Sample records for small river systems

  1. Kyiv Small Rivers in Metropolis Water Objects System

    NASA Astrophysics Data System (ADS)

    Krelshteyn, P.; Dubnytska, M.

    2017-12-01

    The article answers the question, what really are the small underground rivers with artificial watercourses: water bodies or city engineering infrastructure objects? The place of such rivers in metropolis water objects system is identified. The ecological state and the degree of urbanization of small rivers, as well as the dynamics of change in these indicators are analysed on the Kiev city example with the help of water objects cadastre. It was found that the registration of small rivers in Kyiv city is not conducted, and the summary information on such water objects is absent and is not taken into account when making managerial decisions at the urban level. To solve this problem, we propose to create some water bodies accounting system (water cadastre).

  2. Self-sustaining populations, population sinks or aggregates of strays: chum (Oncorhynchus keta) and Chinook salmon (Oncorhynchus tshawytscha) in the Wood River system, Alaska.

    PubMed

    Lin, Jocelyn E; Hilborn, Ray; Quinn, Thomas P; Hauser, Lorenz

    2011-12-01

    Small populations can provide insights into ecological and evolutionary aspects of species distributions over space and time. In the Wood River system in Alaska, USA, small aggregates of Chinook (Oncorhynchus tshawytscha) and chum salmon (O. keta) spawn in an area dominated by sockeye salmon (O. nerka). Our objective was to determine whether these Chinook and chum salmon are reproductively isolated, self-sustaining populations, population sinks that produce returning adults but receive immigration, or strays from other systems that do not produce returning adults. DNA samples collected from adult chum salmon from 16 streams and Chinook salmon from four streams in the Wood River system over 3 years were compared to samples from large populations in the nearby Nushagak River system, a likely source of strays. For both species, microsatellite markers indicated no significant genetic differentiation between the two systems. Simulations of microsatellite data in a large source and a smaller sink population suggested that considerable immigration would be required to counteract the diverging effects of genetic drift and produce genetic distances as small as those observed, considering the small census sizes of the two species in the Wood River system. Thus, the Wood River system likely receives substantial immigration from neighbouring watersheds, such as the Nushagak River system, which supports highly productive runs. Although no data on population productivity in the Wood River system exist, our results suggest source-sink dynamics for the two species, a finding relevant to other systems where salmonid population sizes are limited by habitat factors. © 2011 Blackwell Publishing Ltd.

  3. Quantity and quality of ground-water discharge to the South Platte River, Denver to Fort Lupton, Colorado, August 1992 through July 1993

    USGS Publications Warehouse

    McMahon, P.B.; Lull, K.J.; Dennehy, K.F.; Collins, J.A.

    1995-01-01

    Water-quality studies conducted by the Metro Wastewater Reclamation District have indicated that during low flow in segments of the South Platte River between Denver and Fort Lupton, concentrations of dissolved oxygen are less than minimum concen- trations set by the State of Colorado. Low dissolved-oxygen concentrations are observed in two reaches of the river-they are about 3.3 to 6.4 miles and 17 to 25 miles downstream from the Metro Waste- water Reclamation District effluent outfalls. Concentrations of dissolved oxygen recover between these two reaches. Studies conducted by the U.S. Geological Survey have indicated that ground-water discharge to the river may contribute to these low dissolved-oxygen concentrations. As a result, an assessment was made of the quantity and quality of ground-water discharge to the South Platte River from Denver to Fort Lupton. Measurements of surface- water and ground-water discharge and collections of surface water and ground water for water-quality analyses were made from August 1992 through January 1993 and in May and July 1993. The quantity of ground-water discharge to the South Platte River was determined indirectly by mass balance of surface-water inflows and outflows and directly by instantaneous measurements of ground-water discharge across the sediment/water interface in the river channel. The quality of surface water and ground water was determined by sampling and analysis of water from the river and monitoring wells screened in the alluvial aquifer adjacent to the river and by sampling and analysis of water from piezometers screened in sediments underlying the river channel. The ground-water flow system was subdivided into a large-area and a small-area flow system. The precise boundaries of the two flow systems are not known. However, the large-area flow system is considered to incorporate all alluvial sediments in hydrologic connection with the South Platte River. The small- area flow system is considered to incorporate the alluvial aquifer in the vicinity of the river. Flow-path lengths in the large-area flow system were considered to be on the order of hundreds of feet to more than a mile, whereas in the small-area flow system, they were considered to be on the order of feet to hundreds of feet. Mass-balance estimates of incremental ground-water discharge from the large- area flow system ranged from -27 to 17 cubic feet per second per mile in three reaches of the river; the median rate was 4.6 cubic feet per second per mile. The median percentage of surface-water discharge derived from ground-water discharge in the river reaches studied was 13 percent. Instantaneous measurements of ground-water discharge from the small-area flow system ranged from -1,360 to 1,000 cubic feet per second per mile, with a median value of -5.8 cubic feet per second per mile. Hourly measurements of discharge from the small-area flow system indicated that the high rates of discharge were transient and may have been caused by daily fluctuations in river stage due to changing effluent-discharge rates from the Metro Wastewater Reclamation District treatment plant. Higher river stages caused surface water to infiltrate bed sediments underlying the river channel, and lower river stages allowed ground water to discharge into the river. Although stage changes apparently cycled large quantities of water in and out of the small- area flow system, the process probably provided no net gain or loss of water to the river. In general, mass balance and instantaneous measurements of ground-water discharge indicated that the ground- water flow system in the vicinity of the river consisted of a large-area flow system that provided a net addition of water to the river and a small- area flow system that cycled water in and out of the riverbed sediments, but provided no net addition of water to the river. The small-area flow system was superimposed on the large-area flow system. The median values of pH and dissolved oxygen

  4. Estimating Nitrogen Loading in the Wabash River Subwatershed Using a GIS Schematic Processing Network in Support of Sustainable Watershed Management Planning

    EPA Science Inventory

    The Wabash River is a tributary of the Ohio River. This river system consists of headwaters and small streams, medium river reaches in the upper Wabash watershed, and large river reaches in the lower Wabash watershed. A large part of the river system is situated in agricultural a...

  5. Tracking small mountainous river derived terrestrial organic carbon across the active margin marine environment

    NASA Astrophysics Data System (ADS)

    Childress, L. B.; Blair, N. E.; Orpin, A. R.

    2015-12-01

    Active margins are particularly efficient in the burial of organic carbon due to the close proximity of highland sources to marine sediment sinks and high sediment transport rates. Compared with passive margins, active margins are dominated by small mountainous river systems, and play a unique role in marine and global carbon cycles. Small mountainous rivers drain only approximately 20% of land, but deliver approximately 40% of the fluvial sediment to the global ocean. Unlike large passive margin systems where riverine organic carbon is efficiently incinerated on continental shelves, small mountainous river dominated systems are highly effective in the burial and preservation of organic carbon due to the rapid and episodic delivery of organic carbon sourced from vegetation, soil, and rock. To investigate the erosion, transport, and burial of organic carbon in active margin small mountainous river systems we use the Waipaoa River, New Zealand. The Waipaoa River, and adjacent marine depositional environment, is a system of interest due to a large sediment yield (6800 tons km-2 yr-1) and extensive characterization. Previous studies have considered the biogeochemistry of the watershed and tracked the transport of terrestrially derived sediment and organics to the continental shelf and slope by biogeochemical proxies including stable carbon isotopes, lignin phenols, n-alkanes, and n-fatty acids. In this work we expand the spatial extent of investigation to include deep sea sediments of the Hikurangi Trough. Located in approximately 3000 m water depth 120 km from the mouth of the Waipaoa River, the Hikurangi Trough is the southern extension of the Tonga-Kermadec-Hikurangi subduction system. Piston core sediments collected by the National Institute of Water and Atmospheric Research (NIWA, NZ) in the Hikurangi Trough indicate the presence of terrestrially derived material (lignin phenols), and suggest a continuum of deposition, resuspension, and transport across the margin. Based on tephra beds identified within the sediments, this material was likely transported by a series of turbidite events, delivered to the Hikurangi Trough through Poverty Canyon.

  6. Major and Trace Element Fluxes to the Ganges River: Significance of Small Flood Plain Tributary as Non-Point Pollution Source

    NASA Astrophysics Data System (ADS)

    Lakshmi, V.; Sen, I. S.; Mishra, G.

    2017-12-01

    There has been much discussion amongst biologists, ecologists, chemists, geologists, environmental firms, and science policy makers about the impact of human activities on river health. As a result, multiple river restoration projects are on going on many large river basins around the world. In the Indian subcontinent, the Ganges River is the focal point of all restoration actions as it provides food and water security to half a billion people. Serious concerns have been raised about the quality of Ganga water as toxic chemicals and many more enters the river system through point-sources such as direct wastewater discharge to rivers, or non-point-sources. Point source pollution can be easily identified and remedial actions can be taken; however, non-point pollution sources are harder to quantify and mitigate. A large non-point pollution source in the Indo-Gangetic floodplain is the network of small floodplain rivers. However, these rivers are rarely studied since they are small in catchment area ( 1000-10,000 km2) and discharge (<100 m3/s). As a result, the impact of these small floodplain rivers on the dissolved chemical load of large river systems is not constrained. To fill this knowledge gap we have monitored the Pandu River for one year between February 2015 and April 2016. Pandu river is 242 km long and is a right bank tributary of Ganges with a total catchment area of 1495 km2. Water samples were collected every month for dissolved major and trace elements. Here we show that the concentration of heavy metals in river Pandu is in higher range as compared to the world river average, and all the dissolved elements shows a large spatial-temporal variation. We show that the Pandu river exports 192170, 168517, 57802, 32769, 29663, 1043, 279, 241, 225, 162, 97, 28, 25, 22, 20, 8, 4 Kg/yr of Ca, Na, Mg, K, Si, Sr, Zn, B, Ba, Mn, Al, Li, Rb, Mo, U, Cu, and Sb, respectively, to the Ganga river, and the exported chemical flux effects the water chemistry of the Ganga river downstream of its confluence point. We further speculate that small floodplain rivers is an important source that contributes to the dissolved chemical budget of large river systems, and they must be better monitored to address future challenges in river basin management.

  7. Defining river types in a Mediterranean area: a methodology for the implementation of the EU Water Framework Directive.

    PubMed

    Munné, Antoni; Prat, Narcís

    2004-11-01

    The Water Framework Directive (WFD), approved at the end of 2000 by the European Union, proposes the characterization of river types through two classification systems (A and B) (Annex II of the WFD), thereby obtaining comparable reference sites and improving the management of aquatic systems. System A uses fixed categories of three parameters to classify rivers: three altitude ranges, four basin size ranges, and three geological categories. In the other hand, System B proposes to establish river types analyzing different factors considered as obligatory and optional. Here, we tested Systems A and B in the Catalan River Basin District (NE Spain). The application of System A results in 26 river types: 8 in the Pyrenees and 18 in the Iberic-Macaronesian ecoregions. This number would require the establishment of a complex management system and control of the ecological status in a relatively small river basin district. We propose a multivariant system to synthesize the environmental descriptors and to define river types using System B. We use five hydrological, seven morphological, five geological, and two climatic variables to discriminate among river types. This method results in fewer river type categories than System A but is expected to achieve the same degree of differentiation because of the large number of descriptors considered. Two levels are defined in our classification method using System B. Five "river types," defined at large scale (1:1,000,000), are mainly discriminated by annual runoff coefficient, air temperature, and discharge. This level is useful and could facilitate comparisons of results among European river basin districts. The second level defines 10 "subtypes of river management," mainly discriminated by geology in the basin and flow regime. This level is more adequate at local scale (1:250,000) and provides a useful tool for management purposes in relatively small and heterogeneous river basin districts.

  8. AUTOMATED WATER LEVEL MEASUREMENTS IN SMALL-DIAMETER AQUIFER TUBES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PETERSEN SW; EDRINGTON RS; MAHOOD RO

    2011-01-14

    Groundwater contaminated with hexavalent chromium, strontium-90, and uranium discharges into the Columbia River along approximately 16 km (10 mi) of the shoreline. Various treatment systems have and will continue to be implemented to eliminate the impact of Hanford Site contamination to the river. To optimize the various remediation strategies, it is important to understand interactions between groundwater and the surface water of the Columbia River. An automated system to record water levels in aquifer sampling tubes installed in the hyporheic zone was designed and tested to (1) gain a more complete understanding of groundwater/river water interactions based on gaining andmore » losing conditions ofthe Columbia River, (2) record and interpret data for consistent and defensible groundwater/surface water conceptual models that may be used to better predict subsurface contaminant fate and transport, and (3) evaluate the hydrodynamic influence of extraction wells in an expanded pump-and-treat system to optimize the treatment system. A system to measure water levels in small-diameter aquifer tubes was designed and tested in the laboratory and field. The system was configured to allow manual measurements to periodically calibrate the instrument and to permit aquifer tube sampling without removing the transducer tube. Manual measurements were collected with an e-tape designed and fabricated especially for this test. Results indicate that the transducer system accurately records groundwater levels in aquifer tubes. These data are being used to refine the conceptual and numeric models to better understand interactions in the hyporheic zone of the Columbia River and the adjacent river water and groundwater, and changes in hydrochemistry relative to groundwater flux as river water recharges the aquifer and then drains back out in response to changes in the river level.« less

  9. Habitat use and movement patterns by adult saugers from fall to summer in an unimpounded small-river system

    USGS Publications Warehouse

    Kuhn, K.M.; Hubert, W.A.; Johnson, K.; Oberlie, D.; Dufek, D.

    2008-01-01

    The Little Wind River drainage in Wyoming is a relatively small unimpounded river system inhabited by native saugers Sander canadensis. Radio telemetry was used to assess habitat use and movement patterns by adult saugers in the river system from fall through early summer. Fifty-four adult saugers were captured during fall 2004, surgically implanted with radio transmitters, and tracked through mid-July 2005. Tagged saugers selected large and deep pools. Such pools were abundant throughout the Little Wind River system and led to saugers being widely dispersed from fall to early spring. During fall, winter, and early spring, tagged saugers remained sedentary and moved short distances among pools in close proximity to each other. Longer movements by tagged saugers occurred from mid-spring to early summer, and were associated with both upstream and downstream movements to and from two river segments believed to be used for spawning. During early summer, most saugers returned to locations where they had been tagged the previous fall and had spent the winter. Our results provide evidence that preservation of the sauger fishery in the Wind River system will depend on maintaining fish passage throughout the portion of the watershed inhabited by saugers and preserving natural fluvial processes that maintain large and deep pools. ?? Copyright by the American Fisheries Society 2008.

  10. Estimation of global plastic loads delivered by rivers into the sea

    NASA Astrophysics Data System (ADS)

    Schmidt, Christian; Krauth, Tobias; Klöckner, Phillipp; Römer, Melina-Sophie; Stier, Britta; Reemtsma, Thorsten; Wagner, Stephan

    2017-04-01

    A considerable fraction of marine plastic debris likely originates from land-based sources. Transport of plastics by rivers is a potential mechanism that connects plastic debris generated on land with the marine environment. We analyze existing and experimental data of plastic loads in rivers and relate these to the amount of mismanaged plastic waste (MMPW) generated in the river catchments. We find a positive relationship between the plastic load in rivers and the amount of MMPW. Using our empirical MMPW-plastic river load-relationship we estimated the annual plastic load for 1494 rivers, ranging from small first order streams to large rivers, which have an outlet to the sea. We estimate that the global load of plastic debris delivered by rivers to the sea is 39000 tons per year with a large 95% prediction interval between 247 tons per year and 16.7 million tons per year, respectively. Our best estimate is considerably lower than the estimated total land-based inputs which range between 4.8-12.7 million tons anually (Jambeck et al. 2015). Approximately 75% of the total load is transported by the 10 top-ranked rivers which are predominantly located in Asia. These river catchments encompass countries with a large population and high economic growth but an insufficient waste infrastructure. Reducing the plastic loads in these rivers by 50% would reduce the global inputs by 37%. Of the total MMPW generated within river catchments, only a small fraction of about 0.05 % has been found to be mobile in rivers. Thus, either only a small fraction of MMPW enters the river systems, or a substantial fraction of plastic debris accumulates in river systems world wide. References: Jambeck, J. R., R. Geyer, C. Wilcox, T. R. Siegler, M. Perryman, A. Andrady, R. Narayan, and K. L. Law (2015), Plastic waste inputs from land into the ocean, Science, 347(6223), 768-771, doi:10.1126/science.1260352.

  11. The contribution of total suspended solids to the Bay of Biscay by Cantabrian Rivers (northern coast of the Iberian Peninsula)

    NASA Astrophysics Data System (ADS)

    Prego, Ricardo; Boi, Paola; Cobelo-García, Antonio

    2008-07-01

    Information of suspended sediments fluxes of small rivers to the coastal zone is sparse, and this is particularly so for the Iberian Rivers. To help address this shortage of information, the relationship between fluvial discharge and total suspended solids (TSS) for the main 28 Cantabrian Rivers using data from 22 years monitoring by the COCA network has been analysed, and their particulate material fluxes to the Bay of Biscay coasts have been quantified. The Cantabrian Fluvial System (drainage basin area of 20,333 km 2) may be considered as a quasi-homogeneous fluvial system with an average discharge of 561 m - 3 s - 1 and average loads of 35 kg TSS s - 1 with rivers showing similar average yields of 56 t km - 2 a - 1 . The average TSS contribution is 1.2 ± 0.2 10 9 kg a - 1 . This seaward flux of sediment is dispersed along the entire North Iberian coast and is rather modest (25% of the total supply) in comparison with the output from the French Rivers to the Bay of Biscay. The TSS loads of Cantabrian Rivers indicate they are similar to world upland rivers and those of other parts of Northern Europe according to Milliman and Syvistki [Milliman and Syvistki, 1992. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. Journal of Geology, 100: 525-544] and Milliman [Milliman, 2001. Delivery and fate of fluvial water and sediment to the sea: a marine geologist's view of European rivers. Scientia Marina, 65: 121-132]. Although their TSS flux is practically negligible (13,000 times lower) when compared to the world average flux, they provide a good example of the role of small Atlantic temperate rivers.

  12. Temporal trends of select pharmaceutical compounds entering an estuary from a small, urban river

    EPA Science Inventory

    The fate and effects of pharmaceutical compounds have been widely studied in freshwater systems; however, less is known about their behavior in marine ecosystems. In many coastal watersheds, there are river systems that are receiving waters for domestic wastewater treatment effl...

  13. Output improvement of Sg. Piah run-off river hydro-electric station with a new computed river flow-based control system

    NASA Astrophysics Data System (ADS)

    Jidin, Razali; Othman, Bahari

    2013-06-01

    The lower Sg. Piah hydro-electric station is a river run-off hydro scheme with generators capable of generating 55MW of electricity. It is located 30km away from Sg. Siput, a small town in the state of Perak, Malaysia. The station has two turbines (Pelton) to harness energy from water that flow through a 7km tunnel from a small intake dam. The trait of a run-off river hydro station is small-reservoir that cannot store water for a long duration; therefore potential energy carried by the spillage will be wasted if the dam level is not appropriately regulated. To improve the station annual energy output, a new controller based on the computed river flow has been installed. The controller regulates the dam level with an algorithm based on the river flow derived indirectly from the intake-dam water level and other plant parameters. The controller has been able to maintain the dam at optimum water level and regulate the turbines to maximize the total generation output.

  14. The role of effective discharge in the ocean delivery of particulate organic carbon by small, mountainous river systems

    USGS Publications Warehouse

    Wheatcroft, R.A.; Goni, M.A.; Hatten, J.A.; Pasternack, G.B.; Warrick, J.A.

    2010-01-01

    Recent research has shown that small, mountainous river systems (SMRS) account for a significant fraction of the global flux of sediment and particulate organic carbon (POC) to the ocean. The enormous number of SMRS precludes intensive studies of the sort conducted on large systems, necessitating development of a conceptual framework that permits cross-system comparison and scaling up. Herein, we introduce the geomorphic concept of effective discharge to the problem of source-to-sink POC transport. This idea recognizes that transport effectiveness is the product of discharge frequency and magnitude, wherein the latter is quantified as a power-law relationship between discharge and load (the 'rating curve'). An analytical solution for effective discharge (Qe) identifies two key variables: the standard deviation of the natural logarithm of discharge (??q), and the rating exponent of constituent i (bi Data from selected SMRS are used to show that for a given river Qe-POC < Qesediment, Qe for different POC constituents (e.g., POCfossil vs. POC(modern) differs in predictable ways, and Qe for a particular constituent can vary seasonally. When coupled with the idea that discharge peaks of small rivers may be coincident with specific oceanic conditions (e.g., large waves, wind from a certain direction) that determine dispersal and burial, these findings have potentially important implications for POC fate on continental margins. Future studies of POC transport in SMRS should exploit the conceptual framework provided herein and seek to identify how constituent-specific effective discharges vary between rivers and respond to perturbations. ?? 2010, by the American Society of Limnology and Oceanography, Inc.

  15. Dynamic Modeling and Grid Interaction of a Tidal and River Generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muljadi, Eduard; Gevorgian, Vahan; Donegan, James

    This presentation provides a high-level overview of the deployment of a river generator installed in a small system. The turbine dynamics of a river generator, electrical generator, and power converter are modeled in detail. Various simulations can be exercised, and the impact of different control algorithms, failures of power switches, and corresponding impacts can be examined.

  16. Assessment of flood-induced changes of phytoplankton along a river-floodplain system using the morpho-functional approach.

    PubMed

    Mihaljević, Melita; Spoljarić, Dubravka; Stević, Filip; Zuna Pfeiffer, Tanja

    2013-10-01

    In this research, we aimed to find out how the differences in hydrological connectivity between the main river channel and adjacent floodplain influence the changes in phytoplankton community structure along a river-floodplain system. The research was performed in the River Danube floodplain (Croatian river section) in the period 2008-2009 characterised by different flooding pattern on an annual time scale. By utilising the morpho-functional approach and multivariate analyses, the flood-derived structural changes of phytoplankton were analysed. The lake stability during the isolation phase triggered the specific pattern of morpho-functional groups (MFG) which were characterised by cyanobacterial species achieving very high biomass. Adversely, the high water turbulence in the lake during the frequent and extreme flooding led to evident similarity between lake and river assemblages. Besides different diatom species (groups of small and large centrics and pennates), which are the most abundant representatives in the river phytoplankton, many other groups such as cryptophytes and colonial phytomonads appeared to indicate altered conditions in the floodplain driven by flooding. Having different functional properties, small centric diatom taxa sorted to only one MFG cannot clearly reflect environmental changes that are shown by the species-level pattern. Disadvantages in using the MFG approach highlight that it is still necessary to combine it with taxonomical approach in monitoring of phytoplankton in the river-floodplain ecosystems.

  17. Status of the dirty darter, Etheostoma olivaceum, and bluemask darter, Etheostoma (Doration)sp. , with notes on fishes of the Caney Fork River system, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Layman, S.R.; Simons, A.M.; Wood, R.M.

    1993-04-01

    Seventy-six localities were sampled in the Caney Fork River system and adjacent Cumberland River tributaries. Etheostoma olivaceum was found in small creeks from nine tributaries of lower Caney Fork River and three tributaries of the Cumberland River in the Nashville Basin physiographic province. The species was most abundant around slab rocks and rubble over bedrock in slow to moderate current. Etheostoma olivaceum was common throughout its small range; however, given widespread habitat degradation from agriculture, the species should retain its [open quotes]deemed in need of management[close quotes] status in Tennessee. The bluemask darter, Etheostoma (Doration) sp., was collected in slowmore » to moderate current over sand and gravel in Collins River, Rocky River, Cane Creek, and Caney Fork River. All four populations were isolated upstream of Great Falls Reservoir in the Highland Rim physiographic province. The species was found in a 37-km reach of Collins River but was restricted to reaches of 0.2 to 4.3 km in the other three streams. Threats to the species include pesticides from plant nurseries, siltation, gravel dredging, and acid mine drainage. The authors recommend that the bluemask darter be listed as state and federally protected. Two new records were established for the rare Barrens darter, Etheostoma forbesi, in lower Collins River and Barren Fork River, and eight previously unknown records of the species were identified from older museum collections. 21 refs., 1 fig., 1 tab.« less

  18. Molybdenum, vanadium, and uranium weathering in small mountainous rivers and rivers draining high-standing islands

    NASA Astrophysics Data System (ADS)

    Gardner, Christopher B.; Carey, Anne E.; Lyons, W. Berry; Goldsmith, Steven T.; McAdams, Brandon C.; Trierweiler, Annette M.

    2017-12-01

    Rivers draining high standing islands (HSIs) and small mountainous rivers (SMRs) are known to have extremely high sediment fluxes, and can also have high chemical weathering yields, which makes them potentially important contributors to the global riverine elemental flux to the ocean. This work reports on the riverine concentrations, ocean flux, and weathering yields of Molybdenum (Mo), Vanadium (V), and Uranium (U) in a large number of small but geochemically important rivers using 338 river samples from ten lithologically-diverse regions. These redox-sensitive elements are used extensively to infer paleo-redox conditions in the ocean, and Mo and V are also important rock-derived micronutrients used by microorganisms in nitrogen fixation. Unlike in large river systems, in which dissolved Mo has been attributed predominately to pyrite dissolution, Mo concentrations in these rivers did not correlate with sulfate concentrations. V was found to correlate strongly with Si in terrains dominated by silicate rocks, but this trend was not observed in primarily sedimentary regions. Many rivers exhibited much higher V/Si ratios than larger rivers, and rivers draining young Quaternary volcanic rocks in Nicaragua had much higher dissolved V concentrations (mean = 1306 nM) than previously-studied rivers. U concentrations were generally well below the global average with the exception of rivers draining primarily sedimentary lithologies containing carbonates and shales. Fluxes of U and Mo from igneous terrains of intermediate composition are lower than the global average, while fluxes of V from these regions are higher, and up to two orders of magnitude higher in the Nicaragua rivers. Weathering yields of Mo and V in most regions are above the global mean, despite lower than average concentrations measured in some of those systems, indicating that the chemical weathering of these elements are higher in these SMR watersheds than larger drainages. In regions of active boundaries with andesite/dacite lithologies, rivers draining young Pleistocene rocks had higher concentrations than did older Miocene-Pliocene rocks of a similar composition. This work shows that weathering yields of Mo, V, and U from SMRs are slightly higher than from large rivers, and the age of igneous lithologies in these regions exhibits a measurable control on riverine concentrations of these elements.

  19. LANDSCAPE ECOLOGY PRACTICE BY SMALL SCALE RIVER CONSERVATION GROUPS. (R826600)

    EPA Science Inventory

    River¯floodplain systems, and riparian forests in particular, offer physical contributions to human society such as flood mitigation and the maintenance of water quality, social benefits including the opportunity for recreation and solitude, as well as numerous...

  20. Emerging concepts for management of river ecosystems and challenges to applied integration of physical and biological sciences in the Pacific Northwest, USA

    Treesearch

    Bruce E. Rieman; Jason B. Dunham; James L. Clayton

    2006-01-01

    Integration of biological and physical concepts is necessary to understand and conserve the ecological integrity of river systems. Past attempts at integration have often focused at relatively small scales and on mechanistic models that may not capture the complexity of natural systems leaving substantial uncertainty about ecological responses to management actions....

  1. Geomorphology and soil survey

    Treesearch

    Laura A. Murray; Bob Eppinette; John H. Thorp

    2000-01-01

    The Coosawhatchie River, through erosion and downcutting, carved a fluvial valley through the Wicomico and Pamlico marine terraces during the late Pleistocene-Holocene period. The floodplain is relatively small and immature compared to the major river systems of the South Carolina Lower Coastal Plain. Consequently, the classic geomorphic features of a larger fluvial...

  2. Cultural Resources and Geomorphological Reconnaissance of the McClellan-Kerr, Arkansas River Navigation System. Pools 1 through 9

    DTIC Science & Technology

    1989-01-01

    either the Petit Jean or Maumelle reaches as it flows out of the Ouachita Mountains into the unconsolidated sediments of the Mississippi River valley...small breaks, each depositing its load of coarser sediments in its own way. This results in sharply contrasting lenses of very small dimensions and...reflected in the channel size which decreases with increasing amounts of sediment deposited in the channel. Additionally, the amount of sediment deposited

  3. Transport and fluxes of terrestrial polycyclic aromatic hydrocarbons in a small mountain river and submarine canyon system.

    PubMed

    Lin, Bing-Sian; Lee, Chon-Lin; Brimblecombe, Peter; Liu, James T

    2016-08-01

    Polycyclic aromatic hydrocarbon (PAH) concentrations in the Gaoping River were investigated in the wet and dry seasons. PAH characteristics allowed us to trace the particulate matter transported in a river-sea system containing a small mountain river, continental shelf, and submarine canyon. PAH signatures of the Gaoping River showed that particles were rapidly transported from the high mountain to the Gaoping coastal areas in the wet season, even arriving at the deep ocean via the Gaoping Submarine Canyon. By contrast, in the dry season, the particles were delivered quite slowly and included mostly pyrogenic contaminants. The annual riverine flux estimates for PAHs were 2241 kg in the Gaoping river-sea system. Only 18.0 kg were associated with the dissolved phase; the rest was bound onto particles. The fluxes caused by typhoons and their effects accounted for 20.2% of the dissolved and 68.4% of the particulate PAH fluxes from the river. Normalized partition coefficients for organic carbon suggested that PAHs were rigid on the particles. Distinct source characteristics were evident for PAHs on riverine suspended particles and coastal surface sediments: the particles in the wet season (as background signals) were similar to petrogenic sources, whereas the particles in the dry season had characteristics of coal burning and vehicular emissions. The sediments in the northwestern shelf were similar to pyrogenic sources (including vehicular emissions and coal and biomass burning), whereas the sediments in the canyon and southeastern shelf arose from mixed sources, although some diesel signature was also evident. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Geographic Information System and Geoportal «River basins of the European Russia»

    NASA Astrophysics Data System (ADS)

    Yermolaev, O. P.; Mukharamova, S. S.; Maltsev, K. A.; Ivanov, M. A.; Ermolaeva, P. O.; Gayazov, A. I.; Mozzherin, V. V.; Kharchenko, S. V.; Marinina, O. A.; Lisetskii, F. N.

    2018-01-01

    Geographic Information System (GIS) and Geoportal with open access «River basins of the European Russia» were implemented. GIS and Geoportal are based on the map of basins of small rivers of the European Russia with information about natural and anthropogenic characteristics, namely geomorphometry of basins relief; climatic parameters, representing averages, variation, seasonal variation, extreme values of temperature and precipitation; land cover types; soil characteristics; type and subtype of landscape; population density. The GIS includes results of spatial analysis and modelling, in particular, assessment of anthropogenic impact on river basins; evaluation of water runoff and sediment runoff; climatic, geomorphological and landscape zoning for the European part of Russia.

  5. Tracking plant-derived biomarkers from source to sink in the Miners River, Upper Peninsula of Michigan (USA)

    NASA Astrophysics Data System (ADS)

    Giri, S. J.; Diefendorf, A. F.; Lowell, T. V.

    2012-12-01

    Biogeochemical cycling of terrestrial organic matter and it subsequent burial plays a vital role in the global carbon cycle. Rivers provide a pathway for terrestrial organic carbon dispersal and integration into sediments. Terrestrial plant biomarkers are useful tools for studying carbon cycling because they can provide an indication of the source of organic carbon in both modern and ancient sediments. Biomarkers can also be used as paleovegetation proxies in geologic sediments where fossils are absent. However, limited information is available about the dispersal and deposition of plant biomarkers in modern river systems, especially for compounds that provide taxonomic specificity such as di- and triterpenoids (diagnostic for conifers and angiosperms, respectively). To better resolve the modes of biomarker transport within fluvial and riparian systems, we characterized plant biomarker transport in the Miners River, a small river basin within a mixed angiosperm-conifer forest at Pictured Rocks National Lakeshore (MI, USA). To assess the transport of biomarkers in river systems, we collected plants, soils, river sediments, and filtered particulate and dissolved organic carbon from seven sites from the headwaters to Lake Superior along the Miners River (~20 km pathway). All samples contained long-chain n-alkyl lipids, sterols, diterpenoids (abietane and pimarane classes), and triterpenoids (oleanane, ursane, and lupane classes). With the exception of a soil sample taken at a depth of 30 cm, triterpenoids are found in higher concentrations than diterpenoids in riparian soils and river sediments. Biomarker compositions in riparian soils, point bar, and overbank deposits are similar to the surrounding vegetation, albeit much lower in concentration. The composition of di- and triterpenoids in the river-suspended particulate organic carbon is similar in composition to the surrounding vegetation and soils. We developed a method to isolate biomarkers in the dissolved organic carbon fraction in river waters using solid-phase extraction and the preliminary data suggests that di- and triterpenoids are transported as dissolved organic carbon, however concentrations are lower than in the particulate organic carbon fraction. Results from the Miners River will help to better define terrestrial organic matter cycling in small river catchments. Characterizing how plant biomarkers are transported in river systems will enhance our interpretations of plant biomarkers in the geologic record. This will provide new insights into biomarker transport and potential source/sink biases in fluvial systems and thus identify potential complications for using plant-derived biomarkers as quantitative paleovegetation indicators and will enhance the use of biomarker-specific isotope analyses.

  6. 78 FR 21839 - Drawbridge Operation Regulation; Green River, Small-house, KY and Black River, Jonesboro, LA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-12

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 117 [Docket No. USCG-2013-0041] RIN 1625-AA09 Drawbridge Operation Regulation; Green River, Small-house, KY and Black River, Jonesboro, LA... drawbridge operation regulation for the drawbridges across Green River, mile 79.6, Small- house, KY and Black...

  7. Shortnose sturgeon use small coastal rivers: The importance of habitat connectivity

    USGS Publications Warehouse

    Zydlewski, Gayle B.; Kinnison, M.T.; Dionne, P.E.; Zydlewski, Joseph D.; Wippelhauser, Gail S.

    2011-01-01

    Contrary to conventional wisdom for shortnose sturgeon (Acipenser brevirostrum), we document shortnose sturgeon use of habitats beyond large rivers. Telemetry data from 2008 to 2010 in the Gulf of Maine demonstrates that adult shortnose sturgeon (up to 70%) frequently move between Maine’s two largest rivers, the Kennebec and Penobscot Rivers. Even more interesting, small rivers located between these watersheds were used by 52% of the coastal migrants. Small river use was not trivial, 80% of observed movements extended more than 10 km upstream. However, visits were short in duration. This pattern indicates one of several possibilities: directed use of resources, searching behaviors related to reproduction (i.e. straying) or undirected wandering. Data suggest a relationship between residence time in small rivers and distance to the lowermost barrier. Restoring connectivity to upstream habitats in these rivers could allow opportunities for metapopulation expansion. Regional management of shortnose sturgeon in the Gulf of Maine should incorporate a habitat framework that considers small coastal rivers.

  8. Assessing Methane Fluxes in a Small Run-of-River Reservoir: The Importance of Adjacent Marshland

    NASA Astrophysics Data System (ADS)

    McGinnis, D. F.; Flury, S.; Fietzek, P.; Bilsley, N. A.; Bodmer, P.; Premke, K.; Maeck, A.; Lorke, A.; Schmidt, M.

    2013-12-01

    We investigate methane (CH4) emissions from a small run-of-river impoundment, the Schwentine River in Kiel, Germany. Small dammed rivers, while important regions for carbon transformation, are presently not considered in the terrestrial carbon budget and are under-represented in CH4 emission studies. Using state-of-the-art monitoring techniques, we determine that 1) the CH4 emissions well-exceed those reported for temperate reservoirs and 2) the hydrodynamic linkage to bordering marshland (consisting of reed belts, sidebays and creeks) is an important CH4 source for Schwentine River CH4. During our study, the Schwentine River discharged into the Kieler Fjord at 3 - 12 m3/s. CH4 measurements included 1) a moored sensor near the dam discharge, 2) discrete water sampling, and 3) real time surface flux measurements with floating chambers. We observed that the CH4 concentration increased nearly linearly from 2.5 km upstream towards the dam. The CH4 concentration near the dam discharge was logged and reported every 30 minutes nearly continuously from 11 July - 28 Sept 2011, and varied from 500 μmol/L to 2,200 μmol/L. Surprisingly, the CH4 mass discharge from the dam - ranging from 4 to 20 kg/day - increased with both temperature and flowrate, suggesting a flow-dependent CH4 source. We found that the bordering and numerous inundated reed belts, sidebays and small creeks, had significantly elevated CH4 concentrations. These marshland regions are relatively productive and quiescent compared to the main river, and trap organic and particulate matter, leading to enhanced CH4 production. As the river flowrate increases, the lateral exchange with these adjacent areas also increases. Using the CH4 concentration time series, measured surface diffusive and ebullition fluxes, and sediment CH4 porewater profiles, we estimate the relative contributions of CH4 in the main branch due to 1) sediment diffusion, 2) dissolution from sediment CH4 bubble release, and 3) lateral fluxes from the marshland. Damming of the rivers potentially creates or increases adjacent marshland, leading to methane production/emission hotspots. Considering only the main branch, the Schwentine River CH4 emission rate is similar to tropical reservoirs. However, including bubble and diffusive emissions from the reed belts and many small side bays and streams could significantly increase this estimate. As millions of such small river impoundments exist worldwide, we discuss the hydrodynamic alterations promoting CH4 production/emission hotspots, illustrate the importance of collecting high-resolution time series data for assessing emissions, and finally estimate the potential contribution of these small aquatic systems to the global terrestrial carbon balance.

  9. Land-Sea Sedimentary Facies Transition at the Mouth of a Small Mountain River on the West Coast of Taiwan Since 50,000 yr BP

    NASA Astrophysics Data System (ADS)

    Yang, R.; Liu, J. T.; Fan, D.; Burr, G.; Lin, H. L.; Chen, T.

    2016-02-01

    Taiwan is located in the collision zone of two tectonic plates, and receives impacts from the monsoons and typhoons. They contribute to the high sediment load delivered to the sea by small mountainous rivers on this island. The disproportionally large sediment load and the rising sea level constitute a favorable receiving-basin condition for the formation of river deltas. In this study, FATES-HYPERS team drilled two bore-holes on both sides of the Zhuoshui River mouth in central Taiwan. The length of each core was 104m (JRD-S) and 98m (JRD-N). Through AMS 14C dating from over 70 samples in each core a reliable age model was established to reconstruct the paleoenvironment of at the Zhuoshui River mouth during late Quaternary. These transitions indicate that the paleo-river mouth began to develop a transgressive-estuarine system at 10,000 yr BP, when the paleo-river mouth was inundated by the rising sea. The sediments that were come from Zhuoshui River accumulated slower than the sea-level rise. This resulted in gradually deeper environment. The evidence of maximum flooding surface (MFS) suggests transgression progressed until 5700 yr BP. Combined with findings from previous studies the position of MFS display a shallowing trend from the south to north. This implies that the deposition rate in the north was higher than that in the south. Therefore it is reasonable to assume that the paleo-river mouth was located north to the present position. After the sea level became stable, because of large terrestrial sediments discharge the paleo-river mouth was soon switched from a transgressive system to an aggradational delta system. The Zhuoshui River delta, unlike many well-known river delta systems, is limited by the depth of the Taiwan Strait. Shallow water depth and energetic hydrodynamics result in the non-deposition of muddy sediments near the river mouth. This caused the absence of thick muddy prodelta deposits in the upper part of the JRD cores. This caused the absence of thick muddy prodelta deposits in the upper part of the JRD cores. Moreover, the offshore morphology influenced the tidal current that become parallel to the shoreline in a short distance from the shore. The currents enabled the delta to develop a parallel coast tidal ridge at the delta front. This creates a unique depositional model for the Zhuoshui River delta.

  10. The contribution of headwater streams to biodiversity in river networks

    Treesearch

    Judy L. Meyer; David L. Strayer; J. Bruce Wallace; Sue L. Eggert; Gene S. Helfman; Norman E. Leonard

    2007-01-01

    The diversity of life in headwater streams (intermittent, first and second order) contributes to the biodiversity of a river system and its riparian network. Small streams differ widely in physical, chemical, and biotic attributes, thus providing habitats for a range of unique species. Headwater species include permanent residents as well as migrants that travel to...

  11. Control factors and scale analysis of annual river water, sediments and carbon transport in China.

    PubMed

    Song, Chunlin; Wang, Genxu; Sun, Xiangyang; Chang, Ruiying; Mao, Tianxu

    2016-05-11

    Under the context of dramatic human disturbances on river system, the processes that control the transport of water, sediment, and carbon from river basins to coastal seas are not completely understood. Here we performed a quantitative synthesis for 121 sites across China to find control factors of annual river exports (Rc: runoff coefficient; TSSC: total suspended sediment concentration; TSSL: total suspended sediment loads; TOCL: total organic carbon loads) at different spatial scales. The results indicated that human activities such as dam construction and vegetation restoration might have a greater influence than climate on the transport of river sediment and carbon, although climate was a major driver of Rc. Multiple spatial scale analyses indicated that Rc increased from the small to medium scale by 20% and then decreased at the sizable scale by 20%. TSSC decreased from the small to sizeable scale but increase from the sizeable to large scales; however, TSSL significantly decreased from small (768 g·m(-2)·a(-1)) to medium spatial scale basins (258 g·m(-2)·a(-1)), and TOCL decreased from the medium to large scale. Our results will improve the understanding of water, sediment and carbon transport processes and contribute better water and land resources management strategies from different spatial scales.

  12. Butterfly (Papilionoidea and Hesperioidea) assemblages associated with natural, exotic, and restored riparian habitats along the lower Colorado River, USA

    USGS Publications Warehouse

    Nelson, S.M.; Andersen, D.C.

    1999-01-01

    Butterfly assemblages were used to compare revegetated and natural riparian areas along the lower Colorado River. Species richness and correspondence analyses of assemblages showed that revegetated sites had fewer biological elements than more natural sites along the Bill Williams River. Data suggest that revegetated sites do not provide resources needed by some members of the butterfly assemblage, especially those species historically associated with the cottonwood/willow ecosystem. Revegetated sites generally lacked nectar resources, larval host plants, and closed canopies. The riparian system along the regulated river segment that contains these small revegetated sites also appears to have diminished habitat heterogeneity and uncoupled riparian corridors.Revegetated sites were static environments without the successional stages caused by flooding disturbance found in more natural systems. We hypothesize that revegetation coupled with a more natural hydrology is important for restoration of butterfly assemblages along the lower Colorado River. 

  13. Space and time scales in human-landscape systems.

    PubMed

    Kondolf, G Mathias; Podolak, Kristen

    2014-01-01

    Exploring spatial and temporal scales provides a way to understand human alteration of landscape processes and human responses to these processes. We address three topics relevant to human-landscape systems: (1) scales of human impacts on geomorphic processes, (2) spatial and temporal scales in river restoration, and (3) time scales of natural disasters and behavioral and institutional responses. Studies showing dramatic recent change in sediment yields from uplands to the ocean via rivers illustrate the increasingly vast spatial extent and quick rate of human landscape change in the last two millennia, but especially in the second half of the twentieth century. Recent river restoration efforts are typically small in spatial and temporal scale compared to the historical human changes to ecosystem processes, but the cumulative effectiveness of multiple small restoration projects in achieving large ecosystem goals has yet to be demonstrated. The mismatch between infrequent natural disasters and individual risk perception, media coverage, and institutional response to natural disasters results in un-preparedness and unsustainable land use and building practices.

  14. Using pebble lithology and roundness to interpret gravel provenance in piedmont fluvial systems of the Rocky Mountains, USA

    USGS Publications Warehouse

    Lindsey, D.A.; Langer, W.H.; Van Gosen, B. S.

    2007-01-01

    Clast populations in piedmont fluvial systems are products of complex histories that complicate provenance interpretation. Although pebble counts of lithology are widely used, the information provided by a pebble count has been filtered by a potentially large number of processes and circumstances. Counts of pebble lithology and roundness together offer more power than lithology alone for the interpretation of provenance. In this study we analyze pebble counts of lithology and roundness in two contrasting fluvial systems of Pleistocene age to see how provenance varies with drainage size. The two systems are 1) a group of small high-gradient incised streams that formed alluvial fans and terraces and 2) a piedmont river that formed terraces in response to climate-driven cycles of aggradation and incision. We first analyze the data from these systems within their geographic and geologic context. After this is done, we employ contingency table analysis to complete the interpretation of pebble provenance. Small tributary streams that drain rugged mountains on both sides of the Santa Cruz River, southeast Arizona, deposited gravel in fan and terrace deposits of Pleistocene age. Volcanic, plutonic and, to a lesser extent, sedimentary rocks are the predominant pebble lithologies. Large contrasts in gravel lithology are evident among adjacent fans. Subangular to subrounded pebbles predominate. Contingency table analysis shows that hard volcanic rocks tend to remain angular and, even though transport distances have been short, soft tuff and sedimentary rocks tend to become rounded. The Wind River, a major piedmont stream in Wyoming, drains rugged mountains surrounding the northwest part of the Wind River basin. Under the influence of climate change and glaciation during the Pleistocene, the river deposited an extensive series of terrace gravels. In contrast to Santa Cruz tributary gravel, most of the Wind River gravel is relatively homogenous in lithology and is rounded to well-rounded. Detailed analysis reveals a multitude of sources in the headwaters and the basin itself, but lithologies from these sources are combined downstream. Well-rounded volcanic and recycled quartzite clasts were derived from the headwaters. Precambrian igneous and metamorphic clasts were brought down tributary valleys to the Wind River by glaciers, and sandstone was added where the river enters the Wind River structural basin.

  15. DEVELOPMENT OF A SORBENT DISTRIBUTION AND RECOVERY SYSTEM

    EPA Science Inventory

    This report describes the design, fabrication, and test of a prototype system for the recovery of spilled oil from the surface of river, estuarine, and harbor waters. The system utilizes an open cell polyurethane foam in small cubes to absorb the floating oil. The system is highl...

  16. 77 FR 30518 - Support of Deployment of Prototype Small Modular Reactors at the Savannah River Site

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-23

    ... DEPARTMENT OF ENERGY Support of Deployment of Prototype Small Modular Reactors at the Savannah River Site AGENCY: Savannah River Operations Office, Department of Energy (DOE). ACTION: Notice of availability. SUMMARY: DOE-Savannah River Operations Office (SR), in conjunction with the Savannah River...

  17. Proceedings of a Seminar on Water Quality Evaluation. 22-24 January 1980, Tampa, Florida.

    DTIC Science & Technology

    1980-01-01

    Columbia River system from the Pacific Ocean to Lewiston , Idaho , a distance of 465 miles. Tugs and barges are raised a total of 738 feet in this distance by...States of Washington, Oregon, Idaho , Montana and small areas in Nevada, Utah and Wyoming. It drains 259,000 square miles, about 15% of which are in...million acres of agricultural land in Oregon, Washington and Idaho were irrigated with water from the river system in 1979. - Fisheries In the Columbia

  18. Responses of chub (Leuciscus cephalus) populations to chemical stress, assessed by genetic markers, DNA damage and cytochrome P4501A induction.

    PubMed

    Larno, V; Laroche, J; Launey, S; Flammarion, P; Devaux, A

    2001-06-01

    Indicators of effects at the population level (genetic variation using allozymes) and early indicators of pollution (EROD activity and DNA strand break formation) were analysed in chub (Leuciscus cephalus) living in weakly and heavily contaminated stations of the Rhône River watershed. The genetic erosion was mainly detected in a fish population living in a contaminated small river system, through modifications in allelic and genotypic frequencies for PGM-2 locus and could be linked to a genetic bottleneck and to the reduced gene flow from upstream unable to maintain or restore the genetic diversity. In a contaminated large river system, the genetic diversity for PGM-2 and other loci was maintained and was probably the consequence of a high gene flow from upstream, linked to a sustained drift of larvae and juveniles in the system. A convergent increase of the frequency of the 90 allele at PGM-2 was observed in two contaminated stations compared with the reference station, this trend being confirmed on a more extensive geographic scale over the Rhône River basin. A high level of EROD activity was detected in both contaminated sites but only the fish in the large river system showed a significant DNA damage level compared to the reference population. The low DNA damage level and high hepato-somatic ratio characterized the impacted population of the small river system and could be associated to a chronic high-level exposure of fish to pollutants which selected individuals exhibiting a high level of DNA damage repair. In the two contaminated systems, some genotypes at the PGM-2 and EST-2 loci showed a low level of DNA damage and/or a high EROD activity and may be considered as being tolerant to pollutants. A higher tolerance of the most heterozygous fish was also detected in the contaminated large system and confirmed that a high level of heterozygosity may be necessary for survival in such a system.

  19. Temporal trends in organic carbon content in the main Swiss rivers, 1974-2010.

    PubMed

    Rodríguez-Murillo, J C; Zobrist, J; Filella, M

    2015-01-01

    Increases in dissolved organic carbon (DOC) concentrations have often been reported in rivers and lakes of the Northern Hemisphere over the last few decades. High-quality organic carbon (OC) concentration data have been used to study the change in DOC and total (TOC) organic carbon concentrations in the main rivers of Switzerland (Rhône, Rhine, Thur and Aar) between 1974 and 2010. These rivers are characterized by high discharge regimes (due to their Alpine origin) and by running in populated areas. Small long term trends (a general statistically significant decrease in TOC and a less clear increase in DOC concentrations), on the order of 1% of mean OC concentration per year, have been observed. An upward trend before 1999 reversed direction to a more marked downward trend from 1999 to 2010. Of the potential causes of OC temporal variation analysed (water temperature, dissolved reactive phosphorus and river discharge), only discharge explains a significant, albeit still small, part of TOC variability (8-31%), while accounting for barely 2.5% of DOC variability. Estimated anthropogenic TOC and DOC loads (treated sewage) to the rivers could account for a maximum of 4-20% of the temporal trends. Such low predictability is a good example of the limitations faced when studying causality and drivers behind small variations in complex systems. River export of OC from Switzerland has decreased significantly over the period. Since about 5.5% of estimated NEP of Switzerland is exported by the rivers, riverine OC fluxes should be taken into account in a detailed carbon budget of the country. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Mount Baker lahars and debris flows, ancient, modern, and future

    USGS Publications Warehouse

    Tucker, David S; Scott, Kevin M.; Grossman, Eric E.; Linneman, Scott

    2014-01-01

    Holocene lahars and large debris flows (>106 m3) have left recognizable deposits in the Middle Fork Nooksack valley. A debris flow in 2013 resulting from a landslide in a Little Ice Age moraine had an estimated volume of 100,000 m3, yet affected turbidity for the entire length of the river, and produced a slug of sediment that is currently being reworked and remobilized in the river system. Deposits of smaller-volume debris flows, deposited as terraces in the upper valley, may be entirely eroded within a few years. Consequently, the geologic record of small debris flows such as those that occurred in 2013 is probably very fragmentary. Small debris flows may still have significant impacts on hydrology, biology, and human uses of rivers downstream. Impacts include the addition of waves of fine sediment to stream loads, scouring or burying salmon-spawning gravels, forcing unplanned and sudden closure of municipal water intakes, damaging or destroying trail crossings, extending river deltas into estuaries, and adding to silting of harbors near river mouths.

  1. Impacts of Small Scale Flow Regulation on Sediment Dynamics in an Ecologically Important Upland River

    NASA Astrophysics Data System (ADS)

    Quinlan, E.; Gibbins, C. N.; Batalla, R. J.; Vericat, D.

    2015-03-01

    Flow regulation is widely recognized as affecting fluvial processes and river ecosystems. Most impact assessments have focused on large dams and major water transfer schemes, so relatively little is known about the impacts of smaller dams, weirs and water diversions. This paper assesses sediment dynamics in an upland river (the Ehen, NW England) whose flows are regulated by a small weir and tributary diversion. The river is important ecologically due to the presence of the endangered freshwater pearl mussel Margaritifera margaritifera, a species known to be sensitive to sedimentary conditions. Fine sediment yield for the 300-m long study reach was estimated to be 0.057 t km-2 year-1, a very low value relative to other upland UK rivers. Mean in-channel storage of fine sediment was also low, estimated at an average of around 40 g m-2. Although the study period was characterized by frequent high flow events, little movement of coarser bed material was observed. Data therefore indicate an extremely stable fluvial system within the study reach. The implication of this stability for pearl mussels is discussed.

  2. Human impacts on fluvial systems - A small-catchment case study

    NASA Astrophysics Data System (ADS)

    Pöppl, Ronald E.; Glade, Thomas; Keiler, Margreth

    2010-05-01

    Regulations of nearly two-thirds of the rivers worldwide have considerable influences on fluvial systems. In Austria, nearly any river (or) catchment is affected by humans, e.g. due to changing land-use conditions and river engineering structures. Recent studies of human impacts on rivers show that morphologic channel changes play a major role regarding channelization and leveeing, land-use conversions, dams, mining, urbanization and alterations of natural habitats (ecomorphology). Thus 'natural (fluvial) systems' are scarce and humans are almost always inseparably interwoven with them playing a major role in altering them coincidentally. The main objective of this study is to identify human effects (i.e. different land use conditions and river engineering structures) on river bed sediment composition and to delineate its possible implications for limnic habitats. The study area watersheds of the 'Fugnitz' River (~ 140km²) and the 'Kaja' River (~ 20km²) are located in the Eastern part of the Bohemian Massif in Austria (Europe) and drain into the 'Thaya' River which is the border river to the Czech Republic in the north of Lower Austria. Furthermore the 'Thaya' River is eponymous for the local National Park 'Nationalpark Thayatal'. In order to survey river bed sediment composition and river engineering structures facies mapping techniques, i.e. river bed surface mapping and ecomorphological mapping have been applied. Additionally aerial photograph and airborne laserscan interpretation has been used to create land use maps. These maps have been integrated to a numerical DEM-based spatial model in order to get an impression of the variability of sediment input rates to the river system. It is hypothesized that this variability is primarily caused by different land use conditions. Finally river bed sites affected by river engineering structures have been probed and grain size distributions have been analyzed. With these data sedimentological and ecological/ecomorphological effects of various river engineering structures (i.e. dams, weirs, river bank- and river bed protection works) on river bed sediment composition and on limnic habitats are evaluated. First results reveal that 'land use' is a dominant factor concerning river bed sediment composition and limnic habitat conditions. Further outcomes will be presented on European Geosciences Union General Assembly, 2010.

  3. Physical-chemical modeling of elements' behavior in mixing sea and fresh waters of minor rivers in the White Sea catchment area.

    PubMed

    Maksimova, Victoria V; Mazukhina, Svetlana I; Cherepanova, Tatiana A; Gorbacheva, Tamara T

    2017-07-29

    The physical-chemical stage of marginal filters in minor rivers of the White Sea catchment area by the example of the Umba River, flowing to Kandalaksha Gulf, has been explored. Application of the method of physical-chemical modeling on the basis of field data allowed establishing migration forms of a number of elements in the "river-sea" system and deposition of solid phases when mixing waters. The mixing of river and sea water is accompanied by the sedimentation of predominantly goethite, hydromuscovite, and hydroxylapatite. Sediments in mixing river and sea waters were found to be mainly composed by goethite, hydromuscovite, and hydroxylapatite. The research has added to the knowledge of the role of the abiotic part in the marginal filters of small rivers in the Arctic.

  4. Recent (1999-2003) Canadian research on contemporary processes of river erosion and sedimentation, and river mechanics

    NASA Astrophysics Data System (ADS)

    de Boer, D. H.; Hassan, M. A.; MacVicar, B.; Stone, M.

    2005-01-01

    Contributions by Canadian fluvial geomorphologists between 1999 and 2003 are discussed under four major themes: sediment yield and sediment dynamics of large rivers; cohesive sediment transport; turbulent flow structure and sediment transport; and bed material transport and channel morphology. The paper concludes with a section on recent technical advances. During the review period, substantial progress has been made in investigating the details of fluvial processes at relatively small scales. Examples of this emphasis are the studies of flow structure, turbulence characteristics and bedload transport, which continue to form central themes in fluvial research in Canada. Translating the knowledge of small-scale, process-related research to an understanding of the behaviour of large-scale fluvial systems, however, continues to be a formidable challenge. Models play a prominent role in elucidating the link between small-scale processes and large-scale fluvial geomorphology, and, as a result, a number of papers describing models and modelling results have been published during the review period. In addition, a number of investigators are now approaching the problem by directly investigating changes in the system of interest at larger scales, e.g. a channel reach over tens of years, and attempting to infer what processes may have led to the result. It is to be expected that these complementary approaches will contribute to an increased understanding of fluvial systems at a variety of spatial and temporal scales. Copyright

  5. Extreme river response to climate-induced aggradation in a forested, montane basin, Carbon River, Mount Rainier National Park, Washington, United States

    NASA Astrophysics Data System (ADS)

    Beyeler, J. D.; Rossi, R. K.; Kennard, P. M.; Beason, S. R.

    2013-12-01

    Climate change is drastically affecting the alpine landscape of Mount Rainier, encouraging glacial retreat, changes in snowpack thickness and longevity, and sediment delivery to downstream fluvial systems, leading to an extremely transport limited system and aggradation of the river valleys. River aggradation encourages devastating interactions between the pro-glacial braided fluvial systems and streamside floodplain ecosystems, in most places occupied by old-growth conifer forests. Current aggradation rates of the channels, bordered by late seral stage riparian forests, inhibit floodplain development, leading to an inverted relationship between perched river channels and lower-elevation adjacent floodplains. This disequilibrium creates a steeper gradient laterally towards the floodplains, rather than downstream; promoting flooding of streamside forest, removal and burial of vegetation with coarse alluvium, incision of avulsion channels, tree mortality, wood recruitment to channels, and ultimately widening the alluviated valley towards the glacially carved hillslopes. Aggradation and loss of streamside old-growth forest poses a significant problem to park infrastructure (e.g. roads, trails, and campgrounds) due to flood damage with as frequent as a two-year event. Other park rivers, the White River and Tahoma Creek, characterize two end-member cases. Despite an extremely perched channel, the White River is relatively stable; experiencing small avulsions while the old-growth streamside forest has remained mostly intact. These relatively small avulsions however severely impact park infrastructure, causing extensive flood damage and closure of the heavily trafficked state highway. Conversely debris flows on Tahoma Creek destroyed the streamside forest and migration across the valley is uninhibited. Mature streamside forests tend to oppose avulsions, sieving wood at the channel margins, promoting sediment deposition and deflection of erosive flows. Our study seeks to understand the Carbon River avulsion vulnerability, relative to White River and Tahoma Creek, and whether recent avulsions are a harbinger of a threshold loss of riparian forest leading to unfettered future river channel shifting. To this end, we are analyzing historic aerial imagery, multiple LiDAR datasets, and the flood record as well as field mapping channels to identify historically active, inactive, and abandoned avulsions through time and in relation to susceptibility of forest mortality and infrastructure destruction by mainstem avulsions of the Carbon River and widening of the river valley. Our work contributes to the understanding of river avulsions and landscape response to climate change via channel migration due to interactions between sediment aggradation, flood events, and interactions with streamside forests.

  6. Small Rov Marine Boat for Bathymetry Surveys of Shallow Waters - Potential Implementation in Malaysia

    NASA Astrophysics Data System (ADS)

    Suhari, K. T.; Karim, H.; Gunawan, P. H.; Purwanto, H.

    2017-10-01

    Current practices in bathymetry survey (available method) are indeed having some limitations. New technologies for bathymetry survey such as using unmanned boat has becoming popular in developed countries - filled in and served those limitations of existing survey methods. Malaysia as one of tropical country has it own river/water body characteristics and suitable approaches in conducting bathymetry survey. Thus, a study on this emerging technology should be conducted using enhanced version of small ROV boat with Malaysian rivers and best approaches so that the surveyors get benefits from the innovative surveying product. Among the available ROV boat for bathymetry surveying in the market, an Indonesian product called SHUMOO is among the promising products - economically and practically proven using a few sample areas in Indonesia. The boat was equipped and integrated with systems of remote sensing technology, GNSS, echo sounder and navigational engine. It was designed for riverbed surveys on shallow area such as small /medium river, lakes, reservoirs, oxidation/detention pond and other water bodies. This paper tries to highlight the needs and enhancement offered to Malaysian' bathymetry surveyors/practitioners on the new ROV boat which make their task easier, faster, safer, economically effective and better riverbed modelling results. The discussion continues with a sample of Indonesia river (data collection and modelling) since it is mostly similar to Malaysia's river characteristics and suggests some improvement for Malaysia best practice.

  7. Understanding the basis of shortnose sturgeon (Acipenser brevirostrum) partial migration in the Gulf of Maine

    USGS Publications Warehouse

    Altenritter, Matthew E.; Zydlewski, Gayle B.; Kinnison, Michael T.; Zydlewski, Joseph D.; Wippelhauser, Gail S.

    2018-01-01

    Movement of shortnose sturgeon (Acipenser brevirostrum) among major river systems in the Gulf of Maine is common and has implications for the management of this endangered species. Directed movements of 61 telemetered individuals monitored between 2010 and 2013 were associated with the river of tagging and individual characteristics. While a small proportion of fish tagged in the Kennebec River moved to the Penobscot River (5%), a much higher proportion of fish tagged in the Penobscot River moved to the Kennebec River (66%), during probable spawning windows. This suggests that Penobscot River fish derive from a migratory contingent within a larger Kennebec River population. Despite this connectivity, fish captured in the Penobscot River were larger (∼100 mm fork length) and had higher condition factors (median Fulton’s K: 0.76) than those captured in the Kennebec River (median Fulton’s K: 0.61). Increased abundance and resource limitation in the Kennebec River may be constraining growth and promoting migration to the Penobscot River by individuals with sufficient initial size and condition. Migrants could experience an adaptive reproductive advantage relative to nonmigratory individuals.

  8. Coherence of river and ocean conditions along the US West Coast during storms

    USGS Publications Warehouse

    Kniskern, T.A.; Warrick, J.A.; Farnsworth, K.L.; Wheatcroft, R.A.; Goni, M.A.

    2011-01-01

    The majority of water and sediment discharge from the small, mountainous watersheds of the US West Coast occurs during and immediately following winter storms. The physical conditions (waves, currents, and winds) within and acting upon the proximal coastal ocean during these winter storms strongly influence dispersal patterns. We examined this river-ocean temporal coherence for four coastal river-shelf systems of the US West Coast (Umpqua, Eel, Salinas, and Santa Clara) to evaluate whether specific ocean conditions occur during floods that may influence coastal dispersal of sediment. Eleven years of corresponding river discharge, wind, and wave data were obtained for each river-shelf system from USGS and NOAA historical records, and each record was evaluated for seasonal and event-based patterns. Because near-bed shear stresses due to waves influence sediment resuspension and transport, we used spectral wave data to compute and evaluate wave-generated bottom-orbital velocities. The highest values of wave energy and discharge for all four systems were consistently observed between October 15 and March 15, and there were strong latitudinal patterns observed in these data with lower discharge and wave energies in the southernmost systems. During floods we observed patterns of river-ocean coherence that differed from the overall seasonal patterns. For example, downwelling winds generally prevailed during floods in the northern two systems (Umpqua and Eel), whereas winds in the southern systems (Salinas and Santa Clara) were generally downwelling before peak discharge and upwelling after peak discharge. Winds not associated with floods were generally upwelling on all four river-shelf systems. Although there are seasonal variations in river-ocean coherence, waves generally led floods in the three northern systems, while they lagged floods in the Santa Clara. Combined, these observations suggest that there are consistent river-ocean coherence patterns along the US West Coast during winter storms and that these patterns vary substantially with latitude. These results should assist with future evaluations of flood plume formation and sediment fate along this coast. ?? 2011 Elsevier Ltd.

  9. River bank burrowing by invasive crayfish: Spatial distribution, biophysical controls and biogeomorphic significance.

    PubMed

    Faller, Matej; Harvey, Gemma L; Henshaw, Alexander J; Bertoldi, Walter; Bruno, Maria Cristina; England, Judy

    2016-11-01

    Invasive species generate significant global environmental and economic costs and represent a particularly potent threat to freshwater systems. The biogeomorphic impacts of invasive aquatic and riparian species on river processes and landforms remain largely unquantified, but have the potential to generate significant sediment management issues within invaded catchments. Several species of invasive (non-native) crayfish are known to burrow into river banks and visual evidence of river bank damage is generating public concern and media attention. Despite this, there is a paucity of understanding of burrow distribution, biophysical controls and the potential significance of this problem beyond a small number of local studies at heavily impacted sites. This paper presents the first multi-catchment analysis of this phenomenon, combining existing data on biophysical river properties and invasive crayfish observations with purpose-designed field surveys across 103 river reaches to derive key trends. Crayfish burrows were observed on the majority of reaches, but burrowing tended to be patchy in spatial distribution, concentrated in a small proportion (<10%) of the length of rivers surveyed. Burrow distribution was better explained by local bank biophysical properties than by reach-scale properties, and burrowed banks were more likely to be characterised by cohesive bank material, steeper bank profiles with large areas of bare bank face, often on outer bend locations. Burrow excavation alone has delivered a considerable amount of sediment to invaded river systems in the surveyed sites (3tkm(-1) impacted bank) and this represents a minimum contribution and certainly an underestimate of the absolute yield (submerged burrows were not recorded). Furthermore, burrowing was associated with bank profiles that were either actively eroding or exposed to fluvial action and/or mass failure processes, providing the first quantitative evidence that invasive crayfish may cause or accelerate river bank instability and erosion in invaded catchments beyond the scale of individual burrows. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Small mammals in saltcedar (Tamarix ramosissima) - invaded and native riparian habitats of the western Great Basin

    USDA-ARS?s Scientific Manuscript database

    Invasive saltcedar species have replaced native riparian trees on numerous river systems throughout the western US, raising concerns about how this habitat conversion may affect wildlife. For periods ranging from 1-10 years, small mammal populations were monitored at six riparian sites impacted by s...

  11. Spatial patterns of fish communities along two estuarine gradients in southern Florida

    USGS Publications Warehouse

    Green, D.P.J.; Trexler, J.C.; Lorenz, J.J.; McIvor, C.C.; Philippi, T.

    2006-01-01

    In tropical and subtropical estuaries, gradients of primary productivity and salinity are generally invoked to explain patterns in community structure and standing crops of fishes. We documented spatial and temporal patterns in fish community structure and standing crops along salinity and nutrient gradients in two subtropical drainages of Everglades National Park, USA. The Shark River drains into the Gulf of Mexico and experiences diurnal tides carrying relatively nutrient enriched waters, while Taylor River is more hydrologically isolated by the oligohaline Florida Bay and experiences no discernable lunar tides. We hypothesized that the more nutrient enriched system would support higher standing crops of fishes in its mangrove zone. We collected 50 species of fish from January 2000 to April 2004 at six sampling sites spanning fresh to brackish salinities in both the Shark and Taylor River drainages. Contrary to expectations, we observed lower standing crops and density of fishes in the more nutrient rich tidal mangrove forest of the Shark River than in the less nutrient rich mangrove habitats bordering the Taylor River. Tidal mangrove habitats in the Shark River were dominated by salt-tolerant fish and displayed lower species richness than mangrove communities in the Taylor River, which included more freshwater taxa and yielded relatively higher richness. These differences were maintained even after controlling for salinity at the time of sampling. Small-scale topographic relief differs between these two systems, possibly created by tidal action in the Shark River. We propose that this difference in topography limits movement of fishes from upstream marshes into the fringing mangrove forest in the Shark River system, but not the Taylor River system. Understanding the influence of habitat structure, including connectivity, on aquatic communities is important to anticipate effects of construction and operational alternatives associated with restoration of the Everglades ecosystem.

  12. Size-dependent trophic patterns of pallid sturgeon and shovelnose sturgeon in a large river system

    USGS Publications Warehouse

    French, William E.; Graeb, Brian D. S.; Bertrand, Katie N.; Chipps, Steven R.; Klumb, Robert A.

    2013-01-01

    This study compared patterns of δ15N and δ13C enrichment of pallid sturgeon Scaphirhynchus albus and shovelnose sturgeon S. platorynchus in the Missouri River, United States, to infer their trophic position in a large river system. We examined enrichment and energy flow for pallid sturgeon in three segments of the Missouri River (Montana/North Dakota, Nebraska/South Dakota, and Nebraska/Iowa) and made comparisons between species in the two downstream segments (Nebraska/South Dakota and Nebraska/Iowa). Patterns in isotopic composition for pallid sturgeon were consistent with gut content analyses indicating an ontogenetic diet shift from invertebrates to fish prey at sizes of >500-mm fork length (FL) in all three segments of the Missouri River. Isotopic patterns revealed shovelnose sturgeon did not experience an ontogenetic shift in diet and used similar prey resources as small (<500-mm FL) pallid sturgeon in the two downstream segments. We found stable isotope analysis to be an effective tool for evaluating the trophic position of sturgeons within a large river food web.

  13. New classification of natural breeding habitats for Neotropical anophelines in the Yanomami Indian Reserve, Amazon Region, Brazil and a new larval sampling methodology.

    PubMed

    Sánchez-Ribas, Jordi; Oliveira-Ferreira, Joseli; Rosa-Freitas, Maria Goreti; Trilla, Lluís; Silva-do-Nascimento, Teresa Fernandes

    2015-09-01

    Here we present the first in a series of articles about the ecology of immature stages of anophelines in the Brazilian Yanomami area. We propose a new larval habitat classification and a new larval sampling methodology. We also report some preliminary results illustrating the applicability of the methodology based on data collected in the Brazilian Amazon rainforest in a longitudinal study of two remote Yanomami communities, Parafuri and Toototobi. In these areas, we mapped and classified 112 natural breeding habitats located in low-order river systems based on their association with river flood pulses, seasonality and exposure to sun. Our classification rendered seven types of larval habitats: lakes associated with the river, which are subdivided into oxbow lakes and nonoxbow lakes, flooded areas associated with the river, flooded areas not associated with the river, rainfall pools, small forest streams, medium forest streams and rivers. The methodology for larval sampling was based on the accurate quantification of the effective breeding area, taking into account the area of the perimeter and subtypes of microenvironments present per larval habitat type using a laser range finder and a small portable inflatable boat. The new classification and new sampling methodology proposed herein may be useful in vector control programs.

  14. New classification of natural breeding habitats for Neotropical anophelines in the Yanomami Indian Reserve, Amazon Region, Brazil and a new larval sampling methodology

    PubMed Central

    Sánchez-Ribas, Jordi; Oliveira-Ferreira, Joseli; Rosa-Freitas, Maria Goreti; Trilla, Lluís; Silva-do-Nascimento, Teresa Fernandes

    2015-01-01

    Here we present the first in a series of articles about the ecology of immature stages of anophelines in the Brazilian Yanomami area. We propose a new larval habitat classification and a new larval sampling methodology. We also report some preliminary results illustrating the applicability of the methodology based on data collected in the Brazilian Amazon rainforest in a longitudinal study of two remote Yanomami communities, Parafuri and Toototobi. In these areas, we mapped and classified 112 natural breeding habitats located in low-order river systems based on their association with river flood pulses, seasonality and exposure to sun. Our classification rendered seven types of larval habitats: lakes associated with the river, which are subdivided into oxbow lakes and nonoxbow lakes, flooded areas associated with the river, flooded areas not associated with the river, rainfall pools, small forest streams, medium forest streams and rivers. The methodology for larval sampling was based on the accurate quantification of the effective breeding area, taking into account the area of the perimeter and subtypes of microenvironments present per larval habitat type using a laser range finder and a small portable inflatable boat. The new classification and new sampling methodology proposed herein may be useful in vector control programs. PMID:26517655

  15. Hierarchically nested river landform sequences

    NASA Astrophysics Data System (ADS)

    Pasternack, G. B.; Weber, M. D.; Brown, R. A.; Baig, D.

    2017-12-01

    River corridors exhibit landforms nested within landforms repeatedly down spatial scales. In this study we developed, tested, and implemented a new way to create river classifications by mapping domains of fluvial processes with respect to the hierarchical organization of topographic complexity that drives fluvial dynamism. We tested this approach on flow convergence routing, a morphodynamic mechanism with different states depending on the structure of nondimensional topographic variability. Five nondimensional landform types with unique functionality (nozzle, wide bar, normal channel, constricted pool, and oversized) represent this process at any flow. When this typology is nested at base flow, bankfull, and floodprone scales it creates a system with up to 125 functional types. This shows how a single mechanism produces complex dynamism via nesting. Given the classification, we answered nine specific scientific questions to investigate the abundance, sequencing, and hierarchical nesting of these new landform types using a 35-km gravel/cobble river segment of the Yuba River in California. The nested structure of flow convergence routing landforms found in this study revealed that bankfull landforms are nested within specific floodprone valley landform types, and these types control bankfull morphodynamics during moderate to large floods. As a result, this study calls into question the prevailing theory that the bankfull channel of a gravel/cobble river is controlled by in-channel, bankfull, and/or small flood flows. Such flows are too small to initiate widespread sediment transport in a gravel/cobble river with topographic complexity.

  16. Simultaneous and continuous measurements of dissolved CO2, CH4, N2O and CO in rivers using Fourier-Transform-InfraRed (FTIR) spectrometry

    NASA Astrophysics Data System (ADS)

    Warneke, Thorsten; Müller, Denise; Caldow, Christopher; Rixen, Tim; Notholt, Justus

    2015-04-01

    We have coupled a Fourier-Transform InfraRed (FTIR) trace gas analyser to an equilibrator, which allows the simultaneous and continuous measurement of dissolved CO2, CH4, N2O and CO in water. The FTIR-technique has a high precision over a wide range of concentrations, making it very suitable for the measurement of these gases in freshwater systems. We have employed this measurement system on a commercial river barge on the Elbe river (Czech Republic, Germany) and on a fisher boat in the coastal area of Sarawak (Malaysia). In addition we have performed stationary continuous measurements at a small river in Northern Germany over the duration of 3 months. The presentation will outline the advantages and disadvantages of the FTIR-technique for freshwater measurements and will present results from the measurement campaigns.

  17. Salinized rivers: degraded systems or new habitats for salt-tolerant faunas?

    PubMed Central

    Buchwalter, David; Davis, Jenny

    2016-01-01

    Anthropogenic salinization of rivers is an emerging issue of global concern, with significant adverse effects on biodiversity and ecosystem functioning. Impacts of freshwater salinization on biota are strongly mediated by evolutionary history, as this is a major factor determining species physiological salinity tolerance. Freshwater insects dominate most flowing waters, and the common lotic insect orders Ephemeroptera (mayflies), Plecoptera (stoneflies) and Trichoptera (caddisflies) are particularly salt-sensitive. Tolerances of existing taxa, rapid adaption, colonization by novel taxa (from naturally saline environments) and interactions between species will be key drivers of assemblages in saline lotic systems. Here we outline a conceptual framework predicting how communities may change in salinizing rivers. We envision that a relatively small number of taxa will be saline-tolerant and able to colonize salinized rivers (e.g. most naturally saline habitats are lentic; thus potential colonizers would need to adapt to lotic environments), leading to depauperate communities in these environments. PMID:26932680

  18. 33 CFR 334.155 - Severn River, Naval Station Annapolis, Small Boat Basin, Annapolis, MD; naval restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Severn River, Naval Station Annapolis, Small Boat Basin, Annapolis, MD; naval restricted area. 334.155 Section 334.155 Navigation and... RESTRICTED AREA REGULATIONS § 334.155 Severn River, Naval Station Annapolis, Small Boat Basin, Annapolis, MD...

  19. 33 CFR 334.155 - Severn River, Naval Station Annapolis, Small Boat Basin, Annapolis, MD; naval restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Severn River, Naval Station Annapolis, Small Boat Basin, Annapolis, MD; naval restricted area. 334.155 Section 334.155 Navigation and... RESTRICTED AREA REGULATIONS § 334.155 Severn River, Naval Station Annapolis, Small Boat Basin, Annapolis, MD...

  20. Simulation of daily streamflow for nine river basins in eastern Iowa using the Precipitation-Runoff Modeling System

    USGS Publications Warehouse

    Haj, Adel E.; Christiansen, Daniel E.; Hutchinson, Kasey J.

    2015-10-14

    The accuracy of Precipitation-Runoff Modeling System model streamflow estimates of nine river basins in eastern Iowa as compared to measured values at U.S. Geological Survey streamflow-gaging stations varied. The Precipitation-Runoff Modeling System models of nine river basins in eastern Iowa were satisfactory at estimating daily streamflow at 57 of the 79 calibration sites and 13 of the 14 validation sites based on statistical results. Unsatisfactory performance can be contributed to several factors: (1) low flow, no flow, and flashy flow conditions in headwater subbasins having a small drainage area; (2) poor representation of the groundwater and storage components of flow within a basin; (3) lack of accounting for basin withdrawals and water use; and (4) the availability and accuracy of meteorological input data. The Precipitation- Runoff Modeling System models of nine river basins in eastern Iowa will provide water-resource managers with a consistent and documented method for estimating streamflow at ungaged sites and aid in environmental studies, hydraulic design, water management, and water-quality projects.

  1. River mouth morphodynamics - Examples from small, mountainous rivers (Invited)

    NASA Astrophysics Data System (ADS)

    Warrick, J. A.

    2013-12-01

    Small, high-sediment yield rivers are known to discharge massive amounts of sediment to the world's oceans. Because of these high rates of sediment discharge, many of these small rivers provide important sources of sediment to littoral cells, such as those along the west coasts of North and South America. Sediment discharge from these small watersheds is commonly ephemeral and dominated by infrequent high flow. Thus, the morphodynamic states of these river mouths will vary with time, often being 'wave dominated' for the majority of the year and then changing to 'river dominated' during river sediment discharge events. Here I will provide a summary of recent observations of the morphodynamics of river mouths along California that reveal that sediment dispersal and deposition patterns vary owing to the sediment transport processes at the river mouths, which are influenced by the buoyancy of the river discharge. During low rates of sediment discharge and low river sediment concentrations, sediment dispersal will occur in hypopycnal (positively buoyant) plumes and sand deposition will be close to the river mouth. These conditions commonly result in transfer of sand from the river delta to the littoral cell during the first 1-2 years following the river discharge event. During high rates of sediment discharge and high river sediment concentrations, river discharge may form hyperpycnal (negatively buoyant) plumes and disperse sand to deeper portions of the continental shelf, where transfer back to the littoral cell may take decades or may not occur. High-resolution bathymetry from southern California provides several examples of sand dispersal by hyperpycnal plumes to regions of the inner and middle continental shelf. Thus, sediment dispersal from river mouths influences coastal morphodynamics, morphology, and the rates and timing of sediment supply to littoral cells.

  2. Drainage Algorithm for Geospatial Knowledge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2006-08-15

    The Pacific Northwest National Laboratory (PNNL) has developed a prototype stream extraction algorithm that semi-automatically extracts and characterizes streams using a variety of multisensor imagery and digital terrain elevation data (DTED) data. The system is currently optimized for three types of single-band imagery: radar, visible, and thermal. Method of Solution: DRAGON: (1) classifies pixels into clumps of water objects based on the classification of water pixels by spectral signatures and neighborhood relationships, (2) uses the morphology operations (erosion and dilation) to separate out large lakes (or embayment), isolated lakes, ponds, wide rivers and narrow rivers, and (3) translates the rivermore » objects into vector objects. In detail, the process can be broken down into the following steps. A. Water pixels are initially identified using on the extend range and slope values (if an optional DEM file is available). B. Erode to the distance that defines a large water body and then dilate back. The resulting mask can be used to identify large lake and embayment objects that are then removed from the image. Since this operation be time consuming it is only performed if a simple test (i.e. a large box can be found somewhere in the image that contains only water pixels) that indicates a large water body is present. C. All water pixels are ‘clumped’ (in Imagine terminology clumping is when pixels of a common classification that touch are connected) and clumps which do not contain pure water pixels (e.g. dark cloud shadows) are removed D. The resulting true water pixels are clumped and water objects which are too small (e.g. ponds) or isolated lakes (i.e. isolated objects with a small compactness ratio) are removed. Note that at this point lakes have been identified has a byproduct of the filtering process and can be output has vector layers if needed. E. At this point only river pixels are left in the image. To separate out wide rivers all objects in the image are eroded by the half width of narrow rivers. This causes all narrow rivers to be removed and leaves only the core of wide rivers. This core is dilated out by the same distance to create a mask that is used with the original river image to separate out rivers into two separate images of narrow rivers and wide rivers F. If in the image that contains wide rivers there are small isolated short (less than 300 meters if NGA criteria is used) segments these segments are transferred to the narrow river file in order to be treated has parts of single line rivers G. The narrow river file is optionally dilated and eroded. This ‘closing’ has the effect of removing small islands, filling small gaps, and smoothing the outline H. The user also has the option of ‘closing’ objects in the wide river file. However, this depends on the degree to which the user wants to remove small islands in the large rivers. I. To make the translation from raster to single vector easier the objects in the narrow river image are reduced to a single center line (i.e. thinned) with binary morphology operations.« less

  3. Estimating sediment budgets at the interface between rivers and estuaries with application to the Sacramento-San Joaquin River Delta

    USGS Publications Warehouse

    Wright, S.A.; Schoellhamer, D.H.

    2005-01-01

    [1] Where rivers encounter estuaries, a transition zone develops where riverine and tidal processes both affect sediment transport processes. One such transition zone is the Sacramento-San Joaquin River Delta, a large, complex system where several rivers meet to form an estuary (San Francisco Bay). Herein we present the results of a detailed sediment budget for this river/estuary transitional system. The primary regional goal of the study was to measure sediment transport rates and pathways in the delta in support of ecosystem restoration efforts. In addition to achieving this regional goal, the study has produced general methods to collect, edit, and analyze (including error analysis) sediment transport data at the interface of rivers and estuaries. Estimating sediment budgets for these systems is difficult because of the mixed nature of riverine versus tidal transport processes, the different timescales of transport in fluvial and tidal environments, and the sheer complexity and size of systems such as the Sacramento-San Joaquin River Delta. Sediment budgets also require error estimates in order to assess whether differences in inflows and outflows, which could be small compared to overall fluxes, are indeed distinguishable from zero. Over the 4 year period of this study, water years 1999-2002, 6.6 ?? 0.9 Mt of sediment entered the delta and 2.2 ?? 0.7 Mt exited, resulting in 4.4 ?? 1.1 Mt (67 ?? 17%) of deposition. The estimated deposition rate corresponding to this mass of sediment compares favorably with measured inorganic sediment accumulation on vegetated wetlands in the delta.

  4. Simulating on water storage and pump capacity of "Kencing" river polder system in Kudus regency, Central Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Wahyudi, Slamet Imam; Adi, Henny Pratiwi; Santoso, Esti; Heikoop, Rick

    2017-03-01

    Settlement in the Jati District, Kudus Regency, Central Java Province, Indonesia, is growing rapidly. Previous paddy fields area turns into new residential, industrial and office buildings. The rain water collected in small Kencing river that flows into big Wulan River. But the current condition, during high rain intensity Wulan river water elevation higher than the Kencing river, so that water can not flow gravity and the area inundated. To reduce the flooding, required polder drainage system by providing a long channel as water storage and pumping water into Wulan river. How to get optimal value of water storage volume, drainage system channels and the pump capacity? The result used to be efficient in the operation and maintenance of the polder system. The purpose of this study is to develop some scenarios water storage volume, water gate operation and to get the optimal value of operational pumps removing water from the Kencing River to Wulan River. Research Method is conducted by some steps. The first step, it is done field orientation in detail, then collecting secondary data including maps and rainfall data. The map is processed into Watershed or catchment area, while the rainfall data is processed into runoff discharge. Furthermore, the team collects primary data by measuring topography to determine the surface and volume of water storage. The analysis conducted to determine of flood discharge, water channel hydraulics, water storage volume and pump capacity corresponding. Based on the simulating of long water storage volume and pump capacity with some scenario trying, it can be determined optimum values. The results used to be guideline in to construction proses, operation and maintenance of the drainage polder system.

  5. iss012e15035

    NASA Image and Video Library

    2006-01-12

    ISS012-E-15035 (12 Jan. 2006) --- The confluence of the Ohio and Mississippi Rivers at Cairo, Illinois is featured in this image photographed by an Expedition 12 crew member on the International Space Station. The Ohio River becomes a tributary of the Mississippi River directly to the south of Cairo, Illinois, a small city on the spit of land where the rivers converge (at center of image). Brown sediment-laden water flowing generally northeast to south from the Ohio River is distinct from the green and relatively sediment-poor water (northwest- to south-flowing) of the Mississippi River. The coloration of the rivers in this image is reversed from the usual condition of a green Ohio and a brown Mississippi. According to scientists, this suggests that recent precipitation in the Ohio River watershed, with very high rainfall over the Appalachians and the northeastern United States in December 2005, has led to a greater sediment load in the Ohio waters. The distinct boundary between the two river’s waters indicates that little to no mixing occurs even 3-4 miles (5-6 kilometers) downstream. The city of Cairo became a prosperous port following the Civil War due to increased riverboat and railroad commerce. Small features on the Ohio are river barges and indicate the continued importance of Cairo as a transport hub. Flooding of the Ohio and Mississippi Rivers presents a continual danger to the city; this danger is lessened by the Birds Point-New Madrid Floodway that begins directly to the south of the river confluence. The floodway lowers flood stages upstream (such as at Cairo) and adjacent to the floodway during major flood events. Part of the extensive levee system associated with flood control of the Mississippi River is visible in the image. Barlow Bottoms (image right), located in adjacent Kentucky, are a wetlands bird watching location that is replenished by periodic floods and releases of Ohio River water.

  6. Movement of reservoir-stocked riverine fish between tailwaters and rivers

    USGS Publications Warehouse

    Spoelstra, J.A.; Stein, R.A.; Royle, J. Andrew; Marschall, E.A.

    2008-01-01

    The movement of fish from onstream impoundments into connected streams and rivers has traditionally been overlooked in fish stocking decisions but is critical to the ultimate impact of stocking riverine species into reservoirs. Hybrid saugeyes (female walleye Sander vitreus x male sauger S. canadensis) stocked into Deer Creek Reservoir, Ohio, readily move from the reservoir to the tailwater below. Downstream movement of these saugeyes from the tailwater may have consequences for native prey species and parental stocks downstream. We used fixed-station radiotelemetry to quantify the temporal movement patterns of 203 reservoir-stocked saugeyes from the tailwater of the reservoir, the stream flowing from the tailwater, and the river into which the stream flowed. From October 1998 through July 2000, most (75%) saugeyes never left the tailwater, and those that left returned 75% of the time. Overall, saugeyes spent 90% of their time in the tailwater, 7-8% of their time downstream in small streams, and 2-3% of their time farther downstream in the Scioto River (45 km downstream). No radio-tagged saugeyes moved to the Ohio River (155 km downstream). The probability of downstream movement generally increased with increasing flow and when dissolved oxygen dropped to lethal levels in summer. The probability of movement was highest in winter and spring, when it was probably related to spawning, and low in summer (except when dissolved oxygen was low) and fall. The patterns of movement seemed to reflect the relative suitability of tailwater over stream habitat. The predominant use of and return to tailwater habitat after downstream movement limited overall stream and river residence time. Although the daily movement probability for an individual was low, when we apply these rates to all of the stocked saugeyes in the Ohio River drainage, we cannot safely conclude that only small numbers move from reservoir tailwaters to downstream river systems. We recommend that managers refrain from stocking systems for which there are concerns about native species in connected drainages.

  7. Last century seabed morphodynamics of the Magra River estuary (Western Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Pratellesi, Marta; Ivaldi, Roberta; Ciavola, Paolo; Sinapi, Luigi

    2016-04-01

    The estimation of morphological and volumetric changes of the delta system at the mouth of the Magra River is presented in this paper using bathymetric and sedimentological data. The data series were collected during several hydro-oceanographic surveys carried out from 1882 to 2014, processed following the hydrographic international standards and stored in the Italian Navy Hydrographic Institute database. In particular, bathymetric data characterized by the same standard and accuracy were collected using different devices such as sounding lines, single-beam and multi-beam acoustic system. This research compares Digital Terrain Models (DTMs), derived from highly accurate bathymetric data and covering different time scales (secular, half-century and decade) in order to assess and quantify the seabed morphodynamics in relation with the river sedimentary budget. The methodology and data exploitation consist mainly in the production of DTMs to study the elevation change, two-dimensional and three dimensional maps, cross-sections of the seabed, difference surfaces and computation of net volumes as well as an historical sedimentological map. These products are also an useful contribution to the aim of EU RISC-KIT Project. The results of the analysis highlight changes in the geometry of the Magra River mouth, of the coastal profile and bottom features primarily due to variations of the sedimentary budget and secondarily to wave dynamics. This behaviour is characterized by evident river mouth and coastal retreat, beach erosion and sediment bars decay and net accretion under periods of high river sediment discharge and elongate bar formation during relatively fair conditions. In the last century the main change is constituted by the disappearance of the typical constructive seabed delta morphology and the transformation into the current small estuary, with microtidal condition. This small estuary has an upper sector where river processes, sediments and bedforms dominate, a lower sector near the mouth, where wave and tidal processes and marine sediments dominate, and a middle sector, where tidal currents dominate and both river and marine sediments are present.

  8. Lake Erie Water Level Study. Appendix G. Recreational Beaches and Boating.

    DTIC Science & Technology

    1981-07-01

    economic impact analysis). G-44 I There are two separate phases associated with the development of bene- fits generated at the various water levels in...moorings. The growth factors for the small boat harbor formula (MRI Technical Report No. 5, Economic Impacts of Lake Level Regulation) were developed by...Lakes-St. Lawrence River system. This evaluation was limited to Lakes Erie and Ontario and part of the St. Lawrence River where the

  9. Weymouth Fore River, Weymouth, Braintree, Massachusetts, Small Navigation Project. Detailed Project Report and Environmental Assessment.

    DTIC Science & Technology

    1981-02-01

    and all considered sites were beyond normal hydraulic pumping system capability. Marsh creation requires a large amount of land area which is...boating. Mechanical dredging is planned (as opposed to hydraulic ) because open water disposal of dredged sediments is the preferred alternative...river the above process would be complicated in several ways. First, because the material would have to be hydraulically disposed of at the temporary

  10. A buoyant plume adjacent to a headland-Observations of the Elwha River plume

    USGS Publications Warehouse

    Warrick, J.A.; Stevens, A.W.

    2011-01-01

    Small rivers commonly discharge into coastal settings with topographic complexities - such as headlands and islands - but these settings are underrepresented in river plume studies compared to more simplified, straight coasts. The Elwha River provides a unique opportunity to study the effects of coastal topography on a buoyant plume, because it discharges into the Strait of Juan de Fuca on the western side of its deltaic headland. Here we show that this headland induces flow separation and transient eddies in the tidally dominated currents (O(100. cm/s)), consistent with other headlands in oscillatory flow. These flow conditions are observed to strongly influence the buoyant river plume, as predicted by the "small-scale" or "narrow" dynamical classification using Garvine's (1995) system. Because of the transient eddies and the location of the river mouth on the headland, flow immediately offshore of the river mouth is directed eastward twice as frequently as it is westward. This results in a buoyant plume that is much more frequently "bent over" toward the east than the west. During bent over plume conditions, the plume was attached to the eastern shoreline while having a distinct, cuspate front along its westernmost boundary. The location of the front was found to be related to the magnitude and direction of local flow during the preceding O(1. h), and increases in alongshore flow resulted in deeper freshwater mixing, stronger baroclinic anomalies, and stronger hugging of the coast. During bent over plume conditions, we observed significant convergence of river plume water toward the frontal boundary within 1. km of the river mouth. These results show how coastal topography can strongly influence buoyant plume behavior, and they should assist with understanding of initial coastal sediment dispersal pathways from the Elwha River during a pending dam removal project. ?? 2010.

  11. Habitat use by a freshwater dolphin in the low-water season

    USGS Publications Warehouse

    Braulik, Gill T.; Reichert, Albert P.; Ehsan, Tahir; Khan, Samiullah; Northridge, Simon P.; Alexander, Jason S.; Garstang, Richard

    2012-01-01

    1. Many river dolphin populations are most vulnerable during the low-water season when habitat is limited. Indus River dolphin habitat selection in the dry season was investigated using Generalized Linear Models of dolphin distribution and abundance in relation to physical features of river geomorphology and channel geometry in cross-section. 2. Dolphins selected locations in the river with significantly greater mean depth, maximum depth, cross-sectional area, and hydraulic radius, and significantly narrower river width and a lower degree of braiding than areas where dolphins were absent. They were also recorded with higher frequency at river constrictions and at confluences. 3. Channel cross-sectional area was the most important factor affecting dolphin presence and abundance, with the area of water below 1 m in depth exerting the greatest influence. Indus dolphins avoided channels with small cross-sectional area (2), presumably owing to the risk of entrapment and reduced foraging opportunities. 4. Channel geometry had a greater ability to explain dolphin distribution than river geomorphology; however, both analyses indicated similar types of habitat selection. The dolphin–habitat relationships identified in the river geomorphology analysis were scale-dependent, indicating that dolphin distribution is driven by the occurrence of discrete small-scale features, such as confluences and constrictions, as well as by broader-scale habitat complexes. 5. There are numerous plans to impound or extract more water from the Indus River system. If low-water season flows are allowed to decrease further, the amount of deeper habitat will decline, there may be insufficient patches of suitable habitat to support the dolphin population through the low-water season, and dolphins may become isolated within deeper river sections, unable or unwilling to traverse through shallows between favourable patches of habitat.

