Sample records for small scale local

  1. The small length scale effect for a non-local cantilever beam: a paradox solved.

    PubMed

    Challamel, N; Wang, C M

    2008-08-27

    Non-local continuum mechanics allows one to account for the small length scale effect that becomes significant when dealing with microstructures or nanostructures. This paper presents some simplified non-local elastic beam models, for the bending analyses of small scale rods. Integral-type or gradient non-local models abandon the classical assumption of locality, and admit that stress depends not only on the strain value at that point but also on the strain values of all points on the body. There is a paradox still unresolved at this stage: some bending solutions of integral-based non-local elastic beams have been found to be identical to the classical (local) solution, i.e. the small scale effect is not present at all. One example is the Euler-Bernoulli cantilever nanobeam model with a point load which has application in microelectromechanical systems and nanoelectromechanical systems as an actuator. In this paper, it will be shown that this paradox may be overcome with a gradient elastic model as well as an integral non-local elastic model that is based on combining the local and the non-local curvatures in the constitutive elastic relation. The latter model comprises the classical gradient model and Eringen's integral model, and its application produces small length scale terms in the non-local elastic cantilever beam solution.

  2. A stochastic two-scale model for pressure-driven flow between rough surfaces

    PubMed Central

    Larsson, Roland; Lundström, Staffan; Wall, Peter; Almqvist, Andreas

    2016-01-01

    Seal surface topography typically consists of global-scale geometric features as well as local-scale roughness details and homogenization-based approaches are, therefore, readily applied. These provide for resolving the global scale (large domain) with a relatively coarse mesh, while resolving the local scale (small domain) in high detail. As the total flow decreases, however, the flow pattern becomes tortuous and this requires a larger local-scale domain to obtain a converged solution. Therefore, a classical homogenization-based approach might not be feasible for simulation of very small flows. In order to study small flows, a model allowing feasibly-sized local domains, for really small flow rates, is developed. Realization was made possible by coupling the two scales with a stochastic element. Results from numerical experiments, show that the present model is in better agreement with the direct deterministic one than the conventional homogenization type of model, both quantitatively in terms of flow rate and qualitatively in reflecting the flow pattern. PMID:27436975

  3. Small-scale fisheries bycatch jeopardizes endangered Pacific loggerhead turtles.

    PubMed

    Peckham, S Hoyt; Maldonado Diaz, David; Walli, Andreas; Ruiz, Georgita; Crowder, Larry B; Nichols, Wallace J

    2007-10-17

    Although bycatch of industrial-scale fisheries can cause declines in migratory megafauna including seabirds, marine mammals, and sea turtles, the impacts of small-scale fisheries have been largely overlooked. Small-scale fisheries occur in coastal waters worldwide, employing over 99% of the world's 51 million fishers. New telemetry data reveal that migratory megafauna frequent coastal habitats well within the range of small-scale fisheries, potentially producing high bycatch. These fisheries occur primarily in developing nations, and their documentation and management are limited or non-existent, precluding evaluation of their impacts on non-target megafauna. 30 North Pacific loggerhead turtles that we satellite-tracked from 1996-2005 ranged oceanwide, but juveniles spent 70% of their time at a high use area coincident with small-scale fisheries in Baja California Sur, Mexico (BCS). We assessed loggerhead bycatch mortality in this area by partnering with local fishers to 1) observe two small-scale fleets that operated closest to the high use area and 2) through shoreline surveys for discarded carcasses. Minimum annual bycatch mortality in just these two fleets at the high use area exceeded 1000 loggerheads year(-1), rivaling that of oceanwide industrial-scale fisheries, and threatening the persistence of this critically endangered population. As a result of fisher participation in this study and a bycatch awareness campaign, a consortium of local fishers and other citizens are working to eliminate their bycatch and to establish a national loggerhead refuge. Because of the overlap of ubiquitous small-scale fisheries with newly documented high-use areas in coastal waters worldwide, our case study suggests that small-scale fisheries may be among the greatest current threats to non-target megafauna. Future research is urgently needed to quantify small-scale fisheries bycatch worldwide. Localizing coastal high use areas and mitigating bycatch in partnership with small-scale fishers may provide a crucial solution toward ensuring the persistence of vulnerable megafauna.

  4. Small-Scale Fisheries Bycatch Jeopardizes Endangered Pacific Loggerhead Turtles

    PubMed Central

    Peckham, S. Hoyt; Diaz, David Maldonado; Walli, Andreas; Ruiz, Georgita; Crowder, Larry B.; Nichols, Wallace J.

    2007-01-01

    Background Although bycatch of industrial-scale fisheries can cause declines in migratory megafauna including seabirds, marine mammals, and sea turtles, the impacts of small-scale fisheries have been largely overlooked. Small-scale fisheries occur in coastal waters worldwide, employing over 99% of the world's 51 million fishers. New telemetry data reveal that migratory megafauna frequent coastal habitats well within the range of small-scale fisheries, potentially producing high bycatch. These fisheries occur primarily in developing nations, and their documentation and management are limited or non-existent, precluding evaluation of their impacts on non-target megafauna. Principal Findings/Methodology 30 North Pacific loggerhead turtles that we satellite-tracked from 1996–2005 ranged oceanwide, but juveniles spent 70% of their time at a high use area coincident with small-scale fisheries in Baja California Sur, Mexico (BCS). We assessed loggerhead bycatch mortality in this area by partnering with local fishers to 1) observe two small-scale fleets that operated closest to the high use area and 2) through shoreline surveys for discarded carcasses. Minimum annual bycatch mortality in just these two fleets at the high use area exceeded 1000 loggerheads year−1, rivaling that of oceanwide industrial-scale fisheries, and threatening the persistence of this critically endangered population. As a result of fisher participation in this study and a bycatch awareness campaign, a consortium of local fishers and other citizens are working to eliminate their bycatch and to establish a national loggerhead refuge. Conclusions/Significance Because of the overlap of ubiquitous small-scale fisheries with newly documented high-use areas in coastal waters worldwide, our case study suggests that small-scale fisheries may be among the greatest current threats to non-target megafauna. Future research is urgently needed to quantify small-scale fisheries bycatch worldwide. Localizing coastal high use areas and mitigating bycatch in partnership with small-scale fishers may provide a crucial solution toward ensuring the persistence of vulnerable megafauna. PMID:17940605

  5. Nonlinear effects of locally heterogeneous hydraulic conductivity fields on regional stream-aquifer exchanges

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Winter, C. L.; Wang, Z.

    2015-08-01

    Computational experiments are performed to evaluate the effects of locally heterogeneous conductivity fields on regional exchanges of water between stream and aquifer systems in the Middle Heihe River Basin (MHRB) of northwestern China. The effects are found to be nonlinear in the sense that simulated discharges from aquifers to streams are systematically lower than discharges produced by a base model parameterized with relatively coarse effective conductivity. A similar, but weaker, effect is observed for stream leakage. The study is organized around three hypotheses: (H1) small-scale spatial variations of conductivity significantly affect regional exchanges of water between streams and aquifers in river basins, (H2) aggregating small-scale heterogeneities into regional effective parameters systematically biases estimates of stream-aquifer exchanges, and (H3) the biases result from slow-paths in groundwater flow that emerge due to small-scale heterogeneities. The hypotheses are evaluated by comparing stream-aquifer fluxes produced by the base model to fluxes simulated using realizations of the MHRB characterized by local (grid-scale) heterogeneity. Levels of local heterogeneity are manipulated as control variables by adjusting coefficients of variation. All models are implemented using the MODFLOW simulation environment, and the PEST tool is used to calibrate effective conductivities defined over 16 zones within the MHRB. The effective parameters are also used as expected values to develop log-normally distributed conductivity (K) fields on local grid scales. Stream-aquifer exchanges are simulated with K fields at both scales and then compared. Results show that the effects of small-scale heterogeneities significantly influence exchanges with simulations based on local-scale heterogeneities always producing discharges that are less than those produced by the base model. Although aquifer heterogeneities are uncorrelated at local scales, they appear to induce coherent slow-paths in groundwater fluxes that in turn reduce aquifer-stream exchanges. Since surface water-groundwater exchanges are critical hydrologic processes in basin-scale water budgets, these results also have implications for water resources management.

  6. Damage spreading in spatial and small-world random Boolean networks

    NASA Astrophysics Data System (ADS)

    Lu, Qiming; Teuscher, Christof

    2014-02-01

    The study of the response of complex dynamical social, biological, or technological networks to external perturbations has numerous applications. Random Boolean networks (RBNs) are commonly used as a simple generic model for certain dynamics of complex systems. Traditionally, RBNs are interconnected randomly and without considering any spatial extension and arrangement of the links and nodes. However, most real-world networks are spatially extended and arranged with regular, power-law, small-world, or other nonrandom connections. Here we explore the RBN network topology between extreme local connections, random small-world, and pure random networks, and study the damage spreading with small perturbations. We find that spatially local connections change the scaling of the Hamming distance at very low connectivities (K¯≪1) and that the critical connectivity of stability Ks changes compared to random networks. At higher K¯, this scaling remains unchanged. We also show that the Hamming distance of spatially local networks scales with a power law as the system size N increases, but with a different exponent for local and small-world networks. The scaling arguments for small-world networks are obtained with respect to the system sizes and strength of spatially local connections. We further investigate the wiring cost of the networks. From an engineering perspective, our new findings provide the key design trade-offs between damage spreading (robustness), the network's wiring cost, and the network's communication characteristics.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitiashvili, I. N.; Mansour, N. N.; Wray, A. A.

    Magnetic fields are usually observed in the quiet Sun as small-scale elements that cover the entire solar surface (the “salt-and-pepper” patterns in line-of-sight magnetograms). By using 3D radiative MHD numerical simulations, we find that these fields result from a local dynamo action in the top layers of the convection zone, where extremely weak “seed” magnetic fields (e.g., from a 10{sup −6} G) can locally grow above the mean equipartition field to a stronger than 2000 G field localized in magnetic structures. Our results reveal that the magnetic flux is predominantly generated in regions of small-scale helical downflows. We find thatmore » the local dynamo action takes place mostly in a shallow, about 500 km deep, subsurface layer, from which the generated field is transported into the deeper layers by convective downdrafts. We demonstrate that the observed dominance of vertical magnetic fields at the photosphere and horizontal fields above the photosphere can be explained by small-scale magnetic loops produced by the dynamo. Such small-scale loops play an important role in the structure and dynamics of the solar atmosphere and their detection in observations is critical for understanding the local dynamo action on the Sun.« less

  8. Local constitutive behavior of paper determined by an inverse method

    Treesearch

    John M. Considine; C. Tim Scott; Roland Gleisner; Junyong Zhu

    2006-01-01

    The macroscopic behavior of paper is governed by small-scale behavior. Intuitively, we know that a small-scale defect with a paper sheet effectively determines the global behavior of the sheet. In this work, we describe a method to evaluate the local constitutive behavior of paper by using an inverse method.

  9. Nonlinear effects of locally heterogeneous hydraulic conductivity fields on regional stream-aquifer exchanges

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Winter, C. L.; Wang, Z.

