The role of citizen science in monitoring small-scale pollution events.
Hyder, Kieran; Wright, Serena; Kirby, Mark; Brant, Jan
2017-07-15
Small-scale pollution events involve the release of potentially harmful substances into the marine environment. These events can affect all levels of the ecosystem, with damage to both fauna and flora. Numerous reporting structures are currently available to document spills, however there is a lack of information on small-scale events due to their magnitude and patchy distribution. To this end, volunteers may provide a useful tool in filling this data gap, especially for coastal environments with a high usage by members of the public. The potential for citizen scientists to record small-scale pollution events is explored using the UK as an example, with a focus on highlighting methods and issues associated with using this data source. An integrated monitoring system is proposed which combines citizen science and traditional reporting approaches. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kenward, D. R.; Lessard, M.; Lynch, K. A.; Hysell, D. L.; Hampton, D. L.; Michell, R.; Samara, M.; Varney, R. H.; Oksavik, K.; Clausen, L. B. N.; Hecht, J. H.; Clemmons, J. H.; Fritz, B.
2017-12-01
The RENU2 sounding rocket (launched from Andoya rocket range on December 13th, 2015) observed Poleward Moving Auroral Forms within the dayside cusp. The ISINGLASS rockets (launched from Poker Flat rocket range on February 22, 2017 and March 2, 2017) both observed aurora during a substorm event. Despite observing very different events, both campaigns witnessed a high degree of small scale structuring within the larger auroral boundary, including Alfvenic signatures. These observations suggest a method of coupling large-scale energy input to fine scale structures within aurorae. During RENU2, small (sub-km) scale drivers persist for long (10s of minutes) time scales and result in large scale ionospheric (thermal electron) and thermospheric response (neutral upwelling). ISINGLASS observations show small scale drivers, but with short (minute) time scales, with ionospheric response characterized by the flight's thermal electron instrument (ERPA). The comparison of the two flights provides an excellent opportunity to examine ionospheric and thermospheric response to small scale drivers over different integration times.
NASA Astrophysics Data System (ADS)
Lamb, Derek A.
2016-10-01
While sunspots follow a well-defined pattern of emergence in space and time, small-scale flux emergence is assumed to occur randomly at all times in the quiet Sun. HMI's full-disk coverage, high cadence, spatial resolution, and duty cycle allow us to probe that basic assumption. Some case studies of emergence suggest that temporal clustering on spatial scales of 50-150 Mm may occur. If clustering is present, it could serve as a diagnostic of large-scale subsurface magnetic field structures. We present the results of a manual survey of small-scale flux emergence events over a short time period, and a statistical analysis addressing the question of whether these events show spatio-temporal behavior that is anything other than random.
Long-Term Observation of Small and Medium-Scale Gravity Waves over the Brazilian Equatorial Region
NASA Astrophysics Data System (ADS)
Essien, Patrick; Buriti, Ricardo; Wrasse, Cristiano M.; Medeiros, Amauri; Paulino, Igo; Takahashi, Hisao; Campos, Jose Andre
2016-07-01
This paper reports the long term observations of small and medium-scale gravity waves over Brazilian equatorial region. Coordinated optical and radio measurements were made from OLAP at Sao Joao do Cariri (7.400S, 36.500W) to investigate the occurrences and properties and to characterize the regional mesospheric gravity wave field. All-sky imager measurements were made from the site. for almost 11 consecutive years (September 2000 to November 2010). Most of the waves propagated were characterized as small-scale gravity. The characteristics of the two waves events agreed well with previous gravity wave studies from Brazil and other sites. However, significant differences in the wave propagation headings indicate dissimilar source regions. The observed medium-scale gravity wave events constitute an important new dataset to study their mesospheric properties at equatorial latitudes. These data exhibited similar propagation headings to the short period events, suggesting they originated from the same source regions. It was also observed that some of the medium-scale were capable of propagating into the lower thermosphere where they may have acted directly as seeds for the Rayleigh-Taylor instability development. The wave events were primarily generated by meteorological processes since there was no correlation between the evolution of the wave events and solar cycle F10.7.
Properties of a Small-scale Short-duration Solar Eruption with a Driven Shock
NASA Astrophysics Data System (ADS)
Ying, Beili; Feng, Li; Lu, Lei; Zhang, Jie; Magdalenic, Jasmina; Su, Yingna; Su, Yang; Gan, Weiqun
2018-03-01
Large-scale solar eruptions have been extensively explored over many years. However, the properties of small-scale events with associated shocks have rarely been investigated. We present analyses of a small-scale, short-duration event originating from a small region. The impulsive phase of the M1.9-class flare lasted only four minutes. The kinematic evolution of the CME hot channel reveals some exceptional characteristics, including a very short duration of the main acceleration phase (<2 minutes), a rather high maximal acceleration rate (∼50 km s‑2), and peak velocity (∼1800 km s‑1). The fast and impulsive kinematics subsequently results in a piston-driven shock related to a metric type II radio burst with a high starting frequency of ∼320 MHz of the fundamental band. The type II source is formed at a low height of below 1.1 R ⊙ less than ∼2 minutes after the onset of the main acceleration phase. Through the band-split of the type II burst, the shock compression ratio decreases from 2.2 to 1.3, and the magnetic field strength of the shock upstream region decreases from 13 to 0.5 Gauss at heights of 1.1–2.3 R ⊙. We find that the CME (∼4 × 1030 erg) and flare (∼1.6 × 1030 erg) consume similar amounts of magnetic energy. The same conclusion for large-scale eruptions implies that small- and large-scale events possibly share a similar relationship between CMEs and flares. The kinematic particularities of this event are possibly related to the small footpoint-separation distance of the associated magnetic flux rope, as predicted by the Erupting Flux Rope model.
MMS Multipoint Electric Field Observations of Small-Scale Magnetic Holes
NASA Technical Reports Server (NTRS)
Goodrich, Katherine A.; Ergun, Robert E.; Wilder, Frederick; Burch, James; Torbert, Roy; Khotyaintsev, Yuri; Lindqvist, Per-Arne; Russell, Christopher; Strangeway, Robert; Magnus, Werner
2016-01-01
Small-scale magnetic holes (MHs), local depletions in magnetic field strength, have been observed multiple times in the Earths magnetosphere in the bursty bulk flow (BBF) braking region. This particular subset of MHs has observed scale sizes perpendicular to the background magnetic field (B) less than the ambient ion Larmor radius (p(sib i)). Previous observations by Time History of Events and Macroscale Interactions during Substorms (THEMIS) indicate that this subset of MHs can be supported by a current driven by the E x B drift of electrons. Ions do not participate in the E x B drift due to the small-scale size of the electric field. While in the BBF braking region, during its commissioning phase, the Magnetospheric Multiscale (MMS) spacecraft observed a small-scale MH. The electric field observations taken during this event suggest the presence of electron currents perpendicular to the magnetic field. These observations also suggest that these currents can evolve to smaller spatial scales.
Small-scale plasticity critically needs a new mechanics description
NASA Astrophysics Data System (ADS)
Ngan, Alfonso H. W.
2013-06-01
Continuum constitutive laws describe the plastic deformation of materials as a smooth, continuously differentiable process. However, provided that the measurement is done with a fine enough resolution, the plastic deformation of real materials is often found to comprise discrete events usually nanometric in size. For bulk-sized specimens, such nanoscale events are minute compared with the specimen size, and so their associated strain changes are negligibly small, and this is why the continuum laws work well. However, when the specimen size is in the micrometer scale or smaller, the strain changes due to the discrete events could be significant, and the continuum description would be highly unsatisfactory. Yet, because of the advent of microtechnology and nanotechnolgy, small-sized materials will be increasingly used, and so there is a strong need to develop suitable replacement descriptions for plasticity of small materials. As the occurrence of the discrete plastic events is also strongly stochastic, their satisfactory description should also be one of a probabilistic, rather than deterministic, nature.
NASA Astrophysics Data System (ADS)
Koskelo, Antti I.; Fisher, Thomas R.; Utz, Ryan M.; Jordan, Thomas E.
2012-07-01
SummaryBaseflow separation methods are often impractical, require expensive materials and time-consuming methods, and/or are not designed for individual events in small watersheds. To provide a simple baseflow separation method for small watersheds, we describe a new precipitation-based technique known as the Sliding Average with Rain Record (SARR). The SARR uses rainfall data to justify each separation of the hydrograph. SARR has several advantages such as: it shows better consistency with the precipitation and discharge records, it is easier and more practical to implement, and it includes a method of event identification based on precipitation and quickflow response. SARR was derived from the United Kingdom Institute of Hydrology (UKIH) method with several key modifications to adapt it for small watersheds (<50 km2). We tested SARR on watersheds in the Choptank Basin on the Delmarva Peninsula (US Mid-Atlantic region) and compared the results with the UKIH method at the annual scale and the hydrochemical method at the individual event scale. Annually, SARR calculated a baseflow index that was ˜10% higher than the UKIH method due to the finer time step of SARR (1 d) compared to UKIH (5 d). At the watershed scale, hydric soils were an important driver of the annual baseflow index likely due to increased groundwater retention in hydric areas. At the event scale, SARR calculated less baseflow than the hydrochemical method, again because of the differences in time step (hourly for hydrochemical) and different definitions of baseflow. Both SARR and hydrochemical baseflow increased with event size, suggesting that baseflow contributions are more important during larger storms. To make SARR easy to implement, we have written a MatLab program to automate the calculations which requires only daily rainfall and daily flow data as inputs.
Near bed suspended sediment flux by single turbulent events
NASA Astrophysics Data System (ADS)
Amirshahi, Seyed Mohammad; Kwoll, Eva; Winter, Christian
2018-01-01
The role of small scale single turbulent events in the vertical mixing of near bed suspended sediments was explored in a shallow shelf sea environment. High frequency velocity and suspended sediment concentration (SSC; calibrated from the backscatter intensity) were collected using an Acoustic Doppler Velocimeter (ADV). Using quadrant analysis, the despiked velocity time series was divided into turbulent events and small background fluctuations. Reynolds stress and Turbulent Kinetic Energy (TKE) calculated from all velocity samples, were compared to the same turbulent statistics calculated only from velocity samples classified as turbulent events (Reevents and TKEevents). The comparison showed that Reevents and TKEevents was increased 3 and 1.6 times, respectively, when small background fluctuations were removed and that the correlation with SSC for TKE could be improved through removal of the latter. The correlation between instantaneous vertical turbulent flux (w ‧) and SSC fluctuations (SSC ‧) exhibits a tidal pattern with the maximum correlation at peak ebb and flood currents, when strong turbulent events appear. Individual turbulent events were characterized by type, strength, duration and length. Cumulative vertical turbulent sediment fluxes and average SSC associated with individual turbulent events were calculated. Over the tidal cycle, ejections and sweeps were the most dominant events, transporting 50% and 36% of the cumulative vertical turbulent event sediment flux, respectively. Although the contribution of outward interactions to the vertical turbulent event sediment flux was low (11%), single outward interaction events were capable of inducing similar SSC ‧ as sweep events. The results suggest that on time scales of tens of minutes to hours, TKE may be appropriate to quantify turbulence in sediment transport studies, but that event characteristics, particular the upward turbulent flux need to be accounted for when considering sediment transport on process time scales.
Dynamic Processes of the Solar Wind: Small Scale Magnetic Flux Ropes and Energetic Particles
NASA Astrophysics Data System (ADS)
Thompson, S. W.; le Roux, J. A.; Hu, Q.
2017-12-01
Magnetic flux ropes are twisted magnetic field lines that have two defining components known as the axial and azimuthal components representing its magnetic field. Flux ropes come in two distinct sizes of large scale and small scale with the flux ropes of interest being the small scale type. Small scale flux ropes can last from a few minutes to hours with a size of .001 AU to .01 AU. To identify and study these small scale flux ropes, the ARTEMIS satellite which is composed of the probes THEMIS B and C was utilized along with the ACE satellite. Based off the IP shock database, three major events recorded by the ACE satellite were selected and used as a reference point to identify the same shocks within the ARTEMIS data. The three events were selected when the sun was in solar maximum and the location of the probes THEMIS B and C were outside of the bow shock and magnetotail of the Earth. The three events were on May 17,2013, May 31,2013, and June 30,2013 during solar cycle 24. The in-situ measurements gathered from the ARTEMIS mission using the SST, ESA, and FGM instrumentations looked at the particle energy flux, density, temperature, velocity, and magnetic field parameters. These parameters will be used to identify downstream flux-rope activity and to look for associated enhanced energetic particle fluxes as an indication for particle acceleration by these structures. As a way for comparison, in-situ measurements of the energy flux from the ACE satellite EPAM instrumentation using the LEMS120 telescope were taken to help identify high-energy ions in MeV for each of the three events. Preliminary results suggest that energetic particle fluxes peak behind the shocks in the vicinity of small-scale flux ropes, and that these results can potentially be explained by a theory combining diffusive shock acceleration with flux-rope acceleration. More investigation and data analysis will be done to see if this theory does in fact hold true for the data gathered.
Statistical analysis of Hasegawa-Wakatani turbulence
NASA Astrophysics Data System (ADS)
Anderson, Johan; Hnat, Bogdan
2017-06-01
Resistive drift wave turbulence is a multipurpose paradigm that can be used to understand transport at the edge of fusion devices. The Hasegawa-Wakatani model captures the essential physics of drift turbulence while retaining the simplicity needed to gain a qualitative understanding of this process. We provide a theoretical interpretation of numerically generated probability density functions (PDFs) of intermittent events in Hasegawa-Wakatani turbulence with enforced equipartition of energy in large scale zonal flows, and small scale drift turbulence. We find that for a wide range of adiabatic index values, the stochastic component representing the small scale turbulent eddies of the flow, obtained from the autoregressive integrated moving average model, exhibits super-diffusive statistics, consistent with intermittent transport. The PDFs of large events (above one standard deviation) are well approximated by the Laplace distribution, while small events often exhibit a Gaussian character. Furthermore, there exists a strong influence of zonal flows, for example, via shearing and then viscous dissipation maintaining a sub-diffusive character of the fluxes.
AN AUTOMATIC DETECTION METHOD FOR EXTREME-ULTRAVIOLET DIMMINGS ASSOCIATED WITH SMALL-SCALE ERUPTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alipour, N.; Safari, H.; Innes, D. E.
2012-02-10
Small-scale extreme-ultraviolet (EUV) dimming often surrounds sites of energy release in the quiet Sun. This paper describes a method for the automatic detection of these small-scale EUV dimmings using a feature-based classifier. The method is demonstrated using sequences of 171 Angstrom-Sign images taken by the STEREO/Extreme UltraViolet Imager (EUVI) on 2007 June 13 and by Solar Dynamics Observatory/Atmospheric Imaging Assembly on 2010 August 27. The feature identification relies on recognizing structure in sequences of space-time 171 Angstrom-Sign images using the Zernike moments of the images. The Zernike moments space-time slices with events and non-events are distinctive enough to be separatedmore » using a support vector machine (SVM) classifier. The SVM is trained using 150 events and 700 non-event space-time slices. We find a total of 1217 events in the EUVI images and 2064 events in the AIA images on the days studied. Most of the events are found between latitudes -35 Degree-Sign and +35 Degree-Sign . The sizes and expansion speeds of central dimming regions are extracted using a region grow algorithm. The histograms of the sizes in both EUVI and AIA follow a steep power law with slope of about -5. The AIA slope extends to smaller sizes before turning over. The mean velocity of 1325 dimming regions seen by AIA is found to be about 14 km s{sup -1}.« less
Characterization and prediction of extreme events in turbulence
NASA Astrophysics Data System (ADS)
Fonda, Enrico; Iyer, Kartik P.; Sreenivasan, Katepalli R.
2017-11-01
Extreme events in Nature such as tornadoes, large floods and strong earthquakes are rare but can have devastating consequences. The predictability of these events is very limited at present. Extreme events in turbulence are the very large events in small scales that are intermittent in character. We examine events in energy dissipation rate and enstrophy which are several tens to hundreds to thousands of times the mean value. To this end we use our DNS database of homogeneous and isotropic turbulence with Taylor Reynolds numbers spanning a decade, computed with different small scale resolutions and different box sizes, and study the predictability of these events using machine learning. We start with an aggressive data augmentation to virtually increase the number of these rare events by two orders of magnitude and train a deep convolutional neural network to predict their occurrence in an independent data set. The goal of the work is to explore whether extreme events can be predicted with greater assurance than can be done by conventional methods (e.g., D.A. Donzis & K.R. Sreenivasan, J. Fluid Mech. 647, 13-26, 2010).
Electron Scale Structures and Magnetic Reconnection Signatures in the Turbulent Magnetosheath
NASA Technical Reports Server (NTRS)
Yordanova, E.; Voros, Z.; Varsani, A.; Graham, D. B.; Norgren, C.; Khotyaintsev, Yu. V.; Vaivads, A.; Eriksson, E.; Nakamura, R.; Lindqvist, P.-A.;
2016-01-01
Collisionless space plasma turbulence can generate reconnecting thin current sheets as suggested by recent results of numerical magnetohydrodynamic simulations. The Magnetospheric Multiscale (MMS) mission provides the first serious opportunity to verify whether small ion-electron-scale reconnection, generated by turbulence, resembles the reconnection events frequently observed in the magnetotail or at the magnetopause. Here we investigate field and particle observations obtained by the MMS fleet in the turbulent terrestrial magnetosheath behind quasi-parallel bow shock geometry. We observe multiple small-scale current sheets during the event and present a detailed look of one of the detected structures. The emergence of thin current sheets can lead to electron scale structures. Within these structures, we see signatures of ion demagnetization, electron jets, electron heating, and agyrotropy suggesting that MMS spacecraft observe reconnection at these scales.
Acquision of Geometrical Data of Small Rivers with AN Unmanned Water Vehicle
NASA Astrophysics Data System (ADS)
Sardemann, H.; Eltner, A.; Maas, H.-G.
2018-05-01
Rivers with small- and medium-scaled catchments have been increasingly affected by extreme events, i.e. flash floods, in the last years. New methods to describe and predict these events are developed in the interdisciplinary research project EXTRUSO. Flash flood events happen on small temporal and spatial scales, stressing the necessity of high-resolution input data for hydrological and hydrodynamic modelling. Among others, the benefit of high-resolution digital terrain models (DTMs) will be evaluated in the project. This article introduces a boat-based approach for the acquisition of geometrical and morphological data of small rivers and their banks. An unmanned water vehicle (UWV) is used as a multi-sensor platform to collect 3D-point clouds of the riverbanks, as well as bathymetric measurements of water depth and river morphology. The UWV is equipped with a mobile Lidar, a panorama camera, an echo sounder and a positioning unit. Whole (sub-) catchments of small rivers can be digitalized and provided for hydrological modelling when UWV-based and UAV (unmanned aerial vehicle) based point clouds are fused.
Eisenberg, Joseph N.S.; Trueba, Gabriel; Zhang, Lixin; Johnson, Timothy J.
2017-01-01
Summary: Small-scale food animal production is widely practiced around the globe, yet it is often overlooked in terms of the environmental health risks. Evidence suggests that small-scale food animal producers often employ the use of antimicrobials to improve the survival and growth of their animals, and that this practice leads to the development of antimicrobial resistance (AMR) that can potentially spread to humans. The nature of human–animal interactions in small-scale food animal production systems, generally practiced in and around the home, likely augments spillover events of AMR into the community on a scale that is currently unrecognized and deserves greater attention. https://doi.org/10.1289/EHP2116 PMID:29038091
Small-Scale Gravity Waves in ER-2 MMS/MTP Wind and Temperature Measurements during CRYSTAL-FACE
NASA Technical Reports Server (NTRS)
Wang, L.; Alexander, M. J.; Bui, T. P.; Mahoney, M. J.
2006-01-01
Lower stratospheric wind and temperature measurements made from NASA's high-altitude ER-2 research aircraft during the CRYSTAL-FACE campaign in July 2002 were analyzed to retrieve information on small scale gravity waves (GWs) at the aircraft's flight level (typically approximately 20 km altitude). For a given flight segment, the S-transform (a Gaussian wavelet transform) was used to search for and identify small horizontal scale GW events, and to estimate their apparent horizontal wavelengths. The horizontal propagation directions of the events were determined using the Stokes parameter method combined with the cross S-transform analysis. The vertical temperature gradient was used to determine the vertical wavelengths of the events. GW momentum fluxes were calculated from the cross S-transform. Other wave parameters such as intrinsic frequencies were calculated using the GW dispersion relation. More than 100GW events were identified. They were generally high frequency waves with vertical wavelength of approximately 5 km and horizontal wavelength generally shorter than 20 km. Their intrinsic propagation directions were predominantly toward the east, whereas their ground-based propagation directions were primarily toward the west. Among the events, approximately 20% of them had very short horizontal wavelength, very high intrinsic frequency, and relatively small momentum fluxes, and thus they were likely trapped in the lower stratosphere. Using the estimated GW parameters and the background winds and stabilities from the NCAR/NCEP reanalysis data, we were able to trace the sources of the events using a simple reverse ray-tracing. More than 70% of the events were traced back to convective sources in the troposphere, and the sources were generally located upstream of the locations of the events observed at the aircraft level. Finally, a probability density function of the reversible cooling rate due to GWs was obtained in this study, which may be useful for cirrus cloud models.
A large scale membrane-binding protein conformational change that initiates at small length scales
NASA Astrophysics Data System (ADS)
Grandpre, Trevor; Andorf, Matthew; Chakravarthy, Srinivas; Lamb, Robert; Poor, Taylor; Landahl, Eric
2013-03-01
The fusion (F) protein of parainfluenza virus 5 (PIV5) is a membrane-bound, homotrimeric glycoprotein located on the surface of PIV5 viral envelopes. Upon being triggered by the receptor-binding protein (HN), F undergoes a greater than 100Å ATP-independent refolding event. This refolding event results in the insertion of a hydrophobic fusion peptide into the membrane of the target cell, followed by the desolvation and subsequent fusion event as the two membranes are brought together. Isothermal calorimetry and hydrophobic dye incorporation experiments indicate that the soluble construct of the F protein undergoes a conformational rearrangement event at around 55 deg C. We present the results of an initial Time-Resolved Small-Angle X-Ray Scattering (TR-SAXS) study of this large scale, entropically driven conformational change using a temperature jump. Although we the measured radius of gyration of this protein changes on a 110 second timescale, we find that the x-ray scattering intensity at higher angles (corresponding to smaller length scales in the protein) changes nearly an order of magnitude faster. We believe this may be a signature of entropically-driven conformational change. To whom correspondence should be addressed
Track-based event recognition in a realistic crowded environment
NASA Astrophysics Data System (ADS)
van Huis, Jasper R.; Bouma, Henri; Baan, Jan; Burghouts, Gertjan J.; Eendebak, Pieter T.; den Hollander, Richard J. M.; Dijk, Judith; van Rest, Jeroen H.
2014-10-01
Automatic detection of abnormal behavior in CCTV cameras is important to improve the security in crowded environments, such as shopping malls, airports and railway stations. This behavior can be characterized at different time scales, e.g., by small-scale subtle and obvious actions or by large-scale walking patterns and interactions between people. For example, pickpocketing can be recognized by the actual snatch (small scale), when he follows the victim, or when he interacts with an accomplice before and after the incident (longer time scale). This paper focusses on event recognition by detecting large-scale track-based patterns. Our event recognition method consists of several steps: pedestrian detection, object tracking, track-based feature computation and rule-based event classification. In the experiment, we focused on single track actions (walk, run, loiter, stop, turn) and track interactions (pass, meet, merge, split). The experiment includes a controlled setup, where 10 actors perform these actions. The method is also applied to all tracks that are generated in a crowded shopping mall in a selected time frame. The results show that most of the actions can be detected reliably (on average 90%) at a low false positive rate (1.1%), and that the interactions obtain lower detection rates (70% at 0.3% FP). This method may become one of the components that assists operators to find threatening behavior and enrich the selection of videos that are to be observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Innes, D. E.; Guo, L.-J.; Huang, Y.-M.
Our understanding of the process of fast reconnection has undergone a dramatic change in the last 10 years driven, in part, by the availability of high-resolution numerical simulations that have consistently demonstrated the break-up of current sheets into magnetic islands, with reconnection rates that become independent of Lundquist number, challenging the belief that fast magnetic reconnection in flares proceeds via the Petschek mechanism which invokes pairs of slow-mode shocks connected to a compact diffusion region. The reconnection sites are too small to be resolved with images, but these reconnection mechanisms, Petschek and the plasmoid instability, have reconnection sites with verymore » different density and velocity structures and so can be distinguished by high-resolution line-profile observations. Using IRIS spectroscopic observations we obtain a survey of typical line profiles produced by small-scale events thought to be reconnection sites on the Sun. Slit-jaw images are used to investigate the plasma heating and re-configuration at the sites. A sample of 15 events from 2 active regions is presented. The line profiles are complex with bright cores and broad wings extending to over 300 km s{sup −1}. The profiles can be reproduced with the multiple magnetic islands and acceleration sites that characterize the plasmoid instability but not by bi-directional jets that characterize the Petschek mechanism. This result suggests that if these small-scale events are reconnection sites, then fast reconnection proceeds via the plasmoid instability, rather than the Petschek mechanism during small-scale reconnection on the Sun.« less
Observations of Magnetic Evolution and Network Flares Driven by Photospheric Flows in the Quiet Sun
NASA Astrophysics Data System (ADS)
Attie, Raphael; Thompson, Barbara J.
2017-08-01
The quiet Sun may be the biggest laboratory to study physical elementary processes of fundamental importance to space plasma. The advantage is the continuous availability of small-scale events, carrying the hidden microphysics that is responsible for larger-scale phenomena. By small-scale events, we mean spatial dimensions of a few Mm at most, and durations of less than an hour. I present here an attempt to describe and understand the coupling between the photospheric flows, the photospheric magnetic flux, and small-scale energetic transient events. By adapting and improving the highly efficient Balltracking technique for Hinode/SOT data, we relate the fine structures of the supergranular flow fields with the magnetic flux evolution. For studying the dynamics of the latter, and more precisely, the magnetic flux cancellation at sites of energy releases, we applied a new feature tracking algorithm called "Magnetic Balltracking" -- which tracks photospheric magnetic elements -- to high-resolution magnetograms from Hinode/SOT.Using observations of the low corona in soft X-rays with Hinode/XRT, we analyse the triggering mechanism of small-scale network flares. By tracking both the flow fields on the one hand, and the magnetic motions on the other hand, we relate the flows with cancelling magnetic flux. We identify two patterns of horizontal flows that act as catalysts for efficient magnetic reconnection: (i) Funnel-shaped streamlines in which the magnetic flux is carried, and (ii) large-scale vortices (~10 Mm and above) at the network intersections, in which distant magnetic features of opposite polarities seem to be sucked in and ultimately vanish. The excess energy stored in the stressed magnetic field of the vortices is sufficient to power network flares.Prospects for determining the magnetic energy budget in the quiet sun are discussed.
DOES A SCALING LAW EXIST BETWEEN SOLAR ENERGETIC PARTICLE EVENTS AND SOLAR FLARES?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kahler, S. W., E-mail: AFRL.RVB.PA@kirtland.af.mil
2013-05-20
Among many other natural processes, the size distributions of solar X-ray flares and solar energetic particle (SEP) events are scale-invariant power laws. The measured distributions of SEP events prove to be distinctly flatter, i.e., have smaller power-law slopes, than those of the flares. This has led to speculation that the two distributions are related through a scaling law, first suggested by Hudson, which implies a direct nonlinear physical connection between the processes producing the flares and those producing the SEP events. We present four arguments against this interpretation. First, a true scaling must relate SEP events to all flare X-raymore » events, and not to a small subset of the X-ray event population. We also show that the assumed scaling law is not mathematically valid and that although the flare X-ray and SEP event data are correlated, they are highly scattered and not necessarily related through an assumed scaling of the two phenomena. An interpretation of SEP events within the context of a recent model of fractal-diffusive self-organized criticality by Aschwanden provides a physical basis for why the SEP distributions should be flatter than those of solar flares. These arguments provide evidence against a close physical connection of flares with SEP production.« less
Cascading events in linked ecological and socioeconomic systems
Peters, Debra P.C.; Sala, O.E.; Allen, Craig D.; Covich, A.; Brunson, M.
2007-01-01
Cascading events that start at small spatial scales and propagate non-linearly through time to influence larger areas often have major impacts on ecosystem goods and services. Events such as wildfires and hurricanes are increasing in frequency and magnitude as systems become more connected through globalization processes. We need to improve our understanding of these events in order to predict their occurrence, minimize potential impacts, and allow for strategic recovery. Here, we synthesize information about cascading events in systems located throughout the Americas. We discuss a variety of examples of cascading events that share a common feature: they are often driven by linked ecological and human processes across scales. In this era of globalization, we recommend studies that explicitly examine connections across scales and examine the role of connectivity among non-contiguous as well as contiguous areas.
SMALL-SCALE STRUCTURING OF ELLERMAN BOMBS AT THE SOLAR LIMB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, C. J.; Doyle, J. G.; Scullion, E. M.
2015-01-01
Ellerman bombs (EBs) have been widely studied in recent years due to their dynamic, explosive nature and apparent links to the underlying photospheric magnetic field implying that they may be formed by magnetic reconnection in the photosphere. Despite a plethora of researches discussing the morphologies of EBs, there has been a limited investigation of how these events appear at the limb, specifically, whether they manifest as vertical extensions away from the disk. In this article, we make use of high-resolution, high-cadence observations of an Active Region at the solar limb, collected by the CRisp Imaging SpectroPolarimeter (CRISP) instrument, to identifymore » EBs and infer their physical properties. The upper atmosphere is also probed using the Solar Dynamic Observatory's Atmospheric Imaging Assembly (SDO/AIA). We analyze 22 EB events evident within these data, finding that 20 appear to follow a parabolic path away from the solar surface at an average speed of 9 km s{sup –1}, extending away from their source by 580 km, before retreating back at a similar speed. These results show strong evidence of vertical motions associated with EBs, possibly explaining the dynamical ''flaring'' (changing in area and intensity) observed in on-disk events. Two in-depth case studies are also presented that highlight the unique dynamical nature of EBs within the lower solar atmosphere. The viewing angle of these observations allows for a direct linkage between these EBs and other small-scale events in the Hα line wings, including a potential flux emergence scenario. The findings presented here suggest that EBs could have a wider-reaching influence on the solar atmosphere than previously thought, as we reveal a direct linkage between EBs and an emerging small-scale loop, and other near-by small-scale explosive events. However, as previous research found, these extensions do not appear to impact upon the Hα line core, and are not observed by the SDO/AIA EUV filters.« less
3D magnetic field configuration of small-scale reconnection events in the solar plasma atmosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimizu, T., E-mail: shimizu@solar.isas.jaxa.jp; Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033
2015-10-15
The outer solar atmosphere, i.e., the corona and the chromosphere, is replete with small energy-release events, which are accompanied by transient brightening and jet-like ejections. These events are considered to be magnetic reconnection events in the solar plasma, and their dynamics have been studied using recent advanced observations from the Hinode spacecraft and other observatories in space and on the ground. These events occur at different locations in the solar atmosphere and vary in their morphology and amount of the released energy. The magnetic field configurations of these reconnection events are inferred based on observations of magnetic fields at themore » photospheric level. Observations suggest that these magnetic configurations can be classified into two groups. In the first group, two anti-parallel magnetic fields reconnect to each other, yielding a 2D emerging flux configuration. In the second group, helical or twisted magnetic flux tubes are parallel or at a relative angle to each other. Reconnection can occur only between anti-parallel components of the magnetic flux tubes and may be referred to as component reconnection. The latter configuration type may be more important for the larger class of small-scale reconnection events. The two types of magnetic configurations can be compared to counter-helicity and co-helicity configurations, respectively, in laboratory plasma collision experiments.« less
Reaching extended length-scales with temperature-accelerated dynamics
NASA Astrophysics Data System (ADS)
Amar, Jacques G.; Shim, Yunsic
2013-03-01
In temperature-accelerated dynamics (TAD) a high-temperature molecular dynamics (MD) simulation is used to accelerate the search for the next low-temperature activated event. While TAD has been quite successful in extending the time-scales of simulations of non-equilibrium processes, due to the fact that the computational work scales approximately as the cube of the number of atoms, until recently only simulations of relatively small systems have been carried out. Recently, we have shown that by combining spatial decomposition with our synchronous sublattice algorithm, significantly improved scaling is possible. However, in this approach the size of activated events is limited by the processor size while the dynamics is not exact. Here we discuss progress in developing an alternate approach in which high-temperature parallel MD along with localized saddle-point (LSAD) calculations, are used to carry out TAD simulations without restricting the size of activated events while keeping the dynamics ``exact'' within the context of harmonic transition-state theory. In tests of our LSAD method applied to Ag/Ag(100) annealing and Cu/Cu(100) growth simulations we find significantly improved scaling of TAD, while maintaining a negligibly small error in the energy barriers. Supported by NSF DMR-0907399.
Revisiting a Meta-Analysis of Helpful Aspects of Therapy in a Community Counselling Service
ERIC Educational Resources Information Center
Quick, Emma L; Dowd, Claire; Spong, Sheila
2018-01-01
This small scale mixed methods study examines helpful events in a community counselling setting, categorising impacts of events according to Timulak's [(2007). Identifying core categories of client-identified impact of helpful events in psychotherapy: A qualitative meta-analysis. "Psychotherapy Research," 17, 305-314] meta-synthesis of…
Reversible Parallel Discrete-Event Execution of Large-scale Epidemic Outbreak Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perumalla, Kalyan S; Seal, Sudip K
2010-01-01
The spatial scale, runtime speed and behavioral detail of epidemic outbreak simulations together require the use of large-scale parallel processing. In this paper, an optimistic parallel discrete event execution of a reaction-diffusion simulation model of epidemic outbreaks is presented, with an implementation over themore » $$\\mu$$sik simulator. Rollback support is achieved with the development of a novel reversible model that combines reverse computation with a small amount of incremental state saving. Parallel speedup and other runtime performance metrics of the simulation are tested on a small (8,192-core) Blue Gene / P system, while scalability is demonstrated on 65,536 cores of a large Cray XT5 system. Scenarios representing large population sizes (up to several hundred million individuals in the largest case) are exercised.« less
NASA Technical Reports Server (NTRS)
Patel, V. L.
1975-01-01
Twenty-one geomagnetic storm events during 1966 and 1970 were studied by using simultaneous interplanetary magnetic field and plasma parameters. Explorer 33 and 35 field and plasma data were analyzed on large-scale (hourly) and small-scale (3 min.) during the time interval coincident with initial phase of the geomagnetic storms. The solar-ecliptic Bz component turns southward at the end of the initial phase, thus triggering the main phase decrease in Dst geomagnetic field. When the Bz is already negative, its value becomes further negative. The By component also shows large fluctuations along with Bz. When there are no clear changes in the Bz component, the By shows abrupt changes at the main phase onet. On the small-scale behavior of the magnetic field and electric field (E=-VxB) studied in details for the three events, it is found that the field fluctuations in By, Bz and Ey and Ez are present in the initial phase. These fluctuations become larger just before the main phase of the storm begins. In the largescale behavior field remains quiet because the small scale variations are averaged out.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chesny, D. L.; Oluseyi, H. M.; Orange, N. B.
Ubiquitous solar atmospheric coronal and transition region bright points (BPs) are compact features overlying strong concentrations of magnetic flux. Here, we utilize high-cadence observations from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory to provide the first observations of extreme ultraviolet quiet-Sun (QS) network BP activity associated with sigmoidal structuring. To our knowledge, this previously unresolved fine structure has never been associated with such small-scale QS events. This QS event precedes a bi-directional jet in a compact, low-energy, and low-temperature environment, where evidence is found in support of the typical fan-spine magnetic field topology. As in active regionsmore » and micro-sigmoids, the sigmoidal arcade is likely formed via tether-cutting reconnection and precedes peak intensity enhancements and eruptive activity. Our QS BP sigmoid provides a new class of small-scale structuring exhibiting self-organized criticality that highlights a multi-scaled self-similarity between large-scale, high-temperature coronal fields and the small-scale, lower-temperature QS network. Finally, our QS BP sigmoid elevates arguments for coronal heating contributions from cooler atmospheric layers, as this class of structure may provide evidence favoring mass, energy, and helicity injections into the heliosphere.« less
Spatial and velocity statistics of inertial particles in turbulent flows
NASA Astrophysics Data System (ADS)
Bec, J.; Biferale, L.; Cencini, M.; Lanotte, A. S.; Toschi, F.
2011-12-01
Spatial and velocity statistics of heavy point-like particles in incompressible, homogeneous, and isotropic three-dimensional turbulence is studied by means of direct numerical simulations at two values of the Taylor-scale Reynolds number Reλ ~ 200 and Reλ ~ 400, corresponding to resolutions of 5123 and 20483 grid points, respectively. Particles Stokes number values range from St ≈ 0.2 to 70. Stationary small-scale particle distribution is shown to display a singular -multifractal- measure, characterized by a set of generalized fractal dimensions with a strong sensitivity on the Stokes number and a possible, small Reynolds number dependency. Velocity increments between two inertial particles depend on the relative weight between smooth events - where particle velocity is approximately the same of the fluid velocity-, and caustic contributions - when two close particles have very different velocities. The latter events lead to a non-differentiable small-scale behaviour for the relative velocity. The relative weight of these two contributions changes at varying the importance of inertia. We show that moments of the velocity difference display a quasi bi-fractal-behavior and that the scaling properties of velocity increments for not too small Stokes number are in good agreement with a recent theoretical prediction made by K. Gustavsson and B. Mehlig arXiv: 1012.1789v1 [physics.flu-dyn], connecting the saturation of velocity scaling exponents with the fractal dimension of particle clustering.
Small-scale martian polygonal terrain: Implications for liquid surface water
Seibert, N.M.; Kargel, J.S.
2001-01-01
Images from the Mars Orbiter Camera (MOC) through August 1999 were analyzed for the global distribution of small-scale polygonal terrain not clearly resolved in Viking Orbiter imagery. With very few exceptions, small-scale polygonal terrain occurs at middle to high latitudes of the northern and southern hemisphere in Hesperian-age geologic units. The largest concentration of this terrain occurs in the Utopia basin in close association with scalloped depressions (interpreted as thermokarst) and appears to represent an Amazonia event. The morphology and occurence of small polygonal terrain suggest they are either mud desiccation cracks or ice-wedge polygons. Because the small-scale polygons in Utopia and Argyre Planitiae are associated with other cold-climate permafrost or glacial features, an ice-wedge model is preferred for these areas. Both cracking mechanisms work most effectively in water- or ice-rich finegrained material and may imply the seasonal or episodic existence of liquid water at the surface.
An experimental method to verify soil conservation by check dams on the Loess Plateau, China.
Xu, X Z; Zhang, H W; Wang, G Q; Chen, S C; Dang, W Q
2009-12-01
A successful experiment with a physical model requires necessary conditions of similarity. This study presents an experimental method with a semi-scale physical model. The model is used to monitor and verify soil conservation by check dams in a small watershed on the Loess Plateau of China. During experiments, the model-prototype ratio of geomorphic variables was kept constant under each rainfall event. Consequently, experimental data are available for verification of soil erosion processes in the field and for predicting soil loss in a model watershed with check dams. Thus, it can predict the amount of soil loss in a catchment. This study also mentions four criteria: similarities of watershed geometry, grain size and bare land, Froude number (Fr) for rainfall event, and soil erosion in downscaled models. The efficacy of the proposed method was confirmed using these criteria in two different downscaled model experiments. The B-Model, a large scale model, simulates watershed prototype. The two small scale models, D(a) and D(b), have different erosion rates, but are the same size. These two models simulate hydraulic processes in the B-Model. Experiment results show that while soil loss in the small scale models was converted by multiplying the soil loss scale number, it was very close to that of the B-Model. Obviously, with a semi-scale physical model, experiments are available to verify and predict soil loss in a small watershed area with check dam system on the Loess Plateau, China.
NASA Astrophysics Data System (ADS)
Barrett, S. A.; Prieto, G. A.; Beroza, G. C.
2015-12-01
There is strong evidence that metamorphic reactions play a role in enabling the rupture of intermediate-depth earthquakes; however, recent studies of the Bucaramanga Nest at a depth of 135-165 km under Colombia indicate that intermediate-depth seismicity shows low radiation efficiency and strong scaling of stress drop with slip/size, which suggests a dramatic weakening process, as proposed in the thermal shear instability model. Decreasing stress drop with slip and low seismic efficiency could have a measurable effect on the magnitude-frequency distribution of small earthquakes by causing them to become undetectable at substantially larger seismic moment than would be the case if stress drop were constant. We explore the population of small earthquakes in the Bucaramanga Nest using an empirical subspace detector to push the detection limit to lower magnitude. Using this approach, we find ~30,000 small, previously uncatalogued earthquakes during a 6-month period in 2013. We calculate magnitudes for these events using their relative amplitudes. Despite the additional detections, we observe a sharp deviation from a Gutenberg-Richter magnitude frequency distribution with a marked deficiency of events at the smallest magnitudes. This scarcity of small earthquakes is not easily ascribed to the detectability threshold; tests of our ability to recover small-magnitude waveforms of Bucaramanga Nest earthquakes in the continuous data indicate that we should be able to detect events reliably at magnitudes that are nearly a full magnitude unit smaller than the smallest earthquakes we observe. The implication is that nearly 100,000 events expected for a Gutenberg-Richter MFD are "missing," and that this scarcity of small earthquakes may provide new support for the thermal runaway mechanism in intermediate-depth earthquake mechanics.
Structure of high and low shear-stress events in a turbulent boundary layer
NASA Astrophysics Data System (ADS)
Gomit, G.; de Kat, R.; Ganapathisubramani, B.
2018-01-01
Simultaneous particle image velocimetry (PIV) and wall-shear-stress sensor measurements were performed to study structures associated with shear-stress events in a flat plate turbulent boundary layer at a Reynolds number Reτ≈4000 . The PIV field of view covers 8 δ (where δ is the boundary layer thickness) along the streamwise direction and captures the entire boundary layer in the wall-normal direction. Simultaneously, wall-shear-stress measurements that capture the large-scale fluctuations were taken using a spanwise array of hot-film skin-friction sensors (spanning 2 δ ). Based on this combination of measurements, the organization of the conditional wall-normal and streamwise velocity fluctuations (u and v ) and of the Reynolds shear stress (-u v ) can be extracted. Conditional averages of the velocity field are computed by dividing the histogram of the large-scale wall-shear-stress fluctuations into four quartiles, each containing 25% of the occurrences. The conditional events corresponding to the extreme quartiles of the histogram (positive and negative) predominantly contribute to a change of velocity profile associated with the large structures and in the modulation of the small scales. A detailed examination of the Reynolds shear-stress contribution related to each of the four quartiles shows that the flow above a low wall-shear-stress event carries a larger amount of Reynolds shear stress than the other quartiles. The contribution of the small and large scales to this observation is discussed based on a scale decomposition of the velocity field.
NASA Astrophysics Data System (ADS)
Masselink, Rens; Temme, Arnaud; Giménez, Rafael; Casalí, Javier; Keesstra, Saskia
2017-04-01
Soil erosion from agricultural areas is a large problem, because of off-site effects like the rapid filling of reservoirs. To mitigate the problem of sediments from agricultural areas reaching the channel, reservoirs and other surface waters, it is important to understand hillslope-channel connectivity and catchment connectivity. To determine the functioning of hillslope-channel connectivity and the continuation of transport of these sediments in the channel, it is necessary to obtain data on sediment transport from the hillslopes to the channels. Simultaneously, the factors that influence sediment export out of the catchment need to be studied. For measuring hillslope-channel sediment connectivity, Rare-Earth Oxide (REO) tracers were applied to a hillslope in an agricultural catchment in Navarre, Spain, preceding the winter of 2014-2015. The results showed that during the winter there was no sediment transport from the hillslope to the channel. Analysis of precipitation data showed that total precipitation quantities did not differ much from the mean. However, precipitation intensities were low, causing little sediment mobilisation. To test the implication of the REO results at the catchment scale, two conceptual models for sediment connectivity were assessed using a Random Forest (RF) machine learning method. One model proposes that small events provide sediment for large events, while the other proposes that only large events cause sediment detachment and small events subsequently remove these sediments from near and in the channel. The RF method was applied to a daily dataset of sediment yield from the catchment (N=2451 days), and two subsets of the whole dataset: small events (N=2319) and large events (N=132). For sediment yield prediction of small events, variables related to large preceding events were the most important. The model for large events underperformed and, therefore, we could not draw any immediate conclusions whether small events influence the amount of sediment exported during large events. Both REO tracers and RF method showed that low intensity events do not contribute any sediments to the channel in the Latxaga catchment (cf. Masselink et al., 2016). Sediment dynamics are dominated by sediment mobilisation during large (high intensity) events. Sediments are for a large part exported during those events, but large amount of sediments are deposited in and near the channel after these events. These sediments are gradually removed by small events. To better understand the delivery of sediments to the channel and how large and small events influence each other more field data on hillslope-channel connectivity and within-channel sediment dynamics is necessary. Reference: Masselink, R.J.H., Keesstra, S.D., Temme, A.J.A.M., Seeger, M., Giménez, R., Casalí, J., 2016. Modelling Discharge and Sediment Yield at Catchment Scale Using Connectivity Components. Land Degrad. Dev. 27, 933-945. doi:10.1002/ldr.2512
NASA Astrophysics Data System (ADS)
Anquetin, Sandrine; Vannier, Olivier; Ollagnier, Mélody; Braud, Isabelle
2015-04-01
This work contributes to the evaluation of the dynamics of the human exposure during flash-flood events in the Mediterranean region. Understanding why and how the commuters modify their daily mobility in the Cévennes - Vivarais area (France) is the long-term objective of the study. To reach this objective, the methodology relies on three steps: i) evaluation of daily travel patterns, ii) reconstitution of road flooding events in the region based on hydrological simulation at regional scale in order to capture the time evolution and the intensity of flood and iii) identification of the daily fluctuation of the exposition according to road flooding scenarios and the time evolution of mobility patterns. This work deals with the second step. To do that, the physically based and non-calibrated hydrological model CVN (Vannier, 2013) is implemented to retrieve the hydrological signature of past flash-flood events in Southern France. Four past events are analyzed (September 2002; September 2005 (split in 2 different events); October 2008). Since the regional scale is investigated, the scales of the studied catchments range from few km2 to few hundreds of km2 where many catchments are ungauged. The evaluation is based on a multi-scale approach using complementary observations coming from post-flood experiments (for small and/or ungaugged catchments) and operational hydrological network (for larger catchments). The scales of risk (time and location of the road flooding) are also compared to observed data of road cuts. The discussion aims at improving our understanding on the hydrological processes associated with road flooding vulnerability. We specifically analyze runoff coefficient and the ratio between surface and groundwater flows at regional scale. The results show that on the overall, the three regional simulations provide good scores for the probability of detection and false alarms concerning road flooding (1600 points are analyzed for the whole region). Our evaluation procedure provides new insights on the active hydrological processes at small scales (catchments area < 10 km²) since these small scales, distributed over the whole region, are analyzed through road cuts data and post-flood field investigations. As shown in Vannier (2013), the signature of the altered geological layer is significant on the simulated discharges. For catchments under schisty geology, the simulated discharge, whatever the catchment size, is usually overestimated. Vannier, O, 2013, Apport de la modélisation hydrologique régionale à la compréhension des processus de crue en zone méditerranéenne, PhD-Thesis (in French), Grenoble University.
1983-09-01
Approved by: Me<i W4 1tsZ7 CaifI ,KDpartmento I inistrative Science 3 ( ABSTRACT >This thesis intends to create the basic...a need for a small scale model which allows a student analyst of tactical air operations to create his own battles and to test his own strategies with...iconic model is a large or small-scale repre- sentation of states-objects, or events. For example a scale model airplance resembles the system under the
The Role of Small-Scale Processes in Solar Active Region Decay
NASA Astrophysics Data System (ADS)
Meyer, Karen; Mackay, Duncan
2017-08-01
Active regions are locations of intense magnetic activity on the Sun, whose evolution can result in highly energetic eruptive phenomena such as solar flares and coronal mass ejections (CMEs). Therefore, fast and accurate simulation of their evolution and decay is essential in the prediction of Space Weather events. In this talk we present initial results from our new model for the photospheric evolution of active region magnetic fields. Observations show that small-scale processes appear to play a role in the dispersal and decay of solar active regions, for example through cancellation at the boundary of sunspot outflows and erosion of flux by surrounding convective cells. Our active region model is coupled to our existing model for the evolution of small-scale photospheric magnetic features. Focusing first on the active region decay phase, we consider the evolution of its magnetic field due to both large-scale (e.g. differential rotation) and small-scale processes, such as its interaction with surrounding small-scale magnetic features and convective flows.This project is funded by The Carnegie Trust for the Universities of Scotland, through their Research Incentives Grant scheme.
NASA Astrophysics Data System (ADS)
Gires, Auguste; Abbes, Jean-Baptiste; da Silva Rocha Paz, Igor; Tchiguirinskaia, Ioulia; Schertzer, Daniel
2018-03-01
In this paper we suggest to innovatively use scaling laws and more specifically Universal Multifractals (UM) to analyse simulated surface runoff and compare the retrieved scaling features with the rainfall ones. The methodology is tested on a 3 km2 semi-urbanised with a steep slope study area located in the Paris area along the Bièvre River. First Multi-Hydro, a fully distributed model is validated on this catchment for four rainfall events measured with the help of a C-band radar. The uncertainty associated with small scale unmeasured rainfall, i.e. occurring below the 1 km × 1 km × 5 min observation scale, is quantified with the help of stochastic downscaled rainfall fields. It is rather significant for simulated flow and more limited on overland water depth for these rainfall events. Overland depth is found to exhibit a scaling behaviour over small scales (10 m-80 m) which can be related to fractal features of the sewer network. No direct and obvious dependency between the overland depth multifractal features (quality of the scaling and UM parameters) and the rainfall ones was found.
Hard X-Ray Constraints on Small-Scale Coronal Heating Events
NASA Astrophysics Data System (ADS)
Marsh, Andrew; Smith, David M.; Glesener, Lindsay; Klimchuk, James A.; Bradshaw, Stephen; Hannah, Iain; Vievering, Juliana; Ishikawa, Shin-Nosuke; Krucker, Sam; Christe, Steven
2017-08-01
A large body of evidence suggests that the solar corona is heated impulsively. Small-scale heating events known as nanoflares may be ubiquitous in quiet and active regions of the Sun. Hard X-ray (HXR) observations with unprecedented sensitivity >3 keV have recently been enabled through the use of focusing optics. We analyze active region spectra from the FOXSI-2 sounding rocket and the NuSTAR satellite to constrain the physical properties of nanoflares simulated with the EBTEL field-line-averaged hydrodynamics code. We model a wide range of X-ray spectra by varying the nanoflare heating amplitude, duration, delay time, and filling factor. Additional constraints on the nanoflare parameter space are determined from energy constraints and EUV/SXR data.
Bright points and ejections observed on the sun by the KORONAS-FOTON instrument TESIS
NASA Astrophysics Data System (ADS)
Ulyanov, A. S.; Bogachev, S. A.; Kuzin, S. V.
2010-10-01
Five-second observations of the solar corona carried out in the FeIX 171 Å line by the KORONAS-FOTON instrument TESIS are used to study the dynamics of small-scale coronal structures emitting in and around coronal bright points. The small-scale structures of the lower corona display complex dynamics similar to those of magnetic loops located at higher levels of the solar corona. Numerous detected oscillating structures with sizes below 10 000 km display oscillation periods from 50 to 350 s. The period distributions of these structures are different for P < 150 s and P > 150 s, which implies that different oscillation modes are excited at different periods. The small-scale structures generate numerous flare-like events with energies 1024-1026 erg (nanoflares) and with a spatial density of one event per arcsecond or more observed over an area of 4 × 1011 km2. Nanoflares are not associated with coronal bright points, and almost uniformly cover the solar disk in the observation region. The ejections of solar material from the coronal bright points demonstrate velocities of 80-110 km/s.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guerrier, C.; Holcman, D., E-mail: david.holcman@ens.fr; Mathematical Institute, Oxford OX2 6GG, Newton Institute
The main difficulty in simulating diffusion processes at a molecular level in cell microdomains is due to the multiple scales involving nano- to micrometers. Few to many particles have to be simulated and simultaneously tracked while there are exploring a large portion of the space for binding small targets, such as buffers or active sites. Bridging the small and large spatial scales is achieved by rare events representing Brownian particles finding small targets and characterized by long-time distribution. These rare events are the bottleneck of numerical simulations. A naive stochastic simulation requires running many Brownian particles together, which is computationallymore » greedy and inefficient. Solving the associated partial differential equations is also difficult due to the time dependent boundary conditions, narrow passages and mixed boundary conditions at small windows. We present here two reduced modeling approaches for a fast computation of diffusing fluxes in microdomains. The first approach is based on a Markov mass-action law equations coupled to a Markov chain. The second is a Gillespie's method based on the narrow escape theory for coarse-graining the geometry of the domain into Poissonian rates. The main application concerns diffusion in cellular biology, where we compute as an example the distribution of arrival times of calcium ions to small hidden targets to trigger vesicular release.« less
Heterogeneity and scaling land-atmospheric water and energy fluxes in climate systems
NASA Technical Reports Server (NTRS)
Wood, Eric F.
1993-01-01
The effects of small-scale heterogeneity in land surface characteristics on the large-scale fluxes of water and energy in land-atmosphere system has become a central focus of many of the climatology research experiments. The acquisition of high resolution land surface data through remote sensing and intensive land-climatology field experiments (like HAPEX and FIFE) has provided data to investigate the interactions between microscale land-atmosphere interactions and macroscale models. One essential research question is how to account for the small scale heterogeneities and whether 'effective' parameters can be used in the macroscale models. To address this question of scaling, three modeling experiments were performed and are reviewed in the paper. The first is concerned with the aggregation of parameters and inputs for a terrestrial water and energy balance model. The second experiment analyzed the scaling behavior of hydrologic responses during rain events and between rain events. The third experiment compared the hydrologic responses from distributed models with a lumped model that uses spatially constant inputs and parameters. The results show that the patterns of small scale variations can be represented statistically if the scale is larger than a representative elementary area scale, which appears to be about 2 - 3 times the correlation length of the process. For natural catchments this appears to be about 1 - 2 sq km. The results concerning distributed versus lumped representations are more complicated. For conditions when the processes are nonlinear, then lumping results in biases; otherwise a one-dimensional model based on 'equivalent' parameters provides quite good results. Further research is needed to fully understand these conditions.
NASA Astrophysics Data System (ADS)
Verdecchia, A.; Harrington, R. M.; Kirkpatrick, J. D.
2017-12-01
Many observations suggest that duration and size scale in a self-similar way for most earthquakes. Deviations from the expected scaling would suggest that some physical feature on the fault surface influences the speed of rupture differently at different length scales. Determining whether differences in scaling exist between small and large earthquakes is complicated by the fact that duration estimates of small earthquakes are often distorted by travel-path and site effects. However, when carefully estimated, scaling relationships between earthquakes may provide important clues about fault geometry and the spatial scales over which it affects fault rupture speed. The Mw 6.9, 20 August 1999, Quepos earthquake occurred on the plate boundary thrust fault along southern Costa Rica margin where the subducting seafloor is cut by numerous normal faults. The mainshock and aftershock sequence were recorded by land and (partially by) ocean bottom (OBS) seismic arrays deployed as part of the CRSEIZE experiment. Here we investigate the size-duration scaling of the mainshock and relocated aftershocks on the plate boundary to determine if a change in scaling exists that is consistent with a change in fault surface geometry at a specific length scale. We use waveforms from 5 short-period land stations and 12 broadband OBS stations to estimate corner frequencies (the inverse of duration) and seismic moment for several aftershocks on the plate interface. We first use spectral amplitudes of single events to estimate corner frequencies and seismic moments. We then adopt a spectral ratio method to correct for non-source-related effects and refine the corner frequency estimation. For the spectral ratio approach, we use pairs of earthquakes with similar waveforms (correlation coefficient > 0.7), with waveform similarity implying event co-location. Preliminary results from single spectra show similar corner frequency values among events of 0.5 ≤ M ≤ 3.6, suggesting a decrease in static stress drop with magnitude. Our next step is to refine corner frequency estimates using spectral ratios to see if the trend in corner frequency persists with small events, and to extend the magnitude range of the estimations using land-based recordings of the mainshock and two largest aftershocks, which occurred prior to the Osa array deployment.
Wrinkle structures—a critical review
NASA Astrophysics Data System (ADS)
Porada, Hubertus; Bouougri, El Hafid
2007-04-01
In this paper, a variety of so-called 'wrinkle structures' is reviewed in an attempt to help distinguish between crinkly decorations arising from physical processes that acted on siliciclastic bedding surfaces, and true microbially induced 'wrinkle structures'. Two types of small-scale, microbially induced sedimentary structures are prominent due to their distinct geometry and mode of occurrence: (1) 'elephant skin' textures, characterized by reticulate patterns of sharp-crested ridges forming mm- to cm-scale polygons, occurring on argillite or argillaceous veneers above fine-grained sandstone and likely reflecting growth structures of microbial, mats (2) 'Kinneyia' structures, characterized by mm-scale flat-topped, winding ridges and intervening troughs and pits, sometimes resembling small-scale interference ripples. 'Kinneyia' structures usually occur on upper surfaces of siltstone/sandstone beds, themselves frequently event deposits, and are thought to have formed beneath microbial mats. Additionally, more linear variations of mat growth structures, partly resembling small-scale 'α-petees' may be developed. Finally, some wrinkly structures resulting from tractional mat deformation or mat slumping are occasionally preserved. These may appear as arcuate belts of non-penetrative, small-scale folds or as wrinkled bulges on otherwise flat surfaces. 'Wrinkle structures' as indicators for the former presence of mats gain in importance if other mat-related structures are additionally observed in the same clastic succession, e.g. 'sand chips' (sandy intraclasts) or spindle-shaped or sinuously curved to circular sand cracks, frequently combined in networks. Furthermore, appropriate lithologies and facies are required. For instance, if compared with the distribution of modern cohesive microbial mats, laminated siltstone/argillite with intercalated siltstone/sandstone beds representing event deposits in tidal flat successions would be compatible with microbial mat development. Within a variety of physically induced small-scale wrinkly structures, miniature load structures may, above all, be misinterpreted as microbially induced 'wrinkle structures', due to their similar size and appearance, and their comparatively frequent occurrence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khabarova, O.; Zank, G. P.; Li, G.
2015-08-01
Increases of ion fluxes in the keV–MeV range are sometimes observed near the heliospheric current sheet (HCS) during periods when other sources are absent. These resemble solar energetic particle events, but the events are weaker and apparently local. Conventional explanations based on either shock acceleration of charged particles or particle acceleration due to magnetic reconnection at interplanetary current sheets (CSs) are not persuasive. We suggest instead that recurrent magnetic reconnection occurs at the HCS and smaller CSs in the solar wind, a consequence of which is particle energization by the dynamically evolving secondary CSs and magnetic islands. The effectiveness of themore » trapping and acceleration process associated with magnetic islands depends in part on the topology of the HCS. We show that the HCS possesses ripples superimposed on the large-scale flat or wavy structure. We conjecture that the ripples can efficiently confine plasma and provide tokamak-like conditions that are favorable for the appearance of small-scale magnetic islands that merge and/or contract. Particles trapped in the vicinity of merging islands and experiencing multiple small-scale reconnection events are accelerated by the induced electric field and experience first-order Fermi acceleration in contracting magnetic islands according to the transport theory of Zank et al. We present multi-spacecraft observations of magnetic island merging and particle energization in the absence of other sources, providing support for theory and simulations that show particle energization by reconnection related processes of magnetic island merging and contraction.« less
Reverse flow events and small-scale effects in the cusp ionosphere
NASA Astrophysics Data System (ADS)
Spicher, A.; Ilyasov, A. A.; Miloch, W. J.; Chernyshov, A. A.; Clausen, L. B. N.; Moen, J. I.; Abe, T.; Saito, Y.
2016-10-01
We report in situ measurements of plasma irregularities associated with a reverse flow event (RFE) in the cusp F region ionosphere. The Investigation of Cusp Irregularities 3 (ICI-3) sounding rocket, while flying through a RFE, encountered several regions with density irregularities down to meter scales. We address in detail the region with the most intense small-scale fluctuations in both the density and in the AC electric field, which were observed on the equatorward edge of a flow shear, and coincided with a double-humped jet of fast flow. Due to its long-wavelength and low-frequency character, the Kelvin-Helmholtz instability (KHI) alone cannot be the source of the observed irregularities. Using ICI-3 data as inputs, we perform a numerical stability analysis of the inhomogeneous energy-density-driven instability (IEDDI) and demonstrate that it can excite electrostatic ion cyclotron waves in a wide range of wave numbers and frequencies for the electric field configuration observed in that region, which can give rise to the observed small-scale turbulence. The IEDDI can seed as a secondary process on steepened vortices created by a primary KHI. Such an interplay between macroprocesses and microprocesses could be an important mechanism for ion heating in relation to RFEs.
NASA Astrophysics Data System (ADS)
Moncoulon, D.; Labat, D.; Ardon, J.; Onfroy, T.; Leblois, E.; Poulard, C.; Aji, S.; Rémy, A.; Quantin, A.
2013-07-01
The analysis of flood exposure at a national scale for the French insurance market must combine the generation of a probabilistic event set of all possible but not yet occurred flood situations with hazard and damage modeling. In this study, hazard and damage models are calibrated on a 1995-2012 historical event set, both for hazard results (river flow, flooded areas) and loss estimations. Thus, uncertainties in the deterministic estimation of a single event loss are known before simulating a probabilistic event set. To take into account at least 90% of the insured flood losses, the probabilistic event set must combine the river overflow (small and large catchments) with the surface runoff due to heavy rainfall, on the slopes of the watershed. Indeed, internal studies of CCR claim database has shown that approximately 45% of the insured flood losses are located inside the floodplains and 45% outside. 10% other percent are due to seasurge floods and groundwater rise. In this approach, two independent probabilistic methods are combined to create a single flood loss distribution: generation of fictive river flows based on the historical records of the river gauge network and generation of fictive rain fields on small catchments, calibrated on the 1958-2010 Météo-France rain database SAFRAN. All the events in the probabilistic event sets are simulated with the deterministic model. This hazard and damage distribution is used to simulate the flood losses at the national scale for an insurance company (MACIF) and to generate flood areas associated with hazard return periods. The flood maps concern river overflow and surface water runoff. Validation of these maps is conducted by comparison with the address located claim data on a small catchment (downstream Argens).
NASA Astrophysics Data System (ADS)
Carvalho, S. C. P.; de Lima, M. I. P.; de Lima, J. L. M. P.
2012-04-01
Laser disdrometers can monitor efficiently rainfall characteristics at small temporal scales, providing data on rain intensity, raindrop diameter and fall speed, and raindrop counts over time. This type of data allows for the increased understanding of the rainfall structure at small time scales. Of particular interest for many hydrological applications is the characterization of the properties of extreme events, including the intra-event variability, which are affected by different factors (e.g. geographical location, rainfall generating mechanisms). These properties depend on the microphysical, dynamical and kinetic processes that interact to produce rain. In this study we explore rainfall data obtained during two years with a laser disdrometer installed in the city of Coimbra, in the centre region of mainland Portugal. The equipment was developed by Thies Clima. The data temporal resolution is one-minute. Descriptive statistics of time series of raindrop diameter (D), fall speed, kinetic energy, and rain rate were studied at the event scale; for different variables, the average, maximum, minimum, median, variance, standard deviation, quartile, coefficient of variation, skewness and kurtosis were determined. The empirical raindrop size distribution, N(D), was also calculated. Additionally, the parameterization of rainfall was attempted by investigating the applicability of different theoretical statistical distributions to fit the empirical data (e.g. exponential, gamma and lognormal distributions). As expected, preliminary results show that rainfall properties and structure vary with rainfall type and weather conditions over the year. Although only two years were investigated, already some insight into different rain events' structure was obtained.
Peculiarity of Seismicity in the Balakend-Zagatal Region, Azerbaijan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ismail-Zadeh, Tahir T.
2006-03-23
The study of seismicity in the Balakend-Zagatal region demonstrates a temporal correlation of small events in the region with the moderate events in Caucasus for the time interval of 1980 to 1990. It is shown that the processes resulting in deformation and tectonic movements of main structural elements of the Caucasus region are internal and are not related to large-scale tectonic processes. A week dependence of the regional movements on the large-scale motion of the lithospheric plates and microplates is apparent from another geological and geodetic data as well.
Micro-Scale Genomic DNA Copy Number Aberrations as Another Means of Mutagenesis in Breast Cancer
Chao, Hann-Hsiang; He, Xiaping; Parker, Joel S.; Zhao, Wei; Perou, Charles M.
2012-01-01
Introduction In breast cancer, the basal-like subtype has high levels of genomic instability relative to other breast cancer subtypes with many basal-like-specific regions of aberration. There is evidence that this genomic instability extends to smaller scale genomic aberrations, as shown by a previously described micro-deletion event in the PTEN gene in the Basal-like SUM149 breast cancer cell line. Methods We sought to identify if small regions of genomic DNA copy number changes exist by using a high density, gene-centric Comparative Genomic Hybridizations (CGH) array on cell lines and primary tumors. A custom tiling array for CGH (244,000 probes, 200 bp tiling resolution) was created to identify small regions of genomic change, which was focused on previously identified basal-like-specific, and general cancer genes. Tumor genomic DNA from 94 patients and 2 breast cancer cell lines was labeled and hybridized to these arrays. Aberrations were called using SWITCHdna and the smallest 25% of SWITCHdna-defined genomic segments were called micro-aberrations (<64 contiguous probes, ∼ 15 kb). Results Our data showed that primary tumor breast cancer genomes frequently contained many small-scale copy number gains and losses, termed micro-aberrations, most of which are undetectable using typical-density genome-wide aCGH arrays. The basal-like subtype exhibited the highest incidence of these events. These micro-aberrations sometimes altered expression of the involved gene. We confirmed the presence of the PTEN micro-amplification in SUM149 and by mRNA-seq showed that this resulted in loss of expression of all exons downstream of this event. Micro-aberrations disproportionately affected the 5′ regions of the affected genes, including the promoter region, and high frequency of micro-aberrations was associated with poor survival. Conclusion Using a high-probe-density, gene-centric aCGH microarray, we present evidence of small-scale genomic aberrations that can contribute to gene inactivation. These events may contribute to tumor formation through mechanisms not detected using conventional DNA copy number analyses. PMID:23284754
Small-Scale Experiments.10-gallon drum experiment summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenberg, David M.
2015-02-05
A series of sub-scale (10-gallon) drum experiments were conducted to characterize the reactivity, heat generation, and gas generation of mixtures of chemicals believed to be present in the drum (68660) known to have breached in association with the radiation release event at the Waste Isolation Pilot Plant (WIPP) on February 14, 2014, at a scale expected to be large enough to replicate the environment in that drum but small enough to be practical, safe, and cost effective. These tests were not intended to replicate all the properties of drum 68660 or the event that led to its breach, or tomore » validate a particular hypothesis of the release event. They were intended to observe, in a controlled environment and with suitable diagnostics, the behavior of simple mixtures of chemicals in order to determine if they could support reactivity that could result in ignition or if some other ingredient or event would be necessary. There is a significant amount of uncertainty into the exact composition of the barrel; a limited sub-set of known components was identified, reviewed with Technical Assessment Team (TAT) members, and used in these tests. This set of experiments was intended to provide a framework to postulate realistic, data-supported hypotheses for processes that occur in a “68660-like” configuration, not definitively prove what actually occurred in 68660.« less
Investigation of relationships between parameters of solar nano-flares and solar activity
NASA Astrophysics Data System (ADS)
Safari, Hossein; Javaherian, Mohsen; Kaki, Bardia
2016-07-01
Solar flares are one of the important coronal events which are originated in solar magnetic activity. They release lots of energy during the interstellar medium, right after the trigger. Flare prediction can play main role in avoiding eventual damages on the Earth. Here, to interpret solar large-scale events (e.g., flares), we investigate relationships between small-scale events (nano-flares) and large-scale events (e.g., flares). In our method, by using simulations of nano-flares based on Monte Carlo method, the intensity time series of nano-flares are simulated. Then, the solar full disk images taken at 171 angstrom recorded by SDO/AIA are employed. Some parts of the solar disk (quiet Sun (QS), coronal holes (CHs), and active regions (ARs)) are cropped and the time series of these regions are extracted. To compare the simulated intensity time series of nano-flares with the intensity time series of real data extracted from different parts of the Sun, the artificial neural networks is employed. Therefore, we are able to extract physical parameters of nano-flares like both kick and decay rate lifetime, and the power of their power-law distributions. The procedure of variations in the power value of power-law distributions within QS, CH is similar to AR. Thus, by observing the small part of the Sun, we can follow the procedure of solar activity.
Slow Slip and Earthquake Nucleation in Meter-Scale Laboratory Experiments
NASA Astrophysics Data System (ADS)
Mclaskey, G.
2017-12-01
The initiation of dynamic rupture is thought to be preceded by a quasistatic nucleation phase. Observations of recent earthquakes sometimes support this by illuminating slow slip and foreshocks in the vicinity of the eventual hypocenter. I describe laboratory earthquake experiments conducted on two large-scale loading machines at Cornell University that provide insight into the way earthquake nucleation varies with normal stress, healing time, and loading rate. The larger of the two machines accommodates a 3 m long granite sample, and when loaded to 7 MPa stress levels, we observe dynamic rupture events that are preceded by a measureable nucleation zone with dimensions on the order of 1 m. The smaller machine accommodates a 0.76 m sample that is roughly the same size as the nucleation zone. On this machine, small variations in nucleation properties result in measurable differences in slip events, and we generate both dynamic rupture events (> 0.1 m/s slip rates) and slow slip events ( 0.001 to 30 mm/s slip rates). Slow events occur when instability cannot fully nucleate before reaching the sample ends. Dynamic events occur after long healing times or abrupt increases in loading rate which suggests that these factors shrink the spatial and temporal extents of the nucleation zone. Arrays of slip, strain, and ground motion sensors installed on the sample allow us to quantify seismic coupling and study details of premonitory slip and afterslip. The slow slip events we observe are primarily aseismic (less than 1% of the seismic coupling of faster events) and produce swarms of very small M -6 to M -8 events. These mechanical and seismic interactions suggest that faults with transitional behavior—where creep, small earthquakes, and tremor are often observed—could become seismically coupled if loaded rapidly, either by a slow slip front or dynamic rupture of an earthquake that nucleated elsewhere.
A Classification of Mediterranean Cyclones Based on Global Analyses
NASA Technical Reports Server (NTRS)
Reale, Oreste; Atlas, Robert
2003-01-01
The Mediterranean Sea region is dominated by baroclinic and orographic cyclogenesis. However, previous work has demonstrated the existence of rare but intense subsynoptic-scale cyclones displaying remarkable similarities to tropical cyclones and polar lows, including, but not limited to, an eye-like feature in the satellite imagery. The terms polar low and tropical cyclone have been often used interchangeably when referring to small-scale, convective Mediterranean vortices and no definitive statement has been made so far on their nature, be it sub-tropical or polar. Moreover, most of the classifications of Mediterranean cyclones have neglected the small-scale convective vortices, focusing only on the larger-scale and far more common baroclinic cyclones. A classification of all Mediterranean cyclones based on operational global analyses is proposed The classification is based on normalized horizontal shear, vertical shear, scale, low versus mid-level vorticity, low-level temperature gradients, and sea surface temperatures. In the classification system there is a continuum of possible events, according to the increasing role of barotropic instability and decreasing role of baroclinic instability. One of the main results is that the Mediterranean tropical cyclone-like vortices and the Mediterranean polar lows appear to be different types of events, in spite of the apparent similarity of their satellite imagery. A consistent terminology is adopted, stating that tropical cyclone- like vortices are the less baroclinic of all, followed by polar lows, cold small-scale cyclones and finally baroclinic lee cyclones. This classification is based on all the cyclones which occurred in a four-year period (between 1996 and 1999). Four cyclones, selected among all the ones which developed during this time-frame, are analyzed. Particularly, the classification allows to discriminate between two cyclones (occurred in October 1996 and in March 1999) which both display a very well-defined eye-like feature in the satellite imagery. According to our classification system, the two events are dynamically different and can be categorized as being respectively a tropical cyclone-like vortex and well-developed polar low.
NASA Astrophysics Data System (ADS)
Philipp, Andy; Kerl, Florian; Büttner, Uwe; Metzkes, Christine; Singer, Thomas; Wagner, Michael; Schütze, Niels
2016-05-01
In recent years, the Free State of Saxony (Eastern Germany) was repeatedly hit by both extensive riverine flooding, as well as flash flood events, emerging foremost from convective heavy rainfall. Especially after a couple of small-scale, yet disastrous events in 2010, preconditions, drivers, and methods for deriving flash flood related early warning products are investigated. This is to clarify the feasibility and the limits of envisaged early warning procedures for small catchments, hit by flashy heavy rain events. Early warning about potentially flash flood prone situations (i.e., with a suitable lead time with regard to required reaction-time needs of the stakeholders involved in flood risk management) needs to take into account not only hydrological, but also meteorological, as well as communication issues. Therefore, we propose a threefold methodology to identify potential benefits and limitations in a real-world warning/reaction context. First, the user demands (with respect to desired/required warning products, preparation times, etc.) are investigated. Second, focusing on small catchments of some hundred square kilometers, two quantitative precipitation forecasts are verified. Third, considering the user needs, as well as the input parameter uncertainty (i.e., foremost emerging from an uncertain QPF), a feasible, yet robust hydrological modeling approach is proposed on the basis of pilot studies, employing deterministic, data-driven, and simple scoring methods.
Characteristics of EUV Coronal Jets Observed with STEREO/SECCHI
NASA Astrophysics Data System (ADS)
Nisticò, G.; Bothmer, V.; Patsourakos, S.; Zimbardo, G.
2009-10-01
In this paper we present the first comprehensive statistical study of EUV coronal jets observed with the SECCHI (Sun Earth Connection Coronal and Heliospheric Investigation) imaging suites of the two STEREO spacecraft. A catalogue of 79 polar jets is presented, identified from simultaneous EUV and white-light coronagraph observations, taken during the time period March 2007 to April 2008, when solar activity was at a minimum. The twin spacecraft angular separation increased during this time interval from 2 to 48 degrees. The appearances of the coronal jets were always correlated with underlying small-scale chromospheric bright points. A basic characterization of the morphology and identification of the presence of helical structure were established with respect to recently proposed models for their origin and temporal evolution. Though each jet appeared morphologically similar in the coronagraph field of view, in the sense of a narrow collimated outward flow of matter, at the source region in the low corona the jet showed different characteristics, which may correspond to different magnetic structures. A classification of the events with respect to previous jet studies shows that amongst the 79 events there were 37 Eiffel tower-type jet events, commonly interpreted as a small-scale (˜35 arc sec) magnetic bipole reconnecting with the ambient unipolar open coronal magnetic fields at its loop tops, and 12 lambda-type jet events commonly interpreted as reconnection with the ambient field happening at the bipole footpoints. Five events were termed micro-CME-type jet events because they resembled the classical coronal mass ejections (CMEs) but on much smaller scales. The remaining 25 cases could not be uniquely classified. Thirty-one of the total number of events exhibited a helical magnetic field structure, indicative for a torsional motion of the jet around its axis of propagation. A few jets are also found in equatorial coronal holes. In this study we present sample events for each of the jet types using both, STEREO A and STEREO B, perspectives. The typical lifetimes in the SECCHI/EUVI ( Extreme UltraViolet Imager) field of view between 1.0 to 1.7 R ⊙ and in SECCHI/COR1 field of view between 1.4 to 4 R ⊙ are obtained, and the derived speeds are roughly estimated. In summary, the observations support the assumption of continuous small-scale reconnection as an intrinsic feature of the solar corona, with its role for the heating of the corona, particle acceleration, structuring and acceleration of the solar wind remaining to be explored in more detail in further studies.
Increasing Social Capital and Personal Efficacy through Small-Scale Community Events
ERIC Educational Resources Information Center
Molitor, Fred; Rossi, Melissa; Branton, Lisa; Field, Julie
2011-01-01
California's voter-approved Children and Families Act of 1998 calls for money collected from tobacco taxes to support services for families with children up to 5 years of age. Sacramento County uses a portion of its allocation for small community grants with the specific intent of building social capital among neighbors and across communities. The…
NASA Astrophysics Data System (ADS)
Mazoyer, M.; Roehrig, R.; Nuissier, O.; Duffourg, F.; Somot, S.
2017-12-01
Most regional climate models (RCSMs) face difficulties in representing a reasonable pre-cipitation probability density function in the Mediterranean area and especially over land.Small amounts of rain are too frequent, preventing any realistic representation of droughts orheat waves, while the intensity of heavy precipitating events is underestimated and not welllocated by most state-of-the-art RCSMs using parameterized convection (resolution from10 to 50 km). Convective parameterization is a key point for the representation of suchevents and recently, the new physics implemented in the CNRM-RCSM has been shown toremarkably improve it, even at a 50-km scale.The present study seeks to further analyse the representation of heavy precipitating eventsby this new version of CNRM-RCSM using a process oriented approach. We focus on oneparticular event in the south-east of France, over the Cévennes. Two hindcast experimentswith the CNRM-RCSM (12 and 50 km) are performed and compared with a simulationbased on the convection-permitting model Meso-NH, which makes use of a very similarsetup as CNRM-RCSM hindcasts. The role of small-scale features of the regional topogra-phy and its interaction with the impinging large-scale flow in triggering the convective eventare investigated. This study provides guidance in the ongoing implementation and use of aspecific parameterization dedicated to account for subgrid-scale orography in the triggeringand closure conditions of the CNRM-RCSM convection scheme.
USDA-ARS?s Scientific Manuscript database
Nitrate concentrations in runoff water from the nursery ranged from 70 to 253 mg NO3-N/L. An estimated 62 to 67% of the nitrate applied during fertigation events left the production site in runoff water. Irrigation losses during these events accounted for 36 to 49% of the amount applied, with flow r...
NASA Astrophysics Data System (ADS)
Scullion, E.; Popescu, M. D.; Banerjee, D.; Doyle, J. G.; Erdélyi, R.
2009-10-01
Here, we explore the nature of small-scale jet-like structures and their possible relation to explosive events and other known transient features, like spicules and macrospicules, using high-resolution spectroscopy obtained with the Solar and Heliospheric Observatory/Solar Ultraviolet Measurements of Emitted Radiation instrument. We present a highly resolved spectroscopic analysis and line parameter study of time-series data for jets occurring on-disk and off-limb in both a northern and a southern coronal hole. The analysis reveals many small-scale transients which rapidly propagate between the mid-transition region (N IV 765 Å line formation: 140,000 K) and the lower corona (Ne VIII 770 Å line formation: 630,000 K). In one example, a strong jet-like event is associated with a cool feature not present in the Ne VIII 770 Å line radiance or Doppler velocity maps. Another similar event is observed, but with a hot component, which could be perceived as a blinker. Our data reveal fast, repetitive plasma outflows with blueshift velocities of ≈145 km s-1 in the lower solar atmosphere. The data suggest a strong role for smaller jets (spicules), as a precursor to macrospicule formation, which may have a common origin with explosive events.
Identifying Preserved Storm Events on Beaches from Trenches and Cores
NASA Astrophysics Data System (ADS)
Wadman, H. M.; Gallagher, E. L.; McNinch, J.; Reniers, A.; Koktas, M.
2014-12-01
Recent research suggests that even small scale variations in grain size in the shallow stratigraphy of sandy beaches can significantly influence large-scale morphology change. However, few quantitative studies of variations in shallow stratigraphic layers, as differentiated by variations in mean grain size, have been conducted, in no small part due to the difficulty of collecting undisturbed sediment cores in the energetic lower beach and swash zone. Due to this lack of quantitative stratigraphic grain size data, most coastal morphology models assume that uniform grain sizes dominate sandy beaches, allowing for little to no temporal or spatial variations in grain size heterogeneity. In a first-order attempt to quantify small-scale, temporal and spatial variations in beach stratigraphy, thirty-five vibracores were collected at the USACE Field Research Facility (FRF), Duck, NC, in March-April of 2014 using the FRF's Coastal Research and Amphibious Buggy (CRAB). Vibracores were collected at set locations along a cross-shore profile from the toe of the dune to a water depth of ~1m in the surf zone. Vibracores were repeatedly collected from the same locations throughout a tidal cycle, as well as pre- and post a nor'easter event. In addition, two ~1.5m deep trenches were dug in the cross-shore and along-shore directions (each ~14m in length) after coring was completed to allow better interpretation of the stratigraphic sequences observed in the vibracores. The elevations of coherent stratigraphic layers, as revealed in vibracore-based fence diagrams and trench data, are used to relate specific observed stratigraphic sequences to individual storm events observed at the FRF. These data provide a first-order, quantitative examination of the small-scale temporal and spatial variability of shallow grain size along an open, sandy coastline. The data will be used to refine morphological model predictions to include variations in grain size and associated shallow stratigraphy.
A New Event Builder for CMS Run II
NASA Astrophysics Data System (ADS)
Albertsson, K.; Andre, J.-M.; Andronidis, A.; Behrens, U.; Branson, J.; Chaze, O.; Cittolin, S.; Darlea, G.-L.; Deldicque, C.; Dobson, M.; Dupont, A.; Erhan, S.; Gigi, D.; Glege, F.; Gomez-Ceballos, G.; Hegeman, J.; Holzner, A.; Jimenez-Estupiñán, R.; Masetti, L.; Meijers, F.; Meschi, E.; Mommsen, R. K.; Morovic, S.; Nunez-Barranco-Fernandez, C.; O'Dell, V.; Orsini, L.; Paus, C.; Petrucci, A.; Pieri, M.; Racz, A.; Roberts, P.; Sakulin, H.; Schwick, C.; Stieger, B.; Sumorok, K.; Veverka, J.; Zaza, S.; Zejdl, P.
2015-12-01
The data acquisition system (DAQ) of the CMS experiment at the CERN Large Hadron Collider (LHC) assembles events at a rate of 100 kHz, transporting event data at an aggregate throughput of 100GB/s to the high-level trigger (HLT) farm. The DAQ system has been redesigned during the LHC shutdown in 2013/14. The new DAQ architecture is based on state-of-the-art network technologies for the event building. For the data concentration, 10/40 Gbps Ethernet technologies are used together with a reduced TCP/IP protocol implemented in FPGA for a reliable transport between custom electronics and commercial computing hardware. A 56 Gbps Infiniband FDR CLOS network has been chosen for the event builder. This paper discusses the software design, protocols, and optimizations for exploiting the hardware capabilities. We present performance measurements from small-scale prototypes and from the full-scale production system.
A new event builder for CMS Run II
Albertsson, K.; Andre, J-M; Andronidis, A.; ...
2015-12-23
The data acquisition system (DAQ) of the CMS experiment at the CERN Large Hadron Collider (LHC) assembles events at a rate of 100 kHz, transporting event data at an aggregate throughput of 100 GB/s to the high-level trigger (HLT) farm. The DAQ system has been redesigned during the LHC shutdown in 2013/14. The new DAQ architecture is based on state-of-the-art network technologies for the event building. For the data concentration, 10/40 Gbps Ethernet technologies are used together with a reduced TCP/IP protocol implemented in FPGA for a reliable transport between custom electronics and commercial computing hardware. A 56 Gbps Innibandmore » FDR CLOS network has been chosen for the event builder. This paper discusses the software design, protocols, and optimizations for exploiting the hardware capabilities. In conclusion, ee present performance measurements from small-scale prototypes and from the full-scale production system.« less
A new model for extinction and recolonization in two dimensions: quantifying phylogeography.
Barton, Nicholas H; Kelleher, Jerome; Etheridge, Alison M
2010-09-01
Classical models of gene flow fail in three ways: they cannot explain large-scale patterns; they predict much more genetic diversity than is observed; and they assume that loosely linked genetic loci evolve independently. We propose a new model that deals with these problems. Extinction events kill some fraction of individuals in a region. These are replaced by offspring from a small number of parents, drawn from the preexisting population. This model of evolution forwards in time corresponds to a backwards model, in which ancestral lineages jump to a new location if they are hit by an event, and may coalesce with other lineages that are hit by the same event. We derive an expression for the identity in allelic state, and show that, over scales much larger than the largest event, this converges to the classical value derived by Wright and Malécot. However, rare events that cover large areas cause low genetic diversity, large-scale patterns, and correlations in ancestry between unlinked loci. © 2010 The Author(s). Journal compilation © 2010 The Society for the Study of Evolution.
GC13I-0857: Designing a Frost Forecasting Service for Small Scale Tea Farmers in East Africa
NASA Technical Reports Server (NTRS)
Adams, Emily C.; Wanjohi, James Nyaga; Ellenburg, Walter Lee; Limaye, Ashutosh S.; Mugo, Robinson M.; Flores Cordova, Africa Ixmucane; Irwin, Daniel; Case, Jonathan; Malaso, Susan; Sedah, Absae
2017-01-01
Kenya is the third largest tea exporter in the world, producing 10% of the world's black tea. Sixty percent of this production occurs largely by small scale tea holders, with an average farm size of 1.04 acres, and an annual net income of $1,075. According to a recent evaluation, a typical frost event in the tea growing region causes about $200 dollars in losses which can be catastrophic for a small holder farm. A 72-hour frost forecast would provide these small-scale tea farmers with enough notice to reduce losses by approximately 80 USD annually. With this knowledge, SERVIR, a joint NASA-USAID initiative that brings Earth observations for improved decision making in developing countries, sought to design a frost monitoring and forecasting service that would provide farmers with enough lead time to react to and protect against a forecasted frost occurrence on their farm. SERVIR Eastern and Southern Africa, through its implementing partner, the Regional Centre for Mapping of Resources for Development (RCMRD), designed a service that included multiple stakeholder engagement events whereby stakeholders from the tea industry value chain were invited to share their experiences so that the exact needs and flow of information could be identified. This unique event allowed enabled the design of a service that fit the specifications of the stakeholders. The monitoring service component uses the MODIS Land Surface Temperature product to identify frost occurrences in near-real time. The prediction component, currently under testing, uses the 2-m air temperature, relative humidity, and 10-m wind speed from a series of high-resolution Weather Research and Forecasting (WRF) numerical weather prediction model runs over eastern Kenya as inputs into a frost prediction algorithm. Accuracy and sensitivity of the algorithm is being assessed with observations collected from the farmers using a smart phone app developed specifically to report frost occurrences, and from data shared through our partner network developed at the stakeholder engagement meeting. This presentation will illustrate the efficacy of our frost forecasting algorithm, and a way forward for incorporating these forecasts in a meaningful way to the key decision makers - the small-scale farmers of East Africa.
Designing a Frost Forecasting Service for Small Scale Tea Farmers in East Africa
NASA Astrophysics Data System (ADS)
Adams, E. C.; Nyaga, J. W.; Ellenburg, W. L.; Limaye, A. S.; Mugo, R. M.; Flores Cordova, A. I.; Irwin, D.; Case, J.; Malaso, S.; Sedah, A.