  12. Hotspots within the Transboundary Selenga River Basin

    NASA Astrophysics Data System (ADS)

    Kasimov, Nikolay; Lychagin, Mikhail; Chalov, Sergey

    2013-04-01

    Gathering the efficient information on water pollution of transboundary river systems remains the crucial task in international water management, environmental pollution control and prevention health problems. Countries, located in the low parts of the river basins, depend on the water strategy and water use in the adjacent countries, located upstream. Surface water pollution is considered to be the most serious problem, facing the above-mentioned countries. Large efforts in terms of field measurement campaigns and (numerical) transport modeling are then typically needed for relevant pollution prediction and prevention. Russian rivers take inflow from 8 neighboring countries. Among them there are 2 developing economies - People Republic of China and Mongolia, which are located in water-scarce areas and thus solve their water-related problems through the consumption of international water. Negative change of water runoff and water quality in the foreign part of transboundary river is appeared inside Russian territory with more or less delay. The transboundary river system of Selenga is particularly challenging, being the biggest tributary of Lake Baikal which is the largest freshwater reservoir in the world. Selenga River contributes about 50 % of the total inflow into Baikal. It originates in the mountainous part of Mongolia and then drains into Russia. There are numerous industries and agricultural activities within the Selenga drainage basin that affect the water quality of the river system. Absence of the single monitoring system and predictive tools for pollutants transport in river system requires large efforts in understanding sources of water pollution and implemented data on the relevant numerical systems for the pollution prediction and prevention. Special investigations in the Selenga river basin (Mongolia and Russia) were done to assess hot spots and understand state-of-the art in sediment load, water chemistry and hydrobiology of transboundary systems. Hot spot assessment included 100 gauge stations in the river basin with discharge measurement by ADCP, turbidity (T) and suspended sediment concentration (SSC), bed load by bed load traps, composition of salt, biochemical oxidation, nitrogen and phosphorous content in water, pH, redox and conductivity values, and also content of heavy metals in water, suspended matter and sediments. The study revealed rather high levels of dissolved Fe, Al, Mn, Zn, Cu, and Mo in the Selenga River water which often are higher than MPC for water fishery. Most contrast distribution is characteristic for W and Mo, which is caused by mineral deposits in the Selenga basin. The most severe pollution of aquatic systems in the basin caused by mining activities is characteristic for a small river Modonkul, which flows into Dzhida River (left tributary of Selenga).

  13. Sediment Transport Dynamic in a Meandering Fluvial System: Case Study of Chini River

    NASA Astrophysics Data System (ADS)

    Nazir, M. H. M.; Awang, S.; Shaaban, A. J.; Yahaya, N. K. E. M.; Jusoh, A. M.; Arumugam, M. A. R. M. A.; Ghani, A. A.

    2016-07-01

    Sedimentation in river reduces the flood carrying capacity which lead to the increasing of inundation area in the river basin. Basic sediment transport can predict the fluvial processes in natural rivers and stream through modeling approaches. However, the sediment transport dynamic in a small meandering and low-lying fluvial system is considered scarce in Malaysia. The aim of this study was to analyze the current riverbed erosion and sedimentation scenarios along the Chini River, Pekan, Pahang. The present study revealed that silt and clay has potentially been eroded several parts of the river. Sinuosity index (1.98) indicates that Chini River is very unstable and continuous erosion process in waterways has increase the riverbank instability due to the meandering factors. The riverbed erosional and depositional process in the Chini River is a sluggish process since the lake reduces the flow velocity and causes the deposited particles into the silt and clay soil at the bed of the lake. Besides, the bed layer of the lake comprised of cohesive silt and clayey composition that tend to attach the larger grain size of sediment. The present study estimated the total sediment accumulated along the Chini River is 1.72 ton. The HEC-RAS was employed in the simulations and in general the model performed well, once all parameters were set within their effective ranges.

  14. Dissolved Organic Matter (DOM) Export from Watersheds to Coastal Oceans

    NASA Astrophysics Data System (ADS)

    Chen, R. F.; Gardner, G. B.; Peri, F.

    2016-02-01

    Dissolved organic matter (DOM) from terrestrial plants and soils is transported by surface waters and groundwaters to coastal ocean waters. Along the way, photochemical and biological degradation can remove DOM, and in situ processes such as phytoplankton leaching and sediment sources can add to the DOM in the river water. Wetlands, especially coastal wetlands can add significant amounts of DOM that is carried by rivers and is exported through estuaries to coastal systems. We will present observational data from a variety of coastal systems (San Francisco Bay, Boston Harbor, Chesapeake Bay, Hudson River, the Mississippi River, and a small salt marsh in the Gulf of Mexico). High resolution measurements of chromophoric dissolved organic matter (CDOM) can be correlated with dissolved organic carbon (DOC) so can be used to estimate DOC in specific systems and seasons. Gradients in CDOM/DOC combined with water fluxes can be used to estimate DOC fluxes from a variety of coastal watersheds to coastal systems. Influences of land use, system size, residence time, DOM quality, and photochemical and biological degradation will be discussed. The significance of coastal wetlands in the land-to-ocean export of DOC will be emphasized.

  15. Reliability and longitudinal change of detrital-zircon age spectra in the Snake River system, Idaho and Wyoming: An example of reproducing the bumpy barcode

    NASA Astrophysics Data System (ADS)

    Link, Paul Karl; Fanning, C. Mark; Beranek, Luke P.

    2005-12-01

    Detrital-zircon age-spectra effectively define provenance in Holocene and Neogene fluvial sands from the Snake River system of the northern Rockies, U.S.A. SHRIMP U-Pb dates have been measured for forty-six samples (about 2700 zircon grains) of fluvial and aeolian sediment. The detrital-zircon age distributions are repeatable and demonstrate predictable longitudinal variation. By lumping multiple samples to attain populations of several hundred grains, we recognize distinctive, provenance-defining zircon-age distributions or "barcodes," for fluvial sedimentary systems of several scales, within the upper and middle Snake River system. Our detrital-zircon studies effectively define the geochronology of the northern Rocky Mountains. The composite detrital-zircon grain distribution of the middle Snake River consists of major populations of Neogene, Eocene, and Cretaceous magmatic grains plus intermediate and small grain populations of multiply recycled Grenville (˜950 to 1300 Ma) grains and Yavapai-Mazatzal province grains (˜1600 to 1800 Ma) recycled through the upper Belt Supergroup and Cretaceous sandstones. A wide range of older Paleoproterozoic and Archean grains are also present. The best-case scenario for using detrital-zircon populations to isolate provenance is when there is a point-source pluton with known age, that is only found in one location or drainage. We find three such zircon age-populations in fluvial sediments downstream from the point-source plutons: Ordovician in the southern Beaverhead Mountains, Jurassic in northern Nevada, and Oligocene in the Albion Mountains core complex of southern Idaho. Large detrital-zircon age-populations derived from regionally well-defined, magmatic or recycled sedimentary, sources also serve to delimit the provenance of Neogene fluvial systems. In the Snake River system, defining populations include those derived from Cretaceous Atlanta lobe of the Idaho batholith (80 to 100 Ma), Eocene Challis Volcanic Group and associated plutons (˜45 to 52 Ma), and Neogene rhyolitic Yellowstone-Snake River Plain volcanics (˜0 to 17 Ma). For first-order drainage basins containing these zircon-rich source terranes, or containing a point-source pluton, a 60-grain random sample is sufficient to define the dominant provenance. The most difficult age-distributions to analyze are those that contain multiple small zircon age-populations and no defining large populations. Examples of these include streams draining the Proterozoic and Paleozoic Cordilleran miogeocline in eastern Idaho and Pleistocene loess on the Snake River Plain. For such systems, large sample bases of hundreds of grains, plus the use of statistical methods, may be necessary to distinguish detrital-zircon age-spectra.

  16. Oceanic loading of wildfire-derived organic compounds from a small mountainous river

    USGS Publications Warehouse

    Hunsinger, G.B.; Mitra, Siddhartha; Warrick, J.A.; Alexander, C.R.

    2008-01-01

    Small mountainous rivers (SMRs) export substantial amounts of sediment into the world's oceans. The concomitant yield of organic carbon (OC) associated with this class of rivers has also been shown to be significant and compositionally unique. We report here excessively high loadings of polycyclic aromatic hydrocarbons (PAHs), lignin, and levoglucosan, discharged from the Santa Clara River into the Santa Barbara Channel. The abundance of PAHs, levoglucosan, and lignin in Santa Barbara Channel sediments ranged from 201.7 to 1232.3 ng gdw-1, 1.3 to 6.9 ??g gdw-1, and 0.3 to 2.2 mg per 100 mg of the sedimentary OC, respectively. Assuming a constant rate of sediment accumulation, the annual fluxes of PAHs, levoglucosan, and lignin, to the Santa Barbara Channel were respectively, 885.5 ?? 170.2 ng cm-2 a-1, 3.5 ?? 1.9 ??g cm-2 a-1 and 1.4 ?? 0.3 mg per 100 mg OC cm-2 a-1, over ???30 years. The close agreement between PAHs, levoglucosan, and lignin abundance suggests that the depositional flux of these compounds is largely biomass combustion-derived. To that end, use of the Santa Clara River as a model for SMRs suggests this class of rivers may be one of the largest contributors of pyrolyzed carbon to coastal systems and the open ocean. Wildfire associated carbon discharged from other high yield fluvial systems, when considered collectively, may be a significant source of lignin, pyrolytic PAHs, and other pyrogenic compounds to the ocean. Extrapolating these methods over geologic time may offer useful historical information about carbon sequestration and burial in coastal sediments and affect coastal carbon budgets. Copyright 2008 by the American Geophysical Union.

  17. The impact of river water intrusion on trace metal cycling in karst aquifers: an example from the Floridan aquifer system at Madison Blue Spring, Florida

    NASA Astrophysics Data System (ADS)

    Brown, A. L.; Martin, J. B.; Screaton, E.; Spellman, P.; Gulley, J.

    2011-12-01

    Springs located adjacent to rivers can serve as recharge points for aquifers when allogenic runoff increases river stage above the hydraulic head of the spring, forcing river water into the spring vent. Depending on relative compositions of the recharged water and groundwater, the recharged river water could be a source of dissolved trace metals to the aquifer, could mobilize solid phases such as metal oxide coatings, or both. Whether metals are mobilized or precipitated should depend on changes in redox and pH conditions as dissolved oxygen and organic carbon react following intrusion of the river water. To assess how river intrusion events affect metal cycling in springs, we monitored a small recharge event in April 2011 into Madison Blue Spring, which discharges to the Withlacoochee River in north-central Florida. Madison Blue Spring is the entrance to a phreatic cave system that includes over 7.8 km of surveyed conduits. During the event, river stage increased over base flow conditions for approximately 25 days by a maximum of 8%. Intrusion of the river water was monitored with conductivity, temperature and depth sensors that were installed within the cave system and adjacent wells. Decreased specific conductivity within the cave system occurred for approximately 20 days, reflecting the length of time that river water was present in the cave system. During this time, grab samples were collected seven times over a period of 34 days for measurements of major ion and trace metal concentrations at the spring vent and at Martz sink, a karst window connected to the conduit system approximately 150 meters from the spring vent. Relative fractions of surface water and groundwater were estimated based on Cl concentrations of the samples, assuming conservative two end-member mixing during the event. This mixing model indicates that maximum river water contribution to the groundwater system was approximately 20%. River water had concentrations of iron, manganese, and other trace metals that were elevated by several orders of magnitude above the concentrations of groundwater at base flow. Maximum iron concentrations in the grab samples coincide with the peak of river water inflow into the cave system, but preliminary results suggest the maximum concentration is about 13% lower than expected based on mixing alone. This depletion below expected concentrations indicates that some of the iron intruded with the river water has been removed, presumably through precipitation of Fe-oxides. In contrast, peak manganese concentrations in the aquifer occur 14 days after the peak of the reversal when the spring is again discharging, suggesting that manganese within the cave system was mobilized. These data suggest that dissolution and precipitation reactions of Fe and Mn are decoupled in the system. This decoupling could result from changing redox conditions as river water intrudes the caves, driving oxidation of dissolved organic matter introduced with the river water.

  18. Factors affecting the occurrence of saugers in small, high-elevation rivers near the western edge of the species' natural distribution

    USGS Publications Warehouse

    Amadio, C.J.; Hubert, W.A.; Johnson, Kevin; Oberlie, D.; Dufek, D.

    2005-01-01

    Factors affecting the occurrence of saugers Sander canadensis were studied throughout the Wind River basin, a high-elevation watershed (> 1,440 m above mean sea level) on the western periphery of the species' natural distribution in central Wyoming. Adult saugers appeared to have a contiguous distribution over 170 km of streams among four rivers in the watershed. The upstream boundaries of sauger distribution were influenced by summer water temperatures and channel slopes in two rivers and by water diversion dams that created barriers to upstream movement in the other two rivers. Models that included summer water temperature, maximum water depth, habitat type (pool or run), dominant substrate, and alkalinity accounted for the variation in sauger occurrence across the watershed within the areas of sauger distribution. Water temperature was the most important basin-scale habitat feature associated with sauger occurrence, and maximum depth was the most important site-specific habitat feature. Saugers were found in a larger proportion of pools than runs in all segments of the watershed and occurred almost exclusively in pools in upstream segments of the watershed. Suitable summer water temperatures and deep, low-velocity habitat were available to support saugers over a large portion of the Wind River watershed. Future management of saugers in the Wind River watershed, as well as in other small river systems within the species' native range, should involve (1) preserving natural fluvial processes to maintain the summer water temperatures and physical habitat features needed by saugers and (2) assuring that barriers to movement do not reduce upstream boundaries of populations.

  19. Fish Assemblage Response to a Small Dam Removal in the Eightmile River System, Connecticut, USA

    NASA Astrophysics Data System (ADS)

    Poulos, Helen M.; Miller, Kate E.; Kraczkowski, Michelle L.; Welchel, Adam W.; Heineman, Ross; Chernoff, Barry

    2014-11-01

    We examined the effects of the Zemko Dam removal on the Eightmile River system in Salem, Connecticut, USA. The objective of this research was to quantify spatiotemporal variation in fish community composition in response to small dam removal. We sampled fish abundance over a 6-year period (2005-2010) to quantify changes in fish assemblages prior to dam removal, during drawdown, and for three years following dam removal. Fish population dynamics were examined above the dam, below the dam, and at two reference sites by indicator species analysis, mixed models, non-metric multidimensional scaling, and analysis of similarity. We observed significant shifts in fish relative abundance over time in response to dam removal. Changes in fish species composition were variable, and they occurred within 1 year of drawdown. A complete shift from lentic to lotic fishes failed to occur within 3 years after the dam was removed. However, we did observe increases in fluvial and transition (i.e., pool head, pool tail, or run) specialist fishes both upstream and downstream from the former dam site. Our results demonstrate the importance of dam removal for restoring river connectivity for fish movement. While the long-term effects of dam removal remain uncertain, we conclude that dam removals can have positive benefits on fish assemblages by enhancing river connectivity and fluvial habitat availability.

  20. Fish assemblage response to a small dam removal in the Eightmile River system, Connecticut, USA.

    PubMed

    Poulos, Helen M; Miller, Kate E; Kraczkowski, Michelle L; Welchel, Adam W; Heineman, Ross; Chernoff, Barry

    2014-11-01

    We examined the effects of the Zemko Dam removal on the Eightmile River system in Salem, Connecticut, USA. The objective of this research was to quantify spatiotemporal variation in fish community composition in response to small dam removal. We sampled fish abundance over a 6-year period (2005-2010) to quantify changes in fish assemblages prior to dam removal, during drawdown, and for three years following dam removal. Fish population dynamics were examined above the dam, below the dam, and at two reference sites by indicator species analysis, mixed models, non-metric multidimensional scaling, and analysis of similarity. We observed significant shifts in fish relative abundance over time in response to dam removal. Changes in fish species composition were variable, and they occurred within 1 year of drawdown. A complete shift from lentic to lotic fishes failed to occur within 3 years after the dam was removed. However, we did observe increases in fluvial and transition (i.e., pool head, pool tail, or run) specialist fishes both upstream and downstream from the former dam site. Our results demonstrate the importance of dam removal for restoring river connectivity for fish movement. While the long-term effects of dam removal remain uncertain, we conclude that dam removals can have positive benefits on fish assemblages by enhancing river connectivity and fluvial habitat availability.

  1. Modeling small-scale and large-scale flood wave processes as indicators of channel-floodplain connectivity

    NASA Astrophysics Data System (ADS)

    Byrne, C. F.; Stone, M. C.

    2016-12-01

    Anthropogenic alterations to rivers and floodplains, either in the context of river engineering or river restoration efforts, have no doubt impacted channel-floodplain connectivity in the majority of developed river systems. River management strategies now often strive to retain or improve ecological integrity of floodplains. Therefore, there is a need to quantify the hydrodynamic processes that have implications for river geomorphology and ecology within the channel-floodplain interface. Because field quantification of these processes is extremely difficult, new methods in hydrodynamic modeling can help to inform river science. This research focused on the assessment of channel-floodplain flow dynamics using two-dimensional hydrodynamic modeling and presents various methods of hydrodynamic process quantification in unsteady flow scenarios. The objectives of this research were to: (1) quantify the small-scale processes of mass and momentum transfer from the main channel to the floodplain; and (2) assess how these processes accrue to meaningful levels to affect the large-scale process of flood wave attenuation. This was achieved by modeling the heavily manipulated Albuquerque Reach of the Rio Grande in New Mexico. Results are presented as mass and momentum fluxes along the channel-floodplain boundaries with a focus on the application of these methods to unsteady flood wave modeling. In addition, quantification of downstream flood wave attenuation is presented as attenuation ratios of discharge and stage, as well as wave celerity. Mass and momentum fluxes during flood waves are shown to be highly variable over spatial and temporal scales and demonstrate the implications of lateral surface connectivity. Results from this research and further application of the methods presented here can help river scientists better understand the dynamics of flood processes especially in the context of process-based river restoration.

  2. Transport of particle-associated elements in two agriculture-dominated boreal river systems.

    PubMed

    Marttila, Hannu; Saarinen, Tuomas; Celebi, Ahmet; Kløve, Bjørn

    2013-09-01

    Transport of particulate pollutants in fluvial systems can contribute greatly to total loads. Understanding transport mechanics under different hydrological conditions is key in successful load estimation. This study analysed trace elements and physico-chemical parameters in time-integrated suspended sediment samples, together with dissolved and total concentrations of pollutants, along two agriculture- and peatland-dominated boreal river systems. The samples were taken in a spatially and temporally comprehensive sampling programme during the ice-free seasons of 2010 and 2011. The hydrochemistry and transport of particle-bound elements in the rivers were strongly linked to intense land use and acid sulphate soils in the catchment area, with arable, pasture and peat areas in particular being main diffuse sources. There were significant seasonal and temporal variations in dissolved and particulate fluxes, but spatial variations were small. Continuous measurements of EC, turbidity and discharge proved to be an accurate indicator of dissolved and particulate fluxes. Overall, the results show that transport of particle-bound elements makes a major contribution to total transport fluxes in agriculture-dominated boreal rivers. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Use of remote-sensing techniques to survey the physical habitat of large rivers

    USGS Publications Warehouse

    Edsall, Thomas A.; Behrendt, Thomas E.; Cholwek, Gary; Frey, Jeffery W.; Kennedy, Gregory W.; Smith, Stephen B.; Edsall, Thomas A.; Behrendt, Thomas E.; Cholwek, Gary; Frey, Jeffrey W.; Kennedy, Gregory W.; Smith, Stephen B.

    1997-01-01

    Remote-sensing techniques that can be used to quantitatively characterize the physical habitat in large rivers in the United States where traditional survey approaches typically used in small- and medium-sized streams and rivers would be ineffective or impossible to apply. The state-of-the-art remote-sensing technologies that we discuss here include side-scan sonar, RoxAnn, acoustic Doppler current profiler, remotely operated vehicles and camera systems, global positioning systems, and laser level survey systems. The use of these technologies will permit the collection of information needed to create computer visualizations and hard copy maps and generate quantitative databases that can be used in real-time mode in the field to characterize the physical habitat at a study location of interest and to guide the distribution of sampling effort needed to address other habitat-related study objectives. This report augments habitat sampling and characterization guidance provided by Meador et al. (1993) and is intended for use primarily by U.S. Geological Survey National Water Quality Assessment program managers and scientists who are documenting water quality in streams and rivers of the United States.

  4. Oxygen, deuterium, and strontium isotope characteristics of the Indus River water system

    NASA Astrophysics Data System (ADS)

    Sharma, Anupam; Kumar, Kamlesh; Laskar, Amzad; Singh, Sunil Kumar; Mehta, Pankaj

    2017-05-01

    Understanding the sources and compositional characteristics of waters and sediments in the Indus River system is extremely important as its water availability is one of the primary factors for sustenance of the irrigation activities and the socioeconomic status of a very densely populated region of the world. Here we used stable isotopic compositions (δD and δ18O) and strontium isotopic ratio (87Sr/86Sr) in the Indus River water, its tributaries and its small streams (nallahs) in the Indian territory to understand the regional hydrology, water sources, and catchment processes (evaporation, transpiration, recycling, and mixing). The δ18O values in the Indus River system (IRS) ranges from - 16.9‰ to - 12.5‰ and δD from - 122.8‰ to - 88.5‰. The Indus River and its major tributaries (such as the Zanskar, Nubra and Shyok rivers) are characterized by relatively lower δ18O values, whereas TangTse and other small streams contributing to the Indus are relatively enriched in 18O. The local meteoric water line for the IRS was found to be δD = 7.87 × δ18O + 11.41, which is similar to the Global Meteoric Water Line (GMWL) indicating meteoric origin of the water and insignificant secondary evaporation in the catchment. The Deuterium excess (d-excess) in the IRS varies between 6.5‰ and 14.9‰ with an average of 11.7‰, which is mostly higher than the long-term average for the Indian summer monsoon ( 8‰). The higher d-excess value is because of the contribution of moisture from westerlies; a simple mass balance shows 26% water in the main Indus channel is contributed by the westerlies originated from the Mediterranean Sea. The Sr isotope ratio in IRS varies between 0.70515 and 0.71291; wherein the Indus, and its tributary rivers Shyok and Nubra, are characterized by relatively high Sr isotope ratios (avg. 0.71086-0.71243) compared to the Zanskar and TangTse tributaries (Sr 0.709) because of the variation in silicate rock weathering component and carbonate rock weathering component ratios respectively.

  5. Contributions of trace elements to the sea by small uncontaminated rivers: Effects of a water reservoir and a wastewater treatment plant.

    PubMed

    Álvarez-Vázquez, Miguel Ángel; Prego, Ricardo; Caetano, Miguel; De Uña-Álvarez, Elena; Doval, Maryló; Calvo, Susana; Vale, Carlos

    2017-07-01

    Trace element contributions from small rivers to estuaries is an issue barely addressed in the literature. In this work, freshwater flowing into the Ria of Cedeira (NW Iberian Peninsula) was studied during a hydrological year through the input from three rivers, one considered uncontaminated (the Das-Mestas River), a second affected by urban treated wastewater discharges (the Condomiñas River), and the third containing a water reservoir for urban supply (the Forcadas River). With the objective of assessing the possible influence of human pressure, the annual yields for selected trace elements (Al, Fe, As, Cd, Co, Cr, Cu, Mn, Mo, Ni and Pb) were estimated and compared by normalizing by basin surface. Both dissolved and particulate transported elements were considered. After the data treatment and analysis it can be highlighted that: (i) the Das Mestas River is suitable to be included between the short European pristine baseline of small rivers, at least regarding the transported trace elements; (ii) natural enrichments were identified associated to the lithology of the basin in the Das-Mestas River (i.e. As) and in the Condomiñas River (i.e. Co, Cr and Ni); this fact highlights the importance of considering the local background for a proper assessment; (iii) the impoundment in the Forcadas River is related with a general decrease, even depletion, of the particulate and dissolved transported trace elements, except Mn; (iv) the discharge of sewage to the Condomiñas River is increasing the inputs to the ria of some trace elements in the particulate phase (i.e. Al, Cu and Pb). Both observed human-induced changes can be regarded as typical disturbances of trace element contributions from small rivers to estuaries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Agro-hydrologic landscapes in the Upper Mississippi and Ohio River basins.

    PubMed

    Schilling, Keith E; Wolter, Calvin F; McLellan, Eileen

    2015-03-01

    A critical part of increasing conservation effectiveness is targeting the "right practice" to the "right place" where it can intercept pollutant flowpaths. Conceptually, these flowpaths can be inferred from soil and slope characteristics, and in this study, we developed an agro-hydrologic classification to identify N and P loss pathways and priority conservation practices in small watersheds in the U.S. Midwest. We developed a GIS framework to classify 11,010 small watersheds in the Upper Mississippi and Ohio River basins based on soil permeability and slope characteristics of agricultural cropland areas in each watershed. The amount of cropland in any given watershed varied from <10 to >60 %. Cropland areas were classified into five main categories, with slope classes of <2, 2-5, and >5 %, and soil drainage classes of poorly and well drained. Watersheds in the Upper Mississippi River basin (UMRB) were dominated by cropland areas in low slopes and poorly drained soils, whereas less-intensively cropped watersheds in Wisconsin and Minnesota (in the UMRB) and throughout the Ohio River basin were overwhelmingly well drained. Hydrologic differences in cropped systems indicate that a one-size-fits-all approach to conservation selection will not work. Consulting the classification scheme proposed herein may be an appropriate first-step in identifying those conservation practices that might be most appropriate for small watersheds in the basin.

  7. Assessment of groundwater input and water quality changes impacting natural vegetation in the Loxahatchee River and floodplain ecosystem, Florida

    USGS Publications Warehouse

    Orem, William H.; Swarzenski, Peter W.; McPherson, Benjamin F.; Hedgepath, Marion; Lerch, Harry E.; Reich, Christopher; Torres, Arturo E.; Corum, Margo D.; Roberts, Richard E.

    2007-01-01

    The Loxahatchee River and Estuary are small, shallow, water bodies located in southeastern Florida. Historically, the Northwest Branch (Fork) of the Loxahatchee River was primarily a freshwater system. In 1947, the river inlet at Jupiter was dredged for navigation and has remained permanently open since that time. Drainage patterns within the basin have also been altered significantly due to land development, road construction (e.g., Florida Turnpike), and construction of the C-18 and other canals. These anthropogenic activities along with sea level rise have resulted in significant adverse impacts on the ecosystem over the last several decades, including increased saltwater encroachment and undesired vegetation changes in the floodplain. The problem of saltwater intrusion and vegetation degradation in the Loxahatchee River may be partly induced by diminished freshwater input, from both surface water and ground water into the River system. The overall objective of this project was to assess the seasonal surface water and groundwater interaction and the influence of the biogeochemical characteristics of shallow groundwater and porewater on vegetation health in the Loxahatchee floodplain. The hypothesis tested are: (1) groundwater influx constitutes a significant component of the overall flow of water into the Loxahatchee River; (2) salinity and other chemical constituents in shallow groundwater and porewater of the river floodplain may affect the distribution and health of the floodplain vegetation.

  8. Combining Empirical Relationships with Data Based Mechanistic Modeling to Inform Solute Tracer Investigations across Stream Orders

    NASA Astrophysics Data System (ADS)

    Herrington, C.; Gonzalez-Pinzon, R.; Covino, T. P.; Mortensen, J.

    2015-12-01

    Solute transport studies in streams and rivers often begin with the introduction of conservative and reactive tracers into the water column. Information on the transport of these substances is then captured within tracer breakthrough curves (BTCs) and used to estimate, for instance, travel times and dissolved nutrient and carbon dynamics. Traditionally, these investigations have been limited to systems with small discharges (< 200 L/s) and with small reach lengths (< 500 m), partly due to the need for a priori information of the reach's hydraulic characteristics (e.g., channel geometry, resistance and dispersion coefficients) to predict arrival times, times to peak concentrations of the solute and mean travel times. Current techniques to acquire these channel characteristics through preliminary tracer injections become cost prohibitive at higher stream orders and the use of semi-continuous water quality sensors for collecting real-time information may be affected from erroneous readings that are masked by high turbidity (e.g., nitrate signals with SUNA instruments or fluorescence measures) and/or high total dissolved solids (e.g., making prohibitively expensive the use of salt tracers such as NaCl) in larger systems. Additionally, a successful time-of-travel study is valuable for only a single discharge and river stage. We have developed a method to predict tracer BTCs to inform sampling frequencies at small and large stream orders using empirical relationships developed from multiple tracer injections spanning several orders of magnitude in discharge and reach length. This method was successfully tested in 1st to 8th order systems along the Middle Rio Grande River Basin in New Mexico, USA.

  9. Multiscale Approach to Small River Plumes off California

    NASA Astrophysics Data System (ADS)

    Basdurak, N. B.; Largier, J. L.; Nidzieko, N.

    2012-12-01

    While larger scale plumes have received significant attention, the dynamics of plumes associated with small rivers typical of California are little studied. Since small streams are not dominated by a momentum flux, their plumes are more susceptible to conditions in the coastal ocean such as wind and waves. In order to correctly model water transport at smaller scales, there is a need to capture larger scale processes. To do this, one-way nested grids with varying grid resolution (1 km and 10 m for the parent and the child grid respectively) were constructed. CENCOOS (Central and Northern California Ocean Observing System) model results were used as boundary conditions to the parent grid. Semi-idealized model results for Santa Rosa Creek, California are presented from an implementation of the Regional Ocean Modeling System (ROMS v3.0), a three-dimensional, free-surface, terrain-following numerical model. In these preliminary results, the interaction between tides, winds, and buoyancy forcing in plume dynamics is explored for scenarios including different strengths of freshwater flow with different modes (steady and pulsed). Seasonal changes in transport dynamics and dispersion patterns are analyzed.

  10. Population and osmoregulatory responses of a euryhaline fish to extreme salinity fluctuations in coastal lagoons of the Coorong, Australia

    NASA Astrophysics Data System (ADS)

    Wedderburn, Scotte D.; Bailey, Colin P.; Delean, Steven; Paton, David C.

    2016-01-01

    River flows and salinity are key factors structuring fish assemblages in estuaries. The osmoregulatory ability of a fish determines its capacity to tolerate rising salt levels when dispersal is unfeasible. Estuarine fishes can tolerate minor fluctuations in salinity, but a relatively small number of species in a few families can inhabit extreme hypersaline waters. The Murray-Darling Basin drains an extensive area of south-eastern Australia and river flows end at the mouth of the River Murray. The system is characterized by erratic rainfall and highly variable flows which have been reduced by intensive river regulation and water extraction. The Coorong is a coastal lagoon system extending some 110 km south-eastwards from the mouth. It is an inverted estuary with a salinity gradient that typically ranges from estuarine to triple that of sea water. Hypersalinity in the southern region suits a select suite of biota, including the smallmouth hardyhead Atherinosoma microstoma - a small-bodied, euryhaline fish with an annual life cycle. The population response of A. microstoma in the Coorong was examined during a period of considerable hydrological variation and extreme salinity fluctuations (2001-2014), and the findings were related to its osmoregulatory ability. Most notably, the species was extirpated from over 50% of its range during four continuous years without river flows when salinities exceeded 120 (2007-2010). These salinities exceeded the osmoregulatory ability of A. microstoma. Substantial river flows that reached the Coorong in late 2010 and continued into 2011 led salinities to fall below 100 throughout the Coorong by January 2012. Subsequently, A. microstoma recovered to its former range by January 2012. The findings show that the consequences of prolonged periods of insufficient river flows to temperate inverted estuaries will include substantial declines in the range of highly euryhaline fishes, which also may have wider ecological consequences.

  11. Simulation of the Regional Ground-Water-Flow System and Ground-Water/Surface-Water Interaction in the Rock River Basin, Wisconsin

    USGS Publications Warehouse

    Juckem, Paul F.

    2009-01-01

    A regional, two-dimensional, areal ground-water-flow model was developed to simulate the ground-water-flow system and ground-water/surface-water interaction in the Rock River Basin. The model was developed by the U.S. Geological Survey (USGS), in cooperation with the Rock River Coalition. The objectives of the regional model were to improve understanding of the ground-water-flow system and to develop a tool suitable for evaluating the effects of potential regional water-management programs. The computer code GFLOW was used because of the ease with which the model can simulate ground-water/surface-water interactions, provide a framework for simulating regional ground-water-flow systems, and be refined in a stepwise fashion to incorporate new data and simulate ground-water-flow patterns at multiple scales. The ground-water-flow model described in this report simulates the major hydrogeologic features of the modeled area, including bedrock and surficial aquifers, ground-water/surface-water interactions, and ground-water withdrawals from high-capacity wells. The steady-state model treats the ground-water-flow system as a single layer with hydraulic conductivity and base elevation zones that reflect the distribution of lithologic groups above the Precambrian bedrock and a regionally significant confining unit, the Maquoketa Formation. In the eastern part of the Basin where the shale-rich Maquoketa Formation is present, deep ground-water flow in the sandstone aquifer below the Maquoketa Formation was not simulated directly, but flow into this aquifer was incorporated into the GFLOW model from previous work in southeastern Wisconsin. Recharge was constrained primarily by stream base-flow estimates and was applied uniformly within zones guided by regional infiltration estimates for soils. The model includes average ground-water withdrawals from 1997 to 2006 for municipal wells and from 1997 to 2005 for high-capacity irrigation, industrial, and commercial wells. In addition, the model routes tributary base flow through the river network to the Rock River. The parameter-estimation code PEST was linked to the GFLOW model to select the combination of parameter values best able to match more than 8,000 water-level measurements and base-flow estimates at 9 streamgages. Results from the calibrated GFLOW model show simulated (1) ground-water-flow directions, (2) ground-water/surface-water interactions, as depicted in a map of gaining and losing river and lake sections, (3) ground-water contributing areas for selected tributary rivers, and (4) areas of relatively local ground water captured by rivers. Ground-water flow patterns are controlled primarily by river geometries, with most river sections gaining water from the ground-water-flow system; losing sections are most common on the downgradient shore of lakes and reservoirs or near major pumping centers. Ground-water contributing areas to tributary rivers generally coincide with surface watersheds; however the locations of ground-water divides are controlled by the water table, whereas surface-water divides are controlled by surface topography. Finally, areas of relatively local ground water captured by rivers generally extend upgradient from rivers but are modified by the regional flow pattern, such that these areas tend to shift toward regional ground-water divides for relatively small rivers. It is important to recognize the limitations of this regional-scale model. Heterogeneities in subsurface properties and in recharge rates are considered only at a very broad scale (miles to tens of miles). No account is taken of vertical variations in properties or pumping rates, and no provision is made to account for stacked ground-water-flow systems that have different flow patterns at different depths. Small-scale flow systems (hundreds to thousands of feet) associated with minor water bodies are not considered; as a result, the model is not currently designed for simulating site-specifi

  12. Dispersal and deposition of river sediments in coastal seas: Models from Asia and the tropics

    NASA Astrophysics Data System (ADS)

    Wright, L. D.

    The diverse mechanisms by which river-borne sediments are dispersed into coastal oceans and the associated patterns of deposition are considered for some tropical and Asian river mouth dispersal systems: the Huanghe (Yellow River), which enters the Bohai Gulf (China), the Purari River which enters the Gulf of Papua (Papua New Guinea) and the Jaba River, which enters Empress Augusta Bay (Bougainville, Papua New Guinea). These models contrast sharply with 'conventional' models such as that of the Mississippi, although in different respects. Extremely high suspended sediment concentrations off the Huanghe mouth cause sinking, gravity-driven plumes which produce rapid deposition very near the mouth; extremely rapid seaward growth of the subaqueous delta results. Although the average water discharge of the Purari exceeds that of the Huanghe, the average sediment discharge from the Purari is an order of magnitude less than that of the Huanghe. Suspended sediments transported via buoyant plumes from the Purari mouth are trapped inshore by the southeasterly trades and have their ultimate sink in the tidal estuaries to the west of the mouths rather than offshore. The Jaba is a small river with a very steep gradient and an extremely high bed load relative to water discharge. It has constructed a protruding and rapidly evolving delta. Literature on the Indonesian rivers Solo and Porong dispersal systems suggests that those systems may, at different times, be subject to processes similar to those which operate off the mouths of the Huanghe, Purari and Jaba although no single, direct analogies can be made.

  13. Modeling and Remote Sensing of Surface Water Dynamics in the Mekong River Basin

    NASA Astrophysics Data System (ADS)

    Pokhrel, Y. N.

    2017-12-01

    The Mekong river is one of the most complex river systems in the world that is shared by six nations in Southeast Asia. The river still remains relatively undammed (most existing dams are in the tributaries and are small), and its hydrology today is dominated by large natural flow variations that support the highly productive agricultural and riverine ecological systems; however, this is changing due to the alterations in land use and construction of new dams both in the tributaries the mainstream (16 mainstream and 110 tributary dams are planned to be completed by 2030). Understanding the changes in surface water dynamics is therefore crucial to provide realistic future predictions of changes in downstream floodplain and riverine ecology due to the construction of dams in the upstream. In this study, we use an integrated hydrological model and remote sensing data to examine the critical role of surface water systems in modulating the river-floodplain ecology in the lower reach of the basin, with a focus on the Tonle Sap lake. We present results on the changes in the seasonality and long-term trend in river-floodplain inundation extent over the past few decades. These results provide new insights on the changing hydrology of the Mekong and important implications for potential future hydrologic changes under accelerating human activities and climate change.

  14. RIVER LEVEL ESTIMATION USING ARTIFICIAL NEURAL NETWORK FOR URBAN SMALL RIVER IN TIDAL REACH

    NASA Astrophysics Data System (ADS)

    Takasaki, Tadakatsu; Kawamura, Akira; Amaguchi, Hideo

    Prediction of water level in small rivers is great interest for flood control in an urban area located in the river mouth. The tidal river water level is affected by not only flood discharge but also tide, atmospheric pressure, wind direction and speed. We propose a method of estimating river water level considering these factors using an artificial neural network model for the Kanda River located in the center of Tokyo. The effects by those factors are quantitatively investigated. As for the effects by the atmospheric pressure, river water level rises about 7cm per 5hPa increase of the pressure regardless of river discharge under the conditions of 1m/s wind speed and north wind direction. The accurate rating curve for the tidal river is finally obtained.

  15. Role of river bank erosion in sediment budgets of catchments within the Loire river basin (France)

    NASA Astrophysics Data System (ADS)

    Gay, Aurore; Cerdan, Olivier; Poisvert, Cecile; Landemaine, Valentin

    2014-05-01

    Quantifying volumes of sediments produced on hillslopes or in channels and transported or stored within river systems is necessary to establish sediment budgets. If research efforts on hillslope erosion processes have led to a relatively good understanding and quantification of local sources, in-channel processes remain poorly understood and quasi inexistent in global budgets. However, profound landuse changes and agricultural practices have altered river functioning, caused river bank instability and stream incision. During the past decades in France, river channelization has been perfomed extensively to allow for new agricultural practices to take place. Starting from a recent study on the quantification of sediment fluxes for catchments within the Loire river basin (Gay et al. 2013), our aim is to complete sediment budgets by taking into account various sources and sinks both on hillslope and within channel. The emphasis of this study is on river bank erosion and how bank erosion contributes to global budgets. A model of bank retreat is developed for the entire Loire river basin. In general, our results show that bank retreat is on average quite low with approximately 1 cm.yr-1. However, a strong variability exists within the study area with channels displaying values of bank retreat up to ~10 cm.yr-1. Our results corroborate those found by Landemaine et al. in 2013 on a small agricultural catchment. From this first step, quantification of volumes of sediment eroded from banks and available for transport should be calculated and integrated in sediment budgets to allow for a better understanding of basin functioning. Gay A., Cerdan O., Delmas M., Desmet M., Variability of sediment yields in the Loire river basin (France): the role of small scale catchments (under review). Landemaine V., Gay A., Cerdan O., Salvador-Blanes S., Rodriguez S. Recent morphological evolution of a headwater stream in agricultural context after channelization in the Ligoire river (France) (in prep)

  16. Sediment regime constraints on river restoration - An example from the lower Missouri river

    USGS Publications Warehouse

    Jacobson, R.B.; Blevins, D.W.; Bitner, C.J.

    2009-01-01

    Dammed rivers are subject to changes in their flow, water-quality, and sediment regimes. Each of these changes may contribute to diminished aquatic habitat quality and quantity. Of the three factors, an altered sediment regime is a particularly unyielding challenge on many dammed rivers. The magnitude of the challenge is illustrated on the Lower Missouri River, where the largest water storage system in North America has decreased the downriver suspended-sediment load to 0.2%–17% of pre-dam loads. In response to the altered sediment regime, the Lower Missouri River channel has incised as much as 3.5 m just downstream of Gavins Point Dam, although the bed has been stable to slightly aggrading at other locations farther downstream. Effects of channel engineering and commercial dredging are superimposed on the broad-scale adjustments to the altered sediment regime.The altered sediment regime and geomorphic adjustments constrain restoration and management opportunities. Incision and aggradation limit some objectives of flow-regime management: In incising river segments, ecologically desirable reconnection of the floodplain requires discharges that are beyond operational limits, whereas in aggrading river segments, small spring pulses may inundate or saturate low-lying farmlands. Lack of sediment in the incising river segment downstream of Gavins Point Dam also limits sustainable restoration of sand-bar habitat for bird species listed under the Endangered Species Act. Creation of new shallow-water habitat for native fishes involves taking sediment out of floodplain storage and reintroducing most or all of it to the river, raising concerns about increased sediment, nutrient, and contaminant loads. Calculations indicate that effects of individual restoration projects are small relative to background loads, but cumulative effects may depend on sequence and locations of projects. An understanding of current and historical sediment fluxes, and how they vary along the river, provides a quantitative basis for defining management constraints and identifying opportunities.

  17. Assessment of metal exposure, ecological status and required water quality monitoring strategies in small- to medium-size temperate rivers.

    PubMed

    Marijić, Vlatka Filipović; Perić, Mirela Sertić; Kepčija, Renata Matoničkin; Dragun, Zrinka; Kovarik, Ivana; Gulin, Vesna; Erk, Marijana

    2016-01-01

    The present study was undertaken to obtain a better understanding of the seasonal variability of total dissolved metal/metalloid levels and physicochemical parameters within small- to medium-size freshwater ecosystems in temperate climate region. The research was conducted in four seasons in the Sutla River, medium-size polluted, and the Črnomerec Stream, small-size unpolluted watercourse in Croatia. In the Sutla River, characterized by the rural/industrial catchment, physicochemical parameters and total dissolved metal concentrations of 21 trace and 4 macro elements were analysed downstream of the point source of pollution, the glass production facility, indicating for the first time their variability across four seasons. Based on dissolved oxygen, total dissolved solids, nutrient concentrations, conductivity and total chemical oxygen demand, quality status of the Sutla River was good, but moderate to poor during summer, what was additionally confirmed by the highest levels of the most of 25 measured metals/metalloids in summer. Comparison with the reference small-size watercourse, the Črnomerec Stream, indicated significant anthropogenic impact on the Sutla River, most evident for Fe, Mn, Mo, Ni, Pb, Rb and Tl levels (3-70-fold higher in the Sutla River across all seasons). Generally, presented results indicated significant decrease of the water quality in the anthropogenically impacted small- to medium-size watercourses in summer, regarding physicochemical water parameters and total dissolved metal/metalloid concentrations, and pointed to significant seasonality of these parameters. Confirmed seasonality of river ecological status indicates that seasonal assessment represents a prerequisite for proper classification of the water quality in small- to medium-size temperate rivers.

  18. Comparisons of fish species traits from small streams to large rivers

    USGS Publications Warehouse

    Goldstein, R.M.; Meador, M.R.

    2004-01-01

    To examine the relations between fish community function and stream size, we classified 429 lotic freshwater fish species based on multiple categories within six species traits: (1) substrate preference, (2) geomorphic preference, (3) trophic ecology, (4) locomotion morphology, (5) reproductive strategy, and (6) stream size preference. Stream size categories included small streams, small, medium, and large rivers, and no size preference. The frequencies of each species trait category were determined for each stream size category based on life history information from the literature. Cluster analysis revealed the presence of covarying groups of species trait categories. One cluster (RUN) included the traits of planktivore and herbivore feeding ecology, migratory reproductive behavior and broadcast spawning, preferences for main-channel habitats, and a lack of preferences for substrate type. The frequencies of classifications for the RUN cluster varied significantly across stream size categories (P = 0.009), being greater for large rivers than for small streams and rivers. Another cluster (RIFFLE) included the traits of invertivore feeding ecology, simple nester reproductive behavior, a preference for riffles, and a preference for bedrock, boulder, and cobble-rubble substrate. No significant differences in the frequency of classifications among stream size categories were detected for the RIFFLE cluster (P = 0.328). Our results suggest that fish community function is structured by large-scale differences in habitat and is different for large rivers than for small streams and rivers. Our findings support theoretical predictions of variation in species traits among stream reaches based on ecological frameworks such as landscape filters, habitat templates, and the river continuum concept. We believe that the species trait classifications presented here provide an opportunity for further examination of fish species' relations to physical, chemical, and biological factors in lotic habitats ranging from small streams to large rivers.

  19. The anthropogenic nature of present-day low energy rivers in western France and implications for current restoration projects

    NASA Astrophysics Data System (ADS)

    Lespez, L.; Viel, V.; Rollet, A. J.; Delahaye, D.

    2015-12-01

    As in other European countries, western France has seen an increase in river restoration projects. In this paper, we examine the restoration goals, methods and objectives with respect to the long-term trajectory and understanding of the contemporary dynamics of the small low energy rivers typical of the lowlands of Western Europe. The exhaustive geomorphological, paleoenvironmental and historical research conducted in the Seulles river basin (Normandy) provides very accurate documentation of the nature and place of the different legacies in the fluvial systems we have inherited. The sedimentation rate in the Seulles valley bottom has multiplied by a factor of 20 since the end of the Bronze Age and has generated dramatic changes in fluvial forms. Hydraulic control of the rivers and valley bottoms drainage throughout the last millennium has channelized rivers within these deposits. The single meandering channel which characterizes this river today is the legacy of the delayed and complex effects of long term exploitation of the river basin and the fluvial system. Bring to light that the "naturalness" of the restored rivers might be questioned. Our research emphasizes the gap between the poor knowledge of the functioning of these rivers and the concrete objectives of the restoration works undertaken, including dam and weir removal. Account of the long-term history of fluvial systems is required, not only to produce a pedagogic history of the "river degradation" but more fundamentally (i) to situate the current functioning of the fluvial system in a trajectory to try to identify thresholds and anticipate the potential turning points in a context of climate and land use change, (ii) to understand the role of morphosedimentary legacies on the current dynamics, (iii) to open the discussion on reference functioning or expected states and (iv) to open discussion on the sustainability of ecological restoration. To conclude, we point out the necessity to take into account the hybrid nature of low energy rivers in rural environments and to develop specific evaluation protocols which would include both biophysical processes and usual human activities which could be a way to share the evaluation and overcome conflicts between socioeconomic needs and environmental issues.

  20. Extensive feeding on sockeye salmon Oncorhynchus nerka smolts by bull trout Salvelinus confluentus during initial outmigration into a small, unregulated and inland British Columbia river

    USGS Publications Warehouse

    Furey, Nathan B.; Hinch, Scott G.; Lotto, A.G.; Beauchamp, David A.

    2015-01-01

    Stomach contents were collected and analysed from 22 bull trout Salvelinus confluentus at the edge of the Chilko Lake and Chilko River in British Columbia, Canada, during spring outmigration of sockeye salmon Oncorhynchus nerka smolts. Twenty of the 22 (>90%) stomachs contained prey items, virtually all identifiable prey items were outmigrant O. nerka smolts and stomach contents represented a large portion (0·0–12·6%) of estimated S. confluentus mass. The results demonstrate nearly exclusive and intense feeding by S. confluentus on outmigrant smolts, and support recent telemetry observations of high disappearance rates of O. nerka smolts leaving large natural lake systems prior to entering high-order unregulated river systems.

  1. Extensive feeding on sockeye salmon Oncorhynchus nerka smolts by bull trout Salvelinus confluentus during initial outmigration into a small, unregulated and inland British Columbia river.

    PubMed

    Furey, N B; Hinch, S G; Lotto, A G; Beauchamp, D A

    2015-01-01

    Stomach contents were collected and analysed from 22 bull trout Salvelinus confluentus at the edge of the Chilko Lake and Chilko River in British Columbia, Canada, during spring outmigration of sockeye salmon Oncorhynchus nerka smolts. Twenty of the 22 (>90%) stomachs contained prey items, virtually all identifiable prey items were outmigrant O. nerka smolts and stomach contents represented a large portion (0·0-12·6%) of estimated S. confluentus mass. The results demonstrate nearly exclusive and intense feeding by S. confluentus on outmigrant smolts, and support recent telemetry observations of high disappearance rates of O. nerka smolts leaving large natural lake systems prior to entering high-order unregulated river systems. © 2014 The Fisheries Society of the British Isles.

  2. Response of small glaciers to climate change: runoff from glaciers of the Wind River range, Wyoming

    NASA Astrophysics Data System (ADS)

    Bliss, A. K.; Stamper, B.

    2017-12-01

    Runoff from glaciers affects downstream ecosystems by influencing the quantity, seasonality, and chemistry of the water. We describe the present state of glaciers in the Wind River range, Wyoming and consider how these glaciers will change in the future. Wind River glaciers have been losing mass in recent decades, as seen with geodetic techniques and by examining glacier morphology. Interestingly, the 2016/7 winter featured one of the largest snowfalls on record. Our primary focus is the Dinwoody Glacier ( 3 km^2, 3300-4000 m above sea level). We present data collected in mid-August 2017 including glacier ablation rates, snow line elevations, and streamflow. We compare measured glacier mass loss to streamflow at the glacier terminus and at a USGS stream gauge farther downstream. Using a hydrological model, we explore the fate of glacial runoff as it moves into downstream ecosystems and through ranchlands important to local people. The techniques used here can be applied to similar small-glacier systems in other parts of the world.

  3. Scaling characteristics of mountainous river flow fluctuations determined using a shallow-water acoustic tomography system

    NASA Astrophysics Data System (ADS)

    Al Sawaf, Mohamad Basel; Kawanisi, Kiyosi; Kagami, Junya; Bahreinimotlagh, Masoud; Danial, Mochammad Meddy

    2017-10-01

    The aim of this study is to investigate the scaling exponent properties of mountainous river flow fluctuations by detrended fluctuation analysis (DFA). Streamflow data were collected continuously using Fluvial Acoustic Tomography System (FATS), which is a novel system for measuring continuous streamflow at high-frequency scales. The results revealed that river discharge fluctuations have two scaling regimes and scaling break. In contrast to the Ranting Curve method (RC), the small-scale exponent detected by the FATS is estimated to be 1.02 ± 0.42% less than that estimated by RC. More importantly, the crossover times evaluated from the FATS delayed approximately by 42 ± 21 hr ≈2-3 days than their counterparts estimated by RC. The power spectral density analysis assists our findings. We found that scaling characteristics information evaluated for a river using flux data obtained by RC approach might not be accurately detected, because this classical method assumes that flow in river is steady and depends on constructing a relationship between discharge and water level, while the discharge obtained by the FATS decomposes velocity and depth into two ratings according to the continuity equation. Generally, this work highlights the performance of FATS as a powerful and effective approach for continuous streamflow measurements at high-frequency levels.

  4. Acquision of Geometrical Data of Small Rivers with AN Unmanned Water Vehicle

    NASA Astrophysics Data System (ADS)

    Sardemann, H.; Eltner, A.; Maas, H.-G.

    2018-05-01

    Rivers with small- and medium-scaled catchments have been increasingly affected by extreme events, i.e. flash floods, in the last years. New methods to describe and predict these events are developed in the interdisciplinary research project EXTRUSO. Flash flood events happen on small temporal and spatial scales, stressing the necessity of high-resolution input data for hydrological and hydrodynamic modelling. Among others, the benefit of high-resolution digital terrain models (DTMs) will be evaluated in the project. This article introduces a boat-based approach for the acquisition of geometrical and morphological data of small rivers and their banks. An unmanned water vehicle (UWV) is used as a multi-sensor platform to collect 3D-point clouds of the riverbanks, as well as bathymetric measurements of water depth and river morphology. The UWV is equipped with a mobile Lidar, a panorama camera, an echo sounder and a positioning unit. Whole (sub-) catchments of small rivers can be digitalized and provided for hydrological modelling when UWV-based and UAV (unmanned aerial vehicle) based point clouds are fused.

  5. Run-of-river power plants in Alpine regions: whither optimal capacity?

    NASA Astrophysics Data System (ADS)

    Lazzaro, Gianluca; Botter, Gianluca

    2015-04-01

    Hydropower is the major renewable electricity generation technology worldwide. The future expansion of this technology mostly relies on the development of small run-of-river projects, in which a fraction of the running flows is diverted from the river to a turbine for energy production. Even though small hydro inflicts a smaller impact on aquatic ecosystems and local communities compared to large dams, it cannot prevent stresses on plant, animal, and human well-being. This is especially true in mountain regions where the plant outflow is located several kilometers downstream of the intake, thereby inducing the depletion of river reaches of considerable length. Moreover, the negative cumulative effects of run-of-river systems operating along the same river threaten the ability of stream networks to supply ecological corridors for plants, invertebrates or fishes, and support biodiversity. Research in this area is severely lacking. Therefore, the prediction of the long-term impacts associated to the expansion of run-of-river projects induced by global-scale incentive policies remains highly uncertain. This contribution aims at providing objective tools to address the preliminary choice of the capacity of a run-of-river hydropower plant when the economic value of the plant and the alteration of the flow regime are simultaneously accounted for. This is done using the concepts of Pareto-optimality and Pareto-dominance, which are powerful tools suited to face multi-objective optimization in presence of conflicting goals, such as the maximization of the profitability and the minimization of the hydrologic disturbance induced by the plant in the river reach between the intake and the outflow. The application to a set of case studies belonging to the Piave River basin (Italy) suggests that optimal solutions are strongly dependent the natural flow regime at the plant intake. While in some cases (namely, reduced streamflow variability) the optimal trade-off between economic profitability and hydrologic disturbance is well identified, in other cases (enhanced streamflow variability) multiple options and/or ranges of optimal capacities may be devised. Such alternatives offer to water managers an objective basis to identify optimal allocation of resources and policy actions. Small hydro technology is likely to gain a higher social value in the next decades if the environmental and hydrologic footprint associated to the energetic exploitation of surface water will take a higher priority in civil infrastructures planning.

  6. 33 CFR 334.155 - Severn River, Naval Station Annapolis, Small Boat Basin, Annapolis, MD; naval restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Annapolis, Small Boat Basin, Annapolis, MD; naval restricted area. 334.155 Section 334.155 Navigation and... RESTRICTED AREA REGULATIONS § 334.155 Severn River, Naval Station Annapolis, Small Boat Basin, Annapolis, MD; naval restricted area. (a) The area. The waters within the Naval Station Annapolis small boat basin and...

  7. 33 CFR 334.155 - Severn River, Naval Station Annapolis, Small Boat Basin, Annapolis, MD; naval restricted area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Annapolis, Small Boat Basin, Annapolis, MD; naval restricted area. 334.155 Section 334.155 Navigation and... RESTRICTED AREA REGULATIONS § 334.155 Severn River, Naval Station Annapolis, Small Boat Basin, Annapolis, MD; naval restricted area. (a) The area. The waters within the Naval Station Annapolis small boat basin and...

  8. 33 CFR 334.155 - Severn River, Naval Station Annapolis, Small Boat Basin, Annapolis, MD; naval restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Annapolis, Small Boat Basin, Annapolis, MD; naval restricted area. 334.155 Section 334.155 Navigation and... RESTRICTED AREA REGULATIONS § 334.155 Severn River, Naval Station Annapolis, Small Boat Basin, Annapolis, MD; naval restricted area. (a) The area. The waters within the Naval Station Annapolis small boat basin and...

  9. Effects of fluvial processes in different order river valleys on redistribution and storage of particle-bound radioactive caesium-137 in area of significant Chernobyl fallout and impact on linked rivers with lower contamination levels

    NASA Astrophysics Data System (ADS)

    Belyaev, Vladimir; Golosov, Valentin; Shamshurina, Evgeniya; Ivanov, Maxim; Ivanova, Nadezhda; Bezukhov, Dmitry; Onda, Yuichi; Wakiyama, Yoshifumi; Evrard, Olivier

    2015-04-01

    Detailed investigations of the post-fallout fate of radionuclide contamination represent an important task in terms of environmental quality assessment. In addition, particle-bound radionuclides such as the most widespread anthropogenic isotope caesium-137 can be used as tracers for quantitative assessment of different sediment redistribution processes. In landscapes of humid plains with agriculture-dominated land use the post-fallout redistribution of caesium-137 is primarily associated with fluvial activity of various scales in cascade systems starting from soil erosion on cultivated hillslopes through gully and small dry valley network into different order perennial streams and rivers. Our investigations in the so-called Plavsk hotspot (area of very high Chernobyl caesium-137 contamination within the Plava River basin, Tula Region, Central European Russia) has been continuing for more than 15 years by now, while the time passed since the Chernobyl disaster and associated radioactive fallout (1986) is almost 29 years. Detailed information on the fluvial sediment and associated caesium-137 redistribution has been obtained for case study sites of different size from individual cultivated slopes and small catchments of different size (2-180 km2) to the entire Plava River basin scale (1856 km2). It has been shown that most of the contaminated sediment over the time passed since the fallout has remained stored within the small dry valleys of the 1-4 Hortonian order and local reservoirs (>70%), while only about 5% reached the 5-6 order valleys (main tributaries of the Plava River) and storage of the Plava floodplain itself represents as low as 0.3% of the basin-scale total sediment production from eroded cultivated hillslopes. Nevertheless, it has been shown that contaminated sediment yield from the Plava River basin exerts significant influence on less polluted downstream-linked river system. Recent progress of the investigations involved sampling of 7 detailed depth-incremental floodplain sediment sections along the Upa River valley, which is the receiving river for the Plava and is characterized by generally much lower caesium-137 contamination within other parts of its basin. One of the sampled sections was located several kilometers upstream from the Plava River mouth and the other 6 - at different distances downstream starting from about 2 km to about 40 km. In this case we can assume the Plava River mouth to be the point-source of sediment-associated radioactive contamination additional to the initial fallout. It has been found that while at the nearest point downstream the floodplain sediment contamination by caesium-137 is about 2 order of magnitude higher, than upstream, it decreases quickly along the Upa River valley two about 3 times higher than upstream at the most remote downstream point. Importantly, the decrease is not represented by gradual and uniform curve. In contrast, it is interrupted by local increase caused by smaller tributary from relatively high contamination area. It is believed that the obtained information on decadal-scale sediment and associated post-fallout caesium-137 redistribution through the fluvial network, patterns of sinks and rate of contamination propagation into the less polluted downstream-linked river basin can be used for testing and improving the predictive models being developed for applications in other contaminated areas such as river basins around the Fukushima Daiichi nuclear power plant, providing that differences in landscape settings, hydrological regime and land use patterns are taken into account.

  10. Co-evolutionary dynamics of the human-environment system in the Heihe River basin in the past 2000years.

    PubMed

    Lu, Zhixiang; Wei, Yongping; Feng, Qi; Xie, Jiali; Xiao, Honglang; Cheng, Guodong

    2018-09-01

    There is limited quantitative understanding of interactions between human and environmental systems over the millennial scale. We aim to reveal the co-evolutionary dynamics of the human-environment system in a river basin by simulating the water use and net primary production (NPP) allocation for human and environmental systems over the last 2000years in Heihe River basin (HRB) in northwest China. We partition the catchment total evapotranspiration (ET) into ET for human and environmental systems with a social-hydrological framework and estimate the NPP for human and environmental systems using the Box-Lieth model, then classify the co-evolutionary processes of the human-environment system into distinct phases using the rate of changes of NPP over time, and discover the trade-offs or synergies relationships between them based on the elasticity of change of the NPP for humans to the change of NPP for environment. The co-evolutionary dynamics of human-environment system in the HRB can be divided into four periods, including: Phase I (Han Dynasty-Yuan Dynasty): predevelopment characterized by nearly no trade-offs between human and environment; Phase II (Yuan Dynasty-RC): slow agricultural development: characterized by a small human win due to small trade-offs between human and environment; Phase III (RC-2000): rapid agricultural development: characterized by a large human win due to large trade-offs between human and environment, and Phase IV (2000-2010): a rebalance characterized by large human wins with a small-environment win due to synergies, although these occurred very occasionally. This study provides a quantitative approach to describe the co-evolution of the human-environment system from the perspective of trade-offs and synergies in the millennial scale for the first time. The relationships between humans and environment changed from trade-off to synergy with the implementation of the water reallocation scheme in 2000. These findings improve the understanding of how humans influence environmental systems and responses to environmental stresses. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Dynamics of pollutant indicators during flood events in a small river under strong anthropogenic pressures

    NASA Astrophysics Data System (ADS)

    Brion, Natacha; Carbonnel, Vincent; Elskens, Marc; Claeys, Philippe; Verbanck, Michel A.

    2017-04-01

    In densely populated regions, human activities profoundly modify natural water circulation as well as water quality, with increased hydrological risks (floods, droughts,…) and chemical hazards (untreated sewage releases, industrial pollution,…) as consequence. In order to assess water and pollutants dynamics and their mass-balance in strongly modified river system, it is important to take into account high flow events as a significant fraction of water and pollutants loads may occur during these short events which are generally underrepresented in classical mass balance studies. A good example of strongly modified river systems is the Zenne river in and around the city of Brussels (Belgium).The Zenne River (Belgium) is a rather small but dynamic rain fed river (about 10 m3/s in average) that is under the influence of strong contrasting anthropogenic pressures along its stretch. While the upstream part of its basin is rather characterized by agricultural land-use, urban and industrial areas dominate the downstream part. In particular, the city of Brussels (1.1M inhabitants) discharges in the Zenne River amounts of wastewater that are large compared to the natural riverine flow. In order to assess water and pollutants dynamics and their mass-balance in the Zenne hydrographic network, we followed water flows and concentrations of several water quality tracers during several flood episodes with an hourly frequency and at different locations along the stretch of the River. These parameters were chosen as indicators of a whole range of pollutions and anthropogenic activities. Knowledge of the high-frequency pollutants dynamics during floods is required for establishing accurate mass-balances of these elements. We thus report here the dynamics of selected parameters during entire flood events, from the baseline to the decreasing phase and at hourly frequency. Dynamics at contrasting locations, in agricultural or urban environments are compared. In particular, the importance of combined sewer overflows are evaluated and discussed. Results from this study were obtained in the framework of the OSIRIS research project (INNOVIRIS Anticipate 2015-2019).

  12. Bridging the energy gap: Anadromous blueback herring feeding in the Hudson and Mohawk rivers, New York

    USGS Publications Warehouse

    Simonin, P.W.; Limburg, K.E.; Machut, L.S.

    2007-01-01

    Adult blueback herring Alosa aestivalis (N = 116) were collected during the 1999, 2000, and 2002-2004 spawning runs from sites on the Hudson and Mohawk rivers, and gut contents were analyzed. Thirty-four fish (33% of those examined) were found to contain food material. Food items were present in 41% of Mohawk River samples and 11% of Hudson River samples; all Hudson River fish containing food were captured in small tributaries above the head of tide. Hudson River fish predominantly consumed zooplankton, while Mohawk River fish consumed benthic aquatic insects in large quantities, including Baetidae, Ephemeridae, and Chironomidae. Using stable isotope analysis and a mixing model, we found that fish collected later in the season had significantly decreased marine-derived C. Condition indices of later-season fish were equal to or greater than those of fish collected earlier in the season. Blueback herring in this system may face increased energy requirements as they migrate farther upstream during spawning runs, and feeding may provide energy subsidies needed to maintain fitness over their expanded migratory range. ?? Copyright by the American Fisheries Society 2007.

  13. Thermal impact of a small alas-valley river in a continuous permafrost area - insights and issues raised from a field monitoring Site in Syrdakh (Central Yakutia)

    NASA Astrophysics Data System (ADS)

    Grenier, Christophe; Nicolas, Roux; Fedorov, Alexander; Konstantinov, Pavel; Séjourné, Antoine; Costard, François; Marlin, Christelle; Khristoforov, Ivan; Saintenoy, Albane

    2017-04-01

    Lakes are probably the most prominent surface water bodies in continuous permafrost areas. As a consequence, they are also the most studied features in these regions (e.g. Fedorov et al. 2014). They are indeed of great interest, not only for local populations that use the water resource they represent both in winter and summer, but also from a climatic point of view as they can be a specific source of green-house gases due to the relatively warmer environment they create, especially associated with their taliks (thawed zone surrounded by permafrost located beneath large enough lakes). From a hydrogeological perspective, such taliks can form complex groundwater networks, thus possibly connecting sub-permafrost groundwater with surface water in the present context of climate change. On the other hand, rivers, another important feature of permafrost landscapes providing similar challenges, have drawn less attention so that only a few studies focus on river interactions with permafrost (e.g. Costard et al. 2014, Grenier et al. 2013). However, the processes of heat transfer at stake between river and permafrost strongly differ from lake systems for several reasons. The geometries differ, the river water flow and thermal regimes and interactions with the lateral slopes (valley) are specific. Of particular importance is the fact that the water, in the case of rivers, is in motion leading to specific heat exchange phenomena between water and soil. (Roux et al., accepted) addressed this issue recently by means of an experimental study in a cold room and associated numerical simulations. The present study focuses on a real river-permafrost system with its full natural complexity. A small alas-valley in the vicinity of Yakutsk (Central Yakutia, Siberia) was chosen. Monitoring was started in October 2012 to study the thermal and hydrological interactions between a river and its underground in this continuous permafrost environment. Thermal sensors were installed inside the river, in the atmosphere and into boreholes in the permafrost, at different locations and various distances from the river and the upstream lake. Hydrological information was collected as well (e.g. water temperature, electrical conductivity, pH and isotopic profiles; river flow rates). Soil properties were studied in pits (e.g. thermal conductivity, soil humidity and temperature measurements). More recently GPR studies were conducted along river profiles complementing the dataset. This new study site is introduced and the major results are presented as well as the main issues raised and future perspectives.

  14. Spatial and seasonal variability of base flow in the Verde Valley, central Arizona, 2007 and 2011

    USGS Publications Warehouse

    Garner, Bradley D.; Bills, Donald J.

    2012-01-01

    Synoptic base-flow surveys were conducted on streams in the Verde Valley, central Arizona, in June 2007 and February 2011 by the U.S. Geological Survey (USGS), in cooperation with the Verde River Basin Partnership, the Town of Clarkdale, and Yavapai County. These surveys, also known as seepage runs, measured streamflow under base-flow conditions at many locations over a short period of time. Surveys were conducted on a segment of the Verde River that flows through the Verde Valley, between USGS streamflow-gaging stations 09504000 and 09506000, a distance of 51 river miles. Data from the surveys were used to investigate the dominant controls on Verde River base flow, spatial variability in gaining and losing reaches, and the effects that human alterations have on base flow in the surface-water system. The most prominent human alterations in the Verde Valley are dozens of surface-water diversions from streams, including gravity-fed ditch diversions along the Verde River.Base flow that entered the Verde River from the tributary streams of Oak Creek, Beaver Creek, and West Clear Creek was found to be a major source of base flow in the Verde River. Groundwater discharge directly into the Verde River near these three confluences also was an important contributor of base flow to the Verde River, particularly near the confluence with Beaver Creek. An examination of individual reaches of the Verde River in the Verde Valley found three reaches (largely unaffected by ditch diversions) exhibiting a similar pattern: a small net groundwater discharge in February 2011 (12 cubic feet per second or less) and a small net streamflow loss in June 2007 (11 cubic feet per second or less). Two reaches heavily affected by ditch diversions were difficult to interpret because of the large number of confounding human factors. Possible lower and upper bounds of net groundwater flux were calculated for all reaches, including those heavily affected by ditches.

  15. Projecting cumulative benefits of multiple river restoration projects: an example from the Sacramento-San Joaquin River system in California

    USGS Publications Warehouse

    Kondolf, G. Mathias; Angermeier, Paul L.; Cummins, Kenneth; Dunne, Thomas; Healey, Michael; Kimmerer, Wim; Moyle, Peter B.; Murphy, Dennis; Patten, Duncan; Railsback, Steve F.; Reed, Denise J.; Spies, Robert B.; Twiss, Robert

    2008-01-01

    Despite increasingly large investments, the potential ecological effects of river restoration programs are still small compared to the degree of human alterations to physical and ecological function. Thus, it is rarely possible to “restore” pre-disturbance conditions; rather restoration programs (even large, well-funded ones) will nearly always involve multiple small projects, each of which can make some modest change to selected ecosystem processes and habitats. At present, such projects are typically selected based on their attributes as individual projects (e.g., consistency with programmatic goals of the funders, scientific soundness, and acceptance by local communities), and ease of implementation. Projects are rarely prioritized (at least explicitly) based on how they will cumulatively affect ecosystem function over coming decades. Such projections require an understanding of the form of the restoration response curve, or at least that we assume some plausible relations and estimate cumulative effects based thereon. Drawing on our experience with the CALFED Bay-Delta Ecosystem Restoration Program in California, we consider potential cumulative system-wide benefits of a restoration activity extensively implemented in the region: isolating/filling abandoned floodplain gravel pits captured by rivers to reduce predation of outmigrating juvenile salmon by exotic warmwater species inhabiting the pits. We present a simple spreadsheet model to show how different assumptions about gravel pit bathymetry and predator behavior would affect the cumulative benefits of multiple pit-filling and isolation projects, and how these insights could help managers prioritize which pits to fill.

  16. Isotope geochemistry and fluxes of carbon and organic matter in tropical small mountainous river systems and adjacent coastal waters of the Caribbean

    USGS Publications Warehouse

    Moyer, Ryan; Bauer, James; Grottoli, Andrea

    2012-01-01

    Recent studies have shown that small mountainous rivers (SMRs) may act as sources of aged and/or refractory carbon (C) to the coastal ocean, which may increase organic C burial at sea and subsidize coastal food webs and heterotrophy. However, the characteristics and spatial and temporal variability of C and organic matter (OM) exported from tropical SMR systems remain poorly constrained. To address this, the abundance and isotopic character (δ13C and Δ14C) of the three major C pools were measured in two Puerto Rico SMRs with catchments dominated by different land uses (agricultural vs. non-agricultural recovering forest). The abundance and character of C pools in associated estuaries and adjacent coastal waters were also examined. Riverine dissolved and particulate organic C (DOC and POC, respectively) concentrations were highly variable with respect to land use and sampling month, while dissolved inorganic C (DIC) was significantly higher at all times in the agricultural catchment. In both systems, riverine DOC and POC ranged from modern to highly aged (2,340 years before present), while DIC was always modern. The agricultural river and irrigation canals contained very old DOC (1,184 and 2,340 years before present, respectively), which is consistent with findings in temperate SMRs and indicates that these tropical SMRs provide a source of aged DOC to the ocean. During months of high river discharge, OM in estuarine and coastal waters had C isotope signatures reflective of direct terrestrial input, indicating that relatively unaltered OM is transported to the coastal ocean at these times. This is also consistent with findings in temperate SMRs and indicates that C transported to the coastal ocean by SMRs may differ from that of larger rivers because it is exported from smaller catchments that have steeper terrains and fewer land-use types.

  17. Occurrence and sources of Escherichia coli in metropolitan St. Louis streams, October 2004 through September 2007

    USGS Publications Warehouse

    Wilkison, Donald H.; Davis, Jerri V.

    2010-01-01

    The occurrence and sources of Escherichia coli (E. coli), one of several fecal indicator bacteria, in metropolitan St. Louis streams known to receive nonpoint source runoff, occasional discharges from combined and sanitary sewers, and treated wastewater effluent were investigated from October 2004 through September 2007. Three Missouri River sites, five Mississippi River sites, and six small basin tributary stream sites were sampled during base flow and storm events for the presence of E. coli and their sources. E. coli host-source determinations were conducted using local library based genotypic methods. Human fecal contamination in stream samples was additionally confirmed by the presence of Bacteroides thetaiotaomicron, an anaerobic, enteric bacterium with a high occurrence in, and specificity to, humans. Missouri River E. coli densities and loads during base flow were approximately 10 times greater than those in the Mississippi River above its confluence with the Missouri River. Although substantial amounts of E. coli originated from within the study area during base flow and storm events, considerable amounts of E. coli in the Missouri River, as well as in the middle Mississippi River sections downstream from its confluence with the Missouri River, originated in Missouri River reaches upstream from the study area. In lower Mississippi River reaches, bacteria contributions from the numerous combined and sanitary sewer overflows within the study area, as well as contributions from nonpoint source runoff, greatly increased instream E. coli densities. Although other urban factors cannot be discounted, average E. coli densities in streams were strongly correlated with the number of upstream combined and sanitary sewer overflow points, and the percentage of upstream impervious cover. Small basin sites with the greatest number of combined and sanitary sewer overflows (Maline Creek and the River des Peres) had larger E. coli densities, larger loads, and a greater percentage of E. coli attributable to humans than other small basin sites; however, even though small basin E. coli densities typically were much larger than in large river receiving streams, small basins contributed, on average, only a small part (a maximum of 16 percent) of the total E. coli load to larger rivers. On average, approximately one-third of E. coli in metropolitan St. Louis streams was identified as originating from humans. Another one-third of the E. coli was determined to have originated from unidentified sources; dogs and geese contributed lesser amounts, 10 and 20 percent, of the total instream bacteria. Sources of E. coli were largely independent of hydrologic conditions-an indication that sources remained relatively consistent with time.

  18. Climate and floods still govern California levee breaks

    USGS Publications Warehouse

    Florsheim, J.L.; Dettinger, M.D.

    2007-01-01

    Even in heavily engineered river systems, climate still governs flood variability and thus still drives many levee breaks and geomorphic changes. We assemble a 155-year record of levee breaks for a major California river system to find that breaks occurred in 25% of years during the 20th Century. A relation between levee breaks and river discharge is present that sets a discharge threshold above which most levee breaks occurred. That threshold corresponds to small floods with recurrence intervals of ???2-3 years. Statistical analysis illustrates that levee breaks and peak discharges cycle (broadly) on a 12-15 year time scale, in time with warm-wet storm patterns in California, but more slowly or more quickly than ENSO and PDO climate phenomena, respectively. Notably, these variations and thresholds persist through the 20th Century, suggesting that historical flood-control effects have not reduced the occurrence or frequency of levee breaks. Copyright 2007 by the American Geophysical Union.

  19. Controls on dissolved organic carbon quantity and chemical character in temperate rivers of North America

    USGS Publications Warehouse

    Hanley, Kevin W.; Wollheim, Wilfred M.; Salisbury, Joseph; Huntington, Thomas G.; Aiken, George R.

    2013-01-01

    Understanding the processes controlling the transfer and chemical composition of dissolved organic carbon (DOC) in freshwater systems is crucial to understanding the carbon cycle and the effects of DOC on water quality. Previous studies have identified watershed-scale controls on bulk DOC flux and concentration among small basins but fewer studies have explored controls among large basins or simultaneously considered the chemical composition of DOC. Because the chemical character of DOC drives riverine biogeochemical processes such as metabolism and photodegradation, accounting for chemical character in watershed-scale studies will improve the way bulk DOC variability in rivers is interpreted. We analyzed DOC quantity and chemical character near the mouths of 17 large North American rivers, primarily between 2008 and 2010, and identified watershed characteristics that controlled variability. We quantified DOC chemical character using both specific ultraviolet absorbance at 254 nm (SUVA254) and XAD-resin fractionation. Mean DOC concentration ranged from 2.1 to 47 mg C L−1 and mean SUVA254 ranged from 1.3 to 4.7 L mg C−1 m−1. We found a significant positive correlation between basin wetland cover and both bulk DOC concentration (R2 = 0.78; p < 0.0001) and SUVA254 (R2 = 0.91; p < 0.0001), while other land use characteristics were not correlated. The strong wetland relationship with bulk DOC concentration is similar to that found by others in small headwater catchments. However, two watersheds with extremely long surface water residence times, the Colorado and St. Lawrence, diverged from this wetland relationship. These results suggest that the role of riverine processes in altering the terrestrial DOC signal at the annual scale was minimal except in river systems with long surface water residence times. However, synoptic DOC sampling of both quantity and character throughout river networks will be needed to more rigorously test this finding. The inclusion of DOC chemical character will be vital to achieving a more complete understanding of bulk DOC dynamics in large river systems.

  20. Tidal fluxes of mercury and methylmercury for Mendall Marsh, Penobscot River estuary, Maine.

    PubMed

    Turner, R R; Mitchell, C P J; Kopec, A D; Bodaly, R A

    2018-05-08

    Tidal marshes are both important sites of in situ methylmercury production and can be landscape sources of methylmercury to adjacent estuarine systems. As part of a regional investigation of the Hg-contaminated Penobscot River and Bay system, the tidal fluxes of total suspended solids, total mercury and methylmercury into and out of a regionally important mesohaline fluvial marsh complex, Mendall Marsh, were intensively measured over several tidal cycles and at two spatial scales to assess the source-sink function of the marsh with respect to the Penobscot River. Over four tidal cycles on the South Marsh River, the main channel through which water enters and exits Mendall Marsh, the marsh was a consistent sink over typical 12-h tidal cycles for total suspended solids (8.2 to 41 g m -2 ), total Hg (9.2 to 47 μg m -2 ), total filter-passing Hg (0.4 to 1.1 μg m -2 ), and total methylmercury (0.2 to 1.4 μg m -2 ). The marsh's source-sink function was variable for filter-passing methylmercury, acting as a net source during a large spring tide that inundated much of the marsh area and that is likely to occur during approximately 17% of tidal cycles. Additional measurements on a small tidal channel draining approximately 1% of the larger marsh area supported findings at the larger scale, but differences in the flux magnitude of filter-passing fractions suggest a highly non-conservative transport of these fractions through the tidal channels. Overall the results of this investigation demonstrate that Mendall Marsh is not a significant source of mercury or methylmercury to the receiving aquatic systems (Penobscot River and Bay). While there is evidence of a small net export of filter-passing (<0.4 μm pore size) methylmercury under some tidal conditions, the mass involved represents <3% of the mass of filter-passing methylmercury carried by the Penobscot River. Copyright © 2018. Published by Elsevier B.V.

  1. Fluvial geomorphic elements in modern sedimentary basins and their potential preservation in the rock record: A review

    NASA Astrophysics Data System (ADS)

    Weissmann, G. S.; Hartley, A. J.; Scuderi, L. A.; Nichols, G. J.; Owen, A.; Wright, S.; Felicia, A. L.; Holland, F.; Anaya, F. M. L.

    2015-12-01

    Since tectonic subsidence in sedimentary basins provides the potential for long-term facies preservation into the sedimentary record, analysis of geomorphic elements in modern continental sedimentary basins is required to understand facies relationships in sedimentary rocks. We use a database of over 700 modern sedimentary basins to characterize the fluvial geomorphology of sedimentary basins. Geomorphic elements were delineated in 10 representative sedimentary basins, focusing primarily on fluvial environments. Elements identified include distributive fluvial systems (DFS), tributive fluvial systems that occur between large DFS or in an axial position in the basin, lacustrine/playa, and eolian environments. The DFS elements include large DFS (> 30 km in length), small DFS (< 30 km in length), coalesced DFS in bajada or piedmont plains, and incised DFS. Our results indicate that over 88% of fluvial deposits in the evaluated sedimentary basins are present as DFS, with tributary systems covering a small portion (1-12%) of the basin. These geomorphic elements are commonly arranged hierarchically, with the largest transverse rivers forming large DFS and smaller transverse streams depositing smaller DFS in the areas between the larger DFS. These smaller streams commonly converge between the large DFS, forming a tributary system. Ultimately, most transverse rivers become tributary to the axial system in the sedimentary basin, with the axial system being confined between transverse DFS entering the basin from opposite sides of the basin, or a transverse DFS and the edge of the sedimentary basin. If axial systems are not confined by transverse DFS, they will form a DFS. Many of the world's largest rivers are located in the axial position of some sedimentary basins. Assuming uniformitarianism, sedimentary basins from the past most likely had a similar configuration of geomorphic elements. Facies distributions in tributary positions and those on DFS appear to display specific morphologic patterns. Tributary rivers tend to increase in size in the downstream direction. Because axial tributary rivers are present in confined settings in the sedimentary basin, they migrate back and forth within a relatively narrow belt (relative to the overall size of the sedimentary basin). Thus, axial tributary rivers tend to display amalgamated channel belt form with minimal preservation potential of floodplain deposits. Chute and neck cutoff avulsions are also common on meandering rivers in these settings. Where rivers on DFS exit their confining valley on the basin margin, sediment transport capacity is reduced and sediment deposition occurs resulting in development of a 'valley exit' nodal avulsion point that defines the DFS apex. Rivers may incise downstream of the basin margin valley because of changes in sediment supply and discharge through climatic variability or tectonic processes. We demonstrate that rivers on DFS commonly decrease in width down-DFS caused by infiltration, bifurcation, and evaporation. In proximal areas, channel sands are amalgamated through repeated avulsion, reoccupation of previous channel belts, and limited accumulation space. When rivers flood on the medial to distal portions of a DFS, the floodwaters spread across a large area on the DFS surface and typically do not re-enter the main channel. In these distal areas, rivers on DFS commonly avulse, leaving a discrete sand body and providing high preservation potential for floodplain deposits. Additional work is needed to evaluate the geomorphic character of modern sedimentary basins in order to construct improved facies models for the continental sedimentary rock record. Specifically, models for avulsion, bifurcation, infiltration, and geomorphic form on DFS are required to better define and subsequently predict facies geometries. Studies of fluvial systems in sedimentary basins are also important for evaluating flood patterns and groundwater distributions for populations in these regions.

  2. Seasonal variation in pans in relation to limno-chemistry, size, hydroperiod, and river connectivity in a semi-arid subtropical region

    NASA Astrophysics Data System (ADS)

    Nhiwatiwa, Tamuka; Dalu, Tatenda

    2017-02-01

    Seasonal pans are hydrologically dynamic, with significant changes in water volume and depth in response to high evaporation, infiltration rates and inundation events. Intra-seasonal and inter-seasonal changes in endorheic and floodplain pans in relation to limnology, size, hydroperiod, and river connectivity were studied over two rainfall seasons across 36 pans at the Save Valley Conservancy. In the study region, floodplain pans were identified as pans that had connectivity with the Save River, while the endorheic pans (large and small) were hydrologically isolated basins. Seasonal trends for physico-chemical variables were initial low and gradual increased for both rainfall seasons. Significant inter-seasonal differences for several physico-chemical variables were observed. No significant differences in physico-chemical variables were observed between large and small endorheic pans, with the except for vegetation cover, which was higher in large pans. Floodplain pans differed from the endorheic systems in pH, conductivity, nutrients and suspended solids. Connectivity was found to be insignificant, as connections between these systems were probably too infrequent. Seasonal pans were uniquely distinguished by their morphometric, physico-chemical and hydrological characteristics. Inevitably, they are vulnerable to climate change with the extent of their resilience currently unknown.

  3. Distributions of small nongame fishes in the lower Yellowstone River

    USGS Publications Warehouse

    Duncan, Michael B.; Bramblett, Robert G.; Zale, Alexander V.

    2016-01-01

    The Yellowstone River is the longest unimpounded river in the conterminous United States. It has a relatively natural flow regime, which helps maintain diverse habitats and fish assemblages uncommon in large rivers elsewhere. The lower Yellowstone River was thought to support a diverse nongame fish assemblage including several species of special concern. However, comprehensive data on the small nongame fish assemblage of the lower Yellowstone River is lacking. Therefore, we sampled the Yellowstone River downstream of its confluence with the Clark’s Fork using fyke nets and otter trawls to assess distributions and abundances of small nongame fishes. We captured 42 species (24 native and 18 nonnative) in the lower Yellowstone River with fyke nets. Native species constituted over 99% of the catch. Emerald shiners Notropis atherinoides, western silvery minnows Hybognathus argyritis, flathead chubs Platygobio gracilis, sand shiners Notropis stramineus, and longnose dace Rhinichthys cataractae composed nearly 94% of fyke net catch and were caught in every segment of the study area. We captured 24 species by otter trawling downstream of the Tongue River. Sturgeon chubs Macrhybopsis gelida, channel catfish Ictalurus punctatus, flathead chubs, stonecats Noturus flavus, and sicklefin chubs Macrhybopsis meeki composed 89% of the otter trawl catch. The upstream distributional limit of sturgeon chubs in the Yellowstone River was the Tongue River; few sicklefin chubs were captured above Intake Diversion Dam. This study not only provides biologists with baseline data for future monitoring efforts on the Yellowstone River but serves as a benchmark for management and conservation efforts in large rivers elsewhere as the Yellowstone River represents one of the best references for a naturally functioning Great Plains river.

  4. Potential for Small Unmanned Aircraft Systems applications for identifying groundwater-surface water exchange in a meandering river reach

    USGS Publications Warehouse

    Pai, H.; Malenda, H.; Briggs, Martin A.; Singha, K.; González-Pinzón, R.; Gooseff, M.; Tyler, S.W.; ,

    2017-01-01

    The exchange of groundwater and surface water (GW-SW), including dissolved constituents and energy, represents a critical yet challenging characterization problem for hydrogeologists and stream ecologists. Here, we describe the use of a suite of high spatial-resolution remote-sensing techniques, collected using a small unmanned aircraft system (sUAS), to provide novel and complementary data to analyze GW-SW exchange. sUAS provided centimeter-scale resolution topography and water surface elevations, which are often drivers of exchange along the river corridor. Additionally, sUAS-based vegetation imagery, vegetation-top elevation, and normalized difference vegetation index (NDVI) mapping indicated GW-SW exchange patterns that are difficult to characterize from the land surface and may not be resolved from coarser satellite-based imagery. We combined these data with estimates of sediment hydraulic conductivity to provide a direct estimate of GW “shortcutting” through meander necks, which was corroborated by temperature data at the riverbed interface.

  5. Potential for Small Unmanned Aircraft Systems Applications for Identifying Groundwater-Surface Water Exchange in a Meandering River Reach

    NASA Astrophysics Data System (ADS)

    Pai, H.; Malenda, H. F.; Briggs, M. A.; Singha, K.; González-Pinzón, R.; Gooseff, M. N.; Tyler, S. W.

    2017-12-01

    The exchange of groundwater and surface water (GW-SW), including dissolved constituents and energy, represents a critical yet challenging characterization problem for hydrogeologists and stream ecologists. Here we describe the use of a suite of high spatial resolution remote sensing techniques, collected using a small unmanned aircraft system (sUAS), to provide novel and complementary data to analyze GW-SW exchange. sUAS provided centimeter-scale resolution topography and water surface elevations, which are often drivers of exchange along the river corridor. Additionally, sUAS-based vegetation imagery, vegetation-top elevation, and normalized difference vegetation index mapping indicated GW-SW exchange patterns that are difficult to characterize from the land surface and may not be resolved from coarser satellite-based imagery. We combined these data with estimates of sediment hydraulic conductivity to provide a direct estimate of GW "shortcutting" through meander necks, which was corroborated by temperature data at the riverbed interface.

  6. Floods of December 1961 in Mississippi and adjoining states

    USGS Publications Warehouse

    Shell, James D.

    1962-01-01

    Widespread floods occurred over parts of Mississippi, Louisiana, and Alabama after heavy rains during December 18, 1961. A series of low-pressure systems produced as much as 19 inches of rainfall in some areas. Heavy rainfall, 7 to 11 inches, on December 10 resulted in outstanding floods on small streams in southern Mississippi and southwestern Alabama. Subsequent rains produced multiple floods on small streams and outstanding floods of prolonged duration along the Big Black, upper Pearl, and lower Tombigbee Rivers in Mississippi. At Jackson, Miss., the Pearl River reached the highest stage known. Along the east bank, flood waters topped or breached some of the levee system protecting the Flowood industrial area, but other parts were saved by extensive reinforcement and by emergency operation of the partially completed dam 10 miles upstream. Additional heavy damage to commercial and industrial property was prevented as a result of these measures. Elsewhere, damage was restricted primarily to secondary highways and bridges. Two lives were lost.

  7. Use of a mangrove estuary as a nursery area by postlarval and juvenile banana prawns, Penaeus merguiensis de Man, in Northern Australia

    NASA Astrophysics Data System (ADS)

    Vance, D. J.; Haywood, M. D. E.; Staples, D. J.

    1990-11-01

    In the Embley River, Gulf of Carpentaria, Australia, the largest catches of the commercially important banana prawns, Penaeus merguiensis, were made on mangrove-lined, steeply sloping mud banks. The upstream limit of distribution of P. merguiensis was found to coincide with the distribution of broad bands of fringing mangrove forests but, except in the wet season, was not related to salinity levels. Although some postlarval P. merguiensis settled on all habitat types in the estuary, large catches were only taken on the mangrove-lined banks. Catches of both postlarvae and juveniles in the upstream reaches of a small creek were almost five times higher than those in the river near the creek mouth. Moreover, prawns in the 2 to 4 mm carapace length (CL) size class were poorly represented in the river but were abundant in catches in the small creek. This suggests that either the survival rate of postlarvae is highest in the upper reaches of the small creeks, or that the small prawns are migrating from the main river into the creek. As prawns increase in size above 5 mm CL it appears that they take part in daily tidal migrations from small creeks to the river and begin a gradual migration from the creeks to the river.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukina, E. V.

    The reservoir-cooler of the A.V. Vinter Gorky State Regional Power Plant was created in 1925-1930 at the site of the small, marshy Zheleznitsa river. It is a reservoir with a reversible system, its area about 200 hectares, its length about 15 km. In 1968-1969, being occupied with a study of the flora and vegetation of the reservoirs of the Gorky region, we carried out a geobotanical examination of the GoGRES reservoir-cooler. According to morphometry the reservoir is divided into two parts: an expanded lake part and a constricted river part.

  9. Groundwater flow, nutrient, and stable isotope dynamics in the parafluvial-hyporheic zone of the regulated Lower Colorado River (Texas, USA) over the course of a small flood

    NASA Astrophysics Data System (ADS)

    Briody, Alyse C.; Cardenas, M. Bayani; Shuai, Pin; Knappett, Peter S. K.; Bennett, Philip C.

    2016-06-01

    Periodic releases from an upstream dam cause rapid stage fluctuations in the Lower Colorado River near Austin, Texas, USA. These daily pulses modulate fluid exchange and residence times in the hyporheic zone where biogeochemical reactions are typically pronounced. The effects of a small flood pulse under low-flow conditions on surface-water/groundwater exchange and biogeochemical processes were studied by monitoring and sampling from two dense transects of wells perpendicular to the river. The first transect recorded water levels and the second transect was used for water sample collection at three depths. Samples were collected from 12 wells every 2 h over a 24-h period which had a 16-cm flood pulse. Analyses included nutrients, carbon, major ions, and stable isotopes of water. The relatively small flood pulse did not cause significant mixing in the parafluvial zone. Under these conditions, the river and groundwater were decoupled, showed potentially minimal mixing at the interface, and did not exhibit any discernible denitrification of river-borne nitrate. The chemical patterns observed in the parafluvial zone can be explained by evaporation of groundwater with little mixing with river water. Thus, large pulses may be necessary in order for substantial hyporheic mixing and exchange to occur. The large regulated river under a low-flow and small flood pulse regime functioned mainly as a gaining river with little hydrologic connectivity beyond a narrow hyporheic zone.

  10. Informed Decision Making Process for Managing Environmental Flows in Small River Basins

    NASA Astrophysics Data System (ADS)

    Padikkal, S.; Rema, K. P.

    2013-03-01

    Numerous examples exist worldwide of partial or complete alteration to the natural flow regime of river systems as a consequence of large scale water abstraction from upstream reaches. The effects may not be conspicuous in the case of very large rivers, but the ecosystems of smaller rivers or streams may be completely destroyed over a period of time. While restoration of the natural flow regime may not be possible, at present there is increased effort to implement restoration by regulating environmental flow. This study investigates the development of an environmental flow management model at an icon site in the small river basin of Bharathapuzha, west India. To determine optimal environmental flow regimes, a historic flow model based on data assimilated since 1978 indicated a satisfactory minimum flow depth for river ecosystem sustenance is 0.907 m (28.8 m3/s), a value also obtained from the hydraulic model; however, as three of the reservoirs were already operational at this time a flow depth of 0.922 m is considered a more viable estimate. Analysis of daily stream flow in 1997-2006, indicated adequate flow regimes during the monsoons in June-November, but that sections of the river dried out in December-May with alarming water quality conditions near the river mouth. Furthermore, the preferred minimum `dream' flow regime expressed by stakeholders of the region is a water depth of 1.548 m, which exceeds 50 % of the flood discharge in July. Water could potentially be conserved for environmental flow purposes by (1) the de-siltation of existing reservoirs or (2) reducing water spillage in the transfer between river basins. Ultimately environmental flow management of the region requires the establishment of a co-ordinated management body and the regular assimilation of water flow information from which science based decisions are made, to ensure both economic and environmental concerns are adequately addressed.

  11. How Rapid Change Affects Deltas in the Arctic Region

    NASA Astrophysics Data System (ADS)

    Overeem, I.; Bendixen, M.

    2017-12-01

    Deltas form where the river drains into the ocean. Consequently, delta depositional processes are impacted by either changes in the respective river drainage basin or by changes in the regional marine environment. In a warming Arctic region rapid change has occurred over the last few decades in both the terrestrial domain as well as in the marine domain. Important terrestrial controls include 1) change in permafrost possibly destabilizing river banks, 2) strong seasonality of river discharge due to a short melting season, 3) high sediment supply if basins are extensively glaciated, 4) lake outbursts and ice jams favoring river flooding. Whereas in the Arctic marine domain sea ice loss promotes wave and storm surge impact, and increased longshore transport. We here ask which of these factors dominate any morphological change in Arctic deltas. First, we analyze hydrological data to assess change in Arctic-wide river discharge characteristics and timing, and sea ice concentration data to map changes in sea ice regime. Based on this observational analysis we set up a number of scenarios of change. We then model hypothetical small-scale delta formation considering change in these primary controls by setting up a numerical delta model, and combining it dynamically with a permafrost model. We find that for typical Greenlandic deltas changes in river forcing due to ice sheet melt dominate the morphological change, which is corroborated by mapping of delta progradation from aerial photos and satellite imagery. Whereas in other areas, along the North Slope and the Canadian Arctic small deltas are more stable or experienced retreat. Our preliminary coupled model allows us to further disentangle the impact of major forcing factors on delta evolution in high-latitude systems.

