abnormalities in the activity of four additional KP enzymes tested. As expected, Kmo−/− mice showed substantial reductions in the levels of its enzymatic product, 3-hydroxykynurenine, in liver, brain, and plasma. Compared with wild-type animals, the levels of the downstream metabolite quinolinic acid were also greatly decreased in liver and plasma of the mutant mice but surprisingly were only slightly reduced (by ∼20%) in the brain. The levels of three other KP metabolites: kynurenine, kynurenic acid, and anthranilic acid, were substantially, but differentially, elevated in the liver, brain, and plasma of Kmo−/− mice, whereas the liver and brain content of the major end product of the enzymatic cascade, NAD+, did not differ between Kmo−/− and wild-type animals. When assessed by in vivo microdialysis, extracellular kynurenic acid levels were found to be significantly elevated in the brains of Kmo−/− mice. Taken together, these results provide further evidence that KMO plays a key regulatory role in the KP and indicate that Kmo−/− mice will be useful for studying tissue-specific functions of individual KP metabolites in health and disease. PMID:24189070

  1. Plasma visfatin, associated with a genetic polymorphism -1535C>T, is correlated with C-reactive protein in Chinese Han patients with traumatic brain injury.

    PubMed

    Weng, Jian-Feng; Chen, Jun; Hong, Wei-Cong; Luo, Li-Feng; Yu, Wei; Luo, Shi-Da

    2013-02-01

    Visfatin is a newly identified pro-inflammatory adipokine and a genetic polymorphism -1535 C>T located in the visfatin gene promoter has been suggested to be associated with the regulation of visfatin expression in some inflammatory illness. However, there were some conflicting results regarding whether this variant is functional or not. This study aimed to examine the relations of the -1535 C>T single nucleotide polymorphism (SNP) of visfatin gene to the plasma visfatin and C-reactive protein concentrations in traumatic brain injury (TBI). 318 Chinese Han patients with TBI were recruited in this study. Plasma visfatin and C-reactive protein levels were significantly different between the genotypes in the SNP-1535 C>T even after adjustment for age, sex and body mass index. The genotype C-C had the highest plasma visfatin and C-reactive protein concentrations. The plasma visfatin and C-reactive protein concentrations between the variant genotypes C-T and T-T did not differ significantly. Plasma visfatin level was significantly associated with plasma C-reactive protein level using multivariate linear regression. Thus, the SNP-1535 C>T of visfatin gene seemed to be potentially involved in the inflammatory component of TBI through a decreased production of visfatin. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. The change of plasma galectin-3 concentrations after traumatic brain injury.

    PubMed

    Shen, Yong-Feng; Yu, Wen-Hua; Dong, Xiao-Qiao; Du, Quan; Yang, Ding-Bo; Wu, Gang-Qun; Zhang, Zu-Yong; Wang, Hao; Jiang, Li

    2016-05-01

    Galectin-3 plays a significant role in microglia activation. Its increased circulating concentration has been associated with some inflammatory diseases. In-hospital major adverse events (IMAEs), including acute traumatic coagulopathy, progressive hemorrhagic injury and posttraumatic cerebral infarction, have high prevalence and are strong predictors of mortality after severe traumatic brain injury (STBI). The present study was designed to investigate the relationships between plasma galectin-3 concentrations and trauma severity, in-hospital mortality and IMAEs following STBI. Plasma galectin-3 concentrations of 100 STBI patients and 100 controls were determined. Diagnosis of progressive hemorrhagic injury and posttraumatic cerebral infarction was made on the follow-up computerized tomography scan. Acute traumatic coagulopathy was defined based on coagulation test. Plasma galectin-3 concentrations were significantly higher in patients as compared to controls and also associated highly with Glasgow Coma Scale scores and plasma C-reactive protein concentrations. Galectin-3 emerged as an independent predictor for in-hospital mortality and IMAEs. Areas under receiver operating characteristic curve of plasma galectin-3 concentrations were similar to those of Glasgow Coma Scale scores for prediction of in-hospital morality and IMAEs. Plasma galectin-3 concentrations have close relation to inflammation, trauma severity and clinical outcome, suggesting that galectin-3 should have the potential to be a good prognostic biomarker after STBI. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Effects of peripherally and centrally applied ghrelin on the oxidative stress induced by renin angiotensin system in a rat model of renovascular hypertension.

    PubMed

    Boshra, Vivian; Abbas, Amr M

    2017-07-26

    Renovascular hypertension (RVH) is a result of renal artery stenosis, which is commonly due to astherosclerosis. In this study, we aimed to clarify the central and peripheral effects of ghrelin on the renin-angiotensin system (RAS) in a rat model of RVH. RVH was induced in rats by partial subdiaphragmatic aortic constriction. Experiment A was designed to assess the central effect of ghrelin via the intracerebroventricular (ICV) injection of ghrelin (5 μg/kg) or losartan (0.01 mg/kg) in RVH rats. Experiment B was designed to assess the peripheral effect of ghrelin via the subcutaneous (SC) injection of ghrelin (150 μg/kg) or losartan (10 mg/kg) for 7 consecutive days. Mean arterial blood pressure (MAP), heart rate, plasma renin activity (PRA), and oxidative stress markers were measured in all rats. In addition, angiotensin II receptor type 1 (AT1R) concentration was measured in the hypothalamus of rats in Experiment B. RVH significantly increased brain AT1R, PRA, as well as the brain and plasma oxidative stress. Either SC or ICV ghrelin or losartan caused a significant decrease in MAP with no change in the heart rate. Central ghrelin or losartan caused a significant decrease in brain AT1R with significant alleviation of the brain oxidative stress. Central ghrelin caused a significant decrease in PRA, whereas central losartan caused a significant increase in PRA. SC ghrelin significantly decreased PRA and plasma oxidative stress, whereas SC losartan significantly increased PRA and decreased plasma oxidative stress. The hypotensive effect of ghrelin is mediated through the amelioration of oxidative stress, which is induced by RAS centrally and peripherally.

  4. Subchronic effects of methylmercury on plasma and organ biochemistries in great egret nestlings

    USGS Publications Warehouse

    Hoffman, D.J.; Spalding, M.G.; Frederick, P.C.

    2005-01-01

    In recent years, high concentrations of mercury have been found in wading birds in Florida, USA. Great egret (Ardea alba) chicks (2 weeks old) were dosed orally daily with the equivalent of 0, 0.5, or 5 ug/g Hg as methylmercury chloride in the diet for up to 12 weeks. Weakness of the legs or paralysis occurred in all high-dosed birds. Geometric mean blood Hg concentrations were 0.17, 10.3, and 78.5 ug/g (wet wt), respectively. Mercury concentrations for organs (ug/g wet wt), including brain (0.22, 3.4, and 35, respectively), liver (0.34, 15.1, 138, respectively), and kidney (0.28, 8.1, and 120, respectively), increased in a dose-dependent manner. Total glutathione (GSH) peroxidase activity was significantly lower in the plasma, brain, liver, and kidney of the high-dosed group. Plasma aspartate aminotransferase activity increased with mercury treatment, whereas lactate dehydrogenase activity decreased. Four other plasma chemistries were decreased significantly in the high-dosed group and included uric acid, total protein, albumin, and inorganic phosphorus. Lipid peroxidation increased in liver (low and high dose) and brain (high dose). Tissue changes in concentrations of reduced thiols included decreased total thiols and protein-bound thiols in liver, decreased protein-bound thiols in kidney, and increased GSH in kidney and brain. Activities of GSH S-transferase and oxidized glutathione reductase increased in liver. In kidney, GSH S-transferase and glucose-6-phosphate dehydrogenase activities increased with mercury dose. These findings, including apparent compensatory changes, are compared to other Hg studies where oxidative stress was reported in egrets, herons, and diving ducks in the field and mallards in the laboratory.

  5. Bioavailability and nervous tissue distribution of pyrethroid insecticide cyfluthrin in rats.

    PubMed

    Rodríguez, José-Luis; Ares, Irma; Martínez, Marta; Martínez-Larrañaga, María-Rosa; Anadón, Arturo; Martínez, María-Aránzazu

    2018-05-08

    Toxicokinetics of cyfluthrin after single oral [20 mg/kg body weight (bw)] and intravenous (IV) (3 mg/kg bw) doses were studied in rats. Serial blood samples were obtained after oral and IV administration. Brain tissue samples were also collected after oral administration. Cyfluthrin concentrations in plasma and brain tissues (hypothalamus, striatum, hippocampus and frontal cortex) were quantified using liquid chromatography tandem mass spectrometry (LC/MS). Cyfluthrin disposition was best described by the use of a two-compartment open model. When given orally, plasma kinetics showed an extensive oral absorption of cyfluthrin and a slow elimination. The area under the concentration-time curve [AUC (0-24h) ] and maximal plasma concentration (Cmax) were 6.11 ± 1.06 mg h/L and 0.385 ± 0.051 μg/mL, respectively; β phase elimination half-life (T 1/2 β) was (17.15 ± 1.67 h). Oral bioavailability was found to be 71.60 ± 12.36%. After oral administration, cyfluthrin was widely distributed to brain tissues. AUC (0-24h) was significant higher in all tested brain tissues than in plasma. The largest discrepancy was found for hypothalamus. AUC (0-24h) , Cmax and T 1/2 β in hypothalamus were 19.36 ± 2.56 mg h/L, 1.21 ± 0.11 μg/g and 22.73 ± 1.60 h, respectively. Assuming the identified toxicokinetics parameters, this study serves to better understand mammalian toxicity of pyrethroid cyfluthrin and to design further studies to characterize its neurotoxicity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Amylin Enhances Amyloid-β Peptide Brain to Blood Efflux Across the Blood-Brain Barrier

    PubMed Central

    Mohamed, Loqman A.; Zhu, Haihao; Mousa, Youssef M.; Wang, Erming; Qiu, Wei Qiao; Kaddoumi, Amal

    2017-01-01

    Findings from Alzheimer’s disease (AD) mouse models showed that amylin treatment improved AD pathology and enhanced amyloid-β (Aβ) brain to blood clearance; however, the mechanism was not investigated. Using the Tg2576 AD mouse model, a single intraperitoneal injection of amylin significantly increased Aβ serum levels, and the effect was abolished by AC253, an amylin receptor antagonist, suggesting that amylin effect could be mediated by its receptor. Subsequent mechanistic studies showed amylin enhanced Aβ transport across a cell-based model of the blood-brain barrier (BBB), an effect that was abolished when the amylin receptor was inhibited by two amylin antagonists and by siRNA knockdown of amylin receptor Ramp3. To explain this finding, amylin effect on Aβ transport proteins expressed at the BBB was evaluated. Findings indicated that cells treated with amylin induced LRP1 expression, a major receptor involved in brain Aβ efflux, in plasma membrane fraction, suggesting intracellular translocation of LRP1 from the cytoplasmic pool. Increased LRP1 in membrane fraction could explain, at least in part, the enhanced uptake and transport of Aβ across the BBB. Collectively, our findings indicated that amylin induced Aβ brain to blood clearance through amylin receptor by inducing LRP1 subcellular translocation to the plasma membrane of the BBB endothelium. PMID:28059785

  7. Diet-Induced Weight Loss Alters Functional Brain Responses during an Episodic Memory Task.

    PubMed

    Boraxbekk, Carl-Johan; Stomby, Andreas; Ryberg, Mats; Lindahl, Bernt; Larsson, Christel; Nyberg, Lars; Olsson, Tommy

    2015-01-01

    It has been suggested that overweight is negatively associated with cognitive functions. The aim of this study was to investigate whether a reduction in body weight by dietary interventions could improve episodic memory performance and alter associated functional brain responses in overweight and obese women. 20 overweight postmenopausal women were randomized to either a modified paleolithic diet or a standard diet adhering to the Nordic Nutrition Recommendations for 6 months. We used functional magnetic resonance imaging to examine brain function during an episodic memory task as well as anthropometric and biochemical data before and after the interventions. Episodic memory performance improved significantly (p = 0.010) after the dietary interventions. Concomitantly, brain activity increased in the anterior part of the right hippocampus during memory encoding, without differences between diets. This was associated with decreased levels of plasma free fatty acids (FFA). Brain activity increased in pre-frontal cortex and superior/middle temporal gyri. The magnitude of increase correlated with waist circumference reduction. During episodic retrieval, brain activity decreased in inferior and middle frontal gyri, and increased in middle/superior temporal gyri. Diet-induced weight loss, associated with decreased levels of plasma FFA, improves episodic memory linked to increased hippocampal activity. © 2015 S. Karger GmbH, Freiburg.

  8. Diet-Induced Weight Loss Alters Functional Brain Responses during an Episodic Memory Task

    PubMed Central

    Boraxbekk, Carl-Johan; Stomby, Andreas; Ryberg, Mats; Lindahl, Bernt; Larsson, Christel; Nyberg, Lars; Olsson, Tommy

    2015-01-01

    Objective It has been suggested that overweight is negatively associated with cognitive functions. The aim of this study was to investigate whether a reduction in body weight by dietary interventions could improve episodic memory performance and alter associated functional brain responses in overweight and obese women. Methods 20 overweight postmenopausal women were randomized to either a modified paleolithic diet or a standard diet adhering to the Nordic Nutrition Recommendations for 6 months. We used functional magnetic resonance imaging to examine brain function during an episodic memory task as well as anthropometric and biochemical data before and after the interventions. Results Episodic memory performance improved significantly (p = 0.010) after the dietary interventions. Concomitantly, brain activity increased in the anterior part of the right hippocampus during memory encoding, without differences between diets. This was associated with decreased levels of plasma free fatty acids (FFA). Brain activity increased in pre-frontal cortex and superior/middle temporal gyri. The magnitude of increase correlated with waist circumference reduction. During episodic retrieval, brain activity decreased in inferior and middle frontal gyri, and increased in middle/superior temporal gyri. Conclusions Diet-induced weight loss, associated with decreased levels of plasma FFA, improves episodic memory linked to increased hippocampal activity. PMID:26139105

  9. Cediranib Maleate and Whole Brain Radiation Therapy in Patients With Brain Metastases From Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-03-07

    Male Breast Cancer; Stage IV Breast Cancer; Stage IV Melanoma; Stage IV Non-small Cell Lung Cancer; Stage IV Renal Cell Cancer; Stage IVA Colon Cancer; Stage IVA Rectal Cancer; Stage IVB Colon Cancer; Stage IVB Rectal Cancer; Tumors Metastatic to Brain

  10. Plasma N-terminal pro-brain natriuretic peptide concentrations before and after pericardiocentesis in dogs with cardiac tamponade secondary to spontaneous pericardial effusion.

    PubMed

    Baumwart, R D; Hanzlicek, A S; Lyon, S D; Lee, P M

    2017-10-01

    To determine if concentrations of plasma N-terminal pro-brain natriuretic peptide (NT-proBNP) are increased in dogs with cardiac tamponade and if there is a significant increase in plasma NT-proBNP after pericardiocentesis. Ten client-owned dogs with spontaneous cardiac tamponade. Prospective clinical study. Cardiac tamponade was suspected from physical examination and confirmed with echocardiography. Blood was collected and plasma NT-proBNP concentrations were measured before and 30-60 min following pericardiocentesis and resolution of cardiac tamponade. Within-subject changes in plasma NT-proBNP were compared by the Wilcoxon signed-rank test. The plasma NT-proBNP concentrations measured within the reference interval in seven of 10 dogs before pericardiocentesis and in six of 10 dogs following pericardiocentesis. Following pericardiocentesis, there was a statistically significant increase in median NT-proBNP concentration (733 pmol/L, range 250-3,297) compared with the values measured before (643 pmol/L, range 250-3,210, P = 0.004). The NT-proBNP concentration increased in 90% of the dogs following pericardiocentesis. An upper reference limit of 900 pmol/L for plasma NT-proBNP is insensitive for the diagnosis of pericardial effusion and cardiac tamponade in dogs. Plasma NT-proBNP concentration commonly increases following pericardiocentesis, perhaps related to improved ventricular filling and stretch. Published by Elsevier B.V.

  11. Small-world human brain networks: Perspectives and challenges.

    PubMed

    Liao, Xuhong; Vasilakos, Athanasios V; He, Yong

    2017-06-01

    Modelling the human brain as a complex network has provided a powerful mathematical framework to characterize the structural and functional architectures of the brain. In the past decade, the combination of non-invasive neuroimaging techniques and graph theoretical approaches enable us to map human structural and functional connectivity patterns (i.e., connectome) at the macroscopic level. One of the most influential findings is that human brain networks exhibit prominent small-world organization. Such a network architecture in the human brain facilitates efficient information segregation and integration at low wiring and energy costs, which presumably results from natural selection under the pressure of a cost-efficiency balance. Moreover, the small-world organization undergoes continuous changes during normal development and ageing and exhibits dramatic alterations in neurological and psychiatric disorders. In this review, we survey recent advances regarding the small-world architecture in human brain networks and highlight the potential implications and applications in multidisciplinary fields, including cognitive neuroscience, medicine and engineering. Finally, we highlight several challenging issues and areas for future research in this rapidly growing field. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Human brain imaging and radiation dosimetry of 11C-N-desmethyl-loperamide, a PET radiotracer to measure the function of P-glycoprotein.

    PubMed

    Seneca, Nicholas; Zoghbi, Sami S; Liow, Jeih-San; Kreisl, William; Herscovitch, Peter; Jenko, Kimberly; Gladding, Robert L; Taku, Andrew; Pike, Victor W; Innis, Robert B

    2009-05-01

    P-glycoprotein (P-gp) is a membrane-bound efflux pump that limits the distribution of drugs to several organs of the body. At the blood-brain barrier, P-gp blocks the entry of both loperamide and its metabolite, N-desmethyl-loperamide (N-dLop), and thereby prevents central opiate effects. Animal studies have shown that (11)C-dLop, compared with (11)C-loperamide, is an especially promising radiotracer because it generates negligible radiometabolites that enter the brain. The purposes of this study were to determine whether (11)C-dLop is a substrate for P-gp at the blood-brain barrier in humans and to measure the distribution of radioactivity in the entire body to estimate radiation exposure. Brain PET scans were acquired in 4 healthy subjects for 90 min and included concurrent measurements of the plasma concentration of unchanged radiotracer. Time-activity data from the whole brain were quantified using a 1-tissue-compartment model to estimate the rate of entry (K(1)) of radiotracer into the brain. Whole-body PET scans were acquired in 8 healthy subjects for 120 min. For brain imaging, after the injection of (11)C-dLop the concentration of radioactivity in the brain was low (standardized uptake value, approximately 15%) and stable after approximately 20 min. In contrast, uptake of radioactivity in the pituitary was about 50-fold higher than that in the brain. The plasma concentration of (11)C-dLop declined rapidly, but the percentage composition of plasma was unusually stable, with the parent radiotracer constituting 85% of total radioactivity after approximately 5 min. The rate of brain entry was low (K(1) = 0.009 +/- 0.002 mL.cm(-3).min(-1); n = 4). For whole-body imaging, as a measure of radiation exposure to the entire body the effective dose of (11)C-dLop was 7.8 +/- 0.6 muSv/MBq (n = 8). The low brain uptake of radioactivity is consistent with (11)C-dLop being a substrate for P-gp in humans and confirms that this radiotracer generates negligible quantities of brain-penetrant radiometabolites. In addition, the low rate of K(1) is consistent with P-gp rapidly effluxing substrates while they transit through the lipid bilayer. The radiation exposure of (11)C-dLop is similar to that of many other (11)C-radiotracers. Thus, (11)C-dLop is a promising radiotracer to study the function of P-gp at the blood-brain barrier, at which impaired function would allow increased uptake into the brain.

  13. An ultra high performance liquid chromatography with tandem mass spectrometry method for plasma and cerebrospinal fluid pharmacokinetics of rhein in patients with traumatic brain injury after administration of rhubarb decoction.

    PubMed

    Wang, Yang; Fan, Rong; Luo, Jiekun; Tang, Tao; Xing, Zhihua; Xia, Zian; Peng, Weijun; Wang, Wenzhu; Lv, Huiying; Huang, Wei; Liang, Yizeng; Yi, Lunzhao; Lu, Hongmei; Huang, Xi

    2015-04-01

    Damage of blood-brain barrier is a common result of traumatic brain injury. This damage can open the blood-brain barrier and allow drug passage. An ultraperformance liquid chromatography with tandem mass spectrometry method was established to determine the concentration of rhein in the biofluids (plasma and cerebrospinal fluid) of patients with a compromised blood-brain barrier following traumatic brain injury after rhubarb administration. Furthermore, the pharmacokinetic profiles were analyzed. A triple-quadruple tandem mass spectrometer with electrospray ionization was used for rhein detection. The mass transition followed was m/z 283.06→239.0. The calibration curve was linear in the concentration range of 10-8000 ng/mL for the biofluids. The intra- and interday precisions were less than 10%. The relative standard deviation of recovery was less than 15% in biological matrices. The pharmacokinetic data showed that rhein was rapidly transported into biofluids, and exhibited a peak concentration 1 h after rhubarb administration. The elimination rate of rhein was slow. The AUCcerebrospinal fluid /AUCplasma (AUC is area under curve) of rhein was approximately 17%, indicating that portions of rhein could pass the impaired blood-brain barrier. The method was successfully applied to quantify rhein in the biofluids of all patients. The data presented can help to guide clinical applications of rhubarb for treating traumatic brain injury. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Acute oxygen sensing by the carotid body: from mitochondria to plasma membrane.

    PubMed

    Chang, Andy J

    2017-11-01

    Maintaining oxygen homeostasis is crucial to the survival of animals. Mammals respond acutely to changes in blood oxygen levels by modulating cardiopulmonary function. The major sensor of blood oxygen that regulates breathing is the carotid body (CB), a small chemosensory organ located at the carotid bifurcation. When arterial blood oxygen levels drop in hypoxia, neuroendocrine cells in the CB called glomus cells are activated to signal to afferent nerves that project to the brain stem. The mechanism by which hypoxia stimulates CB sensory activity has been the subject of many studies over the past 90 years. Two discrete models emerged that argue for the seat of oxygen sensing to lie either in the plasma membrane or mitochondria of CB cells. Recent studies are bridging the gap between these models by identifying hypoxic signals generated by changes in mitochondrial function in the CB that can be sensed by plasma membrane proteins on glomus cells. The CB is important for physiological adaptation to hypoxia, and its dysfunction contributes to sympathetic hyperactivity in common conditions such as sleep-disordered breathing, chronic heart failure, and insulin resistance. Understanding the basic mechanism of oxygen sensing in the CB could allow us to develop strategies to target this organ for therapy. In this short review, I will describe two historical models of CB oxygen sensing and new findings that are integrating these models. Copyright © 2017 the American Physiological Society.

  15. PET Studies of CX-157

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, Joanna; Furey, Michael

    We completed measuring Brain MAO A activity in 15 subjects at baseline and after different doses of CX157 and also at different times after each dose. Fifty five scans were completed. We determined that plasma levels of the drug are a surrogate marker for the degree of MAO A inhibition in the brain.

  16. Small-worldness and gender differences of large scale brain metabolic covariance networks in young adults: a FDG PET study of 400 subjects.

    PubMed

    Hu, Yuxiao; Xu, Qiang; Shen, Junkang; Li, Kai; Zhu, Hong; Zhang, Zhiqiang; Lu, Guangming

    2015-02-01

    Many studies have demonstrated the small-worldness of the human brain, and have revealed a sexual dimorphism in brain network properties. However, little is known about the gender effects on the topological organization of the brain metabolic covariance networks. To investigate the small-worldness and the gender differences in the topological architectures of human brain metabolic networks. FDG-PET data of 400 healthy right-handed subjects (200 women and 200 age-matched men) were involved in the present study. Metabolic networks of each gender were constructed by calculating the covariance of regional cerebral glucose metabolism (rCMglc) across subjects on the basis of AAL parcellation. Gender differences of network and nodal properties were investigated by using the graph theoretical approaches. Moreover, the gender-related difference of rCMglc in each brain region was tested for investigating the relationships between the hub regions and the brain regions showing significant gender-related differences in rCMglc. We found prominent small-world properties in the domain of metabolic networks in each gender. No significant gender difference in the global characteristics was found. Gender differences of nodal characteristic were observed in a few brain regions. We also found bilateral and lateralized distributions of network hubs in the females and males. Furthermore, we first reported that some hubs of a gender located in the brain regions showing weaker rCMglc in this gender than the other gender. The present study demonstrated that small-worldness was existed in metabolic networks, and revealed gender differences of organizational patterns in metabolic network. These results maybe provided insights into the understanding of the metabolic substrates underlying individual differences in cognition and behaviors. © The Foundation Acta Radiologica 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  17. [Progress of treatments in non-small cell lung cancer with brain metastases].

    PubMed

    Ma, Chunhua; Jiang, Rong

    2012-05-01

    Brain metastases is one of the most common complications of non-small cell lung cancer, whole brain radiotherapy (WBRT), stereotactic radiosurgery (SRS), surgery and chemotherapy are standard methods in the treatment of brain metastases. But the effect of those treatments are still sad. Comprehensive treatment can prolong the survival and improve the quality of life. Recently, the improvement of technology, targeted therapy, survival time and the quality of life are in increasingly concerned. The paper make a summary of current situation and progress for comprehensive therapy of brain metastases.

  18. Focal macromolecule delivery in neuronal tissue using simultaneous pressure ejection and local electroporation

    PubMed Central

    Barker, Matthew; Billups, Brian; Hamann, Martine

    2009-01-01

    Electroporation creates transient pores in the plasma membrane to introduce macromolecules within a cell or cell population. Generally, electrical pulses are delivered between two electrodes separated from each other, making electroporation less likely to be localised. We have developed a new device combining local pressure ejection with local electroporation through a double-barrelled glass micropipette to transfer impermeable macromolecules in brain slices or in cultured HEK293 cells. The design achieves better targeting of the site of pressure ejection with that of electroporation. With this technique, we have been able to limit the delivery of propidium iodide or dextran amine within areas of 100–200 μm diameter. We confirm that local electroporation is transient and show that when combined with pressure ejection, it allows local transfection of EGFP plasmids within HEK293 cells or within cerebellar and hippocampal slice cultures. We further show that local electroporation is less damaging when compared to global electroporation using two separate electrodes. Focal delivery of dextran amine dyes within trapezoid body fibres allowed tracing axonal tracts within brainstem slices, enabling the study of identified calyx of Held presynaptic terminals in living brain tissue. This labelling method can be used to target small nuclei in neuronal tissue and is generally applicable to the study of functional synaptic connectivity, or live axonal tracing in a variety of brain areas. PMID:19014970

  19. Rifaximin, but not growth factor 1, reduces brain edema in cirrhotic rats

    PubMed Central

    Òdena, Gemma; Miquel, Mireia; Serafín, Anna; Galan, Amparo; Morillas, Rosa; Planas, Ramon; Bartolí, Ramon

    2012-01-01

    AIM: To compare rifaximin and insulin-like growth factor (IGF)-1 treatment of hyperammonemia and brain edema in cirrhotic rats with portal occlusion. METHODS: Rats with CCl4-induced cirrhosis with ascites plus portal vein occlusion and controls were randomized into six groups: Cirrhosis; Cirrhosis + IGF-1; Cirrhosis + rifaximin; Controls; Controls + IGF-1; and Controls + rifaximin. An oral glutamine-challenge test was performed, and plasma and cerebral ammonia, glucose, bilirubin, transaminases, endotoxemia, brain water content and ileocecal cultures were measured and liver histology was assessed. RESULTS: Rifaximin treatment significantly reduced bacterial overgrowth and endotoxemia compared with cirrhosis groups, and improved some liver function parameters (bilirubin, alanine aminotransferase and aspartate aminotransferase). These effects were associated with a significant reduction in cerebral water content. Blood and cerebral ammonia levels, and area-under-the-curve values for oral glutamine-challenge tests were similar in rifaximin-treated cirrhotic rats and control group animals. By contrast, IGF-1 administration failed to improve most alterations observed in cirrhosis. CONCLUSION: By reducing gut bacterial overgrowth, only rifaximin was capable of normalizing plasma and brain ammonia and thereby abolishing low-grade brain edema, alterations associated with hepatic encephalopathy. PMID:22563196

  20. Cognitive Impairment in Folate-Deficient Rats Corresponds to Depleted Brain Phosphatidylcholine and Is Prevented by Dietary Methionine without Lowering Plasma Homocysteine12

    PubMed Central

    Troen, Aron M.; Chao, Wei-Hsun; Crivello, Natalia A.; D'Anci, Kristen E.; Shukitt-Hale, Barbara; Smith, Don E.; Selhub, Jacob; Rosenberg, Irwin H.