2017-12-01
Kenya is the third largest tea exporter in the world, producing 10% of the world's black tea. Sixty percent of this production occurs largely by small scale tea holders, with an average farm size of 1.04 acres, and an annual net income of 1,075. According to a recent evaluation, a typical frost event in the tea growing region causes about 200 dollars in losses which can be catastrophic for a small holder farm. A 72-hour frost forecast would provide these small-scale tea farmers with enough notice to reduce losses by approximately $80 annually. With this knowledge, SERVIR, a joint NASA-USAID initiative that brings Earth observations for improved decision making in developing countries, sought to design a frost monitoring and forecasting service that would provide farmers with enough lead time to react to and protect against a forecasted frost occurrence on their farm. SERVIR Eastern and Southern Africa, through its implementing partner, the Regional Centre for Mapping of Resources for Development (RCMRD), designed a service that included multiple stakeholder engagement events whereby stakeholders from the tea industry value chain were invited to share their experiences so that the exact needs and flow of information could be identified. This unique event allowed enabled the design of a service that fit the specifications of the stakeholders. The monitoring service component uses the MODIS Land Surface Temperature product to identify frost occurrences in near-real time. The prediction component, currently under testing, uses the 2-m air temperature, relative humidity, and 10-m wind speed from a series of high-resolution Weather Research and Forecasting (WRF) numerical weather prediction model runs over eastern Kenya as inputs into a frost prediction algorithm. Accuracy and sensitivity of the algorithm is being assessed with observations collected from the farmers using a smart phone app developed specifically to report frost occurrences, and from data shared through our partner network developed at the stakeholder engagement meeting. This presentation will illustrate the efficacy of our frost forecasting algorithm, and a way forward for incorporating these forecasts in a meaningful way to the key decision makers - the small-scale farmers of East Africa.
Laboratory generated M -6 earthquakes
McLaskey, Gregory C.; Kilgore, Brian D.; Lockner, David A.; Beeler, Nicholas M.
2014-01-01
We consider whether mm-scale earthquake-like seismic events generated in laboratory experiments are consistent with our understanding of the physics of larger earthquakes. This work focuses on a population of 48 very small shocks that are foreshocks and aftershocks of stick–slip events occurring on a 2.0 m by 0.4 m simulated strike-slip fault cut through a large granite sample. Unlike the larger stick–slip events that rupture the entirety of the simulated fault, the small foreshocks and aftershocks are contained events whose properties are controlled by the rigidity of the surrounding granite blocks rather than characteristics of the experimental apparatus. The large size of the experimental apparatus, high fidelity sensors, rigorous treatment of wave propagation effects, and in situ system calibration separates this study from traditional acoustic emission analyses and allows these sources to be studied with as much rigor as larger natural earthquakes. The tiny events have short (3–6 μs) rise times and are well modeled by simple double couple focal mechanisms that are consistent with left-lateral slip occurring on a mm-scale patch of the precut fault surface. The repeatability of the experiments indicates that they are the result of frictional processes on the simulated fault surface rather than grain crushing or fracture of fresh rock. Our waveform analysis shows no significant differences (other than size) between the M -7 to M -5.5 earthquakes reported here and larger natural earthquakes. Their source characteristics such as stress drop (1–10 MPa) appear to be entirely consistent with earthquake scaling laws derived for larger earthquakes.
Multi-scale comparison of source parameter estimation using empirical Green's function approach
NASA Astrophysics Data System (ADS)
Chen, X.; Cheng, Y.
2015-12-01
Analysis of earthquake source parameters requires correction of path effect, site response, and instrument responses. Empirical Green's function (EGF) method is one of the most effective methods in removing path effects and station responses by taking the spectral ratio between a larger and smaller event. Traditional EGF method requires identifying suitable event pairs, and analyze each event individually. This allows high quality estimations for strictly selected events, however, the quantity of resolvable source parameters is limited, which challenges the interpretation of spatial-temporal coherency. On the other hand, methods that exploit the redundancy of event-station pairs are proposed, which utilize the stacking technique to obtain systematic source parameter estimations for a large quantity of events at the same time. This allows us to examine large quantity of events systematically, facilitating analysis of spatial-temporal patterns, and scaling relationship. However, it is unclear how much resolution is scarified during this process. In addition to the empirical Green's function calculation, choice of model parameters and fitting methods also lead to biases. Here, using two regional focused arrays, the OBS array in the Mendocino region, and the borehole array in the Salton Sea geothermal field, I compare the results from the large scale stacking analysis, small-scale cluster analysis, and single event-pair analysis with different fitting methods to systematically compare the results within completely different tectonic environment, in order to quantify the consistency and inconsistency in source parameter estimations, and the associated problems.
Guerrier, Claire; Holcman, David
2016-10-18
Binding of molecules, ions or proteins to small target sites is a generic step of cell activation. This process relies on rare stochastic events where a particle located in a large bulk has to find small and often hidden targets. We present here a hybrid discrete-continuum model that takes into account a stochastic regime governed by rare events and a continuous regime in the bulk. The rare discrete binding events are modeled by a Markov chain for the encounter of small targets by few Brownian particles, for which the arrival time is Poissonian. The large ensemble of particles is described by mass action laws. We use this novel model to predict the time distribution of vesicular release at neuronal synapses. Vesicular release is triggered by the binding of few calcium ions that can originate either from the synaptic bulk or from the entry through calcium channels. We report here that the distribution of release time is bimodal although it is triggered by a single fast action potential. While the first peak follows a stimulation, the second corresponds to the random arrival over much longer time of ions located in the synaptic terminal to small binding vesicular targets. To conclude, the present multiscale stochastic modeling approach allows studying cellular events based on integrating discrete molecular events over several time scales.
Dislocation dynamics simulations of plasticity at small scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Caizhi
2010-01-01
As metallic structures and devices are being created on a dimension comparable to the length scales of the underlying dislocation microstructures, the mechanical properties of them change drastically. Since such small structures are increasingly common in modern technologies, there is an emergent need to understand the critical roles of elasticity, plasticity, and fracture in small structures. Dislocation dynamics (DD) simulations, in which the dislocations are the simulated entities, offer a way to extend length scales beyond those of atomistic simulations and the results from DD simulations can be directly compared with the micromechanical tests. The primary objective of this researchmore » is to use 3-D DD simulations to study the plastic deformation of nano- and micro-scale materials and understand the correlation between dislocation motion, interactions and the mechanical response. Specifically, to identify what critical events (i.e., dislocation multiplication, cross-slip, storage, nucleation, junction and dipole formation, pinning etc.) determine the deformation response and how these change from bulk behavior as the system decreases in size and correlate and improve our current knowledge of bulk plasticity with the knowledge gained from the direct observations of small-scale plasticity. Our simulation results on single crystal micropillars and polycrystalline thin films can march the experiment results well and capture the essential features in small-scale plasticity. Furthermore, several simple and accurate models have been developed following our simulation results and can reasonably predict the plastic behavior of small scale materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilke, Jeremiah J; Kenny, Joseph P.
2015-02-01
Discrete event simulation provides a powerful mechanism for designing and testing new extreme- scale programming models for high-performance computing. Rather than debug, run, and wait for results on an actual system, design can first iterate through a simulator. This is particularly useful when test beds cannot be used, i.e. to explore hardware or scales that do not yet exist or are inaccessible. Here we detail the macroscale components of the structural simulation toolkit (SST). Instead of depending on trace replay or state machines, the simulator is architected to execute real code on real software stacks. Our particular user-space threading frameworkmore » allows massive scales to be simulated even on small clusters. The link between the discrete event core and the threading framework allows interesting performance metrics like call graphs to be collected from a simulated run. Performance analysis via simulation can thus become an important phase in extreme-scale programming model and runtime system design via the SST macroscale components.« less
Magnetosheath quasi-trapped distributions and ion flows associated with reconnection
NASA Technical Reports Server (NTRS)
Neff, J. E.; Speiser, T. W.; Williams, D. J.
1987-01-01
Using a sample of ISEE 1 and 2 magnetopause crossings previously identified as times of quasi-steady reconnection, flows of medium energy ions in the magnetosheath are identified. The paper then investigates the particle pitch angle distribution immediately before and after each of these events for the signature of quasi-trapped distributions of energetic ions. Several of the ion flows identified were observed simultaneously with previously identified flux transfer events (FTEs). While FTEs identified from the magnetometer tracings typically show evidence of ion flows, the converse is not necessarily true. However, all properties of the magnetosheath ion flows are the same regardless of whether an FTE can be identified from the magnetometer data. Evidence is found for small-scale reconnection processes (FTEs, ion flows) embedded within a larger region of interconnected field, which is traced out by the quasi-trapped particles. Quasi-trapped distributions of medium-energy ions are seen to sandwich reconnection-associated ion flows in the magnetosheath. The results of this survey have been used to suggest a morphology for reconnection events that incorporates both large- and small-scale features.
Controls on carbon consumption during Alaskan wildland fires
Eric S. Kasischke; Elizabeth E. Hoy
2012-01-01
A method was developed to estimate carbon consumed during wildland fires in interior Alaska based on medium-spatial scale data (60 m cell size) generated on a daily basis. Carbon consumption estimates were developed for 41 fire events in the large fire year of 2004 and 34 fire events from the small fire years of 2006-2008. Total carbon consumed during the large fire...
Interplanetary field and plasma during initial phase of geomagnetic storms
NASA Technical Reports Server (NTRS)
Patel, V. L.; Wiskerchen, M. J.
1975-01-01
A study has been conducted of a large number of geomagnetic storms occurring during the period from 1966 to 1970. Questions of data selection are discussed and the large-scale interplanetary magnetic field during the initial phase is examined. Small-scale interplanetary fields during the initial phase are also considered, taking into account important features of small-scale variations in the interplanetary field and plasma for three storms. Details concerning 23 geomagnetic storms and the interplanetary magnetic field are presented in a table. A study of the initial phase of these storms indicates that in most of these events, the solar-ecliptic Z component of the interplanetary magnetic field turns southward when the main phase decrease begins.
A mechanistic assessment of nutrient flushing at the catchment scale
Willem J. van Verseveld; Jeffrey J. McDonnell; Kate Lajtha
2008-01-01
This paper mechanistically assesses the flushing mechanism of DOC, DON, and DIN at the hillslope and catchment scales during two storm events, in a small catchment (WS10), H.J. Andrews Experimental Forest in the western Cascade Mountains of Oregon. Using a combination of natural tracer and hydrometric data, and end-member mixing analysis, we were able to describe the...
Discrete Event Modeling and Massively Parallel Execution of Epidemic Outbreak Phenomena
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perumalla, Kalyan S; Seal, Sudip K
2011-01-01
In complex phenomena such as epidemiological outbreaks, the intensity of inherent feedback effects and the significant role of transients in the dynamics make simulation the only effective method for proactive, reactive or post-facto analysis. The spatial scale, runtime speed, and behavioral detail needed in detailed simulations of epidemic outbreaks make it necessary to use large-scale parallel processing. Here, an optimistic parallel execution of a new discrete event formulation of a reaction-diffusion simulation model of epidemic propagation is presented to facilitate in dramatically increasing the fidelity and speed by which epidemiological simulations can be performed. Rollback support needed during optimistic parallelmore » execution is achieved by combining reverse computation with a small amount of incremental state saving. Parallel speedup of over 5,500 and other runtime performance metrics of the system are observed with weak-scaling execution on a small (8,192-core) Blue Gene / P system, while scalability with a weak-scaling speedup of over 10,000 is demonstrated on 65,536 cores of a large Cray XT5 system. Scenarios representing large population sizes exceeding several hundreds of millions of individuals in the largest cases are successfully exercised to verify model scalability.« less
Poindexter, Erin K; Nazem, Sarra; Forster, Jeri E
2017-01-15
The interpersonal theory of suicide suggests three proximal risk factors for suicide: perceived burdensomeness, thwarted belongingness, and acquired capability. Previous literature indicates that repetitive exposure to painful and provocative events is related to increased acquired capability for suicide. Despite this, research related to the assessment of painful and provocative events has been insufficient. Research has inconsistently administered the Painful and Provocative Events Scale (PPES; a painful and provocative events assessment), and no study has examined the factor structure of the English PPES. This study explored the factor structure of the PPES and the relation between factors and fearlessness about death. The sample was a cross-sectional, self-report study comprised of 119 Veterans (Mage = 46.5, SD = 13.5). Findings from an exploratory factor analysis indicated a four-factor solution for the PPES; however, no factor from the PPES significantly related to fearlessness about death (measured by the Acquired Capability for Suicide Scale - Fearlessness About Death Scale; all p >.21). Cross-sectional, small Veteran sample. Findings suggest that the PPES lacks the psychometric properties necessary to reliably investigate painful and provocative factors. Consequently, this measure may not reliably capture and explain how painful and provocative events relate to fearlessness about death, which is a barrier to improving suicide risk assessment and prediction. Recommendations for the construction of a new PPES are offered. Published by Elsevier B.V.
Spatiotemporal stick-slip phenomena in a coupled continuum-granular system
NASA Astrophysics Data System (ADS)
Ecke, Robert
In sheared granular media, stick-slip behavior is ubiquitous, especially at very small shear rates and weak drive coupling. The resulting slips are characteristic of natural phenomena such as earthquakes and well as being a delicate probe of the collective dynamics of the granular system. In that spirit, we developed a laboratory experiment consisting of sheared elastic plates separated by a narrow gap filled with quasi-two-dimensional granular material (bi-dispersed nylon rods) . We directly determine the spatial and temporal distributions of strain displacements of the elastic continuum over 200 spatial points located adjacent to the gap. Slip events can be divided into large system-spanning events and spatially distributed smaller events. The small events have a probability distribution of event moment consistent with an M - 3 / 2 power law scaling and a Poisson distributed recurrence time distribution. Large events have a broad, log-normal moment distribution and a mean repetition time. As the applied normal force increases, there are fractionally more (less) large (small) events, and the large-event moment distribution broadens. The magnitude of the slip motion of the plates is well correlated with the root-mean-square displacements of the granular matter. Our results are consistent with mean field descriptions of statistical models of earthquakes and avalanches. We further explore the high-speed dynamics of system events and also discuss the effective granular friction of the sheared layer. We find that large events result from stored elastic energy in the plates in this coupled granular-continuum system.
NASA Astrophysics Data System (ADS)
Moncoulon, D.; Labat, D.; Ardon, J.; Leblois, E.; Onfroy, T.; Poulard, C.; Aji, S.; Rémy, A.; Quantin, A.
2014-09-01
The analysis of flood exposure at a national scale for the French insurance market must combine the generation of a probabilistic event set of all possible (but which have not yet occurred) flood situations with hazard and damage modeling. In this study, hazard and damage models are calibrated on a 1995-2010 historical event set, both for hazard results (river flow, flooded areas) and loss estimations. Thus, uncertainties in the deterministic estimation of a single event loss are known before simulating a probabilistic event set. To take into account at least 90 % of the insured flood losses, the probabilistic event set must combine the river overflow (small and large catchments) with the surface runoff, due to heavy rainfall, on the slopes of the watershed. Indeed, internal studies of the CCR (Caisse Centrale de Reassurance) claim database have shown that approximately 45 % of the insured flood losses are located inside the floodplains and 45 % outside. Another 10 % is due to sea surge floods and groundwater rise. In this approach, two independent probabilistic methods are combined to create a single flood loss distribution: a generation of fictive river flows based on the historical records of the river gauge network and a generation of fictive rain fields on small catchments, calibrated on the 1958-2010 Météo-France rain database SAFRAN. All the events in the probabilistic event sets are simulated with the deterministic model. This hazard and damage distribution is used to simulate the flood losses at the national scale for an insurance company (Macif) and to generate flood areas associated with hazard return periods. The flood maps concern river overflow and surface water runoff. Validation of these maps is conducted by comparison with the address located claim data on a small catchment (downstream Argens).
Extremely high wall-shear stress events in a turbulent boundary layer
NASA Astrophysics Data System (ADS)
Pan, Chong; Kwon, Yongseok
2018-04-01
The present work studies the fluctuating characteristics of the streamwise wall-shear stress in a DNS of a turbulent boundary layer at Re τ =1500 from a structural view. The two-dimensional field of the fluctuating friction velocity u‧ τ (x,z) is decomposed into the large- and small-scale components via a recently proposed scale separation algorithm, Quasi-bivariate Variational Mode Decomposition (QB-VMD). Both components are found to be dominated by streak-like structures, which can be regarded as the wall signature of the inner-layer streaks and the outer-layer LSMs, respectively. Extreme positive/negative wall-shear stress fluctuation events are detected in the large-scale component. The former’s occurrence frequency is nearly one order of magnitude higher than the latter; therefore, they contribute a significant portion of the long tail of the wall-shear stress distribution. Both two-point correlations and conditional averages show that these extreme positive wall-shear stress events are embedded in the large-scale positive u‧ τ streaks. They seem to be formed by near-wall ‘splatting’ process, which are related to strong finger-like sweeping (Q4) events originated from the outer-layer positive LSMs.
Nanoflares, Spicules, and Other Small-Scale Dynamic Phenomena on the Sun
NASA Technical Reports Server (NTRS)
Klimchuk, James
2010-01-01
There is abundant evidence of highly dynamic phenomena occurring on very small scales in the solar atmosphere. For example, the observed pr operties of many coronal loops can only be explained if the loops are bundles of unresolved strands that are heated impulsively by nanoflares. Type II spicules recently discovered by Hinode are an example of small-scale impulsive events occurring in the chromosphere. The exist ence of these and other small-scale phenomena is not surprising given the highly structured nature of the magnetic field that is revealed by photospheric observations. Dynamic phenomena also occur on much lar ger scales, including coronal jets, flares, and CMEs. It is tempting to suggest that these different phenomena are all closely related and represent a continuous distribution of sizes and energies. However, this is a dangerous over simplification in my opinion. While it is tru e that the phenomena all involve "magnetic reconnection" (the changin g of field line connectivity) in some form, how this occurs depends s trongly on the magnetic geometry. A nanoflare resulting from the interaction of tangled magnetic strands within a confined coronal loop is much different from a major flare occurring at the current sheet form ed when a CME rips open an active region. I will review the evidence for ubiquitous small-scale dynamic phenomena on the Sun and discuss wh y different phenomena are not all fundamentally the same.
Memory effect in M ≥ 6 earthquakes of South-North Seismic Belt, Mainland China
NASA Astrophysics Data System (ADS)
Wang, Jeen-Hwa
2013-07-01
The M ≥ 6 earthquakes occurred in the South-North Seismic Belt, Mainland China, during 1901-2008 are taken to study the possible existence of memory effect in large earthquakes. The fluctuation analysis technique is applied to analyze the sequences of earthquake magnitude and inter-event time represented in the natural time domain. Calculated results show that the exponents of scaling law of fluctuation versus window length are less than 0.5 for the sequences of earthquake magnitude and inter-event time. The migration of earthquakes in study is taken to discuss the possible correlation between events. The phase portraits of two sequent magnitudes and two sequent inter-event times are also applied to explore if large (or small) earthquakes are followed by large (or small) events. Together with all kinds of given information, we conclude that the earthquakes in study is short-term correlated and thus the short-term memory effect would be operative.
NASA Astrophysics Data System (ADS)
Tang, Y.; Birch, S.; Hayes, A.; Kirk, R. L.; Kutsop, N. W. S.; Squyres, S. W.
2017-12-01
Observations from ESA's Rosetta spacecraft of comet 67P/Churyumov-Gerasimenko (67P) have provided insights into the geological processes that act to modify the surface of a small, primitive body. The landscapes of 67P are shaped by both large scale violent changes, such as cliff collapses and jet events, as well as smaller and more subtle changes such as the formation of pits and ripples within the larger-scale granular deposits. Explosive jets are located through triangulating the same jet in multiple images. They appear to originate from locations close to numerous newly formed, small-scale pits, which were only observed after known jet events (for example, the jet observed on March 11th, 2015, in image N20150311T053737597ID30F22). This implies a possible link between these two dynamical processes. We generated high-resolution photoclinometric digital terrain models (DTM) of the surface of 67P (at 1.5m/pixel) in locations where recent jet events were observed and over surfaces where newly formed pits are observed. A comparison of DTMs generated of the surface both before and after the appearance of the pits provides insight to the magnitude of dynamical changes, including the volume of the ejected material. By tracking the change in the surface topography at such high resolution, we constrain both the volume of materials that are ejected from the surface during the jet event, and of materials that are retained in nearby deposits. By studying these events and their aftermath, it will be possible to formulate numerical models as to the formation of the jets and explain why and how they occur. We will use this information in conjunction with numerical modeling of the large-scale global transport of sedimentary materials on 67P, to facilitate a better understanding of cometary landscape evolution.
NASA Astrophysics Data System (ADS)
Voigt, M.; Lorenz, P.; Kruschke, T.; Osinski, R.; Ulbrich, U.; Leckebusch, G. C.
2012-04-01
Winterstorms and related gusts can cause extensive socio-economic damages. Knowledge about the occurrence and the small scale structure of such events may help to make regional estimations of storm losses. For a high spatial and temporal representation, the use of dynamical downscaling methods (RCM) is a cost-intensive and time-consuming option and therefore only applicable for a limited number of events. The current study explores a methodology to provide a statistical downscaling, which offers small scale structured gust fields from an extended large scale structured eventset. Radial-basis-function (RBF) networks in combination with bidirectional Kohonen (BDK) maps are used to generate the gustfields on a spatial resolution of 7 km from the 6-hourly mean sea level pressure field from ECMWF reanalysis data. BDK maps are a kind of neural network which handles supervised classification problems. In this study they are used to provide prototypes for the RBF network and give a first order approximation for the output data. A further interpolation is done by the RBF network. For the training process the 50 most extreme storm events over the North Atlantic area from 1957 to 2011 are used, which have been selected from ECMWF reanalysis datasets ERA40 and ERA-Interim by an objective wind based tracking algorithm. These events were downscaled dynamically by application of the DWD model chain GME → COSMO-EU. Different model parameters and their influence on the quality of the generated high-resolution gustfields are studied. It is shown that the statistical RBF network approach delivers reasonable results in modeling the regional gust fields for untrained events.
Characteristics and Geoeffectiveness of Small-scale Magnetic Flux Ropes in the Solar Wind
NASA Astrophysics Data System (ADS)
Kim, Myeong Joon; Park, Kyung Sun; Lee, Dae-Young; Choi, Cheong-Rim; Kim, Rok Soon; Cho, Kyungsuk; Choi, Kyu-Cheol; Kim, Jaehun
2017-12-01
Magnetic flux ropes, often observed during intervals of interplanetary coronal mass ejections, have long been recognized to be critical in space weather. In this work, we focus on magnetic flux rope structure but on a much smaller scale, and not necessarily related to interplanetary coronal mass ejections. Using near-Earth solar wind advanced composition explorer (ACE) observations from 1998 to 2016, we identified a total of 309 small-scale magnetic flux ropes (SMFRs). We compared the characteristics of identified SMFR events with those of normal magnetic cloud (MC) events available from the existing literature. First, most of the MCs and SMFRs have similar values of accompanying solar wind speed and proton densities. However, the average magnetic field intensity of SMFRs is weaker ( 7.4 nT) than that of MCs ( 10.6 nT). Also, the average duration time and expansion speed of SMFRs are 2.5 hr and 2.6 km/s, respectively, both of which are smaller by a factor of 10 than those of MCs. In addition, we examined the geoeffectiveness of SMFR events by checking their correlation with magnetic storms and substorms. Based on the criteria Sym-H < -50 nT (for identification of storm occurrence) and AL < -200 nT (for identification of substorm occurrence), we found that for 88 SMFR events (corresponding to 28.5 % of the total SMFR events), substorms occurred after the impact of SMFRs, implying a possible triggering of substorms by SMFRs. In contrast, we found only two SMFRs that triggered storms. We emphasize that, based on a much larger database than used in previous studies, all these previously known features are now firmly confirmed by the current work. Accordingly, the results emphasize the significance of SMFRs from the viewpoint of possible triggering of substorms.
NASA Astrophysics Data System (ADS)
Poletti, Maria Laura; Pignone, Flavio; Rebora, Nicola; Silvestro, Francesco
2017-04-01
The exposure of the urban areas to flash-floods is particularly significant to Mediterranean coastal cities, generally densely-inhabited. Severe rainfall events often associated to intense and organized thunderstorms produced, during the last century, flash-floods and landslides causing serious damages to urban areas and in the worst events led to human losses. The temporal scale of these events has been observed strictly linked to the size of the catchments involved: in the Mediterranean area a great number of catchments that pass through coastal cities have a small drainage area (less than 100 km2) and a corresponding hydrologic response timescale in the order of a few hours. A suitable nowcasting chain is essential for the on time forecast of this kind of events. In fact meteorological forecast systems are unable to predict precipitation at the scale of these events, small both at spatial (few km) and temporal (hourly) scales. Nowcasting models, covering the time interval of the following two hours starting from the observation try to extend the predictability limits of the forecasting models in support of real-time flood alert system operations. This work aims to present the use of hydrological models coupled with nowcasting techniques. The nowcasting model PhaSt furnishes an ensemble of equi-probable future precipitation scenarios on time horizons of 1-3 h starting from the most recent radar observations. The coupling of the nowcasting model PhaSt with the hydrological model Continuum allows to forecast the flood with a few hours in advance. In this way it is possible to generate different discharge prediction for the following hours and associated return period maps: these maps can be used as a support in the decisional process for the warning system.
Best Practices in the Evaluation of Large-scale STEM-focused Events: A Review of Recent Literature
NASA Astrophysics Data System (ADS)
Shebby, S.; Cobb, W. H.; Buxner, S.; Shipp, S. S.
2015-12-01
Each year, the National Aeronautics and Space Administration (NASA) sponsors a variety of educational events to share information with educators, students, and the general public. Intended outcomes of these events include increased interest in and awareness of the mission and goals of NASA. Events range in size from relatively small family science nights at a local school to large-scale mission and celestial event celebrations involving thousands of members of the general public. To support community members in designing event evaluations, the Science Mission Directorate (SMD) Planetary Science Forum sponsored the creation of a Best Practices Guide. The guide was generated by reviewing published large-scale event evaluation reports; however, the best practices described within are pertinent for all event organizers and evaluators regardless of event size. Each source included in the guide identified numerous challenges to conducting their event evaluation. These included difficulty in identifying extant instruments or items, collecting representative data, and disaggregating data to inform different evaluation questions. Overall, the guide demonstrates that evaluations of the large-scale events are generally done at a very basic level, with the types of data collected limited to observable demographic information and participant reactions collected via online survey. In addition to these findings, this presentation will describe evaluation best practices that will help practitioners move beyond these basic indicators and examine how to make the evaluation process an integral—and valuable—element of event planning, ultimately informing event outcomes and impacts. It will provide detailed information on five recommendations presented in the guide: 1) consider evaluation methodology, including data analysis, in advance; 2) design data collection instruments well in advance of the event; 3) collect data at different times and from multiple sources; 4) use technology to make the job easier; and 5) be aware of how challenging it is to measure impact.
NASA Astrophysics Data System (ADS)
Abbasi, R. U.; Abu-Zayyad, T.; Amann, J. F.; Archbold, G.; Atkins, R.; Bellido, J. A.; Belov, K.; Belz, J. W.; BenZvi, S.; Bergman, D. R.; Boyer, J. H.; Burt, G. W.; Cao, Z.; Clay, R. W.; Connolly, B. M.; Dawson, B. R.; Deng, W.; Fedorova, Y.; Findlay, J.; Finley, C. B.; Hanlon, W. F.; Hoffman, C. M.; Holzscheiter, M. H.; Hughes, G. A.; Hüntemeyer, P.; Jui, C. C. H.; Kim, K.; Kirn, M. A.; Knapp, B. C.; Loh, E. C.; Maestas, M. M.; Manago, N.; Mannel, E. J.; Marek, L. J.; Martens, K.; Matthews, J. A. J.; Matthews, J. N.; O'Neill, A.; Painter, C. A.; Perera, L.; Reil, K.; Riehle, R.; Roberts, M. D.; Sasaki, M.; Schnetzer, S. R.; Seman, M.; Simpson, K. M.; Sinnis, G.; Smith, J. D.; Snow, R.; Sokolsky, P.; Song, C.; Springer, R. W.; Stokes, B. T.; Thomas, J. R.; Thomas, S. B.; Thomson, G. B.; Tupa, D.; Westerhoff, S.; Wiencke, L. R.; Zech, A.; HIRES Collaboration
2004-08-01
The High Resolution Fly's Eye (HiRes) experiment is an air fluorescence detector which, operating in stereo mode, has a typical angular resolution of 0.6d and is sensitive to cosmic rays with energies above 1018 eV. The HiRes cosmic-ray detector is thus an excellent instrument for the study of the arrival directions of ultra-high-energy cosmic rays. We present the results of a search for anisotropies in the distribution of arrival directions on small scales (<5°) and at the highest energies (>1019 eV). The search is based on data recorded between 1999 December and 2004 January, with a total of 271 events above 1019 eV. No small-scale anisotropy is found, and the strongest clustering found in the HiRes stereo data is consistent at the 52% level with the null hypothesis of isotropically distributed arrival directions.
Kelvin-Helmholtz instability: the ``atom'' of geophysical turbulence?
NASA Astrophysics Data System (ADS)
Smyth, William
2017-11-01
Observations of small-scale turbulence in Earth's atmosphere and oceans have most commonly been interpreted in terms of the Kolmogorov theory of isotropic turbulence, despite the fact that the observed turbulence is significantly anisotropic due to density stratification and sheared large-scale flows. I will describe an alternative picture in which turbulence consists of distinct events that occur sporadically in space and time. The simplest model for an individual event is the ``Kelvin-Helmholtz (KH) ansatz'', in which turbulence relieves the dynamic instability of a localized shear layer. I will summarize evidence that the KH ansatz is a valid description of observed turbulence events, using microstructure measurements from the equatorial Pacific ocean as an example. While the KH ansatz has been under study for many decades and is reasonably well understood, the bigger picture is much less clear. How are the KH events distributed in space and time? How do different events interact with each other? I will describe some tentative steps toward a more thorough understanding.
NASA Technical Reports Server (NTRS)
Moses, J. Daniel; Cook, J. W.; Bartoe, J.-D. F.; Brueckner, G. E.; Dere, K. P.; Webb, D. F.; Davis, John M.; Recely, F.; Martin, S. F.; Zirin, H.
1989-01-01
The Soft X-Ray Imaging Payload and the High Resolution Telescope and Spectrograph (HRTS) instrument were launched from White Sands on 11 December 1987 in coordinated sounding rocket flights to investigate the correspondence of coronal and transition region structures, especially the relationship between X-ray bright points (XBPs) and transition region small spatial scale energetic events. The coaligned data from X-ray images are presented along with maps of sites of transition region energetic events observed in C IV (100,000 K), HRTS 1600 A spectroheliograms of the T sub min region and ground based magnetogram and He I 10830 A images.
The nature of micro CMEs within coronal holes
NASA Astrophysics Data System (ADS)
Bothmer, Volker; Nistico, Giuseppe; Zimbardo, Gaetano; Patsourakos, Spiros; Bosman, Eckhard
Whilst investigating the origin and characteristics of coronal jets and large-scale CMEs identi-fied in data from the SECCHI (Sun Earth Connection Coronal and Heliospheric Investigation) instrument suites on board the two STEREO satellites, we discovered transient events that originated in the low corona with a morphology resembling that of typical three-part struc-tured coronal mass ejections (CMEs). However, the CMEs occurred on considerably smaller spatial scales. In this presentation we show evidence for the existence of small-scale CMEs from inside coronal holes and present quantitative estimates of their speeds and masses. We interprete the origin and evolution of micro CMEs as a natural consequence of the emergence of small-scale magnetic bipoles related to the Sun's ever changing photospheric magnetic flux on various scales and their interactions with the ambient plasma and magnetic field. The analysis of CMEs is performed within the framework of the EU Erasmus and FP7 SOTERIA projects.
Li, Linxin; Simoni, Michela; Küker, Wilhelm; Schulz, Ursula G; Christie, Sharon; Wilcock, Gordon K; Rothwell, Peter M
2013-11-01
White matter changes (WMC) are a common finding on brain imaging and are associated with an increased risk of ischemic stroke. They are most frequent in small vessel stroke; however, in the absence of comparisons with normal controls, it is uncertain whether WMC are also more frequent than expected in other stroke subtypes. Therefore, we compared WMC in pathogenic subtypes of ischemic stroke versus controls in a population-based study. We evaluated the presence and severity of WMC on computed tomography and on magnetic resonance brain imaging using modified Blennow/Fazekas scale and age-related white matter changes scale, respectively, in a population-based study of patients with incident transient ischemic attack or ischemic stroke (Oxford Vascular Study) and in a study of local controls (Oxford Project to Investigate Memory and Ageing) without history of transient ischemic attack or ischemic stroke, with stratification by stroke pathogenesis (Trial of Org10172 in Acute Stroke Treatment classification). Among 1601 consecutive eligible patients with first-ever ischemic events, 1453 patients had computed tomography brain imaging, 562 had magnetic resonance imaging, and 414 patients had both. Compared with 313 controls (all with computed tomography and 131 with magnetic resonance imaging) and after adjustment for age, sex, diabetes mellitus, and hypertension, moderate/severe WMC (age-related white matter changes scale) were more frequent in patients with small vessel events (odds ratio, 3.51 [95% confidence interval, 2.13-5.76]; P<0.0001) but not in large artery (odds ratio, 1.03 [95% confidence interval, 0.64-1.67]), cardioembolic (odds ratio, 0.87 [95% confidence interval, 0.56-1.34]), or undetermined (odds ratio, 0.90 [95% confidence interval, 0.62-1.30]) subtypes. Results were consistent for ischemic stroke and transient ischemic attack, for other scales, and for magnetic resonance imaging and computed tomography separately. In contrast to small vessel ischemic events, WMC were not independently associated with other pathogenic subtypes, suggesting that WMC are unlikely to be an independent risk factor for nonsmall vessel events.
Computing Earthquake Probabilities on Global Scales
NASA Astrophysics Data System (ADS)
Holliday, James R.; Graves, William R.; Rundle, John B.; Turcotte, Donald L.
2016-03-01
Large devastating events in systems such as earthquakes, typhoons, market crashes, electricity grid blackouts, floods, droughts, wars and conflicts, and landslides can be unexpected and devastating. Events in many of these systems display frequency-size statistics that are power laws. Previously, we presented a new method for calculating probabilities for large events in systems such as these. This method counts the number of small events since the last large event and then converts this count into a probability by using a Weibull probability law. We applied this method to the calculation of large earthquake probabilities in California-Nevada, USA. In that study, we considered a fixed geographic region and assumed that all earthquakes within that region, large magnitudes as well as small, were perfectly correlated. In the present article, we extend this model to systems in which the events have a finite correlation length. We modify our previous results by employing the correlation function for near mean field systems having long-range interactions, an example of which is earthquakes and elastic interactions. We then construct an application of the method and show examples of computed earthquake probabilities.
Hall, James C; Jobson, Laura; Langdon, Peter E
2014-09-01
The aims of the study were to (1) revise the Impact of Event Scale-Revised for use with people with intellectual disabilities (IDs), creating the Impact of Event Scale-Intellectual Disabilities (IES-IDs), (2) assess the reliability of the IES-IDs, and (3) compare the IES-IDs to an existing measure trauma-related symptomatology, namely the Lancaster and Northgate Trauma Scale (LANTS), along with measures of anxiety and depression. Forty adults with IDs who had experienced at least one traumatic event were recruited and completed the IES-IDs and the LANTS on two occasions, separated by 2 weeks. Participants also completed the Glasgow Depression Scale and the Glasgow Anxiety Scale, along with the Trauma Information Form which was used to collect information about trauma history. Fifteen per cent of the sample had encountered five or more traumatic events. The IES-IDs and the LANTS had good to excellent internal consistency and test-retest reliability. Both measures correlated with self-report measures of depression and anxiety, although the strength of this correlation was greater with the LANTS. There was a significant positive correlation between trauma frequency and the IES-IDs, while trauma frequency did not correlate with the LANTS. Both the IES-IDs and the LANTS appear to have good reliability. There is a lack of well-developed questionnaires that can be used to assess symptoms of post-traumatic stress disorder (PTSD) in people with intellectual disabilities. The Impact of Event Scale-Revised was augmented creating the Impact of Event Scale-Intellectual Disabilities (IES-IDs). The IES-IDs was shown to have good psychometric properties. The IES-IDs was compared to the Lancaster and Northgate Trauma Scale (LANTS), but the LANTS did not correlate with trauma frequency. However, this study had a small sample size, and a much larger study is needed to examine the factor structure of both the IES-IDs and the LANTS. Future studies should attempt to recruit people with IDs who have a diagnosis of PTSD. © 2014 The British Psychological Society.
Ensemble Kalman filters for dynamical systems with unresolved turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grooms, Ian, E-mail: grooms@cims.nyu.edu; Lee, Yoonsang; Majda, Andrew J.
Ensemble Kalman filters are developed for turbulent dynamical systems where the forecast model does not resolve all the active scales of motion. Coarse-resolution models are intended to predict the large-scale part of the true dynamics, but observations invariably include contributions from both the resolved large scales and the unresolved small scales. The error due to the contribution of unresolved scales to the observations, called ‘representation’ or ‘representativeness’ error, is often included as part of the observation error, in addition to the raw measurement error, when estimating the large-scale part of the system. It is here shown how stochastic superparameterization (amore » multiscale method for subgridscale parameterization) can be used to provide estimates of the statistics of the unresolved scales. In addition, a new framework is developed wherein small-scale statistics can be used to estimate both the resolved and unresolved components of the solution. The one-dimensional test problem from dispersive wave turbulence used here is computationally tractable yet is particularly difficult for filtering because of the non-Gaussian extreme event statistics and substantial small scale turbulence: a shallow energy spectrum proportional to k{sup −5/6} (where k is the wavenumber) results in two-thirds of the climatological variance being carried by the unresolved small scales. Because the unresolved scales contain so much energy, filters that ignore the representation error fail utterly to provide meaningful estimates of the system state. Inclusion of a time-independent climatological estimate of the representation error in a standard framework leads to inaccurate estimates of the large-scale part of the signal; accurate estimates of the large scales are only achieved by using stochastic superparameterization to provide evolving, large-scale dependent predictions of the small-scale statistics. Again, because the unresolved scales contain so much energy, even an accurate estimate of the large-scale part of the system does not provide an accurate estimate of the true state. By providing simultaneous estimates of both the large- and small-scale parts of the solution, the new framework is able to provide accurate estimates of the true system state.« less
Probabilistic Forecasting of Life and Economic Losses due to Natural Disasters
NASA Astrophysics Data System (ADS)
Barton, C. C.; Tebbens, S. F.
2014-12-01
The magnitude of natural hazard events such as hurricanes, tornadoes, earthquakes, and floods are traditionally measured by wind speed, energy release, or discharge. In this study we investigate the scaling of the magnitude of individual events of the 20th and 21stcentury in terms of economic and life losses in the United States and worldwide. Economic losses are subdivided into insured and total losses. Some data sets are inflation or population adjusted. Forecasts associated with these events are of interest to insurance, reinsurance, and emergency management agencies. Plots of cumulative size-frequency distributions of economic and life loss are well-fit by power functions and thus exhibit self-similar scaling. This self-similar scaling property permits use of frequent small events to estimate the rate of occurrence of less frequent larger events. Examining the power scaling behavior of loss data for disasters permits: forecasting the probability of occurrence of a disaster over a wide range of years (1 to 10 to 1,000 years); comparing losses associated with one type of disaster to another; comparing disasters in one region to similar disasters in another region; and, measuring the effectiveness of planning and mitigation strategies. In the United States, life losses due to flood and tornado cumulative-frequency distributions have steeper slopes, indicating that frequent smaller events contribute the majority of losses. In contrast, life losses due to hurricanes and earthquakes have shallower slopes, indicating that the few larger events contribute the majority of losses. Disaster planning and mitigation strategies should incorporate these differences.
Variations in Global Precipitation: Climate-scale to Floods
NASA Technical Reports Server (NTRS)
Adler, Robert
2006-01-01
Variations in global precipitation from climate-scale to small scale are examined using satellite-based analyses of the Global Precipitation Climatology Project (GPCP) and information from the Tropical Rainfall Measuring Mission (TRMM). Global and large regional rainfall variations and possible long-term changes are examined using the 27- year (1979-2005) monthly dataset from the GPCP. In addition to global patterns associated with phenomena such as ENSO, the data set is explored for evidence of longterm change. Although the global change of precipitation in the data set is near zero, the data set does indicate a small upward trend in the Tropics (25S-25N), especially over ocean. Techniques are derived to isolate and eliminate variations due to ENS0 and major volcanic eruptions and the significance of the trend is examined. The status of TRMM estimates is examined in terms of evaluating and improving the long-term global data set. To look at rainfall variations on a much smaller scale TRMM data is used in combination with observations from other satellites to produce a 3-hr resolution, eight-year data set for examination of weather events and for practical applications such as detecting floods. Characteristics of the data set are presented and examples of recent flood events are examined.
NASA Astrophysics Data System (ADS)
Tang, Zhanqi; Jiang, Nan; Zheng, Xiaobo; Wu, Yanhua
2016-05-01
Hot-wire measurements on a turbulent boundary layer flow perturbed by a wall-mounted cylinder roughness element (CRE) are carried out in this study. The cylindrical element protrudes into the logarithmic layer, which is similar to those employed in turbulent boundary layers by Ryan et al. (AIAA J 49:2210-2220, 2011. doi: 10.2514/1.j051012) and Zheng and Longmire (J Fluid Mech 748:368-398, 2014. doi: 10.1017/jfm.2014.185) and in turbulent channel flow by Pathikonda and Christensen (AIAA J 53:1-10, 2014. doi: 10.2514/1.j053407). The similar effects on both the mean velocity and Reynolds stress are observed downstream of the CRE perturbation. The series of hot-wire data are decomposed into large- and small-scale fluctuations, and the characteristics of large- and small-scale bursting process are observed, by comparing the bursting duration, period and frequency between CRE-perturbed case and unperturbed case. It is indicated that the CRE perturbation performs the significant impact on the large- and small-scale structures, but within the different impact scenario. Moreover, the large-scale bursting process imposes a modulation on the bursting events of small-scale fluctuations and the overall trend of modulation is not essentially sensitive to the present CRE perturbation, even the modulation extent is modified. The conditionally averaging fluctuations are also plotted, which further confirms the robustness of the bursting modulation in the present experiments.
Wu, Lei; Jiang, Jun; Li, Gou-Xia; Ma, Xiao-Yi
2018-02-27
The pulsed events of rainstorm erosion on the Loess Plateau are well-known, but little information is available concerning the characteristics of superficial soil erosion processes caused by heavy rainstorms at the watershed scale. This study statistically evaluated characteristics of pulsed runoff-erosion events based on 17 observed rainstorms from 1997-2010 in a small loess watershed on the Loess Plateau of China. Results show that: 1) Rainfall is the fundamental driving force of soil erosion on hillslopes, but the correlations of rainfall-runoff and rainfall-sediment in different rainstorms are often scattered due to infiltration-excess runoff and soil conservation measures. 2) Relationships between runoff and sediment for each rainstorm event can be regressed by linear, power, logarithmic and exponential functions. Cluster Analysis is helpful in classifying runoff-erosion events and formulating soil conservation strategies for rainstorm erosion. 3) Response characteristics of sediment yield are different in different levels of pulsed runoff-erosion events. Affected by rainfall intensity and duration, large changes may occur in the interactions between flow and sediment for different flood events. Results provide new insights into runoff-erosion processes and will assist soil conservation planning in the loess hilly region.
Small Winter Thunderstorm with Sprites and Strong Positive Discharge
NASA Astrophysics Data System (ADS)
Suzuki, Tomoyuki; Hayakawa, Masashi; Michimoto, Koichiro
A sprite campaign was conducted in the Hokuriku area of Japan during a winter of 2004/2005. On the basis of a combined analysis of the data from various instruments (CCD cameras, radar, VHF/LF∼MF lightning mapping system, field mill network, and ELF detector), we studied meteorological and electrical structures for winter thunderstorms and sprite-producing positive discharge. Typical winter sprite parent thunderstorms had a meso-scale cloud area with embedded small convective cells. Some small winter thunderstorms accompanied by the most frequent sprite events were found to cause 2∼3 sprite events during a short interval of about 3∼5 min. When the sprites were observed, the extent of the convective cells at 20 dBZ counter was atmost ∼20 × 20 km. The VHF sources associated with sprites were located near south of the convective cell and were mapped within very small areas of at most ∼10 × 10 km. This fact shows that some small winter thunderstorms can generate large positive charge associated with sprites. We will present the analysis of such a small thunderstorms with sprites and positive lightning discharges.
Multifractal Approach to Time Clustering of Earthquakes. Application to Mt. Vesuvio Seismicity
NASA Astrophysics Data System (ADS)
Codano, C.; Alonzo, M. L.; Vilardo, G.
The clustering structure of the Vesuvian earthquakes occurring is investigated by means of statistical tools: the inter-event time distribution, the running mean and the multifractal analysis. The first cannot clearly distinguish between a Poissonian process and a clustered one due to the difficulties of clearly distinguishing between an exponential distribution and a power law one. The running mean test reveals the clustering of the earthquakes, but looses information about the structure of the distribution at global scales. The multifractal approach can enlighten the clustering at small scales, while the global behaviour remains Poissonian. Subsequently the clustering of the events is interpreted in terms of diffusive processes of the stress in the earth crust.
Non-stationary least-squares complex decomposition for microseismic noise attenuation
NASA Astrophysics Data System (ADS)
Chen, Yangkang
2018-06-01
Microseismic data processing and imaging are crucial for subsurface real-time monitoring during hydraulic fracturing process. Unlike the active-source seismic events or large-scale earthquake events, the microseismic event is usually of very small magnitude, which makes its detection challenging. The biggest trouble of microseismic data is the low signal-to-noise ratio issue. Because of the small energy difference between effective microseismic signal and ambient noise, the effective signals are usually buried in strong random noise. I propose a useful microseismic denoising algorithm that is based on decomposing a microseismic trace into an ensemble of components using least-squares inversion. Based on the predictive property of useful microseismic event along the time direction, the random noise can be filtered out via least-squares fitting of multiple damping exponential components. The method is flexible and almost automated since the only parameter needed to be defined is a decomposition number. I use some synthetic and real data examples to demonstrate the potential of the algorithm in processing complicated microseismic data sets.
NASA Astrophysics Data System (ADS)
Higginson, Drew P.
2017-11-01
We describe and justify a full-angle scattering (FAS) method to faithfully reproduce the accumulated differential angular Rutherford scattering probability distribution function (pdf) of particles in a plasma. The FAS method splits the scattering events into two regions. At small angles it is described by cumulative scattering events resulting, via the central limit theorem, in a Gaussian-like pdf; at larger angles it is described by single-event scatters and retains a pdf that follows the form of the Rutherford differential cross-section. The FAS method is verified using discrete Monte-Carlo scattering simulations run at small timesteps to include each individual scattering event. We identify the FAS regime of interest as where the ratio of temporal/spatial scale-of-interest to slowing-down time/length is from 10-3 to 0.3-0.7; the upper limit corresponds to Coulomb logarithm of 20-2, respectively. Two test problems, high-velocity interpenetrating plasma flows and keV-temperature ion equilibration, are used to highlight systems where including FAS is important to capture relevant physics.
Observational constraints on earthquake source scaling: Understanding the limits in resolution
Hough, S.E.
1996-01-01
I examine the resolution of the type of stress drop estimates that have been used to place observational constraints on the scaling of earthquake source processes. I first show that apparent stress and Brune stress drop are equivalent to within a constant given any source spectral decay between ??1.5 and ??3 (i.e., any plausible value) and so consistent scaling is expected for the two estimates. I then discuss the resolution and scaling of Brune stress drop estimates, in the context of empirical Green's function results from recent earthquake sequences, including the 1992 Joshua Tree, California, mainshock and its aftershocks. I show that no definitive scaling of stress drop with moment is revealed over the moment range 1019-1025; within this sequence, however, there is a tendency for moderate-sized (M 4-5) events to be characterized by high stress drops. However, well-resolved results for recent M > 6 events are inconsistent with any extrapolated stress increase with moment for the aftershocks. Focusing on comer frequency estimates for smaller (M < 3.5) events, I show that resolution is extremely limited even after empirical Green's function deconvolutions. A fundamental limitation to resolution is the paucity of good signal-to-noise at frequencies above 60 Hz, a limitation that will affect nearly all surficial recordings of ground motion in California and many other regions. Thus, while the best available observational results support a constant stress drop for moderate-to large-sized events, very little robust observational evidence exists to constrain the quantities that bear most critically on our understanding of source processes: stress drop values and stress drop scaling for small events.
Deguen, Séverine; Lalloue, Benoît; Bard, Denis; Havard, Sabrina; Arveiler, Dominique; Zmirou-Navier, Denis
2010-07-01
Socioeconomic inequalities in the risk of coronary heart disease (CHD) are well documented for men and women. CHD incidence is greater for men but its association with socioeconomic status is usually found to be stronger among women. We explored the sex-specific association between neighborhood deprivation level and the risk of myocardial infarction (MI) at a small-area scale. We studied 1193 myocardial infarction events in people aged 35-74 years in the Strasbourg metropolitan area, France (2000-2003). We used a deprivation index to assess the neighborhood deprivation level. To take into account spatial dependence and the variability of MI rates due to the small number of events, we used a hierarchical Bayesian modeling approach. We fitted hierarchical Bayesian models to estimate sex-specific relative and absolute MI risks across deprivation categories. We tested departure from additive joint effects of deprivation and sex. The risk of MI increased with the deprivation level for both sexes, but was higher for men for all deprivation classes. Relative rates increased along the deprivation scale more steadily for women and followed a different pattern: linear for men and nonlinear for women. Our data provide evidence of effect modification, with departure from an additive joint effect of deprivation and sex. We document sex differences in the socioeconomic gradient of MI risk in Strasbourg. Women appear more susceptible at levels of extreme deprivation; this result is not a chance finding, given the large difference in event rates between men and women.
Improved microseismic event locations through large-N arrays and wave-equation imaging and inversion
NASA Astrophysics Data System (ADS)
Witten, B.; Shragge, J. C.
2016-12-01
The recent increased focus on small-scale seismicity, Mw < 4 has come about primarily for two reasons. First, there is an increase in induced seismicity related to injection operations primarily for wastewater disposal and hydraulic fracturing for oil and gas recovery and for geothermal energy production. While the seismicity associated with injection is sometimes felt, it is more often weak. Some weak events are detected on current sparse arrays; however, accurate location of the events often requires a larger number of (multi-component) sensors. This leads to the second reason for an increased focus on small magnitude seismicity: a greater number of seismometers are being deployed in large N-arrays. The greater number of sensors decreases the detection threshold and therefore significantly increases the number of weak events found. Overall, these two factors bring new challenges and opportunities. Many standard seismological location and inversion techniques are geared toward large, easily identifiable events recorded on a sparse number of stations. However, with large-N arrays we can detect small events by utilizing multi-trace processing techniques, and increased processing power equips us with tools that employ more complete physics for simultaneously locating events and inverting for P- and S-wave velocity structure. We present a method that uses large-N arrays and wave-equation-based imaging and inversion to jointly locate earthquakes and estimate the elastic velocities of the earth. The technique requires no picking and is thus suitable for weak events. We validate the methodology through synthetic and field data examples.
NASA Technical Reports Server (NTRS)
Weiss, L. A.; Weber, E. J.; Reiff, P. H.; Sharber, J. R.; Winningham, J. D.; Primdahl, F.; Mikkelsen, I. S.; Seifring, C.; Wescott, Eugene M.
1994-01-01
An experimental campaign designed to study high-latitude auroral arcs was conducted in Sondre Stromfjord, Greenland, on February 26, 1987. The Polar Acceleration Regions and Convection Study (Polar ARCS) consisted of a coordinated set of ground-based, airborne, and sounding rocket measurements of a weak, sun-aligned arc system within the duskside polar cap. A rocket-borne barium release experiment, two DMSP satellite overflights, all-sky photography, and incoherent scatter radar measurements provided information on the large-scale plasma convection over the polar cap region while a second rocket instrumented with a DC magnetometer, Langmuir and electric field probes, and an electron spectrometer provided measurements of small-scale electrodynamics. The large-scale data indicate that small, sun-aligned precipitation events formed within a region of antisunward convection between the duskside auroral oval and a large sun-aligned arc further poleward. This convection signature, used to assess the relationship of the sun-aligned arc to the large-scale magnetospheric configuration, is found to be consistent with either a model in which the arc formed on open field lines on the dusk side of a bifurcated polar cap or on closed field lines threading an expanded low-latitude boundary layer, but not a model in which the polar cap arc field lines map to an expanded plasma sheet. The antisunward convection signature may also be explained by a model in which the polar cap arc formed on long field lines recently reconnected through a highly skewed plasma sheet. The small-scale measurements indicate the rocket passed through three narrow (less than 20 km) regions of low-energy (less than 100 eV) electron precipitation in which the electric and magnetic field perturbations were well correlated. These precipitation events are shown to be associated with regions of downward Poynting flux and small-scale upward and downward field-aligned currents of 1-2 micro-A/sq m. The paired field-aligned currents are associated with velocity shears (higher and lower speed streams) embedded in the region of antisunward flow.
Memory effect in M ≥ 7 earthquakes of Taiwan
NASA Astrophysics Data System (ADS)
Wang, Jeen-Hwa
2014-07-01
The M ≥ 7 earthquakes that occurred in the Taiwan region during 1906-2006 are taken to study the possibility of memory effect existing in the sequence of those large earthquakes. Those events are all mainshocks. The fluctuation analysis technique is applied to analyze two sequences in terms of earthquake magnitude and inter-event time represented in the natural time domain. For both magnitude and inter-event time, the calculations are made for three data sets, i.e., the original order data, the reverse-order data, and that of the mean values. Calculated results show that the exponents of scaling law of fluctuation versus window length are less than 0.5 for the sequences of both magnitude and inter-event time data. In addition, the phase portraits of two sequent magnitudes and two sequent inter-event times are also applied to explore if large (or small) earthquakes are followed by large (or small) events. Results lead to a negative answer. Together with all types of information in study, we make a conclusion that the earthquake sequence in study is short-term corrected and thus the short-term memory effect would be operative.
National Earthquake Information Center Seismic Event Detections on Multiple Scales
NASA Astrophysics Data System (ADS)
Patton, J.; Yeck, W. L.; Benz, H.; Earle, P. S.; Soto-Cordero, L.; Johnson, C. E.
2017-12-01
The U.S. Geological Survey National Earthquake Information Center (NEIC) monitors seismicity on local, regional, and global scales using automatic picks from more than 2,000 near-real time seismic stations. This presents unique challenges in automated event detection due to the high variability in data quality, network geometries and density, and distance-dependent variability in observed seismic signals. To lower the overall detection threshold while minimizing false detection rates, NEIC has begun to test the incorporation of new detection and picking algorithms, including multiband (Lomax et al., 2012) and kurtosis (Baillard et al., 2014) pickers, and a new bayesian associator (Glass 3.0). The Glass 3.0 associator allows for simultaneous processing of variably scaled detection grids, each with a unique set of nucleation criteria (e.g., nucleation threshold, minimum associated picks, nucleation phases) to meet specific monitoring goals. We test the efficacy of these new tools on event detection in networks of various scales and geometries, compare our results with previous catalogs, and discuss lessons learned. For example, we find that on local and regional scales, rapid nucleation of small events may require event nucleation with both P and higher-amplitude secondary phases (e.g., S or Lg). We provide examples of the implementation of a scale-independent associator for an induced seismicity sequence (local-scale), a large aftershock sequence (regional-scale), and for monitoring global seismicity. Baillard, C., Crawford, W. C., Ballu, V., Hibert, C., & Mangeney, A. (2014). An automatic kurtosis-based P-and S-phase picker designed for local seismic networks. Bulletin of the Seismological Society of America, 104(1), 394-409. Lomax, A., Satriano, C., & Vassallo, M. (2012). Automatic picker developments and optimization: FilterPicker - a robust, broadband picker for real-time seismic monitoring and earthquake early-warning, Seism. Res. Lett. , 83, 531-540, doi: 10.1785/gssrl.83.3.531.
NASA Astrophysics Data System (ADS)
Marc, Odin; Malet, Jean-Philippe; Stumpf, Andre; Gosset, Marielle
2017-04-01
In mountainous and hilly regions, landslides are an important source of damage and fatalities. Landsliding correlates with extreme rainfall events and may increase with climate change. Still, how precipitation drives landsliding at regional scales is poorly understood quantitatively in part because constraining simultaneously landsliding and rainfall across large areas is challenging. By combining optical images acquired from satellite observation platforms and rainfall measurements from satellite constellations we are building a database of landslide events caused by with single storm events. We present results from storm-induced landslides from Brazil, Taiwan, Micronesia, Central America, Europe and the USA. We present scaling laws between rainfall metrics derived by satellites (total rainfall, mean intensity, antecedent rainfall, ...) and statistical descriptors of landslide events (total area and volume, size distribution, mean runout, ...). Total rainfall seems to be the most important parameter driving non-linearly the increase in total landslide number, and area and volume. The maximum size of bedrock landslides correlates with the total number of landslides, and thus with total rainfall, within the limits of available topographic relief. In contrast, the power-law scaling exponent of the size distribution, controlling the relative abundance of small and large landslides, appears rather independent of the rainfall metrics (intensity, duration and total rainfall). These scaling laws seem to explain both the intra-storm pattern of landsliding, at the scale of satellite rainfall measurements ( 25kmx25km), and the different impacts observed for various storms. Where possible, we evaluate the limits of standard rainfall products (TRMM, GPM, GSMaP) by comparing them to in-situ data. Then we discuss how slope distribution and other geomorphic factors (lithology, soil presence,...) modulate these scaling laws. Such scaling laws at the basin scale and based only on a-priori information (topography, lithology, …) and rainfall metrics available from meteorological forecast may allow to better anticipate and mitigates landsliding associated with extreme rainfall events.
Automated LASCO CME Catalog for Solar Cycle 23: Are CMEs Scale Invariant?
NASA Astrophysics Data System (ADS)
Robbrecht, E.; Berghmans, D.; Van der Linden, R. A. M.
2009-02-01
In this paper, we present the first automatically constructed LASCO coronal mass ejection (CME) catalog, a result of the application of the Computer Aided CME Tracking software (CACTus) on the LASCO archive during the interval 1997 September-2007 January. We have studied the CME characteristics and have compared them with similar results obtained by manual detection (CDAW CME catalog). On average, CACTus detects less than two events per day during solar minimum, up to eight events during maximum, nearly half of them being narrow (<20°). Assuming a correction factor, we find that the CACTus CME rate is surprisingly consistent with CME rates found during the past 30 years. The CACTus statistics show that small-scale outflow is ubiquitously observed in the outer corona. The majority of CACTus-only events are narrow transients related to previous CME activity or to intensity variations in the slow solar wind, reflecting its turbulent nature. A significant fraction (about 15%) of CACTus-only events were identified as independent events, thus not related to other CME activity. The CACTus CME width distribution is essentially scale invariant in angular span over a range of scales from 20° to 120° while previous catalogs present a broad maximum around 30°. The possibility that the size of coronal mass outflows follow a power-law distribution could indicate that no typical CME size exists, i.e., that the narrow transients are not different from the larger well defined CMEs.
Homogeneity of small-scale earthquake faulting, stress, and fault strength
Hardebeck, J.L.
2006-01-01
Small-scale faulting at seismogenic depths in the crust appears to be more homogeneous than previously thought. I study three new high-quality focal-mechanism datasets of small (M < ??? 3) earthquakes in southern California, the east San Francisco Bay, and the aftershock sequence of the 1989 Loma Prieta earthquake. I quantify the degree of mechanism variability on a range of length scales by comparing the hypocentral disctance between every pair of events and the angular difference between their focal mechanisms. Closely spaced earthquakes (interhypocentral distance ??2 km) tend to have very similar focal mechanisms, often identical to within the 1-sigma uncertainty of ???25??. This observed similarity implies that in small volumes of crust, while faults of many orientations may or may not be present, only similarly oriented fault planes produce earthquakes contemporaneously. On these short length scales, the crustal stress orientation and fault strength (coefficient of friction) are inferred to be homogeneous as well, to produce such similar earthquakes. Over larger length scales (???2-50 km), focal mechanisms become more diverse with increasing interhypocentral distance (differing on average by 40-70??). Mechanism variability on ???2- to 50 km length scales can be explained by ralatively small variations (???30%) in stress or fault strength. It is possible that most of this small apparent heterogeneity in stress of strength comes from measurement error in the focal mechanisms, as negligibble variation in stress or fault strength (<10%) is needed if each earthquake is assigned the optimally oriented focal mechanism within the 1-sigma confidence region. This local homogeneity in stress orientation and fault strength is encouraging, implying it may be possible to measure these parameters with enough precision to be useful in studying and modeling large earthquakes.
77 FR 22221 - Security Zones; North Atlantic Treaty Organization (NATO) Summit, Chicago, IL
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-13
... affect your small business, organization, or governmental jurisdiction and you have questions concerning...-AA87 Security Zones; North Atlantic Treaty Organization (NATO) Summit, Chicago, IL AGENCY: Coast Guard... with a large scale, international political event. DATES: This rule is effective between 8 a.m. on May...
Observation and analysis of abrupt changes in the interplanetary plasma velocity and magnetic field.
NASA Technical Reports Server (NTRS)
Martin, R. N.; Belcher, J. W.; Lazarus, A. J.
1973-01-01
This paper presents a limited study of the physical nature of abrupt changes in the interplanetary plasma velocity and magnetic field based on 19 day's data from the Pioneer 6 spacecraft. The period was chosen to include a high-velocity solar wind stream and low-velocity wind. Abrupt events were accepted for study if the sum of the energy density in the magnetic field and velocity changes was above a specified minimum. A statistical analysis of the events in the high-velocity solar wind stream shows that Alfvenic changes predominate. This conclusion is independent of whether steady state requirements are imposed on conditions before and after the event. Alfvenic changes do not dominate in the lower-speed wind. This study extends the plasma field evidence for outwardly propagating Alfvenic changes to time scales as small as 1 min (scale lengths on the order of 20,000 km).
Determining Scale-dependent Patterns in Spatial and Temporal Datasets
NASA Astrophysics Data System (ADS)
Roy, A.; Perfect, E.; Mukerji, T.; Sylvester, L.
2016-12-01
Spatial and temporal datasets of interest to Earth scientists often contain plots of one variable against another, e.g., rainfall magnitude vs. time or fracture aperture vs. spacing. Such data, comprised of distributions of events along a transect / timeline along with their magnitudes, can display persistent or antipersistent trends, as well as random behavior, that may contain signatures of underlying physical processes. Lacunarity is a technique that was originally developed for multiscale analysis of data. In a recent study we showed that lacunarity can be used for revealing changes in scale-dependent patterns in fracture spacing data. Here we present a further improvement in our technique, with lacunarity applied to various non-binary datasets comprised of event spacings and magnitudes. We test our technique on a set of four synthetic datasets, three of which are based on an autoregressive model and have magnitudes at every point along the "timeline" thus representing antipersistent, persistent, and random trends. The fourth dataset is made up of five clusters of events, each containing a set of random magnitudes. The concept of lacunarity ratio, LR, is introduced; this is the lacunarity of a given dataset normalized to the lacunarity of its random counterpart. It is demonstrated that LR can successfully delineate scale-dependent changes in terms of antipersistence and persistence in the synthetic datasets. This technique is then applied to three different types of data: a hundred-year rainfall record from Knoxville, TN, USA, a set of varved sediments from Marca Shale, and a set of fracture aperture and spacing data from NE Mexico. While the rainfall data and varved sediments both appear to be persistent at small scales, at larger scales they both become random. On the other hand, the fracture data shows antipersistence at small scale (within cluster) and random behavior at large scales. Such differences in behavior with respect to scale-dependent changes in antipersistence to random, persistence to random, or otherwise, maybe be related to differences in the physicochemical properties and processes contributing to multiscale datasets.
Sharma, Hitt J; Patil, Vishwanath D; Lalwani, Sanjay K; Manglani, Mamta V; Ravichandran, Latha; Kapre, Subhash V; Jadhav, Suresh S; Parekh, Sameer S; Ashtagi, Girija; Malshe, Nandini; Palkar, Sonali; Wade, Minal; Arunprasath, T K; Kumar, Dinesh; Shewale, Sunil D
2012-01-11
Hib vaccine can be easily incorporated in EPI vaccination schedule as the immunization schedule of Hib is similar to that of DTP vaccine. To meet the global demand of Hib vaccine, SIIL scaled up the Hib conjugate manufacturing process. This study was conducted in Indian infants to assess and compare the immunogenicity and safety of DTwP-HB+Hib (Pentavac(®)) vaccine of SIIL manufactured at large scale with the 'same vaccine' manufactured at a smaller scale. 720 infants aged 6-8 weeks were randomized (2:1 ratio) to receive 0.5 ml of Pentavac(®) vaccine from two different lots one produced at scaled up process and the other at a small scale process. Serum samples obtained before and at one month after the 3rd dose of vaccine from both the groups were tested for IgG antibody response by ELISA and compared to assess non-inferiority. Neither immunological interference nor increased reactogenicity was observed in either of the vaccine groups. All infants developed protective antibody titres to diphtheria, tetanus and Hib disease. For hepatitis B antigen, one child from each group remained sero-negative. The response to pertussis was 88% in large scale group vis-à-vis 87% in small scale group. Non-inferiority was concluded for all five components of the vaccine. No serious adverse event was reported in the study. The scale up vaccine achieved comparable response in terms of the safety and immunogenicity to small scale vaccine and therefore can be easily incorporated in the routine childhood vaccination programme. Copyright © 2011 Elsevier Ltd. All rights reserved.
Work related injuries in small scale commercial fishing
Marshall, S; Kucera, K; Loomis, D; McDonald, M; Lipscomb, H
2004-01-01
Objective: To describe the epidemiology of work related injury in a group of small scale, independent commercial fishers. Design: Cross sectional survey (baseline instrument of a prospective cohort study). Setting and subjects: Commercial fishers in eastern North Carolina. Results: A cohort of 219 commercial fishers was established and 215 subjects completed an injury questionnaire. The main types of fishing conducted by the cohort were finfishing (159/215) and crabbing (154/215). Of the 215 fishers, 83 reported that they had suffered an injury event in the previous 12 months, a retrospective recall incidence proportion of 38.6 per 100 workers (95% confidence interval 32.1 to 45.1). The 83 injury events resulted in 94 injuries; 47% were penetrating wounds and 24% were strains/sprains. Half of injuries were to the hand/wrist/digits and 13% were to the back. Of the penetrating wounds, 87% were to the hand/wrist/digits, 32% became infected, and 80% were caused by contact with finfish, shellfish, or other marine animal. Of the strains/sprains, 48% were to the back and 26% were to the shoulder. Seventy percent of strains/sprains were caused by moving heavy objects, mainly either while hauling in nets, pots, or lines or loading/unloading the boat. Conclusion: In this group of small scale, independent fishers, the most common reported injuries were penetrating wounds to the hand/wrist/digits from marine animals and strains/sprains to the back while moving heavy objects. PMID:15314048
Effect of Small-Scale Gravity Waves on Polar Mesospheric Clouds Observed From CIPS/AIM
NASA Astrophysics Data System (ADS)
Gao, Haiyang; Li, Licheng; Bu, Lingbing; Zhang, Qilin; Tang, Yuanhe; Wang, Zhen
2018-05-01
Data from the Cloud Imaging and Particle Size experiment on the Aeronomy of Ice in the Mesosphere (AIM) satellite are employed to study the impact of small-scale gravity wave (GW) on albedo, ice water content (IWC), and particle radius (PR) of polar mesospheric clouds. Overall, 23,987 eligible GW events, with a horizontal wavelength of 20-150 km are eventually extracted from Cloud Imaging and Particle Size level 2 orbit albedo maps during 2007-2011. The overall statistical results show that when small-scale GWs travel horizontally in polar mesospheric clouds, they can amplify the albedo and IWC by a rate of 10.0-22.6%, while reducing the PR by as much as -7.01%. Owing to the strong temporal and spatial dependences, the albedo and IWC variations are larger on an average during the core of the season, while they decrease during the initial and final periods of the season. The obvious zonal asymmetries are also found. The albedo variations show a positive linear relation with the GW amplitudes in albedo, as opposed to a negative linear relation with GW horizontal wavelengths. In most of the GW events, the periodic variation in the trend of albedo exhibits an anticorrelation with that of PR. Combining previous research studies with our results, we deduce that the rapid change in particle concentration and the upward movement of water vapor by GWs may be very important aspects for explaining the influence mechanism.
Transition Region and Chromospheric Signatures of Impulsive Heating Events. I. Observations
NASA Astrophysics Data System (ADS)
Warren, Harry P.; Reep, Jeffrey W.; Crump, Nicholas A.; Simões, Paulo J. A.
2016-09-01
We exploit the high spatial resolution and high cadence of the Interface Region Imaging Spectrograph (IRIS) to investigate the response of the transition region and chromosphere to energy deposition during a small flare. Simultaneous observations from the Reuven Ramaty High Energy Solar Spectroscopic Imager provide constraints on the energetic electrons precipitating into the flare footpoints, while observations of the X-Ray Telescope, Atmospheric Imaging Assembly, and Extreme Ultraviolet Imaging Spectrometer (EIS) allow us to measure the temperatures and emission measures from the resulting flare loops. We find clear evidence for heating over an extended period on the spatial scale of a single IRIS pixel. During the impulsive phase of this event, the intensities in each pixel for the Si IV 1402.770 Å, C II 1334.535 Å, Mg II 2796.354 Å, and O I 1355.598 Å emission lines are characterized by numerous small-scale bursts typically lasting 60 s or less. Redshifts are observed in Si IV, C II, and Mg II during the impulsive phase. Mg II shows redshifts during the bursts and stationary emission at other times. The Si IV and C II profiles, in contrast, are observed to be redshifted at all times during the impulsive phase. These persistent redshifts are a challenge for one-dimensional hydrodynamic models, which predict only short-duration downflows in response to impulsive heating. We conjecture that energy is being released on many small-scale filaments with a power-law distribution of heating rates.
NASA Astrophysics Data System (ADS)
Tan, Z.; Leung, L. R.; Li, H. Y.; Tesfa, T. K.
2017-12-01
Sediment yield (SY) has significant impacts on river biogeochemistry and aquatic ecosystems but it is rarely represented in Earth System Models (ESMs). Existing SY models focus on estimating SY from large river basins or individual catchments so it is not clear how well they simulate SY in ESMs at larger spatial scales and globally. In this study, we compare the strengths and weaknesses of eight well-known SY models in simulating annual mean SY at about 400 small catchments ranging in size from 0.22 to 200 km2 in the US, Canada and Puerto Rico. In addition, we also investigate the performance of these models in simulating event-scale SY at six catchments in the US using high-quality hydrological inputs. The model comparison shows that none of the models can reproduce the SY at large spatial scales but the Morgan model performs the better than others despite its simplicity. In all model simulations, large underestimates occur in catchments with very high SY. A possible pathway to reduce the discrepancies is to incorporate sediment detachment by landsliding, which is currently not included in the models being evaluated. We propose a new SY model that is based on the Morgan model but including a landsliding soil detachment scheme that is being developed. Along with the results of the model comparison and evaluation, preliminary findings from the revised Morgan model will be presented.
Atmospheric Dynamics of Sub-Tropical Dust Storms
NASA Astrophysics Data System (ADS)
Pokharel, Ashok Kumar
Meso-alpha/beta scale observational and meso-beta/gamma scale numerical model analyses were performed to study the atmospheric dynamics responsible for generating Harmattan, Saudi Arabian, and Bodele Depression dust storms. For each dust storm case study, MERRA reanalysis datasets, WRF simulated very high resolution datasets, MODIS/Aqua and Terra images, EUMETSAT images, NAAPS aerosol modelling plots, CALIPSO images, surface observations, and rawinsonde soundings were analyzed. The analysis of each dust storm carried out separately and an in-depth comparison of the events shows some similarities among the three case studies: (1) the presence of a well-organized baroclinic synoptic scale system, (2) small scale dust emission events which occurred prior to the formation of the primary large-scale dust storms, (3) cross mountain flows which produced a strong leeside inversion layer prior to the large scale dust storm, (4) the presence of thermal wind imbalance in the exit region of the mid-tropospheric jet streak in the lee of the mountains shortly after the time of the inversion formation, (5) major dust storm formation was accompanied by large magnitude ageostrophic isallobaric low-level winds as part of the meso-beta scale adjustment process, (6) substantial low-level turbulence kinetic energy (TKE), (7) formation in the lee of nearby mountains, and (8) the emission of the dust occurred initially in narrow meso-beta scale zones parallel to the mountains, and later reached the meso-alpha scale when suspended dust was transported away from the mountains. In addition to this there were additional meso-beta scale and meso-gamma scale adjustment processes resulting in Kelvin waves in the Harmattan and the Bodele Depression cases and the thermally-forced MPS circulation in all of these three cases. The Kelvin wave preceded a cold pool accompanying the air behind the large scale cold front instrumental in the major dust storm. The Kelvin wave organized the major dust storm in a narrow zone parallel to the mountains before it expanded upscale. The thermally-forced meos-gamma scale adjustment processes, which occurred in the canyons/small valleys, resulted in the numerous dust streaks leading to the entry of the dust into the atmosphere due to the presence of significant vertical motion and the TKE generation. This indicates that there were meso-beta to meso-gamma scale adjustment processes at the lower levels after the imbalance within the exit region of the upper level jet streaks and these processes were responsible for causing the large scale dust storms. Most notably, the sub-tropical jet streak caused the dust storm nearer to the equatorial region after its interaction with the thermally perturbed air mass on the lee of the Tibesti Mountains in the Bodele case study, which is different than the two other cases where the polar jet streaks played this same role at higher latitudes. This represents an original finding. Additionally, a climatological analysis of 15 years (1997-2011) of dust events over the NASA Dryden Flight Research Center (DFRC) in the desert of Southern California was performed to evaluate how the extratropical systems influenced the cause of dust storms over this region. This study indicates that dust events were associated with the development of a deep convective boundary layer, turbulent kinetic energy ≥3 J/kg, a lapse rate between dry adiabatic and moist adiabatic, wind speed above the frictional threshold wind speed necessary to ablate dust from the surface (≥7.3m/s), above the surface the presence of a cold trough, and strong cyclonic jet. These processes are similar in many ways to the dynamics in the other subtropical case studies. This also indicated that the annual mean number of dust events, their mean duration, and the unit duration per number of event were positively correlated with each of the visibility ranges, when binned for <11.2km, <8km, <4.8km, <1.6km, and <1km. The percentage of the dust events by season show that most of the dust events occurred in autumn (44.7%), followed by spring (38.3%) and equally in summer and winter with these seasons each accounting for 8.5% of events.
NASA Astrophysics Data System (ADS)
Kolmasova, I.; Santolik, O.; Spurny, P.; Borovicka, J.; Mlynarczyk, J.; Popek, M.; Lan, R.; Uhlir, L.; Diendorfer, G.; Slosiar, R.
2017-12-01
We present observations of transient luminous events (TLEs) produced by a small-scale winter thunderstorm which occurred on 2 April 2017 in the southwest of Czechia. Elves, sprites and associated positive lightning strokes have been simultaneously recorded by different observational techniques. Optical data include video recordings of TLEs from Nydek (Czechia) and data recorded by high time-resolution photometers at several stations of the Czech fireball network which measured the all-sky brightness originating from lightning return strokes. Electromagnetic data sets include 3-component VLF measurements conducted in Rustrel (France), 2-component ELF measurements recorded at the Hylaty station (Poland) and signal intensity variations of a VLF transmitter (DHO38, Rhauderfehn, Germany) recorded in Bojnice (Slovakia). Optical and electromagnetic data are completed by positions and peak currents of all strokes recorded during the observed thunderstorm by the EUCLID lightning detection network. We focus our analysis on positive lightning discharges with high peak currents and we compare properties of those which produced TLE with properties of discharges for which TLE was not detected. The current moment waveforms and charge moment changes associated with the TLE events are reconstructed from the ELF electromagnetic signals. Obtained current moment waveforms show excellent agreement with high time-resolution optical data.
Assessing the performance of multi-purpose channel management measures at increasing scales
NASA Astrophysics Data System (ADS)
Wilkinson, Mark; Addy, Steve
2016-04-01
In addition to hydroclimatic drivers, sediment deposition from high energy river systems can reduce channel conveyance capacity and lead to significant increases in flood risk. There is an increasing recognition that we need to work with the interplay of natural hydrological and morphological processes in order to attenuate flood flows and manage sediment (both coarse and fine). This typically includes both catchment (e.g. woodland planting, wetlands) and river (e.g. wood placement, floodplain reconnection) restoration approaches. The aim of this work was to assess at which scales channel management measures (notably wood placement and flood embankment removal) are most appropriate for flood and sediment management in high energy upland river systems. We present research findings from two densely instrumented research sites in Scotland which regularly experience flood events and have associated coarse sediment problems. We assessed the performance of a range of novel trial measures for three different scales: wooded flow restrictors and gully tree planting at the small scale (<1 km2), floodplain tree planting and engineered log jams at the intermediate scale (5-60 km2), and flood embankment lowering at the large scale (350 km2). Our results suggest that at the smallest scale, care is needed in the installation of flow restrictors. It was found for some restrictors that vertical erosion can occur if the tributary channel bed is disturbed. Preliminary model evidence suggested they have a very limited impact on channel discharge and flood peak delay owing to the small storage areas behind the structures. At intermediate scales, the ability to trap sediment by engineered log jams was limited. Of the 45 engineered log jams installed, around half created a small geomorphic response and only 5 captured a significant amount of coarse material (during one large flood event). As scale increases, the chance of damage or loss of wood placement is greatest. Monitoring highlights the importance of structure design (porosity and degree of channel blockage) and placement in zones of high sediment transport to optimise performance. At the large scale, well designed flood embankment lowering can improve connectivity to the floodplain during low to medium return period events. However, ancillary works to stabilise the bank failed thus emphasising the importance of letting natural processes readjust channel morphology and hydrological connections to the floodplain. Although these trial measures demonstrated limited effects, this may be in part owing to restrictions in the range of hydroclimatological conditions during the study period and further work is needed to assess the performance under more extreme conditions. This work will contribute to refining guidance for managing channel coarse sediment problems in the future which in turn could help mitigate flooding using natural approaches.
Cole, P.D.; Calder, E.S.; Druitt, T.H.; Hoblitt, R.; Robertson, R.; Sparks, R.S.J.; Young, S.R.
1998-01-01
Numerous pyroclastic flows were produced during 1996-97 by collapse of the growing andesitic lava dome at Soufriere Hills Volcano, Montserrat. Measured deposit volumes from these flows range from 0.2 to 9 ?? 106 m3. Flows range from discrete, single pulse events to sustained large scale dome collapse events. Flows entered the sea on the eastern and southern coasts, depositing large fans of material at the coast. Small runout distance (<1 km) flows had average flow front velocities in the order of 3-10 m/s while flow fronts of the larger runout distance flows (up to 6.5 km) advanced in the order of 15-30 m/s. Many flows were locally highly erosive. Field relations show that development of the fine grained ash cloud surge component was enhanced during the larger sustained events. Periods of elevated pyroclastic flow productivity and sustained dome collapse events are linked to pulses of high magma extrusion rates.Numerous pyroclastic flows were produced during 1996-97 by collapse of the growing andesitic lava dome at Soufriere Hills Volcano, Montserrat. Measured deposit volumes from these flows range from 0.2 to 9??106 m3. Flows range from discrete, single pulse events to sustained large scale dome collapse events. Flows entered the sea on the eastern and southern coasts, depositing large fans of material at the coast. Small runout distance (<1 km) flows had average flow front velocities in the order of 3-10 m/s while flow fronts of the larger runout distance flows (up to 6.5 km) advanced in the order of 15-30 m/s. Many flows were locally highly erosive. Field relations show that development of the fine grained ash cloud surge component was enhanced during the larger sustained events. Periods of elevated dome pyroclastic flow productivity and sustained collapse events are linked to pulses of high magma extrusion rates.
The role of storm scale, position and movement in controlling urban flood response
NASA Astrophysics Data System (ADS)
ten Veldhuis, Marie-claire; Zhou, Zhengzheng; Yang, Long; Liu, Shuguang; Smith, James
2018-01-01
The impact of spatial and temporal variability of rainfall on hydrological response remains poorly understood, in particular in urban catchments due to their strong variability in land use, a high degree of imperviousness and the presence of stormwater infrastructure. In this study, we analyze the effect of storm scale, position and movement in relation to basin scale and flow-path network structure on urban hydrological response. A catalog of 279 peak events was extracted from a high-quality observational dataset covering 15 years of flow observations and radar rainfall data for five (semi)urbanized basins ranging from 7.0 to 111.1 km2 in size. Results showed that the largest peak flows in the event catalog were associated with storm core scales exceeding basin scale, for all except the largest basin. Spatial scale of flood-producing storm events in the smaller basins fell into two groups: storms of large spatial scales exceeding basin size or small, concentrated events, with storm core much smaller than basin size. For the majority of events, spatial rainfall variability was strongly smoothed by the flow-path network, increasingly so for larger basin size. Correlation analysis showed that position of the storm in relation to the flow-path network was significantly correlated with peak flow in the smallest and in the two more urbanized basins. Analysis of storm movement relative to the flow-path network showed that direction of storm movement, upstream or downstream relative to the flow-path network, had little influence on hydrological response. Slow-moving storms tend to be associated with higher peak flows and longer lag times. Unexpectedly, position of the storm relative to impervious cover within the basins had little effect on flow peaks. These findings show the importance of observation-based analysis in validating and improving our understanding of interactions between the spatial distribution of rainfall and catchment variability.
NASA Astrophysics Data System (ADS)
Finnegan, D. C.; Krabill, W.; Lichvar, R. W.; Ericsson, M. P.; Frederick, E.; Manizade, S.; Yungel, J.; Sonntag, J.; Swift, R.
2005-12-01
Understanding how arid stream systems respond to individual climatic events is often difficult given the dynamic and `flashy' nature of most watersheds and the unpredictable nature of individual storm events. Until recently conventional methods for quantifying change dictated the use of stream gauge measurements coupled with periodic cross-section measurements to quantify changes in large-scale channel geometry. Using this approach to quantify change across large areas often proves to be impractical and unattainable given the laborious nature of most surveying techniques including modern GPS systems. Alternately, airborne laser technologies such as NASA's Airborne Topographic Mapper (ATM) are capable of quantifying small-scale changes (~5-10cm) across large-scale terrain rapidly and accurately. The ATM was developed at the NASA-GSFC Wallops Flight Facility. Its current version, ATM-4, measures topography 5,000 times per second across a 45-degree swath below the aircraft by transmitting a 532nm (green) laser pulse and receiving the backscattered signal in a high-speed waveform digitizer. The laser range measurements are combined with aircraft location from GPS and attitude from an inertial navigation system (INS) to provide a precise XYZ coordinate for each (~1-meter diameter) laser footprint on the ground. Our work focuses on the use of airborne laser altimetry to quantify the nature of individual surfaces and the geomorphic change that occurs within small arid stream systems during significant storm events. In September of 2003 and 2005 acquisition surveys using NASA's ATM-IV were flown over Mission Creek, a small arid stream system in Southern California's Mojave Desert with a relatively long gauging history (>40yrs), allowing us to quantify the geomorphic change occurring within the channel as a result of the record storm events during the winter of 2004-2005. Preliminary results associated with our work are encouraging and lead us to believe that when compared to conventional GPS surveys that the accuracy of airborne data is well within the boundaries of data collection necessary for accurate scientific measurements.
Preferential transport of isoproturon at a plot scale and a field scale tile-drained site
NASA Astrophysics Data System (ADS)
Zehe, Erwin; Flühler, Hannes
2001-06-01
Irrigation experiments using the tracers Brilliant Blue (BB) and Bromide (Br) were conducted on three plots of 1.4×1.4 m 2 (plot scale) and a field scale subsurface drained test site (900 m 2) to clarify mechanisms causing rapid transport of surface applied Isoproturon (IPU) during preferential flow events. One of the small plots (site 10) and the field scale test site are located on the same field. One day after irrigation of the plot scale sites the Br and IPU concentration in two vertical soil profiles as well as the macroporousity on separate profiles and hydraulic properties of single macropores were determined. During irrigation of the field scale test site discharge, soil moisture as well as the concentration of IPU and Br in the drainage outlet were measured. Preferential flow in deep penetrating earthworm burrows caused a fast breakthrough of IPU and Br into the tile drain (1.2 m depth) at the field scale site as well as leaching of IPU into the subsoil (>0.8 m) at site 10. The results suggest a hierarchy of preconditions for the occurrence of preferential flow events of which a sufficient number of deep penetrating macropores interconnected to the soil surface seems to be the most important one. Moreover there is evidence that facilitated transport of IPU attached to mobile soil particles occurred during the preferential flow events at the field scale site and site 10. The susceptibility for preferential flow as well as the susceptibility for facilitated transport appear to be intrinsic properties of the investigated soil.
NASA Astrophysics Data System (ADS)
Bastin, Sophie; Champollion, Cédric; Bock, Olivier; Drobinski, Philippe; Masson, Frédéric
2005-03-01
Global Positioning System (GPS) tomography analyses of water vapor, complemented by high-resolution numerical simulations are used to investigate a Mistral/sea breeze event in the region of Marseille, France, during the ESCOMPTE experiment. This is the first time GPS tomography has been used to validate the three-dimensional water vapor concentration from numerical simulation, and to analyze a small-scale meteorological event. The high spatial and temporal resolution of GPS analyses provides a unique insight into the evolution of the vertical and horizontal distribution of water vapor during the Mistral/sea-breeze transition.
NASA Technical Reports Server (NTRS)
Chilingaryan, A. A.; Galfayan, S. K.; Zazyan, M. Z.; Dunaevsky, A. M.
1985-01-01
Nonparametric statistical methods are used to carry out the quantitative comparison of the model and the experimental data. The same methods enable one to select the events initiated by the heavy nuclei and to calculate the portion of the corresponding events. For this purpose it is necessary to have the data on artificial events describing the experiment sufficiently well established. At present, the model with the small scaling violation in the fragmentation region is the closest to the experiments. Therefore, the treatment of gamma families obtained in the Pamir' experiment is being carried out at present with the application of these models.
Energetic Particles of keV–MeV Energies Observed near Reconnecting Current Sheets at 1 au
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khabarova, Olga V.; Zank, Gary P.