  12. Regional Big Injun (Price/Pocono) subsurface stratigraphy of West Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donaldson, A.C.; Zou, Xiangdong

    1992-01-01

    The lower Big Injun (Lower Mississippian) is the oil reservoir of the Granny Creek and Rock Creek fields and consists of multiple sandstones that were deposited in different fluvial-deltaic depositional environments. These multiple sandstones became amalgamated and now appear as a widespread blanket sandstone as a result of ancient cut and fill processes associated with river-channel sedimentation. The regional study of this Price Formation subsurface equivalent considers the continuity and thickness variations of the composite sandstones of the Big Injun mainly within western West Virginia. The major fluvial drainage system apparently flowed southward through Ohio (much of it later erodedmore » by the pre-Pottsville unconformity) during Big Injun time (and earlier) and part of the system was diverted into southwestern West Virginia as vertically stacked channel and river-mouth bar deposits (Rock Creek field). This ancient Ontario River system apparently drained a huge area including the northern craton as well as the orogenic belt. The emerging West Virginia Dome probably sourced the sediment transported by small rivers developing southwestward prograding deltas across Clay County (Granny Creek field). Sedimentation was affected by differential subsidence in the basin. Paleovalley fill was considered for areas with vertically stacked sandstones, but evidence for their origin is not convincing. Oil-reservoir sandstones are classified as dip-trending river channel (D1) and deltaic shoreline (D2) deposits.« less

  13. Small river plumes near the north-eastern coast of the Black Sea under climatic mean and flooding discharge conditions

    NASA Astrophysics Data System (ADS)

    Osadchiev, Alexander; Korshenko, Evgeniya

    2017-04-01

    The study is focused on the impact of discharge from small rivers on propagation and final location of fluvial waters and suspended matter at the north-eastern part of the Black Sea under different local precipitation conditions. Several dozens of mountainous rivers inflow into the sea at the studied region and most of them, except the several largest of them, have small annual runoff and limitedly affect adjacent coastal waters under climatic mean conditions. However, discharges of these small rivers are characterized by quick response to precipitation events and can dramatically increase during and shortly after heavy rains, which are frequent in the area under consideration. Propagation and final location of fluvial waters and terrigenous sediments at the studied region under climatic mean and rain-induced flooding conditions were explored and compared using in situ data, satellite imagery and numerical modelling. It was shown that the point-source spread of continental discharge dominated by several large rivers during climatic mean conditions can change to the line-source discharge from numerous small rivers situated along the coast in response to heavy rains. Intense line-source runoff of water and suspended sediments form a geostrophic alongshore current of turbid and freshened water, which induces intense transport of suspended and dissolved constituents discharged with river waters in a north-western direction. This process significantly influences water quality and causes active sediment load at large segments of narrow shelf at the north-eastern part of the Black Sea as compared to climatic mean discharge conditions.

  14. Water resources of the Two Rivers Watershed, Northwestern Minnesota

    USGS Publications Warehouse

    Maclay, R.W.; Winter, Thomas C.; Pike, G.M.

    1967-01-01

    It lies in parts of Kittson and Roseau counties and includes the drainage basins of the Two Rivers and Joe River. The flat lake plain which extends 15 to 20 miles east of the Red River of the North is extensively cultivated for small grains and sugar beets. The gently undulating till plain is cultivated largely for small grains and hay. The areas not under cultivation support a forest of poplar with some maple and oak. Oak is the predominate tree on the sandy ridges. The large peat areas are covered with brush and marsh grasslands. Outdoor recreational facilities in the watershed consist principally of the Lake Bronson Park, water-fowl hunting in the extensive marshlands, and deer and small game hunting in the forested areas.

  15. Entropy of hydrological systems under small samples: Uncertainty and variability

    NASA Astrophysics Data System (ADS)

    Liu, Dengfeng; Wang, Dong; Wang, Yuankun; Wu, Jichun; Singh, Vijay P.; Zeng, Xiankui; Wang, Lachun; Chen, Yuanfang; Chen, Xi; Zhang, Liyuan; Gu, Shenghua

    2016-01-01

    Entropy theory has been increasingly applied in hydrology in both descriptive and inferential ways. However, little attention has been given to the small-sample condition widespread in hydrological practice, where either hydrological measurements are limited or are even nonexistent. Accordingly, entropy estimated under this condition may incur considerable bias. In this study, small-sample condition is considered and two innovative entropy estimators, the Chao-Shen (CS) estimator and the James-Stein-type shrinkage (JSS) estimator, are introduced. Simulation tests are conducted with common distributions in hydrology, that lead to the best-performing JSS estimator. Then, multi-scale moving entropy-based hydrological analyses (MM-EHA) are applied to indicate the changing patterns of uncertainty of streamflow data collected from the Yangtze River and the Yellow River, China. For further investigation into the intrinsic property of entropy applied in hydrological uncertainty analyses, correlations of entropy and other statistics at different time-scales are also calculated, which show connections between the concept of uncertainty and variability.

  16. 78 FR 28492 - Special Local Regulation; Low Country Splash, Wando River, Cooper River, and Charleston Harbor...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-15

    ... to the local maritime community via broadcast notice to mariners. 2. Impact on Small Entities Under...-AA08 Special Local Regulation; Low Country Splash, Wando River, Cooper River, and Charleston Harbor... establishing a special local regulation on the waters of the Wando River, Cooper River, and Charleston Harbor...

  17. Stream channel responses to streamflow diversion on small streams of the Snake River drainage, Idaho

    Treesearch

    Carolyn C. Bohn; John G. King

    2000-01-01

    The effects on channels of small, low-head seasonal water diversions in the Snake River drainage were investigated. Channels below small diversions were compared to the channels immediately above the same diversions to determine if differences in flow conveyance, substrate sediment size distribution, or streamside vegetation density were present. Estimates of flow...

  18. 33 CFR 263.26 - Small beach erosion control project authority (Section 103).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Small beach erosion control....26 Small beach erosion control project authority (Section 103). (a) Legislative authority. Section 103(a) of the River and Harbor Act of 1962, as amended by section 310 of the River and Harbor Act of...

  19. Comparative use of side and main channels by small-bodied fish in a large, unimpounded river

    USGS Publications Warehouse

    Reinhold, Ann Marie; Bramblett, Robert G.; Zale, Alexander V.; Roberts, David W.; Poole, Geoffrey C.

    2016-01-01

    Ecological theory and field studies suggest that lateral floodplain connectivity and habitat heterogeneity provided by side channels impart favourable habitat conditions for lotic fishes, especially fluvial fishes dependent on large patches of shallow, slow velocity habitats for some portion of their life cycle. However, anthropogenic modification of large, temperate floodplain rivers has led to extensive channel simplification and side-channel loss. Highly modified rivers consist of simplified channels in contracted, less dynamic floodplains.Most research examining the seasonal importance of side channels for fish assemblages in large rivers has been carried out in heavily modified rivers, where side-channel extents are substantially reduced from pre-settlement times, and has often overlooked small-bodied fishes. Inferences about the ecological importance of side channels for small-bodied fishes in large rivers can be ascertained only from investigations of large rivers with largely intact floodplains. The Yellowstone River, our study area, is a rare example of one such river.We targeted small-bodied fishes and compared their habitat use in side and main channels in two geomorphically distinct types of river bends during early and late snowmelt runoff, and autumn base flow. Species compositions of side and main channels differed throughout hydroperiods concurrent with the seasonal redistribution of the availability of shallow, slow current-velocity habitats. More species of fish used side channels than main channels during runoff. Additionally, catch rates of small fishes were generally greater in side channels than in main channels and quantitative assemblage compositions differed between channel types during runoff, but not during base flow. Presence of and access to diverse habitats facilitated the development and persistence of diverse fish assemblages in our study area.Physical dissimilarities between side and main channels may have differentially structured the side- and main-channel fish assemblages during runoff. Patches of shallow, slow current-velocity (SSCV) habitats in side channels were larger and had slightly slower water velocities than SSCV habitat patches in main channels during runoff, but not during base flow.Our findings establish a baseline importance of side channels to riverine fishes in a large, temperate river without heavy anthropogenic modification. Establishing this baseline contributes to basic fluvial ecology and provides empirical justification for restoration efforts that reconnect large rivers with their floodplains.

  20. The study of the interactions between groundwater and Sava River water in the Ljubljansko polje aquifer system (Slovenia)

    NASA Astrophysics Data System (ADS)

    Vrzel, Janja; Solomon, D. Kip; Blažeka, Željko; Ogrinc, Nives

    2018-01-01

    River basin aquifers are common sites for drinking water wells as bank filtration can be a cost effective pretreatment technology. A groundwater vulnerability to pollution depends on a groundwater mean residence time and on a relative contribution of river water versus local precipitation to groundwater. Environmental isotopes of oxygen and hydrogen (δ18O and δ2H), tritium (3H) and concentrations of nitrate (NO3-) were used to investigate hydrological pathways, mean residence time and interactions between surface water and groundwater in the Ljubljansko polje aquifer system in Slovenia. δ18O and δ2H values indicate a spatial variability of the influence of individual groundwater sources inside the aquifer - local precipitation and the Sava River water. Fractions of river water in groundwater depend on the depth of perforated screens in the pumping wells and their distance from the Sava River. It was estimated that groundwater at wells Kleče 11, Hrastje 3, and Hrastje 8 is mostly composed of recently infiltrated local precipitation, while the Sava River is the dominant source of groundwater at the well Jarški prod 1. Groundwater at wells Kleče 8, Kleče 12, and Jarški prod 3 contains on average between 41% and 48% of the Sava River water. The 3H and 3H/3He methods indicate short mean residence time of groundwater present at Jarški prod (2-7 years) and Hrastje (7-8 years). A small fraction (<10%) of old groundwater is present at Kleče. Furthermore, infiltration of local precipitation influenced the levels of NO3- at Hrastje. These data extend our understanding of groundwater flow in the Ljubljansko polje aquifer system, interactions between the Sava River water/local precipitation and groundwater, and the utility of isotope tracers in evaluating the spatial distribution of groundwater vulnerability to pollution.

  1. Deposition and Burial Efficiency of Terrestrial Organic Carbon Exported from Small Mountainous Rivers to the Continental Margin, Southwest of Taiwan

    NASA Astrophysics Data System (ADS)

    Hsu, F.; Lin, S.; Wang, C.; Huh, C.

    2007-12-01

    Terrestrial organic carbon exported from small mountainous river to the continental margin may play an important role in global carbon cycle and it?|s biogeochemical process. A huge amount of suspended materials from small rivers in southwestern Taiwan (104 million tons per year) could serve as major carbon source to the adjacent ocean. However, little is know concerning fate of this terrigenous organic carbon. The purpose of this study is to calculate flux of terrigenous organic carbon deposited in the continental margin, offshore southwestern Taiwan through investigating spatial variation of organic carbon content, organic carbon isotopic compositions, organic carbon deposition rate and burial efficiency. Results show that organic carbon compositions in sediment are strongly influenced by terrestrial material exported from small rivers in the region, Kaoping River, Tseng-wen River and Er-jan Rver. In addition, a major part of the terrestrial materials exported from the Kaoping River may bypass shelf region and transport directly into the deep sea (South China Sea) through the Kaoping Canyon. Organic carbon isotopic compositions with lighter carbon isotopic values are found near the Kaoping River and Tseng-wen River mouth and rapidly change from heavier to lighter values through shelf to slope. Patches of lighter organic carbon isotopic compositions with high organic carbon content are also found in areas west of Kaoping River mouth, near the Kaoshiung city. Furthermore, terrigenous organic carbons with lighter isotopic values are found in the Kaoping canyon. A total of 0.028 Mt/yr of terrestrial organic carbon was found in the study area, which represented only about 10 percent of all terrestrial organic carbon deposited in the study area. Majority (~90 percent) of the organic carbon exported from the Kaoping River maybe directly transported into the deep sea (South China Sea) and become a major source of organic carbon in the deep sea.

  2. Implantable acoustic-beacon automatic fish-tracking system

    NASA Technical Reports Server (NTRS)

    Mayhue, R. J.; Lovelady, R. W.; Ferguson, R. L.; Richards, C. E.

    1977-01-01

    A portable automatic fish tracking system was developed for monitoring the two dimensional movements of small fish within fixed areas of estuarine waters and lakes. By using the miniature pinger previously developed for this application, prototype tests of the system were conducted in the York River near the Virginia Institute of Marine Science with two underwater listening stations. Results from these tests showed that the tracking system could position the miniature pinger signals to within + or - 2.5 deg and + or - 135 m at ranges up to 2.5 km. The pingers were implanted in small fish and were successfully tracked at comparable ranges. No changes in either fish behavior or pinger performance were observed as a result of the implantation. Based on results from these prototype tests, it is concluded that the now commercially available system provides an effective approach to underwater tracking of small fish within a fixed area of interest.

  3. General design, construction, and operation guidelines: Constructed wetlands wastewater treatment systems for small users including individual residences. Second edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steiner, G.R.; Watson, J.T.

    1993-05-01

    One of the Tennessee Valley Authority`s (TVA`s) major goals is cleanup and protection of the waters of the Tennessee River system. Although great strides have been made, point source and nonpoint source pollution still affect the surface water and groundwater quality in the Tennessee Valley and nationally. Causes of this pollution are poorly operating wastewater treatment systems or the lack of them. Practical solutions are needed, and there is great interest and desire to abate water pollution with effective, simple, reliable and affordable wastewater treatment processes. In recognition of this need, TVA began demonstration of the constructed wetlands technology inmore » 1986 as an alternative to conventional, mechanical processes, especially for small communities. Constructed wetlands can be downsized from municipal systems to small systems, such as for schools, camps and even individual homes.« less

  4. Landscape genetics informs mesohabitat preference and conservation priorities for a surrogate indicator species in a highly fragmented river system.

    PubMed

    Lean, J; Hammer, M P; Unmack, P J; Adams, M; Beheregaray, L B

    2017-04-01

    Poor dispersal species represent conservative benchmarks for biodiversity management because they provide insights into ecological processes influenced by habitat fragmentation that are less evident in more dispersive organisms. Here we used the poorly dispersive and threatened river blackfish (Gadopsis marmoratus) as a surrogate indicator system for assessing the effects of fragmentation in highly modified river basins and for prioritizing basin-wide management strategies. We combined individual, population and landscape-based approaches to analyze genetic variation in samples spanning the distribution of the species in Australia's Murray-Darling Basin, one of the world's most degraded freshwater systems. Our results indicate that G. marmoratus displays the hallmark of severe habitat fragmentation with notably scattered, small and demographically isolated populations with very low genetic diversity-a pattern found not only between regions and catchments but also between streams within catchments. By using hierarchically nested population sampling and assessing relationships between genetic uniqueness and genetic diversity across populations, we developed a spatial management framework that includes the selection of populations in need of genetic rescue. Landscape genetics provided an environmental criterion to identify associations between landscape features and ecological processes. Our results further our understanding of the impact that habitat quality and quantity has on habitat specialists with similarly low dispersal. They should also have practical applications for prioritizing both large- and small-scale conservation management actions for organisms inhabiting highly fragmented ecosystems.

  5. Using Small Unmanned Aerial Systems to Advance Hydrological Models in Coastal Watersheds

    NASA Astrophysics Data System (ADS)

    Moorhead, R.; Hathcock, L.; Coffey, J. J.; Hood, R. E.; van Cooten, S.; Choate, K.; Rawson, H.; Kosturock, A.

    2014-12-01

    Small unmanned aerial systems (sUASs) have the potential to provide highly useful information for models of earth systems that vary over time intervals of days and for which sub-meter resolution is crucial. In particular, the state of coastal watershed plains are highly dependent on vegetation type and cover, soil type, weather, river flooding, and coastal inundation. The vegetation type and cover affect the drying potential, as well as the watershed's resistance to flood water movement. The soil type, soil moisture, and pond depths affect the ability of the watershed to absorb river flood waters and inundation from the sea. In this presentation we will describe a data collection campaign and model modification effort for hydrological models in a coastal watershed. The data collection campaign is obtaining data bimonthly using multiple UASs to capture the state of the watershed quicker. In particular, the vegetation cover and the extent of the water surface expression are captured at approximately a 1 inch spatial resolution over a few days with sUASs that can image 1-2 square miles per hour. The vegetation data provides a time-varying input to improve the estimation of the roughness coefficient and the dry potential from the traditionally static datasets. By correlating the high spatio-temporal resolution surface water expression with data from approximately ten river gauges, models can be improved and validated under more conditions. The presentation will also discuss the requisite sUAS capabilities and our experience in using them.

  6. Sequential Sedimentation-Biofiltration System for the purification of a small urban river (the Sokolowka, Lodz) supplied by stormwater.

    PubMed

    Szklarek, S; Wagner, I; Jurczak, T; Zalewski, M

    2018-01-01

    The study analyses the efficiency of a Sequentional Sedimentation-Biofiltration System (SSBS) built on the Sokolowka river in Lodz (Poland). It was constructed to purify a small urban river whose hydrological regime is dominated by stormwater and meltwater. The SSBS was constructed on a limited area as multi-zone constructed wetlands. The SSBS consists of three zones: sedimentation zone with structures added to improve sedimentation, a geochemical barrier made of limestone deposit and biofiltration zone. The purification processes of total suspended solids (TSS), total phosphorus (TP), total nitrogen (TP) and other nutrients: phosphates (PO 4 3- ), ammonium (NH 4 + ) and nitrates (NO 3 - ) of the SSBS were analyzed. Chloride (Cl - ) reduction was investigated. Monitoring conducted in the first two hydrological years after construction indicated that the SSBS removed 61.4% of TSS, 37.3% of TP, 30.4% of PO 4 3- , 46.1% of TN, 2.8% of NH4+, 44.8% of NO 3 - and 64.0% of Cl - . The sedimentation zone played a key role in removing TSS and nutrients. The geochemical barrier and biofiltration zone each significantly improved overall efficiency by 4-10% for TSS, PO 4 3- , TN, NO 3 - and Cl - . Although the system reduced the concentration of chloride, further studies are needed to determine the circulation of Cl - in constructed wetlands (CWs), and to assess its impact on purification processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Landscape genetics informs mesohabitat preference and conservation priorities for a surrogate indicator species in a highly fragmented river system

    PubMed Central

    Lean, J; Hammer, M P; Unmack, P J; Adams, M; Beheregaray, L B

    2017-01-01

    Poor dispersal species represent conservative benchmarks for biodiversity management because they provide insights into ecological processes influenced by habitat fragmentation that are less evident in more dispersive organisms. Here we used the poorly dispersive and threatened river blackfish (Gadopsis marmoratus) as a surrogate indicator system for assessing the effects of fragmentation in highly modified river basins and for prioritizing basin-wide management strategies. We combined individual, population and landscape-based approaches to analyze genetic variation in samples spanning the distribution of the species in Australia's Murray–Darling Basin, one of the world's most degraded freshwater systems. Our results indicate that G. marmoratus displays the hallmark of severe habitat fragmentation with notably scattered, small and demographically isolated populations with very low genetic diversity—a pattern found not only between regions and catchments but also between streams within catchments. By using hierarchically nested population sampling and assessing relationships between genetic uniqueness and genetic diversity across populations, we developed a spatial management framework that includes the selection of populations in need of genetic rescue. Landscape genetics provided an environmental criterion to identify associations between landscape features and ecological processes. Our results further our understanding of the impact that habitat quality and quantity has on habitat specialists with similarly low dispersal. They should also have practical applications for prioritizing both large- and small-scale conservation management actions for organisms inhabiting highly fragmented ecosystems. PMID:27876805

  8. Large infrequently operated river diversions for Mississippi delta restoration

    NASA Astrophysics Data System (ADS)

    Day, John W.; Lane, Robert R.; D'Elia, Christopher F.; Wiegman, Adrian R. H.; Rutherford, Jeffrey S.; Shaffer, Gary P.; Brantley, Christopher G.; Kemp, G. Paul

    2016-12-01

    Currently the Mississippi delta stands as a highly degraded and threatened coastal ecosystem having lost about 25% of coastal wetlands during the 20th century. To address this problem, a 50 billion, 50-year restoration program is underway. A central component of this program is reintroduction of river water back into the deltaic plain to mimic natural functioning of the delta. However, opposition to diversions has developed based on a number of perceived threats. These include over-freshening of coastal estuaries, displacement of fisheries, perceived water quality problems, and assertions that nutrients in river water leads to wetland deterioration. In addition, growing climate impacts and increasing scarcity and cost of energy will make coastal restoration more challenging and limit restoration options. We address these issues in the context of an analysis of natural and artificial diversions, crevasse splays, and small sub-delta lobes. We suggest that episodic large diversions and crevasses (>5000 m3 s-1) can build land quickly while having transient impacts on the estuarine system. Small diversions (<200 m3 s-1) that are more or less continuously operated build land slowly and can lead to over-freshening and water level stress. We use land building rates for different sized diversions and impacts of large periodic inputs of river water to coastal systems in the Mississippi delta to conclude that high discharge diversions operated episodically will lead to rapid coastal restoration and alleviate concerns about diversions. Single diversion events have deposited sediments up to 40 cm in depth over areas up to 130-180 km2. This approach should have broad applicability to deltas globally.

  9. Bacterial Biogeography across the Amazon River-Ocean Continuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doherty, Mary; Yager, Patricia L.; Moran, Mary Ann

    Spatial and temporal patterns in microbial biodiversity across the Amazon river-ocean continuum were investigated along ~675 km of the lower Amazon River mainstem, in the Tapajos River tributary, and in the plume and coastal ocean during low and high river discharge using amplicon sequencing of 16S rRNA genes in whole water and size-fractionated samples (0.2-2.0 μm and >2.0 μm). River communities varied among tributaries, but mainstem communities were spatially homogeneous and tracked seasonal changes in river discharge and co-varying factors. Co-occurrence network analysis identified strongly interconnected river assemblages during high (May) and low (December) discharge periods, and weakly interconnected transitionalmore » assemblages in September, suggesting that this system supports two seasonal microbial communities linked to river discharge. In contrast, plume communities showed little seasonal differences and instead varied spatially tracking salinity. However, salinity explained only a small fraction of community variability, and plume communities in blooms of diatom-diazotroph assemblages were strikingly different than those in other high salinity plume samples. This suggests that while salinity physically structures plumes through buoyancy and mixing, the composition of plume-specific communities is controlled by other factors including nutrients, phytoplankton community composition, and dissolved organic matter chemistry. Co-occurrence networks identified interconnected assemblages associated with the highly productive low salinity nearshore region, diatom-diazotroph blooms, and the plume edge region, and weakly interconnected assemblages in high salinity regions. This suggests that the plume supports a transitional community influenced by immigration of ocean bacteria from the plume edge, and by species sorting as these communities adapt to local environmental conditions. Few studies have explored patterns of microbial diversity in tropical rivers and coastal oceans. Comparison of Amazon continuum microbial communities to those from temperate and arctic systems suggest that river discharge and salinity are master variables structuring a range of environmental conditions that control bacterial communities across the river-ocean continuum.« less

  10. Bacterial Biogeography across the Amazon River-Ocean Continuum.

    PubMed

    Doherty, Mary; Yager, Patricia L; Moran, Mary Ann; Coles, Victoria J; Fortunato, Caroline S; Krusche, Alex V; Medeiros, Patricia M; Payet, Jérôme P; Richey, Jeffrey E; Satinsky, Brandon M; Sawakuchi, Henrique O; Ward, Nicholas D; Crump, Byron C

    2017-01-01

    Spatial and temporal patterns in microbial biodiversity across the Amazon river-ocean continuum were investigated along ∼675 km of the lower Amazon River mainstem, in the Tapajós River tributary, and in the plume and coastal ocean during low and high river discharge using amplicon sequencing of 16S rRNA genes in whole water and size-fractionated samples (0.2-2.0 μm and >2.0 μm). River communities varied among tributaries, but mainstem communities were spatially homogeneous and tracked seasonal changes in river discharge and co-varying factors. Co-occurrence network analysis identified strongly interconnected river assemblages during high (May) and low (December) discharge periods, and weakly interconnected transitional assemblages in September, suggesting that this system supports two seasonal microbial communities linked to river discharge. In contrast, plume communities showed little seasonal differences and instead varied spatially tracking salinity. However, salinity explained only a small fraction of community variability, and plume communities in blooms of diatom-diazotroph assemblages were strikingly different than those in other high salinity plume samples. This suggests that while salinity physically structures plumes through buoyancy and mixing, the composition of plume-specific communities is controlled by other factors including nutrients, phytoplankton community composition, and dissolved organic matter chemistry. Co-occurrence networks identified interconnected assemblages associated with the highly productive low salinity near-shore region, diatom-diazotroph blooms, and the plume edge region, and weakly interconnected assemblages in high salinity regions. This suggests that the plume supports a transitional community influenced by immigration of ocean bacteria from the plume edge, and by species sorting as these communities adapt to local environmental conditions. Few studies have explored patterns of microbial diversity in tropical rivers and coastal oceans. Comparison of Amazon continuum microbial communities to those from temperate and arctic systems suggest that river discharge and salinity are master variables structuring a range of environmental conditions that control bacterial communities across the river-ocean continuum.

  11. Bacterial Biogeography across the Amazon River-Ocean Continuum

    DOE PAGES

    Doherty, Mary; Yager, Patricia L.; Moran, Mary Ann; ...

    2017-05-23

    Spatial and temporal patterns in microbial biodiversity across the Amazon river-ocean continuum were investigated along ~675 km of the lower Amazon River mainstem, in the Tapajos River tributary, and in the plume and coastal ocean during low and high river discharge using amplicon sequencing of 16S rRNA genes in whole water and size-fractionated samples (0.2-2.0 μm and >2.0 μm). River communities varied among tributaries, but mainstem communities were spatially homogeneous and tracked seasonal changes in river discharge and co-varying factors. Co-occurrence network analysis identified strongly interconnected river assemblages during high (May) and low (December) discharge periods, and weakly interconnected transitionalmore » assemblages in September, suggesting that this system supports two seasonal microbial communities linked to river discharge. In contrast, plume communities showed little seasonal differences and instead varied spatially tracking salinity. However, salinity explained only a small fraction of community variability, and plume communities in blooms of diatom-diazotroph assemblages were strikingly different than those in other high salinity plume samples. This suggests that while salinity physically structures plumes through buoyancy and mixing, the composition of plume-specific communities is controlled by other factors including nutrients, phytoplankton community composition, and dissolved organic matter chemistry. Co-occurrence networks identified interconnected assemblages associated with the highly productive low salinity nearshore region, diatom-diazotroph blooms, and the plume edge region, and weakly interconnected assemblages in high salinity regions. This suggests that the plume supports a transitional community influenced by immigration of ocean bacteria from the plume edge, and by species sorting as these communities adapt to local environmental conditions. Few studies have explored patterns of microbial diversity in tropical rivers and coastal oceans. Comparison of Amazon continuum microbial communities to those from temperate and arctic systems suggest that river discharge and salinity are master variables structuring a range of environmental conditions that control bacterial communities across the river-ocean continuum.« less

  12. Bacterial Biogeography across the Amazon River-Ocean Continuum

    PubMed Central

    Doherty, Mary; Yager, Patricia L.; Moran, Mary Ann; Coles, Victoria J.; Fortunato, Caroline S.; Krusche, Alex V.; Medeiros, Patricia M.; Payet, Jérôme P.; Richey, Jeffrey E.; Satinsky, Brandon M.; Sawakuchi, Henrique O.; Ward, Nicholas D.; Crump, Byron C.

    2017-01-01

    Spatial and temporal patterns in microbial biodiversity across the Amazon river-ocean continuum were investigated along ∼675 km of the lower Amazon River mainstem, in the Tapajós River tributary, and in the plume and coastal ocean during low and high river discharge using amplicon sequencing of 16S rRNA genes in whole water and size-fractionated samples (0.2–2.0 μm and >2.0 μm). River communities varied among tributaries, but mainstem communities were spatially homogeneous and tracked seasonal changes in river discharge and co-varying factors. Co-occurrence network analysis identified strongly interconnected river assemblages during high (May) and low (December) discharge periods, and weakly interconnected transitional assemblages in September, suggesting that this system supports two seasonal microbial communities linked to river discharge. In contrast, plume communities showed little seasonal differences and instead varied spatially tracking salinity. However, salinity explained only a small fraction of community variability, and plume communities in blooms of diatom-diazotroph assemblages were strikingly different than those in other high salinity plume samples. This suggests that while salinity physically structures plumes through buoyancy and mixing, the composition of plume-specific communities is controlled by other factors including nutrients, phytoplankton community composition, and dissolved organic matter chemistry. Co-occurrence networks identified interconnected assemblages associated with the highly productive low salinity near-shore region, diatom-diazotroph blooms, and the plume edge region, and weakly interconnected assemblages in high salinity regions. This suggests that the plume supports a transitional community influenced by immigration of ocean bacteria from the plume edge, and by species sorting as these communities adapt to local environmental conditions. Few studies have explored patterns of microbial diversity in tropical rivers and coastal oceans. Comparison of Amazon continuum microbial communities to those from temperate and arctic systems suggest that river discharge and salinity are master variables structuring a range of environmental conditions that control bacterial communities across the river-ocean continuum. PMID:28588561

  13. The impact of land use and season on the riverine transport of mercury into the marine coastal zone.

    PubMed

    Saniewska, Dominika; Bełdowska, Magdalena; Bełdowski, Jacek; Saniewski, Michał; Szubska, Marta; Romanowski, Andrzej; Falkowska, Lucyna

    2014-11-01

    In Mediterranean seas and coastal zones, rivers can be the main source of mercury (Hg). Catchment management therefore affects the load of Hg reaching the sea with surface runoff. The major freshwater inflows to the Baltic Sea consist of large rivers. However, their systems are complex and identification of factors affecting the outflow of Hg from its catchments is difficult. For this reason, a study into the impact of watershed land use and season on mercury biogeochemistry and transport in rivers was performed along two small rivers which may be considered typical of the southern Baltic region. Neither of these rivers are currently impacted by industrial effluents, thus allowing assessment of the influence of catchment terrain and season on Hg geochemistry. The study was performed between June 2008 and May 2009 at 13 sampling points situated at different terrain types within the catchments (forest, wetland, agriculture and urban). Hg analyses were conducted by CVAFS. Arable land erosion was found to be an important source of Hg to the aquatic system, similar to urban areas. Furthermore, inflows of untreated storm water discharge resulted in a fivefold increase of Hg concentration in the rivers. The highest Hg concentration in the urban runoff was observed with the greatest amount of precipitation during summer. Moderate rainfalls enhance the inflow of bioavailable dissolved mercury into water bodies. Despite the lack of industrial effluents entering the rivers directly, the sub-catchments with anthropogenic land use were important sources of Hg in the rivers. This was caused by elution of metal, deposited in soils over the past decades, into the rivers. The obtained results are especially important in the light of recent environmental conscience regulations, enforcing the decrease of pollution by Baltic countries.

  14. The effect of land use change to maximum and minimum discharge in Cikapundung River Basin

    NASA Astrophysics Data System (ADS)

    Kuntoro, Arno Adi; Putro, Anton Winarto; Kusuma, M. Syahril B.; Natasaputra, Suardi

    2017-11-01

    Land use change are become issues for many river basin in the world, including Cikapundung River Basin in West Java. Cikapundung River is one of the main water sources of Bandung City water supply system. In the other hand, as one of the tributaries of Citarum River, Cikapundung also contributes to flooding in the Southern part of Bandung. Therefore, it is important to analyze the effect of land use change on Cikapundung river discharge, to maintain the reliability of water supply system and to minimize flooding in Bandung Basin. Land use map of Cikapundung River in 2009 shows that residential area (49.7%) and mixed farming (42.6%), are the most dominant land use type, while dry agriculture (19.4%) and forest (21.8%) cover the rest. The effect of land use change in Cikapundung River Basin is simulated by using Hydrological Simulation Program FORTRAN (HSPF) through 3 land use change scenarios: extreme, optimum, and existing. By using the calibrated parameters, simulation of the extreme land use change scenario with the decrease of forest area by 77.7% and increase of developed area by 57.0% from the existing condition resulted in increase of Qmax/Qmin ratio from 5.24 to 6.10. Meanwhile, simulation of the optimum land use change scenario with the expansion of forest area by 75.26% from the existing condition resulted in decrease of Qmax/Qmin ratio from 5.24 to 4.14. Although Qmax/Qmin ratio of Cikapundung is still relatively small, but the simulation shows the important of water resources analysis in providing river health indicator, as input for land use planning.

  15. Late Wisconsinan-Holocene paleogeography of Delaware Bay; a large coastal plain estuary

    USGS Publications Warehouse

    Knebel, H.J.; Fletcher, C. H.; Kraft, J.C.

    1988-01-01

    Analyses of an extensive grid of seismic reflection profiles along with previously published core data and modern sedimentary environment information from surrounding coastal areas permit an outline of the paleogeography of the large Delaware Bay estuary during the last transgression of sea level. During late Wisconsinan times, the Delaware River system eroded a dendritic drainage pattern into the gravelly and muddy sands of Tertiary and younger age beneath the southern half of the lower bay area. This system included the trunk valley of the ancestral river and a large tributary valley formed by the convergence of secondary streams along the Delaware coast. The evolution of the estuary from this drainage system proceeded as follows: (1) When local relative sea level was at -50 m, the head of the tide reached the present bay-mouth area. (2) At -40 m (possibly 15,000-12,000 yrs ago), the trunk valley of the drainage system was a tidal river that extended more than 30 km up the bay, and a small contiguous inlet existed at the bay mouth. (3) At -30 m (approximately 11,000-10,000 yrs ago), the estuary comprised two narrow passages formed by the drowning of the main and tributary river valleys, and the bay-mouth inlet was 5-6 km wide. (4) At -20 m (between 8000 and 7000 yrs ago), the two passages of the estuary were joined, except for a series of small islands on top of a low intervening ridge, and the inlet channel was 11 km wide. (5) At -10 m (between 6000 and 5000 yrs ago), the estuary was nearly continuous and encompassed about 60% of the present lower bay area. Thin, coarse-grained fluvial deposits accumulated initially within the main channels of the former drainage system as base level was elevated by rising sea level. During the subsequent development of the estuary, clayey silts were deposited rapidly beneath the nontidal estuarine depocenter (turbidity maximum) as it migrated through the bay area, and organic muds accumulated in tidal wetlands that occupied the mouths of tributaries and small marginal embayments. As the fetch and tidal prism of the estuary increased, narrow barrier and headland beaches, composed of fine to coarse sands, were formed locally along the bay shorelines. In the later stages of development, sediment scour, reworking and transport became the dominant processes within the open estuary. Data from this study demonstrate the great temporal and spatial variability of sedimentary deposits within large drowned river-valley estuaries and outline a model that can be used to interpret ancient estuarine strata. ?? 1988.

  16. Flow and residence times of dynamic river bank storage and sinuosity-driven hyporheic exchange

    USGS Publications Warehouse

    Gomez-Velez, J.D.; Wilson, J.L.; Cardenas, M.B.; Harvey, Judson

    2017-01-01

    Hydrologic exchange fluxes (HEFs) vary significantly along river corridors due to spatiotemporal changes in discharge and geomorphology. This variability results in the emergence of biogeochemical hot-spots and hot-moments that ultimately control solute and energy transport and ecosystem services from the local to the watershed scales. In this work, we use a reduced-order model to gain mechanistic understanding of river bank storage and sinuosity-driven hyporheic exchange induced by transient river discharge. This is the first time that a systematic analysis of both processes is presented and serves as an initial step to propose parsimonious, physics-based models for better predictions of water quality at the large watershed scale. The effects of channel sinuosity, alluvial valley slope, hydraulic conductivity, and river stage forcing intensity and duration are encapsulated in dimensionless variables that can be easily estimated or constrained. We find that the importance of perturbations in the hyporheic zone's flux, residence times, and geometry is mainly explained by two-dimensionless variables representing the ratio of the hydraulic time constant of the aquifer and the duration of the event (Γd) and the importance of the ambient groundwater flow ( ). Our model additionally shows that even systems with small sensitivity, resulting in small changes in the hyporheic zone extent, are characterized by highly variable exchange fluxes and residence times. These findings highlight the importance of including dynamic changes in hyporheic zones for typical HEF models such as the transient storage model.

  17. Sampling little fish in big rivers: Larval fish detection probabilities in two Lake Erie tributaries and implications for sampling effort and abundance indices

    USGS Publications Warehouse

    Pritt, Jeremy J.; DuFour, Mark R.; Mayer, Christine M.; Roseman, Edward F.; DeBruyne, Robin L.

    2014-01-01

    Larval fish are frequently sampled in coastal tributaries to determine factors affecting recruitment, evaluate spawning success, and estimate production from spawning habitats. Imperfect detection of larvae is common, because larval fish are small and unevenly distributed in space and time, and coastal tributaries are often large and heterogeneous. We estimated detection probabilities of larval fish from several taxa in the Maumee and Detroit rivers, the two largest tributaries of Lake Erie. We then demonstrated how accounting for imperfect detection influenced (1) the probability of observing taxa as present relative to sampling effort and (2) abundance indices for larval fish of two Detroit River species. We found that detection probabilities ranged from 0.09 to 0.91 but were always less than 1.0, indicating that imperfect detection is common among taxa and between systems. In general, taxa with high fecundities, small larval length at hatching, and no nesting behaviors had the highest detection probabilities. Also, detection probabilities were higher in the Maumee River than in the Detroit River. Accounting for imperfect detection produced up to fourfold increases in abundance indices for Lake Whitefish Coregonus clupeaformis and Gizzard Shad Dorosoma cepedianum. The effect of accounting for imperfect detection in abundance indices was greatest during periods of low abundance for both species. Detection information can be used to determine the appropriate level of sampling effort for larval fishes and may improve management and conservation decisions based on larval fish data.

  18. Bryozoan fauna of the Upper Clays Ferry, Kope, and Lower Fairview formations (Edenian, Upper Ordovician) at Moffett Road, northern Kentucky

    USGS Publications Warehouse

    Karklins, Olgerts L.

    1983-01-01

    The geology, water movement, and sediment characteristics in the upstream part of the Spring River basin have been appraised, to assist the U.S. EPA in their study of dioxin contamination in the area. The U.S. Environmental Protection Agency has confirmed that the dioxin compound, TCDD (2,3,7 ,8-tetrachlorodibenzo-p-dioxin), is present in the soils, streambed sediments, and fish in the upstream part of the Spring River Basin. Although the solubility of dioxin is small, it may be moving through the hydrologic system, adsorbed on sediment particles. Water movement in the shallow aquifer generally follows the topography. In upland areas, precipitation recharges the shallow aquifer, then the shallow aquifer water discharges into larger streams. Sediment yields generally are small in the upstream part of the Spring River basin. Suspended sediment discharges for the Spring River at La Russell ranged from 3.0 tons/day at a flow of 79 cu ft/sec, 1.7 times the 7-day 2-yr low flow, to about 1240 tons/day at a flow of 1600 cu ft/sec, 6.7 times the long-term average. Suspended sediment particles in the Spring River and Honey Creek generally were silt and clay (smaller than 0.062 mm). Fine sediments with adsorbed dioxin may be transported out of the area by streamflow, or they may be deposited on flood plains or in downstream impoundments during periods of flooding. (Lantz-PTT)

  19. Seismic investigation of Lake Issyk-Kul, Kyrgyzstan

    NASA Astrophysics Data System (ADS)

    Gebhardt, C.; Naudts, L.; De Mol, L.; De Batist, M.

    2012-04-01

    Lake Issyk-Kul is located in an intramontane basin of the Tien Shan mountains in Kyrgyzstan, Central Asia. It has formed in a tectonically active region with W-E striking major thrust zones north and south of the lake. The lake's modern surface level is at 1607 m above sea level, maximum depth in the central basin of the lake is roughly 670 m, and the total water volume is around 1736 km3. The lake is elongated with 180 km in west-east and 60 km in south-north direction. With a surface area of 6232 km2, Lake Issyk-Kul is the second largest lake in the higher altitudes. The lake is characterized by two large delta areas at its western and eastern end, with the deltaic area being as wide as up to 60 km in the eastern and 40 km in the western part, and by steep slopes at the northern and southern shore with only a rather narrow shallower shelf area. The lake contains the sediments of the past up to several million years, and has been proposed as a future target for deep drilling within ICDP. Three seismic surveys by Russian and Belgian groups in 1982, 1997 and 2001 revealed a thick sediment infill in Lake Issyk-Kul. At both the western and the eastern end of the lake, large delta systems were formed by actual and previous inlets, namely the Tyup and Djyrgalan rivers in the eastern part of the lake (still active) and the Chu River at the western end (currently bypassing the lake). Large sub-aquatic channel systems are visible in the lake's bathymetry in the shallower part of the delta systems close to the river mouths. They were quite likely formed by these rivers during a former lake level lowstand. The delta system consists of stacked prograding delta lobes with a characteristic topset-foreset-bottomset configuration. These lobes together with sub-aerial terraces found at several spots around the lake witness lake level fluctuations of up to >400 m. The sediments in the central plain of Lake Issyk-Kul are mainly well-layered with many turbiditic sequences intercalated with pelagic background sedimentation. Sediments are slightly inclined towards south with increasing angles with depth, suggesting a halfgraben structure of the lake basin. Mass transport deposits such as debris flows are a common feature close to the steeper flanks around the central plain. The southern flank is characterized by many small terraces and several canyons that are related to the small inlets at the southern shore. The northern flank, however, shows a small, shallow shelf area of 25 to 30 m water depth. This area is characterized by glacial outwash sediments brought to the lake by small rivers that drain the large terminal moraines which are located north of the lake.

  20. Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayorga, E; Aufdenkampe, A K; Masiello, C A

    2005-06-23

    Rivers are generally supersaturated with respect to carbon dioxide, resulting in large gas evasion fluxes that can be a significant component of regional net carbon budgets. Amazonian rivers were recently shown to outgas more than ten times the amount of carbon exported to the ocean in the form of total organic carbon or dissolved inorganic carbon. High carbon dioxide concentrations in rivers originate largely from in situ respiration of organic carbon, but little agreement exists about the sources or turnover times of this carbon. Here we present results of an extensive survey of the carbon isotope composition ({sup 13}C andmore » {sup 14}C) of dissolved inorganic carbon and three size-fractions of organic carbon across the Amazonian river system. We find that respiration of contemporary organic matter (less than 5 years old) originating on land and near rivers is the dominant source of excess carbon dioxide that drives outgassing in mid-size to large rivers, although we find that bulk organic carbon fractions transported by these rivers range from tens to thousands of years in age. We therefore suggest that a small, rapidly cycling pool of organic carbon is responsible for the large carbon fluxes from land to water to atmosphere in the humid tropics.« less

  1. Heated Discharge Control and Management Alternatives: Small Water Bodies and Rivers.

    ERIC Educational Resources Information Center

    MacLaren, James F.

    Basic concepts of waste heat management on shallow and deep small water bodies and rivers are reviewed and examples are given. This study defines a small water body as a body in which the far field hydrothermal effects of a heated discharge can be detected in a major portion or practically all of the water body. Environmental effects due to…

  2. Spatial Shifts in Tidal-Fluvial Environments

    NASA Astrophysics Data System (ADS)

    Dykstra, S. L.; Dzwonkowski, B.

    2017-12-01

    Fresh water discharge damps tidal propagation and increases the phase lag, which has important impacts on system-wide sediment transport process and ecological structure. Here, the role of discharge on spatial variability in the dynamics of tidal rivers is investigated in Mobile Bay and Delta, a microtidal diurnal system where discharge ranges multiple orders of magnitude. Long-term observations at 7 velocity stations and 20 water level stations, ranging over 260km along the system, were analyzed. Observations of the tidal extinguishing point in both velocity and water level were highly variable with significant shifts in location covering a distance over 140km. The velocity stations also allowed for measuring the extent of flood (i.e. point where tidal flow is arrested by discharge) shifting 100km. With increased discharge, flow characteristics at station locations can transition from an estuary (i.e. bidirectional tidal flow) to a tidal river to a traditional fluvial environment. This revealed systematic discharge induced damping and an increase in phase lag. Interestingly, before damping occurs, the tide amplifies ( 15%) seaward of the extent of flood. Another consistent pattern is the higher sensitivity of the velocity signal to discharge than water level. This causes the velocity to lag more and create progressive tides. In a microtidal diurnal system, the signal propagates further inland than a semidiurnal tide due to its lower frequency but is easily damped due to the small amplitude, creating large shifts. Previous research has focused on environments dominated by semidiurnal tides with similar magnitudes to discharge using water level observations. For example, the well studied Columbia and the St. Lawrence rivers have small shifts in their tidal extinguishing point O(10km) (Jay 2016, Matte 2014). These shifts are not large enough to observe process like discharge-induced amplification and damping at the same site like in the Mobile system, but they may indicate a decoupling of the water level and velocity signal by discharge. Throughout the world, shifts in tidal rivers are created by seasonal discharge patterns, but large storms can quickly disrupt a system and move it over 140km in a few days.

  3. Detect groundwater flowing from riverbed using a drone

    NASA Astrophysics Data System (ADS)

    Kato, Kenji; Takemon, Yasuhiro

    2017-04-01

    Estimate the direct flow of groundwater to river is an important step in understanding of hydrodynamics in river system. Function of groundwater in river system does not limit to the mass of water. Continuous supply with thermally stable water from riverbed produces a space with unique condition, which provides various functions for organisms inhabiting in river as a shelter avoiding large shift of temperature, or to maintain productivity for small scale ecosystem by supplying nutrient rich groundwater if it gushes out from the riverbed in a deep pool of river. This may contribute to biodiversity of river system. Such function of groundwater is more significant for rivers run in island and in mountain zone. To evaluate the function of groundwater flowing from riverbed we first try to find such site by using a drone equipped with a sensitive thermo-camera to detect water surface temperature. In the examined area temperature of the groundwater doesn't change much throughout a year at around 15 to 16 °C, while surface temperature of the examined river fluctuates from below 10 °C to over 25 °C throughout seasons. By using this difference in temperature between groundwater and river water we tried to find site where groundwater comes out from the riverbed. Obviously winter when surface temperature becomes below 10 °C is an appropriate season to find groundwater as it comes up to the surface of river with depth ranging from 1 to 3 m. Trial flight surveys of drone were conducted in Kano-river in Izu Peninsula located at southern foot of Mt. Fuji in central Japan. Employed drone was Inspire1 (DJI, China) equipped with a Thermal camera (Zenmuse XT ZXTA 19 FP, FLIR, USA) and operated by Kazuhide Juta (KELEK Co. Ltd., Japan) and Mitsuhiro Komiya (TAM.Co.,LTD). In contrast to the former cases with employing airplane for taking aerial photograph, drone takes photo while flying at a low-altitude. When it flies at 40m above the water surface of river, resolution is at an order of "cm". We show how we found the possible sites where groundwater flowing from the riverbed by the photo and video. Surveys were conducted through the assistance with Numazu Office of River and National Highway Chubu Regional Development Bureau, Ministry of Land, Infrastructure, Transport and Tourism Japan, Japan Riverfront Research Center and Shizuoka University.

  4. Crustal Uplift In The Alps and Why The Drainage Pattern Matters: An Alternative Way To Interpret Geodetic Data

    NASA Astrophysics Data System (ADS)

    Schlunegger, F.; Hinderer, M.

    The Alpine drainage system comprises two large orogen-parallel drainage basins in the core of the Alps (the Rhone and Rhein valleys), and smaller orogen-normal ori- ented systems. Discharge of the large rivers is ca. 5-10 higher than that of the small ones. Also, the courses of the Rhone and Rhein Rivers are trapped by faults and thrusts that display lower erosional resistance than the neighbouring lithologies. Enhanced discharge of these rivers and low erosional resistance of bedrocks potentially enhances surface erosion. Indeed, present-day and glacial sediment yields have been ca. 1.6-1.7 times higher in these valleys than in the orogen-normal systems. Interestingly, geode- tic measurements indicate that rates of crustal uplift are also enhanced in the Rhein and Rhone valleys, where rates of ca. 1.4-1.6 mm/yr are currently measured. We inter- pret the spatial coincidence between the location of enhanced erosion and maximum crustal uplift rates to reflect a positive feedback between surface erosion and tectonic forcing.

  5. The Portland Basin: A (big) river runs through it

    USGS Publications Warehouse

    Evarts, Russell C.; O'Connor, Jim E.; Wells, Ray E.; Madin, Ian P.

    2009-01-01

    Metropolitan Portland, Oregon, USA, lies within a small Neogene to Holocene basin in the forearc of the Cascadia subduction system. Although the basin owes its existence and structural development to its convergent-margin tectonic setting, the stratigraphic architecture of basin-fill deposits chiefly reflects its physiographic position along the lower reaches of the continental-scale Columbia River system. As a result of this globally unique setting, the basin preserves a complex record of aggradation and incision in response to distant as well as local tectonic, volcanic, and climatic events. Voluminous flood basalts, continental and locally derived sediment and volcanic debris, and catastrophic flood deposits all accumulated in an area influenced by contemporaneous tectonic deformation and variations in regional and local base level.

  6. 33 CFR 207.200 - Mississippi River below mouth of Ohio River, including South and Southwest Passes; use...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... banks of the river, and no floating plant other than launches and similar small craft shall land against... white background readable from the waterway side, placed on each side of the river near the point where...

  7. Hydrologic data for the Obed River watershed, Tennessee

    USGS Publications Warehouse

    Knight, Rodney R.; Wolfe, William J.; Law, George S.

    2014-01-01

    The Obed River watershed drains a 520-square-mile area of the Cumberland Plateau physiographic region in the Tennessee River basin. The watershed is underlain by conglomerate, sandstone, and shale of Pennsylvanian age, which overlie Mississippian-age limestone. The larger creeks and rivers of the Obed River system have eroded gorges through the conglomerate and sandstone into the deeper shale. The largest gorges are up to 400 feet deep and are protected by the Wild and Scenic Rivers Act as part of the Obed Wild and Scenic River, which is managed by the National Park Service. The growing communities of Crossville and Crab Orchard, Tennessee, are located upstream of the gorge areas of the Obed River watershed. The cities used about 5.8 million gallons of water per day for drinking water in 2010 from Lake Holiday and Stone Lake in the Obed River watershed and Meadow Park Lake in the Caney Fork River watershed. The city of Crossville operates a wastewater treatment plant that releases an annual average of about 2.2 million gallons per day of treated effluent to the Obed River, representing as much as 10 to 40 percent of the monthly average streamflow of the Obed River near Lancing about 35 miles downstream, during summer and fall. During the past 50 years (1960–2010), several dozen tributary impoundments and more than 2,000 small farm ponds have been constructed in the Obed River watershed. Synoptic streamflow measurements indicate a tendency towards dampened high flows and slightly increased low flows as the percentage of basin area controlled by impoundments increases.

  8. Mapping river bathymetry with a small footprint green LiDAR: Applications and challenges

    USGS Publications Warehouse

    Kinzel, Paul J.; Legleiter, Carl; Nelson, Jonathan M.

    2013-01-01

    that environmental conditions and postprocessing algorithms can influence the accuracy and utility of these surveys and must be given consideration. These factors can lead to mapping errors that can have a direct bearing on derivative analyses such as hydraulic modeling and habitat assessment. We discuss the water and substrate characteristics of the sites, compare the conventional and remotely sensed river-bed topographies, and investigate the laser waveforms reflected from submerged targets to provide an evaluation as to the suitability and accuracy of the EAARL system and associated processing algorithms for riverine mapping applications.

  9. 75 FR 33690 - Safety Zone, Lights on the River Fireworks Display, Delaware River, New Hope, PA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-15

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 100 [Docket No. USCG-2010-0443] RIN 1625-AA00 Safety Zone, Lights on the River Fireworks Display, Delaware River, New Hope, PA AGENCY: Coast... safety zone in during the ``Lights on the River'' fireworks shows. Assistance for Small Entities Under...

  10. Marginal Economic Value of Streamflow: A Case Study for the Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Brown, Thomas C.; Harding, Benjamin L.; Payton, Elizabeth A.

    1990-12-01

    The marginal economic value of streamflow leaving forested areas in the Colorado River Basin was estimated by determining the impact on water use of a small change in streamflow and then applying economic value estimates to the water use changes. The effect on water use of a change in streamflow was estimated with a network flow model that simulated salinity levels and the routing of flow to consumptive uses and hydroelectric dams throughout the Basin. The results show that, under current water management institutions, the marginal value of streamflow in the Colorado River Basin is largely determined by nonconsumptive water uses, principally energy production, rather than by consumptive agricultural or municipal uses. The analysis demonstrates the importance of a systems framework in estimating the marginal value of streamflow.

  11. Temporally intensive study of trace metals in sediments and bivalves from a large river-estuarine system: Suisun Bay/delta in San Francisco Bay

    USGS Publications Warehouse

    Luoma, S.N.; Dagovitz, R.; Axtmann, E.

    1990-01-01

    Distributions in time and space of Ag, Cd, Cr, Cu, Pb and Zn were determined in fine-grained sediments and in the filter-feeding bivalve Corbicula sp. of Suisun Bay/delta at the mouth of the Sacramento and San Joaquin Rivers in North San Francisco Bay. Samples were collected from seven stations at near-monthly intervals for 3 years. Aggregated data showed little chronic contamination with Ag, Zn and Pb in the river and estuary. Substantial chronic contamination with Cd, Cu and Cr in Suisun Bay/delta occurred, especially in Corbicula, compared with the lower San Joaquin River. Salinity appeared to have secondary effects, if any, on metal concentrations in sediments and metal bioavailability to bivalves. Space/time distributions of Cr were controlled by releases from a local industry. Analyses of time series suggested substantial inputs of Cu might originate from the Sacramento River during high inflows to the Bay, and Cd contamination had both riverine and local sources. Concentrations of metals in sediments correlated with concentrations in Corbicula only in annually or 3-year aggregated data. Condition index for Corbicula was reduced where metal contamination was most severe. The biological availability of Cu and Cd to benthos was greater in Suisun Bay than in many other estuaries. Thus small inputs into this system could have greater impacts than might occur elsewhere; and organisms were generally more sensitive indicators of enrichment than sediments in this system.

  12. Continuous-flow stirred-tank reactor 20-L demonstration test: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, D.D.; Collins, J.L.

    One of the proposed methods of removing the cesium, strontium, and transuranics from the radioactive waste storage tanks at Savannah River is the small-tank tetraphenylborate (TPB) precipitation process. A two-reactor-in-series (15-L working volume each) continuous-flow stirred-tank reactor (CSTR) system was designed, constructed, and installed in a hot cell to test the Savannah River process. The system also includes two cross-flow filtration systems to concentrate and wash the slurry produced in the process, which contains the bulk of radioactivity from the supernatant processed through the system. Installation, operational readiness reviews, and system preparation and testing were completed. The first test usingmore » the filtration systems, two CSTRs, and the slurry concentration system was conducted over a 61-h period with design removal of Cs, Sr, and U achieved. With the successful completion of Test 1a, the following tests, 1b and 1c, were not required.« less

  13. Sources, transport and deposition of terrestrial organic material: A case study from southwestern Africa

    NASA Astrophysics Data System (ADS)

    Herrmann, Nicole; Boom, Arnoud; Carr, Andrew S.; Chase, Brian M.; Granger, Robyn; Hahn, Annette; Zabel, Matthias; Schefuß, Enno

    2016-10-01

    Southwestern Africa's coastal marine mudbelt, a prominent Holocene sediment package, provides a valuable archive for reconstructing terrestrial palaeoclimates on the adjacent continent. While the origin of terrestrial inorganic material has been intensively studied, the sources of terrigenous organic material deposited in the mudbelt are yet unclear. In this study, plant wax derived n-alkanes and their compound-specific δ13C in soils, flood deposits and suspension loads from regional fluvial systems and marine sediments are analysed to characterize the origin of terrestrial organic material in the southwest African mudbelt. Soils from different biomes in the catchments of the Orange River and small west coast rivers show on average distinct n-alkane distributions and compound-specific δ13C values reflecting biome-specific vegetation types, most notably the winter rainfall associated Fynbos Biome of the southwestern Cape. In the fluvial sediment samples from the Orange River, changes in the n-alkane distributions and compound-specific δ13C compositions reveal an overprint by local vegetation along the river's course. The smaller west coast rivers show distinct signals, reflecting their small catchment areas and particular vegetation communities. Marine surface sediments spanning a transect from the northern mudbelt (29°S) to St. Helena Bay (33°S) reveal subtle, but spatially coherent, changes in n-alkane distributions and compound-specific δ13C, indicating the influence of Orange River sediments in the northern mudbelt, the increasing importance of terrigenous input from the adjacent western coastal biomes in the central mudbelt, and contributions from the Fynbos Biome to the southern mudbelt. These findings indicate the different sources of terrestrial organic material deposited in the mudbelt, and highlight the potential the mudbelt has to preserve evidence of environmental change from the adjacent continent.

  14. Runoff simulation in the Ferghana Valley (Central Asia) using conceptual hydrological HBV-light model

    NASA Astrophysics Data System (ADS)

    Radchenko, Iuliia; Breuer, Lutz; Forkutsa, Irina; Frede, Hans-Georg

    2013-04-01

    Glaciers and permafrost on the ranges of the Tien Shan mountain system are primary sources of water in the Ferghana Valley. The water artery of the valley is the Syr Darya River that is formed by confluence of the Naryn and Kara Darya rivers, which originate from the mountain glaciers of the Ak-Shyrak and the Ferghana ranges accordingly. The Ferghana Valley is densely populated and main activity of population is agriculture that heavily depends on irrigation especially in such arid region. The runoff reduction is projected in future due to global temperature rise and glacier shrinkage as a consequence. Therefore, it is essential to study climate change impact on water resources in the area both for ecological and economic aspects. The evaluation of comparative contribution of small upper catchments (n=24) with precipitation predominance in discharge and the large Naryn and Karadarya River basins, which are fed by glacial melt water, to the Fergana Valley water balance under current and future climatic conditions is general aim of the study. Appropriate understanding of the hydrological cycle under current climatic conditions is significant for prognosis of water resource availability in the future. Thus, conceptual hydrological HBV-light model was used for analysing of the water balance of the small upper catchments that surround the Ferghana Valley. Three trial catchments (the Kugart River basin, 1010 km²; the Kurshab River basin, 2010 km2; the Akbura River basin, 2260 km²) with relatively good temporal quality data were chosen to setup the model. Due to limitation of daily temperature data the MODAWEC weather generator, which converts monthly temperature data into daily based on correlation with rainfall, was tested and applied for the HBV-light model.

  15. Red River of the North, Reconnaissance Report: Wild Rice River.

    DTIC Science & Technology

    1980-12-01

    2 lists the waste treatment facilities and needs of fifteen coumnities within the subbasin. Hydropower There are three dams located on the Wild Rice...potential hydroelectric sites. The dams were built primarily for flood control purposes and are classified as small-scale facilities. The main obstacles...drain a combined total area of 2,233 square miles. Several small low-water dams and a few larger impoundments have been constructed on the river and its

  16. Knickpoint retreat and transient bedrock channel morphology triggered by base-level fall in small bedrock river catchments: The case of the Isle of Jura, Scotland

    NASA Astrophysics Data System (ADS)

    Castillo, Miguel; Bishop, Paul; Jansen, John D.

    2013-01-01

    A sudden drop in river base-level can trigger a knickpoint that propagates throughout the fluvial network causing a transient state in the landscape. Knickpoint retreat has been confirmed in large fluvial settings (drainage areas > 100 km2) and field data suggest that the same applies to the case of small bedrock river catchments (drainage areas < 100 km2). Nevertheless, knickpoint recession on resistant lithologies with structure that potentially affects the retreat rate needs to be confirmed with field-based data. Moreover, it remains unclear whether small bedrock rivers can absorb base-level fall via knickpoint retreat. Here we evaluate the response of small bedrock rivers to base-level fall on the isle of Jura in western Scotland (UK), where rivers incise into dipping quartzite. The mapping of raised beach deposits and strath terraces, and the analysis of stream long profiles, were used to identify knickpoints that had been triggered by base-level fall. Our results indicate that the distance of knickpoint retreat scales to the drainage area in a power law function irrespective of structural setting. On the other hand, local channel slope and basin size influence the vertical distribution of knickpoints. As well, at low drainage areas (~ 4 km2) rivers are unable to absorb the full amount of base-level fall and channel reach morphology downstream of the knickpoint tends towards convexity. The results obtained here confirm that knickpoint retreat is mostly controlled by stream discharge, as has been observed for other transient landscapes. Local controls, reflecting basin size and channel slope, have an effect on the vertical distribution of knickpoints; such controls are also related to the ability of rivers to absorb the base-level fall.

  17. Current and Future Environmental Balance of Small-Scale Run-of-River Hydropower.

    PubMed

    Gallagher, John; Styles, David; McNabola, Aonghus; Williams, A Prysor

    2015-05-19

    Globally, the hydropower (HP) sector has significant potential to increase its capacity by 2050. This study quantifies the energy and resource demands of small-scale HP projects and presents methods to reduce associated environmental impacts based on potential growth in the sector. The environmental burdens of three (50-650 kW) run-of-river HP projects were calculated using life cycle assessment (LCA). The global warming potential (GWP) for the projects to generate electricity ranged from 5.5-8.9 g CO2 eq/kWh, compared with 403 g CO2 eq/kWh for UK marginal grid electricity. A sensitivity analysis accounted for alternative manufacturing processes, transportation, ecodesign considerations, and extended project lifespan. These findings were extrapolated for technically viable HP sites in Europe, with the potential to generate 7.35 TWh and offset over 2.96 Mt of CO2 from grid electricity per annum. Incorporation of ecodesign could provide resource savings for these HP projects: avoiding 800 000 tonnes of concrete, 10 000 tonnes of steel, and 65 million vehicle miles. Small additional material and energy contributions can double a HP system lifespan, providing 39-47% reductions for all environmental impact categories. In a world of finite resources, this paper highlights the importance of HP as a resource-efficient, renewable energy system.

  18. A demonstration of the instream flow incremental methodology, Shenandoah River

    USGS Publications Warehouse

    Zappia, Humbert; Hayes, Donald C.

    1998-01-01

    Current and projected demands on the water resources of the Shenandoah River have increased concerns for the potential effect of these demands on the natural integrity of the Shenandoah River system. The Instream Flow Incremental Method (IFIM) process attempts to integrate concepts of water-supply planning, analytical hydraulic engineering models, and empirically derived habitat versus flow functions to address water-use and instream-flow issues and questions concerning life-stage specific effects on selected species and the general well being of aquatic biological populations.The demonstration project also sets the stage for the identification and compilation of the major instream-flow issues in the Shenandoah River Basin, development of the required multidisciplinary technical team to conduct more detailed studies, and development of basin specific habitat and flow requirements for fish species, species assemblages, and various water uses in the Shenandoah River Basin. This report presents the results of an IFIM demonstration project, conducted on the main stem Shenandoah River in Virginia, during 1996 and 1997, using the Physical Habitat Simulation System (PHABSIM) model.Output from PHABSIM is used to address the general flow requirements for water supply and recreation and habitat for selected life stages of several fish species. The model output is only a small part of the information necessary for effective decision making and management of river resources. The information by itself is usually insufficient for formulation of recommendations regarding instream-flow requirements. Additional information, for example, can be obtained by analysis of habitat time-series data, habitat duration data, and habitat bottlenecks. Alternative-flow analysis and habitat-duration curves are presented.

  19. The Elizabeth River Story: A Case Study in Evolutionary Toxicology

    PubMed Central

    Di Giulio, Richard T.; Clark, Bryan W.

    2015-01-01

    The Elizabeth River system is an estuary in southeastern Virginia, surrounded by the towns of Chesapeake, Norfolk, Portsmouth, and Virginia Beach. The river has played important roles in U.S. history and has been the location of various military and industrial activities. These activities have been the source of chemical contamination in this aquatic system. Important industries, until the 1990s, included wood treatment plants that used creosote, an oil-derived product that is rich in polycyclic aromatic hydrocarbons (PAH). These plants left a legacy of PAH pollution in the river, and in particular Atlantic Wood Industries is a designated Superfund site now undergoing remediation. Numerous studies examined the distribution of PAH in the river and impacts on resident fauna. This review focuses on how a small estuarine fish with a limited home range, Fundulus heteroclitus (Atlantic killifish or mummichog), has responded to this pollution. While in certain areas of the river this species has clearly been impacted, as evidenced by elevated rates of liver cancer, some subpopulations, notably the one associated with the Atlantic Wood Industries site, displayed a remarkable ability to resist the marked effects PAH have on the embryonic development of fish. This review provides evidence of how pollutants have acted as evolutionary agents, causing changes in ecosystems potentially lasting longer than the pollutants themselves. Mechanisms underlying this evolved resistance, as well as mechanisms underlying the effects of PAH on embryonic development, are also described. The review concludes with a description of ongoing and promising efforts to restore this historic American river. PMID:26505693

  20. Sustainable water deliveries from the Colorado River in a changing climate.

    PubMed

    Barnett, Tim P; Pierce, David W

    2009-05-05

    The Colorado River supplies water to 27 million users in 7 states and 2 countries and irrigates over 3 million acres of farmland. Global climate models almost unanimously project that human-induced climate change will reduce runoff in this region by 10-30%. This work explores whether currently scheduled future water deliveries from the Colorado River system are sustainable under different climate-change scenarios. If climate change reduces runoff by 10%, scheduled deliveries will be missed approximately 58% of the time by 2050. If runoff reduces 20%, they will be missed approximately 88% of the time. The mean shortfall when full deliveries cannot be met increases from approximately 0.5-0.7 billion cubic meters per year (bcm/yr) in 2025 to approximately 1.2-1.9 bcm/yr by 2050 out of a request of approximately 17.3 bcm/yr. Such values are small enough to be manageable. The chance of a year with deliveries <14.5 bcm/yr increases to 21% by midcentury if runoff reduces 20%, but such low deliveries could be largely avoided by reducing scheduled deliveries. These results are computed by using estimates of Colorado River flow from the 20th century, which was unusually wet; if the river reverts to its long-term mean, shortfalls increase another 1-1.5 bcm/yr. With either climate-change or long-term mean flows, currently scheduled future water deliveries from the Colorado River are not sustainable. However, the ability of the system to mitigate droughts can be maintained if the various users of the river find a way to reduce average deliveries.

  1. Tornado activity at SRP during 1976

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pepper, D.W.; Schubert, J.F.

    1978-07-01

    Tracks of three small tornadoes were confirmed on the site of the Savannah River Plant during 1976. Only minor damage to buildings and vehicles was experienced. The tornadoes were rated F1 on the Fujita-Pearson scale. Synoptic weather conditions from the National Weather Service and from the SRP seven-tower data system were recorded.

  2. Natural and Anthropogenic Water Treatment: How Riverine Ecosystem Services of Nitrogen Removal Interact with Wastewater Treatment Infrastructure in the Northeast U.S.

    NASA Astrophysics Data System (ADS)

    Stewart, R. J.; Wollheim, W. M.; Whittinghill, K. A.; Mineau, M.; Rosenzweig, B.

    2014-12-01

    The magnitude and spatial distribution of point and non-point dissolved inorganic nitrogen (N) inputs to river systems greatly influences the potential for eutrophication of downstream water bodies. Wastewater treatment plants (WWTPs), the predominant point source of N in the northeast US, remove some but not all of human waste N they receive. Excess enters rivers, which may further mitigate N concentrations by dilution and denitrification. WWTP effluent combines with upstream flows, which may include non-point sources of N due to agriculture or urbanization. Natural N removal capacities in rivers may however be overwhelmed and become N saturated, which reduces their effectiveness. As a result, natural and man-made services of N removal are intimately linked at the river network scale for provisions of suitable water quality and aquatic habitat. We assessed the summer N mitigation capacity of rivers relative to N removal in WWTPs in the northeastern U.S. using a N removal model developed within the Framework for Aquatic Modeling in the Earth System (FrAMES). The spatially distributed river network model predicts average daily dissolved inorganic nitrogen concentrations at a 3-minute river grid resolution, accounting for the mixing of natural areas, nonpoint sources, WWTP effluent, and instream denitrification, which is simulated as a function of river temperature, water residence time, and biogeochemical activity. Model validation was done using N concentration data from 750 USGS gauges across the northeast during the period 2000-2010. Confidence intervals (90%) are estimated for river N concentrations based on key uncertainties in simulated river width, uptake rates, and N loading rates. Model results suggest WWTPs potentially impact 25,770 km of river length (10.7% of total river length in the northeast) and increase N concentrations an average of 42.3% at the facility locations. The in-stream ecosystem service of N removal accounts for 2.7% of the total cumulative N removed by WWTPs during the summer in the region. Despite providing a relatively small proportion of N removal, the expected deterioration of WWTP infrastructure and associated costs of upgrading existing systems puts the role of this riverine ecosystem service into economic perspective.

  3. Characterization of Nanoparticles and Colloids in Aquatic Systems 1. Small Angle Neutron Scattering Investigations of Suwannee River Fulvic Acid Aggregates in Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Diallo, Mamadou S.; Glinka, Charles J.; Goddard, William A.; Johnson, James H.

    2005-10-01

    Fulvic acids (FA) and humic acids (HA) constitute 30-50% of dissolved organic matter in natural aquatic systems. In aqueous solutions, a commonly accepted view is that FA and HA exist as soluble macroligands at low concentration and as supramolecular aggregates at higher concentration. The size, shape and structure of these aggregates are still the subject of ongoing debate in the environmental chemistry literature. In this article, we use small angle neutron scattering (SANS) to assess the effects of solute concentration, solution pH and background electrolyte (NaCl) concentration on the structures of Suwannee River FA (SRFA) aggregates in D2O. The qualitative features of the SANS curves and data analysis are not consistent with the view point that SRFA forms micelle-like aggregates as its concentration in aqueous solution increases. We find that SRFA forms fractal aggregates in D20 with size greater than 242 nm. The SRFA aggregates undergo a significant degree of restructuring in compactness as solution pH, solute concentration and NaCl concentration increase.

  4. Non-wadeable river bioassessment: spatial variation of benthic diatom assemblages in Pacific Northwest rivers, USA

    EPA Science Inventory

    Current bioassessment efforts are focused on small wadeable streams, at least partly because assessing ecological conditions in non-wadeable large rivers poses many additional challenges. In this study, we sampled 20 sites in each of seven large rivers in the Pacific Northwest, U...

  5. Improving H-Q rating curves in temprorary streams by using Acoustic Doppler Current meters

    NASA Astrophysics Data System (ADS)

    Marchand, P.; Salles, C.; Rodier, C.; Hernandez, F.; Gayrard, E.; Tournoud, M.-G.

    2012-04-01

    Intermittent rivers pose different challenges to stream rating due to high spatial and temporal gradients. Long dry periods, cut by short duration flush flood events explain the difficulty to obtain reliable discharge data, for low flows as well as for floods: problems occur with standard gauging, zero flow period, etc. Our study aims to test the use of an acoustic Doppler currentmeter (ADC) for improving stream rating curves in small catchments subject to large variations of discharge, solid transport and high eutrophication levels. The study is conducted at the outlet of the river Vène, a small coastal river (67 km2) located close to the city of Montpellier (France). The low flow period lasts for more than 6 month; during this period the river flow is sustained by effluents from urban sewage systems, which allows development of algae and macrophytes in the riverbed. The ADC device (Sontek ®Argonaut SW) is a pulsed Doppler current profiling system designed for measuring water velocity profiles and levels that are used to compute volumetric flow rates. It is designed for shallow waters (less than 4 meter depth). Its main advantages are its low cost and high accuracy (±1% of the measured velocity or ±0.05 m/sec, as reported by the manufacturer). The study will evaluate the improvement in rating curves in an intermittent flow context and the effect of differences in sensitivity between low and high water level, by comparing mean flow velocity obtained by ADC to direct discharges measurements. The study will also report long-term use of ADC device, by considering effects of biofilms, algae and macrophytes, as well as solid transport on the accuracy of the measurements. In conclusion, we show the possibility to improve stream rating and continuous data collection of an intermittent river by using a ADC with some precautions.

  6. Geohydrology of the Delta-Clearwater area, Alaska

    USGS Publications Warehouse

    Wilcox, Dorothy E.

    1980-01-01

    The alluvial aquifer in the Delta-Clearwater area, Alaska, is composed of lenticular, interbedded deposits of silt, sand, and gravel. Ground water occurs under both confined and unconfined conditions in the area. The potentiometric surface slopes approximately northward at gradients ranging from about 1 to 25 feet per mile. The aquifer is recharge by seepage through the streambeds of rivers and creeks and by infiltration of precipitation. Water is discharged from the aquifer into the Clearwater Creek network and Clearwater Lake, which are almost entirely spring-fed, at the mouth of the Delta River, and into the Tanana River along the northern boundary of the study area. Year-round ground-water discharge from the aquifer is estimated to exceed 1,200 cubic feet per second. The following ground-water flow system is hypothesized: Channel losses from the Gerstle River, several small creeks draining the Alaska Range, and the Tanana River to the east of Clearwater Creek recharge the sections of the aquifer discharging at the Clearwater Creek network. Channel losses from the Delta River and Jarvis Creek are the main source of recharge to the sections of the aquifer discharging in the vicinity of Clearwater Lake and Big Delta. Additional work is needed to verify these hypotheses. (USGS)

  7. Clinothem Lobe Growth and Possible Ties to Downslope Processes in the Gulf of Papua

    NASA Astrophysics Data System (ADS)

    Wei, E. A. Y.; Driscoll, N. W.; Milliman, J. D.; Slingerland, R. L.

    2014-12-01

    The Gulf of Papua is fed by the large-floodplain Fly River and small mountainous rivers to the north, thus creating an ideal environment where end-member cases of river systems and their deltas (e.g. the large-floodplain Brazos River and the narrow-shelved Eel River) can be studied. Input from five rivers into the gulf has constructed a three-dimensional mid-shelf clinothem composed of three depositional lobes, with a central lobe downlapped by two younger lobes to the north and south. This geometry suggests that the three lobes are not syndepositional but rather that clinoform depocenters have shifted 60 km, thus bypassing adjacent accommodation. Newly examined CHIRP (Compressed High Intensity Radar Pulse) seismic lines and XRF analysis of piston cores from the 2004 NSF MARGINS program reveal distinct lobes offshore that exhibit increased complexity moving shoreward. Evidence of shoreward complexity and lobe interfingering cause us to question the originally proposed mechanism for depocenter shift involving circulation changes. An alternative hypothesis that stems from distinct lobe architecture farther offshore suggests that channelized downslope processes and nearshore storage may play important roles in lobe growth.

  8. Differentiation in the fertility of Inceptisols as related to land use in the upper Solimões river region, western Amazon.

    PubMed

    Moreira, Fatima Maria de Souza; Nóbrega, Rafaela Simão Abrahão; Jesus, Ederson da Conceição; Ferreira, Daniel Furtado; Pérez, Daniel Vidal

    2009-12-20

    The Upper Solimões river region, western Amazon, is the homeland of indigenous populations and contains small-scale agricultural systems that are important for biodiversity conservation. Although traditional slash-and-burn agriculture is being practiced over many years, deforestation there is relatively small compared to other Amazon regions. Pastures are restricted to the vicinity of cities and do not spread to the small communities along the river. Inceptisols are the main soil order (>90%) in the area and have unique attributes including high Al content and high cation exchange capacity (CEC) due to the enrichment of the clay fraction with 2:1 secondary aluminosilicates. Despite its importance, few studies have focussed on this soil order when considering land use effects on the fertility of Amazon soils. Thus, the objective of this study was to evaluate changes in soil fertility of representative land use systems (LUSs) in the Upper Solimões region, namely: primary rainforest, old secondary forest, young secondary forest, agroforestry, pasture and agriculture. LUSs were significantly differentiated by the chemical attributes of their topsoil (0-20 cm). Secondary forests presented soil chemical attributes more similar to primary rainforest areas, while pastures exhibited the highest dissimilarity from all the other LUSs. As a whole, soil chemical changes among Inceptisols dominated LUSs showed patterns that were distinct from those reported from other Amazon soils like Oxisols and Ultisols. This is probably related to the presence of high-activity clays enriched in exchangeable aluminum that heavily influenced the soil chemical reactions over the expected importance of organic matter found in most studies conducted over Oxisol and Ultisol.

  9. The "fault of the Pool" along the Congo River between Kinshasa and Brazzaville, R(D)Congo is no more a myth: Paleostress from small-scale brittle structures

    NASA Astrophysics Data System (ADS)

    Delvaux, Damien; Ganza, Gloire; Kongota, Elvis; Fukiabantu, Guilain; Mbokola, Dim; Boudzoumou, Florent; Miyouna, Timothée; Gampio, Urbain; Nkodia, Hardy

    2017-04-01

    Small-scale brittle structures such as shear fractures and tension joints are well developed in the indurated Paleozoic Inkisi red sandstones of the West-Congo Supergroup in the "pool" region of Kinshasa and Brazzaville, along the Congo River. They appear to be related to the evolution of intraplate stresses during the late Cretaceous-Paleogene period, possibly related to the opening of the South Atlantic. However, inferring paleostresses from such structures is difficult due to the lack of clear kinematic indicators, so we used mainly the geometry, architecture and sequence of the joint systems to infer paleostresses. A limited number of kinematic indicators for slip sense (displaced pebbles, irregularities on striated surfaces, slickensides) or extension (plume joints) confirm the general conclusions of the joint architecture analysis. We found evidence for two major brittle deformation systems, leading to almost orthogonal fracture sets. They both started by the development of plume joints, which progressively evolved into open tension joints, isolated shear fractures and long (up to several hundred meters) brittle shear zones. The first system started to develop under NE-SW extension and evolved into strike-slip with NNW-SSE horizontal compression while the second (and later), started to develop under NW-SE extension and evolved into strike-slip with NNE-SSW horizontal compression. The second brittle deformation episode was associated with fluid flow as shown by the presence of palygorskite-calcite veins in the most prominent fractures of the second fracture system. Along the NE-SW brittle shear zones which run parallel to the Congo River, carbonate-rich fault-gauge lenses are filled by sand derived from the crushed adjacent walls and calcite vein fragments injected at a high fluid pressure, with late precipitation of palygorskite. Our study demonstrates the existence of two fault systems between Kinshasa and Brazzaville, the first one orthogonal to the trend of the Congo River and the second one, orthogonal to it. This reconciles the different views on the suspected presence of a major fault in the Pool.

  10. Evaluating a Radar-Based, Non Contact Streamflow Measurement System in the San Joaquin River at Vernalis, California

    USGS Publications Warehouse

    Cheng, Ralph T.; Gartner, Jeffrey W.; Mason, Jr., Robert R.; Costa, John E.; Plant, William J.; Spicer, Kurt R.; Haeni, F. Peter; Melcher, Nick B.; Keller, William C.; Hayes, Ken

    2004-01-01

    Accurate measurement of flow in the San Joaquin River at Vernalis, California, is vital to a wide range of Federal and State agencies, environmental interests, and water contractors. The U.S. Geological Survey uses a conventional stage-discharge rating technique to determine flows at Vernalis. Since the flood of January 1997, the channel has scoured and filled as much as 20 feet in some sections near the measurement site resulting in an unstable stage-discharge rating. In response to recent advances in measurement techniques and the need for more accurate measurement methods, the Geological Survey has undertaken a technology demonstration project to develop and deploy a radar-based streamflow measuring system on the bank of the San Joaquin River at Vernalis, California. The proposed flow-measurement system consists of a ground-penetrating radar system for mapping channel geometries, a microwave radar system for measuring surface velocities, and other necessary infrastructure. Cross-section information derived from ground penetrating radar provided depths similar to those measured by other instruments during the study. Likewise, surface-velocity patterns and magnitudes measured by the pulsed Doppler radar system are consistent with near surface current measurements derived from acoustic velocity instruments. Since the ratio of surface velocity to mean velocity falls to within a small range of theoretical value, using surface velocity as an index velocity to compute river discharge is feasable. Ultimately, the non-contact radar system may be used to make continuous, near-real-time flow measurements during high and medium flows. This report documents the data collected between April 14, 2002 and May 17, 2002 for the purposes of testing this radar based system. Further analyses of the data collected during this field effort will lead to further development and improvement of the system.

  11. Run-off regime of the small rivers in mountain landscapes (on an example of the mountain "Mongun-taiga

    NASA Astrophysics Data System (ADS)

    Pryahina, G.; Zelepukina, E.; Guzel, N.

    2012-04-01

    Hydrological characteristics calculations of the small mountain rivers in the basins with glaciers frequently cause complexity in connection with absence of standard hydrological supervision within remote mountain territories. The unique way of the actual information reception on a water mode of such rivers is field work. The rivers of the mountain Mongun-taiga located on a joint of Altai and Sayan mountains became hydrological researches objects of Russian geographical society complex expeditions in 2010-2011. The Mongun-taiga cluster of international biosphere reserve "Ubsunurskaya hollow" causes heightened interest of researchers — geographers for many years. The original landscape map in scale 1:100000 has been made, hydrological supervision on the rivers East Mugur and ugur, belonging inland basin of Internal Asia are lead. Supervision over the river drain East Mugur runoff were spent in profile of glacier tongue (the freezing area - 22 % (3.2 km2) from the reception basin) and in the closing alignment of the river located on distance of 3,4 km below tongue of glacier. During researches following results have been received. During the ablation period diurnal fluctuations with a strongly shown maximum and minimum of water discharges are typically for the small rivers with considerable share of a glacial food. The run-off maximum from the glacier takes place from 2 to 7 p.m., the run-off minimum is observed early in the morning. High speed of thawed snow running-off from glacier tongue and rather small volume of dynamic stocks water on an ice surface lead to growth of water discharge. In the bottom profile the time of maximum and minimum of water discharge is displaced on the average 2 hours, it depends of the water travel time. Maximum glacial run-off discharge (1.12 m3/s) in the upper profile was registered on July 16 (it was not rain). Volumes of daily runoff in the upper and bottom profiles were 60700-67600 m3 that day. The run-off from nonglacial part of the basin is formed by underground waters and melting snowfields, during the absence of rainfall period the part of one amounted to 10% of the run-off in the lower profile. We suggest that this water discharge corresponds to base flow value in the lower profile because the area of snowfields of the basin was < 0.1 km2 that year. Run-off monitoring has showed that rivers with a small glacial food are characterized by absence of diurnal balance of runoff. During rainfall the water content of river has being increased due to substantial derivation of basin and, as a result, fast flowing rain water into bed of river. The sharp decrease in water content of river during periods of rainfall absence indicates low inventory of soil and groundwater and the low rate of glacial. Thus, glaciers and character of the relief influence the formation of run-off small mountain rivers. Results of researches will be used for mathematical modeling mountain rivers run-off.

  12. Small river plumes off the northeastern coast of the Black Sea under average climatic and flooding discharge conditions

    NASA Astrophysics Data System (ADS)

    Osadchiev, Alexander; Korshenko, Evgeniya

    2017-06-01

    This study focuses on the impact of discharges of small rivers on the delivery and fate of fluvial water and suspended matter at the northeastern part of the Black Sea under different local precipitation conditions. Several dozens of mountainous rivers flow into the sea at the study region, and most of them, except for several of the largest, have little annual runoff and affect adjacent coastal waters to a limited extent under average climatic conditions. However, the discharges of these small rivers are characterized by a quick response to precipitation events and can significantly increase during and shortly after heavy rains, which are frequent in the considered area. The delivery and fate of fluvial water and terrigenous sediments at the study region, under average climatic and rain-induced flooding conditions, were explored and compared using in situ data, satellite imagery, and numerical modeling. It was shown that the point-source spread of continental discharge dominated by several large rivers under average climatic conditions can change to the line-source discharge from numerous small rivers situated along the coast in response to heavy rains. The intense line-source runoff of water and suspended sediments forms a geostrophic alongshore current of turbid and freshened water, which induces the intense transport of suspended and dissolved constituents discharged with river waters in a northwestern direction. This process significantly influences water quality and causes active sediment load at large segments of the narrow shelf at the northeastern part of the Black Sea compared to average climatic discharge conditions.

  13. Movement and habitat use of green sturgeon Acipenser medirostris in the Rogue River, Oregon, USA

    USGS Publications Warehouse

    Erickson, D.L.; North, J.A.; Hightower, J.E.; Weber, J.; Lauck, L.

    2002-01-01

    Green sturgeon (Acipenser medirostris) movement patterns and habitat use within the Rogue River, Oregon were evaluated using radio telemetry. Nineteen specimens ranging from 154 to 225 cm total length were caught by gill netting and tagged with radio transmitters during May-July 2000. One tagged green sturgeon was verified as a female near spawning condition. Individual green sturgeons spent more than 6 months in fresh water and traveled as far as river kilometer (rkm) 39.5. Green sturgeon preferred specific holding sites within the Rogue River during summer and autumn months. These sites were typically deep (> 5 m) low-gradient reaches or off-channel coves. Home ranges within holding sites were restricted. All tagged individuals emigrated from the system to the sea during the autumn and winter, when water temperatures dropped below 10??C and flows increased. This species is extremely vulnerable to habitat alterations and overfishing because it spawns in only a few North American rivers and individuals reside within extremely small areas for extended periods of time.

  14. Tidal oscillation of sediment between a river and a bay: A conceptual model

    USGS Publications Warehouse

    Ganju, N.K.; Schoellhamer, D.H.; Warner, J.C.; Barad, M.F.; Schladow, S.G.

    2004-01-01

    A conceptual model of fine sediment transport between a river and a bay is proposed, based on observations at two rivers feeding the same bay. The conceptual model consists of river, transitional, and bay regimes. Within the transitional regime, resuspension, advection, and deposition create a mass of sediment that oscillates landward and seaward. While suspended, this sediment mass forms an estuarine turbidity maximum. At slack tides this sediment mass temporarily deposits on the bed, creating landward and seaward deposits. Tidal excursion and slack tide deposition limit the range of the sediment mass. To verify this conceptual model, data from two small tributary rivers of San Pablo Bay are presented. Tidal variability of suspended-sediment concentration markedly differs between the landward and seaward deposits, allowing interpretation of the intratidal movement of the oscillating sediment mass. Application of this model in suitable estuaries will assist in numerical model calibration as well as in data interpretation. A similar model has been applied to some larger-scale European estuaries, which bear a geometric resemblance to the systems analyzed in this study. ?? 2004 Elsevier Ltd. All rights reserved.

  15. Multiscale spatial and small-scale temporal variation in the composition of Riverine fish communities.

    PubMed

    Growns, Ivor; Astles, Karen; Gehrke, Peter

    2006-03-01

    We studied the multiscale (sites, river reaches and rivers) and short-term temporal (monthly) variability in a freshwater fish assemblage. We found that small-scale spatial variation and short-term temporal variability significantly influenced fish community structure in the Macquarie and Namoi Rivers. However, larger scale spatial differences between rivers were the largest source of variation in the data. The interaction between temporal change and spatial variation in fish community structure, whilst statistically significant, was smaller than the variation between rivers. This suggests that although the fish communities within each river changed between sampling occasions, the underlying differences between rivers were maintained. In contrast, the strongest interaction between temporal and spatial effects occurred at the smallest spatial scale, at the level of individual sites. This means whilst the composition of the fish assemblage at a given site may fluctuate, the magnitude of these changes is unlikely to affect larger scale differences between reaches within rivers or between rivers. These results suggest that sampling at any time within a single season will be sufficient to show spatial differences that occur over large spatial scales, such as comparisons between rivers or between biogeographical regions.

  16. Small hydropower spot prediction using SWAT and a diversion algorithm, case study: Upper Citarum Basin

    NASA Astrophysics Data System (ADS)

    Kardhana, Hadi; Arya, Doni Khaira; Hadihardaja, Iwan K.; Widyaningtyas, Riawan, Edi; Lubis, Atika

    2017-11-01

    Small-Scale Hydropower (SHP) had been important electric energy power source in Indonesia. Indonesia is vast countries, consists of more than 17.000 islands. It has large fresh water resource about 3 m of rainfall and 2 m of runoff. Much of its topography is mountainous, remote but abundant with potential energy. Millions of people do not have sufficient access to electricity, some live in the remote places. Recently, SHP development was encouraged for energy supply of the places. Development of global hydrology data provides opportunity to predict distribution of hydropower potential. In this paper, we demonstrate run-of-river type SHP spot prediction tool using SWAT and a river diversion algorithm. The use of Soil and Water Assessment Tool (SWAT) with input of CFSR (Climate Forecast System Re-analysis) of 10 years period had been implemented to predict spatially distributed flow cumulative distribution function (CDF). A simple algorithm to maximize potential head of a location by a river diversion expressing head race and penstock had been applied. Firm flow and power of the SHP were estimated from the CDF and the algorithm. The tool applied to Upper Citarum River Basin and three out of four existing hydropower locations had been well predicted. The result implies that this tool is able to support acceleration of SHP development at earlier phase.

  17. Small rural communities in the inland Northwest: an assessment of small communities in the interior and upper Columbia River basins.

    Treesearch

    Charles C. Harris; William McLaughlin; Greg Brown; Dennis R. Becker

    2000-01-01

    An assessment of small rural communities in the interior and upper Columbia River basin was conducted for the Interior Columbia Basin Ecosystem Management Project (ICBEMP). The characteristics and conditions of the rural communities in this region, which are complex and constantly changing, were examined. The research also assessed the resilience of the region’s...

  18. Are calanco landforms similar to river basins?

    PubMed

    Caraballo-Arias, N A; Ferro, V

    2017-12-15

    In the past badlands have been often considered as ideal field laboratories for studying landscape evolution because of their geometrical similarity to larger fluvial systems. For a given hydrological process, no scientific proof exists that badlands can be considered a model of river basin prototypes. In this paper the measurements carried out on 45 Sicilian calanchi, a type of badlands that appears as a small-scale hydrographic unit, are used to establish their morphological similarity with river systems whose data are available in the literature. At first the geomorphological similarity is studied by identifying the dimensionless groups, which can assume the same value or a scaled one in a fixed ratio, representing drainage basin shape, stream network and relief properties. Then, for each property, the dimensionless groups are calculated for the investigated calanchi and the river basins and their corresponding scale ratio is evaluated. The applicability of Hack's, Horton's and Melton's laws for establishing similarity criteria is also tested. The developed analysis allows to conclude that a quantitative morphological similarity between calanco landforms and river basins can be established using commonly applied dimensionless groups. In particular, the analysis showed that i) calanchi and river basins have a geometrically similar shape respect to the parameters Rf and Re with a scale factor close to 1, ii) calanchi and river basins are similar respect to the bifurcation and length ratios (λ=1), iii) for the investigated calanchi the Melton number assumes values less than that (0.694) corresponding to the river case and a scale ratio ranging from 0.52 and 0.78 can be used, iv) calanchi and river basins have similar mean relief ratio values (λ=1.13) and v) calanchi present active geomorphic processes and therefore fall in a more juvenile stage with respect to river basins. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Pike Esox Lucius Distribution and Feeding Comparisons in Natural and Historically Channelized River Sections

    NASA Astrophysics Data System (ADS)

    Ivanovs, Kaspars

    2016-12-01

    During the last century a large portion of small and medium-sized rivers in Latvia were channelized, hydroelectric power stations were also built, which led to changes in the hydrodynamic conditions, geomorphological structure, as well as a change in the fish fauna. Fish are an integral part of any community in natural or man-made bodies of water. They actively participate in maintaining the system, balancing/equilibrium, energy, substance transformation and biomass production. They are able to influence other organisms in the ecosystem in which they live. The aim of the paper "Pike distribution and feeding comparisons in natural and historically channelized river sections" is to find out what pike feed on in different environments in Latvian rivers, such as natural and straightened river sections, as well as what main factors determine the composition of their food. Several points were assessed during the course of the study: the impact of environmental conditions on the feeding habits and the distribution of pike; the general feeding habits of predators in Latvian rivers; the feeding differences of predators in natural and straightened river sections; and lastly, rhithral and pothamal habitats were compared. The study was based on data from 2014 and 2015 on fish fauna monitoring. During the study, 347 pike were collected from 136 plots using electrofishing method.

  20. Finding of No Significant Impact for the Missouri River Recovery Program Lower Little Sioux Bend Shallow Water Habitat Construction Project

    DTIC Science & Technology

    2011-07-01

    A relatively small portion of this accreted land would be removed by the proposed project and returned to the River. U.S. Army Corps of Engineers... Planting a portion of the site currently utilized for row-crop agriculture to native hardwood tree species. • Gradual sloping of the new River...the change would be localized and so small that it would not be of any measurable or perceptible consequence. Minor: Impact could result in a

  1. Re-examining data-intensive surface water models with high-resolution topography derived from unmanned aerial system photogrammetry

    NASA Astrophysics Data System (ADS)

    Pai, H.; Tyler, S.

    2017-12-01

    Small, unmanned aerial systems (sUAS) are quickly becoming a cost-effective and easily deployable tool for high spatial resolution environmental sensing. Land surface studies from sUAS imagery have largely focused on accurate topographic mapping, quantifying geomorphologic changes, and classification/identification of vegetation, sediment, and water quality tracers. In this work, we explore a further application of sUAS-derived topographic mapping to a two-dimensional (2-d), depth-averaged river hydraulic model (Flow and Sediment Transport with Morphological Evolution of Channels, FaSTMECH) along a short, meandering reach of East River, Colorado. On August 8, 2016, we flew a sUAS as part of the Center for Transformative Environmental Monitoring Programs with a consumer-grade visible camera and created a digital elevation map ( 1.5 cm resolution; 5 cm accuracy; 500 m long river corridor) with Agisoft Photoscan software. With the elevation map, we created a longitudinal water surface elevation (WSE) profile by manually delineating the bank-water interface and river bathymetry by applying refraction corrections for more accurate water depth estimates, an area of ongoing research for shallow and clear river systems. We tested both uncorrected and refraction-corrected bathymetries with the steady-state, 2-d model, applying sensitivities for dissipation parameters (bed roughness and eddy characteristics). Model performance was judged from the WSE data and measured stream velocities. While the models converged, performance and insights from model output could be improved with better bed roughness characterization and additional water depth cross-validation for refraction corrections. Overall, this work shows the applicability of sUAS-derived products to a multidimensional river model, where bathymetric data of high resolution and accuracy are key model input requirements.

  2. Seismic-reflection and sidescan-sonar data collected on the Potomac River, Maryland and Virginia, during May 1979

    USGS Publications Warehouse

    Knebel, Harley J.