    2008-01-01

    Poor folate status is associated with cognitive decline and dementia in older adults. Although impaired brain methylation activity and homocysteine toxicity are widely thought to account for this association, how folate deficiency impairs cognition is uncertain. To better define the role of folate deficiency in cognitive dysfunction, we fed rats folate-deficient diets (0 mg FA/kg diet) with or without supplemental L-methionine for 10 wk, followed by cognitive testing and tissue collection for hematological and biochemical analysis. Folate deficiency with normal methionine impaired spatial memory and learning; however, this impairment was prevented when the folate-deficient diet was supplemented with methionine. Under conditions of folate deficiency, brain membrane content of the methylated phospholipid phosphatidylcholine was significantly depleted, which was reversed with supplemental methionine. In contrast, neither elevated plasma homocysteine nor brain S-adenosylmethionine and S-adenosylhomocysteine concentrations predicted cognitive impairment and its prevention by methionine. The correspondence of cognitive outcomes to changes in brain membrane phosphatidylcholine content suggests that altered phosphatidylcholine and possibly choline metabolism might contribute to the manifestation of folate deficiency-related cognitive dysfunction. PMID:19022979

  1. Aquaporin-4 deletion in mice reduces encephalopathy and brain edema in experimental acute liver failure.

    PubMed

    Rama Rao, Kakulavarapu V; Verkman, A S; Curtis, Kevin M; Norenberg, Michael D

    2014-03-01

    Brain edema and associated astrocyte swelling leading to increased intracranial pressure are hallmarks of acute liver failure (ALF). Elevated blood and brain levels of ammonia have been implicated in the development of brain edema in ALF. Cultured astrocytes treated with ammonia have been shown to undergo cell swelling and such swelling was associated with an increase in the plasma membrane expression of aquaporin-4 (AQP4) protein. Further, silencing the AQP4 gene in cultured astrocytes was shown to prevent the ammonia-induced cell swelling. Here, we examined the evolution of brain edema in AQP4-null mice and their wild type counterparts (WT-mice) in different models of ALF induced by thioacetamide (TAA) or acetaminophen (APAP). Induction of ALF with TAA or APAP significantly increased brain water content in WT mice (by 1.6% ± 0.3 and 2.3 ± 0.4%, respectively). AQP4 protein was significantly increased in brain plasma membranes of WT mice with ALF induced by either TAA or APAP. In contrast to WT-mice, brain water content did not increase in AQP4-null mice. Additionally, AQP4-null mice treated with either TAA or APAP showed a remarkably lesser degree of neurological deficits as compared to WT mice; the latter displayed an inability to maintain proper gait, and demonstrated a markedly reduced exploratory behavior, with the mice remaining in one corner of the cage with its head tilted downwards. These results support a central role of AQP4 in the brain edema associated with ALF. Published by Elsevier Inc.

  2. Aquaporin-4 Deletion in Mice Reduces Encephalopathy and Brain Edema in Experimental Acute Liver Failure

    PubMed Central

    Rama Rao, Kakulavarapu V.; Verkman, A. S.; Curtis, Kevin M.; Norenberg, Michael D.

    2014-01-01

    Brain edema and associated astrocyte swelling leading to increased intracranial pressure are hallmarks of acute liver failure (ALF). Elevated blood and brain levels of ammonia have been implicated in the development of brain edema in ALF. Cultured astrocytes treated with ammonia have been shown to undergo cell swelling and such swelling was associated with an increase in the plasma membrane expression of aquaporin-4 (AQP4) protein. Further, silencing the AQP4 gene in cultured astrocytes was shown to prevent the ammonia-induced cell swelling. Here, we examined the evolution of brain edema in AQP4-null mice and their wild type counterparts (WT-mice) in different models of ALF induced by thioacetamide (TAA) or acetaminophen (APAP). Induction of ALF with TAA or APAP significantly increased brain water content in WT mice (by 1.6 ± 0.3 and 2.3 ± 0.4 %, respectively). AQP4 protein was significantly increased in brain plasma membranes of WT mice with ALF induced by either TAA or APAP. In contrast to WT-mice, brain water content did not increase in AQP4-null mice. Additionally, AQP4-null mice treated with either TAA or APAP showed a remarkably lesser degree of neurological deficits as compared to WT mice; the latter displayed an inability to maintain proper gait, and demonstrated a markedly reduced exploratory behavior, with the mice remaining in one corner of the cage with its head tilted downwards. These results support a central role of AQP4 in the brain edema associated with ALF. PMID:24321433

  3. Evaluation of brain targeting and mucosal integrity of nasally administrated nanostructured carriers of a CNS active drug, clonazepam.

    PubMed

    Abdel-Bar, Hend Mohamed; Abdel-Reheem, Amal Youssef; Awad, Gehanne Abdel Samie; Mortada, Nahed Daoud

    2013-01-01

    The aim of the study was to target clonazepam, a CNS active drug, to the brain through the non-invasive intranasal (in) route using of nanocarriers with proven safety in clonazepam nanocarriers were prepared by mixing isopropyl myristate, Tween 80, Cremophor EL or lecithin, polyethylene glycol 200, propylene glycol or ethanol in different ratios with water. in-vitro characterization of the nanocarriers was done by various methods including: polarized light microscopy, particle size determination, viscosity measurements and drug release studies. in-vivo study comparing intranasal and intravenous administration was performed. The drug targeting efficiency (DTE %) and direct nose to brain transport percentage (DTP %) were calculated and nasal integrity assessment was carried out. The obtained formulae had particle size below 100 nm favoring rapid direct nose to brain transport and the time for 100% drug release (T100%) depended on systems composition. Plasma Tmax of clonazepam nanostructured carriers varied from 10-30 min., while their brain Tmax did not exceed 10 min, in comparison with 30 min for iv solution. Although there was no significant difference (p>0.05) between the plasma AUC0-∞ of the different tested nanocarriers and intravenous one, the increase in brain AUC 0 -∞ of different nasal formulations in comparison to that of iv administration (3.6 -7.2 fold) confirms direct nose to brain transport via olfactory region. Furthermore, DTE and DTP% confirmed brain targeting of clonazepam following intranasal administration. The results confirmed that intranasal nanocarriers were proved to be safe alternative for iv clonazepam delivery with rapid nose to brain transport.

  4. Individual T1-weighted/T2-weighted ratio brain networks: Small-worldness, hubs and modular organization

    NASA Astrophysics Data System (ADS)

    Wu, Huijun; Wang, Hao; Lü, Linyuan

    Applying network science to investigate the complex systems has become a hot topic. In neuroscience, understanding the architectures of complex brain networks was a vital issue. An enormous amount of evidence had supported the brain was cost/efficiency trade-off with small-worldness, hubness and modular organization through the functional MRI and structural MRI investigations. However, the T1-weighted/T2-weighted (T1w/T2w) ratio brain networks were mostly unexplored. Here, we utilized a KL divergence-based method to construct large-scale individual T1w/T2w ratio brain networks and investigated the underlying topological attributes of these networks. Our results supported that the T1w/T2w ratio brain networks were comprised of small-worldness, an exponentially truncated power-law degree distribution, frontal-parietal hubs and modular organization. Besides, there were significant positive correlations between the network metrics and fluid intelligence. Thus, the T1w/T2w ratio brain networks open a new avenue to understand the human brain and are a necessary supplement for future MRI studies.

  5. Synthesis and PET studies of [11C-cyano]letrozole (Femara®), an aromatase inhibitor drug

    PubMed Central

    Kil, Kun-Eek; Biegon, Anat; Ding, Yu-Shin; Fischer, Andre; Ferrieri, Richard A.; Kim, Sung Won; Pareto, Deborah; Schueller, Michael J.; Fowler, Joanna S.

    2011-01-01

    Introduction Aromatase, a member of the cytochrome P450 family, converts androgens such as androstenedione and testosterone to estrone and estradiol respectively. Letrozole (1-[bis-(4-cyanophenyl)methyl]-1H-1,2,4-triazole, Femara®) is a high affinity aromatase inhibitor (Ki=11.5 nM) which has FDA approval for breast cancer treatment. Here we report the synthesis of carbon-11 labeled letrozole and its assessment as a radiotracer for brain aromatase in the baboon. Methods Letrozole and its precursor (4-[(4-bromophenyl)-1H-1,2,4-triazol-1-ylmethyl]benzonitrile, 3) were prepared in two-step syntheses from 4-cyanobenzyl bromide and 4-bromobenzyl bromide, respectively. The [11C]cyano group was introduced via the tetrakis(triphenylphosphine)palladium(0) catalyzed coupling of [11C]cyanide with the bromo-precursor (3). PET studies in the baboon brain were carried out to assess regional distribution and kinetics, reproducibility of repeated measures and saturability. The free fraction of letrozole in the plasma, log D, and the [11C-cyano]letrozole fraction in the arterial plasma were also measured. Results [11C-cyano]Letrozole was synthesized in 60 min with a radiochemical yield of 79–80%, with a radiochemical purity greater than 98% and a specific activity of 4.16±2.21 Ci/μmol at the end of bombardment (n=4). PET studies in the baboon revealed initial rapid and high uptake and initial rapid clearance followed by slow clearance of carbon-11 from the brain with no difference between brain regions. The brain kinetics was not affected by co-injection of unlabeled letrozole (0.1 mg/kg). The free fraction of letrozole in plasma was 48.9% and log D was 1.84. Conclusion [11C-cyano]Letrozole is readily synthesized via a palladium catalyzed coupling reaction with [11C]cyanide. Although it is unsuitable as a PET radiotracer for brain aromatase as revealed by the absence of regional specificity and saturability in brain regions, such as amygdala, which are known to contain aromatase, it may be useful in measuring letrozole distribution and pharmacokinetics in brain and peripheral organs. PMID:19217534

  6. Synthesis and PET studies of [(11)C-cyano]letrozole (Femara), an aromatase inhibitor drug.

    PubMed

    Kil, Kun-Eek; Biegon, Anat; Ding, Yu-Shin; Fischer, Andre; Ferrieri, Richard A; Kim, Sung Won; Pareto, Deborah; Schueller, Michael J; Fowler, Joanna S

    2009-02-01

    Aromatase, a member of the cytochrome P450 family, converts androgens such as androstenedione and testosterone into estrone and estradiol, respectively. Letrozole (1-[bis-(4-cyanophenyl)methyl]-1H-1,2,4-triazole; Femara) is a high-affinity aromatase inhibitor (K(i)=11.5 nM) that has Food and Drug Administration approval for breast cancer treatment. Here we report the synthesis of carbon-11-labeled letrozole and its assessment as a radiotracer for brain aromatase in the baboon. Letrozole and its precursor (4-[(4-bromophenyl)-1H-1,2,4-triazol-1-ylmethyl]benzonitrile) were prepared in a two-step synthesis from 4-cyanobenzyl bromide and 4-bromobenzyl bromide, respectively. The [(11)C]cyano group was introduced via tetrakis(triphenylphosphine)palladium(0)-catalyzed coupling of [(11)C]cyanide with the bromo precursor. Positron emission tomography (PET) studies in the baboon brain were carried out to assess regional distribution and kinetics, reproducibility of repeated measures and saturability. Log D, the free fraction of letrozole in plasma and the [(11)C-cyano]letrozole fraction in arterial plasma were also measured. [(11)C-cyano]Letrozole was synthesized in 60 min with a radiochemical yield of 79-80%, with a radiochemical purity greater than 98% and a specific activity of 4.16+/-2.21 Ci/mumol at the end of bombardment (n=4). PET studies in the baboon revealed initial rapid and high uptake and initial rapid clearance, followed by slow clearance of carbon-11 from the brain, with no difference between brain regions. Brain kinetics was not affected by coinjection of unlabeled letrozole (0.1 mg/kg). The free fraction of letrozole in plasma was 48.9%, and log D was 1.84. [(11)C-cyano]Letrozole is readily synthesized via a palladium-catalyzed coupling reaction with [(11)C]cyanide. Although it is unsuitable as a PET radiotracer for brain aromatase, as revealed by the absence of regional specificity and saturability in brain regions such as amygdala, which are known to contain aromatase, it may be useful in measuring letrozole distribution and pharmacokinetics in the brain and peripheral organs.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    kil K. E.; Biegon A.; Kil, K.-E.

    Aromatase, a member of the cytochrome P450 family, converts androgens such as androstenedione and testosterone to estrone and estradiol respectively. Letrozole (1-[bis-(4-cyanophenyl)methyl]-1H-1,2,4-triazole, Femara{reg_sign}) is a high affinity aromatase inhibitor (K{sub i}=11.5 nM) which has FDA approval for breast cancer treatment. Here we report the synthesis of carbon-11 labeled letrozole and its assessment as a radiotracer for brain aromatase in the baboon. Letrozole and its precursor (4-[(4-bromophenyl)-1H-1,2,4-triazol-1-ylmethyl]benzonitrile, 3) were prepared in two-step syntheses from 4-cyanobenzyl bromide and 4-bromobenzyl bromide, respectively. The [{sup 11}C]cyano group was introduced via the tetrakis(triphenylphosphine)palladium(0) catalyzed coupling of [{sup 11}C]cyanide with the bromo-precursor (3). PET studies inmore » the baboon brain were carried out to assess regional distribution and kinetics, reproducibility of repeated measures and saturability. The free fraction of letrozole in the plasma, log D, and the [{sup 11}C-cyano]letrozole fraction in the arterial plasma were also measured. [{sup 11}C-cyano]Letrozole was synthesized in 60 min with a radiochemical yield of 79-80%, with a radiochemical purity greater than 98% and a specific activity of 4.16 {+-} 2.21 Ci/{micro}mol at the end of bombardment (n=4). PET studies in the baboon revealed initial rapid and high uptake and initial rapid clearance followed by slow clearance of carbon-11 from the brain with no difference between brain regions. The brain kinetics was not affected by co-injection of unlabeled letrozole (0.1 mg/kg). The free fraction of letrozole in plasma was 48.9% and log D was 1.84. [{sup 11}C-cyano]Letrozole is readily synthesized via a palladium catalyzed coupling reaction with [{sup 11}C]cyanide. Although it is unsuitable as a PET radiotracer for brain aromatase as revealed by the absence of regional specificity and saturability in brain regions, such as amygdala, which are known to contain aromatase, it may be useful in measuring letrozole distribution and pharmacokinetics in brain and peripheral organs.« less

  8. [Membrane and functional effects of vinpocetine and tocopherol in rats with experimental cerebral ischemia].

    PubMed

    Vishnevskiĭ, A A; Korotkevich, I G; Zhaparalieva, Ch O

    2009-01-01

    The membrane, antioxidant and functional effects of vinpocetine and a-tocopherol have been investigated under conditions of acute experimental cerebral ischemia in rats. Vinpocetine administration decreased accumulation of lysophospholipids in brain plasma membranes. Vinpocetine also blocked accumulation of conjugated dienes (CD). alpha-Tocopherol inhibited augmentation in CD content and did not reduce the level of lysophospholipids in brain plasma membranes. Functional consequences of membrane impairments were also detected in some behavioral tests and physical capabilities. Administration of both vinpocetine and alpha-tocopherol decreased manifestations of the altered parameters induced by cerebral ischemia and vinpocetine was more effective than alpha-tocopherol.

  9. Genotyping tumour DNA in cerebrospinal fluid and plasma of a HER2-positive breast cancer patient with brain metastases

    PubMed Central

    Siravegna, Giulia; Geuna, Elena; Mussolin, Benedetta; Crisafulli, Giovanni; Bartolini, Alice; Galizia, Danilo; Casorzo, Laura; Sarotto, Ivana; Scaltriti, Maurizio; Sapino, Anna; Bardelli, Alberto; Montemurro, Filippo

    2017-01-01

    Background Central nervous system (CNS) involvement contributes to significant morbidity and mortality in patients with human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer (mBC) and represents a major challenge for clinicians. Liquid biopsy of cerebrospinal fluid (CSF)-derived circulating tumour DNA (ctDNA) harbours clinically relevant genomic alterations in patients with CNS metastases and could be effective in tracking tumour evolution. Methods In a HER2-positive mBC patient with brain metastases, we applied droplet digital PCR (ddPCR) and next-generation whole exome sequencing (WES) analysis to measure ctDNA dynamic changes in CSF and plasma collected during treatment. Results Baseline CSF-derived ctDNA analysis revealed TP53 and PIK3CA mutations as well as ERBB2 and cMYC amplification. Post-treatment ctDNA analysis showed decreased markers level in plasma, consistent with extra-CNS disease control, while increased in the CSF, confirming poor treatment benefit in the CNS. Discussion Analysis of ctDNA in the CSF of HER2-positive mBC is feasible and could represent a useful companion for clinical management of brain metastases. PMID:29067216

  10. Combined effect of short-term dehydration and sublethal acute oral dicrotophos exposure confounds the diagnosis of anticholinesterase exposure in common quail (Coturnix coturnix) using plasma cholinesterase activity.

    PubMed

    Heffernan, James; Mineau, Pierre; Falk, Ramona; Wickstrom, Mark

    2012-07-01

    Common Quail (Coturnix coturnix) were subjected to controlled and replicated experiments in the summer of 2008 to investigate the effects of short-term dehydration on cholinesterase activity in brain and plasma and the interaction between dehydration and exposure to the organophosphorus pesticide dicrotophos in these same tissues. Our objective was to determine if dehydration could confound the diagnosis of anticholinesterase exposure using inhibition of cholinesterase activity in quail tissues. The effect of dehydration was quantified using measures of plasma osmolality and hematocrit. Dicrotophos exposure caused significant inhibition of cholinesterase activity in brain, while the effects of dehydration and interaction were not significant. Dehydration caused significant duration-dependent increases in plasma osmolality and hematocrit. Dehydration also caused a significant increase in plasma cholinesterase activity. Variation in the change in plasma cholinesterase activity in response to dehydration was significantly and positively correlated with dehydration-induced variation in both the change in plasma osmolality and the change in hematocrit. These correlations suggest that plasma cholinesterase activity in quail is not limited to plasma but occupies some larger pool of the extracellular fluid volume, and we suggest lymph is part of that pool. The effects of dehydration on plasma cholinesterase activity masked the inhibitory effects of dicrotophos. Here, the combination of dehydration and dicrotophos exposure produced plasma cholinesterase activity that was not significantly different from reference and pre-exposure values, confounding the diagnosis of anticholinesterase exposure in dehydrated, dicrotophos-exposed quail. A method to adjust plasma cholinesterase activities for the confounding effects of dehydration and enable the diagnosis of anticholinesterase exposure in dehydrated, dicrotophos-exposed quail was developed. Clinicians and practitioners responsible for the diagnosis of anticholinesterase exposure in birds are cautioned that dehydration, commonly observed in sick wildlife, may mask the effect of anticholinesterases on plasma cholinesterase activity.

  11. Effects of glucose, insulin, and insulin resistance on cerebral 18F-FDG distribution in cognitively normal older subjects

    PubMed Central

    Onishi, Airin; Fujiwara, Yoshinori; Ishiwata, Kiichi; Ishii, Kenji

    2017-01-01

    Background Increasing plasma glucose levels and insulin resistance can alter the distribution pattern of fluorine-18-labeled fluorodeoxyglucose (18F-FDG) in the brain and relatively reduce 18F-FDG uptake in Alzheimer's disease (AD)-related hypometabolic regions, leading to the appearance of an AD-like pattern. However, its relationship with plasma insulin levels is unclear. We aimed to compare the effects of plasma glucose levels, plasma insulin levels and insulin resistance on the appearance of the AD-like pattern in 18F-FDG images. Methods Fifty-nine cognitively normal older subjects (age = 75.7 ± 6.4 years) underwent 18F-FDG positron emission tomography along with measurement of plasma glucose and insulin levels. As an index of insulin resistance, the Homeostasis model assessment of Insulin Resistance (HOMA-IR) was calculated. Results Plasma glucose levels, plasma insulin levels, and HOMA-IR were 102.2 ± 8.1 mg/dL, 4.1 ± 1.9 μU/mL, and 1.0 ± 0.5, respectively. Whole-brain voxelwise analysis showed a negative correlation of 18F-FDG uptake with plasma glucose levels in the precuneus and lateral parietotemporal regions (cluster-corrected p < 0.05), and no correlation with plasma insulin levels or HOMA-IR. In the significant cluster, 18F-FDG uptake decreased by approximately 4–5% when plasma glucose levels increased by 20 mg/dL. In the precuneus region, volume-of-interest analysis confirmed a negative correlation of 18F-FDG uptake with plasma glucose levels (r = -0.376, p = 0.002), and no correlation with plasma insulin levels (r = 0.156, p = 0.12) or HOMA-IR (r = 0.096, p = 0.24). Conclusion This study suggests that, of the three parameters, plasma glucose levels have the greatest effect on the appearance of the AD-like pattern in 18F-FDG images. PMID:28715453

  12. A pharmacologic increase in activity of plasma transaminase derived from small intestine in animals receiving an acyl CoA: diacylglycerol transferase (DGAT) 1 inhibitor.

    PubMed

    Yokoyama, Hideaki; Kobayashi, Akio; Kondo, Kazuma; Oshida, Shin-Ichi; Takahashi, Tadakazu; Masuyama, Taku; Shoda, Toshiyuki; Sugai, Shoichiro

    2018-01-01

    Acyl CoA: diacylglycerol acyltransferase (DGAT) 1 is an enzyme that catalyzes the re-synthesis of triglycerides (TG) from free fatty acids and diacylglycerol. JTT-553 is a DGAT1 inhibitor and exhibits its pharmacological action (inhibition of re-synthesis of TG) in the enterocytes of the small intestine leading to suppression of a postprandial elevation of plasma lipids. After repeated oral dosing JTT-553 in rats and monkeys, plasma transaminase levels were increased but there were neither changes in other hepatic function parameters nor histopathological findings suggestive of hepatotoxicity. Based on the results of exploratory studies for investigation of the mechanism of the increase in transaminase levels, plasma transaminase levels were increased after dosing JTT-553 only when animals were fed after dosing and a main factor in the diet contributing to the increase in plasma transaminase levels was lipids. After dosing JTT-553, transaminase levels were increased in the small intestine but not in the liver, indicating that the origin of transaminase increased in the plasma was not the liver but the small intestine where JTT-553 exhibits its pharmacological action. The increase in small intestinal transaminase levels was due to increased enzyme protein synthesis and was suppressed by inhibiting fatty acid-transport to the enterocytes. In conclusion, the JTT-553-related increase in plasma transaminase levels is considered not to be due to release of the enzymes from injured cells into the circulation but to be phenomena resulting from enhancement of enzyme protein synthesis in the small intestine due to the pharmacological action of JTT-553 in this organ.

  13. Hepatic Effects of Estrogen on Plasma Distribution of Small Dense Low-Density Lipoprotein and Free Radical Production in Postmenopausal Women.

    PubMed

    Nii, Shota; Shinohara, Koichi; Matsushita, Hiroshi; Noguchi, Yasuyuki; Watanabe, Kazushi; Wakatsuki, Akihiko

    2016-07-01

    Hepatic effects of estrogen therapy on low-density lipoprotein (LDL) subfraction or oxidative stress have not been previously evaluated. The purpose of the present study was to investigate whether the differential hepatic effects of estrogen affect plasma distribution of small dense LDL and free radical production in postmenopausal women. In all, 45 postmenopausal women were given 0.625 mg/day of oral conjugated equine estrogen (CEE) (n=15), 1.0 mg/day of oral 17β estradiol (E2) (n=15), or 50 μg/day of transdermal 17βE2 (n=15) for 3 months. Subjects received either estrogen alone or with dydrogesterone at 5 mg/day. Plasma concentrations of sex hormone-binding globulin (SHBG), lipids, metallic ions, and derivatives of reactive oxygen metabolites (d-ROMs) were measured. CEE, but not oral 17βE2, increased the plasma concentrations of triglyceride, copper (Cu), and d-ROMs and the ratio of small dense LDL/total LDL cholesterol, a marker for plasma distribution of small dense LDL. Transdermal 17βE2 decreased d-ROMs concentrations but did not significantly change other parameters. Plasma concentrations of SHBG increased in the 3 groups. Estrogen-induced changes in triglyceride correlated positively either with changes in SHBG (R=0.52, P=0.0002) or the ratio of small dense LDL/total LDL cholesterol (R=0.65, P<0.0001). Changes in Cu also correlated positively either with changes in SHBG (R=0.85, P<0.0001) or d-ROMs (R=0.86, P<0.0001). The hepatic effects of different routes or types of estrogen therapy may be associated with plasma distribution of small dense LDL and free radical production in postmenopausal women.

  14. Microdialysis pharmacokinetic study of scopolamine in plasma, olfactory bulb and vestibule after intranasal administration.

    PubMed

    Wei, Yan; Ying, Mingzhen; Xu, Shuai; Wang, Feng; Zou, Aifeng; Cao, Shilei; Jiang, Xinguo; Wang, Yajie

    2016-01-01

    The purpose of this study was to investigate the microdialysis pharmacokinetic of scopolamine in plasma, olfactory bulb and vestibule after intranasal administration. The pharmacokinetic study of subcutaneous and oral administration was also performed in rats. From the in vivo results, scopolamine intranasal administration can avoid hepatic first-pass effect. Tmax plasma samples after intranasal administration were significantly faster than oral administration and subcutaneous injection. The relative bioavailability of intranasal administrations was 51.8-70% when compared with subcutaneous injection. Moreover, one can see that in comparison with scopolamine subcutaneous administration, scopolamine intranasal gel and solutions can increased drug target index (DTI) with olfactory bulb 1.69 and 2.05, vestibule 1.80 and 2.15, respectively. The results indicated that scopolamine can be absorbed directly through the olfactory mucosa into the olfactory bulb, and then transported to various brain tissue after intranasal administration, with the characteristics of brain drug delivery.