2017-07-01
We provide evidence for particle acceleration up to ∼5 MeV at reconnecting current sheets in the solar wind based on both case studies and a statistical analysis of the energetic ion and electron flux data from the five Advanced Composition Explorer Electron, Proton, and Alpha Monitor (EPAM) detectors. The case study of a typical reconnection exhaust event reveals (i) a small-scale peak of the energetic ion flux observed in the vicinity of the reconnection exhaust and (ii) a long-timescale atypical energetic particle event (AEPE) encompassing the reconnection exhaust. AEPEs associated with reconnecting strong current sheets last for many hours, evenmore » days, as confirmed by statistical studies. The case study shows that time-intensity profiles of the ion flux may vary significantly from one EPAM detector to another partially because of the local topology of magnetic fields, but mainly because of the impact of upstream magnetospheric events; therefore, the occurrence of particle acceleration can be hidden. The finding of significant particle energization within a time interval of ±30 hr around reconnection exhausts is supported by a superposed epoch analysis of 126 reconnection exhaust events. We suggest that energetic particles initially accelerated via prolonged magnetic reconnection are trapped and reaccelerated in small- or medium-scale magnetic islands surrounding the reconnecting current sheet, as predicted by the transport theory of Zank et al. Other mechanisms of initial particle acceleration can contribute also.« less
NASA Astrophysics Data System (ADS)
Somei, K.; Asano, K.; Iwata, T.; Miyakoshi, K.
2012-12-01
After the 1995 Kobe earthquake, many M7-class inland earthquakes occurred in Japan. Some of those events (e.g., the 2004 Chuetsu earthquake) occurred in a tectonic zone which is characterized as a high strain rate zone by the GPS observation (Sagiya et al., 2000) or dense distribution of active faults. That belt-like zone along the coast in Japan Sea side of Tohoku and Chubu districts, and north of Kinki district, is called as the Niigata-Kobe tectonic zone (NKTZ, Sagiya et al, 2000). We investigate seismic scaling relationship for recent inland crustal earthquake sequences in Japan and compare source characteristics between events occurring inside and outside of NKTZ. We used S-wave coda part for estimating source spectra. Source spectral ratio is obtained by S-wave coda spectral ratio between the records of large and small events occurring close to each other from nation-wide strong motion network (K-NET and KiK-net) and broad-band seismic network (F-net) to remove propagation-path and site effects. We carefully examined the commonality of the decay of coda envelopes between event-pair records and modeled the observed spectral ratio by the source spectral ratio function with assuming omega-square source model for large and small events. We estimated the corner frequencies and seismic moment (ratio) from those modeled spectral ratio function. We determined Brune's stress drops of 356 events (Mw: 3.1-6.9) in ten earthquake sequences occurring in NKTZ and six sequences occurring outside of NKTZ. Most of source spectra obey omega-square source spectra. There is no obvious systematic difference between stress drops of events in NKTZ zone and others. We may conclude that the systematic tendency of seismic source scaling of the events occurred inside and outside of NKTZ does not exist and the average source scaling relationship can be effective for inland crustal earthquakes. Acknowledgements: Waveform data were provided from K-NET, KiK-net and F-net operated by National Research Institute for Earth Science and Disaster Prevention Japan. This study is supported by Multidisciplinary research project for Niigata-Kobe tectonic zone promoted by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.
Size and frequency of natural forest disturbances and the Amazon forest carbon balance
Espírito-Santo, Fernando D.B.; Gloor, Manuel; Keller, Michael; Malhi, Yadvinder; Saatchi, Sassan; Nelson, Bruce; Junior, Raimundo C. Oliveira; Pereira, Cleuton; Lloyd, Jon; Frolking, Steve; Palace, Michael; Shimabukuro, Yosio E.; Duarte, Valdete; Mendoza, Abel Monteagudo; López-González, Gabriela; Baker, Tim R.; Feldpausch, Ted R.; Brienen, Roel J.W.; Asner, Gregory P.; Boyd, Doreen S.; Phillips, Oliver L.
2014-01-01
Forest inventory studies in the Amazon indicate a large terrestrial carbon sink. However, field plots may fail to represent forest mortality processes at landscape-scales of tropical forests. Here we characterize the frequency distribution of disturbance events in natural forests from 0.01 ha to 2,651 ha size throughout Amazonia using a novel combination of forest inventory, airborne lidar and satellite remote sensing data. We find that small-scale mortality events are responsible for aboveground biomass losses of ~1.7 Pg C y−1 over the entire Amazon region. We also find that intermediate-scale disturbances account for losses of ~0.2 Pg C y−1, and that the largest-scale disturbances as a result of blow-downs only account for losses of ~0.004 Pg C y−1. Simulation of growth and mortality indicates that even when all carbon losses from intermediate and large-scale disturbances are considered, these are outweighed by the net biomass accumulation by tree growth, supporting the inference of an Amazon carbon sink. PMID:24643258
Size and frequency of natural forest disturbances and the Amazon forest carbon balance.
Espírito-Santo, Fernando D B; Gloor, Manuel; Keller, Michael; Malhi, Yadvinder; Saatchi, Sassan; Nelson, Bruce; Junior, Raimundo C Oliveira; Pereira, Cleuton; Lloyd, Jon; Frolking, Steve; Palace, Michael; Shimabukuro, Yosio E; Duarte, Valdete; Mendoza, Abel Monteagudo; López-González, Gabriela; Baker, Tim R; Feldpausch, Ted R; Brienen, Roel J W; Asner, Gregory P; Boyd, Doreen S; Phillips, Oliver L
2014-03-18
Forest inventory studies in the Amazon indicate a large terrestrial carbon sink. However, field plots may fail to represent forest mortality processes at landscape-scales of tropical forests. Here we characterize the frequency distribution of disturbance events in natural forests from 0.01 ha to 2,651 ha size throughout Amazonia using a novel combination of forest inventory, airborne lidar and satellite remote sensing data. We find that small-scale mortality events are responsible for aboveground biomass losses of ~1.7 Pg C y(-1) over the entire Amazon region. We also find that intermediate-scale disturbances account for losses of ~0.2 Pg C y(-1), and that the largest-scale disturbances as a result of blow-downs only account for losses of ~0.004 Pg C y(-1). Simulation of growth and mortality indicates that even when all carbon losses from intermediate and large-scale disturbances are considered, these are outweighed by the net biomass accumulation by tree growth, supporting the inference of an Amazon carbon sink.
Hazard assessment for small torrent catchments - lessons learned
NASA Astrophysics Data System (ADS)
Eisl, Julia; Huebl, Johannes
2013-04-01
The documentation of extreme events as a part of the integral risk management cycle is an important basis for the analysis and assessment of natural hazards. In July 2011 a flood event occurred in the Wölzer-valley in the province of Styria, Austria. For this event at the "Wölzerbach" a detailed event documentation was carried out, gathering data about rainfall, runoff and sediment transport as well as information on damaged objects, infrastructure or crops using various sources. The flood was triggered by heavy rainfalls in two tributaries of the Wölzer-river. Though a rain as well as a discharge gaging station exists for the Wölzer-river, the torrents affected by the high intensity rainfalls are ungaged. For these ungaged torrent catchments the common methods for hazard assessment were evaluated. The back-calculation of the rainfall event was done using a new approach for precipitation analysis. In torrent catchments especially small-scale and high-intensity rainfall events are mainly responsible for extreme events. Austria's weather surveillance radar is operated by the air traffic service "AustroControl". The usually available dataset is interpreted and shows divergences especially when it comes to high intensity rainfalls. For this study the raw data of the radar were requested and analysed. Further on the event was back-calculated with different rainfall-runoff models, hydraulic models and sediment transport models to obtain calibration parameters for future use in hazard assessment for this region. Since there are often problems with woody debris different scenarios were simulated. The calibrated and plausible results from the runoff models were used for the comparison with empirical approaches used in the practical sector. For the planning of mitigation measures of the Schöttl-torrent, which is one of the affected tributaries of the Wölzer-river, a physical scale model was used in addition to the insights of the event analysis to design a check dam for sediment retention. As far as the transport capacity of the lower reaches is limited a balance had to be found between protection on the one hand and sediment connectivity to the Wölzer-river on the other. The lessons learned kicked off discussions for future hazard assessment especially concerning the use of rainfall data and design precipitation values for small torrent catchments. Also the comparison with empirical values showed the need for differentiated concepts for hazard analysis. Therefor recommendations for the use of spatial rainfall reduction factors as well as the demarcation of hazard maps using different event scenarios are proposed.
Rainfall–runoff model parameter estimation and uncertainty evaluation on small plots
Four seasonal rainfall simulations in 2009 and 2010were applied to a field containing 36 plots (0.75 × 2 m each), resulting in 144 runoff events. In all simulations, a constant rate of rainfall was applied then halted 60min after initiation of runoff, with plot-scale monitoring o...
Rainfall-runoff model parameter estimation and uncertainty evaluation on small plots
USDA-ARS?s Scientific Manuscript database
Four seasonal rainfall simulations in 2009 and 2010 were applied to a field containing 36 plots (0.75 × 2 m each), resulting in 144 runoff events. In all simulations, a constant rate of rainfall was applied, then halted 60 minutes after initiation of runoff, with plot-scale monitoring of runoff ever...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, J.R.; Marshall, M.E.; Barker, B.W.
In situations where cavity decoupling of underground nuclear explosions is a plausible evasion scenario, comprehensive seismic monitoring of any eventual CTBT will require the routine identification of many small seismic events with magnitudes in the range 2.0 < m sub b < 3.5. However, since such events are not expected to be detected teleseismically, their magnitudes will have to be estimated from regional recordings using seismic phases and frequency bands which are different from those employed in the teleseismic m sub b scale which is generally used to specify monitoring capability. Therefore, it is necessary to establish the m submore » b equivalences of any selected regional magnitude measures in order to estimate the expected detection statistics and thresholds of proposed CTBT seismic monitoring networks. In the investigations summarized in this report, this has been accomplished through analyses of synthetic data obtained by theoretically scaling observed regional seismic data recorded in Scandinavia and Central Asia from various tamped nuclear tests to obtain estimates of the corresponding seismic signals to be expected from small cavity decoupled nuclear tests at those same source locations.« less
NARROW-LINE-WIDTH UV BURSTS IN THE TRANSITION REGION ABOVE SUNSPOTS OBSERVED BY IRIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Zhenyong; Huang, Zhenghua; Xia, Lidong
Various small-scale structures abound in the solar atmosphere above active regions, playing an important role in the dynamics and evolution therein. We report on a new class of small-scale transition region structures in active regions, characterized by strong emissions but extremely narrow Si iv line profiles as found in observations taken with the Interface Region Imaging Spectrograph (IRIS). Tentatively named as narrow-line-width UV bursts (NUBs), these structures are located above sunspots and comprise one or multiple compact bright cores at sub-arcsecond scales. We found six NUBs in two data sets (a raster and a sit-and-stare data set). Among these, fourmore » events are short-lived with a duration of ∼10 minutes, while two last for more than 36 minutes. All NUBs have Doppler shifts of 15–18 km s{sup −1}, while the NUB found in sit-and-stare data possesses an additional component at ∼50 km s{sup −1} found only in the C ii and Mg ii lines. Given that these events are found to play a role in the local dynamics, it is important to further investigate the physical mechanisms that generate these phenomena and their role in the mass transport in sunspots.« less
NASA Astrophysics Data System (ADS)
Mixa, T.; Fritts, D. C.; Laughman, B.; Wang, L.; Kantha, L. H.
2015-12-01
Multiple observations provide compelling evidence that gravity wave dissipation events often occur in multi-scale environments having highly-structured wind and stability profiles extending from the stable boundary layer into the mesosphere and lower thermosphere. Such events tend to be highly localized and thus yield local energy and momentum deposition and efficient secondary gravity wave generation expected to have strong influences at higher altitudes [e.g., Fritts et al., 2013; Baumgarten and Fritts, 2014]. Lidars, radars, and airglow imagers typically cannot achieve the spatial resolution needed to fully quantify these small-scale instability dynamics. Hence, we employ high-resolution modeling to explore these dynamics in representative environments. Specifically, we describe numerical studies of gravity wave packets impinging on a sheet of high stratification and shear and the resulting instabilities and impacts on the gravity wave amplitude and momentum flux for various flow and gravity wave parameters. References: Baumgarten, Gerd, and David C. Fritts (2014). Quantifying Kelvin-Helmholtz instability dynamics observed in noctilucent clouds: 1. Methods and observations. Journal of Geophysical Research: Atmospheres, 119.15, 9324-9337. Fritts, D. C., Wang, L., & Werne, J. A. (2013). Gravity wave-fine structure interactions. Part I: Influences of fine structure form and orientation on flow evolution and instability. Journal of the Atmospheric Sciences, 70(12), 3710-3734.
Evaluating Southern Ocean Carbon Eddy-Pump From Biogeochemical-Argo Floats
NASA Astrophysics Data System (ADS)
Llort, Joan; Langlais, C.; Matear, R.; Moreau, S.; Lenton, A.; Strutton, Peter G.
2018-02-01
The vertical transport of surface water and carbon into ocean's interior, known as subduction, is one of the main mechanisms through which the ocean influences Earth's climate. New instrumental approaches have shown the occurrence of localized and intermittent subduction episodes associated with small-scale ocean circulation features. These studies also revealed the importance of such events for the export of organic matter, the so-called eddy-pump. However, the transient and localized nature of episodic subduction hindered its large-scale evaluation to date. In this work, we present an approach to detect subduction events at the scale of the Southern Ocean using measurements collected by biogeochemical autonomous floats (BGCArgo). We show how subduction events can be automatically identified as anomalies of spiciness and Apparent Oxygen Utilization (AOU) below the mixed layer. Using this methodology over more than 4,000 profiles, we detected 40 subduction events unevenly distributed across the Sothern Ocean. Events were more likely found in hot spots of eddy kinetic energy (EKE), downstream major bathymetric features. Moreover, the bio-optical measurements provided by BGCArgo allowed measuring the amount of Particulate Organic Carbon (POC) being subducted and assessing the contribution of these events to the total downward carbon flux at 100 m (EP100). We estimated that the eddy-pump represents less than 19% to the EP100 in the Southern Ocean, although we observed particularly strong events able to locally duplicate the EP100. This approach provides a novel perspective on where episodic subduction occurs that will be naturally improved as BGCArgo observations continue to increase.
Stochastic summation of empirical Green's functions
Wennerberg, Leif
1990-01-01
Two simple strategies are presented that use random delay times for repeatedly summing the record of a relatively small earthquake to simulate the effects of a larger earthquake. The simulations do not assume any fault plane geometry or rupture dynamics, but realy only on the ω−2 spectral model of an earthquake source and elementary notions of source complexity. The strategies simulate ground motions for all frequencies within the bandwidth of the record of the event used as a summand. The first strategy, which introduces the basic ideas, is a single-stage procedure that consists of simply adding many small events with random time delays. The probability distribution for delays has the property that its amplitude spectrum is determined by the ratio of ω−2 spectra, and its phase spectrum is identically zero. A simple expression is given for the computation of this zero-phase scaling distribution. The moment rate function resulting from the single-stage simulation is quite simple and hence is probably not realistic for high-frequency (>1 Hz) ground motion of events larger than ML∼ 4.5 to 5. The second strategy is a two-stage summation that simulates source complexity with a few random subevent delays determined using the zero-phase scaling distribution, and then clusters energy around these delays to get an ω−2 spectrum for the sum. Thus, the two-stage strategy allows simulations of complex events of any size for which the ω−2 spectral model applies. Interestingly, a single-stage simulation with too few ω−2records to get a good fit to an ω−2 large-event target spectrum yields a record whose spectral asymptotes are consistent with the ω−2 model, but that includes a region in its spectrum between the corner frequencies of the larger and smaller events reasonably approximated by a power law trend. This spectral feature has also been discussed as reflecting the process of partial stress release (Brune, 1970), an asperity failure (Boatwright, 1984), or the breakdown of ω−2 scaling due to rupture significantly longer than the width of the seismogenic zone (Joyner, 1984).
The Ramifications of Meddling with Systems Governed by Self-organized Critical Dynamics
NASA Astrophysics Data System (ADS)
Carreras, B. A.; Newman, D. E.; Dobson, I.
2002-12-01
Complex natural, well as man-made, systems often exhibit characteristics similar to those seen in self-organized critical (SOC) systems. The concept of self-organized criticality brings together ideas of self-organization of nonlinear dynamical systems with the often-observed near critical behavior of many natural phenomena. These phenomena exhibit self-similarities over extended ranges of spatial and temporal scales. In those systems, scale lengths may be described by fractal geometry and time scales that lead to 1/f-like power spectra. Natural applications include modeling the motion of tectonics plates, forest fires, magnetospheric dynamics, spin glass systems, and turbulent transport. In man-made systems, applications have included traffic dynamics, power and communications networks, and financial markets among many others. Simple cellular automata models such as the running sandpile model have been very useful in reproducing the complexity and characteristics of these systems. One characteristic property of the SOC systems is that they relax through what we call events. These events can happen over all scales of the system. Examples of these events are: earthquakes in the case of plate tectonic; fires in forest evolution extinction in the co evolution of biological species; and blackouts in power transmission systems. In a time-averaged sense, these systems are subcritical (that is, they lie in an average state that should not trigger any events) and the relaxation events happen intermittently. The time spent in a subcritical state relative to the time of the events varies from one system to another. For instance, the chance of finding a forest on fire is very low with the frequency of fires being on the order of one fire every few years and with many of these fires small and inconsequential. Very large fires happen over time periods of decades or even centuries. However, because of their consequences, these large but infrequent events are the important ones to understand, control and minimize. The main thrust of this research is to understand how and when global events occur in such systems when we apply mitigation techniques and how this impacts risk assessment. As sample systems we investigate both forest fire models and electrical power transmission network models, though the results are probably applicable to a wide variety of systems. It is found, perhaps counter intuitively, that apparently sensible attempts to mitigate failures in such complex systems can have adverse effects and therefore must be approached with care. The success of mitigation efforts in SOC systems is strongly influenced by the dynamics of the system. Unless the mitigation efforts alter the self-organization forces driving the system, the system will in general be pushed toward criticality. To alter those forces with mitigation efforts may be quite difficult because the forces are an intrinsic part of the system. Moreover, in many cases, efforts to mitigate small disruptions will increase the frequency of large disruptions. This occurs because the large and small disruptions are not independent but are strongly coupled by the dynamics. Before discussing this in the more complicated case of power systems, we will illustrate this phenomenon with a forest fire model.
NASA Astrophysics Data System (ADS)
Landry, Brian R.; Subotnik, Joseph E.
2011-11-01
We evaluate the accuracy of Tully's surface hopping algorithm for the spin-boson model for the case of a small diabatic coupling parameter (V). We calculate the transition rates between diabatic surfaces, and we compare our results to the expected Marcus rates. We show that standard surface hopping yields an incorrect scaling with diabatic coupling (linear in V), which we demonstrate is due to an incorrect treatment of decoherence. By modifying standard surface hopping to include decoherence events, we recover the correct scaling (˜V2).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higginson, Drew P.
Here, we describe and justify a full-angle scattering (FAS) method to faithfully reproduce the accumulated differential angular Rutherford scattering probability distribution function (pdf) of particles in a plasma. The FAS method splits the scattering events into two regions. At small angles it is described by cumulative scattering events resulting, via the central limit theorem, in a Gaussian-like pdf; at larger angles it is described by single-event scatters and retains a pdf that follows the form of the Rutherford differential cross-section. The FAS method is verified using discrete Monte-Carlo scattering simulations run at small timesteps to include each individual scattering event.more » We identify the FAS regime of interest as where the ratio of temporal/spatial scale-of-interest to slowing-down time/length is from 10 -3 to 0.3–0.7; the upper limit corresponds to Coulomb logarithm of 20–2, respectively. Two test problems, high-velocity interpenetrating plasma flows and keV-temperature ion equilibration, are used to highlight systems where including FAS is important to capture relevant physics.« less
Higginson, Drew P.
2017-08-12
Here, we describe and justify a full-angle scattering (FAS) method to faithfully reproduce the accumulated differential angular Rutherford scattering probability distribution function (pdf) of particles in a plasma. The FAS method splits the scattering events into two regions. At small angles it is described by cumulative scattering events resulting, via the central limit theorem, in a Gaussian-like pdf; at larger angles it is described by single-event scatters and retains a pdf that follows the form of the Rutherford differential cross-section. The FAS method is verified using discrete Monte-Carlo scattering simulations run at small timesteps to include each individual scattering event.more » We identify the FAS regime of interest as where the ratio of temporal/spatial scale-of-interest to slowing-down time/length is from 10 -3 to 0.3–0.7; the upper limit corresponds to Coulomb logarithm of 20–2, respectively. Two test problems, high-velocity interpenetrating plasma flows and keV-temperature ion equilibration, are used to highlight systems where including FAS is important to capture relevant physics.« less
Weather observations on Whistler Mountain during five storms
NASA Astrophysics Data System (ADS)
Thériault, Julie M.; Rasmussen, Kristen L.; Fisico, Teresa; Stewart, Ronald E.; Joe, Paul; Gultepe, Ismail; Clément, Marilys; Isaac, George A.
2014-01-01
A greater understanding of precipitation formation processes over complex terrain near the west coast of British Colombia will contribute to many relevant applications, such as climate studies, local hydrology, transportation, and winter sport competition. The phase of precipitation is difficult to determine because of the warm and moist weather conditions experienced during the wintertime in coastal mountain ranges. The goal of this study is to investigate the wide range of meteorological conditions that generated precipitation on Whistler Mountain from 4-12 March 2010 during the SNOW-V10 field campaign. During this time period, five different storms were documented in detail and were associated with noticeably different meteorological conditions in the vicinity of Whistler Mountain. New measurement techniques, along with the SNOW-V10 instrumentation, were used to obtain in situ observations during precipitation events along the Whistler mountainside. The results demonstrate a high variability of weather conditions ranging from the synoptic-scale to the macro-scale. These weather events were associated with a variation of precipitation along the mountainside, such as events associated with snow, snow pellets, and rain. Only two events associated with a rain-snow transition along the mountainside were observed, even though above-freezing temperatures along the mountainside were recorded 90 % of the time. On a smaller scale, these events were also associated with a high variability of snowflake types that were observed simultaneously near the top of Whistler Mountain. Overall, these detailed observations demonstrate the importance of understanding small-scale processes to improve observational techniques, short-term weather prediction, and longer-term climate projections over mountainous regions.
A Neutral Network based Early Eathquake Warning model in California region
NASA Astrophysics Data System (ADS)
Xiao, H.; MacAyeal, D. R.
2016-12-01
Early Earthquake Warning systems could reduce loss of lives and other economic impact resulted from natural disaster or man-made calamity. Current systems could be further enhanced by neutral network method. A 3 layer neural network model combined with onsite method was deployed in this paper to improve the recognition time and detection time for large scale earthquakes.The 3 layer neutral network early earthquake warning model adopted the vector feature design for sample events happened within 150 km radius of the epicenters. Dataset used in this paper contained both destructive events and small scale events. All the data was extracted from IRIS database to properly train the model. In the training process, backpropagation algorithm was used to adjust the weight matrices and bias matrices during each iteration. The information in all three channels of the seismometers served as the source in this model. Through designed tests, it was indicated that this model could identify approximately 90 percent of the events' scale correctly. And the early detection could provide informative evidence for public authorities to make further decisions. This indicated that neutral network model could have the potential to strengthen current early warning system, since the onsite method may greatly reduce the responding time and save more lives in such disasters.
Gu, Xun; Wang, Yufeng; Gu, Jianying
2002-06-01
The classical (two-round) hypothesis of vertebrate genome duplication proposes two successive whole-genome duplication(s) (polyploidizations) predating the origin of fishes, a view now being seriously challenged. As the debate largely concerns the relative merits of the 'big-bang mode' theory (large-scale duplication) and the 'continuous mode' theory (constant creation by small-scale duplications), we tested whether a significant proportion of paralogous genes in the contemporary human genome was indeed generated in the early stage of vertebrate evolution. After an extensive search of major databases, we dated 1,739 gene duplication events from the phylogenetic analysis of 749 vertebrate gene families. We found a pattern characterized by two waves (I, II) and an ancient component. Wave I represents a recent gene family expansion by tandem or segmental duplications, whereas wave II, a rapid paralogous gene increase in the early stage of vertebrate evolution, supports the idea of genome duplication(s) (the big-bang mode). Further analysis indicated that large- and small-scale gene duplications both make a significant contribution during the early stage of vertebrate evolution to build the current hierarchy of the human proteome.
Modified interferometric imaging condition for reverse-time migration
NASA Astrophysics Data System (ADS)
Guo, Xue-Bao; Liu, Hong; Shi, Ying
2018-01-01
For reverse-time migration, high-resolution imaging mainly depends on the accuracy of the velocity model and the imaging condition. In practice, however, the small-scale components of the velocity model cannot be estimated by tomographical methods; therefore, the wavefields are not accurately reconstructed from the background velocity, and the imaging process will generate artefacts. Some of the noise is due to cross-correlation of unrelated seismic events. Interferometric imaging condition suppresses imaging noise very effectively, especially the unknown random disturbance of the small-scale part. The conventional interferometric imaging condition is extended in this study to obtain a new imaging condition based on the pseudo-Wigner distribution function (WDF). Numerical examples show that the modified interferometric imaging condition improves imaging precision.
Cox, Murray P.; Hudjashov, Georgi; Sim, Andre; Savina, Olga; Karafet, Tatiana M.; Sudoyo, Herawati; Lansing, J. Stephen
2016-01-01
At least since the Neolithic, humans have largely lived in networks of small, traditional communities. Often socially isolated, these groups evolved distinct languages and cultures over microgeographic scales of just tens of kilometers. Population genetic theory tells us that genetic drift should act quickly in such isolated groups, thus raising the question: do networks of small human communities maintain levels of genetic diversity over microgeographic scales? This question can no longer be asked in most parts of the world, which have been heavily impacted by historical events that make traditional society structures the exception. However, such studies remain possible in parts of Island Southeast Asia and Oceania, where traditional ways of life are still practiced. We captured genome-wide genetic data, together with linguistic records, for a case–study system—eight villages distributed across Sumba, a small, remote island in eastern Indonesia. More than 4,000 years after these communities were established during the Neolithic period, most speak different languages and can be distinguished genetically. Yet their nuclear diversity is not reduced, instead being comparable to other, even much larger, regional groups. Modeling reveals a separation of time scales: while languages and culture can evolve quickly, creating social barriers, sporadic migration averaged over many generations is sufficient to keep villages linked genetically. This loosely-connected network structure, once the global norm and still extant on Sumba today, provides a living proxy to explore fine-scale genome dynamics in the sort of small traditional communities within which the most recent episodes of human evolution occurred. PMID:27274003
Effects of Soil Moisture Thresholds in Runoff Generation in two nested gauged basins
NASA Astrophysics Data System (ADS)
Fiorentino, M.; Gioia, A.; Iacobellis, V.; Manfreda, S.; Margiotta, M. R.; Onorati, B.; Rivelli, A. R.; Sole, A.
2009-04-01
Regarding catchment response to intense storm events, while the relevance of antecedent soil moisture conditions is generally recognized, the role and the quantification of runoff thresholds is still uncertain. Among others, Grayson et al. (1997) argue that above a wetness threshold a substantial portion of a small basin acts in unison and contributes to the runoff production. Investigations were conducted through an experimental approach and in particular exploiting the hydrological data monitored on "Fiumarella of Corleto" catchment (Southern Italy). The field instrumentation ensures continuous monitoring of all fundamental hydrological variables: climate forcing, streamflow and soil moisture. The experimental basin is equipped with two water level installations used to measure the hydrological response of the entire basin (with an area of 32 km2) and of a subcatchment of 0.65 km2. The aim of the present research is to better understand the dynamics of soil moisture and the runoff generation during flood events, comparing the data recorded in the transect and the runoff at the two different scales. Particular attention was paid to the influence of the soil moisture content on runoff activation mechanisms. We found that, the threshold value, responsible of runoff activation, is equal or almost to field capacity. In fact, we observed a rapid change in the subcatchment response when the mean soil moisture reaches a value close to the range of variability of the field capacity measured along a monitored transect of the small subcatchment. During dry periods the runoff coefficient is almost zero for each of the events recorded. During wet periods, however, it is rather variable and depends almost only on the total rainfall. Changing from the small scale (0.65 km2) up to the medium scale (represented by the basin of 32 km2) the threshold mechanism in runoff production is less detectable because masked by the increased spatial heterogeneity of the vegetation cover and soil texture.
Salvalaglio, Matteo; Tiwary, Pratyush; Maggioni, Giovanni Maria; Mazzotti, Marco; Parrinello, Michele
2016-12-07
Condensation of a liquid droplet from a supersaturated vapour phase is initiated by a prototypical nucleation event. As such it is challenging to compute its rate from atomistic molecular dynamics simulations. In fact at realistic supersaturation conditions condensation occurs on time scales that far exceed what can be reached with conventional molecular dynamics methods. Another known problem in this context is the distortion of the free energy profile associated to nucleation due to the small, finite size of typical simulation boxes. In this work the problem of time scale is addressed with a recently developed enhanced sampling method while contextually correcting for finite size effects. We demonstrate our approach by studying the condensation of argon, and showing that characteristic nucleation times of the order of magnitude of hours can be reliably calculated. Nucleation rates spanning a range of 10 orders of magnitude are computed at moderate supersaturation levels, thus bridging the gap between what standard molecular dynamics simulations can do and real physical systems.
NASA Astrophysics Data System (ADS)
Salvalaglio, Matteo; Tiwary, Pratyush; Maggioni, Giovanni Maria; Mazzotti, Marco; Parrinello, Michele
2016-12-01
Condensation of a liquid droplet from a supersaturated vapour phase is initiated by a prototypical nucleation event. As such it is challenging to compute its rate from atomistic molecular dynamics simulations. In fact at realistic supersaturation conditions condensation occurs on time scales that far exceed what can be reached with conventional molecular dynamics methods. Another known problem in this context is the distortion of the free energy profile associated to nucleation due to the small, finite size of typical simulation boxes. In this work the problem of time scale is addressed with a recently developed enhanced sampling method while contextually correcting for finite size effects. We demonstrate our approach by studying the condensation of argon, and showing that characteristic nucleation times of the order of magnitude of hours can be reliably calculated. Nucleation rates spanning a range of 10 orders of magnitude are computed at moderate supersaturation levels, thus bridging the gap between what standard molecular dynamics simulations can do and real physical systems.
NASA Astrophysics Data System (ADS)
Porto, Paolo; Walling, Des E.; Cogliandro, Vanessa; Callegari, Giovanni
2016-07-01
Use of the fallout radionuclides cesium-137 and excess lead-210 offers important advantages over traditional methods of quantifying erosion and soil redistribution rates. However, both radionuclides provide information on longer-term (i.e., 50-100 years) average rates of soil redistribution. Beryllium-7, with its half-life of 53 days, can provide a basis for documenting short-term soil redistribution and it has been successfully employed in several studies. However, the approach commonly used introduces several important constraints related to the timing and duration of the study period. A new approach proposed by the authors that overcomes these constraints has been successfully validated using an erosion plot experiment undertaken in southern Italy. Here, a further validation exercise undertaken in a small (1.38 ha) catchment is reported. The catchment was instrumented to measure event sediment yields and beryllium-7 measurements were employed to document the net soil loss for a series of 13 events that occurred between November 2013 and June 2015. In the absence of significant sediment storage within the catchment's ephemeral channel system and of a significant contribution from channel erosion to the measured sediment yield, the estimates of net soil loss for the individual events could be directly compared with the measured sediment yields to validate the former. The close agreement of the two sets of values is seen as successfully validating the use of beryllium-7 measurements and the new approach to obtain estimates of net soil loss for a sequence of individual events occurring over an extended period at the scale of a small catchment.
Association of 3He-rich solar energetic particles with large-scale coronal waves
NASA Astrophysics Data System (ADS)
Bucik, Radoslav; Innes, Davina; Guo, Lijia; Mason, Glenn M.; Wiedenbeck, Mark
2016-07-01
Impulsive or 3He-rich solar energetic particle (SEP) events have been typically associated with jets or small EUV brightenings. We identify 30 impulsive SEP events from ACE at L1 during the solar minimum period 2007-2010 and examine their solar sources with high resolution STEREO-A EUV images. At beginning of 2007, STEREO-A was near the Earth while at the end of the investigated period, when there were more events, STEREO-A was leading the Earth by 90°. Thus STEREO-A provided a better (more direct) view on 3He-rich flares generally located on the western Sun's hemisphere. Surprisingly, we find that about half of the events are associated with large-scale EUV coronal waves. This finding provides new insights on acceleration and transport of 3He-rich SEPs in solar corona. It is believed that elemental and isotopic fractionation in impulsive SEP events is caused by more localized processes operating in the flare sites. The EUV waves have been reported in gradual SEP events in association with fast coronal mass ejections. To examine their role on 3He-rich SEPs production the energy spectra and relative abundances are discussed. R. Bucik is supported by the Deutsche Forschungsgemeinschaft under grant BU 3115/2-1.
NASA Astrophysics Data System (ADS)
Mróz, Przemek; Poleski, Radosław
2018-04-01
We use three-dimensional distributions of classical Cepheids and RR Lyrae stars in the Small Magellanic Cloud (SMC) to model the stellar density distribution of a young and old stellar population in that galaxy. We use these models to estimate the microlensing self-lensing optical depth to the SMC, which is in excellent agreement with the observations. Our models are consistent with the total stellar mass of the SMC of about 1.0× {10}9 {M}ȯ under the assumption that all microlensing events toward this galaxy are caused by self-lensing. We also calculate the expected event rates and estimate that future large-scale surveys, like the Large Synoptic Survey Telescope (LSST), will be able to detect up to a few dozen microlensing events in the SMC annually. If the planet frequency in the SMC is similar to that in the Milky Way, a few extragalactic planets can be detected over the course of the LSST survey, provided significant changes in the SMC observing strategy are devised. A relatively small investment of LSST resources can give us a unique probe of the population of extragalactic exoplanets.
Limits on radio emission from meteors using the MWA
NASA Astrophysics Data System (ADS)
Zhang, Xiang; Hancock, Paul; Devillepoix, Hadrien A. R.; Wayth, Randall B.; Beardsley, A.; Crosse, B.; Emrich, D.; Franzen, T. M. O.; Gaensler, B. M.; Horsley, L.; Johnston-Hollitt, M.; Kaplan, D. L.; Kenney, D.; Morales, M. F.; Pallot, D.; Steele, K.; Tingay, S. J.; Trott, C. M.; Walker, M.; Williams, A.; Wu, C.; Ji, Jianghui; Ma, Yuehua
2018-04-01
Recently, low frequency, broadband radio emission has been observed accompanying bright meteors by the Long Wavelength Array (LWA). The broadband spectra between 20 and 60 MHz were captured for several events, while the spectral index (dependence of flux density on frequency, with Sν∝να) was estimated to be -4 ± 1 during the peak of meteor afterglows. Here we present a survey of meteor emission and other transient events using the Murchison Widefield Array (MWA) at 72-103 MHz. In our 322-hour survey, down to a 5σ detection threshold of 3.5 Jy/beam, no transient candidates were identified as intrinsic emission from meteors. We derived an upper limit of -3.7 (95% confidence limit) on the spectral index in our frequency range. We also report detections of other transient events, like reflected FM broadcast signals from small satellites, conclusively demonstrating the ability of the MWA to detect and track space debris on scales as small as 0.1 m in low Earth orbits.
Landscape-scale forest disturbance regimes in southern Peruvian Amazonia.
Boyd, Doreen S; Hill, Ross A; Hopkinson, Chris; Baker, Timothy R
2013-10-01
Landscape-scale gap-size frequency distributions in tropical forests are a poorly studied but key ecological variable. Currently, a scale gap currently exists between local-scale field-based studies and those employing regional-scale medium-resolution satellite data. Data at landscape scales but of fine resolution would, however, facilitate investigation into a range of ecological questions relating to gap dynamics. These include whether canopy disturbances captured in permanent sample plots (PSPs) are representative of those in their surrounding landscape, and whether disturbance regimes vary with forest type. Here, therefore, we employ airborne LiDAR data captured over 142.5 km2 of mature, swamp, and regenerating forests in southeast Peru to assess the landscape-scale disturbance at a sampling resolution of up to 2 m. We find that this landscape is characterized by large numbers of small gaps; large disturbance events are insignificant and infrequent. Of the total number of gaps that are 2 m2 or larger in area, just 0.45% were larger than 100 m2, with a power-law exponent (alpha) value of the gap-size frequency distribution of 2.22. However, differences in disturbance regimes are seen among different forest types, with a significant difference in the alpha value of the gap-size frequency distribution observed for the swamp/regenerating forests compared with the mature forests at higher elevations. Although a relatively small area of the total forest of this region was investigated here, this study presents an unprecedented assessment of this landscape with respect to its gap dynamics. This is particularly pertinent given the range of forest types present in the landscape and the differences observed. The coupling of detailed insights into forest properties and growth provided by PSPs with the broader statistics of disturbance events using remote sensing is recommended as a strong basis for scaling-up estimates of landscape and regional-scale carbon balance.
A SOLAR CORONAL JET EVENT TRIGGERS A CORONAL MASS EJECTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jiajia; Wang, Yuming; Shen, Chenglong
2015-11-10
In this paper, we present multi-point, multi-wavelength observations and analysis of a solar coronal jet and coronal mass ejection (CME) event. Employing the GCS model, we obtained the real (three-dimensional) heliocentric distance and direction of the CME and found it to propagate at a high speed of over 1000 km s{sup −1}. The jet erupted before the CME and shared the same source region. The temporal and spacial relationship between these two events lead us to the possibility that the jet triggered the CME and became its core. This scenario hold the promise of enriching our understanding of the triggeringmore » mechanism of CMEs and their relations to coronal large-scale jets. On the other hand, the magnetic field configuration of the source region observed by the Solar Dynamics Observatory (SDO)/HMI instrument along with the off-limb inverse Y-shaped configuration observed by SDO/AIA in the 171 Å passband provide the first detailed observation of the three-dimensional reconnection process of a large-scale jet as simulated in Pariat et al. The eruption process of the jet highlights the importance of filament-like material during the eruption of not only small-scale X-ray jets, but likely also of large-scale EUV jets. Based on our observations and analysis, we propose the most probable mechanism for the whole event, with a blob structure overlaying the three-dimensional structure of the jet, to describe the interaction between the jet and the CME.« less
Daniel C. Donato; Joseph B. Fontaine; John L. Campbell; W. Douglas Robinson; J. Boone Kauffman; Beverly E. Law
2009-01-01
Large-scale wildfires (~104-106 ha) have the potential to eliminate seed sources over broad areas and thus may lead to qualitatively different regeneration dynamics than in small burns; however, regeneration after such events has received little study in temperate forests. Following a 200 000 ha mixed-severity...
NASA Astrophysics Data System (ADS)
Terakawa, T.; Miller, S. A.; Deichmann, N.
2011-12-01
We estimate the pore fluid pressure field of the stimulated region during the fluid injection experiment in Basel, Switzerland by analyzing 118 well-constrained focal mechanisms. This technique, termed focal mechanism tomography (FMT), uses the orientations of the slip planes within the prevailing regional stress field as indicator of the fluid pressure along the plane at the time of slip. Elevated pore fluid pressures were concentrated within 500 m of the open hole section, and we find average earthquake triggering excess pressures of about 10MPa, with a peak value of 19.3 MPa, consistent with the known wellhead pressure applied at the borehole. Our results demonstrate that FMT is a robust approach, being validated at the macroscopic scale of the Basel stimulation experiment. Over-pressurized fluids induced many small events (M < 3) along faults unfavourably-oriented relative to the tectonic stress pattern, while larger events tended to occur along optimally-oriented faults. This suggests that small-scale hydraulic networks, developed from the high pressure stimulation, interact to load (hydraulically isolated) high strength bridges that produce the larger events. The triggering pore fluid pressures are substantially higher than that predicted from a linear pressure diffusion process from the source boundary, showing that the system is highly permeable along flow paths, allowing fast pressure diffusion to the boundaries of the stimulated region.
NASA Astrophysics Data System (ADS)
Goni, M. A.; Hatten, J. A.; Wheatcroft, R. A.; Borgeld, J.; Williamson, A.; Padgett, J.; Pasternack, G. B.; Gray, A.; Watson, E. B.
2009-12-01
Small mountainous rivers display highly variable discharges on both seasonal and event scales. Previous work has shown marked differences in the composition of the particulate load of rivers collected at different stages of the hydrograph, but fewer studies have specifically investigated how the biogeochemical compositions of particulate organic matter change as a function of discharge and how this variation affects the characteristics of the materials reaching the ocean. We explore these issues using data from three rivers along the west coast of the U.S. (Umpqua, Eel and Salinas) with similar watershed size but contrasting climate, vegetation and land use. Coarse and fine particulate organic matter samples collected at different discharges, including several flood events, were analyzed for carbon and nitrogen content, stable carbon and nitrogen isotopic compositions, radiocarbon compositions and yields of different organic biomarkers (e.g. lignin phenols, cutin acids, amino acid products). This presentation will focus on comparing and contrasting the provenance, age, and biochemical make-up of materials transported by each of the rivers as a function of discharge. Seasonal and event-scale differences in organic matter concentrations and compositions will be the subject of an accompanying poster. We will discuss both the processes responsible for these contrasts and the impacts they have on the delivery and fate of terrigenous organic matter in the coastal ocean.
Periodic, chaotic, and doubled earthquake recurrence intervals on the deep San Andreas Fault
Shelly, David R.
2010-01-01
Earthquake recurrence histories may provide clues to the timing of future events, but long intervals between large events obscure full recurrence variability. In contrast, small earthquakes occur frequently, and recurrence intervals are quantifiable on a much shorter time scale. In this work, I examine an 8.5-year sequence of more than 900 recurring low-frequency earthquake bursts composing tremor beneath the San Andreas fault near Parkfield, California. These events exhibit tightly clustered recurrence intervals that, at times, oscillate between ~3 and ~6 days, but the patterns sometimes change abruptly. Although the environments of large and low-frequency earthquakes are different, these observations suggest that similar complexity might underlie sequences of large earthquakes.
Reversing flow causes passive shark scale actuation in a separating turbulent boundary layer
NASA Astrophysics Data System (ADS)
Lang, Amy; Gemmell, Bradford; Motta, Phil; Habegger, Laura; Du Clos, Kevin; Devey, Sean; Stanley, Caleb; Santos, Leo
2017-11-01
Control of flow separation by shortfin mako skin in experiments has been demonstrated, but the mechanism is still poorly understood yet must be to some extent Re independent. The hypothesized mechanisms inherent in the shark skin for controlling flow separation are: (1) the scales, which are capable of being bristled only by reversing flow, inhibit flow reversal events from further development into larger-scale separation and (2) the cavities formed when scales bristle induces mixing of high momentum flow towards the wall thus energizing the flow close to the surface. Two studies were carried out to measure passive scale actuation caused by reversing flow. A small flow channel induced an unsteady, wake flow over the scales prompting reversing flow events and scale actuation. To resolve the flow and scale movements simultaneously we used specialized optics at high magnification (1 mm field of view) at 50,000 fps. In another study, 3D printed models of shark scales, or microflaps (bristling capability up to 50 degrees), were set into a flat plate. Using a tripped, turbulent boundary layer grown over the long flat plate and a localized adverse pressure gradient, a separation bubble was generated within which the microflaps were placed. Passive flow actuation of both shark scales and microflaps by reversing flow was observed. Funding from Army Research Office and NSF REU site Grant.
Testing for scale-invariance in extreme events, with application to earthquake occurrence
NASA Astrophysics Data System (ADS)
Main, I.; Naylor, M.; Greenhough, J.; Touati, S.; Bell, A.; McCloskey, J.
2009-04-01
We address the generic problem of testing for scale-invariance in extreme events, i.e. are the biggest events in a population simply a scaled model of those of smaller size, or are they in some way different? Are large earthquakes for example ‘characteristic', do they ‘know' how big they will be before the event nucleates, or is the size of the event determined only in the avalanche-like process of rupture? In either case what are the implications for estimates of time-dependent seismic hazard? One way of testing for departures from scale invariance is to examine the frequency-size statistics, commonly used as a bench mark in a number of applications in Earth and Environmental sciences. Using frequency data however introduces a number of problems in data analysis. The inevitably small number of data points for extreme events and more generally the non-Gaussian statistical properties strongly affect the validity of prior assumptions about the nature of uncertainties in the data. The simple use of traditional least squares (still common in the literature) introduces an inherent bias to the best fit result. We show first that the sampled frequency in finite real and synthetic data sets (the latter based on the Epidemic-Type Aftershock Sequence model) converge to a central limit only very slowly due to temporal correlations in the data. A specific correction for temporal correlations enables an estimate of convergence properties to be mapped non-linearly on to a Gaussian one. Uncertainties closely follow a Poisson distribution of errors across the whole range of seismic moment for typical catalogue sizes. In this sense the confidence limits are scale-invariant. A systematic sample bias effect due to counting whole numbers in a finite catalogue makes a ‘characteristic'-looking type extreme event distribution a likely outcome of an underlying scale-invariant probability distribution. This highlights the tendency of ‘eyeball' fits unconsciously (but wrongly in this case) to assume Gaussian errors. We develop methods to correct for these effects, and show that the current best fit maximum likelihood regression model for the global frequency-moment distribution in the digital era is a power law, i.e. mega-earthquakes continue to follow the Gutenberg-Richter trend of smaller earthquakes with no (as yet) observable cut-off or characteristic extreme event. The results may also have implications for the interpretation of other time-limited geophysical time series that exhibit power-law scaling.
Naveros, Francisco; Luque, Niceto R; Garrido, Jesús A; Carrillo, Richard R; Anguita, Mancia; Ros, Eduardo
2015-07-01
Time-driven simulation methods in traditional CPU architectures perform well and precisely when simulating small-scale spiking neural networks. Nevertheless, they still have drawbacks when simulating large-scale systems. Conversely, event-driven simulation methods in CPUs and time-driven simulation methods in graphic processing units (GPUs) can outperform CPU time-driven methods under certain conditions. With this performance improvement in mind, we have developed an event-and-time-driven spiking neural network simulator suitable for a hybrid CPU-GPU platform. Our neural simulator is able to efficiently simulate bio-inspired spiking neural networks consisting of different neural models, which can be distributed heterogeneously in both small layers and large layers or subsystems. For the sake of efficiency, the low-activity parts of the neural network can be simulated in CPU using event-driven methods while the high-activity subsystems can be simulated in either CPU (a few neurons) or GPU (thousands or millions of neurons) using time-driven methods. In this brief, we have undertaken a comparative study of these different simulation methods. For benchmarking the different simulation methods and platforms, we have used a cerebellar-inspired neural-network model consisting of a very dense granular layer and a Purkinje layer with a smaller number of cells (according to biological ratios). Thus, this cerebellar-like network includes a dense diverging neural layer (increasing the dimensionality of its internal representation and sparse coding) and a converging neural layer (integration) similar to many other biologically inspired and also artificial neural networks.
A model for straight and helical solar jets: II. Parametric study of the plasma beta.
Pariat, E; Dalmasse, K; DeVore, C R; Antiochos, S K; Karpen, J T
2016-12-01
Jets are dynamic, impulsive, well-collimated plasma events that develop at many different scales and in different layers of the solar atmosphere. Jets are believed to be induced by magnetic reconnection, a process central to many astrophysical phenomena. Within the solar atmosphere, jet-like events develop in many different environments, e.g., in the vicinity of active regions as well as in coronal holes, and at various scales, from small photospheric spicules to large coronal jets. In all these events, signatures of helical structure and/or twisting/rotating motions are regularly observed. The present study aims to establish that a single model can generally reproduce the observed properties of these jet-like events. In this study, using our state-of-the-art numerical solver ARMS, we present a parametric study of a numerical tridimensional magnetohydrodynamic (MHD) model of solar jet-like events. Within the MHD paradigm, we study the impact of varying the atmospheric plasma β on the generation and properties of solar-like jets. The parametric study validates our model of jets for plasma β ranging from 10 -3 to 1, typical of the different layers and magnetic environments of the solar atmosphere. Our model of jets can robustly explain the generation of helical solar jet-like events at various β ≤ 1. This study introduces the new original result that the plasma β modifies the morphology of the helical jet, explaining the different observed shapes of jets at different scales and in different layers of the solar atmosphere. Our results allow us to understand the energisation, triggering, and driving processes of jet-like events. Our model allows us to make predictions of the impulsiveness and energetics of jets as determined by the surrounding environment, as well as the morphological properties of the resulting jets.
Impact of Deforestation and Recovery on Streamflow Recession Statistics
NASA Astrophysics Data System (ADS)
Krapu, C.; Kumar, M.
2016-12-01
Deforestation is known to influence streamflow and baseflow in particular in sub-humid environments. Baseflow contributions to the recession limb of a flood hydrograph convey information about subsurface stores from which trees also draw water. Recent works based on the assumptions outlined by Brutsaert and Nieber (1977) have proposed analyzing streamflow recession curves on a per-event basis. In this framework, each event's recession curve is governed by a power law relation with per-event scale and shape coefficients. As streamflow recession depends in part upon evapotranspiration demand from trees, these coefficients are hypothesized to contain useful information about catchment vegetation. Analysis was conducted of 13 small experimental catchments in the eastern United States with known forest treatment histories to determine whether or not streamflow recession behavior as observed from daily discharge records could serve as an indicator of deforestation in the drainage basin. Power-law scale coefficients were calculated for each major stormflow event at each test site and a statistical comparison of distribution of fitted coefficients was made between pre-treatment and post-treatment events as well as between pre-treatment and post-recovery events. A second method using these fitted coefficients in conjunction with Gaussian process regression was employed to track the change in the scale coefficient in the 13 catchments described previously as well as two medium-sized catchments in the North Carolina portion of the American Piedmont which did not have extensive records of forest cover. A linear trend analysis of precipitation was performed to determine whether nonstationarity in rainfall could be a confounding cause of changes in event scale coefficients. These results show a statistically significant difference in scale coefficient values in 5/8 treatment catchments and 0/5 control catchments. This suggests that lesser alterations to forest cover may not be detectable but that this method is robust against changes in precipitation. Additionally, we found clear evidence that forest regrowth in the Piedmont sites continued from 1940-1970. As a proof-of-concept, this work suggests that major alterations to forest cover can be inferred from daily data of stream discharge.
NASA Astrophysics Data System (ADS)
Shimoda, E.; Eriksson, S.; Ahmadi, N.; Ergun, R.; Wilder, F. D.; Goodrich, K.
2017-12-01
The Magnetospheric Multi-Scale (MMS) mission resolves the small-scale structure of the Reconnection Electron Diffusion Regions (EDRs) using four spacecraft. We have surveyed two years of MMS data to find the candidates for the EDRs. We searched all the high-resolution segments when Fast Plasma Investigation (FPI) instrument was on. The search criteria are based on measuring the dissipation rate, agyrotropy, a reversal in jet velocity and magnetic field. Once these events were found for MMS1 data, the burst period for the other spacecraft was analyzed. We present our results of the best possible EDR candidates.
Using MHD Models for Context for Multispacecraft Missions
NASA Astrophysics Data System (ADS)
Reiff, P. H.; Sazykin, S. Y.; Webster, J.; Daou, A.; Welling, D. T.; Giles, B. L.; Pollock, C.
2016-12-01
The use of global MHD models such as BATS-R-US to provide context to data from widely spaced multispacecraft mission platforms is gaining in popularity and in effectiveness. Examples are shown, primarily from the Magnetospheric Multiscale Mission (MMS) program compared to BATS-R-US. We present several examples of large-scale magnetospheric configuration changes such as tail dipolarization events and reconfigurations after a sector boundary crossing which are made much more easily understood by placing the spacecraft in the model fields. In general, the models can reproduce the large-scale changes observed by the various spacecraft but sometimes miss small-scale or rapid time changes.
Wang, Yupeng; Ficklin, Stephen P; Wang, Xiyin; Feltus, F Alex; Paterson, Andrew H
2016-01-01
Different modes of gene duplication including whole-genome duplication (WGD), and tandem, proximal and dispersed duplications are widespread in angiosperm genomes. Small-scale, stochastic gene relocations and transposed gene duplications are widely accepted to be the primary mechanisms for the creation of dispersed duplicates. However, here we show that most surviving ancient dispersed duplicates in core eudicots originated from large-scale gene relocations within a narrow window of time following a genome triplication (γ) event that occurred in the stem lineage of core eudicots. We name these surviving ancient dispersed duplicates as relocated γ duplicates. In Arabidopsis thaliana, relocated γ, WGD and single-gene duplicates have distinct features with regard to gene functions, essentiality, and protein interactions. Relative to γ duplicates, relocated γ duplicates have higher non-synonymous substitution rates, but comparable levels of expression and regulation divergence. Thus, relocated γ duplicates should be distinguished from WGD and single-gene duplicates for evolutionary investigations. Our results suggest large-scale gene relocations following the γ event were associated with the diversification of core eudicots.
Wang, Yupeng; Ficklin, Stephen P.; Wang, Xiyin; Feltus, F. Alex; Paterson, Andrew H.
2016-01-01
Different modes of gene duplication including whole-genome duplication (WGD), and tandem, proximal and dispersed duplications are widespread in angiosperm genomes. Small-scale, stochastic gene relocations and transposed gene duplications are widely accepted to be the primary mechanisms for the creation of dispersed duplicates. However, here we show that most surviving ancient dispersed duplicates in core eudicots originated from large-scale gene relocations within a narrow window of time following a genome triplication (γ) event that occurred in the stem lineage of core eudicots. We name these surviving ancient dispersed duplicates as relocated γ duplicates. In Arabidopsis thaliana, relocated γ, WGD and single-gene duplicates have distinct features with regard to gene functions, essentiality, and protein interactions. Relative to γ duplicates, relocated γ duplicates have higher non-synonymous substitution rates, but comparable levels of expression and regulation divergence. Thus, relocated γ duplicates should be distinguished from WGD and single-gene duplicates for evolutionary investigations. Our results suggest large-scale gene relocations following the γ event were associated with the diversification of core eudicots. PMID:27195960
Studies of small-scale plasma inhomogeneities in the cusp ionosphere using sounding rocket data
NASA Astrophysics Data System (ADS)
Chernyshov, Alexander A.; Spicher, Andres; Ilyasov, Askar A.; Miloch, Wojciech J.; Clausen, Lasse B. N.; Saito, Yoshifumi; Jin, Yaqi; Moen, Jøran I.
2018-04-01
Microprocesses associated with plasma inhomogeneities are studied on the basis of data from the Investigation of Cusp Irregularities (ICI-3) sounding rocket. The ICI-3 rocket is devoted to investigating a reverse flow event in the cusp F region ionosphere. By numerical stability analysis, it is demonstrated that inhomogeneous-energy-density-driven (IEDD) instability can be a mechanism for the excitation of small-scale plasma inhomogeneities. The Local Intermittency Measure (LIM) method also applied the rocket data to analyze irregular structures of the electric field during rocket flight in the cusp. A qualitative agreement between high values of the growth rates of the IEDD instability and the regions with enhanced LIM is observed. This suggests that IEDD instability is connected to turbulent non-Gaussian processes.
Human dimensions of climate change: the vulnerability of small farmers in the Amazon.
Brondizio, Eduardo S; Moran, Emilio F
2008-05-27
This paper argues for a twofold perspective on human adaptation to climate change in the Amazon. First, we need to understand the processes that mediate perceptions of environmental change and the behavioural responses at the levels of the individual and the local population. Second, we should take into account the process of production and dissemination of global and national climate information and models to regional and local populations, especially small farmers. We discuss the sociocultural and environmental diversity of small farmers in the Amazon and their susceptibility to climate change associated with drought, flooding and accidental fire. Using survey, ethnographic and archival data from study areas in the state of Pará, we discuss farmers' sources of knowledge and long-term memory of climatic events, drought and accidental fire; their sources of climate information; their responses to drought and fire events and the impact of changing rainfall patterns on land use. We highlight the challenges of adaptation to climate change created by the influence of migration and family turnover on collective action and memory, the mismatch of scales used to monitor and disseminate climate data and the lack of extension services to translate large-scale forecasts to local needs. We found that for most farmers, memories of extended drought tend to decrease significantly after 3 years. Over 50% of the farmers interviewed in 2002 did not remember as significant the El Niño Southern Oscillation (ENSO) drought of 1997/1998. This helps explain why approximately 40% of the farmers have not changed their land-use behaviours in the face of the strongest ENSO event of the twentieth century.
Interplay of soft and perturbative correlations in multiparton interactions at central rapidities
Blok, B.; Strikman, M.
2017-06-22
We study the role of soft/nonperturbative correlations in the multi parton interactions in the central kinematics relevant for double parton scattering (DPS) and underlying event (UE) measurements at ATLAS and CMS. We show that the effect of soft correlations is negligible for DPS regime (typical transverse momenta larger than 10–20 GeV), but may be important for UE (several GeV scale). The characteristic scale where soft correlations become important increases with decrease of x (energy increase) leading to approximately constant σ eff at small x.
Interplay of soft and perturbative correlations in multiparton interactions at central rapidities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blok, B.; Strikman, M.
We study the role of soft/nonperturbative correlations in the multi parton interactions in the central kinematics relevant for double parton scattering (DPS) and underlying event (UE) measurements at ATLAS and CMS. We show that the effect of soft correlations is negligible for DPS regime (typical transverse momenta larger than 10–20 GeV), but may be important for UE (several GeV scale). The characteristic scale where soft correlations become important increases with decrease of x (energy increase) leading to approximately constant σ eff at small x.
Measurement of Neutrino-Induced Coherent Pion Production and the Diffractive Background in MINERvA
NASA Astrophysics Data System (ADS)
Gomez, Alicia; Minerva Collaboration
2015-04-01
Neutrino-induced coherent charged pion production is a unique neutrino-nucleus scattering process in which a muon and pion are produced while the nucleus is left in its ground state. The MINERvA experiment has made a model-independent differential cross section measurement of this process on carbon by selecting events with a muon and a pion, no evidence of nuclear break-up, and small momentum transfer to the nucleus | t | . A similar process which is a background to the measurement on carbon is diffractive pion production off the free protons in MINERvA's scintillator. This process is not modeled in the neutrino event generator GENIE. At low | t | these events have a similar final state to the aforementioned process. A study to quantify this diffractive event contribution to the background is done by emulating these diffractive events by reweighting all other GENIE-generated background events to the predicted | t | distribution of diffractive events, and then scaling to the diffractive cross section.
The statistical properties of vortex flows in the solar atmosphere
NASA Astrophysics Data System (ADS)
Wedemeyer, Sven; Kato, Yoshiaki; Steiner, Oskar
2015-08-01
Rotating magnetic field structures associated with vortex flows on the Sun, also known as “magnetic tornadoes”, may serve as waveguides for MHD waves and transport mass and energy upwards through the atmosphere. Magnetic tornadoes may therefore potentially contribute to the heating of the upper atmospheric layers in quiet Sun regions.Magnetic tornadoes are observed over a large range of spatial and temporal scales in different layers in quiet Sun regions. However, their statistical properties such as size, lifetime, and rotation speed are not well understood yet because observations of these small-scale events are technically challenging and limited by the spatial and temporal resolution of current instruments. Better statistics based on a combination of high-resolution observations and state-of-the-art numerical simulations is the key to a reliable estimate of the energy input in the lower layers and of the energy deposition in the upper layers. For this purpose, we have developed a fast and reliable tool for the determination and visualization of the flow field in (observed) image sequences. This technique, which combines local correlation tracking (LCT) and line integral convolution (LIC), facilitates the detection and study of dynamic events on small scales, such as propagating waves. Here, we present statistical properties of vortex flows in different layers of the solar atmosphere and try to give realistic estimates of the energy flux which is potentially available for heating of the upper solar atmosphere
Diakaridia, Sanogo; Pan, Yue; Xu, Pengbai; Zhou, Dengwang; Wang, Benzhang; Teng, Lei; Lu, Zhiwei; Ba, Dexin; Dong, Yongkang
2017-07-24
In distributed Brillouin optical fiber sensor when the length of the perturbation to be detected is much smaller than the spatial resolution that is defined by the pulse width, the measured Brillouin gain spectrum (BGS) experiences two or multiple peaks. In this work, we propose and demonstrate a technique using differential pulse pair Brillouin optical time-domain analysis (DPP-BOTDA) based on double-peak BGS to enhance small-scale events detection capability, where two types of single mode fiber (main fiber and secondary fiber) with 116 MHz Brillouin frequency shift (BFS) difference have been used. We have realized detection of a 5-cm hot spot at the far end of 24-km single mode fiber by employing a 50-cm spatial resolution DPP-BOTDA with only 1GS/s sampling rate (corresponding to 10 cm/point). The BFS at the far end of 24-km sensing fiber has been measured with 0.54 MHz standard deviation which corresponds to a 0.5°C temperature accuracy. This technique is simple and cost effective because it is implemented using the similar experimental setup of the standard BOTDA, however, it should be noted that the consecutive small-scale events have to be separated by a minimum length corresponding to the spatial resolution defined by the pulse width difference.
Scale-dependency of effective hydraulic conductivity on fire-affected hillslopes
NASA Astrophysics Data System (ADS)
Langhans, Christoph; Lane, Patrick N. J.; Nyman, Petter; Noske, Philip J.; Cawson, Jane G.; Oono, Akiko; Sheridan, Gary J.
2016-07-01
Effective hydraulic conductivity (Ke) for Hortonian overland flow modeling has been defined as a function of rainfall intensity and runon infiltration assuming a distribution of saturated hydraulic conductivities (Ks). But surface boundary condition during infiltration and its interactions with the distribution of Ks are not well represented in models. As a result, the mean value of the Ks distribution (KS¯), which is the central parameter for Ke, varies between scales. Here we quantify this discrepancy with a large infiltration data set comprising four different methods and scales from fire-affected hillslopes in SE Australia using a relatively simple yet widely used conceptual model of Ke. Ponded disk (0.002 m2) and ring infiltrometers (0.07 m2) were used at the small scales and rainfall simulations (3 m2) and small catchments (ca 3000 m2) at the larger scales. We compared KS¯ between methods measured at the same time and place. Disk and ring infiltrometer measurements had on average 4.8 times higher values of KS¯ than rainfall simulations and catchment-scale estimates. Furthermore, the distribution of Ks was not clearly log-normal and scale-independent, as supposed in the conceptual model. In our interpretation, water repellency and preferential flow paths increase the variance of the measured distribution of Ks and bias ponding toward areas of very low Ks during rainfall simulations and small catchment runoff events while areas with high preferential flow capacity remain water supply-limited more than the conceptual model of Ke predicts. The study highlights problems in the current theory of scaling runoff generation.
Small-scale deflagration cylinder test with velocimetry wall-motion diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hooks, Daniel E; Hill, Larry G; Pierce, Timothy H
Predicting the likelihood and effects of outcomes resultant from thermal initiation of explosives remains a significant challenge. For certain explosive formulations, the general outcome can be broadly predicted given knowledge of certain conditions. However, there remain unexplained violent events, and increased statistical understanding of outcomes as a function of many variables, or 'violence categorization,' is needed. Additionally, the development of an equation of state equivalent for deflagration would be very useful in predicting possible detailed event consequences using traditional hydrodynamic detonation moders. For violence categorization, it is desirable that testing be efficient, such that it is possible to statistically definemore » outcomes reliant on the processes of initiation of deflagration, steady state deflagration, and deflagration to detonation transitions. If the test simultaneously acquires information to inform models of violent deflagration events, overall predictive capabilities for event likelihood and consequence might improve remarkably. In this paper we describe an economical scaled deflagration cylinder test. The cyclotetramethylene tetranitramine (HMX) based explosive formu1lation PBX 9501 was tested using different temperature profiles in a thick-walled copper cylindrical confiner. This test is a scaled version of a recently demonstrated deflagration cylinder test, and is similar to several other thermal explosion tests. The primary difference is the passive velocimetry diagnostic, which enables measurement of confinement vessel wall velocities at failure, regardless of the timing and location of ignition.« less
NASA Astrophysics Data System (ADS)
C. Franco-Gordo; Godínez-Domínguez, E.; Filonov, A. E.; Tereshchenko, I. E.; Freire, J.
2004-11-01
The temporal and spatial distributions of zooplankton biomass and larval fish recorded during 27 months (December 1995-December 1998) off the Pacific coast of central México are analyzed. A total of 316 samples were obtained by surface (from 40-68 to 0 m) oblique hauls at 12 sampling sites using a Bongo net. Two well-defined periods were observed: a pre-ENSO period (December 1995-march 1997) and an ENSO event (July 1997-September 1998) characterized by impoverishment of the pelagic habitat. The highest biomass concentrations occurred at coastal stations during the pre-ENSO period. During the El Niño period no spatial patterns were found in coastal waters. The months with highest biomass were those in which the lowest sea surface temperature (SST) occurred (January-May), and this pattern was also observed during the ENSO period. A typical, although attenuated, seasonal environmental pattern with enhanced phytoplankton (diatoms and dinoflagellates) was prevalent during the El Niño event in nearshore waters. During the El Niño period the phytoplankton was mainly small diatoms (microphytoplankton), while dinoflagellates were practically absent. The most parsimonious generalized linear models explaining spatial and temporal distribution of larval fish species included the ENSO index (MEI), upwelling index (UI) and distance to the coast. The environmental variability defined on an interannual time-scale by the ENSO event and the seasonal hydroclimatic pattern defined by the UI (intra-annual-scale) controlled the ecosystem productivity patterns. The small-scale distribution patterns (defined by a cross-shore gradient) of plankton were related to the hydroclimatic seasonality and modulated by interannual anomalies.
Impacts of rural land-use on overland flow and sediment transport
NASA Astrophysics Data System (ADS)
Fraser, S. L.; Jackson, B. M.; Norton, K. P.
2013-12-01
The loss of fertile topsoil over time, due to erosive processes, could have a major impact on New Zealand's economy as well as being devastating to individual land owners. Improved management of land use is needed to provide protection of soil from erosion by overland flow and aeolian processes. Effects of soil erosion and sedimentation result in an annual nationwide cost of NZ$123 million. Many previous New Zealand studies have focused on large scale soil movement from land sliding and gully erosion, including identifying risk areas. However, long term small scale erosion and degradation has been largely overlooked in the literature. Although small scale soil erosion is less apparent than mass movement, cumulative small scale soil loss over many years may have a significant impact for future land productivity. One approach to assessing the role of soil degradation is through the application of landscape models. Due to the time consuming collection of data and limited scales over which data can be collected, many models created are unique to a particular land type, land use or locality. Collection of additional datasets can broaden the use of such models by informing model representation and enhancing parameterisation. The Land Use Capability Index (LUCI), developed by Jackson et al (2013) is an example of a model that will benefit from additional data sets. LUCI is a multi-criteria GIS tool, designed to inform land management decisions by identifying areas of potential change, based on land characteristics and land use options. LUCI topographically routes overland flow and sediment using existing land characteristic maps and additionally incorporating sub-field scale data. The model then has the ability to utilise these data to enhance prediction at landscape scale. This study focuses on the influence of land use on small scale sediment transport and enhancing process representation and parameterisation to improve predictive ability of models, such as LUCI. Data are currently being collected in a small catchment at the foothills of the Tararua ranges, lower North Island of New Zealand. Gurlach traps are utilised in a step like array on a number of hillslopes to provide a comprehensive dataset of overland flow and sediment volume for different magnitude rainfall events. ArcGIS is used to calculate a contributing area to each trap. The study provides quantitative data linking overland flow to event magnitude for the rural land uses of pasture versus regenerating native forest at multiple slope angles. These data along with measured soil depth/slope relationships and stream monitoring data are used to inform process representation and parameterisation of LUCI at hillslope scale. LUCI is then used to explore implications at landscape scale. The data and modelling are intended to provide information to help in long-term land management decisions. Jackson, B., Pagella, T., Sinclair, F., Orellana, B., Henshaw, A., Reynolds, B., McIntyre, N., Wheater, H., and Eycott, A. 2013. Polyscape: A GIS mapping framework providing efficient and spatially explicit landscape-scale valuation of multiple ecosystem services. Landscape and Urban Planning, 112(0): 74-88
McGregor, Hugh W; Legge, Sarah; Jones, Menna E; Johnson, Christopher N
2014-01-01
Intensification of fires and grazing by large herbivores has caused population declines in small vertebrates in many ecosystems worldwide. Impacts are rarely direct, and usually appear driven via indirect pathways, such as changes to predator-prey dynamics. Fire events and grazing may improve habitat and/or hunting success for the predators of small mammals, however, such impacts have not been documented. To test for such an interaction, we investigated fine-scale habitat selection by feral cats in relation to fire, grazing and small-mammal abundance. Our study was conducted in north-western Australia, where small mammal populations are sensitive to changes in fire and grazing management. We deployed GPS collars on 32 cats in landscapes with contrasting fire and grazing treatments. Fine-scale habitat selection was determined using discrete choice modelling of cat movements. We found that cats selected areas with open grass cover, including heavily-grazed areas. They strongly selected for areas recently burnt by intense fires, but only in habitats that typically support high abundance of small mammals. Intense fires and grazing by introduced herbivores created conditions that are favoured by cats, probably because their hunting success is improved. This mechanism could explain why, in northern Australia, impacts of feral cats on small mammals might have increased. Our results suggest the impact of feral cats could be reduced in most ecosystems by maximising grass cover, minimising the incidence of intense fires, and reducing grazing by large herbivores.
McGregor, Hugh W.; Legge, Sarah; Jones, Menna E.; Johnson, Christopher N.
2014-01-01
Intensification of fires and grazing by large herbivores has caused population declines in small vertebrates in many ecosystems worldwide. Impacts are rarely direct, and usually appear driven via indirect pathways, such as changes to predator-prey dynamics. Fire events and grazing may improve habitat and/or hunting success for the predators of small mammals, however, such impacts have not been documented. To test for such an interaction, we investigated fine-scale habitat selection by feral cats in relation to fire, grazing and small-mammal abundance. Our study was conducted in north-western Australia, where small mammal populations are sensitive to changes in fire and grazing management. We deployed GPS collars on 32 cats in landscapes with contrasting fire and grazing treatments. Fine-scale habitat selection was determined using discrete choice modelling of cat movements. We found that cats selected areas with open grass cover, including heavily-grazed areas. They strongly selected for areas recently burnt by intense fires, but only in habitats that typically support high abundance of small mammals. Intense fires and grazing by introduced herbivores created conditions that are favoured by cats, probably because their hunting success is improved. This mechanism could explain why, in northern Australia, impacts of feral cats on small mammals might have increased. Our results suggest the impact of feral cats could be reduced in most ecosystems by maximising grass cover, minimising the incidence of intense fires, and reducing grazing by large herbivores. PMID:25329902
Greenville, Aaron C; Wardle, Glenda M; Dickman, Chris R
2012-01-01
Extreme climatic events, such as flooding rains, extended decadal droughts and heat waves have been identified increasingly as important regulators of natural populations. Climate models predict that global warming will drive changes in rainfall and increase the frequency and severity of extreme events. Consequently, to anticipate how organisms will respond we need to document how changes in extremes of temperature and rainfall compare to trends in the mean values of these variables and over what spatial scales the patterns are consistent. Using the longest historical weather records available for central Australia – 100 years – and quantile regression methods, we investigate if extreme climate events have changed at similar rates to median events, if annual rainfall has increased in variability, and if the frequency of large rainfall events has increased over this period. Specifically, we compared local (individual weather stations) and regional (Simpson Desert) spatial scales, and quantified trends in median (50th quantile) and extreme weather values (5th, 10th, 90th, and 95th quantiles). We found that median and extreme annual minimum and maximum temperatures have increased at both spatial scales over the past century. Rainfall changes have been inconsistent across the Simpson Desert; individual weather stations showed increases in annual rainfall, increased frequency of large rainfall events or more prolonged droughts, depending on the location. In contrast to our prediction, we found no evidence that intra-annual rainfall had become more variable over time. Using long-term live-trapping records (22 years) of desert small mammals as a case study, we demonstrate that irruptive events are driven by extreme rainfalls (>95th quantile) and that increases in the magnitude and frequency of extreme rainfall events are likely to drive changes in the populations of these species through direct and indirect changes in predation pressure and wildfires. PMID:23170202
Child Readers and the Worlds of the Picture Book
ERIC Educational Resources Information Center
Baird, Adela; Laugharne, Janet; Maagerø, Eva; Tønnessen, Elise Seip
2016-01-01
Children as readers of picture books and the ways they respond to, and make meaning from, such texts are the focus of this article, which reports on a small-scale study undertaken in Norway and Wales, UK. The theoretical framing of the research draws on concepts of the multimodal ensemble in picture books and of the reading event as part of a…
Livestock First Reached Southern Africa in Two Separate Events.
Sadr, Karim
2015-01-01
After several decades of research on the subject, we now know when the first livestock reached southern Africa but the question of how they got there remains a contentious topic. Debate centres on whether they were brought with a large migration of Khoe-speakers who originated from East Africa; or whether the livestock were traded down-the-line among hunter-gatherer communities; or indeed whether there was a long history of diverse small scale population movements in this part of the world, one or more of which 'infiltrated' livestock into southern Africa. A new analysis of the distribution of stone toolkits from a sizeable sample of sub-equatorial African Later Stone Age sites, coupled with existing knowledge of the distribution of the earliest livestock remains and ceramics vessels, has allowed us to isolate two separate infiltration events that brought the first livestock into southern Africa just over 2000 years ago; one infiltration was along the Atlantic seaboard and another entered the middle reaches of the Limpopo River Basin. These findings agree well with the latest results of genetic research which together indicate that multiple, small-scale infiltrations probably were responsible for bringing the first livestock into southern Africa.
A planktonic diatom displays genetic structure over small spatial scales.
Sefbom, Josefin; Kremp, Anke; Rengefors, Karin; Jonsson, Per R; Sjöqvist, Conny; Godhe, Anna
2018-04-03
Marine planktonic microalgae have potentially global dispersal, yet reduced gene flow has been confirmed repeatedly for several species. Over larger distances (>200 km) geographic isolation and restricted oceanographic connectivity have been recognized as instrumental in driving population divergence. Here we investigated whether similar patterns, that is, structured populations governed by geographic isolation and/or oceanographic connectivity, can be observed at smaller (6-152 km) geographic scales. To test this we established 425 clonal cultures of the planktonic diatom Skeletonema marinoi collected from 11 locations in the Archipelago Sea (northern Baltic Sea). The region is characterized by a complex topography, entailing several mixing regions of which four were included in the sampling area. Using eight microsatellite markers and conventional F-statistics, significant genetic differentiation was observed between several sites. Moreover, Bayesian cluster analysis revealed the co-occurrence of two genetic groups spread throughout the area. However, geographic isolation and oceanographic connectivity could not explain the genetic patterns observed. Our data reveal hierarchical genetic structuring whereby despite high dispersal potential, significantly diverged populations have developed over small spatial scales. Our results suggest that biological characteristics and historical events may be more important in generating barriers to gene flow than physical barriers at small spatial scales. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.
Soissons, Laura M.; Haanstra, Eeke P.; van Katwijk, Marieke M.; Asmus, Ragnhild; Auby, Isabelle; Barillé, Laurent; Brun, Fernando G.; Cardoso, Patricia G.; Desroy, Nicolas; Fournier, Jerome; Ganthy, Florian; Garmendia, Joxe-Mikel; Godet, Laurent; Grilo, Tiago F.; Kadel, Petra; Ondiviela, Barbara; Peralta, Gloria; Puente, Araceli; Recio, Maria; Rigouin, Loic; Valle, Mireia; Herman, Peter M. J.; Bouma, Tjeerd J.
2018-01-01
Seagrass meadows form highly productive and valuable ecosystems in the marine environment. Throughout the year, seagrass meadows are exposed to abiotic and biotic variations linked to (i) seasonal fluctuations, (ii) short-term stress events such as, e.g., local nutrient enrichment, and (iii) small-scale disturbances such as, e.g., biomass removal by grazing. We hypothesized that short-term stress events and small-scale disturbances may affect seagrass chance for survival in temperate latitudes. To test this hypothesis we focused on seagrass carbon reserves in the form of starch stored seasonally in rhizomes, as these have been defined as a good indicator for winter survival. Twelve Zostera noltei meadows were monitored along a latitudinal gradient in Western Europe to firstly assess the seasonal change of their rhizomal starch content. Secondly, we tested the effects of nutrient enrichment and/or biomass removal on the corresponding starch content by using a short-term manipulative field experiment at a single latitude in the Netherlands. At the end of the growing season, we observed a weak but significant linear increase of starch content along the latitudinal gradient from south to north. This agrees with the contention that such reserves are essential for regrowth after winter, which is more severe in the north. In addition, we also observed a weak but significant positive relationship between starch content at the beginning of the growing season and past winter temperatures. This implies a lower regrowth potential after severe winters, due to diminished starch content at the beginning of the growing season. Short-term stress and disturbances may intensify these patterns, because our manipulative experiments show that when nutrient enrichment and biomass loss co-occurred at the end of the growing season, Z. noltei starch content declined. In temperate zones, the capacity of seagrasses to accumulate carbon reserves is expected to determine carbon-based regrowth after winter. Therefore, processes affecting those reserves might affect seagrass resilience. With increasing human pressure on coastal systems, short- and small-scale stress events are expected to become more frequent, threatening the resilience of seagrass ecosystems, particularly at higher latitudes, where populations tend to have an annual cycle highly dependent on their storage capacity. PMID:29449859
Soissons, Laura M; Haanstra, Eeke P; van Katwijk, Marieke M; Asmus, Ragnhild; Auby, Isabelle; Barillé, Laurent; Brun, Fernando G; Cardoso, Patricia G; Desroy, Nicolas; Fournier, Jerome; Ganthy, Florian; Garmendia, Joxe-Mikel; Godet, Laurent; Grilo, Tiago F; Kadel, Petra; Ondiviela, Barbara; Peralta, Gloria; Puente, Araceli; Recio, Maria; Rigouin, Loic; Valle, Mireia; Herman, Peter M J; Bouma, Tjeerd J
2018-01-01
Seagrass meadows form highly productive and valuable ecosystems in the marine environment. Throughout the year, seagrass meadows are exposed to abiotic and biotic variations linked to (i) seasonal fluctuations, (ii) short-term stress events such as, e.g., local nutrient enrichment, and (iii) small-scale disturbances such as, e.g., biomass removal by grazing. We hypothesized that short-term stress events and small-scale disturbances may affect seagrass chance for survival in temperate latitudes. To test this hypothesis we focused on seagrass carbon reserves in the form of starch stored seasonally in rhizomes, as these have been defined as a good indicator for winter survival. Twelve Zostera noltei meadows were monitored along a latitudinal gradient in Western Europe to firstly assess the seasonal change of their rhizomal starch content. Secondly, we tested the effects of nutrient enrichment and/or biomass removal on the corresponding starch content by using a short-term manipulative field experiment at a single latitude in the Netherlands. At the end of the growing season, we observed a weak but significant linear increase of starch content along the latitudinal gradient from south to north. This agrees with the contention that such reserves are essential for regrowth after winter, which is more severe in the north. In addition, we also observed a weak but significant positive relationship between starch content at the beginning of the growing season and past winter temperatures. This implies a lower regrowth potential after severe winters, due to diminished starch content at the beginning of the growing season. Short-term stress and disturbances may intensify these patterns, because our manipulative experiments show that when nutrient enrichment and biomass loss co-occurred at the end of the growing season, Z. noltei starch content declined. In temperate zones, the capacity of seagrasses to accumulate carbon reserves is expected to determine carbon-based regrowth after winter. Therefore, processes affecting those reserves might affect seagrass resilience. With increasing human pressure on coastal systems, short- and small-scale stress events are expected to become more frequent, threatening the resilience of seagrass ecosystems, particularly at higher latitudes, where populations tend to have an annual cycle highly dependent on their storage capacity.
Penin, Lucie; Vidal-Dupiol, Jeremie; Adjeroud, Mehdi
2013-06-01
Mass bleaching events resulting in coral mortality are among the greatest threats to coral reefs, and are projected to increase in frequency and intensity with global warming. Achieving a better understanding of the consistency of the response of coral assemblages to thermal stress, both spatially and temporally, is essential to determine which reefs are more able to tolerate climate change. We compared variations in spatial and taxonomic patterns between two bleaching events at the scale of an island (Moorea Island, French Polynesia). Despite similar thermal stress and light conditions, bleaching intensity was significantly lower in 2007 (approximately 37 % of colonies showed signs of bleaching) than in 2002, when 55 % of the colonies bleached. Variations in the spatial patterns of bleaching intensity were consistent between the two events. Among nine sampling stations at three locations and three depths, the stations at which the bleaching response was lowest in 2002 were those that showed the lowest levels of bleaching in 2007. The taxonomic patterns of susceptibility to bleaching were also consistent between the two events. These findings have important implications for conservation because they indicate that corals are capable of acclimatization and/or adaptation and that, even at small spatial scales, some areas are consistently more susceptible to bleaching than others.
NASA Astrophysics Data System (ADS)
Lewis, Q. W.; Rhoads, B. L.
2017-12-01
The merging of rivers at confluences results in complex three-dimensional flow patterns that influence sediment transport, bed morphology, downstream mixing, and physical habitat conditions. The capacity to characterize comprehensively flow at confluences using traditional sensors, such as acoustic Doppler velocimeters and profiles, is limited by the restricted spatial resolution of these sensors and difficulties in measuring velocities simultaneously at many locations within a confluence. This study assesses two-dimensional surficial patterns of flow structure at a small stream confluence in Illinois, USA, using large scale particle image velocimetry (LSPIV) derived from videos captured by unmanned aerial systems (UAS). The method captures surface velocity patterns at high spatial and temporal resolution over multiple scales, ranging from the entire confluence to details of flow within the confluence mixing interface. Flow patterns at high momentum ratio are compared to flow patterns when the two incoming flows have nearly equal momentum flux. Mean surface flow patterns during the two types of events provide details on mean patterns of surface flow in different hydrodynamic regions of the confluence and on changes in these patterns with changing momentum flux ratio. LSPIV data derived from the highest resolution imagery also reveal general characteristics of large-scale vortices that form along the shear layer between the flows during the high-momentum ratio event. The results indicate that the use of LSPIV and UAS is well-suited for capturing in detail mean surface patterns of flow at small confluences, but that characterization of evolving turbulent structures is limited by scale considerations related to structure size, image resolution, and camera instability. Complementary methods, including camera platforms mounted at fixed positions close to the water surface, provide opportunities to accurately characterize evolving turbulent flow structures in confluences.
NASA Astrophysics Data System (ADS)
Xue, Zhike; Yan, Xiaoli; Yang, Liheng; Wang, Jincheng; Feng, Song; Li, Qiaoling; Ji, Kaifan; Zhao, Li
2018-05-01
We report a possible current sheet region associated with a small-scale magnetic reconnection event by using the spectral and imaging observations of the Interface Region Imaging Spectrograph (IRIS) and the magnetograms obtained by the Solar Dynamics Observatory on 2016 August 08. The length and width of the current sheet region are estimated to be from 1.4 ± 0.1 Mm to 3.0 ± 0.3 Mm and from 0.34 ± 0.01 Mm to 0.64 ± 0.09 Mm, respectively. The evolutions of the length of the current sheet region are positively correlated with that of the width. These measurements are among the smallest reported. When the IRIS slit scans the current sheet region, the spectroscopic observations show that the Si IV line is broadened in the current sheet region and the plasma has a blueshifted feature at the middle and a redshifted feature at the ends of the current sheet region. The maximum measured blueshifted and redshifted Doppler velocities are ‑20.8 ± 0.9 and 34.1 ± 0.4 km s‑1, respectively. Additionally, the electron number densities of the plasma in the current sheet region are computed to be around 1011 cm‑3 based on the spectrums of the two O IV lines. The emergence, movement, and cancellation of a small sunspot with negative polarity are observed during the formation and shift of the current sheet region. We suggest that the occurrence and evolution of the magnetic reconnection are driven by the movement of the small sunspot in the photosphere.
Using damage data to estimate the risk from summer convective precipitation extremes
NASA Astrophysics Data System (ADS)
Schroeer, Katharina; Tye, Mari
2017-04-01
This study explores the potential added value from including loss and damage data to understand the risks from high-intensity short-duration convective precipitation events. Projected increases in these events are expected even in regions that are likely to become more arid. Such high intensity precipitation events can trigger hazardous flash floods, debris flows, and landslides that put people and local assets at risk. However, the assessment of local scale precipitation extremes is hampered by its high spatial and temporal variability. In addition to this, not only are extreme events rare, but such small-scale events are likely to be underreported where they do not coincide with the observation network. Reports of private loss and damage on a local administrative unit scale (LAU 2 level) are used to explore the relationship between observed rainfall events and damages reportedly related to hydro-meteorological processes. With 480 Austrian municipalities located within our south-eastern Alpine study region, the damage data are available on a much smaller scale than the available rainfall data. Precipitation is recorded daily at 185 gauges and 52% of these stations additionally deliver sub-hourly rainfall information. To obtain physically plausible information, damage and rainfall data are grouped and analyzed on a catchment scale. The data indicate that rainfall intensities are higher on days that coincide with a damage claim than on days for which no damage was reported. However, approximately one third of the damages related to hydro-meteorological hazards were claimed on days for which no rainfall was recorded at any gauge in the respective catchment. Our goal is to assess whether these events indicate potential extreme events missing in the observations. Damage always is a consequence of an asset being exposed and susceptible to a hazardous process, and naturally, many factors influence whether an extreme rainfall event causes damage. We set up a statistical model to test whether the relationship between extreme rainfall events and damages is robust enough to estimate a potential underrepresentation of high intensity rainfall events in ungauged areas. Risk-relevant factors of socio-economic vulnerability, land cover, streamflow data, and weather type information are included to improve and sharpen the analysis. Within this study, we first aim to identify which rainfall events are most damaging and which factors affect the damages - seen as a proxy for the vulnerability - related to summer convective rainfall extremes in different catchment types. Secondly, we aim to detect potentially unreported damaging rainfall events and estimate the likelihood of such cases. We anticipate this damage perspective on summertime extreme convective precipitation to be beneficial for risk assessment, uncertainty management, and decision making with respect to weather and climate extremes on the regional-to-local level.
Hydrologic response to stormwater control measures in urban watersheds
NASA Astrophysics Data System (ADS)
Bell, Colin D.; McMillan, Sara K.; Clinton, Sandra M.; Jefferson, Anne J.
2016-10-01
Stormwater control measures (SCMs) are designed to mitigate deleterious effects of urbanization on river networks, but our ability to predict the cumulative effect of multiple SCMs at watershed scales is limited. The most widely used metric to quantify impacts of urban development, total imperviousness (TI), does not contain information about the extent of stormwater control. We analyzed the discharge records of 16 urban watersheds in Charlotte, NC spanning a range of TI (4.1-54%) and area mitigated with SCMs (1.3-89%). We then tested multiple watershed metrics that quantify the degree of urban impact and SCM mitigation to determine which best predicted hydrologic response across sites. At the event time scale, linear models showed TI to be the best predictor of both peak unit discharge and rainfall-runoff ratios across a range of storm sizes. TI was also a strong driver of both a watershed's capacity to buffer small (e.g., 1-10 mm) rain events, and the relationship between peak discharge and precipitation once that buffering capacity is exceeded. Metrics containing information about SCMs did not appear as primary predictors of event hydrologic response, suggesting that the level of SCM mitigation in many urban watersheds is insufficient to influence hydrologic response. Over annual timescales, impervious surfaces unmitigated by SCMs and tree coverage were best correlated with streamflow flashiness and water yield, respectively. The shift in controls from the event scale to the annual scale has important implications for water resource management, suggesting that overall limitation of watershed imperviousness rather than partial mitigation by SCMs may be necessary to alleviate the hydrologic impacts of urbanization.