    1981-01-01

    The U.S. Geological Survey collected 2,170 line kilometers of single-channel seismic-reflection profiles and sidescan sonar records on the Potomac River during R/V NEECHO cruise NE-3-79 in May 1979. The purposes of the survey were to define: (1) areas of sediment accumulation and erosion; (2) the thickness of Holocene sediments; (3) the internal structure of the near-surface sediments; (4) the types of bottom topography; and (5) the general geologic framework of the tidal river and estuary.The survey utilized a variety of acoustic systems. Bottom data were obtained by using a Raytheon _1/ model DE-719 fathometer (200 kHz) and an EDO Western model 606 sidescan-sonar system (100 kHz). Subbottom data were collected with a 7-kHz Raytheon model PTR-106 system and a small airgun system (170-645 Hz band pass; l in3 chamber). An EDO Western sidescan fish (model 604-150) coupled with a 2.5-kHz seismic-reflection system also was used during the longitudinal run up the river. The totals for the ,various kinds of data collected were 481 line kilometers each of fathometer, sidescan sonar, 7-kHz, and airgun records, and 246 line kilometers of 2.5-kHz records. Positional control for all tracklines was provided by frequent radar fixes, by dead reckoning, and by sightings on buoys, landmarks, and other navigational aids.The quality of the acoustic records varied with location in the river. Good fathometer and sidescan-sonar records were collected along all tracklines. However, because of the nature of the sediments within some sections of the river, the degree of subbottom penetration in many places was limited. In general, the subbottom penetration and resolution were poor in the upper and middle reaches of the river, whereas the subbottom records from the lower reach usually were quite good.The original records may be examined at the U.S. Geological Survey, Woods Hole, MA 02543. Microfilm copies of the data are available for purchase from the National Geophysical and Solar-Terrestrial Data Center (NGSDC), Boulder, CO 80303.

  3. Quality of water in the upper Ohio River basin and at Erie, Pennsylvania

    USGS Publications Warehouse

    Lewis, Samuel James

    1906-01-01

    This paper discusses the quality of water on the most important tributaries of Ohio River in Pennsylvania, New York, West Virginia, and Maryland, and the nature of the water supply at Erie, Pa. The amount and character of the pollution is described and the results of drinking contaminated water as shown by typhoid statistics are indicated. The conditions on the tributaries of Ohio River in Ohio are discussed in Water-Supply and Irrigation Paper No. 79, United States Geological Survey, pages 129-187. The water supplies and sewerage of small towns high up toward the head of a large drainage system do not in many cases receive the attention they should. Epidemics of a waterborne disease which affect large municipalities near the mouth of the river and therefore attract attention must necessarily have their origin in the pollution of the watershed above. It is evident, therefore, that adequate sanitation of the small towns and a water supply as carefully guarded as that of a large city would prevent disease at its very source and be far less expensive than the costly battles which are waged against epidemics in huge centers of population after disease has broken out. Typhoid fever statistics for small towns in this section are seldom available and are more or less unreliable at best. The few figures given show the existence of virulent typhoid fever in most towns of the drainage areas in certain years, and as these towns drain into the streams the liability ofthe water to infection is evident. The significance of typhoid fever death rates will be better understood from the statistics presented below, which have been collated from a number of cities having excellent water supplies.

  4. Colorado River Vegetation, and Climate: Five Decades of Spatio-Temporal Dynamics in the Grand Canyon in Response to River Regulation

    NASA Astrophysics Data System (ADS)

    Ralston, B. E.; Sankey, J. B.

    2013-12-01

    Recent analysis of remotely sensed imagery of 400 km of the Colorado River confirms a net increase in vegetated area has occurred since the completion of Glen Canyon Dam in 1963. The rates and magnitude of vegetation change appear to be river stage-dependent. Riparian vegetation expansion on geomorphic surfaces at lower elevations relative to the river was greater for decades with lower peak and average discharges. Vegetation change at higher elevation relative to the river indicate that increases and decreases in vegetated area reflect regional precipitation patterns, and respectively coincide with regionally significant wet and dry periods that include the current early 21st century drought. The objective of this work was to examine the temporal persistence, and changes, in the spatial distribution of riparian vegetation relative to geomorphic characteristics of the Colorado River in Grand Canyon, dam and reservoir management, and regional climate over the 5-decade period from the mid-1960s to present. We employed archived riparian vegetation classifications that used aerial imagery from 1965, 1973, 1984, 1992, 2002, and 2009 coupled with flow regime data that is primarily related to operations of Glen Canyon Dam, field-measured rating relations, predictions of rating relations based on 1-D modeling, and detailed, geomorphic field mapping. Documentation of the effects of river regulation on riparian habitats in the SW USA has traditionally been limited to either small segments of river channels (e.g., 0.1-10km), or focused on specific plant species. The smaller geographic scale approach evaluates local hydrology, river channel changes, and serial recruitment events of riparian plants. The species-specific plant response informs larger scale patterns of riparian plant distributions across the landscape, but is less sensitive to differences of climate and hydrology among rivers. Our study is unique in that it employs datasets that allow both large-scale change detection and local-scale analysis to address questions about transferability of local-scale plant response to the larger river system. Furthermore, we assess the independent and interacting effects of river regulation and regional climate on plant response. Our results show promise for improved understanding of the interplay of river regulation and climate effects for riparian vegetation at a local and river-wide scale in this highly modified river system.

  5. Simulation of daily streamflow for 12 river basins in western Iowa using the Precipitation-Runoff Modeling System

    USGS Publications Warehouse

    Christiansen, Daniel E.; Haj, Adel E.; Risley, John C.

    2017-10-24

    The U.S. Geological Survey, in cooperation with the Iowa Department of Natural Resources, constructed Precipitation-Runoff Modeling System models to estimate daily streamflow for 12 river basins in western Iowa that drain into the Missouri River. The Precipitation-Runoff Modeling System is a deterministic, distributed-parameter, physical-process-based modeling system developed to evaluate the response of streamflow and general drainage basin hydrology to various combinations of climate and land use. Calibration periods for each basin varied depending on the period of record available for daily mean streamflow measurements at U.S. Geological Survey streamflow-gaging stations.A geographic information system tool was used to delineate each basin and estimate initial values for model parameters based on basin physical and geographical features. A U.S. Geological Survey automatic calibration tool that uses a shuffled complex evolution algorithm was used for initial calibration, and then manual modifications were made to parameter values to complete the calibration of each basin model. The main objective of the calibration was to match daily discharge values of simulated streamflow to measured daily discharge values. The Precipitation-Runoff Modeling System model was calibrated at 42 sites located in the 12 river basins in western Iowa.The accuracy of the simulated daily streamflow values at the 42 calibration sites varied by river and by site. The models were satisfactory at 36 of the sites based on statistical results. Unsatisfactory performance at the six other sites can be attributed to several factors: (1) low flow, no flow, and flashy flow conditions in headwater subbasins having a small drainage area; (2) poor representation of the groundwater and storage components of flow within a basin; (3) lack of accounting for basin withdrawals and water use; and (4) limited availability and accuracy of meteorological input data. The Precipitation-Runoff Modeling System models of 12 river basins in western Iowa will provide water-resource managers with a consistent and documented method for estimating streamflow at ungaged sites and aid in environmental studies, hydraulic design, water management, and water-quality projects.

  6. Water quality and benthic fauna biodiversity in a unique small wetland at Messinia, Greece.

    PubMed

    Gritzalis, Konstantinos C; Anastasopoulou, Evangelia; Georgiopoulos, Nikolaos A; Markogianni, Vasiliki V; Skoulikidis, Nikolaos Th

    2015-01-01

    The wetland of Aghios Floros is located in the Prefecture of Messinia (S. W. Peloponnese, Greece) and occupies a small area, covered permanentlywith water. Flooding of the surrounding area is defended by an artificial channel that discharge large quantity of water into Pamisos River in whose river basin the Aghios Floros station belongs. At the sampling site various physico-chemical and conventional pollution parameters as well as hydrochemical variables were measured during the wet and the dry period of 2011. The hydromorphological and multihabitat approach of RIVPACS method was applied in situ, which gives an overall image of the landscape. The site was classified as 'Good' according to the Greek River Nutrient Classification System (GR.NCS) and the benthic macroinvertebrate fauna assemblages that dominated the area pointed out a 'Good' biological status as well. The biotic and abiotic sample processing, carried out in compliance with the demands of the Water Framework Directive, in general revealed high ecological status of the station. Specifically, a rich diversity and abundance of some macroinvertebrate families was recorded and regarding the aquatic flora the area is dominated by the water lilies species of Nymphaea alba which are unique in the area of Peloponnese.

  7. Large wood dynamics and biophysical consequences for riparian forests: A comparison of an unconfined alluvial river in a temperate rainforest and a bedrock confined river in a semi-arid South African savanna.

    NASA Astrophysics Data System (ADS)

    Latterell, J. J.; Pettit, N. E.; Naiman, R. J.

    2005-05-01

    Large wood shapes the geomorphology and ecology of rivers. We determined the origin, distribution, and fate of large wood in two rivers from contrasting environments. The Queets is an unstable temperate, rainforest river running from the Olympic Mountains (USA) through a glacial valley with colossal trees. In most years, the channel erodes a variety of forested landforms which forms jams that sculpt habitats. Many are displaced in a few years. Remaining jams initiate landform development and forest renewal. Thus, wood is stockpiled in the floodplain where it may become buried. Channel movements recapture most logs within 50 years. In contrast, the Sabie is a perennial river running through a confined bedrock channel in a fire-prone semi-arid South African savanna. Riparian trees are relatively small and many sink in water. A recent flood (February 2000) devastated the riparian forest, introducing wood to the channel. Jams formed on toppled trees, transported logs, and bedrock outcrops. Many trees survived and resprouted. Jams facilitated the establishment of woody plant seedlings and the intrusion of fire into riparian areas. Sunken wood formed unique depositional features. The Queets and Sabie rivers are strikingly different systems. However, large wood appears to promote the renewal and development of complex riparian forests in both rivers.

  8. Three Gorges Dam alters the Changjiang (Yangtze) river water cycle in the dry seasons: Evidence from H-O isotopes.

    PubMed

    Deng, Kai; Yang, Shouye; Lian, Ergang; Li, Chao; Yang, Chengfan; Wei, Hailun

    2016-08-15

    As the largest hydropower project in the world, the Three Gorges Dam (TGD) has attracted great concerns in terms of its impact on the Changjiang (Yangtze) River and coastal marine environments. In this study, we measured or collected the H-O isotopic data of river water, groundwater and precipitation in the mid-lower Changjiang catchment during the dry seasons of recent years. The aim was to investigate the changes of river water cycle in response to the impoundment of the TGD. Isotopic evidences suggested that the mid-lower Changjiang river water was ultimately derived from precipitation, but dominated by the mixing of different water masses with variable sources and isotopic signals as well. The isotopic parameter "deuterium excess" (d-excess) yielded large fluctuations along the mid-lower mainstream during the initial stage of the TGD impoundment, which was inherited from the upstream water with inhomogeneous isotopic signals. However, as the reservoir water level rising to the present stage, small variability of d-excess was observed along the mid-lower mainstream. This discrepancy could be explained that the TGD impoundment had significantly altered the water cycle downstream the dam, with the rising water level increasing the residence time and enhancing the mixing of reservoir water derived from upstream. This eventually resulted in the homogenization of reservoir water, and thus small fluctuations of d-excess downstream the dam after the quasi-normal stage (2008 to present). We infer that the retention effect of large reservoirs has greatly buffered the d-excess natural variability of water cycle in large river systems. Nevertheless, more research attention has to be paid to the damming effect on the water cycle in the river, estuarine and coastal areas, especially during the dry seasons. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Particle-bound metal transport after removal of a small dam in the Pawtuxet River, Rhode Island, USA

    EPA Science Inventory

    The Pawtuxet River in Rhode Island, USA, has a long history of industrial activity and pollutant discharges. Metal contamination of the river sediments is well documented and historically exceeded toxicity thresholds for a variety of organisms. The Pawtuxet River dam, a low-head ...

  10. The Drifter Platform for Measurements in Small Rivers

    NASA Astrophysics Data System (ADS)

    Kruger, A.; Niemeier, J. J.; Ceynar, D. L.

    2011-12-01

    Researchers at The University of Iowa have been developing a small, inexpensive floating sensor platform to enable a variety of measurements in small rivers. The platform, dubbed "drifters" consists of a PVC housing and small inflatable rubber tube, data collection electronics, and several sensors. Upon release at strategic locations and times in a river network, drifters interrogate their GPS modules for position, time, and velocity. Researchers then collect the drifters and download and analyze position and velocity data. While our primary interest is to observe river network surface water flows, drifters have the broader application of serving as instrumentation platforms for other sensors such a temperature and turbidity. The drifters are structured as follows. A temperature-compensated MEMS clock provides accurate time information. A GPS disciplines this clock and provides georeference information. A low-power microcontroller orchestrates the data collection on the drifter. The standard sensor configuration of the drifter incorporates the GPS, air- and water temperature sensors, a water turbidity sensor, and an accelerometer. The microcontroller stores the collected data on a high-capacity, non-volatile Flash memory card. Each drifter has a bar code sticker, a small RFID tag, and a unique electronic ID embedded in the electronics. These allow us to manage a fleet of drifters and the data they collect. Each drifter has contact information in case a drifter is lost, and an inexpensive short-range radio and a beeper. These allow for determining the locations of the drifters at the conclusion of an experiment as follows. The microcontroller periodically turns on the receiver and listens for the instruction to turn on the beeper. The beeper, when activated, generates a piercing sound that helps operators locate the drifter. The microcontroller also blinks a super bright LED. Two AA-size alkaline batteries typically power the system. The maximum data collection period is dependent on the number of sensors a user activates, the type of battery utilized (alkaline, lithium, NiMH, etc.), the sample rate, and ranges from 12-72 hours. We have collected several data sets in Iowa.

  11. Prospects for the control of onchocerciasis in Africa

    PubMed Central

    Waddy, B. B.

    1969-01-01

    Onchocerciasis is found in association with all the main river systems of northern tropical Africa, and there are endemic foci south of the Equator. Heavy and prolonged infection may cause blindness and intense pruritis. The vectors, Simulium damnosum and S. neavei, are also intolerable pests when they swarm. The disease and its vector together cause serious economic loss and are a main cause of the depopulation of river valleys in the savanna lands. The basin of the River Volta, in which the worst endemic area in the world is situated, is considered to be the most favourable area for a study of the problems involved in the large-scale control of onchocerciasis carried by S. damnosum. Mass treatment or prophylaxis are not practicable at present. The clinical condition progresses for many years in the absence of fresh infection, and drugs capable of mass application are needed. However, the first aim is to attack the larval stages of the vector with insecticides. DDT is ideal for this purpose in large, steadily flowing rivers, but a more suitable insecticide and formulation are needed for small, irregularly flowing streams. Research is needed into many aspects of the adult life of S. damnosum, including feeding and resting habits, dry season survival and flight range. One of the main practical problems is prevention of reinfestation of a treated river system. PMID:5307598

  12. Water Quality Assessment of the Comal Springs Riverine System, New Braunfels, Texas, 1993-94

    USGS Publications Warehouse

    Fahlquist, Lynne; Slattery, R.N.

    1997-01-01

    Comal Springs of Central Texas are the largest springs in the southwestern United States. The long-term average flow of the Comal River, which essentially is the flow from Comal Springs, is 284 cubic feet per second (ft3/s). The artesian springs emerge at the base of an escarpment formed by the Comal Springs fault. The Comal River (fig. 1) is approximately 2 miles (mi) long and is a tributary of the Guadalupe River. Most of the Comal River follows the path of an old mill race, here referred to as New Channel, then flows through a channel carved by a tributary stream (Dry Comal Creek), eventually rejoining its original watercourse. The original watercourse, here referred to as Old Channel, has been reduced to a small stream, the source of which is water diverted from Landa Lake and several springs in the channel. In addition to being an important economic resource of the region, the springs and associated river system are home to unique aquatic species such as the endangered fountain darter (Etheostoma fonticola). The Comal Springs riffle beetle (Heterelmis comalensis), which exists in the springflow channel upstream of Landa Lake, has been proposed for listing as endangered. The Comal Springs dryopid beetle (Stygoparmus comalensis) and the Peck’s cave amphipod (Stygobromus pecki) are two subterranean species associated with Comal Springs also proposed for endangered listing.

  13. Carbon Speciation and Anthropogenic Influences in Haitian Rivers and Inland Waters

    NASA Astrophysics Data System (ADS)

    Markowitz, M.; Paine, J.; McGillis, W. R.; Hsueh, D. Y.

    2014-12-01

    Climate, geography, and land use patterns all contribute to the social, economic, and environmental challenges in Haiti. Water quality remains a predominant issue, and the health of freshwater systems has been linked to the cycling and transformation of carbon. A speciation dominated by carbonates and bicarbonates is conducive to higher alkalinity waters, which is part of an environmental signature in which cholera and other bacteria thrive. Numerous human activities such as deforestation, biomass burning, and agricultural practices have radically changed the abundances of carbon on land and rivers in Haiti. In Haitian small mountainous rivers, carbon speciation is also influenced by the weathering of limestone and other carbonate rocks. Additionally, rain events and natural disturbances such as earthquakes have shown to drastically increase the amount of carbon in rivers and coastal waters. Since 2010, a network of both satellite and autonomous hydrometeorological stations has been deployed to monitor the climate in southwestern Haiti. Additionally, various hydrological parameters from river, reservoir, and coastal sites have been measured during field visits. Research will be continued into the wet season, providing temporal analysis needed for quantifying the abundances and transformations of carbon. Together, data from weather stations and field sites can be contextualized with local land use patterns and other human activities to offer unique insights on the carbon system. Findings may offer new perspectives on the relationships between hydrologic cycles, human health, and environmental sustainability in Haiti.

  14. Dwarf char, a new form of chars (the genus Salvelinus) in Lake Kronotskoe

    USGS Publications Warehouse

    Pavlov, S.D.; Pivovarov, E.A.; Ostberg, C.O.

    2012-01-01

    Lake Kronotskoe is situated in the Kronotskii State Nature Reserve and is a unique natural heritage of Kamchatka. The lake–river system of the reserve includes numerous springs and small streams and three large inflowing rivers, Listvennichnaya, Unana, and Uzon, which form the main bays of Lake Kronotskoe; one river (Kronotskaya) flows from the lake. This river is characterized by several rapids, which are assumed to be unsurmountable barriers for fish migration. The ichthyofauna of the lake has been isolated for a long time, and some endemic fishes appeared, including char of the genus Salvelinus and the residential form of red salmon Oncorhynchus nerka (the local name is kokanee). These species are perfect model objects to study microevolution processes. Char of Lake Kronotskoe are characterized by significant polymorphism and plasticity [1–3]; therefore, they are extremely valuable for studying the processes of speciation and form development. That is why the populations of char in Lake Kronotskoe are unique and attract special attention of researchers. 

  15. Ecological consequences of hydropower development in Central America: Impacts of small dams and water diversion on neotropical stream fish assemblages

    USGS Publications Warehouse

    Anderson, Elizabeth P.; Freeman, Mary C.; Pringle, C.M.

    2006-01-01

    Small dams for hydropower have caused widespread alteration of Central American rivers, yet much of recent development has gone undocumented by scientists and conservationists. We examined the ecological effects of a small hydropower plant (Dona Julia Hydroelectric Center) on two low-order streams (the Puerto Viejo River and Quebradon stream) draining a mountainous area of Costa Rica. Operation of the Dona Julia plant has dewatered these streams, reducing discharge to ~ 10% of average annual flow. This study compared fish assemblage composition and aquatic habitat upstream and downstream of diversion dams on two streams and along a ~ 4 km dewatered reach of the Puerto Viejo River in an attempt to evaluate current instream flow recommendations for regulated Costa Rican streams. Our results indicated that fish assemblages directly upstream and downstream of the dam on the third order Puerto Viejo River were dissimilar, suggesting that the small dam (< 15 in high) hindered movement of fishes. Along the ~ 4 km dewatered reach of the Puerto Viejo River, species count increased with downstream distance from the dam. However, estimated species richness and overall fish abundance were not significantly correlated with downstream distance from the dam. Our results suggested that effects of stream dewatering may be most pronounced for a subset of species with more complex reproductive requirements, classified as equilibrium-type species based on their life-history. In the absence of changes to current operations, we expect that fish assemblages in the Puerto Viejo River will be increasingly dominated by opportunistic-type, colonizing fish species. Operations of many other small hydropower plants in Costa Rica and other parts of Central America mirror those of Doha Julia; the methods and results of this study may be applicable to some of those projects.

  16. Some aspects of river flow in northern New South Wales, Australia

    NASA Astrophysics Data System (ADS)

    Ward, R. C.

    1984-03-01

    A number of catchment and hydrological characteristics are examined for a 385,000 km 2 study area in northern New South Wales. This study area spans the Great Divide and data selected from the archives of the New South Wales Water Resources Commission illustrate the marked contrasts in the character and variability of streamflow between coastal rivers draining comparatively small steeply sloping basins east of the Great Divide and the larger river systems draining the more extensive semi-arid basins of the western slopes. Particular attention is paid to comparisons of annual flows, flow-duration curves, seasonal flow regimes, flood flow and low flows. The study not only confirms the hydrological contrasts between two distinct geographical regions but also emphasises the rigorous data requirements of hydrological studies in areas of high variability of precipitation and streamflow.

  17. Can phytoplankton maintain a positive carbon balance in a turbid, freshwater, tidal estuary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, J.J.; Caraco, N.F.; Peierls, B.L.

    1992-12-01

    An analysis of phytoplankton primary production in the tidal freshwater portion of the Hudson River estuary suggests that net primary production is strongly limited by light and mixing regime. In this turbid, well-mixed system, cells spend from 18 to 22 h d[sup [minus]1] below the 1% light level. Autotrophic dark respiration, conservatively estimated at 5% of P[sup b][sub max], is of sufficient magnitude to make positive algal growth impossible over much of the river and much of the year. It is particularly difficult to explain the observed increase in algal biomass during blooms in spring and summer. The authors hypothesizemore » that such blooms can occur only in a small fraction of the river where depth is [approx lt]4 m. 32 refs., 10 figs.« less

  18. 76 FR 9320 - Endangered and Threatened Wildlife; 90-Day Finding on a Petition To List Alabama Shad as...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-17

    ... Pascagoula River system, small juveniles use sandbar habitats, then switch to open channel and steep bank... pollution, sedimentation, and drought, are cited in the petition as contributing to declines in shad..., sedimentation, and drought. Information on Species Status The petition states that Alabama shad has undergone a...

  19. Formation Conditions and Sedimentary Characteristics of a Triassic Shallow Water Braided Delta in the Yanchang Formation, Southwest Ordos Basin, China.

    PubMed

    Liu, Ziliang; Shen, Fang; Zhu, Xiaomin; Li, Fengjie; Tan, Mengqi

    2015-01-01

    A large, shallow braided river delta sedimentary system developed in the Yanchang Formation during the Triassic in the southwest of the Ordos basin. In this braided delta system, abundant oil and gas resources have been observed, and the area is a hotspot for oil and gas resource exploration. Through extensive field work on outcrops and cores and analyses of geophysical data, it was determined that developments in the Late Triassic produced favorable geological conditions for the development of shallow water braided river deltas. Such conditions included a large basin, flat terrain, and wide and shallow water areas; wet and dry cyclical climate changes; ancient water turbulence; dramatic depth cycle changes; ancient uplift development; strong weathering of parent rock; and abundant supply. The shallow water braided river delta showed grain sediment granularity, plastic debris, and sediment with mature composition and structure that reflected the strong hydrodynamic environment of large tabular cross-bedding, wedge cross-bedding, and multiple positive rhythms superimposed to form a thick sand body layer. The branch river bifurcation developed underwater, and the thickness of the sand body increased further, indicating that the slope was slow and located in shallow water. The seismic responses of the braided river delta reflected strong shallow water performance, indicated by a progradation seismic reflection phase axis that was relatively flat; in addition, the seismic reflection amplitude was strong and continuous with a low angle and extended over considerable distances (up to 50 km). The sedimentary center was close to the provenance, the width of the river was large, and a shallow sedimentary structure and a sedimentary rhythm were developed. The development of the delta was primarily controlled by tectonic activity and changes in the lake level; as a result, the river delta sedimentary system eventually presented a "small plain, big front" character.

  20. Formation Conditions and Sedimentary Characteristics of a Triassic Shallow Water Braided Delta in the Yanchang Formation, Southwest Ordos Basin, China

    PubMed Central

    Liu, Ziliang; Shen, Fang; Zhu, Xiaomin; Li, Fengjie; Tan, Mengqi

    2015-01-01

    A large, shallow braided river delta sedimentary system developed in the Yanchang Formation during the Triassic in the southwest of the Ordos basin. In this braided delta system, abundant oil and gas resources have been observed, and the area is a hotspot for oil and gas resource exploration. Through extensive field work on outcrops and cores and analyses of geophysical data, it was determined that developments in the Late Triassic produced favorable geological conditions for the development of shallow water braided river deltas. Such conditions included a large basin, flat terrain, and wide and shallow water areas; wet and dry cyclical climate changes; ancient water turbulence; dramatic depth cycle changes; ancient uplift development; strong weathering of parent rock; and abundant supply. The shallow water braided river delta showed grain sediment granularity, plastic debris, and sediment with mature composition and structure that reflected the strong hydrodynamic environment of large tabular cross-bedding, wedge cross-bedding, and multiple positive rhythms superimposed to form a thick sand body layer. The branch river bifurcation developed underwater, and the thickness of the sand body increased further, indicating that the slope was slow and located in shallow water. The seismic responses of the braided river delta reflected strong shallow water performance, indicated by a progradation seismic reflection phase axis that was relatively flat; in addition, the seismic reflection amplitude was strong and continuous with a low angle and extended over considerable distances (up to 50 km). The sedimentary center was close to the provenance, the width of the river was large, and a shallow sedimentary structure and a sedimentary rhythm were developed. The development of the delta was primarily controlled by tectonic activity and changes in the lake level; as a result, the river delta sedimentary system eventually presented a “small plain, big front” character. PMID:26075611

  1. Introduction to the special issue on discontinuity of fluvial systems

    NASA Astrophysics Data System (ADS)

    Burchsted, Denise; Daniels, Melinda; Wohl, Ellen E.

    2014-01-01

    Fluvial systems include natural and human-created barriers that modify local base level; as such, these discontinuities alter the longitudinal flux of water and sediment by storing, releasing, or changing the flow path of those materials. Even in the absence of distinct barriers, fluvial systems are typically discontinuous and patchy. The size of fluvial discontinuities ranges across scales from 100 m, such as riffles, to 104 m, such as lava dams or major landslides. The frequency of occurrence appears to be inversely related to size, with creation and failure of the small features, such as beaver dams, occurring on a time scale of 100 to 101 years and a frequency of occurrence at scales as low as 101 m. In contrast, larger scale discontinuities, such as lava dams, can last for time scales up to 105 years and have a frequency of occurrence of approximately 104 m. The heterogeneity generated by features is an essential part of river networks and should be considered as part of river management. Therefore, we suggest that "natural" dams are a useful analog for human dams when evaluating options for river restoration. This collection of papers on the studies of natural dams includes bedrock barriers, log jams and beaver dams. The collection also addresses the discontinuity generated by a floodplain — in the absence of an obvious barrier in the channel — and tools for evaluation of riverbed heterogeneity. It is completed with a study of impact of human dams on floodplain sedimentation. These papers will help geomorphologists and river managers understand the factors that control river heterogeneity across scales and around the world.

  2. Relative sampling efficiency and movements of subadult Lake Sturgeon in the Lower Wolf River, Wisconsin

    USGS Publications Warehouse

    Snobl, Zachary R.; Isermann, Daniel A.; Koenigs, Ryan P.; Raabe, Joshua K.

    2017-01-01

    Understanding sampling efficiency and movements of subadult Lake Sturgeon Acipenser fulvescens is necessary to facilitate population rehabilitation and recruitment monitoring in large systems with extensive riverine and lacustrine habitats. We used a variety of sampling methods to capture subadult Lake Sturgeon (i.e., fish between 75 and 130 cm TL that had not reached sexual maturity) and monitored their movements using radio telemetry in the lower Wolf River, a tributary to the Lake Winnebago system in Wisconsin. Our objectives were to determine whether (1) capture efficiency (expressed in terms of sampling time) of subadult Lake Sturgeon using multiple sampling methods was sufficient to justify within-river sampling as part of a basin-wide recruitment survey targeting subadults, (2) linear home ranges varied in relation to season or sex, and (3) subadult Lake Sturgeon remained in the lower Wolf River. From 2013 to 2014, 628 h of combined sampling effort that included gill nets, trotlines, electrofishing, and scuba capture was required to collect 18 subadult sturgeon, which were then implanted with radio transmitters and tracked by boat and plane. Linear home ranges did not differ in relation to sex but did vary among seasons, and the majority of movement occurred in spring. Seven of the 18 (39%) Lake Sturgeon left the river and were not detected in the river again during the study. Between 56% and 70% of subadult fish remaining in the river made definitive movements to, or near, known spawning locations when adult Lake Sturgeon were actively spawning. Our results suggest only a small proportion of subadult Lake Sturgeon in the Lake Winnebago population use the lower Wolf River, indicating that riverine sampling may not always be warranted when targeting subadults in large lake–river complexes. More information is needed on distribution of subadult Lake Sturgeon to develop sampling protocols for this population segment.

  3. River export of triclosan from land to sea: A global modelling approach.

    PubMed

    van Wijnen, Jikke; Ragas, Ad M J; Kroeze, Carolien

    2018-04-15

    Triclosan (TCS) is an antibacterial agent that is added to commonly used personal care products. Emitted to the aquatic environment in large quantities, it poses a potential threat to aquatic organisms. Triclosan enters the aquatic environment mainly through sewage effluent. We developed a global, spatially explicit model, the Global TCS model, to simulate triclosan transport by rivers to coastal areas. With this model we analysed annual, basin-wide triclosan export for the year 2000 and two future scenarios for the year 2050. Our analyses for 2000 indicate that triclosan export to coastal areas in Western Europe, Southeast Asia and the East Coast of the USA is higher than in the rest of the world. For future scenarios, the Global TCS model predicts an increase in river export of triclosan in Southeast Asia and a small decrease in Europe. The number of rivers with an annual average triclosan concentration at the river mouth that exceeds a PNEC of 26.2ng/L is projected to double between 2000 and 2050. This increase is most prominent in Southeast Asia, as a result of fast population growth, increasing urbanisation and increasing numbers of people connected to sewerage systems with poor wastewater treatment. Predicted triclosan loads correspond reasonably well with measured values. However, basin-specific predictions have considerable uncertainty due to lacking knowledge and location-specific data on the processes determining the fate of triclosan in river water, e.g. sorption, degradation and sedimentation. Additional research on the fate of triclosan in river systems is therefore recommended. We developed a global spatially explicit model to simulate triclosan export by rivers to coastal seas. For two future scenarios this Global TCS model projects an increase in river export of triclosan to several seas around the world. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region

    NASA Astrophysics Data System (ADS)

    He, Zhibin; Wen, Xiaohu; Liu, Hu; Du, Jun

    2014-02-01

    Data driven models are very useful for river flow forecasting when the underlying physical relationships are not fully understand, but it is not clear whether these data driven models still have a good performance in the small river basin of semiarid mountain regions where have complicated topography. In this study, the potential of three different data driven methods, artificial neural network (ANN), adaptive neuro fuzzy inference system (ANFIS) and support vector machine (SVM) were used for forecasting river flow in the semiarid mountain region, northwestern China. The models analyzed different combinations of antecedent river flow values and the appropriate input vector has been selected based on the analysis of residuals. The performance of the ANN, ANFIS and SVM models in training and validation sets are compared with the observed data. The model which consists of three antecedent values of flow has been selected as the best fit model for river flow forecasting. To get more accurate evaluation of the results of ANN, ANFIS and SVM models, the four quantitative standard statistical performance evaluation measures, the coefficient of correlation (R), root mean squared error (RMSE), Nash-Sutcliffe efficiency coefficient (NS) and mean absolute relative error (MARE), were employed to evaluate the performances of various models developed. The results indicate that the performance obtained by ANN, ANFIS and SVM in terms of different evaluation criteria during the training and validation period does not vary substantially; the performance of the ANN, ANFIS and SVM models in river flow forecasting was satisfactory. A detailed comparison of the overall performance indicated that the SVM model performed better than ANN and ANFIS in river flow forecasting for the validation data sets. The results also suggest that ANN, ANFIS and SVM method can be successfully applied to establish river flow with complicated topography forecasting models in the semiarid mountain regions.

  5. Sustainable water deliveries from the Colorado River in a changing climate

    PubMed Central

    Barnett, Tim P.; Pierce, David W.

    2009-01-01

    The Colorado River supplies water to 27 million users in 7 states and 2 countries and irrigates over 3 million acres of farmland. Global climate models almost unanimously project that human-induced climate change will reduce runoff in this region by 10–30%. This work explores whether currently scheduled future water deliveries from the Colorado River system are sustainable under different climate-change scenarios. If climate change reduces runoff by 10%, scheduled deliveries will be missed ≈58% of the time by 2050. If runoff reduces 20%, they will be missed ≈88% of the time. The mean shortfall when full deliveries cannot be met increases from ≈0.5–0.7 billion cubic meters per year (bcm/yr) in 2025 to ≈1.2–1.9 bcm/yr by 2050 out of a request of ≈17.3 bcm/yr. Such values are small enough to be manageable. The chance of a year with deliveries <14.5 bcm/yr increases to 21% by midcentury if runoff reduces 20%, but such low deliveries could be largely avoided by reducing scheduled deliveries. These results are computed by using estimates of Colorado River flow from the 20th century, which was unusually wet; if the river reverts to its long-term mean, shortfalls increase another 1–1.5 bcm/yr. With either climate-change or long-term mean flows, currently scheduled future water deliveries from the Colorado River are not sustainable. However, the ability of the system to mitigate droughts can be maintained if the various users of the river find a way to reduce average deliveries. PMID:19380718

  6. Optical Remote Sensing Algorithm Validation using High-Frequency Underway Biogeochemical Measurements in Three Large Global River Systems

    NASA Astrophysics Data System (ADS)

    Kuhn, C.; Richey, J. E.; Striegl, R. G.; Ward, N.; Sawakuchi, H. O.; Crawford, J.; Loken, L. C.; Stadler, P.; Dornblaser, M.; Butman, D. E.

    2017-12-01

    More than 93% of the world's river-water volume occurs in basins impacted by large dams and about 43% of river water discharge is impacted by flow regulation. Human land use also alters nutrient and carbon cycling and the emission of carbon dioxide from inland reservoirs. Increased water residence times and warmer temperatures in reservoirs fundamentally alter the physical settings for biogeochemical processing in large rivers, yet river biogeochemistry for many large systems remains undersampled. Satellite remote sensing holds promise as a methodology for responsive regional and global water resources management. Decades of ocean optics research has laid the foundation for the use of remote sensing reflectance in optical wavelengths (400 - 700 nm) to produce satellite-derived, near-surface estimates of phytoplankton chlorophyll concentration. Significant improvements between successive generations of ocean color sensors have enabled the scientific community to document changes in global ocean productivity (NPP) and estimate ocean biomass with increasing accuracy. Despite large advances in ocean optics, application of optical methods to inland waters has been limited to date due to their optical complexity and small spatial scale. To test this frontier, we present a study evaluating the accuracy and suitability of empirical inversion approaches for estimating chlorophyll-a, turbidity and temperature for the Amazon, Columbia and Mississippi rivers using satellite remote sensing. We demonstrate how riverine biogeochemical measurements collected at high frequencies from underway vessels can be used as in situ matchups to evaluate remotely-sensed, near-surface temperature, turbidity, chlorophyll-a derived from the Landsat 8 (NASA) and Sentinel 2 (ESA) satellites. We investigate the use of remote sensing water reflectance to infer trophic status as well as tributary influences on the optical characteristics of the Amazon, Mississippi and Columbia rivers.

  7. Threatened fishes of the world: Moapa coriacea Hubbs and Miller, 1948 (cyprinidae)

    USGS Publications Warehouse

    Scoppettone, G.G.; Goodchild, S.

    2009-01-01

    Moapa dace. Conservation status: Endangered (U.S. Department of the Interior 1967), Critically Endangered, IUCN (Gimenez 1996). Identification: Small embedded scales, narrow caudal peduncle and a bright black spot at the base of deeply forked tail. Pharyngeal teeth (0,5–4,0) hooked but with a grinding surface. Adults 50 to 120 mm total length. Drawing adapted from La Rivers (1962). Distribution: Endemic to the upper Muddy River system, Clark County, Nevada where the river originates from over 20 thermal springs. Prior to 1995 Moapa dace occupied 9.5 stream km including the upper Muddy River and spring-fed tributaries (U.S. Fish and Wildlife Service 1995). Distribution has contracted to 2 km (unpublished data) since the 1995 invasion of blue tilapia, Oreochromis aurea. Abundance: In 1994 the population was about 3,800, but after tilapia invasion dropped below 1,600 (Scoppettone et al. 1998) where it has remained (unpublished data). Habitat and ecology: Omnivorous but tends toward carnivory. Feed primarily on drift in areas adjacent to fast water 26–32°C. Reproduction: Occurs year round in spring-fed tributaries to the Muddy River in water temperature of 30–32°C (Scoppettone et al. 1992). Threats: Nonnative species (Scoppettone 1993; Scoppettone et al. 1998) and ground-water pumping (Mayer and Congdon 2008). Conservation actions: Moapa Valley National Wildlife Refuge was established in the upper Muddy River for the protection and perpetuation of Moapa dace. Barrier installation and chemical removal of blue tilapia downstream of refuge habitat provides 2 km of stream without tilapia. Conservation recommendations: Eliminate tilapia from the Muddy River system and control or eliminate other nonnative species. Protect spring discharge from excessive water withdrawal. Remarks: Given a high priority for recovery by the U.S. Government.

  8. Occurrence and Transport of Diazinon in the Sacramento River and Selected Tributaries, California, during Two Winter Storms, January?February 2001

    USGS Publications Warehouse

    Dileanis, Peter D.; Brown, David L.; Knifong, Donna L.; Saleh, Dina

    2003-01-01

    Diazinon, an organophosphate insecticide, is applied as an orchard dormant spray in the Sacramento Valley during the winter months when the area receives most of its annual rainfall. During winter rainstorms that frequently follow dormant spray applications, some of the applied pesticide is transported in storm runoff to the Sacramento River and its tributaries. Diazinon is also used to control insect pests on residential and commercial properties in urban areas and is frequently detected in urban storm runoff draining into the Sacramento River system. Between January 24 and February 14, 2001, diazinon concentrations and loads were measured in the Sacramento River and selected tributaries during two winter storms that occurred after dormant spray applications were made to orchards in the Sacramento Valley. Water samples were collected at 21 sites that represented agricultural and urban inputs on a variety of scales, from small tributaries and drains representing local land use to main-stem river sites representing regional effects. Concentrations of diazinon ranged from below laboratory reporting levels to 1,380 nanograms per liter (ng/L), with a median of 55 ng/L during the first monitored storm and 26 ng/L during the second. The highest concentrations were observed in small channels draining predominantly agricultural land. About 26,000 pounds of diazinon were reported applied to agricultural land in the study area just before and during the monitoring period. About 0.2 percent of the applied insecticide appeared to be transported to the lower Sacramento River during that period. The source of about one third of the total load measured in the lower Sacramento River appears to be in the portion of the drainage basin upstream of the city of Colusa. About 12 percent of the diazinon load in the lower Sacramento River was transported from the Feather River Basin, which drains much of the mountainous eastern portions of the Sacramento River Basin. Diazinon use in the study area during the 2000?2001 dormant spray season continued a declining trend observed since 1993. The maximum concentrations of diazinon observed during the last 2 years of monitoring were lower than concentrations observed in previous years when larger amounts of diazinon had been applied as dormant sprays.

  9. Experimental flights using a small unmanned aircraft system for mapping emergent sandbars

    USGS Publications Warehouse

    Kinzel, Paul J.; Bauer, Mark A.; Feller, Mark R.; Holmquist-Johnson, Christopher; Preston, Todd

    2015-01-01

    The US Geological Survey and Parallel Inc. conducted experimental flights with the Tarantula Hawk (T-Hawk) unmanned aircraft system (UAS ) at the Dyer and Cottonwood Ranch properties located along reaches of the Platte River near Overton, Nebraska, in July 2013. We equipped the T-Hawk UAS platform with a consumer-grade digital camera to collect imagery of emergent sandbars in the reaches and used photogrammetric software and surveyed control points to generate orthophotographs and digital elevation models (DEMS ) of the reaches. To optimize the image alignment process, we retained and/or eliminated tie points based on their relative errors and spatial resolution, whereby minimizing the total error in the project. Additionally, we collected seven transects that traversed emergent sandbars concurrently with global positioning system location data to evaluate the accuracy of the UAS survey methodology. The root mean square errors for the elevation of emergent points along each transect across the DEMS ranged from 0.04 to 0.12 m. If adequate survey control is established, a UAS combined with photogrammetry software shows promise for accurate monitoring of emergent sandbar morphology and river management activities in short (1–2 km) river reaches.

  10. Pluri-annual sediment budget in a navigated river system: the Seine River (France).

    PubMed

    Vilmin, Lauriane; Flipo, Nicolas; de Fouquet, Chantal; Poulin, Michel

    2015-01-01

    This study aims at quantifying pluri-annual Total Suspended Matter (TSM) budgets, and notably the share of river navigation in total re-suspension at a long-term scale, in the Seine River along a 225 km stretch including the Paris area. Erosion is calculated based on the transport capacity concept with an additional term for the energy dissipated by river navigation. Erosion processes are fitted for the 2007-2011 period based on i) a hydrological typology of sedimentary processes and ii) a simultaneous calibration and retrospective validation procedure. The correlation between observed and simulated TSM concentrations is higher than 0.91 at all monitoring stations. A variographic analysis points out the possible sources of discrepancies between the variabilities of observed and simulated TSM concentrations at three time scales: sub-weekly, monthly and seasonally. Most of the error on the variability of simulated concentrations concerns sub-weekly variations and may be caused by boundary condition estimates rather than modeling of in-river processes. Once fitted, the model permits to quantify that only a small fraction of the TSM flux sediments onto the river bed (<0.3‰). The river navigation contributes significantly to TSM re-suspension in average (about 20%) and during low flow periods (over 50%). Given the significant impact that sedimentary processes can have on the water quality of rivers, these results highlight the importance of taking into account river navigation as a source of re-suspension, especially during low flow periods when biogeochemical processes are the most intense. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Entrainment sampling at the Savannah River Site (SRS) Savannah River water intakes (1991)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paller, M.

    1990-11-01

    Cooling water for the Westinghouse Savannah River Company (WSRC) L-Reactor, K-Reactor, and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pumphouses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water. They are passed through the reactor heat exchangers where temperatures may reach 70{degree}C during full power operation. Ichthyoplankton mortality under such conditions is presumably 100%. Apart from a small pilot study conducted in 1989, ichthyoplankton samples have not been collected from the vicinity of the SRS intake canals since 1985.more » The Department of Energy (DOE) has requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory (SRL) resume ichthyoplankton sampling for the purpose of assessing entrainment at the SRS Savannah River intakes. This request is due to the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River. The following scope of work presents a sampling plan that will collect information on the spatial and temporal distribution of fish eggs and larvae near the SRS intake canal mouths. This data will be combined with information on water movement patterns near the canal mouths in order to determine the percentage of ichthyoplankton that are removed from the Savannah River by the SRS intakes. The following sampling plan incorporates improvements in experimental design that resulted from the findings of the 1989 pilot study. 1 fig.« less

  12. Is mercury from small-scale gold mining prevalent in the southeastern Peruvian Amazon?

    PubMed

    Moreno-Brush, Mónica; Rydberg, Johan; Gamboa, Nadia; Storch, Ilse; Biester, Harald

    2016-11-01

    There is an ongoing debate on the fate of mercury (Hg) in areas affected by artisanal and small-scale gold mining (ASGM). Over the last 30 years, ASGM has released 69 tons of Hg into the southeastern Peruvian Amazon. To investigate the role of suspended matter and hydrological factors on the fate of ASGM-Hg, we analysed riverbank sediments and suspended matter along the partially ASGM-affected Malinowski-Tambopata river system and examined Hg accumulation in fish. In addition, local impacts of atmospheric Hg emissions on aquatic systems were assessed by analysing a sediment core from an oxbow lake. Hg concentrations in riverbank sediments are lower (20-53 ng g -1 ) than in suspended matter (∼400-4000 ng g -1 ) due to differences in particle size. Elevated Hg concentrations in suspended matter from ASGM-affected river sections (∼1400 vs. ∼30-120 ng L -1 in unaffected sections) are mainly driven by the increased amount of suspended matter rather than increased Hg concentrations in the suspended matter. The oxbow lake sediment record shows low Hg concentrations (64-86 ng g -1 ) without evidence of any ASGM-related increase in atmospheric Hg input. Hg flux variations are mostly an effect of variations in sediment accumulation rates. Moreover, only 5% of the analysed fish (only piscivores) exceed WHO recommendations for human consumption (500 ng g -1 ). Our findings show that ASGM-affected river sections in the Malinowski-Tambopata system do not exhibit increased Hg accumulation, indicating that the released Hg is either retained at the spill site or transported to areas farther away from the ASGM areas. We suspect that the fate of ASGM-Hg in such tropical rivers is mainly linked to transport associated with the suspended matter, especially during high water situations. We assume that our findings are typical for ASGM-affected areas in tropical regions and could explain why aquatic systems in such ASGM regions often show comparatively modest enrichment in Hg levels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Plans, Trains, and Automobiles: Big River Crossing Issues in a Small Community

    DOT National Transportation Integrated Search

    1999-01-01

    This paper addresses cross-cutting topics associated with the replacement of a : regional Mississippi River crossing along the Great River Road. The breadth and : depth of issues define the ease with which transportation problems can be solved. : In ...

  14. Influence of wood on invertebrate communities in streams and rivers

    Treesearch

    Arthur Benke; J. Bruce Wallace

    2010-01-01

    Wood plays a major role in creating multiple invertebrate habitats in small streams and large rivers. In small streams, wood debris dams are instrumental in creating a step and pool profile of habitats, enhancing habitat heterogeneity, retaining organic matter, and changing current velocity. Beavers can convert sections of free-flowing streams into ponds and wetlands...

  15. Water quality in the lower Puyallup River valley and adjacent uplands, Pierce County, Washington

    USGS Publications Warehouse

    Ebbert, J.C.; Bortleson, Gilbert C.; Fuste, L.A.; Prych, E.A.

    1987-01-01

    The quality of most ground and surface water within and adjacent to the lower Puyallup River valley is suitable for most typical uses; however, some degradation of shallow groundwater quality has occurred. High concentrations of iron and manganese were found in groundwater, sampled at depths of < 40 ft, from wells tapping alluvial aquifers and in a few wells tapping deeper aquifers. Volatile and acid- and base/neutral-extractable organic compounds were not detected in either shallow or deep groundwater samples. The quality of shallow groundwater was generally poorer than that of deep water. Deep ground water (wells set below 100 ft) appears suitable as a supplementary water supply for fish-hatchery needs. Some degradation of water quality, was observed downstream from river mile 1.7 where a municipal wastewater-treatment plant discharges into the river. In the Puyallup River, the highest concentrations of most trace elements were found in bed sediments collected downstream from river mile 1.7. Median concentrations of arsenic, lead, and zinc were higher in bed sediments from small streams compared with those from the Puyallup River, possibly because the small stream drainages, which are almost entirely within developed areas, receive more urban runoff as a percentage of total flow. Total-recoverable trace-element concentrations exceeded water-quality criteria for acute toxicity in the Puyallup River and in some of the small streams. In most cases, high concentrations of total-recoverable trace elements occurred when suspended-sediment concentrations were high. Temperatures in all streams except Wapato Creek and Fife Dutch were within limits (18 C) for Washington State class A water. Minimum dissolved oxygen concentrations were relatively low at 5.6 and 2.0 mg/L, respectively, for Wapato Creek and Fife Dutch. The poorest surface-water quality, which can be characterized as generally unsuitable for fish, was in Fife Dutch, a manmade channel and therefore uncharacteristic of other small streams. (Author 's abstract)

  16. What Should a Restored River Look Like? (Invited)

    NASA Astrophysics Data System (ADS)

    Florsheim, J. L.; Chin, A.

    2010-12-01

    Removal of infrastructure such as dams, levees, and erosion control structures is a promising approach toward restoring river system connectivity, processes, and ecology. Significant management challenges exist, however, related to removal of such structures that have already transformed riparian processes or societal perceptions. Here, we consider the effects of bank erosion infrastructure versus the benefits of allowing channel banks to erode in order to address the question: what should a restored river look like? The extent of channel bank infrastructure globally is unknown; nevertheless, it dominates rivers in most urban areas and is growing in rural areas as small projects merge and creeks and rivers are progressively channelized. Bank erosion control structures are usually installed to limit land loss and to reduce associated hazards. Structures are sometimes themselves considered restoration under the assumption that sediment erosion is bad for ecosystems. Geomorphic and ecological effects of bank erosion control structures are well understood, however, and include loss of sediment sources, bank substrate, dynamic geomorphic processes, and riparian habitat. Thus, a rationale for allowing eroding banks in restored rivers is as follows: 1) bank erosion processes are a component of system-scale channel adjustment needed to accommodate variable hydrology and sediment loads and to promote long-term stability; 2) bank erosion is a source of coarse and fine sediment to channels needed to maintain downstream bed elevations and topographic heterogeneity; and 3) bank erosion is a component of river migration, a process that promotes riparian vegetation succession and provides large woody material and morphologic diversity required to sustain habitat and riparian biodiversity. When structures that were originally intended to control or manage dynamic natural processes such as flooding and erosion are removed, not surprisingly, a return to dynamic processes may cause economic and cultural impacts to a public that that has often encroached on land too close to the riparian zone to accommodate the magnitude of these processes. Thus, to accomplish river system restoration in rural areas, science is needed to inform policy-makers and managers about the multidimensional physical extent of the riparian zone required for restoration of bio-hydro-geomorphic processes that promote functioning ecology. In urban areas, river system restoration requires a long-term dedication to education, fund raising for land acquisition, infrastructure removal, as well as planning, new riparian policy, governance, and management that takes into account the value and dynamic nature of river processes. So, what should a restored river look like? The banks of the restored river might be thought of as an aquatic-terrestrial ecotone that is longitudinally, laterally, and vertically connected to adjacent ecosystems. This ecotone includes a non-stationary mosaic of bare ground, irregular topography, live vegetation of diverse ages, sizes, and type, dead woody material, and diverse fauna.

  17. Dissolved carbon dynamics in the freshwater-saltwater mixing zone of a coastal river entering the Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    He, S.; Xu, Y. J.

    2017-12-01

    Estuaries play an important role in the dynamics of dissolved carbon from freshwater to marine systems. This study aims to determine how dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) concentrations change along an 88-km long estuarine river with salinity ranging from 0.02 to 29.50. The study is expected to elucidate which processes most likely control carbon dynamics in a freshwater-saltwater mixing system, and to evaluate the net metabolism of this estuary using mixing curves and stable isotope analyses. From November 2014 to February 2016, water samples were collected and in-situ measurements on ambient water conditions were performed during eighteen field trips at six sites from upstream to downstream of the Calcasieu River, which enters the Northern Gulf of Mexico in the southern United States. δ13CDIC and δ13CDOC were measured from May 2015 to February 2017 during five of the field trips. The DIC concentration and δ13CDIC increased rapidly with increasing salinity in the mixing zone. The DIC concentrations appeared to be largely influenced by conservative mixing. The δ13CDIC values were close to those suggested by the conservative mixing model for May 2015, June 2015 and November 2015, but lower than those for July 2015 and February 2016, suggesting that an estuarine river can fluctuate from a balanced to a heterotrophic system (i.e., production/respiration < 1) seasonally. Unlike the DIC longitudinal trend, the DOC concentrations in the river estuary decreased from upstream to downstream, but to a much smaller degree. This river estuary consistently showed depleted δ13CDOC values (-30.56‰ to -25.92‰), suggesting that the DOC source in the mixing zone was highly terrestrially derived. However, in this relatively small isotopic range, δ13CDOC alone has limitations in differentiating carbon produced by aquatic photosynthesis from carbon produced by terrestrial photosynthesis in a river-ocean continuum. These findings suggest that riverine dissolved carbon undergoes a rapid change in freshwater-saltwater mixing, and that these dynamics should be taken into account in carbon processing and budgeting in the world's estuarine systems.

  18. Hydrology and numerical simulation of groundwater flow and streamflow depletion by well withdrawals in the Malad-Lower Bear River Area, Box Elder County, Utah

    USGS Publications Warehouse

    Stolp, Bernard J.; Brooks, Lynette E.; Solder, John

    2017-03-28

    The Malad-Lower Bear River study area in Box Elder County, Utah, consists of a valley bounded by mountain ranges and is mostly agricultural or undeveloped. The Bear and Malad Rivers enter the study area with a combined average flow of about 1,100,000 acre-feet per year (acre-ft/yr), and this surface water dominates the hydrology. Groundwater occurs in consolidated rock and basin fill. Groundwater recharge occurs from precipitation in the mountains and moves through consolidated rock to the basin fill. Recharge occurs in the valley from irrigation. Groundwater discharge occurs to rivers, springs and diffuse seepage areas, evapotranspiration, field drains, and wells. Groundwater, including springs, is a source for municipal and domestic water supply. Although withdrawal from wells is a small component of the groundwater budget, there is concern that additional groundwater development will reduce the amount of flow in the Malad River. Historical records of surface-water diversions, land use, and groundwater levels indicate relatively stable hydrologic conditions from the 1960s to the 2010s, and that current groundwater development has had little effect on the groundwater system. Average annual recharge to and discharge from the groundwater flow system are estimated to be 164,000 and 228,000 acre-ft/yr, respectively. The imbalance between recharge and discharge represents uncertainties resulting from system complexities, and the possibility of groundwater inflow from surrounding basins.This study reassesses the hydrologic system, refines the groundwater budget, and creates a numerical groundwater flow model that is used to analyze the effects of groundwater withdrawals on surface water. The model uses the detailed catalog of locations and amounts of groundwater recharge and discharge defined during this study. Calibrating the model to adequately simulate recharge, discharge, and groundwater levels results in simulated aquifer properties that can be used to understand the relation between pumping and the reduction in discharge to rivers, springs, natural vegetation, and field drains. Simulations run by the calibrated model were used to calculate the reduction of groundwater discharge to the Malad River (stream depletion) in response to a well withdrawal of 360 acre-ft/yr at any location within the study area. Modeling results show that streamflow depletion in the Malad River depends on both depth and location of groundwater withdrawal, and varies from less than 1 percent to 96 percent of the well withdrawal. The relation between simulated withdrawal and reductions in Malad River streamflow, Bear River streamflow, and spring discharge are shown on capture maps.

  19. Population connectivity and genetic structure of burbot (Lota lota) populations in the Wind River Basin, Wyoming

    USGS Publications Warehouse

    Underwood, Zachary E.; Mandeville, Elizabeth G.; Walters, Annika W.

    2016-01-01

    Burbot (Lota lota) occur in the Wind River Basin in central Wyoming, USA, at the southwestern extreme of the species’ native range in North America. The most stable and successful of these populations occur in six glacially carved mountain lakes on three different tributary streams and one large main stem impoundment (Boysen Reservoir) downstream from the tributary populations. Burbot are rarely found in connecting streams and rivers, which are relatively small and high gradient, with a variety of potential barriers to upstream movement of fish. We used high-throughput genomic sequence data for 11,197 SNPs to characterize the genetic diversity, population structure, and connectivity among burbot populations on the Wind River system. Fish from Boysen Reservoir and lower basin tributary populations were genetically differentiated from those in the upper basin tributary populations. In addition, fish within the same tributary streams fell within the same genetic clusters, suggesting there is movement of fish between lakes on the same tributaries but that populations within each tributary system are isolated and genetically distinct from other populations. Observed genetic differentiation corresponded to natural and anthropogenic barriers, highlighting the importance of barriers to fish population connectivity and gene flow in human-altered linked lake-stream habitats.

  20. Water resources of the Yellow Medicine River Watershed, Southwestern Minnesota

    USGS Publications Warehouse

    Novitzki, R.P.; Van Voast, Wayne A.; Jerabek, L.A.

    1969-01-01

    The Yellow Medicine and Minnesota Rivers are the major sources of surface water. For physiographic regions – Upland Plain, Slope, Lowland Plain, and Minnesota River Flood Plain – influence surface drainage, and the flow of ground water through the aquifers. The watershed comprises 1070 square miles, including the drainage basin of the Yellow Medicine River (665 square miles) and 405 square miles drained by small streams tributary to the Minnesota River.

  1. Treatment performance of artificial floating reed beds in an experimental mesocosm to improve the water quality of river Kshipra.

    PubMed

    Billore, S K; Prashant; Sharma, J K

    2009-01-01

    The discharge of untreated wastewater in River Kshipra had brought annual average of BOD, TKN and TS levels up to 39 mg/l, 38 mg/l and 781 mg/l respectively in the study area. Treatment performance by Artificial Floating Reed Beds (AFRB) was evaluated for removal efficiency of TS, NH4-N, NO3-N, TKN and BOD from river water, initially, under a pilot scale by an AFRB of size 200 m2 planted with local reed grass, Phragmites karka, in the part of River Kshipra at the confluence with meeting point of a wastewater stream. The system performance was recorded as 43% reduction in TS, 38% reduction in TKN and 39% BOD reduction. The experimental AFRBs were buoyant structure planted with reed grass, each unit had a rectangular size and covered an effective surface area of 2 m2. The experiment with the mesocosms with treatment of River water resulted that AFRB was reducing pollution load by 55-60% of TS, 45-55% of NH4-N, 33-45% of NO3-N, 45-50% of TKN and 40-50% of BOD. AFRB may be recommended as an in-situ, eco-friendly river water treatment structures for small shallow, slow flowing (or slightly stagnant) water bodies.

  2. Surficial geologic map of the Framingham quadrangle, Middlesex and Worcester Counties, Massachusetts

    USGS Publications Warehouse

    Nelson, Arthur E.

    1974-01-01

    With the exception of a small part of the southeast corner, which is drained by the Charles River, the quadrangle is drained by the Sudbury River, whose waters eventually flow into the Merrimack River in the northeast part of the state.

  3. Assessment of the environmental significance of nutrients and heavy metal pollution in the river network of Serbia.

    PubMed

    Dević, Gordana; Sakan, Sanja; Đorđević, Dragana

    2016-01-01

    In this paper, the data for ten water quality variables collected during 2009 at 75 monitoring sites along the river network of Serbia are considered. The results are alarming because 48% of the studied sites were contaminated by Ni, Mn, Pb, As, and nutrients, which are key factors impairing the water quality of the rivers in Serbia. Special attention should be paid to Zn and Cu, listed in the priority toxic pollutants of US EPA for aquatic life protection. The employed Q-model cluster analysis grouped the data into three major pollution zones (low, moderate, and high). Most sites classified as "low pollution zones" (LP) were in the main rivers, whereas those classified as "moderate and high pollution zones" (MP and HP, respectively) were in the large and small tributaries/hydro-system. Principal component analysis/factor analysis (PCA/FA) showed that the dissolved metals and nutrients in the Serbian rivers varied depending on the river, the heterogeneity of the anthropogenic activities in the basins (influenced primarily by industrial wastewater, agricultural activities, and urban runoff pollution), and natural environmental variability, such as geological characteristics. In LP dominated non-point source pollution, such as agricultural and urban runoff, whereas mixed source pollution dominated in the MP and HP zones. These results provide information to be used for developing better pollution control strategies for the river network of Serbia.

  4. Microsatellite genetic diversity and differentiation of native and introduced grass carp populations in three continents

    USGS Publications Warehouse

    Chapman, Duane C.; Chen, Qin; Wang, Chenghui; Zhao, Jinlian; Lu, Guoqing; Zsigmond, Jeney; Li, Si-Fa

    2012-01-01

    Grass carp (Ctenopharyngodon idella), a freshwater species native to China, has been introduced to about 100 countries/regions and poses both biological and environmental challenges to the receiving ecosystems. In this study, we analyzed genetic variation in grass carp from three introduced river systems (Mississippi River Basin in US, Danube River in Hungary, and Tone River in Japan) as well as its native ranges (Yangtze, Pearl, and Amur Rivers) in China using 21 novel microsatellite loci. The allelic richness, observed heterozygosity, and within-population gene diversity were found to be lower in the introduced populations than in the native populations, presumably due to the small founder population size of the former. Significant genetic differentiation was found between all pairwise populations from different rivers. Both principal component analysis and Bayesian clustering analysis revealed obvious genetic distinction between the native and introduced populations. Interestingly, genetic bottlenecks were detected in the Hungarian and Japanese grass carp populations, but not in the North American population, suggesting that the Mississippi River Basin grass carp has experienced rapid population expansion with potential genetic diversification during the half-century since its introduction. Consequently, the combined forces of the founder effect, introduction history, and rapid population expansion help explaining the observed patterns of genetic diversity within and among both native and introduced populations of the grass carp.

  5. Identifying hydrological regime and eco-flow threshold of small and medium flood of the Xiaoqing River in Jinan city

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Cao, Sheng-Le

    2017-06-01

    It was known that hydrological regime was the main influencing factor of river ecosystem, but the regime of different flow rates of urban rivers was poorly understood. We collected daily inflows at the Huangtai station of the Xiaoqing River from 1960 to 2014 and divided the data into three periods. Then we calculated hydrological parameters by the method of EFCs (Environmental Flow Components) and analyzed the tendency and change rates of each component respectively in the three periods. Combined with the ecological significance of environmental flow components, we identified the small and medium flood had the greatest impact on the river regime and ecosystem. And then we used the hydraulic parameters in the good ecosystem period as control conditions, to calculate the ecological threshold of the flow component under the current situation. This study could provide technical support for restoring and improving hydrological regime and ecological environment of the Xiaoqing River in Jinan city.

  6. Analysis of River Water Quality and its influencing factors for the Effective Management of Water Environment

    NASA Astrophysics Data System (ADS)

    Shrestha, G.; Sadohara, S.; Yoshida, S.; Yuichi, S.

    2011-12-01

    In Japan, remarkable improvements in water quality have been observed over recent years because of regulations imposed on industrial wastewater and development of sewerage system. However, pollution loads from agricultural lands are still high and coverage ratio of sewerage system is still low in small and medium cities. In present context, nonpoint source pollution such as runoff from unsewered developments, urban and agricultural runoffs could be main water quality impacting factors. Further, atmospheric nitrogen (N) is the complex nonpoint source than can seriously affect river water environment. This study was undertaken to spatially investigate the present status of river water quality of Hadano Basin located in Kanagawa Prefecture, Japan. Water quality of six rivers was investigated and its relationship with nonpoint pollution sources was analyzed. This study, with inclusion of ground water circulation and atmospheric N, can be effectively employed for water quality management of other watersheds also, both with and without influence of ground water circulation. Hence, as a research area of this study, it is significant in terms of water quality management. Total nitrogen (TN) was found consistently higher in urbanized basins indicating that atmospheric N might be influencing TN of river water. Ground water circulation influenced both water quality and quantity. In downstream basins of Muro and Kuzuha rivers, Chemical oxygen demand (COD) and total phosphorus (TP) were diluted by ground water inflow. In Mizunashi River and the upstream of Kuzuha River, surface water infiltrated to the subsurface due to higher river bed permeability. Influencing factors considered in the analysis were unsewered population, agricultural land, urban area, forest and atmospheric N. COD and TP showed good correlation with unsewered population and agricultural land. While TN had good correlation with atmospheric N deposition. Multiple regression analysis between water quality pollution loads and influencing factors resulted that unsewered population had higher impact on river water quality. For TN, atmospheric N deposition was taking effect. Continuous development of sewerage system and its expansion along with the pace of urbanization could be the pragmatic option to maintain river water quality in Hadano basin. However, influence of agricultural loads and atmospheric N on water quality cannot be denied for the proper water quality management of Hadano basin. It was found that if the proportion of sewered population could be increased from 72% to 86%, corresponding loads of COD and TP could be decreased by about 41% and 45% respectively. As per the development trend of sewerage system in Hadano basin for last 10 years, unsewered population could be reduced to its half by 2014, provided that the expansion of sewerage system continues at same rate. Regarding TN, its proper control is complicated as atmospheric N is propagated to regional and sometimes to global extent. Further study on the relationship between TN and atmospheric N deposition should be conducted for the proper management of TN in the river water.

  7. Geomorphic Controls on Floodplain Soil Organic Carbon in the Yukon Flats, Interior Alaska, From Reach to River Basin Scales

    NASA Astrophysics Data System (ADS)

    Lininger, K. B.; Wohl, E.; Rose, J. R.

    2018-03-01

    Floodplains accumulate and store organic carbon (OC) and release OC to rivers, but studies of floodplain soil OC come from small rivers or small spatial extents on larger rivers in temperate latitudes. Warming climate is causing substantial change in geomorphic process and OC fluxes in high latitude rivers. We investigate geomorphic controls on floodplain soil OC concentrations in active-layer mineral sediment in the Yukon Flats, interior Alaska. We characterize OC along the Yukon River and four tributaries in relation to geomorphic controls at the river basin, segment, and reach scales. Average OC concentration within floodplain soil is 2.8% (median = 2.2%). Statistical analyses indicate that OC varies among river basins, among planform types along a river depending on the geomorphic unit, and among geomorphic units. OC decreases with sample depth, suggesting that most OC accumulates via autochthonous inputs from floodplain vegetation. Floodplain and river characteristics, such as grain size, soil moisture, planform, migration rate, and riverine DOC concentrations, likely influence differences among rivers. Grain size, soil moisture, and age of surface likely influence differences among geomorphic units. Mean OC concentrations vary more among geomorphic units (wetlands = 5.1% versus bars = 2.0%) than among study rivers (Dall River = 3.8% versus Teedrinjik River = 2.3%), suggesting that reach-scale geomorphic processes more strongly control the spatial distribution of OC than basin-scale processes. Investigating differences at the basin and reach scale is necessary to accurately assess the amount and distribution of floodplain soil OC, as well as the geomorphic controls on OC.

  8. Large river bed sediment characterization with low-cost sidecan sonar: Case studies from two setting in the Colorado (Arizona) and Penobscot (Maine) Rivers

    USGS Publications Warehouse

    Buscombe, Daniel D.; Grams, Paul E.; Melis, Theodore S.; Smith, Sean

    2015-01-01

    Here we discuss considerations in the use of sidescan sonar for riverbed sediment classification using examples from two large rivers, the Colorado River below Glen Canyon Dam in Arizona and the Upper Penobscot River in northern Maine (Figure 3). These case studies represent two fluvial systems that differ in recent history, physiography, sediment transport, and fluvial morphologies. The bed of the Colorado River in Glen Canyon National Recreation Area is predominantly graveled with extensive mats of submerged vegetation, and ephemeral surficial sand deposits exist below major tributaries. The bed is imaged periodically to assess the importance of substrate type and variability on rainbow trout spawning and juvenile rearing habitats and controls on aquatic invertebrate population dynamics. The Colorado River bed further below the dam in Grand Canyon National Park is highly dynamic. Tributary inputs of sand, gravel and boulders are spatially variable, and hydraulics of individual pools and eddies vary considerably in space and in response to varying dam operations, including experimental controlled flood releases to rebuild eroding sandbars. The bed encompasses the full range of noncohesive sediments, deposited in complicated spatial patterns. The mobile portion of the Penobscot River is generally more uniform, and consists predominantly of embedded gravels interspersed between bedrock outcrops with small isolated sand patches in sections with modest or low gradients. Patches of large cobbles, boulders and bedrock outcrops are present in the lower reaches of the river near locations of two recent dam removal projects but are of limited extent below the "head of tide" on the river. Aggregations of coarse materials often correspond to locations with abrupt bed elevation drops in the Upper Penobscot River.

  9. Characterization of heavy metal concentrations in the sediments of three freshwater rivers in Huludao City, Northeast China.

    PubMed

    Zheng, Na; Wang, Qichao; Liang, Zhongzhu; Zheng, Dongmei

    2008-07-01

    Wuli River, Cishan River, and Lianshan River are three freshwater rivers flowing through Huludao City, in a region of northeast China strongly affected by industrialization. Contamination assessment has never been conducted in a comprehensive way. For the first time, the contamination of three rivers impacted by different sources in the same city was compared. This work investigated the distribution and sources of Hg, Pb, Cd, Zn and Cu in the surface sediments of Wuli River, Cishan River, and Lianshan River, and assessed heavy metal toxicity risk with the application of two different sets of Sediment Quality Guideline (SQG) indices (effect range low/effect range median values, ERL/ERM; and threshold effect level/probable effect level, TEL/PEL). Furthermore, this study used a toxic unit approach to compare and gauge the individual and combined metal contamination for Hg, Pb, Cd, Zn and Cu. Results showed that Hg contamination in the sediments of Wuli River originated from previous sediment contamination of the chlor-alkali producing industry, and Pb, Cd, Zn and Cu contamination was mainly derived from atmospheric deposition and unknown small pollution sources. Heavy metal contamination to Cishan River sediments was mainly derived from Huludao Zinc Plant, while atmospheric deposition, sewage wastewater and unknown small pollution were the primary sources for Lianshan River. The potential acute toxicity in sediment of Wuli River may be primarily due to Hg contamination. Hg is the major toxicity contributor, accounting for 53.3-93.2%, 7.9-54.9% to total toxicity in Wuli River and Lianshan River, respectively, followed by Cd. In Cishan River, Cd is the major sediment toxicity contributor, however, accounting for 63.2-66.9% of total toxicity.

  10. Riverine Li isotope fractionation in small mountainous rivers of Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, K. F.; Liu, Y. H.; Wang, R. M.; Chung, C. H.; You, C. F.

    2016-12-01

    Riverine lithium (Li) and its isotopes became of increasing interest over the last decade due to its great potential as a tracer for silicate weathering processes and carbon cycle. However, little is known about the main controls on the riverine Li isotope fractionation in tropical small mountainous rivers (SMRs). Here we condcut the first deatiled study of the Li isotopic composition (δ7Li) of river-borne dissolved and solid materials in the SMRs around Taiwan to characterize behaviors of riverine Li and δ7Li in different geomorrphic setting and at wet/dry seasons. Riverine Li and δ7Li range from 0.15 to 6.37 μM with δ7Li of +8.6 to +18.2 ‰ at the wet season, and 0.23 to 18.8 μM with δ7Li of +8.2 to +20.3 ‰ at the dry season. Of special interest is that high dissolved δ7Li values are observed at the wet season and the downstream of the river catchments. By combining the multiple isotope systems and river chemistry, our results suggest that in the high-relief and tectonically active terrain, the high δ7Li values at the wet season are most likely controlled by more intense chemcical weathering, particularly by the greater extent of uptake of 6Li into secondary minierals during weathering. Seasonal variations in the dissolved loads and riverine δ7Li are also found and can be attributed to a greater contribution from carbonate weathering at the wet season, highlighting a different response of primary mineral dissolution/secondary mineral formation to climatic forcing in the SMRs of Taiwan.

  11. Growth laws for delta crevasses in the Mississippi River Delta: observations and modeling

    NASA Astrophysics Data System (ADS)

    Yocum, T. A.; Georgiou, I. Y.

    2016-02-01

    River deltas are accumulations of sedimentary deposits delivered by rivers via a network of distributary channels. Worldwide they are threatened by environmental changes, including subsidence, global sea level rise and a suite of other local factors. In the Mississippi River Delta (MRD) these impacts are exemplified, and have led to proposed solutions to build land that include sediment diversions, thereby reinitiating the delta cycle. While economically efficient, there are too few analogs of small deltas aside from laboratory studies, numerical modeling studies, theoretical approaches, and limited field driven observations. Anthropogenic crevasses in the modern delta are large enough to overcome limitations of laboratory deltas, and small enough to allow for "rapid" channel and wetland development, providing an ideal setting to investigate delta development mechanics. Crevasse metrics were obtained using a combination of geospatial tools, extracting key parameters (bifurcation length and width, channel order and depth) that were non-dimensionalized and compared to river-dominated delta networks previously studied. Analysis showed that most crevasses in the MRD appear to obey delta growth laws and delta allometry relationships, suggesting that crevasses do exhibit similar planform metrics to larger Deltas; the distance to mouth bar versus bifurcation order demonstrated to be a very reasonable first order estimate of delta-top footprint. However, some crevasses exhibited different growth metrics. To better understand the hydrodynamic and geomorphic controls governing crevasse evolution in the MRD, we assess delta dynamics via a suite of field observations and numerical modeling in both well-established and newly constructed crevasses. Our analysis suggests that delta development is affected by the relative influence of external (upstream and downstream) and internal controls on the hydrodynamic and sediment transport patterns in these systems.

  12. Rainfall-runoff model for prediction of waterborne viral contamination in a small river catchment

    NASA Astrophysics Data System (ADS)

    Gelati, E.; Dommar, C.; Lowe, R.; Polcher, J.; Rodó, X.

    2013-12-01

    We present a lumped rainfall-runoff model aimed at providing useful information for the prediction of waterborne viral contamination in small rivers. Viral contamination of water bodies may occur because of the discharge of sewage effluents and of surface runoff over areas affected by animal waste loads. Surface runoff is caused by precipitation that cannot infiltrate due to its intensity and to antecedent soil water content. It may transport animal feces to adjacent water bodies and cause viral contamination. We model streamflow by separating it into two components: subsurface flow, which is produced by infiltrated precipitation; and surface runoff. The model estimates infiltrated and non-infiltrated precipitation and uses impulse-response functions to compute the corresponding fractions of streamflow. The developed methodologies are applied to the Glafkos river, whose catchment extends for 102 km2 and includes the city of Patra. Streamflow and precipitation observations are available at a daily time resolution. Waterborne virus concentration measurements were performed approximately every second week from the beginning of 2011 to mid 2012. Samples were taken at several locations: in river water upstream of Patras and in the urban area; in sea water at the river outlet and approximately 2 km south-west of Patras; in sewage effluents before and after treatment. The rainfall-runoff model was calibrated and validated using observed streamflow and precipitation data. The model contribution to waterborne viral contamination prediction was benchmarked by analyzing the virus concentration measurements together with the estimated surface runoff values. The presented methodology may be a first step towards the development of waterborne viral contamination alert systems. Predicting viral contamination of water bodies would benefit sectors such as water supply and tourism.

  13. PROFILE: Hungry Water: Effects of Dams and Gravel Mining on River Channels

    PubMed

    Kondolf

    1997-07-01

    / Rivers transport sediment from eroding uplands to depositional areas near sea level. If the continuity of sediment transport is interrupted by dams or removal of sediment from the channel by gravel mining, the flow may become sediment-starved (hungry water) and prone to erode the channel bed and banks, producing channel incision (downcutting), coarsening of bed material, and loss of spawning gravels for salmon and trout (as smaller gravels are transported without replacement from upstream). Gravel is artificially added to the River Rhine to prevent further incision and to many other rivers in attempts to restore spawning habitat. It is possible to pass incoming sediment through some small reservoirs, thereby maintaining the continuity of sediment transport through the system. Damming and mining have reduced sediment delivery from rivers to many coastal areas, leading to accelerated beach erosion. Sand and gravel are mined for construction aggregate from river channel and floodplains. In-channel mining commonly causes incision, which may propagate up- and downstream of the mine, undermining bridges, inducing channel instability, and lowering alluvial water tables. Floodplain gravel pits have the potential to become wildlife habitat upon reclamation, but may be captured by the active channel and thereby become instream pits. Management of sand and gravel in rivers must be done on a regional basis, restoring the continuity of sediment transport where possible and encouraging alternatives to river-derived aggregate sources.KEY WORDS: Dams; Aquatic habitat; Sediment transport; Erosion; Sedimentation; Gravel mining

  14. Using UAS optical imagery and SfM photogrammetry to characterize the surface grain size of gravel bars in a braided river (Vénéon River, French Alps)

    NASA Astrophysics Data System (ADS)

    Vázquez-Tarrío, Daniel; Borgniet, Laurent; Liébault, Frédéric; Recking, Alain

    2017-05-01

    This paper explores the potential of unmanned aerial system (UAS) optical aerial imagery to characterize grain roughness and size distribution in a braided, gravel-bed river (Vénéon River, French Alps). With this aim in view, a Wolman field campaign (19 samples) and five UAS surveys were conducted over the Vénéon braided channel during summer 2015. The UAS consisted of a small quadcopter carrying a GoPro camera. Structure-from-Motion (SfM) photogrammetry was used to extract dense and accurate three-dimensional point clouds. Roughness descriptors (roughness heights, standard deviation of elevation) were computed from the SfM point clouds and were correlated with the median grain size of the Wolman samples. A strong relationship was found between UAS-SfM-derived grain roughness and Wolman grain size. The procedure employed has potential for the rapid and continuous characterization of grain size distribution in exposed bars of gravel-bed rivers. The workflow described in this paper has been successfully used to produce spatially continuous grain size information on exposed gravel bars and to explore textural changes following flow events.

  15. Population demographics for the federally endangered dwarf wedgemussel

    USGS Publications Warehouse

    Galbraith, Heather S.; Lellis, William A.; Cole, Jeffrey C.; Blakeslee, Carrie J.; St. John White, Barbara

    2016-01-01

    The dwarf wedgemussel, Alasmidonta heterodon, is a federally endangered freshwater mussel species inhabiting several Atlantic Slope rivers. Studies on population demographics of this species are necessary for status assessment and directing recovery efforts. We conducted qualitative and quantitative surveys for dwarf wedgemussel in the mainstem Delaware River and in four of its tributaries (Big Flat Brook, Little Flat Brook, Neversink River, and Paulinskill River). Population range, relative abundance, size, size structure, and sex ratio were quantified within each river. Total dwarf wedgemussel population size for the surveyed rivers in the Delaware Basin was estimated to be 14,432 individuals (90% confidence limits, 7,961-26,161). Our results suggest that the historically robust Neversink River population has declined, but that this population persists and substantial populations remain in other tributaries. Sex ratios were generally female-biased, and small individuals (<10 mm) found in all rivers indicate recent recruitment. Dwarf wedgemussel was most often found at the surface of the sediment (not buried below) in shallow quadrats (<2.00 m) comprised of small substrate (sand in tributaries; cobble in the mainstem) and minimal aquatic macrophytes. Long-term monitoring, continued surveys for new populations, and assessments of reproductive success are needed to further understand dwarf wedgemussel viability within the Delaware River Basin.

  16. PAH Baselines for Amazonic Surficial Sediments: A Case of Study in Guajará Bay and Guamá River (Northern Brazil).

    PubMed

    Rodrigues, Camila Carneiro Dos Santos; Santos, Ewerton; Ramos, Brunalisa Silva; Damasceno, Flaviana Cardoso; Correa, José Augusto Martins

    2018-06-01

    The 16 priority PAH were determined in sediment samples from the insular zone of Guajará Bay and Guamá River (Southern Amazon River mouth). Low hydrocarbon levels were observed and naphthalene was the most representative PAH. The low molecular weight PAH represented 51% of the total PAH. Statistical analysis showed that the sampling sites are not significantly different. Source analysis by PAH ratios and principal component analysis revealed that PAH are primary from a few rate of fossil fuel combustion, mainly related to the local small community activity. All samples presented no biological stress or damage potencial according to the sediment quality guidelines. This study discuss baselines for PAH in surface sediments from Amazonic aquatic systems based on source determination by PAH ratios and principal component analysis, sediment quality guidelines and through comparison with previous studies data.

  17. The Role of Anthropogenic Stratigraphy in River Restoration Projects

    NASA Astrophysics Data System (ADS)

    Evans, J. E.; Webb, L. D.

    2012-12-01

    As part of a river restoration project and removal of a low-head dam on the Ottawa River (northwestern Ohio and southeastern Michigan) in 2007, a longer-term project was initiated to assess anthropogenic changes of the Ottawa River fluvial system. A composite stratigraphic section 4.5 m in length was constructed by stratigraphic correlation from three trenches up to 2.5 m in depth and 14 vibracores up to 2.5 m in length, all within a small region (<0.5 km2 in area). At various stratigraphic levels, the cores contain a suite of anthropogenic materials including fragments of bricks and cement blocks, pieces of modern ceramics, fragments of plastic and rubber tires, intact or pieces of glass bottles, and one horizon of displaced railroad ties. Age control for the composite section is provided by 4 14C dates, 6 OSL dates, and one bottle with a date stamp. Two prominent flood horizons are indicated in multiple trenches or cores, and identified as the historic floods of 1913 and 1959. The data show the following major changes in the fluvial system over time: (1) prior to approximately 5 Ka, the river system was transporting mineral-rich sediment and formed meandering point-bar sequences approximately 1.5 m thick; (2) between approximately 5 Ka and 200 YBP, the river system was transporting organic-rich sediment (i.e., blackwater stream) bordered by riparian wetlands accumulating peat (part of the regional "Great Black Swamp" discovered by settlers from eastern North America); (3) between approximately 200 YBP and the early 1960s the river system was transporting mineral-rich sediment (i.e., brownwater stream), probably sourced from extensive land clearance for agriculture, which backfilled and overtopped the previous riparian wetlands and produced an series of thin channel fills interpreted as rapidly shifting avulsional channels; (4) since the early 1960s, sediment supply has exceeded sediment conveyance capacity, leading to vertical aggradation of approximately 1.7 m, creating the fill-terrace morphology evident today; and (5) overlapping with the previous stage, channel incision and lateral channel migration has produced a fluvial system dominated by bank erosion, logjams due to tree fall, and degraded substrate with fluvial pavements. Stage 4 is interpreted as a time-specific (1950s-1960s) sediment pulse related to extensive urbanization of the lower drainage basin, while the partly overlapping stage 6 is interpreted as fluvial reworking of intrabasinal storage of legacy sediment under conditions of lower sediment input (reforested suburban housing developments) but higher water inputs (increasingly urbanized stormwater networks). Regarding river restoration, it is clear that most of the modern fluvial system is a recent and highly manipulated system that may not be sustainable.

  18. Creating a Strong, Healthy Community: Ella B. Vernetti School, Koyukuk. Case Study.

    ERIC Educational Resources Information Center

    Leonard, Beth

    As part of a larger study of systemic educational reform in rural Alaska, this case study examines implementation of the Alaska Onward to Excellence (AOTE) process in Koyukuk, a small Athabascan village on the Yukon River in western interior Alaska. The village has a K-10 school with an enrollment of 19-41 students during the study period. A…

  19. 33 CFR 334.280 - James River between the entrance to Skiffes Creek and Mulberry Point, Va.; army training and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to Skiffes Creek and Mulberry Point, Va.; army training and small craft testing area. 334.280 Section... DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.280 James River between the entrance to Skiffes Creek and Mulberry Point, Va.; army training and small craft testing area. (a) The restricted area...

  20. Simulation of ground-water flow and stream-aquifer relations in the vicinity of the Savannah River Site, Georgia and South Carolina, predevelopment through 1992

    USGS Publications Warehouse

    Clarke, John S.; West, Christopher T.

    1998-01-01

    Ground-water flow and stream-aquifer relations were simulated for seven aquifers in Coastal Plain sediments in the vicinity of the U.S. Department of Energy, Savannah River Site (SRS), in Georgia and South Carolina to evaluate the potential for ground water containing hazardous materials to migrate from the SRS into Georgia through aquifers underlying the Savannah River (trans-river flow). The work was completed as part of a cooperative study between the U.S. Geological Survey, the U.S. Department of Energy, and Georgia Department of Natural Resources. The U.S. Geological Survey three-dimensional finite-difference ground-water flow model, MODFLOW, was used to simulate ground-water flow in three aquifer systems containing seven discrete aquifers: (1) the Floridan aquifer system, consisting of the Upper Three Runs and Gordon aquifers in sediments of Eocene age; (2) the Dublin aquifer system, consisting of the Millers Pond, and upper and lower Dublin aquifers in sediments of Paleocene and Late Cretaceous age; and (3) the Midville aquifer system, consisting of the upper and lower Midville aquifers of sediments in Late Cretaceous age. Ground-water flow was simulated using a series of steady-state simulations of predevelopment (pre-1953) conditions and six pumping periods--1953-60, 1961-70, 1971-75, 1976-80, 1981-86, and 1987-92--results are presented for predevelopment (prior to 1953) and modern-day (1987-92) conditions. Total simulated predevelopment inflow is 1,023 million gallons per day (Mgal/d), of which 76 percent is contributed by leakage from the Upper Three Runs aquifer. Over most of the study area, pumpage induced changes in ground-water levels, ground-water discharge to streams, and water-budget components were small during 1953-92, and changes in aquifer storage were insignificant. Simulated drawdown between predevelopment and modern-day conditions is small (less than 7 feet) and of limited areal extent--the largest simulated declines occur in the upper and lower Dublin aquifers in the vicinity of the Sandoz plant site in South Carolina. These declines extend beneath the Savannah River and change the configuration of the simulated potentiometric surface and flow paths near the river. Predevelopment and modern-day flowpaths were simulated near the Savannah River by using the U.S. Geological Survey particle-tracking code MODPATH. Eastward and westward zones of trans-river flow were identified in three principal areas as follows: --zone 1-from the Fall Line southward to the confluence of Hollow Creek and the Savannah River; --zone 2-from the zone 1 boundary southward to the southern border of the SRS (not including the Lower Three Runs Creek section); and --zone 3-from the zone 2 boundary, southward into the northern part of Screven County, Ga. All zones for all model layers were located within or immediately adjacent to the Savannah River alluvial valley and most were located in the immediate vicinity of the Savannah River. Recharge areas for each of the zones of trans-river flow generally are in the vicinity of major interstream drainage divides. Mean time-of-travel simulated for predevelopment conditions ranges from 300 to 24,000 years for westward trans-river flow zones; and from 550 to 41,000 years for eastward zones. Corresponding travel times under modern-day conditions range from 300 to 34,000 years for westward zones and from 580 to 31,000 years for eastward zones. Differences in travel times between predevelopment and modern-day simulations result from changes in hydraulic gradients due to ground-water pumpage that alter flow paths in the vicinity of the river. Recharge to Georgia trans-river flow zones originating on the SRS was simulated for the Gordon and upper Dublin aquifers during predevelopment, and in the Gordon aquifer during 1987-92. During 1987-92, SRS recharge was simulated in 6 model cells covering a 2-square mile area, located away from areas of ground-water contamination. Si

  1. Siphateles (Gila) sp. and Catostomus sp. from the Pleistocene OIS-6 Lake Gale, Panamint Valley, Owens River system, California

    NASA Astrophysics Data System (ADS)

    Jayko, A. S.; Forester, R. M.; Smith, G. R.

    2014-12-01

    Panamint Valley lies within the Owens River system which linked southeastern Sierra Nevada basins between Mono Lake and Death Valley during glacial-pluvial times. Previous work indicates that late Pleistocene glacial-pluvial Lake Gale, Panamint Valley was an open system during OIS-6, a closed ground water supported shallow lake during OIS-4, and the terminal lake basin for the Owens River system during OIS-2. We here report the first occurrence of fossil fish from the Plio-Pleistocene Panamint basin. Fish remains are present in late Pleistocene OIS-6 nearshore deposits associated with a highstand that was spillway limited at Wingate Wash. The deposits contain small minnow-sized remains from both Siphateles or Gila sp. (chubs) and Catostomus sp. (suckers) from at least four locations widely dispersed in the basin. Siphateles or Gila sp. and Catostomus are indigenous to the Pleistocene and modern Owens River system, in particular to the historic Owens Lake area. Cyprinodon (pupfish) and Rhinichthys (dace) are known from the modern Amargosa River and from Plio-Pleistocene deposits in Death Valley to the east. The late Pleistocene OIS-6 to OIS-2 lacustrine and paleohydrologic record in Panamint basin is interpreted from ostracod assemblages, relative abundance of Artemia sp. pellets, shallow water indicators including tufa fragments, ruppia sp. fragments and the relative abundance of charophyte gyrogonites obtained from archived core, as well as faunal assemblages from paleoshoreline and nearshore deposits. The OIS-4 groundwater supported shallow saline lake had sufficiently low ratios of alkalinity to calcium (alk/Ca) to support the occurrence of exotic Elphidium sp. (?) foraminfera which are not observed in either OIS-2 or OIS-6 lacustrine deposits. The arrival of Owens River surface water into Panamint Basin during OIS-2 is recorded by the first appearance of the ostracod Limnocythere sappaensis at ~27 m depth in an ~100 m archived core (Smith and Pratt, 1957) which extends between OIS-5 and post OIS-2 based on based on proxy correlation with the marine oxygen isotope record.

  2. Asian fish tapeworm Bothriocephalus acheilognathi in the desert southwestern United States.

    PubMed

    Archdeacon, Thomas P; Iles, Alison; Kline, S Jason; Bonar, Scott A

    2010-12-01

    The Asian fish tapeworm Bothriocephalus acheilognathi (Cestoda: Bothriocephalidea) is an introduced fish parasite in the southwestern United States and is often considered a serious threat to native desert fishes. Determining the geographic distribution of nonnative fish parasites is important for recovery efforts of native fishes. We examined 1,140 individuals belonging to nine fish species from southwestern U.S. streams and springs between January 2005 and April 2007. The Asian fish tapeworm was present in the Gila River, Salt River, Verde River, San Pedro River, Aravaipa Creek, and Fossil Creek, Arizona, and in Lake Tuendae at Zzyzx Springs and Afton Canyon of the Mojave River, California. Overall prevalence of the Asian fish tapeworm in Arizona fish populations was 19% (range = 0-100%) and varied by location, time, and fish species. In California, the prevalence, abundance, and intensity of the Asian fish tapeworm in Mohave tui chub Gila bicolor mohavensis were higher during warmer months than during cooler months. Three new definitive host species--Yaqui chub G. purpurea, headwater chub G. nigra, and longfin dace agosia chrysogaster--were identified. Widespread occurrence of the Asian fish tapeworm in southwestern U.S. waters suggests that the lack of detection in other systems where nonnative fishes occur is due to a lack of effort as opposed to true absence of the parasite. To limit further spread of diseases to small, isolated systems, we recommend treatment for both endo- and exoparasites when management actions include translocation of fishes.

  3. Groundwater-flow budget for the lower Apalachicola-Chattahoochee-Flint River Basin in southwestern Georgia and parts of Florida and Alabama, 2008–12

    USGS Publications Warehouse

    Jones, L. Elliott; Painter, Jaime A.; LaFontaine, Jacob H.; Sepúlveda, Nicasio; Sifuentes, Dorothy F.

    2017-12-29

    As part of the National Water Census program in the Apalachicola-Chattahoochee-Flint (ACF) River Basin, the U.S. Geological Survey evaluated the groundwater budget of the lower ACF, with particular emphasis on recharge, characterizing the spatial and temporal relation between surface water and groundwater, and groundwater pumping. To evaluate the hydrologic budget of the lower ACF River Basin, a groundwater-flow model, constructed using MODFLOW-2005, was developed for the Upper Floridan aquifer and overlying semiconfining unit for 2008–12. Model input included temporally and spatially variable specified recharge, estimated using a Precipitation-Runoff Modeling System (PRMS) model for the ACF River Basin, and pumping, partly estimated on the basis of measured agricultural pumping rates in Georgia. The model was calibrated to measured groundwater levels and base flows, which were estimated using hydrograph separation.The simulated groundwater-flow budget resulted in a small net cumulative loss of groundwater in storage during the study period. The model simulated a net loss in groundwater storage for all the subbasins as conditions became substantially drier from the beginning to the end of the study period. The model is limited by its conceptualization, the data used to represent and calibrate the model, and the mathematical representation of the system; therefore, any interpretations should be considered in light of these limitations. In spite of these limitations, the model provides insight regarding water availability in the lower ACF River Basin.

  4. Occurrence of pesticides in five rivers of the Mississippi Embayment Study Unit, 1996-98

    USGS Publications Warehouse

    Coupe, Richard H.

    2000-01-01

    The occurrence and temporal distribution of more than 80 pesticides and pesticide metabolites were determined in five rivers of the Mississippi Embayment National Water-Quality Assessment study unit from February 1996 through January 1998. More than 230 samples were collected and analyzed during the 2-year study. The five rivers sampled included three rivers with small, primarily agricultural watersheds; one river with a small urban watershed in Memphis, Tennessee; and one large river with mixed land use (row-crop agriculture, pasture, forest, and urban). Pesticides, usually herbicides, were frequently detected in water samples from every river. Insecticides were frequently detected (chlorpyrifos and diazinon in all samples) only in the river that drains the urban watershed. The occurrence of pesticides in surface water varied among the agricultural watersheds as well as between the agricultural and urban watersheds. The pesticides detected in the rivers that drain the agricultural watersheds were related to the major crop types cultivated in the watershed?corn is mostly grown in the northern part of the study unit, whereas cotton and rice are mostly grown in the southern part. The occurrence of pesticides in the Yazoo River, which drains the mixed land-use watershed, was similar to pesticide occurrence in the rivers that drain smaller agricultural watersheds, although concentrations were lower in the Yazoo River. Likewise, simazine, which was detected in all urban stream samples, was also detected in all Yazoo River samples, but in lower concentrations. The aquatic-life criteria for diazinon and chlorpyrifos was exceeded in 24 of 25 and 12 of 25 urban river samples, respectively, but only once or twice in agricultural and mixed-use watershed samples. Atrazine exceeded the aquatic-life criterion in about 20 percent of the samples from each river, particularly in the spring following pesticide application.

  5. Heat tracing to determine spatial patterns of hyporheic exchange across a river transect

    NASA Astrophysics Data System (ADS)

    Lu, Chengpeng; Chen, Shuai; Zhang, Ying; Su, Xiaoru; Chen, Guohao

    2017-09-01

    Significant spatial variability of water fluxes may exist at the water-sediment interface in river channels and has great influence on a variety of water issues. Understanding the complicated flow systems controlling the flux exchanges along an entire river is often limited due to averaging of parameters or the small number of discrete point measurements usually used. This study investigated the spatial pattern of the hyporheic flux exchange across a river transect in China, using the heat tracing approach. This was done with measurements of temperature at high spatial resolution during a 64-h monitoring period and using the data to identify the spatial pattern of the hyporheic exchange flux with the aid of a one-dimensional conduction-advection-dispersion model (VFLUX). The threshold of neutral exchange was considered as 126 L m-2 d-1 in this study and the heat tracing results showed that the change patterns of vertical hyporheic flux varied with buried depth along the river transect; however, the hyporheic flux was not simply controlled by the streambed hydraulic conductivity and water depth in the river transect. Also, lateral flow dominated the hyporheic process within the shallow high-permeability streambed, while the vertical flow was dominant in the deep low-permeability streambed. The spatial pattern of hyporheic exchange across the river transect was naturally controlled by the heterogeneity of the streambed and the bedform of the stream cross-section. Consequently, a two-dimensional conceptual illustration of the hyporheic process across the river transect is proposed, which could be applicable to river transects of similar conditions.