  15. Velocity Space Degrees of Freedom of Plasma Fluctuations

    NASA Astrophysics Data System (ADS)

    Mattingly, Sean

    2017-10-01

    Small scale wave modes are becoming more important in plasma physics. Examples include turbulent cascades in the solar wind, the energetics of fusion plasma electrostatic turbulence and transport, and low temperature basic plasma physics experiments. In order to improve our understanding of these modes, I present an advance in experimental plasma diagnostics and use it to show the first measurement of a plasma ion velocity-space cross-correlation matrix. From this matrix I determine the eigenmodes of fluctuations on the ion distribution function as a function of frequency. I also determine the relative strengths of these modes - these are the velocity space degrees of freedom of plasma fluctuations. This measurement can detect the aforementioned smaller scale modes in plasmas through a localized measurement. The locality of this measurement means that it may be applied to plasmas in which a single - point velocity sensitive diagnostic is available and multipoint measurements may be difficult. Examples include in situ measurements of space plasmas, fusion plasmas, trapped plasmas, and laser cooled plasmas. This fact, combined with the new perspective it can give on small scale plasma fluctuations, means it may be used to further research on the above cited subjects. Much work remains on fully understanding this measurement. This measurement opens a velocity space interpretation of small scale plasma wave modes, and understanding this perspective from theory requires the application or invention of new mathematical tools. I discuss open problems to follow up on, which include questions from experimental, theoretical, and instrumentation perspectives. NSF-DOE Program Grant DE-FG02-99ER54543.

  16. THE DISTRIBUTION OF ALUMINUM INTO AND OUT OF THE BRAIN. (R825357)

    EPA Science Inventory

    Abstract

    The extent, rate and possible mechanism(s) by which aluminum enters and is removed from the brain are presented. Introduction of Al into systemic circulation as Al·transferrin, the predominant Al species in plasma, resulted in about 7...

  17. Diet and cognition: interplay between cell metabolism and neuronal plasticity.

    PubMed

    Gomez-Pinilla, Fernando; Tyagi, Ethika

    2013-11-01

    To discuss studies in humans and animals revealing the ability of foods to benefit the brain: new information with regards to mechanisms of action and the treatment of neurological and psychiatric disorders. Dietary factors exert their effects on the brain by affecting molecular events related to the management of energy metabolism and synaptic plasticity. Energy metabolism influences neuronal function, neuronal signaling, and synaptic plasticity, ultimately affecting mental health. Epigenetic regulation of neuronal plasticity appears as an important mechanism by which foods can prolong their effects on long-term neuronal plasticity. The prime focus of the discussion is to emphasize the role of cell metabolism as a mediator for the action of foods on the brain. Oxidative stress promotes damage to phospholipids present in the plasma membrane such as the omega-3 fatty acid docosahexenoic acid, disrupting neuronal signaling. Thus, dietary docosahexenoic acid seems crucial for supporting plasma membrane function, interneuronal signaling, and cognition. The dual action of brain-derived neurotrophic factor in neuronal metabolism and synaptic plasticity is crucial for activating signaling cascades under the action of diet and other environmental factors, using mechanisms of epigenetic regulation.

  18. Increased Secreted Amyloid Precursor Protein-α (sAPPα) in Severe Autism: Proposal of a Specific, Anabolic Pathway and Putative Biomarker

    PubMed Central

    Sokol, Deborah K.; Lahiri, Debomoy K.

    2011-01-01

    Autism is a neurodevelopmental disorder characterized by deficits in verbal communication, social interactions, and the presence of repetitive, stereotyped and compulsive behaviors. Excessive early brain growth is found commonly in some patients and may contribute to disease phenotype. Reports of increased levels of brain-derived neurotrophic factor (BDNF) and other neurotrophic-like factors in autistic neonates suggest that enhanced anabolic activity in CNS mediates this overgrowth effect. We have shown previously that in a subset of patients with severe autism and aggression, plasma levels of the secreted amyloid-β (Aβ) precursor protein-alpha form (sAPPα) were significantly elevated relative to controls and patients with mild-to-moderate autism. Here we further tested the hypothesis that levels of sAPPα and sAPPβ (proteolytic cleavage products of APP by α- and β-secretase, respectively) are deranged in autism and may contribute to an anabolic environment leading to brain overgrowth. We measured plasma levels of sAPPα, sAPPβ, Aβ peptides and BDNF by corresponding ELISA in a well characterized set of subjects. We included for analysis 18 control, 6 mild-to-moderate, and 15 severely autistic patient plasma samples. We have observed that sAPPα levels are increased and BDNF levels decreased in the plasma of patients with severe autism as compared to controls. Further, we show that Aβ1-40, Aβ1-42, and sAPPβ levels are significantly decreased in the plasma of patients with severe autism. These findings do not extend to patients with mild-to-moderate autism, providing a biochemical correlate of phenotypic severity. Taken together, this study provides evidence that sAPPα levels are generally elevated in severe autism and suggests that these patients may have aberrant non-amyloidogenic processing of APP. PMID:21731612

  19. Plasma and Tissue Concentrations of α-Tocopherol and δ-Tocopherol Following High Dose Dietary Supplementation in Mice

    PubMed Central

    Baxter, Laura L.; Marugan, Juan J.; Xiao, Jingbo; Incao, Art; McKew, John C.; Zheng, Wei; Pavan, William J.

    2012-01-01

    Vitamin E isoforms are essential nutrients that are widely used as dietary supplements and therapeutic agents for a variety of diseases. However, their pharmacokinetic (PK) properties remain poorly characterized, and high dosage animal studies may provide further information on their in vivo functions and pharmacological effects. In this study, alpha-tocopherol (α-toc) and delta-tocopherol (δ-toc) levels were measured in mouse plasma and tissues following their high dosage dietary supplementation. Average α-toc levels at 5, 10 and 20 g α-toc/kg diet increased over baseline levels 6-fold in plasma, 1.6-fold in brain, and 4.9-fold in liver. These elevated α-toc concentrations remained constant from 5 to 20 g α-toc/kg diet, rather than showing further increases across these dosages. No α-toc-related toxicity occurred at these high dosages, and strain-specific differences in liver and brain α-toc levels between Balb/cJ and C57Bl/6J mice were observed. Relatively high-dosage administration of dietary δ-toc for 1 or 4 weeks resulted in 6–30-fold increases in plasma and liver levels between dosages of 0.33 and 1.67 g δ-toc/kg diet. Co-administration of sesamin with δ-toc further increased δ-toc levels between 1.3- and 14-fold in plasma, liver, and brain. These results provide valuable PK information on high dosage α-toc and δ-toc in mouse and show that supplementation of sesamin with δ-toc further increases δ-toc levels over those seen with δ-toc supplementation alone. PMID:22822447

  20. Characterization of resistant hypertension: association between resistant hypertension, aldosterone, and persistent intravascular volume expansion.

    PubMed

    Gaddam, Krishna K; Nishizaka, Mari K; Pratt-Ubunama, Monique N; Pimenta, Eduardo; Aban, Inmaculada; Oparil, Suzanne; Calhoun, David A

    2008-06-09

    Resistant hypertension is a common clinical problem and greatly increases the risk of target organ damage. We evaluated the characteristics of 279 consecutive patients with resistant hypertension (uncontrolled despite the use of 3 antihypertensive agents) and 53 control subjects (with normotension or hypertension controlled by using

  1. Quantification of plasma phosphorylated tau to use as a biomarker for brain Alzheimer pathology: pilot case-control studies including patients with Alzheimer's disease and down syndrome.

    PubMed

    Tatebe, Harutsugu; Kasai, Takashi; Ohmichi, Takuma; Kishi, Yusuke; Kakeya, Tomoshi; Waragai, Masaaki; Kondo, Masaki; Allsop, David; Tokuda, Takahiko

    2017-09-04

    There is still a substantial unmet need for less invasive and lower-cost blood-based biomarkers to detect brain Alzheimer's disease (AD) pathology. This study is aimed to determine whether quantification of plasma tau phosphorylated at threonine 181 (p-tau181) is informative in the diagnosis of AD. We have developed a novel ultrasensitive immunoassay to quantify plasma p-tau181, and measured the levels of plasma p-tau181 in three cohorts. In the first cohort composed of 20 AD patients and 15 age-matched controls, the plasma levels of p-tau181 were significantly higher in the AD patients than those in the controls (0.171 ± 0.166 pg/ml in AD versus 0.0405 ± 0.0756 pg/ml in controls, p = 0.0039). The percentage of the subjects whose levels of plasma p-tau181 exceeded the cut-off value (0.0921 pg/ml) was significantly higher in the AD group compared with the control group (60% in AD versus 16.7% in controls, p = 0.0090). In the second cohort composed of 20 patients with Down syndrome (DS) and 22 age-matched controls, the plasma concentrations of p-tau181 were significantly higher in the DS group (0.767 ± 1.26 pg/ml in DS versus 0.0415 ± 0.0710 pg/ml in controls, p = 0.0313). There was a significant correlation between the plasma levels of p-tau181 and age in the DS group (R 2  = 0.4451, p = 0.0013). All of the DS individuals showing an extremely high concentration of plasma p-tau181 (> 1.0 pg/ml) were older than the age of 40. In the third cohort composed of 8 AD patients and 3 patients with other neurological diseases, the levels of plasma p-tau181 significantly correlated with those of CSF p-tau181 (R 2  = 0.4525, p = 0.023). We report for the first time quantitative data on the plasma levels of p-tau181 in controls and patients with AD and DS, and these data suggest that the plasma p-tau181 is a promising blood biomarker for brain AD pathology. This exploratory pilot study warrants further large-scale and well-controlled studies to validate the usefulness of plasma p-tau181 as an urgently needed surrogate marker for the diagnosis and disease progression of AD.

  2. Simultaneous determination of eight bioactive compounds by LC-MS/MS and its application to the pharmacokinetics, liver first-pass effect, liver and brain distribution of orally administrated Gouteng-Baitouweng (GB) in rats.

    PubMed

    Tian, Xiaoting; Xu, Zhou; Chen, Mingcang; Hu, Pei; Liu, Fang; Sun, Zhaolin; Liu, Huan; Guo, Xiaozheng; Li, Zhixiong; Huang, Chenggang

    2018-05-01

    Only focusing on the circulating levels is insufficient for the comprehensive understanding of the physiological disposition of herbal medicine in vivo. Therefore, we conducted the comprehensive investigation on the in vivo dynamic process of orally administrated Gouteng-Baitouweng (GB), a classical herb pair with anti-Parkinson potentials. Serving as the technical base, a sensitive and selective liquid chromatography-tandem mass spectrometry method was established and validated in the plasma, liver and brain, for simultaneous determination of five alkaloids (rhynchophylline, isorhynchophylline, corynoxeine, isocorynoxeine and geissoschizine methyl ether) and three saponins (anemoside B4, anemoside A3 and 23-hydroxybetulinic acid). Following liquid-liquid extraction, favorable chromatographic behaviors of eight analytes were obtained on Waters Xbrigde C18 column within 13 min. This method elicited good linearity for the analytes at the concentration range of 0.3-1000 or 1.8-6000 ng/mL with favorable precision, accuracy and stability. Following oral administration of GB (25 g/kg) in rats, this method was applied to the quantitative analysis in the portal vein plasma, liver, systemic plasma, and brain. Consequently, anemoside B4 was of the highest exposure, followed by 23-hydroxybetulinic acid, anemoside A3, rhynchophylline and isocorynoxeine in vivo. Notably, three saponins were all observed with certain exposure in the brain, along with rhynchophylline at low levels. Besides, five alkaloids and 23-hydroxybetulinic acid underwent serious liver first-pass effect. Hence, the pharmacokinetics, liver first-pass effect, liver and brain distribution of ingredients in GB were clarified, which laid a solid foundation for interpreting its efficacy and safety. Copyright © 2018. Published by Elsevier B.V.

  3. Plasma D-dimer as a Prognostic Marker in ICU Admitted Egyptian Children with Traumatic Brain Injury.

    PubMed

    Foaud, Hala Mohamed Amin; Labib, John Rene; Metwally, Hala Gabr; El-Twab, Khaled Mohamed Abd

    2014-09-01

    Traumatic brain injury (TBI) is a leading cause of morbidity and mortality in children. This study aimed at evaluation of the D-dimer blood levels as a new marker to predict prognosis and outcome of traumatic brain injuries among children. This case control study was conducted at the Paediatric Intensive Care Unit (ICU), Alharm Hospital in Giza, Egypt during 2012-2013, on 46 Paediatric cases admitted to ICU with head injury and 20 normal age-matched controls. Clinical data and venous blood samples were prospectively collected at 1(st), 3(rd) and 14(th) day of admission, in addition to examination finding as Glasgow coma scale (GCS), cranial brain computed tomography (CT), routine laboratory investigations (CBC, CRP, SGOT, SGPT, urea, creatinine, random blood glucose, Na, K and arterial blood gases) plasma D-dimer, INR, PT, aPTT and PC. Data analysis was carried out accordingly and ROC curve was performed to explore the discriminating ability of D-dimer through estimation of its accuracy in differentiating temporal survivorship of those with TBI. Cases were classified according to outcome into survivors and non-survivors. Significant difference was observed between cases and controls and between survivors and non-survivors during 1(st), 3(rd) and 14(th) day of the follow up including GCS, blood levels of D-dimer, PT and aPTT. ROC curve analysis for D-dimer showed decline in both sensitivity from 89.5% to 73.7% and specificity from 100% to 81.5% along the study days respectively. D-dimer time measurements showed significant decline among survivors from 4.2 to 0.7, while in the non survivor group this decline was much higher from 27.9 to 1.4. Low plasma D-dimer suggests the absence of brain injury, and good prognosis.

  4. Feasibility study of cytokine removal by hemoadsorption in brain-dead humans.

    PubMed

    Kellum, John A; Venkataraman, Ramesh; Powner, David; Elder, Michele; Hergenroeder, Georgene; Carter, Melinda

    2008-01-01

    Inflammatory cytokines occur in the circulation and in the tissues after brain death and have been associated with dysfunction of donor organs before and after transplantation. To determine the feasibility of removing cytokines using a hemoadsorption device. Two-center, randomized, open-label, feasibility study in which brain-dead subjects were randomized to two treatment groups. Two U.S. academic hospitals. Eight brain-dead subjects deemed unsuitable for organ donation by respective organ procurement organizations. After obtaining consent from families, subjects were treated with hemoadsorption for 4 hrs using CytoSorb. Effects on cytokines (tumor necrosis factor, interleukin [IL]-6, and IL-10) were assessed both across the device and in the plasma over time. Feasibility for cytokine removal was assessed using objective criteria. Cytokine removal across the CytoSorb device ranged from 4% to 30% and was not significantly different from 1 hr to 4 hrs. Overall removal was greatest for IL-6, 28% (p = .006), and least for tumor necrosis factor, 8.5% (p = .13). Plasma concentrations of both IL-6 and tumor necrosis factor, but not IL-10, were significantly reduced after the first hour of therapy; mean differences were -13% +/- 7% for IL-6 (p = .039), -23% +/- 9% for tumor necrosis factor (p = .02), and -2% +/- 7% of IL-10 (p = 23). However, plasma concentrations for all three cytokines increased over time and were above baseline by the end of the intervention. No adverse effects of therapy were observed. However, removal of cortisol and triiodothyronine was similar to removal of cytokines. Hemoadsorption for removal of cytokines in brain-dead subjects is feasible. Evaluation of possible clinical benefit will require controlled trials in actual donors. However, the significant capacity for cytokine removal and absence of adverse events suggest that such trials are warranted.

  5. Repeated administration of fresh garlic increases memory retention in rats.

    PubMed

    Haider, Saida; Naz, Nosheen; Khaliq, Saima; Perveen, Tahira; Haleem, Darakhshan J

    2008-12-01

    Garlic (Allium sativum) is regarded as both a food and a medicinal herb. Increasing attention has focused on the biological functions and health benefits of garlic as a potentially major dietary component. Chronic garlic administration has been shown to enhance memory function. Evidence also shows that garlic administration in rats affects brain serotonin (5-hydroxytryptamine [5-HT]) levels. 5-HT, a neurotransmitter involved in a number of physiological functions, is also known to enhance cognitive performance. The present study was designed to investigate the probable neurochemical mechanism responsible for the enhancement of memory following garlic administration. Sixteen adult locally bred male albino Wistar rats were divided into control (n = 8) and test (n = 8) groups. The test group was orally administered 250 mg/kg fresh garlic homogenate (FGH), while control animals received an equal amount of water daily for 21 days. Estimation of plasma free and total tryptophan (TRP) and whole brain TRP, 5-HT, and 5-hydroxyindole acetic acid (5-HIAA) was determined by high-performance liquid chromatography with electrochemical detection. For assessment of memory, a step-through passive avoidance paradigm (electric shock avoidance) was used. The results showed that the levels of plasma free TRP significantly increased (P < .01) and plasma total TRP significantly decreased (P < .01) in garlic-treated rats. Brain TRP, 5-HT, and 5-HIAA levels were also significantly increased following garlic administration. A significant improvement in memory function was exhibited by garlic-treated rats in the passive avoidance test. Increased brain 5-HT levels were associated with improved cognitive performance. The present results, therefore, demonstrate that the memory-enhancing effect of garlic may be associated with increased brain 5-HT metabolism in rats. The results further support the use of garlic as a food supplement for the enhancement of memory.

  6. Vitamin E Supplementation Ameliorates Newcastle Disease Virus-Induced Oxidative Stress and Alleviates Tissue Damage in the Brains of Chickens

    PubMed Central

    Rehman, Zaib Ur; Qiu, Xusheng; Sun, Yingjie; Liao, Ying; Tan, Lei; Song, Cuiping; Yu, Shengqing; Ding, Zhuang; Nair, Venugopal; Meng, Chunchun; Ding, Chan

    2018-01-01

    Newcastle disease (ND), characterized by visceral, respiratory, and neurological pathologies, causes heavy economic loss in the poultry industry around the globe. While significant advances have been made in effective diagnosis and vaccine development, molecular mechanisms of ND virus (NDV)-induced neuropathologies remain elusive. In this study, we report the magnitude of oxidative stress and histopathological changes induced by the virulent NDV (ZJ1 strain) and assess the impact of vitamin E in alleviating these pathologies. Comparative profiling of plasma and brains from mock and NDV-infected chicken demonstrated alterations in several oxidative stress makers such as nitric oxide, glutathione, malondialdehyde, total antioxidant capacity, glutathione S-transferase, superoxide dismutase, and catalases. While decreased levels of glutathione and total antioxidant capacity and increased concentrations of malondialdehyde and nitric oxide were observed in NDV-challenged birds at all time points, these alterations were eminent at latter time points (5 days post infection). Additionally, significant decreases in the activities of glutathione S-transferase, superoxide dismutase, and catalase were observed in the plasma and brains collected from NDV-infected chickens. Intriguingly, we observed that supplementation of vitamin E can significantly reduce the alteration of oxidative stress parameters. Under NDV infection, extensive histopathological alterations were observed in chicken brain including neural inflammation, capillary hyperemia, necrosis, and loss of prominent axons, which were reduced with the treatment of vitamin E. Taken together, our findings highlight that neurotropic NDV induces extensive tissue damage in the brain and alters plasma oxidative stress profiles. These findings also demonstrate that supplementing vitamin E ameliorates these pathologies in chickens and proposes its supplementation for NDV-induced stresses. PMID:29614025

  7. Brain serotonin and pituitary-adrenal functions

    NASA Technical Reports Server (NTRS)

    Vernikos-Danellis, J.; Berger, P.; Barchas, J. D.

    1973-01-01

    It had been concluded by Scapagnini et al. (1971) that brain serotonin (5-HT) was involved in the regulation of the diurnal rhythm of the pituitary-adrenal system but not in the stress response. A study was conducted to investigate these findings further by evaluating the effects of altering brain 5-HT levels on the daily fluctuation of plasma corticosterone and on the response of the pituitary-adrenal system to a stressful or noxious stimulus in the rat. In a number of experiments brain 5-HT synthesis was inhibited with parachlorophenylalanine. In other tests it was tried to raise the level of brain 5-HT with precursors.

  8. The Effects of Peripheral and Central High Insulin on Brain Insulin Signaling and Amyloid-β in Young and Old APP/PS1 Mice

    PubMed Central

    Stanley, Molly; Macauley, Shannon L.; Caesar, Emily E.; Koscal, Lauren J.; Moritz, Will; Robinson, Grace O.; Roh, Joseph; Keyser, Jennifer; Jiang, Hong

    2016-01-01

    Hyperinsulinemia is a risk factor for late-onset Alzheimer's disease (AD). In vitro experiments describe potential connections between insulin, insulin signaling, and amyloid-β (Aβ), but in vivo experiments are needed to validate these relationships under physiological conditions. First, we performed hyperinsulinemic-euglycemic clamps with concurrent hippocampal microdialysis in young, awake, behaving APPswe/PS1dE9 transgenic mice. Both a postprandial and supraphysiological insulin clamp significantly increased interstitial fluid (ISF) and plasma Aβ compared with controls. We could detect no increase in brain, ISF, or CSF insulin or brain insulin signaling in response to peripheral hyperinsulinemia, despite detecting increased signaling in the muscle. Next, we delivered insulin directly into the hippocampus of young APP/PS1 mice via reverse microdialysis. Brain tissue insulin and insulin signaling was dose-dependently increased, but ISF Aβ was unchanged by central insulin administration. Finally, to determine whether peripheral and central high insulin has differential effects in the presence of significant amyloid pathology, we repeated these experiments in older APP/PS1 mice with significant amyloid plaque burden. Postprandial insulin clamps increased ISF and plasma Aβ, whereas direct delivery of insulin to the hippocampus significantly increased tissue insulin and insulin signaling, with no effect on Aβ in old mice. These results suggest that the brain is still responsive to insulin in the presence of amyloid pathology but increased insulin signaling does not acutely modulate Aβ in vivo before or after the onset of amyloid pathology. Peripheral hyperinsulinemia modestly increases ISF and plasma Aβ in young and old mice, independent of neuronal insulin signaling. SIGNIFICANCE STATEMENT The transportation of insulin from blood to brain is a saturable process relevant to understanding the link between hyperinsulinemia and AD. In vitro experiments have found direct connections between high insulin and extracellular Aβ, but these mechanisms presume that peripheral high insulin elevates brain insulin significantly. We found that physiological hyperinsulinemia in awake, behaving mice does not increase CNS insulin to an appreciable level yet modestly increases extracellular Aβ. We also found that the brain of aged APP/PS1 mice was not insulin resistant, contrary to the current state of the literature. These results further elucidate the relationship between insulin, the brain, and AD and its conflicting roles as both a risk factor and potential treatment. PMID:27852778

  9. Use of the TLX ultracentrifuge for the isolation of different density lipoproteins and effects of freeze/thawing of human plasma before ultracentrifugation.

    PubMed

    Charlton-Menys, Valentine; Chobotova, Jelena; Durrington, Paul N

    2008-01-01

    Isolation of different density lipoproteins by ultracentrifugation can require lengthy centrifugation times and freeze/thawing of plasma may influence recovery. We isolated a range of lipoproteins using a preparative ultracentrifuge and the TLX micro-ultracentrifuge and determined the effect of freeze/thawing of plasma beforehand. In fresh plasma, there was no significant difference in results for small-dense low-density lipoprotein apolipoprotein B (LDL apoB) (density >1.044 g/mL) or cholesterol at density >1.006 g/mL. Freeze/thawing had no effect on closely correlated results for small-dense LDL apoB (r=0.85; p<0.0001) or high-density lipoprotein (r=0.93; p<0.0001). The TLX micro-ultracentrifuge is a reliable alternative to the preparative ultracentrifuge and freeze/thawing has only a small effect on small-dense LDL apoB or high-density lipoprotein cholesterol.

  10. Decreased plasma concentrations of brain-derived neurotrophic factor (BDNF) in patients with functional hypothalamic amenorrhea.

    PubMed

    Podfigurna-Stopa, Agnieszka; Casarosa, Elena; Luisi, Michele; Czyzyk, Adam; Meczekalski, Blazej; Genazzani, Andrea Riccardo

    2013-09-01

    Functional hypothalamic amenorrhea (FHA) is a non organic, secondary amenorrhea related to gonadotropin-releasing hormone pulsatile secretion impairment. Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family of survival-promoting molecules, plays an important role in the growth, development, maintenance and function of several neuronal systems. The aim of the study was the evaluation of plasma BDNF concentrations in patients with the diagnosis of FHA. We studied 85 subjects diagnosed with FHA who were compared with 10 healthy, eumenorrheic controls with normal body mass index. Plasma BDNF and serum luteinizing hormone, follicle-stimulating hormone and estradiol (E2) concentrations were measured by immunoenzymatic method (enzyme-linked immunosorbent assay). Significantly lower concentration of plasma BDNF was found in FHA patients (196.31 ± 35.26 pg/ml) in comparison to healthy controls (407.20 ± 25.71 pg/ml; p < 0.0001). In the control group, there was a strong positive correlation between plasma BDNF and serum E2 concentrations (r = 0.92, p = 0.0001) but in FHA group it was not found. Role of BDNF in FHA is not yet fully understood. There could be found studies concerning plasma BDNF concentrations in humans and animals in the literature. However, our study is one of the first projects which describes decreased plasma BDNF concentration in patients with diagnosed FHA. Therefore, further studies on BDNF in FHA should clarify the role of this peptide.

  11. Large-scale imaging in small brains

    PubMed Central

    Ahrens, Misha B.; Engert, Florian

    2016-01-01

    The dense connectivity in the brain and arrangements of cells into circuits means that one neuron’s activity can influence many others. To observe this interconnected system comprehensively, an aspiration within neuroscience is to record from as many neurons as possible at the same time. There are two useful routes toward this goal: one is to expand the spatial extent of functional imaging techniques, and the second is to use animals with small brains. Here we review recent progress toward imaging many neurons and complete populations of identified neurons in small vertebrates and invertebrates. PMID:25636154

  12. Large-scale imaging in small brains.

    PubMed

    Ahrens, Misha B; Engert, Florian

    2015-06-01

    The dense connectivity in the brain means that one neuron's activity can influence many others. To observe this interconnected system comprehensively, an aspiration within neuroscience is to record from as many neurons as possible at the same time. There are two useful routes toward this goal: one is to expand the spatial extent of functional imaging techniques, and the second is to use animals with small brains. Here we review recent progress toward imaging many neurons and complete populations of identified neurons in small vertebrates and invertebrates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. The BDNF Val66Met polymorphism and plasma brain-derived neurotrophic factor levels in Han Chinese patients with bipolar disorder and schizophrenia.