SEISMIC SOURCE SCALING AND DISCRIMINATION IN DIVERSE TECTONIC ENVIRONMENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abercrombie, R E; Mayeda, K; Walter, W R
2007-07-10
The objectives of this study are to improve low-magnitude regional seismic discrimination by performing a thorough investigation of earthquake source scaling using diverse, high-quality datasets from varied tectonic regions. Local-to-regional high-frequency discrimination requires an estimate of how earthquakes scale with size. Walter and Taylor (2002) developed the MDAC (Magnitude and Distance Amplitude Corrections) method to empirically account for these effects through regional calibration. The accuracy of these corrections has a direct impact on our ability to identify clandestine explosions in the broad regional areas characterized by low seismicity. Unfortunately our knowledge of source scaling at small magnitudes (i.e., m{sub b}more » < {approx}4.0) is poorly resolved. It is not clear whether different studies obtain contradictory results because they analyze different earthquakes, or because they use different methods. Even in regions that are well studied, such as test sites or areas of high seismicity, we still rely on empirical scaling relations derived from studies taken from half-way around the world at inter-plate regions. We investigate earthquake sources and scaling from different tectonic settings, comparing direct and coda wave analysis methods. We begin by developing and improving the two different methods, and then in future years we will apply them both to each set of earthquakes. Analysis of locally recorded, direct waves from events is intuitively the simplest way of obtaining accurate source parameters, as these waves have been least affected by travel through the earth. But there are only a limited number of earthquakes that are recorded locally, by sufficient stations to give good azimuthal coverage, and have very closely located smaller earthquakes that can be used as an empirical Green's function (EGF) to remove path effects. In contrast, coda waves average radiation from all directions so single-station records should be adequate, and previous work suggests that the requirements for the EGF event are much less stringent. We can study more earthquakes using the coda-wave methods, while using direct wave methods for the best recorded subset of events so as to investigate any differences between the results of the two approaches. Finding 'perfect' EGF events for direct wave analysis is difficult, as is ascertaining the quality of a particular EGF event. We develop a multi-taper method to obtain time-domain source-time-functions by frequency division. If an earthquake and EGF event pair are able to produce a clear, time-domain source pulse then we accept the EGF event. We then model the spectral (amplitude) ratio to determine source parameters from both direct P and S waves. We use the well-recorded sequence of aftershocks of the M5 Au Sable Forks, NY, earthquake to test the method and also to obtain some of the first accurate source parameters for small earthquakes in eastern North America. We find that the stress drops are high, confirming previous work suggesting that intraplate continental earthquakes have higher stress drops than events at plate boundaries. We simplify and improve the coda wave analysis method by calculating spectral ratios between different sized earthquakes. We first compare spectral ratio performance between local and near-regional S and coda waves in the San Francisco Bay region for moderate-sized events. The average spectral ratio standard deviations using coda are {approx}0.05 to 0.12, roughly a factor of 3 smaller than direct S-waves for 0.2 < f < 15.0 Hz. Also, direct wave analysis requires collocated pairs of earthquakes whereas the event-pairs (Green's function and target events) can be separated by {approx}25 km for coda amplitudes without any appreciable degradation. We then apply coda spectral ratio method to the 1999 Hector Mine mainshock (M{sub w} 7.0, Mojave Desert) and its larger aftershocks. We observe a clear departure from self-similarity, consistent with previous studies using similar regional datasets.« less
NASA Astrophysics Data System (ADS)
Li, Y.; Kazemifar, F.; Blois, G.; Christensen, K. T.
2017-12-01
Geological sequestration of CO2 within saline aquifers is a viable technology for reducing CO2 emissions. Central to this goal is accurately predicting both the fidelity of candidate sites pre-injection of CO2 and its post-injection migration. Moreover, local fluid pressure buildup may cause activation of small pre-existing unidentified faults, leading to micro-seismic events, which could prove disastrous for societal acceptance of CCS, and possibly compromise seal integrity. Recent evidence shows that large-scale events are coupled with pore-scale phenomena, which necessitates the representation of pore-scale stress, strain, and multiphase flow processes in large-scale modeling. To this end, the pore-scale flow of water and liquid/supercritical CO2 is investigated under reservoir-relevant conditions, over a range of wettability conditions in 2D heterogeneous micromodels that reflect the complexity of a real sandstone. High-speed fluorescent microscopy, complemented by a fast differential pressure transmitter, allows for simultaneous measurement of the flow field within and the instantaneous pressure drop across the micromodels. A flexible micromodel is also designed and fabricated, to be used in conjunction with the micro-PIV technique, enabling the quantification of coupled solid-liquid interactions.
NASA Astrophysics Data System (ADS)
Petrov, Yevgeniy
2009-10-01
Searches for sources of the highest-energy cosmic rays traditionally have included looking for clusters of event arrival directions on the sky. The smallest cluster is a pair of events falling within some angular window. In contrast to the standard two point (2-pt) autocorrelation analysis, this work takes into account influence of the galactic magnetic field (GMF). The highest energy events, those above 50EeV, collected by the surface detector of the Pierre Auger Observatory between January 1, 2004 and May 31, 2009 are used in the analysis. Having assumed protons as primaries, events are backtracked through BSS/S, BSS/A, ASS/S and ASS/A versions of Harari-Mollerach-Roulet (HMR) model of the GMF. For each version of the model, a 2-pt autocorrelation analysis is applied to the backtracked events and to 105 isotropic Monte Carlo realizations weighted by the Auger exposure. Scans in energy, separation angular window and different model parameters reveal clustering at different angular scales. Small angle clustering at 2-3 deg is particularly interesting and it is compared between different field scenarios. The strength of the autocorrelation signal at those angular scales differs between BSS and ASS versions of the HMR model. The BSS versions of the model tend to defocus protons as they arrive to Earth whereas for the ASS, in contrary, it is more likely to focus them.
Design and Test of an Improved Crashworthiness Small Composite Airframe
NASA Technical Reports Server (NTRS)
Terry, James E.; Hooper, Steven J.; Nicholson, Mark
2002-01-01
The purpose of this small business innovative research (SBIR) program was to evaluate the feasibility of developing small composite airplanes with improved crashworthiness. A combination of analysis and half scale component tests were used to develop an energy absorbing airframe. Four full scale crash tests were conducted at the NASA Impact Dynamics Research Facility, two on a hard surface and two onto soft soil, replicating earlier NASA tests of production general aviation airplanes. Several seat designs and restraint systems including both an air bag and load limiting shoulder harnesses were tested. Tests showed that occupant loads were within survivable limits with the improved structural design and the proper combination of seats and restraint systems. There was no loss of cabin volume during the events. The analysis method developed provided design guidance but time did not allow extending the analysis to soft soil impact. This project demonstrated that survivability improvements are possible with modest weight penalties. The design methods can be readily applied by airplane designers using the examples in this report.
Sparkling extreme-ultraviolet bright dots observed with Hi-C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Régnier, S.; Alexander, C. E.; Walsh, R. W.
Observing the Sun at high time and spatial scales is a step toward understanding the finest and fundamental scales of heating events in the solar corona. The high-resolution coronal (Hi-C) instrument has provided the highest spatial and temporal resolution images of the solar corona in the EUV wavelength range to date. Hi-C observed an active region on 2012 July 11 that exhibits several interesting features in the EUV line at 193 Å. One of them is the existence of short, small brightenings 'sparkling' at the edge of the active region; we call these EUV bright dots (EBDs). Individual EBDs havemore » a characteristic duration of 25 s with a characteristic length of 680 km. These brightenings are not fully resolved by the SDO/AIA instrument at the same wavelength; however, they can be identified with respect to the Hi-C location of the EBDs. In addition, EBDs are seen in other chromospheric/coronal channels of SDO/AIA, which suggests a temperature between 0.5 and 1.5 MK. Based on their frequency in the Hi-C time series, we define four different categories of EBDs: single peak, double peak, long duration, and bursty. Based on a potential field extrapolation from an SDO/HMI magnetogram, the EBDs appear at the footpoints of large-scale, trans-equatorial coronal loops. The Hi-C observations provide the first evidence of small-scale EUV heating events at the base of these coronal loops, which have a free magnetic energy of the order of 10{sup 26} erg.« less
The initial subevent of the 1994 Northridge, California, earthquake: Is earthquake size predictable?
Kilb, Debi; Gomberg, J.
1999-01-01
We examine the initial subevent (ISE) of the M?? 6.7, 1994 Northridge, California, earthquake in order to discriminate between two end-member rupture initiation models: the 'preslip' and 'cascade' models. Final earthquake size may be predictable from an ISE's seismic signature in the preslip model but not in the cascade model. In the cascade model ISEs are simply small earthquakes that can be described as purely dynamic ruptures. In this model a large earthquake is triggered by smaller earthquakes; there is no size scaling between triggering and triggered events and a variety of stress transfer mechanisms are possible. Alternatively, in the preslip model, a large earthquake nucleates as an aseismically slipping patch in which the patch dimension grows and scales with the earthquake's ultimate size; the byproduct of this loading process is the ISE. In this model, the duration of the ISE signal scales with the ultimate size of the earthquake, suggesting that nucleation and earthquake size are determined by a more predictable, measurable, and organized process. To distinguish between these two end-member models we use short period seismograms recorded by the Southern California Seismic Network. We address questions regarding the similarity in hypocenter locations and focal mechanisms of the ISE and the mainshock. We also compare the ISE's waveform characteristics to those of small earthquakes and to the beginnings of earthquakes with a range of magnitudes. We find that the focal mechanisms of the ISE and mainshock are indistinguishable, and both events may have nucleated on and ruptured the same fault plane. These results satisfy the requirements for both models and thus do not discriminate between them. However, further tests show the ISE's waveform characteristics are similar to those of typical small earthquakes in the vicinity and more importantly, do not scale with the mainshock magnitude. These results are more consistent with the cascade model.
NASA Astrophysics Data System (ADS)
Pietruszka, A. J.; Marske, J. P.; Weis, D.; Garcia, M. O.; Rhodes, J. M.
2006-12-01
There are few quantitative estimates for the size, shape, and distribution of small-scale compositional heterogeneities within the Hawaiian mantle plume. The chemistry of recent lavas from the two most active Hawaiian volcanoes, Kilauea and Mauna Loa, provide a snapshot of the heterogeneous structure of the plume beneath Hawaii. We present Pb and Sr isotope ratios of two suites of young prehistoric lavas from these volcanoes: (1) Kilauea lavas from AD 1000 to 1500, and (2) 14C-dated Mauna Loa flows from ~2,650- 140 years BP. Prior to this study, the Pb and Sr isotope ratios of lavas from these volcanoes were thought to be completely distinct (e.g., Abouchami et al., 2005). However, these prehistoric Kilauea and Mauna Loa lavas display a systematic isotopic fluctuation, and the Kilauea lavas (in particular) span the Pb and Sr isotopic divide that was previously thought to exist between these two volcanoes. For a brief period from AD 250 to 1500, the Pb and Sr isotope ratios of Kilauea and Mauna Loa lavas departed from values typical for each volcano's historical period, moved towards a common isotopic composition, and subsequently, returned to more typical values. This transient magmatic event was probably caused by the rapid passage of a small-scale compositional heterogeneity though the melting regions of these volcanoes. The heterogeneity is thought to be either a single body that extends between the summits of both Kilauea and Mauna Loa (~35 km long) or the ubiquitous plume matrix itself. The time scale of this event (centuries) is much shorter than previously noted for variations in the isotopic composition of Hawaiian lavas due to the upwelling of heterogeneities within the plume (thousands to tens of thousands of years; Blichert-Toft et al., 2003; Kurz et al., 2004). Calculations based on the duration of the isotopic excursion suggest a maximum thickness for the melting region (and thus, the heterogeneity) of only ~5-10 km.
Ensemble reconstruction of spatio-temporal extreme low-flow events in France since 1871
NASA Astrophysics Data System (ADS)
Caillouet, Laurie; Vidal, Jean-Philippe; Sauquet, Eric; Devers, Alexandre; Graff, Benjamin
2017-06-01
The length of streamflow observations is generally limited to the last 50 years even in data-rich countries like France. It therefore offers too small a sample of extreme low-flow events to properly explore the long-term evolution of their characteristics and associated impacts. To overcome this limit, this work first presents a daily 140-year ensemble reconstructed streamflow dataset for a reference network of near-natural catchments in France. This dataset, called SCOPE Hydro (Spatially COherent Probabilistic Extended Hydrological dataset), is based on (1) a probabilistic precipitation, temperature, and reference evapotranspiration downscaling of the Twentieth Century Reanalysis over France, called SCOPE Climate, and (2) continuous hydrological modelling using SCOPE Climate as forcings over the whole period. This work then introduces tools for defining spatio-temporal extreme low-flow events. Extreme low-flow events are first locally defined through the sequent peak algorithm using a novel combination of a fixed threshold and a daily variable threshold. A dedicated spatial matching procedure is then established to identify spatio-temporal events across France. This procedure is furthermore adapted to the SCOPE Hydro 25-member ensemble to characterize in a probabilistic way unrecorded historical events at the national scale. Extreme low-flow events are described and compared in a spatially and temporally homogeneous way over 140 years on a large set of catchments. Results highlight well-known recent events like 1976 or 1989-1990, but also older and relatively forgotten ones like the 1878 and 1893 events. These results contribute to improving our knowledge of historical events and provide a selection of benchmark events for climate change adaptation purposes. Moreover, this study allows for further detailed analyses of the effect of climate variability and anthropogenic climate change on low-flow hydrology at the scale of France.
NASA Astrophysics Data System (ADS)
McDonald, G. W.; Cronin, S. J.; Kim, J.-H.; Smith, N. J.; Murray, C. A.; Procter, J. N.
2017-12-01
The economic impacts of volcanism extend well beyond the direct costs of loss of life and asset damage. This paper presents one of the first attempts to assess the economic consequences of disruption associated with volcanic impacts at a range of temporal and spatial scales using multi-regional and dynamic computable general equilibrium (CGE) modelling. Based on the last decade of volcanic research findings at Mt. Taranaki, three volcanic event scenarios (Tahurangi, Inglewood and Opua) differentiated by critical physical thresholds were generated. In turn, the corresponding disruption economic impacts were calculated for each scenario. Under the Tahurangi scenario (annual probability of 0.01-0.02), a small-scale explosive (Volcanic Explosivity Index (VEI) 2-3) and dome forming eruption, the economic impacts were negligible with complete economic recovery experienced within a year. The larger Inglewood sub-Plinian to Plinian eruption scenario event (VEI > 4, annualised probability of 0.003) produced significant impacts on the Taranaki region economy of 207 million (representing 4.0% of regional gross domestic product (GDP) 1 year after the event, 2007 New Zealand dollars), that will take around 5 years to recover. The Opua scenario, the largest magnitude volcanic hazard modelled, is a major flank collapse and debris avalanche event with an annual probability of 0.00018. The associated economic impacts of this scenario were 397 million (representing 7.7% of regional GDP 1 year after the event) with the Taranaki region economy suffering permanent structural changes. Our dynamic analysis illustrates that different economic impacts play out at different stages in a volcanic crisis. We also discuss the key strengths and weaknesses of our modelling along with potential extensions.
Are extreme events (statistically) special? (Invited)
NASA Astrophysics Data System (ADS)
Main, I. G.; Naylor, M.; Greenhough, J.; Touati, S.; Bell, A. F.; McCloskey, J.
2009-12-01
We address the generic problem of testing for scale-invariance in extreme events, i.e. are the biggest events in a population simply a scaled model of those of smaller size, or are they in some way different? Are large earthquakes for example ‘characteristic’, do they ‘know’ how big they will be before the event nucleates, or is the size of the event determined only in the avalanche-like process of rupture? In either case what are the implications for estimates of time-dependent seismic hazard? One way of testing for departures from scale invariance is to examine the frequency-size statistics, commonly used as a bench mark in a number of applications in Earth and Environmental sciences. Using frequency data however introduces a number of problems in data analysis. The inevitably small number of data points for extreme events and more generally the non-Gaussian statistical properties strongly affect the validity of prior assumptions about the nature of uncertainties in the data. The simple use of traditional least squares (still common in the literature) introduces an inherent bias to the best fit result. We show first that the sampled frequency in finite real and synthetic data sets (the latter based on the Epidemic-Type Aftershock Sequence model) converge to a central limit only very slowly due to temporal correlations in the data. A specific correction for temporal correlations enables an estimate of convergence properties to be mapped non-linearly on to a Gaussian one. Uncertainties closely follow a Poisson distribution of errors across the whole range of seismic moment for typical catalogue sizes. In this sense the confidence limits are scale-invariant. A systematic sample bias effect due to counting whole numbers in a finite catalogue makes a ‘characteristic’-looking type extreme event distribution a likely outcome of an underlying scale-invariant probability distribution. This highlights the tendency of ‘eyeball’ fits to unconsciously (but wrongly in this case) assume Gaussian errors. We develop methods to correct for these effects, and show that the current best fit maximum likelihood regression model for the global frequency-moment distribution in the digital era is a power law, i.e. mega-earthquakes continue to follow the Gutenberg-Richter trend of smaller earthquakes with no (as yet) observable cut-off or characteristic extreme event. The results may also have implications for the interpretation of other time-limited geophysical time series that exhibit power-law scaling.
Anderson, R.N.; Boulanger, A.; Bagdonas, E.P.; Xu, L.; He, W.
1996-12-17
The invention utilizes 3-D and 4-D seismic surveys as a means of deriving information useful in petroleum exploration and reservoir management. The methods use both single seismic surveys (3-D) and multiple seismic surveys separated in time (4-D) of a region of interest to determine large scale migration pathways within sedimentary basins, and fine scale drainage structure and oil-water-gas regions within individual petroleum producing reservoirs. Such structure is identified using pattern recognition tools which define the regions of interest. The 4-D seismic data sets may be used for data completion for large scale structure where time intervals between surveys do not allow for dynamic evolution. The 4-D seismic data sets also may be used to find variations over time of small scale structure within individual reservoirs which may be used to identify petroleum drainage pathways, oil-water-gas regions and, hence, attractive drilling targets. After spatial orientation, and amplitude and frequency matching of the multiple seismic data sets, High Amplitude Event (HAE) regions consistent with the presence of petroleum are identified using seismic attribute analysis. High Amplitude Regions are grown and interconnected to establish plumbing networks on the large scale and reservoir structure on the small scale. Small scale variations over time between seismic surveys within individual reservoirs are identified and used to identify drainage patterns and bypassed petroleum to be recovered. The location of such drainage patterns and bypassed petroleum may be used to site wells. 22 figs.
Anderson, Roger N.; Boulanger, Albert; Bagdonas, Edward P.; Xu, Liqing; He, Wei
1996-01-01
The invention utilizes 3-D and 4-D seismic surveys as a means of deriving information useful in petroleum exploration and reservoir management. The methods use both single seismic surveys (3-D) and multiple seismic surveys separated in time (4-D) of a region of interest to determine large scale migration pathways within sedimentary basins, and fine scale drainage structure and oil-water-gas regions within individual petroleum producing reservoirs. Such structure is identified using pattern recognition tools which define the regions of interest. The 4-D seismic data sets may be used for data completion for large scale structure where time intervals between surveys do not allow for dynamic evolution. The 4-D seismic data sets also may be used to find variations over time of small scale structure within individual reservoirs which may be used to identify petroleum drainage pathways, oil-water-gas regions and, hence, attractive drilling targets. After spatial orientation, and amplitude and frequency matching of the multiple seismic data sets, High Amplitude Event (HAE) regions consistent with the presence of petroleum are identified using seismic attribute analysis. High Amplitude Regions are grown and interconnected to establish plumbing networks on the large scale and reservoir structure on the small scale. Small scale variations over time between seismic surveys within individual reservoirs are identified and used to identify drainage patterns and bypassed petroleum to be recovered. The location of such drainage patterns and bypassed petroleum may be used to site wells.
Thompson, B.D.; Young, R.P.; Lockner, D.A.
2005-01-01
To investigate laboratory earthquakes, stick-slip events were induced on a saw-cut Westerly granite sample by triaxial loading at 150 MPa confining pressure. Acoustic emissions (AE) were monitored using an innovative continuous waveform recorder. The first motion of each stick slip was recorded as a large-amplitude AE signal. These events source locate onto the saw-cut fault plane, implying that they represent the nucleation sites of the dynamic failure stick-slip events. The precise location of nucleation varied between events and was probably controlled by heterogeneity of stress or surface conditions on the fault. The initial nucleation diameter of each dynamic instability was inferred to be less than 3 mm. A small number of AE were recorded prior to each macro slip event. For the second and third slip events, premonitory AE source mechanisms mimic the large scale fault plane geometry. Copyright 2005 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Russo, Tess A.; Fisher, Andrew T.; Winslow, Dustin M.
2013-04-01
Studies of extreme precipitation have documented changes at the continental scale during the twentieth century, but few studies have quantified changes at small to regional spatial scales during the same time. We analyze historic data from over 600 precipitation stations in the San Francisco Bay Area (SFBA), California, to assess whether there have been statistically significant changes in extreme precipitation between 1890 and 2010. An annual exceedance probability analysis of extreme precipitation events in the SFBA, coupled with a Markov chain Monte Carlo algorithm, reveals an increase in the occurrence of large events. The depth-duration-frequency characteristics of maximum annual precipitation events having durations of 1 h to 60 days indicate on average an increase in storm intensity in the last 120 years, with the intensity of the largest (least frequent) events increasing the most. Mean annual precipitation (MAP) also increased during the study period, but the relative increase in extreme event intensity exceeds that of MAP, indicating that a greater fraction of precipitation fell during large events. Analysis of data from subareas within the SFBA region indicates considerable heterogeneity in the observed nonstationarity; for example, the 5 day, 25 year event exceedance depth changed by +26%, +16%, and -1% in San Francisco, Santa Rosa, and San Jose, respectively. These results emphasize the importance of analyzing local data for accurate risk assessment, emergency planning, resource management, and climate model calibration.
Hazard from far-field tsunami at Hilo: Earthquakes from the Ring of Fire
NASA Astrophysics Data System (ADS)
Arcas, D.; Weiss, R.; Titov, V.
2007-12-01
Historical data and modeling are used to study tsunami hazard at Hilo, Hawaii. Hilo has one of the best historical tsunami record in the US. Considering the tsunami observations from the early eighteen hundreds until today reveals that the number of observed events per decade depends on the awareness of tsunami events. The awareness appears to be a function of the observation techniques such as seismometers and communication devices, as well as direct measurements. Three time periods can be identified, in which the number of observed events increases from one event per decade in the first period to 7.7 in the second, to 9.4 events per decade in the third one. A total of 89 events from far-field sources have been encountered. In contrast only 11 events have been observed with sources in the near field. To remove this historical observation bias from the hazard estimate, we have complimented the historical analysis with a modeling study. We have carried out modeling of 1476 individual earthquakes along the subduction zones of the Pacific Ocean in four different magnitude levels (7.5, 8.2, 8.7 and 9.3). The maximum run up and maximum peak at the tide gauge is plotted for the different magnitude levels to reveal sensitive and source areas of tsunami waves for Hilo and a linear scaling of both parameters for small, but non-linear scaling for larger earthquakes
Synoptic and Mesoscale Climatologies of Severe Local Storms for the American Midwest.
NASA Astrophysics Data System (ADS)
Arnold, David Leslie
This study investigates the synoptic and mesoscale environments associated with severe local storms (SELS) in the heart of the American Midwest. This region includes west-central Illinois, most of Indiana, the extreme western counties of Ohio, and a small part of northeastern Kentucky. The primary objectives of this study are to determine the surface and middle-tropospheric synoptic circulation patterns and thermodynamic and kinematic environments associated with SELS event types (tornadoes, hail, severe straight -line winds), and to assess the degree to which the synoptic circulation patterns and meso-beta scale kinematic and thermodynamic climatology of the Midwest differ from that of the Great Plains. A secondary objective is to investigate the possible role that land-surface atmosphere interactions play in the spatial distribution of SELS. A new subjective synoptic typing scheme is developed and applied to determine the synoptic-scale circulation patterns associated with the occurrence of SELS event types. This scheme is based on a combination of surface and middle -tropospheric patterns. Thermodynamic and kinematic parameters are analyzed to determine meso-scale environments favorable for the development of SELS. Results indicate that key synoptic-scale circulation patterns, and specific ranges of thermodynamic and kinematic parameters are related to specific SELS event types. These circulation types and ranges of thermodynamic and kinematic parameters may be used to help improve the medium-range forecasting of severe local storms. Results of the secondary objective reveal that the spatial distribution of SELS events is clustered within the study region, and most occur under a negative climate division-level soil moisture gradient; that is, a drier upwind division than the division in which the event occurs. Moreover, the spatial distribution of SELS events is compared against a map of soil types and vegetation. The resulting distribution depicts a visual correlation between the primary soil and vegetative boundaries and clusters of SELS. This supports the likely role of meso-scale land-surface-atmosphere interactions in severe weather development for humid lowlands of the Midwest United States.
NASA Astrophysics Data System (ADS)
Terakawa, Toshiko; Miller, Stephen A.; Deichmann, Nicholas
2012-07-01
We analyzed 118 well-constrained focal mechanisms to estimate the pore fluid pressure field of the stimulated region during the fluid injection experiment in Basel, Switzerland. This technique, termed focal mechanism tomography (FMT), uses the orientations of slip planes within the prevailing regional stress field as an indicator of the fluid pressure along the plane at the time of slip. The maximum value and temporal change of excess pore fluid pressures are consistent with the known history of the wellhead pressure applied at the borehole. Elevated pore fluid pressures were concentrated within 500 m of the open hole section, which are consistent with the spatiotemporal evolution of the induced microseismicity. Our results demonstrate that FMT is a robust approach, being validated at the meso-scale of the Basel stimulation experiment. We found average earthquake triggering excess pore fluid pressures of about 10 MPa above hydrostatic. Overpressured fluids induced many small events (M < 3) along faults unfavorably oriented relative to the tectonic stress pattern, while the larger events tended to occur along optimally oriented faults. This suggests that small-scale hydraulic networks, developed from the high pressure stimulation, interact to load (hydraulically isolated) high strength bridges that produce the larger events. The triggering pore fluid pressures are substantially higher than that predicted from a linear pressure diffusion process from the source boundary, and shows that the system is highly permeable along flow paths that allow fast pressure diffusion to the boundaries of the stimulated region.
The statistical analysis of energy release in small-scale coronal structures
NASA Astrophysics Data System (ADS)
Ulyanov, Artyom; Kuzin, Sergey; Bogachev, Sergey
We present the results of statistical analysis of impulsive flare-like brightenings, which numerously occur in the quiet regions of solar corona. For our study, we utilized high-cadence observations performed with two EUV-telescopes - TESIS/Coronas-Photon and AIA/SDO. In total, we processed 6 sequences of images, registered throughout the period between 2009 and 2013, covering the rising phase of the 24th solar cycle. Based on high-speed DEM estimation method, we developed a new technique to evaluate the main parameters of detected events (geometrical sizes, duration, temperature and thermal energy). We then obtained the statistical distributions of these parameters and examined their variations depending on the level of solar activity. The results imply that near the minimum of the solar cycle the energy release in quiet corona is mainly provided by small-scale events (nanoflares), whereas larger events (microflares) prevail on the peak of activity. Furthermore, we investigated the coronal conditions that had specified the formation and triggering of registered flares. By means of photospheric magnetograms obtained with MDI/SoHO and HMI/SDO instruments, we examined the topology of local magnetic fields at different stages: the pre-flare phase, the peak of intensity and the ending phase. To do so, we introduced a number of topological parameters including the total magnetic flux, the distance between magnetic sources and their mutual arrangement. The found correlation between the change of these parameters and the formation of flares may offer an important tool for application of flare forecasting.
Assessing changes in extreme convective precipitation from a damage perspective
NASA Astrophysics Data System (ADS)
Schroeer, K.; Tye, M. R.
2016-12-01
Projected increases in high-intensity short-duration convective precipitation are expected even in regions that are likely to become more arid. Such high intensity precipitation events can trigger hazardous flash floods, debris flows and landslides that put people and local assets at risk. However, the assessment of local scale precipitation extremes is hampered by its high spatial and temporal variability. In addition to which, not only are extreme events rare, but such small scale events are likely to be underreported where they don't coincide with the observation network. Rather than focus solely on the convective precipitation, understanding the characteristics of these extremes which drive damage may be more effective to assess future risks. Two sources of data are used in this study. First, sub-daily precipitation observations over the Southern Alps enable an examination of seasonal and regional patterns in high-intensity convective precipitation and their relationship with weather types. Secondly, reports of private loss and damage on a household scale are used to identify which events are most damaging, or what conditions potentially enhance the vulnerability to these extremes.This study explores the potential added value from including recorded loss and damage data to understand the risks from summertime convective precipitation events. By relating precipitation generating weather types to the severity of damage we hope to develop a mechanism to assess future risks. A further benefit would be to identify from damage reports the likely occurrence of precipitation extremes where no direct observations are available and use this information to validate remotely sensed observations.
Multiperspective smFRET reveals rate-determining late intermediates of ribosomal translocation.
Wasserman, Michael R; Alejo, Jose L; Altman, Roger B; Blanchard, Scott C
2016-04-01
Directional translocation of the ribosome through the mRNA open reading frame is a critical determinant of translational fidelity. This process entails a complex interplay of large-scale conformational changes within the actively translating particle, which together coordinate the movement of tRNA and mRNA substrates with respect to the large and small ribosomal subunits. Using pre-steady state, single-molecule fluorescence resonance energy transfer imaging, we tracked the nature and timing of these conformational events within the Escherichia coli ribosome from five structural perspectives. Our investigations revealed direct evidence of structurally and kinetically distinct late intermediates during substrate movement, whose resolution determines the rate of translocation. These steps involve intramolecular events within the EF-G-GDP-bound ribosome, including exaggerated, reversible fluctuations of the small-subunit head domain, which ultimately facilitate peptidyl-tRNA's movement into its final post-translocation position.
Multi-perspective smFRET reveals rate-determining late intermediates of ribosomal translocation
Wasserman, Michael R.; Alejo, Jose L.; Altman, Roger B.; Blanchard, Scott C.
2016-01-01
Directional translocation of the ribosome through the messenger RNA open reading frame is a critical determinant of translational fidelity. This process entails a complex interplay of large-scale conformational changes within the actively translating particle, which together coordinate the movement of transfer and messenger RNA substrates with respect to the large and small ribosomal subunits. Using pre-steady state, single-molecule fluorescence resonance energy transfer imaging, we have tracked the nature and timing of these conformational events within the Escherichia coli ribosome from five structural perspectives. Our investigations reveal direct evidence of structurally and kinetically distinct, late intermediates during substrate movement, whose resolution is rate-determining to the translocation mechanism. These steps involve intra-molecular events within the EFG(GDP)-bound ribosome, including exaggerated, reversible fluctuations of the small subunit head domain, which ultimately facilitate peptidyl-tRNA’s movement into its final post-translocation position. PMID:26926435
Fast magnetic reconnection supported by sporadic small-scale Petschek-type shocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shibayama, Takuya, E-mail: shibayama@stelab.nagoya-u.ac.jp; Nakabou, Takashi; Kusano, Kanya
2015-10-15
Standard magnetohydrodynamic (MHD) theory predicts reconnection rate that is far too slow to account for a wide variety of reconnection events observed in space and laboratory plasmas. Therefore, it was commonly accepted that some non-MHD (kinetic) effects play a crucial role in fast reconnection. A recently renewed interest in simple MHD models is associated with the so-called plasmoid instability of reconnecting current sheets. Although it is now evident that this effect can significantly enhance the rate of reconnection, many details of the underlying multiple-plasmoid process still remain controversial. Here, we report results of a high-resolution computer simulation which demonstrate thatmore » fast albeit intermittent magnetic reconnection is sustained by numerous small-scale Petschek-type shocks spontaneously formed in the current sheet due to its plasmoid instability.« less
Limits on radio emission from meteors using the MWA
NASA Astrophysics Data System (ADS)
Zhang, X.; Hancock, P.; Devillepoix, H. A. R.; Wayth, R. B.; Beardsley, A.; Crosse, B.; Emrich, D.; Franzen, T. M. O.; Gaensler, B. M.; Horsley, L.; Johnston-Hollitt, M.; Kaplan, D. L.; Kenney, D.; Morales, M. F.; Pallot, D.; Steele, K.; Tingay, S. J.; Trott, C. M.; Walker, M.; Williams, A.; Wu, C.; Ji, Jianghui; Ma, Yuehua
2018-07-01
Recently, low-frequency, broad-band radio emission has been observed accompanying bright meteors by the Long Wavelength Array (LWA). The broad-band spectra between 20 and 60 MHz were captured for several events, while the spectral index (dependence of flux density on frequency, with Sν ∝ να) was estimated to be -4 ± 1 during the peak of meteor afterglows. Here we present a survey of meteor emission and other transient events using the Murchison Wide Field Array (MWA) at 72-103 MHz. In our 322 h survey, down to a 5σ detection threshold of 3.5 Jy beam-1, no transient candidates were identified as intrinsic emission from meteors. We derived an upper limit of -3.7 (95 per cent confidence limit) on the spectral index in our frequency range. We also report detections of other transient events, such as reflected FM broadcast signals from small satellites, conclusively demonstrating the ability of the MWA to detect and track space debris on scales as small as 0.1 m in low Earth orbits.
NASA Astrophysics Data System (ADS)
Payrastre, Olivier; Bourgin, François; Lebouc, Laurent; Le Bihan, Guillaume; Gaume, Eric
2017-04-01
The October 2015 flash-floods in south eastern France caused more than twenty fatalities, high damages and large economic losses in high density urban areas of the Mediterranean coast, including the cities of Mandelieu-La Napoule, Cannes and Antibes. Following a post event survey and preliminary analyses conducted within the framework of the Hymex project, we set up an entire simulation chain at the regional scale to better understand this outstanding event. Rainfall-runoff simulations, inundation mapping and a first estimation of the impacts are conducted following the approach developed and successfully applied for two large flash-flood events in two different French regions (Gard in 2002 and Var in 2010) by Le Bihan (2016). A distributed rainfall-runoff model applied at high resolution for the whole area - including numerous small ungauged basins - is used to feed a semi-automatic hydraulic approach (Cartino method) applied along the river network - including small tributaries. Estimation of the impacts is then performed based on the delineation of the flooded areas and geographic databases identifying buildings and population at risk.
SIGN SINGULARITY AND FLARES IN SOLAR ACTIVE REGION NOAA 11158
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorriso-Valvo, L.; De Vita, G.; Kazachenko, M. D.
Solar Active Region NOAA 11158 has hosted a number of strong flares, including one X2.2 event. The complexity of current density and current helicity are studied through cancellation analysis of their sign-singular measure, which features power-law scaling. Spectral analysis is also performed, revealing the presence of two separate scaling ranges with different spectral index. The time evolution of parameters is discussed. Sudden changes of the cancellation exponents at the time of large flares and the presence of correlation with Extreme-Ultra-Violet and X-ray flux suggest that eruption of large flares can be linked to the small-scale properties of the current structures.
Source characterization of a small earthquake cluster at Edmond, Oklahoma using a very dense array
NASA Astrophysics Data System (ADS)
Ng, R.; Nakata, N.
2017-12-01
Recent seismicity in Oklahoma has caught the attention of the public in the last few years since seismicity is commonly related to loss in urban areas. To account for the increase in public interest, improve the understanding of damaging ground motions produced in earthquakes and develop better seismic hazard assessment, we must characterize the seismicity in Oklahoma and its associated structure and source parameters. Regional changes in subsurface stresses have increased seismic activities due to reactivation of faults in places such as central Oklahoma. It is imperative for seismic investigation and modeling to characterize subsurface structural features that may influence the damaging effects of ground motion. We analyze the full-waveform data collected from a temporary dense array of 72 portable seismometers with a 110 meter spacing that were active for a one-month period from May to June 2017, deployed at Edmond, Oklahoma. The data from this one-month duration array captured over 10,000 events and enabled us to make measurements of small-scale lateral variations of earthquake wavefields. We examine the waveform for events using advanced methods of detection, location and determine the source mechanism. We compare our results with selected events listed in the Oklahoma Geological Survey (OGS) and United States Geological Survey (USGS) catalogue. Based on the detection and located small events, we will discuss the causative fault structure at the area and present the results of the investigation.
ERIC Educational Resources Information Center
Aliagas, Cristina; Margallo, Ana María
2017-01-01
This paper reports on some data on the effects of screen-based interactivity on children's engagement with storybook apps during family shared book reading that were gathered in a 2-year, small-scale ethnographic case study in Spain. Data analysis focuses on the complex interplay between the storybook app's interactive features and the children's…
ERIC Educational Resources Information Center
Vella, Yosanne
2011-01-01
The small-scale research that Yosanne Vella reports in this article was driven by concern to help pupils develop "big picture" visions of the past and to engage effectively with the idea of change as a process rather than an event. The strategy that she adopts--asking groups of students to colour in a timeline recording their judgement…
NASA Astrophysics Data System (ADS)
Popovicheva, O.; Kistler, M.; Kireeva, E.; Persiantseva, N.; Timofeev, M.; Kopeikin, V.; Kasper-Giebl, A.
2014-10-01
Enhancement of biomass burning-related research is essential for the assessment of large-scale wildfires impact on pollution at regional and global scale. Starting since 6 August 2010 Moscow was covered with thick smoke of unusually high PM10 and BC concentrations, considerably affected by huge forest and peat fires around megacity. This work presents the first comprehensive physico-chemical characterization of aerosols during extreme smoke event in Moscow in August 2010. Sampling was performed in the Moscow center and suburb as well as one year later, in August 2011 during a period when no biomass burning was observed. Small-scale experimental fires of regional biomass were conducted in the Moscow region. Carbon content, functionalities of organic/inorganic compounds, tracers of biomass burning (anhydrosaccharides), ionic composition, and structure of smoke were analyzed by thermal-optical analysis, FTIR spectroscopy, liquid and ion chromatography, and electron microscopy. Carbonaceous aerosol in August 2010 was dominated by organic species with elemental carbon (EC) as minor component. High average OC/EC near 27.4 is found, comparable to smoke of regional biomass smoldering fire, and exceeded 3 times the value observed in August 2011. Organic functionalities of Moscow smoke aerosols were hydroxyl, aliphatic, aromatic, acid and non-acid carbonyl, and nitro compound groups, almost all of them indicate wildfires around city as the source of smoke. The ratio of levoglucosan (LG) to mannosan near 5 confirms the origin of smoke from coniferous forest fires around megacity. Low ratio of LG/OC near 0.8% indicates the degradation of major molecular tracer of biomass burning in urban environment. Total concentration of inorganic ions dominated by sulfates SO4 2 - and ammonium NH4+ was found about 5 times higher during large-scale wildfires than in August 2011. Together with strong sulfate and ammonium absorbance in smoke aerosols, these observations prove the formation of secondary inorganic species associated with wildfire gaseous emissions and their transformation in aged smoke. Accumulation of carbonyl compounds during extreme smoke event in Moscow resulted from photochemical aging and secondary organic aerosol (SOA) formation in the urban atmosphere. The mixture of carbonaceous particles and dust revealed multicomponent structure of Moscow smoke aerosols, pointing the difference with non-smoke ambient aerosols. The abundance of group containing soot and tar balls approached at least a half of total aerosol concentration during extreme event, relating to elevated OC, EC and SOA. Fly ash groups contained calcium sulfates and carbonates from soil entrainment by hot air convection. Small-scale open fire experiments support the identification of specific chemical features of regional biomass burning and demonstrate the strong impact of large-scale wildfires on aerosol chemistry and air quality in highly polluted megacity.
An Analysis of Eruptions Detected by the LMSAL Eruption Patrol
NASA Astrophysics Data System (ADS)
Hurlburt, N. E.; Higgins, P. A.; Jaffey, S.
2014-12-01
Observations of the solar atmosphere reveals a wide range of real and apparent motions, from small scale jets and spicules to global-scale coronal mass ejections. Identifying and characterizing these motions are essential to advance our understanding the drivers of space weather. Automated and visual identifications are used in identifying CMEs. To date, the precursors to these — eruptions near the solar surface — have been identified primarily by visual inspection. Here we report on an analysis of the eruptions detected by the Eruption Patrol, a data mining module designed to automatically identify eruptions from data collected by Solar Dynamics Observatory's Atmospheric Imaging Assembly (SDO/AIA). We describe the module and use it both to explore relations with other solar events recorded in the Heliophysics Event Knowledgebase and to identify and access data collected by the Interface Region Imaging Spectrograph (IRIS) and Solar Optical Telescope (SOT) on Hinode for further analysis.
Snow Tweets: Emergency Information Dissemination in a US County During 2014 Winter Storms
Bonnan-White, Jess; Shulman, Jason; Bielecke, Abigail
2014-01-01
Introduction: This paper describes how American federal, state, and local organizations created, sourced, and disseminated emergency information via social media in preparation for several winter storms in one county in the state of New Jersey (USA). Methods: Postings submitted to Twitter for three winter storm periods were collected from selected organizations, along with a purposeful sample of select private local users. Storm-related posts were analyzed for stylistic features (hashtags, retweet mentions, embedded URLs). Sharing and re-tweeting patterns were also mapped using NodeXL. Results: Results indicate emergency management entities were active in providing preparedness and response information during the selected winter weather events. A large number of posts, however, did not include unique Twitter features that maximize dissemination and discovery by users. Visual representations of interactions illustrate opportunities for developing stronger relationships among agencies. Discussion: Whereas previous research predominantly focuses on large-scale national or international disaster contexts, the current study instead provides needed analysis in a small-scale context. With practice during localized events like extreme weather, effective information dissemination in large events can be enhanced. PMID:25685629
Snow Tweets: Emergency Information Dissemination in a US County During 2014 Winter Storms.
Bonnan-White, Jess; Shulman, Jason; Bielecke, Abigail
2014-12-22
This paper describes how American federal, state, and local organizations created, sourced, and disseminated emergency information via social media in preparation for several winter storms in one county in the state of New Jersey (USA). Postings submitted to Twitter for three winter storm periods were collected from selected organizations, along with a purposeful sample of select private local users. Storm-related posts were analyzed for stylistic features (hashtags, retweet mentions, embedded URLs). Sharing and re-tweeting patterns were also mapped using NodeXL. RESULTS indicate emergency management entities were active in providing preparedness and response information during the selected winter weather events. A large number of posts, however, did not include unique Twitter features that maximize dissemination and discovery by users. Visual representations of interactions illustrate opportunities for developing stronger relationships among agencies. Whereas previous research predominantly focuses on large-scale national or international disaster contexts, the current study instead provides needed analysis in a small-scale context. With practice during localized events like extreme weather, effective information dissemination in large events can be enhanced.
NASA Astrophysics Data System (ADS)
Caviedes-Voullième, Daniel; Domin, Andrea; Hinz, Christoph
2017-04-01
The quantitative description and prediction of hydrological response of hillslopes or hillslope-scale catchments to rainfall events is becoming evermore relevant. At the hillslope scale, the onset of runoff and the overall rainfall-runoff transformation are controlled by multiple interacting small-scale processes, that, when acting together produce a response described in terms of hydrological variables well-defined at the catchment and hillslope scales. We hypothesize that small scale features such microtopography of the land surface will will govern large scale signatures of temporal runoff evolution. This can be tested directly by numerical modelling of well-defined surface geometries and adequate process description. It requires a modelling approach consistent with fundamental fluid mechanics, well-designed numerical methods, and computational efficiency. In this work, an idealized rectangular domain representing a hillslope with an idealized 2D sinusoidal microtopography is studied by simulating surface water redistribution by means of a 2D diffusive-wave (zero-inertia) shallow water model. By studying more than 500 surfaces and performing extensive sensitivity analysis forced by a single rainfall pulse, the dependency of characteristic hydrological responses to microtopographical properties was assessed. Despite of the simplicity of periodic surface and the rain event, results indicate complex surface flow dynamics during the onset of runoff observed at the macro and micro scales. Macro scale regimes were defined in terms of characteristics hydrograph shapes and those were related to surface geometry. The reference regime was defined for smooth topography and consisted of a simple hydrograph with smoothly rising and falling limbs with an intermediate steady state. In constrast, rough surface geometry yields stepwise rising limbs and shorter steady states. Furthermore, the increase in total infiltration over the whole domain relative to the smooth reference case shows a strong non-linear dependency on slope and the ratio of the characteristic wavelength and amplitude of microtopography. The coupled analysis of spatial and hydrological results also suggests that the hydrological behaviour can be explained by the spatiotemporal variations triggered by surface connectivity. This study significantly extents previous work on 1D domains, as our results reveal complexities that require 2D representation of the runoff processes.
Formation of bi-lobed 67P/C-G-like shapes by sub-catastrophic collisions
NASA Astrophysics Data System (ADS)
Jutzi, Martin; Benz, Willy
2016-10-01
Small bodies with a bi-lobe shape such as comet 67P/C-G have been argued to form as the result of low velocity (v ≈ vesc) collisional mergers of similar-sized bodies very early on in the history of the solar system [1]. However, the recent analysis of the subsequent collisional survival of the global structure and shape of comet 67P/C-G strongly suggests that such a structure will not survive until today [2]. Hence, the comet must have acquired its present characteristics as a result of a collision occurring at later time when the relative velocities between small bodies are much higher (v >> vesc).One possible scenario would be that 67P/C-G-like bi-lobe structures form as the result of collisional disruptions of larger parent bodies [3]. Whether the internal properties of such larger parent bodies, the timing of such a collision, and the subsequent survival of the shape produced is compatible with observations will remain to be seen.Here, we propose a scenario in which the final bi-lobe shapes result from low-energy, sub-catastrophic impacts. We start with bodies of about the same mass as comet 67P/C-G, which are rotating and are slightly elongated (i.e., with properties which are consistent with the outcome of the disruptions of larger bodies). We use a SPH shock physics code to model the impacts, the subsequent re-accumulation of material and the reconfiguration into a stable final shape. Our modelling results suggest that these kind of collisions result in "splitting" events which frequently lead to formation of bi-lobe 67P/C-G-like shapes.The frequency of such small-scale impact events is consistent with a young (less than 1 Gy) age of the shape of comet 67P/C-G [2]. Equally important, the probability for such a shape-forming event to take place without a subsequent shape-destroying event occurring until today is reasonably high.Although the collisions considered in this work can alter the global shape, their respective energy is small enough not to lead to any substantial global-scale heating or compaction, consistent with the observed primordial characteristics of comets.[1] Jutzi&Asphaug, 2015, Science 348. [2] Jutzi et al., submitted. [3] Schwartz et al., in prep.
Scale size-dependent characteristics of the nightside aurora
NASA Astrophysics Data System (ADS)
Humberset, B. K.; Gjerloev, J. W.; Samara, M.; Michell, R. G.
2017-02-01
We have determined the spatiotemporal characteristics of the magnetosphere-ionosphere (M-I) coupling using auroral imaging. Observations at fixed positions for an extended period of time are provided by a ground-based all-sky imager measuring the 557.7 nm auroral emissions. We report on a single event of nightside aurora (˜22 magnetic local time) preceding a substorm onset. To determine the spatiotemporal characteristics, we perform an innovative analysis of an all-sky imager movie (19 min duration, images at 3.31 Hz) that combines a two-dimensional spatial fast Fourier transform with a temporal correlation. We find a scale size-dependent variability where the largest scale sizes are stable on timescales of minutes while the small scale sizes are more variable. When comparing two smaller time intervals of different types of auroral displays, we find a variation in their characteristics. The characteristics averaged over the event are in remarkable agreement with the spatiotemporal characteristics of the nightside field-aligned currents during moderately disturbed times. Thus, two different electrodynamical parameters of the M-I coupling show similar behavior. This gives independent support to the claim of a system behavior that uses repeatable solutions to transfer energy and momentum from the magnetosphere to the ionosphere.
Bersinger, T; Le Hécho, I; Bareille, G; Pigot, T
2015-01-01
Eroded sewer sediments are a significant source of organic matter discharge by combined sewer overflows. Many authors have studied the erosion and sedimentation processes at the scale of a section of sewer pipe and over short time periods. The objective of this study was to assess these processes at the scale of an entire sewer network and over 1 month, to understand whether phenomena observed on a small scale of space and time are still valid on a larger scale. To achieve this objective the continuous monitoring of turbidity was used. First, the study of successive rain events allows observation of the reduction of the available sediment and highlights the widely different erosion resistance for the different sediment layers. Secondly, calculation of daily chemical oxygen demand (COD) fluxes during the entire month was performed showing that sediment storage in the sewer pipe after a rain period is important and stops after 5 days. Nevertheless, during rainfall events, the eroded fluxes are more important than the whole sewer sediment accumulated during a dry weather period. This means that the COD fluxes promoted by runoff are substantial. This work confirms, with online monitoring, most of the conclusions from other studies on a smaller scale.
Does an inter-flaw length control the accuracy of rupture forecasting in geological materials?
NASA Astrophysics Data System (ADS)
Vasseur, Jérémie; Wadsworth, Fabian B.; Heap, Michael J.; Main, Ian G.; Lavallée, Yan; Dingwell, Donald B.
2017-10-01
Multi-scale failure of porous materials is an important phenomenon in nature and in material physics - from controlled laboratory tests to rockbursts, landslides, volcanic eruptions and earthquakes. A key unsolved research question is how to accurately forecast the time of system-sized catastrophic failure, based on observations of precursory events such as acoustic emissions (AE) in laboratory samples, or, on a larger scale, small earthquakes. Until now, the length scale associated with precursory events has not been well quantified, resulting in forecasting tools that are often unreliable. Here we test the hypothesis that the accuracy of the forecast failure time depends on the inter-flaw distance in the starting material. We use new experimental datasets for the deformation of porous materials to infer the critical crack length at failure from a static damage mechanics model. The style of acceleration of AE rate prior to failure, and the accuracy of forecast failure time, both depend on whether the cracks can span the inter-flaw length or not. A smooth inverse power-law acceleration of AE rate to failure, and an accurate forecast, occurs when the cracks are sufficiently long to bridge pore spaces. When this is not the case, the predicted failure time is much less accurate and failure is preceded by an exponential AE rate trend. Finally, we provide a quantitative and pragmatic correction for the systematic error in the forecast failure time, valid for structurally isotropic porous materials, which could be tested against larger-scale natural failure events, with suitable scaling for the relevant inter-flaw distances.
Element analysis: a wavelet-based method for analysing time-localized events in noisy time series.
Lilly, Jonathan M
2017-04-01
A method is derived for the quantitative analysis of signals that are composed of superpositions of isolated, time-localized 'events'. Here, these events are taken to be well represented as rescaled and phase-rotated versions of generalized Morse wavelets, a broad family of continuous analytic functions. Analysing a signal composed of replicates of such a function using another Morse wavelet allows one to directly estimate the properties of events from the values of the wavelet transform at its own maxima. The distribution of events in general power-law noise is determined in order to establish significance based on an expected false detection rate. Finally, an expression for an event's 'region of influence' within the wavelet transform permits the formation of a criterion for rejecting spurious maxima due to numerical artefacts or other unsuitable events. Signals can then be reconstructed based on a small number of isolated points on the time/scale plane. This method, termed element analysis , is applied to the identification of long-lived eddy structures in ocean currents as observed by along-track measurements of sea surface elevation from satellite altimetry.
NASA Technical Reports Server (NTRS)
Christoffersen, R.; Loeffler, M. J.; Rahman, Z.; Dukes, C.; IMPACT Team
2017-01-01
The space weathering of regoliths on airless bodies and the formation of their exospheres is driven to a large extent by hypervelocity impacts from the high relative flux of micron to sub-micron meteoroids that comprise approximately 90 percent of the solar system meteoroid population. Laboratory hypervelocity impact experiments are crucial for quantifying how these small impact events drive space weathering through target shock, melting and vaporization. Simulating these small scale impacts experimentally is challenging because the natural impactors are both very small and many have velocities above the approximately 8 kilometers-per-second limit attainable by conventional chemical/light gas accelerator technology. Electrostatic "dust" accelerators, such as the one recently developed at the Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS), allow the experimental velocity regime to be extended up to tens of kilometers-per-second. Even at these velocities the region of latent target damage created by each impact, in the form of microcraters or pits, is still only about 0.1 to 10 micrometers in size. Both field-emission analytical scanning electron microscopy (FE-SEM) and advanced field-emission scanning transmission electron microscopy (FE-STEM) are uniquely suited for characterizing the individual dust impact sites in these experiments. In this study, we have used both techniques, along with focused ion beam (FIB) sample preparation, to characterize the micrometer to nanometer scale effects created by accelerated dust impacts into olivine single crystals. To our knowledge this work presents the first TEM-scale characterization of dust impacts into a key solar system silicate mineral using the CCLDAS facility. Our overarching goal for this work is to establish a basis to compare with our previous results on natural dust-impacted lunar olivine and laser-irradiated olivine.
Towards European-scale convection-resolving climate simulations with GPUs: a study with COSMO 4.19
NASA Astrophysics Data System (ADS)
Leutwyler, David; Fuhrer, Oliver; Lapillonne, Xavier; Lüthi, Daniel; Schär, Christoph
2016-09-01
The representation of moist convection in climate models represents a major challenge, due to the small scales involved. Using horizontal grid spacings of O(1km), convection-resolving weather and climate models allows one to explicitly resolve deep convection. However, due to their extremely demanding computational requirements, they have so far been limited to short simulations and/or small computational domains. Innovations in supercomputing have led to new hybrid node designs, mixing conventional multi-core hardware and accelerators such as graphics processing units (GPUs). One of the first atmospheric models that has been fully ported to these architectures is the COSMO (Consortium for Small-scale Modeling) model.Here we present the convection-resolving COSMO model on continental scales using a version of the model capable of using GPU accelerators. The verification of a week-long simulation containing winter storm Kyrill shows that, for this case, convection-parameterizing simulations and convection-resolving simulations agree well. Furthermore, we demonstrate the applicability of the approach to longer simulations by conducting a 3-month-long simulation of the summer season 2006. Its results corroborate the findings found on smaller domains such as more credible representation of the diurnal cycle of precipitation in convection-resolving models and a tendency to produce more intensive hourly precipitation events. Both simulations also show how the approach allows for the representation of interactions between synoptic-scale and meso-scale atmospheric circulations at scales ranging from 1000 to 10 km. This includes the formation of sharp cold frontal structures, convection embedded in fronts and small eddies, or the formation and organization of propagating cold pools. Finally, we assess the performance gain from using heterogeneous hardware equipped with GPUs relative to multi-core hardware. With the COSMO model, we now use a weather and climate model that has all the necessary modules required for real-case convection-resolving regional climate simulations on GPUs.
NASA Astrophysics Data System (ADS)
James, Tomin; Subramanian, Prasad
2018-05-01
Observations of radio noise storms can act as sensitive probes of nonthermal electrons produced in small acceleration events in the solar corona. We use data from noise storm episodes observed jointly by the Giant Metrewave Radio Telescope (GMRT) and the Nancay Radioheliograph (NRH) to study characteristics of the nonthermal electrons involved in the emission. We find that the electrons carry 1021 to 1024 erg/s, and that the energy contained in the electrons producing a representative noise storm burst ranges from 1020 to 1023 ergs. These results are a direct probe of the energetics involved in ubiquitous, small-scale electron acceleration episodes in the corona, and could be relevant to a nanoflare-like scenario for coronal heating.
Classification of event location using matched filters via on-floor accelerometers
NASA Astrophysics Data System (ADS)
Woolard, Americo G.; Malladi, V. V. N. Sriram; Alajlouni, Sa'ed; Tarazaga, Pablo A.
2017-04-01
Recent years have shown prolific advancements in smart infrastructures, allowing buildings of the modern world to interact with their occupants. One of the sought-after attributes of smart buildings is the ability to provide unobtrusive, indoor localization of occupants. The ability to locate occupants indoors can provide a broad range of benefits in areas such as security, emergency response, and resource management. Recent research has shown promising results in occupant building localization, although there is still significant room for improvement. This study presents a passive, small-scale localization system using accelerometers placed around the edges of a small area in an active building environment. The area is discretized into a grid of small squares, and vibration measurements are processed using a pattern matching approach that estimates the location of the source. Vibration measurements are produced with ball-drops, hammer-strikes, and footsteps as the sources of the floor excitation. The developed approach uses matched filters based on a reference data set, and the location is classified using a nearest-neighbor search. This approach detects the appropriate location of impact-like sources i.e. the ball-drops and hammer-strikes with a 100% accuracy. However, this accuracy reduces to 56% for footsteps, with the average localization results being within 0.6 m (α = 0.05) from the true source location. While requiring a reference data set can make this method difficult to implement on a large scale, it may be used to provide accurate localization abilities in areas where training data is readily obtainable. This exploratory work seeks to examine the feasibility of the matched filter and nearest neighbor search approach for footstep and event localization in a small, instrumented area within a multi-story building.
Classification and Physical parameters EUV coronal jets with STEREO/SECCHI.
NASA Astrophysics Data System (ADS)
Nistico, Giuseppe; Bothmer, Volker; Patsourakos, Spiro; Zimbardo, Gaetano
In this work we present observations of EUV coronal jets, detected with the SECCHI (Sun Earth Connection Coronal and Heliospheric Investigation) imaging suites of the two STEREO spacecraft. Starting from catalogues of polar and equatorial coronal hole jets (Nistico' et al., Solar Phys., 259, 87, 2009; Ann. Geophys. in press), identified from simultaneous EUV and white-light coronagraph observations, taken during the time period March 2007 to April 2008 when solar activity was at minimum, we perfom a detailed study of some events. A basic char-acterisation of the magnetic morphology and identification of the presence of helical structure were established with respect to recently proposed models for their origin and temporal evo-lution. A classification of the events with respect to previous jet studies shows that amongst the 79 events, identified into polar coronal holes, there were 37 Eiffel tower -type jet events commonly interpreted as a small-scale ( 35 arcsec) magnetic bipole reconnecting with the ambi-ent unipolar open coronal magnetic fields at its looptops, 12 lambda-type jet events commonly interpreted as reconnection with the ambient field happening at the bipoles footpoints. Five events were termed micro-CME type jet events because they resembled classical three-part structured coronal mass ejections (CMEs) but on much smaller scales. The remainig 25 cases could not be uniquely classified. Thirty-one of the total number of events exhibited a helical magnetic field structure, indicative for a torsional motion of the jet around its axis of propaga-tion. The jet events are found to be also present in equatorial coronal holes. We also present the 3-D reconstruction, temperature, velocity, and density measurements of a number of jets during their evolution.
Impact of Stressful Life Events on Patients with Chronic Obstructive Pulmonary Disease.
Yu, Tsung; Frei, Anja; Ter Riet, Gerben; Puhan, Milo A
There is a general notion that stressful life events may cause mental and physical health problems. We aimed to describe stressful life events reported by patients with chronic obstructive pulmonary disease (COPD) and to assess their impact on health outcomes and behaviors. Two hundred and sixty-six primary care patients who participated in the ICE COLD ERIC cohort study were asked to document any stressful life events in the past 3 years. We assessed the before-after (the event) changes for symptoms of depression and anxiety, health status, dyspnea-related quality of life, exacerbations, cigarette use, and physical activity. We used linear regression analysis to estimate the crude and adjusted magnitude of the before-after changes. About 41% (110/266) of patients reported the experience of any stressful life events and "death of relatives/important persons" was most common (31%). After accounting for age, sex, living status, lung function, and anxiety/depression status at baseline, experiencing any stressful life events was associated with a 0.9-point increase on the depression scale (95% CI 0.3 to 1.4), a 0.8-point increase on the anxiety scale (95% CI 0.3 to 1.3), and a 0.8-point decrease in the physical activity score (95% CI -1.6 to 0). Experiencing stressful life events was associated with a small to moderate increase in symptoms of depression and anxiety in COPD, but no discernable effect was found for other physical outcomes. However, confirmation of these results in other COPD cohorts and identification of patients particularly vulnerable to stressful life events are needed. © 2017 S. Karger AG, Basel.
Extreme weather: Subtropical floods and tropical cyclones
NASA Astrophysics Data System (ADS)
Shaevitz, Daniel A.
Extreme weather events have a large effect on society. As such, it is important to understand these events and to project how they may change in a future, warmer climate. The aim of this thesis is to develop a deeper understanding of two types of extreme weather events: subtropical floods and tropical cyclones (TCs). In the subtropics, the latitude is high enough that quasi-geostrophic dynamics are at least qualitatively relevant, while low enough that moisture may be abundant and convection strong. Extratropical extreme precipitation events are usually associated with large-scale flow disturbances, strong ascent, and large latent heat release. In the first part of this thesis, I examine the possible triggering of convection by the large-scale dynamics and investigate the coupling between the two. Specifically two examples of extreme precipitation events in the subtropics are analyzed, the 2010 and 2014 floods of India and Pakistan and the 2015 flood of Texas and Oklahoma. I invert the quasi-geostrophic omega equation to decompose the large-scale vertical motion profile to components due to synoptic forcing and diabatic heating. Additionally, I present model results from within the Column Quasi-Geostrophic framework. A single column model and cloud-revolving model are forced with the large-scale forcings (other than large-scale vertical motion) computed from the quasi-geostrophic omega equation with input data from a reanalysis data set, and the large-scale vertical motion is diagnosed interactively with the simulated convection. It is found that convection was triggered primarily by mechanically forced orographic ascent over the Himalayas during the India/Pakistan flood and by upper-level Potential Vorticity disturbances during the Texas/Oklahoma flood. Furthermore, a climate attribution analysis was conducted for the Texas/Oklahoma flood and it is found that anthropogenic climate change was responsible for a small amount of rainfall during the event but the intensity of this event may be greatly increased if it occurs in a future climate. In the second part of this thesis, I examine the ability of high-resolution global atmospheric models to simulate TCs. Specifically, I present an intercomparison of several models' ability to simulate the global characteristics of TCs in the current climate. This is a necessary first step before using these models to project future changes in TCs. Overall, the models were able to reproduce the geographic distribution of TCs reasonably well, with some of the models performing remarkably well. The intensity of TCs varied widely between the models, with some of this difference being due to model resolution.
A Model for Straight and Helical Solar Jets: II. Parametric Study of the Plasma Beta
NASA Technical Reports Server (NTRS)
Pariat, E.; Dalmasse, K.; DeVore, C. R.; Antiochos, S. K.; Karpen, J. T.
2016-01-01
Context. Jets are dynamic, impulsive, well-collimated plasma events that develop at many different scales and in different layers of the solar atmosphere. Aims. Jets are believed to be induced by magnetic reconnection, a process central to many astrophysical phenomena. Within the solar atmosphere, jet-like events develop in many different environments, e.g. in the vicinity of active regions as well as in coronal holes, and at various scales, from small photospheric spicules to large coronal jets. In all these events, signatures of helical structure and/or twisting/rotating motions are regularly observed. The present study aims to establish that a single model can generally reproduce the observed properties of these jet-like events. Methods. In this study, using our state-of-the-art numerical solver ARMS, we present a parametric study of a numerical tridimensional magnetohydrodynamic (MHD) model of solar jet-like events. Within the MHD paradigm, we study the impact of varying the atmospheric plasma beta on the generation and properties of solar-like jets. Results. The parametric study validates our model of jets for plasma beta ranging from 10(sup 3) to 1, typical of the different layers and magnetic environments of the solar atmosphere. Our model of jets can robustly explain the generation of helical solar jet-like events at various beta less than or equal to 1. We show that the plasma beta modifies the morphology of the helical jet, explaining the different observed shapes of jets at different scales and in different layers of the solar atmosphere. Conclusions. Our results allow us to understand the energisation, triggering, and driving processes of jet-like events. Our model allows us to make predictions of the impulsiveness and energetics of jets as determined by the surrounding environment, as well as the morphological properties of the resulting jets.
Liu, Yang; Xu, Caijun; Wen, Yangmao; Li, Zhicai
2016-01-01
On 28 August 2009, one thrust-faulting Mw 6.3 earthquake struck the northern Qaidam basin, China. Due to the lack of ground observations in this remote region, this study presents high-precision and high spatio-temporal resolution post-seismic deformation series with a small baseline subset InSAR technique. At the temporal scale, this changes from fast to slow with time, with a maximum uplift up to 7.4 cm along the line of sight 334 days after the event. At the spatial scale, this is more obvious at the hanging wall than that at the footwall, and decreases from the middle to both sides at the hanging wall. We then propose a method to calculate the correlation coefficient between co-seismic and post-seismic deformation by normalizing them. The correlation coefficient is found to be 0.73, indicating a similar subsurface process occurring during both phases. The results indicate that afterslip may dominate the post-seismic deformation during 19–334 days after the event, which mainly occurs with the fault geometry and depth similar to those of the c-seismic rupturing, and partly extends to the shallower and deeper depths. PMID:26861330
Liu, Yang; Xu, Caijun; Wen, Yangmao; Li, Zhicai
2016-02-05
On 28 August 2009, one thrust-faulting Mw 6.3 earthquake struck the northern Qaidam basin, China. Due to the lack of ground observations in this remote region, this study presents high-precision and high spatio-temporal resolution post-seismic deformation series with a small baseline subset InSAR technique. At the temporal scale, this changes from fast to slow with time, with a maximum uplift up to 7.4 cm along the line of sight 334 days after the event. At the spatial scale, this is more obvious at the hanging wall than that at the footwall, and decreases from the middle to both sides at the hanging wall. We then propose a method to calculate the correlation coefficient between co-seismic and post-seismic deformation by normalizing them. The correlation coefficient is found to be 0.73, indicating a similar subsurface process occurring during both phases. The results indicate that afterslip may dominate the post-seismic deformation during 19-334 days after the event, which mainly occurs with the fault geometry and depth similar to those of the c-seismic rupturing, and partly extends to the shallower and deeper depths.
Large-scale unloading processes preceding the 2015 Mw 8.4 Illapel, Chile earthquake
NASA Astrophysics Data System (ADS)
Huang, H.; Meng, L.
2017-12-01
Foreshocks and/or slow slip are observed to accelerate before some recent large earthquakes. However, it is still controversial regarding the universality of precursory signals and their value in hazard assessment or mitigation. On 16 September 2015, the Mw 8.4 Illapel earthquake ruptured a section of the subduction thrust on the west coast of central Chile. Small earthquakes are important in resolving possible precursors but are often incomplete in routine catalogs. Here, we employ the matched filter technique to recover the undocumented small events in a 4-years period before the Illapel mainshock. We augment the template dataset from Chilean Seismological Center (CSN) with previously found new repeating aftershocks in the study area. We detect a total of 17658 events in the 4-years period before the mainshock, 6.3 times more than the CSN catalog. The magnitudes of detected events are determined according to different magnitude-amplitude relations estimated at different stations. Among the enhanced catalog, 183 repeating earthquakes are identified before the mainshock. Repeating earthquakes are located at both the northern and southern sides of the principal coseismic slip zone. The seismicity and aseismic slip progressively accelerate in a small low-coupling area around the epicenter starting from 140 days before the mainshock. The acceleration leads to a M 5.3 event 36 days before the mainshock, then followed by a relative quiescence in both seismicity and slow slip until the mainshock. This may correspond to a slow aseismic nucleation phase after the slow-slip transient ends. In addition, to the north of the mainshock rupture area, the last aseismic-slip episode occurs within 175-95 days before the mainshock and accumulates the largest amount of slip in the observation period. The simultaneous occurrence of slow slip over a large area indicates a large-scale unloading process preceding the mainshock. In contrast, in a region 70-150 km south of the mainshock, the aseismic-slip rate is relatively steady and mostly reflects the decelerating afterslip. Our results highlight the importance of continuously monitoring seismicity and repeating earthquakes at the transition from low to high coupling areas where large earthquake ruptures may initiate.
Robust increase in extreme summer rainfall intensity during the past four decades observed in China
NASA Astrophysics Data System (ADS)
Xiao, Chan; Wu, Peili; Zhang, Lixia; Song, Lianchun
2016-12-01
Global warming increases the moisture holding capacity of the atmosphere and consequently the potential risks of extreme rainfall. Here we show that maximum hourly summer rainfall intensity has increased by about 11.2% on average, using continuous hourly gauge records for 1971-2013 from 721 weather stations in China. The corresponding event accumulated precipitation has on average increased by more than 10% aided by a small positive trend in events duration. Linear regression of the 95th percentile daily precipitation intensity with daily mean surface air temperature shows a negative scaling of -9.6%/K, in contrast to a positive scaling of 10.6%/K for hourly data. This is made up of a positive scaling below the summer mean temperature and a negative scaling above. Using seasonal means instead of daily means, we find a consistent scaling rate for the region of 6.7-7%/K for both daily and hourly precipitation extremes, about 10% higher than the regional Clausius-Clapeyron scaling of 6.1%/K based on a mean temperature of 24.6 °C. With up to 18% further increase in extreme precipitation under continuing global warming towards the IPCC’s 1.5 °C target, risks of flash floods will exacerbate on top of the current incapability of urban drainage systems in a rapidly urbanizing China.
Stochastic Reconnection for Large Magnetic Prandtl Numbers
NASA Astrophysics Data System (ADS)
Jafari, Amir; Vishniac, Ethan T.; Kowal, Grzegorz; Lazarian, Alex
2018-06-01
We consider stochastic magnetic reconnection in high-β plasmas with large magnetic Prandtl numbers, Pr m > 1. For large Pr m , field line stochasticity is suppressed at very small scales, impeding diffusion. In addition, viscosity suppresses very small-scale differential motions and therefore also the local reconnection. Here we consider the effect of high magnetic Prandtl numbers on the global reconnection rate in a turbulent medium and provide a diffusion equation for the magnetic field lines considering both resistive and viscous dissipation. We find that the width of the outflow region is unaffected unless Pr m is exponentially larger than the Reynolds number Re. The ejection velocity of matter from the reconnection region is also unaffected by viscosity unless Re ∼ 1. By these criteria the reconnection rate in typical astrophysical systems is almost independent of viscosity. This remains true for reconnection in quiet environments where current sheet instabilities drive reconnection. However, if Pr m > 1, viscosity can suppress small-scale reconnection events near and below the Kolmogorov or viscous damping scale. This will produce a threshold for the suppression of large-scale reconnection by viscosity when {\\Pr }m> \\sqrt{Re}}. In any case, for Pr m > 1 this leads to a flattening of the magnetic fluctuation power spectrum, so that its spectral index is ∼‑4/3 for length scales between the viscous dissipation scale and eddies larger by roughly {{\\Pr }}m3/2. Current numerical simulations are insensitive to this effect. We suggest that the dependence of reconnection on viscosity in these simulations may be due to insufficient resolution for the turbulent inertial range rather than a guide to the large Re limit.
Extension of Gutenberg-Richter distribution to MW -1.3, no lower limit in sight
NASA Astrophysics Data System (ADS)
Boettcher, Margaret S.; McGarr, A.; Johnston, Malcolm
2009-05-01
With twelve years of seismic data from TauTona Gold Mine, South Africa, we show that mining-induced earthquakes follow the Gutenberg-Richter relation with no scale break down to the completeness level of the catalog, at moment magnitude M W -1.3. Events recorded during relatively quiet hours in 2006 indicate that catalog detection limitations, not earthquake source physics, controlled the previously reported minimum magnitude in this mine. Within the Natural Earthquake Laboratory in South African Mines (NELSAM) experiment's dense seismic array, earthquakes that exhibit shear failure at magnitudes as small as M W -3.9 are observed, but we find no evidence that M W -3.9 represents the minimum magnitude. In contrast to previous work, our results imply small nucleation zones and that earthquake processes in the mine can readily be scaled to those in either laboratory experiments or natural faults.
NASA Astrophysics Data System (ADS)
Balmaceda, L.; Vargas Domínguez, S.; Palacios, J.; Cabello, I.; Domingo, V.
2010-04-01
Vortex-type motions have been measured by tracking bright points in high-resolution observations of the solar photosphere. These small-scale motions are thought to be determinant in the evolution of magnetic footpoints and their interaction with plasma and therefore likely to play a role in heating the upper solar atmosphere by twisting magnetic flux tubes. We report the observation of magnetic concentrations being dragged towards the center of a convective vortex motion in the solar photosphere from high-resolution ground-based and space-borne data. We describe this event by analyzing a series of images at different solar atmospheric layers. By computing horizontal proper motions, we detect a vortex whose center appears to be the draining point for the magnetic concentrations detected in magnetograms and well-correlated with the locations of bright points seen in G-band and CN images.
Extension of Gutenberg-Richter distribution to Mw -1.3, no lower limit in sight
Boettcher, M.S.; McGarr, A.; Johnston, M.
2009-01-01
[1] With twelve years of seismic data from TauTona Gold Mine, South Africa, we show that mining-induced earthquakes follow the Gutenberg-Richter relation with no scale break down to the completeness level of the catalog, at moment magnitude Mw -1.3. Events recorded during relatively quiet hours in 2006 indicate that catalog detection limitations, not earthquake source physics, controlled the previously reported minimum magnitude in this mine. Within the Natural Earthquake Laboratory in South African Mines (NELSAM) experiment's dense seismic array, earthquakes that exhibit shear failure at magnitudes as small as Mw -3.9 are observed, but we find no evidence that Mw -3.9 represents the minimum magnitude. In contrast to previous work, our results imply small nucleation zones and that earthquake processes in the mine can readily be scaled to those in either laboratory experiments or natural faults.
NASA Astrophysics Data System (ADS)
Richter, Nicole; Poland, Michael P.; Lundgren, Paul R.
2013-04-01
On 19 March 2008, a small explosive eruption at the summit of Kīlauea Volcano, Hawai`i, heralded the formation of a new vent along the east wall of Halema`uma`u Crater. In the ensuing years, the vent widened due to collapses of the unstable rim and conduit wall; some collapses impacted an actively circulating lava pond and resulted in small explosive events. We used synthetic aperture radar data collected by the TerraSAR-X satellite, a joint venture between the German Aerospace Center (DLR) and EADS Astrium, to identify and analyze small-scale surface deformation around the new vent during 2008-2012. Lidar data were used to construct a digital elevation model to correct for topographic phase, allowing us to generate differential interferograms with a spatial resolution of about 3 m in Kīlauea's summit area. These interferograms reveal subsidence within about 100 m of the rim of the vent. Small baseline subset time series analysis suggests that the subsidence rate is not constant and, over time, may provide an indication of vent stability and potential for rim and wall collapse—information with obvious hazard implications. The deformation is not currently detectable by other space- or ground-based techniques.
Richter, Nichole; Poland, Michael P.; Lundgren, Paul R.
2013-01-01
On 19 March 2008, a small explosive eruption at the summit of Kīlauea Volcano, Hawai‘i, heralded the formation of a new vent along the east wall of Halema‘uma‘u Crater. In the ensuing years, the vent widened due to collapses of the unstable rim and conduit wall; some collapses impacted an actively circulating lava pond and resulted in small explosive events. We used synthetic aperture radar data collected by the TerraSAR-X satellite, a joint venture between the German Aerospace Center (DLR) and EADS Astrium, to identify and analyze small-scale surface deformation around the new vent during 2008-2012. Lidar data were used to construct a digital elevation model to correct for topographic phase, allowing us to generate differential interferograms with a spatial resolution of about 3 m in Kīlauea's summit area. These interferograms reveal subsidence within about 100 m of the rim of the vent. Small baseline subset time series analysis suggests that the subsidence rate is not constant and, over time, may provide an indication of vent stability and potential for rim and wall collapse -- information with obvious hazard implications. The deformation is not currently detectable by other space- or ground-based techniques.
NASA Astrophysics Data System (ADS)
Loikith, Paul C.; Waliser, Duane E.; Kim, Jinwon; Ferraro, Robert
2017-08-01
Cool season precipitation event characteristics are evaluated across a suite of downscaled climate models over the northeastern US. Downscaled hindcast simulations are produced by dynamically downscaling the Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA2) using the National Aeronautics and Space Administration (NASA)-Unified Weather Research and Forecasting (WRF) regional climate model (RCM) and the Goddard Earth Observing System Model, Version 5 (GEOS-5) global climate model. NU-WRF RCM simulations are produced at 24, 12, and 4-km horizontal resolutions using a range of spectral nudging schemes while the MERRA2 global downscaled run is provided at 12.5-km. All model runs are evaluated using four metrics designed to capture key features of precipitation events: event frequency, event intensity, even total, and event duration. Overall, the downscaling approaches result in a reasonable representation of many of the key features of precipitation events over the region, however considerable biases exist in the magnitude of each metric. Based on this evaluation there is no clear indication that higher resolution simulations result in more realistic results in general, however many small-scale features such as orographic enhancement of precipitation are only captured at higher resolutions suggesting some added value over coarser resolution. While the differences between simulations produced using nudging and no nudging are small, there is some improvement in model fidelity when nudging is introduced, especially at a cutoff wavelength of 600 km compared to 2000 km. Based on the results of this evaluation, dynamical regional downscaling using NU-WRF results in a more realistic representation of precipitation event climatology than the global downscaling of MERRA2 using GEOS-5.
NASA Astrophysics Data System (ADS)
Müller, C.; Kadler, M.; Ojha, R.; Schulz, R.; Trüstedt, J.; Edwards, P. G.; Ros, E.; Carpenter, B.; Angioni, R.; Blanchard, J.; Böck, M.; Burd, P. R.; Dörr, M.; Dutka, M. S.; Eberl, T.; Gulyaev, S.; Hase, H.; Horiuchi, S.; Katz, U.; Krauß, F.; Lovell, J. E. J.; Natusch, T.; Nesci, R.; Phillips, C.; Plötz, C.; Pursimo, T.; Quick, J. F. H.; Stevens, J.; Thompson, D. J.; Tingay, S. J.; Tzioumis, A. K.; Weston, S.; Wilms, J.; Zensus, J. A.
2018-02-01
Context. TANAMI is a multiwavelength program monitoring active galactic nuclei (AGN) south of - 30° declination including high-resolution very long baseline interferometry (VLBI) imaging, radio, optical/UV, X-ray, and γ-ray studies. We have previously published first-epoch8.4 GHz VLBI images of the parsec-scale structure of the initial sample. In this paper, we present images of 39 additional sources. The full sample comprises most of the radio- and γ-ray brightest AGN in the southern quarter of the sky, overlapping with the region from which high-energy (> 100 TeV) neutrino events have been found. Aims: We characterize the parsec-scale radio properties of the jets and compare them with the quasi-simultaneous Fermi/LAT γ-ray data. Furthermore, we study the jet properties of sources which are in positional coincidence with high-energy neutrino events compared to the full sample. We test the positional agreement of high-energy neutrino events with various AGN samples. Methods: TANAMI VLBI observations at 8.4 GHz are made with southern hemisphere radio telescopes located in Australia, Antarctica, Chile, New Zealand, and South Africa. Results: Our observations yield the first images of many jets below - 30° declination at milliarcsecond resolution. We find that γ-ray loud TANAMI sources tend to be more compact on parsec-scales and have higher core brightness temperatures than γ-ray faint jets, indicating higher Doppler factors. No significant structural difference is found between sources in positional coincidence with high-energy neutrino events and other TANAMI jets. The 22 γ-ray brightest AGN in the TANAMI sky show only a weak positional agreement with high-energy neutrinos demonstrating that the > 100 TeV IceCube signal is not simply dominated by a small number of the γ-ray brightest blazars. Instead, a larger number of sources have to contribute to the signal with each individual source having only a small Poisson probability for producing an event in multi-year integrations of current neutrino detectors. The cleaned VLBI images displayed in Figs. 1, 2 and A.1 (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A1
Soft Water Level Sensors for Characterizing the Hydrological Behaviour of Agricultural Catchments
Crabit, Armand; Colin, François; Bailly, Jean Stéphane; Ayroles, Hervé; Garnier, François
2011-01-01
An innovative soft water level sensor is proposed to characterize the hydrological behaviour of agricultural catchments by measuring rainfall and stream flows. This sensor works as a capacitor coupled with a capacitance to frequency converter and measures water level at an adjustable time step acquisition. It was designed to be handy, minimally invasive and optimized in terms of energy consumption and low-cost fabrication so as to multiply its use on several catchments under natural conditions. It was used as a stage recorder to measure water level dynamics in a channel during a runoff event and as a rain gauge to measure rainfall amount and intensity. Based on the Manning equation, a method allowed estimation of water discharge with a given uncertainty and hence runoff volume at an event or annual scale. The sensor was tested under controlled conditions in the laboratory and under real conditions in the field. Comparisons of the sensor to reference devices (tipping bucket rain gauge, hydrostatic pressure transmitter limnimeter, Venturi channels…) showed accurate results: rainfall intensities and dynamic responses were accurately reproduced and discharges were estimated with an uncertainty usually acceptable in hydrology. Hence, it was used to monitor eleven small agricultural catchments located in the Mediterranean region. Both catchment reactivity and water budget have been calculated. Dynamic response of the catchments has been studied at the event scale through the rising time determination and at the annual scale by calculating the frequency of occurrence of runoff events. It provided significant insight into catchment hydrological behaviour which could be useful for agricultural management perspectives involving pollutant transport, flooding event and global water balance. PMID:22163868
Radar-rain-gauge rainfall estimation for hydrological applications in small catchments
NASA Astrophysics Data System (ADS)
Gabriele, Salvatore; Chiaravalloti, Francesco; Procopio, Antonio
2017-07-01
The accurate evaluation of the precipitation's time-spatial structure is a critical step for rainfall-runoff modelling. Particularly for small catchments, the variability of rainfall can lead to mismatched results. Large errors in flow evaluation may occur during convective storms, responsible for most of the flash floods in small catchments in the Mediterranean area. During such events, we may expect large spatial and temporal variability. Therefore, using rain-gauge measurements only can be insufficient in order to adequately depict extreme rainfall events. In this work, a double-level information approach, based on rain gauges and weather radar measurements, is used to improve areal rainfall estimations for hydrological applications. In order to highlight the effect that precipitation fields with different level of spatial details have on hydrological modelling, two kinds of spatial rainfall fields were computed for precipitation data collected during 2015, considering both rain gauges only and their merging with radar information. The differences produced by these two precipitation fields in the computation of the areal mean rainfall accumulation were evaluated considering 999 basins of the region Calabria, southern Italy. Moreover, both of the two precipitation fields were used to carry out rainfall-runoff simulations at catchment scale for main precipitation events that occurred during 2015 and the differences between the scenarios obtained in the two cases were analysed. A representative case study is presented in detail.
NASA Astrophysics Data System (ADS)
Williams, Richard; Measures, Richard; Hicks, Murray; Brasington, James
2017-04-01
Advances in geomatics technologies have transformed the monitoring of reach-scale (100-101 km) river morphodynamics. Hyperscale Digital Elevation Models (DEMs) can now be acquired at temporal intervals that are commensurate with the frequencies of high-flow events that force morphological change. The low vertical errors associated with such DEMs enable DEMs of Difference (DoDs) to be generated to quantify patterns of erosion and deposition, and derive sediment budgets using the morphological approach. In parallel with reach-scale observational advances, high-resolution, two-dimensional, physics-based numerical morphodynamic models are now computationally feasible for unsteady, reach-scale simulations. In light of this observational and predictive progress, there is a need to identify appropriate metrics that can be extracted from DEMs and DoDs to assess model performance. Nowhere is this more pertinent than in braided river environments, where numerous mobile channels that intertwine around mid-channel bars result in complex patterns of erosion and deposition, thus making model assessment particularly challenging. This paper identifies and evaluates a range of morphological and morphological-change metrics that can be used to assess predictions of braided river morphodynamics at the timescale of single storm events. A depth-averaged, mixed-grainsize Delft3D morphodynamic model was used to simulate morphological change during four discrete high-flow events, ranging from 91 to 403 m3s-1, along a 2.5 x 0.7 km reach of the braided, gravel-bed Rees River, New Zealand. Pre- and post-event topographic surveys, using a fusion of Terrestrial Laser Scanning and optical-empirical bathymetric mapping, were used to produce 0.5 m resolution DEMs and DoDs. The pre- and post-event DEMs for a moderate (227m3s-1) high-flow event were used to calibrate the model. DEMs and DoDs from the other three high-flow events were used for model assessment using two approaches. First, "morphological" metrics were applied to compare observed and predicted post-event DEMs. These metrics include measures of confluence and bifurcation node density, bar shape, braiding intensity, and topographic comparisons using a form of the Brier Skill Score and cumulative frequency distributions of rugosity. Second, "morphological change" metrics were used to compare observed and predicted morphological change. These metrics included the extent of the morphologically active area, pairwise comparisons of morphological change (using kappa and fuzzy kappa statistics), and comparisons between vertical morphological change magnitude and elevation distribution. Results indicate that those metrics that assess characteristic features of braiding, rather than making direct comparisons, are most useful for assessing reach-scale braided river morphodynamic models. Together, the metrics indicate that there was a general affinity between observed and predicted braided river morphodynamics, both during small and large magnitude high-flow events. These results thus demonstrate how high-resolution, reach-scale, natural experiment datasets can be used to assess the efficacy of morphological models in predicting realistic patterns of erosion and deposition. This lays the foundation for the development and assessment of decadal scale morphodynamic models and their use in adaptive river basin management.
Studies of small scale irregularities in the cusp ionosphere using sounding rockets: recent results
NASA Astrophysics Data System (ADS)
Spicher, A.; Ilyasov, A. A.; Miloch, W. J.; Chernyshov, A. A.; Moen, J.; Clausen, L. B. N.; Saito, Y.
2017-12-01
Plasma irregularities occurring over many scale sizes are common in the ionosphere. Understanding and characterizing the phenomena responsible for these irregularities is not only important from a theoretical point of view, but also in the context of space weather, as the irregularities can disturb HF communication and Global Navigation Satellite Systems signals. Overall, research about the small-scale turbulence has not progressed as fast for polar regions as for the equatorial ones, and for the high latitude ionosphere there is still no agreement nor detailed explanation regarding the formation of irregularities. To investigate plasma structuring at small scales in the cusp ionosphere, we use high resolution measurements from the Investigation of Cusp Irregularities (ICI) sounding rockets, and investigate a region associated with density enhancements and a region characterized by flow shears. Using the ICI-2 electron density data, we give further evidence of the importance of the gradient drift instability for plasma structuring inside the polar cap. In particular, using higher-order statistics, we provide new insights into the nature of the resulting plasma structures and show that they are characterized by intermittency. Using the ICI-3 data, we show that the entire region associated with a reversed flow event (RFE), with the presence of meter-scale irregularities, several flow shears and particle precipitation, is highly structured. By performing a numerical stability analysis, we show that the inhomogeneous-energy-density-driven instability (IEDDI) may be active in relation to RFEs at the rocket's altitude. In particular, we show that the presence of particle precipitation decreases the growth rates of IEDDI and, using a Local Intermittency Measure, we observe a correlation between IEDDI growth rates and electric field fluctuations over several scales. These findings support the view that large-scale inhomogeneities may provide a background for the development of micro-scale instabilities. Such interplay between macro- and micro-processes might be an important mechanism for the development of small-scale plasma gradients, and as a source for ion heating in the cusp ionosphere.