    2015-11-01

    Computational experiments are performed to evaluate the effects of locally heterogeneous conductivity fields on regional exchanges of water between stream and aquifer systems in the Middle Heihe River basin (MHRB) of northwestern China. The effects are found to be nonlinear in the sense that simulated discharges from aquifers to streams are systematically lower than discharges produced by a base model parameterized with relatively coarse effective conductivity. A similar, but weaker, effect is observed for stream leakage. The study is organized around three hypotheses: (H1) small-scale spatial variations of conductivity significantly affect regional exchanges of water between streams and aquifers in river basins, (H2) aggregating small-scale heterogeneities into regional effective parameters systematically biases estimates of stream-aquifer exchanges, and (H3) the biases result from slow paths in groundwater flow that emerge due to small-scale heterogeneities. The hypotheses are evaluated by comparing stream-aquifer fluxes produced by the base model to fluxes simulated using realizations of the MHRB characterized by local (grid-scale) heterogeneity. Levels of local heterogeneity are manipulated as control variables by adjusting coefficients of variation. All models are implemented using the MODFLOW (Modular Three-dimensional Finite-difference Groundwater Flow Model) simulation environment, and the PEST (parameter estimation) tool is used to calibrate effective conductivities defined over 16 zones within the MHRB. The effective parameters are also used as expected values to develop lognormally distributed conductivity (K) fields on local grid scales. Stream-aquifer exchanges are simulated with K fields at both scales and then compared. Results show that the effects of small-scale heterogeneities significantly influence exchanges with simulations based on local-scale heterogeneities always producing discharges that are less than those produced by the base model. Although aquifer heterogeneities are uncorrelated at local scales, they appear to induce coherent slow paths in groundwater fluxes that in turn reduce aquifer-stream exchanges. Since surface water-groundwater exchanges are critical hydrologic processes in basin-scale water budgets, these results also have implications for water resources management.

  10. Influence of Global Shapes on Children's Coding of Local Geometric Information in Small-Scale Spaces

    ERIC Educational Resources Information Center

    Chiang, Noelle C.

    2013-01-01

    This research uses enclosed whole shapes, rather than visual form fragments, to demonstrate that children's use of local geometric information is influenced by global shapes in small-scale spaces. Three- to six-year-old children and adults participated in two experiments with a table-top task. In Experiment 1, participants were presented with a…

  11. Acoustic nonreciprocity in a lattice incorporating nonlinearity, asymmetry, and internal scale hierarchy: Experimental study

    NASA Astrophysics Data System (ADS)

    Bunyan, Jonathan; Moore, Keegan J.; Mojahed, Alireza; Fronk, Matthew D.; Leamy, Michael; Tawfick, Sameh; Vakakis, Alexander F.

    2018-05-01

    In linear time-invariant systems acoustic reciprocity holds by the Onsager-Casimir principle of microscopic reversibility, and it can be broken only by odd external biases, nonlinearities, or time-dependent properties. Recently it was shown that one-dimensional lattices composed of a finite number of identical nonlinear cells with internal scale hierarchy and asymmetry exhibit nonreciprocity both locally and globally. Considering a single cell composed of a large scale nonlinearly coupled to a small scale, local dynamic nonreciprocity corresponds to vibration energy transfer from the large to the small scale, but absence of energy transfer (and localization) from the small to the large scale. This has been recently proven both theoretically and experimentally. Then, considering the entire lattice, global acoustic nonreciprocity has been recently proven theoretically, corresponding to preferential energy transfer within the lattice under transient excitation applied at one of its boundaries, and absence of similar energy transfer (and localization) when the excitation is applied at its other boundary. This work provides experimental validation of the global acoustic nonreciprocity with a one-dimensional asymmetric lattice composed of three cells, with each cell incorporating nonlinearly coupled large and small scales. Due to the intentional asymmetry of the lattice, low impulsive excitations applied to one of its boundaries result in wave transmission through the lattice, whereas when the same excitations are applied to the other end, they lead in energy localization at the boundary and absence of wave transmission. This global nonreciprocity depends critically on energy (i.e., the intensity of the applied impulses), and reduced-order models recover the nonreciprocal acoustics and clarify the nonlinear mechanism generating nonreciprocity in this system.

  12. Local-scale and watershed-scale determinants of summertime urban stream temperatures

    Treesearch

    Derek B. Booth; Kristin A. Kraseski; C. Rhett Jackson

    2014-01-01

    The influence of urbanization on the temperature of small streams is widely recognized, but these effects are confounded by the great natural variety of their contributing watersheds. To evaluate the relative importance of local-scale and watershed-scale factors on summer temperatures in urban streams, hundreds of near-instantaneous temperature measurements throughout...

  13. Local and global synchronization transitions induced by time delays in small-world neuronal networks with chemical synapses.

    PubMed

    Yu, Haitao; Wang, Jiang; Du, Jiwei; Deng, Bin; Wei, Xile

    2015-02-01

    Effects of time delay on the local and global synchronization in small-world neuronal networks with chemical synapses are investigated in this paper. Numerical results show that, for both excitatory and inhibitory coupling types, the information transmission delay can always induce synchronization transitions of spiking neurons in small-world networks. In particular, regions of in-phase and out-of-phase synchronization of connected neurons emerge intermittently as the synaptic delay increases. For excitatory coupling, all transitions to spiking synchronization occur approximately at integer multiples of the firing period of individual neurons; while for inhibitory coupling, these transitions appear at the odd multiples of the half of the firing period of neurons. More importantly, the local synchronization transition is more profound than the global synchronization transition, depending on the type of coupling synapse. For excitatory synapses, the local in-phase synchronization observed for some values of the delay also occur at a global scale; while for inhibitory ones, this synchronization, observed at the local scale, disappears at a global scale. Furthermore, the small-world structure can also affect the phase synchronization of neuronal networks. It is demonstrated that increasing the rewiring probability can always improve the global synchronization of neuronal activity, but has little effect on the local synchronization of neighboring neurons.

  14. A spatial method to calculate small-scale fisheries effort in data poor scenarios.

    PubMed

    Johnson, Andrew Frederick; Moreno-Báez, Marcia; Giron-Nava, Alfredo; Corominas, Julia; Erisman, Brad; Ezcurra, Exequiel; Aburto-Oropeza, Octavio

    2017-01-01

    To gauge the collateral impacts of fishing we must know where fishing boats operate and how much they fish. Although small-scale fisheries land approximately the same amount of fish for human consumption as industrial fleets globally, methods of estimating their fishing effort are comparatively poor. We present an accessible, spatial method of calculating the effort of small-scale fisheries based on two simple measures that are available, or at least easily estimated, in even the most data-poor fisheries: the number of boats and the local coastal human population. We illustrate the method using a small-scale fisheries case study from the Gulf of California, Mexico, and show that our measure of Predicted Fishing Effort (PFE), measured as the number of boats operating in a given area per day adjusted by the number of people in local coastal populations, can accurately predict fisheries landings in the Gulf. Comparing our values of PFE to commercial fishery landings throughout the Gulf also indicates that the current number of small-scale fishing boats in the Gulf is approximately double what is required to land theoretical maximum fish biomass. Our method is fishery-type independent and can be used to quantitatively evaluate the efficacy of growth in small-scale fisheries. This new method provides an important first step towards estimating the fishing effort of small-scale fleets globally.

  15. Generating clustered scale-free networks using Poisson based localization of edges

    NASA Astrophysics Data System (ADS)

    Türker, İlker

    2018-05-01

    We introduce a variety of network models using a Poisson-based edge localization strategy, which result in clustered scale-free topologies. We first verify the success of our localization strategy by realizing a variant of the well-known Watts-Strogatz model with an inverse approach, implying a small-world regime of rewiring from a random network through a regular one. We then apply the rewiring strategy to a pure Barabasi-Albert model and successfully achieve a small-world regime, with a limited capacity of scale-free property. To imitate the high clustering property of scale-free networks with higher accuracy, we adapted the Poisson-based wiring strategy to a growing network with the ingredients of both preferential attachment and local connectivity. To achieve the collocation of these properties, we used a routine of flattening the edges array, sorting it, and applying a mixing procedure to assemble both global connections with preferential attachment and local clusters. As a result, we achieved clustered scale-free networks with a computational fashion, diverging from the recent studies by following a simple but efficient approach.

  16. [Prediction and spatial distribution of recruitment trees of natural secondary forest based on geographically weighted Poisson model].

    PubMed

    Zhang, Ling Yu; Liu, Zhao Gang

    2017-12-01

    Based on the data collected from 108 permanent plots of the forest resources survey in Maoershan Experimental Forest Farm during 2004-2016, this study investigated the spatial distribution of recruitment trees in natural secondary forest by global Poisson regression and geographically weighted Poisson regression (GWPR) with four bandwidths of 2.5, 5, 10 and 15 km. The simulation effects of the 5 regressions and the factors influencing the recruitment trees in stands were analyzed, a description was given to the spatial autocorrelation of the regression residuals on global and local levels using Moran's I. The results showed that the spatial distribution of the number of natural secondary forest recruitment was significantly influenced by stands and topographic factors, especially average DBH. The GWPR model with small scale (2.5 km) had high accuracy of model fitting, a large range of model parameter estimates was generated, and the localized spatial distribution effect of the model parameters was obtained. The GWPR model at small scale (2.5 and 5 km) had produced a small range of model residuals, and the stability of the model was improved. The global spatial auto-correlation of the GWPR model residual at the small scale (2.5 km) was the lowe-st, and the local spatial auto-correlation was significantly reduced, in which an ideal spatial distribution pattern of small clusters with different observations was formed. The local model at small scale (2.5 km) was much better than the global model in the simulation effect on the spatial distribution of recruitment tree number.

  17. How do large-scale agricultural investments affect land use and the environment on the western slopes of Mount Kenya? Empirical evidence based on small-scale farmers' perceptions and remote sensing.

    PubMed

    Zaehringer, Julie G; Wambugu, Grace; Kiteme, Boniface; Eckert, Sandra

    2018-05-01

    Africa has been heavily targeted by large-scale agricultural investments (LAIs) throughout the last decade, with scarcely known impacts on local social-ecological systems. In Kenya, a large number of LAIs were made in the region northwest of Mount Kenya. These large-scale farms produce vegetables and flowers mainly for European markets. However, land use in the region remains dominated by small-scale crop and livestock farms with less than 1 ha of land each, who produce both for their own subsistence and for the local markets. We interviewed 100 small-scale farmers living near five different LAIs to elicit their perceptions of the impacts that these LAIs have on their land use and the overall environment. Furthermore, we analyzed remotely sensed land cover and land use data to assess land use change in the vicinity of the five LAIs. While land use change did not follow a clear trend, a number of small-scale farmers did adapt their crop management to environmental changes such as a reduced river water flows and increased pests, which they attributed to the presence of LAIs. Despite the high number of open conflicts between small-scale land users and LAIs around the issue of river water abstraction, the main environmental impact, felt by almost half of the interviewed land users, was air pollution with agrochemicals sprayed on the LAIs' land. Even though only a low percentage of local land users and their household members were directly involved with LAIs, a large majority of respondents favored the presence of LAIs nearby, as they are believed to contribute to the region's overall economic development. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Equatorial Density Irregularity Structures at Intermediate Scales and Their Temporal Evolution

    NASA Technical Reports Server (NTRS)

    Kil, Hyosub; Heelis, R. A.

    1998-01-01

    We examine high resolution measurements of ion density in the equatorial ionosphere from the AE-E satellite during the years 1977-1981. Structure over spatial scales from 18 km to 200 m is characterized by the spectrum of irregularities at larger and smaller scales and at altitudes above 350 km and below 300 km. In the low-altitude region, only small amplitude large-scale (lambda greater than 5 km) density modulations are often observed, and thus the power spectrum of these density structures exhibits a steep spectral slope at kilometer scales. In the high-altitude region, sinusoidal density fluctuations, characterized by enhanced power near 1-km scale, are frequently observed during 2000-0200 LT. However, such fluctuations are confined to regions at the edges of larger bubble structures where the average background density is high. Small amplitude irregularity structures, observed at early local time hours, grow rapidly to high-intensity structures in about 90 min. Fully developed structures, which are observed at late local time hours, decay very slowly producing only-small differences in spectral characteristics even 4 hours later. The local time evolution of irregularity structure is investigated by using average statistics for low-(1% less than sigma less than 5%) and high-intensity (sigma greater than 10%) structures. At lower altitudes, little chance in the spectral slope is seen as a function of local time, while at higher attitudes the growth and maintenance of structures near 1 km scales dramatically affects the spectral slope.