  6. Relationship among fish assemblages and main-channel-border physical habitats in the unimpounded Upper Mississippi River

    USGS Publications Warehouse

    Barko, V.A.; Herzog, D.P.; Hrabik, R.A.; Scheibe, J.S.

    2004-01-01

    Large rivers worldwide have been altered by the construction and maintenance of navigation channels, which include extensive bank revetments, wing dikes, and levees. Using 7 years of Long-Term Resource Monitoring Program (LTRMP) data collected from the unimpounded upper Mississippi River, we investigated assemblages in two main-channel-border physical habitats-those with wing dikes and those without wing dikes. Fishes were captured using daytime electrofishing, mini-fyke netting, large hoop netting, and small hoop netting. Our objectives were to (1) assess associations among fish species richness, physical measurements, and main-channel-border physical habitats using stepwise multiple regression and indicator variables; (2) identify abundant adult and young-of-year (age-0) families in both physical habitats to further investigate assemblage composition; and (3) calculate standardized species richness estimates within each physical habitat for adult and age-0 fishes to provide additional information on community structure. We found species richness was greater at wing dikes for both adult and age-0 fishes when compared with main channel borders. Stepwise multiple regression revealed significant relationships between adult species richness and passive gear deployment (e.g,, hoop nets and mini-fyke nets), physical habitat type, and river elevation, as well as interactions between physical habitat and passive gears, and physical habitat and transparency (i.e., Secchi depth). This model explained 56% of the variance in adult species richness. Approximately 15% of the variation in age-0 species richness was explained by the sample period, sample date, transparency, physical habitat, and depth of gear deployment. Long-term impacts of river modifications on fishes have not been well documented in many large river systems and warrant further study. The findings from this study provide baseline ecological information on fish assemblages using main channel borders in the unimpounded upper Mississippi River, information that will aid managers making channel maintenance decisions in large river systems.

  7. The Individual and Additive Effects of Vegetation Encroachment and Hydrologic Alteration on Sediment Connectivity in Grand Canyon

    NASA Astrophysics Data System (ADS)

    Kasprak, A.; Buscombe, D.; Caster, J.; Grams, P. E.; Sankey, J. B.

    2016-12-01

    Sediment connectivity is a vital component of the eco-geomorphic function of river systems, and the pathways of sediment transfer in river valleys often shift in response to channel disturbance and development. Along the Colorado River downstream of Glen Canyon Dam (completed in 1963), flow alteration for hydropower generation has increased baseflows while reducing the magnitude of regularly-occurring floods, and vegetation has subsequently colonized many channel-margin surfaces. In this dryland, canyon-bound river system, aeolian transport has historically been a vital component of sediment connectivity, yet the relative roles of altered hydrology and vegetation on the extent of sand available for windblown transport are unknown. Here we use a fusion of high-resolution spatial datasets including channel bathymetry and bed classification derived from single- and multibeam echosounding and total station surveys, exposed sand mapping and vegetation classification from multispectral imagery, in concert with a 94 year discharge record and one-dimensional hydraulic modeling to quantify changes in sand availability along a 48 km reach of the Colorado River. We find that hydrologic alteration alone has reduced areal sand availability by approximately 15% when comparing the pre- and post-dam flow records, while vegetation encroachment has had an even greater effect. More than half of the total sand area in the study reach is located at low flow stages below 226 m3/s, meaning that small reductions in baseflow discharge have the potential to expose large quantities of sand, and we subsequently explore the relative effect of alternative flow regimes on sand exposure during the postdam period. The ability to quantify and explore the efficacy of river management strategies on large-scale sediment connectivity has the potential to inform eco-geomorphic management of the Colorado River in Grand Canyon and other regulated rivers worldwide.

  8. Investigating the potential impacts of local climate change on the meltwater supply of a small snow-fed mountain river system: A case study of the Animas River, Colorado

    NASA Astrophysics Data System (ADS)

    Day, C. A.

    2010-12-01

    The western US receives up to 80% of its annual streamflow from snowmelt fed river systems during the mid-to-late spring season. Changes in winter and spring air temperature and precipitation patterns have, however, begun to alter this sensitive hydroclimatological process, both in terms of the timing and magnitude of snowmelt events and the responding streamflow. Monitoring and planning for these changes in the future may well prove crucial for local water resource planners who traditionally rely on historical trends or means for water resource planning. Local-level water resource planners also often do not have the data or tools at the right resolution available to them for the same planning purposes. This goal of this research was to identify how changes in the local winter-spring climate may alter the hydrological response of a typical small mountain snowmelt fed river system, the Animas River in SW Colorado. To achieve this, a statistical downscaling technique was applied to increase the resolution of, and build a linear relationship between, historical upper atmospheric reanalysis data to surface level mean air temperature and precipitation for several climate stations located across the basin for 1950-2007. The same technique was then used to increase the resolution of two GCM scenarios from the NCAR CCSM3 model SRES-AR4 data runs (a 'business as usual’ or A1B scenario, and an increase in global greenhouse gas emissions or A2 scenario) using the same relationships between the historical upper atmospheric reanalysis data and the surface station climate data. Snowmelt streamflow magnitude and timing were then projected to 2099 based on their historical relationship to mean monthly winter and spring air temperature and precipitation before being compared to the historical averages. Results indicated a shift in the timing of the snowmelt streamflow to earlier in the spring, and a reduction in the magnitude of peak spring streamflow following increasing spring temperatures and decreasing winter precipitation across the basin. These techniques and methods may provide a starting framework for local-level water resource planners to monitor and prepare for any future changes to basinwide hydroclimatology.

  9. Calculating erosion rates of river bank sediment by combining field measurements of erodibility parameters and small-scale topographic features – A case study at the Danube River

    USDA-ARS?s Scientific Manuscript database

    This paper examines the application of a method for calculating fluvial erosion on river banks. In the investigated area the determination of potential erosion rates are essential to estimating the initiated river widening processes and their effect on navigation. A mini-jet device was employed, for...

  10. Fish community response to dam removal in a Maine coastal river tributary

    USGS Publications Warehouse

    Zydlewski, Joseph D.; Hogg, Robert S.; Coghlan, Stephen M.; Gardner, Cory

    2016-01-01

    Sedgeunkedunk Stream, a third-order tributary to the Penobscot River in Maine, historically has supported several anadromous fishes including Atlantic Salmon Salmo salar, Alewife Alosa pseudoharengus, and Sea Lamprey Petromyzon marinus. Two small dams constructed in the 1800s reduced or eliminated spawning runs entirely. In 2009, efforts to restore marine–freshwater connectivity in the system culminated in removal of the lowermost dam (Mill Dam) providing access to 4.7 km of lotic habitat and unimpeded passage into the lentic habitat of Fields Pond. In anticipation of these barrier removals, we initiated a modified before-after-control-impact study, and monitored stream fish assemblages in fixed treatment and reference sites. Electrofishing surveys were conducted twice yearly since 2007. Results indicated that density, biomass, and diversity of the fish assemblage increased at all treatment sites upstream of the 2009 dam removal. No distinct changes in these metrics occurred at reference sites. We documented recolonization and successful reproduction of Atlantic Salmon, Alewife, and Sea Lamprey in previously inaccessible upstream reaches. These results clearly demonstrate that dam removal has enhanced the fish assemblage by providing an undisrupted stream gradient linking a small headwater lake and tributary with a large coastal river, its estuary, and the Atlantic Ocean.

  11. Potential effects of deepening the St. Johns River navigation channel on saltwater intrusion in the surficial aquifer system, Jacksonville, Florida

    USGS Publications Warehouse

    Bellino, Jason C.; Spechler, Rick M.

    2013-01-01

    The U.S. Army Corps of Engineers (USACE) has proposed dredging a 13-mile reach of the St. Johns River navigation channel in Jacksonville, Florida, deepening it to depths between 50 and 54 feet below North American Vertical Datum of 1988. The dredging operation will remove about 10 feet of sediments from the surficial aquifer system, including limestone in some locations. The limestone unit, which is in the lowermost part of the surficial aquifer system, supplies water to domestic wells in the Jacksonville area. Because of density-driven hydrodynamics of the St. Johns River, saline water from the Atlantic Ocean travels upstream as a saltwater “wedge” along the bottom of the channel, where the limestone is most likely to be exposed by the proposed dredging. A study was conducted to determine the potential effects of navigation channel deepening in the St. Johns River on salinity in the adjacent surficial aquifer system. Simulations were performed with each of four cross-sectional, variable-density groundwater-flow models, developed using SEAWAT, to simulate hypothetical changes in salinity in the surficial aquifer system as a result of dredging. The cross-sectional models were designed to incorporate a range of hydrogeologic conceptualizations to estimate the effect of uncertainty in hydrogeologic properties. The cross-sectional models developed in this study do not necessarily simulate actual projected conditions; instead, the models were used to examine the potential effects of deepening the navigation channel on saltwater intrusion in the surficial aquifer system under a range of plausible hypothetical conditions. Simulated results for modeled conditions indicate that dredging will have little to no effect on salinity variations in areas upstream of currently proposed dredging activities. Results also indicate little to no effect in any part of the surficial aquifer system along the cross section near River Mile 11 or in the water-table unit along the cross section near River Mile 8. Salinity increases of up to 4.0 parts per thousand (ppt) were indicated by the model incorporating hydrogeologic conceptualizations with both a semiconfining bed over the limestone unit and a preferential flow layer within the limestone along the cross section near River Mile 8. Simulated increases in salinity greater than 0.2 ppt in this area were generally limited to portions of the limestone unit within about 75 feet of the channel on the north side of the river. The potential for saltwater to move from the river channel to the surficial aquifer system is limited, but may be present in areas where the head gradient from the aquifer to the river is small or negative and the salinity of the river is sufficient to induce density-driven advective flow into the aquifer. In some areas, simulated increases in salinity were exacerbated by the presence of laterally extensive semiconfining beds in combination with a high-conductivity preferential flow zone in the limestone unit of the surficial aquifer system and an upgradient source of saline water, such as beneath the salt marshes near Fanning Island. The volume of groundwater pumped in these areas is estimated to be low; therefore, saltwater intrusion will not substantially affect regional water supply, although users of the surficial aquifer system east of Dames Point along the northern shore of the river could be affected. Proposed dredging operations pose no risk to salinization of the Floridan aquifer system; in the study area, the intermediate confining unit ranges in thickness from more than 300 to about 500 feet and provides sufficient hydraulic separation between the surficial and Floridan aquifer systems.

  12. A new method of quantifying discharge of small rivers into lakes and inland seas

    NASA Astrophysics Data System (ADS)

    Osadchiev, Alexander; Zavialov, Peter

    2014-05-01

    Continental discharge is an important component of the global hydrological cycle, providing the majority of the input part of the ocean water balance. Buoyant inflow usually causes surface density stratification at the large shelf areas, and plays a significant role in physical, chemical, and biological processes there that is especially important for the lakes and inland seas. Although there is a lack of discharge data for most of rivers in a global scale. Regular direct measurements of discharge are performed only for a relatively small number of rivers, generally the biggest ones or ones that flow through densely populated areas. Within this problem an indirect method of assuming a volume of river discharge was developed. The general idea of the method is the following. Firstly, the spatial surface spread of the plume generated by the considered river discharge is identified using high resolution satellite imagery of the coastal zone adjacent to the river estuary. Secondly, a series of numerical simulations of the river runoff spread is performed under various prescribed external forcing conditions which include the discharge rate. Varying forcing conditions we iteratively improve the accordance between simulated and observed river plumes therefore consequentially specifying the value of river discharge. The developed method was applied and validated against in situ date for several rivers feeding the Black Sea. Practical importance of this work consists in the fact, that the suggested method is an alternative for the expensive and laborious direct measurements of the river discharge, which are used nowadays.

  13. Assessment of potential for small hydro/solar power integration in a mountainous, data sparse region: the role of hydrological prediction accuracy

    NASA Astrophysics Data System (ADS)

    Borga, Marco; Francois, Baptiste; Creutin, Jean-Dominique; Hingray, Benoit; Zoccatelli, Davide; Tardivo, Gianmarco

    2015-04-01

    In many parts of the world, integration of small hydropower and solar/wind energy sources along river systems is examined as a way to meet pressing renewable energy targets. Depending on the space and time scales considered, hydrometeorological variability may synchronize or desynchronize solar/wind, runoff and the demand opening the possibility to use their complementarity to smooth the intermittency of each individual energy source. Rivers also provide important ecosystem services, including the provision of high quality downstream water supply and the maintenance of in-stream habitats. With future supply and demand of water resources both impacted by environmental change, a good understanding of the potential for the integration among hydropower and solar/wind energy sources in often sparsely gauged catchments is important. In such cases, where complex data-demanding models may be inappropriate, there is a need for simple conceptual modelling approaches that can still capture the main features of runoff generation and artificial regulation processes. In this work we focus on run-of-the-river and solar-power interaction assessment. In order to catch the three key cycles of the load fluctuation - daily, weekly and seasonal, the time step used in the study is the hourly resolution. We examine the performance of a conceptual hydrological model which includes facilities to model dam regulation and diversions and hydrological modules to account for the effect of glaciarised catchments. The model is applied to catchments of the heavily regulated Upper Adige river system (6900 km2), Eastern Italian Alps, which has a long history of hydropower generation. The model is used to characterize and predict the natural flow regime, assess the regulation impacts, and simulate co-fluctuations between run-of- the-river and solar power. The results demonstrates that the simple, conceptual modelling approach developed here can capture the main hydrological and regulation processes well at the three key cycles of the load fluctuations. A specific focus is dedicated on how the results can be communicated to stakeholders in order to provide a basis for discussing the development of new adaptive management strategies.

  14. Inorganic carbon speciation and fluxes in the Congo River

    NASA Astrophysics Data System (ADS)

    Wang, Zhaohui Aleck; Bienvenu, Dinga Jean; Mann, Paul J.; Hoering, Katherine A.; Poulsen, John R.; Spencer, Robert G. M.; Holmes, Robert M.

    2013-02-01

    Seasonal variations in inorganic carbon chemistry and associated fluxes from the Congo River were investigated at Brazzaville-Kinshasa. Small seasonal variation in dissolved inorganic carbon (DIC) was found in contrast with discharge-correlated changes in pH, total alkalinity (TA), carbonate species, and dissolved organic carbon (DOC). DIC was almost always greater than TA due to the importance of CO2*, the sum of dissolved CO2 and carbonic acid, as a result of low pH. Organic acids in DOC contributed 11-61% of TA and had a strong titration effect on water pH and carbonate speciation. The CO2* and bicarbonate fluxes accounted for ~57% and 43% of the DIC flux, respectively. Congo River surface water released CO2 at a rate of ~109 mol m-2 yr-1. The basin-wide DIC yield was ~8.84 × 104 mol km-2 yr-1. The discharge normalized DIC flux to the ocean amounted to 3.11 × 1011 mol yr-1. The DOC titration effect on the inorganic carbon system may also be important on a global scale for regulating carbon fluxes in rivers.

  15. A Darwinian mystery: fluctuations in runoff from the la Plata basin (Alexander von Humboldt Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Clarke, R. T.

    2012-04-01

    During the voyage of HMS Beagle, Charles Darwin sailed in a small boat along the River Paraná, a major tributary of the la Plata drainage system. He wrote about the occurrence of severe droughts (the latest of which had been termed the "gran seco") alternating with periods of severe flooding. From reports received, he concluded that these events appeared to be cyclic with a period "of about fifteen years". Because extended periods of low flow in Brazilian rivers are of immense economic importance, the presentation describes a search for the material which led Darwin to this conclusion. A prolonged period of low flow in another la Plata tributary - the River Paraguay - not unlike the "gran seco" reported by Darwin, has occurred more recently; if such low flows were to recur in the future, the consequences would be severe for a region where more than 70% of energy is supplied by hydropower. A priori considerations suggest the use of statistical long-memory models for predicting River Paraguay water-levels, and some preliminary results from their use are presented.

  16. Autonomous solutions for powering wireless sensor nodes in rivers

    NASA Astrophysics Data System (ADS)

    Kamenar, E.; Maćešić, S.; Gregov, G.; Blažević, D.; Zelenika, S.; Marković, K.; Glažar, V.

    2015-05-01

    There is an evident need for monitoring pollutants and/or other conditions in river flows via wireless sensor networks. In a typical wireless sensor network topography, a series of sensor nodes is to be deployed in the environment, all wirelessly connected to each other and/or their gateways. Each sensor node is composed of active electronic devices that have to be constantly powered. In general, batteries can be used for this purpose, but problems may occur when they have to be replaced. In the case of large networks, when sensor nodes can be placed in hardly accessible locations, energy harvesting can thus be a viable powering solution. The possibility to use three different small-scale river flow energy harvesting principles is hence thoroughly studied in this work: a miniaturized underwater turbine, a so-called `piezoelectric eel' and a hybrid turbine solution coupled with a rigid piezoelectric beam. The first two concepts are then validated experimentally in laboratory as well as in real river conditions. The concept of the miniaturised hydro-generator is finally embedded into the actual wireless sensor node system and its functionality is confirmed.

  17. Distribution and movement of bull trout in the upper Jarbidge River watershed, Nevada

    USGS Publications Warehouse

    Allen, M. Brady; Connolly, Patrick J.; Mesa, Matthew G.; Charrier, Jodi; Dixon, Chris

    2010-01-01

    In 2006 and 2007, we surveyed the occurrence of bull trout (Salvelinus confluentus), the relative distributions of bull trout and redband trout (Oncorhynchus mykiss), and stream habitat conditions in the East and West Forks of the Jarbidge River in northeastern Nevada and southern Idaho. We installed passive integrated transponder (PIT) tag interrogation systems at strategic locations within the watershed, and PIT-tagged bull trout were monitored to evaluate individual fish growth, movement, and the connectivity of bull trout between streams. Robust bull trout populations were found in the upper portions of the East Fork Jarbidge River, the West Fork Jarbidge River, and in the Pine, Jack, Dave, and Fall Creeks. Small numbers of bull trout also were found in Slide and Cougar Creeks. Bull trout were numerically dominant in the upper portions of the East Fork Jarbidge River, and in Fall, Dave, Jack, and Pine Creeks, whereas redband trout were numerically dominant throughout the rest of the watershed. The relative abundance of bull trout was notably higher at altitudes above 2,100 m. This study was successful in documenting bull trout population connectivity within the West Fork Jarbidge River, particularly between West Fork Jarbidge River and Pine Creek. Downstream movement of bull trout to the confluence of the East Fork and West Fork Jarbidge River both from Jack Creek (rkm 16.6) in the West Fork Jarbidge River and from Dave Creek (rkm 7.5) in the East Fork Jarbidge River was detected. Although bull trout exhibited some downstream movement during the spring and summer, much of their emigration occurred in the autumn, concurrent with decreasing water temperatures and slightly increasing flows. The bull trout that emigrated were mostly age-2 or older, but some age-1 fish also emigrated. Upstream movement by bull trout was detected less than downstream movement. The overall mean annual growth rate of bull trout in the East Fork and West Fork Jarbidge River was 36 mm. This growth rate is within the range reported in other river systems and is indicative of good habitat conditions. Mark-recapture methods were used to estimate a population of 147 age-1 or older bull trout in the reach of Jack Creek upstream of Jenny Creek.

  18. The significance of small streams

    NASA Astrophysics Data System (ADS)

    Wohl, Ellen

    2017-09-01

    Headwaters, defined here as first- and secondorder streams, make up 70%‒80% of the total channel length of river networks. These small streams exert a critical influence on downstream portions of the river network by: retaining or transmitting sediment and nutrients; providing habitat and refuge for diverse aquatic and riparian organisms; creating migration corridors; and governing connectivity at the watershed-scale. The upstream-most extent of the channel network and the longitudinal continuity and lateral extent of headwaters can be difficult to delineate, however, and people are less likely to recognize the importance of headwaters relative to other portions of a river network. Consequently, headwaters commonly lack the legal protections accorded to other portions of a river network and are more likely to be significantly altered or completely obliterated by land use.

  19. Assessment of the hydraulic connection between ground water and the Peace River, west-central Florida

    USGS Publications Warehouse

    Lewelling, B.R.; Tihansky, A.B.; Kindinger, J.L.

    1998-01-01

    The hydraulic connection between the Peace River and the underlying aquifers along the length of the Peace River from Bartow to Arcadia was assessed to evaluate flow exchanges between these hydrologic systems. Methods included an evaluation of hydrologic and geologic records and seismic-reflection profiles, seepage investigations, and thermal infrared imagery interpretation. Along the upper Peace River, a progressive long-term decline in streamflow has occurred since 1931 due to a lowering of the potentiometric surface of the Upper Floridan aquifer by as much as 60 feet because of intensive ground-water withdrawals for phosphate mining and agriculture. Another effect from lowering the potentiometric surface has been the cessation of flow at several springs located near and within the Peace River channel, including Kissengen Spring, that once averaged a flow of about 19 million gallons a day. The lowering of ground-water head resulted in flow reversals at locations where streamflow enters sinkholes along the streambed and floodplain. Hydrogeologic conditions along the Peace River vary from Bartow to Arcadia. Three distinctive hydrogeologic areas along the Peace River were delineated: (1) the upper Peace River near Bartow, where ground-water recharge occurs; (2) the middle Peace River near Bowling Green, where reversals of hydraulic gradients occur; and (3) the lower Peace River near Arcadia, where ground-water discharge occurs. Seismic-reflection data were used to identify geologic features that could serve as potential conduits for surface-water and ground-water exchange. Depending on the hydrologic regime, this exchange could be recharge of surface water into the aquifer system or discharge of ground water into the stream channel. Geologic features that would provide pathways for water movement were identified in the seismic record; they varied from buried irregular surfaces to large-scale subsidence flexures and vertical fractures or enlarged solution conduits. Generally, the upper Peace River is characterized by a shallow, buried irregular top of rock, numerous observed sinkholes, and subsidence depressions. The downward head gradient provides potential for the Peace River to lose water to the ground-water system. Along the middle Peace River area, head gradients alternate between downward and upward, creating both recharging and discharging ground-water conditions. Seismic records show that buried, laterally continuous reflectors in the lower Peace River pinch out in the middle Peace River streambed. Small springs have been observed along the streambed where these units pinch out. This area corresponds to the region where highest ground-water seepage volumes were measured during this study. Further south, along the lower Peace River, upward head gradients provide conditions for ground-water discharge into the Peace River. Generally, confinement between the surficial aquifer and the confined ground-water systems in this area is better than to the north. However, localized avenues for surface-water and ground-water interactions may exist along discontinuities observed in seismic reflectors associated with large-scale flexures or subsidence features. Ground-water seepage gains or losses along the Peace River were quantified by making three seepage runs during periods of: (1) low base flow, (2) high base flow, and (3) high flow. Low and high base-flow seepage runs were performed along a 74-mile length of the Peace River, between Bartow and Nocatee. Maximum losses of 17.3 cubic feet per second (11.2 million gallons per day) were measured along a 3.2-mile reach of the upper Peace River. The high-flow seepage run was conducted to quantify losses in the Peace River channel and floodplain between Bartow and Fort Meade. Seepage losses calculated during high-flow along a 7.2-mile reach of the Peace River, from the Clear Springs Mine bridge to the Mobil Mine bridge, were approximately 10 percent of the river flow, or 118 c

  20. Impact of recent land use and climate changes on sediment and pollutant redistribution in small catchments within the Seim River Basin (Kursk Region, European Russia)

    NASA Astrophysics Data System (ADS)

    Belyaev, Vladimir; Ivanova, Nadezda; Ivanov, Maxim; Bondarev, Valery; Lugovoy, Nikolay; Aseeva, Elena; Malyutina, Alisa

    2017-04-01

    It is widely accepted that changes of land use or climatic conditions can exert profound impacts on river basin sediment budgets and associated particle-bound pollutant redistribution patterns at different temporal and spatial scales. It can be especially difficult to distinguish relative importance of particular factors when the changes occur more or less within the same time frame. Such situation is typical for most parts of the agricultural belt of Russia, as period of economic downfall associated with collapse of the former Soviet Union and later gradual recovery practically coincides with period of the most significant climate changes observed in the late 20th - early 21st Centuries. Therefore it seems interesting and important to consider possible changes of fluvial systems responses within the period from 1980s to the present under different spatial scales. Here we plan to present results of the almost 10-year period of investigations of sediment and associated pollutant redistribution spatial and temporal patterns in several small catchments within the Seim River Basin (Kursk Region, European Russia). Studies dealt with small catchments and small river basins in scales from 1-2 km2 to 200 km2 located in different parts of the main basin. Works carried out included detailed geomorphic surveys, soil and sediment sections and cores description and sampling in different locations (undisturbed, erosion, transit, deposition), remote sensing data and morphometric analysis, soil erosion modeling. Integration of the results allowed constructing sediment budgets, in most cases, for two time intervals (approximately - pre-1986 and post-1986, as the Chernobyl-derived 137Cs has been an important time mark at all the case study sites). It has been found out that combination of several major tendencies including abandonment and recultivation of arable fields, notable decrease of winter-frozen topsoil layer thickness and increase of heavy summer rainstorms magnitude and frequency are responsible for the observed variability of sediment and associated contaminant redistribution patterns.

  1. [Variation characteristics of runoff coefficient of Taizi River basin in 1967-2006].

    PubMed

    Deng, Jun-Li; Zhang, Yong-Fang; Wang, An-Zhi; Guan, De-Xin; Jin, Chang-Jie; Wu, Jia-Bing

    2011-06-01

    Based on the daily precipitation and runoff data of six main embranchments (Haicheng River, Nansha River, Beisha River, Lanhe River, Xihe River, and Taizi River south embranchment) of Taizi River basin in 1967-2006, this paper analyzed the variation trend of runoff coefficient of the embranchments as well as the relationship between this variation trend and precipitation. In 1967-2006, the Taizi River south embranchment located in alpine hilly area had the largest mean annual runoff coefficient, while the Haicheng River located in plain area had the relatively small one. The annual runoff coefficient of the embranchments except Nansha River showed a decreasing trend, being more apparent for Taizi River south embranchment and Lanhe River. All the embranchments except Xihe River had an obvious abrupt change in the annual runoff coefficient, and the beginning year of the abrupt change differed with embranchment. Annual precipitation had significant effects on the annual runoff coefficient.

  2. 3. A 40-years record of the polymetallic pollution of the Lot River system, France

    NASA Astrophysics Data System (ADS)

    Audry, S.; Schäfer, J.; Blanc, G.; Veschambre, S.; Jouanneau, J.-M.

    2003-04-01

    The Lot River system (southwest France) is known for historic Zn and Cd pollution that originates from Zn ore treatment in the small Riou-Mort watershed and affects seafood production in the Gironde Estuary. We present a sedimentary record from 2 cores taken in a dam lake downstream of the Riou-Mort watershed covering the evolution of metal inputs into the Lot River over the past 40 years (1960-2001). Depth profiles of Cd, Zn, Cu and Pb concentrations are comparable indicating common sources and transport. The constant Zn/Cd ratio (˜50) observed in the sediment cores is similar to that in SPM from the Riou-Mort watershed, indicating the dominance of point source pollution upon the geochemical background signal. Cadmium, Zn, Cu and Pb concentrations in the studied sediment cores show an important peak in 42-44 cm depth with up to 300 mg.kg-1 (Cd), 10,000 mg.kg-1 (Zn), 150 mg.kg-1 (Cu) and 930 mg.kg-1 (Pb). These concentrations are much higher than geochemical background values; For example, Cd concentrations are more than 350-fold higher than those measured in the same riverbed upstream the confluence with the Riou-Mort River. This peak coincides with the upper 137Cs peak resulting from the Chernobyl accident (1986). Therefore, this heavy metal peak is attributed to the latest accidental Cd pollution of the Lot-River in 1986. Several downward heavy metal peaks reflect varying input probably due to changes in industrial activities within the Riou-Mort watershed. Given mean sedimentation rate of about 2 cm.yr-1, the record suggests constant and much lower heavy metal concentrations since the early nineties due to restriction of industrial activities and remediation efforts in the Riou-Mort watershed. Nevertheless, Cd, Zn, Cu and Pb concentrations in the upper sediment remain high, compared to background values from reference sites in the upper Lot River system.

  3. Similarity of Stream Width Distributions Across Headwater Systems

    NASA Astrophysics Data System (ADS)

    Allen, G. H.; Pavelsky, T.; Barefoot, E. A.; Tashie, A.; Butman, D. E.

    2016-12-01

    The morphology and abundance of streams control the rates of hydraulic and biogeochemical exchange between streams, groundwater, and the atmosphere. In large river systems, studies have used remote sensing to quantify river morphology, and have found that the relationship between river width and abundance is fractal, such that narrow rivers are proportionally more common than wider rivers. However, in headwater systems (stream order 1-3), where many biogeochemical reactions are most rapid, the relationship between stream width and abundance is unknown, reducing the certainty of biogeochemical flux estimates. To constrain this uncertainty, we surveyed two components of stream morphology (wetted stream width and length) in seven physiographically contrasting stream networks in Kings Creek in Konza Prarie, KS; Sagehen Creek in the N. Sierra Nevada Mtns., CA; Elder Creek in Angelo Coast Range Preserve, CA; Caribou Creek in the Caribou Poker Creek Research Watershed, AK; V40 Stream, NZ; Blue Duck Creek, NZ; Stony Creek in Duke Forest, NC. To assess temporal variations, we also surveyed stream geometry in a subcatchment of Stony Creek six times over a range of moderate streamflow conditions (discharge less than 90 percentile of gauge record). Here we show a strikingly consistent gamma statistical distribution of stream width in all surveys and a characteristic most abundant stream width of 32±7 cm independent of flow conditions or basin size. This consistency is remarkable given the substantial physical diversity among the studied catchments. We propose a model that invokes network topology theory and downstream hydraulic geometry to show that, as active drainage networks expand and contract in response to changes in streamflow, the most abundant stream width remains approximately static. This framework can be used to better extrapolate stream size and abundance from large rivers to small headwater streams, with significant impact on understanding of the hydraulic, ecological, and biogeochemical functions of stream networks.

  4. Inherited hypoxia: A new challenge for reoligotrophicated lakes under global warming

    NASA Astrophysics Data System (ADS)

    Jenny, Jean-Philippe; Arnaud, Fabien; Alric, Benjamin; Dorioz, Jean-Marcel; Sabatier, Pierre; Meybeck, Michel; Perga, Marie-Elodie

    2014-12-01

    The Anthropocene is characterized by a worldwide spread of hypoxia, among other manifestations, which threatens aquatic ecosystem functions, services, and biodiversity. The primary cause of hypoxia onset in recent decades is human-triggered eutrophication. Global warming has also been demonstrated to contribute to the increase of hypoxic conditions. However, the precise role of both environmental forcings on hypoxia dynamics over the long term remains mainly unknown due to a lack of historical monitoring. In this study, we used an innovative paleolimnological approach on three large European lakes to quantify past hypoxia dynamics and to hierarchies the contributions of climate and nutrients. Even for lake ecosystems that have been well oxygenated over a millennia-long period, and regardless of past climatic fluctuations, a shift to hypoxic conditions occurred in the 1950s in response to an unprecedented rise in total phosphorus concentrations above 10 ± 5 µg P L-1. Following this shift, hypoxia never disappeared despite the fact that environmental policies succeeded in drastically reducing lake phosphorus concentrations. During that period, decadal fluctuations in hypoxic volume were great, ranging between 0.5 and 8% of the total lake volumes. We demonstrate, through statistical modeling, that these fluctuations were essentially driven by climatic factors, such as river discharge and air temperature. In lakes Geneva and Bourget, which are fed by large river systems, fluctuations in hypoxic volume were negatively correlated with river discharge. In contrast, the expansion of hypoxia has been related only to warmer air temperatures at Annecy, which is fed by small river systems. Hence, we outline a theoretical framework assuming that restored lake ecosystems have inherited hypoxia from the eutrophication period and have shifted to a new stable state with new key controls of water and ecosystem quality. We suggest that controlling river discharge may be a complementary strategy for local management of lakes fed by large river systems.

  5. Examining the economic impacts of hydropower dams on property values using GIS.

    PubMed

    Bohlen, Curtis; Lewis, Lynne Y

    2009-07-01

    While the era of dam building is largely over in the United States, globally dams are still being proposed and constructed. The articles in this special issue consider many aspects and impacts of dams around the world. This paper examines dam removal and the measurement of the impacts of dams on local community property values. Valuable lessons may be found. In the United States, hundreds of small hydropower dams will come up for relicensing in the coming decade. Whether or not the licenses are renewed and what happens to the dams if the licenses expires is a subject of great debate. Dams are beginning to be removed for river restoration and fisheries restoration and these "end-of-life" decisions may offer lessons for countries proposing or currently building small (and large) hydropower dams. What can these restoration stories tell us? In this paper, we examine the effects of dams along the Penobscot River in Maine (USA) on residential property values. We compare the results to findings from a similar (but ex post dam removal) data set for properties along the Kennebec river in Maine, where the Edwards Dam was removed in 1999. The Penobscot River Restoration Project, an ambitious basin-wide restoration effort, includes plans to remove two dams and decommission a third along the Penobscot River. Dam removal has significant effects on the local environment, and it is reasonable to anticipate that environmental changes will themselves be reflected in changes in property values. Here we examine historical real estate transaction data to examine whether landowners pay a premium or penalty to live near the Penobscot River or near a hydropower generating dam. We find that waterfront landowners on the Penobscot or other water bodies in our study area pay approximately a 16% premium for the privilege of living on the water. Nevertheless, landowners pay LESS to live near the Penobscot River than they do to live further away, contrary to the expectation that bodies of water function as real estate amenities and boost local property values. Results with respect to the effect of proximity to hydropower generating plants are equivocal. Homeowners pay a small premium for houses close to hydropower dams in our region, but the statistical significance of that result depends on the specific model form used to estimate the effect. Consideration of the social and economic impacts of dam removal-based river restoration can complement studies of the ecological impacts of the practice. Such studies help us understand the extent to which human society's subjective perception of value of aquatic ecosystems relates to objective measures of ecosystem health. The paper also illustrates how geographic information systems (GIS) can help inform these analyses.

  6. The fishes of Buffalo National River, Arkansas, 2001-2003

    USGS Publications Warehouse

    Petersen, James C.; Justus, B.G.

    2005-01-01

    During June through September 2001 and 2002, extensive fish community sampling was conducted at 29 sites within the boundaries of Buffalo National River. Samples were collected using backpack, tote barge, and boat electrofishing equipment. Kick seining also was used at all sites. To supplement these results, samples were collected in 2003 from less typical habitats and during other seasons of the year. Ten supplemental samples were collected from the Buffalo River and five samples were collected from tributaries of the Buffalo River. During the 3 years of sampling, 66 species of fish were collected or observed from the 42 sampling sites. Stonerollers, duskystripe shiners, longear sunfish, and rainbow darters were among the more abundant fish species at most sites. Each of these species is common and abundant throughout much of the Ozark Plateaus in creeks and small rivers. Other species (for example, banded sculpin, southern redbelly dace, orangethroat darter, and Ozark minnow) were among the more abundant species at other sites. These species prefer small- to medium-sized, springfed streams or small creeks. A preliminary list of species expected to occur at Buffalo National River provided by the National Park Service incorrectly listed 47 species because of incorrect species range or habitat requirements. Upon revising this list, the inventory yielded 66 of the 78 species (85 percent). Twelve additional species not collected in 2001-2003 may occur at Buffalo National River for two primary reasons--because the species had been collected previously at the park, or because the park occurs within the known species range and habitats found at the park are suitable for the species. Although no fish species collected from Buffalo National River are federally-listed threatened or endangered species, several species collected at Buffalo National River may be of special interest to National Park Service managers and others. Ten species are endemic to the Ozark Plateaus area and most of these ten are restricted to the White River Basin. For some species the Buffalo River is a population stronghold. The yoke darter and Ozark bass are especially abundant in the Buffalo River. In Arkansas, the Ozark shiner is most abundant in the Buffalo River and, although populations of Ozark shiners are declining in Arkansas, this is not typically the case in the Buffalo River. Data from 2001-2003 indicate that gilt darters currently (2005) are less common in the Buffalo River than during the 1970's. Populations of channel catfish (and any other fish species whose movements are inhibited by the cold water temperatures of the White River) may continue to decline without remedial efforts.

  7. Monitoring and risk assessment of pesticides in irrigation systems in Debra Zeit, Ethiopia.

    PubMed

    Teklu, Berhan M; Adriaanse, Paulien I; Van den Brink, Paul J

    2016-10-01

    Since Ethiopia is going through a rapid transformation of its agricultural sector, we assessed the human health and environmental risks due to the past use of organochlorine pesticides (OCPs) as well as the risks of the current pesticide use by farmers. A monitoring programme and risk assessment was carried out for the Wedecha-Belbela irrigation system in the Debra Zeit area. The Wedecha and Belbela rivers and adjacent temporary ponds were sampled and examined for the presence of OCPs between August and October 2014, while data on the current pesticide use by small- and large-scale farmers was collected by interviews. The usage patterns were evaluated for risks of using the river or temporary ponds as source of drinking water and for risks for the aquatic ecosystems in the river and ponds with the aid of the PRIMET_Registration_Ethiopa_1.1 model. The samples were collected in five sampling periods, and results indicate that most of the 18 target OCPs were not detected above the detection limit, while g-chlordane may pose chronic risks when surface water is used as drinking water. Endosulfan and heptachlor pose risks to aquatic organisms at second-tier level, while for heptachlor-epoxide B, g-chlordane and b-BHC only risks could be determined at the first tier due to a lack of data. For all nine pesticides used by small-scale farmers the calculated acute risks to humans were low. Second tier risk assessment for the aquatic ecosystem indicated that lambda-cyhalothrin, endosulfan, profenofos, and diazinon may pose high risks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Yakima River Spring Chinook Enhancement Study, 1991 Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fast, David E.

    1991-05-01

    The population of Yakima River spring chinook salmon (Oncorhynchus tschawytscha) has been drastically reduced from historic levels reported to be as high as 250,000 adults (Smoker 1956). This reduction is the result of a series of problems including mainstem Columbia dams, dams within the Yakima itself, severely reduced flows due to irrigation diversions, outmigrant loss in irrigation canals, increased thermal and sediment loading, and overfishing. Despite these problems, the return of spring chinook to the Yakima River has continued at levels ranging from 854 to 9,442 adults since 1958. In October 1982, the Bonneville Power Administration contracted the Yakima Indianmore » Nation to develop methods to increase production of spring chinook in the Yakima system. The Yakima Nation's current enhancement policy attempts to maintain the genetic integrity of the spring chinook stock native to the Yakima Basin. Relatively small numbers of hatchery fish have been released into the basin in past years. The goal of this study was to develop data that will be used to present management alternatives for Yakima River spring chinook. A major objective of this study is to determine the distribution, abundance and survival of wild Yakima River spring chinook. The second major objective of this study is to determine the relative effectiveness of different methods of hatchery supplementation. The last three major objectives of the study are to locate and define areas in the watershed that may be used for the rearing of spring chinook; to define strategies for enhancing natural production of spring chinook in the Yakima River; and to determine the physical and biological limitations on production within the system. 47 refs., 89 figs., 67 tabs.« less

  9. Yakima River Spring Chinook Enhancement Study Appendices, 1991 Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fast, David E.

    1991-05-01

    This document consists of the appendices for annual report DOE/BP/39461--9 which is summarized as follows. The population of Yakima River spring chinook salmon (Oncorhynchus tschawytscha) has been drastically reduced from historic levels reported to be as high as 250,000 adults (Smoker 1956). This reduction is the result of a series of problems including mainstem Columbia dams, dams within the Yakima itself, severely reduced flows due to irrigation diversions, outmigrant loss in irrigation canals, increased thermal and sediment loading, and overfishing. Despite these problems, the return of spring chinook to the Yakima River has continued at levels ranging from 854 tomore » 9,442 adults since 1958. In October 1982, the Bonneville Power Administration contracted the Yakima Indian Nation to develop methods to increase production of spring chinook in the Yakima system. The Yakima Nation's current enhancement policy attempts to maintain the genetic integrity of the spring chinook stock native to the Yakima Basin. Relatively small numbers of hatchery fish have been released into the basin in past years. The goal of this study was to develop data that will be used to present management alternatives for Yakima River spring chinook. A major objective of this study is to determine the distribution, abundance and survival of wild Yakima River spring chinook. The second major objective of this study is to determine the relative effectiveness of different methods of hatchery supplementation. The last three major objectives of the study are to locate and define areas in the watershed that may be used for the rearing of spring chinook; to define strategies for enhancing natural production of spring chinook in the Yakima River; and to determine the physical and biological limitations on production within the system.« less

  10. Citizen Science into Action - Robust Data with Affordable Technologies for Flood Risks Management in the Himalayas

    NASA Astrophysics Data System (ADS)

    Pandeya, B.; Uprety, M.; Paul, J. D.; Dugar, S.; Buytaert, W.

    2017-12-01

    With a robust and affordable monitoring system, a wealth of hydrological data can be generated which is fundamental to predict flood risks more accurately. Since the Himalayan region is characterized by data deficiency and unpredictable hydrological behaviour, a locally based participatory monitoring system is a necessity to deal with frequently occurring flooding incidents. A gap in hydrological data is the main bottleneck for establishing any effective flood early warning system. Therefore, an alternative and affordable technical solution can only overcome the situation and support flood risks management activities in the region. In coordination with local people, government authorities and NGOs, we have established a citizen science monitoring system, in which we tested two types of low-cost sensors, ultrasound and LiDAR, in the Karnali river basin of Nepal. The results confirm the robustness of sensor data when compared to conventional radar system based monitoring data. Additionally, our findings also confirmed that the ultrasound sensors are only useful to small rivers whereas the LiDAR sensors are suitable to large river basins with highly variable local climatic conditions. Since the collected sensor data can be directly used in operational flood early warning system in the basin, an opportunity has been created for integrating both affordable technology and citizen science into existing hydrological monitoring practice. Finally, a successful integration could become a testament for upscaling the practice and building flood risk resilient communities in the region.

  11. Living Rivers: Importance of Andes-Amazon Connectivity and Consequences of Hydropower Development

    NASA Astrophysics Data System (ADS)

    Anderson, E.

    2016-12-01

    The inherent dynamism of rivers along elevational and longitudinal gradients underpins freshwater biodiversity, ecosystem function, and ecosystem services in the Andean-Amazon. While this region covers only a small part of the entire Amazon Basin, its influences on downstream ecology, biogeochemistry, and human wellbeing are disproportionate with its relative small size. Seasonal flow pulses from Andean rivers maintain habitat, signal migratory fishes, and export sediment, nutrients, and organic matter to distant ecosystems—like lowland Amazonia and the Atlantic coast of Brazil. Rivers are key transportation routes, and freshwater fisheries are a primary protein source for the >30 million people that inhabit the Amazon Basin. Numerous cultural traditions depend on free-flowing Andean rivers; examples include Kukama beliefs in the underwater cities of the Marañon River, where people who have drowned in rivers whose bodies are not recovered go to live, or the pre-dawn bathing rituals of the Peruvian Shawi, who gain energy and connect with ancestors in cold, fast-flowing Andean waters. Transformations in the Andean-Amazon landscape—in particular from dams—threaten to compromise flows critical for human and ecosystem wellbeing. Presently, at least 250 hydropower dams are in operation, under construction, or proposed for Andean-Amazon rivers. This presentation will discuss regional trends in hydropower development, quantify effects of existing and proposed dams on Andean-Amazon connectivity, and examine the social and cultural importance of free-flowing Andean-Amazon rivers.

  12. Map showing quarries, mines, prospects, and sample data in and near the James River Face Wilderness, Bedford and Rockbridge counties, Virginia

    USGS Publications Warehouse

    Gazdik, Gertrude C.; Ross, Robert B.

    1982-01-01

    The area, on the crest of the Blue Ridge Mountains, is drained by small tributaries of the James River.  Altitudes range from 600 ft where U.S. Route 501 crosses the James River to 3,073 ft on Highcock Knob.

  13. Analysis of sensitivity of simulated recharge to selected parameters for seven watersheds modeled using the precipitation-runoff modeling system

    USGS Publications Warehouse

    Ely, D. Matthew

    2006-01-01

    Recharge is a vital component of the ground-water budget and methods for estimating it range from extremely complex to relatively simple. The most commonly used techniques, however, are limited by the scale of application. One method that can be used to estimate ground-water recharge includes process-based models that compute distributed water budgets on a watershed scale. These models should be evaluated to determine which model parameters are the dominant controls in determining ground-water recharge. Seven existing watershed models from different humid regions of the United States were chosen to analyze the sensitivity of simulated recharge to model parameters. Parameter sensitivities were determined using a nonlinear regression computer program to generate a suite of diagnostic statistics. The statistics identify model parameters that have the greatest effect on simulated ground-water recharge and that compare and contrast the hydrologic system responses to those parameters. Simulated recharge in the Lost River and Big Creek watersheds in Washington State was sensitive to small changes in air temperature. The Hamden watershed model in west-central Minnesota was developed to investigate the relations that wetlands and other landscape features have with runoff processes. Excess soil moisture in the Hamden watershed simulation was preferentially routed to wetlands, instead of to the ground-water system, resulting in little sensitivity of any parameters to recharge. Simulated recharge in the North Fork Pheasant Branch watershed, Wisconsin, demonstrated the greatest sensitivity to parameters related to evapotranspiration. Three watersheds were simulated as part of the Model Parameter Estimation Experiment (MOPEX). Parameter sensitivities for the MOPEX watersheds, Amite River, Louisiana and Mississippi, English River, Iowa, and South Branch Potomac River, West Virginia, were similar and most sensitive to small changes in air temperature and a user-defined flow routing parameter. Although the primary objective of this study was to identify, by geographic region, the importance of the parameter value to the simulation of ground-water recharge, the secondary objectives proved valuable for future modeling efforts. The value of a rigorous sensitivity analysis can (1) make the calibration process more efficient, (2) guide additional data collection, (3) identify model limitations, and (4) explain simulated results.

  14. Sedimentation patterns in floodplains of the Mekong Delta - Vietnam

    NASA Astrophysics Data System (ADS)

    Van Manh, Nguyen; Merz, Bruno; Viet Dung, Nguyen; Apel, Heiko

    2013-04-01

    Quantification of floodplain sedimentation during the flood season in the Mekong Delta (MD) plays a very important role in the assessment of flood deposits for a sustainable agro-economic development. Recent studies on floodplain sedimentation in the region are restricted to small pilot sites because of the large extend of the Delta, and the complex channel. This research aims at a quantification of the sediment deposition in floodplains of the whole Mekong Delta, and to access the impacts of the upstream basin development on the sedimentation in the Delta quantitatively. To achieve this, a suspended sediment transport model is developed based on the quasi-2D hydrodynamic model of the whole Mekong Delta developed by Dung et al. (2011). The model is calibrated and validated using observed data derived from several sediment measurement campaigns in channel networks and floodplains. Measured sediment data and hydrodynamic model quantify the spatio-temporal variability of sediment depositions in different spatial units: individual dyke compartments, and the sub-regions Plain of Reeds, Long Xuyen Quadrangle and the area between Tien River and Hau River. It is shown that the distribution of sediment deposition over the delta is highly depended on the flood magnitude, that in turn drives the operation policy of flood control systems in floodplains of the Mekong Delta. Thus, the sedimentation distribution is influenced by the protection level of the dyke systems in place and the distance to the Tien River and Hau River, the main branches of the Mekong in the Delta. This corroborates the main findings derived from data analysis obtained from a small scale test site by Hung et al, (2011, 2012a). Moreover, the results obtained here underlines the importance of the main channels for the sediment transport into the floodplains, and the deposition rate in floodplains is strongly driven by the intake locations and the distance from these to the main channels as well.

  15. Particle-bound metal transport after removal of a small dam in ...

    EPA Pesticide Factsheets

    The Pawtuxet River in Rhode Island, USA, has a long history of industrial activity and pollutant discharges. Metal contamination of the river sediments is well documented and historically exceeded toxicity thresholds for a variety of organisms. The Pawtuxet River dam, a low-head dam at the mouth of the river, was removed in August 2011. The removal of the dam was part of an effort to restore the riverine ecosystem after centuries of anthropogenic impact. Sediment traps were deployed below the dam to assess changes in metal concentrations and fluxes (Ag, Cd, Cr, Cu, Ni, Pb, and Zn) from the river system into Pawtuxet Cove. Sediment traps were deployed for an average duration of 24 days each, and deployments continued for 15 months after the dam was removed. Metal concentrations in the trapped suspended particulate matter dropped after dam removal (e.g., 460 to 276 mg/kg for Zn) and remained below preremoval levels for most of the study. However, particle-bound metal fluxes increased immediately after dam removal (e.g., 1206 to 4248 g/day for Zn). Changes in flux rates during the study period indicated that river volumetric flow rates acted as the primary mechanism controlling the flux of metals into Pawtuxet Cove and ultimately upper Narragansett Bay. Even though suspended particulate matter metal concentrations initially dropped after removal of the dam, no discernable effect on the concentration or flux of the study metals exiting the river could be associa

  16. Digging for Lost Rivers in Thailand: Locating and Dating Paleochannels in the Chiang Mai Intermontane Basin

    NASA Astrophysics Data System (ADS)

    Teo, Elisha A.; Ziegler, Alan D.; Wasson, Robert J.; Morthekai, Paulramasamy

    2017-04-01

    The drainage of the Chiang Mai basin has a dynamic but largely forgotten history. In the late 1980s, an ancient lost city was excavated near the Ping River in Chiang Mai, Thailand. Archaeologists had unearthed Wiang Kum Kam, the former royal capital of the Lanna Civilisation founded in 1286 CE. Former investigations revealed that flood sediments buried the capital and remnants of an abandoned river channel were discovered beneath the surface. This concurs with historical descriptions of the Ping River being on the eastern bank of the capital, despite being presently located on the western bank. The paleochannel drained 500 years ago after diverting west of the ancient city. This switch, an avulsion, coincided with a large flood, which could have triggered and/or caused the avulsion. Local oral histories also recount other Ping avulsions across the basin, but these were not documented. Some of these paleochannels residually remain as unusually sinuous irrigation canals, with historically suggestive names such as the Old Ping and the Small Ping Rivers. Here, the geomorphological evolution of the Ping River is investigated, as a future avulsion in this extensively populated area would be catastrophic. Evidence shows that the drainage of the Chiang Mai basin evolved from a braided system, to an avulsing anastomosing system, to a primarily single channel system. Two-dimensional electrical resistivity tomography and augering detected a large continuous body of fluvial sand 4 m below the surface, across the 10 km distance between the Ping and Kuang Rivers. This sand continues to the depth of at least 30 m and is typical of a braided system. Further augering along paleochannels revealed buried levees that protrude from the braided river deposits to near the surface, separated by fine floodplain sediments. This may have formed as the braided system evolved into an anastomosing system, where distinct channels stabilised and floodplain deposits could develop between channels. These paleochannels were eventually abandoned through avulsion, decreased significantly in size, and were converted into irrigation canals with settlement. Thirty-five sediment samples were dated using optically stimulated luminescence (OSL) and accelerator mass spectrometry radiocarbon dating. Sediments from within the upper braided deposits were 40,000 years old and the transition to an anastomosing system occurred 3,000 years ago. Age estimates and the spatial pattern of the paleochannels indicate that the Ping River has sequentially avulsed at least 5 times in approximately 600 years, from the east to 10 km west where the Ping River is currently located. The most recent avulsion occurred about 200 years ago, from a paleochannel 2.2 km east of the present Ping. This pattern of migration is reminiscent of basinal tilting resulting from the basin's west-east extending half-graben structure. It is possible that tilting increases channel instability and then large floods and/or earthquakes trigger avulsions. If so, future avulsions are conceivable. In addition to standard luminescence dating procedures, a new method of applying pulsed OSL was also explored to distinguish quartz and feldspar signals for more accurate age results.

  17. Implementation of sediment dynamics in a global integrated assessment model for an improved simulation of nutrient retention and transfers in surface freshwaters

    NASA Astrophysics Data System (ADS)

    Vilmin, L.; Beusen, A.; Mogollón, J.; Bouwman, L.

    2017-12-01

    Sediment dynamics play a significant role in river biogeochemical functioning. They notably control the transfer of particle-bound nutrients, have a direct influence on light availability for primary production, and particle accumulation can affect oxic conditions of river beds. In the perspective of improving our current understanding of large scale nutrient fluxes in rivers, it is hence necessary to include these dynamics in global models. In this scope, we implement particle accumulation and remobilization in a coupled global hydrology-nutrient model (IMAGE-GNM), at a spatial resolution of 0.5°. The transfer of soil loss from natural and agricultural lands is simulated mechanistically, from headwater streams to estuaries. First tests of the model are performed in the Mississippi river basin. At a yearly time step for the period 1978-2000, the average difference between simulated and measured suspended sediment concentrations at the most downstream monitoring station is 25%. Sediment retention is estimated in the different Strahler stream orders, in lakes and reservoirs. We discuss: 1) the distribution of sediment loads to small streams, which has a significant effect on transfers through watersheds and larger scale river fluxes and 2) the potential effect of damming on the fate of particle-bound nutrients. These new developments are crucial for future assessments of large scale nutrient and carbon fluxes in river systems.

  18. The Role of Physical and Human Landscape Properties on Carbon Composition of Organic Matter in Tropical Rivers

    NASA Astrophysics Data System (ADS)

    Ballester, M. R.; Krusche, A. V.; Victoria, R. L.; Richey, J. E.; Deegan, L.; Neill, C.

    2011-12-01

    To evaluate physical and human controls organic matter carbon composition in tropical rivers, we applied an integrated analysis of landscape properties and riverine isotopic composition. Our goal was to establish the relationships between basin attributes and forms and composition of dissolved and particulate organic matter in rivers. A GIS template was developed as tool to support the understanding of the biogeochemistry of the surface waters of the Ji-Paraná (Western Amazonia) and the Piracicaba (southeastern of Brazil)rivers. Each basin was divided into drainage units, organized according to river network morphology and degree of land-use impact. The delineated drainage areas were individually characterized in terms of topography, soils and land use using data sets compiled as layers in ArcGis and ERDAS-IMAGINE software. DOM and POM carbon stable isotopic composition were determined at several sites along the main tributaries and small streams. The effects of these drivers on the fluvial carbon was quantified by a multiple linear regression analysis, relating basin characteristics and river isotopic composition. The results showed that relatively recent land cover changes have already had an impact on the composition of the riverine DOM and POM, indicating that, as in natural ecosystems, the vegetation plays a key role in the composition of the riverine organic matter in agricultural systems.

  19. Role of slope stability in cumulative impact assessment of hydropower development: North Cascades, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, R.R.; Staub, W.P.

    1993-08-01

    Two environmental assessments considered the potential cumulative environmental impacts resulting from the development of eight proposed hydropower projects in the Nooksack River Basin and 11 proposed projects in the Skagit River Basin, North Cascades, Washington, respectively. While not identified as a target resource, slope stability and the alteration of sediment supply to creeks and river mainstems significantly affect other resources. The slope stability assessment emphasized the potential for cumulative impacts under disturbed conditions (e.g., road construction and timber harvesting) and a landslide-induced pipeline rupture scenario. In the case of small-scale slides, the sluicing action of ruptured pipeline water on themore » fresh landslide scarp was found to be capable of eroding significantly more material than the original landslide. For large-scale landslides, sluiced material was found to be a small increment of the original landslide. These results predicted that hypothetical accidental pipeline rupture by small-scale landslides may result in potential cumulative impacts for 12 of the 19 projects with pending license applications in both river basins. 5 refs., 2 tabs.« less

  20. Geophysical Characterization of the American River Levees, Sacramento, California, using Electromagnetics, Capacitively Coupled Resistivity, and DC Resistivity

    USGS Publications Warehouse

    Asch, Theodore H.; Deszcz-Pan, Maria; Burton, Bethany L.; Ball, Lyndsay B.

    2008-01-01

    A geophysical characterization of a portion of American River levees in Sacramento, California was conducted in May, 2007. Targets of interest included the distribution and thickness of sand lenses that underlie the levees and the depth to a clay unit that underlies the sand. The concern is that the erosion of these sand lenses can lead to levee failure in highly populated areas of Sacramento. DC resistivity (Geometric?s OhmMapper and Advanced Geosciences, Inc.?s SuperSting R8 systems) and electromagnetic surveys (Geophex?s GEM-2) were conducted over a 6 mile length of the levee on roads and bicycle and horse trails. 2-D inversions were conducted on all the geophysical data. The OhmMapper and SuperSting surveys produced consistent inversion results that delineated potential sand and clay units. GEM-2 apparent resistivity data were consistent with the DC inversion results. However, the GEM-2 data could not be inverted due to low electromagnetic response levels, high ambient electromagnetic noise, and large system drifts. While this would not be as large a problem in conductive terrains, it is a problem for a small induction number electromagnetic profiling system such as the GEM-2 in a resistive terrain (the sand lenses). An integrated interpretation of the geophysical data acquired in this investigation is presented in this report that includes delineation of those areas consisting of predominantly sand and those areas consisting predominantly of clay. In general, along most of this part of the American River levee system, sand lenses are located closest to the river and clay deposits are located further away from the river. The interpreted thicknesses of the detected sand deposits are variable and range from 10 ft up to 60 ft. Thus, despite issues with the GEM-2 inversion, this geophysical investigation successfully delineated sand lenses and clay deposits along the American River levee system and the approximate depths to underlying clay zones. The results of this geophysical investigation should help the USACE to maintain the current levee system while also assisting the designers and planners of levee enhancements with the knowledge of what is to be expected from the near-surface geology and where zones of concern may be located.

  1. Interactions between invasive round gobies (Neogobius melanostomous) and fantail darters (Etheostoma flabellare) in a tributary of the St. Lawrence River, New York, USA

    USGS Publications Warehouse

    Abbett, Ross; Waldt, Emily M.; Johnson, James H.; McKenna, James E.; Dittman, Dawn E.

    2013-01-01

    The initial, rapid expansion of the invasive round goby (Neogobius melanostomus) throughout the Great Lakes drainage was largely confined to lentic systems. We recently observed round gobies ascending two tributaries of the St. Lawrence River. The expansion of gobies into small lotic environments may place ecologically similar species at risk. Fantail darter (Etheostoma flabellare) is one of the several benthic species of the New York Great Lakes drainages that are threatened by round goby invasion. We examined the habitat use and diet composition of fantail darters and round gobies in Mullet Creek, a third-order tributary of the St. Lawrence River, NY, USA. The objectives of this study were to determine the degree of habitat and diet overlap between fantail darters and round gobies in a tributary of the St. Lawrence River. Gobies and darters co-occurred at 22% of capture sites. Of the four habitat variables examined (cover, depth, substrate and velocity), only depth use was significantly different with gobies using deeper habitats than darters. Among the two species and size classes sampled (large vs. small), large darters had the most restricted habitat use requirements. There was variation in round goby and darter diet composition, but only moderate diet overlap occurred between fantail darters and round gobies (Cλ = 0.43). Conditions in Mullet Creek were appropriate for the evaluation of possible spatial and dietary competition between round goby and native darters. Early detection and management of round goby invasions is critical to maintaining ecological integrity of lotic ecosystems in the St. Lawrence Valley.

  2. Stable oxygen isotope variability in two contrasting glacier river catchments in Greenland

    NASA Astrophysics Data System (ADS)

    Yde, Jacob C.; Knudsen, Niels T.; Steffensen, Jørgen P.; Carrivick, Jonathan L.; Hasholt, Bent; Ingeman-Nielsen, Thomas; Kronborg, Christian; Larsen, Nicolaj K.; Mernild, Sebastian H.; Oerter, Hans; Roberts, David H.; Russell, Andrew J.

    2016-03-01

    Analysis of stable oxygen isotope (δ18O) characteristics is a useful tool to investigate water provenance in glacier river systems. In order to attain knowledge on the diversity of δ18O variations in Greenlandic rivers, we examined two contrasting glacierised catchments disconnected from the Greenland Ice Sheet (GrIS). At the Mittivakkat Gletscher river, a small river draining a local temperate glacier in southeast Greenland, diurnal oscillations in δ18O occurred with a 3 h time lag to the diurnal oscillations in run-off. The mean annual δ18O was -14.68 ± 0.18 ‰ during the peak flow period. A hydrograph separation analysis revealed that the ice melt component constituted 82 ± 5 % of the total run-off and dominated the observed variations during peak flow in August 2004. The snowmelt component peaked between 10:00 and 13:00 local time, reflecting the long travel time and an inefficient distributed subglacial drainage network in the upper part of the glacier. At the Kuannersuit Glacier river on the island Qeqertarsuaq in west Greenland, the δ18O characteristics were examined after the major 1995-1998 glacier surge event. The mean annual δ18O was -19.47 ± 0.55 ‰. Despite large spatial variations in the δ18O values of glacier ice on the newly formed glacier tongue, there were no diurnal oscillations in the bulk meltwater emanating from the glacier in the post-surge years. This is likely a consequence of a tortuous subglacial drainage system consisting of linked cavities, which formed during the surge event. Overall, a comparison of the δ18O compositions from glacial river water in Greenland shows distinct differences between water draining local glaciers and ice caps (between -23.0 and -13.7 ‰) and the GrIS (between -29.9 and -23.2 ‰). This study demonstrates that water isotope analyses can be used to obtain important information on water sources and the subglacial drainage system structure that is highly desired for understanding glacier hydrology.

  3. A Modern Analog to the Depositional Age Problem: Zircon and Apatite Fission Track and U-Pb Age Distributions by LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Donelick, H. M.; Donelick, M. B.; Donelick, R. A.

    2012-12-01

    Sand from three river systems in North Idaho (Snake River near Lewiston, Clearwater River near Lewiston and the Salmon River near White Bird) and two regional ash fall events (Mt. Mazama and Mt. St. Helens) were collected for zircon U-Pb detrital age analysis. Up to 120 grains of zircon per sample were ablated using a Resonetics M-50 193 nm ArF Excimer laser ablation (LA) system and the Pb, Th, and U isotopic signals were quantified using an Agilent 7700x quadrupole inductively coupled plasma-mass spectrometer (ICP-MS). Isotopic signals for major, minor, and trace elements, including all REEs, were also monitored. The youngest zircon U-Pb ages from the river samples were approximately 44 Ma; Cenozoic Idaho Batholith and Precambrian Belt Supergroup ages were well represented. Significant common Pb contamination of the Clearwater River sample (e.g., placer native Cu was observed in the sample) precluded detailed analysis of the zircon U-Pb ages but no interpretable ages <44 Ma were observed. Interestingly, not one of the river samples yielded zircon U-Pb ages near 0 Ma, despite all three catchment areas having received significant ash from Mt. St. Helens in 1980, and Mount Mazama 7,700 years ago, and no doubt other events during the Quaternary. Work currently in progress seeks to address bias against near 0 Ma ages in the catchment areas due to: a) small, local ash fall grain sizes and b) overwhelming number of older grains relative to the ash fall grains. Data from Mt. St. Helens ash from several localities near the mountain (Toutle River and Maple Flats, WA) and several far from the mountain (Spokane, WA; Princeton, ID; Kalispell, MT) and Mt. Mazama ash fall deposits near Lewiston, ID and Spokane, WA will be presented to address these possibilities. Additionally, fission track and U-Pb ages from apatites collected from these river and ash fall samples will also be shown to help constrain the problem.

  4. UHF RiverSonde observations of water surface velocity at Threemile Slough, California

    USGS Publications Warehouse

    Teague, C.C.; Barrick, D.E.; Lilleboe, P.M.; Cheng, R.T.; Ruhl, C.A.

    2005-01-01

    A UHF RiverSonde system, operating near 350 MHz, has been in operation at Threemile Slough in central California, USA since September 2004. The water in the slough is dominated by tidal effects, with flow reversals four times a day and a peak velocity of about 0.8 m/s in each direction. Water level and water velocity are continually measured by the U. S. Geological Survey at the experiment site. The velocity is measured every 15 minutes by an ultrasonic velocity meter (UVM) which determines the water velocity from two-way acoustic propagation time-difference measurements made across the channel. The RiverSonde also measures surface velocity every 15 minutes using radar resonant backscatter techniques. Velocity and water level data are retrieved through a radio data link and a wideband internet connection. Over a period of several months, the radar-derived mean surface velocity has been very highly correlated with the UVM index velocity several meters below the surface, with a coefficient of determination R2 of 0.976 and an RMS difference of less than 10 cm/s. The wind has a small but measurable effect on the velocities measured by both instruments. In addition to the mean surface velocity across the channel, the RiverSonde system provides an estimate of the cross-channel variation of the surface velocity. ?? 2005 IEEE.

  5. Ecosystem effects of environmental flows: Modelling and experimental floods in a dryland river

    USGS Publications Warehouse

    Shafroth, P.B.; Wilcox, A.C.; Lytle, D.A.; Hickey, J.T.; Andersen, D.C.; Beauchamp, Vanessa B.; Hautzinger, A.; McMullen, L.E.; Warner, A.

    2010-01-01

    Successful environmental flow prescriptions require an accurate understanding of the linkages among flow events, geomorphic processes and biotic responses. We describe models and results from experimental flow releases associated with an environmental flow program on the Bill Williams River (BWR), Arizona, in arid to semiarid western U.S.A. Two general approaches for improving knowledge and predictions of ecological responses to environmental flows are: (1) coupling physical system models to ecological responses and (2) clarifying empirical relationships between flow and ecological responses through implementation and monitoring of experimental flow releases. We modelled the BWR physical system using: (1) a reservoir operations model to simulate reservoir releases and reservoir water levels and estimate flow through the river system under a range of scenarios, (2) one- and two-dimensional river hydraulics models to estimate stage-discharge relationships at the whole-river and local scales, respectively, and (3) a groundwater model to estimate surface- and groundwater interactions in a large, alluvial valley on the BWR where surface flow is frequently absent. An example of a coupled, hydrology-ecology model is the Ecosystems Function Model, which we used to link a one-dimensional hydraulic model with riparian tree seedling establishment requirements to produce spatially explicit predictions of seedling recruitment locations in a Geographic Information System. We also quantified the effects of small experimental floods on the differential mortality of native and exotic riparian trees, on beaver dam integrity and distribution, and on the dynamics of differentially flow-adapted benthic macroinvertebrate groups. Results of model applications and experimental flow releases are contributing to adaptive flow management on the BWR and to the development of regional environmental flow standards. General themes that emerged from our work include the importance of response thresholds, which are commonly driven by geomorphic thresholds or mediated by geomorphic processes, and the importance of spatial and temporal variation in the effects of flows on ecosystems, which can result from factors such as longitudinal complexity and ecohydrological feedbacks. ?? Published 2009.

  6. Bronx River bed sediments phosphorus pool and phosphorus compound identification

    NASA Astrophysics Data System (ADS)

    Wang, J.; Pant, H. K.

    2008-12-01

    Phosphorus (P) transport in the Bronx River degraded water quality, decreased oxygen levels, and resulted in bioaccumulation in sediment potentially resulting in eutrophication, algal blooms and oxygen depletion under certain temperature and pH conditions. The anthropogenic P sources are storm water runoff, raw sewage discharge, fertilizer application in lawn, golf course and New York Botanical Garden; manure from the Bronx zoo; combined sewoverflows (CSO's) from parkway and Hunts Point sewage plant; pollutants from East River. This research was conducted in the urban river system in New York City area, in order to control P source, figure out P transport temporal and spatial variations and the impact on water quality; aimed to regulate P application, sharing data with Bronx River Alliance, EPA, DEP and DEC. The sediment characteristics influence the distribution and bioavailbility of P in the Bronx River. The P sequential extraction gave the quantitative analysis of the P pool, quantifying the inorganic and organic P from the sediments. There were different P pool patterns at the 15 sites, and the substantial amount of inorganic P pool indicated that a large amount P is bioavailable. The 31P- NMR (Nuclear Magnetic Resonance Spectroscopy) technology had been used to identify P species in the 15 sites of the Bronx River, which gave a qualitative analysis on phosphorus transport in the river. The P compounds in the Bronx River bed sediments are mostly glycerophophate (GlyP), nucleoside monophosphates (NMP), polynucleotides (PolyN), and few sites showed the small amount of glucose-6-phosphate (G6P), glycerophosphoethanoamine (GPEA), phosphoenopyruvates (PEP), and inosine monophosphate (IMP). The land use spatial and temporal variations influence local water P levels, P distributions, and P compositions.

  7. Calibration of a transient transport model to tritium data in streams and simulation of groundwater ages in the western Lake Taupo catchment, New Zealand

    NASA Astrophysics Data System (ADS)

    Gusyev, M. A.; Toews, M.; Morgenstern, U.; Stewart, M.; White, P.; Daughney, C.; Hadfield, J.

    2013-03-01

    Here we present a general approach of calibrating transient transport models to tritium concentrations in river waters developed for the MT3DMS/MODFLOW model of the western Lake Taupo catchment, New Zealand. Tritium has a known pulse-shaped input to groundwater systems due to the bomb tritium in the early 1960s and, with its radioactive half-life of 12.32 yr, allows for the determination of the groundwater age. In the transport model, the tritium input (measured in rainfall) passes through the groundwater system, and the simulated tritium concentrations are matched to the measured tritium concentrations in the river and stream outlets for the Waihaha, Whanganui, Whareroa, Kuratau and Omori catchments from 2000-2007. For the Kuratau River, tritium was also measured between 1960 and 1970, which allowed us to fine-tune the transport model for the simulated bomb-peak tritium concentrations. In order to incorporate small surface water features in detail, an 80 m uniform grid cell size was selected in the steady-state MODFLOW model for the model area of 1072 km2. The groundwater flow model was first calibrated to groundwater levels and stream baseflow observations. Then, the transient tritium transport MT3DMS model was matched to the measured tritium concentrations in streams and rivers, which are the natural discharge of the groundwater system. The tritium concentrations in the rivers and streams correspond to the residence time of the water in the groundwater system (groundwater age) and mixing of water with different age. The transport model output showed a good agreement with the measured tritium values. Finally, the tritium-calibrated MT3DMS model is applied to simulate groundwater ages, which are used to obtain groundwater age distributions with mean residence times (MRTs) in streams and rivers for the five catchments. The effect of regional and local hydrogeology on the simulated groundwater ages is investigated by demonstrating groundwater ages at five model cross-sections to better understand MRTs simulated with tritium-calibrated MT3DMS and lumped parameter models.

  8. Hydro-economic performances of streamflow withdrawal strategies: the case of small run-of-river power plants

    NASA Astrophysics Data System (ADS)

    Basso, Stefano; Lazzaro, Gianluca; Schirmer, Mario; Botter, Gianluca

    2014-05-01

    River flows withdrawals to supply small run-of-river hydropower plants have been increasing significantly in recent years - particularly in the Alpine area - as a consequence of public incentives aimed at enhancing energy production from renewable sources. This growth further raised the anthropic pressure in areas traditionally characterized by an intense exploitation of water resources, thereby triggering social conflicts among local communities, hydropower investors and public authorities. This brought to the attention of scientists and population the urgency for novel and quantitative tools for assessing the hydrologic impact of these type of plants, and trading between economic interests and ecologic concerns. In this contribution we propose an analytical framework that allows for the estimate of the streamflow availability for hydropower production and the selection of the run-of-river plant capacity, as well as the assessment of the related profitability and environmental impacts. The method highlights the key role of the streamflow variability in the design process, by showing the significance control of the coefficient of variation of daily flows on the duration of the optimal capacity of small run-of-river plants. Moreover, the analysis evidences a gap between energy and economic optimizations, which may result in the under-exploitation of the available hydropower potential at large scales. The disturbances to the natural flow regime produced between the intake and the outflow of run-of-river power plants are also estimated within the proposed framework. The altered hydrologic regime, described through the probability distribution and the correlation function of streamflows, is analytically expressed as a function of the natural regime for different management strategies. The deviations from pristine conditions of a set of hydrologic statistics are used, jointly with an economic index, to compare environmental and economic outcomes of alternative plant setups and management strategies. Benefits connected to ecosystem services provided by unimpaired riverine environments can be also included in the analysis, possibly accounting for the disruptive effect of multiple run-of-river power plants built in cascade along the same river. The application to case studies in the Alpine region shows the potential of the tool to assess different management strategies and design solution, and to evaluate local and catchment scale impacts of small run-of-river hydropower development.

  9. An index-based framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at multiple scales

    NASA Astrophysics Data System (ADS)

    Grill, Günther; Lehner, Bernhard; Lumsdon, Alexander E.; MacDonald, Graham K.; Zarfl, Christiane; Reidy Liermann, Catherine

    2015-01-01

    The global number of dam constructions has increased dramatically over the past six decades and is forecast to continue to rise, particularly in less industrialized regions. Identifying development pathways that can deliver the benefits of new infrastructure while also maintaining healthy and productive river systems is a great challenge that requires understanding the multifaceted impacts of dams at a range of scales. New approaches and advanced methodologies are needed to improve predictions of how future dam construction will affect biodiversity, ecosystem functioning, and fluvial geomorphology worldwide, helping to frame a global strategy to achieve sustainable dam development. Here, we respond to this need by applying a graph-based river routing model to simultaneously assess flow regulation and fragmentation by dams at multiple scales using data at high spatial resolution. We calculated the cumulative impact of a set of 6374 large existing dams and 3377 planned or proposed dams on river connectivity and river flow at basin and subbasin scales by fusing two novel indicators to create a holistic dam impact matrix for the period 1930-2030. Static network descriptors such as basin area or channel length are of limited use in hierarchically nested and dynamic river systems, so we developed the river fragmentation index and the river regulation index, which are based on river volume. These indicators are less sensitive to the effects of network configuration, offering increased comparability among studies with disparate hydrographies as well as across scales. Our results indicate that, on a global basis, 48% of river volume is moderately to severely impacted by either flow regulation, fragmentation, or both. Assuming completion of all dams planned and under construction in our future scenario, this number would nearly double to 93%, largely due to major dam construction in the Amazon Basin. We provide evidence for the importance of considering small to medium sized dams and for the need to include waterfalls to establish a baseline of natural fragmentation. Our versatile framework can serve as a component of river fragmentation and connectivity assessments; as a standardized, easily replicable monitoring framework at global and basin scales; and as part of regional dam planning and management strategies.

  10. Bridging the gaps: An overview of wood across time and space in diverse rivers

    NASA Astrophysics Data System (ADS)

    Wohl, Ellen

    2017-02-01

    Nearly 50 years of research focused on large wood (LW) in rivers provide a basis for understanding how wood enters rivers; how wood decays, breaks, and is transported downstream; and how at least temporarily stable wood influences channel geometry, fluxes of water, sediment, and organic matter, and the abundance and diversity of aquatic and riparian organisms. Field-based studies have led to qualitative conceptual models and to numerical stimulations of river processes involving wood. Numerous important gaps remain, however, in our understanding of wood dynamics. The majority of research on wood in rivers focuses on small- to medium-sized rivers, defined using the ratio of wood piece size to channel width as channels narrower than the locally typical wood-piece length (small) and slightly narrower than the longer wood pieces present (medium). Although diverse geographic regions and biomes are represented by one or a few studies in each region, the majority of research comes from perennial rivers draining temperate conifer forests. Regional syntheses most commonly focus on the Pacific Northwest region of North America where most of these studies originate. Consequently, significant gaps in our understanding include lack of knowledge of wood-related processes in large rivers, dryland rivers, and rivers of the high and low latitudes. Using a wood budget as an organizing framework, this paper identifies other gaps related to wood recruitment, transport, storage, and how beavers influence LW dynamics. With respect to wood recruitment, we lack information on the relative importance of mass tree mortality and transport of buried or surficial downed wood from the floodplain into the channel in diverse settings. Knowledge gaps related to wood transport include transport distances of LW and thresholds for LW mobility in small to medium rivers. With respect to wood storage, we have limited data on longitudinal trends in LW loads within unaltered large and great rivers and on fluctuations in LW load over time intervals greater than a few years. Other knowledge gaps relate to physical and ecological effects of wood, including the magnitude of flow resistance caused by LW; patterns of wood-related sediment storage for diverse river sizes and channel geometry; quantification of channel-floodplain-LW interactions; and potential threshold effects of LW in relation to physical processes and biotic communities. Finally, knowledge gaps are related to management of large wood and river corridors, including understanding the consequences of enormous historical reductions in LW load in rivers through the forested portions of the temperate zone; and how to effectively reintroduce and manage existing LW in river corridors, which includes enhancing public understanding of the importance of LW. Addressing these knowledge gaps requires more case studies from diverse rivers, as well as more syntheses and metadata analyses.

  11. A study of the Flint River, Michigan, as it relates to low-flow augmentation

    USGS Publications Warehouse

    Hulbert, Gordon C.

    1972-01-01

    One of the uses of the Flint River is dilution of waste-water. Population and industrial growth in the Flint area hah placed new demands on the stream and emphasized the need for an analysis of the surface water resources of the basin. This report describes selected streamflow characteristics of the Flint River and its tributaries, and presents draft-storage relations for the river basin. Flow characteristics for 17 sites show that the 7-day 2-year low flow ranges from 0 to 0.17 cfs (cubic feet per second) per square mile. Draft-storage relations for the basin show that existing storage, if fully utilized, could, on an average, provide a minimum discharge at Montrose of 160 cfs in 19 out of 20 years. The discharge, in conjunction with water diverted from Lake Huron to the Flint River through the Detroit and Flint water systems (about 60 cfs in 1971), indicates that low flows would seldom be less than about 200 cfs at Montrose. Diversions from the basin for irrigation may reduce low flows by about 12 cfs. Ground-water sources offer small potential for development of large supplies of water for streamflow augmentation, although wells in the glacial deposits may provide a supplemental source of water at some locations.

  12. Assessing ecological water quality with macroinvertebrates and fish: a case study from a small Mediterranean river.

    PubMed

    Cheimonopoulou, Maria Th; Bobori, Dimitra C; Theocharopoulos, Ioannis; Lazaridou, Maria

    2011-02-01

    Biological elements, such as benthic macroinvertebrates and fish, have been used in assessing the ecological quality of rivers according to the requirements of the Water Framework Directive. However, the concurrent use of multiple organism groups provides a broader perspective for such evaluations, since each biological element may respond differently to certain environmental variables. In the present study, we assessed the ecological quality of a Greek river (RM4 type), during autumn 2003 and spring 2004 at 10 sites, with benthic macroinvertebrates and fish. Hydromorphological and physicochemical parameters, habitat structure, and riparian vegetation were also considered. Pollution sensitive macroinvertebrate taxa were more abundant at headwaters, which had good/excellent water quality according to the Hellenic Evaluation System (HES). The main river reaches possessed moderate water quality, while downstream sites were mainly characterised as having bad or poor water quality, dominated by pollution-tolerant macroinvertebrate taxa. Macroinvertebrates related strongly to local stressors as chemical degradation (ordination analysis CCA) and riparian quality impairment (bivariate analysis) while fish did not. Fish were absent from the severely impacted lower river reaches. Furthermore, external pathological signs were observed in fish caught at certain sites. A combined use of both macroinvertebrates and fish in biomonitoring programs is proposed for providing a safer assessment of local and regional habitat impairment.

  13. Spatial heterogeneity study of vegetation coverage at Heihe River Basin

    NASA Astrophysics Data System (ADS)

    Wu, Lijuan; Zhong, Bo; Guo, Liyu; Zhao, Xiangwei

    2014-11-01

    Spatial heterogeneity of the animal-landscape system has three major components: heterogeneity of resource distributions in the physical environment, heterogeneity of plant tissue chemistry, heterogeneity of movement modes by the animal. Furthermore, all three different types of heterogeneity interact each other and can either reinforce or offset one another, thereby affecting system stability and dynamics. In previous studies, the study areas are investigated by field sampling, which costs a large amount of manpower. In addition, uncertain in sampling affects the quality of field data, which leads to unsatisfactory results during the entire study. In this study, remote sensing data is used to guide the sampling for research on heterogeneity of vegetation coverage to avoid errors caused by randomness of field sampling. Semi-variance and fractal dimension analysis are used to analyze the spatial heterogeneity of vegetation coverage at Heihe River Basin. The spherical model with nugget is used to fit the semivariogram of vegetation coverage. Based on the experiment above, it is found, (1)there is a strong correlation between vegetation coverage and distance of vegetation populations within the range of 0-28051.3188m at Heihe River Basin, but the correlation loses suddenly when the distance greater than 28051.3188m. (2)The degree of spatial heterogeneity of vegetation coverage at Heihe River Basin is medium. (3)Spatial distribution variability of vegetation occurs mainly on small scales. (4)The degree of spatial autocorrelation is 72.29% between 25% and 75%, which means that spatial correlation of vegetation coverage at Heihe River Basin is medium high.

  14. This Glorious Mud Pile (Rocky River Valley). Revised Edition.

    ERIC Educational Resources Information Center

    Cabbage, Mary Ellen

    This student text focuses on the social and geological history of a river basin. In addition to background information, the text includes student worksheets for 12 field trip stops in Ohio's Rocky River Valley. Material is designed to support a full-day field trip during which students work in small groups. Also included are a geological…

  15. Modeling and assessing nitrogen delivery in the Calapooia River Watershed, and the impact of small streams delivery on downstream watershed

    EPA Science Inventory

    The Calapooia River is a major tributary to the Willamette River in western Oregon, which is characterized by a mountainous forested upland and a flat agricultural lowland. Here we report on a modeling study of watershed’s N budget, and quantify the influence of different...

  16. 33 CFR 263.13 - Program scope.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... authority. Section 107, River and Harbor Act of 1960, as amended (33 U.S.C 577). (e) Authority for snagging and clearing for navigation. Section 3, River and Harbor Act of 1945 (33 U.S.C 603a). (f) Small beach erosion control project authority. Section 103, River and Harbor Act of 1962, as amended (33 U.S.C. 426g...

  17. Water Resources of the Ground-Water System in the Unconsolidated Deposits of the Colville River Watershed, Stevens County, Washington

    USGS Publications Warehouse

    Kahle, Sue C.; Longpre, Claire I.; Smith, Raymond R.; Sumioka, Steve S.; Watkins, Anni M.; Kresch, David L.

    2003-01-01

    A study of the water resources of the ground-water system in the unconsolidated deposits of the Colville River Watershed provided the Colville River Watershed Planning Team with an assessment of the hydrogeologic framework, preliminary determinations of how the shallow and deeper parts of the ground-water system interact with each other and the surface-water system, descriptions of water-quantity characteristics including water-use estimates and an estimated water budget for the watershed, and an assessment of further data needs. The 1,007-square-mile watershed, located in Stevens County in northeastern Washington, is closed to further surface-water appropriations throughout most of the basin during most seasons. The information provided by this study will assist local watershed planners in assessing the status of water resources within the Colville River Watershed (Water Resources Inventory Area 59). The hydrogeologic framework consists of glacial and alluvial deposits that overlie bedrock and are more than 700 feet thick in places. Twenty-six hydrogeologic sections were constructed, using a map of the surficial geology and drillers' logs for more than 350 wells. Seven hydrogeologic units were delineated: the Upper outwash aquifer, the Till confining unit, the Older outwash aquifer, the Colville Valley confining unit, the Lower aquifer, the Lower confining unit, and Bedrock. Synoptic stream discharge measurements made in September 2001 identified gaining and losing reaches over the unconsolidated valley deposits. During the September measurement period, the Colville River gained flow from the shallow ground-water system near its headwaters to the town of Valley and lost flow to the shallow ground-water system from Valley to Chewelah. Downstream from Chewelah, the river generally lost flow, but the amounts lost were small and within measurement error. Ground-water levels indicate that the Lower aquifer and the shallow ground-water system may act as fairly independent systems. The presence of flowing wells completed in the Lower aquifer indicates upward head gradients along much of the Colville Valley floor. Total surface- and ground-water withdrawals during 2001 were estimated to be 9,340 million gallons. Water use for 2001, as a percentage of the total, was 75.3 percent for irrigation, 16.3 percent for public supply, 6.5 percent for private wells, and about 1 percent each for industrial and livestock use. An approximate water budget for a typical year in the Colville River Watershed shows that 27 inches of precipitation are balanced by 4.2 inches of streamflow discharge from the basin, 0.3 inch of ground-water discharge from the basin, and 22.5 inches of evapotranspiration.

  18. Development of a System-Wide Predator Control Program: Stepwise Implementation of a Predation Index, Predator Control Fisheries, and Evaluation Plan in the Columbia River Basin; Northern Pikeminnow Management Program, 2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, Russell G.; Winther, Eric C.; Fox, Lyle G.

    2004-01-01

    This report presents results for year twelve in a basin-wide program to harvest northern pikeminnow1 (Ptychocheilus oregonensis). This program was started in an effort to reduce predation by northern pikeminnow on juvenile salmonids during their emigration from natal streams to the ocean. Earlier work in the Columbia River Basin suggested predation by northern pikeminnow on juvenile salmonids might account for most of the 10-20% mortality juvenile salmonids experience in each of eight Columbia River and Snake River reservoirs. Modeling simulations based on work in John Day Reservoir from 1982 through 1988 indicated that, if predator-size northern pikeminnow were exploited atmore » a 10-20% rate, the resulting restructuring of their population could reduce their predation on juvenile salmonids by 50%. To test this hypothesis, we implemented a sport-reward angling fishery and a commercial longline fishery in the John Day Pool in 1990. We also conducted an angling fishery in areas inaccessible to the public at four dams on the mainstem Columbia River and at Ice Harbor Dam on the Snake River. Based on the success of these limited efforts, we implemented three test fisheries on a system-wide scale in 1991--a tribal longline fishery above Bonneville Dam, a sport-reward fishery, and a dam-angling fishery. Low catch of target fish and high cost of implementation resulted in discontinuation of the tribal longline fishery. However, the sport-reward and dam-angling fisheries were continued in 1992 and 1993. In 1992, we investigated the feasibility of implementing a commercial longline fishery in the Columbia River below Bonneville Dam and found that implementation of this fishery was also infeasible. Estimates of combined annual exploitation rates resulting from the sport-reward and damangling fisheries remained at the low end of our target range of 10-20%. This suggested the need for additional effective harvest techniques. During 1991 and 1992, we developed and tested a modified (small-sized) Merwin trapnet. We found this floating trapnet to be very effective in catching northern pikeminnow at specific sites. Consequently, in 1993 we examined a system-wide fishery using floating trapnets, but found this fishery to be ineffective at harvesting large numbers of northern pikeminnow on a system-wide scale.« less

  19. INTELLIGENT COMPUTING SYSTEM FOR RESERVOIR ANALYSIS AND RISK ASSESSMENT OF THE RED RIVER FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenneth D. Luff

    2002-06-30

    Integrated software has been written that comprises the tool kit for the Intelligent Computing System (ICS). Luff Exploration Company is applying these tools for analysis of carbonate reservoirs in the southern Williston Basin. The integrated software programs are designed to be used by small team consisting of an engineer, geologist and geophysicist. The software tools are flexible and robust, allowing application in many environments for hydrocarbon reservoirs. Keystone elements of the software tools include clustering and neural-network techniques. The tools are used to transform seismic attribute data to reservoir characteristics such as storage (phi-h), probable oil-water contacts, structural depths andmore » structural growth history. When these reservoir characteristics are combined with neural network or fuzzy logic solvers, they can provide a more complete description of the reservoir. This leads to better estimates of hydrocarbons in place, areal limits and potential for infill or step-out drilling. These tools were developed and tested using seismic, geologic and well data from the Red River Play in Bowman County, North Dakota and Harding County, South Dakota. The geologic setting for the Red River Formation is shallow-shelf carbonate at a depth from 8000 to 10,000 ft.« less

  20. INTELLIGENT COMPUTING SYSTEM FOR RESERVOIR ANALYSIS AND RISK ASSESSMENT OF THE RED RIVER FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenneth D. Luff

    2002-09-30

    Integrated software has been written that comprises the tool kit for the Intelligent Computing System (ICS). Luff Exploration Company is applying these tools for analysis of carbonate reservoirs in the southern Williston Basin. The integrated software programs are designed to be used by small team consisting of an engineer, geologist and geophysicist. The software tools are flexible and robust, allowing application in many environments for hydrocarbon reservoirs. Keystone elements of the software tools include clustering and neural-network techniques. The tools are used to transform seismic attribute data to reservoir characteristics such as storage (phi-h), probable oil-water contacts, structural depths andmore » structural growth history. When these reservoir characteristics are combined with neural network or fuzzy logic solvers, they can provide a more complete description of the reservoir. This leads to better estimates of hydrocarbons in place, areal limits and potential for infill or step-out drilling. These tools were developed and tested using seismic, geologic and well data from the Red River Play in Bowman County, North Dakota and Harding County, South Dakota. The geologic setting for the Red River Formation is shallow-shelf carbonate at a depth from 8000 to 10,000 ft.« less

  1. Body size drives allochthony in food webs of tropical rivers.

    PubMed

    Jardine, Timothy D; Rayner, Thomas S; Pettit, Neil E; Valdez, Dominic; Ward, Douglas P; Lindner, Garry; Douglas, Michael M; Bunn, Stuart E

    2017-02-01

    Food web subsidies from external sources ("allochthony") can support rich biological diversity and high secondary and tertiary production in aquatic systems, even those with low rates of primary production. However, animals vary in their degree of dependence on these subsidies. We examined dietary sources for aquatic animals restricted to refugial habitats (waterholes) during the dry season in Australia's wet-dry tropics, and show that allochthony is strongly size dependent. While small-bodied fishes and invertebrates derived a large proportion of their diet from autochthonous sources within the waterhole (phytoplankton, periphyton, or macrophytes), larger animals, including predatory fishes and crocodiles, demonstrated allochthony from seasonally inundated floodplains, coastal zones or the surrounding savanna. Autochthony declined roughly 10% for each order of magnitude increase in body size. The largest animals in the food web, estuarine crocodiles (Crocodylus porosus), derived ~80% of their diet from allochthonous sources. Allochthony enables crocodiles and large predatory fish to achieve high biomass, countering empirically derived expectations for negative density vs. body size relationships. These results highlight the strong degree of connectivity that exists between rivers and their floodplains in systems largely unaffected by river regulation or dams and levees, and how large iconic predators could be disproportionately affected by these human activities.

  2. Geochemical processes in the Onyx River, Wright Valley, Antarctica: Major ions, nutrients, trace metals

    NASA Astrophysics Data System (ADS)

    Green, William J.; Stage, Brian R.; Preston, Adam; Wagers, Shannon; Shacat, Joseph; Newell, Silvia

    2005-02-01

    We present data on major ions, nutrients and trace metals in an Antarctic stream. The Onyx River is located in Wright Valley (77-32 S; 161-34 E), one of a group of ancient river and glacier-carved landforms that comprise the McMurdo Dry Valleys of Antarctica. The river is more than 30 km long and is the largest of the glacial meltwater streams that characterize this relatively ice-free region near the Ross Sea. The complete absence of rainfall in the region and the usually small contributions of glacially derived tributaries to the main channel make this a comparatively simple system for geochemical investigation. Moreover, the lack of human impacts, past or present, provides an increasingly rare window onto a pristine aquatic system. For all major ions and silica, we observe increasing concentrations with distance from Lake Brownworth down to the recording weir near Lake Vanda. Chemical weathering rates are unexpectedly high and may be related to the rapid dissolution of ancient carbonate deposits and to the severe physical weathering associated with the harsh Antarctic winter. Of the nutrients, nitrate and dissolved reactive phosphate appear to have quite different sources. Nitrate is enriched in waters near the Lower Wright Glacier and may ultimately be derived from stratospheric sources; while phosphate is likely to be the product of chemical weathering of valley rocks and soils. We confirm the work of earlier investigations regarding the importance of the Boulder Pavement as a nutrient sink. Dissolved Mn, Fe, Ni, Cu, and Cd are present at nanomolar levels and, in all cases, the concentrations of these metals are lower than in average world river water. We hypothesize that metal uptake and exchange with particulate phases along the course of the river may serve as a buffer for the dissolved load. Concurrent study of these three solute classes points out significant differences in the mechanisms and sites of their removal from the Onyx River.

  3. Development of a time-stepping sediment budget model for assessing land use impacts in large river basins.

    PubMed

    Wilkinson, S N; Dougall, C; Kinsey-Henderson, A E; Searle, R D; Ellis, R J; Bartley, R

    2014-01-15

    The use of river basin modelling to guide mitigation of non-point source pollution of wetlands, estuaries and coastal waters has become widespread. To assess and simulate the impacts of alternate land use or climate scenarios on river washload requires modelling techniques that represent sediment sources and transport at the time scales of system response. Building on the mean-annual SedNet model, we propose a new D-SedNet model which constructs daily budgets of fine sediment sources, transport and deposition for each link in a river network. Erosion rates (hillslope, gully and streambank erosion) and fine sediment sinks (floodplains and reservoirs) are disaggregated from mean annual rates based on daily rainfall and runoff. The model is evaluated in the Burdekin basin in tropical Australia, where policy targets have been set for reducing sediment and nutrient loads to the Great Barrier Reef (GBR) lagoon from grazing and cropping land. D-SedNet predicted annual loads with similar performance to that of a sediment rating curve calibrated to monitored suspended sediment concentrations. Relative to a 22-year reference load time series at the basin outlet derived from a dynamic general additive model based on monitoring data, D-SedNet had a median absolute error of 68% compared with 112% for the rating curve. RMS error was slightly higher for D-SedNet than for the rating curve due to large relative errors on small loads in several drought years. This accuracy is similar to existing agricultural system models used in arable or humid environments. Predicted river loads were sensitive to ground vegetation cover. We conclude that the river network sediment budget model provides some capacity for predicting load time-series independent of monitoring data in ungauged basins, and for evaluating the impact of land management on river sediment load time-series, which is challenging across large regions in data-poor environments. © 2013. Published by Elsevier B.V. All rights reserved.

  4. Simulating Salt Movement and Transformation using a Coupled Reactive Transport Model in Variably-Saturated Groundwater Systems

    NASA Astrophysics Data System (ADS)

    Tavakoli Kivi, S.; Bailey, R. T.; Gates, T.