NASA Astrophysics Data System (ADS)
Lebeaupin Brossier, Cindy; Arsouze, Thomas; Béranger, Karine; Bouin, Marie-Noëlle; Bresson, Emilie; Ducrocq, Véronique; Giordani, Hervé; Nuret, Mathieu; Rainaud, Romain; Taupier-Letage, Isabelle
2014-12-01
The western Mediterranean Sea is a source of heat and humidity for the atmospheric low-levels in autumn. Large exchanges take place at the air-sea interface, especially during intense meteorological events, such as heavy precipitation and/or strong winds. The Ocean Mixed Layer (OML), which is quite thin at this time of year (∼ 20 m-depth), evolves rapidly under such intense fluxes. This study investigates the ocean responses under intense meteorological events that occurred during HyMeX SOP1 (5 September-6 November 2012). The OML conditions and tendencies are derived from a high-resolution ocean simulation using the sub-regional eddy-resolving NEMO-WMED36 model (1/36°-resolution), driven at the surface by hourly air-sea fluxes from the AROME-WMED forecasts (2.5 km-resolution). The high space-time resolution of the atmospheric forcing allows the highly variable surface fluxes, which induce rapid changes in the OML, to be well represented and linked to small-scale atmospheric processes. First, the simulation results are compared to ocean profiles from several platforms obtained during the campaign. Then, this study focuses on the short-term OML evolution during three events. In particular, we examine the OML cooling and mixing under strong wind events, potentially associated with upwelling, as well as the surface freshening under heavy precipitation events, producing low-salinity lenses. Tendencies demonstrate the major role of the surface forcing in the temperature and/or salinity anomaly formation. At the same time, mixing [restratification] rapidly occurs. As expected, the sign of this tendency term is very dependent on the local vertical stratification which varies at fine scale in the Mediterranean. It also controls [disables] the vertical propagation. In the Alboran Sea, the strong dynamics redistribute the OML anomalies, sometimes up to 7 days after their formation. Elsewhere, despite local amplitude modulations due to internal wave excitation by strong winds, the integrated effect of the horizontal advection is almost null on the anomalies' spread and decay. Finally, diffusion has a small contribution.
NASA Astrophysics Data System (ADS)
Yu, Caixia; Zhao, Jingtao; Wang, Yanfei; Wang, Chengxiang; Geng, Weifeng
2017-03-01
The small-scale geologic inhomogeneities or discontinuities, such as tiny faults, cavities or fractures, generally have spatial scales comparable to or even smaller than the seismic wavelength. Therefore, the seismic responses of these objects are coded in diffractions and an attempt to high-resolution imaging can be made if we can appropriately image them. As the amplitudes of reflections can be several orders of magnitude larger than those of diffractions, one of the key problems of diffraction imaging is to suppress reflections and at the same time to preserve diffractions. A sparsity-promoting method for separating diffractions in the common-offset domain is proposed that uses the Kirchhoff integral formula to enforce the sparsity of diffractions and the linear Radon transform to formulate reflections. A subspace trust-region algorithm that can provide globally convergent solutions is employed for solving this large-scale computation problem. The method not only allows for separation of diffractions in the case of interfering events but also ensures a high fidelity of the separated diffractions. Numerical experiment and field application demonstrate the good performance of the proposed method in imaging the small-scale geological features related to the migration channel and storage spaces of carbonate reservoirs.
NASA Astrophysics Data System (ADS)
Minear, J. T.; Wright, S. A.; Roche, J. W.
2011-12-01
Yosemite National Park, USA, is one of the most popular national parks in the country with over 3.9 million visitors annually. The majority of tourists visit a relatively small area around the Merced River in scenic eastern Yosemite Valley, which has resulted in degradation to the river and streambanks. The National Park Service is updating the long-term management plan for the Merced River which includes river restoration. A key component determining the success of future river restoration efforts is the transport and supply of sediment. For this study, we investigate the modern geomorphology of the eastern Yosemite Valley region. For the watershed and reach analyses, we draw from a variety of topographic and hydrologic records, including 20-years of data from permanent cross sections, aerial and ground-based LiDAR surveys, and a nearly 100-year hydrologic record. In addition, we utilize hydraulic and sediment transport models to investigate channel velocities, bed shear stress and sediment transport at the reach scale. From the watershed-scale analysis, it is likely that large-scale remnant glacial features exert a primary control on the sediment supply to the study area with relatively small volumes of both suspended and bedload sediment being contributed to the study site. Two of the three major watersheds, Tenaya Creek and the upper Merced River, likely contribute only small amounts of bedload downstream due to low-gradient depositional reaches. Though little-known, the third major watershed, Illilouette Creek, is the only watershed capable of contributing larger amounts of bedload material, though the bedload material is likely contributed only during high flow events. High flows in the Yosemite Valley region have two different distributions: large early winter storm events above the 20-year return interval, and moderate snowmelt flows at and below the 20-year return interval. Sediment transport analyses indicate that bedload transport is dominated by relatively frequent (<2 year) snowmelt flow events and that the coarsest material in the reach (>110 mm) is mobile during these flows. The permanent cross sections record large topographic changes, including infilling at key bars, associated with the 1997 flood, the largest recorded early winter event (100-year return interval). Following snowmelt events post-1997, cross sections are returning to near pre-1997 levels. The cross section data suggest there is likely a disconnect between sediment supplied to the reach and sediment transport, with the majority of sediment supply occurring during large early winter events while the majority of sediment transport occurs during snowmelt events. An implication of our findings for river restoration in this area of the Merced River is that the ability of the channel to rebuild streambanks is relatively low, given the low suspended sediment supply. In contrast, bedload transport is relatively frequent and occurs in significant quantities, suggesting that river restoration involving bed recovery (e.g. recovery of pools formed by riprap or bridges) should be relatively rapid if obstructions are removed.
NASA Astrophysics Data System (ADS)
Baltay, A.; Hanks, T. C.; Vernon, F.
2016-12-01
We illustrate two essential consequences of the systematic difference between moment magnitude and local magnitude for small earthquakes, illuminating the underlying earthquake physics. Moment magnitude, M 2/3 log M0, is uniformly valid for all earthquake sizes [Hanks and Kanamori, 1979]. However, the relationship between local magnitude ML and moment is itself magnitude dependent. For moderate events, 3< M < 7, M and ML are coincident; for earthquakes smaller than M3, ML log M0 [Hanks and Boore, 1984]. This is a consequence of the saturation of the apparent corner frequency fc as it becoming greater than the largest observable frequency, fmax; In this regime, stress drop no longer controls ground motion. This implies that ML and M differ by a factor of 1.5 for these small events. While this idea is not new, its implications are important as more small-magnitude data are incorporated into earthquake hazard research. With a large dataset of M<3 earthquakes recorded on the ANZA network, we demonstrate striking consequences of the difference between M and ML. ML scales as the log peak ground motions (e.g., PGA or PGV) for these small earthquakes, which yields log PGA log M0 [Boore, 1986]. We plot nearly 15,000 records of PGA and PGV at close stations, adjusted for site conditions and for geometrical spreading to 10 km. The slope of the log of ground motion is 1.0*ML, or 1.5*M, confirming the relationship, and that fc >> fmax. Just as importantly, if this relation is overlooked, prediction of large-magnitude ground motion from small earthquakes will be misguided. We also consider the effect of this magnitude scale difference on b-value. The oft-cited b-value of 1 should hold for small magnitudes, given M. Use of ML necessitates b=2/3 for the same data set; use of mixed, or unknown, magnitudes complicates the matter further. This is of particular import when estimating the rate of large earthquakes when one has limited data on their recurrence, as is the case for induced earthquakes in the central US.
Planetary Scale Impacts and Consequences for the Mars Hemispheric Dichotomy
NASA Astrophysics Data System (ADS)
Marinova, M. M.; Aharonson, O.; Asphaug, E.
2007-12-01
Planetary-scale impacts are events in which the resultant impact basin is a significant fraction of the planet's circumference. The curvature of the planet is expected to be important in the impact process, especially as it relates to the fate of downrange ejecta in off-axis events. Planetary-scale impacts are abundant in the Solar System, especially early in its evolution. A possible candidate planetary-scale impact basin is the Martian hemispheric dichotomy, expressed as a difference in surface elevation, crustal thickness, and surface age between the northern lowlands and the southern highlands. We investigate the characteristics of planetary-scale impacts, and in particular the effects of a mega impact on Mars. We use a 3 dimensional self-gravitational Smoothed Particle Hydrodynamics (SPH) model to simulate the impacts, implementing an olivine equation of state derived for the Tillotson formulation, and use this to establish the initial pressure and internal energy profile of the planet. The parameter space of impactor energy, impactor size, and impact velocity are explored for Mars hemispheric impacts. We find that for a given impact energy, head-on large but slow impacts produce more melt and cover more of the planet with melt than small, fast, and oblique events. Head-on impacts produce crustal blow-off and a melt pool at the antipode. Oblique impacts do not cover much of the planet with melt, but create sizable basins. Various degrees of crustal thickening are apparent around the crater over a length of ~1000 km; this crustal thickening could relax over geological time. Fast impacts eject material with escape velocity many times their own mass. In all cases, less than 10% of the impactor's mass is placed in orbit. For oblique events, a significant fraction of the angular momentum in the system is carried away by escaping material, limiting the efficiency of angular momentum transfer to the planet.
Naff, R.L.
1998-01-01
The late-time macrodispersion coefficients are obtained for the case of flow in the presence of a small-scale deterministic transient in a three-dimensional anisotropic, heterogeneous medium. The transient is assumed to affect only the velocity component transverse to the mean flow direction and to take the form of a periodic function. For the case of a highly stratified medium, these late-time macrodispersion coefficients behave largely as the standard coefficients used in the transport equation. Only in the event that the medium is isotropic is it probable that significant deviations from the standard coefficients would occur.
Autonomous Detection of Eruptions, Plumes, and Other Transient Events in the Outer Solar System
NASA Astrophysics Data System (ADS)
Bunte, M. K.; Lin, Y.; Saripalli, S.; Bell, J. F.
2012-12-01
The outer solar system abounds with visually stunning examples of dynamic processes such as eruptive events that jettison materials from satellites and small bodies into space. The most notable examples of such events are the prominent volcanic plumes of Io, the wispy water jets of Enceladus, and the outgassing of comet nuclei. We are investigating techniques that will allow a spacecraft to autonomously detect those events in visible images. This technique will allow future outer planet missions to conduct sustained event monitoring and automate prioritization of data for downlink. Our technique detects plumes by searching for concentrations of large local gradients in images. Applying a Scale Invariant Feature Transform (SIFT) to either raw or calibrated images identifies interest points for further investigation based on the magnitude and orientation of local gradients in pixel values. The interest points are classified as possible transient geophysical events when they share characteristics with similar features in user-classified images. A nearest neighbor classification scheme assesses the similarity of all interest points within a threshold Euclidean distance and classifies each according to the majority classification of other interest points. Thus, features marked by multiple interest points are more likely to be classified positively as events; isolated large plumes or multiple small jets are easily distinguished from a textured background surface due to the higher magnitude gradient of the plume or jet when compared with the small, randomly oriented gradients of the textured surface. We have applied this method to images of Io, Enceladus, and comet Hartley 2 from the Voyager, Galileo, New Horizons, Cassini, and Deep Impact EPOXI missions, where appropriate, and have successfully detected up to 95% of manually identifiable events that our method was able to distinguish from the background surface and surface features of a body. Dozens of distinct features are identifiable under a variety of viewing conditions and hundreds of detections are made in each of the aforementioned datasets. In this presentation, we explore the controlling factors in detecting transient events and discuss causes of success or failure due to distinct data characteristics. These include the level of calibration of images, the ability to differentiate an event from artifacts, and the variety of event appearances in user-classified images. Other important factors include the physical characteristics of the events themselves: albedo, size as a function of image resolution, and proximity to other events (as in the case of multiple small jets which feed into the overall plume at the south pole of Enceladus). A notable strength of this method is the ability to detect events that do not extend beyond the limb of a planetary body or are adjacent to the terminator or other strong edges in the image. The former scenario strongly influences the success rate of detecting eruptive events in nadir views.
A Small-Scale Flux Rope and its Associated CME and Shock.
NASA Astrophysics Data System (ADS)
Feng, L.; Ying, B.; Lu, L.; Zhang, J.
2016-12-01
A magnetic flux rope (MFR) is thought be a key ingredient of a coronal mass ejection (CME). It has been extensively explored after the Solar Dynamics Observatory (SDO) mission was launched. Previous studies are often concentrated on large-scale MFRs whose size are comparable to the active regions they reside. In this paper, we investigate the properties of a small-scale magnetic flux rope (SMFR) of a limb event observed by Atmospheric Imaging Assembly (AIA) . This SMFR originated from a very small and compact region at the edge of the active region and appeared mainly in the AIA 94 Å passband. It drove a coronal mass ejection (CME) and a type II burst was associated with the CME-driven shock. The type II burst started with a very high frequency. We obtain the compression ratio of the shock from the band splitting of the type II emissions and further derive the Alfvénic Mach number and the coronal magnetic field strength. On the other hand,we study the CME structure in LASCO coronagraph images and address its characteristics through measuring its mass and energy. Compared to the nature of the standard model of the CME, this CME triggered by the SMF are found to be different in some aspects.
Measurement of surface water runoff from plots of two different sizes
NASA Astrophysics Data System (ADS)
Joel, Abraham; Messing, Ingmar; Seguel, Oscar; Casanova, Manuel
2002-05-01
Intensities and amounts of water infiltration and runoff on sloping land are governed by the rainfall pattern and soil hydraulic conductivity, as well as by the microtopography and soil surface conditions. These components are closely interrelated and occur simultaneously, and their particular contribution may change during a rainfall event, or their effects may vary at different field scales. The scale effect on the process of infiltration/runoff was studied under natural field and rainfall conditions for two plot sizes: small plots of 0·25 m2 and large plots of 50 m2. The measurements were carried out in the central region of Chile in a piedmont most recently used as natural pastureland. Three blocks, each having one large plot and five small plots, were established. Cumulative rainfall and runoff quantities were sampled every 5 min. Significant variations in runoff responses to rainfall rates were found for the two plot sizes. On average, large plots yielded only 40% of runoff quantities produced on small plots per unit area. This difference between plot sizes was observed even during periods of continuous runoff.
Fine grained event processing on HPCs with the ATLAS Yoda system
NASA Astrophysics Data System (ADS)
Calafiura, Paolo; De, Kaushik; Guan, Wen; Maeno, Tadashi; Nilsson, Paul; Oleynik, Danila; Panitkin, Sergey; Tsulaia, Vakhtang; Van Gemmeren, Peter; Wenaus, Torre
2015-12-01
High performance computing facilities present unique challenges and opportunities for HEP event processing. The massive scale of many HPC systems means that fractionally small utilization can yield large returns in processing throughput. Parallel applications which can dynamically and efficiently fill any scheduling opportunities the resource presents benefit both the facility (maximal utilization) and the (compute-limited) science. The ATLAS Yoda system provides this capability to HEP-like event processing applications by implementing event-level processing in an MPI-based master-client model that integrates seamlessly with the more broadly scoped ATLAS Event Service. Fine grained, event level work assignments are intelligently dispatched to parallel workers to sustain full utilization on all cores, with outputs streamed off to destination object stores in near real time with similarly fine granularity, such that processing can proceed until termination with full utilization. The system offers the efficiency and scheduling flexibility of preemption without requiring the application actually support or employ check-pointing. We will present the new Yoda system, its motivations, architecture, implementation, and applications in ATLAS data processing at several US HPC centers.
Scaling water and energy fluxes in climate systems - Three land-atmospheric modeling experiments
NASA Technical Reports Server (NTRS)
Wood, Eric F.; Lakshmi, Venkataraman
1993-01-01
Three numerical experiments that investigate the scaling of land-surface processes - either of the inputs or parameters - are reported, and the aggregated processes are compared to the spatially variable case. The first is the aggregation of the hydrologic response in a catchment due to rainfall during a storm event and due to evaporative demands during interstorm periods. The second is the spatial and temporal aggregation of latent heat fluxes, as calculated from SiB. The third is the aggregation of remotely sensed land vegetation and latent and sensible heat fluxes using TM data from the FIFE experiment of 1987 in Kansas. In all three experiments it was found that the surface fluxes and land characteristics can be scaled, and that macroscale models based on effective parameters are sufficient to account for the small-scale heterogeneities investigated.
A tiny event producing an interplanetary type III burst
NASA Astrophysics Data System (ADS)
Alissandrakis, C. E.; Nindos, A.; Patsourakos, S.; Kontogeorgos, A.; Tsitsipis, P.
2015-10-01
Aims: We investigate the conditions under which small-scale energy release events in the low corona gave rise to strong interplanetary (IP) type III bursts. Methods: We analyzed observations of three tiny events, detected by the Nançay Radio Heliograph (NRH), two of which produced IP type III bursts. We took advantage of the NRH positioning information and of the high cadence of AIA/SDO data to identify the associated extreme-UV (EUV) emissions. We measured positions and time profiles of the metric and EUV sources. Results: We found that the EUV events that produced IP type III bursts were located near a coronal hole boundary, while the one that did not was located in a closed magnetic field region. In all three cases tiny flaring loops were involved, without any associated mass eruption. In the best observed case, the radio emission at the highest frequency (435 MHz) was displaced by ~55'' with respect to the small flaring loop. The metric type III emission shows a complex structure in space and in time, indicative of multiple electron beams, despite the low intensity of the events. From the combined analysis of dynamic spectra and NRH images, we derived the electron beam velocity as well as the height, ambient plasma temperature, and density at the level of formation of the 160 MHz emission. From the analysis of the differential emission measure derived from the AIA images, we found that the first evidence of energy release was at the footpoints, and this was followed by the development of flaring loops and subsequent cooling. Conclusions: Even small energy release events can accelerate enough electrons to give rise to powerful IP type III bursts. The proximity of the electron acceleration site to open magnetic field lines facilitates the escape of the electrons into the interplanetary space. The offset between the site of energy release and the metric type III location warrants further investigation. The movie is available in electronic form at http://www.aanda.org
Strain localisation in the continental lithosphere, a scale-dependent process
NASA Astrophysics Data System (ADS)
Jolivet, Laurent; Burov, Evguenii
2013-04-01
Strain localisation in continents is a general question tackled by specialists of various disciplines in Earth Sciences. Field geologists working at regional scale are able to describe the succession of events leading to the formation of large strain zones that accommodate large displacement within plate boundaries. On the other end of the spectrum, laboratory experiments provide numbers that quantitatively describe the rheology of rock material at the scale of a few mm and at deformation rates up to 8-10 orders of magnitude faster than in nature. Extrapolating from the scale of the experiment to the scale of the continental lithosphere is a considerable leap across 8-10 orders of magnitude both in space and time. It is however quite obvious that different processes are at work for each scale considered. At the scale of a grain aggregate diffusion within individual grains, dislocation or grain boundary sliding, depending on temperature and fluid conditions, are of primary importance. But at the scale of a mountain belt, a major detachment or a strike-slip shear zone that have accommodated tens or hundreds of kilometres of relative displacement, other parameters will take over such as structural softening and the heterogeneity of the crust inherited from past tectonic events that have juxtaposed rock units of very different compositions and induced a strong orientation of rocks. Once the deformation is localised along major shear zones, grain size reduction, interaction between rocks and fluids and metamorphic reactions and other small-scale processes tend to further localise the strain. Because the crust is colder and more lithologically complex this heterogeneity is likely much more prominent in the crust than in the mantle and then the relative importance of "small-scale" and "large-scale" parameters will be very different in the crust and in the mantle. Thus, depending upon the relative thickness of the crust and mantle in the deforming lithosphere, the role of each mechanism will have more or less important consequences on strain localisation. This complexity sometimes leads to disregard of experimental parameters in large-scale thermo-mechanical models and to use instead ad hoc "large-scale" numbers that better fit the observed geological history. The goal of the ERC RHEOLITH project is to associate to each tectonic process the relevant rheological parameters depending upon the scale considered, in an attempt to elaborate a generalized "Preliminary Rheology Model Set for Lithosphere" (PReMSL), which will cover the entire time and spatial scale range of deformation.
NASA Astrophysics Data System (ADS)
Duncan, J. M.; Band, L. E.; Groffman, P.
2017-12-01
Discharge, land use, and watershed management practices (stream restoration and stormwater control measures) have been found to be important determinants of nitrogen (N) export to receiving waters. We used long-term water quality stations from the Baltimore Ecosystem Study Long-Term Ecological Research (BES LTER) Site to quantify nitrogen export across streamflow conditions at the small watershed scale. We calculated nitrate and total nitrogen fluxes using methodology that allows for changes over time; weighted regressions on time, discharge, and seasonality. Here we tested the hypotheses that a) while the largest N stream fluxes occur during storm events, there is not a clear relationship between N flux and discharge and b) N export patterns are aseasonal in developed watersheds where sources are larger and retention capacity is lower. The goal is to scale understanding from small watersheds to larger ones. Developing a better understanding of hydrologic controls on nitrogen export is essential for successful adaptive watershed management at societally meaningful spatial scales.
Small-scale plasma irregularities in the nightside Venus ionosphere
NASA Astrophysics Data System (ADS)
Grebowsky, J. M.; Curtis, S. A.; Brace, L. H.
1991-12-01
The individual volt-ampere curves from the Pioneer Venus Orbiter electron temperature probe showed evidence for small-scale density irregularities, or short-period plasma waves, in regions of the nightside ionosphere where the Orbiter electric field detector observed waves in its 100-Hz channel. A survey of the nightside volt-ampere curves has revealed several hundred examples of such irregularities. The I-V structures correspond to plasma density structure with spatial scale sizes in the range of about 100-2000 m, or alternatively they could be viewed as waves having frequencies extending toward 100 Hz. They are often seen as isolated events, with spatial extent along the orbit frequently less than 80 km. The density irregularities or waves occur in or near prominent gradients in the ambient plasma concentrations both at low altitudes where molecular ions are dominant and at higher altitudes in regions of reduced plasma density where O(+) is the major ion. Electric field 100-Hz bursts occur simultaneously, with the majority of the structured I-V curves providing demonstrative evidence that at least some of the E field signals are produced within the ionosphere.
A study of large, medium and small scale structures in the topside ionosphere
NASA Technical Reports Server (NTRS)
Gross, Stanley H.; Kuo, Spencer P.; Shmoys, Jerry
1986-01-01
Alouette and ISIS data were studied for large, medium, and small scale structures in the ionosphere. Correlation was also sought with measurements by other satellites, such as the Atmosphere Explorer C and E and the Dynamic Explorer 2 satellites, of both neutrals and ionization, and with measurements by ground facilities, such as the incoherent scatter radars. Large scale coherent wavelike structures were found from ISIS 2 electron density contours from above the F peak to nearly the satellite altitude. Such structures were also found to correlate with the observation by AE-C below the F peak during a conjunction of the two satellites. Vertical wavefronts found in the upper F region suggest the dominance of diffusion along field lines as well. Also discovered were multiple, evenly spaced field-aligned ducts in the F region that, at low latitudes, extended to the other hemisphere and were in the form of field-aligned sheets in the east-west direction. Low latitude heating events were discovered that could serve as sources for waves in the ionosphere.
Using Volcanic Lightning Measurements to Discern Variations in Explosive Volcanic Activity
NASA Astrophysics Data System (ADS)
Behnke, S. A.; Thomas, R. J.; McNutt, S. R.; Edens, H. E.; Krehbiel, P. R.; Rison, W.
2013-12-01
VHF observations of volcanic lightning have been made during the recent eruptions of Augustine Volcano (2006, Alaska, USA), Redoubt Volcano (2009, Alaska, USA), and Eyjafjallajökull (2010, Iceland). These show that electrical activity occurs both on small scales at the vent of the volcano, concurrent with an eruptive event and on large scales throughout the eruption column during and subsequent to an eruptive event. The small-scale discharges at the vent of the volcano are often referred to as 'vent discharges' and are on the order of 10-100 meters in length and occur at rates on the order of 1000 per second. The high rate of vent discharges produces a distinct VHF signature that is sometimes referred to as 'continuous RF' radiation. VHF radiation from vent discharges has been observed at sensors placed as far as 100 km from the volcano. VHF and infrasound measurements have shown that vent discharges occur simultaneously with the onset of eruption, making their detection an unambiguous indicator of explosive volcanic activity. The fact that vent discharges are observed concurrent with explosive volcanic activity indicates that volcanic ejecta are charged upon eruption. VHF observations have shown that the intensity of vent discharges varies between eruptive events, suggesting that fluctuations in eruptive processes affect the electrification processes giving rise to vent discharges. These fluctuations may be variations in eruptive vigor or variations in the type of eruption; however, the data obtained so far do not show a clear relationship between eruption parameters and the intensity or occurrence of vent discharges. Further study is needed to clarify the link between vent discharges and eruptive behavior, such as more detailed lightning observations concurrent with tephra measurements and other measures of eruptive strength. Observations of vent discharges, and volcanic lightning observations in general, are a valuable tool for volcano monitoring, providing a method for rapid detection of volcanic activity in real-time.
The deadliest storm of the 20th century striking Portugal: Flood impacts and atmospheric circulation
NASA Astrophysics Data System (ADS)
Trigo, Ricardo M.; Ramos, Catarina; Pereira, Susana S.; Ramos, Alexandre M.; Zêzere, José L.; Liberato, Margarida L. R.
2016-10-01
The deadliest storm affecting Portugal since, at least, the early 19th century, took place on the 25 and 26 November 1967 causing more than 500 fatalities. This work aims to assess the most relevant aspects of this episode. This includes describing the associated meteorological conditions and key hydrological characterisation such as the level of exceptionality of the observed precipitation at different temporal scales, or the estimation of peak discharge values in 20 small river catchments affected. Additionally, from a human impact perspective we provide a full account of all the main socio-economic impacts, particularly the numbers and location of victims (dead, injured, homeless and evacuated). Based on the sub-daily time series of a representative station, and its Intensity-Duration-Frequency curves, we have found that the exceptionality of this rainfall event is particularly linked to rainfall intensities ranging in duration from 4 to 9 h compatible with return periods of 100-years or more. This range of time scale which are similar to the estimated concentration time values of the hydrographic basins affected by the flash flood event. From a meteorological perspective, this episode was characterised by strong convection at the regional scale, fuelled by high availability of moisture over the Lisbon region associated with a low pressure system centered near Lisbon that favoured the convective instability. Most victims were sleeping or were caught by surprise at home in the small river catchments around the main Lisbon metropolitan area. The majority of people who died or who were severely affected by the flood lived in degraded housing conditions often raised in a clandestine way, occupying flood plains near the stream beds. This level of destruction observed at the time is in stark contrast to what was observed in subsequent episodes of similar amplitude. In particular, since 1967 the Lisbon area, was struck by two comparable intense precipitation events in 1983 and 2008 but generating considerably fewer deaths and evacuated people.
NASA Astrophysics Data System (ADS)
Schindewolf, Marcus; Kaiser, Andreas; Buchholtz, Arno; Schmidt, Jürgen
2017-04-01
Extreme rainfall events and resulting flash floods led to massive devastations in Germany during spring 2016. The study presented aims on the development of a early warning system, which allows the simulation and assessment of negative effects on infrastructure by radar-based heavy rainfall predictions, serving as input data for the process-based soil loss and deposition model EROSION 3D. Our approach enables a detailed identification of runoff and sediment fluxes in agricultural used landscapes. In a first step, documented historical events were analyzed concerning the accordance of measured radar rainfall and large scale erosion risk maps. A second step focused on a small scale erosion monitoring via UAV of source areas of heavy flooding events and a model reconstruction of the processes involved. In all examples damages were caused to local infrastructure. Both analyses are promising in order to detect runoff and sediment delivering areas even in a high temporal and spatial resolution. Results prove the important role of late-covering crops such as maize, sugar beet or potatoes in runoff generation. While e.g. winter wheat positively affects extensive runoff generation on undulating landscapes, massive soil loss and thus muddy flows are observed and depicted in model results. Future research aims on large scale model parameterization and application in real time, uncertainty estimation of precipitation forecast and interface developments.
Catastrophic ice lake collapse in Aram Chaos, Mars
NASA Astrophysics Data System (ADS)
Roda, Manuel; Kleinhans, Maarten G.; Zegers, Tanja E.; Oosthoek, Jelmer H. P.
2014-07-01
Hesperian chaotic terrains have been recognized as the source of outflow channels formed by catastrophic outflows. Four main scenarios have been proposed for the formation of chaotic terrains that involve different amounts of water and single or multiple outflow events. Here, we test these scenarios with morphological and structural analyses of imagery and elevation data for Aram Chaos in conjunction with numerical modeling of the morphological evolution of the catastrophic carving of the outflow valley. The morphological and geological analyses of Aram Chaos suggest large-scale collapse and subsidence (1500 m) of the entire area, which is consistent with a massive expulsion of liquid water from the subsurface in one single event. The combined observations suggest a complex process starting with the outflow of water from two small channels, followed by continuous groundwater sapping and headward erosion and ending with a catastrophic lake rim collapse and carving of the Aram Valley, which is synchronous with the 2.5 Ga stage of the Ares Vallis formation. The water volume and formative time scale required to carve the Aram channels indicate that a single, rapid (maximum tens of days) and catastrophic (flood volume of 9.3 × 104 km3) event carved the outflow channel. We conclude that a sub-ice lake collapse model can best explain the features of the Aram Chaos Valley system as well as the time scale required for its formation.
Regional Magnitude Research Supporting Broad-Area Monitoring of Small Seismic Events
2007-09-01
detonated at the Nevada Test Site (NTS) and the Semipalatinsk Test Site (STS). Observations for both test sites show that Pn amplitudes yield scale 10...identification procedures, and yield, via direct comparison to test site results for high frequencies (>1 Hz). Coda techniques are known to be effective...2006). Source spectral modeling of regional P/S discriminants at nuclear test sites in China and the former Soviet Union, Bull. Seismol. Soc. Am
Recurrence and interoccurrence behavior of self-organized complex phenomena
NASA Astrophysics Data System (ADS)
Abaimov, S. G.; Turcotte, D. L.; Shcherbakov, R.; Rundle, J. B.
2007-08-01
The sandpile, forest-fire and slider-block models are said to exhibit self-organized criticality. Associated natural phenomena include landslides, wildfires, and earthquakes. In all cases the frequency-size distributions are well approximated by power laws (fractals). Another important aspect of both the models and natural phenomena is the statistics of interval times. These statistics are particularly important for earthquakes. For earthquakes it is important to make a distinction between interoccurrence and recurrence times. Interoccurrence times are the interval times between earthquakes on all faults in a region whereas recurrence times are interval times between earthquakes on a single fault or fault segment. In many, but not all cases, interoccurrence time statistics are exponential (Poissonian) and the events occur randomly. However, the distribution of recurrence times are often Weibull to a good approximation. In this paper we study the interval statistics of slip events using a slider-block model. The behavior of this model is sensitive to the stiffness α of the system, α=kC/kL where kC is the spring constant of the connector springs and kL is the spring constant of the loader plate springs. For a soft system (small α) there are no system-wide events and interoccurrence time statistics of the larger events are Poissonian. For a stiff system (large α), system-wide events dominate the energy dissipation and the statistics of the recurrence times between these system-wide events satisfy the Weibull distribution to a good approximation. We argue that this applicability of the Weibull distribution is due to the power-law (scale invariant) behavior of the hazard function, i.e. the probability that the next event will occur at a time t0 after the last event has a power-law dependence on t0. The Weibull distribution is the only distribution that has a scale invariant hazard function. We further show that the onset of system-wide events is a well defined critical point. We find that the number of system-wide events NSWE satisfies the scaling relation NSWE ∝(α-αC)δ where αC is the critical value of the stiffness. The system-wide events represent a new phase for the slider-block system.
Marine Air Penetration: The Effect of Synoptic-scale Change on Regional Climate
NASA Astrophysics Data System (ADS)
Wang, M.; Ullrich, P. A.
2016-12-01
Marine air penetration (MAP) around the California San Francisco Bay Delta region has a pronounced impact on local temperature and air quality, and is highly correlated with inland wind penetration and hence wind power generation. Observational MAP criteria are defined based on the 900hPa across-shore wind speed greater than or equal to 3m/s at the Oakland radiosonde station, and a surface temperature difference greater than or equal to 7 degrees Celsius between two California Irrigation Management Information System (CIMIS) stations at Fresno, CA and Lodi, CA. This choice reflects marine cooling of Lodi, and was found to be highly correlated with inland specific humidity and breeze front activity. The observational MAP criteria were tuned based on small biases from Climate Forecast System Reanalysis (CFSR) to selected MAP days from CFSR, to identify synoptic-scale indicators associated with MAP events. A multivariate logistic regression model was constructed based on the selected five synoptic indicators from CFSR and demonstrated good model performance. Two synoptic-scale patterns were identified and analyzed out of the 32 categories from the regression model, suggesting a strong influence from the off-shore trough and the inland thermal ridge on MAP events. Future projection of MAP events included the 21st century Coupled Model Intercomparison Project Phase 5 (CMIP5), and Variable resolution in the Community Earth System Model (VR-CESM). Both showed no statistically significant trend associated with MAP events through the end of this century under both Representative Concentration Pathways (RCP) 2.6 and RCP 8.5.
NASA Technical Reports Server (NTRS)
Zhou, Yaping; Lau, William K M.; Liu, Chuntao
2013-01-01
This study adopts a "precipitation object" approach by using 14 years of Tropical Rainfall Measuring Mission (TRMM) Precipitation Feature (PF) and National Centers for Environmental Prediction (NCEP) reanalysis data to study rainfall structure and environmental factors associated with extreme heavy rain events. Characteristics of instantaneous extreme volumetric PFs are examined and compared to those of intermediate and small systems. It is found that instantaneous PFs exhibit a much wider scale range compared to the daily gridded precipitation accumulation range. The top 1% of the rainiest PFs contribute over 55% of total rainfall and have 2 orders of rain volume magnitude greater than those of the median PFs. We find a threshold near the top 10% beyond which the PFs grow exponentially into larger, deeper, and colder rain systems. NCEP reanalyses show that midlevel relative humidity and total precipitable water increase steadily with increasingly larger PFs, along with a rapid increase of 500 hPa upward vertical velocity beyond the top 10%. This provides the necessary moisture convergence to amplify and sustain the extreme events. The rapid increase in vertical motion is associated with the release of convective available potential energy (CAPE) in mature systems, as is evident in the increase in CAPE of PFs up to 10% and the subsequent dropoff. The study illustrates distinct stages in the development of an extreme rainfall event including: (1) a systematic buildup in large-scale temperature and moisture, (2) a rapid change in rain structure, (3) explosive growth of the PF size, and (4) a release of CAPE before the demise of the event.
Microearthquake spectra from the Anza, California, seismic network: site response and source scaling
Frankel, Arthur D.; Wennerberg, Leif
1989-01-01
We analyzed spectra of local microearthquakes recorded by the Anza, California, seismic network to isolate the effects of site response and to investigate the scaling of source parameters for small earthquakes. Spectra of microearthquakes (M < 2; Mo< 1019 dyne-cm) at Anza have shapes characteristic of the receiver sites and are generally independent of the source region. Thus, the site response is a major conditioner of the observed spectral shape. To remove the effects of site response from the spectra of a M ∼ 3 event and isolate its source spectrum, we divided by the spectra of an adjacent aftershock used as an empirical Green's function event. The spectral ratios indicate that the apparent corner frequencies of small earthquakes (Mo < 1019dyne-cm) observed at even the high-fmax stations on hard rock are much lower than the source corner frequencies. The spectral ratios are consistent with stress drop remaining constant with decreasing seismic moment, for events with moments as small as 1018 dyne-cm. The spectral ratios display remarkable agreement between sites which showed vast differences in their original spectra, indicating that the spectral division effectively removed the site response. The source spectrum of the M ∼ 3 event has a high-frequency spectral fall-off of about ω−2. An apparent dependence of high-frequency fall-off with seismic moment in the original spectra can also be explained by the effects of site response. The difference between the P- and S-wave corner frequencies and high-frequency roll-offs in the observed spectra for these events is the result of the site response and is not a source property. The shapes of the spectra of microearthquakes at Anza can largely be explained by attenuation at shallow depth with a frequency-independent Q. For some sites, near-surface resonances are also apparent in the spectra of microearthquakes. It is indicated by t* values determined for each site that Qp ∼ Qsfor the shallow low-Q layer. Further evidence of low near-surface Q is observed in the anomalous spectra of an unusually shallow earthquake (source depth ∼ 1 km) in the network. The spectra from this shallow event are depleted in high-frequency energy at most stations, relative to those of deeper events. This observation can be explained by a low-Q surficial zone. For stations of the network situated on alluvium, this low-Q layer has a maximum thickness of about 3 km and maximum P- and S-wave Q values of 30 to 50.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.
Following our successful demonstration of the position-sensitive virtual Frisch-grid detectors, we investigated the feasibility of using high-granularity position sensing to correct response non-uniformities caused by the crystal defects in CdZnTe (CZT) pixelated detectors. The development of high-granularity detectors able to correct response non-uniformities on a scale comparable to the size of electron clouds opens the opportunity of using unselected off-the-shelf CZT material, whilst still assuring high spectral resolution for the majority of the detectors fabricated from an ingot. Here, we present the results from testing 3D position-sensitive 15×15×10 mm 3 pixelated detectors, fabricated with conventional pixel patterns with progressively smallermore » pixel sizes: 1.4, 0.8, and 0.5 mm. We employed the readout system based on the H3D front-end multi-channel ASIC developed by BNL's Instrumentation Division in collaboration with the University of Michigan. We use the sharing of electron clouds among several adjacent pixels to measure locations of interaction points with sub-pixel resolution. By using the detectors with small-pixel sizes and a high probability of the charge-sharing events, we were able to improve their spectral resolutions in comparison to the baseline levels, measured for the 1.4-mm pixel size detectors with small fractions of charge-sharing events. These results demonstrate that further enhancement of the performance of CZT pixelated detectors and reduction of costs are possible by using high spatial-resolution position information of interaction points to correct the small-scale response non-uniformities caused by crystal defects present in most devices.« less
Onset of a Large Ejective Solar Eruption from a Typical Coronal-jet-base Field Configuration
NASA Astrophysics Data System (ADS)
Joshi, Navin Chandra; Sterling, Alphonse C.; Moore, Ronald L.; Magara, Tetsuya; Moon, Yong-Jae
2017-08-01
Utilizing multiwavelength observations and magnetic field data from the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA), SDO/Helioseismic and Magnetic Imager (HMI), the Geostationary Operational Environmental Satellite (GOES), and RHESSI, we investigate a large-scale ejective solar eruption of 2014 December 18 from active region NOAA 12241. This event produced a distinctive “three-ribbon” flare, having two parallel ribbons corresponding to the ribbons of a standard two-ribbon flare, and a larger-scale third quasi-circular ribbon offset from the other two. There are two components to this eruptive event. First, a flux rope forms above a strong-field polarity inversion line and erupts and grows as the parallel ribbons turn on, grow, and spread apart from that polarity inversion line; this evolution is consistent with the mechanism of tether-cutting reconnection for eruptions. Second, the eruption of the arcade that has the erupting flux rope in its core undergoes magnetic reconnection at the null point of a fan dome that envelops the erupting arcade, resulting in formation of the quasi-circular ribbon; this is consistent with the breakout reconnection mechanism for eruptions. We find that the parallel ribbons begin well before (˜12 minutes) the onset of the circular ribbon, indicating that tether-cutting reconnection (or a non-ideal MHD instability) initiated this event, rather than breakout reconnection. The overall setup for this large-scale eruption (diameter of the circular ribbon ˜105 km) is analogous to that of coronal jets (base size ˜104 km), many of which, according to recent findings, result from eruptions of small-scale “minifilaments.” Thus these findings confirm that eruptions of sheared-core magnetic arcades seated in fan-spine null-point magnetic topology happen on a wide range of size scales on the Sun.
PBX 9502 Gas Generation Progress Report FY17
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holmes, Matthew David; Erickson, Michael Andrew Englert
The self-ignition (“cookoff”) behavior of PBX 9502 depends on the dynamic evolution of gas permeability and physical damage in the material. The time-resolved measurement of product gas generation yields insight regarding the crucial properties that dominate cookoff behavior. We report on small-scale laboratory testing performed in FY17, in which small unconfined samples of PBX 9502 were heated in a small custom-built sealed pressure vessel to self-ignition. We recorded time-lapse video of the evolving physical changes in the sample, quasi-static long-duration pressure rise, then high-speed video and dynamic pressure rise of the cookoff event. We report the full pressure attained duringmore » the cookoff of a 1.02g sample in a free volume of 62.5 cm 3.« less
Snow fracture: From micro-cracking to global failure
NASA Astrophysics Data System (ADS)
Capelli, Achille; Reiweger, Ingrid; Schweizer, Jürg
2017-04-01
Slab avalanches are caused by a crack forming and propagating in a weak layer within the snow cover, which eventually causes the detachment of the overlying cohesive slab. The gradual damage process leading to the nucleation of the initial failure is still not entirely understood. Therefore, we studied the damage process preceding snow failure by analyzing the acoustic emissions (AE) generated by bond failure or micro-cracking. The AE allow studying the ongoing progressive failure in a non-destructive way. We performed fully load-controlled failure experiments on snow samples presenting a weak layer and recorded the generated AE. The size and frequency of the generated AE increased before failure revealing an acceleration of the damage process with increased size and frequency of damage and/or microscopic cracks. The AE energy was power-law distributed and the exponent (b-value) decreased approaching failure. The waiting time followed an exponential distribution with increasing exponential coefficient λ before failure. The decrease of the b-value and the increase of λ correspond to a change in the event distribution statistics indicating a transition from homogeneously distributed uncorrelated damage producing mostly small AE to localized damage, which cause larger correlated events which leads to brittle failure. We observed brittle failure for the fast experiment and a more ductile behavior for the slow experiments. This rate dependence was reflected also in the AE signature. In the slow experiments the b value and λ were almost constant, and the energy rate increase was moderate indicating that the damage process was in a stable state - suggesting the damage and healing processes to be balanced. On a shorter time scale, however, the AE parameters varied indicating that the damage process was not steady but consisted of a sum of small bursts. We assume that the bursts may have been generated by cascades of correlated micro-cracks caused by localization of stresses at a small scale. The healing process may then have prevented the self-organization of this small scale damage and, therefore, the total failure of the sample.
Spatial structure and scaling of macropores in hydrological process at small catchment scale
NASA Astrophysics Data System (ADS)
Silasari, Rasmiaditya; Broer, Martine; Blöschl, Günter
2013-04-01
During rainfall events, the formation of overland flow can occur under the circumstances of saturation excess and/or infiltration excess. These conditions are affected by the soil moisture state which represents the soil water content in micropores and macropores. Macropores act as pathway for the preferential flows and have been widely studied locally. However, very little is known about their spatial structure and conductivity of macropores and other flow characteristic at the catchment scale. This study will analyze these characteristics to better understand its importance in hydrological processes. The research will be conducted in Petzenkirchen Hydrological Open Air Laboratory (HOAL), a 64 ha catchment located 100 km west of Vienna. The land use is divided between arable land (87%), pasture (5%), forest (6%) and paved surfaces (2%). Video cameras will be installed on an agricultural field to monitor the overland flow pattern during rainfall events. A wireless soil moisture network is also installed within the monitored area. These field data will be combined to analyze the soil moisture state and the responding surface runoff occurrence. The variability of the macropores spatial structure of the observed area (field scale) then will be assessed based on the topography and soil data. Soil characteristics will be supported with laboratory experiments on soil matrix flow to obtain proper definitions of the spatial structure of macropores and its variability. A coupled physically based distributed model of surface and subsurface flow will be used to simulate the variability of macropores spatial structure and its effect on the flow behaviour. This model will be validated by simulating the observed rainfall events. Upscaling from field scale to catchment scale will be done to understand the effect of macropores variability on larger scales by applying spatial stochastic methods. The first phase in this study is the installation and monitoring configuration of video cameras and soil moisture monitoring equipment to obtain the initial data of overland flow occurrence and soil moisture state relationships.
Spatial Scaling of Floods in Atlantic Coastal Watersheds
NASA Astrophysics Data System (ADS)
Plank, C.
2013-12-01
Climate and land use changes are altering global, regional and local hydrologic cycles. As a result, past events may not accurately represent the events that will occur in the future. Methods for hydrologic prediction, both statistical and deterministic, require adequate data for calibration. Streamflow gauges tend to be located on large rivers. As a result, statistical flood frequency analysis, which relies on gauge data, is biased towards large watersheds. Conversely, the complexity of parameterizing watershed processes in deterministic hydrological models limits these to small watersheds. Spatial scaling relationships between drainage basin area and discharge can be used to bridge these two methodologies and provide new approaches to hydrologic prediction. The relationship of discharge (Q) to drainage basin area (A) can be expressed as a power function: Q = αAθ. This study compares scaling exponents (θ) and coefficients (α) for floods of varying magnitude across a selection of major Atlantic Coast watersheds. Comparisons are made by normalizing flood discharges to a reference area bankfull discharge for each watershed. These watersheds capture the geologic and geomorphic transitions along the Atlantic Coast from narrow bedrock-dominated river valleys to wide coastal plain watersheds. Additionally, there is a range of hydrometeorological events that cause major floods in these basins including tropical storms, thunderstorm systems and winter-spring storms. The mix of flood-producing events changes along a gradient as well, with tropical storms and hurricanes increasing in dominance from north to south as a significant cause of major floods. Scaling exponents and coefficients were determined for both flood quantile estimates (e.g. 1.5-, 10-, 100-year floods) and selected hydrometeorological events (e.g. hurricanes, summer thunderstorms, winter-spring storms). Initial results indicate that southern coastal plain watersheds have lower scaling exponents (θ) than northern watersheds. However, the relative magnitudes of 100-year and other large floods are higher in the coastal plain rivers. In the transition zone between northern and southern watersheds, basins like the Potomac in the Mid-Atlantic region have similar scaling exponents as northern river basins, but relative flood magnitudes comparable to the southern coastal plain watersheds. These differences reflect variations in both geologic/geomorphic and climatic settings. Understanding these variations are important to appropriately using these relationships to improve flood risk models and analyses.
Small-scale spatial variation in near-surface turbidites around the JFAST site near the Japan Trench
NASA Astrophysics Data System (ADS)
Yoshikawa, Shuro; Kanamatsu, Toshiya; Kasaya, Takafumi
2016-03-01
This paper aims to improve our understanding of the depositional processes associated with turbidites related to recent earthquake events. A series of short sediment cores (ca. 20-30 cm long) were recovered from the landward slope of the Japan Trench around JFAST (Japan Trench Fast Drilling Project) site C0019 by a remotely operated vehicle, KAIKO 7000 II, and the sample sites were accurately located using an LBL (long base line) acoustic navigation system. The properties of the cores were analyzed using visual observations, soft X-ray radiographs, smear slides, measurement of anisotropy of magnetic susceptibility, and analysis of radioactive elements (134Cs, 137Cs, and excess 210Pb). For the first time, small-scale (ca. 200-1000 m) spatial variations in recent earthquake-triggered deep-sea turbidites, the formation of which was probably linked to the 2011 Tohoku-oki earthquake, are described. We also examine the submarine landslide that probably generated the sediment unit below the turbidites, which is thought to be an important process in the study area. The spatial distribution and characteristics of the near-surface seismoturbidite obtained immediately after the earthquake, presented here, will enable precise calibration of offshore evidence of recent earthquakes, and thus facilitate the use of the sedimentary archive for paleoseismic interpretations. Furthermore, although sampling for turbidite seismology on steep slopes has not been widely performed previously, our results suggest that the recent event deposits may be continuously tracked from the slope to the basin using a combination of the present sampling method and conventional large-scale investigation techniques.
NASA Astrophysics Data System (ADS)
Ruohoniemi, J. M.; Baker, J. B.; Maimaiti, M.; Oksavik, K.; Erickson, P. J.; Scales, W.; Eltrass, A.
2017-12-01
The mid-latitude radars of the SuperDARN network routinely observe backscatter from nighttime decameter-scale F region irregularities at latitudes well equatorward of the auroral boundary. This Sub-Auroral Ionospheric Scatter (SAIS) is strongly distinguished from auroral and SAPS backscatter by low Doppler velocities ( tens m/s) and stable, long-lived ( hours) occurrence in discrete events that are extended in both latitude and longitude. Statistical and event studies of SAIS with the SuperDARN radars indicate that the subauroral F region ionosphere is replete with irregularities during events, at least poleward of the 50° Λ horizon of the North American mid-latitude radars, and that radar observation of SAIS backscatter is then primarily limited by the magnetic aspect condition. Joint experiments with incoherent scatter radar have furnished sets of plasma measurements suitable for testing theories of plasma instability. Modeling work stimulated by the observations has explored the temperature-gradient instability (TGI) and the gradient drift instability (GDI) as possible sources of the irregularities. In this talk we review the findings on the occurrence of the SAIS category of mid-latitude F region irregularities, summarize the results of the modeling work, and discuss future research directions.
NASA Astrophysics Data System (ADS)
Kim, H.; Belt, K. T.; Welty, C.; Heisler, G.; Pouyat, R. V.; McGuire, M. P.; Stack, W. P.
2006-05-01
Water and material fluxes from urban landscape patches to small streams are modulated by extensive "engineered" drainage networks. Small urban headwater catchments are different in character and function from their larger receiving streams because of their extensive, direct connections to impervious surface cover (ISC) and their sometimes buried nature. They need to be studied as unique functional hydrologic units if impacts on biota are to be fully understood. As part of the Baltimore Ecosystem Study LTER project, continuous water temperature data are being collected at 2-minute intervals at over twenty small catchments representing various mixtures of forest and ISC. Suburban stream sites with greater ISC generally have higher summer water temperatures. Suburban catchments with most of their channel drainage contained within storm drain pipes show subdued diurnal variation and cool temperatures, but with very large spikes in summer runoff events. Conversely, high ISC urban piped streams have elevated "baseline" temperatures that stand well above all the other monitoring sites. There is a pronounced upstream-downstream effect; nested small headwater catchments experience more frequent, larger temperature spikes related to runoff events than downstream sites. Also, runoff-initiated temperature elevations at small stream sites unexpectedly last much longer than the storm runoff hydrographs. These observations suggest that for small headwater catchments, urban landscapes not only induce an ambient, "heat island" effect on stream temperatures, but also introduce thermal disturbance regimes and fluxes that are not trivial to aquatic biota.
NASA Astrophysics Data System (ADS)
Mecklenburg, S.; Joss, J.; Schmid, W.
2000-12-01
Nowcasting for hydrological applications is discussed. The tracking algorithm extrapolates radar images in space and time. It originates from the pattern recognition techniques TREC (Tracking Radar Echoes by Correlation, Rinehart and Garvey, J. Appl. Meteor., 34 (1995) 1286) and COTREC (Continuity of TREC vectors, Li et al., Nature, 273 (1978) 287). To evaluate the quality of the extrapolation, a parameter scheme is introduced, able to distinguish between errors in the position and the intensity of the predicted precipitation. The parameters for the position are the absolute error, the relative error and the error of the forecasted direction. The parameters for the intensity are the ratio of the medians and the variations of the rain rate (ratio of two quantiles) between the actual and the forecasted image. To judge the overall quality of the forecast, the correlation coefficient between the forecasted and the actual radar image has been used. To improve the forecast, three aspects have been investigated: (a) Common meteorological attributes of convective cells, derived from a hail statistics, have been determined to optimize the parameters of the tracking algorithm. Using (a), the forecast procedure modifications (b) and (c) have been applied. (b) Small-scale features have been removed by using larger tracking areas and by applying a spatial and temporal smoothing, since problems with the tracking algorithm are mainly caused by small-scale/short-term variations of the echo pattern or because of limitations caused by the radar technique itself (erroneous vectors caused by clutter or shielding). (c) The searching area and the number of searched boxes have been restricted. This limits false detections, which is especially useful in stratiform precipitation and for stationary echoes. Whereas a larger scale and the removal of small-scale features improve the forecasted position for the convective precipitation, the forecast of the stratiform event is not influenced, but limiting the search area leads to a slightly better forecast. The forecast of the intensity is successful for both precipitation events. Forecasting the variation of the rain rate calls for further investigation. Applying COTREC improves the forecast of the convective precipitation, especially for extrapolation times exceeding 30 min.
Earthquakes in the Laboratory: Continuum-Granular Interactions
NASA Astrophysics Data System (ADS)
Ecke, Robert; Geller, Drew; Ward, Carl; Backhaus, Scott
2013-03-01
Earthquakes in nature feature large tectonic plate motion at large scales of 10-100 km and local properties of the earth on the scale of the rupture width, of the order of meters. Fault gouge often fills the gap between the large slipping plates and may play an important role in the nature and dynamics of earthquake events. We have constructed a laboratory scale experiment that represents a similitude scale model of this general earthquake description. Two photo-elastic plates (50 cm x 25 cm x 1 cm) confine approximately 3000 bi-disperse nylon rods (diameters 0.12 and 0.16 cm, height 1 cm) in a gap of approximately 1 cm. The plates are held rigidly along their outer edges with one held fixed while the other edge is driven at constant speed over a range of about 5 cm. The local stresses exerted on the plates are measured using their photo-elastic response, the local relative motions of the plates, i.e., the local strains, are determined by the relative motion of small ball bearings attached to the top surface, and the configurations of the nylon rods are investigated using particle tracking tools. We find that this system has properties similar to real earthquakes and are exploring these ``lab-quake'' events with the quantitative tools we have developed.
Convective Troposphere-Stratosphere Transport in the Tropics and Hydration by ice Crystals Geysers
NASA Astrophysics Data System (ADS)
Pommereau, J.
2008-12-01
Twenty-five years ago the suggestion was made by Danielsen of direct fast convective penetration of tropospheric air in the stratosphere over land convective systems. Although the existence of the mechanism is accepted, it was thought to be rare and thus its contribution to Troposphere-Stratosphere Transport (TST) of chemical species and water vapour at global scale unimportant at global scale. In contrast to this assumption, observations of temperature, water vapour, ice particles, long-lived tropospheric species during HIBISCUS, TROCCINOX and SCOUT-O3 over Brazil, Australia and Africa and more recently CALIPSO aerosols observations suggest that it is a general feature of tropical land convective regions in the summer. Particularly relevant to stratospheric water vapour is the observation of geyser like ice crystals in the TTL over overshooting events which may result in the moistening of the stratosphere. Although such events successfully captured by small scale Cloud-Resolving Models may have a significant impact on stratospheric ozone chemistry and climate, they are currently totally ignored by NWPs, CTMs and CCMs. Several recent balloon and aircraft observations of overshoots and CRM simulations will be shown illustrating the mechanism, as well as observations from a variety of satellites suggesting a significant impact at global scale.
NASA Astrophysics Data System (ADS)
Halekas, J. S.; Poppe, A. R.; Lue, C.; Farrell, W. M.; McFadden, J. P.
2017-06-01
A statistical investigation of 5 years of observations from the two-probe Acceleration, Reconnection, Turbulence, and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS) mission reveals that strong compressional interactions occur infrequently at high altitudes near the ecliptic but can form in a wide range of solar wind conditions and can occur up to two lunar radii downstream from the lunar limb. The compressional events, some of which may represent small-scale collisionless shocks ("limb shocks"), occur in both steady and variable interplanetary magnetic field (IMF) conditions, with those forming in steady IMF well organized by the location of lunar remanent crustal magnetization. The events observed by ARTEMIS have similarities to ion foreshock phenomena, and those observed in variable IMF conditions may result from either local lunar interactions or distant terrestrial foreshock interactions. Observed velocity deflections associated with compressional events are always outward from the lunar wake, regardless of location and solar wind conditions. However, events for which the observed velocity deflection is parallel to the upstream motional electric field form in distinctly different solar wind conditions and locations than events with antiparallel deflections. Consideration of the momentum transfer between incoming and reflected solar wind populations helps explain the observed characteristics of the different groups of events.
Kittinger, John N.; Teneva, Lida T.; Koike, Haruko; Stamoulis, Kostantinos A.; Kittinger, Daniela S.; Oleson, Kirsten L. L.; Conklin, Eric; Gomes, Mahana; Wilcox, Bart; Friedlander, Alan M.
2015-01-01
Ocean and coastal ecosystems provide critical fisheries, coastal protection, and cultural benefits to communities worldwide, but these services are diminishing due to local and global threats. In response, place-based strategies involve communities and resource users in management have proliferated. Here, we present a transferable community-based approach to assess the social and ecological factors affecting resource sustainability and food security in a small-scale, coral reef fishery. Our results show that this small-scale fishery provides large-scale benefits to communities, including 7,353 ± 1547 kg yr-1 (mean ± SE) of seafood per year, equating to >30,000 meals with an economic value of $78,432. The vast majority of the catch is used for subsistence, contributing to community food security: 58% is kept, 33.5% is given away, and 8.5% is sold. Our spatial analysis assesses the geographic distribution of community beneficiaries from the fishery (the “food shed” for the fishery), and we document that 20% of seafood procured from the fishery is used for sociocultural events that are important for social cohesion. This approach provides a method for assessing social, economic, and cultural values provided by small-scale food systems, as well as important contributions to food security, with significant implications for conservation and management. This interdisciplinary effort aims to demonstrate a transferable participatory research approach useful for resource-dependent communities as they cope with socioeconomic, cultural, and environmental change. PMID:26244910
On the properties of energy transfer in solar wind turbulence.
NASA Astrophysics Data System (ADS)
Sorriso-Valvo, Luca; Marino, Raffaele; Chen, Christopher H. K.; Wicks, Robert; Nigro, Giuseppina
2017-04-01
Spacecraft observations have shown that the solar wind plasma is heated during its expansion in the heliosphere. The necessary energy is made available at small scales by a turbulent cascade, although the nature of the heating processes is still debated. Because of the intermittent nature of turbulence, the small-scale energy is inhomogeneously distributed in space, resulting for example in the formation of highly localized current sheets and eddies. In order to understand the small-scale plasma processes occurring in the solar wind, the global and local properties of such energy distribution must be known. Here we study such properties using a proxy derived from the Von Karman-Howart relation for magnetohydrodynamics. The statistical properties of the energy transfer rate in the fluid range of scales are studied in detail using WIND spacecraft plasma and magnetic field measurements and discussed in the framework of the multifractal turbulent cascade. Dependence of the energy dissipation proxy on the solar wind conditions (speed, type, solar activity...) is analysed, and its evolution during solar wind expansion in the heliosphere is described using Helios II and Ulysses measurements. A comparison with other proxies, such as the PVI, is performed. Finally, the local singularity properties of the energy dissipation proxy are conditionally compared to the corresponding particle velocity distributions. This allows the identification of specific plasma features occurring near turbulent dissipation events, and could be used as enhanced mode trigger in future space missions.
Kittinger, John N; Teneva, Lida T; Koike, Haruko; Stamoulis, Kostantinos A; Kittinger, Daniela S; Oleson, Kirsten L L; Conklin, Eric; Gomes, Mahana; Wilcox, Bart; Friedlander, Alan M
2015-01-01
Ocean and coastal ecosystems provide critical fisheries, coastal protection, and cultural benefits to communities worldwide, but these services are diminishing due to local and global threats. In response, place-based strategies involve communities and resource users in management have proliferated. Here, we present a transferable community-based approach to assess the social and ecological factors affecting resource sustainability and food security in a small-scale, coral reef fishery. Our results show that this small-scale fishery provides large-scale benefits to communities, including 7,353 ± 1547 kg yr(-1) (mean ± SE) of seafood per year, equating to >30,000 meals with an economic value of $78,432. The vast majority of the catch is used for subsistence, contributing to community food security: 58% is kept, 33.5% is given away, and 8.5% is sold. Our spatial analysis assesses the geographic distribution of community beneficiaries from the fishery (the "food shed" for the fishery), and we document that 20% of seafood procured from the fishery is used for sociocultural events that are important for social cohesion. This approach provides a method for assessing social, economic, and cultural values provided by small-scale food systems, as well as important contributions to food security, with significant implications for conservation and management. This interdisciplinary effort aims to demonstrate a transferable participatory research approach useful for resource-dependent communities as they cope with socioeconomic, cultural, and environmental change.
Evolution caused by extreme events.
Grant, Peter R; Grant, B Rosemary; Huey, Raymond B; Johnson, Marc T J; Knoll, Andrew H; Schmitt, Johanna
2017-06-19
Extreme events can be a major driver of evolutionary change over geological and contemporary timescales. Outstanding examples are evolutionary diversification following mass extinctions caused by extreme volcanism or asteroid impact. The evolution of organisms in contemporary time is typically viewed as a gradual and incremental process that results from genetic change, environmental perturbation or both. However, contemporary environments occasionally experience strong perturbations such as heat waves, floods, hurricanes, droughts and pest outbreaks. These extreme events set up strong selection pressures on organisms, and are small-scale analogues of the dramatic changes documented in the fossil record. Because extreme events are rare, almost by definition, they are difficult to study. So far most attention has been given to their ecological rather than to their evolutionary consequences. We review several case studies of contemporary evolution in response to two types of extreme environmental perturbations, episodic (pulse) or prolonged (press). Evolution is most likely to occur when extreme events alter community composition. We encourage investigators to be prepared for evolutionary change in response to rare events during long-term field studies.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Author(s).
Rupture Complexities of Fluid Induced Microseismic Events at the Basel EGS Project
NASA Astrophysics Data System (ADS)
Folesky, Jonas; Kummerow, Jörn; Shapiro, Serge A.; Häring, Markus; Asanuma, Hiroshi
2016-04-01
Microseismic data sets of excellent quality, such as the seismicity recorded in the Basel-1 enhanced geothermal system, Switzerland, in 2006-2007, provide the opportunity to analyse induced seismic events in great detail. It is important to understand in how far seismological insights on e.g. source and rupture processes are scale dependent and how they can be transferred to fluid induced micro-seismicity. We applied the empirical Green's function (EGF) method in order to reconstruct the relative source time functions of 195 suitable microseismic events from the Basel-1 reservoir. We found 93 solutions with a clear and consistent directivity pattern. The remaining events display either no measurable directivity, are unfavourably oriented or exhibit non consistent or complex relative source time functions. In this work we focus on selected events of M ˜ 1 which show possible rupture complexities. It is demonstrated that the EGF method allows to resolve complex rupture behaviour even if it is not directly identifiable in the seismograms. We find clear evidence of rupture directivity and multi-phase rupturing in the analysed relative source time functions. The time delays between consecutive subevents lies in the order of 10ms. Amplitudes of the relative source time functions of the subevents do not always show the same azimuthal dependence, indicating dissimilarity in the rupture directivity of the subevents. Our observations support the assumption that heterogeneity on fault surfaces persists down to small scale (few tens of meters).
Multiple-scale neuroendocrine signals connect brain and pituitary hormone rhythms
Romanò, Nicola; Guillou, Anne; Martin, Agnès O; Mollard, Patrice
2017-01-01
Small assemblies of hypothalamic “parvocellular” neurons release their neuroendocrine signals at the median eminence (ME) to control long-lasting pituitary hormone rhythms essential for homeostasis. How such rapid hypothalamic neurotransmission leads to slowly evolving hormonal signals remains unknown. Here, we show that the temporal organization of dopamine (DA) release events in freely behaving animals relies on a set of characteristic features that are adapted to the dynamic dopaminergic control of pituitary prolactin secretion, a key reproductive hormone. First, locally generated DA release signals are organized over more than four orders of magnitude (0.001 Hz–10 Hz). Second, these DA events are finely tuned within and between frequency domains as building blocks that recur over days to weeks. Third, an integration time window is detected across the ME and consists of high-frequency DA discharges that are coordinated within the minutes range. Thus, a hierarchical combination of time-scaled neuroendocrine signals displays local–global integration to connect brain–pituitary rhythms and pace hormone secretion. PMID:28193889
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khabarova, Olga V.; Zank, Gary P.; Li, Gang
2016-08-20
We explore the role of heliospheric magnetic field configurations and conditions that favor the generation and confinement of small-scale magnetic islands associated with atypical energetic particle events (AEPEs) in the solar wind. Some AEPEs do not align with standard particle acceleration mechanisms, such as flare-related or simple diffusive shock acceleration processes related to interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs). As we have shown recently, energetic particle flux enhancements may well originate locally and can be explained by particle acceleration in regions filled with small-scale magnetic islands with a typical width of ∼0.01 au or less, whichmore » is often observed near the heliospheric current sheet (HCS). The particle energization is a consequence of magnetic reconnection-related processes in islands experiencing either merging or contraction, observed, for example, in HCS ripples. Here we provide more observations that support the idea and the theory of particle energization produced by small-scale-flux-rope dynamics (Zank et al. and Le Roux et al.). If the particles are pre-accelerated to keV energies via classical mechanisms, they may be additionally accelerated up to 1–1.5 MeV inside magnetically confined cavities of various origins. The magnetic cavities, formed by current sheets, may occur at the interface of different streams such as CIRs and ICMEs or ICMEs and coronal hole flows. They may also form during the HCS interaction with interplanetary shocks (ISs) or CIRs/ICMEs. Particle acceleration inside magnetic cavities may explain puzzling AEPEs occurring far beyond ISs, within ICMEs, before approaching CIRs as well as between CIRs.« less
Reality Check Algorithm for Complex Sources in Early Warning
NASA Astrophysics Data System (ADS)
Karakus, G.; Heaton, T. H.
2013-12-01
In almost all currently operating earthquake early warning (EEW) systems, presently available seismic data are used to predict future shaking. In most cases, location and magnitude are estimated. We are developing an algorithm to test the goodness of that prediction in real time. We monitor envelopes of acceleration, velocity, and displacement; if they deviate significantly from the envelope predicted by Cua's envelope gmpe's then we declare an overfit (perhaps false alarm) or an underfit (possibly a larger event has just occurred). This algorithm is designed to provide a robust measure and to work as quickly as possible in real-time. We monitor the logarithm of the ratio between the envelopes of the ongoing observed event and the envelopes derived from the predicted envelopes of channels of ground motion of the Virtual Seismologist (VS) (Cua, G. and Heaton, T.). Then, we recursively filter this result with a simple running median (de-spiking operator) to minimize the effect of one single high value. Depending on the result of the filtered value we make a decision such as if this value is large enough (e.g., >1), then we would declare, 'that a larger event is in progress', or similarly if this value is small enough (e.g., <-1), then we would declare a false alarm. We design the algorithm to work at a wide range of amplitude scales; that is, it should work for both small and large events.
NASA Astrophysics Data System (ADS)
Wagenbrenner, N. S.; Forthofer, J.; Gibson, C.; Lamb, B. K.
2017-12-01
Frequent strong gap winds were measured in a deep, steep, wildfire-prone river canyon of central Idaho, USA during July-September 2013. Analysis of archived surface pressure data indicate that the gap wind events were driven by regional scale surface pressure gradients. The events always occurred between 0400 and 1200 LT and typically lasted 3-4 hours. The timing makes these events particularly hazardous for wildland firefighting applications since the morning is typically a period of reduced fire activity and unsuspecting firefighters could be easily endangered by the onset of strong downcanyon winds. The gap wind events were not explicitly forecast by operational numerical weather prediction (NWP) models due to the small spatial scale of the canyon ( 1-2 km wide) compared to the horizontal resolution of operational NWP models (3 km or greater). Custom WRF simulations initialized with NARR data were run at 1 km horizontal resolution to assess whether higher resolution NWP could accurately simulate the observed gap winds. Here, we show that the 1 km WRF simulations captured many of the observed gap wind events, although the strength of the events was underpredicted. We also present evidence from these WRF simulations which suggests that the Salmon River Canyon is near the threshold of WRF-resolvable terrain features when the standard WRF coordinate system and discretization schemes are used. Finally, we show that the strength of the gap wind events can be predicted reasonably well as a function of the surface pressure gradient across the gap, which could be useful in the absence of high-resolution NWP. These are important findings for wildland firefighting applications in narrow gaps where routine forecasts may not provide warning for wind effects induced by high-resolution terrain features.
Short-term rainfall: its scaling properties over Portugal
NASA Astrophysics Data System (ADS)
de Lima, M. Isabel P.
2010-05-01
The characterization of rainfall at a variety of space- and time-scales demands usually that data from different origins and resolution are explored. Different tools and methodologies can be used for this purpose. In regions where the spatial variation of rain is marked, the study of the scaling structure of rainfall can lead to a better understanding of the type of events affecting that specific area, which is essential for many engineering applications. The relevant factors affecting rain variability, in time and space, can lead to contrasting statistics which should be carefully taken into account in design procedures and decision making processes. One such region is Mainland Portugal; the territory is located in the transitional region between the sub-tropical anticyclone and the subpolar depression zones and is characterized by strong north-south and east-west rainfall gradients. The spatial distribution and seasonal variability of rain are particularly influenced by the characteristics of the global circulation. One specific feature is the Atlantic origin of many synoptic disturbances in the context of the regional geography (e.g. latitude, orography, oceanic and continental influences). Thus, aiming at investigating the statistical signature of rain events of different origins, resulting from the large number of mechanisms and factors affecting the rainfall climate over Portugal, scale-invariant analyses of the temporal structure of rain from several locations in mainland Portugal were conducted. The study used short-term rainfall time series. Relevant scaling ranges were identified and characterized that help clarifying the small-scale behaviour and statistics of this process.
Multiple runoff processes and multiple thresholds control agricultural runoff generation
NASA Astrophysics Data System (ADS)
Saffarpour, Shabnam; Western, Andrew W.; Adams, Russell; McDonnell, Jeffrey J.
2016-11-01
Thresholds and hydrologic connectivity associated with runoff processes are a critical concept for understanding catchment hydrologic response at the event timescale. To date, most attention has focused on single runoff response types, and the role of multiple thresholds and flow path connectivities has not been made explicit. Here we first summarise existing knowledge on the interplay between thresholds, connectivity and runoff processes at the hillslope-small catchment scale into a single figure and use it in examining how runoff response and the catchment threshold response to rainfall affect a suite of runoff generation mechanisms in a small agricultural catchment. A 1.37 ha catchment in the Lang Lang River catchment, Victoria, Australia, was instrumented and hourly data of rainfall, runoff, shallow groundwater level and isotope water samples were collected. The rainfall, runoff and antecedent soil moisture data together with water levels at several shallow piezometers are used to identify runoff processes in the study site. We use isotope and major ion results to further support the findings of the hydrometric data. We analyse 60 rainfall events that produced 38 runoff events over two runoff seasons. Our results show that the catchment hydrologic response was typically controlled by the Antecedent Soil Moisture Index and rainfall characteristics. There was a strong seasonal effect in the antecedent moisture conditions that led to marked seasonal-scale changes in runoff response. Analysis of shallow well data revealed that streamflows early in the runoff season were dominated primarily by saturation excess overland flow from the riparian area. As the runoff season progressed, the catchment soil water storage increased and the hillslopes connected to the riparian area. The hillslopes transferred a significant amount of water to the riparian zone during and following events. Then, during a particularly wet period, this connectivity to the riparian zone, and ultimately to the stream, persisted between events for a period of 1 month. These findings are supported by isotope results which showed the dominance of pre-event water, together with significant contributions of event water early (rising limb and peak) in the event hydrograph. Based on a combination of various hydrometric analyses and some isotope and major ion data, we conclude that event runoff at this site is typically a combination of subsurface event flow and saturation excess overland flow. However, during high intensity rainfall events, flashy catchment flow was observed even though the soil moisture threshold for activation of subsurface flow was not exceeded. We hypothesise that this was due to the activation of infiltration excess overland flow and/or fast lateral flow through preferential pathways on the hillslope and saturation overland flow from the riparian zone.
NASA Astrophysics Data System (ADS)
Hatten, J. A.; Goni, M. A.; Gray, A. B.; Pasternack, G. B.; Warrick, J. A.; Watson, E.; Wheatcroft, R. A.
2016-12-01
The delivery of particulate organic carbon (POC) from rivers to marine sediments is the major long-term sink of CO2 on Earth and a net source of oxygen over millennial time scales. Small mountainous river systems (SMRS) may be responsible for half of the POC delivery to global oceans. The flux of POC in semi-arid SMRS has been thought to be regulated by hydro-geomorphic factors, such as runoff, tectonic uplift rates, and bedrock geology. Fire has been shown to be very important for the flux of suspended sediment from chaparral dominated watersheds, therefore the same should be true for carbon associated with sediment. To date, the role of landscape disturbances such as fire has not been investigated. A large wildfire (2008) in the chaparral-dominated Arroyo Seco watershed, a smaller watershed within the Salinas River basin, provided a unique opportunity to examine the effects of fire on POC source and flux at the watershed-scale. Suspended sediments were collected from the Arroyo Seco for 2 years post fire, and 1 year pre- and 3 years post-fire in the Salinas River. We analyzed these sediments for C, N, 13C, 15N, ad CuO oxidation products (e.g. lignin, char). We found there was an increase in POC flux that is largely a function of elevated sediment flux, but elemental, stable isotope, and biomarker analyses show that both burned and unburned organic matter has contributed to the elevated carbon flux as a result of enhanced surface erosion processes. While these fire-flood events may be rare, sediment associated constituent yield will be greatly underestimated if these events are not considered. Fire-flood events may be especially important to consider in light of shifting fire regimes and more frequent extreme precipitation events predicted as a result of climate change.
Short term evolution of coronal hole boundaries
NASA Technical Reports Server (NTRS)
Nolte, J. T.; Krieger, A. S.; Solodyna, C. V.
1978-01-01
The evolution of coronal hole boundary positions on a time scale of approximately 1 day is studied on the basis of an examination of all coronal holes observed by Skylab from May to November 1973. It is found that a substantial fraction (an average of 38%) of all coronal hole boundaries shifted by at least 1 deg heliocentric in the course of a day. Most (70%) of these changes were on a relatively small scale (less than 3 times the supergranulation cell size), but a significant fraction occurred as discrete events on a much larger scale. The large-scale shifts in the boundary locations involved changes in X-ray emission from these areas of the sun. There were generally more changes in the boundaries of the most rapidly evolving holes, but no simple relationship between the amount of change and the rate of hole growth or decay.
The Role of Subtropical Intrusion in the Development of Typhoon Usagi (5W) 2007
2008-03-01
THE MARSUPIAL PARADIGM Summarizing the DMW08 theory, the relevant theoretical paradigm is the formation of a closed proto-vortex or “ embryo ...and begins control its own destiny . By correlating the marsupial analogy for TC formation in this study, we can verify in theory that the remnants...The hurricane embryo . Talk presented at short program workshop entitled Small scale and extreme events: The Hurricane, NSF Institute for Pure and
NASA Astrophysics Data System (ADS)
Cawkwell, F. G.; Burgess, D. O.; Sharp, M. J.; Demuth, M.
2004-12-01
Snow and ice surface roughness affect the backscatter of the pulse emitted by a radar altimeter, and hence the accuracy of the surface elevation calculated from the waveform echo, but the influence of surface roughness has not been quantified. As part of the CryoSat calibration/validation field campaigns on the Devon Ice Cap in 2004, surface roughness measurements were made at 0.1-7km intervals along a 48km transect from near the summit to the southern margin. Measurements were made at the decimetre scale by surveying and at the centimetre scale using digital photography. The data collected were subjected to wavelet analysis to define characteristic roughness wavelengths, and the fractal dimension associated with each of these was calculated using the semi-variogram method. Vario functions were calculated for the photographic data. The survey results show that wavelength scales depend on orientation and distance from the ice cap summit, the fractal dimension depends on the wavelength scale and the orientation, and both are significantly affected by storm events. Profiles aligned with the easterly prevailing wind direction, and thus perpendicular to the predicted satellite track, proved to be more sensitive to meteorological events than those normal to the dominant winds. Wavelet and fractal analysis of the photographic data was less conclusive, potentially due to the `noisier' nature of the data at this scale, where `noise' is actually the superimposition of small scale wavelengths onto larger ones. Vario analysis showed the characteristic wavelengths at the centimetre scale to increase with distance from the summit, although the abrading effect of storm events caused a decrease in wavelength. The amplitude of the roughness also increases with distance from the summit, although following a period of calm this value is significantly decreased along the transect. Orientation with respect to the prevailing wind direction is also a significant factor. Analysis of the return waveforms acquired by an airborne radar altimeter concurrently with ground data will allow the impact of the different roughness scales and orientations to be assessed.
Large-Angular-Scale Clustering as a Clue to the Source of UHECRs
NASA Astrophysics Data System (ADS)
Berlind, Andreas A.; Farrar, Glennys R.
We explore what can be learned about the sources of UHECRs from their large-angular-scale clustering (referred to as their "bias" by the cosmology community). Exploiting the clustering on large scales has the advantage over small-scale correlations of being insensitive to uncertainties in source direction from magnetic smearing or measurement error. In a Cold Dark Matter cosmology, the amplitude of large-scale clustering depends on the mass of the system, with more massive systems such as galaxy clusters clustering more strongly than less massive systems such as ordinary galaxies or AGN. Therefore, studying the large-scale clustering of UHECRs can help determine a mass scale for their sources, given the assumption that their redshift depth is as expected from the GZK cutoff. We investigate the constraining power of a given UHECR sample as a function of its cutoff energy and number of events. We show that current and future samples should be able to distinguish between the cases of their sources being galaxy clusters, ordinary galaxies, or sources that are uncorrelated with the large-scale structure of the universe.
Estimating floodwater depths from flood inundation maps and topography
Cohen, Sagy; Brakenridge, G. Robert; Kettner, Albert; Bates, Bradford; Nelson, Jonathan M.; McDonald, Richard R.; Huang, Yu-Fen; Munasinghe, Dinuke; Zhang, Jiaqi
2018-01-01
Information on flood inundation extent is important for understanding societal exposure, water storage volumes, flood wave attenuation, future flood hazard, and other variables. A number of organizations now provide flood inundation maps based on satellite remote sensing. These data products can efficiently and accurately provide the areal extent of a flood event, but do not provide floodwater depth, an important attribute for first responders and damage assessment. Here we present a new methodology and a GIS-based tool, the Floodwater Depth Estimation Tool (FwDET), for estimating floodwater depth based solely on an inundation map and a digital elevation model (DEM). We compare the FwDET results against water depth maps derived from hydraulic simulation of two flood events, a large-scale event for which we use medium resolution input layer (10 m) and a small-scale event for which we use a high-resolution (LiDAR; 1 m) input. Further testing is performed for two inundation maps with a number of challenging features that include a narrow valley, a large reservoir, and an urban setting. The results show FwDET can accurately calculate floodwater depth for diverse flooding scenarios but also leads to considerable bias in locations where the inundation extent does not align well with the DEM. In these locations, manual adjustment or higher spatial resolution input is required.
UAS Developments Supporting Wildfire Observations
NASA Astrophysics Data System (ADS)
Ambrosia, V. G.; Dahlgren, R. P.; Watts, A.; Reynolds, K. W.; Ball, T.
2014-12-01
Wildfires are regularly occurring emergency events that threaten life, property, and natural resources in every U.S. State and many countries around the world. Despite projections that $1.8 billion will be spent by U.S. Federal agencies alone on wildfires in 2014, the decades-long trend of increasing fire size, severity, and cost is expected to continue. Furthermore, the enormous potential for UAS (and concomitant sensor systems) to serve as geospatial intelligence tools to improve the safety and effectiveness of fire management, and our ability to forecast fire and smoke movements, remains barely tapped. Although orbital sensor assets are can provide the geospatial extent of wildfires, generally those resources are limited in use due to their spatial and temporal resolution limitations. These two critical elements make orbital assets of limited utility for tactical, real-time wildfire management, or for continuous scientific analysis of the temporal dynamics related to fire energy release rates and plume concentrations that vary significantly thru a fire's progression. Large UAS platforms and sensors can and have been used to monitor wildfire events at improved temporal, spatial and radiometric scales, but more focus is being placed on the use of small UAS (sUAS) and sensors to support wildfire observation strategies. The use of sUAS is therefore more critical for TACTICAL management purposes, rather than strategic observations, where small-scale fire developments are critical to understand. This paper will highlight the historical development and use of UAS for fire observations, as well as the current shift in focus to smaller, more affordable UAS for more rapid integration into operational use on wildfire events to support tactical observation strategies, and support wildfire science measurement inprovements.
Assessing manure management strategies through small-plot research and whole-farm modeling
Garcia, A.M.; Veith, T.L.; Kleinman, P.J.A.; Rotz, C.A.; Saporito, L.S.
2008-01-01
Plot-scale experimentation can provide valuable insight into the effects of manure management practices on phosphorus (P) runoff, but whole-farm evaluation is needed for complete assessment of potential trade offs. Artificially-applied rainfall experimentation on small field plots and event-based and long-term simulation modeling were used to compare P loss in runoff related to two dairy manure application methods (surface application with and without incorporation by tillage) on contrasting Pennsylvania soils previously under no-till management. Results of single-event rainfall experiments indicated that average dissolved reactive P losses in runoff from manured plots decreased by up to 90% with manure incorporation while total P losses did not change significantly. Longer-term whole farm simulation modeling indicated that average dissolved reactive P losses would decrease by 8% with manure incorporation while total P losses would increase by 77% due to greater erosion from fields previously under no-till. Differences in the two methods of inference point to the need for caution in extrapolating research findings. Single-event rainfall experiments conducted shortly after manure application simulate incidental transfers of dissolved P in manure to runoff, resulting in greater losses of dissolved reactive P. However, the transfer of dissolved P in applied manure diminishes with time. Over the annual time frame simulated by whole farm modeling, erosion processes become more important to runoff P losses. Results of this study highlight the need to consider the potential for increased erosion and total P losses caused by soil disturbance during incorporation. This study emphasizes the ability of modeling to estimate management practice effectiveness at the larger scales when experimental data is not available.
Small-scale swirl events in the quiet Sun chromosphere
NASA Astrophysics Data System (ADS)
Wedemeyer-Böhm, S.; Rouppe van der Voort, L.
2009-11-01
Context: Recent progress in instrumentation enables solar observations with high resolution simultaneously in the spatial, temporal, and spectral domains. Aims: We use such high-resolution observations to study small-scale structures and dynamics in the chromosphere of the quiet Sun. Methods: We analyse time series of spectral scans through the Ca ii 854.2 nm spectral line obtained with the CRISP instrument at the Swedish 1-m Solar Telescope. The targets are quiet Sun regions inside coronal holes close to disc-centre. Results: The line core maps exhibit relatively few fibrils compared to what is normally observed in quiet Sun regions outside coronal holes. The time series show a chaotic and dynamic scene that includes spatially confined “swirl” events. These events feature dark and bright rotating patches, which can consist of arcs, spiral arms, rings or ring fragments. The width of the fragments typically appears to be of the order of only 0.2 arcsec, which is close to the effective spatial resolution. They exhibit Doppler shifts of -2 to -4 km s-1 but sometimes up to -7 km s-1, indicating fast upflows. The diameter of a swirl is usually of the order of 2´´. At the location of these swirls, the line wing and wide-band maps show close groups of photospheric bright points that move with respect to each other. Conclusions: A likely explanation is that the relative motion of the bright points twists the associated magnetic field in the chromosphere above. Plasma or propagating waves may then spiral upwards guided by the magnetic flux structure, thereby producing the observed intensity signature of Doppler-shifted ring fragments. The movie is only available in electronic form at http://www.aanda.org Marie Curie Intra-European Fellow of the European Commission.
Electron magnetic reconnection without ion coupling in Earth's turbulent magnetosheath
NASA Astrophysics Data System (ADS)
Phan, T. D.; Eastwood, J. P.; Shay, M. A.; Drake, J. F.; Sonnerup, B. U. Ö.; Fujimoto, M.; Cassak, P. A.; Øieroset, M.; Burch, J. L.; Torbert, R. B.; Rager, A. C.; Dorelli, J. C.; Gershman, D. J.; Pollock, C.; Pyakurel, P. S.; Haggerty, C. C.; Khotyaintsev, Y.; Lavraud, B.; Saito, Y.; Oka, M.; Ergun, R. E.; Retino, A.; Le Contel, O.; Argall, M. R.; Giles, B. L.; Moore, T. E.; Wilder, F. D.; Strangeway, R. J.; Russell, C. T.; Lindqvist, P. A.; Magnes, W.
2018-05-01
Magnetic reconnection in current sheets is a magnetic-to-particle energy conversion process that is fundamental to many space and laboratory plasma systems. In the standard model of reconnection, this process occurs in a minuscule electron-scale diffusion region1,2. On larger scales, ions couple to the newly reconnected magnetic-field lines and are ejected away from the diffusion region in the form of bi-directional ion jets at the ion Alfvén speed3-5. Much of the energy conversion occurs in spatially extended ion exhausts downstream of the diffusion region6. In turbulent plasmas, which contain a large number of small-scale current sheets, reconnection has long been suggested to have a major role in the dissipation of turbulent energy at kinetic scales7-11. However, evidence for reconnection plasma jetting in small-scale turbulent plasmas has so far been lacking. Here we report observations made in Earth's turbulent magnetosheath region (downstream of the bow shock) of an electron-scale current sheet in which diverging bi-directional super-ion-Alfvénic electron jets, parallel electric fields and enhanced magnetic-to-particle energy conversion were detected. Contrary to the standard model of reconnection, the thin reconnecting current sheet was not embedded in a wider ion-scale current layer and no ion jets were detected. Observations of this and other similar, but unidirectional, electron jet events without signatures of ion reconnection reveal a form of reconnection that can drive turbulent energy transfer and dissipation in electron-scale current sheets without ion coupling.
Electron magnetic reconnection without ion coupling in Earth's turbulent magnetosheath.
Phan, T D; Eastwood, J P; Shay, M A; Drake, J F; Sonnerup, B U Ö; Fujimoto, M; Cassak, P A; Øieroset, M; Burch, J L; Torbert, R B; Rager, A C; Dorelli, J C; Gershman, D J; Pollock, C; Pyakurel, P S; Haggerty, C C; Khotyaintsev, Y; Lavraud, B; Saito, Y; Oka, M; Ergun, R E; Retino, A; Le Contel, O; Argall, M R; Giles, B L; Moore, T E; Wilder, F D; Strangeway, R J; Russell, C T; Lindqvist, P A; Magnes, W
2018-05-01
Magnetic reconnection in current sheets is a magnetic-to-particle energy conversion process that is fundamental to many space and laboratory plasma systems. In the standard model of reconnection, this process occurs in a minuscule electron-scale diffusion region 1,2 . On larger scales, ions couple to the newly reconnected magnetic-field lines and are ejected away from the diffusion region in the form of bi-directional ion jets at the ion Alfvén speed 3-5 . Much of the energy conversion occurs in spatially extended ion exhausts downstream of the diffusion region 6 . In turbulent plasmas, which contain a large number of small-scale current sheets, reconnection has long been suggested to have a major role in the dissipation of turbulent energy at kinetic scales 7-11 . However, evidence for reconnection plasma jetting in small-scale turbulent plasmas has so far been lacking. Here we report observations made in Earth's turbulent magnetosheath region (downstream of the bow shock) of an electron-scale current sheet in which diverging bi-directional super-ion-Alfvénic electron jets, parallel electric fields and enhanced magnetic-to-particle energy conversion were detected. Contrary to the standard model of reconnection, the thin reconnecting current sheet was not embedded in a wider ion-scale current layer and no ion jets were detected. Observations of this and other similar, but unidirectional, electron jet events without signatures of ion reconnection reveal a form of reconnection that can drive turbulent energy transfer and dissipation in electron-scale current sheets without ion coupling.