  19. Biomedical device prototype based on small scale hydrodynamic cavitation

    NASA Astrophysics Data System (ADS)

    Ghorbani, Morteza; Sozer, Canberk; Alcan, Gokhan; Unel, Mustafa; Ekici, Sinan; Uvet, Huseyin; Koşar, Ali

    2018-03-01

    This study presents a biomedical device prototype based on small scale hydrodynamic cavitation. The application of small scale hydrodynamic cavitation and its integration to a biomedical device prototype is offered as an important alternative to other techniques, such as ultrasound therapy, and thus constitutes a local, cheap, and energy-efficient solution, for urinary stone therapy and abnormal tissue ablation (e.g., benign prostate hyperplasia (BPH)). The destructive nature of bubbly, cavitating, flows was exploited, and the potential of the prototype was assessed and characterized. Bubbles generated in a small flow restrictive element (micro-orifice) based on hydrodynamic cavitation were utilized for this purpose. The small bubbly, cavitating, flow generator (micro-orifice) was fitted to a small flexible probe, which was actuated with a micromanipulator using fine control. This probe also houses an imaging device for visualization so that the emerging cavitating flow could be locally targeted to the desired spot. In this study, the feasibility of this alternative treatment method and its integration to a device prototype were successfully accomplished.

  20. Small-scale monitoring - can it be integrated with large-scale programs?

    Treesearch

    C. M. Downes; J. Bart; B. T. Collins; B. Craig; B. Dale; E. H. Dunn; C. M. Francis; S. Woodley; P. Zorn

    2005-01-01

    There are dozens of programs and methodologies for monitoring and inventory of bird populations, differing in geographic scope, species focus, field methods and purpose. However, most of the emphasis has been placed on large-scale monitoring programs. People interested in assessing bird numbers and long-term trends in small geographic areas such as a local birding area...

  1. DESIGN OF A SMALL – SCALE SOLAR CHIMNEY FOR SUSTAINABLE POWER

    EPA Science Inventory

    After several months of design and testing it has been determined that a small scale solar chimney can be built using nearly any local materials and simple hand tools without needing superior construction knowledge. The biggest obstacle to over come was the weather conditions....

  2. Learning Ecosystem Complexity: A Study on Small-Scale Fishers' Ecological Knowledge Generation

    ERIC Educational Resources Information Center

    Garavito-Bermúdez, Diana

    2018-01-01

    Small-scale fisheries are learning contexts of importance for generating, transferring and updating ecological knowledge of natural environments through everyday work practices. The rich knowledge fishers have of local ecosystems is the result of the intimate relationship fishing communities have had with their natural environments across…

  3. Biology-Inspired Distributed Consensus in Massively-Deployed Sensor Networks

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H.; Lodding, Kenneth N.; Olariu, Stephan; Wilson, Larry; Xin, Chunsheng

    2005-01-01

    Promises of ubiquitous control of the physical environment by large-scale wireless sensor networks open avenues for new applications that are expected to redefine the way we live and work. Most of recent research has concentrated on developing techniques for performing relatively simple tasks in small-scale sensor networks assuming some form of centralized control. The main contribution of this work is to propose a new way of looking at large-scale sensor networks, motivated by lessons learned from the way biological ecosystems are organized. Indeed, we believe that techniques used in small-scale sensor networks are not likely to scale to large networks; that such large-scale networks must be viewed as an ecosystem in which the sensors/effectors are organisms whose autonomous actions, based on local information, combine in a communal way to produce global results. As an example of a useful function, we demonstrate that fully distributed consensus can be attained in a scalable fashion in massively deployed sensor networks where individual motes operate based on local information, making local decisions that are aggregated across the network to achieve globally-meaningful effects.

  4. Scale disparity and spectral transfer in anisotropic numerical turbulence

    NASA Technical Reports Server (NTRS)

    Zhou, YE; Yeung, P. K.; Brasseur, James G.

    1994-01-01

    To study the effect of cancellations within long-range interactions on local isotropy at the small scales, we calculate explicitly the degree of cancellation in distant interactions in the simulations of Yeung & Brasseur and Yeung, Brasseur & Wang using the single scale disparity parameter 's' developed by Zhou. In the simulations, initially isotropic simulated turbulence was subjected to coherent anisotropic forcing at the large scales and the smallest scales were found to become anisotropic as a consequence of direct large-small scale couplings. We find that the marginally distant interactions in the simulation do not cancel out under summation and that the development of small-scale anisotropy is indeed a direct consequence of the distant triadic group, as argued by Yeung, et. al. A reduction of anisotropy at later times occurs as a result of the isotropizing influences of more local energy-cascading triadic interactions. Nevertheless, the local-to-nonlocal triadic group persists as an isotropizing influence at later times. We find that, whereas long-range interactions, in general, contribute little to net energy transfer into or out of a high wavenumber shell k, the anisotropic transfer of component energy within the shell increases with increasing scale separations. These results are consistent with results by Zhou, and Brasseur & Wei, and suggest that the anisotropizing influences of long range interactions should persist to higher Reynolds numbers. The residual effect of the forced distant group in this low-Reynolds number simulation is found to be forward cascading, on average.

  5. Influence of a large-scale field on energy dissipation in magnetohydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Zhdankin, Vladimir; Boldyrev, Stanislav; Mason, Joanne

    2017-07-01

    In magnetohydrodynamic (MHD) turbulence, the large-scale magnetic field sets a preferred local direction for the small-scale dynamics, altering the statistics of turbulence from the isotropic case. This happens even in the absence of a total magnetic flux, since MHD turbulence forms randomly oriented large-scale domains of strong magnetic field. It is therefore customary to study small-scale magnetic plasma turbulence by assuming a strong background magnetic field relative to the turbulent fluctuations. This is done, for example, in reduced models of plasmas, such as reduced MHD, reduced-dimension kinetic models, gyrokinetics, etc., which make theoretical calculations easier and numerical computations cheaper. Recently, however, it has become clear that the turbulent energy dissipation is concentrated in the regions of strong magnetic field variations. A significant fraction of the energy dissipation may be localized in very small volumes corresponding to the boundaries between strongly magnetized domains. In these regions, the reduced models are not applicable. This has important implications for studies of particle heating and acceleration in magnetic plasma turbulence. The goal of this work is to systematically investigate the relationship between local magnetic field variations and magnetic energy dissipation, and to understand its implications for modelling energy dissipation in realistic turbulent plasmas.

  6. SMALL-SCALE ANISOTROPIES OF COSMIC RAYS FROM RELATIVE DIFFUSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahlers, Markus; Mertsch, Philipp

    2015-12-10

    The arrival directions of multi-TeV cosmic rays show significant anisotropies at small angular scales. It has been argued that this small-scale structure can naturally arise from cosmic ray scattering in local turbulent magnetic fields that distort a global dipole anisotropy set by diffusion. We study this effect in terms of the power spectrum of cosmic ray arrival directions and show that the strength of small-scale anisotropies is related to properties of relative diffusion. We provide a formalism for how these power spectra can be inferred from simulations and motivate a simple analytic extension of the ensemble-averaged diffusion equation that canmore » account for the effect.« less

  7. Small-scale topography modulates elevational α-, β- and γ-diversity of Andean leaf beetles.

    PubMed

    Thormann, Birthe; Ahrens, Dirk; Espinosa, Carlos Iván; Armijos, Diego Marín; Wagner, Thomas; Wägele, Johann W; Peters, Marcell K

    2018-05-01

    Elevational diversity gradients are typically studied without considering the complex small-scale topography of large mountains, which generates habitats of strongly different environmental conditions within the same elevational zones. Here we analyzed the importance of small-scale topography for elevational diversity patterns of hyperdiverse tropical leaf beetles (Coleoptera: Chrysomelidae). We compared patterns of elevational diversity and species composition of beetles in two types of forests (on mountain ridges and in valleys) and analyzed whether differences in the rate of species turnover among forest habitats lead to shifts in patterns of elevational diversity when scaling up from the local study site to the elevational belt level. We sampled beetle assemblages at 36 sites in the Podocarpus National Park, Ecuador, which were equally distributed over two forest habitats and three elevational levels. DNA barcoding and Poisson tree processes modelling were used to delimitate putative species. On average, local leaf beetle diversity showed a clear hump-shaped pattern. However, only diversity in forests on mountain ridges peaked at mid-elevation, while beetle diversity in valleys was similarly high at low- and mid-elevation and only declined at highest elevations. A higher turnover of species assemblages at lower than at mid-elevations caused a shift from a hump-shaped diversity pattern found at the local level to a low-elevation plateau pattern (with similar species numbers at low and mid-elevation) at the elevational belt level. Our study reveals an important role of small-scale topography and spatial scale for the inference on gradients of elevational species diversity.

  8. Participatory approach: from problem identification to setting strategies for increased productivity and sustainability in small scale irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Habtu, Solomon; Ludi, Eva; Jamin, Jean Yves; Oates, Naomi; Fissahaye Yohannes, Degol

    2014-05-01

    Practicing various innovations pertinent to irrigated farming at local field scale is instrumental to increase productivity and yield for small holder farmers in Africa. However the translation of innovations from local scale to the scale of a jointly operated irrigation scheme is far from trivial. It requires insight on the drivers for adoption of local innovations within the wider farmer communities. Participatory methods are expected to improve not only the acceptance of locally developed innovations within the wider farmer communities, but to allow also an estimation to which extend changes will occur within the entire irrigation scheme. On such a base, more realistic scenarios of future water productivity within an irrigation scheme, which is operated by small holder farmers, can be estimated. Initial participatory problem and innovation appraisal was conducted in Gumselassa small scale irrigation scheme, Ethiopia, from Feb 27 to March 3, 2012 as part of the EAU4FOOD project funded by EC. The objective was to identify and appraise problems which hinder sustainable water management to enhance production and productivity and to identify future research strategies. Workshops were conducted both at local (Community of Practices) and regional (Learning Practice Alliance) level. At local levels, intensive collaboration with farmers using participatory methods produced problem trees and a "Photo Safari" documented a range of problems that negatively impact on productive irrigated farming. A range of participatory methods were also used to identify local innovations. At regional level a Learning Platform was established that includes a wide range of stakeholders (technical experts from various government ministries, policy makers, farmers, extension agents, researchers). This stakeholder group did a range of exercise as well to identify major problems related to irrigated smallholder farming and already identified innovations. Both groups identified similar problems to productive smallholder irrigation: soil nutrient depletion, salinization, disease and pest resulting from inefficient irrigation practices, infrastructure problems leading to a reduction of the size of the command area and decrease in reservoir volume. The major causes have been poor irrigation infrastructure, poor on-farm soil and water management, prevalence of various crop pests and diseases, lack of inputs and reservoir siltation. On-farm participatory research focusing on soil, crop and water management issues, including technical, institutional and managerial aspects, to identify best performing innovations while taking care of the environment was recommended. Currently, a range of interlinked activities are implemented a multiple scales, combining participatory and scientific approaches towards innovation development and up-scaling of promising technologies and institutional and managerial approaches from local to regional scales. ____________________________ Key words: Irrigation scheme, productivity, innovation, participatory method, Gumselassa, Ethiopia