    PubMed

    Chen, Shiou-Lan; Lee, Sheng-Yu; Chang, Yun-Hsuan; Chen, Shih-Heng; Chu, Chun-Hsien; Wang, Tzu-Yun; Chen, Po-See; Lee, I-Hui; Yang, Yen-Kuang; Hong, Jau-Shyong; Lu, Ru-Band

    2014-06-03

    Brain-derived neurotropic factor (BDNF) is widely distributed in the peripheral and central nervous systems. BDNF and its gene polymorphism may be important in synaptic plasticity and neuron survival, and may become a key target in the physiopathology of several mental illnesses. To elucidate the role of BDNF, we compared the plasma BDNF levels and the BDNF Val66Met gene variants effect in several mental disorders. We enrolled 644 participants: 177 patients with bipolar I disorder (BP-I), 190 with bipolar II disorder (BP-II), 151 with schizophrenia, and 126 healthy controls. Their plasma BDNF levels and BDNF Val66Met single nucleotide polymorphisms (SNP) were checked before pharmacological treatment. Plasma levels of BDNF were significantly lower in patients with schizophrenia than in healthy controls and patients with bipolar disorder (F = 37.667, p<0.001); the distribution of the BDNF Val66Met SNP was not different between groups (χ(2) = 5.289, p = 0.507). Nor were plasma BDNF levels significantly different between Met/Met, Met/Val, and Val/Val carriers in each group, which indicated that the BDNF Val66Met SNP did not influence plasma BDNF levels in our participants. Plasma BDNF levels were, however, significantly negatively correlated with depression scores in patients with bipolar disorder and with negative symptoms in patients with schizophrenia. We conclude that plasma BDNF profiles in different mental disorders are not affected by BDNF Val66Met gene variants, but by the process and progression of the illness itself. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Social instigation and repeated aggressive confrontations in male Swiss mice: analysis of plasma corticosterone, CRF and BDNF levels in limbic brain areas.

    PubMed

    Fortes, Paula Madeira; Albrechet-Souza, Lucas; Vasconcelos, Mailton; Ascoli, Bruna Maria; Menegolla, Ana Paula; de Almeida, Rosa Maria M

    2017-01-01

    Agonistic behaviors help to ensure survival, provide advantage in competition, and communicate social status. The resident-intruder paradigm, an animal model based on male intraspecific confrontations, can be an ethologically relevant tool to investigate the neurobiology of aggressive behavior. To examine behavioral and neurobiological mechanisms of aggressive behavior in male Swiss mice exposed to repeated confrontations in the resident intruder paradigm. Behavioral analysis was performed in association with measurements of plasma corticosterone of mice repeatedly exposed to a potential rival nearby, but inaccessible (social instigation), or to 10 sessions of social instigation followed by direct aggressive encounters. Moreover, corticotropin-releasing factor (CRF) and brain-derived neurotrophic factor (BNDF) were measured in the brain of these animals. Control mice were exposed to neither social instigation nor aggressive confrontations. Mice exposed to aggressive confrontations exhibited a similar pattern of species-typical aggressive and non-aggressive behaviors on the first and the last session. Moreover, in contrast to social instigation only, repeated aggressive confrontations promoted an increase in plasma corticosterone. After 10 aggressive confrontation sessions, mice presented a non-significant trend toward reducing hippocampal levels of CRF, which inversely correlated with plasma corticosterone levels. Conversely, repeated sessions of social instigation or aggressive confrontation did not alter BDNF concentrations at the prefrontal cortex and hippocampus. Exposure to repeated episodes of aggressive encounters did not promote habituation over time. Additionally, CRF seems to be involved in physiological responses to social stressors.

  15. Selective Effects of a Morphine Conjugate Vaccine on Heroin and Metabolite Distribution and Heroin-Induced Behaviors in Rats

    PubMed Central

    Pravetoni, M.; Harris, A.C.; Birnbaum, A.K.; Pentel, P.R.

    2013-01-01

    Morphine conjugate vaccines have effectively reduced behavioral effects of heroin in rodents and primates. To better understand how these effects are mediated, heroin and metabolite distribution studies were performed in rats in the presence and absence of vaccination. In non-vaccinated rats 6-monoacetylmorphine (6-MAM) was the predominant opioid in plasma and brain as early as 1 minute after i.v. administration of heroin and for up to 14 minutes. Vaccination with morphine conjugated to keyhole limpet hemocyanin (M-KLH) elicited high titers and concentrations of antibodies with high affinity for heroin, 6-MAM, and morphine. Four minutes after heroin administration vaccinated rats showed substantial retention of all three opioids in plasma compared to controls and reduced 6-MAM and morphine, but not heroin, distribution to brain. Administration of 6-MAM rather than heroin in M-KLH vaccinated rats showed a similar drug distribution pattern. Vaccination reduced heroin-induced analgesia and blocked heroin-induced locomotor activity throughout 2 weeks of repeated testing. Higher serum opioid-specific antibody concentrations were associated with higher plasma opioid concentrations, lower brain 6-MAM and morphine concentrations, and lower heroin-induced locomotor activity. Serum antibody concentrations over 0.2 mg/ml were associated with substantial effects on these measures. These data support a critical role for 6-MAM in mediating the early effects of i.v. heroin and suggest that reducing 6-MAM concentration in brain is essential to the efficacy of morphine conjugate vaccines. PMID:23220743

  16. Association of Plasma Neurofilament Light With Neurodegeneration in Patients With Alzheimer Disease.

    PubMed

    Mattsson, Niklas; Andreasson, Ulf; Zetterberg, Henrik; Blennow, Kaj

    2017-05-01

    Existing cerebrospinal fluid (CSF) or imaging (tau positron emission tomography) biomarkers for Alzheimer disease (AD) are invasive or expensive. Biomarkers based on standard blood test results would be useful in research, drug development, and clinical practice. Plasma neurofilament light (NFL) has recently been proposed as a blood-based biomarker for neurodegeneration in dementias. To test whether plasma NFL concentrations are increased in AD and associated with cognitive decline, other AD biomarkers, and imaging evidence of neurodegeneration. In this prospective case-control study, an ultrasensitive assay was used to measure plasma NFL concentration in 193 cognitively healthy controls, 197 patients with mild cognitive impairment (MCI), and 180 patients with AD dementia from the Alzheimer's Disease Neuroimaging Initiative. The study dates were September 7, 2005, to February 13, 2012. The plasma NFL analysis was performed in September 2016. Associations were tested between plasma NFL and diagnosis, Aβ pathologic features, CSF biomarkers of neuronal injury, cognition, brain structure, and metabolism. Among 193 cognitively healthy controls, 197 patients with mild cognitive impairment, and 180 patients with AD with dementia, plasma NFL correlated with CSF NFL (Spearman ρ = 0.59, P < .001). Plasma NFL was increased in patients with MCI (mean, 42.8 ng/L) and patients with AD dementia (mean, 51.0 ng/L) compared with controls (mean, 34.7 ng/L) (P < .001) and had high diagnostic accuracy for patients with AD with dementia vs controls (area under the receiver operating characteristic curve, 0.87, which is comparable to established CSF biomarkers). Plasma NFL was particularly high in patients with MCI and patients with AD dementia with Aβ pathologic features. High plasma NFL correlated with poor cognition and AD-related atrophy (at baseline and longitudinally) and with brain hypometabolism (longitudinally). Plasma NFL is associated with AD diagnosis and with cognitive, biochemical, and imaging hallmarks of the disease. This finding implies a potential usefulness for plasma NFL as a noninvasive biomarker in AD.

  17. Increased transfer of 45Ca into brain and cerebrospinal fluid from plasma during chronic hypocalcemia in rats.

    PubMed

    Murphy, V A; Rapoport, S I

    1988-06-28

    Recent studies have shown regulation of central nervous system [Ca] after chronic hypo- and hypercalcemia. To investigate the mechanism of this regulation, 3-week-old rats were fed diets for 8 weeks that contained low or normal levels of Ca. Plasma [Ca] was 40% less in rats fed the low Ca diet than in animals fed normal diet. Unidirectional transfer coefficients for Ca (KCa) and Cl (KCl) into cerebrospinal fluid (CSF) and brain were determined from the 10 min uptake of intravenously injected 45Ca and 36Cl in awake animals. KCa for CSF was 68% greater in low-Ca rats than in normal rats. Likewise, the values of KCa for brain regions with areas adjacent to the ventricles like the hippocampus and pons-medulla were 50% higher than in normal animals. On the other hand, KCas for parietal cortex, a brain region distant from the choroid plexus and not expected to be influenced by Ca entry into CSF, were similar between the groups. Comparison of the regional ratios of KCa/KCl revealed that a selective increase of Ca transport occurred into CSF and all brain regions except the parietal cortex in Ca-deficient rats. The results suggest that Ca homeostasis of CSF and brain [Ca] during chronic hypocalcemia is due to increased transfer of Ca from blood to brain, and that the regulation occurs via the CSF, possibly at the choroid plexus, but not via the cerebral capillaries.

  18. Osimertinib for the treatment of non-small cell lung cancer.

    PubMed

    Sun, Jong-Mu; Lee, Se-Hoon; Ahn, Jin Seok; Park, Keunchil; Ahn, Myung-Ju

    2017-02-01

    The T790 M mutation of the epidermal growth factor receptor (EGFR) gene is the most common mechanism underlying resistance to first- or second-generation EGFR tyrosine kinase inhibitors (TKIs) in patients with non-small cell lung cancer (NSCLC). Osimertinib, a third-generation EGFR TKI, shows robust clinical efficacy in patients with T790 M-mutated lung cancer. Areas covered: We analyzed and reviewed clinical data for which patients who experienced acquired resistance to first- or second-generation EGFR TKIs. In addition, we briefly reviewed the potential role of osimertinib as a first-line therapy. Expert opinion: Osimertinib was recently licensed for use in NSCLC patients with acquired resistance to other EGFR TKIs due to a T790 M mutation. However, unresolved issues surrounding the optimal application of osimertinib remain, specifically the development of a plasma-based mutation test to overcome the difficulty of repeat biopsy, the efficacy of osimertinib for brain or leptomeningeal metastases, the development of resistance to osimertinib, and the use of osimertinib therapy as a first-line treatment. Many ongoing studies are currently exploring these issues.

  19. Correlation of tissue-plasma partition coefficients between normal tissues and subcutaneous xenografts of human tumor cell lines in mouse as a prediction tool of drug penetration in tumors.

    PubMed

    Poulin, Patrick; Hop, Cornelis Eca; Salphati, Laurent; Liederer, Bianca M

    2013-04-01

    Understanding drug distribution and accumulation in tumors would be informative in the assessment of efficacy in targeted therapy; however, existing methods for predicting tissue drug distribution focus on normal tissues and do not incorporate tumors. The main objective of this study was to describe the relationships between tissue-plasma concentration ratios (Kp ) of normal tissues and those of subcutaneous xenograft tumors under nonsteady-state conditions, and establish regression equations that could potentially be used for the prediction of drug levels in several human tumor xenografts in mouse, based solely on a Kp value determined in a normal tissue (e.g., muscle). A dataset of 17 compounds was collected from the literature and from Genentech. Tissue and plasma concentration data in mouse were obtained following oral gavage or intraperitoneal administration. Linear regression analyses were performed between Kp values in several normal tissues (muscle, lung, liver, or brain) and those in human tumor xenografts (CL6, EBC-1, HT-29, PC3, U-87, MCF-7-neo-Her2, or BT474M1.1). The tissue-plasma ratios in normal tissues reasonably correlated with the tumor-plasma ratios in CL6, EBC-1, HT-29, U-87, BT474M1.1, and MCF-7-neo-Her2 xenografts (r(2) in the range 0.62-1) but not with the PC3 xenograft. In general, muscle and lung exhibited the strongest correlation with tumor xenografts, followed by liver. Regression coefficients from brain were low, except between brain and the glioblastoma U-87 xenograft (r(2) in the range 0.62-0.94). Furthermore, reasonably strong correlations were observed between muscle and lung and between muscle and liver (r(2) in the range 0.67-0.96). The slopes of the regressions differed depending on the class of drug (strong vs. weak base) and type of tissue (brain vs. other tissues and tumors). Overall, this study will contribute to our understanding of tissue-plasma partition coefficients for tumors and facilitate the use of physiologically based pharmacokinetics (PBPK) modeling for chemotherapy in oncology studies. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 102:1355-1369, 2013. Copyright © 2013 Wiley Periodicals, Inc.

  20. Rise in plasma lactate concentrations with psychosocial stress: a possible sign of cerebral energy demand.

    PubMed

    Kubera, Britta; Hubold, Christian; Otte, Saskia; Lindenberg, Ann-Sophie; Zeiss, Irena; Krause, Regina; Steinkamp, Mirja; Klement, Johanna; Entringer, Sonja; Pellerin, Luc; Peters, Achim

    2012-01-01

    It is known that exogenous lactate given as an i.v. energy infusion is able to counteract a neuroglycopenic state that developed during psychosocial stress. It is unknown, however, whether the brain under stressful conditions can induce a rise in plasma lactate to satisfy its increased needs during stress. Since lactate is i) an alternative cerebral energy substrate to glucose and ii) its plasmatic concentration is influenced by the sympathetic nervous system, the present study aimed at investigating whether plasma lactate concentrations increase with psychosocial stress in humans. 30 healthy young men participated in two sessions (stress induced by the Trier Social Stress Test and a non-stress control session). Blood samples were frequently taken to assess plasma lactate concentrations and stress hormone profiles. Plasma lactate increased 47% during psychosocial stress (from 0.9 ± 0.05 to 1.4 ± 0.1 mmol/l; interaction time × stress intervention: F = 19.7, p < 0.001). This increase in lactate concentrations during stress was associated with an increase in epinephrine (R(2) = 0.221, p = 0.02) and ACTH concentrations (R(2) = 0.460, p < 0.001). Plasma lactate concentrations increase during acute psychosocial stress in humans. This finding suggests the existence of a demand mechanism that functions to allocate an additional source of energy from the body towards the brain, which we refer to as 'cerebral lactate demand'.

  1. Cerebral Apolipoprotein-D Is Hypoglycosylated Compared to Peripheral Tissues and Is Variably Expressed in Mouse and Human Brain Regions.

    PubMed

    Li, Hongyun; Ruberu, Kalani; Karl, Tim; Garner, Brett

    2016-01-01

    Recent studies have shown that cerebral apoD levels increase with age and in Alzheimer's disease (AD). In addition, loss of cerebral apoD in the mouse increases sensitivity to lipid peroxidation and accelerates AD pathology. Very little data are available, however, regarding the expression of apoD protein levels in different brain regions. This is important as both brain lipid peroxidation and neurodegeneration occur in a region-specific manner. Here we addressed this using western blotting of seven different regions (olfactory bulb, hippocampus, frontal cortex, striatum, cerebellum, thalamus and brain stem) of the mouse brain. Our data indicate that compared to most brain regions, the hippocampus is deficient in apoD. In comparison to other major organs and tissues (liver, spleen, kidney, adrenal gland, heart and skeletal muscle), brain apoD was approximately 10-fold higher (corrected for total protein levels). Our analysis also revealed that brain apoD was present at a lower apparent molecular weight than tissue and plasma apoD. Utilising peptide N-glycosidase-F and neuraminidase to remove N-glycans and sialic acids, respectively, we found that N-glycan composition (but not sialylation alone) were responsible for this reduction in molecular weight. We extended the studies to an analysis of human brain regions (hippocampus, frontal cortex, temporal cortex and cerebellum) where we found that the hippocampus had the lowest levels of apoD. We also confirmed that human brain apoD was present at a lower molecular weight than in plasma. In conclusion, we demonstrate apoD protein levels are variable across different brain regions, that apoD levels are much higher in the brain compared to other tissues and organs, and that cerebral apoD has a lower molecular weight than peripheral apoD; a phenomenon that is due to the N-glycan content of the protein.

  2. Brain tissue volumes in the general elderly population. The Rotterdam Scan Study.

    PubMed

    Ikram, M Arfan; Vrooman, Henri A; Vernooij, Meike W; van der Lijn, Fedde; Hofman, Albert; van der Lugt, Aad; Niessen, Wiro J; Breteler, Monique M B

    2008-06-01

    We investigated how volumes of cerebrospinal fluid (CSF), grey matter (GM) and white matter (WM) varied with age, sex, small vessel disease and cardiovascular risk factors in the Rotterdam Scan Study. Participants (n=490; 60-90 years) were non-demented and 51.0% had hypertension, 4.9% had diabetes mellitus, 17.8% were current smoker and 54.0% were former smoker. We segmented brain MR-images into GM, normal WM, white matter lesion (WML) and CSF. Brain infarcts were rated visually. Volumes were expressed as percentage of intra-cranial volume. With increasing age, volumes of total brain, normal WM and total WM decreased; that of GM remained unchanged; and that of WML increased, in both men and women. Excluding persons with infarcts did not alter these results. Persons with larger load of small vessel disease had smaller brain volume, especially normal WM volume. Diastolic blood pressure, diabetes mellitus and current smoking were also related to smaller brain volume. In the elderly, higher age, small vessel disease and cardiovascular risk factors are associated with smaller brain volume, especially WM volume.

  3. Reward-based hypertension control by a synthetic brain-dopamine interface.

    PubMed

    Rössger, Katrin; Charpin-El Hamri, Ghislaine; Fussenegger, Martin

    2013-11-05

    Synthetic biology has significantly advanced the design of synthetic trigger-controlled devices that can reprogram mammalian cells to interface with complex metabolic activities. In the brain, the neurotransmitter dopamine coordinates communication with target neurons via a set of dopamine receptors that control behavior associated with reward-driven learning. This dopamine transmission has recently been suggested to increase central sympathetic outflow, resulting in plasma dopamine levels that correlate with corresponding brain activities. By functionally rewiring the human dopamine receptor D1 (DRD1) via the second messenger cyclic adenosine monophosphate (cAMP) to synthetic promoters containing cAMP response element-binding protein 1(CREB1)-specific cAMP-responsive operator modules, we have designed a synthetic dopamine-sensitive transcription controller that reversibly fine-tunes specific target gene expression at physiologically relevant brain-derived plasma dopamine levels. Following implantation of circuit-transgenic human cell lines insulated by semipermeable immunoprotective microcontainers into mice, the designer device interfaced with dopamine-specific brain activities and produced a systemic expression response when the animal's reward system was stimulated by food, sexual arousal, or addictive drugs. Reward-triggered brain activities were able to remotely program peripheral therapeutic implants to produce sufficient amounts of the atrial natriuretic peptide, which reduced the blood pressure of hypertensive mice to the normal physiologic range. Seamless control of therapeutic transgenes by subconscious behavior may provide opportunities for treatment strategies of the future.

  4. Moebius Syndrome

    MedlinePlus

    ... by small or absent brain stem nuclei that control the cranial nerves; Group II, characterized by loss and degeneration of neurons ... by small or absent brain stem nuclei that control the cranial nerves; Group II, characterized by loss and degeneration of neurons ...

  5. Brain Structural and Vascular Anatomy Is Altered in Offspring of Pre-Eclamptic Pregnancies: A Pilot Study.

    PubMed

    Rätsep, M T; Paolozza, A; Hickman, A F; Maser, B; Kay, V R; Mohammad, S; Pudwell, J; Smith, G N; Brien, D; Stroman, P W; Adams, M A; Reynolds, J N; Croy, B A; Forkert, N D

    2016-05-01

    Pre-eclampsia is a serious clinical gestational disorder occurring in 3%-5% of all human pregnancies and characterized by endothelial dysfunction and vascular complications. Offspring born of pre-eclamptic pregnancies are reported to exhibit deficits in cognitive function, higher incidence of depression, and increased susceptibility to stroke. However, no brain imaging reports exist on these offspring. We aimed to assess brain structural and vascular anatomy in 7- to 10-year-old offspring of pre-eclamptic pregnancies compared with matched controls. Offspring of pre-eclamptic pregnancies and matched controls (n = 10 per group) were recruited from an established longitudinal cohort examining the effects of pre-eclampsia. Children underwent MR imaging to identify brain structural and vascular anatomic differences. Maternal plasma samples collected at birth were assayed for angiogenic factors by enzyme-linked immunosorbent assay. Offspring of pre-eclamptic pregnancies exhibited enlarged brain regional volumes of the cerebellum, temporal lobe, brain stem, and right and left amygdalae. These offspring displayed reduced cerebral vessel radii in the occipital and parietal lobes. Enzyme-linked immunosorbent assay analysis revealed underexpression of the placental growth factor among the maternal plasma samples from women who experienced pre-eclampsia. This study is the first to report brain structural and vascular anatomic alterations in the population of offspring of pre-eclamptic pregnancies. Brain structural alterations shared similarities with those seen in autism. Vascular alterations may have preceded these structural alterations. This pilot study requires further validation with a larger population to provide stronger estimates of brain structural and vascular outcomes among the offspring of pre-eclamptic pregnancies. © 2016 by American Journal of Neuroradiology.

  6. Pharmacokinetic Assessment of Efflux Transport in Sunitinib Distribution to the Brain

    PubMed Central

    Oberoi, Rajneet K.; Mittapalli, Rajendar K.

    2013-01-01

    This study quantitatively assessed transport mechanisms that limit the brain distribution of sunitinib and investigated adjuvant strategies to improve its brain delivery for the treatment of glioblastoma multiforme (GBM). Sunitinib has not shown significant activity in GBM clinical trials, despite positive results seen in preclinical xenograft studies. We performed in vivo studies in transgenic Friend leukemia virus strain B mice: wild-type, Mdr1a/b(−/−), Bcrp1(−/−), and Mdr1a/b(−/−)Bcrp1(−/−) genotypes were examined. The brain-to-plasma area under the curve ratio after an oral dose (20 mg/kg) was similar to the steady-state tissue distribution coefficient, indicating linear distribution kinetics in mice over this concentration range. Furthermore, the distribution of sunitinib to the brain increased after administration of selective P-glycoprotein (P-gp) or breast cancer resistance protein (Bcrp) pharmacological inhibitors and a dual inhibitor, elacridar, comparable to that of the corresponding transgenic genotype. The brain-to-plasma ratio after coadministration of elacridar in wild-type mice was ∼12 compared with ∼17.3 in Mdr1a/b(−/−)Bcrp1(−/−) mice. Overall, these findings indicate that there is a cooperation at the blood-brain barrier (BBB) in restricting the brain penetration of sunitinib, and brain delivery can be enhanced by administration of a dual inhibitor. These data indicate that the presence of cooperative efflux transporters, P-gp and Bcrp, in an intact BBB can protect invasive glioma cells from chemotherapy. Thus, one may consider the use of transporter inhibition as a powerful adjuvant in the design of future clinical trials for the targeted delivery of sunitinib in GBM. PMID:24113148

  7. An automatic rat brain extraction method based on a deformable surface model.

    PubMed

    Li, Jiehua; Liu, Xiaofeng; Zhuo, Jiachen; Gullapalli, Rao P; Zara, Jason M

    2013-08-15

    The extraction of the brain from the skull in medical images is a necessary first step before image registration or segmentation. While pre-clinical MR imaging studies on small animals, such as rats, are increasing, fully automatic imaging processing techniques specific to small animal studies remain lacking. In this paper, we present an automatic rat brain extraction method, the Rat Brain Deformable model method (RBD), which adapts the popular human brain extraction tool (BET) through the incorporation of information on the brain geometry and MR image characteristics of the rat brain. The robustness of the method was demonstrated on T2-weighted MR images of 64 rats and compared with other brain extraction methods (BET, PCNN, PCNN-3D). The results demonstrate that RBD reliably extracts the rat brain with high accuracy (>92% volume overlap) and is robust against signal inhomogeneity in the images. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Development of a population pharmacokinetic model to predict brain distribution and dopamine D2 receptor occupancy of raclopride in non-anesthetized rat.

    PubMed

    Wong, Yin Cheong; Ilkova, Trayana; van Wijk, Rob C; Hartman, Robin; de Lange, Elizabeth C M

    2018-01-01

    Raclopride is a selective antagonist of the dopamine D2 receptor. It is one of the most frequently used in vivo D2 tracers (at low doses) for assessing drug-induced receptor occupancy (RO) in animals and humans. It is also commonly used as a pharmacological blocker (at high doses) to occupy the available D2 receptors and antagonize the action of dopamine or drugs on D2 in preclinical studies. The aims of this study were to comprehensively evaluate its pharmacokinetic (PK) profiles in different brain compartments and to establish a PK-RO model that could predict the brain distribution and RO of raclopride in the freely moving rat using a LC-MS based approach. Rats (n=24) received a 10-min IV infusion of non-radiolabeled raclopride (1.61μmol/kg, i.e. 0.56mg/kg). Plasma and the brain tissues of striatum (with high density of D2 receptors) and cerebellum (with negligible amount of D2 receptors) were collected. Additional microdialysis experiments were performed in some rats (n=7) to measure the free drug concentration in the extracellular fluid of the striatum and cerebellum. Raclopride concentrations in all samples were analyzed by LC-MS. A population PK-RO model was constructed in NONMEM to describe the concentration-time profiles in the unbound plasma, brain extracellular fluid and brain tissue compartments and to estimate the RO based on raclopride-D2 receptor binding kinetics. In plasma raclopride showed a rapid distribution phase followed by a slower elimination phase. The striatum tissue concentrations were consistently higher than that of cerebellum tissue throughout the whole experimental period (10-h) due to higher non-specific tissue binding and D2 receptor binding in the striatum. Model-based simulations accurately predicted the literature data on rat plasma PK, brain tissue PK and D2 RO at different time points after intravenous or subcutaneous administration of raclopride at tracer dose (RO <10%), sub-pharmacological dose (RO 10%-30%) and pharmacological dose (RO >30%). For the first time a predictive model that could describe the quantitative in vivo relationship between dose, PK and D2 RO of raclopride in non-anesthetized rat was established. The PK-RO model could facilitate the selection of optimal dose and dosing time when raclopride is used as tracer or as pharmacological blocker in various rat studies. The LC-MS based approach, which doses and quantifies a non-radiolabeled tracer, could be useful in evaluating the systemic disposition and brain kinetics of tracers. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Variety of RNAs in Peripheral Blood Cells, Plasma, and Plasma Fractions

    PubMed Central

    Kuligina, Elena V.; Bariakin, Dmitry N.; Kozlov, Vadim V.; Richter, Vladimir A.; Semenov, Dmitry V.

    2017-01-01

    Human peripheral blood contains RNA in cells and in extracellular membrane vesicles, microvesicles and exosomes, as well as in cell-free ribonucleoproteins. Circulating mRNAs and noncoding RNAs, being internalized, possess the ability to modulate vital processes in recipient cells. In this study, with SOLiD sequencing technology, we performed identification, classification, and quantification of RNAs from blood fractions: cells, plasma, plasma vesicles pelleted at 16,000g and 160,000g, and vesicle-depleted plasma supernatant of healthy donors and non-small cell lung cancer (NSCLC) patients. It was determined that 16,000g blood plasma vesicles were enriched with cell-free mitochondria and with a set of mitochondrial RNAs. The variable RNA set of blood plasma 160,000g pellets reflected the prominent contribution of U1, U5, and U6 small nuclear RNAs' fragments and at the same time was characterized by a remarkable depletion of small nucleolar RNAs. Besides microRNAs, the variety of fragments of mRNAs and snoRNAs dominated in the set of circulating RNAs differentially expressed in blood fractions of NSCLC patients. Taken together, our data emphasize that not only extracellular microRNAs but also circulating fragments of messenger and small nuclear/nucleolar RNAs represent prominent classes of circulating regulatory ncRNAs as well as promising circulating biomarkers for the development of disease diagnostic approaches. PMID:28127559

  10. Characterization of the radioactive metabolites of the 5-HT1A receptor radioligand, [O-methyl-11C]WAY-100635, in monkey and human plasma by HPLC: comparison of the behaviour of an identified radioactive metabolite with parent radioligand in monkey using PET.