    2016-12-01

    Salinization is one of the major concerns in irrigated agricultural landscapes. Increasing salinity concentrations are due principally to evaporative concentration; dissolution of salts from weathered minerals and bedrock; and a high water table that results from excessive irrigation, canal seepage, and a lack of efficient drainage systems; leading to decreasing crop yield. High groundwater salinity loading to nearby river systems also impacts downstream areas, with saline river water diverted for application on irrigated fields. In this study, a solute transport model coupled with equilibrium chemistry reactions has been developed to simulate transport of individual salt ions in regional-scale aquifer systems and thereby investigate strategies for salinity remediation. The physically-based numerical model is based on the UZF-RT3D variably-saturated, multi-species groundwater reactive transport modeling code, and accounts for advection, dispersion, carbon and nitrogen cycling, oxidation-reduction reactions, and salt ion equilibrium chemistry reactions such as complexation, ion exchange, and precipitation/dissolution. Each major salt ion (sulfate, chloride, bicarbonate, calcium, sodium, magnesium, potassium) is included. The model has been tested against measured soil salinity at a small scale (soil profile) and against soil salinity, groundwater salinity, and groundwater salinity loading to surface water at the regional scale (500 km2) in the Lower Arkansas River Valley (LARV) in southeastern Colorado, an area acutely affected by salinization for many decades and greatly influenced by gypsum deposits. Preliminary results of using the model in scenario analysis suggest that increasing irrigation efficiency, sealing earthen canals, and rotational fallowing of land can decrease the groundwater salt load to the Arkansas River by 50 to 70% and substantially lower soil salinity in the root zone.

  5. Pore-Water Chemistry and Hydrology in a Spring-Fed River: Implications for Hyporheic Control of Nutrient Cycling and Speleogenesis

    NASA Astrophysics Data System (ADS)

    Kurz, M. J.; Martin, J. B.; Cohen, M. J.

    2010-12-01

    Hyporheic exchange is important for nutrient cycling in rivers, but little is known about the magnitude of this process in karst systems or its influence on speleogenesis and the formation of river channels. We use four pore-water depth profiles to assess nutrient and carbonate processing in the hyporheic zone (HZ) of the Ichetucknee River (north-central, Florida). Co-located pairs of stilling wells equipped with conductivity, temperature, depth (CTD) sensors are used to continuously monitor the hydraulic gradients within the HZ to determine flow directions and temporal variability of groundwater exchange. The Ichetucknee River is sourced from six major and numerous small springs which discharge from the karstic Floridan Aquifer. Downstream and diel variations in nitrate concentrations, specific conductivity and calcite saturation state reflect in-stream processing, but hyporheic exchange should also influence the overall dynamics of nutrient and carbonate fluxes in the river. Our depth profiles and stilling wells are located at four sites in a cross-channel transect and extend through unconsolidated sediment to the solid carbonate of the Floridan Aquifer 35-156 cm below the river bed. Decreasing DOC, pH, and DO concentrations and increased DIC are indicative of organic carbon remineralization in the shallow sediments. Increasing alkalinity, Ca concentrations, specific conductivity and decreasing calcite saturation state indicate carbonate dissolution being driven by the decreasing pH. Decreasing nitrate concentrations indicate denitrification and increasing phosphate concentration could be a result of carbonate dissolution or OC remineralization. Most of these changes appear to occur in the upper 60cm of sediment, below which many concentrations return to values observed in the groundwater, suggesting water discharges from the Floridan Aquifer at the base of the sediment. Hydraulic head is higher in the pore waters than the river indicating groundwater then discharges to the river. Initial modeling of the system indicates that flow through the channel sediment moves horizontally and discharges into the river through the incised channel rather than upwards through the most reactive hyporheic sediments. While differences in chemical composition between the pore water and river water suggest the chemically altered pore water could affect chemical composition of the river it remains unclear the relative fractions of ground water and chemically altered pore water that flow into the river. Future work will attempt to quantify the magnitude of these exchanges over a range of hydrologic conditions.

  6. Integrated Hydro-geomorphological Monitoring System of the Upper Bussento river basin (Cilento and Vallo Diano Geopark, S-Italy)

    NASA Astrophysics Data System (ADS)

    Guida, D.; Cuomo, A.; Longobardi, A.; Villani, P.; Guida, M.; Guadagnuolo, D.; Cestari, A.; Siervo, V.; Benevento, G.; Sorvino, S.; Doto, R.; Verrone, M.; De Vita, A.; Aloia, A.; Positano, P.

    2012-04-01

    The Mediterranean river ecosystem functionings are supported by river-aquifer interactions. The assessment of their ecological services requires interdisciplinary scientific approaches, integrate monitoring systems and inter-institutional planning and management. This poster illustrates the Hydro-geomorphological Monitoring System build-up in the Upper Bussento river basin by the University of Salerno, in agreement with the local Basin Autorities and in extension to the other river basins located in the Cilento and Vallo Diano National Park (southern Italy), recently accepted in the European Geopark Network. The Monitoring System is based on a hierarchical Hydro-geomorphological Model (HGM), improved in a multiscale, nested and object-oriented Hydro-geomorphological Informative System (HGIS, Figure 1). Hydro-objects are topologically linked and functionally bounded by Hydro-elements at various levels of homogeneity (Table 1). Spatial Hydro-geomorpho-system, HG-complex and HG-unit support respectively areal Hydro-objects, as basin, sector and catchment and linear Hydro-objects, as river, segment, reach and section. Runoff initiation points, springs, disappearing points, junctions, gaining and water losing points complete the Hydro-systems. An automatic procedure use the Pfafstetter coding to hierarchically divide a terrain into arbitrarily small hydro-geomorphological units (basin, interfluve, headwater and no-contribution areas, each with a unique label with hierarchical topological properties. To obtain a hierarchy of hydro-geomorphological units, the method is then applied recursively on each basin and interbasin, and labels of the subdivided regions are appended to the existing label of the original region. The monitoring stations are ranked consequently in main, secondary, temporary and random and located progressively at the points or sections representative for the hydro-geomorphological responses by validation control and modeling calibration. The datasets are organized into a relational geodatabase supporting tracer testings, space-time analysis and hydrological modeling. At the moment, three main station for hourly streamflow measurements are located at the terminal sections of the main basin and the two main sub-basin; secondary stations for weekly discharge measurements are located along the Upper Bussento river segment, upstream and downstream of each river reach or tributary catchments or karst spring inflow. Temporary stations are located in the representative sections of the catchments to detect stream flow losses into alluvial beds or experimental parcels in the bare karst and forested sandstone headwaters. Streamflow measurements are combined with geochemical survey and water sampling for Radon activity concentration measurements. Results of measurement campains in Radon space-time distribution within the basin are given in other contribution of same EGU session. Monitoring results confirm the hourly, daily, weekly and monthly hydrological data and validate outcomes of semi-distributed hydrological models based on previously time series, allowing both academic consultants and institutional subject to extend the Integrated Hydro-geomorphological Monitoring System to the surrounding drainage areas of the Cilento and Vallo di Diano Geopark. Keywords: River-aquifer interaction, Upper Bussento river basin, monitoring system, hydro-geomorphology, semi-distributed hydrological model. Table 1: Comparative, hierarchical Hydro-morpho-climate entities Hierarchy levelArea (Km2) Scale Orography Entity Climate Entity Morfological Entity Areal Drainage Entity Linear Drainage Entity VIII 106 1:15E6 Orogen Macroscale α Morphological Region Hydrological Region VII 105 1:10E6 Chain Sistem Macroscale β Morphological Province Hydrological Province VI 104 1:5E5 Chain Mesoscale α Morphological Sistem Basin River V 103 1:2,5E5Chain Segment Mesoscale β Morphological Sub-systemSub-Basin Torrent IV 100 1:1,0E5Orographic Group Mesoscale γ Morphological Complex Basin Sector Mid Order Channel/ Segment III 10 1: 5E4 Orographic System Microscale αMorphological Unit Watershed Low Order Channel/ Reach II 1 1:2,5E3Orographic ComplexMicroscale βMorphological ComponentCatchment Transient Channel/ Pool I 10-2 1:5E3 Orographic Unit Microscale γMorphological Element Hollow Zero Order Channel PIC

  7. Dispersal scaling from the world's rivers

    USGS Publications Warehouse

    Warrick, J.A.; Fong, D.A.

    2004-01-01

    Although rivers provide important biogeochemical inputs to oceans, there are currently no descriptive or predictive relationships of the spatial scales of these river influences. Our combined satellite, laboratory, field and modeling results show that the coastal dispersal areas of small, mountainous rivers exhibit remarkable self-similar scaling relationships over many orders of magnitude. River plume areas scale with source drainage area to a power significantly less than one (average = 0.65), and this power relationship decreases significantly with distance offshore of the river mouth. Observations of plumes from large rivers reveal that this scaling continues over six orders of magnitude of river drainage basin areas. This suggests that the cumulative area of coastal influence for many of the smallest rivers of the world is greater than that of single rivers of equal watershed size. Copyright 2004 by the American Geophysical Union.

  8. A study of application of remote sensing to river forecasting. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A project is described whose goal was to define, implement and evaluate a pilot demonstration test to show the practicability of applying remotely sensed data to operational river forecasting in gaged or previously ungaged watersheds. A secondary objective was to provide NASA with documentation describing the computer programs that comprise the streamflow forecasting simulation model used. A computer-based simulation model was adapted to a streamflow forecasting application and implemented in an IBM System/360 Model 44 computer, operating in a dedicated mode, with operator interactive control through a Model 2250 keyboard/graphic CRT terminal. The test site whose hydrologic behavior was simulated is a small basin (365 square kilometers) designated Town Creek near Geraldine, Alabama.

  9. Earth Observations taken by the Expedition 13 crew

    NASA Image and Video Library

    2006-09-02

    ISS013-E-74843 (2 Sept. 2006) --- Rio Negro in Amazonia, Brazil is featured in this image photographed by an Expedition 13 crewmember onboard the International Space Station. The wide, multi-island zone in the Rio Negro (Black River) shown in this image is one of two, long "archipelagoes" upstream of the city of Manaus (not shown) in central Amazonia. Ninety kilometers of the total 120 kilometers length of this archipelago appear in this view. On the day the photo was taken, air temperatures over the cooler river water of the archipelago were just low enough to prevent cloud formation. Over the neighboring rainforest, temperatures were warm enough to produce small convection-related clouds, known to pilots as "popcorn" cumulus. Several zones of deforestation, represented by lighter green zones along the river banks, are also visible. Two different types of river appear in this image. Flowing east-southeast (left to right) is the multi-island, Rio Negro, 20 kilometers wide near the right of the view. Two other "black" rivers, Rio Caures and Rio Jufari, join Rio Negro downstream. The second river type is the Rio Branco (White River; right) which is the largest tributary of the Rio Negro. The difference in water color is controlled by the source regions: black-water rivers derive entirely from soils of lowland forests. Water in these rivers has the color of weak tea, which appears black in images from space. By contrast, white-water rivers like the Branco carry a load of sand and mud particles, mudding the waters. The reason for the tan color is that white-water rivers rise in mountainous country where headwater streams erode exposed rock. The Amazon itself rises in the Andes Mts., where very high erosion occurs, and it is thus the most famous white river in Amazonia. This image was taken in September, near low-water stage. Pictures taken at other times show the channels much wider during high-water season (May--July) when water levels rise several meters. It was discovered recently, from high resolution GPS measurements at Manaus, that the land surface actually rises vertically a small amount in compensation when this vast mass of water drains away each season. Although small, the vertical displacement--50-70 mm--was unexpectedly large according to the scientists who performed the study.

  10. Comprehensive evaluation of the main technology for new sewage treatment plants in small towns along the Duliujian river basin

    NASA Astrophysics Data System (ADS)

    Chen, Yiming; Zhou, Beihai; Yuan, Rongfang; Bao, Xiangming; Li, Dongwei

    2018-02-01

    In recent years, water contamination problem has been becoming more and more serious due to increasing wastewater discharge. So our country has accelerated the pace of constructing sewage treatment plant in small towns. But in China it has not been issued any corresponding technical specifications about the choice of treatment technology. So the article is based on the basin of Duliujian river, through field research, data collection and analysis of relevant documentations, preliminarily elects seven kinds of technology: Improved A2/O, Integrated oxidation ditch, Orbal oxidation ditch, CASS, A/O+refined diatomite, BIOLAK and UNITANK as alternatives for Tianjin sewage discharge local standard.Then the article use the analytic hierarchy process (AHP) to evaluate the seven kinds of alternatives, finally it is concluded that CASS technology is most suitable for the main technology of new sewage treatment plants in small towns along the Duliujian River basin.

  11. Water quality and dissolved inorganic fluxes of N, P, SO₄, and K of a small catchment river in the Southwestern Coast of India.

    PubMed

    Padmalal, D; Remya, S I; Jyothi, S Jissy; Baijulal, B; Babu, K N; Baiju, R S

    2012-03-01

    The southwestern coast of India is drained by many small rivers with lengths less than 250 km and catchment areas less than 6,500 km(2). These rivers are perennial and are also the major drinking water sources in the region. But, the fast pace of urbanization, industrialization, fertilizer intensive agricultural activities and rise in pilgrim tourism in the past four to five decades have imposed marked changes in water quality and solute fluxes of many of these rivers. The problems have aggravated further due to leaching of ionic constituents from the organic-rich (peaty) impervious sub-surface layers that are exposed due to channel incision resulting from indiscriminate instream mining for construction-grade sand and gravel. In this context, an attempt has been made here to evaluate the water quality and the net nutrient flux of one of the important rivers in the southwestern coast of India, the Manimala river which has a length of about 90 km and catchment area of 847 km(2). The river exhibits seasonal variation in most of the water quality parameters (pH, electrical conductivity, dissolved oxygen, total dissolved solids, Ca, Mg, Na, K, Fe, HCO(3), NO(2)-N, NO(3)-N, P[Formula: see text], P[Formula: see text], chloride, SO(4), and SiO(2)). Except for NO(3)-N and SiO(2), all the other parameters are generally enriched in non-monsoon (December-May) samples than that of monsoon (June-November). The flux estimation reveals that the Manimala river transports an amount of 2,308 t y(-1) of dissolved inorganic nitrogen, 87 t y(-1) dissolved inorganic phosphorus, and 9246 t y(-1) of SO(4), and 1984 t y(-1) K into the receiving coastal waters. These together constitute about 23% of the total dissolved fluxes transported by the Manimala river. Based on the study, a set of mitigation measures are also suggested to improve the overall water quality of small catchment rivers of the densely populated tropics in general and the south western coast in particular.

  12. RiverHeath: Neighborhood Loop Geothermal Exchange System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geall, Mark

    2016-07-11

    The goal of the RiverHeath project is to develop a geothermal exchange system at lower capital infrastructure cost than current geothermal exchange systems. The RiverHeath system features an innovative design that incorporates use of the adjacent river through river-based heat exchange plates. The flowing water provides a tremendous amount of heat transfer. As a result, the installation cost of this geothermal exchange system is lower than more traditional vertical bore systems. Many urban areas are located along rivers and other waterways. RiverHeath will serve as a template for other projects adjacent to the water.

  13. Rivers turned to rock: Late Quaternary alluvial induration influencing the behaviour and morphology of an anabranching river in the Australian monsoon tropics

    NASA Astrophysics Data System (ADS)

    Nanson, Gerald C.; Jones, Brian G.; Price, David M.; Pietsch, Timothy J.

    2005-09-01

    Late Quaternary alluvial induration has greatly influenced contemporary channel morphology on the anabranching Gilbert River in the monsoon tropics of the Gulf of Carpentaria. The Gilbert, one of a number of rivers in this region, has contributed to an extensive system of coalescing low-gradient and partly indurated riverine plains. Extensive channel sands were deposited by enhanced flow conditions during marine oxygen isotope (OI) Stage 5. Subsequent flow declined, probably associated with increased aridity, however, enhanced runoff recurred again in OI Stages 4-3 (˜65-50 ka). Aridity then capped these plains with 4-7 m of mud. A widespread network of sandy distributary channels was incised into this muddy surface from sometime after the Last Glacial Maximum (LGM) to the mid Holocene during a fluvial episode more active than the present but less so than those of OI Stages 5 and 3. This network is still partly active but with channel avulsion and abandonment now occurring largely proximal to the main Gilbert flow path. A tropical climate and reactive catchment lithology have enhanced chemical weathering and lithification of alluvium along the river resulting in the formation of small rapids, waterfalls and inset gorges, features characteristic more of bedrock than alluvial systems. Thermoluminescence (TL) and comparative optically stimulated luminescence (OSL) ages of the sediments are presented along with U/Th ages of pedogenic calcrete and Fe/Mn oxyhydroxide/ oxide accumulations. They show that calcrete precipitated during the Late Quaternary at times similar to those that favoured ferricrete formation, possibly because of an alternating wet-dry climate. Intense chemical alteration of the alluvium leading to induration appears to have prevailed for much of the Late Quaternary but, probably due to exceptional dryness, not during the LGM. The result has been restricted channel migration and a reduced capacity for the channel to adjust and accommodate sudden changes in bedload. Consequent avulsions have caused local stream powers to increase by an order of magnitude, inducing knickpoint erosion, local incision and the sudden influx of additional bedload that has triggered further avulsions. The Gilbert River, while less energetic than its Pleistocene ancestors, is clearly an avulsive system, and emphasizes the importance in some tropical rivers of alluvial induration for reinforcing the banks, generating nickpoints, reworking sediment and thereby developing and maintaining an indurated and anabranching river style.

  14. [Age structure and genetic diversity of Homatula pycnolepis in the Nujiang River basin].

    PubMed

    Yue, Xing-Jian; Liu, Shao-Ping; Liu, Ming-Dian; Duan, Xin-Bin; Wang, Deng-Qiang; Chen, Da-Qing

    2013-08-01

    This study examined the age structure of the Loach, Homatula pycnolepis through the otolith growth rings in 204 individual specimens collected from the Xiaomengtong River of the Nujiang River (Salween River) basin in April, 2008. There were only two different age classes, 1 and 2 years of age-no 3 year olds were detected. The age structure of H. pycnolepis was simple. The complete mitochondrial DNA cytochrome b gene sequences (1140) of 80 individuals from 4 populations collected in the Nujiang River drainage were sequenced and a total of 44 variable sites were found among 4 different haplotypes. The global haplotype diversity (Hd) and nucleotide diversity (Pi) were calculated at 0.7595, 0.0151 respectively, and 0, 0 in each population, indicating a consistent lack of genetic diversity in each small population. There was obvious geographic structure in both the Nujiang River basin (NJB) group, and the Nanding River (NDR) group. The genetic distance between NJB and NDR was calculated at 0.0356, suggesting that genetic divergence resulted from long-term isolation of individual population. Such a simple age structure and a lack of genetic diversity in H. pycnolepis may potentially be due to small populations and locale fishing pressures. Accordingly, the results of this study prompt us to recommend that the NJB, NDR and Lancang River populations should be protected as three different evolutionary significant units or separated management units.

  15. Long-term stability in the richness and structure of helminth communities in eels, Anguilla anguilla, in Lough Derg, River Shannon, Ireland.

    PubMed

    Kennedy, C R; Moriarty, C

    2002-12-01

    A data set on intestinal helminth parasites was collected in the course of an 18 year investigation into the biology of eels in Meelick Bay, Lough Derg, River Shannon. This was used to test two hypotheses relating to the composition and structure of intestinal helminth communities, namely that eels in large rivers do not harbour richer and more diverse communities than those in small rivers but that community composition and structure are more stable over time than in small rivers. The helminth community was species poor, with only six species comprising the component community and a maximum infracommunity richness of three species. The community was overwhelmingly dominated by the acanthocephalan Acanthocephalus lucii, reflecting the importance of its intermediate host Asellus aquaticus in the eels' diet. The remaining helminth species contributed to species richness but made very little contribution to community diversity. Population levels of Acanthocephalus lucii fell and remained low between 1992 and 2000, probably reflecting increased movement of eels from other parts of the lough into Meelick Bay. Diversity values were low, but similar to those reported from other rivers in Britain and Europe. The results provided support for both hypotheses and indicated that in respect of richness, diversity and dominance, the helminth communities of eels in the River Shannon were typical of, and comparable to, those of other large rivers throughout Europe.

  16. Hydrologic conditions and hazards in the Kennicott River basin, Wrangell-St. Elias National Park Preserve, Alaska

    USGS Publications Warehouse

    Rickman, R.L.; Rosenkrans, D.S.

    1997-01-01

    McCarthy, Alaska, is on the Kennicott River, about 1 mile from the terminus of Kennicott Glacier in the Wrangell-St. Elias National Park and Preserve. Most visitors to McCarthy and the park cross the West Fork Kennicott River using a hand-pulled tram and cross the East Fork Kennicott River on a temporary footbridge. Outburst floods from glacier-dammed lakes result in channel erosion, aggradation, and migration of the Kennicott River, which disrupt transportation links, destroy property, and threaten life. Hidden Creek Lake, the largest of six glacier-dammed lakes in the Kennicott River Basin, has annual outbursts that cause the largest floods on the Kennicott River. Outbursts from Hidden Creek Lake occur from early fall to mid-summer, and lake levels at the onset of the outbursts have declined between 1909 and 1995. Criteria for impending outbursts for Hidden Creek Lake include lake stage near or above 3,000 to 3,020 feet, stationary or declining lake stage, evidence of recent calving of large ice blocks from the ice margin, slush ice and small icebergs stranded on the lakeshore, and fresh fractures in the ice-margin region. The lower Kennicott Glacier has thinned and retreated since about 1860. The East and West Fork Kennicott River channels migrated in response to changes in the lower Kennicott Glacier. The largest channel changes occur during outburst floods from Hidden Creek Lake, whereas channel changes from the other glacier-dammed lake outbursts are small. Each year, the West Fork Kennicott River conveys a larger percentage of the Kennicott Glacier drainage than it did the previous year. Outburst floods on the Kennicott River cause the river stage to rise over a period of several hours. Smaller spike peaks have a very rapid stage rise. Potential flood magnitude was estimated by combining known maximum discharges from Hidden Creek Lake and Lake Erie outburst floods with a theoretical large regional flood. Flood hazard areas at the transportation corridor were delineated, and possible future geomorphological changes were hypothesized. McCarthy, Alaska, is on the Kennicott River, about 1 mile from the terminus of Kennicott Glacier in the Wrangell-St. Elias National Park and Preserve. Most visitors to McCarthy and the park cross the West Fork Kennicott River using a hand-pulled tram and cross the East Fork Kennicott River on a temporary footbridge. Outburst floods from glacier-dammed lakes result in channel erosion, aggradation, and migration of the Kennicott River, which disrupt transportation links, destroy property, and threaten life. Hidden Creek Lake, the largest of six glacier-dammed lakes in the Kennicott River Basin, has annual outbursts that cause the largest floods on the Kennicott River. Outbursts from Hidden Creek Lake occur from early fall to mid-summer, and lake levels at the onset of the outbursts have declined between 1909 and 1995. Criteria for impending outbursts for Hidden Creek Lake include lake stage near or above 3,000 to 3,020 feet, stationary or declining lake stage, evidence of recent calving of large ice blocks from the ice margin, slush ice and small icebergs stranded on the lakeshore, and fresh fractures in the ice-margin region. The lower Kennicott Glacier has thinned and retreated since about 1860. The East and West Fork Kennicott River channels migrated in response to changes in the lower Kennicott Glacier. The largest channel changes occur during outburst floods from Hidden Creek Lake, whereas channel changes from the other glacier-dammed lake outbursts are small. Each year, the West Fork Kennicott River conveys a larger percentage of the Kennicott Glacier drainage than it did the previous year. Outburst floods on the Kennicott River cause the river stage to rise over a period of several hours. Smaller spike peaks have a very rapid stage rise. Potential flood magnitude was estimated by combining known maximum discharges from Hidden Creek Lake and Lake Erie outburst floods with

  17. Nitrogen management challenges in major watersheds of South America

    NASA Astrophysics Data System (ADS)

    Bustamante, Mercedes M. C.; Martinelli, Luiz Antonio; Pérez, Tibisay; Rasse, Rafael; Ometto, Jean Pierre H. B.; Siqueira Pacheco, Felipe; Rafaela Machado Lins, Silvia; Marquina, Sorena

    2015-06-01

    Urbanization and land use changes alter the nitrogen (N) cycle, with critical consequences for continental freshwater resources, coastal zones, and human health. Sewage and poor watershed management lead to impoverishment of inland water resources and degradation of coastal zones. Here we review the N contents of rivers of the three most important watersheds in South America: the Amazon, La Plata, and Orinoco basins. To evaluate potential impacts on coastal zones, we also present data on small- and medium-sized Venezuelan watersheds that drain into the Caribbean Sea and are impacted by anthropogenic activities. Median concentrations of total dissolved nitrogen (TDN) were 325 μg L-1 and 275 μg L-1 in the Amazon and Orinoco basins, respectively, increasing to nearly 850 μg L-1 in La Plata Basin rivers and 2000 μg L-1 in small northern Venezuelan watersheds. The median TDN yield of Amazon Basin rivers (approximately 4 kg ha-1 yr-1) was larger than TDN yields of undisturbed rivers of the La Plata and Orinoco basins; however, TDN yields of polluted rivers were much higher than those of the Amazon and Orinoco rivers. Organic matter loads from natural and anthropogenic sources in rivers of South America strongly influence the N dynamics of this region.

  18. Channel-conveyance capacity, channel change, and sediment transport in the lower Puyallup, White, and Carbon Rivers, western Washington

    USGS Publications Warehouse

    Czuba, Jonathan A.; Czuba, Christiana R.; Magirl, Chistopher S.; Voss, Frank D.

    2010-01-01

    Draining the volcanic, glaciated terrain of Mount Rainier, Washington, the Puyallup, White, and Carbon Rivers convey copious volumes of water and sediment down to Commencement Bay in Puget Sound. Recent flooding in the lowland river system has renewed interest in understanding sediment transport and its effects on flow conveyance throughout the lower drainage basin. Bathymetric and topographic data for 156 cross sections were surveyed in the lower Puyallup River system by the U.S. Geological Survey (USGS) and were compared with similar datasets collected in 1984. Regions of significant aggradation were measured along the Puyallup and White Rivers. Between 1984 and 2009, aggradation totals as measured by changes in average channel elevation were as much as 7.5, 6.5, and 2 feet on the Puyallup, White, and Carbon Rivers, respectively. These aggrading river sections correlated with decreasing slopes in riverbeds where the rivers exit relatively confined sections in the upper drainage and enter the relatively unconstricted valleys of the low-gradient Puget Lowland. Measured grain-size distributions from each riverbed showed a progressive fining downstream. Analysis of stage-discharge relations at streamflow-gaging stations along rivers draining Mount Rainier demonstrated the dynamic nature of channel morphology on river courses influenced by glaciated, volcanic terrain. The greatest rates of aggradation since the 1980s were in the Nisqually River near National (5.0 inches per year) and the White River near Auburn (1.8 inches per year). Less pronounced aggradation was measured on the Puyallup River and the White River just downstream of Mud Mountain Dam. The largest measured rate of incision was measured in the Cowlitz River at Packwood (5.0 inches per year). Channel-conveyance capacity estimated using a one-dimensional hydraulic model decreased in some river reaches since 1984. The reach exhibiting the largest decrease (about 20-50 percent) in channel-conveyance capacity was the White River between R Street Bridge and the Lake Tapps return, a reach affected by recent flooding. Conveyance capacity also decreased in sections of the Puyallup River. Conveyance capacity was mostly unchanged along other study reaches. Bedload transport was simulated throughout the entire river network and consistent with other observations and analyses, the hydraulic model showed that the upper Puyallup and White Rivers tended to accumulate sediment. Accuracy of the bedload-transport modeling, however, was limited due to a scarcity of sediment-transport data sets from the Puyallup system, mantling of sand over cobbles in the lower Puyallup and White Rivers, and overall uncertainty in modeling sediment transport in gravel-bedded rivers. Consequently, the output results from the model were treated as more qualitative in value, useful in comparing geomorphic trends within different river reaches, but not accurate in producing precise predictions of mass of sediment moved or deposited. The hydraulic model and the bedload-transport component were useful for analyzing proposed river-management options, if surveyed cross sections adequately represented the river-management site and proposed management options. The hydraulic model showed that setback levees would provide greater flood protection than gravel-bar scalping after the initial project construction and for some time thereafter, although the model was not accurate enough to quantify the length of time of the flood protection. The greatest hydraulic benefit from setback levees would be a substantial increase in the effective channel-conveyance area. By widening the distance between levees, the new floodplain would accommodate larger increases in discharge with relatively small incremental increases in stage. Model simulation results indicate that the hydraulic benefit from a setback levee also would be long-lived and would effectively compensate for increased deposition within the setback reach

  19. Upstream Freshwater and Terrestrial Sources Are Differentially Reflected in the Bacterial Community Structure along a Small Arctic River and Its Estuary

    PubMed Central

    Hauptmann, Aviaja L.; Markussen, Thor N.; Stibal, Marek; Olsen, Nikoline S.; Elberling, Bo; Bælum, Jacob; Sicheritz-Pontén, Thomas; Jacobsen, Carsten S.

    2016-01-01

    Glacier melting and altered precipitation patterns influence Arctic freshwater and coastal ecosystems. Arctic rivers are central to Arctic water ecosystems by linking glacier meltwaters and precipitation with the ocean through transport of particulate matter and microorganisms. However, the impact of different water sources on the microbial communities in Arctic rivers and estuaries remains unknown. In this study we used 16S rRNA gene amplicon sequencing to assess a small river and its estuary on the Disko Island, West Greenland (69°N). Samples were taken in August when there is maximum precipitation and temperatures are high in the Disko Bay area. We describe the bacterial community through a river into the estuary, including communities originating in a glacier and a proglacial lake. Our results show that water from the glacier and lake transports distinct communities into the river in terms of diversity and community composition. Bacteria of terrestrial origin were among the dominating OTUs in the main river, while the glacier and lake supplied the river with water containing fewer terrestrial organisms. Also, more psychrophilic taxa were found in the community supplied by the lake. At the river mouth, the presence of dominant bacterial taxa from the lake and glacier was unnoticeable, but these taxa increased their abundances again further into the estuary. On average 23% of the estuary community consisted of indicator OTUs from different sites along the river. Environmental variables showed only weak correlations with community composition, suggesting that hydrology largely influences the observed patterns. PMID:27708629

  20. Soil Gas Dynamics and Microbial Activity in the Unsaturated Zone of a Regulated River

    NASA Astrophysics Data System (ADS)

    Christensen, H.; Ferencz, S. B.; Cardenas, M. B.; Neilson, B. T.; Bennett, P. C.

    2017-12-01

    Over 60% of the world's rivers are dammed, and are therefore regulated. In some river systems, river regulation is the dominant factor governing fluid exchange and soil gas dynamics in the hyporheic region and overlying unsaturated zone of the river banks. Where this is the case, it is important to understand the effects that an artificially-induced change in river stage can have on the chemical, plant, and microbial components of the unsaturated zone. Daily releases from an upstream dam cause rapid stage fluctuations in the Lower Colorado River east of Austin, Texas. For this study, we utilized an array of water and gas wells along a transect perpendicular to the river to investigate the biogeochemical process occurring in this mixing zone. The gas wells were installed at several depths up to 1.5 meters, and facilitated the continuous monitoring of soil gases as the pulse percolated through the river bank. Water samples collected from the screened wells penetrated to depths below the water table and were analyzed for nutrients, carbon, and major ions. Additionally, two soil cores were taken at different distances from the river and analyzed for soil moisture and grain size. These cores were also analyzed for microbial activity using the total heterotroph count method and the acetylene inhibition technique, a sensitive method of measuring denitrifying activity. The results provide a detailed picture of soil gas flux and biogeochemical processes in the bank environment in a regulated river. Findings indicate that a river pulse that causes a meter-scale change in river stage causes small, centimeter-scale pulses in the water table. We propose that these conditions create an area of elevated microbial respiration at the base of the unsaturated zone that appears to be decoupled from normal diurnal fluctuations. Along the transect, CO2 concentrations increased with increasing depth down to the water table. CO2 concentrations were highest in the time following a pulse, and the lowest concentrations were recorded following the trough in river stage.

  1. Implications of contact metamorphism of Mancos Shale for critical zone processes

    NASA Astrophysics Data System (ADS)

    Navarre-Sitchler, A.

    2016-12-01

    Bedrock lithology imparts control on some critical zone processes, for example rates and extent of chemical weathering, solute release though mineral dissolution, and water flow. Bedrock can be very heterogeneous resulting in spatial variability of these processes throughout a catchment. In the East River watershed outside of Crested Butte, Colorado, bedrock is dominantly comprised of the Mancos Shale; a Cretaceous aged, organic carbon rich marine shale. However, in some areas the Mancos Shale appears contact metamorphosed by nearby igneous intrusions resulting in a potential gradient in lithologic change in part of the watershed where impacts of lithology on critical zone processes can be evaluated. Samples were collected in the East River valley along a transect from the contact between the Tertiary Gothic Mountain laccolith of the Mount Carbon igneous system and the underlying Manocs shale. Porosity of these samples was analyzed by small-angle and ultra small-angle neutron scattering. Results indicate contact metamorphism decreases porosity of the shale and changes the pore shape from slightly anisotropic pores aligned with bedding in the unmetamorphosed shale to isotropic pores with no bedding alignment in the metamorphosed shales. The porosity analysis combined with clay mineralogy, surface area, carbon content and oxidation state, and solute release rates determined from column experiments will be used to develop a full understanding of the impact of contact metamorphism on critical zone processes in the East River.

  2. Geology of the Knife River area, North Dakota

    USGS Publications Warehouse

    Benson, William Edward

    1953-01-01

    The Knife River area, consisting of six 15-minute quadrangles, includes the lower half of the Knife River valley in west-central North Dakota. The area, in the center of the Williston Basin, is underlain by the Tongue River member of the Fort Union formation (Paleocene) and the Golden Valley formation (Eocene). The Tongue River includes beds equivalent to the Sentinel Butte shale; the Golden Valley formation, which receives its first detailed description in this report, consists of two members, a lower member of gray to white sandy kaolin clay and an upper member of cross-bedded micaceous sandstone. Pro-Tongue River rocks that crop out in southwestern North Dakota include the Ludlow member of the Fort Union formation, the Cannonball marine formation (Paleocene) and the Hell Creek, Fox Hills, and Pierre formations, all upper Cretaceous. Post-Golden Valley rocks include the White River formation (Oligocene) and gravels on an old planation surface that may be Miocene or Pliocent. Surficial deposits include glacial and fluvial deposits of Pleistocene age and alluvium, dune sand, residual silica, and landslide blocks of Recent age. Three ages of glacial deposits can be differentiated, largely on the basis of three fills, separated by unconformities, in the Knife River valley. All three are of Wisconsin age and probably represent the Iowan, Tazewell, and Mankato substages. Deposits of the Cary substage have not been identified either in the Knife River area or elsewhere in southern North Dakota. Iowan glacial deposits form the outermost drift border in North Dakota. Southwest of this border are a few scattered granite boulders that are residual from the erosion of either the White River formation or a pre-Wisconsin till. The Tazewell drift border cannot be followed in southern North Dakota. The Mankato drift border can be traced in a general way from the South Dakota State line northwest across the Missouri River and through the middle of the Knife River area. The major land forms of southwestern North Dakota are: (1) high buttes that stand above (2) a gravel-capped planation surface and (3) a gently-rolling upland; below the upland surface are (4) remnants of a broad valley stage of erosion into which (5) modern valleys have been cut. The broad valley profiles of many streams continue east across the Missouri River trench and are part of a former drainage system that flowed into Hudson Bay. Crossing the divides are (6) large trenches, formed when the former northeast-flowing streams were dammed by the glacier and diverted to the southeast. The largest diversion valley is occupied by the Missouri River; another diversion system, now largely abandoned, extends from the Killdeer Mountains southwest to the mouth of Porcupine Creek in Sioux County. By analogy with South Dakota, most of the large diversion valleys are thought to have been cut in Illinoian time. Numerous diversion valleys of Illinoian to late Wisconsin age cut across the divides. Other Pleistocene land forms include ground and moraines, kames, and terraces. Land forms of Recent age include dunes, alluvial terraces, floodplains, and several types of landslide blocks. One type of landslide, called rockslide slump, has not previously been described. Drainage is well adjusted to the structure, most of the streams flowing down the axes of small synclines. The bedrock formations have been gently folded into small domes and synclines that interrupt a gentle northward regional dip into the Williston Basin. Three episodes of deformation affected southwestern North Dakota in Tertiary time: (1) intra-Paleocene, involving warping and minor faulting; (2) post-Eocene, involving uplift and tilting; (2) Oligocene, involving uplift and gentle folding. Mineral resources include ceramic clay, sand and gravel and lignite coal. The Knife River area is the largest lignite-producing district in the United States.

  3. Iberian fish records in the vertebrate collection of the Museum of Zoology of the University of Navarra

    PubMed Central

    Rodeles, Amaia A.; Galicia, David; Miranda, Rafael

    2016-01-01

    The study of freshwater fish species biodiversity and community composition is essential for understanding river systems, the effects of human activities on rivers, and the changes these animals face. Conducting this type of research requires quantitative information on fish abundance, ideally with long-term series and fish body measurements. This Data Descriptor presents a collection of 12 datasets containing a total of 146,342 occurrence records of 41 freshwater fish species sampled in 233 localities of various Iberian river basins. The datasets also contain 148,749 measurement records (length and weight) for these fish. Data were collected in different sampling campaigns (from 1992 to 2015). Eleven datasets represent large projects conducted over several years, and another combines small sampling campaigns. The Iberian Peninsula contains high fish biodiversity, with numerous endemic species threatened by various menaces, such as water extraction and invasive species. These data may support the development of large biodiversity conservation studies. PMID:27727236

  4. [Evaluation on the eco-economic benefits of small watershed in Beijing mountainous area: a case of Yanqi River watershed].

    PubMed

    Xiao, Hui-Jie; Wei, Zi-Gang; Wang, Qing; Zhu, Xiao-Bo

    2012-12-01

    Based on the theory of harmonious development of ecological economy, a total of 13 evaluation indices were selected from the ecological, economic, and social sub-systems of Yanqi River watershed in Huairou District of Beijing. The selected evaluation indices were normalized by using trapezoid functions, and the weights of the evaluation indices were determined by analytic hierarchy process. Then, the eco-economic benefits of the watershed were evaluated with weighted composite index method. From 2004 to 2011, the ecological, economic, and social benefits of Yanqi River watershed all had somewhat increase, among which, ecological benefit increased most, with the value changed from 0.210 in 2004 to 0.255 in 2011 and an increment of 21.5%. The eco-economic benefits of the watershed increased from 0.734 in 2004 to 0.840 in 2011, with an increment of 14.2%. At present, the watershed reached the stage of advanced ecosystem, being in beneficial circulation and harmonious development of ecology, economy, and society.

  5. Iberian fish records in the vertebrate collection of the Museum of Zoology of the University of Navarra.

    PubMed

    Rodeles, Amaia A; Galicia, David; Miranda, Rafael

    2016-10-11

    The study of freshwater fish species biodiversity and community composition is essential for understanding river systems, the effects of human activities on rivers, and the changes these animals face. Conducting this type of research requires quantitative information on fish abundance, ideally with long-term series and fish body measurements. This Data Descriptor presents a collection of 12 datasets containing a total of 146,342 occurrence records of 41 freshwater fish species sampled in 233 localities of various Iberian river basins. The datasets also contain 148,749 measurement records (length and weight) for these fish. Data were collected in different sampling campaigns (from 1992 to 2015). Eleven datasets represent large projects conducted over several years, and another combines small sampling campaigns. The Iberian Peninsula contains high fish biodiversity, with numerous endemic species threatened by various menaces, such as water extraction and invasive species. These data may support the development of large biodiversity conservation studies.

  6. Reach-scale characterization of large woody debris in a low-gradient, Midwestern U.S.A. river system

    NASA Astrophysics Data System (ADS)

    Martin, Derek J.; Pavlowsky, Robert T.; Harden, Carol P.

    2016-06-01

    Addition of large woody debris (LWD) to rivers has increasingly become a popular stream restoration strategy, particularly in river systems of the Midwestern United States. However, our knowledge of LWD dynamics is mostly limited to high gradient montane river systems, or coastal river systems. The LWD-related management of low-gradient, Midwestern river systems is thus largely based on higher gradient analogs of LWD dynamics. This research characterizes fluvial wood loads and investigates the relationships between fluvial wood, channel morphology, and sediment deposition in a relatively low-gradient, semiconfined, alluvial river. The LWD and channel morphology were surveyed at nine reaches along the Big River in southeastern Missouri to investigate those relationships in comparison to other regions. Wood loads in the Big River are low (3-114 m3/100 m) relative to those of higher gradient river systems of the Pacific Northwest, but high relative to lower-gradient river systems of the Eastern United States. Wood characteristics such as size and orientation suggest that the dominant LWD recruitment mechanism in the Big River is bank erosion. Also, ratios of wood geometry to channel geometry show that the Big River maintains a relatively high wood transport capacity for most of its length. Although LWD creates sites for sediment storage, the overall impact on reach-scale sediment storage in the Big River is low (< 4.2% of total in-channel storage). However, wood loads, and thus opportunities for sediment storage, have the potential to grow in the future as Midwestern riparian forests mature. This study represents the first of its kind within this particular type of river system and within this region and thus serves as a basis for understanding fluvial wood dynamics in low-gradient river systems of the Midwestern United States.

  7. 76 FR 32069 - Safety Zone; Lorain Independence Day Fireworks, Black River, Lorain, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-03

    ... grant or loan recipients, and will not raise any novel legal or policy issues. Small Entities Under the... economic impact on a substantial number of small entities. The term ``small entities'' comprises small... number of small entities. This rule will affect the following entities, some of which may be small...

  8. 75 FR 78928 - Limited Service Domestic Voyage Load Lines for River Barges on Lake Michigan, Delay of Effective...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-17

    ... Advisories may also be issued when lake ice exists that could be hazardous to small boats. Although river...-AA17 Limited Service Domestic Voyage Load Lines for River Barges on Lake Michigan, Delay of Effective... Lake Michigan. This rule finalized interim regulations that have been in effect since 2002, with some...

  9. Modeling tools for an Integrated River-Delta-Sea system investigation: the Pan-European Research Infrastructure DANUBIUS-RI philosophy

    NASA Astrophysics Data System (ADS)

    Umgiesser, Georg; Bellafiore, Debora; De Pascalis, Francesca; Icke, Joost; Stanica, Adrian

    2017-04-01

    The DANUBIUS Research Infrastructure (DANUBIUS-RI) is a new initiative to address the challenges and opportunities of research on large river- sea (RS) systems. DANUBIUS-RI is a distributed pan-European RI that will provide a platform for interdisciplinary research. It will deal with RS investigation through facilities and expertise from a large number of European institutions becoming a 'one-stop shop' for knowledge exchange in managing RS systems, ranging from freshwater to marine research. Globally, RS systems are complex and dynamic, with huge environmental, social and economic value. They are poorly understood but under increasing pressure through pollution, hydraulic engineering, water supply, energy, flood control and erosion. RS systems in Europe are among the most impacted globally, after centuries of industrialisation, urbanisation and agricultural intensification. Improved understanding is essential to avoid irreversible degradation and for restoration. DANUBIUS-RI will provide, among a number of other facilities concerning observations, analyses, impacts' evaluation, a modeling node that will provide integrated up-to-date tools, at locations of high scientific importance and opportunity, covering the RS systems - from source (upper parts of rivers - mountain lakes) to the transition with coastal seas. Modeling will be one of the major services provided by DANUBIUS-RI, relying on the inputs from the whole RI. RS systems are challenging from a modelling point of view, because of the complex morphology and the wide temporal and spatial range of processes occurring. Scale interaction plays a central role, considering the different hydro-eco-morphological processes on the large (basin) and small (local, coast, rivers, lagoons) scale. Currently, different model applications are made for the different geographical domains, and also for subsets of the processes. For instance there are separate models for rainfall runoff in the catchment, a sewer model for the urban area and a water quality model for the sea. Obviously, the subsystems interact with each other: water flows from the catchments to the rivers and into the sea. The rainfall runoff from the upstream catchment picks up the emissions and the river transports the substances via the estuaries to the sea. In the sea, the substances interact with the marine ecosystem. The challenge for the modeling of river - sea systems is (1) the integration of models for the geographical domains, (2) the integration of physical, chemical, ecological and socio-economical processes and (3) the exploration and application of new data sources. The modeling strategy that is starting to be shaped within DANUBIUS-RI will provide relocatable tools and suitable techniques to be efficiently applied in the different geographical areas, integrating the DANUBIUS-RI modeling skills and showing high performance modeling solutions for the investigation of RS systems. Moreover, a technological advanced platform for modeling services, in terms of software and shared data will be created. A preliminary sketch of the organization of the DANUBIUS modeling node and examples of field of action for RS systems investigation will be provided.

  10. Field Operations For The "Intelligent River" Observation System: A Basin-wide Water Quality Observation System In The Savannah River Basin And Platform Supporting Related Diverse Initiatives.

    NASA Astrophysics Data System (ADS)

    Sutton, A.; Koons, M.; O'Brien-Gayes, P.; Moorer, R.; Hallstrom, J.; Post, C.; Gayes, P. T.

    2017-12-01

    The Intelligent River (IR) initiative is an NSF sponsored study developing new data management technology for a range of basin-scale applications. The technology developed by Florida Atlantic and Clemson University established a network of real-time reporting water quality sondes; from the mountains to the estuary of the Savannah River basin. Coastal Carolina University led the field operations campaign. Ancillary studies, student projects and initiatives benefitted from the associated instrumentation, infrastructure and operational support of the IR program. This provided a vehicle for students to participate in fieldwork across the watershed and pursue individual interests. Student projects included: 1) a Multibeam sonar survey investigating channel morphology in the area of an IR sensor station and 2) field tests of developing techniques for acquiring and assimilating flood velocity data into model systems associated with a separate NSF Rapid award. The multibeam survey within the lower Savannah basin exhibited a range of complexity in bathymetry, bedforms and bottom habitat in the vicinity of one of the water quality stations. The complex morphology and bottom habitat reflect complex flow patterns, localized areas of depositional and erosive tendencies providing a valuable context for considering point-source water quality time series. Micro- Lagrangian drifters developed by ISENSE at Florida Atlantic University, a sled mounted ADCP, and particle tracking from imagery collected by a photogrammetric drone were tested and used to develop methodology for establishing velocity, direction and discharge levels to validate, initialize and assimilate data into advance models systems during future flood events. The prospect of expanding wide scale observing systems can serve as a platform to integrate small and large-scale cooperative studies across disciplines as well as basic and applied research interests. Such initiatives provide opportunities for embedded education and experience for students that add to the understanding of broad integrated complex systems.

  11. Behaviour of radiocaesium in coastal rivers of the Fukushima Prefecture (Japan) during conditions of low flow and low turbidity--Insight on the possible role of small particles and detrital organic compounds.

    PubMed

    Eyrolle-Boyer, Frédérique; Boyer, Patrick; Garcia-Sanchez, Laurent; Métivier, Jean-Michel; Onda, Yuichi; De Vismes, Anne; Cagnat, Xavier; Boulet, Béatrice; Cossonnet, Catherine

    2016-01-01

    To investigate riverine transfers from contaminated soils of the Fukushima Prefecture in Japan to the marine environment, suspended sediments, filtered water, sediments and detrital organic macro debris deposited onto river beds were collected in November 2013 within small coastal rivers during conditions of low flow rates and low turbidity. River waters were directly filtered on the field and high efficiency well-type Ge detectors were used to analyse radiocaesium concentrations in very small quantities of suspended particles and filtered water (a few mg to a few g). For such base-flow conditions, our results show that the watersheds studied present similar hydro-sedimentary behaviours at their outlets and that the exports of dissolved and particulate radiocaesium are comparable. Moreover, the contribution of these rivers to the instantaneous export of radiocaesium to the ocean is similar to that of the Abukuma River. Our preliminary results indicate that, in the estuaries, radiocaesium concentrations in suspended sediments would be reduced by more than 80%, while radiocaesium concentration in filtered waters would be maintained. Significant correlations between radiocaesium concentrations and radiocaesium inventories in the soils of the catchments indicate that there was at that time little intra and inter-watershed variability in the transfer processes of radiocaesium from lands to rivers at this regional scale. The apparent liquid-solid partition coefficient (KD) values acquired for the lowest loads/finest particles complement the values acquired by using sediment traps and highlight the strong capacity of the smallest particles to transfer radiocaesium. Finally, but not least, our observations suggest that there could be a significant transfer of highly contaminated detrital biomass from forest litter to the downstream rivers in a rather conservative way. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Sediment processes modelling below hydraulic mining: towards environmental impact mitigation

    NASA Astrophysics Data System (ADS)

    Chalov, Sergey R.

    2010-05-01

    Placer mining sites are located in the river valleys so the rivers are influenced by mining operations. Frequently the existing mining sites are characterized by low contribution to the environmental technologies. Therefore hydraulic mining alters stream hydrology and sediment processes and increases water turbidity. The most serious environmental sequences of the sediment yield increase occur in the rivers populated by salmon fish community because salmon species prefer clean water with low turbidity. For instance, the placer mining in Kamchatka peninsula (Far East of Russia) which is regarded to be the last global gene pool of wild salmon Oncorhynchus threatens the rivers ecosystems. System of man-made impact mitigation could be done through the exact recognition of the human role in hydrological processes and sediment transport especially. Sediment budget of rivers below mining sites is transformed according to the appearance of the man-made non-point and point sediment sources. Non-point source pollution occurs due to soil erosion on the exposed hillsides and erosion in the channel diversions. Slope wash on the hillsides is absent during summer days without rainfalls and is many times increased during rainfalls and snow melting. The nearness of the sources of material and the rivers leads to the small time of suspended load increase after rainfalls. The average time of material intake from exposed hillsides to the rivers is less than 1 hour. The main reason of the incision in the channel diversion is river-channel straightening. The increase of channel slopes and transport capacity leads to the intensive incision of flow. Point source pollution is performed by effluents both from mining site (mainly brief effluents) and from settling ponds (permanent effluents), groundwater seepage from tailing pits or from quarries. High rate of groundwater runoff is the main reason of the technological ponds overfilling. Intensive filtration from channel to ponds because of their nearness determines the water mass increase inside mining site. The predictive models were suggested to assess each of the mane-made processes contribution into the total sediment budget of the rivers below mining sites. The empirical data and theoretical and laboratory-derived correlations were used to obtain the predictive models for each processes of sediment supply. It was challenging to estimate specific erosion rate of washed exposed hillsides, channel incision, water supply conditions. Climatic and anthropogenic changes of water runoff also were simulated to decrease uncertainty of the proposed model. Application of the given approach to the hydraulic platinum-mining located in the Kamchatka peninsula (Koryak plateau, tributaries of the Vivenka River) gave the sediment budget of the placer-mined rivers and the total sediment yield supplied into the ocean from river basin. Polluted placer-mined rivers contribute about 30 % of the whole sediment yield of the Vivenka River. At the same time the catchment area of these rivers is less than 0,03 % from the whole Vivenka catchment area. Based on the sediment transport modeling the decision making system for controlling water pollution and stream community preservation was developed. Due to exposed hillside erosion prevention and settling pond system optimization the total decrease of sediment yield was up to 75 %.

  13. Sudan, Africa as seen from STS-66 shuttle Atlantis

    NASA Image and Video Library

    1994-11-14

    Agricultural patterns are distinctly visible in this near-vertical false color infrared photography taken in November 1994. The area depicted on the photograph is south of Khartoum between the White and Blue Nile Rivers. By far the most important irrigation project in sub-Saharan Africa, both large and small scale agricultural enterprises have been developed using water transported from the perennial Nile Rivers. Hundreds of small rectangular fields and water-filled canals can be seen in this photograph.

  14. Sudan, Africa as seen from STS-66 shuttle Atlantis

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Agricultural patterns are distinctly visible in this near-vertical false color infrared photography taken in November 1994. The area depicted on the photograph is south of Khartoum between the White and Blue Nile Rivers. By far the most important irrigation project in sub-Saharan Africa, both large and small scale agricultural enterprises have been developed using water transported from the perennial Nile Rivers. Hundreds of small rectangular fields and water-filled canals can be seen in this photograph.

  15. Geohydrology and water quality of Marine Corps Logistics Base, Nebo and Yermo annexes, near Barstow, California

    USGS Publications Warehouse

    Densmore, Jill N.; Cox, Brett F.; Crawford, Steven M.

    1997-01-01

    Because ground water is the only dependable source of water in the Barstow area, a thorough understanding of the relationship between the geology and hydrology of this area is needed to make informed ground-water management andremediation decisions. This report summarizes geologic and hydrologic studies done during 1992-95 at the Marine Corps Logistics Base, Nebo and Yermo Annexes, near Barstow, California. The geologic investigation dealt with the stratigraphy and geologic history of the area and determined the location of faults that cross the Marine Corps Logistics Base, Nebo Annex. Two of these faultscoincide with significant ground-water barriers. Geologic and hydrologic data collected for this study were used to define two main aquifer systems in this area. The Mojave River aquifer is contained within the sand and gravel of the Mojave River alluvium, and the regional aquifer lies in the bordering alluvial-fan deposits and older alluvium. Water-level data showed that recharge occurs exten sively in the Mojave River aquifer but occurs only in small areas of the regional aquifer. Dissolved- solids concentrations showed that ground-water degradation exists in the Mojave River aquifer near the Nebo Annex and extends at least 1 mile downgradient of the Nebo golf course in the younger Mojave River alluvium. Nitrogen concentrations show that more than one source is causing the observed degradation in the Mojave River aquifer. Oxygen-18, deuterium, tritium, andcarbon-14 data indicate that the Mojave River and regional aquifers have different sources of recharge and that recent recharge occurs in the Mojave River aquifer but is more limited in the regional aquifer.

  16. Comparison and Validation of Hydrological E-Flow Methods through Hydrodynamic Modelling

    NASA Astrophysics Data System (ADS)

    Kuriqi, Alban; Rivaes, Rui; Sordo-Ward, Alvaro; Pinheiro, António N.; Garrote, Luis

    2017-04-01

    Flow regime determines physical habitat conditions and local biotic configuration. The development of environmental flow guidelines to support the river integrity is becoming a major concern in water resources management. In this study, we analysed two sites located in southern part of Portugal, respectively at Odelouca and Ocreza Rivers, characterised by the Mediterranean climate. Both rivers are almost in pristine condition, not regulated by dams or other diversion construction. This study presents an analysis of the effect on fish habitat suitability by the implementation of different hydrological e-flow methods. To conduct this study we employed certain hydrological e-flow methods recommended by the European Small Hydropower Association (ESHA). River hydrology assessment was based on approximately 30 years of mean daily flow data, provided by the Portuguese Water Information System (SNIRH). The biological data, bathymetry, physical and hydraulic features, and the Habitat Suitability Index for fish species were collected from extensive field works. We followed the Instream Flow Incremental Methodology (IFIM) to assess the flow-habitat relationship taking into account the habitat suitability of different instream flow releases. Initially, we analysed fish habitat suitability based on natural conditions, and we used it as reference condition for other scenarios considering the chosen hydrological e-flow methods. We accomplished the habitat modelling through hydrodynamic analysis by using River-2D model. The same methodology was applied to each scenario by considering as input the e-flows obtained from each of the hydrological method employed in this study. This contribution shows the significance of ecohydrological studies in establishing a foundation for water resources management actions. Keywords: ecohydrology, e-flow, Mediterranean rivers, river conservation, fish habitat, River-2D, Hydropower.

  17. Sediment transport and deposition on a river-dominated tidal flat: An idealized model study

    USGS Publications Warehouse

    Sherwood, Christopher R.; Chen, Shih-Nan; Geyer, W. Rockwell; Ralston, David K.

    2010-01-01

    A 3-D hydrodynamic model is used to investigate how different size classes of river-derived sediment are transported, exported and trapped on an idealized, river-dominated tidal flat. The model is composed of a river channel flanked by sloping tidal flats, a configuration motivated by the intertidal region of the Skagit River mouth in Washington State, United States. It is forced by mixed tides and a pulse of freshwater and sediment with various settling velocities. In this system, the river not only influences stratification but also contributes a significant cross-shore transport. As a result, the bottom stress is strongly ebb-dominated in the channel because of the seaward advance of strong river flow as the tidal flats drain during ebbs. Sediment deposition patterns and mass budgets are sensitive to settling velocity. The lateral sediment spreading scales with an advective distance (settling time multiplied by lateral flow speed), thereby confining the fast settling sediment classes in the channel. Residual sediment transport is landward on the flats, because of settling lag, but is strongly seaward in the channel. The seaward transport mainly occurs during big ebbs and is controlled by a length scale ratio Ld/XWL, where Ld is a cross-shore advective distance (settling time multiplied by river outlet velocity), and XWL is the immersed cross-shore length of the intertidal zone. Sediment trapping requires Ld/XWL < 1, leading to more trapping for the faster settling classes. Sensitivity studies show that including stratification and reducing tidal range both favor sediment trapping, whereas varying channel geometries and asymmetry of tides has relatively small impacts. Implications of the modeling results on the south Skagit intertidal region are discussed.

  18. Fluvial landscapes - human societies interactions during the last 2000 years: the Middle Loire River and its embanking since the Middle Ages (France)

    NASA Astrophysics Data System (ADS)

    Castanet, Cyril; Carcaud, Nathalie

    2015-04-01

    This research deals with the study of fluvial landscapes, heavily and precociously transformed by societies (fluvial anthroposystems). It aims to characterize i), fluvial responses to climate, environmental and anthropogenic changes ii), history of hydraulical constructions relative to rivers iii), history of fluvial origin risks and their management - (Program: AGES Ancient Geomorphological EvolutionS of the Loire River hydrosystem). The Middle Loire River valley in the Val d'Orléans was strongly and precociously occupied, particularly during historical periods. Hydrosedimentary flows are there irregular. The river dykes were built during the Middle Ages (dykes named turcies) and the Modern Period, but ages and localizations of the oldest dykes were not precisely known. A systemic and multi-scaled approach aimed to characterize i), palaeo-hydrographical, -hydrological and -hydraulical evolutions of the Loire River, fluvial risks (palaeo-hazards and -vulnerabilities) and their management. It is based on an integrated approach, in and out archaeological sites: morpho-stratigraphy, sedimentology, geophysics, geochemistry, geomatics, geochronology, archaeology. Spatio-temporal variability of fluvial hazards is characterized. A model of the Loire River fluvial activity is developed: multicentennial scale variability, with higher fluvial activity episodes during the Gallo-Roman period, IX-XIth centuries and LIA. Fluvial patterns changes are indentified. Settlement dynamics and hydraulical constructions of the valley are specified. We establish the ages and localizations of the oldest discovered dikes of the Middle Loire River: after the Late Antiquity and before the end of the Early Middle Ages (2 dated dykes), between Bou and Orléans cities. During historical periods, we suggest 2 main thresholds concerning socio-environmental interactions: the first one during the Early Middle Ages (turcies: small scattered dykes), the second during the Modern Period (levees: high quasi-continuous dykes).

  19. Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (South Atlantic) - Atlantic sturgeon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Den Avyle, M.J.

    1984-07-01

    The Atlantic sturgeon, Acipenser oxyrhynchus oxyrhynchus, is an anadromous species that occupies rivers, estuaries, and nearshore waters along the entire Atlantic coast of the United States. The species once supported significant commercial fisheries throughout its range, but stocks have declined because of overfishing, deterioration of water quality, and damming of rivers. Atlantic sturgeon spawn in rivers and the young remain in freshwater for several years prior to emigration to the ocean. Little is known about spawning areas and associated environmental factors. Females typically do not mature until age X and the age at first spawning ranges from 5 to 13more » years for males and 7 to 19 years for females. Longevity may frequently exceed 25 years. Immature and adult sturgeons are bottom feeders and consume a variety of mollusks, crustaceans, worms, and other small bottom-dwelling invertebrates and fishes. Little is know about competitors, predators, or effects of environmental factors on recruitment. The long period required to reach maturity, possibly irregular spawning thereafter, and prolonged reliance on river systems make juvenile and adult Atlantic sturgeon highly susceptible to habitat alterations, pollution, and over exploitation. 49 references, 2 figures, 4 tables.« less

  20. Mercury and arsenic in the gold mining regions of the Ankobra River basin in Ghana

    NASA Astrophysics Data System (ADS)

    Bannerman, W.; Potin-Gautier, M.; Amoureux, D.; Tellier, S.; Rambaud, A.; Babut, M.; Adimado, A.; Beinhoff, C.

    2003-05-01

    The river Ankobra flows through the principal gold mining centres in Western Ghana, draining a total area of 8272 km^2 to join the Atlantic ocean. Mercury is used by thousands of small-scale miners in the region to amalgamate gold. Ores mined in some deep shafts and surface mines are arsenopyrites and the region is marked by the presence of heaps of arsenic - rich mine tailings from both past and recent activities. This study was conducted to assess the impact of mining activities on the distribution and speciation of arsenic and mercury in the aquatic environment of the Ankobra River. In all, water (filtered and non-filtered) and bed sediments were collected from various locations within the watershed. Principal parameters investigated include total mercury, arsenic (III), arsenic (V), monomethylarsonic acid (MMAA) and dimethylarsinic acid (DMAA). Seasonal and spatial variations of these parameters were investigated. Quality control systems were adopted at both the environmental and analytical stages of the study. ln general, areas close to the mining centres are the most pollilited. As (V)/As (III) ratios in water are reversed after the first 100-km of the river length with the onset of industrial influence downstream.

  1. A Simple Model to Describe the Relationship among Rainfall, Groundwater and Land Subsidence under a Heterogeneous Aquifer

    NASA Astrophysics Data System (ADS)

    Zheng, Y. Y.; Chen, Y. L.; Lin, H. R.; Huang, S. Y.; Yeh, T. C. J.; Wen, J. C.

    2017-12-01

    Land subsidence is a very serious problem of Zhuoshui River alluvial fan, Taiwan. The main reason of land subsidence is a compression of soil, but the compression measured in the wide area is very extensive (Maryam et al., 2013; Linlin et al., 2014). Chen et al. [2010] studied the linear relationship between groundwater level and subsurface altitude variations from Global Positioning System (GPS) station in Zhuoshui River alluvial fan. But the subsurface altitude data were only from two GPS stations. Their distributions are spared and small, not enough to express the altitude variations of Zhuoshui River alluvial fan. Hung et al. [2011] used Interferometry Synthetic Aperture Radar (InSAR) to measure the surface subsidence in Zhuoshui River alluvial fan, but haven't compared with groundwater level. The study compares the correlation between rainfall events and groundwater level and compares the correlation between groundwater level and subsurface altitude, these two correlation affected by heterogeneous soil. From these relationships, a numerical model is built to simulate the land subsidence variations and estimate the coefficient of aquifer soil compressibility. Finally, the model can estimate the long-term land subsidence. Keywords: Land Subsidence, InSAR, Groundwater Level, Numerical Model, Correlation Analyses

  2. Transport of Riverine Material From Multiple Rivers in the Chesapeake Bay: Important Control of Estuarine Circulation on the Material Distribution

    NASA Astrophysics Data System (ADS)

    Du, Jiabi; Shen, Jian

    2017-11-01

    Driven by estuarine circulation, material released from lower Chesapeake Bay tributaries has the potential to be transported to the upper Bay. How far and what fraction of the material from tributaries can be carried to the upper estuary have not been quantitatively investigated. For an estuary system with multiple tributaries, the relative contribution from each tributary can provide valuable information for source assessment and fate prediction for riverine materials and passive moving organisms. We conducted long-term numerical simulations using multiple passive tracers that are independently released in the headwater of five main rivers (i.e., Susquehanna, Potomac, Rappahannock, York, and James Rivers) and calculated the relative contribution of each river to the total material in the mainstem. The results show that discharge from Susquehanna River exerts the dominant control on the riverine material throughout the entire mainstem. Despite the smaller contribution from the lower-middle Bay tributaries to the total materials in the mainstem, materials released from these rivers have a high potential to be transported to the middle-upper Bay through the bottom inflow by the persistent estuarine circulation. The fraction of the tributary material transported to the upper Bay depends on the location of the tributary. Materials released near the mouth are subject to a rapid flushing process, small retention time, and strong shelf current. Our results reveal three distinct spatial patterns for materials released from the main river, tributary, and coastal oceans. This study highlights the important control of estuarine circulation over horizontal and vertical distributions of materials in the mainstem.

  3. Optical Proxies for Dissolved Organic Matter in Estuaries and Coastal Waters

    NASA Astrophysics Data System (ADS)

    Osburn, C. L.; Montgomery, M. T.; Boyd, T. J.; Bianchi, T. S.; Coffin, R. B.; Paerl, H. W.

    2016-02-01

    The flux of terrestrial dissolved organic carbon (DOC) into the coastal ocean from rivers and estuaries is a major part of the ocean's carbon cycle. Absorbing and fluorescing properties of chromophoric dissolved organic matter (CDOM) often are used to fingerprint its sources and to track fluxes of terrestrial DOM into the ocean. They also are used as proxies for organic matter to calibrate remote sensing observations from air and space and from in situ platforms. In general, strong relationships hold for large river dominated estuaries (e.g., the Mississippi River) but little is known about how widely such relationships can be developed in estuaries that have relatively small or multiple riverine inputs. Results are presented from a comparison of six diverse estuarine systems: the Atchafalaya River (ARE), the Mackenzie River (MRE), the Chesapeake Bay (CBE), Charleston Harbor (CHE), Puget Sound (PUG), and the Neuse River (NRE). Mean DOM concentrations ranged from 100 to 700 µM and dissolved lignin concentrations ranged from ca. 3-30 µg L-1. Overall trends were linear between CDOM measured at 350 nm (a350) and DOC concentration (R2=0.77) and between a350 and lignin (R2=0.87). Intercepts of a350 vs lignin were not significantly different from zero (P=0.43) suggesting that most of the CDOM was terrestrial in nature. Deviations from these regressions were strongest in the Neuse River Estuary, the most eutrophic of the six estuaries studied. After this calibration procedure, fluorescence modeling via parallel factor analysis (PARAFAC) was used to make estimates of terrigenous and planktonic DOC in these estuaries.

  4. Modeling nutrient retention at the watershed scale: Does small stream research apply to the whole river network?

    NASA Astrophysics Data System (ADS)

    Aguilera, Rosana; Marcé, Rafael; Sabater, Sergi

    2013-06-01

    are conveyed from terrestrial and upstream sources through drainage networks. Streams and rivers contribute to regulate the material exported downstream by means of transformation, storage, and removal of nutrients. It has been recently suggested that the efficiency of process rates relative to available nutrient concentration in streams eventually declines, following an efficiency loss (EL) dynamics. However, most of these predictions are based at the reach scale in pristine streams, failing to describe the role of entire river networks. Models provide the means to study nutrient cycling from the stream network perspective via upscaling to the watershed the key mechanisms occurring at the reach scale. We applied a hybrid process-based and statistical model (SPARROW, Spatially Referenced Regression on Watershed Attributes) as a heuristic approach to describe in-stream nutrient processes in a highly impaired, high stream order watershed (the Llobregat River Basin, NE Spain). The in-stream decay specifications of the model were modified to include a partial saturation effect in uptake efficiency (expressed as a power law) and better capture biological nutrient retention in river systems under high anthropogenic stress. The stream decay coefficients were statistically significant in both nitrate and phosphate models, indicating the potential role of in-stream processing in limiting nutrient export. However, the EL concept did not reliably describe the patterns of nutrient uptake efficiency for the concentration gradient and streamflow values found in the Llobregat River basin, posing in doubt its complete applicability to explain nutrient retention processes in stream networks comprising highly impaired rivers.

  5. Geomorphic change and sediment transport during a small artificial flood in a transformed post-dam delta: The Colorado River delta, United States and Mexico

    USGS Publications Warehouse

    Mueller, Erich R.; Schmidt, John C.; Topping, David J.; Shafroth, Patrick B.; Rodríguez-Burgueño, Jesús Eliana; Ramírez-Hernández, Jorge; Grams, Paul E.

    2017-01-01

    The Colorado River delta is a dramatically transformed landscape. Major changes to river hydrology and morpho-dynamics began following completion of Hoover Dam in 1936. Today, the Colorado River has an intermittent and/or ephemeral channel in much of its former delta. Initial incision of the river channel in the upstream ∼50 km of the delta occurred in the early 1940s in response to spillway releases from Hoover Dam under conditions of drastically reduced sediment supply. A period of relative quiescence followed, until the filling of upstream reservoirs precipitated a resurgence of flows to the delta in the 1980s and 1990s. Flow releases during extreme upper basin snowmelt in the 1980s, flood flows from the Gila River basin in 1993, and a series of ever-decreasing peak flows in the late 1990s and early 2000s further incised the upstream channel and caused considerable channel migration throughout the river corridor. These variable magnitude post-dam floods shaped the modern river geomorphology. In 2014, an experimental pulse-flow release aimed at rejuvenating the riparian ecosystem and understanding hydrologic dynamics flowed more than 100 km through the length of the delta’s river corridor. This small artificial flood caused localized meter-scale scour and fill of the streambed, but did not cause further incision or significant bank erosion because of its small magnitude. Suspended-sand-transport rates were initially relatively high immediately downstream from the Morelos Dam release point, but decreasing discharge from infiltration losses combined with channel widening downstream caused a rapid downstream reduction in suspended-sand-transport rates. A zone of enhanced transport occurred downstream from the southern U.S.-Mexico border where gradient increased, but effectively no geomorphic change occurred beyond a point 65 km downstream from Morelos Dam. Thus, while the pulse flow connected with the modern estuary, deltaic sedimentary processes were not restored, and relatively few new open surfaces were created for establishment of native riparian vegetation. Because water in the Colorado River basin is completely allocated, exceptional floods from the Gila River basin are the most likely mechanism for major changes to delta geomorphology for the foreseeable future.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leathe, Stephen A.; Enk, Michael D.

    This study was designed to develop and apply methods to evaluate the cumulative effects of 20 proposed small hydro projects on the fisheries resources of the Swan River drainage located in northwestern Montana. Fish population and reach classification information was used to estimate total populations of 107,000 brook trout, 65,000 cut-throat trout and 31,000 juvenile bull trout within the tributary system. Distribution, abundance, and life history of fish species in the drainage and their contribution to the sport fishery were considered in the cumulative impact analysis. Bull trout were chosen as the primary species of concern because of their extensivemore » use of project areas, sensitivity to streambed sedimentation, and their importance to the lake and river sport fisheries. Dewatering of hydroelectric diversion zones and streambed sedimentation (resulting from forest and small hydro development) were the major impacts considered. The developer proposed to divert up to the entire streamflow during low flow months because maintenance of recommended minimum bypass flows would not allow profitable project operation. Dewatering was assumed to result in a total loss of fish production in these areas. 105 refs., 19 figs., 38 tabs.« less

  7. Ground-water flow in the shallow aquifer system at the Naval Weapons Station Yorktown, Virginia

    USGS Publications Warehouse

    Smith, Barry S.

    2001-01-01

    The Environmental Directorate of the Naval Weapons Station Yorktown, Virginia, is concerned about possible contamination of ground water at the Station. Ground water at the Station flows through a shallow system of layered aquifers and leaky confining units. The units of the shallow aquifer system are the Columbia aquifer, the Cornwallis Cave confining unit, the Cornwallis Cave aquifer, the Yorktown confining unit, and the Yorktown-Eastover aquifer. The Eastover-Calvert confining unit separates the shallow aquifer system from deeper confined aquifers beneath the Station. A three-dimensional, finite-difference, ground-water flow model was used to simulate steady-state ground-water flow of the shallow aquifer system in and around the Station. The model simulated ground-water flow from the peninsular drainage divide that runs across the Lackey Plain near the southern end of the Station north to King Creek and the York River and south to Skiffes Creek and the James River. The model was calibrated by minimizing the root mean square error between 4 7 measured and corresponding simulated water levels. The calibrated model was used to determine the ground-water budget and general directions of ground-water flow. A particle-tracking routine was used with the calibrated model to estimate groundwater flow paths, flow rates, and traveltimes from selected sites at the Station. Simulated ground-water flow velocities of the Station-area model were small beneath the interstream areas of the Lackey Plain and Croaker Flat, but increased outward toward the streams and rivers where the hydraulic gradients are larger. If contaminants from the land surface entered the water table at or near the interstream areas of the Station, where hydraulic gradients are smaller, they would migrate more slowly than if they entered closer to the streams or the shores of the rivers where gradients commonly are larger. The ground-water flow simulations indicate that some ground water leaks downward from the water table to the Yorktown confining unit and, where the confining unit is absent, to the Yorktown-Eastover aquifer. The velocities of advective-driven contaminants would decrease considerably when entering the Yorktown confining unit because the hydraulic conductivity of the confining unit is small compared to that of the aquifers. Any contaminants that moved with advective ground-water flow near the groundwater divide of the Lackey Plain would move relatively slowly because the hydraulic gradients are small there. The direction in which the contaminants would move, however, would be determined by precisely where the contaminants entered the water table. The model was not designed to accurately simulate ground-water flow paths through local karst features. Beneath Croaker Flat, ground water flows downward through the Columbia aquifer and the Yorktown confining unit into the Yorktown-Eastover aquifer. Analyses of the movement of simulated particles from two adjacent sites at Croaker Flat indicated that ground-water flow paths were similar at first but diverged and discharged to different tributaries of Indian Field Creek or to the York River. These simulations indicate that complex and possibly divergent flow paths and traveltimes are possible at the Station. Although the Station-area model is not detailed enough to simulate ground-water flow at the scales commonly used to track and remediate contaminants at specific sites, general concepts about possible contaminant migration at the Station can be inferred from the simulations.

  8. Spatially Resolving Ocean Color and Sediment Dispersion in River Plumes, Coastal Systems, and Continental Shelf Waters

    NASA Technical Reports Server (NTRS)

    Aurin, Dirk Alexander; Mannino, Antonio; Franz, Bryan

    2013-01-01

    Satellite remote sensing of ocean color in dynamic coastal, inland, and nearshorewaters is impeded by high variability in optical constituents, demands specialized atmospheric correction, and is limited by instrument sensitivity. To accurately detect dispersion of bio-optical properties, remote sensors require ample signal-to-noise ratio (SNR) to sense small variations in ocean color without saturating over bright pixels, an atmospheric correction that can accommodate significantwater-leaving radiance in the near infrared (NIR), and spatial and temporal resolution that coincides with the scales of variability in the environment. Several current and historic space-borne sensors have met these requirements with success in the open ocean, but are not optimized for highly red-reflective and heterogeneous waters such as those found near river outflows or in the presence of sediment resuspension. Here we apply analytical approaches for determining optimal spatial resolution, dominant spatial scales of variability ("patches"), and proportions of patch variability that can be resolved from four river plumes around the world between 2008 and 2011. An offshore region in the Sargasso Sea is analyzed for comparison. A method is presented for processing Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua and Terra imagery including cloud detection, stray lightmasking, faulty detector avoidance, and dynamic aerosol correction using short-wave- and near-infrared wavebands in extremely turbid regions which pose distinct optical and technical challenges. Results showthat a pixel size of approx. 520 mor smaller is generally required to resolve spatial heterogeneity in ocean color and total suspended materials in river plumes. Optimal pixel size increases with distance from shore to approx. 630 m in nearshore regions, approx 750 m on the continental shelf, and approx. 1350 m in the open ocean. Greater than 90% of the optical variability within plume regions is resolvable with 500 m resolution, and small, but significant, differences were found between peak and nadir river flow periods in terms of optimal resolution and resolvable proportion of variability.

  9. Mapping the social impacts of small dams: The case of Thailand's Ing River basin.

    PubMed

    Fung, Zali; Pomun, Teerapong; Charles, Katrina J; Kirchherr, Julian

    2018-05-24

    The social impacts of large dams have been studied extensively. However, small dams' social impacts have been largely neglected by the academic community. Our paper addresses this gap. We examine the social impacts of multiple small dams in one upstream and one downstream village in Thailand's Ing River basin. Our research is based on semi-structured interviews with beneficiaries, government and NGOs. We argue that small dams' social impacts are multi-faceted and unequal. The dams were perceived to reduce fish abundance and provide flood mitigation benefits. Furthermore, the dams enabled increased access to irrigation water for upstream farmers, who re-appropriated water via the dams at the expense of those downstream. The small dams thus engendered water allocation conflicts. Many scholars, practitioners and environmentalists argue that small dams are a benign alternative to large dams. However, the results of our research mandate caution regarding this claim.

  10. GIS environmental information analysis of the Darro River basin as the key for the management and hydrological forest restoration.

    PubMed

    Fernandez, Paz; Delgado, Expectación; Lopez-Alonso, Mónica; Poyatos, José Manuel

    2018-02-01

    This article presents analyses of soil and environmental information for the Darro River basin (Granada-Spain) preliminary to its hydrological and forestry restoration. These analyses were carried out using a geographical information system (GIS) and employing a new procedure that adapts hydrological forest-restoration methods. The complete analysis encompasses morphological conditions, soil and climate characteristics as well as vegetation and land use. The study investigates soil erosion in the basin by using Universal Soil Loss Equation (USLE) and by mapping erosion fragility units. The results are presented in a set of maps and their analysis, providing the starting point for river basin management and the hydrological and forestry-restoration project that was approved at the end of 2015. The presence of soft substrates (e.g. gravel and sand) indicates that the area is susceptible to erosion, particularly the areas that are dominated by human activity and have little soil protection. Finally, land use and vegetation cover were identified as key factors in the soil erosion in the basin. According to the results, river authorities have included several measures in the restoration project aimed at reducing the erosion and helping to recover the environmental value of this river basin and to include it in recreation possibilities for the community of Granada. The presented analytical approach, designed by the authors, would be useful as a tool for environmental restoration in other small Mediterranean river basins. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Tracing Waste Water with Li isotopes

    NASA Astrophysics Data System (ADS)

    Millot, R.; Desaulty, A. M.

    2015-12-01

    The contribution of human activities such as industries, agriculture and various domestic inputs, becomes more and more significant in the chemical composition of the dissolved load of rivers. Human factors act as a supplementary key process. Therefore the mass-balance for the budget of catchments and river basins include anthropogenic disturbances. In the present study, we investigate waste water tracing by the use of Li isotopes in a small river basin near Orléans in France (l'Egoutier, 15 km² and 5 km long). It is well known that Li has strategic importance for numerous industrial applications including its use in the production of batteries for both mobile devices (computers, tablets, smartphones, etc.) and electric vehicles, but also in pharmaceutical formulations. In the present work, we collected river waters samples before and after the release from a waste water treatment plant connected to an hospital. Lithium isotopic compositions are rather homogeneous in river waters with δ7Li values around -0.5‰ ± 1 along the main course of the stream (n=7). The waste water sample is very different from the natural background of the river basin with Li concentration being twice of the values without pollution and significant heavy lithium contribution (δ7Li = +4‰). These preliminary results will be discussed in relation with factors controlling the distribution of Li and its isotopes in this specific system and compared with the release of other metals such as Pb or Zn.

  12. Potential interaction between transport and stream networks over the lowland rivers in Eastern India.

    PubMed

    Roy, Suvendu; Sahu, Abhay Sankar

    2017-07-15

    Extension of transport networks supports good accessibility and associated with the development of a region. However, transport lines have fragmented the regional landscape and disturbed the natural interplay between rivers and their floodplains. Spatial analysis using multiple buffers provides information about the potential interaction between road and stream networks and their impact on channel morphology of a small watershed in the Lower Gangetic Plain. Present study is tried to understand the lateral and longitudinal disconnection in headwater stream by rural roads with the integration of geoinformatics and field survey. Significant (p < 0.001) growth of total road length and number of road-stream crossing in the last five decades (1970s-2010s) contribute to making longitudinal and lateral disconnection in the fluvial system of Kunur River Basin. Channel geometry from ten road-stream crossings shows significant (p = 0.01) differences between upstream and downstream of crossing structure and created problems like downstream scouring, increased drop height at outlet, formation of stable bars, severe bank erosion, and make barriers for river biota. The hydro-geomorphic processes are also adversely affected due to lateral disconnection and input of fine to coarse sediments from the river side growth of unpaved road (1922%). Limited streamside development, delineation of stream corridor, regular monitoring and engineering efficiency for the construction of road and road-stream crossing might be effective in managing river geomorphology and riverine landscape. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The large-scale distribution and internal geometry of the fall 2000 Po River flood deposit: Evidence from digital X-radiography

    USGS Publications Warehouse

    Wheatcroft, R.A.; Stevens, A.W.; Hunt, L.M.; Milligan, T.G.

    2006-01-01

    Event-response coring on the Po River prodelta (northern Adriatic Sea) coupled with shipboard digital X-radiography, resistivity profiling, and grain-size analyses permitted documentation of the initial distribution and physical properties of the October 2000 flood deposit. The digital X-radiography system comprises a constant-potential X-ray source and an amorphous silicon imager with an active area of 29??42 cm and 12-bit depth resolution. Objective image segmentation algorithms based on bulk density (brightness), layer contacts (edge detection) and small-scale texture (fabric) were used to identify the flood deposit. Results indicate that the deposit formed in water depths of 6-29 m immediately adjacent to the three main distributary mouths of the Po (Pila, Tolle and Gnocca/Goro). Maximal thickness was 36 cm at a 20-m site off the main mouth (Pila), but many other sites hadthicknesses >20 cm. The Po flood deposit has a complex internal stratigraphy, with multiple layers, a diverse suite of physical sedimentary structures (e.g., laminations, ripple cross bedding, lenticular bedding, soft-sediment deformation structures), and dramatic changes in grain size that imply rapid deposition and fluctuations in energy during emplacement. Based on the flood deposit volume and well-constrained measurements of deposit bulk density the mass of the flood deposit was estimated to be 16??109 kg, which is about two-thirds of the estimated suspended sediment load delivered by the river during the event. The locus of deposition, overall thickness, and stratigraphic complexity of the flood deposit can best be explained by the relatively long sediment throughput times of the Po River, whereby sediment is delivered to the ocean during a range of conditions (i.e., the storm responsible for the precipitation is long gone), the majority of which are reflective of the fair-weather condition. Sediment is therefore deposited proximal to the river mouths, where it can form thick, but stratigraphically complex deposits. In contrast, floods of small rivers such as the Eel (northern California) are coupled to storm conditions, which lead to high levels of sediment dispersion. ?? 2006 Elsevier Ltd. All rights reserved.

  14. A Small-scale Physical Model of the Lower Mississippi River for Studying the Potential of Medium- and Large-scale Diversions

    NASA Astrophysics Data System (ADS)

    Willson, C. S.

    2011-12-01

    Over the past several thousand years the Mississippi River has formed one of the world's largest deltas and much of the Louisiana coast. However, in the last 100 years or so, anthropogenic controls have been placed on the system to maintain important navigation routes and for flood control resulting in the loss of the natural channel shifting necessary for replenishment of the deltaic coast with fresh sediment and resources. In addition, the high relative sea level rise in the lowermost portion of the river is causing a change in the distributary flow patterns of the river and deposition center. River and sediment diversions are being proposed as way to re-create some of the historical distribution of river water and sediments into the delta region. In response to a need for improving the understanding of the potential for medium- and large-scale river and sediment diversions, the state of Louisiana funded the construction of a small-scale physical model (SSPM) of the lower ~76 river miles (RM). The SSPM is a 1:12,000 horizontal, 1:500 vertical, highly-distorted, movable bed physical model designed to provide qualitative and semi-quantitative results regarding bulk noncohesive sediment transport characteristics in the river and through medium- and large-scale diversion structures. The SSPM was designed based on Froude similarity for the hydraulics and Shields similarity for sand transport and has a sediment time scale of 1 year prototype to 30 minutes model allowing for decadal length studies of the land building potential of diversions. Annual flow and sediment hydrographs were developed from historical records and a uniform relative sea level rise of 3 feet in 100 years is used to account for the combined effects of eustatic sea level rise and subsidence. Data collected during the experiments include river stages, dredging amounts and high-resolution video of transport patterns within the main channel and photographs of the sand deposition patterns in the diversion receiving areas. First, the similarity analysis that went into the model design along with a discussion of the resulting limitations will be presented. Next, calibration and validation results will be shown demonstrating the ability of the SSPM to capture the general lower Mississippi River sediment transport trends and deposition patterns. Third, results from a series of diversion experiments will be presented to semi-quantitatively show the effectiveness of diversion locations, sizes, and operating strategies on the quantities of sand diverted from the main river and the changes in main channel dredging volumes. These results will are then correlated with recent field and numerical studies of the study area. This talk will then close with a brief discussion of a new and improved physical model that will cover a larger domain and be designed to provide more quantitative results.

  15. Trade-offs Between Electricity Production from Small Hydropower Plants and Ecosystem Services in Alpine River Basins

    NASA Astrophysics Data System (ADS)

    Meier, Philipp; Schwemmle, Robin; Viviroli, Daniel

    2015-04-01

    The need for a reduction in greenhouse gas emissions and the decision to phase out nuclear power plants in Switzerland and Germany increases pressure to develop the remaining hydropower potential in Alpine catchments. Since most of the potential for large reservoirs is already exploited, future development focusses on small run-of-the-river hydropower plants (SHP). Being considered a relatively environment-friendly electricity source, investment in SHP is promoted through subsidies. However, SHP can have a significant impact on riverine ecosystems, especially in the Alpine region where residual flow reaches tend to be long. An increase in hydropower exploitation will therefore increase pressure on ecosystems. While a number of studies assessed the potential for hydropower development in the Alps, two main factors were so far not assessed in detail: (i) ecological impacts within a whole river network, and (ii) economic conditions under which electricity is sold. We present a framework that establishes trade-offs between multiple objectives regarding environmental impacts, electricity production and economic evaluation. While it is inevitable that some ecosystems are compromised by hydropower plants, the context of these impacts within a river network should be considered when selecting suitable sites for SHP. From an ecological point of view, the diversity of habitats, and therefore the diversity of species, should be maintained within a river basin. This asks for objectives that go beyond lumped parameters of hydrological alteration, but also consider habitat diversity and the spatial configuration. Energy production in run-of-the-river power plants depends on available discharge, which can have large fluctuations. In a deregulated electricity market with strong price variations, an economic valuation should therefore be based on the expected market value of energy produced. Trade-off curves between different objectives can help decision makers to define policies for licensing new SHP and for defining minimum flow requirements. The trade-offs are established using a multi-objective evolutionary algorithm. A case study on an Alpine catchment is presented. The position of water intake and outlet and the design capacity of SHP, and different environmental flow policies are used as decision variables. The calculation of complex objectives, as described above, relies on an accurate representation of the physical system. The river network is divided into segments of 500 meters length for each of which the slope is calculated. Natural incremental flows are calculated for each segment using the PREVAH hydrological modelling system. Trade-offs are established on the basin scale as well as on the sub-basin scale. This allows the assessment of the influence of different configurations of SHP on ecosystem quality across different spatial scales.

  16. Low-flow characteristics of the Mississippi River upstream from the Twin Cities Metropolitan Area, Minnesota, 1932-2007

    USGS Publications Warehouse

    Kessler, Erich; Lorenz, David L.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the Metropolitan Council, conducted a study to characterize regional low flows during 1932?2007 in the Mississippi River upstream from the Twin Cities metropolitan area in Minnesota and to describe the low-flow profile of the Mississippi River between the confluence of the Crow River and St. Anthony Falls. Probabilities of extremely low flow were estimated for the streamflow-gaging station (Mississippi River near Anoka) and the coincidence of low-flow periods, defined as the extended periods (at least 7 days) when all the daily flows were less than the 10th percentile of daily mean flows for the entire period of record, at four selected streamflow-gaging stations located upstream. The likelihood of extremely low flows was estimated by a superposition method for the Mississippi River near Anoka that created 5,776 synthetic hydrographs resulting in a minimum synthetic low flow of 398 cubic feet per second at a probability of occurrence of 0.0002 per year. Low-flow conditions at the Mississippi River above Anoka were associated with low-flow conditions at two or fewer of four upstream streamflow-gaging stations 42 percent of the time, indicating that sufficient water is available within the basin for many low flows and the occurrence of extremely low-flows is small. However, summer low-flow conditions at the Mississippi River above Anoka were almost always associated with low-stage elevations in three or more of the six upper basin reservoirs. A low-flow profile of the Mississippi River between the confluence of the Crow River and St. Anthony Falls was completed using a real-time kinematic global positioning system, and the water-surface profile was mapped during October 8?9, 2008, and annotated with local landmarks. This was done so that water-use planners could relate free-board elevations of selected water utility structures to the lowest flow conditions during 2008.

  17. Investigating the Sources of Nitrogen Contamination in the Shallow Aquifer of Jakarta using a Newly Developed Distributed River-Aquifer Flow and Transport Model

    NASA Astrophysics Data System (ADS)

    Costa, D.; Burlando, P.; Liong, S. Y.

    2015-12-01

    Recent observations in the shallow aquifer of Jakarta show a rise in nitrate (NO3-) levels. Groundwater is extensively used in the city to compensate for the limited public water supply network and therefore the risk to public health from a rise in NO3- concentration is high. NO3- has been identified as a cofactor for methemoglobinemia in infants, a disease which can lead to death in extreme cases. The NO3- levels detected are still below regulatory limits for drinking purposes but strategies are necessary to contain the growing problem. To this end, the main sources and pathways of inorganic compounds containing nitrogen (N) - i.e. nitrate, nitrite (NO2-) and ammonium (NH4+) - were investigated. We combined 3 years of field measurements in the Ciliwung River, the major river flowing through Jakarta, with a distributed river-aquifer interaction model to characterize the N-cycle in both systems and quantify the contribution of river infiltration in the overall groundwater N budget. The computed infiltration fluxes were compared to estimates of leaks from poorly maintained septic tanks, which are extensively used in the city, to identify the main source of groundwater contamination. Observations show a strong and interdependent spatial and seasonal variability in the levels of NO3-, NO2- and NH4+ in the river, which is caused by changes in nitrification/denitrification rates due to variations in dissolved oxygen concentrations. Simulation results suggest that such dynamics in the river cause river to aquifer contamination patterns to likewise change over space and time, which leads to heterogeneous vulnerability distributions. The estimated contribution of river-N infiltration to the observed NO3- groundwater levels is small if compared to that originating from all leaking septic tanks inside Jakarta. However, in the vicinity of the Ciliwung, river to groundwater N-loading can play an important role in the local NO3- groundwater levels because it is highly concentrated.

  18. Chemical and isotopic evidence of nitrogen transformation in the Mississippi River, 1997-98

    USGS Publications Warehouse

    Battaglin, William A.; Kendall, Carol; Chang, Cecily C.Y.; Silva, Steven R.; Campbell, D.H.

    2001-01-01

    Nitrate (NO3) and other nutrients discharged by the Mississippi River are suspected of causing a zone of depleted dissolved oxygen (hypoxic zone) in the Gulf of Mexico each summer. The hypoxic zone may have an adverse affect on aquatic life and commercial fisheries. The amount of NO3 delivered by the Mississippi River to the Gulf of Mexico is well documented, but the relative contributions of different sources of NO3, and the magnitude of subsequent in-stream transformations of NO3, are not well understood. Forty-two water samples collected in 1997 and 1998 at eight stations located either on the Mississippi River or its major tributaries were analysed for NO3, total nitrogen (N), atrazine, chloride concentrations and NO3 stable isotopes (δ15N and δ18O). These data are used to assess the magnitude and nature of in-stream N transformation and to determine if the δ15N and δ18O of NO3 provide information about NO3 sources and transformation processes in a large river system (drainage area 2 900 000 km2) that would otherwise be unavailable using concentration and discharge data alone. Results from 42 samples indicate that the δ15N and δ18O ratios between sites on the Mississippi River and its tributaries are somewhat distinctive, and vary with season and discharge rate. Of particular interest are two nearly Lagrangian sample sets, in which samples from the Mississippi River at St Francisville, LA, are compared with samples collected from the Ohio River at Grand Chain, II, and the Mississippi River at Thebes, IL. In both Lagrangian sets, mass-balance calculations indicate only a small amount of in-stream N loss. The stable isotope data from the samples suggest that in-stream N assimilation and not denitrification accounts for most of the N loss in the lower Mississippi River during the spring and early summer months.

  19. Sediment loads and transport at constructed chutes along the Missouri River - Upper Hamburg Chute near Nebraska City, Nebraska, and Kansas Chute near Peru, Nebraska

    USGS Publications Warehouse

    Densmore, Brenda K.; Rus, David L.; Moser, Matthew T.; Hall, Brent M.; Andersen, Michael J.

    2016-02-04

    Comparisons of concentrations and loads from EWI samples collected from different transects within a study site resulted in few significant differences, but comparisons are limited by small sample sizes and large within-transect variability. When comparing the Missouri River upstream transect to the chute inlet transect, similar results were determined in 2012 as were determined in 2008—the chute inlet affected the amount of sediment entering the chute from the main channel. In addition, the Kansas chute is potentially affecting the sediment concentration within the Missouri River main channel, but small sample size and construction activities within the chute limit the ability to fully understand either the effect of the chute in 2012 or the effect of the chute on the main channel during a year without construction. Finally, some differences in SSC were detected between the Missouri River upstream transects and the chute downstream transects; however, the effect of the chutes on the Missouri River main-channel sediment transport was difficult to isolate because of construction activities and sampling variability.

  20. Multidisciplinary study of Wyoming test sites. [hydrology, biology, geology, lithology, geothermal, and land use

    NASA Technical Reports Server (NTRS)

    Houston, R. S. (Principal Investigator); Marrs, R. W.; Agard, S. S.; Downing, K. G.; Earle, J. L.; Froman, N. L.; Gordon, R.; Kolm, K. E.; Tomes, B.; Vietti, J.

    1974-01-01

    The author has identified the following significant results. Investigation of a variety of applications of EREP photographic data demonstrated that EREP S-190 data offer a unique combination of synoptic coverage and image detail. The broad coverage is ideal for regional geologic mapping and tectonic analysis while the detail is adequate for mapping of crops, mines, urban areas, and other relatively small features. The investigative team at the University of Wyoming has applied the EREP S-190 data to: (1) analysis of photolinear elements of the Powder River Basin, southern Montana, and the Wind River Mountains; (2) drainage analysis of the Powder River Basin and Beartooth Mountains; (3) lithologic and geologic mapping in the Powder River Basin, Black Hills, Green River Basin, Bighorn Basin and Southern Bighorn Mountains; (4) location of possible mineralization in the Absaroka Range; and (5) land use mapping near Riverton and Gillette. All of these applications were successful to some degree. Image enhancement procedures were useful in some efforts requiring distinction of small objects or subtle contrasts.