  9. IS THE SMALL-SCALE MAGNETIC FIELD CORRELATED WITH THE DYNAMO CYCLE?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karak, Bidya Binay; Brandenburg, Axel, E-mail: bbkarak@nordita.org

    2016-01-01

    The small-scale magnetic field is ubiquitous at the solar surface—even at high latitudes. From observations we know that this field is uncorrelated (or perhaps even weakly anticorrelated) with the global sunspot cycle. Our aim is to explore the origin, and particularly the cycle dependence, of such a phenomenon using three-dimensional dynamo simulations. We adopt a simple model of a turbulent dynamo in a shearing box driven by helically forced turbulence. Depending on the dynamo parameters, large-scale (global) and small-scale (local) dynamos can be excited independently in this model. Based on simulations in different parameter regimes, we find that, when onlymore » the large-scale dynamo is operating in the system, the small-scale magnetic field generated through shredding and tangling of the large-scale magnetic field is positively correlated with the global magnetic cycle. However, when both dynamos are operating, the small-scale field is produced from both the small-scale dynamo and the tangling of the large-scale field. In this situation, when the large-scale field is weaker than the equipartition value of the turbulence, the small-scale field is almost uncorrelated with the large-scale magnetic cycle. On the other hand, when the large-scale field is stronger than the equipartition value, we observe an anticorrelation between the small-scale field and the large-scale magnetic cycle. This anticorrelation can be interpreted as a suppression of the small-scale dynamo. Based on our studies we conclude that the observed small-scale magnetic field in the Sun is generated by the combined mechanisms of a small-scale dynamo and tangling of the large-scale field.« less

  10. Kinetic Electric Field Signatures Associated with Magnetic Turbulence and Their Impact on Space Plasma Environments

    NASA Astrophysics Data System (ADS)

    Goodrich, K. A.

    Magnetic turbulence is a universal phenomenon that occurs in space plasma physics, the small-scale processes of which is not well understood. This thesis presents on observational analysis of kinetic electric field signatures associated with magnetic turbulence, in an attempt to examine its underlying microphysics. Such kinetic signatures include small-scale magnetic holes, double layers, and phase-space holes. The first and second parts of this thesis presents observations of small-scale magnetic holes, observed depressions in total magnetic field strength with spatial widths on the order of or less than the ion Larmor radius, in the near-Earth plasmasheet. Here I demonstrate electric field signatures associated small-scale magnetic holes are consistent with the presence of electron Hall currents, currents oriented perpendicularly to the magnetic field. Further investigation of these fields indicates that the Hall electron current is primarily responsible for the depletion of | B| associated with small-scale magnetic holes. I then present evidence that suggests these currents can descend to smaller spatial scales, indicating they participate in a turbulent cascade to smaller scales, a link that has not been observable suggested until now. The last part of this thesis investigates the presence of double layers and phase-space holes in a magnetically turbulent region of the terrestrial bow shock. In this part, I present evidence that these same signatures can be generated via field-aligned currents generated by strong magnetic fluctuations. I also show that double layers and phase-space holes, embedded within localized nonlinear ion acoustic waves, correlate with localized electron heating and possible ion deceleration, indicating they play a role in turbulent dissipation of kinetic to thermal energy. This thesis clearly demonstrates that energy dissipation in turbulent plasma is closely linked to the small-scale electric field environment.

  11. Elevational Gradients in β-Diversity Reflect Variation in the Strength of Local Community Assembly Mechanisms across Spatial Scales

    PubMed Central

    Tello, J. Sebastián; Myers, Jonathan A.; Macía, Manuel J.; Fuentes, Alfredo F.; Cayola, Leslie; Arellano, Gabriel; Loza, M. Isabel; Torrez, Vania; Cornejo, Maritza; Miranda, Tatiana B.; Jørgensen, Peter M.

    2015-01-01

    Despite long-standing interest in elevational-diversity gradients, little is known about the processes that cause changes in the compositional variation of communities (β-diversity) across elevations. Recent studies have suggested that β-diversity gradients are driven by variation in species pools, rather than by variation in the strength of local community assembly mechanisms such as dispersal limitation, environmental filtering, or local biotic interactions. However, tests of this hypothesis have been limited to very small spatial scales that limit inferences about how the relative importance of assembly mechanisms may change across spatial scales. Here, we test the hypothesis that scale-dependent community assembly mechanisms shape biogeographic β-diversity gradients using one of the most well-characterized elevational gradients of tropical plant diversity. Using an extensive dataset on woody plant distributions along a 4,000-m elevational gradient in the Bolivian Andes, we compared observed patterns of β-diversity to null-model expectations. β-deviations (standardized differences from null values) were used to measure the relative effects of local community assembly mechanisms after removing sampling effects caused by variation in species pools. To test for scale-dependency, we compared elevational gradients at two contrasting spatial scales that differed in the size of local assemblages and regions by at least an order of magnitude. Elevational gradients in β-diversity persisted after accounting for regional variation in species pools. Moreover, the elevational gradient in β-deviations changed with spatial scale. At small scales, local assembly mechanisms were detectable, but variation in species pools accounted for most of the elevational gradient in β-diversity. At large spatial scales, in contrast, local assembly mechanisms were a dominant force driving changes in β-diversity. In contrast to the hypothesis that variation in species pools alone drives β-diversity gradients, we show that local community assembly mechanisms contribute strongly to systematic changes in β-diversity across elevations. We conclude that scale-dependent variation in community assembly mechanisms underlies these iconic gradients in global biodiversity. PMID:25803846

  12. Multi-approaches analysis reveals local adaptation in the emmer wheat (Triticum dicoccoides) at macro- but not micro-geographical scale.

    PubMed

    Volis, Sergei; Ormanbekova, Danara; Yermekbayev, Kanat; Song, Minshu; Shulgina, Irina

    2015-01-01

    Detecting local adaptation and its spatial scale is one of the most important questions of evolutionary biology. However, recognition of the effect of local selection can be challenging when there is considerable environmental variation across the distance at the whole species range. We analyzed patterns of local adaptation in emmer wheat, Triticum dicoccoides, at two spatial scales, small (inter-population distance less than one km) and large (inter-population distance more than 50 km) using several approaches. Plants originating from four distinct habitats at two geographic scales (cold edge, arid edge and two topographically dissimilar core locations) were reciprocally transplanted and their success over time was measured as 1) lifetime fitness in a year of planting, and 2) population growth four years after planting. In addition, we analyzed molecular (SSR) and quantitative trait variation and calculated the QST/FST ratio. No home advantage was detected at the small spatial scale. At the large spatial scale, home advantage was detected for the core population and the cold edge population in the year of introduction via measuring life-time plant performance. However, superior performance of the arid edge population in its own environment was evident only after several generations via measuring experimental population growth rate through genotyping with SSRs allowing counting the number of plants and seeds per introduced genotype per site. These results highlight the importance of multi-generation surveys of population growth rate in local adaptation testing. Despite predominant self-fertilization of T. dicoccoides and the associated high degree of structuring of genetic variation, the results of the QST - FST comparison were in general agreement with the pattern of local adaptation at the two spatial scales detected by reciprocal transplanting.

  13. Identifying the Costs and Benefits of Educational Psychology: A Preliminary Exploration in Two Local Authorities

    ERIC Educational Resources Information Center

    Gibbs, Simon; Papps, Ivy

    2017-01-01

    This article provides an account of a small-scale pilot study of the cost and perceived benefits of the educational psychology services in two comparably small local authorities in England. This study is preparatory to a more detailed examination of the costs and likely benefits of state provision of educational psychology services in England. The…

  14. Appropriate Technology Sourcebook - For Tools and Techniques That Use Local Skills, Local Resources, and Renewable Sources of Energy. Volume One.

    ERIC Educational Resources Information Center

    Darrow, Ken; Pam, Rick

    Written in non-technical language, this sourcebook identifies plans and books for village and small community technology. It contains reviews of publications from 375 American and foreign sources on agriculture, alternative sources of energy, water supply, health care, housing, and related subjects. Emphasized are small-scale systems using local…

  15. Challenges in Upscaling Geomorphic Transport Laws: Scale-dependence of Local vs. Non-local Formalisms and Derivation of Closures (Invited)

    NASA Astrophysics Data System (ADS)

    Foufoula-Georgiou, E.; Ganti, V. K.; Passalacqua, P.

    2010-12-01

    Nonlinear geomorphic transport laws are often derived from mechanistic considerations at a point, and yet they are implemented on 90m or 30 m DEMs, presenting a mismatch in the scales of derivation and application of the flux laws. Since estimates of local slopes and curvatures are known to depend on the scale of the DEM used in their computation, two questions arise: (1) how to meaningfully compensate for the scale dependence, if any, of local transport laws? and (2) how to formally derive, via upscaling, constitutive laws that are applicable at larger scales? Recently, non-local geomorphic transport laws for sediment transport on hillslopes have been introduced using the concept of an integral flux that depends on topographic attributes in the vicinity of a point of interest. In this paper, we demonstrate the scale dependence of local nonlinear hillslope sediment transport laws and derive a closure term via upscaling (Reynolds averaging). We also show that the non-local hillslope transport laws are inherently scale independent owing to their non-local, scale-free nature. These concepts are demonstrated via an application to a small subbasin of the Oregon Coast Range using 2m LiDAR topographic data.

  16. Region effects influence local tree species diversity.

    PubMed

    Ricklefs, Robert E; He, Fangliang

    2016-01-19

    Global patterns of biodiversity reflect both regional and local processes, but the relative importance of local ecological limits to species coexistence, as influenced by the physical environment, in contrast to regional processes including species production, dispersal, and extinction, is poorly understood. Failure to distinguish regional influences from local effects has been due, in part, to sampling limitations at small scales, environmental heterogeneity within local or regional samples, and incomplete geographic sampling of species. Here, we use a global dataset comprising 47 forest plots to demonstrate significant region effects on diversity, beyond the influence of local climate, which together explain more than 92% of the global variation in local forest tree species richness. Significant region effects imply that large-scale processes shaping the regional diversity of forest trees exert influence down to the local scale, where they interact with local processes to determine the number of coexisting species.

  17. Energy transfers in large-scale and small-scale dynamos

    NASA Astrophysics Data System (ADS)

    Samtaney, Ravi; Kumar, Rohit; Verma, Mahendra

    2015-11-01

    We present the energy transfers, mainly energy fluxes and shell-to-shell energy transfers in small-scale dynamo (SSD) and large-scale dynamo (LSD) using numerical simulations of MHD turbulence for Pm = 20 (SSD) and for Pm = 0.2 on 10243 grid. For SSD, we demonstrate that the magnetic energy growth is caused by nonlocal energy transfers from the large-scale or forcing-scale velocity field to small-scale magnetic field. The peak of these energy transfers move towards lower wavenumbers as dynamo evolves, which is the reason for the growth of the magnetic fields at the large scales. The energy transfers U2U (velocity to velocity) and B2B (magnetic to magnetic) are forward and local. For LSD, we show that the magnetic energy growth takes place via energy transfers from large-scale velocity field to large-scale magnetic field. We observe forward U2U and B2B energy flux, similar to SSD.