    PubMed

    Osman, S; Lundkvist, C; Pike, V W; Halldin, C; McCarron, J A; Swahn, C G; Ginovart, N; Luthra, S K; Bench, C J; Grasby, P M; Wikström, H; Barf, T; Cliffe, I A; Fletcher, A; Farde, L

    1996-07-01

    N-(2-(4-(2-Methoxy-phenyl)-1-piperazin-1-yl)ethyl)-N-(2-pyridyl) cyclohexanecarboxamide (WAY-100635), labelled in the O-methyl group with carbon-11 (t1/2 = 20.4 min), is a promising radioligand for application with positron emission tomography (PET) to the study of 5-HT1A receptors in living human brain. An understanding of the metabolism of this new radioligand is crucial to the development of a biomathematical model for the interpretation of the kinetics of radioactivity uptake in brain in terms of receptor-binding parameters. After intravenous injection of [O-methyl-11C]WAY-100635 into humans, radioactivity was found to clear rapidly from blood and plasma. By using established methods for the analysis of radioactivity in plasma, it was found that intravenously injected [O-methyl-11C]WAY-100635 is rapidly metabolised to more polar radioactive compounds in a cynomolgus monkey and in humans. Thus, at 60 min postinjection, parent radioligand represented 40% and 5% of the radioactivity in monkey and human plasma, respectively. In monkey and human, one of the radioactive metabolites was identified as the descyclohexanecarbonyl analogue of the parent radioligand, namely [O-methyl-11C]WAY-100634. This compound is known to have high affinity for 5-HT1A receptors and alpha 1-adrenoceptors. In a PET experiment it was demonstrated that, after IV injection of [O-methyl-11C]WAY-100634 into a cynomolgus monkey, radioactivity was avidly taken up by brain. Uptake of radioactivity was higher in 5-HT1A receptor-rich frontal cortex than in cerebellum, which is devoid of 5-HT1A receptors. Polar radioactive metabolites appeared in plasma. The results suggest that the use of WAY-100635 labelled with carbon-11 in its cyclohexanecarbonyl moiety may provide enhanced signal contrast in PET studies and a possibility to develop a simple biomathematical model for regional brain radioactivity uptake.

  11. A small-scale plasmoid formed during the May 13, 1985, AMPTE magnetotail barium release

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Fritz, T. A.; Bernhardt, P. A.

    1989-01-01

    Plasmoids are closed magnetic-loop structures with entrained hot plasma which are inferred to occur on large spatial scales in space plasma systems. A model is proposed here to explain the brightening and rapid tailward movement of the barium cloud released by the AMPTE IRM spacecraft on May 13, 1985. The model suggests that a small-scale plasmoid was formed due to a predicted development of heavy-ion-induced tearing in the thinned near-tail plasma sheet. Thus, a plasmoid may actually have been imaged due to the emissions of the entrained plasma ions within the plasma bubble.

  12. Effects of centrifugation on gonadal and adrenocortical steroids in rats

    NASA Technical Reports Server (NTRS)

    Kakihana, R.; Butte, J. C.

    1980-01-01

    Many endocrine systems are sensitive to external changes in the environment. Both the pituitary adrenal and pituitary gonadal systems are affected by stress including centrifugation stress. The effect of centrifugation on the pituitary gonadal and pituitary adrenocortical systems was examined by measuring the gonadal and adrenal steroids in the plasma and brain following different duration and intensity of centrifugation stress in rats. Two studies were completed and the results are presented. The second study was carried out to describe the developmental changes of brain, plasma and testicular testosterone and dihydrotestosterone in Sprague Dawley rats so that the effect of centrifugation stress on the pituitary gonadal syatem could be better evaluated in future studies.

  13. Evolution of brain region volumes during artificial selection for relative brain size.

    PubMed

    Kotrschal, Alexander; Zeng, Hong-Li; van der Bijl, Wouter; Öhman-Mägi, Caroline; Kotrschal, Kurt; Pelckmans, Kristiaan; Kolm, Niclas

    2017-12-01

    The vertebrate brain shows an extremely conserved layout across taxa. Still, the relative sizes of separate brain regions vary markedly between species. One interesting pattern is that larger brains seem associated with increased relative sizes only of certain brain regions, for instance telencephalon and cerebellum. Till now, the evolutionary association between separate brain regions and overall brain size is based on comparative evidence and remains experimentally untested. Here, we test the evolutionary response of brain regions to directional selection on brain size in guppies (Poecilia reticulata) selected for large and small relative brain size. In these animals, artificial selection led to a fast response in relative brain size, while body size remained unchanged. We use microcomputer tomography to investigate how the volumes of 11 main brain regions respond to selection for larger versus smaller brains. We found no differences in relative brain region volumes between large- and small-brained animals and only minor sex-specific variation. Also, selection did not change allometric scaling between brain and brain region sizes. Our results suggest that brain regions respond similarly to strong directional selection on relative brain size, which indicates that brain anatomy variation in contemporary species most likely stem from direct selection on key regions. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  14. The Conundrum of Functional Brain Networks: Small-World Efficiency or Fractal Modularity

    PubMed Central

    Gallos, Lazaros K.; Sigman, Mariano; Makse, Hernán A.

    2012-01-01

    The human brain has been studied at multiple scales, from neurons, circuits, areas with well-defined anatomical and functional boundaries, to large-scale functional networks which mediate coherent cognition. In a recent work, we addressed the problem of the hierarchical organization in the brain through network analysis. Our analysis identified functional brain modules of fractal structure that were inter-connected in a small-world topology. Here, we provide more details on the use of network science tools to elaborate on this behavior. We indicate the importance of using percolation theory to highlight the modular character of the functional brain network. These modules present a fractal, self-similar topology, identified through fractal network methods. When we lower the threshold of correlations to include weaker ties, the network as a whole assumes a small-world character. These weak ties are organized precisely as predicted by theory maximizing information transfer with minimal wiring costs. PMID:22586406

  15. Driving and driven architectures of directed small-world human brain functional networks.

    PubMed

    Yan, Chaogan; He, Yong

    2011-01-01

    Recently, increasing attention has been focused on the investigation of the human brain connectome that describes the patterns of structural and functional connectivity networks of the human brain. Many studies of the human connectome have demonstrated that the brain network follows a small-world topology with an intrinsically cohesive modular structure and includes several network hubs in the medial parietal regions. However, most of these studies have only focused on undirected connections between regions in which the directions of information flow are not taken into account. How the brain regions causally influence each other and how the directed network of human brain is topologically organized remain largely unknown. Here, we applied linear multivariate Granger causality analysis (GCA) and graph theoretical approaches to a resting-state functional MRI dataset with a large cohort of young healthy participants (n = 86) to explore connectivity patterns of the population-based whole-brain functional directed network. This directed brain network exhibited prominent small-world properties, which obviously improved previous results of functional MRI studies showing weak small-world properties in the directed brain networks in terms of a kernel-based GCA and individual analysis. This brain network also showed significant modular structures associated with 5 well known subsystems: fronto-parietal, visual, paralimbic/limbic, subcortical and primary systems. Importantly, we identified several driving hubs predominantly located in the components of the attentional network (e.g., the inferior frontal gyrus, supplementary motor area, insula and fusiform gyrus) and several driven hubs predominantly located in the components of the default mode network (e.g., the precuneus, posterior cingulate gyrus, medial prefrontal cortex and inferior parietal lobule). Further split-half analyses indicated that our results were highly reproducible between two independent subgroups. The current study demonstrated the directions of spontaneous information flow and causal influences in the directed brain networks, thus providing new insights into our understanding of human brain functional connectome.

  16. Cerebral pyogranuloma associated with systemic coronavirus infection in a ferret.

    PubMed

    Gnirs, K; Quinton, J F; Dally, C; Nicolier, A; Ruel, Y

    2016-01-01

    A 2-year-old male ferret was presented with central nervous system signs. Computed tomography (CT) of the brain revealed a well-defined contrast-enhancing lesion on the rostral forebrain that appeared extraparenchymal. Surgical excision of the mass was performed and the ferret was euthanised during the procedure. Histopathology of the excised mass showed multiple meningeal nodular lesions with infiltrates of epithelioid macrophages, occasionally centred on degenerated neutrophils and surrounded by a broad rim of plasma cells, features consistent with pyogranulomatous meningitis. The histopathological features in this ferret were similar to those in cats with feline infectious peritonitis. Definitive diagnosis was assessed by immunohistochemistry, confirming a ferret systemic coronavirus (FSCV) associated disease. This is the first case of coronavirus granuloma described on CT-scan in the central nervous system of a ferret. © 2015 British Small Animal Veterinary Association.

  17. Plasma brain derived neurotrophic factor (BDNF) and response to ketamine in treatment-resistant depression.

    PubMed

    Haile, C N; Murrough, J W; Iosifescu, D V; Chang, L C; Al Jurdi, R K; Foulkes, A; Iqbal, S; Mahoney, J J; De La Garza, R; Charney, D S; Newton, T F; Mathew, S J

    2014-02-01

    Ketamine produces rapid antidepressant effects in treatment-resistant depression (TRD), but the magnitude of response varies considerably between individual patients. Brain-derived neurotrophic factor (BDNF) has been investigated as a biomarker of treatment response in depression and has been implicated in the mechanism of action of ketamine. We evaluated plasma BDNF and associations with symptoms in 22 patients with TRD enrolled in a randomized controlled trial of ketamine compared to an anaesthetic control (midazolam). Ketamine significantly increased plasma BDNF levels in responders compared to non-responders 240 min post-infusion, and Montgomery-Åsberg Depression Rating Scale (MADRS) scores were negatively correlated with BDNF (r=-0.701, p = 0.008). Plasma BDNF levels at 240 min post-infusion were highly negatively associated with MADRS scores at 240 min (r = -0.897, p=.002), 24 h (r = -0.791, p = 0.038), 48 h (r = -0.944, p = 0.001) and 72 h (r = -0.977, p = 0.010). No associations with BDNF were found for patients receiving midazolam. These data support plasma BDNF as a peripheral biomarker relevant to ketamine antidepressant response.

  18. Alzheimer risk genes modulate the relationship between plasma apoE and cortical PiB binding

    DOE PAGES

    Lazaris, Andreas; Hwang, Kristy S.; Goukasian, Naira; ...

    2015-10-15

    Objective: We investigated the association between apoE protein plasma levels and brain amyloidosis and the effect of the top 10 Alzheimer disease (AD) risk genes on this association. Methods: Our dataset consisted of 18 AD, 52 mild cognitive impairment, and 3 cognitively normal Alzheimer's Disease Neuroimaging Initiative 1 (ADNI1) participants with available [ 11C]-Pittsburgh compound B (PiB) and peripheral blood protein data. We used cortical pattern matching to study associations between plasma apoE and cortical PiB binding and the effect of carrier status for the top 10 AD risk genes. Results: Low plasma apoE was significantly associated with high PiBmore » SUVR, except in the sensorimotor and entorhinal cortex. For BIN1 rs744373, the association was observed only in minor allele carriers. For CD2AP rs9349407 and CR1 rs3818361, the association was preserved only in minor allele noncarriers. We did not find evidence for modulation by CLU, PICALM, ABCA7, BIN1, and MS4A6A. Conclusions: Our data show that BIN1 rs744373, CD2AP rs9349407, and CR1 rs3818361 genotypes modulate the association between apoE protein plasma levels and brain amyloidosis, implying a potential epigenetic/downstream interaction.« less

  19. Brain distribution and molecular cloning of the bovine GABA rho1 receptor.

    PubMed

    Rosas-Arellano, Abraham; Ochoa-de la Paz, Lenin David; Miledi, Ricardo; Martínez-Torres, Ataúlfo

    2007-03-01

    GABA(C) receptors were originally found in the mammalian retina and recent evidence shows that they are also expressed in several areas of the brain, including caudate nucleus, brain stem, pons and corpus callosum. In this study, plasma membranes from the caudate nucleus were microinjected into X. laevis oocytes. This led the oocyte plasma membrane to incorporate functional bicuculline-resistant, Cl(-) conducting bovine GABA receptors, similar to those of the retina. Immunolocalization of the GABA rho1 subunit revealed its expression in bovine neurons in the head of the caudate as well as in the olive, cuneiform and reticular nuclei of the brain stem. The same antibodies failed to show expression in the callosum and pons, where the GABA rho1 mRNA was previously detected. The cloned GABA rho1 sequence predicts a protein with 473 amino acids and 74-93% similarity to other GABA rho1 subunits. Oocytes injected with the cDNA express a non-desensitizing, homomeric receptor with a GABA EC(50)=6.0 microM and a Hill coefficient of 1.8. The results confirm the presence of GABA(C) receptor mRNAs in several areas of the mammalian brain and show that some of these areas express functional GABA rho1 receptors that have the classic GABA(C) receptor characteristics.

  20. Bioimaging of metals in brain tissue by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and metallomics.

    PubMed

    Becker, J Sabine; Matusch, Andreas; Palm, Christoph; Salber, Dagmar; Morton, Kathryn A; Becker, J Susanne

    2010-02-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been developed and established as an emerging technique in the generation of quantitative images of metal distributions in thin tissue sections of brain samples (such as human, rat and mouse brain), with applications in research related to neurodegenerative disorders. A new analytical protocol is described which includes sample preparation by cryo-cutting of thin tissue sections and matrix-matched laboratory standards, mass spectrometric measurements, data acquisition, and quantitative analysis. Specific examples of the bioimaging of metal distributions in normal rodent brains are provided. Differences to the normal were assessed in a Parkinson's disease and a stroke brain model. Furthermore, changes during normal aging were studied. Powerful analytical techniques are also required for the determination and characterization of metal-containing proteins within a large pool of proteins, e.g., after denaturing or non-denaturing electrophoretic separation of proteins in one-dimensional and two-dimensional gels. LA-ICP-MS can be employed to detect metalloproteins in protein bands or spots separated after gel electrophoresis. MALDI-MS can then be used to identify specific metal-containing proteins in these bands or spots. The combination of these techniques is described in the second section.

  1. The Effect of Flax Seed (Linum Usitatissimum) Hydroalcoholic Extract on Brain, Weight and Plasma Sexual Hormone Levels in Aged and Young Mice.

    PubMed

    Bahmanpour, Soghra; Kamali, Mahsa

    2016-05-01

    Flax is a food and fiber crop that is grown in some regions of the world. Its value will account for its great popularity as a food, medical and cosmetic applications. Flax fibers are taken from the stem of the plant and are two to three times as strong as cotton. In this study, we compared brain weight and plasma sex hormone levels in young and aged mice after the administration of Linum usitatissimum (flax seed) hydro alcoholic extract. In this study, 32 aged and 32 young mice were divided into 4 groups. Controls remained untreated and experimental groups were fed with flax seed hydroalcoholic extract by oral gavages during 3 weeks. After 3 weeks, the brain was removed and blood samples were collected to measure sex hormone levels by ELISA. Data analysis was done by statistical ANOVA test using SPSS version 18 (P<0.05). The results of this study shows that the brain weight of mice did not change significantly, but the sex hormone levels in the experimental groups in comparison with the control groups increased significantly (P<0.05). The hydroalcoholic extract of flax seed had no effect on the brain weight, but this extract improved the sexual hormone levels.

  2. Plasma BDNF Is Reduced among Middle-Aged and Elderly Women with Impaired Insulin Function: Evidence of a Compensatory Mechanism

    ERIC Educational Resources Information Center

    Arentoft, Alyssa; Sweat, Victoria; Starr, Vanessa; Oliver, Stephen; Hassenstab, Jason; Bruehl, Hannah; Tirsi, Aziz; Javier, Elizabeth; McHugh, Pauline F.; Convit, Antonio

    2009-01-01

    Brain-derived neurotrophic factor (BDNF) plays a regulatory role in neuronal differentiation and synaptic plasticity and has been linked to glucose regulation and cognition. Associations among plasma BDNF, cognition, and insulin function were explored. Forty-one participants with impaired insulin function (IIF), ranging from insulin resistance to…

  3. Recovery of cholinesterase activity in five avian species exposed to dicrotophos, an organophosphorus pesticide

    USGS Publications Warehouse

    Fleming, W.J.; Grue, C.E.

    1981-01-01

    The responses of brain and plasma cholinesterase (ChE) activities were examined in mallard ducks, bobwhite quail, barn owls, starlings, and common grackles given oral doses of dicrotophos, an organophosphorus insecticide. Up to an eightfold difference in response of brain ChE activity to dicrotophos was found among these species. Brain ChE activity recovered to within 2 SD of normal within 26 days after being depressed 55 to 64%. Recovery of brain ChE activity was similar among species and followed the model Y = a + b (log10X).

  4. Molecular Imaging of ABCB1 and ABCG2 Inhibition at the Human Blood-Brain Barrier Using Elacridar and 11C-Erlotinib PET.

    PubMed

    Verheijen, Remy B; Yaqub, Maqsood; Sawicki, Emilia; van Tellingen, Olaf; Lammertsma, Adriaan A; Nuijen, Bastiaan; Schellens, Jan H M; Beijnen, Jos H; Huitema, Alwin D R; Hendrikse, N Harry; Steeghs, Neeltje

    2018-06-01

    Transporters such as ABCB1 and ABCG2 limit the exposure of several anticancer drugs to the brain, leading to suboptimal treatment in the central nervous system. The purpose of this study was to investigate the effects of the ABCB1 and ABCG2 inhibitor elacridar on brain uptake using 11 C-erlotinib PET. Methods: Elacridar and cold erlotinib were administered orally to wild-type (WT) and Abcb1a/b;Abcg2 knockout mice. In addition, brain uptake was measured using 11 C-erlotinib imaging and ex vivo scintillation counting in knockout and WT mice. Six patients with advanced solid tumors underwent 11 C-erlotinib PET scans before and after a 1,000-mg dose of elacridar. 11 C-erlotinib brain uptake was quantified by pharmacokinetic modeling using volume of distribution (V T ) as the outcome parameter. In addition, 15 O-H 2 O scans to measure cerebral blood flow were acquired before each 11 C-erlotinib scan. Results: Brain uptake of 11 C-erlotinib was 2.6-fold higher in Abcb1a/b;Abcg2 knockout mice than in WT mice, measured as percentage injected dose per gram of tissue ( P = 0.01). In WT mice, the addition of elacridar (at systemic plasma concentrations of ≥200 ng/mL) resulted in an increased brain concentration of erlotinib, without affecting erlotinib plasma concentration. In patients, the V T of 11 C-erlotinib did not increase after intake of elacridar (0.213 ± 0.12 vs. 0.205 ± 0.07, P = 0.91). 15 O-H 2 O PET showed no significant changes in cerebral blood flow. Elacridar exposure in patients was 401 ± 154 ng/mL. No increase in V T with increased elacridar plasma exposure was found over the 271-619 ng/mL range. Conclusion: When Abcb1 and Abcg2 were disrupted in mice, brain uptake of 11 C-erlotinib increased both at a tracer dose and at a pharmacologic dose. In patients, brain uptake of 11 C-erlotinib was not higher after administration of elacridar. The more pronounced role that ABCG2 appears to play at the human blood-brain barrier and the lower potency of elacridar to inhibit ABCG2 may be an explanation of these interspecies differences. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  5. Brain Aneurysm

    MedlinePlus

    A brain aneurysm is an abnormal bulge or "ballooning" in the wall of an artery in the brain. They are sometimes called berry aneurysms because they ... often the size of a small berry. Most brain aneurysms produce no symptoms until they become large, ...

  6. Emerging Trends in the Management of Brain Metastases from Non-small Cell Lung Cancer.

    PubMed

    Churilla, Thomas M; Weiss, Stephanie E

    2018-05-07

    To summarize current approaches in the management of brain metastases from non-small cell lung cancer (NSCLC). Local treatment has evolved from whole-brain radiotherapy (WBRT) to increasing use of stereotactic radiosurgery (SRS) alone for patients with limited (1-4) brain metastases. Trials have established post-operative SRS as an alternative to adjuvant WBRT following resection of brain metastases. Second-generation TKIs for ALK rearranged NSCLC have demonstrated improved CNS penetration and activity. Current brain metastasis trials are focused on reducing cognitive toxicity: hippocampal sparing WBRT, SRS for 5-15 metastases, pre-operative SRS, and use of systemic targeted agents or immunotherapy. The role for radiotherapy in the management of brain metastases is becoming better defined with local treatment shifting from WBRT to SRS alone for limited brain metastases and post-operative SRS for resected metastases. Further trials are warranted to define the optimal integration of newer systemic agents with local therapies.

  7. Lacunar infarction and small vessel disease: pathology and pathophysiology.

    PubMed

    Caplan, Louis R

    2015-01-01

    Two major vascular pathologies underlie brain damage in patients with disease of small size penetrating brain arteries and arterioles; 1) thickening of the arterial media and 2) obstruction of the origins of penetrating arteries by parent artery intimal plaques. The media of these small vessels may be thickened by fibrinoid deposition and hypertrophy of smooth muscle and other connective tissue elements that accompanies degenerative changes in patients with hypertension and or diabetes or can contain foreign deposits as in amyloid angiopathy and genetically mediated conditions such as cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. These pathological changes lead to 2 different pathophysiologies: 1) brain ischemia in regions supplied by the affected arteries. The resultant lesions are deep small infarcts, most often involving the basal ganglia, pons, thalami and cerebral white matter. And 2) leakage of fluid causing edema and later gliosis in white matter tracts. The changes in the media and adventitia effect metalloproteinases and other substances within the matrix of the vessels and lead to abnormal blood/brain barriers in these small vessels. and chronic gliosis and atrophy of cerebral white matter.

  8. Comparison of time-dependent effects of (+)-methamphetamine or forced swim on monoamines, corticosterone, glucose, creatine, and creatinine in rats.

    PubMed

    Herring, Nicole R; Schaefer, Tori L; Tang, Peter H; Skelton, Matthew R; Lucot, James P; Gudelsky, Gary A; Vorhees, Charles V; Williams, Michael T

    2008-05-30

    Methamphetamine (MA) use is a worldwide problem. Abusers can have cognitive deficits, monoamine reductions, and altered magnetic resonance spectroscopy findings. Animal models have been used to investigate some of these effects, however many of these experiments have not examined the impact of MA on the stress response. For example, numerous studies have demonstrated (+)-MA-induced neurotoxicity and monoamine reductions, however the effects of MA on other markers that may play a role in neurotoxicity or cell energetics such as glucose, corticosterone, and/or creatine have received less attention. In this experiment, the effects of a neurotoxic regimen of (+)-MA (4 doses at 2 h intervals) on brain monoamines, neostriatal GFAP, plasma corticosterone, creatinine, and glucose, and brain and muscle creatine were evaluated 1, 7, 24, and 72 h after the first dose. In order to compare MA's effects with stress, animals were subjected to a forced swim test in a temporal pattern similar to MA administration [i.e., (30 min/session) 4 times at 2 h intervals]. MA increased corticosterone from 1-72 h with a peak 1 h after the first treatment, whereas glucose was only increased 1 h post-treatment. Neostriatal and hippocampal monoamines were decreased at 7, 24, and 72 h, with a concurrent increase in GFAP at 72 h. There was no effect of MA on regional brain creatine, however plasma creatinine was increased during the first 24 h and decreased by 72 h. As with MA treatment, forced swim increased corticosterone more than MA initially. Unlike MA, forced swim reduced creatine in the cerebellum with no change in other brain regions while plasma creatinine was decreased at 1 and 7 h. Glucose in plasma was decreased at 7 h. Both MA and forced swim increase demand on energy substrates but in different ways, and MA has persistent effects on corticosterone that are not attributable to stress alone.

  9. Comparison of time-dependent effects of (+)-methamphetamine or forced swim on monoamines, corticosterone, glucose, creatine, and creatinine in rats

    PubMed Central

    Herring, Nicole R; Schaefer, Tori L; Tang, Peter H; Skelton, Matthew R; Lucot, James P; Gudelsky, Gary A; Vorhees, Charles V; Williams, Michael T

    2008-01-01

    Background Methamphetamine (MA) use is a worldwide problem. Abusers can have cognitive deficits, monoamine reductions, and altered magnetic resonance spectroscopy findings. Animal models have been used to investigate some of these effects, however many of these experiments have not examined the impact of MA on the stress response. For example, numerous studies have demonstrated (+)-MA-induced neurotoxicity and monoamine reductions, however the effects of MA on other markers that may play a role in neurotoxicity or cell energetics such as glucose, corticosterone, and/or creatine have received less attention. In this experiment, the effects of a neurotoxic regimen of (+)-MA (4 doses at 2 h intervals) on brain monoamines, neostriatal GFAP, plasma corticosterone, creatinine, and glucose, and brain and muscle creatine were evaluated 1, 7, 24, and 72 h after the first dose. In order to compare MA's effects with stress, animals were subjected to a forced swim test in a temporal pattern similar to MA administration [i.e., (30 min/session) 4 times at 2 h intervals]. Results MA increased corticosterone from 1–72 h with a peak 1 h after the first treatment, whereas glucose was only increased 1 h post-treatment. Neostriatal and hippocampal monoamines were decreased at 7, 24, and 72 h, with a concurrent increase in GFAP at 72 h. There was no effect of MA on regional brain creatine, however plasma creatinine was increased during the first 24 h and decreased by 72 h. As with MA treatment, forced swim increased corticosterone more than MA initially. Unlike MA, forced swim reduced creatine in the cerebellum with no change in other brain regions while plasma creatinine was decreased at 1 and 7 h. Glucose in plasma was decreased at 7 h. Conclusion Both MA and forced swim increase demand on energy substrates but in different ways, and MA has persistent effects on corticosterone that are not attributable to stress alone. PMID:18513404

  10. Liver Disease, Systemic Inflammation, and Growth Using a Mixed Parenteral Lipid Emulsion, Containing Soybean Oil, Fish Oil, and Medium Chain Triglycerides, Compared With Soybean Oil in Parenteral Nutrition-Fed Neonatal Piglets.

    PubMed

    Turner, Justine M; Josephson, Jessica; Field, Catherine J; Wizzard, Pamela R; Ball, Ronald O; Pencharz, Paul B; Wales, Paul W

    2016-09-01

    The optimal parenteral lipid emulsion for neonates should reduce the risk of intestinal failure-associated liver disease and inflammation, while supporting growth and development. This could be best achieved by balanced content of ω-6 and ω-3 polyunsaturated fatty acids (PUFAs). Using a neonatal piglet model of parenteral nutrition (PN), we compared a 100% soy oil-based emulsion (ω-6:ω-3 PUFA: 7:1) with a mixed lipid emulsion comprising 30% soy oil, 30% medium-chain triglycerides, 25% olive oil, and 15% fish oil (ω-6:ω-3 PUFA: approximately 2.5:1) with regard to liver disease, inflammation, and fatty acid content in plasma and brain. Neonatal piglets, 3-6 days old, underwent jugular catheter insertion for isonitrogenous, isocaloric PN delivery over 14 days. The IL group (n = 8) was treated with Intralipid; the ML group (n = 10) was treated with the mixed lipid (SMOFlipid). Bile flow, liver chemistry, C-reactive protein (CRP), and PUFA content in plasma phospholipids and brain were compared. Compared with the IL group, ML-treated piglets had increased bile flow (P = .008) and lower total bilirubin (P = .001) and CRP (P = .023) concentrations. The ω-6 long-chain PUFA content was lower in plasma and brain for the ML group. The key ω-3 long-chain PUFA for neonatal development, docosahexaenoic acid (DHA), was not different between groups. The mixed lipid, having less ω-6 PUFA and more ω-3 PUFA, was able to prevent liver disease and reduce systemic inflammation in PN-fed neonatal piglets. However, this lipid did not increase plasma or brain DHA status, which would be desirable for neonatal developmental outcomes. © 2015 American Society for Parenteral and Enteral Nutrition.