Global Albedo Variations on Mars from Recent MRO/MARCI and Other Space-Based Observations
NASA Astrophysics Data System (ADS)
Bell, J. F., III; Wellington, D. F.
2017-12-01
Dramatic changes in Mars surface albedo have been quantified by telescopic, orbital, and surface-based observations over the last 40 years. These changes provide important inputs for global and mesoscale climate models, enabling characterization of seasonal and secular variations in the distribution of mobile surface materials (dust, sand) in the planet's current climate regime. Much of the modern record of dust storms and albedo changes comes from synoptic-scale global imaging from the Viking Orbiter, Mars Global Surveyor (MGS), Hubble Space Telescope (HST), and Mars Reconnaissance Orbiter (MRO) missions, as well as local-scale observations from long-lived surface platforms like the Spirit and Opportunity rovers. Here we focus on the substantial time history of global-scale images acquired from the MRO Mars Color Imager (MARCI). MARCI is a wide-angle multispectral imager that acquires daily coverage of most of the surface at up to 1 km/pixel. MARCI has been in orbit since 2006, providing six Mars years of continuous surface and atmospheric observations, and building on the nearly five previous Mars years of global-scale imaging from the MGS Mars Orbiter Camera Wide Angle (MOC/WA) imager, which operated from 1997 to 2006. While many of the most significant MARCI-observed changes in the surface albedo are the result of large dust storms, other regions experience seasonal darkening events that repeat with different degrees of annual regularity. Some of these are associated with local dust storms, while for others, frequent surface changes take place with no associated evidence for dust storms, suggesting action by seasonally-variable winds and/or small-scale storms/dust devils too small to resolve. Discrete areas of dramatic surface changes across widely separated regions of Tharsis and in portions of Solis Lacus and Syrtis Major are among the regions where surface changes have been observed without a direct association to specific detectable dust storm events. Deposition following the annual southern summer dusty season plays a significant role in maintaining the cyclic nature of these changes. These and other historical observations also show that major regional or global-scale dust storms produce unique changes that may require several Mars years to reverse.
The seasonal use of small-scale space by benthic species in a transiently hypoxic area
NASA Astrophysics Data System (ADS)
Doya, Carolina; Aguzzi, Jacopo; Chatzievangelou, Damianos; Costa, Corrado; Company, Joan Baptista; Tunnicliffe, Verena
2016-02-01
The use of small-scale space by benthos and its variation over the seasons in transiently hypoxic zones is poorly known. In this study, we examined the reciprocal spatial dispersion of the squat lobster (Munida quadrispina) and the slender sole (Lyopsetta exilis) according to oxygen concentrations at a VENUS platform of Ocean Networks Canada (ONC). This platform is located in a seasonally hypoxic zone at 96 m depth in the fjord of Saanich Inlet (British Columbia, Canada). We counted and located small as well as large squat lobsters and slender soles in digital still images during 1 year (2012-2013) also concomitantly obtained oxygen data. Images were subdivided in a squared grid to obtain relative density maps as a proxy for surface occupation and spatial autocorrelation. Pearson's chi-squared tests at a yearly scale, along with Dixon's spatial segregation index (S) for each possible pair among the studied groups, showed a significant absence of overlap. The same analyses by month and cross-correlation between oxygen and S showed that while the dispersion patterns of the large squat lobsters seemed to be driven mainly by the morphology of the seafloor, an effect of hypoxia was found in the small squat lobsters and the slender soles levels of aggregation. Small squat lobster sought seabed protrusions, such as sponges, to reach more oxygenated water. The slender sole's space occupation decreased significantly, being forced to retreat when the squat lobsters' abundance peaked as a result of what appeared to be a seasonal reproduction event in early summer. Our results contribute to the understanding of the ways in which oxygen levels modulate substrate use by benthic species in the framework of a global expansion of hypoxia in coastal and ocean areas.
[Genotoxic damage among artisanal and small-scale mining workers exposed to mercury].
Rosales-Rimache, Jaime A; Elizabeth Malca, Nancy; Alarcón, Jhonatan J; Chávez, Manuel; Gonzáles, Marco Antonio
2013-01-01
To determine the genotoxic damage among artisanal and small-scale mining workers exposed to mercury. Observational cross-sectional study which evaluated mercury-exposed workers (n=83), whose cells were collected by mouth swab for further staining, microscopic observance, micronuclei count, and other nuclear alterations. 24-hour urine was also collected for the determination of inorganic mercury. 68.7% of participants were male, the mean age being 43 ± 12,4 years (range: 16-76). The average time of occupational exposure to mercury was 12,1 ± 6,7 years, and the contact with mercury was 4,1 ± 3,6 kg per person per day. 93% of participants failed to wear personal protection gear while handling mercury. Results of biological monitoring showed that 17% of participants had concentrations of mercury in urine higher than 2,5 µg/L, this value being the detection limit of the measurement technique used. Results of the genotoxic evaluation evidenced that 15% of people with labor exposure to mercury presented micronuclei in mouth epithelial cells, and other indicators of nuclear alteration such as nucleoplasmic bridges, gemmation and binucleation were found, which are also considered genotoxic events associated to the exposure of physical or chemical risk agents. The finding of micronuclei in mouth epithelial cells reflects genotoxic damage associated to the labor exposure of mercury used in artisanal and small-scale mining activities.
Small scale green infrastructure design to meet different urban hydrological criteria.
Jia, Z; Tang, S; Luo, W; Li, S; Zhou, M
2016-04-15
As small scale green infrastructures, rain gardens have been widely advocated for urban stormwater management in the contemporary low impact development (LID) era. This paper presents a simple method that consists of hydrological models and the matching plots of nomographs to provide an informative and practical tool for rain garden sizing and hydrological evaluation. The proposed method considers design storms, infiltration rates and the runoff contribution area ratio of the rain garden, allowing users to size a rain garden for a specific site with hydrological reference and predict overflow of the rain garden under different storms. The nomographs provide a visual presentation on the sensitivity of different design parameters. Subsequent application of the proposed method to a case study conducted in a sub-humid region in China showed that, the method accurately predicted the design storms for the existing rain garden, the predicted overflows under large storm events were within 13-50% of the measured volumes. The results suggest that the nomographs approach is a practical tool for quick selection or assessment of design options that incorporate key hydrological parameters of rain gardens or other infiltration type green infrastructure. The graphic approach as displayed by the nomographs allow urban planners to demonstrate the hydrological effect of small scale green infrastructure and gain more support for promoting low impact development. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Latorre Torres, I. B.; Amatya, D. M.; Callahan, T. J.; Levine, N. S.
2007-12-01
Hydrology research in the Southeast U.S. has primarily focused on upland mountainous areas; however, much less is known about hydrological processes in Lower Coastal Plain (LCP) watersheds. Such watersheds are difficult to characterize due to shallow water table conditions, low topographic gradient, complex surface- subsurface water interaction, and lack of detailed soil information. Although opportunities to conduct long term monitoring in relatively undeveloped watersheds are often limited, stream flow and rainfall in the Turkey Creek watershed (third-order watershed, about 7200 ha in the Francis Marion National Forest near Charleston, SC) have been monitored since 1964. In this study, event runoff-rainfall ratios have been determined for 51 storm events using historical data from 1964-1973. One of our objectives was to characterize relationships between seasonal event rainfall and storm outflow in this watershed. To this end, observed storm event data were compared with values predicted by established hydrological methods such as the Soil Conservation Service runoff curve number (SCS-CN) and the rational method integrated within a Geographical Information System (GIS), to estimate total event runoff and peak discharge, respectively. Available 1:15000 scale aerial images were digitized to obtain land uses, which were used with the SCS soil hydrologic groups to obtain the runoff coefficients (C) for the rational method and the CN values for the SCS-CN method. These methods are being tested with historical storm event responses in the Turkey Creek watershed scale, and then will be used to predict event runoff in Quinby Creek, an ungauged third-order watershed (8700 ha) adjacent to Turkey Creek. Successful testing with refinement of parameters in the rational method and SCS-CN method, both designed for small urban and agricultural dominated watersheds, may allow widespread application of these methods for studying the event rainfall-runoff dynamics for similar watersheds in the Lower Coastal Plain of the Southeast U.S.
Scaling and Single Event Effects (SEE) Sensitivity
NASA Technical Reports Server (NTRS)
Oldham, Timothy R.
2003-01-01
This paper begins by discussing the potential for scaling down transistors and other components to fit more of them on chips in order to increasing computer processing speed. It also addresses technical challenges to further scaling. Components have been scaled down enough to allow single particles to have an effect, known as a Single Event Effect (SEE). This paper explores the relationship between scaling and the following SEEs: Single Event Upsets (SEU) on DRAMs and SRAMs, Latch-up, Snap-back, Single Event Burnout (SEB), Single Event Gate Rupture (SEGR), and Ion-induced soft breakdown (SBD).
Danovaro, Roberto; Nepote, Ettore; Martire, Marco Lo; Ciotti, Claudia; De Grandis, Gianluca; Corinaldesi, Cinzia; Carugati, Laura; Cerrano, Carlo; Pica, Daniela; Di Camillo, Cristina Gioia; Dell'Anno, Antonio
2018-03-01
Beach nourishment is a widely utilized solution to counteract the erosion of shorelines, and there is an active discussion on its possible consequences on coastal marine assemblages. We investigated the impact caused by a small-scale beach nourishment carried out in the Western Adriatic Sea on macrofaunal recruitment and post-settlement events. Artificial substrates were deployed in proximity of nourished and non-manipulated beaches and turbidity and sedimentation rates were measured. Our results indicate that sedimentation rates in the impacted site showed a different temporal change compared to the control sites, suggesting potential modifications due to the beach nourishment. The impact site was characterized by subtle changes in terms of polychaete abundance and community structure when compared to controls, possibly due to beach nourishment, although the role of other factors cannot be ruled out. We conclude that small-scale beach nourishments appear to be an eco-sustainable approach to contrast coastal erosion. Copyright © 2018. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Huang, P. C.; Hsu, S. K.; Tsai, C. H.; Chen, S. C.
2016-12-01
Based on the ignimbrite layers, previous studies have shown that Kueishantao volcanic island has probably erupted four times in 7000 years. Strong smell of sulfur can easily detect at east of the island with some plumes from the seabed. In May 2016, an earthquake with magnitude 5 occurred to northeast of the island which has triggered small collapse events in the eastern subaerial part. Recent geophysical surveys have also revealed the distribution of submarine debris avalanches in the north, south and east part off Kueishantao volcanic island. With high-resolution swath bathymetric data, we can observe some debris avalanches distributed with hummocky relief around the island. In this study, we present the marine geophysical data in order to have better understanding of the landslide mechanism from the offshore data of the Kueishantao island, especially with the multi-beam bathymetric data, acoustic backscatter analysis, subbottom profile, sidescan sonar and 3.5kHz echo-sounder. At the north of the island, large-scale debris avalanches extend around 4 km northward with the several blocks height up to more than twenty meters; and, the offshore area of deposit is about 5 km2 of hummocky topography distribution. The scale of debris avalanches may be related to the horseshoe scar of subaerial flank and also submarine flank collapsed events. Nevertheless, to identify the landslide history, we need to analyze the related core data in the future. By analyzing the high-resolution geophysical data, we will discuss the possible mechanism or factors that trigger subaerial flank collapse events and also the transportation of the debris avalanches to the submarine basin. The large-scale collapse events may produce tsunamis and directly affect the coast of northeastern Taiwan.
Reconsidering earthquake scaling
Gomberg, Joan S.; Wech, Aaron G.; Creager, Kenneth; Obara, K.; Agnew, Duncan
2016-01-01
The relationship (scaling) between scalar moment, M0, and duration, T, potentially provides key constraints on the physics governing fault slip. The prevailing interpretation of M0-T observations proposes different scaling for fast (earthquakes) and slow (mostly aseismic) slip populations and thus fundamentally different driving mechanisms. We show that a single model of slip events within bounded slip zones may explain nearly all fast and slow slip M0-T observations, and both slip populations have a change in scaling, where the slip area growth changes from 2-D when too small to sense the boundaries to 1-D when large enough to be bounded. We present new fast and slow slip M0-T observations that sample the change in scaling in each population, which are consistent with our interpretation. We suggest that a continuous but bimodal distribution of slip modes exists and M0-T observations alone may not imply a fundamental difference between fast and slow slip.
Wan, Zhaofei; Liu, Xiaojun; Wang, Xinhong; Liu, Fuqiang; Liu, Weimin; Wu, Yue; Pei, Leilei; Yuan, Zuyi
2014-04-01
Arterial elasticity has been shown to predict cardiovascular disease (CVD) in apparently healthy populations. The present study aimed to explore whether arterial elasticity could predict CVD events in Chinese patients with angiographic coronary artery disease (CAD). Arterial elasticity of 365 patients with angiographic CAD was measured. During follow-up (48 months; range 6-65), 140 CVD events occurred (including 34 deaths). Univariate Cox analysis demonstrated that both large arterial elasticity and small arterial elasticity were significant predictors of CVD events. Multivariate Cox analysis indicated that small arterial elasticity remained significant. Kaplan-Meier analysis showed that the probability of having a CVD event/CVD death increased with a decrease of small arterial elasticity (P < .001, respectively). Decreased small arterial elasticity independently predicts the risk of CVD events in Chinese patients with angiographic CAD.
Seedling establishment in a masting desert shrub parallels the pattern for forest trees
NASA Astrophysics Data System (ADS)
Meyer, Susan E.; Pendleton, Burton K.
2015-05-01
The masting phenomenon along with its accompanying suite of seedling adaptive traits has been well studied in forest trees but has rarely been examined in desert shrubs. Blackbrush (Coleogyne ramosissima) is a regionally dominant North American desert shrub whose seeds are produced in mast events and scatter-hoarded by rodents. We followed the fate of seedlings in intact stands vs. small-scale disturbances at four contrasting sites for nine growing seasons following emergence after a mast year. The primary cause of first-year mortality was post-emergence cache excavation and seedling predation, with contrasting impacts at sites with different heteromyid rodent seed predators. Long-term establishment patterns were strongly affected by rodent activity in the weeks following emergence. Survivorship curves generally showed decreased mortality risk with age but differed among sites even after the first year. There were no detectable effects of inter-annual precipitation variability or site climatic differences on survival. Intraspecific competition from conspecific adults had strong impacts on survival and growth, both of which were higher on small-scale disturbances, but similar in openings and under shrub crowns in intact stands. This suggests that adult plants preempted soil resources in the interspaces. Aside from effects on seedling predation, there was little evidence for facilitation or interference beneath adult plant crowns. Plants in intact stands were still small and clearly juvenile after nine years, showing that blackbrush forms cohorts of suppressed plants similar to the seedling banks of closed forests. Seedling banks function in the absence of a persistent seed bank in replacement after adult plant death (gap formation), which is temporally uncoupled from masting and associated recruitment events. This study demonstrates that the seedling establishment syndrome associated with masting has evolved in desert shrublands as well as in forests.
Bousis, Christos; Emfietzoglou, Dimitris; Nikjoo, Hooshang
2012-12-01
To calculate the absorbed fraction (AF) of low energy electrons in small tissue-equivalent spherical volumes by Monte Carlo (MC) track structure simulation and assess the influence of phase (liquid water versus density-scaled water vapor) and of the continuous-slowing-down approximation (CSDA) used in semi-analytic calculations. An event-by-event MC code simulating the transport of electrons in both the vapor and liquid phase of water using appropriate electron-water interaction cross sections was used to quantify the energy deposition of low-energy electrons in spherical volumes. Semi-analytic calculations within the CSDA using a convolution integral of the Howell range-energy expressions are also presented for comparison. The AF for spherical volumes of radii from 10-1000 nm are presented for monoenergetic electrons over the energy range 100-10,000 eV and the two Auger-emitting radionuclides (125)I and (123)I. The MC calculated AF for the liquid phase are found to be smaller than those of the (density scaled) gas phase by up to 10-20% for the monoenergetic electrons and 10% for the two Auger-emitters. Differences between the liquid-phase MC results and the semi-analytic CSDA calculations are up to ∼ 55% for the monoenergetic electrons and up to ∼ 35% for the two Auger-emitters. Condensed-phase effects in the inelastic interaction of low-energy electrons with water have a noticeable but relatively small impact on the AF for the energy range and target sizes examined. Depending on the electron energies, the semi-analytic approach may lead to sizeable errors for target sizes with linear dimensions below 1 micron.
Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; ...
2015-09-06
Following our successful demonstration of the position-sensitive virtual Frisch-grid detectors, we investigated the feasibility of using high-granularity position sensing to correct response non-uniformities caused by the crystal defects in CdZnTe (CZT) pixelated detectors. The development of high-granularity detectors able to correct response non-uniformities on a scale comparable to the size of electron clouds opens the opportunity of using unselected off-the-shelf CZT material, whilst still assuring high spectral resolution for the majority of the detectors fabricated from an ingot. Here, we present the results from testing 3D position-sensitive 15×15×10 mm 3 pixelated detectors, fabricated with conventional pixel patterns with progressively smallermore » pixel sizes: 1.4, 0.8, and 0.5 mm. We employed the readout system based on the H3D front-end multi-channel ASIC developed by BNL's Instrumentation Division in collaboration with the University of Michigan. We use the sharing of electron clouds among several adjacent pixels to measure locations of interaction points with sub-pixel resolution. By using the detectors with small-pixel sizes and a high probability of the charge-sharing events, we were able to improve their spectral resolutions in comparison to the baseline levels, measured for the 1.4-mm pixel size detectors with small fractions of charge-sharing events. These results demonstrate that further enhancement of the performance of CZT pixelated detectors and reduction of costs are possible by using high spatial-resolution position information of interaction points to correct the small-scale response non-uniformities caused by crystal defects present in most devices.« less
Confair, Amy R; Wilson, Deanda; Schildhorn, Lisa; Keppen, Stacey J; Hart, Bianca; Klassen, Ann C
2013-01-01
A growing prioritization for addressing the health needs of low-resource individuals in public housing has resulted from increased recognition of disparities and the effects of housing and the built environment on residents' health. With scarce financial resources, creating capacity for local partnerships to plan and implement small-scale, evidence-based improvements may be more sustainable. The "Livable Communities Conference" held in Philadelphia in 2011 is one example of a capacity-building event. The goals of the event were to engage local housing authority staff, residents, and service providers in education and planning around health disparities issues in public housing by presenting evidence of effective practices, creating networking opportunities for developing strategic partnerships, and training to foster action planning for strategic local initiatives. The 2-day conference included one day of scientific and practice-based presentations and one day of professionally facilitated workshop activities including small and larger group discussions. The event successfully convened wide-ranging stakeholders and exposed participants to "bigger picture" views, and was successful in disseminating best practices information from research and practice perspectives. Wider recruiting for participation and improved integration of Day 1 and Day 2 activities and participants could have yielded even further impact. Based on the success and the perceived potential impact of this event, facilitating similar community capacity-building events that convene a wide range of stakeholders to discuss health in public housing and low-resource communities is recommended. Discussions around the personal dynamics of partnerships and resistance to change also proved useful.
ISINGLASS Auroral Sounding Rocket Campaign Data Synthesis: Radar, Imagery, and In Situ Observations
NASA Astrophysics Data System (ADS)
Clayton, R.; Lynch, K. A.; Evans, T.; Hampton, D. L.; Burleigh, M.; Zettergren, M. D.; Varney, R. H.; Reimer, A.; Hysell, D. L.; Michell, R.; Samara, M.; Grubbs, G. A., II
2017-12-01
E-field and flow variations across auroral arc boundaries are typically sub-grid measurements for ground based sensors such as radars and imagers, even for quiet stable arcs. In situ measurements can provide small scale resolution, but only provide a snapshot at a localized time and place. Using ground based and in situ measurements of the ISINGLASS auroral sounding rocket campaign in conjunction, we use the in situ measurements to validate ground based synthesis of these small scale observations based on the classification of auroral arcs in Marklund(1984). With validation of this technique, sub-grid information can be gained from radar data using particular visible auroral features during times where only ground based measurements are present. The ISINGLASS campaign (Poker Flat Alaska, Winter 2017) included the nights of Feb 22 2017 and Mar 02 2017, which possessed multiple stable arc boundaries that can be used for synthesis, including the two events into which the ISINGLASS rockets were launched. On Mar 02 from 0700 to 0800 UT, two stable slowly southward-propagating auroral arcs persisted within the instrument field of view, and lasted for a period of >15min. The second of these events contains the 36.304 rocket trajectory, while both events have full ground support from camera imagery and radar. Data synthesis from these events is accomplished using Butler (2010), Vennell (2009), and manually selected auroral boundaries from ground based cameras. With determination of the auroral arc boundaries from ground based imagery, a prediction of the fields along the length of a long straight arc boundary can be made using the ground based radar data, even on a sub-radar-grid scale, using the Marklund arc boundary classification. We assume that fields everywhere along a long stable arc boundary should be the same. Given a long stable arc, measurements anywhere along the arc (i.e. from PFISR) can be replicated along the length of the boundary. This prediction can then be validated from the in situ measurements of the fields from the ISINGLASS campaign. Upon successful synthesis and validation of the ground based data for the times where in situ data are present, the same analysis will be applied to similar long straight stable arcs during the campaign window when ground support is present to further explore the data synthesis method.
Surface features of central North America: a synoptic view from computer graphics
Pike, R.J.
1991-01-01
A digital shaded-relief image of the 48 contiguous United States shows the details of large- and small-scale landforms, including several linear trends. The features faithfully reflect tectonism, continental glaciation, fluvial activity, volcanism, and other surface-shaping events and processes. The new map not only depicts topography accurately and in its true complexity, but does so in one synoptic view that provides a regional context for geologic analysis unobscured by clouds, culture, vegetation, or artistic constraints. -Author
2014-09-30
second project, collaboration is sought with institutions in Seychelles and Singapore for atmospheric deployments. In all cases, the project expects to...suite of atmospheric instruments in the coasts of three IO island nations, Sri Lanka, Seychelles and Singapore to capture small-scale events pertinent...necessary for the deployments are being developed in Sri Lanka. The nature of the deployments in Seychelles and Singapore do not require additional
Ballerina - pirouettes in search of gamma bursts
NASA Astrophysics Data System (ADS)
Brandt, S.; Lund, N.; Pedersen, H.; Hjorth, J.; BALLERINA Collaboration
1999-09-01
The cosmological origin of gamma ray bursts has now been established with reasonable certainty. Many more bursts will need to be studied to establish the typical distance scale, and to map out the large diversity in properties which have been indicated by the first handful of events. We are proposing Ballerina, a small satellite to provide accurate positions and new data on the gamma-ray bursts. We anticipate a detection rate an order of magnitude larger than obtained from Beppo-SAX.
Diffraction Seismic Imaging of the Chalk Group Reservoir Rocks
NASA Astrophysics Data System (ADS)
Montazeri, M.; Fomel, S.; Nielsen, L.
2016-12-01
In this study we investigate seismic diffracted waves instead of seismic reflected waves, which are usually much stronger and carry most of the information regarding subsurface structures. The goal of this study is to improve imaging of small subsurface features such as faults and fractures. Moreover, we focus on the Chalk Group, which contains important groundwater resources onshore and oil and gas reservoirs in the Danish sector of the North Sea. Finding optimum seismic velocity models for the Chalk Group and estimating high-quality stacked sections with conventional processing methods are challenging tasks. Here, we try to filter out as much as possible of undesired arrivals before stacking the seismic data. Further, a plane-wave destruction method is applied on the seismic stack in order to dampen the reflection events and thereby enhance the visibility of the diffraction events. After this initial processing, we estimate the optimum migration velocity using diffraction events in order to obtain a better resolution stack. The results from this study demonstrate how diffraction imaging can be used as an additional tool for improving the images of small-scale features in the Chalk Group reservoir, in particular faults and fractures. Moreover, we discuss the potential of applying this approach in future studies focused on such reservoirs.
What is This Thing Called Tremor?
NASA Astrophysics Data System (ADS)
Rubin, A. M.; Bostock, M. G.
2017-12-01
Tremor has many enigmatic attributes. The LFEs that comprise it have a dearth of large events, implying a characteristic scale. Bostock et al. (2015) found LFE duration beneath Vancouver Island to be nearly independent of magnitude. That duration ( 0.4 s), multiplied by a shear wave speed, defines a length scale far larger than the spatial separation between consecutive but non-colocated detections. If one LFE ruptures multiple brittle patches in a ductile matrix its propagation speed can be slowed to the extent that consecutive events don't overlap, but then why aren't there larger and smaller LFEs with larger and smaller durations? Perhaps there are. Tremor seismograms from Vancouver Island are often saturated with direct arrivals, by which we mean time lags between events shorter than typical event durations. Direct evidence of this, given the small coda amplitude of LFE stacks, is that seismograms at stations many kilometers apart often track each other wiggle for wiggle. We see this behavior over the full range tremor amplitudes, from close to the noise level on a tremor-free day to 10 times larger. If the LFE magnitude-frequency relation is time-independent, this factor of 10 implies that the LFE occurrence rate during loud tremor is 10^2=100 times that during quiet tremor (>250 LFEs per second). We investigate the implications of this by comparing observed seismograms to synthetics made from the superposition of "LFEs" that are Poissonian in time over a range of average rates. We find that provided the LFEs have a characteristic scale (whether exponential or power law), saturation completely obscures the moment-duration scaling of the contributing events; that is, the moment-duration scaling of LFEs may be identical to that of regular earthquakes. Nonetheless, there are subtle differences between our synthetics and real seismograms, remarkably independent of tremor amplitude, that remain to be explained. Foremost among these is a slightly greater affinity of tremor for the positive than the negative LFE template. In this respect tremor appears most similar to "slightly saturated" synthetics, implying a time-dependent moment-frequency distribution (larger LFEs when tremor is loud). One possibility is that tremor consists of aborted earthquakes quenched by reflections from the base of the high Vp/Vs layer.
NASA Astrophysics Data System (ADS)
Heale, C. J.; Bossert, K.; Snively, J. B.; Fritts, D. C.; Pautet, P.-D.; Taylor, M. J.
2017-01-01
A 2-D nonlinear compressible model is used to simulate a large-amplitude, multiscale mountain wave event over Mount Cook, NZ, observed as part of the Deep Propagating Gravity Wave Experiment (DEEPWAVE) campaign and to investigate its observable signatures in the hydroxyl (OH) layer. The campaign observed the presence of a λx=200 km mountain wave as part of the 22nd research flight with amplitudes of >20 K in the upper stratosphere that decayed rapidly at airglow heights. Advanced Mesospheric Temperature Mapper (AMTM) showed the presence of small-scale (25-28 km) waves within the warm phase of the large mountain wave. The simulation results show rapid breaking above 70 km altitude, with the preferential formation of almost-stationary vortical instabilities within the warm phase front of the mountain wave. An OH airglow model is used to identify the presence of small-scale wave-like structures generated in situ by the breaking of the mountain wave that are consistent with those seen in the observations. While it is easy to interpret these feature as waves in OH airglow data, a considerable fraction of the features are in fact instabilities and vortex structures. Simulations suggest that a combination of a large westward perturbation velocity and shear, in combination with strong perturbation temperature gradients, causes both dynamic and convective instability conditions to be met particularly where the wave wind is maximized and the temperature gradient is simultaneously minimized. This leads to the inevitable breaking and subsequent generation of smaller-scale waves and instabilities which appear most prominent within the warm phase front of the mountain wave.
Coalescence of repelling colloidal droplets: a route to monodisperse populations.
Roger, Kevin; Botet, Robert; Cabane, Bernard
2013-05-14
Populations of droplets or particles dispersed in a liquid may evolve through Brownian collisions, aggregation, and coalescence. We have found a set of conditions under which these populations evolve spontaneously toward a narrow size distribution. The experimental system consists of poly(methyl methacrylate) (PMMA) nanodroplets dispersed in a solvent (acetone) + nonsolvent (water) mixture. These droplets carry electrical charges, located on the ionic end groups of the macromolecules. We used time-resolved small angle X-ray scattering to determine their size distribution. We find that the droplets grow through coalescence events: the average radius (R) increases logarithmically with elapsed time while the relative width σR/(R) of the distribution decreases as the inverse square root of (R). We interpret this evolution as resulting from coalescence events that are hindered by ionic repulsions between droplets. We generalize this evolution through a simulation of the Smoluchowski kinetic equation, with a kernel that takes into account the interactions between droplets. In the case of vanishing or attractive interactions, all droplet encounters lead to coalescence. The corresponding kernel leads to the well-known "self-preserving" particle distribution of the coalescence process, where σR/(R) increases to a plateau value. However, for droplets that interact through long-range ionic repulsions, "large + small" droplet encounters are more successful at coalescence than "large + large" encounters. We show that the corresponding kernel leads to a particular scaling of the droplet-size distribution-known as the "second-scaling law" in the theory of critical phenomena, where σR/(R) decreases as 1/√(R) and becomes independent of the initial distribution. We argue that this scaling explains the narrow size distributions of colloidal dispersions that have been synthesized through aggregation processes.
Automated detection of secondary slip fronts in Cascadia
NASA Astrophysics Data System (ADS)
Bletery, Q.; Thomas, A.; Krogstad, R. D.; Hawthorne, J. C.; Skarbek, R. M.; Rempel, A. W.; Bostock, M. G.
2016-12-01
Slow slip events (SSEs) in subduction zones propagate along the plate interface at velocities on the order of 5 km/day and are largely confined to the region known as the transition zone, located down-dip of the seismogenically locked zone. As SSEs propagate, small on-fault asperities capable of generating seismic radiation fail in earthquake-like events known as low-frequency earthquakes. Recently, low-frequency earthquakes have been used to image smaller scale secondary slip fronts (SSFs) that occur within the actively slipping region of the fault after the main front associated with the SSE has passed. SSFs appear to occur over several different length and timescales and propagate both along dip and along strike. To date, most studies that have documented SSFs have relied on subjective methods, such as visual selection, to identify them. While such approaches have met with considerable success, it is likely that many small-scale fronts remain unidentifiable by visual inspection alone. We implement an algorithm to automatically detect SSFs from 2009 to 2015 along the Cascadia subduction zone. We also apply our algorithm to three large SSEs that were detected by campaign seismic instrumentation in the Vancouver Island area between 2003 and 2005. We find numerous SSFs at different time scales (from 30 min to 32 h duration). We provide a catalog of 1076 SSFs in Cascadia, including time, location, duration, area, propagation velocity, moment, stress drop, slip, slip velocity, and fracture energy for each of the detected SSFs. Analysis of their basic features indicate a wide spectra of stress drops, slip velocities, and fracture energy, as well as an intriguing relationship between SSF direction and duration that could potentially help discriminate between the different physical models proposed to explain slow slip phenomena.
Small scale mechanical characterization of thin foil materials via pin load microtesting
Wheeler, Robert; Pandey, Amit; Shyam, Amit; ...
2015-05-06
In situ scanning electron microscope (SEM) experiments, where small-scale mechanical tests are conducted on micro- and nanosized specimens, allow direct visualization of elastic and plastic responses over the entirety of the volume being deformed. This enables precise spatial and temporal correlation of slip events contributing to the plastic flow evidenced in a stress–strain curve. A new pin-loading methodology has been employed, in situ within the SEM, to conduct microtensile tests on thin polycrystalline metal foils. This approach can be tailored to a specific foil whose particular grain size may range from microns to tens of microns. Manufacture of the specializedmore » pin grip was accomplished via silicon photolithography-based processing followed by subsequent focused ion beam finishing. Microtensile specimen preparation was achieved by combining a stencil mask methodology employing broad ion beam sputtering along with focused ion beam milling in the study of several metallic foil materials. Finite-element analyses were performed to characterize the stress and strain distributions in the pin grip and micro-specimen under load. Furthermore, under appropriately conceived test conditions, uniaxial stress–strain responses measured within these foils by pin-load microtensile testing exhibit properties consistent with larger scale tests.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dutta, Tanushree
Large-scale assemblies of people in a confined space can exert significant impacts on the local air chemistry due to human emissions of volatile organics. Variations of air-quality in such small scale can be studied by quantifying fingerprint volatile organic compounds (VOCs) such as acetone, toluene, and isoprene produced during concerts, movie screenings, and sport events (like the Olympics and the World Cup). This review summarizes the extent of VOC accumulation resulting from a large population in a confined area or in a small open area during sporting and other recreational activities. Apart from VOCs emitted directly from human bodies (e.g.,more » perspiration and exhaled breath), those released indirectly from other related sources (e.g., smoking, waste disposal, discharge of food-waste, and use of personal-care products) are also discussed. Although direct and indirect emissions of VOCs from human may constitute <1% of the global atmospheric VOCs budget, unique spatiotemporal variations in VOCs species within a confined space can have unforeseen impacts on the local atmosphere to lead to acute human exposure to harmful pollutants.« less
7th Annual Systems Biology Symposium: Systems Biology and Engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galitski, Timothy P.
2008-04-01
Systems biology recognizes the complex multi-scale organization of biological systems, from molecules to ecosystems. The International Symposium on Systems Biology has been hosted by the Institute for Systems Biology in Seattle, Washington, since 2002. The annual two-day event gathers the most influential researchers transforming biology into an integrative discipline investingating complex systems. Engineering and application of new technology is a central element of systems biology. Genome-scale, or very small-scale, biological questions drive the enigneering of new technologies, which enable new modes of experimentation and computational analysis, leading to new biological insights and questions. Concepts and analytical methods in engineering aremore » now finding direct applications in biology. Therefore, the 2008 Symposium, funded in partnership with the Department of Energy, featured global leaders in "Systems Biology and Engineering."« less
NASA Astrophysics Data System (ADS)
Munafo, I.; Malagnini, L.; Chiaraluce, L.; Valoroso, L.
2015-12-01
The relation between moment magnitude (MW) and local magnitude (ML) is still a debated issue (Bath, 1966, 1981; Ristau et al., 2003, 2005). Theoretical considerations and empirical observations show that, in the magnitude range between 3 and 5, MW and ML scale 1∶1. Whilst for smaller magnitudes this 1∶1 scaling breaks down (Bethmann et al. 2011). For accomplishing this task we analyzed the source parameters of about 1500 (30.000 waveforms) well-located small earthquakes occurred in the Upper Tiber Valley (Northern Apennines) in the range of -1.5≤ML≤3.8. In between these earthquakes there are 300 events repeatedly rupturing the same fault patch generally twice within a short time interval (less than 24 hours; Chiaraluce et al., 2007). We use high-resolution short period and broadband recordings acquired between 2010 and 2014 by 50 permanent seismic stations deployed to monitor the activity of a regional low angle normal fault (named Alto Tiberina fault, ATF) in the framework of The Alto Tiberina Near Fault Observatory project (TABOO; Chiaraluce et al., 2014). For this study the direct determination of MW for small earthquakes is essential but unfortunately the computation of MW for small earthquakes (MW < 3) is not a routine procedure in seismology. We apply the contributions of source, site, and crustal attenuation computed for this area in order to obtain precise spectral corrections to be used in the calculation of small earthquakes spectral plateaus. The aim of this analysis is to achieve moment magnitudes of small events through a procedure that uses our previously calibrated crustal attenuation parameters (geometrical spreading g(r), quality factor Q(f), and the residual parameter k) to correct for path effects. We determine the MW-ML relationships in two selected fault zones (on-fault and fault-hanging-wall) of the ATF by an orthogonal regression analysis providing a semi-automatic and robust procedure for moment magnitude determination within a region characterized by small to moderate seismicity. Finally, we present for a subset of data, corner frequency values computed by spectral analysis of S-waves, using data from three nearby shallow borehole stations sampled at 500 sps.
Dispersal, mating events and fine-scale genetic structure in the lesser flat-headed bats.
Hua, Panyu; Zhang, Libiao; Guo, Tingting; Flanders, Jon; Zhang, Shuyi
2013-01-01
Population genetic structure has important consequences in evolutionary processes and conservation genetics in animals. Fine-scale population genetic structure depends on the pattern of landscape, the permanent movement of individuals, and the dispersal of their genes during temporary mating events. The lesser flat-headed bat (Tylonycteris pachypus) is a nonmigratory Asian bat species that roosts in small groups within the internodes of bamboo stems and the habitats are fragmented. Our previous parentage analyses revealed considerable extra-group mating in this species. To assess the spatial limits and sex-biased nature of gene flow in the same population, we used 20 microsatellite loci and mtDNA sequencing of the ND2 gene to quantify genetic structure among 54 groups of adult flat-headed bats, at nine localities in South China. AMOVA and F(ST) estimates revealed significant genetic differentiation among localities. Alternatively, the pairwise F(ST) values among roosting groups appeared to be related to the incidence of associated extra-group breeding, suggesting the impact of mating events on fine-scale genetic structure. Global spatial autocorrelation analyses showed positive genetic correlation for up to 3 km, indicating the role of fragmented habitat and the specialized social organization as a barrier in the movement of individuals among bamboo forests. The male-biased dispersal pattern resulted in weaker spatial genetic structure between localities among males than among females, and fine-scale analyses supported that relatedness levels within internodes were higher among females than among males. Finally, only females were more related to their same sex roost mates than to individuals from neighbouring roosts, suggestive of natal philopatry in females.
NASA Astrophysics Data System (ADS)
Chesny, David
Magnetic reconnection is the source of many of the most powerful explosions of astrophysical plasmas in the universe. Blazars, magnetars, stellar atmospheres, and planetary magnetic fields have all been shown to be primary sites of strong reconnection events. For studying the fundamental physics behind this process, the solar atmosphere is our most accessible laboratory setting. Magnetic reconnection resulting from non-potential fields leads to plasma heating and particle acceleration, often in the form of explosive activity, contributing to coronal heating and the solar wind. Large-scale non-potential (sigmoid) fields in the solar atmosphere are poorly understood due to their crowded neighborhoods. For the first time, small-scale, non-potential loop structures have been observed in quiet Sun EUV observations. Fourteen unique mini-sigmoid events and three diffuse non-potential loops have been discovered, suggesting a multi-scaled self-similarity in the sigmoid formation process. These events are on the order of 10 arcseconds in length and do not appear in X-ray emissions, where large-scale sigmoids are well documented. We have discovered the first evidence of sigmoidal structuring in EUV bright point phenomena, which are prolific events in the solar atmosphere. Observations of these mini-sigmoids suggest that they are being formed via tether-cutting reconnection, a process observed to occur at active region scales. Thus, tether-cutting is suggested to be ubiquitous throughout the solar atmosphere. These dynamics are shown to be a function of the free magnetic energy in the quiet Sun network. Recently, the reconnection process has been reproduced in Earth-based laboratory tokamaks. Easily achievable magnetic field configurations can induce reconnection and result in ion acceleration. Here, magnetic reconnection is utilized as the plasma acceleration mechanism for a theoretical propulsion system. The theory of torsional spine reconnection is shown to result in ion velocities of > 3000 km s-1 and thrusts on the order of 3-15 N. As current in-use ion propulsion technology can only achieve ˜ 30 km s-1, the proposed design can substantially increase thrust on a spacecraft and provide for fast manned interplanetary travel.
NASA Astrophysics Data System (ADS)
Van Haren, J. L. M.; Sanchez-Canete, E. P.; Juarez, S.; Howard, E. L.; Dontsova, K.; Le Galliard, J. F.; Barron-Gafford, G.; Volkmann, T.; Troch, P. A.
2017-12-01
Basalt is one of the most important rock types in controlling atmospheric carbon dioxide concentrations on a geologic scale. At the University of Arizona's Biosphere 2 facility, we have built the world's largest geological model system - the Landscape Evolution Observatory (LEO) - to determine the hydrological and biogeochemical changes before and after the addition of plants. LEO consists of three 30x11 m and 1-m deep hillslope landscapes of basaltic tephra ground to homogenous loamy sand inside an environmentally controlled facility. Each landscape contains a sensor network capable of capturing water, carbon, and energy cycling processes at 15-min resolution and sub-meter to whole-landscape scales. At LEO, we measured the soil carbon dynamics in bare soil, with only minimal biological activity, after multiple rainfall events. These measurements consistently showed that rainfall, soil moisture, and soil gas diffusion are strong drivers of carbon uptake in a porous basalt matrix. Our expectation is that the addition of plants will dramatically change the carbon dynamics following rainfall events and produce Birch-effect-like pulses of carbon dioxide following rainfall events. We tested this prediction in smaller-scale and shorter-term experiments done at the CEREEP-ECOTRON lab in Ile de France, France, where we experimented with three different plant species grown in the same LEO soil. Soil carbon responses were similar to the LEO slope irrespective of whether plants were grown in the soil: initial wetting leads to a strong drawdown of carbon dioxide in the soil. However, due to plant activity, the soil carbon dioxide concentration recovered faster in the basalt soil when plants were present. Only in small scale incubations with a mixture of LEO soil with an organic-rich (6.5% carbon) prairie soil did we see the expected pulse of carbon dioxide following the addition of water. The smaller-scale experiments suggest that the occurrence of carbon dioxide fluxes generated by rainfall events will not occur after the addition of plants, but will depend on the development of an organic horizon within the LEO soil.
Comparing catchment hydrologic response to a regional storm using specific conductivity sensors
Inserillo, Ashley; Green, Mark B.; Shanley, James B.; Boyer, Joseph
2017-01-01
A better understanding of stormwater generation and solute sources is needed to improve the protection of aquatic ecosystems, infrastructure, and human health from large runoff events. Much of our understanding of water and solutes produced during stormflow comes from studies of individual, small headwater catchments. This study compared many different types of catchments during a single large event to help isolate landscape controls on streamwater and solute generation, including human-impacted land cover. We used a distributed network of specific electrical conductivity sensors to trace storm response during the post-tropical cyclone Sandy event of October 2012 at 29 catchments across the state of New Hampshire. A citizen science sensor network, Lotic Volunteer for Temperature, Electrical Conductivity, and Stage, provided a unique opportunity to investigate high-temporal resolution stream behavior at a broad spatial scale. Three storm response metrics were analyzed in this study: (a) fraction of new water contributing to the hydrograph; (b) presence of first flush (mobilization of solutes during the beginning of the rain event); and (c) magnitude of first flush. We compared new water and first flush to 64 predictor attributes related to land cover, soil, topography, and precipitation. The new water fraction was positively correlated with low and medium intensity development in the catchment and riparian buffers and with the precipitation from a rain event 9 days prior to Sandy. The presence of first flush was most closely related (positively) to soil organic matter. Magnitude of first flush was not strongly related to any of the catchment variables. Our results highlight the potentially important role of human landscape modification in runoff generation at multiple spatial scales and the lack of a clear role in solute flushing. Further development of regional-scale in situ sensor networks will provide better understanding of stormflow and solute generation across a wide range of landscape conditions.
Measuring Belief in Conspiracy Theories: The Generic Conspiracist Beliefs Scale
Brotherton, Robert; French, Christopher C.; Pickering, Alan D.
2013-01-01
The psychology of conspiracy theory beliefs is not yet well understood, although research indicates that there are stable individual differences in conspiracist ideation – individuals’ general tendency to engage with conspiracy theories. Researchers have created several short self-report measures of conspiracist ideation. These measures largely consist of items referring to an assortment of prominent conspiracy theories regarding specific real-world events. However, these instruments have not been psychometrically validated, and this assessment approach suffers from practical and theoretical limitations. Therefore, we present the Generic Conspiracist Beliefs (GCB) scale: a novel measure of individual differences in generic conspiracist ideation. The scale was developed and validated across four studies. In Study 1, exploratory factor analysis of a novel 75-item measure of non-event-based conspiracist beliefs identified five conspiracist facets. The 15-item GCB scale was developed to sample from each of these themes. Studies 2, 3, and 4 examined the structure and validity of the GCB, demonstrating internal reliability, content, criterion-related, convergent and discriminant validity, and good test-retest reliability. In sum, this research indicates that the GCB is a psychometrically sound and practically useful measure of conspiracist ideation, and the findings add to our theoretical understanding of conspiracist ideation as a monological belief system unpinned by a relatively small number of generic assumptions about the typicality of conspiratorial activity in the world. PMID:23734136
Drought Persistence Errors in Global Climate Models
NASA Astrophysics Data System (ADS)
Moon, H.; Gudmundsson, L.; Seneviratne, S. I.
2018-04-01
The persistence of drought events largely determines the severity of socioeconomic and ecological impacts, but the capability of current global climate models (GCMs) to simulate such events is subject to large uncertainties. In this study, the representation of drought persistence in GCMs is assessed by comparing state-of-the-art GCM model simulations to observation-based data sets. For doing so, we consider dry-to-dry transition probabilities at monthly and annual scales as estimates for drought persistence, where a dry status is defined as negative precipitation anomaly. Though there is a substantial spread in the drought persistence bias, most of the simulations show systematic underestimation of drought persistence at global scale. Subsequently, we analyzed to which degree (i) inaccurate observations, (ii) differences among models, (iii) internal climate variability, and (iv) uncertainty of the employed statistical methods contribute to the spread in drought persistence errors using an analysis of variance approach. The results show that at monthly scale, model uncertainty and observational uncertainty dominate, while the contribution from internal variability is small in most cases. At annual scale, the spread of the drought persistence error is dominated by the statistical estimation error of drought persistence, indicating that the partitioning of the error is impaired by the limited number of considered time steps. These findings reveal systematic errors in the representation of drought persistence in current GCMs and suggest directions for further model improvement.
Ringdal, Gerd Inger; Ringdal, Kristen; Jordhøy, Marit S; Kaasa, Stein
2007-03-01
To examine the relationship between social support and emotional functioning and stress reactions. Our hypothesis is that patients who reported a high degree of social support will experience better emotional functioning and less serious stress reactions than patients with a low degree of social support. The sample was comprised of 434 patients at the Palliative Medicine Unit (PMU), University Hospital of Trondheim in Norway. The patients completed a questionnaire monthly including questions about social support from the MacAdam's Scale, subjective stress measured by the Impact of Event Scale (IES), and emotional functioning measured by the subscale in the EORTC QLQ-30. Although our hypothesis was not supported at the baseline assessment, it was supported at the second assessment, 2 months later. Patients with high social support reported better emotional functioning and less serious stress reactions, in terms of lower scores on the IES avoidance subscale, than patients with a low degree of social support. SIGNIFICANCE OF THE RESULTS: The mixed findings may indicate that social support has only small effects on emotional functioning and stress reactions. Our results on the second assessment indicate, however, that social support might work as a buffer against reactions toward external stressful events such as terminal cancer.
Meisner, Joshua K.; Price, Richard J.
2010-01-01
Arterial occlusive disease (AOD) is the leading cause of morbidity and mortality through the developed world, which creates a significant need for effective therapies to halt disease progression. Despite success of animal and small-scale human therapeutic arteriogenesis studies, this promising concept for treating AOD has yielded largely disappointing results in large-scale clinical trials. One reason for this lack of successful translation is that endogenous arteriogenesis is highly dependent on a poorly understood sequence of events and interactions between bone marrow derived cells (BMCs) and vascular cells, which makes designing effective therapies difficult. We contend that the process follows a complex, ordered sequence of events with multiple, specific BMC populations recruited at specific times and locations. Here we present the evidence suggesting roles for multiple BMC populations from neutrophils and mast cells to progenitor cells and propose how and where these cell populations fit within the sequence of events during arteriogenesis. Disruptions in these various BMC populations can impair the arteriogenesis process in patterns that characterize specific patient populations. We propose that an improved understanding of how arteriogenesis functions as a system can reveal individual BMC populations and functions that can be targeted for overcoming particular impairments in collateral vessel development. PMID:21044213
Chambers, Jeffrey Q; Negron-Juarez, Robinson I; Marra, Daniel Magnabosco; Di Vittorio, Alan; Tews, Joerg; Roberts, Dar; Ribeiro, Gabriel H P M; Trumbore, Susan E; Higuchi, Niro
2013-03-05
Old-growth forest ecosystems comprise a mosaic of patches in different successional stages, with the fraction of the landscape in any particular state relatively constant over large temporal and spatial scales. The size distribution and return frequency of disturbance events, and subsequent recovery processes, determine to a large extent the spatial scale over which this old-growth steady state develops. Here, we characterize this mosaic for a Central Amazon forest by integrating field plot data, remote sensing disturbance probability distribution functions, and individual-based simulation modeling. Results demonstrate that a steady state of patches of varying successional age occurs over a relatively large spatial scale, with important implications for detecting temporal trends on plots that sample a small fraction of the landscape. Long highly significant stochastic runs averaging 1.0 Mg biomass⋅ha(-1)⋅y(-1) were often punctuated by episodic disturbance events, resulting in a sawtooth time series of hectare-scale tree biomass. To maximize the detection of temporal trends for this Central Amazon site (e.g., driven by CO2 fertilization), plots larger than 10 ha would provide the greatest sensitivity. A model-based analysis of fractional mortality across all gap sizes demonstrated that 9.1-16.9% of tree mortality was missing from plot-based approaches, underscoring the need to combine plot and remote-sensing methods for estimating net landscape carbon balance. Old-growth tropical forests can exhibit complex large-scale structure driven by disturbance and recovery cycles, with ecosystem and community attributes of hectare-scale plots exhibiting continuous dynamic departures from a steady-state condition.
NASA Astrophysics Data System (ADS)
Baumgartner, Peter O.
A database on Middle Jurassic-Early Cretaceous radiolarians consisting of first and final occurrences of 110 species in 226 samples from 43 localities was used to compute Unitary Associations and probabilistic ranking and scaling (RASC), in order to test deterministic versus probabilistic quantitative biostratigraphic methods. Because the Mesozoic radiolarian fossil record is mainly dissolution-controlled, the sequence of events differs greatly from section to section. The scatter of local first and final appearances along a time scale is large compared to the species range; it is asymmetrical, with a maximum near the ends of the range and it is non-random. Thus, these data do not satisfy the statistical assumptions made in ranking and scaling. Unitary Associations produce maximum ranges of the species relative to each other by stacking cooccurrence data from all sections and therefore compensate for the local dissolution effects. Ranking and scaling, based on the assumption of a normal random distribution of the events, produces average ranges which are for most species much shorter than the maximum UA-ranges. There are, however, a number of species with similar ranges in both solutions. These species are believed to be the most dissolution-resistant and, therefore, the most reliable ones for the definition of biochronozones. The comparison of maximum and average ranges may be a powerful tool to test reliability of species for biochronology. Dissolution-controlled fossil data yield high crossover frequencies and therefore small, statistically insignificant interfossil distances. Scaling has not produced a useful sequence for this type of data.
NASA Astrophysics Data System (ADS)
Wollheim, W. M.; Mulukutla, G. K.; Cook, C.; Carey, R. O.
2017-11-01
Nonpoint pollution sources are strongly influenced by hydrology and are therefore sensitive to climate variability. Some pollutants entering aquatic ecosystems, e.g., nitrate, can be mitigated by in-stream processes during transport through river networks. Whole river network nitrate retention is difficult to quantify with observations. High frequency, in situ nitrate sensors, deployed in nested locations within a single watershed, can improve estimates of both nonpoint inputs and aquatic retention at river network scales. We deployed a nested sensor network and associated sampling in the urbanizing Oyster River watershed in coastal New Hampshire, USA, to quantify storm event-scale loading and retention at network scales. An end member analysis used the relative behavior of reactive nitrate and conservative chloride to infer river network fate of nitrate. In the headwater catchments, nitrate and chloride concentrations are both increasingly diluted with increasing storm size. At the mouth of the watershed, chloride is also diluted, but nitrate tended to increase. The end member analysis suggests that this pattern is the result of high retention during small storms (51-78%) that declines to zero during large storms. Although high frequency nitrate sensors did not alter estimates of fluxes over seasonal time periods compared to less frequent grab sampling, they provide the ability to estimate nitrate flux versus storm size at event scales that is critical for such analyses. Nested sensor networks can improve understanding of the controls of both loading and network scale retention, and therefore also improve management of nonpoint source pollution.
Development and validation of a runoff and erosion model for lowland drained catchments
NASA Astrophysics Data System (ADS)
Grangeon, Thomas; Cerdan, Olivier; Vandromme, Rosalie; Landemaine, Valentin; Manière, Louis; Salvador-Blanes, Sébastien; Foucher, Anthony; Evrard, Olivier
2017-04-01
Modelling water and sediment transfer in lowland catchments is complex as both hortonian and saturation excess-flow occur in these environments. Moreover, their dynamics was complexified by the installation of tile drainage networks or stream redesign. To the best of our knowledge, few models are able to simulate saturation runoff as well as hortonian runoff in tile-drained catchments. Most of the time, they are used for small scale applications due to their high degree of complexity. In this context, a model of intermediate complexity was developed to simulate the hydrological and erosion processes at the catchment scale in lowland environments. This GIS-based, spatially distributed and lumped model at the event scale uses a theoretical hydrograph to approximate within-event temporal variations. It comprises two layers used to represent surface and subsurface transfers. Observations of soil surface characteristics (i.e. vegetation density, soil crusting and roughness) were used to document spatial variations of physical soil characteristics (e.g. infiltration capacity). Flow was routed depending on the local slope, using LIDAR elevation data. Both the diffuse and the gully erosion are explicitly described. The model ability to simulate water and sediment dynamics at the catchment scale was evaluated using the monitoring of a selection of flood events in a small, extensively cultivated catchment (the Louroux catchment, Loire River basin, central France; 25 km2). In this catchment, five monitoring stations were equipped with water level sensors, turbidity probes, and automatic samplers. Discharge and suspended sediment concentration were deduced from field measurements. One station was installed at the outlet of a tile drain and was used to parameterize fluxes supplied by the drainage network. The selected floods were representative of various rainfall and soil surface conditions (e.g. low-intensity rainfall occurring on saturated soils as well as intense rainfall occurring on dry soils in spring). The model was able to reproduce the runoff volumes for these different situations, and performed well, especially in winter (the relationship between observed and modeled values has R2=0.72) when most of the sediment are transferred. Therefore, future work will evaluate the model ability to reproduce the erosion and sediment dynamics in this catchment in order to provide a tool for sediment management in these lowland environments draining agricultural land where river siltation is problematic.
Small-Scale Dust Structures in Halley's Coma: Evidence from the Vega-2 Electric Field Records
NASA Astrophysics Data System (ADS)
Oberc, P.
1999-07-01
Owing to simultaneous dust and plasma wave observations onboard the Vega mission to Comet Halley, previous studies have found that the two double probe antennas, short (of APV-N experiment) and long (APV-V), (i) responded to plasma clouds induced by impacts of relatively large particles, (ii) the target area was comparable to the whole spacecraft projection, and (iii) the mass thresholds depended on the ambient plasma conditions. Subsequently, the response mechanisms have been identified, and it was shown that if impacts became continuous, the sensitivity of the antennas to individual plasma clouds was reduced or even cancelled. In the present paper, about 30 short-time events of continuous impact (CIEs), recognized in the Vega-2 records from the two experiments mostly near the closest approach to (at ∼104 km from) the nucleus, are investigated. The high-resolution APV-N waveforms reveal that the respective dust formations were structured. A few types of structure, all belonging to one family, have been distinguished. The basic structure, as seen along the Vega-2 pass, is a sequence of particle clouds. CIEs have time scales shorter than or comparable to the time resolution of the dust experiments (spatial scale less than 200 km) and do not correlate with the SP-1 observations (m≤10-10 g) nor with the published SP-2 fluxes (m≤5.8×10-8 g). But, these dust data, combined with an integral criterion for continuous impact, provide a constraint which implies that the particles responsible were bigger than 10-9-10-8 g. The data from the DUCMA V-detector confirm positively this inference for about 1/3 (∼10) of CIEs and indicate that particles (much) bigger than 10-7 g were decisive in generating several other events. Using an argument from the dusty gas dynamics, it is shown that the small-scale dust structures were not jets but have originated from the disintegration of particle aggregates. An estimate of the total mass contained within a dust structure leads to values of 1-10 kg. Besides CIEs near closest approach, a pair of exceptionally prolonged events has been recorded by APV-V at relatively large distances (∼4×104 km). The dust data show that the mass distribution across the respective dust formations was highly variable.
Hernández-Jover, Marta; Schembri, Nicole; Holyoake, Patricia K.; Toribio, Jenny-Ann L. M. L.; Martin, Peter Anthony Julian
2016-01-01
Small-scale pig producers are believed to pose higher biosecurity risks for the introduction and spread of exotic diseases than commercial pig producers. However, the magnitude of these risks is poorly understood. This study is a comparative assessment of the risk of introduction and spread of foot-and-mouth disease (FMD) through different sectors of the pig industry: (1) large-scale pig producers; (2) small-scale producers (<100 sows) selling at saleyards and abattoirs; and (3) small-scale producers selling through informal means. An exposure and consequence assessments were conducted using the World Organization for Animal Health methodology for risk analysis, assuming FMD virus was introduced into Australia through illegal importation of infected meat. A quantitative assessment, using scenario trees and Monte Carlo stochastic simulation, was used to calculate the probabilities of exposure and spread. Input data for these assessments were obtained from a series of data gathering exercises among pig producers, industry statistics, and literature. Findings of this study suggest there is an Extremely low probability of exposure (8.69 × 10−6 to 3.81 × 10−5) for the three sectors of the pig industry, with exposure through direct swill feeding being 10–100 times more likely to occur than through contact with infected feral pigs. Spread of FMD from the index farm is most likely to occur through movement of contaminated fomites, pigs, and ruminants. The virus is more likely to spread from small-scale piggeries selling at saleyards and abattoirs than from other piggeries. The most influential factors on the spread of FMD from the index farm is the ability of the farmer to detect FMD, the probability of FMD spread through contaminated fomites and the presence of ruminants on the farm. Although small-scale producers selling informally move animals less frequently and do not use external staff, movement of pigs to non-commercial pathways could jeopardize animal traceability in the event of a disease outbreak. This study suggests that producers’ awareness on and engagement with legislative and industry requirements in relation to biosecurity and emergency animal disease management needs to be improved. Results from this study could be used by decision-makers to prioritize resource allocation for improving animal biosecurity in the pig industry. PMID:27713881
Hypervelocity impacts and magnetization of small bodies in the Solar System
NASA Technical Reports Server (NTRS)
Chen, Guangqing; Ahrens, Thomas J.; Hide, Raymond
1995-01-01
The observed magnetism of asteroids such as Gaspra and Ida (and other small bodies in the solar system including the Moon and meteorites) may have resulted from an impact-induced shock wave producing a thermodynamic state in which iron-nickel alloy, dispersed in a silicate matrix, is driven from the usual low-temperature, low-pressure, alpha, kaemacite, phase to the paramagnetic, epsilon (hcp), phase. The magnetization was acquired upon rarefaction and reentry into the ferromagnetic, alpha, structure. The degree of remagnetization depends on the strength of the ambient field, which may have been associated with a Solar-System-wide magnetic field. A transient field induced by the impact event itself may have resulted in a significant, or possibly, even a dominant contribution, as well. The scaling law of Housen et al. (Housen, K. R., R. M. Schmidt, and K. A. Holsapple 1991) for catastrophic asteroid impact disaggregation imposes a constraint on the degree to which small planetary bodies may be magnetized and yet survive fragmentation by the same event. Our modeling results show it is possible that Ida was magnetized when a large impact fractured a 125 +/- 22-km-radius protoasteroid to form the Koronis family. Similarly, we calculate that Gaspra could be a magnetized fragment of a 45 +/- 15 km-radius protoasteroid.
NASA Astrophysics Data System (ADS)
Green, Daniel; Yu, Dapeng; Pattison, Ian
2017-04-01
Surface water flooding occurs when intense precipitation events overwhelm the drainage capacity of an area and excess overland flow is unable to infiltrate into the ground or drain via natural or artificial drainage channels, such as river channels, manholes or SuDS. In the UK, over 3 million properties are at risk from surface water flooding alone, accounting for approximately one third of the UK's flood risk. The risk of surface water flooding is projected to increase due to several factors, including population increases, land-use alterations and future climatic changes in precipitation resulting in an increased magnitude and frequency of intense precipitation events. Numerical inundation modelling is a well-established method of investigating surface water flood risk, allowing the researcher to gain a detailed understanding of the depth, velocity, discharge and extent of actual or hypothetical flood scenarios over a wide range of spatial scales. However, numerical models require calibration of key hydrological and hydraulic parameters (e.g. infiltration, evapotranspiration, drainage rate, roughness) to ensure model outputs adequately represent the flood event being studied. Furthermore, validation data such as crowdsourced images or spatially-referenced flood depth collected during a flood event may provide a useful validation of inundation depth and extent for actual flood events. In this study, a simplified two-dimensional inertial based flood inundation model requiring minimal pre-processing of data (FloodMap-HydroInundation) was used to model a short-duration, intense rainfall event (27.8 mm in 15 minutes) that occurred over the Loughborough University campus on the 28th June 2012. High resolution (1m horizontal, +/- 15cm vertical) DEM data, rasterised Ordnance Survey topographic structures data and precipitation data recorded at the University weather station were used to conduct numerical modelling over the small (< 2km2), contained urban catchment. To validate model outputs and allow a reconstruction of spatially referenced flood depth and extent during the flood event, crowdsourced images were obtained from social media (Twitter) and from individuals present during the flood event via the University noticeboards, as well as using dGPS flood depth data collected at one of the worst affected areas. An investigation into the sensitivity of key model parameters suggests that the numerical model code is highly sensitivity to changes within the recommended range of roughness and infiltration values, as well as changes in DEM and building mesh resolutions, but less sensitive to changes in evapotranspiration and drainage capacity parameters. The study also demonstrates the potential of using crowdsourced images to validate urban surface water flood models and inform parameterisation when calibrating numerical inundation models.
High resolution observations with Artemis-IV and the NRH. I. Type IV associated narrow-band bursts
NASA Astrophysics Data System (ADS)
Bouratzis, C.; Hillaris, A.; Alissandrakis, C. E.; Preka-Papadema, P.; Moussas, X.; Caroubalos, C.; Tsitsipis, P.; Kontogeorgos, A.
2016-02-01
Context. Narrow-band bursts appear on dynamic spectra from microwave to decametric frequencies as fine structures with very small duration and bandwidth. They are believed to be manifestations of small scale energy release through magnetic reconnection. Aims: We analyzed 27 metric type IV events with embedded narrow-band bursts, which were observed by the ARTEMIS-IV radio spectrograph from 30 June 1999 to 1 August 2010. We examined the morphological characteristics of isolated narrow-band structures (mostly spikes) and groups or chains of structures. Methods: The events were recorded with the SAO high resolution (10 ms cadence) receiver of ARTEMIS-IV in the 270-450 MHz range. We measured the duration, spectral width, and frequency drift of ~12 000 individual narrow-band bursts, groups, and chains. Spike sources were imaged with the Nançay radioheliograph (NRH) for the event of 21 April 2003. Results: The mean duration of individual bursts at fixed frequency was ~100 ms, while the instantaneous relative bandwidth was ~2%. Some bursts had measurable frequency drift, either positive or negative. Quite often spikes appeared in chains, which were closely spaced in time (column chains) or in frequency (row chains). Column chains had frequency drifts similar to type-IIId bursts, while most of the row chains exhibited negative frequently drifts with a rate close to that of fiber bursts. From the analysis of NRH data, we found that spikes were superimposed on a larger, slowly varying, background component. They were polarized in the same sense as the background source, with a slightly higher degree of polarization of ~65%, and their size was about 60% of their size in total intensity. Conclusions: The duration and bandwidth distributions did not show any clear separation in groups. Some chains tended to assume the form of zebra, lace stripes, fiber bursts, or bursts of the type-III family, suggesting that such bursts might be resolved in spikes when viewed with high resolution. The NRH data indicate that the spikes are not fluctuations of the background, but represent additional emission such as what would be expected from small-scale reconnection.
Techniques for Embedding Instrumentation in Pressure Vessel Test Articles
NASA Technical Reports Server (NTRS)
Cornelius, Michael
2006-01-01
Many interesting structural and thermal events occur in materials that are housed within a surrounding pressure vessel. In order to measure the environment during these events and explore their causes instrumentation must be installed on or in the material. Transducers can be selected that are small enough to be embedded within the test material but these instruments must interface with an external system in order to apply excitation voltages and output the desired data. The methods for installing the instrumentation and creating an interface are complicated when the material is located in a case or housing containing high pressures and hot gases. Installation techniques for overcoming some of these difficulties were developed while testing a series of small-scale solid propellant and hybrid rocket motors at Marshall Space Flight Center. These techniques have potential applications in other test articles where data are acquired from materials that require containment due to the severe environment encountered during the test process. This severe environment could include high pressure, hot gases, or ionized atmospheres. The development of these techniques, problems encountered, and the lessons learned from the ongoing testing process are summarized.
Pinkert, Moshe; Leiba, Adi; Zaltsman, Eilon; Erez, Onn; Blumenfeld, Amir; Avinoam, Shkolnick; Laor, Daniel; Schwartz, Dagan; Goldberg, Avishay; Levi, Yehezkel; Bar-Dayan, Yaron
2007-09-01
Terrorist attacks can occur in remote areas causing mass-casualty incidents MCIs far away from level-1 trauma centres. This study draws lessons from an MCI pertaining to the management of primary and secondary evacuation and the operational mode practiced. Data was collected from formal debriefings during and after the event, and the medical response, interactions and main outcomes analysed using Disastrous Incidents Systematic Analysis through Components, Interactions and Results (DISAST-CIR) methodology. A total of 112 people were evacuated from the scene-66 to the nearby level 3 Laniado hospital, including the eight critically and severely injured patients. Laniado hospital was instructed to act as an evacuation hospital but the flow of patients ended rapidly and it was decided to admit moderately injured victims. We introduce a novel concept of a 'semi-evacuation hospital'. This mode of operation should be selected for small-scale events in which the evacuation hospital has hospitalization capacity and is not geographically isolated. We suggest that level-3 hospitals in remote areas should be prepared and drilled to work in semi-evacuation mode during MCIs.
Quiet-sun and non-flaring active region measurements from the FOXSI-2 sounding rocket
NASA Astrophysics Data System (ADS)
Buitrago-Casas, J. C.; Glesener, L.; Christe, S.; Ishikawa, S. N.; Narukage, N.; Krucker, S.; Bale, S. D.
2016-12-01
Solar hard X-ray (HXR) emissions are a cornerstone for understanding particle acceleration and energy release in the corona. These phenomena are present at different size scales and intensities, from large eruptive events down to the smallest flares. The presence of HXRs in small, unresolved flares would provide direct evidence of small reconnection events, i.e. nano-flares, that are thought to be be important for the unsolved coronal heating problem. Currently operating solar-dedicated instruments that observe HXRs from the Sun do not have the dynamic range, nor the sensitivity, crucial to observe the faintest solar HXRs. The Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket payload is a novel experiment that develops and applies direct focusing optics coupled with semiconductor detectors to observe faint HXRs from the Sun. The FOXSI rocket has successfully completed two flights, observing areas of the quiet-Sun, active regions and micro-flares. We present recent data analysis to test the presence of hot plasma in and outside of active regions observed during the two flights, focusing on the differential emission measure distribution of the non-flaring corona.
Analysis of the 2011 Mekong flood in Can Tho city
NASA Astrophysics Data System (ADS)
Do, Thi-Chinh; Bubeck, Philip; Nguyen, Viet-Dung; Kreibich, Heidi
2014-05-01
Floods in the Mekong delta occur on a recurring basis during the flood season from July to November, and regular inundations of large areas are a prerequisite for the livelihoods of about 17 million people in the Vietnamese delta. At the same time, large-scale flood events above usual water levels pose a serious hazard that repeatedly caused severe economic damage and losses of life in past decades. The flood event in 2011 in the Mekong Delta heavily impacted Can Tho City and caused substantial damage to various economic sectors. Data from face to face interviews with 480 flood-affected households and 378 small businesses were analysed to gain detailed insights into flood preparedness, early warning, emergency measures, flood impacts and recovery before, during and after the 2011 flood in Can Tho city. Amongst other things, the findings reveal that damage to households is high, often exceeding the amount of several months of income, despite a relatively high level of preparedness. In terms of small businesses, it is found that higher losses indeed occur due to the disruption of production processes compared with direct damage.
Flooding from Intense Rainfall: an overview of project SINATRA
NASA Astrophysics Data System (ADS)
Cloke, Hannah
2014-05-01
Project SINATRA (Susceptibility of catchments to INTense RAinfall and flooding) is part of the UK NERC's Flooding From Intense Rainfall (FFIR) research programme which aims to reduce the risks of damage and loss of life caused by surface water and flash floods through improved identification, characterisation and prediction of interacting meteorological, hydrological and hydro-morphological processes that contribute to flooding associated with high-intensity rainfall events. Extreme rainfall events may only last for a few hours at most, but can generate terrifying and destructive floods. Their impact can be affected by a wide range factors (or processes) such as the location and intensity of the rainfall, the shape and steepness of the catchment it falls on, how much sediment is moved by the water and the vulnerability of the communities in the flood's path. Furthermore, FFIR are by their nature rapid, making it very difficult for researchers to 'capture' measurements during events. The complexity, speed and lack of field measurements on FFIR make it difficult to create computer models to predict flooding and often we are uncertain as to their accuracy. In addition there is no consensus on how to identify how particular catchments may be vulnerable to FFIR, due to factors such as catchment area, shape, geology and soil type as well as land-use. Additionally, the catchments most susceptible to FFIR are often small and un-gauged. Project SINATRA will: (1) Increase our understanding of what factors cause FFIR and gathering new, high resolution measurements of FFIR by: assembling an archive of past FFIR events in Britain and their impacts, as a prerequisite for improving our ability to predict future occurrences of FFIR; making real time observations of flooding during flood events as well as post-event surveys and historical event reconstruction, using fieldwork and crowd-sourcing methods; and characterizing the physical drivers for UK summer flooding events by identifying the large-scale atmospheric conditions associated with FFIR events, and linking them to catchment type. (2) Use this new understanding and data to improve models of FFIR so we can predict where they may happen nationwide by: employing an integrated catchment/urban scale modelling approach to FFIR at high spatial and temporal scales, modelling rapid catchment response to flash floods and their impacts in urban areas; scaling up to larger catchments by improving the representation of fast riverine and surface water flooding and hydromorphic change (including debris flow) in regional scale models of FFIR; improving the representation of FFIR in the JULES land surface model by integrating river routing and fast runoff processes, and performing assimilation of soil moisture and river discharge into the model run (3) Use these new findings and predictions to provide the Environment Agency and other professionals with information and software they can use to manage FFIR, reducing their damage and impact to communities by: developing tools to enable prediction of future FFIR impacts to support the Flood Forecasting Centre in issuing new 'impacts-based' warnings about their occurrence; developing a FFIR analysis tool to assess risks associated with rare events in complex situations involving incomplete knowledge, analogous to those developed for safety assessment in radioactive waste management.
Characterizing Ocean Turbulence from Argo, Acoustic Doppler, and Simulation Data
NASA Astrophysics Data System (ADS)
McCaffrey, Katherine
Turbulence is inherently chaotic and unsteady, so observing it and modeling it are no easy tasks. The ocean's sheer size makes it even more difficult to observe, and its unpredictable and ever-changing forcings introduce additional complexities. Turbulence in the oceans ranges from basin scale to the scale of the molecular viscosity. The method of energy transfer between scales is, however, an area of active research, so observations of the ocean at all scales are crucial to understanding the basic dynamics of its motions. In this collection of work, I use a variety of datasets to characterize a wide range of scales of turbulence, including observations from multiple instruments and from models with different governing equations. I analyzed the largest scales of the turbulent range using the global salinity data of the Argo profiling float network. Taking advantage of the scattered and discontinuous nature of this dataset, the second-order structure function was calculated down to 2000m depth, and shown to be useful for predicting spectral slopes. Results showed structure function slopes of 2/3 at small scales, and 0 at large scales, which corresponds with spectral slopes of -5/3 at small scales, and -1 at large scales. Using acoustic Doppler velocity measurements, I characterized the meter- to kilometer-scale turbulence at a potential tidal energy site in the Puget Sound, WA. Acoustic Doppler current profiler (ADCP) and acoustic Doppler velocimeter (ADV) observations provided the data for an analysis that includes coherence, anisotropy, and intermittency. In order to more simply describe these features, a parameterization was done with four turbulence metrics, and the anisotropy magnitude, introduced here, was shown to most closely capture the coherent events. Then, using both the NREL TurbSim stochastic turbulence generator and the NCAR large-eddy simulation (LES) model, I calculated turbulence statistics to validate the accuracy of these methods in reproducing the tidal channel. TurbSim models statistics at the height of a turbine hub (5m) well, but do not model coherent events, while the LES does create these events, but not realistically in this configuration, based on comparisons with observations. Each of the datasets have disadvantages when it comes to observing turbulence. The Argo network is sparse in space, and few measurements are taken simultaneously in time. Therefore spatial and temporal averaging is needed, which requires the turbulence to be homogeneous and stationary if it is to be generalized. Though the acoustic Doppler current profiler provides a vertical profile of velocities, the fluctuations are dominated by instrument noise and beam spread, preventing it from being used for most turbulence metrics. ADV measurements have much less noise, and no beam spread, but the observations are made at one point in space, limiting us to temporal statistics or an assumption of "frozen turbulence" to infer spatial scales. As for the models, TurbSim does not have any real-world forcing, and uses parameterized spectra, and coherence functions and randomizes phase information, while LES models must make assumptions about sub-grid scales, which may be inaccurate. Additionally, all models are set up with idealizations of the forcing and domain, which may make the results unlike observations in a particular location and time. Despite these difficulties in observing and characterizing turbulence, I present several quantities that use the imperfect, yet still valuable observations, to attain a better description of the turbulence in the oceans.
Reconstructing the 2015 Flash Flood event of Salgar Colombia, The Case of a Poor Gauged Basin
NASA Astrophysics Data System (ADS)
Velasquez, N.; Zapata, E.; Hoyos Ortiz, C. D.; Velez, J. I.
2017-12-01
Flash floods events associated with severe precipitation events are highly destructive, often resulting in significant human and economic losses. Due to their nature, flash floods trend to occur in medium to small basins located within complex high mountainous regions. In the Colombian Andean region these basins are very common, with the aggravating factor that the vulnerability is considerably high as some important human settlements are located within these basins, frequently occupating flood plains and other flash-flood prone areas. During the dawn of May 18 of 2015 two severe rainfall events generated a flash flood event in the municipality ofSalgar, La Liboriana basin, locatedin the northwestern Colombian Andes, resulting in more than 100 human casualties and significant economic losses. The present work is a reconstruction of the hydrological processes that took place before and during the Liboriana flash flood event, analyzed as a case of poorly gauged basin.The event conditions where recreated based on radar retrievals and a hydrological distributed model, linked with a proposed 1D hydraulic model and simple shallow landslide model. Results suggest that the flash flood event was caused by the occurrence of two successive severe convective events over the same basin, with an important modulation associated with soil characteristics and water storage.Despite of its simplicity, the proposed hydraulic model achieves a good representation of the flooded area during the event, with limitations due to the adopted spatial scale (12.7 meters, from ALOS PALSAR images). Observed landslides were obtained from satellite images; for this case the model simulates skillfully the landslide occurrence regions with small differences in the exact locations.To understand this case, radar data shows to be key due to specific convective cores location and rainfall intensity estimation.In mountainous regions, there exists a significant number of settlements with similar vulnerability and with the same gauging conditions, the use of low-cost modelling strategy could represent a good risk management tool in these regions with low planning capabilities.
Design flood hydrograph estimation procedure for small and fully-ungauged basins
NASA Astrophysics Data System (ADS)
Grimaldi, S.; Petroselli, A.
2013-12-01
The Rational Formula is the most applied equation in practical hydrology due to its simplicity and the effective compromise between theory and data availability. Although the Rational Formula is affected by several drawbacks, it is reliable and surprisingly accurate considering the paucity of input information. However, after more than a century, the recent computational, theoretical, and large-scale monitoring progresses compel us to try to suggest a more advanced yet still empirical procedure for estimating peak discharge in small and ungauged basins. In this contribution an alternative empirical procedure (named EBA4SUB - Event Based Approach for Small and Ungauged Basins) based on the common modelling steps: design hyetograph, rainfall excess, and rainfall-runoff transformation, is described. The proposed approach, accurately adapted for the fully-ungauged basin condition, provides a potentially better estimation of the peak discharge, a design hydrograph shape, and, most importantly, reduces the subjectivity of the hydrologist in its application.
Negative Life Events Scale for Students (NLESS)
ERIC Educational Resources Information Center
Buri, John R.; Cromett, Cristina E.; Post, Maria C.; Landis, Anna Marie; Alliegro, Marissa C.
2015-01-01
Rationale is presented for the derivation of a new measure of stressful life events for use with students [Negative Life Events Scale for Students (NLESS)]. Ten stressful life events questionnaires were reviewed, and the more than 600 items mentioned in these scales were culled based on the following criteria: (a) only long-term and unpleasant…
Birkhofer, Klaus; Henschel, Joh; Lubin, Yael
2012-11-01
Individuals of most animal species are non-randomly distributed in space. Extreme climatic events are often ignored as potential drivers of distribution patterns, and the role of such events is difficult to assess. Seothyra henscheli (Araneae, Eresidae) is a sedentary spider found in the Namib dunes in Namibia. The spider constructs a sticky-edged silk web on the sand surface, connected to a vertical, silk-lined burrow. Above-ground web structures can be damaged by strong winds or heavy rainfall, and during dispersal spiders are susceptible to environmental extremes. Locations of burrows were mapped in three field sites in 16 out of 20 years from 1987 to 2007, and these grid-based data were used to identify the relationship between spatial patterns, climatic extremes and sampling year. According to Morisita's index, individuals had an aggregated distribution in most years and field sites, and Geary's C suggests clustering up to scales of 2 m. Individuals were more aggregated in years with high maximum wind speed and low annual precipitation. Our results suggest that clustering is a temporally stable property of populations that holds even under fluctuating burrow densities. Climatic extremes, however, affect the intensity of clustering behaviour: individuals seem to be better protected in field sites with many conspecific neighbours. We suggest that burrow-site selection is driven at least partly by conspecific cuing, and this behaviour may protect populations from collapse during extreme climatic events.
NASA Astrophysics Data System (ADS)
Marske, Jared P.; Pietruszka, Aaron J.; Weis, Dominique; Garcia, Michael O.; Rhodes, J. Michael
2007-07-01
Recent Kilauea and Mauna Loa lavas provide a snapshot of the size, shape, and distribution of compositional heterogeneities within the Hawaiian mantle plume. Here we present a study of the Pb, Sr, and Nd isotope ratios of two suites of young prehistoric lavas from these volcanoes: (1) Kilauea summit lavas erupted from AD 900 to 1400, and (2) 14C-dated Mauna Loa flows erupted from ˜ 2580-140 yr before present (relative to AD 1950). These lavas display systematic isotopic fluctuations, and the Kilauea lavas span the Pb isotopic divide that was previously thought to exist between these two volcanoes. For a brief period from AD 250 to 1400, the 206Pb/ 204Pb and 87Sr/ 86Sr isotope ratios and ɛNd values of Kilauea and Mauna Loa lavas departed from values typical for each volcano (based on historical and other young prehistoric lavas), moved towards an intermediate composition, and subsequently returned to typical values. This is the only known period in the eruptive history of these volcanoes when such a simultaneous convergence of Pb, Sr, and Nd isotope ratios has occurred. The common isotopic composition of lavas erupted from both Kilauea and Mauna Loa during this transient magmatic event was probably caused by the rapid passage of a small-scale compositional heterogeneity through the melting regions of both volcanoes. This heterogeneity is thought to have been either a single body (˜ 35 km long based on the distance between the summits of these volcanoes) or the plume matrix itself (which would be expected to be present beneath both volcanoes). The time scale of this event (centuries) is much shorter than previously noted for variations in the isotopic composition of Hawaiian lavas due to the upwelling of heterogeneities within the plume (thousands to tens of thousands of years). Calculations based on the timing of the isotopic convergence suggest a maximum thickness for the melting region (and thus, the heterogeneity) of ˜ 5-10 km. The small size of the heterogeneity indicates that melt can be extracted from small regions within the Hawaiian plume with minimal subsequent chemical modification (beyond the effects of crystal fractionation). This would be most effective if melt transport in the mantle beneath Hawaiian shield volcanoes occurs mostly in chemically isolated channels.
Nowcasting Induced Seismicity at the Groningen Gas Field in the Netherlands
NASA Astrophysics Data System (ADS)
Luginbuhl, M.; Rundle, J. B.; Turcotte, D. L.
2017-12-01
The Groningen natural gas field in the Netherlands has recently been a topic of controversy for many residents in the surrounding area. The gas field provides energy for the majority of the country; however, for a minority of Dutch citizens who live nearby, the seismicity induced by the gas field is a cause for major concern. Since the early 2000's, the region has seen an increase in both number and magnitude of events, the largest of which was a magnitude 3.6 in 2012. Earthquakes of this size and smaller easily cause infrastructural damage to older houses and farms built with single brick walls. Nowcasting is a new method of statistically classifying seismicity and seismic risk. In this paper, the method is applied to the induced seismicity at the natural gas fields in Groningen, Netherlands. Nowcasting utilizes the catalogs of seismicity in these regions. Two earthquake magnitudes are selected, one large say , and one small say . The method utilizes the number of small earthquakes that occur between pairs of large earthquakes. The cumulative probability distribution of these values is obtained. The earthquake potential score (EPS) is defined by the number of small earthquakes that have occurred since the last large earthquake, the point where this number falls on the cumulative probability distribution of interevent counts defines the EPS. A major advantage of nowcasting is that it utilizes "natural time", earthquake counts, between events rather than clock time. Thus, it is not necessary to decluster aftershocks and the results are applicable if the level of induced seismicity varies in time, which it does in this case. The application of natural time to the accumulation of the seismic hazard depends on the applicability of Gutenberg-Richter (GR) scaling. The increasing number of small earthquakes that occur after a large earthquake can be scaled to give the risk of a large earthquake occurring. To illustrate our approach, we utilize the number of earthquakes in Groningen to nowcast the number of earthquakes in Groningen. The applicability of the scaling is illustrated during the rapid build up of seismicity between 2004 and 2016. It can now be used to forecast the expected reduction in seismicity associated with reduction in gas production.
NASA Technical Reports Server (NTRS)
Reid, Jeffrey S.; Lagrosas, Nofel D.; Jonsson, Haflidi H.; Reid, Elizabeth A.; Atwood, Samuel A.; Boyd, Thomas J.; Ghate, Virendra P.; Xian, Peng; Posselt, Derek J.; Simpas, James B.;
2016-01-01
The largest 7 Southeast Asian Studies (7SEAS) operations period within the Maritime Continent (MC) occurred in the August-September 2012 biomass burning season. Data included were observations aboard the MY Vasco, dispatched to the Palawan Archipelago and Sulu Sea of the Philippines for September 2012. At these locations, the Vasco observed MC smoke and pollution entering the southwest monsoon (SWM) monsoonal trough. Here we describe the research cruise findings and the finer-scale aerosol meteorology of this convectively active region. This 2012 cruise complemented a 2-week cruise in 2011 and was generally consistent with previous findings in terms of how smoke emission and transport related to monsoonal flows, tropical cyclones (TC), and the covariance between smoke transport events and the atmosphere's thermodynamic structure. Biomass burning plumes were usually mixed with significant amounts of anthropogenic pollution. Also key to aerosol behavior were squall lines and cold pools propagating across the South China Sea (SCS) and scavenging aerosol particles in their path. However, the 2012 cruise showed much higher modulation in aerosol frequency than its 2011 counterpart. Whereas in 2011 large synoptic-scale aerosol events transported high concentrations of smoke into the Philippines over days, in 2012 measured aerosol events exhibited a much shorter-term variation, sometimes only 312h. Strong monsoonal flow reversals were also experienced in 2012. Nucleation events in cleaner and polluted conditions, as well as in urban plumes, were observed. Perhaps most interestingly, several cases of squall lines preceding major aerosol events were observed, as opposed to 2011 observations where these lines largely scavenged aerosol particles from the marine boundary layer. Combined, these observations indicate pockets of high and low particle counts that are not uncommon in the region. These perturbations are difficult to observe by satellite and very difficult to model. Indeed, the Navy Aerosol Analysis and Prediction System (NAAPS) simulations captured longer period aerosol events quite well but largely failed to capture the timing of high-frequency phenomena. Ultimately, the research findings of these cruises demonstrate the real world challenges of satellite-based missions, significant aerosol life cycle questions such as those the future Aerosol/Clouds/Ecosystems (ACE) will investigate, and the importance of small-scale phenomena such as sea breezes, squall lines, and nucleation events embedded within SWM patterns in dominating aerosol life cycle and potential relationships to clouds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reid, Jeffrey S.; Lagrosas, Nofel D.; Jonsson, Haflidi H.