  18. Life-history strategies associated with local population variability confer regional stability.

    PubMed

    Pribil, Stanislav; Houlahan, Jeff E

    2003-07-07

    A widely held ecological tenet is that, at the local scale, populations of K-selected species (i.e. low fecundity, long lifespan and large body size) will be less variable than populations of r-selected species (i.e. high fecundity, short lifespan and small body size). We examined the relationship between long-term population trends and life-history attributes for 185 bird species in the Czech Republic and found that, at regional spatial scales and over moderate temporal scales (100-120 years), K-selected bird species were more likely to show both large increases and decreases in population size than r-selected species. We conclude that life-history attributes commonly associated with variable populations at the local scale, confer stability at the regional scale.

  19. Universality of local dissipation scales in buoyancy-driven turbulence.

    PubMed

    Zhou, Quan; Xia, Ke-Qing

    2010-03-26

    We report an experimental investigation of the local dissipation scale field eta in turbulent thermal convection. Our results reveal two types of universality of eta. The first one is that, for the same flow, the probability density functions (PDFs) of eta are insensitive to turbulent intensity and large-scale inhomogeneity and anisotropy of the system. The second is that the small-scale dissipation dynamics in buoyancy-driven turbulence can be described by the same models developed for homogeneous and isotropic turbulence. However, the exact functional form of the PDF of the local dissipation scale is not universal with respect to different types of flows, but depends on the integral-scale velocity boundary condition, which is found to have an exponential, rather than Gaussian, distribution in turbulent Rayleigh-Bénard convection.

  20. Are state renewable feed-in tariff initiatives truly throttled by Federal statutes after the FERC California decision?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yaffe, David P.

    For the last few years, several local and state governments have adopted ''feed-in tariffs'' to promote development of dispersed, small-scale renewable generation through incentive pricing. Most FITs are intended to stimulate development of small solar or renewable energy facilities. In July, FERC issued a decision restating that the Federal Power Act and PURPA 210, not state (or local) legislation, govern the price that local utilities may pay under FITs. (author)

  1. Small-scale behavior in distorted turbulent boundary layers at low Reynolds number

    NASA Technical Reports Server (NTRS)

    Saddoughi, Seyed G.

    1994-01-01

    During the last three years we have conducted high- and low-Reynolds-number experiments, including hot-wire measurements of the velocity fluctuations, in the test-section-ceiling boundary layer of the 80- by 120-foot Full-Scale Aerodynamics Facility at NASA Ames Research Center, to test the local-isotropy predictions of Kolmogorov's universal equilibrium theory. This hypothesis, which states that at sufficiently high Reynolds numbers the small-scale structures of turbulent motions are independent of large-scale structures and mean deformations, has been used in theoretical studies of turbulence and computational methods such as large-eddy simulation; however, its range of validity in shear flows has been a subject of controversy. The present experiments were planned to enhance our understanding of the local-isotropy hypothesis. Our experiments were divided into two sets. First, measurements were taken at different Reynolds numbers in a plane boundary layer, which is a 'simple' shear flow. Second, experiments were designed to address this question: will our criteria for the existence of local isotropy hold for 'complex' nonequilibrium flows in which extra rates of mean strain are added to the basic mean shear?

  2. Harmony in the small-world

    NASA Astrophysics Data System (ADS)

    Marchiori, Massimo; Latora, Vito

    2000-10-01

    The small-world phenomenon, popularly known as six degrees of separation, has been mathematically formalized by Watts and Strogatz in a study of the topological properties of a network. Small-world networks are defined in terms of two quantities: they have a high clustering coefficient C like regular lattices and a short characteristic path length L typical of random networks. Physical distances are of fundamental importance in applications to real cases; nevertheless, this basic ingredient is missing in the original formulation. Here, we introduce a new concept, the connectivity length D, that gives harmony to the whole theory. D can be evaluated on a global and on a local scale and plays in turn the role of L and 1/ C. Moreover, it can be computed for any metrical network and not only for the topological cases. D has a precise meaning in terms of information propagation and describes in a unified way, both the structural and the dynamical aspects of a network: small-worlds are defined by a small global and local D, i.e., by a high efficiency in propagating information both on a local and global scale. The neural system of the nematode C. elegans, the collaboration graph of film actors, and the oldest US subway system, can now be studied also as metrical networks and are shown to be small-worlds.

  3. Naming games in two-dimensional and small-world-connected random geometric networks.

    PubMed

    Lu, Qiming; Korniss, G; Szymanski, B K

    2008-01-01

    We investigate a prototypical agent-based model, the naming game, on two-dimensional random geometric networks. The naming game [Baronchelli, J. Stat. Mech.: Theory Exp. (2006) P06014] is a minimal model, employing local communications that captures the emergence of shared communication schemes (languages) in a population of autonomous semiotic agents. Implementing the naming games with local broadcasts on random geometric graphs, serves as a model for agreement dynamics in large-scale, autonomously operating wireless sensor networks. Further, it captures essential features of the scaling properties of the agreement process for spatially embedded autonomous agents. Among the relevant observables capturing the temporal properties of the agreement process, we investigate the cluster-size distribution and the distribution of the agreement times, both exhibiting dynamic scaling. We also present results for the case when a small density of long-range communication links are added on top of the random geometric graph, resulting in a "small-world"-like network and yielding a significantly reduced time to reach global agreement. We construct a finite-size scaling analysis for the agreement times in this case.

  4. Direct measurements of local bed shear stress in the presence of pressure gradients

    NASA Astrophysics Data System (ADS)

    Pujara, Nimish; Liu, Philip L.-F.

    2014-07-01

    This paper describes the development of a shear plate sensor capable of directly measuring the local mean bed shear stress in small-scale and large-scale laboratory flumes. The sensor is capable of measuring bed shear stress in the range 200 Pa with an accuracy up to 1 %. Its size, 43 mm in the flow direction, is designed to be small enough to give spatially local measurements, and its bandwidth, 75 Hz, is high enough to resolve time-varying forcing. Typically, shear plate sensors are restricted to use in zero pressure gradient flows because secondary forces on the edge of the shear plate caused by pressure gradients can introduce large errors. However, by analysis of the pressure distribution at the edges of the shear plate in mild pressure gradients, we introduce a new methodology for correcting for the pressure gradient force. The developed sensor includes pressure tappings to measure the pressure gradient in the flow, and the methodology for correction is applied to obtain accurate measurements of bed shear stress under solitary waves in a small-scale wave flume. The sensor is also validated by measurements in a turbulent flat plate boundary layer in open channel flow.

  5. A Spatial Method to Calculate Small-Scale Fisheries Extent

    NASA Astrophysics Data System (ADS)

    Johnson, A. F.; Moreno-Báez, M.; Giron-Nava, A.; Corominas, J.; Erisman, B.; Ezcurra, E.; Aburto-Oropeza, O.

    2016-02-01

    Despite global catch per unit effort having redoubled since the 1950's, the global fishing fleet is estimated to be twice the size that the oceans can sustainably support. In order to gauge the collateral impacts of fishing intensity, we must be able to estimate the spatial extent and amount of fishing vessels in the oceans. Methods that do currently exist are built around electronic tracking and log book systems and generally focus on industrial fisheries. Spatial extent for small-scale fisheries therefore remains elusive for many small-scale fishing fleets; even though these fisheries land the same biomass for human consumption as industrial fisheries. Current methods are data-intensive and require extensive extrapolation when estimated across large spatial scales. We present an accessible, spatial method of calculating the extent of small-scale fisheries based on two simple measures that are available, or at least easily estimable, in even the most data poor fisheries: the number of boats and the local coastal human population. We demonstrate this method is fishery-type independent and can be used to quantitatively evaluate the efficacy of growth in small-scale fisheries. This method provides an important first step towards estimating the fishing extent of the small-scale fleet, globally.

  6. Small-Scale Habitat Structure Modulates the Effects of No-Take Marine Reserves for Coral Reef Macroinvertebrates

    PubMed Central

    Dumas, Pascal; Jimenez, Haizea; Peignon, Christophe; Wantiez, Laurent; Adjeroud, Mehdi

    2013-01-01

    No-take marine reserves are one of the oldest and most versatile tools used across the Pacific for the conservation of reef resources, in particular for invertebrates traditionally targeted by local fishers. Assessing their actual efficiency is still a challenge in complex ecosystems such as coral reefs, where reserve effects are likely to be obscured by high levels of environmental variability. The goal of this study was to investigate the potential interference of small-scale habitat structure on the efficiency of reserves. The spatial distribution of widely harvested macroinvertebrates was surveyed in a large set of protected vs. unprotected stations from eleven reefs located in New Caledonia. Abundance, density and individual size data were collected along random, small-scale (20×1 m) transects. Fine habitat typology was derived with a quantitative photographic method using 17 local habitat variables. Marine reserves substantially augmented the local density, size structure and biomass of the target species. Density of Trochus niloticus and Tridacna maxima doubled globally inside the reserve network; average size was greater by 10 to 20% for T. niloticus. We demonstrated that the apparent success of protection could be obscured by marked variations in population structure occurring over short distances, resulting from small-scale heterogeneity in the reef habitat. The efficiency of reserves appeared to be modulated by the availability of suitable habitats at the decimetric scale (“microhabitats”) for the considered sessile/low-mobile macroinvertebrate species. Incorporating microhabitat distribution could significantly enhance the efficiency of habitat surrogacy, a valuable approach in the case of conservation targets focusing on endangered or emblematic macroinvertebrate or relatively sedentary fish species PMID:23554965

  7. Subtle Ecological Gradient in the Tropics Triggers High Species-Turnover in a Local Geographical Scale

    PubMed Central

    Nguyen, Dinh T.

    2016-01-01

    Our perception of diversity, including both alpha- and beta-diversity components, depends on spatial scale. Studies of spatial variation of the latter are just starting, with a paucity of research on beta-diversity patterns at smaller scales. Understanding these patterns and the processes shaping the distribution of diversity is critical to describe this diversity, but it is paramount in conservation too. Here, we investigate the diversity and structure of a tropical community of herbivorous beetles at a reduced local scale of some 10 km2, evaluating the effect of a small, gradual ecological change on this structure. We sampled leaf beetles in the Núi Chúa National Park (S Vietnam), studying changes in alpha- and beta-diversity across an elevation gradient up to 500 m, encompassing the ecotone between critically endangered lowland dry deciduous forest and mixed evergreen forest at higher elevations. Leaf beetle diversity was assessed using several molecular tree-based species delimitation approaches (with mtDNA cox1 data), species richness using rarefaction and incidence-based diversity indexes, and beta-diversity was investigated decomposing the contribution of species turnover and nestedness. We documented 155 species in the area explored and species-richness estimates 1.5–2.0x higher. Species diversity was similar in both forest types and changes in alpha-diversity along the elevation gradient showed an expected local increase of diversity in the ecotone. Beta-diversity was high among forest paths (average Sørensen's dissimilarity = 0.694) and, tentatively fixing at 300 m the boundary between otherwise continuous biomes, demonstrated similarly high beta-diversity (Sørensen's dissimilarity = 0.581), with samples clustering according to biome/elevation. Highly relevant considering the local scale of the study, beta-diversity had a high contribution of species replacement among locales (54.8%) and between biomes (79.6%), suggesting environmental heterogeneity as the dominant force shaping diversity at such small scale, directly and indirectly on the plant communities. Protection actions in the Park, especially these addressed at the imperative conservation of dry forest, must ponder the small scale at which processes shape species diversity and community structure for inconspicuous, yet extraordinarily diverse organisms such as the leaf beetles. PMID:27276228

  8. Roughness of stylolites: implications of 3D high resolution topography measurements.

    PubMed

    Schmittbuhl, J; Renard, F; Gratier, J P; Toussaint, R

    2004-12-03

    Stylolites are natural pressure-dissolution surfaces in sedimentary rocks. We present 3D high resolution measurements at laboratory scales of their complex roughness. The topography is shown to be described by a self-affine scaling invariance. At large scales, the Hurst exponent is zeta(1) approximately 0.5 and very different from that at small scales where zeta(2) approximately 1.2. A crossover length scale at around L(c)=1 mm is well characterized. Measurements are consistent with a Langevin equation that describes the growth of a stylolitic interface as a competition between stabilizing long range elastic interactions at large scales or local surface tension effects at small scales and a destabilizing quenched material disorder.