  11. Early cannabinoid exposure influences neuroendocrine and reproductive functions in male mice: I. Prenatal exposure.

    PubMed

    Dalterio, S; Steger, R; Mayfield, D; Bartke, A

    1984-01-01

    Maternal exposure to delta 9-tetrahydrocannabinol (THC), the major psychoactive constituent in marihuana, or to the non-psychoactive cannabinol (CBN) or cannabidiol (CBD) alters endocrine functions and concentrations of brain biogenic amines in their male offspring. Prenatal CBN exposure on day 18 of gestation resulted in decreased plasma FSH levels, testicular testosterone (T) concentrations, and seminal vesicles weights, but increased plasma levels of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) post-castration in adulthood. Prenatal exposure to THC significantly enhanced the responsiveness of the testes to intratesticular LH injection in vivo and tended to increase human chorionic gonadotropin (hCG)-stimulated T production by decapsulated testes in vitro. In the CBN-exposed mice, hCG-stimulated T production was enhanced, while CBD exposure had no effect. Prenatal THC exposure altered the negative feedback effects of exogenous gonadal steroids in castrated adults, with lower plasma T and FSH levels after 20 micrograms T than in castrated controls. In contrast, CBD-exposed mice had higher levels of LH in plasma post-castration. In CBN-exposed adults, two weeks post-castration the concentration of norepinephrine (NE) and dopamine (DA) in hypothalamus and remaining brain were reduced, while levels of serotonin (5-HT) and its metabolite, 5-HIAA, were elevated compared to that in castrated OIL-controls. Prenatal CBD-exposure also reduced NE and elevated 5-HT and 5-HIAA, but did not affect DA levels post-castration. Concentrations of brain biogenic amines were not influenced by prenatal THC exposure in the present study. A single prenatal exposure to psychoactive or non-psychoactive components of marihuana results in long term alterations in the function of the hypothalamo-pituitary-gonadal axis. Changes in the concentrations of brain biogenic amines may be related to these effects of prenatal cannabinoids on endocrine function in adult male mice.

  12. Disposition of the herbicide 2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine (Atrazine) and its major metabolites in mice: a liquid chromatography/mass spectrometry analysis of urine, plasma, and tissue levels.

    PubMed

    Ross, Matthew K; Jones, Toni L; Filipov, Nikolay M

    2009-04-01

    2-Chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine (atrazine, ATR) is a toxicologically important and widely used herbicide. Recent studies have shown that it can elicit neurological, immunological, developmental, and biochemical alterations in several model organisms, including in mice. Because disposition data in mice are lacking, we evaluated ATR's metabolism and tissue dosimetry after single oral exposures (5-250 mg/kg) in C57BL/6 mice using liquid chromatography/mass spectrometry (Ross and Filipov, 2006). ATR was metabolized and cleared rapidly; didealkyl ATR (DACT) was the major metabolite detected in urine, plasma, and tissues. Plasma ATR peaked at 1 h postdosing and rapidly declined, whereas DACT peaked at 2 h and slowly declined. Most ATR and metabolite residues were excreted within the first 24 h. However, substantial amounts of DACT were still present in 25- to 48-h and 49- to 72-h urine. ATR reached maximal brain levels (0.06-1.5 microM) at 4 h (5-125 mg/kg) and 1 h (250 mg/kg) after dosing, but levels quickly declined to <0.1 microM by 12 h in all the groups. In contrast, strikingly high concentrations of DACT (1.5-50 microM), which are comparable with liver DACT levels, were detectable in brain at 2 h. Brain DACT levels slowly declined, paralleling the kinetics of plasma DACT. Our findings suggest that in mice ATR is widely distributed and extensively metabolized and that DACT is a major metabolite detected in the brain at high levels and is ultimately excreted in urine. Our study provides a starting point for the establishment of models that link target tissue dose to biological effects caused by ATR and its in vivo metabolites.

  13. Encephalopathy in acute liver failure resulting from acetaminophen intoxication: new observations with potential therapy.

    PubMed

    Brusilow, Saul W; Cooper, Arthur J L

    2011-11-01

    Hyperammonemia is a major contributing factor to the encephalopathy associated with liver disease. It is now generally accepted that hyperammonemia leads to toxic levels of glutamine in astrocytes. However, the mechanism by which excessive glutamine is toxic to astrocytes is controversial. Nevertheless, there is strong evidence that glutamine-induced osmotic swelling, especially in acute liver failure, is a contributing factor: the osmotic gliopathy theory. The object of the current communication is to present evidence for the osmotic gliopathy theory in a hyperammonemic patient who overdosed on acetaminophen. Case report. Johns Hopkins Hospital. A 22-yr-old woman who, 36 hrs before admission, ingested 15 g acetaminophen was admitted to the Johns Hopkins Hospital. She was treated with N-acetylcysteine. Physical examination was unremarkable; her mental status was within normal limits and remained so until approximately 72 hrs after ingestion when she became confused, irritable, and agitated. She was intubated, ventilated, and placed on lactulose. Shortly thereafter, she was noncommunicative, unresponsive to painful stimuli, and exhibited decerebrate posturing. A clinical diagnosis of cerebral edema and increased intracranial pressure was made. She improved very slowly until 180 hrs after ingestion when she moved all extremities. She woke up shortly thereafter. Despite the fact that hyperammonemia is a major contributing factor to the encephalopathy observed in acute liver failure, the patient's plasma ammonia peaked when she exhibited no obvious neurologic deficit. Thereafter, her plasma ammonia decreased precipitously in parallel with a worsening neurologic status. She was deeply encephalopathic during a period when her liver function and plasma ammonia had normalized. Plasma glutamine levels in this patient were high but began to normalize several hours after plasma ammonia had returned to normal. The patient only started to recover as her plasma glutamine began to return to normal. We suggest that the biochemical data are consistent with the osmotic gliopathy theory--high plasma ammonia leads to high plasma glutamine--an indicator of excess glutamine in astrocytes (the site of brain glutamine synthesis). This excess glutamine leads to osmotic stress in these cells. The lag in recovery of brain function presumably reflects time taken for the astrocyte glutamine concentration to return to normal. We hypothesize that an inhibitor of brain glutamine synthesis may be an effective treatment modality for acute liver failure.

  14. Encephalopathy in acute liver failure resulting from acetaminophen intoxication: New observations with potential therapy

    PubMed Central

    Brusilow, Saul W; Cooper, Arthur J.L.

    2011-01-01

    Objective Hyperammonemia is a major contributing factor to the encephalopathy associated with liver disease. It is now generally accepted that hyperammonemia leads to toxic levels of glutamine in astrocytes. However, the mechanism by which excessive glutamine is toxic to astrocytes is controversial. Nevertheless, there is strong evidence that glutamine-induced osmotic swelling, especially in acute liver failure (ALF), is a contributing factor – the osmotic gliopathy theory. The object of the current communication is to present evidence for the osmotic gliopathy theory in a hyperammonemic patient who overdosed on acetaminophen. Design Case report. Setting Johns Hopkins Hospital. Patient A 22-year old white female who, 36 hours prior to admission, ingested 15 grams of acetaminophen was admitted to the Johns Hopkins Hospital. Physical examination was unremarkable; her mental status was within normal limits and remained so until approximately 72 hours after ingestion when she became confused, irritable and agitated. Interventions She was intubated, ventilated and placed on lactulose. Shortly thereafter she was non-communicative, unresponsive to painful stimuli and exhibited decerebrate posturing. A clinical diagnosis of cerebral edema and increased intracranial pressure (ICP) was made. She improved very slowly until 180 hours after ingestion when she moved all extremities. She woke up shortly thereafter. Measurements and main results Despite the fact that hyperammonemia is a major contributing factor to the encephalopathy observed in ALF the patient’s plasma ammonia peaked when she exhibited no obvious neurological deficit. Thereafter, her plasma ammonia decreased precipitously in parallel with a worsening neurological status. She was deeply encephalopathic during a period when her liver function and plasma ammonia had normalized. Plasma glutamine levels in this patient were high, but began to normalize several hours after plasma ammonia had returned to normal. The patient only commenced to recover as her plasma glutamine began to return to normal. Conclusions We suggest that the biochemical data are consistent with the osmotic gliopathy theory – high plasma ammonia leads to high plasma glutamine – an indicator of excess glutamine in astrocytes (the site of brain glutamine synthesis). This excess glutamine leads to osmotic stress in these cells. The lag in recovery of brain function presumably reflects time taken for the astrocyte glutamine concentration to return to normal. We hypothesize that an inhibitor of brain glutamine synthesis may be an effective treatment modality for ALF. PMID:21705899

  15. Posiphen as a candidate drug to lower CSF amyloid precursor protein, amyloid-β peptide and τ levels: target engagement, tolerability and pharmacokinetics in humans

    PubMed Central

    Maccecchini, Maria L; Chang, Mee Young; Pan, Catherine; John, Varghese; Zetterberg, Henrik

    2012-01-01

    Aim A first in human study to evaluate tolerability and pharmacokinetics followed by an early proof of mechanism (POM) study to determine whether the small orally, available molecule, Posiphen tartrate (Posiphen), lowers secreted (s) amyloid-β precursor protein (APP) α and -β, amyloid-β peptide (Aβ), tau (τ) and inflammatory markers in CSF of patients with mild cognitive impairment (MCI). Study design Posiphen single and multiple ascending dose phase 1 randomised, double blind, placebo-controlled safety, tolerance, pharmacokinetic studies were undertaken in a total of 120 healthy volunteers to define a dose that was then used in a small non-randomised study of five MCI subjects, used as their own controls, to define target engagement. Main outcome measures Pharmacodynamic: sAPPα, sAPPβ, Aβ42, τ (total (t) and phosphorylated (p)) and inflammatory marker levels were time-dependently measured over 12 h and compared prior to and following 10 days of oral Posiphen treatment in four MCI subjects who completed the study. Pharmacokinetic: plasma and CSF drug and primary metabolite concentrations with estimated brain levels extrapolated from steady-state drug administration in rats. Results Posiphen proved well tolerated and significantly lowered CSF levels of sAPPα, sAPPβ, t-τ, p-τ and specific inflammatory markers, and demonstrated a trend to lower CSF Aβ42. Conclusions These results confirm preclinical POM studies, demonstrate that pharmacologically relevant drug/metabolite levels reach brain and support the continued clinical optimisation and evaluation of Posiphen for MCI and Alzheimer's disease. PMID:22791904

  16. Leptin Regulates Amyloid β Production Via the γ-Secretase Complex

    PubMed Central

    Niedowicz, Dana M.; Studzinski, Christa M.; Weidner, Adam M.; Platt, Thomas L.; Kingry, Kristen N.; Beckett, Tina L.; Bruce-Keller, Annadora J.; Keller, Jeffrey N.; Murphy, M. Paul

    2013-01-01

    Alzheimer’s Disease (AD) is the most common age-related neurodegenerative disease, affecting an estimated 5.3 million people in the United States. While many factors likely contribute to AD progression, it is widely accepted that AD is driven by the accumulation of β-amyloid (Aβ), a small, fibrillogenic peptide generated by the sequential proteolysis of the amyloid precursor protein by the β- and γ-secretases. Though the underlying causes of Aβ accumulation in sporadic AD are myriad, it is clear that lifestyle and overall health play a significant role. The adipocyte-derived hormone leptin has varied systemic affects, including neuropeptide release and neuroprotection. A recent study by Lieb et al (2009) showed that individuals with low plasma leptin levels are at greater risk of developing AD, through unknown mechanisms. In this report, we show that plasma leptin is a strong negative predictor of Aβ levels in the mouse brain, supporting a protective role for the hormone in AD onset. We also show that the inhibition of Aβ accumulation is due to the downregulation of transcription of the γ-secretase components. On the other hand, β-secretase expression is either unchanged (BACE1) or increased (BACE2). Finally, we show that only presenilin 1 (PS1) is negatively correlated with plasma leptin at the protein level (p<0.0001). These data are intriguing and may highlight a role for leptin in regulating the onset of amyloid pathology and AD. PMID:23274884

  17. Leptin regulates amyloid β production via the γ-secretase complex.

    PubMed

    Niedowicz, Dana M; Studzinski, Christa M; Weidner, Adam M; Platt, Thomas L; Kingry, Kristen N; Beckett, Tina L; Bruce-Keller, Annadora J; Keller, Jeffrey N; Murphy, M Paul

    2013-03-01

    Alzheimer's disease (AD) is the most common age-related neurodegenerative disease, affecting an estimated 5.3million people in the United States. While many factors likely contribute to AD progression, it is widely accepted that AD is driven by the accumulation of β-amyloid (Aβ), a small, fibrillogenic peptide generated by the sequential proteolysis of the amyloid precursor protein by the β- and γ-secretases. Though the underlying causes of Aβ accumulation in sporadic AD are myriad, it is clear that lifestyle and overall health play a significant role. The adipocyte-derived hormone leptin has varied systemic affects, including neuropeptide release and neuroprotection. A recent study by Lieb et al. (2009) showed that individuals with low plasma leptin levels are at greater risk of developing AD, through unknown mechanisms. In this report, we show that plasma leptin is a strong negative predictor of Aβ levels in the mouse brain, supporting a protective role for the hormone in AD onset. We also show that the inhibition of Aβ accumulation is due to the downregulation of transcription of the γ-secretase components. On the other hand, β-secretase expression is either unchanged (BACE1) or increased (BACE2). Finally, we show that only presenilin 1 (PS1) is negatively correlated with plasma leptin at the protein level (p<0.0001). These data are intriguing and may highlight a role for leptin in regulating the onset of amyloid pathology and AD. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Neuronal pentraxin 1: A synaptic-derived plasma biomarker in Alzheimer's disease.

    PubMed

    Ma, Qiu-Lan; Teng, Edmond; Zuo, Xiaohong; Jones, Mychica; Teter, Bruce; Zhao, Evan Y; Zhu, Cansheng; Bilousova, Tina; Gylys, Karen H; Apostolova, Liana G; LaDu, Mary Jo; Hossain, Mir Ahamed; Frautschy, Sally A; Cole, Gregory M

    2018-06-01

    Synaptic neurodegeneration is thought to be an early event initiated by soluble β-amyloid (Aβ) aggregates that closely correlates with cognitive decline in Alzheimer disease (AD). Apolipoprotein ε4 (APOE4) is the most common genetic risk factor for both familial AD (FAD) and sporadic AD; it accelerates Aβ aggregation and selectively impairs glutamate receptor function and synaptic plasticity. However, its molecular mechanisms remain elusive and these synaptic deficits are difficult to monitor. AD- and APOE4-dependent plasma biomarkers have been proposed, but synapse-related plasma biomarkers are lacking. We evaluated neuronal pentraxin 1 (NP1), a potential CNS-derived plasma biomarker of excitatory synaptic pathology. NP1 is preferentially expressed in brain and involved in glutamate receptor internalization. NP1 is secreted presynaptically induced by Aβ oligomers, and implicated in excitatory synaptic and mitochondrial deficits. Levels of NP1 and its fragments were increased in a correlated fashion in both brain and plasma of 7-8 month-old E4FAD mice relative to E3FAD mice. NP1 was also found in exosome preparations and reduced by dietary DHA supplementation. Plasma NP1 was higher in E4FAD+ (APOE4 +/+ /FAD +/- ) relative to E4FAD- (non-carrier; APOE4 +/+ /FAD -/- ) mice, suggesting NP1 is modulated by Aβ expression. Finally, relative to normal elderly, plasma NP1 was also elevated in patients with mild cognitive impairment (MCI) and elevated further in the subset who progressed to early-stage AD. In those patients, there was a trend towards increased NP1 levels in APOE4 carriers relative to non-carriers. These findings indicate that NP1 may represent a potential synapse-derived plasma biomarker relevant to early alterations in excitatory synapses in MCI and early-stage AD. Copyright © 2018. Published by Elsevier Inc.

  19. Brain Imaging and Blood Biomarker Abnormalities in Children With Autosomal Dominant Alzheimer Disease: A Cross-Sectional Study.

    PubMed

    Quiroz, Yakeel T; Schultz, Aaron P; Chen, Kewei; Protas, Hillary D; Brickhouse, Michael; Fleisher, Adam S; Langbaum, Jessica B; Thiyyagura, Pradeep; Fagan, Anne M; Shah, Aarti R; Muniz, Martha; Arboleda-Velasquez, Joseph F; Munoz, Claudia; Garcia, Gloria; Acosta-Baena, Natalia; Giraldo, Margarita; Tirado, Victoria; Ramírez, Dora L; Tariot, Pierre N; Dickerson, Bradford C; Sperling, Reisa A; Lopera, Francisco; Reiman, Eric M

    2015-08-01

    Brain imaging and fluid biomarkers are characterized in children at risk for autosomal dominant Alzheimer disease (ADAD). To characterize and compare structural magnetic resonance imaging (MRI), resting-state and task-dependent functional MRI, and plasma amyloid-β (Aβ) measurements in presenilin 1 (PSEN1) E280A mutation-carrying and noncarrying children with ADAD. Cross-sectional measures of structural and functional MRI and plasma Aβ assays were assessed in 18 PSEN1 E280A carriers and 19 noncarriers aged 9 to 17 years from a Colombian kindred with ADAD. Recruitment and data collection for this study were conducted at the University of Antioquia and the Hospital Pablo Tobon Uribe in Medellín, Colombia, between August 2011 and June 2012. All participants had blood sampling, structural MRI, and functional MRI during associative memory encoding and resting-state and cognitive assessments. Outcome measures included plasma Aβ1-42 concentrations and Aβ1-42:Aβ1-40 ratios, memory encoding-dependent activation changes, resting-state connectivity, and regional gray matter volumes. Structural and functional MRI data were compared using automated brain mapping algorithms and search regions related to AD. Similar to findings in adult mutation carriers, in the later preclinical and clinical stages of ADAD, mutation-carrying children were distinguished from control individuals by significantly higher plasma Aβ1-42 levels (mean [SD]: carriers, 18.8 [5.1] pg/mL and noncarriers, 13.1 [3.2] pg/mL; P < .001) and Aβ1-42:Aβ1-40 ratios (mean [SD]: carriers, 0.32 [0.06] and noncarriers, 0.21 [0.03]; P < .001), as well as less memory encoding task-related deactivation in parietal regions (eg, mean [SD] parameter estimates for the right precuneus were -0.590 [0.50] for noncarriers and -0.087 [0.38] for carriers; P < .005 uncorrected). Unlike carriers in the later stages, mutation-carrying children demonstrated increased functional connectivity of the posterior cingulate cortex with medial temporal lobe regions (mean [SD] parameter estimates were 0.038 [0.070] for noncarriers and 0.190 [0.057] for carriers), as well as greater gray matter volumes in temporal regions (eg, left parahippocampus; P < . 049, corrected for multiple comparisons). Children at genetic risk for ADAD have functional and structural brain changes and abnormal levels of plasma Aβ1-42. The extent to which the underlying brain changes are either neurodegenerative or developmental remains to be determined. This study provides additional information about the earliest known biomarker changes associated with ADAD.

  20. Structural network alterations and neurological dysfunction in cerebral amyloid angiopathy

    PubMed Central

    Reijmer, Yael D.; Fotiadis, Panagiotis; Martinez-Ramirez, Sergi; Salat, David H.; Schultz, Aaron; Shoamanesh, Ashkan; Ayres, Alison M.; Vashkevich, Anastasia; Rosas, Diana; Schwab, Kristin; Leemans, Alexander; Biessels, Geert-Jan; Rosand, Jonathan; Johnson, Keith A.; Viswanathan, Anand; Gurol, M. Edip

    2015-01-01

    Cerebral amyloid angiopathy is a common form of small-vessel disease and an important risk factor for cognitive impairment. The mechanisms linking small-vessel disease to cognitive impairment are not well understood. We hypothesized that in patients with cerebral amyloid angiopathy, multiple small spatially distributed lesions affect cognition through disruption of brain connectivity. We therefore compared the structural brain network in patients with cerebral amyloid angiopathy to healthy control subjects and examined the relationship between markers of cerebral amyloid angiopathy-related brain injury, network efficiency, and potential clinical consequences. Structural brain networks were reconstructed from diffusion-weighted magnetic resonance imaging in 38 non-demented patients with probable cerebral amyloid angiopathy (69 ± 10 years) and 29 similar aged control participants. The efficiency of the brain network was characterized using graph theory and brain amyloid deposition was quantified by Pittsburgh compound B retention on positron emission tomography imaging. Global efficiency of the brain network was reduced in patients compared to controls (0.187 ± 0.018 and 0.201 ± 0.015, respectively, P < 0.001). Network disturbances were most pronounced in the occipital, parietal, and posterior temporal lobes. Among patients, lower global network efficiency was related to higher cortical amyloid load (r = −0.52; P = 0.004), and to magnetic resonance imaging markers of small-vessel disease including increased white matter hyperintensity volume (P < 0.001), lower total brain volume (P = 0.02), and number of microbleeds (trend P = 0.06). Lower global network efficiency was also related to worse performance on tests of processing speed (r = 0.58, P < 0.001), executive functioning (r = 0.54, P = 0.001), gait velocity (r = 0.41, P = 0.02), but not memory. Correlations with cognition were independent of age, sex, education level, and other magnetic resonance imaging markers of small-vessel disease. These findings suggest that reduced structural brain network efficiency might mediate the relationship between advanced cerebral amyloid angiopathy and neurologic dysfunction and that such large-scale brain network measures may represent useful outcome markers for tracking disease progression. PMID:25367025

  1. Quantification and Assessment of the Chemical Form of Residual Gadolinium in the Brain After Repeated Administration of Gadolinium-Based Contrast Agents: Comparative Study in Rats.

    PubMed

    Frenzel, Thomas; Apte, Chirag; Jost, Gregor; Schöckel, Laura; Lohrke, Jessica; Pietsch, Hubertus

    2017-07-01

    Multiple clinical and preclinical studies have reported a signal intensity increase and the presence of gadolinium (Gd) in the brain after repeated administration of Gd-based contrast agents (GBCAs). This bioanalytical study in rat brain tissue was initiated to investigate whether the residual Gd is present as intact GBCA or in other chemical forms by using tissue fractionation and chromatography. Rats were divided randomly in 6 groups of 10 animals each. They received 10 daily injections of 2.5 mmol/kg bodyweight of 1 of 5 different GBCAs: linear GBCAs such as gadodiamide (Omniscan; GE Healthcare), gadopentetate dimeglumine (Gd-DTPA, Magnevist; Bayer), or gadobenate dimeglumine (Multihance; Bracco) and macrocyclic GBCAs such as gadobutrol (Gadovist; Bayer) and gadoterate meglumine (Gd-DOTA, Dotarem; Guerbet) or saline. On days 3 and 24 after the last injection (p.i.), 5 randomly chosen animals of each group were killed by exsanguination, and their brains were excised and divided into cerebrum, pons, and cerebellum. The brain sections were homogenized by sonication in ice-cold buffer at pH 7.4. Soluble and insoluble fractions were separated by centrifugation, and the soluble fractions were further separated by gel permeation chromatography (GPC). The Gd concentration in all tissue fractions and in the GPC eluate was measured by inductively coupled plasma-mass spectrometry. In a recovery control experiment, all GBCAs were spiked to blank brain tissue and more than 94% recovery of Gd in the tissue fractions was demonstrated. Only traces of the administered Gd were found in the rat brain tissue on day 3 and day 24 p.i. In the animals treated with macrocyclic GBCAs, Gd was found only in the soluble brain fraction and was present solely as low molecular weight molecules, most likely the intact GBCA. In the animals treated with linear GBCAs Gd was found to a large extent in the insoluble tissue fraction. The Gd concentration in the soluble fraction was comparable to the macrocyclic agents. According to GPC, a smaller portion of the Gd in the soluble fraction of the linear GBCAs groups was bound to macromolecules larger than 250 to 300 kDa. The nature of the Gd-containing macromolecules and the insoluble species were not determined, but they appeared to be saturable with Gd. The excretion of the soluble Gd species in the linear and macrocyclic GBCA groups was still ongoing between days 3 and 24 p.i. This was also observed for the macromolecular Gd species in the linear GBCA groups, but at a slower rate. The residual Gd found in the rat brain after repeated administration of all 3 linear GBCAs was present in at least 3 distinctive forms-soluble small molecules, including the intact GBCA, soluble macromolecules, and to a large extent in insoluble form. The latter 2 are most likely responsible for the prolonged signal intensity enhancement in brain structures observed in magnetic resonance imaging. No relevant differences between the 3 linear GBCAs were observed. The Gd concentrations in the brain after administration of macrocyclic GBCAs are lower, and the Gd is only present in soluble small molecules, which were slowly excreted. This underlines the crucial importance of the kinetic inertness of macrocyclic agents in the prevention of potential retention of Gd in the brain compared with the 3 linear, kinetically less restricted GBCAs.

  2. Possibility of Predicting Serotonin Transporter Occupancy From the In Vitro Inhibition Constant for Serotonin Transporter, the Clinically Relevant Plasma Concentration of Unbound Drugs, and Their Profiles for Substrates of Transporters.

    PubMed

    Yahata, Masahiro; Chiba, Koji; Watanabe, Takao; Sugiyama, Yuichi

    2017-09-01

    Accurate prediction of target occupancy facilitates central nervous system drug development. In this review, we discuss the predictability of serotonin transporter (SERT) occupancy in human brain estimated from in vitro K i values for human SERT and plasma concentrations of unbound drug (C u,plasma ), as well as the impact of drug transporters in the blood-brain barrier. First, the geometric means of in vitro K i values were compared with the means of in vivo K i values (K i,u,plasma ) which were calculated as C u,plasma values at 50% occupancy of SERT obtained from previous clinical positron emission tomography/single photon emission computed tomography imaging studies for 6 selective serotonin transporter reuptake inhibitors and 3 serotonin norepinephrine reuptake inhibitors. The in vitro K i values for 7 drugs were comparable to their in vivo K i,u,plasma values within 3-fold difference. SERT occupancy was overestimated for 5 drugs (P-glycoprotein substrates) and underestimated for 2 drugs (presumably uptake transporter substrates, although no evidence exists as yet). In conclusion, prediction of human SERT occupancy from in vitro K i values and C u,plasma was successful for drugs that are not transporter substrates and will become possible in future even for transporter substrates, once the transporter activities will be accurately estimated from in vitro experiments. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  3. Effects of global warming on fish reproductive endocrine axis, with special emphasis in pejerrey Odontesthes bonariensis.