  1. Anadromous sea lampreys recolonize a Maine coastal river tributary after dam removal

    USGS Publications Warehouse

    Hogg, Robert; Coghlan, Stephen M.; Zydlewski, Joseph D.

    2013-01-01

    Sedgeunkedunk Stream, a third-order tributary to the Penobscot River, Maine, historically supported several anadromous fishes, including the Atlantic Salmon Salmo salar, AlewifeAlosa pseudoharengus, and Sea Lamprey Petromyzon marinus. However, two small dams constructed in the 1800s reduced or eliminated spawning runs entirely. In 2009, efforts to restore marine–freshwater connectivity in the system culminated with removal of the lowermost dam, thus providing access to an additional 4.6 km of lotic habitat. Because Sea Lampreys utilized accessible habitat prior to dam removal, they were chosen as a focal species with which to quantify recolonization. During spawning runs of 2008–2011 (before and after dam removal), individuals were marked with PIT tags and their activity was tracked with daily recapture surveys. Open-population mark–recapture models indicated a fourfold increase in the annual abundance of spawning-phase Sea Lampreys, with estimates rising from 59±4 () before dam removal (2008) to 223±18 and 242±16 after dam removal (2010 and 2011, respectively). Accompanying the marked increase in annual abundance was a greater than fourfold increase in nesting sites: the number of nests increased from 31 in 2008 to 128 and 131 in 2010 and 2011, respectively. During the initial recolonization event (i.e., in 2010), Sea Lampreys took 6 d to move past the former dam site and 9 d to expand into the furthest upstream reaches. Conversely, during the 2011 spawning run, Sea Lampreys took only 3 d to penetrate into the upstream reaches, thus suggesting a potential positive feedback in which larval recruitment into the system may have attracted adult spawners via conspecific pheromone cues. Although more research is needed to verify the migratory pheromone hypothesis, our study clearly demonstrates that small-stream dam removal in coastal river systems has the potential to enhance recovery of declining anadromous fish populations.

  2. Hardware-in-the-Loop emulator for a hydrokinetic turbine

    NASA Astrophysics Data System (ADS)

    Rat, C. L.; Prostean, O.; Filip, I.

    2018-01-01

    Hydroelectric power has proven to be an efficient and reliable form of renewable energy, but its impact on the environment has long been a source of concern. Hydrokinetic turbines are an emerging class of renewable energy technology designed for deployment in small rivers and streams with minimal environmental impact on the local ecosystem. Hydrokinetic technology represents a truly clean source of energy, having the potential to become a highly efficient method of harvesting renewable energy. However, in order to achieve this goal, extensive research is necessary. This paper presents a Hardware-in-the-Loop emulator for a run-of-the-river type hydrokinetic turbine. The HIL system uses an ABB ACS800 drive to control an induction machine as a significant means of replicating the behavior of the real turbine. The induction machine is coupled to a permanent magnet synchronous generator and the corresponding load. The ACS800 drive is controlled through the software system, which comprises of the hydrokinetic turbine real-time simulation through mathematical modeling in the LabVIEW programming environment running on a NI CompactRIO (cRIO) platform. The advantages of this method are that it can provide a means for testing many control configurations without requiring the presence of the real turbine. This paper contains the basic principles of a hydrokinetic turbine, particularly the run-of-the-river configurations along with the experimental results obtained from the HIL system.

  3. Heavy mineral analysis for assessing the provenance of sandy sediment in the San Francisco Bay Coastal System

    USGS Publications Warehouse

    Wong, Florence L.; Woodrow, Donald L.; McGann, Mary

    2013-01-01

    Heavy or high-specific gravity minerals make up a small but diagnostic component of sediment that is well suited for determining the provenance and distribution of sediment transported through estuarine and coastal systems worldwide. By this means, we see that surficial sand-sized sediment in the San Francisco Bay Coastal System comes primarily from the Sierra Nevada and associated terranes by way of the Sacramento and San Joaquin Rivers and is transported with little dilution through the San Francisco Bay and out the Golden Gate. Heavy minerals document a slight change from the strictly Sierran-Sacramento mineralogy at the confluence of the two rivers to a composition that includes minor amounts of chert and other Franciscan Complex components west of Carquinez Strait. Between Carquinez Strait and the San Francisco Bar, Sierran sediment is intermingled with Franciscan-modified Sierran sediment. The latter continues out the Gate and turns southward towards beaches of the San Francisco Peninsula. The Sierran sediment also fans out from the San Francisco Bar to merge with a Sierran province on the shelf in the Gulf of the Farallones. Beach-sand sized sediment from the Russian River is transported southward to Point Reyes where it spreads out to define a Franciscan sediment province on the shelf, but does not continue southward to contribute to the sediment in the Golden Gate area.

  4. Trophic network model of exposed sandy coast: Linking continental and marine water ecosystems

    NASA Astrophysics Data System (ADS)

    Razinkovas-Baziukas, Artūras; Morkūnė, Rasa; Bacevičius, Egidijus; Gasiūnaitė, Zita Rasuolė

    2017-08-01

    A macroscopic food web network for the exposed sandy coastal zone of the south-eastern Baltic Sea was reconstructed using ECOPATH software to assess the matter and energy balance in the ecosystem. The model incorporated 40 living functional groups representing the Baltic Sea coastal system of Lithuania during the first decade of 21rst century. The overall pedigree index of our model was relatively high (0.66) as much of the input data originated from the study area. The results indicate net heterotrophy of the coastal zone due to strong influences from the nearby river - lagoon system (Curonian Lagoon). The majority of fish species and waterbirds were present in the coastal system on a seasonal basis and their migrations contributed to heterotrophic conditions. Among fish, the freshwater stragglers possibly contribute to the reversal of flow in biomass and energy from the coastal zone to the river-lagoon system. Top predators such as breeding and wintering piscivorous waterbirds and large pike-perch were identified as keystone species. There was a clear negative balance for the biomass of small marine pelagic fishes such as smelt, sprat and Baltic herring which represent the main prey items in this system.

  5. Water-borne typhoid fever caused by an unusual Vi-phage type in Edinburgh

    PubMed Central

    Conn, Nancy K.; Heymann, C. S.; Jamieson, A.; McWilliam, Joan M.; Scott, T. G.

    1972-01-01

    Investigation of a small series of cases of typhoid fever infected in a river between 1963 and 1970 revealed that all were caused by a single source, a carrier of a rare phage type of Salmonella typhi. The contamination of the river resulted from an incorrect sewage connexion with a surface water drain outfall into the river. ImagesPlate 1 PMID:4555889

  6. Influence of landscape geomorphology on large wood jams and salmonids in an old-growth river of Upper Michigan

    Treesearch

    Arthur E. L. Morris; P. Charles Goebel; Lance R. Williams; Brian J. Palik

    2006-01-01

    We investigated the structure of large wood jams (LWJ) and their use by brook trout (Salvelinus fontinalis Mitchill) and other fish in four geomorphically-distinct sections of the Little Carp River, a small river flowing through an uncut, old-growth, northern hardwood-conifer forest along the south shore of Lake Superior, Upper Michigan. We...

  7. Stereophotogrammetry in studies of riparian vegetation dynamics

    NASA Astrophysics Data System (ADS)

    Hortobagyi, Borbala; Vautier, Franck; Corenblit, Dov; Steiger, Johannes

    2014-05-01

    Riparian vegetation responds to hydrogeomorphic disturbances and also controls sediment deposition and erosion. Spatio-temporal riparian vegetation dynamics within fluvial corridors have been quantified in many studies using aerial photographs and GIS. However, this approach does not allow the consideration of woody vegetation growth rates (i.e. vertical dimension) which are fundamental when studying feedbacks between the processes of fluvial landform construction and vegetation establishment and succession. We built 3D photogrammetric models of vegetation height based on aerial argentic and digital photographs from sites of the Allier and Garonne Rivers (France). The models were realized at two different spatial scales and with two different methods. The "large" scale corresponds to the reach of the river corridor on the Allier river (photograph taken in 2009) and the "small" scale to river bars of the Allier (photographs taken in 2002, 2009) and Garonne Rivers (photographs taken in 2000, 2002, 2006 and 2010). At the corridor scale, we generated vegetation height models using an automatic procedure. This method is fast but can only be used with digital photographs. At the bar scale, we constructed the models manually using a 3D visualization on the screen. This technique showed good results for digital and also argentic photographs but is very time-consuming. A diachronic study was performed in order to investigate vegetation succession by distinguishing three different classes according to the vegetation height: herbs (<1 m), shrubs (1-4 m) or trees (>4 m). Both methods, i.e. automatic and manual, were employed to study the evolution of the three vegetation classes and the recruitment of new vegetation patches. A comparison was conducted between the vegetation height given by models (automatic and manual) and the vegetation height measured in the field. The manually produced models (small scale) were of a precision of 0.5-1 m, allowing the quantification of woody vegetation growth rates. Thus, our results show that the manual method we developed is accurate to quantify vegetation growth rates at small scales, whereas the less accurate automatic method is appropriate to study vegetation succession at the corridor scale. Both methods are complementary and will contribute to a further exploration of the mutual relationships between hydrogeomorphic processes, topography and vegetation dynamics within alluvial systems, adding the quantification of the vertical dimension of riparian vegetation to their spatio-temporal characteristics.

  8. Oregon Washington Coastal Ocean Forecast System: Real-time Modeling and Data Assimilation

    NASA Astrophysics Data System (ADS)

    Erofeeva, S.; Kurapov, A. L.; Pasmans, I.

    2016-02-01

    Three-day forecasts of ocean currents, temperature and salinity along the Oregon and Washington coasts are produced daily by a numerical ROMS-based ocean circulation model. NAM is used to derive atmospheric forcing for the model. Fresh water discharge from Columbia River, Fraser River, and small rivers in Puget Sound are included. The forecast is constrained by open boundary conditions derived from the global Navy HYCOM model and once in 3 days assimilation of recent data, including HF radar surface currents, sea surface temperature from the GOES satellite, and SSH from several satellite altimetry missions. 4-dimensional variational data assimilation is implemented in 3-day time windows using the tangent linear and adjoint codes developed at OSU. The system is semi-autonomous - all the data, including NAM and HYCOM fields are automatically updated, and daily operational forecast is automatically initiated. The pre-assimilation data quality control and post-assimilation forecast quality control require the operator's involvement. The daily forecast and 60 days of hindcast fields are available for public on opendap. As part of the system model validation plots to various satellites and SEAGLIDER are also automatically updated and available on the web (http://ingria.coas.oregonstate.edu/rtdavow/). Lessons learned in this pilot real-time coastal ocean forecasting project help develop and test metrics for forecast skill assessment for the West Coast Operational Forecast System (WCOFS), currently at testing and development phase at the National Oceanic and Atmospheric Administration (NOAA).

  9. Influence of stormwater runoff on macroinvertebrates in a small urban river and a reservoir.

    PubMed

    Gołdyn, Ryszard; Szpakowska, Barbara; Świerk, Dariusz; Domek, Piotr; Buxakowski, Jan; Dondajewska, Renata; Barałkiewicz, Danuta; Sajnóg, Adam

    2018-06-01

    The impact of stormwater on benthic macroinvertebrates was studied in two annual cycles. Five small catchments drained by stormwater sewers to a small urban river and a small and shallow reservoir situated in its course were selected. These catchments were located in residential areas with single-family houses or blocks of flats as well as industrial areas, i.e., a car factory, a glassworks and showroom as well as the parking lots of a car dealer and servicing company. In addition to the five stations situated in the vicinity of the stormwater outlets, three stations not directly influenced by stormwater were also established. Macroinvertebrates were sampled in every season, four times per year. Both abundance and biomass were assessed. Stormwater from industrial areas associated with cars, whose catchments showed a high percentage of impervious areas, had the greatest impact on benthic macroinvertebrates. This was due to a large amount of stormwater and its contamination, including heavy metals. Stormwater outflow from residential multi-family houses exerted the least influence. Macroinvertebrates in the water reservoir were found to undergo more extensive changes than those in the river. The cascade of four reservoirs resulted in a marked improvement of water quality in the river, which was confirmed by species composition, abundance and biomass of macroinvertebrates and indicators calculated on their basis for the stations below the cascade in comparison to the stations above and in the first reservoir. These reservoirs replaced constructed wetlands or other measures, which should be undertaken for stormwater management prior to its discharge into urban rivers and other water bodies. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Designing and Implementation of River Classification Assistant Management System

    NASA Astrophysics Data System (ADS)

    Zhao, Yinjun; Jiang, Wenyuan; Yang, Rujun; Yang, Nan; Liu, Haiyan

    2018-03-01

    In an earlier publication, we proposed a new Decision Classifier (DCF) for Chinese river classification based on their structures. To expand, enhance and promote the application of the DCF, we build a computer system to support river classification named River Classification Assistant Management System. Based on ArcEngine and ArcServer platform, this system implements many functions such as data management, extraction of river network, river classification, and results publication under combining Client / Server with Browser / Server framework.

  11. Holocene river history of the Danube: human-environment interactions on its islands in Hungary

    NASA Astrophysics Data System (ADS)

    Viczián, István; Balogh, János; Kis, Éva; Szeberényi, József

    2016-04-01

    A change in the frequency and magnitude of floods is the main response of river systems to climatic change. Natural floods are highly sensitive to even modest changes of climate. The discharge and the characteristics of floods basically determine the floodplain evolution and the feasibility of human land use and inhabitation on the islands and floodplains. The study revealed that those small islands of large rivers which have the surface rising only some meters above the river are particularly suitable research objects of Holocene climate variability as they are exposed to floods, react sensitively to environmental changes and their evolution may be paralleled with human history. The research area covers the islands of the Danube along the river between Komárom and Paks in Hungary, which is about 250 km, includes more than 50 smaller or formerly existing islands and two extensive islands: the Szentendre Island and Csepel Island. Data gathered from 570 archaeological sites of those islands from Neolithic to Modern Ages were analysed and interpreted in accordance with climate history and floodplain evolution. Nevertheless, the study is not only about river and its environmental history but it demonstrates the role of river and climatic variability in the history of mankind. The environment of the floodplain, the river hydrology, the sedimentation, the formation of islands and the incision and aggradation of surrounding riverbeds, the frequency of devastating floods have significantly changed through the historical time periods, which is reflected in the number and locations of archaeological sites on the islands. Their occupation history reflects the changes in discharge, climate, geomorphology, floods and human impacts and indicates historical periods with low or high probability of inundation. The most favourable periods for an island's occupation concerning the flood risk of its surfaces - and consequently of the banks along the river - are the first parts of a stable, warmer and drier period after a humid period, which is usually linked with revolutionary development of cultures and societies. The Middle Neolithic, the Late Copper Age, the Early and Late Bronze Ages, the Late Iron Age and the first part of the Roman Period, the High Middle Age are among the favourable periods, while the periods in between are characterised by frequent floods, higher water level and unfavourable environmental conditions. Archaeological sites known on small islands are found exactly from the above mentioned periods. The aim of the study was to present the Holocene river history of the Danube, improve a climatic-geomorphological model and reveal the variability of fluvial dynamics and geomorphological processes primarily affected by climate changes.

  12. How does floodplain width affect floodplain river ecology? A preliminary exploration using simulations

    NASA Astrophysics Data System (ADS)

    Power, Mary E.; Parker, Gary; Dietrich, William E.; Sun, Adrian

    1995-09-01

    Hydraulic food chain models allow us to explore the linkages of river discharge regimes and river-floodplain morphology to the structure and dynamics of modeled food webs. Physical conditions (e.g. depth, width, velocity) that vary with river discharge affect the performance (birth, growth, feeding, movement, or death rates) of organisms or trophic groups. Their performances in turn affect their impacts on food webs and ecosystems in channel and floodplain habitats. Here we explore the impact of floodplain width (modeled as 1 ×, 10× and 40× the channel width) on a food web with two energy sources (detritus and vegetation), invertebrates that consume these, a size structured fish population which consumes invertebrates and in which larger fish cannibalize small fish, and birds which feed on large fish. Hydraulic linkages to trophic dynamics are assumed to be mediated in three ways: birds feed efficiently only in shallow water; plant carrying capacity varies non-linearly with water velocity, and mobile and drifting organisms are diluted and concentrated with spillover of river discharge to the floodplain, and its reconfinement to the channel. Aspects of this model are based on field observations of Junk and Bailey from the Amazon, of Sparks from the Mississippi, and on our observations of the Fly River in Papua New Guinea. The model produced several counter-intuitive results. Biomass of invertebrates and fish increased with floodplain width, but much more rapidly from 1 × to 10 × floodplains than from 10 × to 40 × floodplains. For birds, maximum biomass occurred on the 10× floodplain. Initially high bird biomass on the 40 × floodplain declined to extinction over time, because although favorable fishing conditions (shallow water) were most prolonged on the widest floodplain, this advantage was more than offset by the greater dilution of prey after spillover. Bird predation on large fish sometimes increased their biomass, by reducing cannibalism and thereby increasing the abundance of small fish available to grow into the larger size class. Sensitivity analyses indicated that model results were relatively robust to variation in parameter values that we chose, but much more exploration and calibration with field data are needed before we know how specific our results are to the structure and other assumptions of this model. We share with others the opinion that progress towards understanding complex dynamic systems like floodplain river ecosystems requires frequent feedback between modeling and field observations and experimentation. This understanding is crucial for river management and restoration. Organisms in real rivers have adapted to track and quickly exploit favorable conditions, and to avoid or endure adverse conditions. It is when we engineer away this environmental variability that we threaten the long term persistence of river-adapted biota.

  13. Effects of decontamination work on riverine radiocaesium activity concentrations in Fukushima affected area

    NASA Astrophysics Data System (ADS)

    Taniguchi, K.; Onda, Y.; Yoshimura, K.; Smith, H.; Brake, W.; Kubo, T.; Kuramoto, T.; Sato, T.; Onuma, S.

    2016-12-01

    Radionuclides such as Cs-134 and Cs-137 were widely distributed in the area affected by the accident at Fukushima Daiichi nuclear power plant. The radionuclides were deposited on the surface, absorbed by soil particles, and transported via river systems to Pacific Ocean due to rainfall events. In order to reduce air dose rate surrounding residential area, decontamination works have been conducted between 2013 and 2016 Fiscal Years. In paddy field and farmland contaminated by the fallout, 5 cm of surface soil was stripped, and then clean sands put on the surface. This work could reduce radiocaesium inventory, while the coverage of vegetation was significantly decreased. Therefore, runoff characteristics in the decontaminated area were different before and after the decontamination. Activity concentrations of particulate Cs-137 were measured in Abukuma river system and 8 small catchments located in coastal zone of Fukushima affected area. In all monitoring sites, Cs-137 concentrations have decreased over an entire monitoring period. Kuchibuto river, which is a tributary of Abukuma river showed significant effect of decontamination. In Yamakiya district, in the watershed of the tributary, the decontamination work had conducted from 2013 FY to December 2015. Particulate Cs-137 concentration at two monitoring sites located in the district showed around 30% of decline in the beginning of 2014 FY whereas the decline was not so significant at sites in lower reach of the tributary. Decontaminated paddy field and farmland can be judged as the important source of suspended sediments in the tributary.

  14. Landscape assessment of side channel plugs and associated cumulative side channel attrition across a large river floodplain.

    PubMed

    Reinhold, Ann Marie; Poole, Geoffrey C; Bramblett, Robert G; Zale, Alexander V; Roberts, David W

    2018-04-24

    Determining the influences of anthropogenic perturbations on side channel dynamics in large rivers is important from both assessment and monitoring perspectives because side channels provide critical habitat to numerous aquatic species. Side channel extents are decreasing in large rivers worldwide. Although riprap and other linear structures have been shown to reduce side channel extents in large rivers, we hypothesized that small "anthropogenic plugs" (flow obstructions such as dikes or berms) across side channels modify whole-river geomorphology via accelerating side channel senescence. To test this hypothesis, we conducted a geospatial assessment, comparing digitized side channel areas from aerial photographs taken during the 1950s and 2001 along 512 km of the Yellowstone River floodplain. We identified longitudinal patterns of side channel recruitment (created/enlarged side channels) and side channel attrition (destroyed/senesced side channels) across n = 17 river sections within which channels were actively migrating. We related areal measures of recruitment and attrition to the density of anthropogenic side channel plugs across river sections. Consistent with our hypothesis, a positive spatial relationship existed between the density of anthropogenic plugs and side channel attrition, but no relationship existed between plug density and side channel recruitment. Our work highlights important linkages among side channel plugs and the persistence and restoration of side channels across floodplain landscapes. Specifically, management of small plugs represents a low-cost, high-benefit restoration opportunity to facilitate scouring flows in side channels to enable the persistence of these habitats over time.

  15. Small game

    Treesearch

    John C. Kilgo

    2005-01-01

    Although small game currently is not harvested on the Savannah river Site(SRS) soutside of the Crackerneck Wildlife Management area and logical Reserve (CWMA), several species of small game occur on SRS. these include snipe (Gallinago gallinago), American woodcock (Scolopax minor), morning dove (Zenaida macroura...

  16. Miocene and Pliocene lacustrine and fluvial sequences, Upper Ramparts and Canyon village, Porcupine river, east-central Alaska

    USGS Publications Warehouse

    Fouch, T.D.; Carter, L.D.; Kunk, Michael J.; Smith, C.A.S.; White, J.M.

    1994-01-01

    Cenozoic strata exposed along the Porcupine River between the Upper Ramparts and Canyon Village, Alaska, can be divided into five unconformity-bounded units (sequences) which are: lower and middle Miocene unit A, the white sandy fluvial sequence with peat beds; middle Miocene unit B, the basalt sequence-part B1 is basalt, and part B2 is organic-rich sedimentary beds; upper Miocene unit C, mudrock-dominated lake sequence; late Miocene or Pliocene to Pleistocene unit D, terrace gravels, detrital organic matter and associated sediments, and Holocene unit E, mixed sand and gravel-rich sediment and other sedimentary material including peat and eolian silt. The sequence (unit A) of lower and middle Miocene fluvial deposits formed in streams and on flood plains, just before the inception of local volanism. Fossil pollen from unit A suggests conifer-dominated regional forests and cool temperate climates. Peat beds and lake deposits from unit B contain pollen that indicates a warmer temperate climate coinciding with the middle Miocene thermal maximum. The lake deposits (unit C) downstream from the basalts accumulated in a small basin which resulted from a hydrologic system that was dammed in the late Miocene but breached soon thereafter. The lower part of the terrace gravels (unit D) expresses breaching of the dammed hydrologic system (of unit C). The Porcupine River became a major tributary of the Yukon River in late Pleistocene time when Laurentide ice blocked drainage from the Yukon interior basins causing meltwater to spill over the low divide separating it from the Porcupine River drainage initiating erosion and capture of the Yukon interior basins. ?? 1994.

  17. Influence of Forest Disturbance on Hydrologic Extremes in the Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Bennett, K. E.; Middleton, R. S.; McDowell, N. G.; Xu, C.; Wilson, C. J.

    2015-12-01

    The Colorado River is one of the most important freshwater rivers in the United States: it provides water supply to more than 30 million people, irrigation to 5.7 million acres of cropland, and produces over 8 billion kilowatt hours of hydroelectric power each year. Our study focuses on changes to hydrological extremes and threshold responses across the Colorado River basin due to forest fires, infestations, and stress-induced tree mortality using a scenario-based approach to estimate forest cover disturbance. Scenarios include static vegetation reductions and dynamic reductions in forest compositions based on three CMIP5 global climate models and one emission scenario (1950-2099). For headwater systems, large intra-year variability exists, indicating the influence of climate on these snowmelt driven basins. Strong seasonality in flow responses are also noted; in the Piedra River higher runoff occurs during freshet under a no-forest condition, with the greatest changes observed for maximum streamflow. Conversely, during the recessional period, flows are lower in scenarios with reduced forest compositions. Low-flows appear to be affected in some basins but not others; for example small headwater systems demonstrate higher low-flows with increased disturbance. Global Climate Model scenarios indicate a range of responses in these basins, characterized by lower peak streamflow but with higher winter flows. This response is influenced by shifts in water, and energy balances associated with a combined response of changing climate and forest cover compositions. Results also clearly show how changes in extreme events are forced by shifts in major water balance parameters (runoff, evapotranspiration, snow water equivalent, and soil moisture) from headwater basins spanning a range of hydrological regimes and ecological environments across the Colorado.

  18. Watershed-scale drivers of air-water CO2 exchanges in two lagoonal, North Carolina (USA) estuaries

    NASA Astrophysics Data System (ADS)

    Van Dam, B.; Crosswell, J.; Anderson, I. C.; Paerl, H. W.

    2017-12-01

    Riverine loading of nutrients and organic matter act in concert to modulate CO2 fluxes in estuaries, yet quantitative relationships between these factors remain poorly defined. This study explored watershed-scale mechanisms responsible for the relatively low CO2 fluxes observed in two microtidal, lagoonal estuaries. Air-water CO2 fluxes were quantified with 74 high-resolution spatial surveys in the neighboring New River Estuary (NewRE) and Neuse River Estuary (NeuseRE), North Carolina, which experience a common climatology, but differ in marine versus riverine influence. Annually, both estuaries were relatively small sources of CO2 to the atmosphere, 12.5 and 16.3 mmol C m2 d-1 in the NeuseRE and NewRE, respectively. Variations in riverine alkalinity and inorganic carbon loading caused zones of minimum buffering capacity to occur at different locations in each estuary, enhancing the sensitivity of estuarine inorganic C chemistry to acidification. Large-scale pCO2 variations were driven by changes in freshwater age (akin to residence time), which modulate nutrient and organic carbon supply and phytoplankton flushing. Greatest pCO2 under-saturation was observed at intermediate freshwater ages, between 2-3 weeks. Biological controls on CO2 fluxes were obscured by variable inputs of river-borne CO2, which drove CO2 degassing in the river-dominated NeuseRE. Internally produced CO2 exceeded river-borne CO2 in the marine-dominated NewRE, suggesting that net ecosystem heterotrophy, rather than riverine inputs, drove CO2 fluxes in this system. Although annual CO2 fluxes were similar between systems, watershed-specific hydrologic factors led to disparate controls on internal carbonate chemistry, which can influence overall ecosystem health and response to future perturbation.

  19. Watershed-Scale Drivers of Air-Water CO2 Exchanges in Two Lagoonal North Carolina (USA) Estuaries

    NASA Astrophysics Data System (ADS)

    Van Dam, Bryce R.; Crosswell, Joseph R.; Anderson, Iris C.; Paerl, Hans W.

    2018-01-01

    Riverine loading of nutrients and organic matter act in concert to modulate CO2 fluxes in estuaries, yet quantitative relationships between these factors remain poorly defined. This study explored watershed-scale mechanisms responsible for the relatively low CO2 fluxes observed in two microtidal, lagoonal estuaries. Air-water CO2 fluxes were quantified with 74 high-resolution spatial surveys in the neighboring New River Estuary (NewRE) and Neuse River Estuary (NeuseRE), North Carolina, which experience a common climatology but differ in marine versus riverine influence. Annually, both estuaries were relatively small sources of CO2 to the atmosphere, 12.5 and 16.3 mmol C m-2 d-1 in the NeuseRE and NewRE, respectively. Large-scale pCO2 variations were driven by changes in freshwater age, which modulates nutrient and organic carbon supply and phytoplankton flushing. Greatest pCO2 undersaturation was observed at intermediate freshwater ages, between 2 and 3 weeks. Biological controls on CO2 fluxes were obscured by variable inputs of river-borne CO2, which drove CO2 degassing in the river-dominated NeuseRE. Internally produced CO2 exceeded river-borne CO2 in the marine-dominated NewRE, suggesting that net ecosystem heterotrophy, rather than riverine inputs, drove CO2 fluxes in this system. Variations in riverine alkalinity and inorganic carbon loading caused zones of minimum buffering capacity to occur at different locations in each estuary, enhancing the sensitivity of estuarine inorganic C chemistry to acidification. Although annual CO2 fluxes were similar between systems, watershed-specific hydrologic factors led to disparate controls on internal carbonate chemistry, which can influence ecosystem biogeochemical cycling, trophic state, and response to future perturbations.

  20. Mixing zone hydrodynamics in a large confluence: a case study of the Snake and Clearwater Rivers confluence

    NASA Astrophysics Data System (ADS)

    Shehata, M. M.; Petrie, J.

    2015-12-01

    Confluences are a basic component in all fluvial systems, which are often characterized by complex flow and sediment transport patterns. Addressing confluences, however, started only recently in parallel with new advances of flow measurement tools and computational techniques. A limited number of field studies exist investigating flow hydrodynamics through confluences, particularly for large confluences with central zone widths of 100 m or greater. Previous studies have indicated that the size of the confluent rivers and the post-confluence zone may impact flow and sediment transport processes in the confluence zone, which consequently could impact the biodiversity within the river network. This study presents the results of a field study conducted at the confluence of the Snake and the Clearwater rivers near the towns of Clarkston, WA and Lewiston, ID (average width of 700 m at the confluence center). This confluence supports many different and, sometimes, conflicting purposes including commercial navigation, recreation, and fish and wildlife conservation. The confluence properties are affected by dredging operations carried out periodically to maintain the minimum water depth required for safe flow conveyance and navigation purposes. Also, a levee system was constructed on the confluence banks as an extra flood control measure. In the recent field work, an Acoustic Doppler Current Profiler was used to measure water velocity profiles at cross sections in the confluence region. Fixed and moving vessel measurements were taken at selected locations to evaluate both the spatial and temporal variation in velocity throughout the confluence. The confluence bathymetry was surveyed with a multi-beam sonar to investigate existent bed morphological elements. The results identify the velocity pattern in the mixing zone between the two rivers. The present findings are compared to previous studies on small confluences to demonstrate the influence of scale on flow processes.

  1. Sediment dispersal in modern and mid-Holocene basins: implications for shoreline progradation and sediment bypassing, Poverty Bay, New Zealand

    NASA Astrophysics Data System (ADS)

    Bever, A. J.; Harris, C. K.; McNinch, J.

    2006-12-01

    Poverty Bay is a small embayment located on the eastern shore of New Zealand's North Island. The modern Waipaoa River, a small mountainous river that drains highly erodible mudstone and siltstone, discharges ~15 million tons of sediment per year to Poverty Bay. Rates of bay infilling from fluvial sediment have varied since the maximum shoreline transgression, ~7000 kya. The evolving geometry of Poverty Bay has likely impacted sediment dispersal over these timescales, and thereby influenced the stratigraphic architecture, rates of shoreline progradation, and sediment supply to the continental shelf. This modeling study investigates sediment transport within both modern and paleo, ~7000 kya, Poverty Bays. The Regional Ocean Modeling System was used to examine sediment transport within modern and ~7000 kya Poverty Bay basin geometries. The numerical model includes hydrodynamics driven by winds and buoyancy, and sediment resuspension from energetic waves and currents. Strong winds and waves from the southeast were used, along with high Waipaoa freshwater and sediment discharge, consistent with storm conditions. Besides shedding light on short term transport mechanisms, these results are being incorporated into a stratigraphic model by Wolinsky and Swenson. The paleo basin geometry narrowed at the head of the bay, causing currents to converge and promoting near- field sediment deposition. Buoyancy and wind driven across-shelf currents in the modern bay transport sediment away from the river mouth. Sediment was deposited closer to the river mouth in the paleo than the modern bay, and the modern bay exported much more sediment to the continental shelf than predicted for the middle Holocene bay. Net across-shelf fluxes decreased from a maximum at the head of the bay to nearly zero at the mouth during the paleo run. The modern run, however, had net across-shelf fluxes still half the maximum at the bay mouth. Results from short term model runs indicated that, with similar river discharges, the 7000 kya Poverty Bay shoreline should have prograded rapidly as sediment was deposited near the river mouth at the head of the bay, an area of little accommodation space. The trapping of sediment within the bay would have lead to a relatively sediment starved continental shelf. As the river mouth progressed towards the wider section of the bay, progradation should have been reduced as both proximal accommodation space and sediment export to the continental shelf increased.

  2. Phase transition behavior of sediment transport at the sand-mud interface, across scales from flumes to the large rivers

    NASA Astrophysics Data System (ADS)

    Ma, H.; Nittrouer, J. A.; Wu, B.; Zhang, Y.; Mohrig, D. C.; Lamb, M. P.; Wang, Y.; Fu, X.; Moodie, A. J.; Naito, K.; Parker, G.

    2017-12-01

    Sediment dispersal and deposition creates deltaic landscapes, establishes coastlines, and produces fertile floodplains, all of which serve as critical landforms inhabited by a large proportion of humankind. If poorly managed, sediment loads in these environments can elevate and clog channels, thereby enhancing hazards such as severe flooding. Predictive descriptions of sediment loads, however, are not well constrained, especially for fine-grained (silt and very-fine sand) dispersal systems, which often include river deltas and coastlines. Here, we show efforts to collect and analyze an extensive sediment load database for fine-grained channels, spanning from small flume experiments to large rivers, in order to evaluate the nature of sediment flux. Our analyses determined that sediment transport exhibits two distinct transport phases, separated by a discontinuous transition, whereby sediment flux differs by one to two orders of magnitude. It is determined that the transition responds to the bed material grain size, and we propose a phase diagram based on this metric alone. These findings help elucidate why previous theories of sediment transport at the sand-silt interface, which are typically continuous, are not able to give satisfactory predictions across different scales and environments. Our work serves to help evaluate anthropic influences on rivers, deltas, and coastlines, and can be applied to better constrain sediment flux of paleo-fluvial systems found on Earth and Mars. For example, in situ measurements of sediment flux for the silty-sandy bed of the lower Yellow River, China, validate the aforementioned phase transition behavior, and illustrate that the channel resides near the transition of high to low efficiency transport modes. Recent dam construction and resulting downstream coarsening of the bed via armoring, however, might lead to the unintended consequence of enhancing flood risk by driving the system to a low efficiency transport mode with high resistance to sediment-laden flow, which in turn will elevate the water stage under the same flood discharge.

  3. The Role of Model Fidelity in Understanding the Food-Energy-Water Nexus at the Asset Level

    NASA Astrophysics Data System (ADS)

    Tidwell, V. C.; Lowry, T. S.; Behery, S.; Macknick, J.; Yang, Y. C. E.

    2017-12-01

    An improved understanding of the food-energy-water nexus at the asset level (e.g., power plant, irrigation ditch, water utility) is necessary for the efficient management and operations of connected infrastructure systems. Interdependencies potentially influencing the operations of a particular asset can be numerous. For example, operations of energy and agricultural assets depend on the delivery of water, which in turn depend on the physical hydrology, river/reservoir operations, water rights, the networked water infrastructure and other factors. A critical challenge becomes identification of those linkages central to the analysis of the system. Toward this need, a case study was conducted centered on the San Juan River basin, a major tributary to the Colorado River. A unique opportunity was afforded by the availability of two sets of coupled models built on the same simulation platform but formulated at distinctly different fidelities. Comparative analysis was driven by statistically downscaled climate data from three global climate models (emission scenario RCP 8.5) and planned growth in regional water demand. Precipitation was partitioned between evaporation, runoff and recharge using the Variable Infiltration Capacity (VIC) hydrologic model. Priority administration of small-scale water use of upland tributary flows was simulated using Colorado's StateMod model. Mainstem operations of the San Juan River, including releases from Navajo Reservoir, were subsequently modeled using RiverWare to estimate impacts on water deliveries, environmental flows and interbasin transfers out to the year 2100. Models differ in the spatial resolution, disaggregation of water use, infrastructure operations and representation of system dynamics. Comparisons drawn between this suite of coupled models provides insight into the value of model fidelity relative to assessing asset vulnerability to a range of uncertain growth and climate futures. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

  4. Organic Carbon and Trace Element Cycling in a River-Dominated Tidal Coastal Wetland System (Tampa Bay, FL, USA)

    NASA Astrophysics Data System (ADS)

    Moyer, R. P.; Smoak, J. M.; Engelhart, S. E.; Powell, C. E.; Chappel, A. R.; Gerlach, M. J.; Kemp, A.; Breithaupt, J. L.

    2016-02-01

    Tampa Bay is the largest open water, river-fed estuary in Florida (USA), and is characterized by the presence of both mangrove and salt marsh ecosystems. Both coastal wetland systems, and small rivers such as the ones draining into Tampa Bay have historically been underestimated in terms of their role in the global carbon and elemental cycles. Climate change and sea-level rise (SLR) are major threats in Tampa Bay and stand to disrupt hydrologic cycles, compromising sediment accumulation and the rate of organic carbon (OC) burial. This study evaluates organic carbon content, sediment accumulation, and carbon burial rates in salt marsh and mangrove ecosystems, along with measurements of fluxes of dissolved OC (DOC) and trace elements in the water column of the Little Manatee River (LMR) in Tampa Bay. The characterization of OC and trace elements in tidal rivers and estuaries is critical for quantitatively constraining these systems in local-to-regional scale biogeochemical budgets, and provide insight into biogeochemical processes occurring with the estuary and adjacent tidal wetlands. Material fluxes of DOC and trace elements were tied to discharge irrespective of season, and the estuarine habitats removed 15-65% of DOC prior to export to Tampa Bay and the Gulf of Mexico. Thus, material is available for cycling and burial within marsh and mangrove peats, however, LMR mangrove peats have higher OC content and burial rates than adjacent salt marsh peats. Sedimentary accretion rates in LMR marshes are not currently keeping pace with SLR, thus furthering the rapid marsh-to-mangrove conversions that have been seen in Tampa Bay over the past half-century. Additionally, wetlands in Tampa Bay tend to have a lower rate of carbon burial than other Florida tidal wetlands, demonstrating their high sensitivity to climate change and SLR.

  5. High-resolution modeling of local air-sea interaction within the Marine Continent using COAMPS

    NASA Astrophysics Data System (ADS)

    Jensen, T. G.; Chen, S.; Flatau, M. K.; Smith, T.; Rydbeck, A.

    2016-12-01

    The Maritime Continent (MC) is a region of intense deep atmospheric convection that serves as an important source of forcing for the Hadley and Walker circulations. The convective activity in the MC region spans multiple scales from local mesoscales to regional scales, and impacts equatorial wave propagation, coupled air-sea interaction and intra seasonal oscillations. The complex distribution of islands, shallow seas with fairly small heat storage and deep seas with large heat capacity is challenging to model. Diurnal convection over land-sea is part of a land-sea breeze system on a small scale, and is highly influenced by large variations in orography over land and marginal seas. Daytime solar insolation, run-off from the Archipelago and nighttime rainfall tends to stabilize the water column, while mixing by tidal currents and locally forced winds promote vertical mixing. The runoff from land and rivers and high net precipitation result in fresh water lenses that enhance vertical stability in the water column and help maintain high SST. We use the fully coupled atmosphere-ocean-wave version of the Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS) developed at NRL with resolution of a few kilometers to investigate the air-sea interaction associated with the land-sea breeze system in the MC under active and inactive phases of the Madden-Julian Oscillation. The high resolution enables simulation of strong SST gradients associated with local upwelling in deeper waters and strong salinity gradients near rivers and from heavy precipitation.

  6. Water-quality reconnaissance of the Pascagoula and Escatawpa Rivers, Jackson County, Mississippi, May 1974 to July 1978

    USGS Publications Warehouse

    Faye, Robert E.

    1980-01-01

    Short-term, water-quality reconnaissances along the downstream reaches of the Pascagoula and Escatawpa Rivers in Jackson County , Miss., indicate that stream quality during the period May 1974 to July 1978 was affected by wastewater discharges as well as river discharge and the extent of tidal intrusion. Specific conductances on the Pascagoula River ranged from less than 100 to more than 40,000 micromhos per centimeter and increased downstream. Specific conductance also increased with depth at downstram sites, indicating density stratification. Dissolved-oxygen concentrations were also affected by density stratification but were generally greater than 4.0 milligrams per liter in both rivers. Analyses of 5-day biochemical oxygen demand and nutrient concentrations indicate that oxidation of both carbonaceous and nitrogenous materials significantly affected the waste assimilative capacity of the rivers. Concentrations of pesticides and most trace elements in both the water column and the bottom sediments were zero or very small. Titanium concentrations were less than 220 micrograms per liter in the water column and 6,500 micrograms per gram in bottom sediments. Small concentrations of oil and grease, PCB's, and phenols were also detected. Fecal coliform and fecal streptococcal bacteria concentrations were generally greater in the Escatawpa River and ranged from about 10 to 18,000 colonies per 100 milliliters of water. (USGS)

  7. Reconnaissance of pharmaceuticals and wastewater indicators in streambed sediments of the lower Columbia River basin, Oregon and Washington

    USGS Publications Warehouse

    Nilsen, Elena; Furlong, Edward T.; Rosenbauer, Robert

    2014-01-01

    One by-product of advances in modern chemistry is the accumulation of synthetic chemicals in the natural environment. These compounds include contaminants of emerging concern (CECs), some of which are endocrine disrupting compounds (EDCs) that can have detrimental reproductive effects. The role of sediments in accumulating these types of chemicals and acting as a source of exposure for aquatic organisms is not well understood. Here we present a small-scale reconnaissance of CECs in bed sediments of the lower Columbia River and several tributaries and urban streams. Surficial bed sediment samples were collected from the Columbia River, the Willamette River, the Tualatin River, and several small urban creeks in Oregon. Thirty-nine compounds were detected at concentrations ranging from 1,000 ng [g sediment]-1 dry weight basis. Columbia River mainstem, suggesting a higher risk of exposure to aquatic life in lower order streams. Ten known or suspected EDCs were detected during the study. At least one EDC was detected at 21 of 23 sites sampled; several EDCs were detected in sediment from most sites. This study is the first to document the occurrence of a large suite of CECs in the sediments of the Columbia River basin. A better understanding of the role of sediment in the fate and effects of emerging contaminants is needed.

  8. Mercury speciation, fluxes, and fate in the volcanically acidified fluids of Copahue volcano, Argentina

    NASA Astrophysics Data System (ADS)

    Kading, T.; Varekamp, J. C.; Andersson, M.; Balcom, P.; Mason, R. P.

    2010-12-01

    The behavior of mercury in volcanic acid springs and acidified rivers is poorly known, despite the potential impact this vector of contamination has on local surface and ground water quality. Mercury was measured in a volcanically acidified river system (pH<1 - 3), the Rio Agrio in the Neuquen province of Argentina, which discharges into a large glacial lake (Lake Caviahue, pH 2.2-3.0). The Hg concentration ranged from 2 - 600 pM throughout the fluvial system. Mercury in the hot, hyperacidic source fluids was dominated by dissolved ionic species, with only 2% of total mercury as dissolved elemental mercury, and 11% being particulate bound. The Hg flux from the volcano, determined from river water flux measurements and Hg concentrations, was modest and varied between the 3/2008 and 3/2009 sampling campaigns resp. from 0.7 to 1.1 moles/year. The Hg:S ratio of the acid fluids was ~10-8, several orders of magnitude lower than that typically found in volcanic plumes and fumaroles. The small Hg flux and low Hg:S values suggest that the system is either inherently Hg-poor or has lost Hg through vapor loss deeper in the hydrothermal system. Support for the latter comes from high Hg concentrations in geothermal vents and mudpots on the flank of the mountain (24 - 55 ppm Hg). Mercury concentrations decreased conservatively downstream in the river as based on Hg/Cl and Hg/SO4. Non-conservative depletion occurs in the less acidic Lake Caviahue, suggesting that mercury is removed from the water column by sorption to organic matter or other phases. Mercury analyses of a short lake sediment core confirm this (Hg = 0.01 to 0.70 ppm). No evidence was found for preferential uptake of mercury by jarosite, schwertmannite, or goethite, although the latter two phases precipitate in the most distal and Hg-depleted section of the fluvial system.

  9. Morphological analysis of Trichomycterus areolatus Valenciennes, 1846 from southern Chilean rivers using a truss-based system (Siluriformes, Trichomycteridae).

    PubMed

    Colihueque, Nelson; Corrales, Olga; Yáñez, Miguel

    2017-01-01

    Trichomycterus areolatus Valenciennes, 1846 is a small endemic catfish inhabiting the Andean river basins of Chile. In this study, the morphological variability of three T. areolatus populations, collected in two river basins from southern Chile, was assessed with multivariate analyses, including principal component analysis (PCA) and discriminant function analysis (DFA). It is hypothesized that populations must segregate morphologically from each other based on the river basin that they were sampled from, since each basin presents relatively particular hydrological characteristics. Significant morphological differences among the three populations were found with PCA (ANOSIM test, r = 0.552, p < 0.0001) and DFA (Wilks's λ = 0.036, p < 0.01). PCA accounted for a total variation of 56.16% by the first two principal components. The first Principal Component (PC1) and PC2 explained 34.72 and 21.44% of the total variation, respectively. The scatter-plot of the first two discriminant functions (DF1 on DF2) also validated the existence of three different populations. In group classification using DFA, 93.3% of the specimens were correctly-classified into their original populations. Of the total of 22 transformed truss measurements, 17 exhibited highly significant ( p < 0.01) differences among populations. The data support the existence of T. areolatus morphological variation across different rivers in southern Chile, likely reflecting the geographic isolation underlying population structure of the species.

  10. Scaling up watershed model parameters--Flow and load simulations of the Edisto River Basin

    USGS Publications Warehouse

    Feaster, Toby D.; Benedict, Stephen T.; Clark, Jimmy M.; Bradley, Paul M.; Conrads, Paul

    2014-01-01

    The Edisto River is the longest and largest river system completely contained in South Carolina and is one of the longest free flowing blackwater rivers in the United States. The Edisto River basin also has fish-tissue mercury concentrations that are some of the highest recorded in the United States. As part of an effort by the U.S. Geological Survey to expand the understanding of relations among hydrologic, geochemical, and ecological processes that affect fish-tissue mercury concentrations within the Edisto River basin, analyses and simulations of the hydrology of the Edisto River basin were made with the topography-based hydrological model (TOPMODEL). The potential for scaling up a previous application of TOPMODEL for the McTier Creek watershed, which is a small headwater catchment to the Edisto River basin, was assessed. Scaling up was done in a step-wise process beginning with applying the calibration parameters, meteorological data, and topographic wetness index data from the McTier Creek TOPMODEL to the Edisto River TOPMODEL. Additional changes were made with subsequent simulations culminating in the best simulation, which included meteorological and topographic wetness index data from the Edisto River basin and updated calibration parameters for some of the TOPMODEL calibration parameters. Comparison of goodness-of-fit statistics between measured and simulated daily mean streamflow for the two models showed that with calibration, the Edisto River TOPMODEL produced slightly better results than the McTier Creek model, despite the significant difference in the drainage-area size at the outlet locations for the two models (30.7 and 2,725 square miles, respectively). Along with the TOPMODEL hydrologic simulations, a visualization tool (the Edisto River Data Viewer) was developed to help assess trends and influencing variables in the stream ecosystem. Incorporated into the visualization tool were the water-quality load models TOPLOAD, TOPLOAD-H, and LOADEST. Because the focus of this investigation was on scaling up the models from McTier Creek, water-quality concentrations that were previously collected in the McTier Creek basin were used in the water-quality load models.

  11. Facies analysis, depositional environments and paleoclimate of the Cretaceous Bima Formation in the Gongola Sub - Basin, Northern Benue Trough, NE Nigeria

    NASA Astrophysics Data System (ADS)

    Shettima, B.; Abubakar, M. B.; Kuku, A.; Haruna, A. I.

    2018-01-01

    Facies analysis of the Cretaceous Bima Formation in the Gongola Sub -basin of the Northern Benue Trough northeastern Nigeria indicated that the Lower Bima Member is composed of alluvial fan and braided river facies associations. The alluvial fan depositional environment dominantly consists of debris flow facies that commonly occur as matrix supported conglomerate. This facies is locally associated with grain supported conglomerate and mudstone facies, representing sieve channel and mud flow deposits respectively, and these deposits may account for the proximal alluvial fan region of the Lower Bima Member. The distal fan facies were represented by gravel-bed braided river system of probably Scot - type model. This grade into sandy braided river systems with well developed floodplains facies, forming probably at the lowermost portion of the alluvial fan depositional gradient, where it inter-fingers with basinal facies. In the Middle Bima Member, the facies architecture is dominantly suggestive of deep perennial sand-bed braided river system with thickly developed amalgamated trough crossbedded sandstone facies fining to mudstone. Couplets of shallow channels are also locally common, attesting to the varying topography of the basin. The Upper Bima Member is characterized by shallow perennial sand-bed braided river system composed of successive succession of planar and trough crossbedded sandstone facies associations, and shallower channels of the flashy ephemeral sheetflood sand - bed river systems defined by interbedded succession of small scale trough crossbedded sandstone facies and parallel laminated sandstone facies. The overall stacking pattern of the facies succession of the Bima Formation in the Gongola Sub - basin is generally thinning and fining upwards cycles, indicating scarp retreat and deposition in a relatively passive margin setting. Dominance of kaolinite in the clay mineral fraction of the Bima Formation points to predominance of humid sub - tropical to tropical climatic conditions. This favors pedogenic activities which are manifested in the several occurrences of paleosols. Pronounced periods of arid climatic conditions are also notable from the subordinate smectite mineralization. Chlorite mineralization at some localities is indicative of elevation of the provenance area, and this is synonymous with deposition of the Bima Formation, because of its syn - depositional tectonics. The absences of lacustrine shales in the syn - rift stratigraphic architecture of the Bima Formation indicates that the lower Cretaceous petroleum system that are common in the West and Central African Rift basins are generally barren in the Gongola Sub - basin of the Northern Benue Trough.

  12. Hydrologic reconnaissance of the Unalakleet River basin, Alaska, 1982-83

    USGS Publications Warehouse

    Sloan, C.E.; Kernodle, D.R.; Huntsinger, Ronald

    1986-01-01

    The Unalakleet River, Alaska, from its headwaters to the confluence of the Chiroskey River has been designated as a wild river and is included in the National Wild and Scenic Rivers System. Yearly low flow, which occurs during the winter, is sustained by groundwater discharge; there are few lakes in the basin and the cold climate prevents winter runoff. The amount of winter streamflow was greatest in the lower parts of streams with the exception of the South River and was apparently proportional to the amount of unfrozen alluvium upstream from the measuring sites. Unit discharge in late winter ranged from nearly zero at the mouth of the South River to 0.24 cu ft/sec/sq mi in the Unalakleet River main stem below Tenmile River. Summer runoff at the time of the reconnaissance may have been slightly higher than normal owing to recent rains. Unit runoff ranged from a low of 1.0 cu ft/sec/sq mi at the South River, to a high value of 2.4 cu ft/sec/sq mi at the North Fork Unalakleet River. Flood marks were present in the basin well above streambank levels but suitable sections to measure the maximum evident flood by slope-area methods were not found. Flood peaks were calculated for the Unalakleet River and its tributaries using basin characteristics. Calculated unit runoff for the 50-year flood ranged from about 17 to 45 cu ft/sec/sq mi. Water quality was good throughout the basin, and an abundant and diversified community of benthic invertebrates was found in samples collected during the summer reconnaissance. Permafrost underlies most of the basin, but groundwater can be found in unfrozen alluvium in the stream valleys, most abundantly in the lower part of the main tributaries and along the main stem of the Unalakleet River. Groundwater sustains river flow through the winter; an estimate of its quantity can be found through low-flow measurements. Groundwater quality in the basin appears to be satisfactory for most uses. Currently, little groundwater is used within the basin. The water supply for Unalakleet is obtained from a well and gallery in a small valley north of the airport, outside the Unalakleet River basin. (Author 's abstract)

  13. Hydrothermal Alkalinity in Central Nepal Rivers

    NASA Astrophysics Data System (ADS)

    Evans, M. J.; Derry, L. A.

    2002-12-01

    Numerous hot springs flow along the base of the Himalayan front, at or near the Main Central Thrust, in the Narayani drainage of central Nepal. The springs are found in a narrow zone characterized by rapid uplift and high incision rates. In this zone, hot rocks are brought to the near-surface where they interact with meteoric waters to produce the hydrothermal system. Water-rock interaction produces springs with high solute loads (TDS up to 8000 mg/L.) The springs drive significant chemical anomalies (e.g. Cl, Na, K and Ge) in the rivers that flow through the hydrothermal zone In order to quantify the impact the springs have on the river chemistry, the spring discharge must be estimated. Direct measurement of the spring discharge is difficult, as the springs often flow within the stream bed itself or are inaccessible. We take advantage of the wide disparity in stream vs. hydrothermal [Ge] to calculate spring discharge by chemical mass balance. The hot springs have [Ge] up to 684 nmol/kg and Ge/Si ratios from 200 to 1000 μmol/mol while river waters have [Ge] near 0.15 nmol/kg and Ge/Si ratios near 0.5 μmol/mol, typical of non-polluted rivers. The discharge calculated from the Ge mass balance for individual springs ranges from 0.03 x 106 to 5.6 x 106 m3/yr, and accounts for a small percentage of the total river discharge (0.03% to 1.9%). The hot spring discharge for all of central Nepal is around 1.5x108 m3/yr, 0.5% of the Narayani river discharge. Distinguishing between silicate and carbonate sources is important to assessing the role of weathering on atmospheric CO2 levels and the relative contributions of silicate and carbonate alkalinity in central Nepal rivers are still not well resolved. The hot springs derive up to 100% of their alkalinity from silicate sources. Using the discharge estimates for the springs, we find that the sum of the silicate alkalinity fluxes from all the spring systems is 2.8 x 108 mol/yr. This implies that the hot springs deliver around 18% of the silicate alkalinity in the Narayani river, and ca. 2% of the total alkalinity. Geothermal activity in this active orogenic belt is an important geochemical flux, directly coupling chemical fluxes to tectonic processes.

  14. Low flow water quality in rivers; septic tank systems and high-resolution phosphorus signals.

    PubMed

    Macintosh, K A; Jordan, P; Cassidy, R; Arnscheidt, J; Ward, C

    2011-12-15

    Rural point sources of phosphorus (P), including septic tank systems, provide a small part of the overall phosphorus budget to surface waters in agricultural catchments but can have a disproportionate impact on the low flow P concentration of receiving rivers. This has particular importance as the discharges are approximately constant into receiving waters and these have restricted dilution capacity during ecologically sensitive summer periods. In this study, a number of identified high impact septic systems were replaced with modern sequential batch reactors in three rural catchments during a monitoring period of 4 years. Sub-hourly P monitoring was conducted using bankside-analysers. Results show that strategic replacement of defective septic tank systems with modern systems and polishing filters decreased the low flow P concentration of one catchment stream by 0.032 mg TPL(-1) (0.018 mg TRPL(-1)) over the 4 years. However two of the catchment mitigation efforts were offset by continued new-builds that increased the density of septic systems from 3.4 km(-2) to 4.6 km(-2) and 13.8 km(-2) to 17.2 km(-2) and subsequently increased low flow P concentrations. Future considerations for septic system mitigation should include catchment carrying capacity as well as technology changes. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. EFFECTS OF WATERSHED DISTURBANCE ON SMALL STREAMS

    EPA Science Inventory

    This presentation presents the effects of watershed disturbance on small streams. The South Fork Broad River Watershed was studied to evaluate the use of landscape indicators to predict pollutant loading at small spatial scales and to develop indicators of pollutants. Also studie...

  16. Road to Recovery: Bringing Recovery to Small Town America

    ScienceCinema

    Nettamo, Paivi

    2018-01-08

    The Recovery Act hits the road to reach out to surrounding towns of the Savannah River Site that are struggling with soaring unemployment rates. This project helps recruit thousands of people to new jobs in environmental cleanup at the Savannah River Site.

  17. 17. CONTROL ROOM, NORTH SIDE, WITH BRIDGE SWING CONTROLS ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. CONTROL ROOM, NORTH SIDE, WITH BRIDGE SWING CONTROLS ON LEFT, SIGNAL CONTROLS ON RIGHT, WHISTLE PULL TOP. RADIO TELEPHONE IN CENTER BACK (Fred Small) - Burlington Northern Railroad Bridge, Spanning Willamette River at River Mile 6.9, Portland, Multnomah County, OR

  18. ASTER First Views of San Francisco River, Brazil - Visible/near Infrared VNIR Image monochrome

    NASA Image and Video Library

    2000-03-11

    This image of the San Francisco River channel, and its surrounding flood zone, in Brazil was acquired by band 3N of ASTER's Visible/Near Infrared sensor. The surrounding area along the river channel in light gray to white could be covered by dense tropical rain forests. The water surface of the San Francisco River shows rather gray color as compared to small lakes and tributaries, which could indicate that the river water is contaminated by suspended material. The size of image: 20 km x 20 km approx., ground resolution 15 m x 15 m approximately. http://photojournal.jpl.nasa.gov/catalog/PIA02451

  19. Balancing between retention and flushing in river networks--optimizing nutrient management to improve trophic state.

    PubMed

    Honti, Márk; Istvánovics, Vera; Kovács, Adám S

    2010-09-15

    River basin management can frequently involve decisive situations, when conflicting interests must be resolved. In the Zala River catchment (Western Hungary) local efforts to improve water quality by reducing algal biomass are not always harmonized with the requirement of sustaining the same objective in its recipient, Lake Balaton. The PhosFate catchment model is a GIS tool designed to estimate the spatial variability and fate of diffuse phosphorus emission during transport. Besides diffuse pollution, a simplified annual hydrologic balance is also calculated. A new module was added to PhosFate that tracked the development of entrained algae during their travel downstream. The extended model was used to simulate the current average algal concentrations in the river network. The numerous small reservoirs and impoundments on the tributaries of the Zala River were identified as the key elements in determining algal biomass, since they fundamentally increase the water residence time (WRT) in the system. Without reservoirs, the short WRT in the drainage network would successfully prevent the development of suspended algal biomass despite the fairly high SRP concentrations. However, the removal of such standing waters is impossible for socio-economic reasons and reducing the overall P load to Lake Balaton would also require increasing WRT in the system. As a resolution to these conflicting interests, a hybrid management strategy was designed to simultaneously reach both goals: (i) switching from WRT to P limitation in reservoirs responsible for most of algal growth, and (ii) optimized deployment of buffer zones and the introduction of best agricultural practices on the remaining majority of the catchment to reduce the overall P load. The suggested management approach could be applied in other river catchments too, due to the extensive presence of reservoirs and impoundments in many stream networks. Copyright 2010 Elsevier B.V. All rights reserved.

  20. Potential effects of maternal contribution on egg and larva population dynamics of striped bass: Integrated individual-based model and directed field sampling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowan, J.H., Jr.; Rose, K.A.

    1991-01-01

    We have used a bioenergetically-driven, individual-based model (IBM) of striped bass as a framework for synthesizing available information on population biology and quantifying, in a relative sense, factors that potentially affect year class success. The IBM has been configured to simulate environmental conditions experienced by several striped bass populations; i.e., in the Potomac River, MD; in Hudson River, NY; in the Santee-Cooper River System, SC, and; in the San Joaquin-Sacramento River System CA. These sites represent extremes in the geographic distribution and thus, environmental variability of striped bass spawning. At each location, data describing the physio-chemical and biological characteristics ofmore » the spawning population and nursery area are being collected and synthesized by means of a prioritized, directed field sampling program that is organized by the individual-based recruitment model. Here, we employ the striped bass IBM configured for the Potomac River, MD from spawning into the larval period to evaluate the potential for maternal contribution to affect larva survival and growth. Model simulations in which the size distribution and spawning day of females are altered indicate that larva survival is enhanced (3.3-fold increase) when a high fraction of females in the spawning population are large. Larva stage duration also is less ({bar X} = 18.4 d and 22.2 d) when large and small females, respectively, are mothers in simulations. Although inconclusive, these preliminary results for Potomac River striped bass suggest that the effects of female size, timing of spawning nad maternal contribution on recruitment dynamics potentially are important and illustrate our approach to the study of recruitment in striped bass. We hope to use the model, field collections and management alternatives that vary from site to site, in an iterative manner for some time to come. 54 refs., 4 figs., 1 tab.« less

  1. Fate of organic microcontaminants in wastewater treatment and river systems: An uncertainty assessment in view of sampling strategy, and compound consumption rate and degradability.

    PubMed

    Aymerich, I; Acuña, V; Ort, C; Rodríguez-Roda, I; Corominas, Ll

    2017-11-15

    The growing awareness of the relevance of organic microcontaminants on the environment has led to a growing number of studies on attenuation of these compounds in wastewater treatment plants (WWTP) and rivers. However, the effects of the sampling strategies (frequency and duration of composite samples) on the attenuation estimates are largely unknown. Our goal was to assess how frequency and duration of composite samples influence uncertainty of the attenuation estimates in WWTPs and rivers. Furthermore, we also assessed how compound consumption rate and degradability influence uncertainty. The assessment was conducted through simulating the integrated wastewater system of Puigcerdà (NE Iberian Peninsula) using a sewer pattern generator and a coupled model of WWTP and river. Results showed that the sampling strategy is especially critical at the influent of WWTP, particularly when the number of toilet flushes containing the compound of interest is small (≤100 toilet flushes with compound day -1 ), and less critical at the effluent of the WWTP and in the river due to the mixing effects of the WWTP. For example, at the WWTP, when evaluating a compound that is present in 50 pulses·d -1 using a sampling frequency of 15-min to collect a 24-h composite sample, the attenuation uncertainty can range from 94% (0% degradability) to 9% (90% degradability). The estimation of attenuation in rivers is less critical than in WWTPs, as the attenuation uncertainty was lower than 10% for all evaluated scenarios. Interestingly, the errors in the estimates of attenuation are usually lower than those of loads for most sampling strategies and compound characteristics (e.g. consumption and degradability), although the opposite occurs for compounds with low consumption and inappropriate sampling strategies at the WWTP. Hence, when designing a sampling campaign, one should consider the influence of compounds' consumption and degradability as well as the desired level of accuracy in attenuation estimations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Delayed effects of flood control on a flood-dependent riparian forest

    USGS Publications Warehouse

    Katz, Gabrielle L.; Friedman, Jonathan M.; Beatty, Susan W.

    2005-01-01

    The downstream effects of dams on riparian forests are strongly mediated by the character and magnitude of adjustment of the fluvial–geomorphic system. To examine the effects of flow regulation on sand-bed streams in eastern Colorado, we studied the riparian forest on three river segments, the dam-regulated South Fork Republican River downstream of Bonny Dam, the unregulated South Fork Republican River upstream of Bonny Dam, and the unregulated Arikaree River. Although Bonny Dam significantly reduced peak and mean discharge downstream since 1951, there was little difference in forest structure between the regulated and unregulated segments. On all river segments, the riparian forest was dominated by the native pioneer tree, Populus deltoides, which became established during a period of channel narrowing beginning after the 1935 flood of record and ending by 1965. The nonnative Elaeagnus angustifolia was present on all river segments, with recruitment ongoing. The lack of contrast in forest structure between regulated and unregulated reaches resulted primarily from the fact that no large floods occurred on any of the study segments since dam construction. Most of the riparian forest in the study area was located on the broad narrowing terrace, which was rarely inundated on the unregulated segments, resulting in little contrast with the regulated segment. A minor dam effect occurred on the small modern floodplain, which was actively disturbed on the unregulated segments, but not on the regulated segments. Although Bonny Dam had the potential to significantly influence downstream riparian ecosystems, this influence had not been expressed, and may never be if a large flood does not occur within the lifetime of the dam. Minor dam effects to riparian systems can be expected downstream of large dams in some settings, including the present example in which there was insufficient time for the dam effects to by fully expressed.

  3. Suitability and potential of environmental tracers for base-flow determination in streams

    NASA Astrophysics Data System (ADS)

    Gerber, C.; Purtschert, R.; Darling, G.; Gooddy, D.; Kralik, M.; Humer, F.; Sültenfuss, J.

    2012-04-01

    The temporal and spatial distribution of the proportion of groundwater discharge into gaining rivers can be estimated with conventional geochemical parameters and 222Rn measurements (COOK et al., 2006). However, the quantification of the age of the discharging groundwater requires either groundwater sampling from boreholes in the vicinity of the river e.g. (FETTE et al., 2005) or tracer measurements in the river water itself. A promising tracer for age dating of base flow in streams is 85Kr. Its chemically inertness and the relatively low diffusion coefficient (long exchange time with the atmosphere) favours 85Kr in comparison to e.g. 3H/3He (STOLP et al., 2010). In this paper, measurements of 85Kr, 3H/3Hetrit and SF6 from a small scale system in the southern Vienna basin (STOLP et al., 2010) are presented and discussed. In combination with completing parameters (stable isotopes, geochemistry, flux measurements) and model calculations the gas exchange dynamic between stream water and the atmosphere is estimated. This is a key factor for the age characterization of the discharging groundwater. The sensitivity of the individual methods to origin and amount of excess air is also discussed. Cook P. G., Lamontagne S., Berhane D., and Clark J. F. (2006) Quantifying groundwater discharge to Cockburn River, southeastern Australia, using dissolved gas tracers 222Rn and SF6. WRR 42.doi:10.1029/2006WR004921 Fette M., Kipfer R., Schubert C. J., Hoehn E., and Wehrli.B. (2005) Assessing river-groundwater exchange in the regulated Rhone River (Switzerland) using stable isotopes and geochemical tracers. Appl. Geochemistry 20, 701-712 Stolp B., Solomon D. K., Vitvar T., Rank D., Aggarwal P. K., and Han L. F. (2010) Age dating base flow at springs and gaining streams using helium-3 and tritium: Fischa-Dagnitz system, southern Vienna Basin, Austria. Water Resour. Res. 46, 13.doi:10.1029/2009WR008006

  4. Wastewater services for small communities.

    PubMed

    Gray, S; Booker, N

    2003-01-01

    Connection to centralised regional sewage systems has been too expensive for small-dispersed communities, and these townships have traditionally been serviced by on-site septic tank systems. The conventional on-site system in Australia has consisted of an anaerobic holding tank followed by adsorption trenches. This technique relies heavily on the uptake of nutrients by plants for effective removal of nitrogen and phosphorus from the effluent, and is very seasonal in its efficiency. Hence, as these small communities have grown in size, the environmental effects of the septic tank discharges have become a problem. In locations throughout Australia, such as rural Victoria and along the Hawkesbury-Nepean River, septic tanks as being replaced with the transport of sewage to regional treatment plants. For some isolated communities, this can mean spending 20,000 dollars-40,000 dollars/household, as opposed to more common connection prices of 7,000 dollars/household. This paper explores some alternative options that might be suitable for these small communities, and attempts to identify solutions that provide acceptable environmental outcomes at lower cost. The types of alternative systems that are assessed in the paper include local treatment systems, separate blackwater and greywater collection and treatment systems both with and without non-potable water recycling, a small township scale treatment plant compared to either existing septic tank systems or pumping to a remote regional treatment facility. The work demonstrated the benefits of a scenario analysis approach for the assessment of a range of alternative systems. It demonstrated that some of the alternatives systems can achieve better than 90% reductions in the discharge of nutrients to the environment at significantly lower cost than removing the wastewater to a remote regional treatment plant. These concepts allow wastewater to be retained within a community allowing for local reuse of treated effluent.

  5. Big River Reservoir Project. Pawcatuck River and Narragansett Bay Drainage Basins. Water and Related Land Resources Study. Volume I. Main Report.

    DTIC Science & Technology

    1981-07-01

    blueberry , beech, laurel, wintergreen and scrub oak. Wetland types found in the study area include wooded and shrub swamps, deep and shallow marshes, and...temporary I Impacts io reservoir area, c) Les disruption in reservoir vicinity due to more negative Impacts in areas of pipeline river m02"t...19.7 miles of stream habitat (54.5% of the 36.2 nfiles in the big River Basin) Lnd at least IO small ponds totalling about 45 acres would be inundated

  6. Improving LUC estimation accuracy with multiple classification system for studying impact of urbanization on watershed flood

    NASA Astrophysics Data System (ADS)

    Dou, P.

    2017-12-01

    Guangzhou has experienced a rapid urbanization period called "small change in three years and big change in five years" since the reform of China, resulting in significant land use/cover changes(LUC). To overcome the disadvantages of single classifier for remote sensing image classification accuracy, a multiple classifier system (MCS) is proposed to improve the quality of remote sensing image classification. The new method combines advantages of different learning algorithms, and achieves higher accuracy (88.12%) than any single classifier did. With the proposed MCS, land use/cover (LUC) on Landsat images from 1987 to 2015 was obtained, and the LUCs were used on three watersheds (Shijing river, Chebei stream, and Shahe stream) to estimate the impact of urbanization on water flood. The results show that with the high accuracy LUC, the uncertainty in flood simulations are reduced effectively (for Shijing river, Chebei stream, and Shahe stream, the uncertainty reduced 15.5%, 17.3% and 19.8% respectively).

  7. The Tisza maps of Samuel Lanyi and their geodetic basis

    NASA Astrophysics Data System (ADS)

    Meszaros, J.

    2009-04-01

    The map of Lányi is the last map which represents the reach of Tisza in the former Heves and Külső-Szolnok counties in central Hungary, before the river control measures. The map was made by surveying with the leading of Sámuel Lányi, qualified engineer, between 1834 and 1843. This map was the base of the river control guided by Pál Vásárhelyi, which shows the importance of it. The map was drawn on 73*58 cm sheets of paper. Its scale is 1 Wiener inch (2.63 cm) to 400 Wiener fathoms (1,89648384 m) that is in metric system 1: 28800. Its geodetic base is the triangulation of Tisza and Maros rivers surveyed between 1834 and 1836. The coordinates was described in Cassini projection. The central point of the coordinate system was the old observatory of the Gellérthegy in Buda (now Budapest). This map is useable to ethnographical, urban-geographical, hydrological and agriculture-historical researches. It containes many missing rills and canals which had formed the surface of Great Hungarian Plain in the 19. century. The small altitude variations of the central part of the Great Hungarian Plain are displayed with surprising accuracy in extents.

  8. Small larvae in large rivers: observations on downstream movement of European grayling Thymallus thymallus during early life stages.

    PubMed

    Van Leeuwen, C H A; Dokk, T; Haugen, T O; Kiffney, P M; Museth, J

    2017-06-01

    Behaviour of early life stages of the salmonid European grayling Thymallus thymallus was investigated by assessing the timing of larval downstream movement from spawning areas, the depth at which larvae moved and the distribution of juvenile fish during summer in two large connected river systems in Norway. Trapping of larvae moving downstream and electrofishing surveys revealed that T. thymallus larvae emerging from the spawning gravel moved downstream predominantly during the night, despite light levels sufficient for orientation in the high-latitude study area. Larvae moved in the water mostly at the bottom layer close to the substratum, while drifting debris was caught in all layers of the water column. Few young-of-the-year still resided close to the spawning areas in autumn, suggesting large-scale movement (several km). Together, these observations show that there may be a deliberate, active component to downstream movement of T. thymallus during early life stages. This research signifies the importance of longitudinal connectivity for T. thymallus in Nordic large river systems. Human alterations of flow regimes and the construction of reservoirs for hydropower may not only affect the movement of adult fish, but may already interfere with active movement behaviour of fish during early life stages. © 2017 The Fisheries Society of the British Isles.

  9. Chlorophyll a and inorganic suspended solids in backwaters of the upper Mississippi River system: Backwater lake effects and their associations with selected environmental predictors

    USGS Publications Warehouse

    Rogala, James T.; Gray, Brian R.

    2006-01-01

    The Long Term Resource Monitoring Program (LTRMP) uses a stratified random sampling design to obtain water quality statistics within selected study reaches of the Upper Mississippi River System (UMRS). LTRMP sampling strata are based on aquatic area types generally found in large rivers (e.g., main channel, side channel, backwater, and impounded areas). For hydrologically well-mixed strata (i.e., main channel), variance associated with spatial scales smaller than the strata scale is a relatively minor issue for many water quality parameters. However, analysis of LTRMP water quality data has shown that within-strata variability at the strata scale is high in off-channel areas (i.e., backwaters). A portion of that variability may be associated with differences among individual backwater lakes (i.e., small and large backwater regions separated by channels) that cumulatively make up the backwater stratum. The objective of the statistical modeling presented here is to determine if differences among backwater lakes account for a large portion of the variance observed in the backwater stratum for selected parameters. If variance associated with backwater lakes is high, then inclusion of backwater lake effects within statistical models is warranted. Further, lakes themselves may represent natural experimental units where associations of interest to management may be estimated.

  10. Cytogenetic analysis in Thoracocharax stellatus (Kner, 1858) (Characiformes, Gasteropelecidae) from Paraguay River Basin, Mato Grosso, Brazil

    PubMed Central

    da Silva, Edson Lourenço; de Borba, Rafael Splendore; Centofante, Liano; Miyazawa, Carlos Suetoshi; Parise-Maltempi, Patrícia Pasquali

    2012-01-01

    Abstract Thoracocharax stellatus (Characiformes, Gasteropelecidae) is a small Neotropical species of fish, widely distributed in several rivers of South America. Evidence for karyotype heteromorphysm in populations from different geographical regions has been reported for this species. In this way, populations of Thoracocharax stellatus from the Paraguay River basin were cytogenetically characterized and the results were compared with other studies performed in the same species but from different basins. The results showed a diploid number of 2n = 54 for Thoracocharax stellatus, with chromosomes arranged in 6 metacentric (m), 6 submetacentric (sm), 2 subtelocentric (st) and 40 acrocentric (a), for both sexes, with a simple Nucleolus Organiser Region (NOR) system reported by the techniques of silver nitrate impregnation and fluorescent in situ hybridisation (FISH) using 18S rDNA sequences as probe. The distribution of constitutive heterochromatin, observed by the C-band technique and Chromomycin A3 staining showed great similarity among the analyzed populations and consists mainly of discrete blocks in the pericentromeric and telomeric regions of most chromosomes. The presence of female heterogamety was also observed indicating a ZZ/ZW system with W chromosome almost totally heterochromatic. The results also show cytogenetic diversity of the group and are useful to understand the mechanisms of karyotype evolution of the family. PMID:24260672

  11. Analysis of the French insurance market exposure to floods: a stochastic model combining river overflow and surface runoff

    NASA Astrophysics Data System (ADS)

    Moncoulon, D.; Labat, D.; Ardon, J.; Onfroy, T.; Leblois, E.; Poulard, C.; Aji, S.; Rémy, A.; Quantin, A.

    2013-07-01

    The analysis of flood exposure at a national scale for the French insurance market must combine the generation of a probabilistic event set of all possible but not yet occurred flood situations with hazard and damage modeling. In this study, hazard and damage models are calibrated on a 1995-2012 historical event set, both for hazard results (river flow, flooded areas) and loss estimations. Thus, uncertainties in the deterministic estimation of a single event loss are known before simulating a probabilistic event set. To take into account at least 90% of the insured flood losses, the probabilistic event set must combine the river overflow (small and large catchments) with the surface runoff due to heavy rainfall, on the slopes of the watershed. Indeed, internal studies of CCR claim database has shown that approximately 45% of the insured flood losses are located inside the floodplains and 45% outside. 10% other percent are due to seasurge floods and groundwater rise. In this approach, two independent probabilistic methods are combined to create a single flood loss distribution: generation of fictive river flows based on the historical records of the river gauge network and generation of fictive rain fields on small catchments, calibrated on the 1958-2010 Météo-France rain database SAFRAN. All the events in the probabilistic event sets are simulated with the deterministic model. This hazard and damage distribution is used to simulate the flood losses at the national scale for an insurance company (MACIF) and to generate flood areas associated with hazard return periods. The flood maps concern river overflow and surface water runoff. Validation of these maps is conducted by comparison with the address located claim data on a small catchment (downstream Argens).

  12. Surface Hydrology in Global River Basins in the Off-Line Land-Surface GEOS Assimilation (OLGA) System

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Yang, Runhua; Houser, Paul R.

    1998-01-01

    Land surface hydrology for the Off-line Land-surface GEOS Analysis (OLGA) system and Goddard Earth Observing System (GEOS-1) Data Assimilation System (DAS) has been examined using a river routing model. The GEOS-1 DAS land-surface parameterization is very simple, using an energy balance prediction of surface temperature and prescribed soil water. OLGA uses near-surface atmospheric data from the GEOS-1 DAS to drive a more comprehensive parameterization of the land-surface physics. The two global systems are evaluated using a global river routing model. The river routing model uses climatologic surface runoff from each system to simulate the river discharge from global river basins, which can be compared to climatologic river discharge. Due to the soil hydrology, the OLGA system shows a general improvement in the simulation of river discharge compared to the GEOS-1 DAS. Snowmelt processes included in OLGA also have a positive effect on the annual cycle of river discharge and source runoff. Preliminary tests of a coupled land-atmosphere model indicate improvements to the hydrologic cycle compared to the uncoupled system. The river routing model has provided a useful tool in the evaluation of the GCM hydrologic cycle, and has helped quantify the influence of the more advanced land surface model.

  13. 78 FR 12344 - Wekiva River System Advisory Management Committee Meetings (FY2013)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ... River System Advisory Management Committee. DATES: The meetings are scheduled for: April 3, 2013; June 4... meeting will result in decisions and steps that advance the Wekiva River System Advisory Management... Wekiva River System Advisory Management Committee, National Park Service, 5342 Clark Road, PMB 123...

  14. Geology and ground-water conditions in the Wilmington-Reading area, Massachusetts

    USGS Publications Warehouse

    Baker, John Augustus; Healy, H.G.; Hackett, O.M.

    1964-01-01

    The Wilmington-Reading area, as defined for this report, contains the headwaters of the Ipswich River in northeastern Massachusetts. Since World War II the growth of communities in this area and the change in character of some of them from rural to suburban have created new water problems and intensified old ones. The purpose of this report on ground-water conditions is to provide information that will aid in understanding and resolving some of these problems. The regional climate, which is humid and temperate, assures the area an ample natural supply of water. At the current stage of water-resources development a large surplus of water drains from the area by way of the Ipswich River during late autumn, winter, and spring each year and is unavailable for use during summer and early autumn, when during some years there is a general water deficiency. Ground water occurs both in bedrock and in the overlying deposits of glacial drift. The bedrock is a source of small but generally reliable supplies of water throughout the area. Glacial till also is a source of small supplies of water, but wells in till often fail to meet modern demands. Stratified glacial drift, including ice-contact deposits and outwash, yields small to large supplies of water. Stratified glacial drift forms the principal ground-water reservoir. It partly fills a system of preglacial valleys corresponding roughly to the valleys of the present Ipswich River system and is more than 100 feet thick at places. The ice-contact deposits generally are more permeable than the outwash deposits. Ground water occurs basically under water-table conditions. Recharge in the Wilmington-Reading area is derived principally from precipitation on outcrop areas of ice-contact deposits and outwash during late autumn, winter. and spring. It is estimated that the net annual recharge averages about 10 inches and generally ranges from 5 inches during unusually dry years to 15 inches during unusually wet years. Ground water withdrawn largely by municipal wells supplies the towns of North Reading, Reading, and Wilmington. In 1957 the average daily withdrawal from these wells was about 2.5 million gallons, of which about half was used outside the Ipswich River drainage basin. The chemical quality of the ground water is generally satisfactory except for local excessive concentrations of iron. The storage capacity of the ground-water reservoir and recharge in the Wilmington-Reading area are large enough to sustain a total withdrawal of ground water at several times the current rate, but the use of the reservoir probably will be limited by the extent to which wells of moderate or large capacity can be dispersed. This will depend upon the distribution of areas of thick permeable materials. Conditions in the Martins Brook-Skug River drainage basin seem generally favorable for increased development of water supplies. In the rest of the Wilmington-Reading area the chances of finding substantial bodies of thick permeable materials probably are small, but further exploration is desirable. Measures proposed to drain swampland by deepening and straightening the Ipswich River and its tributaries will have some effect upon the ground-water conditions. Probably the most obvious effect will be a lowering of water levels in wells near improved reaches of channel. Also important will b the effect of changes in low streamflow conditions on wells that induce infiltration from streams and the effect on well yields of an improved hydraulic connection between streams and the ground-water body. The Reading 100-acre well field, which derives part of its supply by inducing recharge from the Ipswich River, would be affected by the drainage measures. During a dry summer, such as that of 1957, the flow of the Ipswich is fully diverted by pumping at this well field, and drawdowns at some of the wells approach half the saturated thickness of the aquifer there. If the drainage measures are

  15. Silicon concentrations in UK surface waters

    NASA Astrophysics Data System (ADS)

    Neal, Colin; Neal, Margaret; Reynolds, Brian; Maberly, Stephen C.; May, Linda; Ferrier, Robert C.; Smith, Jennifer; Parker, Julie E.

    2005-03-01

    This paper describes the variations in silicon concentrations in UK waters for a wide range of catchment systems (near pristine, rural, and agricultural and urban impacted systems). The paper largely concerns silicon levels in streams, rivers and lakes based on extensive data collected as part of several research and monitoring initiatives of national and international standing. For a detailed study of an upland catchment in mid-Wales, information on atmospheric inputs and groundwater chemistries is provided to supply background information to cross link to the surface water chemistry. Several hundred streams/rivers and lakes are dealt with within the study, dealing with the main types of freshwater riverine and lacustrine environments. The streams/rivers vary from small ephemeral runoff to the major rivers of the UK. The geographical location of sites vary from local sites in mid-Wales, to regional studies across Scotland, to the major eastern UK rivers entering the North Sea and to acid sensitive upland sites across Wales, the English Lake District, Scotland and Northern Ireland. The surface waters range in silicon concentration from 0 to 19 mg-Si l -1 (average for individual sites vary between 0.7 and 7.6 mg-Si l -1) and there are some clear variations which link to two primary processes (1) the relative inputs of groundwaters enriched in silicon and near surface waters more depleted in silicon and (2) plankton uptake of silicon during the summer months under baseflow conditions. Thermodynamic analysis reveals that the waters are approximately saturated with respect to either quartz or chalcedony except for two circumstances when undersaturation occurs. Firstly, undersaturation occurs at pH less than 5.5 in the upland areas and this is because the waters are mainly sourced from the acidic organic soils which are depleted in inorganic minerals. Secondly, undersaturation occurs in the lowland rivers when biological activity is at its highest and this leads to silicon removal from the water column. Quartz equilibrium can be approached (at pH>5.5) mainly within the upland systems which are not aquifer recharge dominated. However, for the lowland systems that are groundwater recharge dominated, it is chalcedony saturation which is approached, and such saturation is often observed within groundwaters. Similar patterns of undersaturation in response to biological uptake are seen in lakes and the extent of silicon depletion increases with biological productivity. Chalcedony oversaturation can occur for some UK rivers under baseflow conditions and this probably links to a higher rate of weathering.

  16. Effect of the spatiotemporal variability of rainfall inputs in water quality integrated catchment modelling for dissolved oxygen concentrations

    NASA Astrophysics Data System (ADS)

    Moreno Ródenas, Antonio Manuel; Cecinati, Francesca; ten Veldhuis, Marie-Claire; Langeveld, Jeroen; Clemens, Francois

    2016-04-01

    Maintaining water quality standards in highly urbanised hydrological catchments is a worldwide challenge. Water management authorities struggle to cope with changing climate and an increase in pollution pressures. Water quality modelling has been used as a decision support tool for investment and regulatory developments. This approach led to the development of integrated catchment models (ICM), which account for the link between the urban/rural hydrology and the in-river pollutant dynamics. In the modelled system, rainfall triggers the drainage systems of urban areas scattered along a river. When flow exceeds the sewer infrastructure capacity, untreated wastewater enters the natural system by combined sewer overflows. This results in a degradation of the river water quality, depending on the magnitude of the emission and river conditions. Thus, being capable of representing these dynamics in the modelling process is key for a correct assessment of the water quality. In many urbanised hydrological systems the distances between draining sewer infrastructures go beyond the de-correlation length of rainfall processes, especially, for convective summer storms. Hence, spatial and temporal scales of selected rainfall inputs are expected to affect water quality dynamics. The objective of this work is to evaluate how the use of rainfall data from different sources and with different space-time characteristics affects modelled output concentrations of dissolved oxygen in a simplified ICM. The study area is located at the Dommel, a relatively small and sensitive river flowing through the city of Eindhoven (The Netherlands). This river stretch receives the discharge of the 750,000 p.e. WWTP of Eindhoven and from over 200 combined sewer overflows scattered along its length. A pseudo-distributed water quality model has been developed in WEST (mikedhi.com); this is a lumped-physically based model that accounts for urban drainage processes, WWTP and river dynamics for several pollutant typologies. Different rainfall products are tested: 1) Block kriging of a single reliable rain gauge, 2) Block kriging product from a network of 13 rain gauges and, 3) Universal block kriging with 13 rain gauges and KNMI weather radar estimates as a covariate. Different temporal accumulation levels are compared ranging from 10min to 1h. A geostatistical approach is used to allocate the prediction of the rainfall input in each of the urban hydrological units composing the model. The change in model performance is then assessed by contrasting it with dissolved oxygen monitoring data in a series of events.

  17. Surface-water quality in rivers and drainage basins discharging to the southern part of Hood Canal, Mason and Kitsap Counties, Washington, 2004

    USGS Publications Warehouse

    Frans, L.M.; Paulson, A.J.; Huffman, R.L.; Osbourne, S.N.

    2006-01-01

    Concentrations of nutrients, major ions, organic carbon, suspended sediment, and the nitrogen isotope ratio of nitrate (delta15N) were collected at surface-water sites in rivers and drainage basins discharging to the southern part of Hood Canal, Mason and Kitsap Counties, Washington. Base-flow samples were collected from sites on the Union, Tahuya, and Skokomish Rivers from June to August 2004. Concentrations of nutrients at all sites were low. Ammonia and orthophosphate were less than the detection limit for most samples, and nitrate plus nitrite concentrations ranged from less than the detection limit of 0.06 to 0.49 milligram per liter (mg/L). Nitrate plus nitrite concentrations were near the detection limit of 0.06 mg/L in the North Fork, South Fork, and mainstem of the Skokomish River. The concentration of nitrate plus nitrite in the Tahuya River system above Lake Tahuya was 0.17 mg/L, but decreased to 0.1 mg/L or less downstream of Lake Tahuya. Overall, the Union River contained the highest nitrate plus nitrite concentrations of the three large river systems, ranging from 0.12 to 0.28 mg/L. delta15N generally was within the range that encompasses most sources, providing little information on nitrate sources. Most nitrogen was in the dissolved inorganic form. Dissolved inorganic nitrogen in Lake Tahuya was converted into particulate and dissolved organic nitrogen. Dissolved organic carbon concentrations generally were less than 1 mg/L in the Tahuya and Skokomish Rivers and averaged 1.3 mg/L in the Union River. Dissolved organic carbon concentrations of 2.6 to 2.7 mg/L at sites just downstream of Lake Tahuya were highest for the three large river systems, and decreased to concentrations less than 1 mg/L, which was similar to concentrations in the Skokomish River. Total nitrogen concentrations near 0.5 mg/L were measured at two sites: Unnamed Creek at Purdy-Cutoff Road (site S2b) and downstream of Lake Devereaux (site SP5). Concentrations of nitrate plus nitrite were highest at site S2b (0.49 mg/L), and dissolved organic carbon concentrations (3.3 mg/L) were highest at the outlet of Lake Devereaux. However, the overall impact of these sites on the nutrient loading to Hood Canal probably is negligible because of the low streamflow and small loads. Springtime samples were collected from the Union River, Tahuya River, Mission Creek, and three smaller drainage basins in March 2004. Samples were collected during spring rain events to determine if increased runoff contributes larger amounts of sediment and nutrients from the land into the surface water. There was little difference in nutrient concentrations between samples collected in the spring and base-flow samples collected in the summer. This is likely due to the fact that the springtime samples were collected during a rain event and not necessarily during a peak in the hydrograph.

  18. Reviews and syntheses: Anthropogenic perturbations to carbon fluxes in Asian river systems - concepts, emerging trends, and research challenges

    NASA Astrophysics Data System (ADS)

    Park, Ji-Hyung; Nayna, Omme K.; Begum, Most S.; Chea, Eliyan; Hartmann, Jens; Keil, Richard G.; Kumar, Sanjeev; Lu, Xixi; Ran, Lishan; Richey, Jeffrey E.; Sarma, Vedula V. S. S.; Tareq, Shafi M.; Xuan, Do Thi; Yu, Ruihong

    2018-05-01

    Human activities are drastically altering water and material flows in river systems across Asia. These anthropogenic perturbations have rarely been linked to the carbon (C) fluxes of Asian rivers that may account for up to 40-50 % of the global fluxes. This review aims to provide a conceptual framework for assessing the human impacts on Asian river C fluxes, along with an update on anthropogenic alterations of riverine C fluxes. Drawing on case studies conducted in three selected rivers (the Ganges, Mekong, and Yellow River) and other major Asian rivers, the review focuses on the impacts of river impoundment and pollution on CO2 outgassing from the rivers draining South, Southeast, and East Asian regions that account for the largest fraction of river discharge and C exports from Asia and Oceania. A critical examination of major conceptual models of riverine processes against observed trends suggests that to better understand altered metabolisms and C fluxes in anthropogenic land-water-scapes, or riverine landscapes modified by human activities, the traditional view of the river continuum should be complemented with concepts addressing spatial and temporal discontinuities created by human activities, such as river impoundment and pollution. Recent booms in dam construction on many large Asian rivers pose a host of environmental problems, including increased retention of sediment and associated C. A small number of studies that measured greenhouse gas (GHG) emissions in dammed Asian rivers have reported contrasting impoundment effects: decreased GHG emissions from eutrophic reservoirs with enhanced primary production vs. increased emissions from the flooded vegetation and soils in the early years following dam construction or from the impounded reaches and downstream estuaries during the monsoon period. These contrasting results suggest that the rates of metabolic processes in the impounded and downstream reaches can vary greatly longitudinally over time as a combined result of diel shifts in the balance between autotrophy and heterotrophy, seasonal fluctuations between dry and monsoon periods, and a long-term change from a leaky post-construction phase to a gradual C sink. The rapid pace of urbanization across southern and eastern Asian regions has dramatically increased municipal water withdrawal, generating annually 120 km3 of wastewater in 24 countries, which comprises 39 % of the global municipal wastewater production. Although municipal wastewater constitutes only 1 % of the renewable surface water, it can disproportionately affect the receiving river water, particularly downstream of rapidly expanding metropolitan areas, resulting in eutrophication, increases in the amount and lability of organic C, and pulse emissions of CO2 and other GHGs. In rivers draining highly populated metropolitan areas, lower reaches and tributaries, which are often plagued by frequent algal blooms and pulsatile CO2 emissions from urban tributaries delivering high loads of wastewater, tended to exhibit higher levels of organic C and the partial pressure of CO2 (pCO2) than less impacted upstream reaches and eutrophic impounded reaches. More field measurements of pCO2, together with accurate flux calculations based on river-specific model parameters, are required to provide more accurate estimates of GHG emissions from the Asian rivers that are now underrepresented in the global C budgets. The new conceptual framework incorporating discontinuities created by impoundment and pollution into the river continuum needs to be tested with more field measurements of riverine metabolisms and CO2 dynamics across variously affected reaches to better constrain altered fluxes of organic C and CO2 resulting from changes in the balance between autotrophy and heterotrophy in increasingly human-modified river systems across Asia and other continents.

  19. Surface-Water Quality of the Skokomish, Nooksack, and Green-Duwamish Rivers and Thornton Creek, Puget Sound Basin, Washington, 1995-98

    USGS Publications Warehouse

    Embrey, S.S.; Frans, L.M.

    2003-01-01

    Streamflow and surface-water-quality data were collected from November 1995 through April 1998 (water years 1996-98) from a surface-water network in the Puget Sound Basin study unit of the U.S. Geological Survey National Water-Quality Assessment program. Water samples collected monthly and during storm runoff events were analyzed for nutrients, major ions, organic carbon, and suspended sediment, and at selected sites, samples were analyzed for pesticides and volatile organic compounds. Eleven sites were established in three major watersheds--two in the Skokomish River Basin, three in the Nooksack River Basin, five in the Green-Duwamish River Basin, and one site in Thornton Creek Basin, a small tributary to Lake Washington. The Skokomish River near Potlatch, Nooksack River at Brennan, and Duwamish River at Tukwila are integrators of mixed land uses with the sampling sites locally influenced by forestry practices, agriculture, and urbanization, respectively. The remaining eight sites are indicators of relatively homogeneous land use/land cover in their basins. The site on the North Fork Skokomish River is an indicator site chosen to measure reference or background conditions in the study unit. In the Nooksack River Basin, the site on Fishtrap Creek is an indicator of agriculture, and the Nooksack River at North Cedarville is an indicator site of forestry practices in the upper watershed. In the Green-Duwamish River Basin, Springbrook Creek is an urban indicator, Big Soos Creek is an indicator of a rapidly developing suburban basin; Newaukum Creek is an indicator of agriculture; and the Green River above Twin Camp Creek is an indicator of forestry practices. Thornton Creek is an indicator of high-density urban residential and commercial development. Conditions during the first 18 months of sampling were dominated by above-normal precipitation. For the Seattle-Tacoma area, water year 1997 was the wettest of the 3 years during the sample-collection period. Nearly 52 inches fell (about 14 inches above average) and monthly precipitation was often 200 percent of normal. The wet years kept streamflows generally above normal and contributed to high concentrations of pesticides, nutrients, suspended sediment, and organic carbon in samples. On the basis of chemical concentrations, dissolved oxygen concentrations, and water temperature, the relative quality of water among the 11 study sites ranged from exceptionally high in the North Fork Skokomish and the Green to fair in Springbrook and Thornton. Water in the large rivers (Skokomish, Nooksack, Green-Duwamish) and in two of the small streams in the Puget Sound Lowlands (Big Soos and Newaukum) was characterized by dilute water chemistry with dissolved solids concentrations less than 130 milligrams per liter. Water in three other small streams in the Lowlands (Fishtrap, Springbrook, and Thornton) had dissolved solids concentrations as high as 320 milligrams per liter. Nutrient and pesticide concentrations mostly were higher in the small streams than in the large rivers. Suspended-sediment concentrations, however, were highest in the large rivers, with averages ranging from 85 to 443 milligrams per liter. During storm and flood events, suspended-sediment concentrations in samples from the Nooksack were as much as 2,800 milligrams per liter, and from the Skokomish, 1,500 milligrams per liter. Out of 86 pesticides and 86 volatile organic compounds analyzed, a total of 35 pesticides and 11 volatile organic compounds were detected at concentrations above laboratory reporting levels in samples collected from the four intensively studied sites, the lower Nooksack River, Duwamish River, Fishtrap Creek, and Thornton Creek. Herbicides were detected more frequently than insecticides. The herbicide prometon was detected in 66 percent of all 124 samples collected, followed by simazine (65 percent), atrazine (64 percent), and the insecticide diazinon (50 percent). The detected volatile organic c

  20. Fish communities of the Buffalo River Basin and nearby basins of Arkansas and their relation to selected environmental factors, 2001-2002

    USGS Publications Warehouse

    Petersen, James C.