  9. RELATIONSHIPS BETWEEN FLUID VORTICITY, KINETIC HELICITY, AND MAGNETIC FIELD ON SMALL-SCALES (QUIET-NETWORK) ON THE SUN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sangeetha, C. R.; Rajaguru, S. P., E-mail: crsangeetha@iiap.res.in

    We derive horizontal fluid motions on the solar surface over large areas covering the quiet-Sun magnetic network from local correlation tracking of convective granules imaged in continuum intensity and Doppler velocity by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory . From these we calculate the horizontal divergence, the vertical component of vorticity, and the kinetic helicity of fluid motions. We study the correlations between fluid divergence and vorticity, and between vorticity (kinetic helicity) and the magnetic field. We find that the vorticity (kinetic helicity) around small-scale fields exhibits a hemispherical pattern (in sign) similar tomore » that followed by the magnetic helicity of large-scale active regions (containing sunspots). We identify this pattern to be a result of the Coriolis force acting on supergranular-scale flows (both the outflows and inflows), consistent with earlier studies using local helioseismology. Furthermore, we show that the magnetic fields cause transfer of vorticity from supergranular inflow regions to outflow regions, and that they tend to suppress the vortical motions around them when magnetic flux densities exceed about 300 G (from HMI). We also show that such an action of the magnetic fields leads to marked changes in the correlations between fluid divergence and vorticity. These results are speculated to be of importance to local dynamo action (if present) and to the dynamical evolution of magnetic helicity at the small-scale.« less

  10. Scaling laws and accurate small-amplitude stationary solution for the motion of a planar vortex filament in the Cartesian form of the local induction approximation.

    PubMed

    Van Gorder, Robert A

    2013-04-01

    We provide a formulation of the local induction approximation (LIA) for the motion of a vortex filament in the Cartesian reference frame (the extrinsic coordinate system) which allows for scaling of the reference coordinate. For general monotone scalings of the reference coordinate, we derive an equation for the planar solution to the derivative nonlinear Schrödinger equation governing the LIA. We proceed to solve this equation perturbatively in small amplitude through an application of multiple-scales analysis, which allows for accurate computation of the period of the planar vortex filament. The perturbation result is shown to agree strongly with numerical simulations, and we also relate this solution back to the solution obtained in the arclength reference frame (the intrinsic coordinate system). Finally, we discuss nonmonotone coordinate scalings and their application for finding self-intersections of vortex filaments. These self-intersecting vortex filaments are likely unstable and collapse into other structures or dissipate completely.

  11. Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions.

    PubMed

    Richardson, Hugh H; Carlson, Michael T; Tandler, Peter J; Hernandez, Pedro; Govorov, Alexander O

    2009-03-01

    We perform a set of experiments on photoheating in a water droplet containing gold nanoparticles (NPs). Using photocalorimetric methods, we determine efficiency of light-to-heat conversion (eta) which turns out to be remarkably close to 1, (0.97 < eta < 1.03). Detailed studies reveal a complex character of heat transfer in an optically stimulated droplet. The main mechanism of equilibration is due to convectional flow. Theoretical modeling is performed to describe thermal effects at both nano- and millimeter scales. Theory shows that the collective photoheating is the main mechanism. For a large concentration of NPs and small laser intensity, an averaged temperature increase (at the millimeter scale) is significant (approximately 7 degrees C), whereas on the nanometer scale the temperature increase at the surface of a single NP is small (approximately 0.02 degrees C). In the opposite regime, that is, a small NP concentration and intense laser irradiation, we find an opposite picture: a temperature increase at the millimeter scale is small (0.1 degrees C) but a local, nanoscale temperature has strong local spikes at the surfaces of NPs (approximately 3 degrees C). These studies are crucial for the understanding of photothermal effects in NPs and for their potential and current applications in nano- and biotechnologies.

  12. Using "EC-Assess" to Assess a Small Biofuels Project in Honduras

    ERIC Educational Resources Information Center

    Ngassa, Franklin Chamda

    2010-01-01

    Biofuels may contribute to both rural economic development and climate change mitigation and adaptation. The Gota Verde Project in Yoro, Honduras, attempts to demonstrate the technical and economic feasibility of small-scale biofuel production for local use by implementing a distinctive approach to feedstock production that encourages small farm…

  13. Cooperative Autonomous Observation of Coherent Atmospheric Structures using Small Unmanned Aircraft Systems

    NASA Astrophysics Data System (ADS)

    Ravela, S.

    2014-12-01

    Mapping the structure of localized atmospheric phenomena, from sea breeze and shallow cumuli to thunderstorms and hurricanes, is of scientific interest. Low-cost small unmanned aircraft systems (sUAS) open the possibility for autonomous "instruments" to map important small-scale phenomena (kilometers, hours) and serve as a testbed for for much larger scales. Localized phenomena viewed as coherent structures interacting with their large-scale environment are difficult to map. As simple simulations show, naive Eulerian or Lagrangian strategies can fail in mapping localized phenomena. Model-based techniques are needed. Meteorological targeting, where supplementary UAS measurements additionally constrain numerical models is promising, but may require many primary measurements to be successful. We propose a new, data-driven, field-operable, cooperative autonomous observing system (CAOS) framework. A remote observer (on a UAS) tracks tracers to identify an apparent motion model over short timescales. Motion-based predictions seed MCMC flight plans for other UAS to gather in-situ data, which is fused with the remote measurements to produce maps. The tracking and mapping cycles repeat, and maps can be assimilated into numerical models for longer term forecasting. CAOS has been applied to study small scale emissions. At Popocatepetl, in collaboration with CENAPRED and IPN, it is being applied map the plume using remote IR/UV UAS and in-situ SO2 sensing, with additional plans for water vapor, the electric field and ash. The combination of sUAS with autonomy appears to be highly promising methodology for environmental mapping. For more information, please visit http://caos.mit.edu

  14. MMS Multipoint Electric Field Observations of Small-Scale Magnetic Holes

    NASA Technical Reports Server (NTRS)

    Goodrich, Katherine A.; Ergun, Robert E.; Wilder, Frederick; Burch, James; Torbert, Roy; Khotyaintsev, Yuri; Lindqvist, Per-Arne; Russell, Christopher; Strangeway, Robert; Magnus, Werner

    2016-01-01

    Small-scale magnetic holes (MHs), local depletions in magnetic field strength, have been observed multiple times in the Earths magnetosphere in the bursty bulk flow (BBF) braking region. This particular subset of MHs has observed scale sizes perpendicular to the background magnetic field (B) less than the ambient ion Larmor radius (p(sib i)). Previous observations by Time History of Events and Macroscale Interactions during Substorms (THEMIS) indicate that this subset of MHs can be supported by a current driven by the E x B drift of electrons. Ions do not participate in the E x B drift due to the small-scale size of the electric field. While in the BBF braking region, during its commissioning phase, the Magnetospheric Multiscale (MMS) spacecraft observed a small-scale MH. The electric field observations taken during this event suggest the presence of electron currents perpendicular to the magnetic field. These observations also suggest that these currents can evolve to smaller spatial scales.

  15. Phosphate removal from agricultural drainage water using an iron oxyhydroxide filter material

    USDA-ARS?s Scientific Manuscript database

    Phosphate discharged with agricultural drainage causes water quality degradation on local, regional, and national scales. Iron oxyhydroxide filter materials can potentially remove the soluble phosphate present in drainage waters. Laboratory saturated column experiments and preliminary small-scale ...

  16. Reynolds number trend of hierarchies and scale interactions in turbulent boundary layers.

    PubMed

    Baars, W J; Hutchins, N; Marusic, I

    2017-03-13

    Small-scale velocity fluctuations in turbulent boundary layers are often coupled with the larger-scale motions. Studying the nature and extent of this scale interaction allows for a statistically representative description of the small scales over a time scale of the larger, coherent scales. In this study, we consider temporal data from hot-wire anemometry at Reynolds numbers ranging from Re τ ≈2800 to 22 800, in order to reveal how the scale interaction varies with Reynolds number. Large-scale conditional views of the representative amplitude and frequency of the small-scale turbulence, relative to the large-scale features, complement the existing consensus on large-scale modulation of the small-scale dynamics in the near-wall region. Modulation is a type of scale interaction, where the amplitude of the small-scale fluctuations is continuously proportional to the near-wall footprint of the large-scale velocity fluctuations. Aside from this amplitude modulation phenomenon, we reveal the influence of the large-scale motions on the characteristic frequency of the small scales, known as frequency modulation. From the wall-normal trends in the conditional averages of the small-scale properties, it is revealed how the near-wall modulation transitions to an intermittent-type scale arrangement in the log-region. On average, the amplitude of the small-scale velocity fluctuations only deviates from its mean value in a confined temporal domain, the duration of which is fixed in terms of the local Taylor time scale. These concentrated temporal regions are centred on the internal shear layers of the large-scale uniform momentum zones, which exhibit regions of positive and negative streamwise velocity fluctuations. With an increasing scale separation at high Reynolds numbers, this interaction pattern encompasses the features found in studies on internal shear layers and concentrated vorticity fluctuations in high-Reynolds-number wall turbulence.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).

  17. The underlying processes of a soil mite metacommunity on a small scale.

    PubMed

    Dong, Chengxu; Gao, Meixiang; Guo, Chuanwei; Lin, Lin; Wu, Donghui; Zhang, Limin

    2017-01-01

    Metacommunity theory provides an understanding of how ecological processes regulate local community assemblies. However, few field studies have evaluated the underlying mechanisms of a metacommunity on a small scale through revealing the relative roles of spatial and environmental filtering in structuring local community composition. Based on a spatially explicit sampling design in 2012 and 2013, this study aims to evaluate the underlying processes of a soil mite metacommunity on a small spatial scale (50 m) in a temperate deciduous forest located at the Maoershan Ecosystem Research Station, Northeast China. Moran's eigenvector maps (MEMs) were used to model independent spatial variables. The relative importance of spatial (including trend variables, i.e., geographical coordinates, and broad- and fine-scale spatial variables) and environmental factors in driving the soil mite metacommunity was determined by variation partitioning. Mantel and partial Mantel tests and a redundancy analysis (RDA) were also used to identify the relative contributions of spatial and environmental variables. The results of variation partitioning suggested that the relatively large and significant variance was a result of spatial variables (including broad- and fine-scale spatial variables and trend), indicating the importance of dispersal limitation and autocorrelation processes. The significant contribution of environmental variables was detected in 2012 based on a partial Mantel test, and soil moisture and soil organic matter were especially important for the soil mite metacommunity composition in both years. The study suggested that the soil mite metacommunity was primarily regulated by dispersal limitation due to broad-scale and neutral biotic processes at a fine-scale and that environmental filtering might be of subordinate importance. In conclusion, a combination of metacommunity perspectives between neutral and species sorting theories was suggested to be important in the observed structure of the soil mite metacommunity at the studied small scale.