The largest 7 Southeast Asian Studies (7SEAS) operations period within the Maritime Continent (MC) occurred in the August–September 2012 biomass burning season. Data included were observations aboard the M/Y Vasco, dispatched to the Palawan Archipelago and Sulu Sea of the Philippines for September 2012. At these locations, the Vasco observed MC smoke and pollution entering the southwest monsoon (SWM) monsoonal trough. Here we describe the research cruise findings and the finer-scale aerosol meteorology of this convectively active region. This 2012 cruise complemented a 2-week cruise in 2011 and was generally consistent with previous findings in terms of how smoke emission and transportmore » related to monsoonal flows, tropical cyclones (TC), and the covariance between smoke transport events and the atmosphere's thermodynamic structure. Biomass burning plumes were usually mixed with significant amounts of anthropogenic pollution. Also key to aerosol behavior were squall lines and cold pools propagating across the South China Sea (SCS) and scavenging aerosol particles in their path. However, the 2012 cruise showed much higher modulation in aerosol frequency than its 2011 counterpart. Whereas in 2011 large synoptic-scale aerosol events transported high concentrations of smoke into the Philippines over days, in 2012 measured aerosol events exhibited a much shorter-term variation, sometimes only 3$-$12 h. Strong monsoonal flow reversals were also experienced in 2012. Nucleation events in cleaner and polluted conditions, as well as in urban plumes, were observed. Perhaps most interestingly, several cases of squall lines preceding major aerosol events were observed, as opposed to 2011 observations where these lines largely scavenged aerosol particles from the marine boundary layer. Combined, these observations indicate pockets of high and low particle counts that are not uncommon in the region. These perturbations are difficult to observe by satellite and very difficult to model. Indeed, the Navy Aerosol Analysis and Prediction System (NAAPS) simulations captured longer period aerosol events quite well but largely failed to capture the timing of high-frequency phenomena. Ultimately, the research findings of these cruises demonstrate the real world challenges of satellite-based missions, significant aerosol life cycle questions such as those the future Aerosol/Clouds/Ecosystems (ACE) will investigate, and the importance of small-scale phenomena such as sea breezes, squall lines, and nucleation events embedded within SWM patterns in dominating aerosol life cycle and potential relationships to clouds.« less
NASA Astrophysics Data System (ADS)
Reid, Jeffrey S.; Lagrosas, Nofel D.; Jonsson, Haflidi H.; Reid, Elizabeth A.; Atwood, Samuel A.; Boyd, Thomas J.; Ghate, Virendra P.; Xian, Peng; Posselt, Derek J.; Simpas, James B.; Uy, Sherdon N.; Zaiger, Kimo; Blake, Donald R.; Bucholtz, Anthony; Campbell, James R.; Chew, Boon Ning; Cliff, Steven S.; Holben, Brent N.; Holz, Robert E.; Hyer, Edward J.; Kreidenweis, Sonia M.; Kuciauskas, Arunas P.; Lolli, Simone; Oo, Min; Perry, Kevin D.; Salinas, Santo V.; Sessions, Walter R.; Smirnov, Alexander; Walker, Annette L.; Wang, Qing; Yu, Liya; Zhang, Jianglong; Zhao, Yongjing
2016-11-01
The largest 7 Southeast Asian Studies (7SEAS) operations period within the Maritime Continent (MC) occurred in the August-September 2012 biomass burning season. Data included were observations aboard the M/Y Vasco, dispatched to the Palawan Archipelago and Sulu Sea of the Philippines for September 2012. At these locations, the Vasco observed MC smoke and pollution entering the southwest monsoon (SWM) monsoonal trough. Here we describe the research cruise findings and the finer-scale aerosol meteorology of this convectively active region. This 2012 cruise complemented a 2-week cruise in 2011 and was generally consistent with previous findings in terms of how smoke emission and transport related to monsoonal flows, tropical cyclones (TC), and the covariance between smoke transport events and the atmosphere's thermodynamic structure. Biomass burning plumes were usually mixed with significant amounts of anthropogenic pollution. Also key to aerosol behavior were squall lines and cold pools propagating across the South China Sea (SCS) and scavenging aerosol particles in their path. However, the 2012 cruise showed much higher modulation in aerosol frequency than its 2011 counterpart. Whereas in 2011 large synoptic-scale aerosol events transported high concentrations of smoke into the Philippines over days, in 2012 measured aerosol events exhibited a much shorter-term variation, sometimes only 3-12 h. Strong monsoonal flow reversals were also experienced in 2012. Nucleation events in cleaner and polluted conditions, as well as in urban plumes, were observed. Perhaps most interestingly, several cases of squall lines preceding major aerosol events were observed, as opposed to 2011 observations where these lines largely scavenged aerosol particles from the marine boundary layer. Combined, these observations indicate pockets of high and low particle counts that are not uncommon in the region. These perturbations are difficult to observe by satellite and very difficult to model. Indeed, the Navy Aerosol Analysis and Prediction System (NAAPS) simulations captured longer period aerosol events quite well but largely failed to capture the timing of high-frequency phenomena. Ultimately, the research findings of these cruises demonstrate the real world challenges of satellite-based missions, significant aerosol life cycle questions such as those the future Aerosol/Clouds/Ecosystems (ACE) will investigate, and the importance of small-scale phenomena such as sea breezes, squall lines, and nucleation events embedded within SWM patterns in dominating aerosol life cycle and potential relationships to clouds.
NASA Astrophysics Data System (ADS)
Wilkinson, Mark; Addy, Steve; Ghimire, Sohan; Kenyon, Wendy; Nicholson, Alex; Quinn, Paul; Stutter, Marc; Watson, Helen
2013-04-01
Over the past decade many European catchments have experienced an unusually high number of flood events. A large number of these events are the result of intense rainfall in small headwater catchments which are dominated by surface runoff generation, resulting in flash flooding of local communities. Soil erosion and related water quality issues, among others, are typically associated with such rapid runoff generation. The hazard of flooding is increasing owing to impacts of changing climatic patterns (including more intense summer storms), intensification of agriculture within rural catchments and continued pressure to build on floodplains. Concurrently, the cost of constructing and maintaining traditional flood defences in small communities outweigh the potential benefits. Hence, there is a growing interest in more cost effective natural approaches that also have multipurpose benefits in terms of sediment, water quality, and habitat creation. Many catchments in Europe are intensively farmed and there is great potential for agriculture to be part of the solution to flood risk management. Natural flood management (NFM) is the alteration, restoration or use of landscape features with the aim of reducing flood risk by slowing down, storing (and filtering) rapid surface runoff. NFM includes measures such as temporarily storing water in ponds/wetlands, increasing soil infiltration, planting trees on floodplains and within catchments, re-meandering and wood placements in streams/ditches. In this presentation we highlight case studies from densely instrumented research sites across the UK (which could be typical of many European catchments) where NFM measures have been installed in small scale flashy catchments. The presentation will give an overview of the function of these measures in these catchments and how other multiple benefits are being accrued. Study catchments include the headwater catchments of the Bowmont (3 to 8 km2) and Belford Burn (6 km2) catchments. These catchments are known for their rapid runoff generation and have downstream local communities at risk of flash flooding. In Bowmont, NFM measures are currently being put in place to restore river bars and to store water more effectively on the flood plains during these flashy events. For example, Apex engineered wood structure in the river channel and riparian zones are designed to trap sediment and log bank protection structures are being installed to stop bank erosion. Tree planting in the catchment is also taking place. In the Belford catchment storage ponds and woody debris have been installed over the past five years to help to reduce the flood risk to the village of Belford. A dense instrumentation network has provided data for analysis and modelling which shows evidence of local scale flood peak reductions along with the collection of large amounts of sediment. A modelling study carried out (using a pond network model) during an intense summer storm showed that 30 small scale pond features used in sequence could reduce the flood peak by ~35% at the local scale. Findings show that managing surface runoff and local ditch flow at local scale headwater catchments is a cost effective way of managing flashy catchment for flood risk and sediment control. Working with catchment stakeholders is vital. Information given by the local community post flooding has been useful in placing NFM measures throughout the catchments. Involving the local communities in these projects and giving them access to the data and model outputs has helped to develop these projects further.
Observing Triggered Earthquakes Across Iran with Calibrated Earthquake Locations
NASA Astrophysics Data System (ADS)
Karasozen, E.; Bergman, E.; Ghods, A.; Nissen, E.
2016-12-01
We investigate earthquake triggering phenomena in Iran by analyzing patterns of aftershock activity around mapped surface ruptures. Iran has an intense level of seismicity (> 40,000 events listed in the ISC Bulletin since 1960) due to it accommodating a significant portion of the continental collision between Arabia and Eurasia. There are nearly thirty mapped surface ruptures associated with earthquakes of M 6-7.5, mostly in eastern and northwestern Iran, offering a rich potential to study the kinematics of earthquake nucleation, rupture propagation, and subsequent triggering. However, catalog earthquake locations are subject to up to 50 km of location bias from the combination of unknown Earth structure and unbalanced station coverage, making it challenging to assess both the rupture directivity of larger events and the spatial patterns of their aftershocks. To overcome this limitation, we developed a new two-tiered multiple-event relocation approach to obtain hypocentral parameters that are minimally biased and have realistic uncertainties. In the first stage, locations of small clusters of well-recorded earthquakes at local spatial scales (100s of events across 100 km length scales) are calibrated either by using near-source arrival times or independent location constraints (e.g. local aftershock studies, InSAR solutions), using an implementation of the Hypocentroidal Decomposition relocation technique called MLOC. Epicentral uncertainties are typically less than 5 km. Then, these events are used as prior constraints in the code BayesLoc, a Bayesian relocation technique that can handle larger datasets, to yield region-wide calibrated hypocenters (1000s of events over 1000 km length scales). With locations and errors both calibrated, the pattern of aftershock activity can reveal the type of the earthquake triggering: dynamic stress changes promote an increase in the seismicity rate in the direction of unilateral propagation, whereas static stress changes should not be biased by rupture propagation direction. Here we present results from Ahar, Baladeh, Qom, Rigan, Silakhour and Zirkuh clusters, that include early-instrumental and modern mainshock-aftershock sequences. These will in turn provide a greatly improved basis for research into seismic hazards in this region.
Understanding thermal circulations and near-surface turbulence processes in a small mountain valley
NASA Astrophysics Data System (ADS)
Pardyjak, E.; Dupuy, F.; Durand, P.; Gunawardena, N.; Thierry, H.; Roubin, P.
2017-12-01
The interaction of turbulence and thermal circulations in complex terrain can be significantly different from idealized flat terrain. In particular, near-surface horizontal spatial and temporal variability of winds and thermodynamic variables can be significant event over very small spatial scales. The KASCADE (KAtabatic winds and Stability over CAdarache for Dispersion of Effluents) 2017 conducted from January through March 2017 was designed to address these issues and to ultimately improve prediction of dispersion in complex terrain, particularly during stable atmospheric conditions. We have used a relatively large number of sensors to improve our understanding of the spatial and temporal development, evolution and breakdown of topographically driven flows. KASCADE 2017 consisted of continuous observations and fourteen Intensive Observation Periods (IOPs) conducted in the Cadarache Valley located in southeastern France. The Cadarache Valley is a relatively small valley (5 km x 1 km) with modest slopes and relatively small elevation differences between the valley floor and nearby hilltops ( 100 m). During winter, winds in the valley are light and stably stratified at night leading to thermal circulations as well as complex near-surface atmospheric layering. In this presentation we present results quantifying spatial variability of thermodynamic and turbulence variables as a function of different large -scale forcing conditions (e.g., quiescent conditions, strong westerly flow, and Mistral flow). In addition, we attempt to characterize highly-regular nocturnal horizontal wind meandering and associated turbulence statistics.
Hubert, G; Regis, D; Cheminet, A; Gatti, M; Lacoste, V
2014-10-01
Particles originating from primary cosmic radiation, which hit the Earth's atmosphere give rise to a complex field of secondary particles. These particles include neutrons, protons, muons, pions, etc. Since the 1980s it has been known that terrestrial cosmic rays can penetrate the natural shielding of buildings, equipment and circuit package and induce soft errors in integrated circuits. Recently, research has shown that commercial static random access memories are now so small and sufficiently sensitive that single event upsets (SEUs) may be induced from the electronic stopping of a proton. With continued advancements in process size, this downward trend in sensitivity is expected to continue. Then, muon soft errors have been predicted for nano-electronics. This paper describes the effects in the specific cases such as neutron-, proton- and muon-induced SEU observed in complementary metal-oxide semiconductor. The results will allow investigating the technology node sensitivity along the scaling trend. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Long-time atomistic dynamics through a new self-adaptive accelerated molecular dynamics method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, N.; Yang, L.; Gao, F.
2017-02-27
A self-adaptive accelerated molecular dynamics method is developed to model infrequent atomic- scale events, especially those events that occur on a rugged free-energy surface. Key in the new development is the use of the total displacement of the system at a given temperature to construct a boost-potential, which is slowly increased to accelerate the dynamics. The temperature is slowly increased to accelerate the dynamics. By allowing the system to evolve from one steady-state con guration to another by overcoming the transition state, this self-evolving approach makes it possible to explore the coupled motion of species that migrate on vastly differentmore » time scales. The migrations of single vacancy (V) and small He-V clusters, and the growth of nano-sized He-V clusters in Fe for times in the order of seconds are studied by this new method. An interstitial- assisted mechanism is rst explored for the migration of a helium-rich He-V cluster, while a new two-component Ostwald ripening mechanism is suggested for He-V cluster growth.« less
Automated detection of solar eruptions
NASA Astrophysics Data System (ADS)
Hurlburt, N.
2015-12-01
Observation of the solar atmosphere reveals a wide range of motions, from small scale jets and spicules to global-scale coronal mass ejections (CMEs). Identifying and characterizing these motions are essential to advancing our understanding of the drivers of space weather. Both automated and visual identifications are currently used in identifying Coronal Mass Ejections. To date, eruptions near the solar surface, which may be precursors to CMEs, have been identified primarily by visual inspection. Here we report on Eruption Patrol (EP): a software module that is designed to automatically identify eruptions from data collected by the Atmospheric Imaging Assembly on the Solar Dynamics Observatory (SDO/AIA). We describe the method underlying the module and compare its results to previous identifications found in the Heliophysics Event Knowledgebase. EP identifies eruptions events that are consistent with those found by human annotations, but in a significantly more consistent and quantitative manner. Eruptions are found to be distributed within 15 Mm of the solar surface. They possess peak speeds ranging from 4 to 100 km/s and display a power-law probability distribution over that range. These characteristics are consistent with previous observations of prominences.
NASA Astrophysics Data System (ADS)
Jalali, Mohammadreza; Gischig, Valentin; Doetsch, Joseph; Näf, Rico; Krietsch, Hannes; Klepikova, Maria; Amann, Florian; Giardini, Domenico
2018-03-01
Multiple meter-scale hydraulic fracturing (HF) experiments were executed in the crystalline rock at the Grimsel Test Site, Switzerland. The effect of the HF on the rock transmissivity has been quantified with hydraulic tests before and after each HF experiment. We observe transmissivity enhancement of 2 to 3 orders of magnitude and a change in the dominant flow regime after most of the HF tests. From microseismicity induced by the HF, we do not observe a systematic correlation between transmissivity enhancement and event numbers, frequency-magnitude distribution, or maximum magnitude. However, the radii of hydraulic fractures inferred independently from seismicity clouds and hydraulic responses coincide, implying that slip along fractures is the common underlying mechanism for transmissivity increase and seismicity.
Onset of a Large Ejective Solar Eruption from a Typical Coronal-jet-base Field Configuration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, Navin Chandra; Magara, Tetsuya; Moon, Yong-Jae
Utilizing multiwavelength observations and magnetic field data from the Solar Dynamics Observatory ( SDO )/Atmospheric Imaging Assembly (AIA), SDO /Helioseismic and Magnetic Imager (HMI), the Geostationary Operational Environmental Satellite ( GOES ), and RHESSI , we investigate a large-scale ejective solar eruption of 2014 December 18 from active region NOAA 12241. This event produced a distinctive “three-ribbon” flare, having two parallel ribbons corresponding to the ribbons of a standard two-ribbon flare, and a larger-scale third quasi-circular ribbon offset from the other two. There are two components to this eruptive event. First, a flux rope forms above a strong-field polarity inversionmore » line and erupts and grows as the parallel ribbons turn on, grow, and spread apart from that polarity inversion line; this evolution is consistent with the mechanism of tether-cutting reconnection for eruptions. Second, the eruption of the arcade that has the erupting flux rope in its core undergoes magnetic reconnection at the null point of a fan dome that envelops the erupting arcade, resulting in formation of the quasi-circular ribbon; this is consistent with the breakout reconnection mechanism for eruptions. We find that the parallel ribbons begin well before (∼12 minutes) the onset of the circular ribbon, indicating that tether-cutting reconnection (or a non-ideal MHD instability) initiated this event, rather than breakout reconnection. The overall setup for this large-scale eruption (diameter of the circular ribbon ∼10{sup 5} km) is analogous to that of coronal jets (base size ∼10{sup 4} km), many of which, according to recent findings, result from eruptions of small-scale “minifilaments.” Thus these findings confirm that eruptions of sheared-core magnetic arcades seated in fan–spine null-point magnetic topology happen on a wide range of size scales on the Sun.« less
Hierarchical Address Event Routing for Reconfigurable Large-Scale Neuromorphic Systems.
Park, Jongkil; Yu, Theodore; Joshi, Siddharth; Maier, Christoph; Cauwenberghs, Gert
2017-10-01
We present a hierarchical address-event routing (HiAER) architecture for scalable communication of neural and synaptic spike events between neuromorphic processors, implemented with five Xilinx Spartan-6 field-programmable gate arrays and four custom analog neuromophic integrated circuits serving 262k neurons and 262M synapses. The architecture extends the single-bus address-event representation protocol to a hierarchy of multiple nested buses, routing events across increasing scales of spatial distance. The HiAER protocol provides individually programmable axonal delay in addition to strength for each synapse, lending itself toward biologically plausible neural network architectures, and scales across a range of hierarchies suitable for multichip and multiboard systems in reconfigurable large-scale neuromorphic systems. We show approximately linear scaling of net global synaptic event throughput with number of routing nodes in the network, at 3.6×10 7 synaptic events per second per 16k-neuron node in the hierarchy.
White, Richard S A; Wintle, Brendan A; McHugh, Peter A; Booker, Douglas J; McIntosh, Angus R
2017-06-14
Despite growing concerns regarding increasing frequency of extreme climate events and declining population sizes, the influence of environmental stochasticity on the relationship between population carrying capacity and time-to-extinction has received little empirical attention. While time-to-extinction increases exponentially with carrying capacity in constant environments, theoretical models suggest increasing environmental stochasticity causes asymptotic scaling, thus making minimum viable carrying capacity vastly uncertain in variable environments. Using empirical estimates of environmental stochasticity in fish metapopulations, we showed that increasing environmental stochasticity resulting from extreme droughts was insufficient to create asymptotic scaling of time-to-extinction with carrying capacity in local populations as predicted by theory. Local time-to-extinction increased with carrying capacity due to declining sensitivity to demographic stochasticity, and the slope of this relationship declined significantly as environmental stochasticity increased. However, recent 1 in 25 yr extreme droughts were insufficient to extirpate populations with large carrying capacity. Consequently, large populations may be more resilient to environmental stochasticity than previously thought. The lack of carrying capacity-related asymptotes in persistence under extreme climate variability reveals how small populations affected by habitat loss or overharvesting, may be disproportionately threatened by increases in extreme climate events with global warming. © 2017 The Author(s).
A Life Events Scale for Armed Forces personnel
Chaudhury, Suprakash; Srivastava, Kalpana; Raju, M.S.V. Kama; Salujha, S.K.
2006-01-01
Background: Armed Forces personnel are routinely exposed to a number of unique stressful life events. None of the available scales are relevant to service personnel. Aim: To construct a scale to measure life events in service personnel. Methods: In the first stage of the study open-ended questions along with items generated by the expert group by consensus method were administered to 50 soldiers. During the second stage a scale comprising 59 items and open-ended questions was administered to 165 service personnel. The final scale of 52 items was administered to 200 service personnel in group setting. Weightage was assigned on a 0 to 100 range. For normative study the Armed Forces Medical College Life Events Scale (AFMC LES) was administered to 1200 Army, 100 Air Force and 100 Navy personnel. Results: Service personnel experience an average of 4 life events in past one year and 13 events in a life-time. On an average service personnel experience 115 life change unit scores in past one year and 577 life change unit scores in life-time on the AFMC LES. The scale has concurrent validity when compared with the Presumptive Stressful Life Events Scale (PSLES). There is internal consistency in the scale with the routine items being rated very low. There is a pattern of uniformity with the civilian counterparts along with differences in the items specific to service personnel. Conclusions: The AFMC LES includes the unique stresses of service personnel that are not included in any life events scale available in India or in the west and should be used to assess stressful life events in service personnel. PMID:20844647
Are meteotsunamis an underrated hazard?
Pattiaratchi, Charitha B.; Wijeratne, E. M. S.
2015-01-01
Meteotsunamis are generated by meteorological events, particularly moving pressure disturbances due to squalls, thunderstorms, frontal passages and atmospheric gravity waves. Relatively small initial sea-level perturbations, of the order of a few centimetres, can increase significantly through multi-resonant phenomena to create destructive events through the superposition of different factors. The global occurrence of meteotsunamis and the different resonance phenomena leading to amplification of meteotsunamis are reviewed. Results from idealized numerical modelling and field measurements from southwest Australia are presented to highlight the relative importance of the different processes. It is shown that the main influence that leads to amplification of the initial disturbance is due to wave shoaling and topographic resonance. Although meteotsunamis are not catastrophic to the extent of major seismically induced basin-scale events, the temporal and spatial occurrence of meteotsunamis are higher than those of seismic tsunamis as the atmospheric disturbances responsible for the generation of meteotsunamis are more common. High-energy events occur only for very specific combinations of resonant effects. The rareness of such combinations is perhaps the main reason why destructive meteotsunamis are exceptional and observed only at a limited number of sites globally. PMID:26392619
Triggering of Solar Magnetic Eruptions on Various Size Scales Alphonse Sterling
NASA Technical Reports Server (NTRS)
Sterling, A.C.
2010-01-01
A solar eruption that produces a coronal mass ejection (CME) together with a flare is driven by the eruption of a closed-loop magnetic arcade that has a sheared-field core. Before eruption, the sheared core envelops a polarity inversion line along which cool filament material may reside. The sheared-core arcade erupts when there is a breakdown in the balance between the confining downward-directed magnetic tension of the overall arcade field and the upward-directed force of the pent-up magnetic pressure of the sheared field in the core of the arcade. What triggers the breakdown in this balance in favor of the upward-directed force is still an unsettled question. We consider several eruption examples, using imaging data from the SoHO, TRACE and Hinode satellites, and other sources, along with information about the magnetic field of the erupting regions. In several cases, observations of large-scale eruptions, where the magnetic neutral line spans few x 10,000 km, are consistent with magnetic flux cancellation being the trigger to the eruption's onset, even though the amount of flux canceled is only few percent of the total magnetic flux of the erupting region. In several other cases, an initial compact (small size-scale) eruption occurs embedded inside of a larger closed magnetic loop system, so that the smaller eruption destabilizes and causes the eruption of the much larger system. In this way, small-scale eruptive events can result in eruption of much larger-scale systems.
Making historic loss data comparable over time and place
NASA Astrophysics Data System (ADS)
Eichner, Jan; Steuer, Markus; Löw, Petra
2017-04-01
When utilizing historic loss data for present day risk assessment, it is necessary to make the data comparable over time and place. To achieve this, the assessment of costs from natural hazard events requires consistent and homogeneous methodologies for loss estimation as well as a robust treatment of loss data to estimate and/or reduce distorting effects due to a temporal bias in the reporting of small-scale loss events. Here we introduce Munich Re's NatCatSERVICE loss database and present a novel methodology of peril-specific normalization of the historic losses (to account for socio-economic growth of assets over time), and we introduce a metric of severity classification (called CatClass) that allows for a global comparison of impact severity across countries of different stages of economic development.
A chronology of Late-Pleistocene permafrost events in southern New Jersey, eastern USA
French, H.M.; Demitroff, M.; Forman, S.L.; Newell, Wayne L.
2007-01-01
Frost fissures, filled with wind-abraded sand and mineral soil, and numerous small-scale non-diastrophic deformations, occur in the near-surface sediments of the Pine Barrens of southern New Jersey. The fissures are the result of thermal-contraction cracking and indicate the previous existence of either permafrost or seasonally-frozen ground. The deformations reflect thermokarst activity that occurred when permafrost degraded, icy layers melted and density-controlled mass displacements occurred in water-saturated sediments. Slopes and surficial materials of the area reflect these cold-climate conditions. Optically-stimulated luminescence permits construction of a tentative Late-Pleistocene permafrost chronology. This indicates Illinoian, Early-Wisconsinan and Late-Wisconsinan episodes of permafrost and/or deep seasonal frost and a Middle-Wisconsinan thermokarst event. Copyright ?? 2007 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Norris, J. Q.
2016-12-01
Published 60 years ago, the Gutenburg-Richter law provides a universal frequency-magnitude distribution for natural and induced seismicity. The GR law is a two parameter power-law with the b-value specifying the relative frequency of small and large events. For large catalogs of natural seismicity, the observed b-values are near one, while fracking associated seismicity has observed b-values near two, indicating relatively fewer large events. We have developed a computationally inexpensive percolation model for fracking that allows us to generate large catalogs of fracking associated seismicity. Using these catalogs, we show that different power-law fitting procedures produce different b-values for the same data set. This shows that care must be taken when determining and comparing b-values for fracking associated seismicity.
Element analysis: a wavelet-based method for analysing time-localized events in noisy time series
2017-01-01
A method is derived for the quantitative analysis of signals that are composed of superpositions of isolated, time-localized ‘events’. Here, these events are taken to be well represented as rescaled and phase-rotated versions of generalized Morse wavelets, a broad family of continuous analytic functions. Analysing a signal composed of replicates of such a function using another Morse wavelet allows one to directly estimate the properties of events from the values of the wavelet transform at its own maxima. The distribution of events in general power-law noise is determined in order to establish significance based on an expected false detection rate. Finally, an expression for an event’s ‘region of influence’ within the wavelet transform permits the formation of a criterion for rejecting spurious maxima due to numerical artefacts or other unsuitable events. Signals can then be reconstructed based on a small number of isolated points on the time/scale plane. This method, termed element analysis, is applied to the identification of long-lived eddy structures in ocean currents as observed by along-track measurements of sea surface elevation from satellite altimetry. PMID:28484325
Understanding the economic impacts of disruptions in water service.
Heflin, Colleen; Jensen, Jennifer; Miller, Kathleen
2014-10-01
Over the past decade, there has been much attention focused on community readiness for catastrophic emergency events, such as major natural disasters or terrorist attacks. However, though the economic costs associated with experiencing such an event are high, the probability of such events occurring is quite low. At the same time, less catastrophic events that temporarily disrupt essential services to local areas, such as water and electricity, are quite common. However, there is little research that documents residents' actual economic costs when their water service is disrupted. In this paper, we contribute to the growing literature assigning economic value to residential water service by documenting the economic costs residents report from routine, small-scale water disruptions through focus groups and in-person interviews. We find that residential impacts ranged from over $1400 in savings (from working more hours than usual and eating out less than usual) to a cost of over $1000, with an overall average of $93.96. These costs, particularly when multiplied over a substantial population, become quite significant and demonstrate the importance of studying the economic costs of such events. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mayer, A. L.; Tortini, R.; Maianti, P.
2013-12-01
The relationship between human land use and land cover change is critical to sustainable forest management. Land use decisions by small land managers aggregate into substantial land cover changes at landscape and regional scales. Land ownership across large portions of the Upper Great Lakes region is in considerable flux, as large timber industry tracts are split into many smaller non-industrial ownerships, and new owners prioritize amenity and non-timber forest values. Nonindustrial Private Forest (NIPF) owners also transfer their properties to younger generations or other NIPF owners with different management approaches and goals. Survey data on intended harvests and sales are available through the National Woodland Owner Survey (NWOS), run by the USDA Forest Service. However, the disparity between NIPF owner-stated plans to harvest, and what actually occurs, can be substantially different, especially if annual fluctuations in timber prices or general economic fluctuations cause NIPF owners to deviate from their stated management and ownership intentions. This reduces the NWOS' utility. Remote sensing data have considerable value for identifying small scale harvests and, paired with ownership data at the parcel scale, can measure NIPF harvest rates as related to ownership change at a regional scale. Here we focus on the Western Upper Peninsula of Michigan (WUP) and the most recent decade to develop our methodology, using primarily Landsat images from 2003-2013. However, Landsat data series are characterized by gaps in coverage over long temporal and large spatial scales, and so a methodology to combine multiple remote sensing data sources is necessary for regional-scale land use/land cover change research. We filled these gaps by integrating the available Landsat time series with DMC imagery. We then combined these data with GIS overlays of the parcels and stand-level data on removed basal area (BA) during known harvesting events to develop a classification of harvest intensity for the WUP. Images taken during peak growing season were preferred to calculate NDVI and ΔNDVI, and in general for enhancing possible spectral changes. We classified the harvests as clear cut, selective harvesting or thinning using an object-based image analysis. In particular, we defined a clear cut a harvesting event in which ~90-100% BA is removed, commercial harvesting if ~50-80% BA is removed and thinning if ~20-40% BA removal. This work demonstrates that DMC images can effectively fill the Landsat data gap for the detection and quantification of harvesting events. Preliminary results show that the method is capable of identifying harvests down to ~20% BA removal. These results can then be used to monitor the accuracy of the NWOS, and to develop a probability estimate of harvest given either ownership change or changes in market conditions.
Small Business Procurement Event
2014-08-13
Small Business Procurement Event 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK...NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Department of the Navy,Office of Small Business Programs,720 Kennon...distribution unlimited 13. SUPPLEMENTARY NOTES NDIA 27th Navy Gold Coast Small Business Procurement Event, 12-13 Aug 2014, San Diego, CA. 14. ABSTRACT
Tests of remote aftershock triggering by small mainshocks using Taiwan's earthquake catalog
NASA Astrophysics Data System (ADS)
Peng, W.; Toda, S.
2014-12-01
To understand earthquake interaction and forecast time-dependent seismic hazard, it is essential to evaluate which stress transfer, static or dynamic, plays a major role to trigger aftershocks and subsequent mainshocks. Felzer and Brodsky focused on small mainshocks (2≤M<3) and their aftershocks, and then argued that only dynamic stress change brings earthquake-to-earthquake triggering, whereas Richards-Dingers et al. (2010) claimed that those selected small mainshock-aftershock pairs were not earthquake-to-earthquake triggering but simultaneous occurrence of independent aftershocks following a larger earthquake or during a significant swarm sequence. We test those hypotheses using Taiwan's earthquake catalog by taking the advantage of lacking any larger event and the absence of significant seismic swarm typically seen with active volcano. Using Felzer and Brodsky's method and their standard parameters, we only found 14 mainshock-aftershock pairs occurred within 20 km distance in Taiwan's catalog from 1994 to 2010. Although Taiwan's catalog has similar number of earthquakes as California's, the number of pairs is about 10% of the California catalog. It may indicate the effect of no large earthquakes and no significant seismic swarm in the catalog. To fully understand the properties in the Taiwan's catalog, we loosened the screening parameters to earn more pairs and then found a linear aftershock density with a power law decay of -1.12±0.38 that is very similar to the one in Felzer and Brodsky. However, none of those mainshock-aftershock pairs were associated with a M7 rupture event or M6 events. To find what mechanism controlled the aftershock density triggered by small mainshocks in Taiwan, we randomized earthquake magnitude and location. We then found that those density decay in a short time period is more like a randomized behavior than mainshock-aftershock triggering. Moreover, 5 out of 6 pairs were found in a swarm-like temporal seismicity rate increase. They locate mostly in high geothermal gradient areas, which are probably triggered by a small-scale aseismic process. Thus it rather supports the argument of Richards-Dingers et al. in which dynamic triggering by small mainshock is untenable.
Structure of the Jovian Magnetodisk Current Sheet: Initial Galileo Observations
NASA Technical Reports Server (NTRS)
Russell, C. T.; Huddleston, D. E.; Khurana, K. K.; Kivelson, M. G.
2001-01-01
The ten-degree tilt of the Jovian magnetic dipole causes the magnetic equator to move back and forth across Jupiter's rotational equator and tile Galileo orbit that lies therein. Beyond about 24 Jovian radii, the equatorial current sheet thins and tile magnetic structure changes from quasi-dipolar into magnetodisk-like with two regions of nearly radial but antiparallel magnetic field separated by a strong current layer. The magnetic field at the center of the current sheet is very weak in this region. Herein we examine tile current sheet at radial distances from 24 55 Jovian radii. We find that the magnetic structure very much resembles tile structure seen at planetary magnetopause and tail current sheet crossings. Tile magnetic field variation is mainly linear with little rotation of the field direction, At times there is almost no small-scale structure present and the normal component of the magnetic field is almost constant through the current sheet. At other times there are strong small-scale structures present in both the southward and northward directions. This small-scale structure appears to grow with radial distance and may provide the seeds for tile explosive reconnection observed at even greater radial distances oil tile nightside. Beyond about 40 Jovian radii, the thin current sheet also appears to be almost constantly in oscillatory motion with periods of about 10 min. The amplitude of these oscillations also appears to grow with radial distance. The source of these fluctuations may be dynamical events in tile more distant magnetodisk.
a Structure of Experienced Time
NASA Astrophysics Data System (ADS)
Havel, Ivan M.
2005-10-01
The subjective experience of time will be taken as a primary motivation for an alternative, essentially discontinuous conception of time. Two types of such experience will be discussed, one based on personal episodic memory, the other on the theoretical fine texture of experienced time below the threshold of phenomenal awareness. The former case implies a discrete structure of temporal episodes on a large scale, while the latter case suggests endowing psychological time with a granular structure on a small scale, i.e. interpreting it as a semi-ordered flow of smeared (not point-like) subliminal time grains. Only on an intermediate temporal scale would the subjectively felt continuity and fluency of time emerge. Consequently, there is no locally smooth mapping of phenomenal time onto the real number continuum. Such a model has certain advantages; for instance, it avoids counterintuitive interpretations of some neuropsychological experiments (e.g. Libet's measurement) in which the temporal order of events is crucial.
Large-scale data analysis of power grid resilience across multiple US service regions
NASA Astrophysics Data System (ADS)
Ji, Chuanyi; Wei, Yun; Mei, Henry; Calzada, Jorge; Carey, Matthew; Church, Steve; Hayes, Timothy; Nugent, Brian; Stella, Gregory; Wallace, Matthew; White, Joe; Wilcox, Robert
2016-05-01
Severe weather events frequently result in large-scale power failures, affecting millions of people for extended durations. However, the lack of comprehensive, detailed failure and recovery data has impeded large-scale resilience studies. Here, we analyse data from four major service regions representing Upstate New York during Super Storm Sandy and daily operations. Using non-stationary spatiotemporal random processes that relate infrastructural failures to recoveries and cost, our data analysis shows that local power failures have a disproportionally large non-local impact on people (that is, the top 20% of failures interrupted 84% of services to customers). A large number (89%) of small failures, represented by the bottom 34% of customers and commonplace devices, resulted in 56% of the total cost of 28 million customer interruption hours. Our study shows that extreme weather does not cause, but rather exacerbates, existing vulnerabilities, which are obscured in daily operations.
Large-scale Meteorological Patterns Associated with Extreme Precipitation Events over Portland, OR
NASA Astrophysics Data System (ADS)
Aragon, C.; Loikith, P. C.; Lintner, B. R.; Pike, M.
2017-12-01
Extreme precipitation events can have profound impacts on human life and infrastructure, with broad implications across a range of stakeholders. Changes to extreme precipitation events are a projected outcome of climate change that warrants further study, especially at regional- to local-scales. While global climate models are generally capable of simulating mean climate at global-to-regional scales with reasonable skill, resiliency and adaptation decisions are made at local-scales where most state-of-the-art climate models are limited by coarse resolution. Characterization of large-scale meteorological patterns associated with extreme precipitation events at local-scales can provide climatic information without this scale limitation, thus facilitating stakeholder decision-making. This research will use synoptic climatology as a tool by which to characterize the key large-scale meteorological patterns associated with extreme precipitation events in the Portland, Oregon metro region. Composite analysis of meteorological patterns associated with extreme precipitation days, and associated watershed-specific flooding, is employed to enhance understanding of the climatic drivers behind such events. The self-organizing maps approach is then used to characterize the within-composite variability of the large-scale meteorological patterns associated with extreme precipitation events, allowing us to better understand the different types of meteorological conditions that lead to high-impact precipitation events and associated hydrologic impacts. A more comprehensive understanding of the meteorological drivers of extremes will aid in evaluation of the ability of climate models to capture key patterns associated with extreme precipitation over Portland and to better interpret projections of future climate at impact-relevant scales.
Intermountain Cyclogenesis: a Climatology and Multiscale Case Studies
NASA Astrophysics Data System (ADS)
Lee, Tiros Peijiun
1995-11-01
A detailed study of Intermountain cyclones over the western United States is conducted through climatological and case studies. An eleven-year (1976-1986) statistical survey shows that the Nevada cyclogenesis is mainly a springtime (March, April) event while a secondary maximum of cyclogenesis frequency is found in November. Nearly 75% of the Nevada cyclogenesis events (177 out of 237 cases) take place under large-scale westerly to southerly flow aloft across the Sierra Nevada Mountains, while 24% of the events (57 out of 237 cases) occur under northwesterly flow aloft. A composite study of these two types of the flow is shown to demonstrate how differences in large-scale topography affect Intermountain cyclogenesis processes. The result from a case study of 9-11 February 1984 reveals that an antecedent Nevada lee trough formed as a result of large-scale southwesterly flow aloft interacting with the underlying terrain well before the surface and upper-level troughs moved onshore. Subsequent cyclogenesis took place in situ with the axis of the trough as the center of large-scale quasi-geostrophic ascent/positive potential vorticity advection began to spread across the Sierra Nevada Mountains. As the cyclone moved downstream, it was observed to weaken well before reaching the Continental Divide while a new cyclonic development occurred east of the Rocky Mountains. It is shown that the weakening of the Intermountain cyclone was associated with the ongoing interaction between the Intermountain cyclone and large-scale topography and the progressive outrunning of the large-scale dynamical forcing aloft away from the surface cyclone center. An investigation of the large-scale evolution for the 26-29 January 1980 case, which developed beneath the northwesterly flow aloft, further reveals that the underlying topography plays two major roles in contributing to the initial cyclogenesis: (1) to block and to retard cold, stable air east of the Continental Divide from rushing into the Great Basin region, and (2) to produce differential pressure falls across the Sierra Nevada Mountains (more along the eastern slopes) in response to increasing cross -mountain flow. Numerous transient shortwaves in the midtroposphere rapidly move across the GB and the Rocky Mountains into the Plains States, while the Intermountain cyclone moves slower than to the disturbances aloft. There is no downstream lee trough/cyclogenesis to the east of the Rockies during the investigation period since the leeside is characterized by cold, stable air. The third case study is made of an 11-14 December 1987 Intermountain cyclogenesis case which took place in an area of relatively warm and less stable environment near the Arizona-New Mexico border beneath northwesterly flow aloft. The ensuing interaction between the large -scale flow and underlying terrain allowed the surface cyclone to remain quasi-stationary for its entire 36 h life span. We also document a cold-season small-scale Catalina eddy development in the coastal southern California waters in this case. The eddy formed as the equatorward and northeasterly flow upstream of the coastal (San Rafael and Saint Ynez) mountains increased in the lower troposphere. Weak large-scale ascent in the mid- and upper-troposphere over the incipient eddy environment provided evidence of the orographic nature of the small -scale cyclone. The eddy was eventually displaced seaward and weakened with the arrival of powerful large-scale subsidence and increasing northeasterly downslope flow at the lower levels that reached the coastal waters.
Fortes Lima, Telmo Tiburcio; Prandini, Mirto Nelso; Gallo, Pasquale; Cavalheiro, Sérgio
2012-04-01
The literature is controversial on whether intraventricular bleeding has a negative impact on the prognosis of spontaneous intracerebral hemorrhage. Nevertheless, an association between intraventricular bleeding and spontaneous intracerebral hemorrhage volumes has been consistently reported. To evaluate the prognostic value of intraventricular bleeding in deep intraparenchymal hypertensive spontaneous hemorrhage with a bleeding volume <30 cm(3). Of the 320 patients initially evaluated, 33 met the inclusion criteria and were enrolled in this prospective study. The volume of intraparenchymal hemorrhage was calculated by brain computed tomography (CT) image analysis, and the volume of intraventricular bleeding was calculated by the LeRoux scale. Clinical data, including neurological complications, were collected daily during hospitalization. Neurological outcome was evaluated 30 days after the event by using the Glasgow outcome scale. Patients were assigned to 1 of 3 groups according to intraventricular bleeding: Control, no intraventricular bleeding; LR 1, intraventricular bleeding with LeRoux scale scores of 1 to 8; or LR 2, intraventricular bleeding with LeRoux scale scores >8. There were no significant differences among groups concerning age, mean blood pressure, and time from onset to brain CT scan. Patients with greater intraventricular bleeding presented lower initial Glasgow coma scale scores, increased ventricular index and width of temporal horns, increased number of clinical and neurological complications, and longer hospitalization. Furthermore, their relative risk for unfavorable clinical outcome was 1.9 (95% confidence interval 1.25-2.49). Intraventricular bleeding with a LeRoux scale score >8 appears to have a negative effect on deep spontaneous intraparenchymal cerebral hemorrhage of small volume.
NASA Astrophysics Data System (ADS)
Wei, Chiang; Yeh, Hui-Chung; Chen, Yen-Chang
2017-04-01
This study addressed the relationship between rainfall and cloud top temperature (CCT) from new generation satellite Himawari-8 imagery at different spatiotemporal scale. This satellite provides higher band, more bits for data format, spatial and temporal resolution compared with previous GMS series. The multi-infrared channels with 10-minute and 1-2 km resolution make it possible for rainfall estimating/forecasting in small/medium watershed. The preliminary result investigated at Chenyulan watershed (443.6 square kilometer) of Central Taiwan in 2016 Typhoon Megi shows the regression coefficient fitted by negative exponential equation of largest rainfall vs. CCT (B8 band) at pixel scale increases as time scales enlarges and reach 0.462 for 120-minute accumulative rainfall; the value (CTT of B15 band) decreases from 0.635 for 10-minute to 0.423 for 120-minute accumulative rainfall at basin-wide scale. More rainfall events for different regime are yet to evaluate to get solid results.
Refined genetic maps reveal sexual dimorphism in human meiotic recombination at multiple scales
NASA Astrophysics Data System (ADS)
Bhérer, Claude; Campbell, Christopher L.; Auton, Adam
2017-04-01
In humans, males have lower recombination rates than females over the majority of the genome, but the opposite is usually true near the telomeres. These broad-scale differences have been known for decades, yet little is known about differences at the fine scale. By combining data sets, we have collected recombination events from over 100,000 meioses and have constructed sex-specific genetic maps at a previously unachievable resolution. Here we show that, although a substantial fraction of the genome shows some degree of sexually dimorphic recombination, the vast majority of hotspots are shared between the sexes, with only a small number of putative sex-specific hotspots. Wavelet analysis indicates that most of the differences can be attributed to the fine scale, and that variation in rate between the sexes can mostly be explained by differences in hotspot magnitude, rather than location. Nonetheless, known recombination-associated genomic features, such as THE1B repeat elements, show systematic differences between the sexes.
NASA Astrophysics Data System (ADS)
Levy, J.; Franklin, E. C.; Hunter, C. L.
2016-12-01
Coral reefs are biodiversity hotspots that are vital to the function of global economic and biological processes. Coral bleaching is a significant contributor to the global decline of reefs and can impact an expansive reef area over short timescales. In order to understand the dynamics of coral bleaching and how these stress events impact reef ecosystems, it is important to conduct rapid bleaching surveys at functionally important spatial scales. Due to the inherent heterogeneity, size, and in some cases, remoteness of coral reefs, it is difficult to routinely monitor coral bleaching dynamics before, during, and after bleaching. Additionally, current in situ survey methods only collect snippets of discrete reef data over small reef areas, which are unable to accurately represent the reef as a whole. We present a new technique using small unmanned aerial systems (sUAS) as cost effective, efficient monitoring tools that target small to intermediate-scale reef dynamics to understand the spatial distribution of bleached coral colonies during the 2015 bleaching event on patch reefs in Kaneohe Bay, Oahu. Overlapping low altitude aerial images were collected at four reefs during the bleaching period and processed using Structure-from-Motion techniques to produce georeferenced and spatially accurate orthomosaics of complete reef areas. Mosaics were analyzed using manual and heuristic neural network classification schemes to identify comprehensive populations of bleached and live coral on each patch reef. We found that bleached colonies had random and clumped distributions on patch reefs in Kaneohe Bay depending on local environmental conditions. Our work demonstrates that sUAS provide a low cost, efficient platform that can rapidly and repeatedly collect high-resolution imagery (1 cm/pixel) and map large areas of shallow reef ecosystems (5 hectares). This study proves the feasibility of utilizing sUAS as a tool to collect spatially rich reef data that will provide reef scientists a new perspective on meso-scale coral reef dynamics. We envision that similar low altitude aerial surveys will be incorporated as a standard component of shallow-water reef studies, especially on reefs too dangerous or remote for in situ surveys.
Spatio-temporal filtering techniques for the detection of disaster-related communication.
Fitzhugh, Sean M; Ben Gibson, C; Spiro, Emma S; Butts, Carter T
2016-09-01
Individuals predominantly exchange information with one another through informal, interpersonal channels. During disasters and other disrupted settings, information spread through informal channels regularly outpaces official information provided by public officials and the press. Social scientists have long examined this kind of informal communication in the rumoring literature, but studying rumoring in disrupted settings has posed numerous methodological challenges. Measuring features of informal communication-timing, content, location-with any degree of precision has historically been extremely challenging in small studies and infeasible at large scales. We address this challenge by using online, informal communication from a popular microblogging website and for which we have precise spatial and temporal metadata. While the online environment provides a new means for observing rumoring, the abundance of data poses challenges for parsing hazard-related rumoring from countless other topics in numerous streams of communication. Rumoring about disaster events is typically temporally and spatially constrained to places where that event is salient. Accordingly, we use spatio and temporal subsampling to increase the resolution of our detection techniques. By filtering out data from known sources of error (per rumor theories), we greatly enhance the signal of disaster-related rumoring activity. We use these spatio-temporal filtering techniques to detect rumoring during a variety of disaster events, from high-casualty events in major population centers to minimally destructive events in remote areas. We consistently find three phases of response: anticipatory excitation where warnings and alerts are issued ahead of an event, primary excitation in and around the impacted area, and secondary excitation which frequently brings a convergence of attention from distant locales onto locations impacted by the event. Our results demonstrate the promise of spatio-temporal filtering techniques for "tuning" measurement of hazard-related rumoring to enable observation of rumoring at scales that have long been infeasible. Copyright © 2016 Elsevier Inc. All rights reserved.
Mokhtar-Jamaï, Kenza; Coma, Rafel; Wang, Jinliang; Zuberer, Frederic; Féral, Jean-Pierre; Aurelle, Didier
2013-01-01
Dispersal and mating features strongly influence the evolutionary dynamics and the spatial genetic structure (SGS) of marine populations. For the first time in a marine invertebrate, we examined individual reproductive success, by conducting larval paternity assignments after a natural spawning event, combined with a small-scale SGS analysis within a population of the gorgonian Paramuricea clavata. Thirty four percent of the larvae were sired by male colonies surrounding the brooding female colonies, revealing that the bulk of the mating was accomplished by males from outside the studied area. Male success increased with male height and decreased with increasing male to female distance. The parentage analyses, with a strong level of self-recruitment (25%), unveiled the occurrence of a complex family structure at a small spatial scale, consistent with the limited larval dispersal of this species. However, no evidence of small scale SGS was revealed despite this family structure. Furthermore, temporal genetic structure was not observed, which appears to be related to the rather large effective population size. The low level of inbreeding found suggests a pattern of random mating in this species, which disagrees with expectations that limited larval dispersal should lead to biparental inbreeding. Surface brooding and investment in sexual reproduction in P. clavata contribute to multiple paternity (on average 6.4 fathers were assigned per brood), which enhance genetic diversity of the brood. Several factors may have contributed to the lack of biparental inbreeding in our study such as (i) the lack of sperm limitation at a small scale, (ii) multiple paternity, and (iii) the large effective population size. Thus, our results indicate that limited larval dispersal and complex family structure do not necessarily lead to biparental inbreeding and SGS. In the framework of conservation purposes, our results suggested that colony size, proximity among colonies and the population size should be taken into consideration for restoration projects. PMID:23789084
Event management for large scale event-driven digital hardware spiking neural networks.
Caron, Louis-Charles; D'Haene, Michiel; Mailhot, Frédéric; Schrauwen, Benjamin; Rouat, Jean
2013-09-01
The interest in brain-like computation has led to the design of a plethora of innovative neuromorphic systems. Individually, spiking neural networks (SNNs), event-driven simulation and digital hardware neuromorphic systems get a lot of attention. Despite the popularity of event-driven SNNs in software, very few digital hardware architectures are found. This is because existing hardware solutions for event management scale badly with the number of events. This paper introduces the structured heap queue, a pipelined digital hardware data structure, and demonstrates its suitability for event management. The structured heap queue scales gracefully with the number of events, allowing the efficient implementation of large scale digital hardware event-driven SNNs. The scaling is linear for memory, logarithmic for logic resources and constant for processing time. The use of the structured heap queue is demonstrated on a field-programmable gate array (FPGA) with an image segmentation experiment and a SNN of 65,536 neurons and 513,184 synapses. Events can be processed at the rate of 1 every 7 clock cycles and a 406×158 pixel image is segmented in 200 ms. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Deshpande, K.; Zettergren, M. D.; Datta-Barua, S.
2017-12-01
Fluctuations in the Global Navigation Satellite Systems (GNSS) signals observed as amplitude and phase scintillations are produced by plasma density structures in the ionosphere. Phase scintillation events in particular occur due to structures at Fresnel scales, typically about 250 meters at ionospheric heights and GNSS frequency. Likely processes contributing to small-scale density structuring in auroral and polar regions include ionospheric gradient-drift instability (GDI) and Kelvin-Helmholtz instability (KHI), which result, generally, from magnetosphere-ionosphere interactions (e.g. reconnection) associated with cusp and auroral zone regions. Scintillation signals, ostensibly from either GDI or KHI, are frequently observed in the high latitude ionosphere and are potentially useful diagnostics of how energy from the transient forcing in the cusp or polar cap region cascades, via instabilities, to small scales. However, extracting quantitative details of instabilities leading to scintillation using GNSS data drastically benefits from both a model of the irregularities and a model of GNSS signal propagation through irregular media. This work uses a physics-based model of the generation of plasma density irregularities (GEMINI - Geospace Environment Model of Ion-Neutral Interactions) coupled to an ionospheric radio wave propagation model (SIGMA - Satellite-beacon Ionospheric-scintillation Global Model of the upper Atmosphere) to explore the cascade of density structures from medium to small (sub-kilometer) scales. Specifically, GEMINI-SIGMA is used to simulate expected scintillation from different instabilities during various stages of evolution to determine features of the scintillation that may be useful to studying ionospheric density structures. Furthermore we relate the instabilities producing GNSS scintillations to the transient space and time-dependent magnetospheric phenomena and further predict characteristics of scintillation in different geophysical situations. Finally we present initial comparison of our modeling results with GNSS scintillation observed via an array of receivers at Poker Flat.
Comparison between fully distributed model and semi-distributed model in urban hydrology modeling
NASA Astrophysics Data System (ADS)
Ichiba, Abdellah; Gires, Auguste; Giangola-Murzyn, Agathe; Tchiguirinskaia, Ioulia; Schertzer, Daniel; Bompard, Philippe
2013-04-01
Water management in urban areas is becoming more and more complex, especially because of a rapid increase of impervious areas. There will also possibly be an increase of extreme precipitation due to climate change. The aims of the devices implemented to handle the large amount of water generate by urban areas such as storm water retention basins are usually twofold: ensure pluvial flood protection and water depollution. These two aims imply opposite management strategies. To optimize the use of these devices there is a need to implement urban hydrological models and improve fine-scale rainfall estimation, which is the most significant input. In this paper we suggest to compare two models and their sensitivity to small-scale rainfall variability on a 2.15 km2 urban area located in the County of Val-de-Marne (South-East of Paris, France). The average impervious coefficient is approximately 34%. In this work two types of models are used. The first one is CANOE which is semi-distributed. Such models are widely used by practitioners for urban hydrology modeling and urban water management. Indeed, they are easily configurable and the computation time is reduced, but these models do not take fully into account either the variability of the physical properties or the variability of the precipitations. An alternative is to use distributed models that are harder to configure and require a greater computation time, but they enable a deeper analysis (especially at small scales and upstream) of the processes at stake. We used the Multi-Hydro fully distributed model developed at the Ecole des Ponts ParisTech. It is an interacting core between open source software packages, each of them representing a portion of the water cycle in urban environment. Four heavy rainfall events that occurred between 2009 and 2011 are analyzed. The data comes from the Météo-France radar mosaic and the resolution is 1 km in space and 5 min in time. The closest radar of the Météo-France network is a C-band one located at 37 km West. In this work we compare the hydrological response of two models for the 4 rainfall events first with the available radar data. Then a particular focus is made on the impact of small-scale unmeasured rainfall variability (i.e. occurring at scales below the available one). More precisely scaling properties of rainfall are used to generate an ensemble of downscaled rainfall fields (simply by continuing the underlying cascade process whose relevant parameters are estimated on the available range of scales). An ensemble of hydrological responses is then simulated, and the variability within it analyzed. It appears that the associated uncertainty is significant and should be taken into account. Finally we will discuss the interest of deploying X-band radars (which provide an hectometric resolution) in urban environment and the potential benefits of using these models and small-scale rainfall data for the management of sewerage and retentions basin. Further analysis on these issues will be carried out next year with the installation of an X-band radar near Marne-la-Vallée (located at roughly 10 Km of the studied catchment) in the framework of the RainGain project (European project financed by the Interreg IVB funds).
Seismic monitoring of small alpine rockfalls - validity, precision and limitations
NASA Astrophysics Data System (ADS)
Dietze, Michael; Mohadjer, Solmaz; Turowski, Jens M.; Ehlers, Todd A.; Hovius, Niels
2017-10-01
Rockfall in deglaciated mountain valleys is perhaps the most important post-glacial geomorphic process for determining the rates and patterns of valley wall erosion. Furthermore, rockfall poses a significant hazard to inhabitants and motivates monitoring efforts in populated areas. Traditional rockfall detection methods, such as aerial photography and terrestrial laser scanning (TLS) data evaluation, provide constraints on the location and released volume of rock but have limitations due to significant time lags or integration times between surveys, and deliver limited information on rockfall triggering mechanisms and the dynamics of individual events. Environmental seismology, the study of seismic signals emitted by processes at the Earth's surface, provides a complementary solution to these shortcomings. However, this approach is predominantly limited by the strength of the signals emitted by a source and their transformation and attenuation towards receivers. To test the ability of seismic methods to identify and locate small rockfalls, and to characterise their dynamics, we surveyed a 2.16 km2 large, near-vertical cliff section of the Lauterbrunnen Valley in the Swiss Alps with a TLS device and six broadband seismometers. During 37 days in autumn 2014, 10 TLS-detected rockfalls with volumes ranging from 0.053 ± 0.004 to 2.338 ± 0.085 m3 were independently detected and located by the seismic approach, with a deviation of 81-29+59 m (about 7 % of the average inter-station distance of the seismometer network). Further potential rockfalls were detected outside the TLS-surveyed cliff area. The onset of individual events can be determined within a few milliseconds, and their dynamics can be resolved into distinct phases, such as detachment, free fall, intermittent impact, fragmentation, arrival at the talus slope and subsequent slope activity. The small rockfall volumes in this area require significant supervision during data processing: 2175 initially picked potential events reduced to 511 potential events after applying automatic rejection criteria. The 511 events needed to be inspected manually to reveal 19 short earthquakes and 37 potential rockfalls, including the 10 TLS-detected events. Rockfall volume does not show a relationship with released seismic energy or peak amplitude at this spatial scale due to the dominance of other, process-inherent factors, such as fall height, degree of fragmentation, and subsequent talus slope activity. The combination of TLS and environmental seismology provides, despite the significant amount of manual data processing, a detailed validation of seismic detection of small volume rockfalls, and revealed unprecedented temporal, spatial and geometric details about rockfalls in steep mountainous terrain.
How Unusual were Hurricane Harvey's Rains?
NASA Astrophysics Data System (ADS)
Emanuel, K.
2017-12-01
We apply an advanced technique for hurricane risk assessment to evaluate the probability of hurricane rainfall of Harvey's magnitude. The technique embeds a detailed computational hurricane model in the large-scale conditions represented by climate reanalyses and by climate models. We simulate 3700 hurricane events affecting the state of Texas, from each of three climate reanalyses spanning the period 1980-2016, and 2000 events from each of six climate models for each of two periods: the period 1981-2000 from historical simulations, and the period 2081-2100 from future simulations under Representative Concentration Pathway (RCP) 8.5. On the basis of these simulations, we estimate that hurricane rain of Harvey's magnitude in the state of Texas would have had an annual probability of 0.01 in the late twentieth century, and will have an annual probability of 0.18 by the end of this century, with remarkably small scatter among the six climate models downscaled. If the event frequency is changing linearly over time, this would yield an annual probability of 0.06 in 2017.
The 2008 North Atlantic Spring Bloom Experiment II: Autonomous Platforms and Mixed Layer Evolution
NASA Astrophysics Data System (ADS)
Lee, C. M.; D'Asaro, E. A.; Perry, M.; Fennel, K.; Gray, A.; Rehm, E.; Briggs, N.; Sackmann, B. S.; Gudmundsson, K.
2008-12-01
The 2008 North Atlantic Spring Bloom Experiment (NAB08) employed a system of drifting floats, mobile gliders and ship-based measurements to resolve patch-scale physical and biological variability over the 3- month course of an entire bloom. Although both autonomous and ship-based elements were essential to achieving NAB08 goals, the autonomous system provided a novel perspective by employing long-range gliders to repeatedly survey the volume surrounding a drifting Lagrangian float, thus characterizing patch- scale bloom evolution. Integration of physical and biogeochemical sensors (temperature, conductivity, dissolved oxygen, chlorophyll and CDOM fluorescence, light transmission, optical backscatter, spectral light, and nitrate) and development of in situ calibration techniques were required to support this new autonomous approach. Energetic, small-scale eddy activity at the experiment site (southeast of Iceland, near the Joint Global Ocean Flux Study and Marine Light Mixed Layer sites) produced a swift, heterogeneous velocity field that challenged the gliders" operational abilities and drove refinements to the piloting techniques used to maintain float-following surveys. Although intentionally deployed outside of energetic eddies, floats and gliders were rapidly entrained into these features. Floats circulated within eddies near the start and end of the experiment, drifting generally northwest, across the basin, in-between. An eddy sampled late in the deployment provided particularly interesting signatures, with elevated biological signals manifest consistently in one quadrant. As measurements were collected in a parcel-following Lagrangian frame, this suggests energetic small-scale exchange process (such as vertical or lateral mixing) paired with fast-acting biological processes capable of modifying the newly entrained water as it navigates its path around the eddy. Despite this energetic kilometer-scale heterogeneity, broadly distributed platforms appeared to experience similar broad, long-timescale trends. Initial mixed layer depths exceeded 200 m, with gradual shoaling punctuated by periods of rapid, storm-driven deepening. In mid-April, a period of calm weather, rapid restratification and exponentially growing chlorophyll fluorescence marks the bloom's start. Although one-dimensional processes (e.g. diapycnal mixing and solar warming) clearly play important roles in producing the spring bloom, the rate and vertical extent of upper ocean restratification indicate that lateral mixing, perhaps wind- or eddy-driven exchange or the slumping of lateral density contrasts, play a more important role in restratifying the upper ocean. These important trigger events present a severe observational challenge as they take place at small (kilometers) spatial scales, are fully three-dimensional and episodic in time. The NAB08 efforts demonstrate how mobile, autonomous platforms can be exploited to resolve these events and their impact over the course of an entire bloom cycle.
NASA Astrophysics Data System (ADS)
Eichner, J. F.; Steuer, M.; Loew, P.
2016-12-01
Past natural catastrophes offer valuable information for present-day risk assessment. To make use of historic loss data one has to find a setting that enables comparison (over place and time) of historic events happening under today's conditions. By means of loss data normalization the influence of socio-economic development, as the fundamental driver in this context, can be eliminated and the data gives way to the deduction of risk-relevant information and allows the study of other driving factors such as influences from climate variability and climate change or changes of vulnerability. Munich Re's NatCatSERVICE database includes for each historic loss event the geographic coordinates of all locations and regions that were affected in a relevant way. These locations form the basis for what is known as the loss footprint of an event. Here we introduce a state of the art and robust method for global loss data normalization. The presented peril-specific loss footprint normalization method adjusts direct economic loss data to the influence of economic growth within each loss footprint (by using gross cell product data as proxy for local economic growth) and makes loss data comparable over time. To achieve a comparative setting for supra-regional economic differences, we categorize the normalized loss values (together with information on fatalities) based on the World Bank income groups into five catastrophe classes, from minor to catastrophic. The data treated in such way allows (a) for studying the influence of improved reporting of small scale loss events over time and (b) for application of standard (stationary) extreme value statistics (here: peaks over threshold method) to compile estimates for extreme and extrapolated loss magnitudes such as a "100 year event" on global scale. Examples of such results will be shown.
Outliers and Extremes: Dragon-Kings or Dragon-Fools?
NASA Astrophysics Data System (ADS)
Schertzer, D. J.; Tchiguirinskaia, I.; Lovejoy, S.
2012-12-01
Geophysics seems full of monsters like Victor Hugo's Court of Miracles and monstrous extremes have been statistically considered as outliers with respect to more normal events. However, a characteristic magnitude separating abnormal events from normal ones would be at odd with the generic scaling behaviour of nonlinear systems, contrary to "fat tailed" probability distributions and self-organized criticality. More precisely, it can be shown [1] how the apparent monsters could be mere manifestations of a singular measure mishandled as a regular measure. Monstrous fluctuations are the rule, not outliers and they are more frequent than usually thought up to the point that (theoretical) statistical moments can easily be infinite. The empirical estimates of the latter are erratic and diverge with sample size. The corresponding physics is that intense small scale events cannot be smoothed out by upscaling. However, based on a few examples, it has also been argued [2] that one should consider "genuine" outliers of fat tailed distributions so monstrous that they can be called "dragon-kings". We critically analyse these arguments, e.g. finite sample size and statistical estimates of the largest events, multifractal phase transition vs. more classical phase transition. We emphasize the fact that dragon-kings are not needed in order that the largest events become predictable. This is rather reminiscent of the Feast of Fools picturesquely described by Victor Hugo. [1] D. Schertzer, I. Tchiguirinskaia, S. Lovejoy et P. Hubert (2010): No monsters, no miracles: in nonlinear sciences hydrology is not an outlier! Hydrological Sciences Journal, 55 (6) 965 - 979. [2] D. Sornette (2009): Dragon-Kings, Black Swans and the Prediction of Crises. International Journal of Terraspace Science and Engineering 1(3), 1-17.
NASA Astrophysics Data System (ADS)
Anomaa Senaviratne, G. M. M. M.; Udawatta, Ranjith P.; Anderson, Stephen H.; Baffaut, Claire; Thompson, Allen
2014-09-01
Fuzzy rainfall-runoff models are often used to forecast flood or water supply in large catchments and applications at small/field scale agricultural watersheds are limited. The study objectives were to develop, calibrate, and validate a fuzzy rainfall-runoff model using long-term data of three adjacent field scale row crop watersheds (1.65-4.44 ha) with intermittent discharge in the claypan soils of Northeast Missouri. The watersheds were monitored for a six-year calibration period starting 1991 (pre-buffer period). Thereafter, two of them were treated with upland contour grass and agroforestry (tree + grass) buffers (4.5 m wide, 36.5 m apart) to study water quality benefits. The fuzzy system was based on Mamdani method using MATLAB 7.10.0. The model predicted event-based runoff with model performance coefficients of r2 and Nash-Sutcliffe Coefficient (NSC) values greater than 0.65 for calibration and validation. The pre-buffer fuzzy system predicted event-based runoff for 30-50 times larger corn/soybean watersheds with r2 values of 0.82 and 0.68 and NSC values of 0.77 and 0.53, respectively. The runoff predicted by the fuzzy system closely agreed with values predicted by physically-based Agricultural Policy Environmental eXtender model (APEX) for the pre-buffer watersheds. The fuzzy rainfall-runoff model has the potential for runoff predictions at field-scale watersheds with minimum input. It also could up-scale the predictions for large-scale watersheds to evaluate the benefits of conservation practices.
IS THE SMALL-SCALE MAGNETIC FIELD CORRELATED WITH THE DYNAMO CYCLE?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karak, Bidya Binay; Brandenburg, Axel, E-mail: bbkarak@nordita.org
2016-01-01
The small-scale magnetic field is ubiquitous at the solar surface—even at high latitudes. From observations we know that this field is uncorrelated (or perhaps even weakly anticorrelated) with the global sunspot cycle. Our aim is to explore the origin, and particularly the cycle dependence, of such a phenomenon using three-dimensional dynamo simulations. We adopt a simple model of a turbulent dynamo in a shearing box driven by helically forced turbulence. Depending on the dynamo parameters, large-scale (global) and small-scale (local) dynamos can be excited independently in this model. Based on simulations in different parameter regimes, we find that, when onlymore » the large-scale dynamo is operating in the system, the small-scale magnetic field generated through shredding and tangling of the large-scale magnetic field is positively correlated with the global magnetic cycle. However, when both dynamos are operating, the small-scale field is produced from both the small-scale dynamo and the tangling of the large-scale field. In this situation, when the large-scale field is weaker than the equipartition value of the turbulence, the small-scale field is almost uncorrelated with the large-scale magnetic cycle. On the other hand, when the large-scale field is stronger than the equipartition value, we observe an anticorrelation between the small-scale field and the large-scale magnetic cycle. This anticorrelation can be interpreted as a suppression of the small-scale dynamo. Based on our studies we conclude that the observed small-scale magnetic field in the Sun is generated by the combined mechanisms of a small-scale dynamo and tangling of the large-scale field.« less
Erosion of the Edge of the South Polar Layered Deposits
2017-05-22
This image is an oblique view from NASA's Mars Reconnaissance Orbiter of the sloping edge of the stack of icy layers over the South Pole has some interesting morphologies. The slope appears to be eroding from a combination of landslides, block falls, and sublimation. The bright icy exposure in the larger landslide scar (upper right) suggests that this was a relatively recent event. Small-scale textures over the scene are due to both blowing wind and the thermal expansion and contraction of shallow ice. https://photojournal.jpl.nasa.gov/catalog/PIA21637
Chronology for fluctuations in late Pleistocene Sierra Nevada glaciers and lakes
Phillips, F.M.; Zreda, M.G.; Benson, L.V.; Plummer, M.A.; Elmore, D.; Sharma, Prakash
1996-01-01
Mountain glaciers, because of their small size, are usually close to equilibrium with the local climate and thus should provide a test of whether temperature oscillations in Greenland late in the last glacial period are part of global-scale climate variability or are restricted to the North Atlantic region. Correlation of cosmogenic chlorine-36 dates on Sierra Nevada moraines with a continuous radiocarbon-dated sediment record from nearby Owens Lake shows that Sierra Nevada glacial advances were associated with Heinrich events 5, 3, 2, and 1.
NASA Astrophysics Data System (ADS)
Reynen, Andrew; Audet, Pascal
2017-09-01
A new method using a machine learning technique is applied to event classification and detection at seismic networks. This method is applicable to a variety of network sizes and settings. The algorithm makes use of a small catalogue of known observations across the entire network. Two attributes, the polarization and frequency content, are used as input to regression. These attributes are extracted at predicted arrival times for P and S waves using only an approximate velocity model, as attributes are calculated over large time spans. This method of waveform characterization is shown to be able to distinguish between blasts and earthquakes with 99 per cent accuracy using a network of 13 stations located in Southern California. The combination of machine learning with generalized waveform features is further applied to event detection in Oklahoma, United States. The event detection algorithm makes use of a pair of unique seismic phases to locate events, with a precision directly related to the sampling rate of the generalized waveform features. Over a week of data from 30 stations in Oklahoma, United States are used to automatically detect 25 times more events than the catalogue of the local geological survey, with a false detection rate of less than 2 per cent. This method provides a highly confident way of detecting and locating events. Furthermore, a large number of seismic events can be automatically detected with low false alarm, allowing for a larger automatic event catalogue with a high degree of trust.
Characterization of Nighttime Light Variability over the Southeastern United States
NASA Astrophysics Data System (ADS)
Cole, T.; Molthan, A.; Schultz, L. A.
2015-12-01
Severe meteorological events such as thunderstorms, tropical cyclones and winter ice storms often produce prolonged, widespread power outages affecting large populations and regions. The spatial impact of these events can extend from relatively rural, small towns (i.e. November 17, 2013 Washington, IL EF-4 tornado) to a series of adjoined states (i.e. April 27, 2011 severe weather outbreak) to entire regions (i.e. 2012 Hurricane Sandy) during their lifespans. As such, affected populations can vary greatly, depending on the event's intensity, location and duration. Actions taken by disaster response agencies like FEMA, the American Red Cross and NOAA to provide support to communities during the recovery process need accurate and timely information on the extent and location(s) of power disruption. This information is often not readily available to these agencies given communication interruptions, independent storm damage reports and other response-inhibiting factors. VIIRS DNB observations which provide daily, nighttime measurements of light sources can be used to detect and monitor power outages caused by these meteorological disaster events. To generate such an outage product, normal nighttime light variability must be analyzed and understood at varying spatial scales (i.e individual pixels, clustered land uses/covers, entire city extents). The southeastern portion of the United States serves as the study area in which the mean, median and standard deviation of nighttime lights are examined over numerous temporal periods (i.e. monthly, seasonally, annually, inter-annually). It is expected that isolated pixels with low population density (rural) will have tremendous variability in which an outage "signal" is difficult to detect. Small towns may have more consistent lighting (over a few pixels), making it easier to identify outages and reductions. Finally, large metropolitan areas may be the most "stable" light source, but the entire area may rarely experience a complete outage. The goal is to determine the smallest spatial scale in which an outage can be detected. Presented work will highlight nighttime light variability over the southeastern U.S. which will serve as a baseline for the production of a near real-time power outage product.
NASA Astrophysics Data System (ADS)
Pasko, V. P.; Stanley, M.; Mathews, J. D.; Inan, U. S.; Wood, T. G.; Cummer, S. A.; Williams, E. R.; Heavner, M. J.
2002-12-01
In August-September 2001 an experimental campaign has been conducted in Puerto Rico to perform correlative studies of lightning and lightning-induced ionospheric effects. The campaign, which was sponsored by a Small Grant for Exploratory Research from the National Science Foundation to Penn State University, had a broad range of scientific goals including studies ionospheric effects of thunderstorms, studies of VHF-quiet positive leaders and studies of large scale optical phenomena above ocean thunderstorms in tropics. As part of this program we conducted night time video recordings of lightning and large scale luminous phenomena above thunderstorms using a SONY DCR TRV 730 CCD video camera equipped with a blue extended ITT Night Vision GEN III NQ 6010 intensifier with 40 deg field of view. The intensifier provided a monochrome (predominantly green) image output. The video system was deployed at the Lidar Laboratory on the grounds of Arecibo Observatory, Puerto Rico (18.247 deg N, 66.754 deg W, elevation 305 m above the sea level). In this talk we report results of observations conducted between 01 and 03 UT on September 3, 2001. A total of 7 sprite events have been detected above a large thunderstorm system (cloud area exceeding 104 km2) located approximately 500 km from the observational site above Haiti/Dominican Republic. The observed events exhibited typical sprite features documented in other parts of the globe, including single columns, groups of columns, relatively small horizontal glows confined to higher altitudes, as well as two large and impulsive events with the transverse extent ~eq50 km. In this talk we will also report results of preliminary analysis of available ELF electromagnetic signatures associated with the observed events recorded by Stanford University at Palmer Station, Antarctica, Duke University, MIT and Los Alamos Sferic Array in Florida. Acknowledgments: The GEN III intensifier has been provided by ITT Night Vision Industries. We are grateful to M. Robinson of ITT Industries for support of our program. We thank W. Lyons for useful discussions. We are indebted to S. Gonzalez, Q. Zhou, M. Sulzer, C. Tepley, J. Friedman, E. Robles, A. Venkataraman and E. Castro for support of our observations at Arecibo Observatory.
Spatial attention determines the nature of nonverbal number representation.
Hyde, Daniel C; Wood, Justin N
2011-09-01
Coordinated studies of adults, infants, and nonhuman animals provide evidence for two systems of nonverbal number representation: a "parallel individuation" system that represents individual items and a "numerical magnitude" system that represents the approximate cardinal value of a group. However, there is considerable debate about the nature and functions of these systems, due largely to the fact that some studies show a dissociation between small (1-3) and large (>3) number representation, whereas others do not. Using event-related potentials, we show that it is possible to determine which system will represent the numerical value of a small number set (1-3 items) by manipulating spatial attention. Specifically, when attention can select individual objects, an early brain response (N1) scales with the cardinal value of the display, the signature of parallel individuation. In contrast, when attention cannot select individual objects or is occupied by another task, a later brain response (P2p) scales with ratio, the signature of the approximate numerical magnitude system. These results provide neural evidence that small numbers can be represented as approximate numerical magnitudes. Further, they empirically demonstrate the importance of early attentional processes to number representation by showing that the way in which attention disperses across a scene determines which numerical system will deploy in a given context.
Agent-based human-robot interaction of a combat bulldozer
NASA Astrophysics Data System (ADS)
Granot, Reuven; Feldman, Maxim
2004-09-01
A small-scale supervised autonomous bulldozer in a remote site was developed to experience agent based human intervention. The model is based on Lego Mindstorms kit and represents combat equipment, whose job performance does not require high accuracy. The model enables evaluation of system response for different operator interventions, as well as for a small colony of semiautonomous dozers. The supervising human may better react than a fully autonomous system to unexpected contingent events, which are a major barrier to implement full autonomy. The automation is introduced as improved Man Machine Interface (MMI) by developing control agents as intelligent tools to negotiate between human requests and task level controllers as well as negotiate with other elements of the software environment. Current UGVs demand significant communication resources and constant human operation. Therefore they will be replaced by semi-autonomous human supervisory controlled systems (telerobotic). For human intervention at the low layers of the control hierarchy we suggest a task oriented control agent to take care of the fluent transition between the state in which the robot operates and the one imposed by the human. This transition should take care about the imperfections, which are responsible for the improper operation of the robot, by disconnecting or adapting them to the new situation. Preliminary conclusions from the small-scale experiments are presented.
Hammersvik, Eirik; Sandberg, Sveinung; Pedersen, Willy
2012-11-01
Over the past 15-20 years, domestic cultivation of cannabis has been established in a number of European countries. New techniques have made such cultivation easier; however, the bulk of growers remain small-scale. In this study, we explore the factors that prevent small-scale growers from increasing their production. The study is based on 1 year of ethnographic fieldwork and qualitative interviews conducted with 45 Norwegian cannabis growers, 10 of whom were growing on a large-scale and 35 on a small-scale. The study identifies five mechanisms that prevent small-scale indoor growers from going large-scale. First, large-scale operations involve a number of people, large sums of money, a high work-load and a high risk of detection, and thus demand a higher level of organizational skills than for small growing operations. Second, financial assets are needed to start a large 'grow-site'. Housing rent, electricity, equipment and nutrients are expensive. Third, to be able to sell large quantities of cannabis, growers need access to an illegal distribution network and knowledge of how to act according to black market norms and structures. Fourth, large-scale operations require advanced horticultural skills to maximize yield and quality, which demands greater skills and knowledge than does small-scale cultivation. Fifth, small-scale growers are often embedded in the 'cannabis culture', which emphasizes anti-commercialism, anti-violence and ecological and community values. Hence, starting up large-scale production will imply having to renegotiate or abandon these values. Going from small- to large-scale cannabis production is a demanding task-ideologically, technically, economically and personally. The many obstacles that small-scale growers face and the lack of interest and motivation for going large-scale suggest that the risk of a 'slippery slope' from small-scale to large-scale growing is limited. Possible political implications of the findings are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hocut, C.; Kit, E.; Liberzon, D.; Fernando, H. J. S.; Materhorn Team
2014-11-01
In the fall of 2012 and spring 2013, the Mountain Terrain Atmospheric Modeling and Observations Program (MATERHORN) conducted extensive field experiments at the Granite Mountain Atmospheric Science Testbed (GMAST), US Army Dugway Proving Grounds (DPG), Utah. This provided a unique opportunity to deploy tower mounted three-dimensional hot-film combo probes, consisting of sonic anemometers collocated with hot-film anemometers able to respond to the wind direction. The combo probes follow mean winds using a feedback control loop and use a Neural Network to calibrate the hot-films in-situ. Once calibrated, these probes can handle a vast range of background flow conditions and scales from mesoscale flow down to the Kolmogorov scale. Of particular interest are the observed variation in velocity spectra during the evenings. Sometimes the velocity spectra shows the turbulence is Kolmogorov and is isotropic at small scales while in other spectra there is evidence of turbulence production at finer scales. An explanation on different spectral shapes will be presented as well as the relevant length/time scales of the production events. Funded by ONR Grant N00014-11-1-0709.
The Propagation of Seismic Waves in the Presence of Strong Elastic Property Contrasts
NASA Astrophysics Data System (ADS)
Saleh, R.; Jeyaraj, R.; Milkereit, B.; Liu, Q.; Valley, B.
2012-12-01
In an active underground mine there are many seismic activities taking place, such as seismic noises, blasts, tremors and microseismic events. In between the activities, the microseismic events are mainly used for monitoring purposes. The frequency content of microseismic events can be up to few KHz, which can result in wavelengths on the order of a few meters in hard rock environment. In an underground mine, considering the presence of both small wavelength and strong elastic contrasts, the simulation of seismic wave propagation is a challenge. With the recent availability of detailed 3D rock property models of mines, in addition to the development of efficient numerical techniques (such as Spectral Element Method (SEM)), and parallel computation facilities, a solution for such a problem is achievable. Most seismic wave scattering studies focus on large scales (>1 km) and weak elastic contrasts (velocity perturbations less than 10%). However, scattering in the presence of small-scale heterogeneities and large elastic contrasts is an area of ongoing research. In a mine environment, the presence of strong contrast discontinuities such as massive ore bodies, tunnels and infrastructure lead to discontinuities of displacement and/or stress tensor components, and have significant impact on the propagation of seismic waves. In order to obtain an accurate image of wave propagation in such a complex media, it is necessary to consider the presence of these discontinuities in numerical models. In this study, the effects of such a contrast are illustrated with 2D/3D modeling and compared with real broadband 3-component seismic data. The real broadband 3-component seismic data will be obtained in one of the Canadian underground mines in Ontario. One of the possible scenarios investigated in this study that may explain the observed complexity in seismic wavefield pattern in hard rock environments is the effect of near field displacements rather than far field. Considering the distribution of seismic sensors in a mine and the presence of seismic events within a mine, the recorded wavefield may represent a near-field displacement, which is not the case for most of seismic studies. The role of receiver characterization on the recorded event near the surface or around fault zones is also investigated. Using 2D/3D modeling, the effects of Vp/Vs variation on vertical and horizontal components of recorded amplitude has been shown.
Upscaling Bedrock Erosion Laws from the Point to the Patch and from the Event to the Year
NASA Astrophysics Data System (ADS)
Beer, A. R.; Turowski, J. M.
2017-12-01
Bedrock erosion depends on the interactions between the bedload tools and cover effects. However, it is unclear (i) how well long-term calibrations of existing erosion models can predict individual erosion events, and (ii) whether at-a-point event calibrations can be spatio-temporally upscaled. Here, we evaluate the performance of at-a-point calibrated erosion models by scaling their erosional efficiency coefficients (k-factors). We use continuous measurements of water discharge and bedload transport at 1- minute resolution, supplemented by repeated sub-millimeter-resolution spatial erosion surveys of a concrete slab in a small Swiss pre-alpine stream. Our results confirm the linear dependency of bedrock abrasion on sediment flux under sediment-starved conditions integrated over space (the 0.2m2 slab surface) and time (20 months). The predictive quality of the commonly applied unit stream power (USP) model is strongly susceptible to bedload transport distribution, whereas the bedload-dependent tools-only model yields more reasonable results. Applying the fitted mean model k-factors to a 16-year, 1-minute-resolution time series of discharge and bedload transport shows that the excess USP model EUSP (which includes a discharge threshold for bedload transport) generally predicts cumulative erosion reasonably well. For exceptional events, however, the EUSP model fails to predict the resulting large erosion rates. Hence, for sediment-starved conditions, event-based erosion model calibration can be applied over larger spatio-temporal scales with stationary k-factors, if a discharge threshold for sediment transport is taken into account. The EUSP model is a surrogate to predict long-term erosion given average erosive events, but fails to capture large event erosion rates. Consequently, the erosion tendency during average erosive events is generally matched by overall EUSP modelling, but large and highly erosive events are underpredicted. In such, water discharge does not account for the non-linearity in sediment availability (e.g., due to sudden release of interlocked sediment from the streambed) and in grain impact energies on the bedrock (i.e., large grain impacts dominate total erosion), which are the main drivers of a bedrock channel's morphology.
Fernández-Fernández, Virginia; Márquez-González, María; Losada-Baltar, Andrés; García, Pablo E; Romero-Moreno, Rosa
2013-01-01
Older people's emotional distress is often related to rumination processes focused on past vital events occurred during their lives. The specific coping strategies displayed to face those events may contribute to explain older adults' current well-being: they can perceive that they have obtained personal growth after those events and/or they can show a tendency to have intrusive thoughts about those events. This paper describes the development and analysis of the psychometric properties of the Scales for the Assessment of the Psychological Impact of Past Life Events (SAPIPLE): the past life events-occurrence scale (LE-O), ruminative thought scale (LE-R) and personal growth scale (LE-PG). Participants were 393 community dwelling elderly (mean age=71.5 years old; SD=6.9). In addition to the SAPIPLE scales, depressive symptomatology, anxiety, psychological well-being, life satisfaction, physical function and vitality have been assessed. The inter-rater agreement's analysis suggests the presence of two factors in the LE-O: positive and negative vital events. Confirmatory Factor Analysis (CFA) supported this two-dimensional structure for both the LE-R and the LE-PG. Good internal consistency indexes have been obtained for each scale and subscale, as well as good criterion and concurrent validity indexes. Both ruminative thoughts about past life events and personal growth following those events are related to older adults' current well-being. The SAPIPLE presents good psychometric properties that justify its use for elderly people. Copyright © 2012 SEGG. Published by Elsevier Espana. All rights reserved.
Forward modeling transient brightenings and microflares around an active region observed with Hi-C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobelski, Adam R.; McKenzie, David E., E-mail: kobelski@solar.physics.montana.edu
Small-scale flare-like brightenings around active regions are among the smallest and most fundamental of energetic transient events in the corona, providing a testbed for models of heating and active region dynamics. In a previous study, we modeled a large collection of these microflares observed with Hinode/X-Ray Telescope (XRT) using EBTEL and found that they required multiple heating events, but could not distinguish between multiple heating events on a single strand, or multiple strands each experiencing a single heating event. We present here a similar study, but with extreme-ultraviolet data of Active Region 11520 from the High Resolution Coronal Imager (Hi-C)more » sounding rocket. Hi-C provides an order of magnitude improvement to the spatial resolution of XRT, and a cooler temperature sensitivity, which combine to provide significant improvements to our ability to detect and model microflare activity around active regions. We have found that at the spatial resolution of Hi-C (≈0.''3), the events occur much more frequently than expected (57 events detected, only 1 or 2 expected), and are most likely made from strands of the order of 100 km wide, each of which is impulsively heated with multiple heating events. These findings tend to support bursty reconnection as the cause of the energy release responsible for the brightenings.« less
Local instability driving extreme events in a pair of coupled chaotic electronic circuits
NASA Astrophysics Data System (ADS)
de Oliveira, Gilson F.; Di Lorenzo, Orlando; de Silans, Thierry Passerat; Chevrollier, Martine; Oriá, Marcos; Cavalcante, Hugo L. D. de Souza
2016-06-01
For a long time, extreme events happening in complex systems, such as financial markets, earthquakes, and neurological networks, were thought to follow power-law size distributions. More recently, evidence suggests that in many systems the largest and rarest events differ from the other ones. They are dragon kings, outliers that make the distribution deviate from a power law in the tail. Understanding the processes of formation of extreme events and what circumstances lead to dragon kings or to a power-law distribution is an open question and it is a very important one to assess whether extreme events will occur too often in a specific system. In the particular system studied in this paper, we show that the rate of occurrence of dragon kings is controlled by the value of a parameter. The system under study here is composed of two nearly identical chaotic oscillators which fail to remain in a permanently synchronized state when coupled. We analyze the statistics of the desynchronization events in this specific example of two coupled chaotic electronic circuits and find that modifying a parameter associated to the local instability responsible for the loss of synchronization reduces the occurrence of dragon kings, while preserving the power-law distribution of small- to intermediate-size events with the same scaling exponent. Our results support the hypothesis that the dragon kings are caused by local instabilities in the phase space.
NASA Astrophysics Data System (ADS)
Darner, R.; Shuster, W.
2016-12-01
Expansion of the urban environment can alter the landscape and creates challenges for how cities deal with energy and water. Large volumes of stormwater in areas that have combined septic and stormwater systems present on challenge. Managing the water as near to the source as possible by creates an environment that allows more infiltration and evapotranspiration. Stormwater control measures (SCM) associated with this type of development, often called green infrastructure, include rain gardens, pervious or porous pavements, bioswales, green or blue roofs, and others. In this presentation, we examine the hydrology of green infrastructure in urban sewersheds in Cleveland and Columbus, OH. We present the need for data throughout the water cycle and challenges to collecting field data at a small scale (single rain garden instrumented to measure inflows, outflow, weather, soil moisture, and groundwater levels) and at a macro scale (a project including low-cost rain gardens, highly engineered rain gardens, groundwater wells, weather stations, soil moisture, and combined sewer flow monitoring). Results will include quantifying the effectiveness of SCMs in intercepting stormwater for different precipitation event sizes. Small scale deployment analysis will demonstrate the role of active adaptive management in the ongoing optimization over multiple years of data collection.
Small-scale shear measurements during the Fine and Microstructure Experiment (Fame)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gargett, A.E.; Osborn, T.R.
1981-03-20
The turbulent kinetic energy dissipation rate e is estimated from measurements of small-scale shear taken with a vertical profiler during the Fine and Microstructure Experiment (Fame). Typical profiles of e are presented for the different oceanographic regions sampled, the Gulf Stream, a mid-Sargasso site, and locations withoutin and with the 100 fathom (approx.2000 m) contour about the island of Bermuda. Heavily averaged values of e are presented as a funtion of mean Vaeisaela frequency N-bar, a fundamental scaling parameter for the oceanic internal wave field. A dependence of e-barproportionalN-bar is found for an ensemble of stations near Bermuda: functional dependencemore » for an ensemble of stations at the mid-Sargasso site is less clear, with results exhibiting an undersirable sensitivity to infrequent large events. Dissipation is found to increase as the island of Bermuda is approached from any direction: the density of measurements is insufficient to determine any azimuthal variation resulting from the anisotropic mean flow field about the island at the time. A set of three profiles across the Gulf Stream suggests that this is not a region of abnormally high dissipation, a conclusion supported by previous and concurrent measurements of temperature finestructure and microstructure.« less
Li, Xiao-yan; Liang, Zhan-hua; Han, Chao; Wei, Wen-juan; Song, Chun-li; Zhou, Li-na; Liu, Yang; Li, Ying; Ji, Xiao-fei; Liu, Jing
2017-01-01
There is a small amount of clinical data regarding the safety and feasibility of autologous peripheral blood mononuclear cell transplantation into the subarachnoid space for the treatment of amyotrophic lateral sclerosis. The objectives of this retrospective study were to assess the safety and efficacy of peripheral blood mononuclear cell transplantation in 14 amyotrophic lateral sclerosis patients to provide more objective data for future clinical trials. After stem cell mobilization and collection, autologous peripheral blood mononuclear cells (1 × 109) were isolated and directly transplanted into the subarachnoid space of amyotrophic lateral sclerosis patients. The primary outcome measure was incidence of adverse events. Secondary outcome measures were electromyography 1 week before operation and 4 weeks after operation, Functional Independence Measurement, Berg Balance Scale, and Dysarthria Assessment Scale 1 week preoperatively and 1, 2, 4 and 12 weeks postoperatively. There was no immediate or delayed transplant-related cytotoxicity. The number of leukocytes, serum alanine aminotransferase and creatinine levels, and body temperature were within the normal ranges. Radiographic evaluation showed no serious transplant-related adverse events. Muscle strength grade, results of Functional Independence Measurement, Berg Balance Scale, and Dysarthria Assessment Scale were not significantly different before and after treatment. These findings suggest that peripheral blood mononuclear cell transplantation into the subarachnoid space for the treatment of amyotrophic lateral sclerosis is safe, but its therapeutic effect is not remarkable. Thus, a large-sample investigation is needed to assess its efficacy further. PMID:28469667
Harpel, C.J.; Kyle, P.R.; Esser, R.P.; McIntosh, W.C.; Caldwell, D.A.