    PubMed

    Miranda, Leandro Andrés; Chalde, Tomás; Elisio, Mariano; Strüssmann, Carlos Augusto

    2013-10-01

    The ongoing of global warming trend has led to an increase in temperature of several water bodies. Reproduction in fish, compared with other physiological processes, only occurs in a bounded temperature range; therefore, small changes in water temperature could significantly affect this process. This review provides evidence that fish reproduction may be directly affected by further global warming and that abnormal high water temperature impairs the expression of important genes throughout the brain-pituitary-gonad axis. In all fishes studied, gonads seem to be the organ more readily damaged by heat treatments through the inhibition of the gene expression and subsequent synthesis of different gonadal steroidogenic enzymes. In view of the feedback role of sex steroids upon the synthesis and release of GnRH and GtHs in fish, it is possible that the inhibition observed at brain and pituitary levels in treated fish is consequence of the sharp decrease in plasma steroids levels. Results of in vitro studies on the inhibition of pejerrey gonad aromatase expression by high temperature corroborate that ovary functions are directly disrupted by high temperature independently of the brain-pituitary axis. For the reproductive responses obtained in laboratory fish studies, it is plausible to predict changes in the timing and magnitude of reproductive activity or even the total failure of spawning season may occur in warm years, reducing annual reproductive output and affecting future populations. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Cannabidiol improves brain and liver function in a fulminant hepatic failure-induced model of hepatic encephalopathy in mice

    PubMed Central

    Avraham, Y; Grigoriadis, NC; Poutahidis, T; Vorobiev, L; Magen, I; Ilan, Y; Mechoulam, R; Berry, EM

    2011-01-01

    BACKGROUND AND PURPOSE Hepatic encephalopathy is a neuropsychiatric disorder of complex pathogenesis caused by acute or chronic liver failure. We investigated the effects of cannabidiol, a non-psychoactive constituent of Cannabis sativa with anti-inflammatory properties that activates the 5-hydroxytryptamine receptor 5-HT1A, on brain and liver functions in a model of hepatic encephalopathy associated with fulminant hepatic failure induced in mice by thioacetamide. EXPERIMENTAL APPROACH Female Sabra mice were injected with either saline or thioacetamide and were treated with either vehicle or cannabidiol. Neurological and motor functions were evaluated 2 and 3 days, respectively, after induction of hepatic failure, after which brains and livers were removed for histopathological analysis and blood was drawn for analysis of plasma liver enzymes. In a separate group of animals, cognitive function was tested after 8 days and brain 5-HT levels were measured 12 days after induction of hepatic failure. KEY RESULTS Neurological and cognitive functions were severely impaired in thioacetamide-treated mice and were restored by cannabidiol. Similarly, decreased motor activity in thioacetamide-treated mice was partially restored by cannabidiol. Increased plasma levels of ammonia, bilirubin and liver enzymes, as well as enhanced 5-HT levels in thioacetamide-treated mice were normalized following cannabidiol administration. Likewise, astrogliosis in the brains of thioacetamide-treated mice was moderated after cannabidiol treatment. CONCLUSIONS AND IMPLICATIONS Cannabidiol restores liver function, normalizes 5-HT levels and improves brain pathology in accordance with normalization of brain function. Therefore, the effects of cannabidiol may result from a combination of its actions in the liver and brain. PMID:21182490

  5. Cannabidiol improves brain and liver function in a fulminant hepatic failure-induced model of hepatic encephalopathy in mice.

    PubMed

    Avraham, Y; Grigoriadis, Nc; Poutahidis, T; Vorobiev, L; Magen, I; Ilan, Y; Mechoulam, R; Berry, Em

    2011-04-01

    Hepatic encephalopathy is a neuropsychiatric disorder of complex pathogenesis caused by acute or chronic liver failure. We investigated the effects of cannabidiol, a non-psychoactive constituent of Cannabis sativa with anti-inflammatory properties that activates the 5-hydroxytryptamine receptor 5-HT(1A) , on brain and liver functions in a model of hepatic encephalopathy associated with fulminant hepatic failure induced in mice by thioacetamide. Female Sabra mice were injected with either saline or thioacetamide and were treated with either vehicle or cannabidiol. Neurological and motor functions were evaluated 2 and 3 days, respectively, after induction of hepatic failure, after which brains and livers were removed for histopathological analysis and blood was drawn for analysis of plasma liver enzymes. In a separate group of animals, cognitive function was tested after 8 days and brain 5-HT levels were measured 12 days after induction of hepatic failure. Neurological and cognitive functions were severely impaired in thioacetamide-treated mice and were restored by cannabidiol. Similarly, decreased motor activity in thioacetamide-treated mice was partially restored by cannabidiol. Increased plasma levels of ammonia, bilirubin and liver enzymes, as well as enhanced 5-HT levels in thioacetamide-treated mice were normalized following cannabidiol administration. Likewise, astrogliosis in the brains of thioacetamide-treated mice was moderated after cannabidiol treatment. Cannabidiol restores liver function, normalizes 5-HT levels and improves brain pathology in accordance with normalization of brain function. Therefore, the effects of cannabidiol may result from a combination of its actions in the liver and brain. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  6. Perinatal ω-3 polyunsaturated fatty acid supply modifies brain zinc homeostasis during adulthood

    PubMed Central

    Jayasooriya, Anura P.; Ackland, M. Leigh; Mathai, Michael L.; Sinclair, Andrew J.; Weisinger, Harrison S.; Weisinger, Richard S.; Halver, John E.; Kitajka, Klára; Puskás, László G.

    2005-01-01

    Dietary ω-3 polyunsaturated fatty acid (PUFA) influences the expression of a number of genes in the brain. Zinc transporter (ZnT) 3 has been identified as a putative transporter of zinc into synaptic vesicles of neurons and is found in brain areas such as hippocampus and cortex. Neuronal zinc is involved in the formation of amyloid plaques, a major characteristic of Alzheimer's disease. The present study evaluated the influence of dietary ω-3 PUFA on the expression of the ZnT3 gene in the brains of adult male Sprague-Dawley rats. The rats were raised and/or maintained on a control (CON) diet that contained ω-3 PUFA or a diet deficient (DEF) in ω-3 PUFA. ZnT3 gene expression was analyzed by using real-time PCR, free zinc in brain tissue was determined by zinquin staining, and total zinc concentrations in plasma and cerebrospinal fluid were determined by atomic absorption spectrophotometry. Compared with CON-raised animals, DEF-raised animals had increased expression of ZnT3 in the brain that was associated with an increased level of free zinc in the hippocampus. In addition, compared with CON-raised animals, DEF-raised animals had decreased plasma zinc level. No difference in cerebrospinal fluid zinc level was observed. The results suggest that overexpression of ZnT3 due to a perinatal ω-3 PUFA deficiency caused abnormal zinc metabolism in the brain. Conceivably, the influence of dietary ω-3 PUFA on brain zinc metabolism could explain the observation made in population studies that the consumption of fish is associated with a reduced risk of dementia and Alzheimer's disease. PMID:15883362

  7. Perinatal omega-3 polyunsaturated fatty acid supply modifies brain zinc homeostasis during adulthood.

    PubMed

    Jayasooriya, Anura P; Ackland, M Leigh; Mathai, Michael L; Sinclair, Andrew J; Weisinger, Harrison S; Weisinger, Richard S; Halver, John E; Kitajka, Klára; Puskás, László G

    2005-05-17

    Dietary omega-3 polyunsaturated fatty acid (PUFA) influences the expression of a number of genes in the brain. Zinc transporter (ZnT) 3 has been identified as a putative transporter of zinc into synaptic vesicles of neurons and is found in brain areas such as hippocampus and cortex. Neuronal zinc is involved in the formation of amyloid plaques, a major characteristic of Alzheimer's disease. The present study evaluated the influence of dietary omega-3 PUFA on the expression of the ZnT3 gene in the brains of adult male Sprague-Dawley rats. The rats were raised and/or maintained on a control (CON) diet that contained omega-3 PUFA or a diet deficient (DEF) in omega-3 PUFA. ZnT3 gene expression was analyzed by using real-time PCR, free zinc in brain tissue was determined by zinquin staining, and total zinc concentrations in plasma and cerebrospinal fluid were determined by atomic absorption spectrophotometry. Compared with CON-raised animals, DEF-raised animals had increased expression of ZnT3 in the brain that was associated with an increased level of free zinc in the hippocampus. In addition, compared with CON-raised animals, DEF-raised animals had decreased plasma zinc level. No difference in cerebrospinal fluid zinc level was observed. The results suggest that overexpression of ZnT3 due to a perinatal omega-3 PUFA deficiency caused abnormal zinc metabolism in the brain. Conceivably, the influence of dietary omega-3 PUFA on brain zinc metabolism could explain the observation made in population studies that the consumption of fish is associated with a reduced risk of dementia and Alzheimer's disease.

  8. Spherical torus fusion reactor

    DOEpatents

    Peng, Yueng-Kay M.

    1989-04-04

    A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.

  9. Spherical torus fusion reactor

    DOEpatents

    Peng, Yueng-Kay M.

    1989-01-01

    A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.

  10. The composition and metabolism of large and small LDL

    USDA-ARS?s Scientific Manuscript database

    Decreased size and increased density of LDL have been associated with increased coronary heart disease (CHD) risk. Elevated plasma concentrations of small dense LDL (sdLDL) correlate with high plasma triglycerides and low HDL cholesterol levels. This review highlights recent findings about the met...

  11. Investigation of Cu-, Zn- and Fe-containing human brain proteins using isotopic-enriched tracers by LA-ICP-MS and MALDI-FT-ICR-MS

    NASA Astrophysics Data System (ADS)

    Becker, J. Susanne; Zoriy, Miroslav; Pickhardt, Carola; Przybylski, Michael; Becker, J. Sabine

    2005-04-01

    Identification of metal-containing proteins and determination of Cu, Fe, Zn concentration in very small protein volumes is of increasing importance in protein research. Proteins containing metal ions were analyzed directly and simultaneously in separated protein spots in two-dimensional gels (2D gels) by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) as an element mass spectrometric technique. In order to study the formation of proteins containing Cu, Zn and Fe in a human brain sample, isotopic-enriched tracers (54Fe, 65Cu and 67Zn) were doped to two-dimensional gels of separated Alzheimer-diseased brain proteins after two-dimensional (2D) gel electrophoresis. The protein spots were screened systematically by LA-ICP-MS with respect to these metal ion intensities. 54Fe/56Fe, 65Cu/63Cu and 67Zn/64Zn isotope ratios in metal-containing proteins were measured directly by LA-ICP-MS. The isotope ratio measurements obtained by LA-ICP-MS indicate certain protein spots with a natural isotope composition of Cu, Zn and/or Fe. These proteins already contained the metal investigated in the original proteins and are stable enough to survive the reducing conditions during gel electrophoresis. On the other hand, proteins with a changed isotope ratio of metals in comparison to the isotope ratio in nature demonstrate the accumulation of tracers within the protein complexes during the tracer experiments in 2D gels. The identification of singular protein spots from Alzheimer-diseased brain separated by 2D gel electrophoresis was attempted by biopolymer mass spectrometry using MALDI-FTICR-MS after excision from the 2D gel and tryptic digestion.

  12. Influence of heat and particle fluxes nonlocality on spatial distribution of plasma density in two-chamber inductively coupled plasma sources

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, A. A.; Serditov, K. Yu.

    2012-07-01

    This study presents 2D simulations of the two-chamber inductively coupled plasma source where power is supplied in the small discharge chamber and extends by electron thermal conductivity mechanism to the big diffusion chamber. Depending on pressure, two main scenarios of plasma density and its spatial distribution behavior were identified. One case is characterized by the localization of plasma in the small driver chamber where power is deposed. Another case describes when the diffusion chamber becomes the main source of plasma with maximum of the electron density. The differences in spatial distribution are caused by local or non-local behavior of electron energy transport in the discharge volume due to different characteristic scale of heat transfer with electronic conductivity.

  13. Delivery of nicotine aerosol to mice via a modified electronic cigarette device

    PubMed Central

    Lefever, Timothy W.; Lee, Youn O.K.; Kovach, Alexander L.; Silinski, Melanie A.R.; Marusich, Julie A.; Thomas, Brian F.; Wiley, Jenny L.

    2017-01-01

    Background Although both men and women use e-cigarettes, most preclinical nicotine research has focused on its effects in male rodents following injection. The goals of the present study were to develop an effective e-cigarette nicotine delivery system, to compare results to those obtained after subcutaneous (s.c.) injection, and to examine sex differences in the model. Methods Hypothermia and locomotor suppression were assessed following aerosol exposure or s.c. injection with nicotine in female and male mice. Subsequently, plasma and brain concentrations of nicotine and cotinine were measured. Results Passive exposure to nicotine aerosol produced concentration-dependent and mecamylamine reversible hypothermic and locomotor suppressant effects in female and male mice, as did s.c. nicotine injection. In plasma and brain, nicotine and cotinine concentrations showed dose/concentration-dependent increases in both sexes following each route of administration. Sex differences in nicotine-induced hypothermia were dependent upon route of administration, with females showing greater hypothermia following aerosol exposure and males showing greater hypothermia following injection. In contrast, when they occurred, sex differences in nicotine and cotinine levels in brain and plasma consistently showed greater concentrations in females than males, regardless of route of administration. Discussion In summary, the e-cigarette exposure device described herein was used successfully to deliver pharmacologically active doses of nicotine to female and male mice. Further, plasma nicotine concentrations following exposure were similar to those after s.c. injection with nicotine and within the range observed in human smokers. Future research on vaped products can be strengthened by inclusion of translationally relevant routes of administration. PMID:28157590

  14. Delivery of nicotine aerosol to mice via a modified electronic cigarette device.

    PubMed

    Lefever, Timothy W; Lee, Youn O K; Kovach, Alexander L; Silinski, Melanie A R; Marusich, Julie A; Thomas, Brian F; Wiley, Jenny L

    2017-03-01

    Although both men and women use e-cigarettes, most preclinical nicotine research has focused on its effects in male rodents following injection. The goals of the present study were to develop an effective e-cigarette nicotine delivery system, to compare results to those obtained after subcutaneous (s.c.) injection, and to examine sex differences in the model. Hypothermia and locomotor suppression were assessed following aerosol exposure or s.c. injection with nicotine in female and male mice. Subsequently, plasma and brain concentrations of nicotine and cotinine were measured. Passive exposure to nicotine aerosol produced concentration-dependent and mecamylamine reversible hypothermic and locomotor suppressant effects in female and male mice, as did s.c. nicotine injection. In plasma and brain, nicotine and cotinine concentrations showed dose/concentration-dependent increases in both sexes following each route of administration. Sex differences in nicotine-induced hypothermia were dependent upon route of administration, with females showing greater hypothermia following aerosol exposure and males showing greater hypothermia following injection. In contrast, when they occurred, sex differences in nicotine and cotinine levels in brain and plasma consistently showed greater concentrations in females than males, regardless of route of administration. In summary, the e-cigarette exposure device described herein was used successfully to deliver pharmacologically active doses of nicotine to female and male mice. Further, plasma nicotine concentrations following exposure were similar to those after s.c. injection with nicotine and within the range observed in human smokers. Future research on vaped products can be strengthened by inclusion of translationally relevant routes of administration. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Adaptive evolution of simian immunodeficiency viruses isolated from two conventional progressor macaques with neuroaids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foley, Brian T; Korber, Bette T

    2008-01-01

    Simian immunodeficiency virus infection of macaques may result in neuroAIDS, a feature more commonly observed in macaques with rapid progressive disease than in those with conventional disease. This is the first report of two conventional progressors (H631 and H636) with encephalitis in rhesus macaques inoculated with a derivative of SIVsmES43-3. Phylogenetic analyses of viruses isolated from the cerebral spinal fluid (CSF) and plasma from both animals demonstrated tissue compartmentalization. Additionally, virus from the central nervous system (CNS) was able to infect primary macaque monocyte-derived macrophages more efficiently than virus from plasma. Conversely, virus isolated from plasma was able to replicatemore » better in peripheral blood mononuclear cells than virus from CNS. We speculate that these viruses were under different selective pressures in their separate compartments. Furthermore, these viruses appear to have undergone adaptive evolution to preferentially replicate in their respective cell targets. Analysis of the number of potential N-linked glycosylation sites (PNGS) in gp160 showed that there was a statistically significant loss of PNGS in viruses isolated from CNS in both macaques compared to SIVsmE543-3. Moreover, virus isolated from the brain in H631, had statistically significant loss of PNGS compared to virus isolated from CSF and plasma of the same animal. It is possible that the brain isolate may have adapted to decrease the number of PNGS given that humoral immune selection pressure is less likely to be encountered in the brain. These viruses provide a relevant model to study the adaptations required for SIV to induce encephalitis.« less

  16. The Effects of Donepezil, an Acetylcholinesterase Inhibitor, on Impaired Learning and Memory in Rodents.

    PubMed

    Shin, Chang Yell; Kim, Hae-Sun; Cha, Kwang-Ho; Won, Dong Han; Lee, Ji-Yun; Jang, Sun Woo; Sohn, Uy Dong

    2018-05-01

    A previous study in humans demonstrated the sustained inhibitory effects of donepezil on acetylcholinesterase (AChE) activity; however, the effective concentration of donepezil in humans and animals is unclear. This study aimed to characterize the effective concentration of donepezil on AChE inhibition and impaired learning and memory in rodents. A pharmacokinetic study of donepezil showed a mean peak plasma concentration of donepezil after oral treatment (3 and 10 mg/kg) of approximately 1.2 ± 0.4 h and 1.4 ± 0.5 h, respectively; absolute bioavailability was calculated as 3.6%. Further, AChE activity was inhibited by increasing plasma concentrations of donepezil, and a maximum inhibition of 31.5 ± 5.7% was observed after donepezil treatment in hairless rats. Plasma AChE activity was negatively correlated with plasma donepezil concentration. The pharmacological effects of donepezil are dependent upon its concentration and AChE activity; therefore, we assessed the effects of donepezil on learning and memory using a Y-maze in mice. Donepezil treatment (3 mg/kg) significantly prevented the progression of scopolamine-induced memory impairment in mice. As the concentration of donepezil in the brain increased, the recovery of spontaneous alternations also improved; maximal improvement was observed at 46.5 ± 3.5 ng/g in the brain. In conclusion, our findings suggest that the AChE inhibitory activity and pharmacological effects of donepezil can be predicted by the concentration of donepezil. Further, 46.5 ± 3.5 ng/g donepezil is an efficacious target concentration in the brain for treating learning and memory impairment in rodents.

  17. Altered transition metal homeostasis in Niemann-Pick disease, Type C1

    PubMed Central

    Hung, Ya Hui; Faux, Noel G.; Killilea, David W.; Yanjanin, Nicole; Firnkes, Sally; Volitakis, Irene; Ganio, George; Walterfang, Mark; Hastings, Caroline; Porter, Forbes D.; Ory, Daniel S.; Bush, Ashley I.

    2014-01-01

    The loss of NPC1 protein function is the predominant cause of Niemann-Pick type C1 disease (NP-C1), a systemic and neurodegenerative disorder characterized by late-endosomal/lysosomal accumulation of cholesterol and other lipids. Limited evidence from post-mortem human tissues, an Npc1−/− mouse model, and cell culture studies also suggest failure of metal homeostasis in NP-C1. To investigate these findings, we performed a comprehensive transition metal analysis of cerebrospinal fluid (CSF), plasma and tissue samples from human NP-C1 patients and an Npc1−/− mouse model. NPC1 deficiency in the Npc1−/− mouse model resulted in a perturbation of transition metal homeostasis in the plasma and key organs (brain, liver, spleen, heart, lungs, and kidneys). Analysis of human patient CSF, plasma and post-mortem brain tissues also indicated disrupted metal homeostasis. There was a disparity in the direction of metal changes between the human and the Npc1−/− mouse samples, which may reflect species-specific metal metabolism. Nevertheless, common to both species is brain zinc accumulation. Furthermore, treatment with the glucosylceramide synthase inhibitor miglustat, the only drug shown in a controlled clinical trial to have some efficacy for NP-C1, did not correct the alterations in CSF and plasma transition metal and ceruloplasmin (CP) metabolism in NP-C1 patients. These findings highlight the importance of NPC1 function in metal homeostasis, and indicate that metal-targeting therapy may be of value as a treatment for NP-C. PMID:24343124

  18. Catecholamine levels in the brain of rats exposed by inhalation to benzalkonium chloride.

    PubMed

    Swiercz, Radosław; Grzelińska, Zofia; Gralewicz, Sławomir; Wasowicz, Wojciech

    2009-01-01

    The aim of the study was to obtain quantitative data on the effect of inhalation exposure to benzalkonium chloride (BAC) on the concentration of catecholamines and their metabolites in selected brain structures. Additionally, concentration of corticosterone (CORT) in plasma was estimated. Wistar rats were subjected to a single (6-hour) or repeated (3 days, 6 h/day) exposure to BAC aerosol at ca. 30 mg/m3. The Waters integrated analytical system of HPLC was used to determine the plasma corticosterone. Qualitative and quantitative determinations of catecholamines and their metabolites: 3,4-dihydroxyphenylacetic (DOPAC) and homovanillic (HVA) acids were performed with the use of the Waters integrity HPLC. The determinations have shown that in the BAC-exposed rats the plasma CORT concentration was several times higher than in the control rats. A significant increase of the concentration of dopamine (DA) (striatum and diencephalon) and noradrenaline (NA) (hippocampus and cerebellum) and a significant reduction of adrenaline (A) level (cortex, hippocampus, striatum and mesencephaloon) was found to occur in the brain of rats exposed to BAC compared to control. In the animals exposed to BAC, the concentration of DOPAC, a DA metabolite, was significantly reduced, but the change occurred mainly in the striatum. This resulted in a significant decrease of the DOPAC/DA and HVA/DA metabolic ratio in this structure. It is assumed that the alterations in the concentration of catecholamines and their metabolites in the BAC-exposed rats were related to the unexpectedly strong and persistent activation of the hypothalamo-pituitary-adrenocortical (HPA) axis evidenced by the high plasma CORT concentration.

  19. Injectable caltrop fruit saponin protects against ischemia-reperfusion injury in rat brain.

    PubMed

    Yan, Ling-Geng; Lu, Yin; Zheng, Shi-Zhong; Wang, Ai-Yun; Li, Meng-Qiu; Ruan, Jun-Shan; Zhang, Lei

    2011-01-01

    The present study aimed to investigate the protective effects of injectable caltrop fruit saponin preparation (ICFSP) on ischemia-reperfusion injury in rat brain. Rats were injected with ICFSP and then subjected to cerebral ischemia-reperfusion injury induced by middle cerebral artery occlusion. Then the neurological deficit score was evaluated by Bederson's method. The infarct size was assessed by TTC staining. The content of malondialdehyde (MDA) and nitric oxide (NO), and the activity of superoxide dismutase (SOD) in rat cerebrum were measured with kits, and the content of 6 K prostaglandin F1α (6-K-PGF 1α), thromboxane B2 (TXB2) and endothelin (ET) in blood plasma was measured by radioimmunoassay. The results demonstrated that ICFSP led to a decrease in infarct size (p < 0.01), neurological deficit score (p < 0.05) and plasma content of TXB2 and ET (p < 0.05), and an increase of the plasma level of 6-K-PGF 1α (p < 0.05) and SOD activity in cerebrum, where the MDA and NO content were decreased. The treatment improved forelimb function. ICFSP showed a similar potency compared to that of Ligustrazine hydrochloride parenteral solution (LHPS) and nimodipine (Nim). We concluded that ICFSP protects the brain damage caused by ischemia-reperfusion injury in rats, and this may be closely related to the regulation of reactive oxygen species (MDA and SOD activity) and NO levels in the rat cerebrum, as well as vasoactive factors in the plasma (6-K-PGF 1α, TXB2 and ET).

  20. Tissue redox activity as a hallmark of carcinogenesis: from early to terminal stages of cancer.

    PubMed

    Bakalova, Rumiana; Zhelev, Zhivko; Aoki, Ichio; Saga, Tsuneo

    2013-05-01

    The study aimed to clarify the dynamics of tissue redox activity (TRA) in cancer progression and assess the importance of this parameter for therapeutic strategies. The experiments were carried out on brain tissues of neuroblastoma-bearing, glioma-bearing, and healthy mice. TRA was visualized in vivo by nitroxide-enhanced MRI on anesthetized animals or in vitro by electron paramagnetic resonance spectroscopy on isolated tissue specimens. Two biochemical parameters were analyzed in parallel: tissue total antioxidant capacity (TTAC) and plasma levels of matrix metalloproteinases (MMP). In the early stage of cancer, the brain tissues were characterized by a shorter-lived MRI signal than that from healthy brains (indicating a higher reducing activity for the nitroxide radical), which was accompanied by an enhancement of TTAC and MMP9 plasma levels. In the terminal stage of cancer, tissues in both hemispheres were characterized by a longer-lived MRI signal than in healthy brains (indicating a high-oxidative activity) that was accompanied by a decrease in TTAC and an increase in the MMP2/MMP9 plasma levels. Cancer progression also affected the redox potential of tissues distant from the primary tumor locus (liver and lung). Their oxidative status increased in both stages of cancer. The study shows that tissue redox balance is very sensitive to the progression of cancer and can be used as a diagnostic marker of carcinogenesis. The study also suggests that the noncancerous tissues of a cancer-bearing organism are susceptible to oxidative damage and should be considered a therapeutic target. ©2013 AACR.

  1. Occupancy of Norepinephrine Transporter by Duloxetine in Human Brains Measured by Positron Emission Tomography with (S,S)-[18F]FMeNER-D2.

    PubMed

    Moriguchi, Sho; Takano, Harumasa; Kimura, Yasuyuki; Nagashima, Tomohisa; Takahata, Keisuke; Kubota, Manabu; Kitamura, Soichiro; Ishii, Tatsuya; Ichise, Masanori; Zhang, Ming-Rong; Shimada, Hitoshi; Mimura, Masaru; Meyer, Jeffrey H; Higuchi, Makoto; Suhara, Tetsuya

    2017-12-01

    The norepinephrine transporter in the brain has been targeted in the treatment of psychiatric disorders. Duloxetine is a serotonin and norepinephrine reuptake inhibitor that has been widely used for the treatment of depression. However, the relationship between dose and plasma concentration of duloxetine and norepinephrine transporter occupancy in the human brain has not been determined. In this study, we examined norepinephrine transporter occupancy by different doses of duloxetine. We calculated norepinephrine transporter occupancies from 2 positron emission tomography scans using (S,S)-[18F]FMeNER-D2 before and after a single oral dose of duloxetine (20 mg, n = 3; 40 mg, n = 3; 60 mg, n =2). Positron emission tomography scans were performed from 120 to 180 minutes after an i.v. bolus injection of (S,S)-[18F]FMeNER-D2. Venous blood samples were taken to measure the plasma concentration of duloxetine just before and after the second positron emission tomography scan. Norepinephrine transporter occupancy by duloxetine was 29.7% at 20 mg, 30.5% at 40 mg, and 40.0% at 60 mg. The estimated dose of duloxetine inducing 50% norepinephrine transporter occupancy was 76.8 mg, and the estimated plasma drug concentration inducing 50% norepinephrine transporter occupancy was 58.0 ng/mL. Norepinephrine transporter occupancy by clinical doses of duloxetine was approximately 30% to 40% in human brain as estimated using positron emission tomography with (S,S)-[18F]FMeNER-D2. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  2. Brain MRI, apoliprotein E genotype, and plasma homocysteine in American Indian Alzheimer disease patients and Indian controls.