  18. The underlying processes of a soil mite metacommunity on a small scale

    PubMed Central

    Guo, Chuanwei; Lin, Lin; Wu, Donghui; Zhang, Limin

    2017-01-01

    Metacommunity theory provides an understanding of how ecological processes regulate local community assemblies. However, few field studies have evaluated the underlying mechanisms of a metacommunity on a small scale through revealing the relative roles of spatial and environmental filtering in structuring local community composition. Based on a spatially explicit sampling design in 2012 and 2013, this study aims to evaluate the underlying processes of a soil mite metacommunity on a small spatial scale (50 m) in a temperate deciduous forest located at the Maoershan Ecosystem Research Station, Northeast China. Moran’s eigenvector maps (MEMs) were used to model independent spatial variables. The relative importance of spatial (including trend variables, i.e., geographical coordinates, and broad- and fine-scale spatial variables) and environmental factors in driving the soil mite metacommunity was determined by variation partitioning. Mantel and partial Mantel tests and a redundancy analysis (RDA) were also used to identify the relative contributions of spatial and environmental variables. The results of variation partitioning suggested that the relatively large and significant variance was a result of spatial variables (including broad- and fine-scale spatial variables and trend), indicating the importance of dispersal limitation and autocorrelation processes. The significant contribution of environmental variables was detected in 2012 based on a partial Mantel test, and soil moisture and soil organic matter were especially important for the soil mite metacommunity composition in both years. The study suggested that the soil mite metacommunity was primarily regulated by dispersal limitation due to broad-scale and neutral biotic processes at a fine-scale and that environmental filtering might be of subordinate importance. In conclusion, a combination of metacommunity perspectives between neutral and species sorting theories was suggested to be important in the observed structure of the soil mite metacommunity at the studied small scale. PMID:28481906

  19. It's real sustainable rural tourism development: case studies from the Heartland

    Treesearch

    Steven W. Burr

    1998-01-01

    In order to be sustainable, tourism development must involve the local population, proceed only with their approval, and provide a degree of local control. The most promising approach involves development which is low impact, small in scale and careful in progress, appropriate and sensitive to the local natural and socio-cultural environment, and readily integrated...

  20. Population-level thermal performance of a cold-water ectotherm is linked to ontogeny and local environmental heterogeneity

    USGS Publications Warehouse

    Hossack, Blake R.; Corn, P. Stephen; , Winsor H. Lowe; , Molly A. H. Webb; , Mariah J. Talbott; , Kevin M. Kappenman

    2013-01-01

    5. Our experiments with a cold-water species show that population-level performance varies across small geographic scales and is linked to local environmental heterogeneity. This variation could influence the rate and mode of species-level responses to climate change, both by facilitating local persistence in the face of change

  1. Wavepacket dynamics in one-dimensional system with long-range correlated disorder

    NASA Astrophysics Data System (ADS)

    Yamada, Hiroaki S.

    2018-03-01

    We numerically investigate dynamical property in the one-dimensional tight-binding model with long-range correlated disorder having power spectrum 1 /fα (α: spectrum exponent) generated by Fourier filtering method. For relatively small α <αc (=2) time-dependence of mean square displacement (MSD) of the initially localized wavepacket shows ballistic spread and localizes as time elapses. It is shown that α-dependence of the dynamical localization length determined by the MSD exhibits a simple scaling law in the localization regime for the relatively weak disorder strength W. Furthermore, scaled MSD by the dynamical localization length almost obeys an universal function from the ballistic to the localization regime in the various combinations of the parameters α and W.

  2. Fatal Attraction? Intraguild Facilitation and Suppression among Predators.

    PubMed

    Sivy, Kelly J; Pozzanghera, Casey B; Grace, James B; Prugh, Laura R

    2017-11-01

    Competition and suppression are recognized as dominant forces that structure predator communities. Facilitation via carrion provisioning, however, is a ubiquitous interaction among predators that could offset the strength of suppression. Understanding the relative importance of these positive and negative interactions is necessary to anticipate community-wide responses to apex predator declines and recoveries worldwide. Using state-sponsored wolf (Canis lupus) control in Alaska as a quasi experiment, we conducted snow track surveys of apex, meso-, and small predators to test for evidence of carnivore cascades (e.g., mesopredator release). We analyzed survey data using an integrative occupancy and structural equation modeling framework to quantify the strengths of hypothesized interaction pathways, and we evaluated fine-scale spatiotemporal responses of nonapex predators to wolf activity clusters identified from radio-collar data. Contrary to the carnivore cascade hypothesis, both meso- and small predator occupancy patterns indicated guild-wide, negative responses of nonapex predators to wolf abundance variations at the landscape scale. At the local scale, however, we observed a near guild-wide, positive response of nonapex predators to localized wolf activity. Local-scale association with apex predators due to scavenging could lead to landscape patterns of mesopredator suppression, suggesting a key link between occupancy patterns and the structure of predator communities at different spatial scales.

  3. Fatal attraction? Intraguild facilitation and suppression among predators

    USGS Publications Warehouse

    Sivy, Kelly J.; Pozzanghera, Casey B.; Grace, James B.; Prugh, Laura R.

    2017-01-01

    Competition and suppression are recognized as dominant forces that structure predator communities. Facilitation via carrion provisioning, however, is a ubiquitous interaction among predators that could offset the strength of suppression. Understanding the relative importance of these positive and negative interactions is necessary to anticipate community-wide responses to apex predator declines and recoveries worldwide. Using state-sponsored wolf (Canis lupus) control in Alaska as a quasi experiment, we conducted snow track surveys of apex, meso-, and small predators to test for evidence of carnivore cascades (e.g., mesopredator release). We analyzed survey data using an integrative occupancy and structural equation modeling framework to quantify the strengths of hypothesized interaction pathways, and we evaluated fine-scale spatiotemporal responses of nonapex predators to wolf activity clusters identified from radio-collar data. Contrary to the carnivore cascade hypothesis, both meso- and small predator occupancy patterns indicated guild-wide, negative responses of nonapex predators to wolf abundance variations at the landscape scale. At the local scale, however, we observed a near guild-wide, positive response of nonapex predators to localized wolf activity. Local-scale association with apex predators due to scavenging could lead to landscape patterns of mesopredator suppression, suggesting a key link between occupancy patterns and the structure of predator communities at different spatial scales.

  4. Scale-free networks as an epiphenomenon of memory

    NASA Astrophysics Data System (ADS)

    Caravelli, F.; Hamma, A.; Di Ventra, M.

    2015-01-01

    Many realistic networks are scale free, with small characteristic path lengths, high clustering, and power law in their degree distribution. They can be obtained by dynamical networks in which a preferential attachment process takes place. However, this mechanism is non-local, in the sense that it requires knowledge of the whole graph in order for the graph to be updated. Instead, if preferential attachment and realistic networks occur in physical systems, these features need to emerge from a local model. In this paper, we propose a local model and show that a possible ingredient (which is often underrated) for obtaining scale-free networks with local rules is memory. Such a model can be realised in solid-state circuits, using non-linear passive elements with memory such as memristors, and thus can be tested experimentally.

  5. Local structure of scalar flux in turbulent passive scalar mixing

    NASA Astrophysics Data System (ADS)

    Konduri, Aditya; Donzis, Diego

    2012-11-01

    Understanding the properties of scalar flux is important in the study of turbulent mixing. Classical theories suggest that it mainly depends on the large scale structures in the flow. Recent studies suggest that the mean scalar flux reaches an asymptotic value at high Peclet numbers, independent of molecular transport properties of the fluid. A large DNS database of isotropic turbulence with passive scalars forced with a mean scalar gradient with resolution up to 40963, is used to explore the structure of scalar flux based on the local topology of the flow. It is found that regions of small velocity gradients, where dissipation and enstrophy are small, constitute the main contribution to scalar flux. On the other hand, regions of very small scalar gradient (and scalar dissipation) become less important to the scalar flux at high Reynolds numbers. The scaling of the scalar flux spectra is also investigated. The k - 7 / 3 scaling proposed by Lumley (1964) is observed at high Reynolds numbers, but collapse is not complete. A spectral bump similar to that in the velocity spectrum is observed close to dissipative scales. A number of features, including the height of the bump, appear to reach an asymptotic value at high Schmidt number.

  6. Disappearance of Anisotropic Intermittency in Large-amplitude MHD Turbulence and Its Comparison with Small-amplitude MHD Turbulence

    NASA Astrophysics Data System (ADS)

    Yang, Liping; Zhang, Lei; He, Jiansen; Tu, Chuanyi; Li, Shengtai; Wang, Xin; Wang, Linghua

    2018-03-01

    Multi-order structure functions in the solar wind are reported to display a monofractal scaling when sampled parallel to the local magnetic field and a multifractal scaling when measured perpendicularly. Whether and to what extent will the scaling anisotropy be weakened by the enhancement of turbulence amplitude relative to the background magnetic strength? In this study, based on two runs of the magnetohydrodynamic (MHD) turbulence simulation with different relative levels of turbulence amplitude, we investigate and compare the scaling of multi-order magnetic structure functions and magnetic probability distribution functions (PDFs) as well as their dependence on the direction of the local field. The numerical results show that for the case of large-amplitude MHD turbulence, the multi-order structure functions display a multifractal scaling at all angles to the local magnetic field, with PDFs deviating significantly from the Gaussian distribution and a flatness larger than 3 at all angles. In contrast, for the case of small-amplitude MHD turbulence, the multi-order structure functions and PDFs have different features in the quasi-parallel and quasi-perpendicular directions: a monofractal scaling and Gaussian-like distribution in the former, and a conversion of a monofractal scaling and Gaussian-like distribution into a multifractal scaling and non-Gaussian tail distribution in the latter. These results hint that when intermittencies are abundant and intense, the multifractal scaling in the structure functions can appear even if it is in the quasi-parallel direction; otherwise, the monofractal scaling in the structure functions remains even if it is in the quasi-perpendicular direction.

  7. Universal nonlinear small-scale dynamo.

    PubMed

    Beresnyak, A

    2012-01-20

    We consider astrophysically relevant nonlinear MHD dynamo at large Reynolds numbers (Re). We argue that it is universal in a sense that magnetic energy grows at a rate which is a constant fraction C(E) of the total turbulent dissipation rate. On the basis of locality bounds we claim that this "efficiency of the small-scale dynamo", C(E), is a true constant for large Re and is determined only by strongly nonlinear dynamics at the equipartition scale. We measured C(E) in numerical simulations and observed a value around 0.05 in the highest resolution simulations. We address the issue of C(E) being small, unlike the Kolmogorov constant which is of order unity. © 2012 American Physical Society

  8. Rehabilitating mussel beds in Coffee Bay, South Africa: Towards fostering cooperative small-scale fisheries governance and enabling community upliftment.

    PubMed

    Calvo-Ugarteburu, Gurutze; Raemaekers, Serge; Halling, Christina

    2017-03-01

    Along the coast of South Africa, marine resources play a significant role in supporting livelihoods and contributing to food security in impoverished rural communities. Post-apartheid fisheries laws and policies have begun to address traditional fishing rights and development needs, and new management arrangements are being implemented. One such initiative has been the Mussel Rehabilitation Project in Coffee Bay, which piloted a resource rehabilitation technique at several over-exploited fishing sites. Mussel stocks in these exploited areas had dropped to under 1 % mussel cover, and during the project period, stocks increased to >80 % cover, supporting a sustainable harvest well above national daily bag limits. This stock enhancement was achieved only after the project had started to address social challenges such as the lack of local management institutions and the need to enhance food security. The project embarked on training and institution-building; it formed a robust community mussel management committee; and developed a local resource management plan, facilitating increased community participation in the day-to-day management of the resource. The project also saw the initiation of various ancillary projects aimed at improving food security and stimulating the local economy and hence alleviating pressure on the marine resources. Here we review this 10-year project's outcomes, and present lessons for small-scale fisheries governance in South Africa and internationally. We show, through empirical experience, that balancing stock rebuilding needs in a context of widespread poverty and dependency on natural resources by a local fisher community can only be addressed through an integrated approach to development. Participation of resource users and a thorough understanding of the local context are imperative to negotiating appropriate small-scale fisheries governance approaches. We recommend that the implementation of South Africa's newly minted Small-Scale Fisheries Policy should begin with bottom-up, demonstrative resource management measures such as mussel rehabilitation. This type of initiative can deliver short-term food security benefits and foster social learning towards sustainable and cooperative fisheries governance.