2004-01-01
Eruptive activity has occurred in the summit region of Mount Erebus over the last 95 ky, and has included numerous lava flows and small explosive eruptions, at least one plinian eruption, and at least one and probably two caldera-forming events. Furnace and laser step-heating 40Ar/39Ar ages have been determined for 16 summit lava flows and three englacial tephra layers erupted from Mount Erebus. The summit region is composed of at least one or possibly two superimposed calderas that have been filled by post-caldera lava flows ranging in age from 17 ?? 8 to 1 ?? 5 ka. Dated pre-caldera summit flows display two age populations at 95 ?? 9 to 76 ?? 4 ka and 27 ?? 3 to 21 ??4 ka of samples with tephriphonolite and phonolite compositions, respectively. A caldera-collapse event occurred between 25 and 11 ka. An older caldera-collapse event is likely to have occurred between 80 and 24 ka. Two englacial tephra layers from the flanks of Mount Erebus have been dated at 71 ?? 5 and 15 ?? 4 ka. These layers stratigraphically bracket 14 undated tephra layers, and predate 19 undated tephra layers, indicating that small-scale explosive activity has occurred throughout the late Pleistocene and Holocene eruptive history of Mount Erebus. A distal, englacial plinian-fall tephra sample has an age of 39 ?? 6 ka and may have been associated with the older of the two caldera-collapse events. A shift in magma composition from tephriphonolite to phonolite occurred at around 36 ka. ?? Springer-Verlag 2004.
NASA Astrophysics Data System (ADS)
Tang, Zhanqi; Jiang, Nan
2018-05-01
This study reports the modifications of scale interaction and arrangement in a turbulent boundary layer perturbed by a wall-mounted circular cylinder. Hot-wire measurements were executed at multiple streamwise and wall-normal wise locations downstream of the cylindrical element. The streamwise fluctuating signals were decomposed into large-, small-, and dissipative-scale signatures by corresponding cutoff filters. The scale interaction under the cylindrical perturbation was elaborated by comparing the small- and dissipative-scale amplitude/frequency modulation effects downstream of the cylinder element with the results observed in the unperturbed case. It was obtained that the large-scale fluctuations perform a stronger amplitude modulation on both the small and dissipative scales in the near-wall region. At the wall-normal positions of the cylinder height, the small-scale amplitude modulation coefficients are redistributed by the cylinder wake. The similar observation was noted in small-scale frequency modulation; however, the dissipative-scale frequency modulation seems to be independent of the cylindrical perturbation. The phase-relationship observation indicated that the cylindrical perturbation shortens the time shifts between both the small- and dissipative-scale variations (amplitude and frequency) and large-scale fluctuations. Then, the integral time scale dependence of the phase-relationship between the small/dissipative scales and large scales was also discussed. Furthermore, the discrepancy of small- and dissipative-scale time shifts relative to the large-scale motions was examined, which indicates that the small-scale amplitude/frequency leads the dissipative scales.
NASA Astrophysics Data System (ADS)
Capman, N.; Engebretson, M.; Posch, J. L.; Cattell, C. A.; Tian, S.; Wygant, J. R.; Kletzing, C.; Lessard, M.; Anderson, B. J.; Russell, C. T.; Reeves, G. D.; Fuselier, S. A.
2016-12-01
A 0.5-1.0 Hz electromagnetic ion cyclotron (EMIC) wave event was observed on December 14, 2015 from 13:26 to 13:28 UT at the four MMS satellites (L= 9.5, MLT= 13.0, MLAT= -24.4, peak amplitude 7 nT), and both Van Allen probes (RBSP-A: L= 5.7, MLT= 12.8, MLAT= 19.5, peak amplitude 5 nT; RBSP-B: L= 4.3, MLT= 14.2, MLAT= 11.3, peak amplitude 1 nT). On the ground, it was observed by search coil magnetometers at Halley Bay and South Pole, Antarctica, and Sondrestromfjord, Greenland, and by fluxgate magnetometers of the MACCS array at Pangnirtung and Cape Dorset in Arctic Canada. This event was preceded by a small increase of the solar wind pressure of 3 nPa from 13:10 to 13:20 UT. The proton distributions at Van Allen probe A confirm that the compression increased the pitch angle anisotropy in 10 keV ring current protons. The wave forms were very similar at the four MMS spacecraft indicating that the coherence-scale of the wave packets is larger than the inter-spacecraft separations of 20 km at the time. Inter-comparison of the wave signals at the four MMS spacecraft are used to assess the characteristics of the waves and estimate their spatial scales transverse and parallel to the background magnetic field.
75 FR 42633 - Business Continuity and Disaster Recovery
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-22
... event of a wide-scale disruption affecting such entities' trading or clearing operations. These proposed... objective, in the event of a wide-scale disruption. The proposed amendments also revise application guidance... overall resilience of the U.S. financial system in the event of a wide-scale disruption, and is the...
NASA Astrophysics Data System (ADS)
Higgins, N.; Lapusta, N.
2014-12-01
Many large earthquakes on natural faults are preceded by smaller events, often termed foreshocks, that occur close in time and space to the larger event that follows. Understanding the origin of such events is important for understanding earthquake physics. Unique laboratory experiments of earthquake nucleation in a meter-scale slab of granite (McLaskey and Kilgore, 2013; McLaskey et al., 2014) demonstrate that sample-scale nucleation processes are also accompanied by much smaller seismic events. One potential explanation for these foreshocks is that they occur on small asperities - or bumps - on the fault interface, which may also be the locations of smaller critical nucleation size. We explore this possibility through 3D numerical simulations of a heterogeneous 2D fault embedded in a homogeneous elastic half-space, in an attempt to qualitatively reproduce the laboratory observations of foreshocks. In our model, the simulated fault interface is governed by rate-and-state friction with laboratory-relevant frictional properties, fault loading, and fault size. To create favorable locations for foreshocks, the fault surface heterogeneity is represented as patches of increased normal stress, decreased characteristic slip distance L, or both. Our simulation results indicate that one can create a rate-and-state model of the experimental observations. Models with a combination of higher normal stress and lower L at the patches are closest to matching the laboratory observations of foreshocks in moment magnitude, source size, and stress drop. In particular, we find that, when the local compression is increased, foreshocks can occur on patches that are smaller than theoretical critical nucleation size estimates. The additional inclusion of lower L for these patches helps to keep stress drops within the range observed in experiments, and is compatible with the asperity model of foreshock sources, since one would expect more compressed spots to be smoother (and hence have lower L). In this heterogeneous rate-and-state fault model, the foreshocks interact with each other and with the overall nucleation process through their postseismic slip. The interplay amongst foreshocks, and between foreshocks and the larger-scale nucleation process, is a topic of our future work.
A scaling analysis for thermal fragmentation on small airless bodies
NASA Astrophysics Data System (ADS)
El Mir, Charles; Hazeli, Kavan; Ramesh, KT; Delbo, Marco
2016-10-01
The presence of regolith on airless bodies has typically been attributed to impact ejecta re-accumulation and gradual breakdown of boulders by micrometeoritic impacts. However, ejecta velocities for small kilometer-sized asteroids often exceed the gravitational escape velocity, limiting to a great extent the amount of retained debris following a high-velocity impact event. Close-surface images of small (sub-km) asteroid surfaces have shown the presence of a coarse-grained regolith layer on these bodies, suggesting that a different mechanism could be involved in the regolith generation process.Recently, the existence of regolith on sufficiently small planetary bodies has also been attributed to cyclic stresses that develop within boulders due to the large diurnal temperature variation, which eventually lead to fracture by thermal fatigue. It was demonstrated that thermal fatigue can be orders of magnitude faster than fragmentation by classical impact mechanisms, in terms of breaking down cm-sized rocks on small airless bodies. Larger (10 cm-size) rocks were shown to potentially break up faster than smaller (cm) rocks, an observation that is in contrast to the predictions of mechanical disruption models. This observation is justified by the existence of higher internal thermal stresses resulting from the larger temperature gradient in bigger rocks, but it is not clear that this conclusion can be extrapolated or scaled for meter-sized boulders.In the current study, we present a computational and analytical approach that examines thermally driven crack growth within asteroidal rocks over a large range of lengthscales. We first examine the main length and timescales involved in the thermally-driven fatigue crack growth, and identify a critical lengthscale comparable to the thermal skin depth, after which thermal fatigue becomes slower, providing bounds on the thermal fragmentation mechanism. We also develop a simple scaling method to estimate the time required for thermal fatigue-induced rock breakdown while accounting for the composition and thermomechanical properties of the rocks, and the asteroid's heliocentric distance.
An Impact Ejecta Behavior Model for Small, Irregular Bodies
NASA Technical Reports Server (NTRS)
Richardson, J. E.; Melosh, H. J.; Greenberg, R.
2003-01-01
In recent years, spacecraft observations of asteroids 951 Gaspra, 243 Ida, 253 Mathilde, and 433 Eros have shown the overriding dominance of impact processes with regard to the structure and surface morphology of these small, irregular bodies. In particular, impact ejecta play an important role in regolith formation, ranging from small particles to large blocks, as well as surface feature modification and obscuration. To investigate these processes, a numerical model has been developed based upon the impact ejecta scaling laws provided by Housen, Schmidt, and Holsapple, and modified to more properly simulate the late-stage ejection velocities and ejecta plume shape changes (ejection angle variations) shown in impact cratering experiments. A target strength parameter has also been added to allow the simulation of strength-dominated cratering events in addition to the more familiar gravity-dominated cratering events. The result is a dynamical simulation which models -- via tracer particles -- the ejecta plume behavior, ejecta blanket placement, and impact crater area resulting from a specified impact on an irregularly shaped target body, which is modeled in 3-dimensional polygon fashion. This target body can be placed in a simple rotation state about one of its principal axes, with the impact site and projectile/target parameters selected by the user. The gravitational force from the irregular target body (on each tracer particle) is determined using the polygonized surface (polyhedron) gravity technique developed by Werner.
NASA Astrophysics Data System (ADS)
Wang, J.
2013-12-01
Extreme weather events have already significantly influenced North America. During 2005-2011, the extreme events have increased by 250 %, from four or fewer events occurring in 2005, while 14 events occurring in 2011 (www.ncdc.noaa.gov/billions/). In addition, extreme rainfall amounts, frequency, and intensity were all expected to increase under greenhouse warming scenarios (Wehner 2005; Kharin et al. 2007; Tebaldi et al. 2006). Global models are powerful tools to investigate the climate and climate change on large scales. However, such models do not represent local terrain and mesoscale weather systems well owing to their coarse horizontal resolution (150-300 km). To capture the fine-scale features of extreme weather events, regional climate models (RCMs) with a more realistic representation of the complex terrain and heterogeneous land surfaces are needed (Mass et al. 2002). This study uses the Nested Regional Climate model (NRCM) to perform regional scale climate simulations on a 12-km × 12-km high resolution scale over North America (including Alaska; with 600 × 515 grid cells at longitude and latitude), known as CORDEX_North America, instead of small regions as studied previously (eg., Dominguez et al. 2012; Gao et al. 2012). The performance and the biases of the NRCM extreme precipitation calculations (2000-2010) have been evaluated with PRISM precipitation (Daly et al. 1997) by Wang and Kotamarthi (2013): the NRCM replicated very well the monthly amount of extreme precipitation with less than 3% overestimation over East CONUS, and the frequency of extremes over West CONUS and upper Mississippi River Basin. The Representative Concentration Pathway (RCP) 8.5 and RCP 4.5 from the new Community Earth System Model version 1.0 (CESM v1.0) are dynamically downscaled to predict the extreme rainfall events at the end-of-century (2085-2095) and to explore the uncertainties of future extreme precipitation induced by different scenarios over distinct regions. We have corrected the CO2 atmospheric concentration in the longwave/shortwave radiation schemes of the NRCM according to the recommended datasets by CMIP5 (Clarke et al. 2007; Riahi et al. 2007). We have also corrected an inconsistency in skin temperature during the downscaling process by modifying the land/sea mask of CLM 4.0 as mentioned by Gao et al. (2012). Acknowledgements: This work was supported under a military interdepartmental purchase request from the SERDP, RC-2242, through U.S. Department of Energy contract DE-AC02-06CH11357.
Linking Resilience and Transformation as Micro- and Macro Adaptation
NASA Astrophysics Data System (ADS)
Friedman, E.; Breitzer, R.; Solecki, W. D.
2017-12-01
The concept of resiliency within climate adaptation planning and practice is widespread, but in some ways it has begun to suffer from its own success. While resiliency provides a valuable frame for understanding the conditions and opportunities for localized responses to increasing climate risks, the concept's ubiquitous use leads to it being applied to often conflicting policy agendas, which can mask or limit the capacity to connect efforts focused on near term risk to longer term and emergent climate threats in communities. These challenges are particularly evident in the context of extreme events and in the post extreme event policy windows. To overcome these issues and take advantage of the post-event policy window, the NOAA RISA Climate Change Risk in the Urban Northeast (CCRUN) project has been developing two specific, "boutique", policy tools. These include the PELT (Post-event learning toolkit) and MART (Macro-adaptation Resilience toolkit) toolkits. Embedded in these toolkits are two approaches to small scale strategies often associated with near term action (i.e., micro-adaptation) and large scale strategies associated with broad longer term needs (i.e., macro-adaptation). In this paper, these two approaches - micro and macro adaptation - are theoretically defined and presented in practice through the beta-testing of the PELT and MART toolkits. Most importantly, we illustrate how the theoretical links between resiliency and transformation can be operationalized through the use of these approaches, and how these approaches can be implemented in everyday risk management practice. We present our work through selected case studies in the Northeast US region, specifically in Jamaica Bay, New York, and Eastwick neighborhood in Philadelphia.
NASA Astrophysics Data System (ADS)
Barros, Lucas V.; Assumpção, Marcelo; Chimpliganond, Cristiano; Carvalho, Juraci M.; Von Huelsen, Mônica G.; Caixeta, Daniel; França, George Sand; de Albuquerque, Diogo F.; Ferreira, Vinicius M.; Fontenele, Darlan P.
2015-07-01
On October 8th, 2010, a 5.0 mb earthquake with intensity VI (MM) occurred close to Mara Rosa, in the North of Goiás State, central Brazil, in an area where previous low magnitude seismicity had been observed. This earthquake was felt up to 300 km away from the epicenter, and was the biggest event ever detected in Central Brazil Seismic Zone. Despite the difficulty of associating earthquakes in Stable Continental Interior with geological structures, this event is possibly related to the reactivation of a geological fault of the continental-scale Transbrasiliano Lineament (TBL): the aftershock activity observed with an 8-station seismic network, indicates a NW dipping, SW-NE trending reverse fault, parallel to the TBL. The P axis is NW-SE oriented, consistent with expected stress direction in the region. Cross correlation technique was used to synchronize the weak P- and S- wave phases of some of the aftershocks, recorded at regional stations, with the corresponding arrivals of the main shock producing a consistent set of relative arrival times. The use of regional station corrections allowed the mainshock to be located with uncertainties small enough to qualify for a GT5 event, which will help to constrain 3D velocity models in South America. We found that the aftershocks were distributed around a circular area about 1.5-2.0 km across, with no events in the middle. This is interpreted as the mainshock rupture completely releasing all stresses. The rupture area and the mainshock moment correspond to a stress-drop of about 2 MPa.
Small-scale turbidity currents in a big submarine canyon
Xu, Jingping; Barry, James P.; Paull, Charles K.
2013-01-01
Field measurements of oceanic turbidity currents, especially diluted currents, are extremely rare. We present a dilute turbidity current recorded by instrumented moorings 14.5 km apart at 1300 and 1860 m water depth. The sediment concentration within the flow was 0.017%, accounting for 18 cm/s gravity current speed due to density excess. Tidal currents of ∼30 cm/s during the event provided a "tailwind" that assisted the down-canyon movement of the turbidity current and its sediment plume. High-resolution velocity measurements suggested that the turbidity current was likely the result of a local canyon wall slumping near the 1300 m mooring. Frequent occurrences, in both space and time, of such weak sediment transport events could be an important mechanism to cascade sediment and other particles, and to help sustain the vibrant ecosystems in deep-sea canyons.
Modeled ground magnetic signatures of flux transfer events
NASA Technical Reports Server (NTRS)
Mchenry, Mark A.; Clauer, C. Robert
1987-01-01
The magnetic field on the ground due to a small (not greater than 200 km scale size) localized field-aligned current (FAC) system interacting with the ionosphere is calculated in terms of an integral over the ionospheric distribution of FAC. Two different candidate current systems for flux transfer events (FTEs) are considered: (1) a system which has current flowing down the center of a cylindrical flux tube with a return current uniformly distributed along the outside edge; and (2) a system which has upward current on one half of the perimeter of a cylindrical flux tube with downward current on the opposite half. The peak magnetic field on the ground is found to differ by a factor of 2 between the two systems, and the magnetic perturbations are in different directions depending on the observer's position.
Large earthquake rupture process variations on the Middle America megathrust
NASA Astrophysics Data System (ADS)
Ye, Lingling; Lay, Thorne; Kanamori, Hiroo
2013-11-01
The megathrust fault between the underthrusting Cocos plate and overriding Caribbean plate recently experienced three large ruptures: the August 27, 2012 (Mw 7.3) El Salvador; September 5, 2012 (Mw 7.6) Costa Rica; and November 7, 2012 (Mw 7.4) Guatemala earthquakes. All three events involve shallow-dipping thrust faulting on the plate boundary, but they had variable rupture processes. The El Salvador earthquake ruptured from about 4 to 20 km depth, with a relatively large centroid time of ˜19 s, low seismic moment-scaled energy release, and a depleted teleseismic short-period source spectrum similar to that of the September 2, 1992 (Mw 7.6) Nicaragua tsunami earthquake that ruptured the adjacent shallow portion of the plate boundary. The Costa Rica and Guatemala earthquakes had large slip in the depth range 15 to 30 km, and more typical teleseismic source spectra. Regional seismic recordings have higher short-period energy levels for the Costa Rica event relative to the El Salvador event, consistent with the teleseismic observations. A broadband regional waveform template correlation analysis is applied to categorize the focal mechanisms for larger aftershocks of the three events. Modeling of regional wave spectral ratios for clustered events with similar mechanisms indicates that interplate thrust events have corner frequencies, normalized by a reference model, that increase down-dip from anomalously low values near the Middle America trench. Relatively high corner frequencies are found for thrust events near Costa Rica; thus, variations along strike of the trench may also be important. Geodetic observations indicate trench-parallel motion of a forearc sliver extending from Costa Rica to Guatemala, and low seismic coupling on the megathrust has been inferred from a lack of boundary-perpendicular strain accumulation. The slip distributions and seismic radiation from the large regional thrust events indicate relatively strong seismic coupling near Nicoya, Costa Rica, patchy zones of strong seismic coupling in the shallowest megathrust region along Nicaragua and El Salvador, and small deeper patchy zones of strong seismic coupling near Guatemala, which can be reconciled with the geodetic observations as long as the strong coupling is limited to a small fraction of the megathrust area.
NASA Astrophysics Data System (ADS)
Salack, S.; Worou, N. O.; Sanfo, S.; Nikiema, M. P.; Boubacar, I.; Paturel, J. E.; Tondoh, E. J.
2017-12-01
In West Africa, the risk of food insecurity linked to the low productivity of small holder farming increases as a result of rainfall extremes. In its recent evolution, the rainy season in the Sudan-Sahel zone presents mixed patterns of extreme climatic events. In addition to intense rain events, the distribution of events is associated with pockets of intra-seasonal long dry spells. The negative consequences of these mixed patterns are obvious on the farm: soil water logging, erosion of arable land, dwartness and dessication of crops, and loss in production. The capacity of local farming communities to respond accordingly to rainfall extreme events is often constrained by lack of access to climate information and advisory on smart crop management practices that can help translate extreme rainfall events into farming options. The objective of this work is to expose the framework and the pre-liminary results of a scheme that customizes climate-advisory information package delivery to subsistence farmers in Bakel (Senegal), Ouahigouya & Dano (Burkina Faso) and Bolgatanga (Ghana) for sustainable family agriculture. The package is based on the provision of timely climate information (48-hours, dekadal & seasonal) embedded with smart crop management practices to explore and exploite the potential advantage of intense rainfall and extreme dry spells in millet, maize, sorghum and cowpea farming communities. It is sent via mobile phones and used on selected farms (i.e agro-climatic farm schools) on which some small on-farm infrastructure were built to alleviate negative impacts of weather. Results provide prominent insight on how co-production of weather/climate information, customized access and guidiance on its use can induce fast learning (capacity building of actors), motivation for adaptation, sustainability, potential changes in cropping system, yields and family income in the face of a rainfall extremes at local scales of Sudan-Sahel of West Africa. Keywords: Climate Information, Smart Practices, Farming Options, Agro-Climatic Farm Schools, Sudan-Sahel
Contrasting scaling properties of interglacial and glacial climates
Shao, Zhi-Gang; Ditlevsen, Peter D.
2016-01-01
Understanding natural climate variability is essential for assessments of climate change. This is reflected in the scaling properties of climate records. The scaling exponents of the interglacial and the glacial climates are fundamentally different. The Holocene record is monofractal, with a scaling exponent H∼0.7. On the contrary, the glacial record is multifractal, with a significantly higher scaling exponent H∼1.2, indicating a longer persistence time and stronger nonlinearities in the glacial climate. The glacial climate is dominated by the strong multi-millennial Dansgaard–Oeschger (DO) events influencing the long-time correlation. However, by separately analysing the last glacial maximum lacking DO events, here we find the same scaling for that period as for the full glacial period. The unbroken scaling thus indicates that the DO events are part of the natural variability and not externally triggered. At glacial time scales, there is a scale break to a trivial scaling, contrasting the DO events from the similarly saw-tooth-shaped glacial cycles. PMID:26980084
NASA Astrophysics Data System (ADS)
Alvarez-Berrios, N.; Parés-Ramos, I.; Gould, W. A.
2017-12-01
The effects of climate change threaten the world's most sensitive agroecosystems and our potential to reach agricultural productivity levels needed to feed a projected global population of 9.7 billion people by 2050. The US Caribbean agriculture is especially vulnerable to the effects of climate change, due to the region's frequent exposure to extreme weather events, its geographic and economic scale, shortage of labor force, and rapid urban expansion. Currently, agriculture contributes less than 1% of the island's GDP, and over 80% of the food consumed in the region is imported. Despite low production levels, there is widespread interest in reinvigorating the agricultural sector's contribution to the economy. Local and federal institutions play a major role strengthening the agricultural sector by providing access to incentives, loans, and education for best management practices. However, many of these efforts conform to agricultural systems of larger scale of production and temperate environments. In this study, we explore agricultural incentives programs and their implication for highly diverse, small-scale, and subsistence operations that characterize agricultural systems in Puerto Rico and the US Virgin Islands. We analyze records and maps from the USDA Farm Service Agency, to typify participating farms, and to track changes in land cover, farm size, crop diversity, practices, and production levels resulting from their enrollment in such programs. Preliminary results indicate that many incentives programs are not tailored to agricultural tropical systems and prescribe alternatives that exclude traditional farming methods employed in small-scale and subsistence farms (e.g. crop insurance that benefit monoculture over intercropped systems). Moreover, many of the incentives are contradictory in their recommendations (e.g., crop insurance benefit sun-grown coffee production, while best agricultural practices recommend agroforestry with shade-grown coffee). Understanding the characteristics that underlie the resilience of traditional agriculture is an urgent matter, as they can serve as the basis for the design of agricultural systems that mitigate projected climate changes.
A multi-sensor approach to landslide monitoring of rainfall-induced failures in Scotland.
NASA Astrophysics Data System (ADS)
Gilles, Charlie; Hoey, Trevor; Williams, Richard
2017-04-01
Landslides are of significant interest in upland areas of the United Kingdom due to their: complex mechanics, potential to channelize into hazardous debris flows and their costly potential impacts on infrastructure. The British Geological Survey National Landslide Database contains an average of 367 landslides per year (from 1970). Slope failures in the UK are typically triggered by extended periods of intense rainfall, and can occur at any time of year. In any given rainfall event that triggers landslides, most potentially vulnerable slopes remain stable. Accurate warning systems would be facilitated by identifying landslide precursors prior to failure events. This project tests whether such precursors can be identified in the valley of Glen Ogle, Scotland (87 km north-west of Edinburgh), where in summer 2004 two debris flows blocked the main road (A85), trapping fifty-seven people. Two adjacent sites have been selected on a west facing slope in Glen Ogle, one of which (the control) has been stable since at least 2004 and the other failed in 2004 and remains unstable. Understanding the immediate causes and antecedent conditions responsible for landslides requires a multi-scale approach. This project uses multiple sensors to assess failure mechanisms of landslides in Glen Ogle: (1) 3-monthly, high (1.8 arcsec) resolution terrestrial laser scanning of topography to detect changes and identify patterns of movement prior to major failure, using the Riegl VZ-1000 (NERC Geophysical Equipment Fund); (2) rainfall and soil moisture data to monitor pore pressure of landslide failure prior to and after hydrologically triggered events; (3) monitoring ground motion using grain-scale sensors which are becoming lower cost, more efficient in terms of power, and can be wirelessly networked these will be used to detect small scale movement of the landslide. Comparative data from the control and test sites will be presented, from which patterns of surface deformation between failure events will be derived.
NASA Astrophysics Data System (ADS)
Li, Shuangcai; Duffy, Christopher J.
2011-03-01
Our ability to predict complex environmental fluid flow and transport hinges on accurate and efficient simulations of multiple physical phenomenon operating simultaneously over a wide range of spatial and temporal scales, including overbank floods, coastal storm surge events, drying and wetting bed conditions, and simultaneous bed form evolution. This research implements a fully coupled strategy for solving shallow water hydrodynamics, sediment transport, and morphological bed evolution in rivers and floodplains (PIHM_Hydro) and applies the model to field and laboratory experiments that cover a wide range of spatial and temporal scales. The model uses a standard upwind finite volume method and Roe's approximate Riemann solver for unstructured grids. A multidimensional linear reconstruction and slope limiter are implemented, achieving second-order spatial accuracy. Model efficiency and stability are treated using an explicit-implicit method for temporal discretization with operator splitting. Laboratory-and field-scale experiments were compiled where coupled processes across a range of scales were observed and where higher-order spatial and temporal accuracy might be needed for accurate and efficient solutions. These experiments demonstrate the ability of the fully coupled strategy in capturing dynamics of field-scale flood waves and small-scale drying-wetting processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Zeli; Leung, L. Ruby; Li, Hongyi
Although sediment yield (SY) from water erosion is ubiquitous and its environmental consequences are well recognized, its impacts on the global carbon cycle remain largely uncertain. This knowledge gap is partly due to the lack of soil erosion modeling in Earth System Models (ESMs), which are important tools used to understand the global carbon cycle and explore its changes. This study analyzed sediment and particulate organic carbon yield (CY) data from 1081 and 38 small catchments (0.1-200 km27 ), respectively, in different environments across the globe. Using multiple statistical analysis techniques, we explored environmental factors and hydrological processes important formore » SY and CY modeling in ESMs. Our results show clear correlations of high SY with traditional agriculture, seismicity and heavy storms, as well as strong correlations between SY and annual peak runoff. These highlight the potential limitation of SY models that represent only interrill and rill erosion because shallow overland flow and rill flow have limited transport capacity due to their hydraulic geometry to produce high SY. Further, our results suggest that SY modeling in ESMs should be implemented at the event scale to produce the catastrophic mass transport during episodic events. Several environmental factors such as seismicity and land management that are often not considered in current catchment-scale SY models can be important in controlling global SY. Our analyses show that SY is likely the primary control on CY in small catchments and a statistically significant empirical relationship is established to calculate SY and CY jointly in ESMs.« less
Detection of large-scale concentric gravity waves from a Chinese airglow imager network
NASA Astrophysics Data System (ADS)
Lai, Chang; Yue, Jia; Xu, Jiyao; Yuan, Wei; Li, Qinzeng; Liu, Xiao
2018-06-01
Concentric gravity waves (CGWs) contain a broad spectrum of horizontal wavelengths and periods due to their instantaneous localized sources (e.g., deep convection, volcanic eruptions, or earthquake, etc.). However, it is difficult to observe large-scale gravity waves of >100 km wavelength from the ground for the limited field of view of a single camera and local bad weather. Previously, complete large-scale CGW imagery could only be captured by satellite observations. In the present study, we developed a novel method that uses assembling separate images and applying low-pass filtering to obtain temporal and spatial information about complete large-scale CGWs from a network of all-sky airglow imagers. Coordinated observations from five all-sky airglow imagers in Northern China were assembled and processed to study large-scale CGWs over a wide area (1800 km × 1 400 km), focusing on the same two CGW events as Xu et al. (2015). Our algorithms yielded images of large-scale CGWs by filtering out the small-scale CGWs. The wavelengths, wave speeds, and periods of CGWs were measured from a sequence of consecutive assembled images. Overall, the assembling and low-pass filtering algorithms can expand the airglow imager network to its full capacity regarding the detection of large-scale gravity waves.
Sanzol, Javier
2010-05-14
Gene duplication is central to genome evolution. In plants, genes can be duplicated through small-scale events and large-scale duplications often involving polyploidy. The apple belongs to the subtribe Pyrinae (Rosaceae), a diverse lineage that originated via allopolyploidization. Both small-scale duplications and polyploidy may have been important mechanisms shaping the genome of this species. This study evaluates the gene duplication and polyploidy history of the apple by characterizing duplicated genes in this species using EST data. Overall, 68% of the apple genes were clustered into families with a mean copy-number of 4.6. Analysis of the age distribution of gene duplications supported a continuous mode of small-scale duplications, plus two episodes of large-scale duplicates of vastly different ages. The youngest was consistent with the polyploid origin of the Pyrinae 37-48 MYBP, whereas the older may be related to gamma-triplication; an ancient hexapolyploidization previously characterized in the four sequenced eurosid genomes and basal to the eurosid-asterid divergence. Duplicated genes were studied for functional diversification with an emphasis on young paralogs; those originated during or after the formation of the Pyrinae lineage. Unequal assignment of single-copy genes and gene families to Gene Ontology categories suggested functional bias in the pattern of gene retention of paralogs. Young paralogs related to signal transduction, metabolism, and energy pathways have been preferentially retained. Non-random retention of duplicated genes seems to have mediated the expansion of gene families, some of which may have substantially increased their members after the origin of the Pyrinae. The joint analysis of over-duplicated functional categories and phylogenies, allowed evaluation of the role of both polyploidy and small-scale duplications during this process. Finally, gene expression analysis indicated that 82% of duplicated genes, including 80% of young paralogs, showed uncorrelated expression profiles, suggesting extensive subfunctionalization and a role of gene duplication in the acquisition of novel patterns of gene expression. This study reports a genome-wide analysis of the mode of gene duplication in the apple, and provides evidence for its role in genome functional diversification by characterising three major processes: selective retention of paralogs, amplification of gene families, and changes in gene expression.
The association of a J-burst with a solar jet
NASA Astrophysics Data System (ADS)
Morosan, D. E.; Gallagher, P. T.; Fallows, R. A.; Reid, H.; Mann, G.; Bisi, M. M.; Magdalenić, J.; Rucker, H. O.; Thidé, B.; Vocks, C.; Anderson, J.; Asgekar, A.; Avruch, I. M.; Bell, M. E.; Bentum, M. J.; Best, P.; Blaauw, R.; Bonafede, A.; Breitling, F.; Broderick, J. W.; Brüggen, M.; Cerrigone, L.; Ciardi, B.; de Geus, E.; Duscha, S.; Eislöffel, J.; Falcke, H.; Garrett, M. A.; Grießmeier, J. M.; Gunst, A. W.; Hoeft, M.; Iacobelli, M.; Juette, E.; Kuper, G.; McFadden, R.; McKay-Bukowski, D.; McKean, J. P.; Mulcahy, D. D.; Munk, H.; Nelles, A.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pandey, V. N.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Schwarz, D. J.; Sluman, J.; Smirnov, O.; Steinmetz, M.; Tagger, M.; ter Veen, S.; Thoudam, S.; Toribio, M. C.; Vermeulen, R.; van Weeren, R. J.; Wucknitz, O.; Zarka, P.
2017-10-01
Context. The Sun is an active star that produces large-scale energetic events such as solar flares and coronal mass ejections, and numerous smaller scale events such as solar jets. These events are often associated with accelerated particles that can cause emission at radio wavelengths. The reconfiguration of the solar magnetic field in the corona is believed to be the cause of the majority of solar energetic events and accelerated particles. Aims: Here, we investigate a bright J-burst that was associated with a solar jet and the possible emission mechanism causing these two phenomena. Methods: We used data from the Solar Dynamics Observatory (SDO) to observe a solar jet and radio data from the Low Frequency Array (LOFAR) and the Nançay Radioheliograph (NRH) to observe a J-burst over a broad frequency range (33-173 MHz) on 9 July 2013 at 11:06 UT. Results: The J-burst showed fundamental and harmonic components and was associated with a solar jet observed at extreme ultraviolet wavelengths with SDO. The solar jet occurred in the northern hemisphere at a time and location coincident with the radio burst and not inside a group of complex active regions in the southern hemisphere. The jet occurred in the negative polarity region of an area of bipolar plage. Newly emerged positive flux in this region appeared to be the trigger of the jet. Conclusions: Magnetic reconnection between the overlying coronal field lines and the newly emerged positive field lines is most likely the cause of the solar jet. Radio imaging provides a clear association between the jet and the J-burst, which shows the path of the accelerated electrons. These electrons travelled from a region in the vicinity of the solar jet along closed magnetic field lines up to the top of a closed magnetic loop at a height of 360 Mm. Such small-scale complex eruptive events arising from magnetic reconnection could facilitate accelerated electrons to produce continuously the large numbers of Type III bursts observed at low frequencies, in a similar way to the J-burst analysed here. The movie attached to Fig. 4 is available at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Loperfido, J. V.; Noe, Gregory B.; Jarnagin, S. Taylor; Hogan, Dianna M.
2014-11-01
Urban stormwater runoff remains an important issue that causes local and regional-scale water quantity and quality issues. Stormwater best management practices (BMPs) have been widely used to mitigate runoff issues, traditionally in a centralized manner; however, problems associated with urban hydrology have remained. An emerging trend is implementation of BMPs in a distributed manner (multi-BMP treatment trains located on the landscape and integrated with urban design), but little catchment-scale performance of these systems have been reported to date. Here, stream hydrologic data (March, 2011-September, 2012) are evaluated in four catchments located in the Chesapeake Bay watershed: one utilizing distributed stormwater BMPs, two utilizing centralized stormwater BMPs, and a forested catchment serving as a reference. Among urban catchments with similar land cover, geology and BMP design standards (i.e. 100-year event), but contrasting placement of stormwater BMPs, distributed BMPs resulted in: significantly greater estimated baseflow, a higher minimum precipitation threshold for stream response and maximum discharge increases, better maximum discharge control for small precipitation events, and reduced runoff volume during an extreme (1000-year) precipitation event compared to centralized BMPs. For all catchments, greater forest land cover and less impervious cover appeared to be more important drivers than stormwater BMP spatial pattern, and caused lower total, stormflow, and baseflow runoff volume; lower maximum discharge during typical precipitation events; and lower runoff volume during an extreme precipitation event. Analysis of hydrologic field data in this study suggests that both the spatial distribution of stormwater BMPs and land cover are important for management of urban stormwater runoff. In particular, catchment-wide application of distributed BMPs improved stream hydrology compared to centralized BMPs, but not enough to fully replicate forested catchment stream hydrology. Integrated planning of stormwater management, protected riparian buffers and forest land cover with suburban development in the distributed-BMP catchment enabled multi-purpose use of land that provided esthetic value and green-space, community gathering points, and wildlife habitat in addition to hydrologic stormwater treatment.
Loperfido, John V.; Noe, Gregory B.; Jarnagin, S. Taylor; Hogan, Dianna M.
2014-01-01
Urban stormwater runoff remains an important issue that causes local and regional-scale water quantity and quality issues. Stormwater best management practices (BMPs) have been widely used to mitigate runoff issues, traditionally in a centralized manner; however, problems associated with urban hydrology have remained. An emerging trend is implementation of BMPs in a distributed manner (multi-BMP treatment trains located on the landscape and integrated with urban design), but little catchment-scale performance of these systems have been reported to date. Here, stream hydrologic data (March, 2011–September, 2012) are evaluated in four catchments located in the Chesapeake Bay watershed: one utilizing distributed stormwater BMPs, two utilizing centralized stormwater BMPs, and a forested catchment serving as a reference. Among urban catchments with similar land cover, geology and BMP design standards (i.e. 100-year event), but contrasting placement of stormwater BMPs, distributed BMPs resulted in: significantly greater estimated baseflow, a higher minimum precipitation threshold for stream response and maximum discharge increases, better maximum discharge control for small precipitation events, and reduced runoff volume during an extreme (1000-year) precipitation event compared to centralized BMPs. For all catchments, greater forest land cover and less impervious cover appeared to be more important drivers than stormwater BMP spatial pattern, and caused lower total, stormflow, and baseflow runoff volume; lower maximum discharge during typical precipitation events; and lower runoff volume during an extreme precipitation event. Analysis of hydrologic field data in this study suggests that both the spatial distribution of stormwater BMPs and land cover are important for management of urban stormwater runoff. In particular, catchment-wide application of distributed BMPs improved stream hydrology compared to centralized BMPs, but not enough to fully replicate forested catchment stream hydrology. Integrated planning of stormwater management, protected riparian buffers and forest land cover with suburban development in the distributed-BMP catchment enabled multi-purpose use of land that provided esthetic value and green-space, community gathering points, and wildlife habitat in addition to hydrologic stormwater treatment.
NASA Astrophysics Data System (ADS)
Sabatino, Pietro; Fedele, Giuseppe; Procopio, Antonio; Chiaravalloti, Francesco; Gabriele, Salvatore
2016-10-01
Among many weather phenomena, convective storms are one of the most dangerous since they are able to cause, in a relatively small time window, great damages. Convective precipitations are in fact characterized by relatively small spatial and temporal scales, and as a consequence, the task of forecasting such phenomena turns out to be an elusive one. Nonetheless, given their dangerousness, the identification and tracking of meteorological convective systems are of paramount importance and are the subject of several studies. In particular, the early detection of the areas where deep convection is about to appear, and the prediction of the development and path of existing convective thunderstorms represent two focal research topics. The aim of the present work is to outline a framework employing various techniques apt to the task of monitoring and characterization of convective clouds. We analyze meteorological satellite images and data in order to evaluate the potential occurring of strong precipitation. Techniques considered include numerical, machine learning, image processing. The techniques are tested on data coming from real convective events captured in the last years on the Italian peninsula by the Meteosat meteorological satellites and weather radar.
Rates and Genomic Consequences of Spontaneous Mutational Events in Drosophila melanogaster
Schrider, Daniel R.; Houle, David; Lynch, Michael; Hahn, Matthew W.
2013-01-01
Because spontaneous mutation is the source of all genetic diversity, measuring mutation rates can reveal how natural selection drives patterns of variation within and between species. We sequenced eight genomes produced by a mutation-accumulation experiment in Drosophila melanogaster. Our analysis reveals that point mutation and small indel rates vary significantly between the two different genetic backgrounds examined. We also find evidence that ∼2% of mutational events affect multiple closely spaced nucleotides. Unlike previous similar experiments, we were able to estimate genome-wide rates of large deletions and tandem duplications. These results suggest that, at least in inbred lines like those examined here, mutational pressures may result in net growth rather than contraction of the Drosophila genome. By comparing our mutation rate estimates to polymorphism data, we are able to estimate the fraction of new mutations that are eliminated by purifying selection. These results suggest that ∼99% of duplications and deletions are deleterious—making them 10 times more likely to be removed by selection than nonsynonymous mutations. Our results illuminate not only the rates of new small- and large-scale mutations, but also the selective forces that they encounter once they arise. PMID:23733788
Rosenberg, D; Marino, R; Herbert, C; Pouquet, A
2016-01-01
We study rotating stratified turbulence (RST) making use of numerical data stemming from a large parametric study varying the Reynolds, Froude and Rossby numbers, Re, Fr and Ro in a broad range of values. The computations are performed using periodic boundary conditions on grids of 1024(3) points, with no modeling of the small scales, no forcing and with large-scale random initial conditions for the velocity field only, and there are altogether 65 runs analyzed in this paper. The buoyancy Reynolds number defined as R(B) = ReFr2 varies from negligible values to ≈ 10(5), approaching atmospheric or oceanic regimes. This preliminary analysis deals with the variation of characteristic time scales of RST with dimensionless parameters, focusing on the role played by the partition of energy between the kinetic and potential modes, as a key ingredient for modeling the dynamics of such flows. We find that neither rotation nor the ratio of the Brunt-Väisälä frequency to the inertial frequency seem to play a major role in the absence of forcing in the global dynamics of the small-scale kinetic and potential modes. Specifically, in these computations, mostly in regimes of wave turbulence, characteristic times based on the ratio of energy to dissipation of the velocity and temperature fluctuations, T(V) and T(P), vary substantially with parameters. Their ratio γ=T(V)/T(P) follows roughly a bell-shaped curve in terms of Richardson number Ri. It reaches a plateau - on which time scales become comparable, γ≈0.6 - when the turbulence has significantly strengthened, leading to numerous destabilization events together with a tendency towards an isotropization of the flow.
Mini-filament Eruption as the Initiation of a Jet along Coronal Loops
NASA Astrophysics Data System (ADS)
Hong, Junchao; Jiang, Yunchun; Yang, Jiayan; Yang, Bo; Xu, Zhe; Xiang, Yongyuan
2016-10-01
Minifilament eruptions (MFEs) and coronal jets are different types of solar small-scale explosive events. We report an MFE observed at the New Vacuum Solar Telescope (NVST). As seen in the NVST Hα images, during the rising phase, the minifilament erupts outward orthogonally to its length, accompanied with a flare-like brightening at the bottom. Afterward, dark materials are found to possibly extend along the axis of the expanded filament body. The MFE is analogous to large filament eruptions. However, a simultaneous observation of the Solar Dynamics Observatory shows that a jet is initiated and flows out along nearby coronal loops during the rising phase of the MFE. Meanwhile, small hot loops, which connect the original eruptive site of the minifilament to the footpoints of the coronal loops, are formed successively. A differential emission measure analysis demonstrates that, on the top of the new small loops, a hot cusp structure exists. We conjecture that the magnetic fields of the MFE interact with magnetic fields of the coronal loops. This interaction is interpreted as magnetic reconnection that produces the jet and the small hot loops.
Young Children's Memory for the Times of Personal Past Events
Pathman, Thanujeni; Larkina, Marina; Burch, Melissa; Bauer, Patricia J.
2012-01-01
Remembering the temporal information associated with personal past events is critical for autobiographical memory, yet we know relatively little about the development of this capacity. In the present research, we investigated temporal memory for naturally occurring personal events in 4-, 6-, and 8-year-old children. Parents recorded unique events in which their children participated during a 4-month period. At test, children made relative recency judgments and estimated the time of each event using conventional time-scales (time of day, day of week, month of year, and season). Children also were asked to provide justifications for their time-scale judgments. Six- and 8-year-olds, but not 4-year-olds, accurately judged the order of two distinct events. There were age-related improvements in children's estimation of the time of events using conventional time-scales. Older children provided more justifications for their time-scale judgments compared to younger children. Relations between correct responding on the time-scale judgments and provision of meaningful justifications suggest that children may use that information to reconstruct the times associated with past events. The findings can be used to chart a developmental trajectory of performance in temporal memory for personal past events, and have implications for our understanding of autobiographical memory development. PMID:23687467
NASA Astrophysics Data System (ADS)
Vanella, D.; Cassiani, G.; Busato, L.; Boaga, J.; Barbagallo, S.; Binley, A.; Consoli, S.
2018-01-01
Plant roots activity affect the exchanges of mass and energy between the soil and atmosphere. However, it is challenging to monitor the activity of the root-zone because roots are not visible from the soil surface, and root systems undergo spatial and temporal variations in response to internal and external conditions. Therefore, measurements of the activity of root systems are interesting to ecohydrologists in general, and are especially important for specific applications, such as irrigation water management. This study demonstrates the use of small scale three-dimensional (3-D) electrical resistivity tomography (ERT) to monitor the root-zone of orange trees irrigated by two different regimes: (i) full rate, in which 100% of the crop evapotranspiration (ETc) is provided; and (ii) partial root-zone drying (PRD), in which 50% of ETc is supplied to alternate sides of the tree. We performed time-lapse 3-D ERT measurements on these trees from 5 June to 24 September 2015, and compared the long-term and short-term changes before, during, and after irrigation events. Given the small changes in soil temperature and pore water electrical conductivity, we interpreted changes of soil electrical resistivity from 3-D ERT data as proxies for changes in soil water content. The ERT results are consistent with measurements of transpiration flux and soil temperature. The changes in electrical resistivity obtained from ERT measurements in this case study indicate that root water uptake (RWU) processes occur at the 0.1 m scale, and highlight the impact of different irrigation schemes.
Directional Characteristics of Inner Shelf Internal Tides
2007-06-01
Figure 18. YD 202-206 Current vector plot of significant events. Significant events include internal tidal bores, solibores, and solitons . The upper...Events (Bores, Solibores, and Solitons ): Upper column leading-edge cross-shore current velocity and cross-shore wind regression. The small ellipse...Significant Events (Bores, Solibores, and Solitons ): Upper column leading-edge along-shore current velocity and along-shore wind regression. The small
NASA Astrophysics Data System (ADS)
Gold, Roman; McKinney, Jonathan C.; Johnson, Michael D.; Doeleman, Sheperd S.
2017-03-01
Magnetic fields are believed to drive accretion and relativistic jets in black hole accretion systems, but the magnetic field structure that controls these phenomena remains uncertain. We perform general relativistic (GR) polarized radiative transfer of time-dependent three-dimensional GR magnetohydrodynamical simulations to model thermal synchrotron emission from the Galactic Center source Sagittarius A* (Sgr A*). We compare our results to new polarimetry measurements by the Event Horizon Telescope (EHT) and show how polarization in the visibility (Fourier) domain distinguishes and constrains accretion flow models with different magnetic field structures. These include models with small-scale fields in disks driven by the magnetorotational instability as well as models with large-scale ordered fields in magnetically arrested disks. We also consider different electron temperature and jet mass-loading prescriptions that control the brightness of the disk, funnel-wall jet, and Blandford-Znajek-driven funnel jet. Our comparisons between the simulations and observations favor models with ordered magnetic fields near the black hole event horizon in Sgr A*, though both disk- and jet-dominated emission can satisfactorily explain most of the current EHT data. We also discuss how the black hole shadow can be filled-in by jet emission or mimicked by the absence of funnel jet emission. We show that stronger model constraints should be possible with upcoming circular polarization and higher frequency (349 GHz) measurements.
Networks as Renormalized Models for Emergent Behavior in Physical Systems
NASA Astrophysics Data System (ADS)
Paczuski, Maya
2005-09-01
Networks are paradigms for describing complex biological, social and technological systems. Here I argue that networks provide a coherent framework to construct coarsegrained models for many different physical systems. To elucidate these ideas, I discuss two long-standing problems. The first concerns the structure and dynamics of magnetic fields in the solar corona, as exemplified by sunspots that startled Galileo almost 400 years ago. We discovered that the magnetic structure of the corona embodies a scale free network, with spots at all scales. A network model representing the three-dimensional geometry of magnetic fields, where links rewire and nodes merge when they collide in space, gives quantitative agreement with available data, and suggests new measurements. Seismicity is addressed in terms of relations between events without imposing space-time windows. A metric estimates the correlation between any two earthquakes. Linking strongly correlated pairs, and ignoring pairs with weak correlation organizes the spatio-temporal process into a sparse, directed, weighted network. New scaling laws for seismicity are found. For instance, the aftershock decay rate decreases as ~ 1/t in time up to a correlation time, tomori. An estimate from the data gives tomori to be about one year for small magnitude 3 earthquakes, about 1400 years for the Landers event, and roughly 26,000 years for the earthquake causing the 2004 Asian tsunami. Our results confirm Kagan's conjecture that aftershocks can rumble on for centuries.
On simulating large earthquakes by Green's-function addition of smaller earthquakes
NASA Astrophysics Data System (ADS)
Joyner, William B.; Boore, David M.
Simulation of ground motion from large earthquakes has been attempted by a number of authors using small earthquakes (subevents) as Green's functions and summing them, generally in a random way. We present a simple model for the random summation of subevents to illustrate how seismic scaling relations can be used to constrain methods of summation. In the model η identical subevents are added together with their start times randomly distributed over the source duration T and their waveforms scaled by a factor κ. The subevents can be considered to be distributed on a fault with later start times at progressively greater distances from the focus, simulating the irregular propagation of a coherent rupture front. For simplicity the distance between source and observer is assumed large compared to the source dimensions of the simulated event. By proper choice of η and κ the spectrum of the simulated event deduced from these assumptions can be made to conform at both low- and high-frequency limits to any arbitrary seismic scaling law. For the ω -squared model with similarity (that is, with constant Moƒ3o scaling, where ƒo is the corner frequency), the required values are η = (Mo/Moe)4/3 and κ = (Mo/Moe)-1/3, where Mo is moment of the simulated event and Moe is the moment of the subevent. The spectra resulting from other choices of η and κ, will not conform at both high and low frequency. If η is determined by the ratio of the rupture area of the simulated event to that of the subevent and κ = 1, the simulated spectrum will conform at high frequency to the ω-squared model with similarity, but not at low frequency. Because the high-frequency part of the spectrum is generally the important part for engineering applications, however, this choice of values for η and κ may be satisfactory in many cases. If η is determined by the ratio of the moment of the simulated event to that of the subevent and κ = 1, the simulated spectrum will conform at low frequency to the ω-squared model with similarity, but not at high frequency. Interestingly, the high-frequency scaling implied by this latter choice of η and κ corresponds to an ω-squared model with constant Moƒ4o—a scaling law proposed by Nuttli, although questioned recently by Haar and others. Simple scaling with κ equal to unity and η equal to the moment ratio would work if the high-frequency spectral decay were ω-1.5 instead of ω-2. Just the required decay is exhibited by the stochastic source model recently proposed by Joynet, if the dislocation-time function is deconvolved out of the spectrum. Simulated motions derived from such source models could be used as subevents rather than recorded motions as is usually done. This strategy is a promising approach to simulation of ground motion from an extended rupture.
Inner core rotation from event-pair analysis
NASA Astrophysics Data System (ADS)
Song, Xiaodong; Poupinet, Georges
2007-09-01
The last decade has witnessed an animated debate on whether the inner core rotation is a fact or an artifact. Here we examine the temporal change of inner core waves using a technique that compares differential travel times at the same station but between two events. The method does not require precise knowledge of earthquake locations and earth models. The pairing of the events creates a large data set for the application of statistical tools. Using measurements from 87 events in the South Sandwich Islands recorded at College, Alaska station, we conclude the temporal change is robust. The estimates of the temporal change range from about 0.07 to 0.10 s/decade over the past 50 yr. If we used only pairs with small inter-event distances, which reduce the influence of mantle heterogeneity, the rates range from 0.084 to 0.098 s/decade, nearly identical to the rate inferred by Zhang et al. [Zhang, J., Song, X.D., Li, Y.C., Richards, P.G., Sun, X.L., Waldhauser, F., Inner core differential motion confirmed by earthquake waveform doublets, Science 309 (5739) (2005) 1357-1360.] from waveform doublets. The rate of the DF change seems to change with time, which may be explained by lateral variation of the inner core structure or the change in rotation rate on decadal time scale.
Transition Region Explosive Events in He II 304Å: Observation and Analysis
NASA Astrophysics Data System (ADS)
Rust, Thomas; Kankelborg, Charles C.
2016-05-01
We present examples of transition region explosive events observed in the He II 304Å spectral line with the Multi Order Solar EUV Spectrograph (MOSES). With small (<5000 km) spatial scale and large non-thermal (100-150 km/s) velocities these events satisfy the observational signatures of transition region explosive events. Derived line profiles show distinct blue and red velocity components with very little broadening of either component. We observe little to no emission from low velocity plasma, making the plasmoid instability reconnection model unlikely as the plasma acceleration mechanism for these events. Rather, the single speed, bi-directional jet characteristics suggested by these data are consistent with acceleration via Petschek reconnection.Observations were made during the first sounding rocket flight of MOSES in 2006. MOSES forms images in 3 orders of a concave diffraction grating. Multilayer coatings largely restrict the passband to the He II 303.8Å and Si XI 303.3Å spectral lines. The angular field of view is about 8.5'x17', or about 20% of the solar disk. These images constitute projections of the volume I(x,y,λ), the intensity as a function of sky plane position and wavelength. Spectral line profiles are recovered via tomographic inversion of these projections. Inversion is carried out using a multiplicative algebraic reconstruction technique.
Large- and small-scale constraints on power spectra in Omega = 1 universes
NASA Technical Reports Server (NTRS)
Gelb, James M.; Gradwohl, Ben-Ami; Frieman, Joshua A.
1993-01-01
The CDM model of structure formation, normalized on large scales, leads to excessive pairwise velocity dispersions on small scales. In an attempt to circumvent this problem, we study three scenarios (all with Omega = 1) with more large-scale and less small-scale power than the standard CDM model: (1) cold dark matter with significantly reduced small-scale power (inspired by models with an admixture of cold and hot dark matter); (2) cold dark matter with a non-scale-invariant power spectrum; and (3) cold dark matter with coupling of dark matter to a long-range vector field. When normalized to COBE on large scales, such models do lead to reduced velocities on small scales and they produce fewer halos compared with CDM. However, models with sufficiently low small-scale velocities apparently fail to produce an adequate number of halos.
NASA Astrophysics Data System (ADS)
Moore, B. J.; Bosart, L. F.; Keyser, D.
2013-12-01
During late October 2007, the interaction between a deep polar trough and Tropical Cyclone (TC) Kajiki off the eastern Asian coast perturbed the North Pacific jet stream and resulted in the development of a high-amplitude Rossby wave train extending into North America, contributing to three concurrent high-impact weather events in North America: wildfires in southern California associated with strong Santa Ana winds, a cold surge into eastern Mexico, and widespread heavy rainfall (~150 mm) in the south-central United States. Observational analysis indicates that these high-impact weather events were all dynamically linked with the development of a major high-latitude ridge over the eastern North Pacific and western North America and a deep trough over central North America. In this study, global operational ensemble forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF) obtained from The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) archive are used to characterize the medium-range predictability of the large-scale flow pattern associated with the three events and to diagnose the large-scale atmospheric processes favorable, or unfavorable, for the occurrence of the three events. Examination of the ECMWF forecasts leading up to the time period of the three high-impact weather events (~23-25 October 2007) indicates that ensemble spread (i.e., uncertainty) in the 500-hPa geopotential height field develops in connection with downstream baroclinic development (DBD) across the North Pacific, associated with the interaction between TC Kajiki and the polar trough along the eastern Asian coast, and subsequently moves downstream into North America, yielding considerable uncertainty with respect to the structure, amplitude, and position of the ridge-trough pattern over North America. Ensemble sensitivity analysis conducted for key sensible weather parameters corresponding to the three high-impact weather events, including relative humidity, temperature, and precipitation, demonstrates quantitatively that all three high-impact weather events are closely linked with the development of the ridge-trough pattern over North America. Moreover, results of this analysis indicate that the development of the ridge-trough pattern is modulated by DBD and cyclogenesis upstream over the central and eastern North Pacific. Specifically, ensemble members exhibiting less intense cyclogenesis and a more poleward cyclone track over the central and eastern North Pacific feature the development of a poleward-displaced ridge over the eastern North Pacific and western North America and a cut-off low over the Intermountain West, an unfavorable scenario for the occurrence the three high-impact weather events. Conversely, ensemble members exhibiting more intense cyclogenesis and a less poleward cyclone track feature persistent ridging along the western coast of North America and trough development over central North America, establishing a favorable flow pattern for the three high-impact weather events. Results demonstrate that relatively small initial differences in the large-scale flow pattern over the North Pacific among ensemble members can result in large uncertainty in the forecast downstream flow response over North America.
Maeda, Jin; Suzuki, Tatsuya; Takayama, Kozo
2012-12-01
A large-scale design space was constructed using a Bayesian estimation method with a small-scale design of experiments (DoE) and small sets of large-scale manufacturing data without enforcing a large-scale DoE. The small-scale DoE was conducted using various Froude numbers (X(1)) and blending times (X(2)) in the lubricant blending process for theophylline tablets. The response surfaces, design space, and their reliability of the compression rate of the powder mixture (Y(1)), tablet hardness (Y(2)), and dissolution rate (Y(3)) on a small scale were calculated using multivariate spline interpolation, a bootstrap resampling technique, and self-organizing map clustering. The constant Froude number was applied as a scale-up rule. Three experiments under an optimal condition and two experiments under other conditions were performed on a large scale. The response surfaces on the small scale were corrected to those on a large scale by Bayesian estimation using the large-scale results. Large-scale experiments under three additional sets of conditions showed that the corrected design space was more reliable than that on the small scale, even if there was some discrepancy in the pharmaceutical quality between the manufacturing scales. This approach is useful for setting up a design space in pharmaceutical development when a DoE cannot be performed at a commercial large manufacturing scale.
The role of forest disturbance in global forest mortality and terrestrial carbon fluxes
NASA Astrophysics Data System (ADS)
Pugh, Thomas; Arneth, Almut; Smith, Benjamin; Poulter, Benjamin
2017-04-01
Large-scale forest disturbance dynamics such as insect outbreaks, wind-throw and fires, along with anthropogenic disturbances such as logging, have been shown to turn forests from carbon sinks into intermittent sources, often quite dramatically so. There is also increasing evidence that disturbance regimes in many regions are changing as a result of climatic change and human land-management practices. But how these landscape-scale events fit into the wider picture of global tree mortality is not well understood. Do such events dominate global carbon turnover, or are their effects highly regional? How sensitive is global terrestrial carbon exchange to realistic changes in the occurrence rate of such disturbances? Here, we combine recent advances in global satellite observations of stand-replacing forest disturbances and in compilations of forest inventory data, with a global terrestrial ecosystem model which incorporates an explicit representation of the role of disturbance in forest dynamics. We find that stand-replacing disturbances account for a fraction of wood carbon turnover that varies spatially from less than 5% in the tropical rainforest to ca. 50% in the mid latitudes, and as much as 90% in some heavily-managed regions. We contrast the size of the land-atmosphere carbon flux due to this disturbance with other components of the terrestrial carbon budget. In terms of sensitivity, we find a quasi log-linear relationship of disturbance rate to total carbon storage. Relatively small changes in disturbance rates at all latitudes have marked effects on vegetation carbon storage, with potentially very substantial implications for the global terrestrial carbon sink. Our results suggest a surprisingly small effect of disturbance type on large-scale forest vegetation dynamics and carbon storage, with limited evidence of widespread increases in nitrogen limitation as a result of increasing future disturbance. However, the influence of disturbance type on soil carbon stocks is very large, illustrating the importance of further efforts to distinguish disturbance drivers at the global scale. Setting our knowledge of forest disturbance into the wider uncertainty in forest mortality processes generally, we offer a perspective for improving understanding of the role of disturbance in global forest carbon cycling.
EXPLOSIVE EVENTS ON A SUBARCSECOND SCALE IN IRIS OBSERVATIONS: A CASE STUDY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Zhenghua; Xia, Lidong; Fu, Hui
We present a study of a typical explosive event (EE) at subarcsecond scale witnessed by strong non-Gaussian profiles with blue- and redshifted emission of up to 150 km s{sup –1} seen in the transition region Si IV 1402.8 Å, and the chromospheric Mg II k 2796.4 Å and C II 1334.5 Å observed by the Interface Region Imaging Spectrograph (IRIS) at unprecedented spatial and spectral resolution. For the first time an EE is found to be associated with very small-scale (∼120 km wide) plasma ejection followed by retraction in the chromosphere. These small-scale jets originate from a compact bright-point-like structure of ∼1.''5 size as seen in themore » IRIS 1330 Å images. SDO/AIA and SDO/HMI co-observations show that the EE lies in the footpoint of a complex loop-like brightening system. The EE is detected in the higher temperature channels of AIA 171 Å, 193 Å, and 131 Å, suggesting that it reaches a higher temperature of log T = 5.36 ± 0.06 (K). Brightenings observed in the AIA channels with durations 90-120 s are probably caused by the plasma ejections seen in the chromosphere. The wings of the C II line behave in a similar manner to the Si IV'S, indicating close formation temperatures, while the Mg II k wings show additional Doppler-shifted emission. Magnetic convergence or emergence followed by cancellation at a rate of 5 × 10{sup 14} Mx s{sup –1} is associated with the EE region. The combined changes of the locations and the flux of different magnetic patches suggest that magnetic reconnection must have taken place. Our results challenge several theories put forward in the past to explain non-Gaussian line profiles, i.e., EEs. Our case study on its own, however, cannot reject these theories; thus, further in-depth studies on the phenomena producing EEs are required.« less
Solar Coronal Events with Extended Hard X-ray and Gamma-ray Emission
NASA Astrophysics Data System (ADS)
Hudson, H. S.
2017-12-01
A characteristic pattern of solar hard X-ray emission, first identified in SOL1969-03-31 by Frost & Dennis (1971) now has been linked to prolonged high-energy gamma-ray emission detected by the Fermi/LAT experiment, for example in SOL2014-09-01. The distinctive features of these events include flat hard X-ray spectra extending well above 100 keV, a characteristic pattern of time development, low-frequency gyrosynchrotron peaks, CME association, and gamma-rays identifiable with pion decay originating in GeV ions. The identification of these events with otherwise known solar structures nevertheless remains elusive, in spite of the wealth of imagery available from AIA. The quandary is that these events have a clear association with CMEs in the high corona, and yet the gamma-ray production implicates the photosphere itself. The vanishingly small loss cone in the nominal acceleration region makes this extremely difficult. I propose direct inward advection of a part of the SEP particle population, as created on closed field structures, as a possible resolution of this puzzle, and note that this requires retracting magnetic structures on long time scales following the flare itself.
CT scanning and flow measurements of shale fractures after multiple shearing events
Crandall, Dustin; Moore, Johnathan; Gill, Magdalena; ...
2017-11-05
A shearing apparatus was used in conjunction with a Hassler-style core holder to incrementally shear fractured shale cores while maintaining various confining pressures. Computed tomography scans were performed after each shearing event, and were used to obtain information on evolving fracture geometry. Fracture transmissivity was measured after each shearing event to understand the hydrodynamic response to the evolving fracture structure. The digital fracture volumes were used to perform laminar single phase flow simulations (local cubic law with a tapered plate correction model) to qualitatively examine small scale flow path variations within the altered fractures. Fractures were found to generally increasemore » in aperture after several shear slip events, with corresponding transmissivity increases. Lower confining pressure resulted in a fracture more prone to episodic mechanical failure and sudden changes in transmissivity. Conversely, higher confining pressures resulted in a system where, after an initial setting of the fracture surfaces, changes to the fracture geometry and transmissivity occurred gradually. Flow paths within the fractures are largely controlled by the location and evolution of zero aperture locations. Lastly, a reduction in the number of primary flow pathways through the fracture, and an increase in their width, was observed during all shearing tests.« less
Time-varying causal network of the Korean financial system based on firm-specific risk premiums
NASA Astrophysics Data System (ADS)
Song, Jae Wook; Ko, Bonggyun; Cho, Poongjin; Chang, Woojin
2016-09-01
The aim of this paper is to investigate the Korean financial system based on time-varying causal network. We discover many stylized facts by utilizing the firm-specific risk premiums for measuring the causality direction from a firm to firm. At first, we discover that the interconnectedness of causal network is affected by the outbreak of financial events; the co-movement of firm-specific risk premium is strengthened after each positive event, and vice versa. Secondly, we find that the major sector of the Korean financial system is the Depositories, and the financial reform in June-2011 achieves its purpose by weakening the power of risk-spillovers of Broker-Dealers. Thirdly, we identify that the causal network is a small-world network with scale-free topology where the power-law exponents of out-Degree and negative event are more significant than those of in-Degree and positive event. Lastly, we discuss that the current aspects of causal network are closely related to the long-term future scenario of the KOSPI Composite index where the direction and stability are significantly affected by the power of risk-spillovers and the power-law exponents of degree distributions, respectively.
Temporal dynamics and impact of event interactions in cyber-social populations
NASA Astrophysics Data System (ADS)
Zhang, Yi-Qing; Li, Xiang
2013-03-01
The advance of information technologies provides powerful measures to digitize social interactions and facilitate quantitative investigations. To explore large-scale indoor interactions of a social population, we analyze 18 715 users' Wi-Fi access logs recorded in a Chinese university campus during 3 months, and define event interaction (EI) to characterize the concurrent interactions of multiple users inferred by their geographic coincidences—co-locating in the same small region at the same time. We propose three rules to construct a transmission graph, which depicts the topological and temporal features of event interactions. The vertex dynamics of transmission graph tells that the active durations of EIs fall into the truncated power-law distributions, which is independent on the number of involved individuals. The edge dynamics of transmission graph reports that the transmission durations present a truncated power-law pattern independent on the daily and weekly periodicities. Besides, in the aggregated transmission graph, low-degree vertices previously neglected in the aggregated static networks may participate in the large-degree EIs, which is verified by three data sets covering different sizes of social populations with various rendezvouses. This work highlights the temporal significance of event interactions in cyber-social populations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bučík, Radoslav; Innes, Davina E.; Mason, Glenn M.
Small, {sup 3}He-rich solar energetic particle (SEP) events have been commonly associated with extreme-ultraviolet (EUV) jets and narrow coronal mass ejections (CMEs) that are believed to be the signatures of magnetic reconnection, involving field lines open to interplanetary space. The elemental and isotopic fractionation in these events are thought to be caused by processes confined to the flare sites. In this study, we identify 32 {sup 3}He-rich SEP events observed by the Advanced Composition Explorer , near the Earth, during the solar minimum period 2007–2010, and we examine their solar sources with the high resolution Solar Terrestrial Relations Observatory (more » STEREO ) EUV images. Leading the Earth, STEREO -A has provided, for the first time, a direct view on {sup 3}He-rich flares, which are generally located on the Sun’s western hemisphere. Surprisingly, we find that about half of the {sup 3}He-rich SEP events in this survey are associated with large-scale EUV coronal waves. An examination of the wave front propagation, the source-flare distribution, and the coronal magnetic field connections suggests that the EUV waves may affect the injection of {sup 3}He-rich SEPs into interplanetary space.« less
Summertime ozone at Mount Washington: Meteorological controls at the highest peak in the northeast
NASA Astrophysics Data System (ADS)
Fischer, Emily V.; Talbot, Robert W.; Dibb, Jack E.; Moody, Jennie L.; Murray, Georgia L.
2004-12-01
This study examined the synoptic and regional-scale meteorological controls on summertime O3 at Mount Washington, the highest peak (1910 m) in the northeastern United States. Analysis of air mass transport to Mount Washington was conducted for the summers of 1998-2003 using backward trajectories. Distinct patterns in air mass history were revealed using this approach that helped explain extreme variations in O3 mixing ratios. Most enhanced (≥90th percentile) and depleted (≤10th percentile) O3 events were short-lived and spread out over the summer months. Enhanced O3 events at Mount Washington were generally associated with westerly transport, while depleted events corresponded to northwesterly transport. Periods of O3 greater than 80 ppbv during nighttime periods coincided with westerly (71%) and southwesterly (29%) transport. Periods of elevated O3 commonly occurred during regional warm sector flow or on the western edge of a surface anticyclone. Our analysis also identified a stratospheric contribution to a small percentage (˜5%) of extreme O3 events at the site, but more evidence is required to establish the significance of the contribution to background O3 levels in this region.
CT scanning and flow measurements of shale fractures after multiple shearing events
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crandall, Dustin; Moore, Johnathan; Gill, Magdalena
A shearing apparatus was used in conjunction with a Hassler-style core holder to incrementally shear fractured shale cores while maintaining various confining pressures. Computed tomography scans were performed after each shearing event, and were used to obtain information on evolving fracture geometry. Fracture transmissivity was measured after each shearing event to understand the hydrodynamic response to the evolving fracture structure. The digital fracture volumes were used to perform laminar single phase flow simulations (local cubic law with a tapered plate correction model) to qualitatively examine small scale flow path variations within the altered fractures. Fractures were found to generally increasemore » in aperture after several shear slip events, with corresponding transmissivity increases. Lower confining pressure resulted in a fracture more prone to episodic mechanical failure and sudden changes in transmissivity. Conversely, higher confining pressures resulted in a system where, after an initial setting of the fracture surfaces, changes to the fracture geometry and transmissivity occurred gradually. Flow paths within the fractures are largely controlled by the location and evolution of zero aperture locations. Lastly, a reduction in the number of primary flow pathways through the fracture, and an increase in their width, was observed during all shearing tests.« less
Spatial mapping and analysis of aerosols during a forest fire using computational mobile microscopy
NASA Astrophysics Data System (ADS)
Wu, Yichen; Shiledar, Ashutosh; Luo, Yi; Wong, Jeffrey; Chen, Cheng; Bai, Bijie; Zhang, Yibo; Tamamitsu, Miu; Ozcan, Aydogan
2018-02-01
Forest fires are a major source of particulate matter (PM) air pollution on a global scale. The composition and impact of PM are typically studied using only laboratory instruments and extrapolated to real fire events owing to a lack of analytical techniques suitable for field-settings. To address this and similar field test challenges, we developed a mobilemicroscopy- and machine-learning-based air quality monitoring platform called c-Air, which can perform air sampling and microscopic analysis of aerosols in an integrated portable device. We tested its performance for PM sizing and morphological analysis during a recent forest fire event in La Tuna Canyon Park by spatially mapping the PM. The result shows that with decreasing distance to the fire site, the PM concentration increases dramatically, especially for particles smaller than 2 µm. Image analysis from the c-Air portable device also shows that the increased PM is comparatively strongly absorbing and asymmetric, with an aspect ratio of 0.5-0.7. These PM features indicate that a major portion of the PM may be open-flame-combustion-generated element carbon soot-type particles. This initial small-scale experiment shows that c-Air has some potential for forest fire monitoring.
NASA Astrophysics Data System (ADS)
Abaimov, Sergey G.
The concept of self-organized criticality is associated with scale-invariant, fractal behavior; this concept is also applicable to earthquake systems. It is known that the interoccurrent frequency-size distribution of earthquakes in a region is scale-invariant and obeys the Gutenberg-Richter power-law dependence. Also, the interoccurrent time-interval distribution is known to obey Poissonian statistics excluding aftershocks. However, to estimate the hazard risk for a region it is necessary to know also the recurrent behavior of earthquakes at a given point on a fault. This behavior has been investigated in the literature, however, major questions remain unresolved. The reason is the small number of earthquakes in observed sequences. To overcome this difficulty this research utilizes numerical simulations of a slider-block model and a sand-pile model. Also, experimental observations of creep events on the creeping section of the San Andreas fault are processed and sequences up to 100 events are studied. Then the recurrent behavior of earthquakes at a given point on a fault or at a given fault is investigated. It is shown that both the recurrent frequency-size and the time-interval behaviors of earthquakes obey the Weibull distribution.
NASA Astrophysics Data System (ADS)
Chen, T. C.; Yen, H. Y.; Zhou, F. L.
2015-12-01
This study focuses on the depth and magnitude of the small scale landslide in slate area in Ai-Liao-Shi catchment, South Taiwan. Landslide inventory of 2009 Typhoon Morakot, 5×5 m DEM, and aero photo have been interpreted by GIS software to assess the slope type and the scale of landslide events. The research database includes 276 landslides which orthographic projection areas are smaller than 1 ha. The slopes were also classified into dip, orthoclinical-dip, escarpment, and orthoclinical- escarpment 4 types of slope based on the slope aspect to the bedding orientation. The sliding plane, or so call the failure plane, was identified by aero photo, field reconnaissance and verification, and DEM before and after the typhoon event. Colluvium material deposited on the slip plane was removed based on the scarp and foot position, mass movement pattern, weak plane orientation, and the micro topography of a landslide to achieve the reasonable sliding plane. The maximum depth of sliding surface is explored through the slope type and sliding plane in total of 276 landslide cases. Results demonstrate that the average maximum depth, Dam, of dip slope is 4.6 m, Dam of orthoclinical-dip, escarpment, and orthoclinical-escarpment slopes are 5.8, 6.0, and 6.3 m respectively. In general, Dam is creasing with the average slope of landslide, the relationship of both factor is achieved in the study. Meanwhile, the orthographic projection area of landslide is increasing with the slope angle till the angle up to 40 degree then decreasing. The depth also varies with landslide magnitude. Finally, the relation of the depth normal to slope surface and the depth in gravity direction of landslides in four types slope are proposed, the R square values are 0.862 to 0.891 showing a good correlation between two types of depth.
NASA Astrophysics Data System (ADS)
Hopkins, J.; Palmer, M.; Wihsgott, J. U.; Sharples, J.; Sivyer, D.; Greenwood, N.; Hull, T.; Hickman, A. E.; Williams, C. A. J.
2016-02-01
Although the approximate timing of the spring bloom can be predicted following Sverdrup's critical depth hypothesis the precise timing, intensity and evolution of this annual peak in primary production is determined by small scale and often incoherent, short and transient events. This is particularly true in shallow and highly dynamic temperate continental shelf sea environments. Following an intense field campaign on the NW European Shelf during the transition from mixed to stratified conditions we are able to examine the physical drivers behind initiation of the spring bloom in unprecedented detail. A wave powered vertically profiling float co-located with two ocean gliders provided high resolution profiles of density, chlorophyll-a fluorescence and the rate of turbulent kinetic energy dissipation every 10-15 minutes for 21 days. Full water column currents, meteorological variables and near surface PAR are taken from additional moorings in the array. After the onset of positive net surface heat fluxes, our data sets show how the timing and subsequent development of the bloom is determined by the available PAR and its recent history; the fine scale vertical hydrographic and turbulent structure of the water column that controls the residence time of phytoplankton at each depth; and the timing and intensity of wind and tidal mixing events. In April 2015 the main peak in depth integrated chlorophyll occurred almost a week after the main seasonal thermocline had started to form. It peaked following three consecutive sunny days and a reduction in wind stress that allowed a thin (10 m) near surface warm layer to be established and maintained overnight. There is significant semi-diurnal variability in the depth integrated chlorophyll demonstrating how small scale (< 10 km) incoherence in these physical drivers leads to strong gradients and patchiness in the bloom dynamics across a shelf.
A small cohort of Island Southeast Asian women founded Madagascar.
Cox, Murray P; Nelson, Michael G; Tumonggor, Meryanne K; Ricaut, François-X; Sudoyo, Herawati
2012-07-22
The settlement of Madagascar is one of the most unusual, and least understood, episodes in human prehistory. Madagascar was one of the last landmasses to be reached by people, and despite the island's location just off the east coast of Africa, evidence from genetics, language and culture all attests that it was settled jointly by Africans, and more surprisingly, Indonesians. Nevertheless, extremely little is known about the settlement process itself. Here, we report broad geographical screening of Malagasy and Indonesian genetic variation, from which we infer a statistically robust coalescent model of the island's initial settlement. Maximum-likelihood estimates favour a scenario in which Madagascar was settled approximately 1200 years ago by a very small group of women (approx. 30), most of Indonesian descent (approx. 93%). This highly restricted founding population raises the possibility that Madagascar was settled not as a large-scale planned colonization event from Indonesia, but rather through a small, perhaps even unintended, transoceanic crossing.
A small cohort of Island Southeast Asian women founded Madagascar
Cox, Murray P.; Nelson, Michael G.; Tumonggor, Meryanne K.; Ricaut, François-X.; Sudoyo, Herawati
2012-01-01
The settlement of Madagascar is one of the most unusual, and least understood, episodes in human prehistory. Madagascar was one of the last landmasses to be reached by people, and despite the island's location just off the east coast of Africa, evidence from genetics, language and culture all attests that it was settled jointly by Africans, and more surprisingly, Indonesians. Nevertheless, extremely little is known about the settlement process itself. Here, we report broad geographical screening of Malagasy and Indonesian genetic variation, from which we infer a statistically robust coalescent model of the island's initial settlement. Maximum-likelihood estimates favour a scenario in which Madagascar was settled approximately 1200 years ago by a very small group of women (approx. 30), most of Indonesian descent (approx. 93%). This highly restricted founding population raises the possibility that Madagascar was settled not as a large-scale planned colonization event from Indonesia, but rather through a small, perhaps even unintended, transoceanic crossing. PMID:22438500
Observations of volcanic plumes using small balloon soundings
NASA Astrophysics Data System (ADS)
Voemel, H.
2015-12-01
Eruptions of volcanoes are very difficult to predict and for practical purposes may occur at any time. Any observing system intending to observe volcanic eruptions has to be ready at any time. Due to transport time scales, emissions of large volcanic eruptions, in particular injections into the stratosphere, may be detected at locations far from the volcano within days to weeks after the eruption. These emissions may be observed using small balloon soundings at dedicated sites. Here we present observations of particles of the Icelandic Grimsvotn eruption at the Meteorological Observatory Lindenberg, Germany in the months following the eruption and observations of opportunity of other volcanic particle events. We also present observations of the emissions of SO2 from the Turrialba volcano at San Jose, Costa Rica. We argue that dedicated sites for routine observations of the clean and perturbed atmosphere using small sounding balloons are an important element in the detection and quantification of emissions from future volcanic eruptions.
Near-Source Mechanism for Creating Shear Content from Buried Explosions
NASA Astrophysics Data System (ADS)
Steedman, D. W.; Bradley, C. R.
2017-12-01
The Source Physics Experiment (SPE) has the goal of developing a greater understanding of explosion phenomenology at various spatial scales, from near-source to the far-field. SPE Phase I accomplished a series of six chemical explosive tests of varying scaled depth of burial within a borehole in granite. The testbed included an extensive array of triaxial accelerometers. Velocity traces derived from these accelerometers allow for detailed study of the shock environment close in to the explosion. A specific goal of SPE is to identify various mechanisms for generating shear within the propagation environment and how this might be informative on the identification of explosive events that otherwise fail historic compression wave energy/shear wave energy (P/S) event discrimination. One of these sources was hypothesized to derive from slippage along joint sets near to the source. Velocity traces from SPE Phase I events indicate that motion tangential to a theoretically spherical shock wave are initially quiescent after shock arrival. But this period of quiescence is followed by a sudden increase in amplitude that consistently occurs just after the peak of the radial velocity (i.e., onset of shock unloading). The likelihood of occurrence of this response is related to yield-scaled depth-of-burial (SDOB). We describe a mechanism where unloading facilitates dilation of closed joints accompanied by a release of shear energy stored during compression. However, occurrence of this mechanism relies on relative amplitudes between the shock loading caused at a point and the in situ stress: at too large a SDOB the stored energy is insufficient to overcome the combination of the overburden stress and traction on the joint. On the other hand, too small of a SDOB provides that the in situ stress is insufficient to keep joints from storing stress, thus overriding the release mechanism and mitigating rupture-like slippage. We develop a notional relationship between SPE Phase I SDOB and the likelihood of shear release. We then compare this to the six recorded DPRK events in terms of where these events fall in relation to the accepted mb:MS discriminant using estimated SDOB values for those events. To first order SPE SDOBs resulting in shear release appear to map to estimated DPRK SDOBs which display excessive shear magnitude. LA-UR-17-29528.
Besmer, Michael D.; Sigrist, Jürg A.; Props, Ruben; Buysschaert, Benjamin; Mao, Guannan; Boon, Nico; Hammes, Frederik
2017-01-01
Rapid contamination of drinking water in distribution and storage systems can occur due to pressure drop, backflow, cross-connections, accidents, and bio-terrorism. Small volumes of a concentrated contaminant (e.g., wastewater) can contaminate large volumes of water in a very short time with potentially severe negative health impacts. The technical limitations of conventional, cultivation-based microbial detection methods neither allow for timely detection of such contaminations, nor for the real-time monitoring of subsequent emergency remediation measures (e.g., shock-chlorination). Here we applied a newly developed continuous, ultra high-frequency flow cytometry approach to track a rapid pollution event and subsequent disinfection of drinking water in an 80-min laboratory scale simulation. We quantified total (TCC) and intact (ICC) cell concentrations as well as flow cytometric fingerprints in parallel in real-time with two different staining methods. The ingress of wastewater was detectable almost immediately (i.e., after 0.6% volume change), significantly changing TCC, ICC, and the flow cytometric fingerprint. Shock chlorination was rapid and detected in real time, causing membrane damage in the vast majority of bacteria (i.e., drop of ICC from more than 380 cells μl-1 to less than 30 cells μl-1 within 4 min). Both of these effects as well as the final wash-in of fresh tap water followed calculated predictions well. Detailed and highly quantitative tracking of microbial dynamics at very short time scales and for different characteristics (e.g., concentration, membrane integrity) is feasible. This opens up multiple possibilities for targeted investigation of a myriad of bacterial short-term dynamics (e.g., disinfection, growth, detachment, operational changes) both in laboratory-scale research and full-scale system investigations in practice. PMID:29085343
Cognitive behavioral therapy for depression in Japanese Parkinson’s disease patients: a pilot study
Shinmei, Issei; Kobayashi, Kei; Oe, Yuki; Takagishi, Yuriko; Kanie, Ayako; Ito, Masaya; Takebayashi, Yoshitake; Murata, Miho; Horikoshi, Masaru; Dobkin, Roseanne D
2016-01-01
Objectives This study evaluated the feasibility of cognitive behavioral therapy (CBT) for Japanese Parkinson’s disease (PD) patients with depression. To increase cultural acceptability, we developed the CBT program using manga, a type of Japanese comic novel. Methods Participants included 19 non-demented PD patients who had depressive symptoms (GRID-Hamilton Rating Scale for Depression score ≥8). A CBT program comprising six sessions was individually administered. We evaluated the feasibility and safety of the CBT program in terms of the dropout rate and occurrence of adverse events. The primary outcome was depressive symptom reduction in the GRID-Hamilton Rating Scale for Depression upon completion of CBT. Secondary outcomes included changes in the self-report measures of depression (Beck Depression Inventory-II, Hospital Anxiety and Depression Scale-Depression), anxiety (Hospital Anxiety and Depression Scale-Anxiety, State and Trait Anxiety Inventory, Overall Anxiety Severity and Impairment Scale), functional impairment, and quality of life (Medical Outcomes Study 36-Item Short-Form Health Survey). Results Of the 19 participants (mean age =63.8 years, standard deviation [SD] =9.9 years; mean Hohen–Yahr score =1.7, SD =0.8), one patient (5%) withdrew. No severe adverse event was observed. The patients reported significant improvements in depression (Hedges’ g =−1.02, 95% confidence interval =−1.62 to −0.39). The effects were maintained over a 3-month follow-up period. Most of the secondary outcome measurements showed a small-to-moderate but nonsignificant effect size from baseline to post-intervention. Conclusion This study provides preliminary evidence that CBT is feasible among Japanese PD patients with depression. Similar approaches may be effective for people with PD from other cultural backgrounds. The results warrant replication in a randomized controlled trial. PMID:27354802
O'Sullivan, P. B.; Murphy, J.M.; Blythe, A.E.
1997-01-01
Apatite fission track data are used to evaluate the thermal and tectonic history of the central Brooks Range and the North Slope foreland basin in northern Alaska along the northern leg of the Trans-Alaska Crustal Transect (TACT). Fission track analyses of the detrital apatite grains in most sedimentary units resolve the timing of structures and denudation within the Brooks Range, ranging in scale from the entire mountain range to relatively small-scale folds and faults. Interpretation of the results indicates that rocks exposed within the central Brooks Range cooled rapidly from paleotemperatures 110?? to 50??C during discrete episodes at ???100??5 Ma, ???60??4 Ma, and ???24??3 Ma, probably in response to kilometer-scale denudation. North of the mountain front, rocks in the southern half of the foreland basin were exposed to maximum paleotemperatures 110??C in the Late Cretaceous to early Paleocene as a result of burial by Upper Jurassic and Cretaceous sedimentary rocks. Rapid cooling from these elevated paleotemperatures also occurred due to distinct episodes of kilometer-scale denudation at ???60??4 Ma, 46??3 Ma, 35??2 Ma, and ???24??3 Ma. Combined, the apatite analyses indicate that rocks exposed along the TACT line through the central Brooks Range and foreland basin experienced episodic rapid cooling throughout the Late Cretaceous and Cenozoic in response to at least three distinct kilometer-scale denudation events. Future models explaining orogenic events in northern Alaska must consider these new constraints from fission track thermochronology. Copyright 1997 by the American Geophysical Union.
Inverse Interscale Transport of the Reynolds Shear Stress in Plane Couette Turbulence
NASA Astrophysics Data System (ADS)
Kawata, Takuya; Alfredsson, P. Henrik
2018-06-01
Interscale interaction between small-scale structures near the wall and large-scale structures away from the wall plays an increasingly important role with increasing Reynolds number in wall-bounded turbulence. While the top-down influence from the large- to small-scale structures is well known, it has been unclear whether the small scales near the wall also affect the large scales away from the wall. In this Letter we show that the small-scale near-wall structures indeed play a role to maintain the large-scale structures away from the wall, by showing that the Reynolds shear stress is transferred from small to large scales throughout the channel. This is in contrast to the turbulent kinetic energy transport which is from large to small scales. Such an "inverse" interscale transport of the Reynolds shear stress eventually supports the turbulent energy production at large scales.
Berntsen, Dorthe; Rubin, David C.
2014-01-01
We introduce a new scale that measures how central an event is to a person's identity and life story. For the most stressful or traumatic event in a person's life, the full 20 item Centrality of Event Scale (CES) and the short 7-item scale are reliable (α's of .94 and .88, respectively) in a sample of 707 undergraduates. The scale correlates .38 with PTSD symptom severity and .23 with depression. The present findings are discussed in relation to previous work on individual differences related to PTSD symptoms. Possible connections between the CES and measures of maladaptive attributions and rumination are considered along with suggestions for future research. PMID:16389062
Contrasting scaling properties of interglacial and glacial climates
NASA Astrophysics Data System (ADS)
Ditlevsen, Peter; Shao, Zhi-Gang
2017-04-01
Understanding natural climate variability is essential for assessments of climate change. This is reflected in the scaling properties of climate records. The scaling exponents of the interglacial and the glacial climates are fundamentally different. The Holocene record is monofractal, with a scaling exponent H˜0.7. On the contrary, the glacial record is multifractal, with a significantly higher scaling exponent H˜1.2, indicating a longer persistence time and stronger nonlinearities in the glacial climate. The glacial climate is dominated by the strong multi-millennial Dansgaard-Oeschger (DO) events influencing the long-time correlation. However, by separately analysing the last glacial maximum lacking DO events, here we find the same scaling for that period as for the full glacial period. The unbroken scaling thus indicates that the DO events are part of the natural variability and not externally triggered. At glacial time scales, there is a scale break to a trivial scaling, contrasting the DO events from the similarly saw-tooth-shaped glacial cycles. Ref: Zhi-Gang Shao and Peter Ditlevsen, Nature Comm. 7, 10951, 2016