    2004-01-01

    The Buffalo River lies in north-central Arkansas and is a tributary of the White River. Most of the length of the Buffalo River lies within the boundaries of Buffalo National River, a unit of the National Park Service; the upper 24 river kilometers lie within the boundary of the Ozark National Forest. Much of the upper and extreme lower parts of the basin on the south side of the Buffalo River is within the Ozark National Forest. During the summers of 2001 and 2002, fish communities were sampled at 52 sites in the study area that included the Buffalo River Basin and selected smaller nearby basins within the White River Basin in north-central Arkansas. Water quality (including nutrient and bacteria concentrations) and several other environmental factors (such as stream size, land use, substrate size, and riparian shading) also were measured. A total of 56 species of fish were collected from sites within the Buffalo River Basin in 2001 and 2002. All 56 species also were collected from within the boundaries of Buffalo National River. Twenty-two species were collected from headwater sites on tributaries of the Buffalo River; 27 species were collected from sites within or immediately adjacent to the Ozark National Forest. The list of species collected from Buffalo National River is similar to the list of species reported by previous investigators. Species richness at sites on the mainstem of the Buffalo River generally increased in a downstream direction. The number of species collected (both years combined) increased from 17 at the most upstream site to 38 near the mouth of the Buffalo River. In 2001 and 2002, a total of 53 species of fish were collected from sites outside the Buffalo River Basin. Several fish community metrics varied among sites in different site categories (mainstem, large tributary, small tributary, headwater, and developed out-of-basin sites). Median relative abundances of stonerollers ranged from about 25 to 55 percent and were highest at headwater and developed out-of-basin sites and lowest at mainstem sites. The relative abundances at the headwater and developed out-of-basin sites were significantly different from the relative abundances at the mainstem sites. Percentages of individuals of algivorous/herbivorous, invertivorous, and piscivorous species at headwater sites were significantly lower than values at mainstem and developed out-of-basin sites. Percentages of individuals of invertivorous species at mainstem sites were significantly higher than values at small tributary, headwater, and developed out-of-basin sites. Percentages of top carnivores at mainstem sites were significantly higher than values at tributary and headwater sites. The numbers of darter, sculpin, plus madtom species at mainstem, large tributary, and developed out-of-basin sites were significantly higher than values at other sites, and the values at small tributary sites and headwater sites were each significantly different from values at the other four types of sites. The number of lithophilic spawning species at large tributary sites was not significantly different from values at mainstem and developed out-of-basin sites, but values for small tributary and headwater sites each were significantly different from values for all other categories. Index of biotic integrity scores varied among the site categories. Scores for mainstem sites were significantly larger than all but large tributary site scores. Scores for headwater sites were significantly smaller than mainstem and large tributary site scores. Several analyses of the data described in this report suggest that drainage area is the most important single factor influencing fish communities of the Buffalo River Basin and nearby basins. Species richness increases with increasing drainage area and some species are restricted to smaller streams while other species are more common in larger streams. Some community metrics also are related to land use and related factors

  1. The influence of tides on biogeochemical dynamics at the mouth of the Amazon River

    NASA Astrophysics Data System (ADS)

    Ward, N. D.; Sawakuchi, H. O.; Neu, V.; de Matos Valerio, A.; Less, D.; Guedes, V.; Wood, J.; Brito, D. C.; Cunha, A. C.; Kampel, M.; Richey, J. E.

    2017-12-01

    A major barrier to computing the flux of constituents from the world's largest rivers to the ocean is understanding the dynamic processes that occur along tidally-influenced river reaches. Here, we examine the response of a suite of biogeochemical parameters to tide-induced flow reversals at the mouth of the Amazon River. Continuous measurements of pCO2, pCH4, dissolved O2, pH, turbidity, and fluorescent dissolved organic matter (FDOM) were made throughout tidal cycles while held stationary in the center of the river and during hourly transects for ADCP discharge measurements. Samples were collected hourly from the surface and 50% depth during stationary samplings and from the surface during ADCP transects for analysis of suspended sediment concentrations along with other parameters such as nutrient and mercury concentrations. Suspended sediment and specific components of the suspended phase, such as particulate mercury, concentrations were positively correlated to mean river velocity during both high and low water periods with a more pronounced response at 50% depth than the surface. Tidal variations also influenced the concentration of O2 and CO2 by altering the dynamic balance between photosynthesis, respiration, and gas transfer. CO2 was positively correlated and O2 and pH were negatively correlated with river velocity. The concentration of methane generally increased during low tide (i.e. when river water level was lowest) both in the mainstem and in small side channels. In side channels concentrations increased by several orders of magnitude during low tide with visible bubbling from the sediment, presumably due to a release of hydrostatic pressure. These results suggest that biogeochemical processes are highly dynamic in tidal rivers, and these dynamic variations need to be quantified to better constrain global and regional scale budgets. Understanding these rapid processes may also provide insight into the long-term response of aquatic systems to change.

  2. Export of fine particulate organic carbon from redwood-dominated catchments

    USGS Publications Warehouse

    Madej, Mary Ann

    2015-01-01

    Recently, researchers have recognized the significant role of small mountainous river systems in the transport of carbon from terrestrial environments to the ocean, and the scale of such studies have ranged from channel bed units to continents. In temperate zones, these mountain river systems commonly drain catchments that are largely forested. However, the magnitude of carbon export from rivers draining old-growth redwood forests has not been evaluated to date. Old-growth redwood stands support some of the largest quantities of biomass in the world, up to 350 000 Mg of stem biomass km-2 and soil organic carbon can reach 46 800 Mg km-2. In north coastal California, suspended sediment samples were collected at three gaging stations for two to four years on streams draining old-growth redwood forests. Carbon content, determined through loss-on-ignition tests, was strongly correlated with turbidity, and continuous turbidity records from the gaging stations were used to estimate annual carbon exports of 1 · 6 to 4 · 2 Mg km-2 yr-1. These values, representing 13 to 33% of the suspended sediment load, are some of the highest percentages reported in the global literature. The fraction of organic carbon as part of the suspended sediment load decreased with discharge, but reached an asymptote of 5 to 10% at flows 10 to 20 times the mean annual flows. Although larger rivers in this region exhibit high sediment yields (up to 3600 Mg km-2 yr-1), mainly attributed to high rates of uplift, mass movement, and timber harvest, the small pristine streams in this study have sediment yields of only 8 to 100 Mg km-2 yr-1. Because the current extent of old-growth redwood stands is less than 5% of its pre-European-settlement distribution, the present organic carbon signature in suspended sediment loads in this region is likely different from that in the early 20th century. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  3. Seasonal gravity change at Yellowstone caldera

    NASA Astrophysics Data System (ADS)

    Poland, M. P.; de Zeeuw-van Dalfsen, E.

    2017-12-01

    The driving forces behind Yellowstone's dynamic deformation, vigorous hydrothermal system, and abundant seismicity are usually ascribed to "magmatic fluids," which could refer to magma, water, volatiles, or some combination. Deformation data alone cannot distinguish the relative importance of these fluids. Gravity measurements, however, provide an indication of mass change over time and, when combined with surface displacements, can constrain the density of subsurface fluids. Unfortunately, several decades of gravity surveys at Yellowstone have yielded ambiguous results. We suspect that the difficulty in interpreting Yellowstone gravity data is due to seasonal variations in environmental conditions—especially surface and ground water. Yellowstone gravity surveys are usually carried out at the same time of year (generally late summer) to minimize the impact of seasonality. Nevertheless, surface and subsurface water levels are not likely to be constant from year to year, given annual differences in precipitation. To assess the overall magnitude of seasonal gravity changes, we conducted gravity surveys of benchmarks in and around Yellowstone caldera in May, July, August, and October 2017. Our goal was to characterize seasonal variations due to snow melt/accumulation, changes in river and lake levels, changes in groundwater levels, and changes in hydrothermal activity. We also hope to identify sites that show little variation in gravity over the course of the 2017 surveys, as these locations may be less prone to seasonal changes and more likely to detect small variations due to magmatic processes. Preliminary examination of data collected in May and July 2017 emphasizes the importance of site location relative to sources of water. For example, a site on the banks of the Yellowstone River showed a gravity increase of several hundred microgals associated with a 50 cm increase in the river level. A high-altitude site far from rivers and lakes, in contrast, showed a relatively small gravity increase ( 25 microgals) over the same time period, despite the presence of 1 m of snow during the first survey and none during the second. Reinterpretation of past data collected at sites such as this one, where seasonal variations may be minor, could provide a clearer indication of mass changes in Yellowstone's magmatic system.

  4. Sea-level and tectonic control of middle to late Pleistocene turbidite systems in Santa Monica Basin, offshore California

    USGS Publications Warehouse

    Normark, W.R.; Piper, D.J.W.; Sliter, R.

    2006-01-01

    Small turbidite systems offshore from southern California provide an opportunity to track sediment from river source through the turbidity-current initiation process to ultimate deposition, and to evaluate the impact of changing sea level and tectonics. The Santa Monica Basin is almost a closed system for terrigenous sediment input, and is supplied principally from the Santa Clara River. The Hueneme fan is supplied directly by the river, whereas the smaller Mugu and Dume fans are nourished by southward longshore drift. This study of the Late Quaternary turbidite fill of the Santa Monica Basin uses a dense grid of high-resolution seismic-reflection profiles tied to new radiocarbon ages for Ocean Drilling Program (ODP) Site 1015 back to 32 ka. Over the last glacial cycle, sedimentation rates in the distal part of Santa Monica Basin averaged 2-3 mm yr-1, with increases at times of extreme relative sea-level lowstand. Coarser-grained mid-fan lobes prograded into the basin from the Hueneme, Mugu and Dume fans at times of rapid sea-level fall. These pulses of coarse-grained sediment resulted from river channel incision and delta cannibalization. During the extreme lowstand of the last glacial maximum, sediment delivery was concentrated on the Hueneme Fan, with mean depositional rates of up to 13 mm yr-1 on the mid- and upper fan. During the marine isotope stage (MIS) 2 transgression, enhanced rates of sedimentation of > 4 mm yr-1 occurred on the Mugu and Dume fans, as a result of distributary switching and southward littoral drift providing nourishment to these fan systems. Longer-term sediment delivery to Santa Monica Basin was controlled by tectonics. Prior to MIS 10, the Anacapa ridge blocked the southward discharge of the Santa Clara River into the Santa Monica Basin. The pattern and distribution of turbidite sedimentation was strongly controlled by sea level through the rate of supply of coarse sediment and the style of initiation of turbidity currents. These two factors appear to have been more important than the absolute position of sea level. ?? 2006 The Authors. Journal compilation 2006 International Association of Sedimentologists.

  5. Downstream changes of water quality in a lowland river due to groundwater inflows.

    NASA Astrophysics Data System (ADS)

    Zieba, Damian; Bar-Michalczyk, Dominika; Kania, Jarosław; Malina, Grzegorz; Michalczyk, Tomasz; Rozanski, Kazimierz; Witczak, Stanislaw; Wachniew, Przemyslaw; Zurek, Anna J.

    2016-04-01

    The Kocinka catchment (ca. 250 km2) in southern Poland receives substantial inflows of groundwater from a major fissured-carbonate aquifer polluted with nitrates originating from agriculture and domestic sewage. The 40 km long Kocinka river reveals large spatial variations in physical and chemical water properties with large downstream changes of nitrate concentrations. Detailed longitudinal surveys of such water characteristics as nitrate concentration, water temperature, pH, electric conductivity, stable isotopic composition, tritium concentration were performed in order to identify and quantify groundwater inflows. The river gains groundwater down to the 25 km from the source and a looses water further downstream. The subsequent increase and decrease of nitrate concentration in the upper and middle reaches of the river are caused by inflows of the, respectively, polluted and non-polluted groundwaters. The range of such changes can be even five-fold while the drop of nitrate concentration along the semi natural, 18 km long, lower reach where the river is well connected to its riparian and hyporheic zones nitrate loss is of the order of 10%. More significant nitrate losses were observed in the dammed reaches and in a small reservoir in the upper part of the river. Results of the study have implications for identification of measures that can be undertaken to reduce nitrate export from the catchment. Because of the role of groundwater in river runoff reduction of nitrate loads to the aquifer should be primary objective. Acknowledgements. The work was carried out as part of the BONUS Soils2Sea project on groundwater system (http:/www.soils2sea.eu) financed by the European Commission 7 FP contract 226536 and the statutory funds of the AGH University of Science and Technology (project No.11.11.140.026 and 11.11.220.01).

  6. Amazon River carbon dioxide outgassing fuelled by wetlands.

    PubMed

    Abril, Gwenaël; Martinez, Jean-Michel; Artigas, L Felipe; Moreira-Turcq, Patricia; Benedetti, Marc F; Vidal, Luciana; Meziane, Tarik; Kim, Jung-Hyun; Bernardes, Marcelo C; Savoye, Nicolas; Deborde, Jonathan; Souza, Edivaldo Lima; Albéric, Patrick; Landim de Souza, Marcelo F; Roland, Fabio

    2014-01-16

    River systems connect the terrestrial biosphere, the atmosphere and the ocean in the global carbon cycle. A recent estimate suggests that up to 3 petagrams of carbon per year could be emitted as carbon dioxide (CO2) from global inland waters, offsetting the carbon uptake by terrestrial ecosystems. It is generally assumed that inland waters emit carbon that has been previously fixed upstream by land plant photosynthesis, then transferred to soils, and subsequently transported downstream in run-off. But at the scale of entire drainage basins, the lateral carbon fluxes carried by small rivers upstream do not account for all of the CO2 emitted from inundated areas downstream. Three-quarters of the world's flooded land consists of temporary wetlands, but the contribution of these productive ecosystems to the inland water carbon budget has been largely overlooked. Here we show that wetlands pump large amounts of atmospheric CO2 into river waters in the floodplains of the central Amazon. Flooded forests and floating vegetation export large amounts of carbon to river waters and the dissolved CO2 can be transported dozens to hundreds of kilometres downstream before being emitted. We estimate that Amazonian wetlands export half of their gross primary production to river waters as dissolved CO2 and organic carbon, compared with only a few per cent of gross primary production exported in upland (not flooded) ecosystems. Moreover, we suggest that wetland carbon export is potentially large enough to account for at least the 0.21 petagrams of carbon emitted per year as CO2 from the central Amazon River and its floodplains. Global carbon budgets should explicitly address temporary or vegetated flooded areas, because these ecosystems combine high aerial primary production with large, fast carbon export, potentially supporting a substantial fraction of CO2 evasion from inland waters.

  7. Survival and tag loss in Moapa White River springfish implanted with passive integrated transponder tags

    USGS Publications Warehouse

    Dixon, Christopher J.; Mesa, Matthew G.

    2011-01-01

    We monitored survival and tag loss among Moapa White River springfish Crenichthys baileyi moapae that were surgically implanted with passive integrated transponder (PIT; 9 × 2 mm) tags. The fish used in the study ranged from 40 to 67 mm in total length and from 1.0 to 6.5 g in mass; the PIT tag: body weight ratios were 1.0–6.1%. Fish were held for 41 d in live cages within a small, warm desert stream. Survival did not differ between untagged control fish (94.5%) and tagged fish (95.6%). Survival did not appear to be influenced by fish size or PIT tag: body weight ratio, but the small number of fish that died precluded a detailed analysis. Tag retention was 100% among the 86 fish that survived over the 41 d. Our results suggest that surgically implanting 9-mm PIT tags into Moapa White River springfish as small as 40 mm is an effective method for marking them because it has minimal impacts on survival and tag retention is high. More work is needed on the effects of PIT tagging on growth and other performance metrics of springfish and other small desert fishes.

  8. Pyrosequencing assessment of prokaryotic and eukaryotic diversity in biofilm communities from a French river

    PubMed Central

    Bricheux, Geneviève; Morin, Loïc; Le Moal, Gwenaël; Coffe, Gérard; Balestrino, Damien; Charbonnel, Nicolas; Bohatier, Jacques; Forestier, Christiane

    2013-01-01

    Despite the recent and significant increase in the study of aquatic microbial communities, little is known about the microbial diversity of complex ecosystems such as running waters. This study investigated the biodiversity of biofilm communities formed in a river with 454 Sequencing™. This river has the particularity of integrating both organic and microbiological pollution, as receiver of agricultural pollution in its upstream catchment area and urban pollution through discharges of the wastewater treatment plant of the town of Billom. Different regions of the small subunit (SSU) ribosomal RNA gene were targeted using nine pairs of primers, either universal or specific for bacteria, eukarya, or archaea. Our aim was to characterize the widest range of rDNA sequences using different sets of polymerase chain reaction (PCR) primers. A first look at reads abundance revealed that a large majority (47–48%) were rare sequences (<5 copies). Prokaryotic phyla represented the species richness, and eukaryotic phyla accounted for a small part. Among the prokaryotic phyla, Proteobacteria (beta and alpha) predominated, followed by Bacteroidetes together with a large number of nonaffiliated bacterial sequences. Bacillariophyta plastids were abundant. The remaining bacterial phyla, Verrucomicrobia and Cyanobacteria, made up the rest of the bulk biodiversity. The most abundant eukaryotic phyla were annelid worms, followed by Diatoms, and Chlorophytes. These latter phyla attest to the abundance of plastids and the importance of photosynthetic activity for the biofilm. These findings highlight the existence and plasticity of multiple trophic levels within these complex biological systems. PMID:23520129

  9. Water quality assessment of a small peri-urban river using low and high frequency monitoring.

    PubMed

    Ivanovsky, A; Criquet, J; Dumoulin, D; Alary, C; Prygiel, J; Duponchel, L; Billon, G

    2016-05-18

    The biogeochemical behaviors of small rivers that pass through suburban areas are difficult to understand because of the multi-origin inputs that can modify their behavior. In this context, a monitoring strategy has been designed for the Marque River, located in Lille Metropolitan area of northern France, that includes both low-frequency monitoring over a one-year period (monthly sampling) and high frequency monitoring (measurements every 10 minutes) in spring and summer. Several environmental and chemical parameters are evaluated including rainfall events, river flow, temperature, dissolved oxygen, turbidity, conductivity, nutritive salts and dissolved organic matter. Our results from the Marque River show that (i) it is impacted by both urban and agricultural inputs, and as a consequence, the concentrations of phosphate and inorganic nitrogen have degraded the water quality; (ii) the classic photosynthesis/respiration processes are disrupted by the inputs of organic matter and nutritive salts; (iii) during dry periods, the urban sewage inputs (treated or not) are more important during the day, as indicated by higher river flows and maximal concentrations of ammonium; (iv) phosphate concentrations depend on oxygen contents in the river; (v) high nutrient concentrations result in eutrophication of the Marque River with lower pH and oxygen concentrations in summer. During rainfalls, additional inputs of ammonium, biodegradable organic matter as well as sediment resuspension result in anoxic events; and finally (vi) concentrations of nitrate are approximately constant over the year, except in winter when higher inputs can be recorded. Having better identified the processes responsible for the observed water quality, a more informed remediation effort can be put forward to move this suburban river to a good status of water quality.

  10. Study on the influence of small hydropower stations on the macroinvertebrates community-Take Nanhe River as a case, China

    NASA Astrophysics Data System (ADS)

    Zhao, Weihua; Li, Qingyun; Guo, Weijie; Wang, Zhenhua

    2017-05-01

    This study take Nahan River as a case to research the impacts of small hydropower stations on macroinvertebrates community. Results showed that a total of 13 macroinvertebrate samples was collected and contained 56 taxa belonging to 18 families and 35 genera. The influence of runoff regulation was more seriously than hydrological period. There were obvious zoning phenomenon of macroinvertebrates between reservoir, downdam reaches and natural reaches. From reservoir, downdam reaches to natural reaches, species abundance increased in turn. There are the least species in reservoir, the most in natural rivers. The reservoirs had the highest biomass and were quite different from those in downdam and natural reaches. However, there was no significant difference between different periods of hydropower station.

  11. Optical sensors in water monitoring

    NASA Astrophysics Data System (ADS)

    Gauglitz, Guenter

    2007-07-01

    An upcoming problem in Europe is the protection of water resources and control of water quality. Coastal areas, rivers, ground water, wetlands, and especially drinking water require permanent monitoring to avoid pollution by small organic molecules or especially endocrine disrupting compounds. Biosensors have demonstrated the proof-of-principle of immunochemistry for these applications. It turns out that especially optical methods based on fluorescence detection can be successfully used for the development of fast, sensitive, cost-effective, and easy-to-use analytical systems meeting the requirements given by European Community Directives and national legislation. Results obtained with the RIANA and AWACSS systems are discussed here.

  12. Cumulative Significance of Hyporheic Exchange and Biogeochemical Processing in River Networks

    NASA Astrophysics Data System (ADS)

    Harvey, J. W.; Gomez-Velez, J. D.

    2014-12-01

    Biogeochemical reactions in rivers that decrease excessive loads of nutrients, metals, organic compounds, etc. are enhanced by hydrologic interactions with microbially and geochemically active sediments of the hyporheic zone. The significance of reactions in individual hyporheic flow paths has been shown to be controlled by the contact time between river water and sediment and the intrinsic reaction rate in the sediment. However, little is known about how the cumulative effects of hyporheic processing in large river basins. We used the river network model NEXSS (Gomez-Velez and Harvey, submitted) to simulate hyporheic exchange through synthetic river networks based on the best available models of network topology, hydraulic geometry and scaling of geomorphic features, grain size, hydraulic conductivity, and intrinsic reaction rates of nutrients and metals in river sediment. The dimensionless reaction significance factor, RSF (Harvey et al., 2013) was used to quantify the cumulative removal fraction of a reactive solute by hyporheic processing. SF scales reaction progress in a single pass through the hyporheic zone with the proportion of stream discharge passing through the hyporheic zone for a specified distance. Reaction progress is optimal where the intrinsic reaction timescale in sediment matches the residence time of hyporheic flow and is less efficient in longer residence time hyporheic flow as a result of the decreasing proportion of river flow that is processed by longer residence time hyporheic flow paths. In contrast, higher fluxes through short residence time hyporheic flow paths may be inefficient because of the repeated surface-subsurface exchanges required to complete the reaction. Using NEXSS we found that reaction efficiency may be high in both small streams and large rivers, although for different reasons. In small streams reaction progress generally is dominated by faster pathways of vertical exchange beneath submerged bedforms. Slower exchange beneath meandering river banks mainly has importance only in large rivers. For solutes entering networks in proportion to water inputs it is the lower order streams that tend to dominate cumulative reaction progress.

  13. Molecular analysis of point-of-use municipal drinking water microbiology.

    PubMed

    Holinger, Eric P; Ross, Kimberly A; Robertson, Charles E; Stevens, Mark J; Harris, J Kirk; Pace, Norman R

    2014-02-01

    Little is known about the nature of the microbiology in tap waters delivered to consumers via public drinking water distribution systems (DWDSs). In order to establish a broader understanding of the microbial complexity of public drinking waters we sampled tap water from seventeen different cities between the headwaters of the Arkansas River and the mouth of the Mississippi River and determined the bacterial compositions by pyrosequencing small subunit rRNA genes. Nearly 98% of sequences observed among all systems fell into only 5 phyla: Proteobacteria (35%), Cyanobacteria (29%, including chloroplasts), Actinobacteria (24%, of which 85% were Mycobacterium spp.), Firmicutes (6%), and Bacteroidetes (3.4%). The genus Mycobacterium was the most abundant taxon in the dataset, detected in 56 of 63 samples (16 of 17 cities). Among the more rare phylotypes, considerable variation was observed between systems, and was sometimes associated with the type of source water, the type of disinfectant, or the concentration of the environmental pollutant nitrate. Abundant taxa (excepting Cyanobacteria and chloroplasts) were generally similar from system to system, however, regardless of source water type or local land use. The observed similarity among the abundant taxa between systems may be a consequence of the selective influence of chlorine-based disinfection and the common local environments of DWDS and premise plumbing pipes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Lessons learned from the integration of local stakeholders in water management approaches in central-northern Namibia

    NASA Astrophysics Data System (ADS)

    Jokisch, A.; Urban, W.

    2012-04-01

    Water is the main limiting factor for economic and agricultural development in central-northern Namibia, where approximately 50% of the Namibian population lives on less than 10% of the country's surface area. The climate in the region can be characterized as semi-arid, with distinctive rainy and dry seasons and an average precipitation of 470 mm/a. Central-northern Namibia can furthermore be characterized by a system of so-called Oshanas, very shallow ephemeral river streams which drain the whole region from north to south towards the Etosha-Saltpan. Water quality within these ephemeral river streams rapidly decreases towards the end of the dry season due to high rates of evaporation (2,700 mm/a) which makes the water unsuitable for human consumption and in certain times of the year also for irrigation purposes. Other local water resources are scarce or of low quality. Therefore, the local water supply is mainly secured via a pipeline scheme which is fed by the Namibian-Angolan border river Kunene. Within the research project CuveWaters - Integrated Water Resources Management in central-northern Namibia different small scale water supply and sanitation technologies are implemented and tested as part of the projects multi-resource mix. The aim is to decentralize the regional water supply and make it more sustainable especially in the face of climate change. To gain understanding and to create ownership within the local population for the technologies implemented, stakeholder participation and capacity development are integral parts of the project. As part of the implementation process of rainwater harvesting and water harvesting from ephemeral river streams, pilot plants for the storage of water were constructed with the help of local stakeholders who will also be the beneficiaries of the pilot plants. The pilot plants consist of covered storage tanks and infrastructure for small scale horticultural use of the water stored. These small scale horticultural activities enable the users of the pilot plants to improve their standard of living by producing vegetables for self-consumption or for selling them on local markets. Irrigation for small-scale horticulture was virtually unknown in the region prior to the project which makes intense training for the local users necessary. This paper summarizes the participative process of finding a pilot village and a suitable location along the ephemeral river stream as well as the process of selecting people from the local community for construction and for the operation of the pilot plant. According to the demand-responsive approach of the CuveWaters project, local stakeholders were involved in all these processes. Tools for participation used are workshops and interviews with local stakeholders and the integration of the users in all decision-making processes as well as in construction, maintenance, operation and monitoring.

  15. Landscape assessment of side channel plugs and associated cumulative side channel attrition across a large river floodplain

    USGS Publications Warehouse

    Reinhold, Ann Marie; Poole, Geoffrey C.; Bramblett, Robert G.; Zale, Alexander V.; Roberts, David W.

    2018-01-01

    Determining the influences of anthropogenic perturbations on side channel dynamics in large rivers is important from both assessment and monitoring perspectives because side channels provide critical habitat to numerous aquatic species. Side channel extents are decreasing in large rivers worldwide. Although riprap and other linear structures have been shown to reduce side channel extents in large rivers, we hypothesized that small “anthropogenic plugs” (flow obstructions such as dikes or berms) across side channels modify whole-river geomorphology via accelerating side channel senescence. To test this hypothesis, we conducted a geospatial assessment, comparing digitized side channel areas from aerial photographs taken during the 1950s and 2001 along 512 km of the Yellowstone River floodplain. We identified longitudinal patterns of side channel recruitment (created/enlarged side channels) and side channel attrition (destroyed/senesced side channels) across n = 17 river sections within which channels were actively migrating. We related areal measures of recruitment and attrition to the density of anthropogenic side channel plugs across river sections. Consistent with our hypothesis, a positive spatial relationship existed between the density of anthropogenic plugs and side channel attrition, but no relationship existed between plug density and side channel recruitment. Our work highlights important linkages among side channel plugs and the persistence and restoration of side channels across floodplain landscapes. Specifically, management of small plugs represents a low-cost, high-benefit restoration opportunity to facilitate scouring flows in side channels to enable the persistence of these habitats over time.

  16. Pre-Columbian urbanism, anthropogenic landscapes, and the future of the Amazon.

    PubMed

    Heckenberger, Michael J; Russell, J Christian; Fausto, Carlos; Toney, Joshua R; Schmidt, Morgan J; Pereira, Edithe; Franchetto, Bruna; Kuikuro, Afukaka

    2008-08-29

    The archaeology of pre-Columbian polities in the Amazon River basin forces a reconsideration of early urbanism and long-term change in tropical forest landscapes. We describe settlement and land-use patterns of complex societies on the eve of European contact (after 1492) in the Upper Xingu region of the Brazilian Amazon. These societies were organized in articulated clusters, representing small independent polities, within a regional peer polity. These patterns constitute a "galactic" form of prehistoric urbanism, sharing features with small-scale urban polities in other areas. Understanding long-term change in coupled human-environment systems relating to these societies has implications for conservation and sustainable development, notably to control ecological degradation and maintain regional biodiversity.

  17. Spatial distribution of chemical constituents in the Kuskokwim River, Alaska

    USGS Publications Warehouse

    Wang, Bronwen

    1999-01-01

    The effects of lithologic changes on the water quality of the Kuskokwim River, Alaska, were evaluated by the U.S. Geological Survey in June 1997. Water, suspended sediments, and bed sediments were sampled from the Kusko-kwim River and from three tributaries, the Holitna River, Red Devil Creek, and Crooked Creek. Dissolved boron, chromium, copper, manganese, zinc, aluminum, lithium, barium, iron, antimony, arsenic, mercury, and strontium were detected. Dissolved manganese and iron concentrations were three and four times higher in the Holitna River than in the Kusko-kwim River. Finely divided ferruginous materials found in the graywacke and shale units of the Kuskokwim Group are the probable source of the iron. The highest concentrations of dissolved strontium and barium were found at McGrath, and the limestone present in the upper basin was the most probable source of strontium. The total mercury concentrations on the Kuskokwim River decreased downstream from McGrath. Dissolved mercury was 24 to 32 percent of the total concentration. The highest concentrations of total mercury, and of dissolved antimony and arsenic were found in Red Devil Creek. The higher concentrations from Red Devil Creek did not affect the main stem mercury transport because the tributary was small relative to the Kuskokwim River. In Red Devil Creek, total mercury exceeded the concentration at which the U.S. Environmental Protection Agency (USEPA) indicates that aquatic life is affected and dissolved arsenic exceeded the USEPA's drinking-water standard. Background mercury and antimony concentrations in bed sediments ranged from 0.09 to 0.15 micrograms per gram for mercury and from 1.6 to 2.1 micrograms per gram for antimony. Background arsenic concentrations were greater than 27 micrograms per gram. Sites near the Red Devil mercury mine had mercury and antimony concentrations greater than background concentrations. These concentrations probably reflect the proximity to the ore body and past mining. Crooked Creek had mercury concentrations greater than the background concentration. The transport of suspended sediment-associated trace elements was lower for all elements in the lower river than in the upper river, indicating storage of sediments and their associated metals within the river system.

  18. Channel Width Change as a Potential Sediment Source, Minnesota River Basin

    NASA Astrophysics Data System (ADS)

    Lauer, J. W.; Echterling, C.; Lenhart, C. F.; Rausch, R.; Belmont, P.

    2017-12-01

    Turbidity and suspended sediment are important management considerations along the Minnesota River. The system has experience large and relatively consistent increases in both discharge and channel width over the past century. Here we consider the potential role of channel cross section enlargement as a sediment source. Reach-average channel width was digitized from aerial images dated between 1937 and 2015 along multiple sub-reaches of the Minnesota River and its major tributaries. Many of the sub-reaches include several actively migrating bends. The analysis shows relatively consistent increases in width over time, with average increase rates of 0.4 percent per year. Extrapolation to the river network using a regional relationship for cross-sectional area vs. drainage area indicates that large tributaries and main-stem reaches account for most of the bankfull cross-sectional volume in the basin. Larger tributaries and the main stem thus appear more important for widening related sediment production than small tributaries. On a basin-wide basis, widening could be responsible for a gross supply of more sediment than has been gaged at several main-stem sites, indicating that there may be important sinks for both sand and silt/clay size material distributed throughout the system. Sediment storage is probably largest along the lowest-slope reaches of the main stem. While channel width appears to have adjusted relatively quickly in response to discharge and other hydraulic modifications, net storage of sediment in floodplains probably occurs sufficiently slowly that depth adjustment will lag width adjustment significantly. Detailed analysis of the lower Minnesota River using a river segmenting approach allows for a more detailed assessment of reach-scale processes. Away from channel cutoffs, elongation of the channel at eroding bends is consistent with rates observed on other actively migrating rivers. However, the sinuosity increase has been more than compensated by several natural and engineered cutoffs. The sinuosity change away from cutoffs probably plays a relatively modest role in the reach's sediment budget. However, point bars and abandoned oxbow lakes are important zones of sediment storage that may be large enough to account for much of the widening-related production of sand in the reach.

  19. Assessing organic contaminant fluxes from contaminated sediments following dam removal in an urbanized river.

    PubMed

    Cantwell, Mark G; Perron, Monique M; Sullivan, Julia C; Katz, David R; Burgess, Robert M; King, John

    2014-08-01

    In this study, methods and approaches were developed and tested to assess changes in contaminant fluxes resulting from dam removal in a riverine system. Sediment traps and passive samplers were deployed to measure particulate and dissolved polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in the water column prior to and following removal of a small, low-head dam in the Pawtuxet River, an urbanized river located in Cranston, RI, USA. During the study, concentrations of particulate and dissolved PAHs ranged from 21.5 to 103 μg/g and from 68 to 164 ng/L, respectively. Overall, temporal trends of PAHs showed no increases in either dissolved or particulate phases following removal of the dam. Dissolved concentrations of PCBs were very low, remaining below 1.72 ng/L at all sites. Particulate PCB concentrations across sites and time showed slightly greater variability, ranging from 80 to 469 ng/g, but with no indication that dam removal influenced any increases. Particulate PAHs and PCBs were sampled continuously at the site located below the dam and did not show sustained increases in concentration resulting from dam removal. The employment of passive sampling technology and sediment traps was highly effective in monitoring the concentrations and flux of contaminants moving through the river system. Variations in river flow had no effect on the concentration of contaminants in the dissolved or particulate phases, but did influence the flux rate of contaminants exiting the river. Overall, dam removal did not cause measurable sediment disturbance or increase the concentration or fluxes of dissolved or particulate PAHs and PCBs. This is due in large part to low volumes of impounded sediment residing above the dam and highly armored sediments in the river channel, which limited erosion. Results from this study will be used to improve methods and approaches that assess the short- and long-term impacts ecological restoration activities such as dam removal have on the release and transport of sediment-bound contaminants.

  20. Climate and land-use changes affecting river sediment and brown trout in alpine countries--a review.

    PubMed

    Scheurer, Karin; Alewell, Christine; Bänninger, Dominik; Burkhardt-Holm, Patricia

    2009-03-01

    Catch decline of freshwater fish has been recorded in several countries. Among the possible causes, habitat change is discussed. This article focuses on potentially increased levels of fine sediments going to rivers and their effects on gravel-spawning brown trout. Indications of increased erosion rates are evident from land-use change in agriculture, changes in forest management practices, and from climate change. The latter induces an increase in air and river water temperatures, reduction in permafrost, changes in snow dynamics and an increase in heavy rain events. As a result, an increase in river sediment is likely. Suspended sediment may affect fish health and behaviour directly. Furthermore, sediment loads may clog gravel beds impeding fish such as brown trout from spawning and reducing recruitment rates. To assess the potential impact on fine sediments, knowledge of brown trout reproductive needs and the effects of sediment on brown trout health were evaluated. We critically reviewed the literature and included results from ongoing studies to answer the following questions, focusing on recent decades and rivers in alpine countries. Have climate change and land-use change increased erosion and sediment loads in rivers? Do we have indications of an increase in riverbed clogging? Are there indications of direct or indirect effects on brown trout from increased suspended sediment concentrations in rivers or from an increase in riverbed clogging? Rising air temperatures have led to more intensive precipitation in winter months, earlier snow melt in spring, and rising snow lines and hence to increased erosion. Intensification of land use has supported erosion in lowland and pre-alpine areas in the second half of the twentieth century. In the Alps, however, reforestation of abandoned land at high altitudes might reduce the erosion risk while intensification on the lower, more easily accessible slopes increases erosion risk. Data from laboratory experiments show that suspended sediments affect the health and behaviour of fish when available in high amounts. Point measurements in large rivers indicate no common lethal threat and suspended sediment is rarely measured continuously in small rivers. However, effects on fish can be expected under environmentally relevant conditions. River bed clogging impairs the reproductive performance of gravel-spawning fish. Overall, higher erosion and increased levels of fine sediment going into rivers are expected in future. Additionally, sediment loads in rivers are suspected to have considerably impaired gravel bed structure and brown trout spawning is impeded. Timing of discharge is put forward and is now more likely to affect brown trout spawning than in previous decades. Reports on riverbed clogging from changes in erosion and fine sediment deposition patterns, caused by climate change and land-use change are rare. This review identifies both a risk of increases in climate erosive forces and fine sediment loads in rivers of alpine countries. Increased river discharge and sediment loads in winter and early spring could be especially harmful for brown trout reproduction and development of young life stages. Recently published studies indicate a decline in trout reproduction from riverbed clogging in many rivers in lowlands and alpine regions. However, the multitude of factors in natural complex ecosystems makes it difficult to address a single causative factor. Further investigations into the consequences of climate change and land-use change on river systems are needed. Small rivers, of high importance for the recruitment of gravel-spawning fish, are often neglected. Studies on river bed clogging are rare and the few existing studies are not comparable. Thus, there is a strong need for the development of methods to assess sediment input and river bed clogging. As well, studies on the effects to fish from suspended sediments and consequences of gravel beds clogging under natural conditions are urgently needed.

  1. Rare earth elements in river waters

    NASA Technical Reports Server (NTRS)

    Goldstein, Steven J.; Jacobsen, Stein B.

    1988-01-01

    To characterize the input to the oceans of rare earth elements (REE) in the dissolved and the suspended loads of rivers, the REE concentrations were measured in samples of Amazon, Indus, Mississippi, Murray-Darling, and Ohio rivers and in samples of smaller rivers that had more distinct drainage basin lithology and water chemistry. It was found that, in the suspended loads of small rivers, the REE pattern was dependent on drainage basin geology, whereas the suspended loads in major rivers had relatively uniform REE patterns and were heavy-REE depleted relative to the North American Shale composite (NASC). The dissolved loads in the five major rivers had marked relative heavy-REE enrichments, relative to the NASC and the suspended material, with the (La/Yb)N ratio of about 0.4 (as compared with the ratio of about 1.9 in suspended loads).

  2. Characteristics of movement and factors affecting the choice of mode of transport of community on the bank of Musi River of Palembang City of South Sumatra

    NASA Astrophysics Data System (ADS)

    Arliansyah, Joni; Hartono, Yusuf; Hastuti, Yulia; Astuti, Rinna

    2017-11-01

    Palembang City is one of the cities having the largest river in Indonesia and it should be able to take advantage of river transportation as an alternative choice. Inadequate availability of river transport facilities and infrastructures makes the people prefer other modes of land transportation rather than using river transportation. In addition, the development planning of river transportation such as the development of river taxi is less successful because it is not yet based on the movement pattern of the origin of the community travel destination. Based on the above matter, this study was conducted. The aim of the study was to find out the characteristics and factors affecting the mode choice of the community living along the bank of Musi River of Palembang City to be the basis of the development of river transportation system in Palembang City. The selected modes were motorcycles, cars, city transports, and ketek (motorized boats). Survey of home interviews was conducted to determine the origin of the destination and characteristics of travel was conducted in 30 villages located on the banks of Musi River. Field survey was conducted to determine the conditions and types of existing river transportation facilities and services. The results show that only 5.3 % of the occurrence movement used river transportation, the rest used motorcycles (69.1%), urban transport (15.9 %) and cars (9.7%), with the travel range less than10 minutes and 10 - 20 minutes as much as 43.2 % and 29 % of the total trips. From the socioeconomic profile of the community, it is found that most of the people living along the Musi River have low and middle incomes with the largest types of jobs as workers, students, shop owner, and housewives. The peak movement time for the movement of river transport occurs at 7:00 - 8:00, 10:00 - 11:00 and 16:00 - 17:00 with the movement of origin of the destination of river transportation is known to be 50% at the traditional market center of Dermaga of 16 Ilir. Types of river transportation used for short trips are large, medium and small motorized boats. While for longer trips there are large and medium size speedboats. The statistical analysis results showed that the parameters affecting the mode choice of the community living along the bank of Musi River were age, occupation, monthly income, house types, and travel time.

  3. Amplification and transport of an endemic fish disease by an introduced species

    USGS Publications Warehouse

    Hershberger, Paul; Leeuw, Bjorn; Jacob, Gregg; Grady, Courtney; Lujan, Kenneth; Gutenberger, Susan; Purcell, Maureen K.; Woodson, James; Winton, James; Parsley, Michael

    2010-01-01

    The introduction of American shad from the Atlantic to the Pacific coast of North America in the late 1800’s and the subsequent population expansion in the 1980’s resulted in the amplification of Ichthyophonus sp., a Mesomycetozoean parasite of wild marine fishes. Sequence analysis of the ribosomal DNA gene complex (small subunit and internal transcribed spacer regions) and Ichthyophonus epidemiological characteristics indicate a low probability that Ichthyophonus was co-introduced with American shad from the Atlantic; rather, Ichthyophonus was likely endemic to marine areas of the Pacific region and amplified by the expanding population of a highly susceptible host species. The migratory life history of shad resulted in the transport of amplified Ichthyophonus from its endemic region in the NE Pacific to the Columbia River watershed. An Ichthyophonus epizootic occurred among American shad in the Columbia River during 2007, when infection prevalence was 72%, and 57% of the infections were scored as moderate or heavy intensities. The epizootic occurred near the record peak of shad biomass in the Columbia River, and corresponded to an influx of 1,595 mt of infected shad tissues into the Columbia River. A high potential for parasite spillback and the establishment of a freshwater Ichthyophonus life cycle in the Columbia River results from currently elevated infection pressures, broad host range, plasticity in Ichthyophonus life history stages, and precedents for establishment of the parasite in other freshwater systems. The results raise questions regarding the risk for sympatric salmonids and the role of Ichthyophonus as a population-limiting factor affecting American shad in the Columbia River.

  4. Water-quality data for the Talkeetna River and four streams in National Parks, Cook Inlet basin, Alaska, 1998

    USGS Publications Warehouse

    Frenzel, Steven A.; Dorava, Joseph M.

    1999-01-01

    Five streams in the Cook Inlet Basin, Alaska, were sampled in 1998 to provide the National Park Service with baseline information on water quality. Four of these streams drain National Park Service land: Costello and Colorado Creeks in Denali National Park and Preserve, Johnson River in Lake Clark National Park and Preserve, and Kamishak River in Katmai National Park and Preserve. The fifth site was on the Talkeetna River, outside of national park boundaries. Samples of stream water, streambed sediments, and fish tissues were collected for chemical analyses. Biological and geomorphic information was also collected at each site. Nutrient concentrations in stream water were low and commonly were less than analytical detection limits. Analyses of fish tissues for 28 organochlorine compounds at Talkeetna River and Costello Creek produced just one detection. Hexachlorobenzene was detected at a concentration of 5.70 micrograms per kilogram in slimy sculpin from the Talkeetna River. Streambed sediment samples from the Talkeetna River had three organochlorine compounds at detectable levels; hexachlorobenzene was measured at 13 micrograms per kilogram and two other compounds were below the minimum reporting levels. At Colorado Creek, Johnson River, and Kamishak River, where fish samples were not collected, no organochlorine compounds were detected in streambed sediment samples. Several semivolatile organic compounds were detected at Colorado Creek and Costello Creek. Only one compound, dibenzothiophene, detected at Costello Creek at a concentration of 85 micrograms per kilogram was above the minimum reporting limit. No semivolatile organic compounds were detected at the Talkeetna, Kamishak, or Johnson Rivers. Trace elements were detected in both fish tissues and streambed sediments. Macroinvertebrate and fish samples contained few taxa at all sites. Total numbers of macroinvertebrate taxa ranged from 19 at the Johnson River to 38 at the Talkeetna River. Diptera were the most abundant and diverse order of macroinvertebrates at all sites. Total numbers of diptera taxa ranged from 8 at the Kamishak River to 19 at the Talkeetna River. Fish communities were represented by a maximum of nine taxa at the Talkeetna River and were absent at Colorado Creek. The Johnson River sampling site produced small numbers of juvenile Dolly Varden, and Costello Creek produced small numbers of both juvenile Dolly Varden and slimy sculpin.

  5. Streamflow variability and optimal capacity of run-of-river hydropower plants

    NASA Astrophysics Data System (ADS)

    Basso, S.; Botter, G.

    2012-10-01

    The identification of the capacity of a run-of-river plant which allows for the optimal utilization of the available water resources is a challenging task, mainly because of the inherent temporal variability of river flows. This paper proposes an analytical framework to describe the energy production and the economic profitability of small run-of-river power plants on the basis of the underlying streamflow regime. We provide analytical expressions for the capacity which maximize the produced energy as a function of the underlying flow duration curve and minimum environmental flow requirements downstream of the plant intake. Similar analytical expressions are derived for the capacity which maximize the economic return deriving from construction and operation of a new plant. The analytical approach is applied to a minihydro plant recently proposed in a small Alpine catchment in northeastern Italy, evidencing the potential of the method as a flexible and simple design tool for practical application. The analytical model provides useful insight on the major hydrologic and economic controls (e.g., streamflow variability, energy price, costs) on the optimal plant capacity and helps in identifying policy strategies to reduce the current gap between the economic and energy optimizations of run-of-river plants.

  6. Assessing dissolved carbon transport and transformation along an estuarine river with stable isotope analyses

    NASA Astrophysics Data System (ADS)

    He, Songjie; Xu, Y. Jun

    2017-10-01

    Estuaries play an important role in the dynamics of dissolved carbon from rivers to coastal oceans. However, our knowledge of dissolved carbon transport and transformation in mixing zones of the world's coastal rivers is still limited. This study aims to determine how dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) concentrations and stable isotopes (δ13CDIC and δ13CDOC) change along an 88-km long estuarine river, the Calcasieu River in Louisiana, southern USA, with salinity ranging from 0.02 to 21.92. The study is expected to elucidate which processes most likely control carbon dynamics in a freshwater-saltwater mixing system, and to evaluate the net metabolism of this estuary. Between May 2015 and February 2016, water samples were collected and in-situ measurements on ambient water conditions were performed during five field trips at six sites from upstream to downstream of the Calcasieu River, which enters the Northern Gulf of Mexico (NGOM). The DIC concentration and δ13CDIC increased rapidly with increasing salinity in the mixing zone. The average DIC concentration and δ13CDIC at the site closest to the NGOM (site 6) were 1.31 mM and -6.34‰, respectively, much higher than those at the site furthest upstream (site 1, 0.42 mM and -20.83‰). The DIC concentrations appeared to be largely influenced by conservative mixing, while high water temperature may have played a role in deviating DIC concentration from the conservative line due likely to increased respiration and decomposition. The δ13CDIC values were close to those suggested by the conservative mixing model for May, June and November, but lower than those for July and February, suggesting that an estuarine river can fluctuate from a balanced to a heterotrophic system (i.e., production/respiration (P/R) < 1) seasonally. Unlike the DIC longitudinal trend, the DOC concentrations in the river estuary decreased from upstream to downstream, but to a much smaller degree. The DOC concentrations consistently showed a deviation from those suggested by the conservative mixing model, which may have been a consequence of in-stream photosynthesis. This river estuary consistently showed depleted δ13CDOC values (i.e., from -30.56‰ to -25.92‰), suggesting that the DOC source in the mixing zone was highly terrestrially derived. However, in this relatively small isotopic range, δ13CDOC alone has limitations in differentiating carbon produced by aquatic photosynthesis from carbon produced by terrestrial photosynthesis in a river-ocean continuum.

  7. Estimates of average annual tributary inflow to the lower Colorado River, Hoover Dam to Mexico

    USGS Publications Warehouse

    Owen-Joyce, Sandra J.

    1987-01-01

    Estimates of tributary inflow by basin or area and by surface water or groundwater are presented in this report and itemized by subreaches in tabular form. Total estimated average annual tributary inflow to the Colorado River between Hoover Dam and Mexico, excluding the measured tributaries, is 96,000 acre-ft or about 1% of the 7.5 million acre-ft/yr of Colorado River water apportioned to the States in the lower Colorado River basin. About 62% of the tributary inflow originates in Arizona, 30% in California, and 8% in Nevada. Tributary inflow is a small component in the water budget for the river. Most of the quantities of unmeasured tributary inflow were estimated in previous studies and were based on mean annual precipitation for 1931-60. Because mean annual precipitation for 1951-80 did not differ significantly from that of 1931-60, these tributary inflow estimates are assumed to be valid for use in 1984. Measured average annual runoff per unit drainage area on the Bill Williams River has remained the same. Surface water inflow from unmeasured tributaries is infrequent and is not captured in surface reservoirs in any of the States; it flows to the Colorado River gaging stations. Estimates of groundwater inflow to the Colorad River valley. Average annual runoff can be used in a water budget; although in wet years, runoff may be large enough to affect the calculation of consumptive use and to be estimated from hydrographs for the Colorado River valley are based on groundwater recharge estimates in the bordering areas, which have not significantly changed through time. In most areas adjacent to the Colorado River valley, groundwater pumpage is small and pumping has not significantly affected the quantity of groundwater discharged to the Colorado River valley. In some areas where groundwater pumpage exceeds the quantity of groundwater discharge and water levels have declined, the quantity of discharge probably has decreased and groundwater inflow to the Colorado River valley will eventually be reduced if not stopped completely. Groundwater discharged at springs below Hoover Dam is unused and flows directly to the Colorado River. (Lantz-PTT)

  8. Heterogeneous detection probabilities for imperiled Missouri River fishes: implications for large-river monitoring programs

    USGS Publications Warehouse

    Schloesser, J.T.; Paukert, Craig P.; Doyle, W.J.; Hill, Tracy D.; Steffensen, K.D.; Travnichek, Vincent H.

    2012-01-01

    Occupancy modeling was used to determine (1) if detection probabilities (p) for 7 regionally imperiled Missouri River fishes (Scaphirhynchus albus, Scaphirhynchus platorynchus, Cycleptus elongatus, Sander canadensis, Macrhybopsis aestivalis, Macrhybopsis gelida, and Macrhybopsis meeki) differed among gear types (i.e. stationary gill nets, drifted trammel nets, and otter trawls), and (2) how detection probabilities were affected by habitat (i.e. pool, bar, and open water), longitudinal position (five 189 to 367 rkm long segments), sampling year (2003 to 2006), and season (July 1 to October 30 and October 31 to June 30). Adult, large-bodied fishes were best detected with gill nets (p: 0.02–0.74), but most juvenile large-bodied and all small-bodied species were best detected with otter trawls (p: 0.02–0.58). Trammel nets may be a redundant sampling gear for imperiled fishes in the lower Missouri River because most species had greater detection probabilities with gill nets or otter trawls. Detection probabilities varied with river segment for S. platorynchus, C. elongatus, and all small-bodied fishes, suggesting that changes in habitat influenced gear efficiency or abundance changes among river segments. Detection probabilities varied by habitat for adult S. albus and S. canadensis, year for juvenile S. albus, C. elongatus, and S. canadensis, and season for adult S. albus. Concentrating sampling effort on gears with the greatest detection probabilities may increase species detections to better monitor a population's response to environmental change and the effects of management actions on large-river fishes.

  9. Drastic change in China's lakes and reservoirs over the past decades.

    PubMed

    Yang, Xiankun; Lu, Xixi

    2014-08-13

    Using remote sensing images, we provided the first complete picture of freshwater bodies in mainland China. We mapped 89,700 reservoirs, covering about 26,870 km(2) and approximately 185,000 lakes with a surface area of about 82,232 km(2). Despite relatively small surface area, the total estimated storage capacity of reservoirs (794 km(3)) is triple that of lakes (268 km(3)). Further analysis indicates that reservoir construction has made the river systems strongly regulated: only 6% of the assessed river basins are free-flowing; 20% of assessed river basins have enough cumulative reservoir capacity to store more than the entire annual river flow. Despite the existence of 2,721 lakes greater than 1 km(2), we found that about 50 lakes greater than km(2) have formed on the Tibetan Plateau resulting from climate change. More than 350 lakes of ≥1 km(2) vanished in four other major lake regions. Although the disappearance of lakes happened in the context of global climate change, it principally reflects the severe anthropogenic impacts on natural lakes, such as, the excessive plundering of water resources on the Inner Mongolia-Xinjiang Plateau and serious destruction (land reclamation and urbanization) on the eastern plains.

  10. Variables influencing the presence of subyearling fall Chinook salmon in shoreline habitats of the Hanford Reach, Columbia River

    USGS Publications Warehouse

    Tiffan, K.F.; Clark, L.O.; Garland, R.D.; Rondorf, D.W.

    2006-01-01

    Little information currently exists on habitat use by subyearling fall Chinook salmon Oncorhynchus tshawytscha rearing in large, main-stem habitats. We collected habitat use information on subyearlings in the Hanford Reach of the Columbia River during May 1994 and April-May 1995 using point abundance electrofishing. We analyzed measures of physical habitat using logistic regression to predict fish presence and absence in shoreline habitats. The difference between water temperature at the point of sampling and in the main river channel was the most important variable for predicting the presence and absence of subyearlings. Mean water velocities of 45 cm/s or less and habitats with low lateral bank slopes were also associated with a greater likelihood of subyearling presence. Intermediate-sized gravel and cobble substrates were significant predictors of fish presence, but small (<32-mm) and boulder-sized (>256-mm) substrates were not. Our rearing model was accurate at predicting fish presence and absence using jackknifing (80% correct) and classification of observations from an independent data set (76% correct). The habitat requirements of fall Chinook salmon in the Hanford Reach are similar to those reported for juvenile Chinook salmon in smaller systems but are met in functionally different ways in a large river.

  11. Impact of permafrost development on groundwater flow patterns: a numerical study considering freezing cycles on a two-dimensional vertical cut through a generic river-plain system

    NASA Astrophysics Data System (ADS)

    Grenier, Christophe; Régnier, Damien; Mouche, Emmanuel; Benabderrahmane, Hakim; Costard, François; Davy, Philippe

    2013-02-01

    The impact of glaciation cycles on groundwater flow was studied within the framework of nuclear waste storage in underground geological formations. The eastern section of the Paris Basin (a layered aquifer with impervious/pervious alternations) in France was considered for the last 120 ka. Cold periods corresponded with arid climates. The issue of talik development below water bodies was addressed. These unfrozen zones can maintain open pathways for aquifer recharge. Transient thermal evolution was simulated on a small-scale generic unit of the landscape including a "river" and "plain". Coupled thermo-hydraulic modeling and simplified conductive heat transfer were considered for a broad range of scenarios. The results showed that when considering the current limited river dimensions and purely conductive heat transfer, taliks are expected to close within a few centuries. However, including coupled advection for flows from the river to the plain (probably pertinent for the eastern Paris Basin aquifer recharge zones) strongly delays talik closure (millennium scale). The impact on regional underground flows is expected to vary from a complete stop of recharge to a reduced recharge, corresponding to the talik zones. Consequences for future modeling approaches of the Paris Basin are discussed.

  12. Predatory fish removal and native fish recovery in the Colorado River mainstem: What have we learned?

    USGS Publications Warehouse

    Mueller, Gordon A.

    2005-01-01

    Mechanical predator removal programs have gained popularity in the United States and have benefited the recovery of several native trout and spring fish. These successes have been limited to headwater streams and small, isolated ponds or springs. Nevertheless, these same approaches are being applied to large river systems on the belief that any degree of predator removal will somehow benefit natives. This attitude is prevalent in the Colorado River mainstem where recovery and conservation programs are struggling to reverse the decline of four endangered fish species. Predator removal and prevention are major thrusts of that work but unfortunately, after 10 years and the removal of >1.5 million predators, we have yet to see a positive response from the native fish community. This leads to the obvious question: is mechanical removal or control in large (>100 cfs base flow) western streams technically or politically feasible? If not, recovery for some mainstem fishes may not be practical in the conventional sense, but require innovative management strategies to prevent their extirpation or possible extinction. This article examines (1) what has been attempted, (2) what has worked, and (3) what has not worked in the Colorado River mainstem and provides recommendations for future efforts in this critical management area.

  13. Dispersal forcing of a southern California river plumes, based on field and remote sensing observations

    USGS Publications Warehouse

    Warrick, Jonathan A.; Mertes, Leal A.K.; Washburn, Libe; Siegel, David A.

    2004-01-01

    River plumes are important pathways of terrestrial materials entering the sea. In southern California, rivers are known to be the dominant source of littoral, shelf and basin sediment and coastal pollution, although a basic understanding of the dynamics of these river inputs does not exist. Here we evaluate forcing parameters of a southern California river plume using ship-based hydrographic surveys and satellite remote sensing measurements to provide the first insights of river dispersal dynamics in southern California. Our results suggest that plumes of the Santa Clara River are strongly influenced by river inertia, producing jet-like structures ~10 km offshore during annual recurrence (~two-year) flood events and ~30 km during exceptional (~10-year recurrence) floods. Upwelling-favorable winds may be strong following stormwater events and can alter dispersal pathways of thse plumes. Due to similar runoff relationships and other reported satellite observations, we hypothesize that interia-dominated dispersal may be an important characteristic of the small, mountainous rivers throughout southern California.

  14. 33 CFR 62.51 - Western Rivers Marking System.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.51 Western Rivers... toward the Gulf of Mexico. (b) The Western Rivers System varies from the standard U.S. system as follows...

  15. 33 CFR 62.51 - Western Rivers Marking System.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.51 Western Rivers... toward the Gulf of Mexico. (b) The Western Rivers System varies from the standard U.S. system as follows...

  16. A single mitochondrial haplotype and nuclear genetic differentiation in sympatric colour morphs of a riverine cichlid fish.

    PubMed

    Koblmüller, S; Sefc, K M; Duftner, N; Katongo, C; Tomljanovic, T; Sturmbauer, C

    2008-01-01

    Some of the diversity of lacustrine cichlid fishes has been ascribed to sympatric divergence, whereas diversification in rivers is generally driven by vicariance and geographic isolation. In the riverine Pseudocrenilabrus philander species complex, several morphologically highly distinct populations are restricted to particular river systems, sinkholes and springs in southern Africa. One of these populations consists of a prevalent yellow morph in sympatry with a less frequent blue morph, and no individuals bear intermediate phenotypes. Genetic variation in microsatellites and AFLP markers was very low in both morphs and one single mtDNA haplotype was fixed in all samples, indicating a very young evolutionary age and small effective population size. Nevertheless, the nuclear markers detected low but significant differentiation between the two morphs. The data suggest recent and perhaps sympatric divergence in the riverine habitat.

  17. Hydrology of area 25, Eastern Region, Interior Coal Province, Illinois

    USGS Publications Warehouse

    Zuehls, E.E.; Ryan, G.L.; Peart, D.B.; Fitzgerald, K.K.

    1981-01-01

    The eastern region of the Interior Coal Province has been divided into 11 hydrologic study areas. Area 25, located in west-central Illinois, includes the Spoon River and small tributaries to the Illinois River. Pennsylvanian age rocks underlie most of the study area. Illinois, with the largest reserves of bituminous coal, is second only to Montana in total coal reserves. Loess soils cover most of the study area. Agriculture is the dominant land use. Surface water provides 97% of all the water used. Precipitation averages 34 to 35 inches. Water-quality data has been collected at over 31 sites. Analysis for specific conductance, pH, alkalinity, iron, manganese, sulfate and many trace elements and other water-quality constituents have been completed. These data are available from computer storage through the National Water Data Storage and Retrieval System (WATSTORE). (USGS)

  18. How do large-scale agricultural investments affect land use and the environment on the western slopes of Mount Kenya? Empirical evidence based on small-scale farmers' perceptions and remote sensing.

    PubMed

    Zaehringer, Julie G; Wambugu, Grace; Kiteme, Boniface; Eckert, Sandra

    2018-05-01

    Africa has been heavily targeted by large-scale agricultural investments (LAIs) throughout the last decade, with scarcely known impacts on local social-ecological systems. In Kenya, a large number of LAIs were made in the region northwest of Mount Kenya. These large-scale farms produce vegetables and flowers mainly for European markets. However, land use in the region remains dominated by small-scale crop and livestock farms with less than 1 ha of land each, who produce both for their own subsistence and for the local markets. We interviewed 100 small-scale farmers living near five different LAIs to elicit their perceptions of the impacts that these LAIs have on their land use and the overall environment. Furthermore, we analyzed remotely sensed land cover and land use data to assess land use change in the vicinity of the five LAIs. While land use change did not follow a clear trend, a number of small-scale farmers did adapt their crop management to environmental changes such as a reduced river water flows and increased pests, which they attributed to the presence of LAIs. Despite the high number of open conflicts between small-scale land users and LAIs around the issue of river water abstraction, the main environmental impact, felt by almost half of the interviewed land users, was air pollution with agrochemicals sprayed on the LAIs' land. Even though only a low percentage of local land users and their household members were directly involved with LAIs, a large majority of respondents favored the presence of LAIs nearby, as they are believed to contribute to the region's overall economic development. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Water resources of the Utica-Rome area, New York

    USGS Publications Warehouse

    Halberg, Henry N.; Hunt, O.P.; Pauszek, F.H.

    1963-01-01

    The Utica-Rome area is along the Mohawk River and New York State Erie (Barge) Canal about midway between Lake Ontario and Albany. It encompasses about 390 square miles centered around the industrial cities of Utica and Rome. The Mohawk River, its tributary West Canada Creek, and a system of reservoirs and diversions to maintain the flow in the barge-canal system, assure an ample water supply for the foreseeable needs of the area. The water from these sources is generally of good chemical quality requiring little treatment, although that from the Mohawk River is only fair and may require some treatment for sensitive industrial processes. Additional surface water is available from smaller streams in the area, particularly Oriskany and Sauquoit Creeks, but the water from these sources is hard, and has a dissolved-solids content of more than 250 ppm (parts per million). Ground water is available in moderate quantities from unconsolidated sand and gravel deposits in the river valleys and buried bedrock channels, and in small quantities from bedrock formations and less permeable unconsolidated deposits. The quality of water from sand and gravel, and bedrock ranges from good to poor. However, where necessary, the quality can be improved with treatment. The Mohawk River is the source of the largest quantity of water in the area. The flow of the stream below Delta Dam equals or exceeds 108 mgd (million gallons per day) 90 percent of the time, and at Little Falls it equals or exceeds 560 mgd 90 percent of the time. The flow between these two points is increased by additions from Oriskany, Sauquoit, and West Canada Creeks and from many smaller tributary streams. The flow is also increased by diversions from outside the area, from the Black and Chenango Rivers and West Canada Creek for improvement of navigation in the Erie (Barge) Canal, and from West Canada and East Branch Fish Creeks for the public supplies of Utica and Rome. Much of the public-supply water eventually reaches the river by way of sewerage and industrial waste-disposal systems. The total diversion from these sources averages more than 92 mgd. An estimated 18.5 mgd is withdrawn from the Mohawk River by industry, mostly for nonconsumptive uses. Floods in the Utica-Rome area are not a frequent problem owing to the use of regulatory measures. The major streams fluctuate through a narrow range in stage and generally only a narrow strip along the streams is subject to flooding. Water-bearing sand and gravel deposits in the major river valleys are the principal sources of ground water, especially where they are recharged by infiltration from streams. The most important potential source is the deposit of sand and gravel underlying the extensive plain adjacent to the Mohawk River between Delta Reservoir and Rome. Maximum sustained yields from these deposits are not known; but moderate quantities of water, 300 gpm (gallons per minute) or less from a single well, can probably be obtained from some parts of the sand plain area, particularly in the vicinity of a buried bedrock channel that extends southwestward from Delta Reservoir. Similar quantities of ground water probably can be withdrawn from some parts of the flood plain of the Mohawk River between Rome and Frankfort and from the sand and gravel deposits filling the valley of Ninemile Creek below Holland Patent. The deposits underlying the flood plain of the Mohawk River generally are fine grained but in places contain interstratified beds of coarser sand and gravel. The most productive part of the flood plain is at the east end near Frankfort. The deposits in Ninemile Creek valley also are generally fine grained; but where they are sufficiently thick, as over a buried bedrock valley southwest of Floyd, moderate quantities of water may be obtained. Small to moderate quantities of water (150 gpm or less from a single well) can be obtained from sand and gravel deposits in the bottoms of Oriskany and Sauquoit Creek vall

  20. Effects of recreational flow releases on natural resources of the Indian and Hudson Rivers in the Central Adirondack Mountains, New York, 2004-06

    USGS Publications Warehouse

    Baldigo, Barry P.; Mulvihill, C.I.; Ernst, A.G.; Boisvert, B.A.

    2011-01-01

    The U.S. Geological Survey (USGS), the New York State Department of Environmental Conservation (NYSDEC), and Cornell University carried out a cooperative 2-year study from the fall of 2004 through the fall of 2006 to characterize the potential effects of recreational-flow releases from Lake Abanakee on natural resources in the Indian and Hudson Rivers. Researchers gathered baseline information on hydrology, temperature, habitat, nearshore wetlands, and macroinvertebrate and fish communities and assessed the behavior and thermoregulation of stocked brown trout in study reaches from both rivers and from a control river. The effects of recreational-flow releases (releases) were assessed by comparing data from affected reaches with data from the same reaches during nonrelease days, control reaches in a nearby run-of-the-river system (the Cedar River), and one reach in the Hudson River upstream from the confluence with the Indian River. A streamgage downstream from Lake Abanakee transmitted data by satellite from November 2004 to November 2006; these data were used as the basis for developing a rating curve that was used to estimate discharges for the study period. River habitat at most study reaches was delineated by using Global Positioning System and ArcMap software on a handheld computer, and wetlands were mapped by ground-based measurements of length, width, and areal density. River temperature in the Indian and Hudson Rivers was monitored continuously at eight sites during June through September of 2005 and 2006; temperature was mapped in 2005 by remote imaging made possible through collaboration with the Rochester Institute of Technology. Fish communities at all study reaches were surveyed and characterized through quantitative, nearshore electrofishing surveys. Macroinvertebrate communities in all study reaches were sampled using the traveling-kick method and characterized using standard indices. Radio telemetry was used to track the movement and persistence of stocked brown trout (implanted with temperature-sensitive transmitters) in the Indian and Hudson Rivers during the summer of 2005 and in all three rivers during the summer of 2006. The releases had little effect on river temperatures, but increased discharges by about one order of magnitude. Regardless of the releases, river temperatures at all study sites commonly exceeded the threshold known to be stressful to brown trout. At most sites, mean and median water temperatures on release days were not significantly different, or slightly lower, than water temperatures on nonrelease days. Most differences were very small and, thus, were probably not biologically meaningful. The releases generally increased the total surface area of fast-water habitat (rapids, runs, and riffles) and decreased the total surface area of slow-water habitat (pools, glides, backwater areas, and side channels). The total surface areas of wetlands bordering the Indian River were substantially smaller than the surface areas bordering the Cedar River; however, no channel geomorphology or watershed soil and topographic data were assessed to determine whether the releases or other factors were mainly responsible for observed differences. Results from surveys of resident biota indicate that the releases generally had a limited effect on fish and macroinvertebrate communities in the Indian River and had no effect on communities in the Hudson River. Compared to fish data from Cedar River control sites, the impoundment appeared to reduce total density, biomass, and richness in the Indian River at the first site downstream from Lake Abanakee, moderately reduce the indexes at the other two sites on the Indian River, and slightly reduce the indexes at the first Hudson River site downstream from the confluence with the Indian River. The densities of individual fish populations at all Indian River sites were also reduced, but related effects on fish populations in the Hudson River were less evident. Altho

  1. Cyber Surveillance for Flood Disasters

    PubMed Central

    Lo, Shi-Wei; Wu, Jyh-Horng; Lin, Fang-Pang; Hsu, Ching-Han

    2015-01-01

    Regional heavy rainfall is usually caused by the influence of extreme weather conditions. Instant heavy rainfall often results in the flooding of rivers and the neighboring low-lying areas, which is responsible for a large number of casualties and considerable property loss. The existing precipitation forecast systems mostly focus on the analysis and forecast of large-scale areas but do not provide precise instant automatic monitoring and alert feedback for individual river areas and sections. Therefore, in this paper, we propose an easy method to automatically monitor the flood object of a specific area, based on the currently widely used remote cyber surveillance systems and image processing methods, in order to obtain instant flooding and waterlogging event feedback. The intrusion detection mode of these surveillance systems is used in this study, wherein a flood is considered a possible invasion object. Through the detection and verification of flood objects, automatic flood risk-level monitoring of specific individual river segments, as well as the automatic urban inundation detection, has become possible. The proposed method can better meet the practical needs of disaster prevention than the method of large-area forecasting. It also has several other advantages, such as flexibility in location selection, no requirement of a standard water-level ruler, and a relatively large field of view, when compared with the traditional water-level measurements using video screens. The results can offer prompt reference for appropriate disaster warning actions in small areas, making them more accurate and effective. PMID:25621609

  2. Predicting the impacts of existing, pending, and future surface water rights on environmental flows to maintain anadromous salmonids in the northern California wine country

    NASA Astrophysics Data System (ADS)

    Deitch, M.; Kondolf, G. M.; Merenlender, A.; Cover, M. R.

    2006-12-01

    We used digitized aerial photographs on a geographical information system, historical stream flow records, and water rights records to model the effects of existing, pending, and future small reservoirs on stream flow on six tributaries to the Russian River in Sonoma County. Institutions governing whether these reservoirs can operate as constructed, and as proposed, has important implications for efforts to meet human and ecological water needs in the California wine country. Beginning in 1992, state agencies rewrote the policies governing how wine grape growers meet water needs to offer protections to endangered species and public trust values. These changes caused a shift in water management institutions: wine grape growers could no longer rely on surface water appropriations to meet growing water needs for new vineyards, and instead turned to other types of water rights that placed different (and potentially more severe) pressures on aquatic ecosystems. Despite growing controversy over the ecological impacts of existing and pending surface water appropriations (primarily small onstream and offstream reservoirs) on environmental flows necessary to support endangered anadromous salmonids, no analysis has been conducted to evaluate the impacts of existing small reservoirs, pending proposed reservoirs, or future reservoirs on local or catchment-scale stream flow. Our stream flow models indicated that existing and pending small reservoirs can eliminate flow immediately downstream of small reservoirs at the onset of the rainy season (when adult salmonids begin to migrate upstream to spawn); but the cumulative effect of several small reservoirs on stream reaches suitable for spawning is dampened by the spatial distribution of small reservoirs in a drainage network. The temporal extant of local flow effects is variable; most recent and pending onstream reservoirs can impair flows late into the rainy season, but their cumulative effects on downstream flows are less because they are located on ephemeral streams far in river headwaters.

  3. Earth Observations taken by Expedition 30 crewmember

    NASA Image and Video Library

    2011-12-03

    ISS030-E-009186 (3 Dec. 2011) --- The Menindee Lakes, New South Wales, Australia are featured in this image photographed by an Expedition 30 crew member on the International Space Station. The Menindee Lakes comprise a system of ephemeral, freshwater lakes fed by the Darling River when it floods. The lakes lie in the far west of New South Wales, Australia, near the town of Menindee. The longest is Lake Tandou (18.6 kilometers north?south dimension), visible at the upper right of this photograph. The lakes appear to have a small amount of water flooding them. The Darling River itself was flowing, as indicated by the dark water and blackened mud along its course (left). The Darling River flows southwest in tortuous fashion (bottom left to upper right). In the flat landscapes of this part of Australia, the river has created several inland deltas in its course to the sea, with characteristic diverging channel patterns, marked by younger sediments, which appear grayer than the surrounding ancient red soils and rocks. One such inland delta appears at right where minor channels wind across the countryside. The apex of another inland delta appears at upper right. Some of the Menindee Lakes have been incorporated in an artificially regulated overflow system providing for flood control, water storage for domestic use and livestock, as well as downstream irrigation. The lakes are also important as wetlands supporting a rich diversity of birds. The floor of one lake, Lake Tandou, is also used as prime agricultural land, as can be seen by its patchwork of irrigated fields, and is protected from flooding.

  4. Dynamic river networks as the context for evaluating riparian influence on river basin solute export

    EPA Science Inventory

    Many studies have examined the influence of riparian areas on nitrogen as water drains from hillslopes and through riparian zones at the stream reach scale. Most of these studies have been conducted along relatively small streams. However, water quality concerns typically deal wi...

  5. --No Title--

    Science.gov Websites

    consumed by sea turtles) or indirectly (epiphytes living on seagrass blades consumed by small fish and morning on the Indian River Lagoon, Sebastian, FL. Photograph by J. Reed Fig. 2. The Indian River Lagoon , drought and salt tolerant shrub. Photograph by C. Deschene. Note bee in inset. Photograph by K. Skurtu

  6. Development and application of a groundwater/surface-water flow model using MODFLOW-NWT for the Upper Fox River Basin, southeastern Wisconsin

    USGS Publications Warehouse

    Feinstein, D.T.; Fienen, M.N.; Kennedy, J.L.; Buchwald, C.A.; Greenwood, M.M.

    2012-01-01

    The Fox River is a 199-mile-long tributary to the Illinois River within the Mississippi River Basin in the states of Wisconsin and Illinois. For the purposes of this study the Upper Fox River Basin is defined as the topographic basin that extends from the upstream boundary of the Fox River Basin to a large wetland complex in south-central Waukesha County called the Vernon Marsh. The objectives for the study are to (1) develop a baseline study of groundwater conditions and groundwater/surface-water interactions in the shallow aquifer system of the Upper Fox River Basin, (2) develop a tool for evaluating possible alternative water-supply options for communities in Waukesha County, and (3) contribute to the methodology of groundwater-flow modeling by applying the recently published U.S. Geological Survey MODFLOW-NWT computer code, (a Newton formulation of MODFLOW-2005 intended for solving difficulties involving drying and rewetting nonlinearities of the unconfined groundwater-flow equation) to overcome computational problems connected with fine-scaled simulation of shallow aquifer systems by means of thin model layers. To simulate groundwater conditions, a MODFLOW grid is constructed with thin layers and small cell dimensions (125 feet per side). This nonlinear unconfined problem incorporates the streamflow/lake (SFR/LAK) packages to represent groundwater/surface-water interactions, which yields an unstable solution sensitive to initial conditions when solved using the Picard-based preconditioned-gradient (PCG2) solver. A particular problem is the presence of many isolated wet water-table cells over dry cells, causing the simulated water table to assume unrealistically high values. Attempts to work around the problem by converting to confined conditions or converting active to inactive cells introduce unacceptable bias. Application of MODFLOW-NWT overcomes numerical problem by smoothing the transition from wet to dry cells and keeps all cells active. The simulation is insensitive to initial conditions and the water-table trend is smooth across layers. The MODFLOW-NWT code permits rigorous calibration and also robust application of the model to transient scenarios. Runtimes on a 64-bit computer are kept reasonably short by use of updated initial conditions and informed choices of solver parameters. The shallow aquifer system consists of unconsolidated material of varying thickness over Silurian dolomite. The unconsolidated material, largely of glacial origin, contains fine-textured and coarse-textured deposits that vary in permeability over short distances. This study at least partly encompasses the inevitable uncertainty in the hydraulic conductivity zones by developing two models—one favors the continuity of fine-grained deposits and a second favors the continuity of coarse-grained deposits. The separate calibration processes for the fine-favored and coarse-favored models using MODFLOW-NWT and the nonlinear regression algorithms in the parameter estimation (PEST) code produce distinct parameter values for hydraulic conductivity zones, storage parameters, and streambed conductance zones. Both models are applied to a hypothetical scenario involving 27 "riparian" wells completed adjacent to the river channel and open to the shallow aquifer systems along a 10-mile stretch of the Fox River. The results suggest that a riparian well system withdrawing about 9 million gallons per day would induce about one-third to one-half its total discharge from the river, and that this riverbank inducement would appreciably limit drawdown around the hypothetical wells.

  7. The ecohealth assessment and ecological restoration division of urban water system in Beijing

    USGS Publications Warehouse

    Liu, J.; Ma, M.; Zhang, F.; Yang, Z.; Domagalski, Joseph L.

    2009-01-01

    Evaluating six main rivers and six lakes in Beihuan water system (BWS) and diagnosing the limiting factors of eco-health were conducted for the ecohealth assessment and ecological restoration division of urban water system (UWS) for Beijing. The results indicated that Jingmi River and Nanchang River were in a healthy state, the degree of membership to unhealthy were 0.358, 0.392, respectively; while Yongding River, Beihucheng River, Liangma River, Tongzi River and six lakes were in an unhealthy state, their degree of membership to unhealthy were between 0.459 and 0.927. The order of that was Liangma > Beihucheng > Tongzi > Yongding > six lakes > Jingmi > Nanchang, in which Liangma Rivers of that was over 0.8. The problems of Rivers and lakes in BWS are different. Jingmi River and Nanchang River were ecotype limiting; Yongding River, Tongzi River and six lakes were water quality and ecotype limiting. Beihucheng River and Liangma River were water quantity, water quality and ecotype limiting. BWS could be divided into 3 restoration divisions, pollution control division including Yongding River, Tongzi River and six lakes; Jingmi River and Nanchang River were ecological restoration zone, while Beihucheng River and Liangma River were in comprehensive improvement zone. Restoration potentiality of Jingmi River and Nanchang River were higher, and Liangma River was hardest to restore. The results suggest a new idea to evaluate the impact of human and environmental factors on UWS. ?? Springer Science+Business Media, LLC 2009.

  8. Simulation of streamflow in small drainage basins in the southern Yampa River basin, Colorado

    USGS Publications Warehouse

    Parker, R.S.; Norris, J.M.

    1989-01-01

    Coal mining operations in northwestern Colorado commonly are located in areas that have minimal available water-resource information. Drainage-basin models can be a method for extending water-resource information to include periods for which there are no records or to transfer the information to areas that have no streamflow-gaging stations. To evaluate the magnitude and variability of the components of the water balance in the small drainage basins monitored, and to provide some method for transfer of hydrologic data, the U.S. Geological Survey 's Precipitation-Runoff Modeling System was used for small drainage basins in the southern Yampa River basin to simulate daily mean streamflow using daily precipitation and air-temperature data. The study area was divided into three hydrologic regions, and in each of these regions, three drainage basins were monitored. Two of the drainage basins in each region were used to calibrate the Precipitation-Runoff Modeling System. The model was not calibrated for the third drainage basin in each region; instead, parameter values were transferred from the model that was calibrated for the two drainage basins. For all of the drainage basins except one, period of record used for calibration and verification included water years 1976-81. Simulated annual volumes of streamflow for drainage basins used in calibration compared well with observed values; individual hydrographs indicated timing differences between the observed and simulated daily mean streamflow. Observed and simulated annual average streamflows compared well for the periods of record, but values of simulated high and low streamflows were different than observed values. Similar results were obtained when calibrated model parameter values were transferred to drainage basins that were uncalibrated. (USGS)

  9. Small mammal populations and ecology in the Kings River Sustainable Forest Ecosystems Project area

    Treesearch

    William F. Jr. Laudenslayer; Roberta J. Fargo

    2002-01-01

    Small mammals are important components of woodlands and forests. Since 1992, we have been studying several aspects of small mammal ecology in oak woodlands in western foothills of the southern Sierra Nevada. Assemblages of small, nocturnal mammal species are dominated by the brush mouse (Peromyscus boylii), California mouse (P. californicus...

  10. Responses of aquatic macrophytes to anthropogenic pressures: comparison between macrophyte metrics and indices.

    PubMed

    Camargo, Julio A

    2018-02-26

    Macrophyte responses to anthropogenic pressures in two rivers of Central Spain were assessed to check if simple metrics can exhibit a greater discriminatory and explanatory power than complex indices at small spatial scales. Field surveys were undertaken during the summer of 2014 (Duraton River) and the spring of 2015 (Tajuña River). Aquatic macrophytes were sampled using a sampling square (45 × 45 cm). In the middle Duraton River, macrophytes responded positively to the presence of a hydropower dam and a small weir, with Myriophyllum spicatum and Potamogeton pectinatus being relatively favored. Index of Macrophytes (IM) was better than Macroscopic Aquatic Vegetation Index (MAVI) and Fluvial Macrophyte Index (FMI) in detecting these responses, showing positive and significant correlations with total coverage, species richness, and species diversity. In the upper Tajuña River, macrophytes responded both negatively and positively to the occurrence of a trout farm effluent and a small weir, with Leptodictyum riparium and Veronica anagallis-aquatica being relatively favored. Although IM, MAVI, and FMI detected both negative and positive responses, correlations of IM with total coverage, species richness, and species diversity were higher. Species evenness was not sensitive enough to detect either positive or negative responses of aquatic macrophytes along the study areas. Overall, traditional and simple metrics (species composition, total coverage, species richness, species diversity) exhibited a greater discriminatory and explanatory power than more recent and complex indices (IM, MAVI, FMI) when assessing responses of aquatic macrophytes to anthropogenic pressures at impacted specific sites.

  11. The distribution of mercury around the small-scale gold mining area along the Cikaniki river, Bogor, Indonesia.

    PubMed

    Tomiyasu, Takashi; Kono, Yuriko; Kodamatani, Hitoshi; Hidayati, Nuril; Rahajoe, Joeni Setijo

    2013-08-01

    The distribution of mercury in the soil, sediment and river water around the artisanal small-scale gold mining (ASGM) area along the Cikaniki River, West Java, Indonesia, was investigated. The total mercury concentration (T-Hg) in the forest soil ranged from 0.11 to 7.0mgkg(-1), and the highest value was observed at the ASGM village. In the vertical T-Hg profile around the villages, the highest value was observed at the soil surface, and the concentration decreased with depth. This result suggested that the mercury released by mining activity was dispersed through the atmosphere and deposited on the surface. The total organic carbon content (TOC) showed a similar vertical profile as the T-Hg, and a linear relationship was found between T-Hg and TOC. Mercury deposited on the surface can be absorbed by organic matter. The slope of the line was larger near the ASGM village, implying a higher rate of deposition of mercury. The T-Hg in the sediment ranged from 10 to 70mgkg(-1), decreasing gradually toward the lower reaches of the river. Mining waste can be transported with the river flow and deposited along the river. The distribution of the mining waste can be determined using the mineralogical composition measured by X-ray fluorescence spectrometry. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Total Phosphorus Loads for Selected Tributaries to Sebago Lake, Maine

    USGS Publications Warehouse

    Hodgkins, Glenn A.

    2001-01-01

    The streamflow and water-quality datacollection networks of the Portland Water District (PWD) and the U.S. Geological Survey (USGS) as of February 2000 were analyzed in terms of their applicability for estimating total phosphorus loads for selected tributaries to Sebago Lake in southern Maine. The long-term unit-area mean annual flows for the Songo River and for small, ungaged tributaries are similar to the long-term unit-area mean annual flows for the Crooked River and other gaged tributaries to Sebago Lake, based on a regression equation that estimates mean annual streamflows in Maine. Unit-area peak streamflows of Sebago Lake tributaries can be quite different, based on a regression equation that estimates peak streamflows for Maine. Crooked River had a statistically significant positive relation (Kendall's Tau test, p=0.0004) between streamflow and total phosphorus concentration. Panther Run had a statistically significant negative relation (p=0.0015). Significant positive relations may indicate contributions from nonpoint sources or sediment resuspension, whereas significant negative relations may indicate dilution of point sources. Total phosphorus concentrations were significantly larger in the Crooked River than in the Songo River (Wilcoxon rank-sum test, p<0.0001). Evidence was insufficient, however, to indicate that phosphorus concentrations from medium-sized drainage basins, at a significance level of 0.05, were different from each other or that concentrations in small-sized drainage basins were different from each other (Kruskal-Wallis test, p= 0.0980, 0.1265). All large- and medium-sized drainage basins were sampled for total phosphorus approximately monthly. Although not all small drainage basins were sampled, they may be well represented by the small drainage basins that were sampled. If the tributaries gaged by PWD had adequate streamflow data, the current PWD tributary monitoring program would probably produce total phosphorus loading data that would represent all gaged and ungaged tributaries to Sebago Lake. Outside the PWD tributary-monitoring program, the largest ungaged tributary to Sebago Lake contains 1.5 percent of the area draining to the lake. In the absence of unique point or nonpoint sources of phosphorus, ungaged tributaries are unlikely to have total phosphorus concentrations that differ significantly from those in the small tributaries that have concentration data. The regression method, also known as the rating-curve method, was used to estimate the annual total phosphorus load for Crooked River, Northwest River, and Rich Mill Pond Outlet for water years 1996-98. The MOVE.1 method was used to estimate daily streamflows for the regression method at Northwest River and Rich Mill Pond Outlet, where streamflows were not continuously monitored. An averaging method also was used to compute annual loads at the three sites. The difference between the regression estimate and the averaging estimate for each of the three tributaries was consistent with what was expected from previous studies.

  13. Floodplain biogeochemical processing of floodwaters in the Atchafalaya River Basin during the Mississippi River flood of 2011

    USGS Publications Warehouse

    Scott, Durelle T.; Keim, Richard F.; Edwards, Brandon L.; Jones, C. Nathan; Kroes, Daniel E.

    2014-01-01

    The 2011 flood in the Lower Mississippi resulted in the second highest recorded river flow diverted into the Atchafalaya River Basin (ARB). The higher water levels during the flood peak resulted in high hydrologic connectivity between the Atchafalaya River and floodplain, with up to 50% of the Atchafalaya River water moving off channel. Water quality samples were collected throughout the ARB over the course of the flood event. Significant nitrate (NO3-) reduction (75%) occurred within the floodplain, resulting in a total NO3- reduction of 16.6% over the flood. The floodplain was a small but measurable source of dissolved reactive phosphorus (SRP) and ammonium (NH4+). Collectively, these results from this large flood event suggest that enhancing river-floodplain connectivity through freshwater diversions will reduce NO3- loads to the Gulf of Mexico during large annual floods.

  14. Modeling rock weathering in small watersheds

    NASA Astrophysics Data System (ADS)

    Pacheco, Fernando A. L.; Van der Weijden, Cornelis H.

    2014-05-01

    Many mountainous watersheds are conceived as aquifer media where multiple groundwater flow systems have developed (Tóth, 1963), and as bimodal landscapes where differential weathering of bare and soil-mantled rock has occurred (Wahrhaftig, 1965). The results of a weathering algorithm (Pacheco and Van der Weijden, 2012a, 2014), which integrates topographic, hydrologic, rock structure and chemical data to calculate weathering rates at the watershed scale, validated the conceptual models in the River Sordo basin, a small watershed located in the Marão cordillera (North of Portugal). The coupling of weathering, groundwater flow and landscape evolution analyses, as accomplished in this study, is innovative and represents a remarkable achievement towards regionalization of rock weathering at the watershed scale. The River Sordo basin occupies an area of approximately 51.2 km2 and was shaped on granite and metassediment terrains between the altitudes 185-1300 m. The groundwater flow system is composed of recharge areas located at elevations >700 m, identified on the basis of δ18O data. Discharge cells comprehend terminations of local, intermediate and regional flow systems, identified on the basis of spring density patterns, infiltration depth estimates based on 87Sr/86Sr data, and spatial distributions of groundwater pH and natural mineralization. Intermediate and regional flow systems, defined where infiltration depths >125 m, develop solely along the contact zone between granites and metassediments, because fractures in this region are profound and their density is very large. Weathering is accelerated where rocks are covered by thick soils, being five times faster relative to sectors of the basin where rocks are covered by thin soils. Differential weathering of bare and soil-mantled rock is also revealed by the spatial distribution of calculated aquifer hydraulic diffusivities and groundwater travel times.

  15. Techniques and equipment required for precise stream gaging in tide-affected fresh-water reaches of the Sacramento River, California

    USGS Publications Warehouse

    Smith, Winchell

    1971-01-01

    Current-meter measurements of high accuracy will be required for calibration of an acoustic flow-metering system proposed for installation in the Sacramento River at Chipps Island in California. This report presents an analysis of the problem of making continuous accurate current-meter measurements in this channel where the flow regime is changing constantly in response to tidal action. Gaging-system requirements are delineated, and a brief description is given of the several applicable techniques that have been developed by others. None of these techniques provides the accuracies required for the flowmeter calibration. A new system is described--one which has been assembled and tested in prototype and which will provide the matrix of data needed for accurate continuous current-meter measurements. Analysis of a large quantity of data on the velocity distribution in the channel of the Sacramento River at Chipps Island shows that adequate definition of the velocity can be made during the dominant flow periods--that is, at times other than slack-water periods--by use of current meters suspended at elevations 0.2 and 0.8 of the depth below the water surface. However, additional velocity surveys will be necessary to determine whether or not small systematic corrections need be applied during periods of rapidly changing flow. In the proposed system all gaged parameters, including velocities, depths, position in the stream, and related times, are monitored continuously as a boat moves across the river on the selected cross section. Data are recorded photographically and transferred later onto punchcards for computer processing. Computer programs have been written to permit computation of instantaneous discharges at any selected time interval throughout the period of the current meter measurement program. It is anticipated that current-meter traverses will be made at intervals of about one-half hour over periods of several days. Capability of performance for protracted periods was, consequently, one of the important elements in system design. Analysis of error sources in the proposed system indicates that errors in individual computed discharges can be kept smaller than 1.5 percent if the expected precision in all measured parameters is maintained.

  16. Life History Attributes of Asian Carps in the Upper Mississippi River System

    DTIC Science & Technology

    2007-05-01

    Mature ovary of a female silver carp. Each small white spherical structure is a mature egg 4 ERDC/TN ANSRP-07-1 May 2007 Silver carp in the...weight/fish weight), and fecundity (number of eggs per female ) of each silver and bighead carp were quantified. Diets of silver carp from the MMR also...through November, with gonads ranging from 1 to 13 percent of body weight. Females with mature ovaries (Figure 3) were present as early as age 2 years

  17. Floods of February-March 1961 in the southeastern States

    USGS Publications Warehouse

    Barnes, Harry Hawthorne; Somers, William Philip

    1961-01-01

    Widespread, prolonged, disastrous floods struck parts of Louisiana, Mississippi, Alabama, Georgia, and Florida following heavy rains Feb. 17-26, 1961. Three distinct low-pressure systems recurred in essentially the same area. Precipitation totaled more than 18 inches in some areas. Multiple floods of small streams became superimposed in the large rivers to produce rare, record-breaking peaks and prolonged inundation. Four lives were lost; one in Louisiana and three in Mississippi. Highways, railroads, urban areas, and farms were heavily damaged.

  18. Navy Littoral Combat Ship (LCS) Program: Background and Issues for Congress

    DTIC Science & Technology

    2013-09-27

    classified memo, “Vision for the 2025 Surface Fleet,” submitted late last year by the head of Naval Surface Forces, Vice Adm. Tom Copeman, to Chief of Naval...Monitor-class would prove its worth. There were Monitors with Farragut at Mobile Bay. They took part in the Red River campaigns of the West and...more than a pea- shooter . The Phalanx system, poorly situated aft on the O-2 level, fired rounds too small to be effective against incoming missiles

  19. Airborne Remote Sensing of River Flow and Morphology

    NASA Astrophysics Data System (ADS)

    Zuckerman, S.; Anderson, S. P.; McLean, J.; Redford, R.

    2014-12-01

    River morphology, surface slope and flow are some of the fundamental measurements required for surface water monitoring and hydrodynamic research. This paper describes a method of combining bathymetric lidar with space-time processing of mid-wave infrared (MWIR) imagery to simultaneously measure bathymetry, currents and surface slope from an airborne platform. In May 2014, Areté installed a Pushbroom Imaging Lidar for Littoral Surveillance (PILLS) and a FLIR SC8000 MWIR imaging system sampling at 2 Hz in a small twin-engine aircraft. Data was collected over the lower Colorado River between Picacho Park and Parker. PILLS is a compact bathymetric lidar based on streak-tube sensor technology. It provides channel and bank topography and water surface elevation at 1 meter horizontal scales and 25 cm vertical accuracy. Surface currents are derived from the MWIR imagery by tracking surface features using a cross correlation algorithm. This approach enables the retrieval of currents along extended reaches at the forward speed of the aircraft with spatial resolutions down to 5 m with accuracy better than 10 cm/s. The fused airborne data captures current and depth variability on scales of meters over 10's of kilometers collected in just a few minutes. The airborne MWIR current retrievals are combined with the bathymetric lidar data to calculate river discharge which is then compared with real-time streamflow stations. The results highlight the potential for improving our understanding of complex river environments with simultaneous collections from multiple airborne sensors.

  20. Environmental baseline study of the Huron River Watershed, Baraga and Marquette Counties, Michigan

    USGS Publications Warehouse

    Woodruff, Laurel G.; Weaver, Thomas L.; Cannon, William F.

    2010-01-01

    This report summarizes results of a study to establish water-quality and geochemical baseline conditions within a small watershed in the Lake Superior region. In 2008, the U.S. Geological Survey (USGS) completed a survey of water-quality parameters and soil and streambed sediment geochemistry of the 83 mi2 Huron River Watershed in the Upper Peninsula of Michigan. Streamflow was measured and water-quality samples collected at a range of flow conditions from six sites on the major tributaries of the Huron River. All water samples were analyzed for a suite of common ions, nutrients, and trace metals. In addition, water samples from each site were analyzed for unfiltered total and methylmercury once during summer low-flow conditions. Soil samples were collected from 31 sites, with up to 4 separate samples collected at each site, delineated by soil horizon. Streambed sediments were collected from 11 sites selected to cover most of the area drained by the Huron River system. USGS data were supplemented with ecological assessments completed in 2006 by the Michigan Department of Environmental Quality using a modified version of their Great Lakes Environmental Assessment Section procedure 51, and again during 2008 using volunteers under supervision of the Michigan Department of Natural Resources. Results from this study define a hydrological, geological, and environmental baseline for the Huron River Watershed prior to any significant mineral exploration or development. Results from the project also serve to refine the design of future regional environmental baseline studies in the Lake Superior Basin.

Top