    PubMed

    Weiner, Myron F; de la Plata, Carlos Marquez; Fields, B A Julie; Womack, Kyle B; Rosenberg, Roger N; Gong, Yun-Hua; Qu, Bao-Xi; Diaz-Arrastia, Ramon; Hynan, Linda S

    2009-02-01

    We obtained brain MRIs, plasma homocysteine levels and apolipoprotein E genotyping for 11 American Indian Alzheimer disease (AD) subjects and 10 Indian controls. We calculated white matter hyperintensity volume (WMHV), whole brain volume (WBV), and ratio of white matter hyperintensity volume to whole brain volume (WMHV/WBV). There were no significant differences between AD subjects and controls in gender, history of hypertension, diabetes, or history of high cholesterol, but hypertension and diabetes were more common among AD subjects. There was no difference between AD and control groups in age (range for all subjects was 61-89 years), % Indian heritage, waist size or body mass index. Median Indian heritage was 50% or greater in both groups. Range of education was 5-13 years in the AD group and 12-16 years in controls. Median plasma homocysteine concentration was higher in AD subjects (11 micromol/L vs. 9.8 micromol/L), but did not achieve statistical significance. Significantly more AD subjects had apolipoprotein Eepsilon4 alleles than did controls (63% vs.10%). Neuroimaging findings were not significantly different between the 2 groups, but AD subjects had greater WMHV (median 15.64 vs. 5.52 cc) and greater WMHV/WBV ratio (median 1.63 vs. 0.65 %) and a far greater range of WMHV. In combined AD subjects and controls, WBV correlated with BMI and age. WMHV and WMHV/WBV correlated inversely with MMSE scores (p = 0.001, 0.002, respectively). In addition, WMHV correlated positively with % Indian heritage (p = 0.047).

  3. Handedness- and brain size-related efficiency differences in small-world brain networks: a resting-state functional magnetic resonance imaging study.

    PubMed

    Li, Meiling; Wang, Junping; Liu, Feng; Chen, Heng; Lu, Fengmei; Wu, Guorong; Yu, Chunshui; Chen, Huafu

    2015-05-01

    The human brain has been described as a complex network, which integrates information with high efficiency. However, the relationships between the efficiency of human brain functional networks and handedness and brain size remain unclear. Twenty-one left-handed and 32 right-handed healthy subjects underwent a resting-state functional magnetic resonance imaging scan. The whole brain functional networks were constructed by thresholding Pearson correlation matrices of 90 cortical and subcortical regions. Graph theory-based methods were employed to further analyze their topological properties. As expected, all participants demonstrated small-world topology, suggesting a highly efficient topological structure. Furthermore, we found that smaller brains showed higher local efficiency, whereas larger brains showed higher global efficiency, reflecting a suitable efficiency balance between local specialization and global integration of brain functional activity. Compared with right-handers, significant alterations in nodal efficiency were revealed in left-handers, involving the anterior and median cingulate gyrus, middle temporal gyrus, angular gyrus, and amygdala. Our findings indicated that the functional network organization in the human brain was associated with handedness and brain size.

  4. The Role of Clinical Proteomics, Lipidomics, and Genomics in the Diagnosis of Alzheimer's Disease.

    PubMed

    Martins, Ian James

    2016-03-31

    The early diagnosis of Alzheimer's disease (AD) has become important to the reversal and treatment of neurodegeneration, which may be relevant to premature brain aging that is associated with chronic disease progression. Clinical proteomics allows the detection of various proteins in fluids such as the urine, plasma, and cerebrospinal fluid for the diagnosis of AD. Interest in lipidomics has accelerated with plasma testing for various lipid biomarkers that may with clinical proteomics provide a more reproducible diagnosis for early brain aging that is connected to other chronic diseases. The combination of proteomics with lipidomics may decrease the biological variability between studies and provide reproducible results that detect a community's susceptibility to AD. The diagnosis of chronic disease associated with AD that now involves genomics may provide increased sensitivity to avoid inadvertent errors related to plasma versus cerebrospinal fluid testing by proteomics and lipidomics that identify new disease biomarkers in body fluids, cells, and tissues. The diagnosis of AD by various plasma biomarkers with clinical proteomics may now require the involvement of lipidomics and genomics to provide interpretation of proteomic results from various laboratories around the world.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazaris, Andreas; Hwang, Kristy S.; Goukasian, Naira

    Objective: We investigated the association between apoE protein plasma levels and brain amyloidosis and the effect of the top 10 Alzheimer disease (AD) risk genes on this association. Methods: Our dataset consisted of 18 AD, 52 mild cognitive impairment, and 3 cognitively normal Alzheimer's Disease Neuroimaging Initiative 1 (ADNI1) participants with available [ 11C]-Pittsburgh compound B (PiB) and peripheral blood protein data. We used cortical pattern matching to study associations between plasma apoE and cortical PiB binding and the effect of carrier status for the top 10 AD risk genes. Results: Low plasma apoE was significantly associated with high PiBmore » SUVR, except in the sensorimotor and entorhinal cortex. For BIN1 rs744373, the association was observed only in minor allele carriers. For CD2AP rs9349407 and CR1 rs3818361, the association was preserved only in minor allele noncarriers. We did not find evidence for modulation by CLU, PICALM, ABCA7, BIN1, and MS4A6A. Conclusions: Our data show that BIN1 rs744373, CD2AP rs9349407, and CR1 rs3818361 genotypes modulate the association between apoE protein plasma levels and brain amyloidosis, implying a potential epigenetic/downstream interaction.« less

  6. Gender-related similarities and differences in the body distribution of grape seed flavanols in rats.

    PubMed

    Margalef, Maria; Pons, Zara; Iglesias-Carres, Lisard; Arola, Lluís; Muguerza, Begoña; Arola-Arnal, Anna

    2016-04-01

    Dietary flavanols produce beneficial health effects, and once absorbed, they are recognized as xenobiotics and undergo phase-II enzymatic detoxification. Flavanols health-promoting properties are mainly attributed to their metabolic products. This work aimed to elucidate whether rats of the opposite sex exhibited differences in the metabolism and distribution of ingested flavanols. Acute doses of grape seed polyphenols were administered to male and female rats. After 1, 2 and 4 h, plasma, liver, mesenteric white adipose tissue (MWAT), brain and hypothalamus flavanol metabolites were quantified by HPLC-MS/MS. Results indicated important sex-related quantitative differences in plasma and brain. Moreover, remarkable sex-related differences in the distributions and types of flavanol metabolites were also observed between liver and brain. This study demonstrated that sex differentially influences the metabolism and distribution of flavanols throughout the bodies of rats, which may affect the physiological bioactivities of flavanols between males and females. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Prediction of a Therapeutic Dose for Buagafuran, a Potent Anxiolytic Agent by Physiologically Based Pharmacokinetic/Pharmacodynamic Modeling Starting from Pharmacokinetics in Rats and Human.

    PubMed

    Yang, Fen; Wang, Baolian; Liu, Zhihao; Xia, Xuejun; Wang, Weijun; Yin, Dali; Sheng, Li; Li, Yan

    2017-01-01

    Physiologically based pharmacokinetic (PBPK)/pharmacodynamic (PD) models can contribute to animal-to-human extrapolation and therapeutic dose predictions. Buagafuran is a novel anxiolytic agent and phase I clinical trials of buagafuran have been completed. In this paper, a potentially effective dose for buagafuran of 30 mg t.i.d. in human was estimated based on the human brain concentration predicted by a PBPK/PD modeling. The software GastroPlus TM was used to build the PBPK/PD model for buagafuran in rat which related the brain tissue concentrations of buagafuran and the times of animals entering the open arms in the pharmacological model of elevated plus-maze. Buagafuran concentrations in human plasma were fitted and brain tissue concentrations were predicted by using a human PBPK model in which the predicted plasma profiles were in good agreement with observations. The results provided supportive data for the rational use of buagafuran in clinic.

  8. CNS tau efflux via exosomes is likely increased in Parkinson disease but not in Alzheimer disease

    PubMed Central

    Shi, Min; Kovac, Andrej; Korff, Ane; Cook, Travis J.; Ginghina, Carmen; Bullock, Kristin M.; Yang, Li; Stewart, Tessandra; Zheng, Danfeng; Aro, Patrick; Atik, Anzari; Kerr, Kathleen F.; Zabetian, Cyrus P.; Peskind, Elaine R.; Hu, Shu-Ching; Quinn, Joseph F.; Galasko, Douglas R.; Montine, Thomas J.; Banks, William A.; Zhang, Jing

    2016-01-01

    Background Alzheimer disease (AD) and Parkinson disease (PD) involve tau pathology. Tau is detectable in blood, but its clearance from neuronal cells and the brain is poorly understood. Methods Tau efflux from the brain to the blood was evaluated by administering radioactively labeled and unlabeled tau intracerebroventricularly in wild-type and tau knock-out mice, respectively. Central nervous system (CNS)-derived tau in L1CAM-containing exosomes was further characterized extensively in human plasma, including by Single Molecule Array technology with 303 subjects. Results The efflux of Tau, including a fraction via CNS-derived L1CAM exosomes, was observed in mice. In human plasma, tau was explicitly identified within L1CAM exosomes. In contrast to AD patients, L1CAM exosomal tau was significantly higher in PD patients than controls, and correlated with cerebrospinal fluid tau. Conclusions Tau is readily transported from the brain to the blood. The mechanisms of CNS tau efflux are likely different between AD and PD. PMID:27234211

  9. Sex differences in interactions between nucleus accumbens and visual cortex by explicit visual erotic stimuli: an fMRI study.

    PubMed

    Lee, S W; Jeong, B S; Choi, J; Kim, J-W

    2015-01-01

    Men tend to have greater positive responses than women to explicit visual erotic stimuli (EVES). However, it remains unclear, which brain network makes men more sensitive to EVES and which factors contribute to the brain network activity. In this study, we aimed to assess the effect of sex difference on brain connectivity patterns by EVES. We also investigated the association of testosterone with brain connection that showed the effects of sex difference. During functional magnetic resonance imaging scans, 14 males and 14 females were asked to see alternating blocks of pictures that were either erotic or non-erotic. Psychophysiological interaction analysis was performed to investigate the functional connectivity of the nucleus accumbens (NA) as it related to EVES. Men showed significantly greater EVES-specific functional connection between the right NA and the right lateral occipital cortex (LOC). In addition, the right NA and the right LOC network activity was positively correlated with the plasma testosterone level in men. Our results suggest that the reason men are sensitive to EVES is the increased interaction in the visual reward networks, which is modulated by their plasma testosterone level.

  10. Brain insulin lowers circulating BCAA levels by inducing hepatic BCAA catabolism

    DOE PAGES

    Shin, Andrew C.; Fasshauer, Martin; Filatova, Nika; ...

    2014-10-09

    Circulating branched-chain amino acid (BCAA) levels are elevated in obesity and diabetes and are a sensitive predictor for type 2 diabetes. Here we show in rats that insulin dose-dependently lowers plasma BCAA levels through induction of protein expression and activity of branched-chain α-keto acid dehydrogenase (BCKDH), the rate-limiting enzyme in the BCAA degradation pathway in the liver. Selective induction of hypothalamic insulin signaling in rats as well as inducible and lifelong genetic modulation of brain insulin receptor expression in mice both demonstrate that brain insulin signaling is a major regulator of BCAA metabolism by inducing hepatic BCKDH. Further, short-term overfeedingmore » impairs the ability of brain insulin to lower circulating BCAA levels in rats. Chronic high-fat feeding in primates and obesity and/or type 2 diabetes in humans is associated with reduced BCKDH protein expression in liver, further supporting the concept that decreased hepatic BCKDH is a primary cause of increased plasma BCAA levels in insulin-resistant states. These findings demonstrate that neuroendocrine pathways control BCAA homeostasis and that hypothalamic insulin resistance can be a cause of impaired BCAA metabolism in obesity and diabetes.« less

  11. Brain insulin lowers circulating BCAA levels by inducing hepatic BCAA catabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Andrew C.; Fasshauer, Martin; Filatova, Nika

    Circulating branched-chain amino acid (BCAA) levels are elevated in obesity and diabetes and are a sensitive predictor for type 2 diabetes. Here we show in rats that insulin dose-dependently lowers plasma BCAA levels through induction of protein expression and activity of branched-chain α-keto acid dehydrogenase (BCKDH), the rate-limiting enzyme in the BCAA degradation pathway in the liver. Selective induction of hypothalamic insulin signaling in rats as well as inducible and lifelong genetic modulation of brain insulin receptor expression in mice both demonstrate that brain insulin signaling is a major regulator of BCAA metabolism by inducing hepatic BCKDH. Further, short-term overfeedingmore » impairs the ability of brain insulin to lower circulating BCAA levels in rats. Chronic high-fat feeding in primates and obesity and/or type 2 diabetes in humans is associated with reduced BCKDH protein expression in liver, further supporting the concept that decreased hepatic BCKDH is a primary cause of increased plasma BCAA levels in insulin-resistant states. These findings demonstrate that neuroendocrine pathways control BCAA homeostasis and that hypothalamic insulin resistance can be a cause of impaired BCAA metabolism in obesity and diabetes.« less

  12. Stress response in rat brain after different durations of noise exposure.

    PubMed

    Samson, James; Sheeladevi, Rathinasamy; Ravindran, Rajan; Senthilvelan, Manohar

    2007-01-01

    The alteration in the levels of plasma corticosterone, brain norepinephrine (NE), and expression of brain heat shock proteins (Hsp70) after different durations of noise exposure (acute, 1 day; sub-acute, 15 days; chronic, 30 days) has been studied to analyze their role in combating time-dependent stress effects of noise. Broadband white noise (100dB) exposure to male Wistar albino rats significantly increased the levels of plasma corticosterone and NE in all three durations of noise exposure. The sustained increase observed in their levels in the chronic group suggests that animals are not getting adapted to noise even after 30 days of exposure. The important role of Hsp70 in combating noise induced stress is evident from the significant increase in its expression after chronic exposure, while there was a reciprocal decrease in the NE and corticosterone when compared with their levels after acute and sub-acute noise exposure. This clearly indicates that the time-dependent stress response to noise exposure is a complex mechanism involving highly interconnected systems such as hypothalamo-pituitary-adrenal (HPA) axis, heat shock proteins and may have serious implications in vital organs, particularly in the brain when there is a prolonged noise exposure.

  13. Expression of functional neurotransmitter receptors in Xenopus oocytes after injection of human brain membranes

    NASA Astrophysics Data System (ADS)

    Miledi, Ricardo; Eusebi, Fabrizio; Martínez-Torres, Ataúlfo; Palma, Eleonora; Trettel, Flavia

    2002-10-01

    The Xenopus oocyte is a very powerful tool for studies of the structure and function of membrane proteins, e.g., messenger RNA extracted from the brain and injected into oocytes leads to the synthesis and membrane incorporation of many types of functional receptors and ion channels, and membrane vesicles from Torpedo electroplaques injected into oocytes fuse with the oocyte membrane and cause the appearance of functional Torpedo acetylcholine receptors and Cl channels. This approach was developed further to transplant already assembled neurotransmitter receptors from human brain cells to the plasma membrane of Xenopus oocytes. Membranes isolated from the temporal neocortex of a patient, operated for intractable epilepsy, were injected into oocytes and, within a few hours, the oocyte membrane acquired functional neurotransmitter receptors to -aminobutyric acid, -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, kainate, and glycine. These receptors were also expressed in the plasma membrane of oocytes injected with mRNA extracted from the temporal neocortex of the same patient. All of this makes the Xenopus oocyte a more useful model than it already is for studies of the structure and function of many human membrane proteins and opens the way to novel pathophysiological investigations of some human brain disorders.

  14. Diet and cognition: interplay between cell metabolism and neuronal plasticity

    PubMed Central

    Gomez-Pinilla, Fernando; Tyagi, Ethika

    2014-01-01

    Purpose of Study To discuss studies in humans and animals revealing the ability of foods to benefit the brain: new information with regards to mechanisms of action and the treatment of neurological and psychiatric disorders. Recent Findings Dietary factors exert their effects on the brain by affecting molecular events related to the management of energy metabolism and synaptic plasticity. Energy metabolism influences neuronal function, neuronal signaling, and synaptic plasticity, ultimately affecting mental health. Epigenetic regulation of neuronal plasticity appears as an important mechanism by which foods can prolong their effects on long term neuronal plasticity. Summary The prime focus of the discussion is to emphasize the role of cell metabolism as a mediator for the action of foods on the brain. Oxidative stress promotes damage to phospholipids present in the plasma membrane such as the omega-3 fatty acid DHA, disrupting neuronal signaling. Thus, dietary DHA seems crucial for supporting plasma membrane function, interneuronal signaling, and cognition. The dual action of brain-derived neurotrophic factor (BDNF) in neuronal metabolism and synaptic plasticity is crucial for activating signaling cascades under the action of diet and other environmental factors, using mechanisms of epigenetic regulation. PMID:24071781

  15. Effects of Simvastatin on Cholesterol Metabolism and Alzheimer Disease Biomarkers

    PubMed Central

    Serrano-Pozo, Alberto; Vega, Gloria L.; Lütjohann, Dieter; Locascio, Joseph J.; Tennis, Marsha K.; Deng, Amy; Atri, Alireza; Hyman, Bradley T.; Irizarry, Michael C.; Growdon, John H.

    2013-01-01

    Preclinical and epidemiologic studies suggest a protective effect of statins on Alzheimer disease (AD). Experimental evidence indicates that some statins can cross the blood-brain barrier, alter brain cholesterol metabolism, and may ultimately decrease the production of amyloid-β (Aβ) peptide. Despite these promising leads, clinical trials have yielded inconsistent results regarding the benefits of statin treatment in AD. Seeking to detect a biological signal of statins effect on AD, we conducted a 12-week open-label trial with simvastatin 40 mg/d and then 80 mg/d in 12 patients with AD or amnestic mild cognitive impairment and hypercholesterolemia. We quantified cholesterol precursors and metabolites and AD biomarkers of Aβ and tau in both plasma and cerebrospinal fluid at baseline and after the 12-week treatment period. We found a modest but significant inhibition of brain cholesterol biosynthesis after simvastatin treatment, as indexed by a decrease of cerebrospinal fluid lathosterol and plasma 24S-hydroxycholesterol. Despite this effect, there were no changes in AD biomarkers. Our findings indicate that simvastatin treatment can affect brain cholesterol metabolism within 12 weeks, but did not alter molecular indices of AD pathology during this short-term treatment. PMID:20473136

  16. Aronia melanocarpa Treatment and Antioxidant Status in Selected Tissues in Wistar Rats

    PubMed Central

    Krośniak, Mirosław; Sanocka, Ilona; Bartoń, Henryk; Hebda, Tomasz; Francik, Sławomir

    2014-01-01

    Aronia juice is considered to be a source of compounds with high antioxidative potential. We conducted a study on the impact of compounds in the Aronia juice on oxidative stress in plasma and brain tissues. The influence of Aronia juice on oxidative stress parameters was tested with the use of a model with a high content of fructose and nonsaturated fats. Therefore, the activity of enzymatic (catalase, CAT, and paraoxonase, PON) and nonenzymatic (thiol groups, SH, and protein carbonyl groups, PCG) oxidative stress markers, which indicate changes in the carbohydrate and protein profiles, was marked in brain tissue homogenates. Adding Aronia caused statistically significant increase in the CAT activity in plasma in all tested diets, while the PON activity showed a statistically significant increase only in case of high fat diet. In animals fed with Aronia juice supplemented with carbohydrates or fat, statistically significant increase in the PON activity and the decrease in the CAT activity in brain tissue were observed. In case of the high fat diet, an increase in the number of SH groups and a decrease in the number of PCG groups in brain tissue were observed. PMID:25057488

  17. Aronia melanocarpa treatment and antioxidant status in selected tissues in Wistar rats.

    PubMed

    Francik, Renata; Krośniak, Mirosław; Sanocka, Ilona; Bartoń, Henryk; Hebda, Tomasz; Francik, Sławomir

    2014-01-01

    Aronia juice is considered to be a source of compounds with high antioxidative potential. We conducted a study on the impact of compounds in the Aronia juice on oxidative stress in plasma and brain tissues. The influence of Aronia juice on oxidative stress parameters was tested with the use of a model with a high content of fructose and nonsaturated fats. Therefore, the activity of enzymatic (catalase, CAT, and paraoxonase, PON) and nonenzymatic (thiol groups, SH, and protein carbonyl groups, PCG) oxidative stress markers, which indicate changes in the carbohydrate and protein profiles, was marked in brain tissue homogenates. Adding Aronia caused statistically significant increase in the CAT activity in plasma in all tested diets, while the PON activity showed a statistically significant increase only in case of high fat diet. In animals fed with Aronia juice supplemented with carbohydrates or fat, statistically significant increase in the PON activity and the decrease in the CAT activity in brain tissue were observed. In case of the high fat diet, an increase in the number of SH groups and a decrease in the number of PCG groups in brain tissue were observed.

  18. Hepatic Expression of Serum Amyloid A1 Is Induced by Traumatic Brain Injury and Modulated by Telmisartan

    PubMed Central

    Villapol, Sonia; Kryndushkin, Dmitry; Balarezo, Maria G.; Campbell, Ashley M.; Saavedra, Juan M.; Shewmaker, Frank P.; Symes, Aviva J.

    2016-01-01

    Traumatic brain injury affects the whole body in addition to the direct impact on the brain. The systemic response to trauma is associated with the hepatic acute-phase response. To further characterize this response, we performed controlled cortical impact injury on male mice and determined the expression of serum amyloid A1 (SAA1), an apolipoprotein, induced at the early stages of the acute-phase response in liver and plasma. After cortical impact injury, induction of SAA1 was detectable in plasma at 6 hours post-injury and in liver at 1 day post-injury, followed by gradual diminution over time. In the liver, cortical impact injury increased neutrophil and macrophage infiltration, apoptosis, and expression of mRNA encoding the chemokines CXCL1 and CXCL10. An increase in angiotensin II AT1 receptor mRNA at 3 days post-injury was also observed. Administration of the AT1 receptor antagonist telmisartan 1 hour post-injury significantly decreased liver SAA1 levels and CXCL10 mRNA expression, but did not affect CXCL1 expression or the number of apoptotic cells or infiltrating leukocytes. To our knowledge, this is the first study to demonstrate that SAA1 is induced in the liver after traumatic brain injury and that telmisartan prevents this response. Elucidating the molecular pathogenesis of the liver after brain injury will assist in understanding the efficacy of therapeutic approaches to brain injury. PMID:26435412

  19. Brain uptake of a non-radioactive pseudo-carrier and its effect on the biodistribution of [(18)F]AV-133 in mouse brain.

    PubMed

    Wu, Xianying; Zhou, Xue; Zhang, Shuxian; Zhang, Yan; Deng, Aifang; Han, Jie; Zhu, Lin; Kung, Hank F; Qiao, Jinping

    2015-07-01

    9-[(18)F]Fluoropropyl-(+)-dihydrotetrabenazine ([(18)F]AV-133) is a new PET imaging agent targeting vesicular monoamine transporter type II (VMAT2). To shorten the preparation of [(18)F]AV-133 and to make it more widely available, a simple and rapid purification method using solid-phase extraction (SPE) instead of high-pressure liquid chromatography (HPLC) was developed. The SPE method produced doses containing the non-radioactive pseudo-carrier 9-hydroxypropyl-(+)-dihydrotetrabenazine (AV-149). The objectives of this study were to evaluate the brain uptake of AV-149 by UPLC-MS/MS and its effect on the biodistribution of [(18)F]AV-133 in the brains of mice. The mice were injected with a bolus including [(18)F]AV-133 and different doses of AV-149. Brain tissue and blood samples were harvested. The effect of different amounts of AV-149 on [(18)F]AV-133 was evaluated by quantifying the brain distribution of radiolabelled tracer [(18)F]AV-133. The concentrations of AV-149 in the brain and plasma were analyzed using a UPLC-MS/MS method. The concentrations of AV-149 in the brain and plasma exhibited a good linear relationship with the doses. The receptor occupancy curve was fit, and the calculated ED50 value was 8.165mg/kg. The brain biodistribution and regional selectivity of [(18)F]AV-133 had no obvious differences at AV-149 doses lower than 0.1mg/kg. With increasing doses of AV-149, the brain biodistribution of [(18)F]AV-133 changed significantly. The results are important to further support that the improved radiolabelling procedure of [(18)F]AV-133 using an SPE method may be suitable for routine clinical application. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Pharmacokinetic Study of Piracetam in Focal Cerebral Ischemic Rats.

    PubMed

    Paliwal, Pankaj; Dash, Debabrata; Krishnamurthy, Sairam

    2018-04-01

    Cerebral ischemia affects hepatic enzymes and brain permeability extensively. Piracetam was investigated up to phase III of clinical trials and there is lack of data on brain penetration in cerebral ischemic condition. Thus, knowledge of the pharmacokinetics and brain penetration of piracetam during ischemic condition would aid to improve pharmacotherapeutics in ischemic stroke. Focal cerebral ischemia was induced by middle cerebral artery occlusion for 2 h in male Wistar rats followed by reperfusion. After 24 h of middle cerebral artery occlusion or 22 h of reperfusion, piracetam was administered for pharmacokinetic, brain penetration, and pharmacological experiments. In pharmacokinetic study, blood samples were collected at different time points after 200-mg/kg (oral) and 75-mg/kg (intravenous) administration of piracetam through right external jugular vein cannulation. In brain penetration study, the cerebrospinal fluid, systemic blood, portal blood, and brain samples were collected at pre-designated time points after 200-mg/kg oral administration of piracetam. In a separate experiment, the pharmacological effect of the single oral dose of piracetam in middle cerebral artery occlusion was assessed at a dose of 200 mg/kg. All the pharmacokinetic parameters of piracetam including area under curve (AUC 0-24 ), maximum plasma concentration (C max ), time to reach the maximum plasma concentration (t max ), elimination half-life (t 1/2 ), volume of distribution (V z ), total body clearance, mean residence time, and bioavailability were found to be similar in ischemic stroke condition except for brain penetration. Piracetam exposure (AUC 0-2 ) in brain and CSF were found to be 2.4- and 3.1-fold higher, respectively, in ischemic stroke compared to control rats. Piracetam significantly reduced infarct volume by 35.77% caused by middle cerebral artery occlusion. There was no change in the pharmacokinetic parameters of piracetam in the ischemic stroke model except for brain penetration. This indicates that variables influencing brain penetration may not be limiting factors for use of piracetam in ischemic stroke.

Top