  9. On the properties of energy transfer in solar wind turbulence.

    NASA Astrophysics Data System (ADS)

    Sorriso-Valvo, Luca; Marino, Raffaele; Chen, Christopher H. K.; Wicks, Robert; Nigro, Giuseppina

    2017-04-01

    Spacecraft observations have shown that the solar wind plasma is heated during its expansion in the heliosphere. The necessary energy is made available at small scales by a turbulent cascade, although the nature of the heating processes is still debated. Because of the intermittent nature of turbulence, the small-scale energy is inhomogeneously distributed in space, resulting for example in the formation of highly localized current sheets and eddies. In order to understand the small-scale plasma processes occurring in the solar wind, the global and local properties of such energy distribution must be known. Here we study such properties using a proxy derived from the Von Karman-Howart relation for magnetohydrodynamics. The statistical properties of the energy transfer rate in the fluid range of scales are studied in detail using WIND spacecraft plasma and magnetic field measurements and discussed in the framework of the multifractal turbulent cascade. Dependence of the energy dissipation proxy on the solar wind conditions (speed, type, solar activity...) is analysed, and its evolution during solar wind expansion in the heliosphere is described using Helios II and Ulysses measurements. A comparison with other proxies, such as the PVI, is performed. Finally, the local singularity properties of the energy dissipation proxy are conditionally compared to the corresponding particle velocity distributions. This allows the identification of specific plasma features occurring near turbulent dissipation events, and could be used as enhanced mode trigger in future space missions.

  10. Achieving Self-Reliance: Backyard Energy Lessons.

    ERIC Educational Resources Information Center

    Cook, Stephen

    Appropriate technology (the process most appropriate for local cultural, economic, and social conditions) is geared toward projects which: are small in scale, decentralized, and energy efficient; use local materials, labor, and ingenuity; are not capital-intensive; and maximize the use of renewable energy resources. Descriptions of such projects…

  11. Tail-scope: Using friends to estimate heavy tails of degree distributions in large-scale complex networks

    NASA Astrophysics Data System (ADS)

    Eom, Young-Ho; Jo, Hang-Hyun

    2015-05-01

    Many complex networks in natural and social phenomena have often been characterized by heavy-tailed degree distributions. However, due to rapidly growing size of network data and concerns on privacy issues about using these data, it becomes more difficult to analyze complete data sets. Thus, it is crucial to devise effective and efficient estimation methods for heavy tails of degree distributions in large-scale networks only using local information of a small fraction of sampled nodes. Here we propose a tail-scope method based on local observational bias of the friendship paradox. We show that the tail-scope method outperforms the uniform node sampling for estimating heavy tails of degree distributions, while the opposite tendency is observed in the range of small degrees. In order to take advantages of both sampling methods, we devise the hybrid method that successfully recovers the whole range of degree distributions. Our tail-scope method shows how structural heterogeneities of large-scale complex networks can be used to effectively reveal the network structure only with limited local information.

  12. Lessons learned from the integration of local stakeholders in water management approaches in central-northern Namibia

    NASA Astrophysics Data System (ADS)

    Jokisch, A.; Urban, W.

    2012-04-01

    Water is the main limiting factor for economic and agricultural development in central-northern Namibia, where approximately 50% of the Namibian population lives on less than 10% of the country's surface area. The climate in the region can be characterized as semi-arid, with distinctive rainy and dry seasons and an average precipitation of 470 mm/a. Central-northern Namibia can furthermore be characterized by a system of so-called Oshanas, very shallow ephemeral river streams which drain the whole region from north to south towards the Etosha-Saltpan. Water quality within these ephemeral river streams rapidly decreases towards the end of the dry season due to high rates of evaporation (2,700 mm/a) which makes the water unsuitable for human consumption and in certain times of the year also for irrigation purposes. Other local water resources are scarce or of low quality. Therefore, the local water supply is mainly secured via a pipeline scheme which is fed by the Namibian-Angolan border river Kunene. Within the research project CuveWaters - Integrated Water Resources Management in central-northern Namibia different small scale water supply and sanitation technologies are implemented and tested as part of the projects multi-resource mix. The aim is to decentralize the regional water supply and make it more sustainable especially in the face of climate change. To gain understanding and to create ownership within the local population for the technologies implemented, stakeholder participation and capacity development are integral parts of the project. As part of the implementation process of rainwater harvesting and water harvesting from ephemeral river streams, pilot plants for the storage of water were constructed with the help of local stakeholders who will also be the beneficiaries of the pilot plants. The pilot plants consist of covered storage tanks and infrastructure for small scale horticultural use of the water stored. These small scale horticultural activities enable the users of the pilot plants to improve their standard of living by producing vegetables for self-consumption or for selling them on local markets. Irrigation for small-scale horticulture was virtually unknown in the region prior to the project which makes intense training for the local users necessary. This paper summarizes the participative process of finding a pilot village and a suitable location along the ephemeral river stream as well as the process of selecting people from the local community for construction and for the operation of the pilot plant. According to the demand-responsive approach of the CuveWaters project, local stakeholders were involved in all these processes. Tools for participation used are workshops and interviews with local stakeholders and the integration of the users in all decision-making processes as well as in construction, maintenance, operation and monitoring.

  13. Local Philanthropists Work Together to Transform Public Education

    ERIC Educational Resources Information Center

    Belton, Andrew; Berner, Murrayl; Doyle, Betsy; Perigo, Mike

    2014-01-01

    Philanthropists across the country have long supported local schools and even funded new ones--primarily charters. These investments make a difference, sometimes a big one. At best, however, these are small-scale successes compared to the challenge of improving educational outcomes and life prospects for students across a whole district. The…

  14. Forest Conversion, Agricultural Transitions and the Influence of Multi-scale Market Factors in Southwest Cameroon

    NASA Astrophysics Data System (ADS)

    Ordway, E.; Lambin, E.; Asner, G. P.

    2015-12-01

    The changing structure of demand for commodities associated with food security and energy has had a startling impact on land use change in tropical forests in recent decades. Yet, the composition of conversion in the Congo basin remains a major uncertainty, particularly with regards to the scale of drivers of change. Owing to rapid expansion of production globally and longstanding historical production locally in the Congo basin, oil palm offers a lens through which to evaluate local land use decisions across a spectrum of small- to large-scales of production as well as interactions with regional and global supply chains. We examined the effect of global commodity crop expansion on land use change in Southwest Cameroon using a mixed-methods approach to integrate remote sensing, field surveys and socioeconomic data. Southwest Cameroon (2.5 Mha) has a long history of large- and small-scale agriculture, ranging from mixed crop subsistence agriculture to large monocrop plantations of oil palm, cocoa, and rubber. Trends and spatial patterns of forest conversion and agricultural transitions were analyzed from 2000-2015 using satellite imagery. We used economic, demographic and field survey datasets to assess how regional and global market factors and local commodity crop decisions affect land use patterns. Our results show that oil palm is a major commodity crop expanding in this region, and that conversion is occurring primarily through expansion by medium-scale producers and local elites. Results also indicate that global and regional supply chain dynamics influence local land use decision making. This research contributes new information on land use patterns and dynamics in the Congo basin, an understudied region. More specifically, results from this research contribute information on recent trends of oil palm expansion in Cameroon that will be used in national land use planning strategies.

  15. Small Schools' Ripple Effects Debated

    ERIC Educational Resources Information Center

    Robelen, Erik W.

    2006-01-01

    Major initiatives in New York City and Chicago to close unsuccessful schools and create small schools in their wake are stirring criticism from some community activists, local politicians, and others. Critics charge that the growing scale of the efforts is producing negative ripple effects on other schools in these cities. In Chicago, the chief…

  16. Performance of distributed multiscale simulations

    PubMed Central

    Borgdorff, J.; Ben Belgacem, M.; Bona-Casas, C.; Fazendeiro, L.; Groen, D.; Hoenen, O.; Mizeranschi, A.; Suter, J. L.; Coster, D.; Coveney, P. V.; Dubitzky, W.; Hoekstra, A. G.; Strand, P.; Chopard, B.

    2014-01-01

    Multiscale simulations model phenomena across natural scales using monolithic or component-based code, running on local or distributed resources. In this work, we investigate the performance of distributed multiscale computing of component-based models, guided by six multiscale applications with different characteristics and from several disciplines. Three modes of distributed multiscale computing are identified: supplementing local dependencies with large-scale resources, load distribution over multiple resources, and load balancing of small- and large-scale resources. We find that the first mode has the apparent benefit of increasing simulation speed, and the second mode can increase simulation speed if local resources are limited. Depending on resource reservation and model coupling topology, the third mode may result in a reduction of resource consumption. PMID:24982258

  17. Classification of event location using matched filters via on-floor accelerometers

    NASA Astrophysics Data System (ADS)

    Woolard, Americo G.; Malladi, V. V. N. Sriram; Alajlouni, Sa'ed; Tarazaga, Pablo A.

    2017-04-01

    Recent years have shown prolific advancements in smart infrastructures, allowing buildings of the modern world to interact with their occupants. One of the sought-after attributes of smart buildings is the ability to provide unobtrusive, indoor localization of occupants. The ability to locate occupants indoors can provide a broad range of benefits in areas such as security, emergency response, and resource management. Recent research has shown promising results in occupant building localization, although there is still significant room for improvement. This study presents a passive, small-scale localization system using accelerometers placed around the edges of a small area in an active building environment. The area is discretized into a grid of small squares, and vibration measurements are processed using a pattern matching approach that estimates the location of the source. Vibration measurements are produced with ball-drops, hammer-strikes, and footsteps as the sources of the floor excitation. The developed approach uses matched filters based on a reference data set, and the location is classified using a nearest-neighbor search. This approach detects the appropriate location of impact-like sources i.e. the ball-drops and hammer-strikes with a 100% accuracy. However, this accuracy reduces to 56% for footsteps, with the average localization results being within 0.6 m (α = 0.05) from the true source location. While requiring a reference data set can make this method difficult to implement on a large scale, it may be used to provide accurate localization abilities in areas where training data is readily obtainable. This exploratory work seeks to examine the feasibility of the matched filter and nearest neighbor search approach for footstep and event localization in a small, instrumented area within a multi-story building.

  18. The micro-environmental impact of volatile organic compound emissions from large-scale assemblies of people in a confined space

    USDA-ARS?s Scientific Manuscript database

    Large-scale assemblies of people in a con'ned space can exert signi'cant impacts on the local air chemistry due to human emissions of volatile organics. Variations of air-quality in such small scale can be studied by quantifying 'ngerprint volatile organic compounds (VOCs) such as acetone, toluene, ...

  19. Speciation on a local geographic scale: the evolution of a rare rock outcrop specialist in Mimulus.

    PubMed

    Ferris, Kathleen G; Sexton, Jason P; Willis, John H

    2014-08-05

    Speciation can occur on both large and small geographical scales. In plants, local speciation, where small populations split off from a large-ranged progenitor species, is thought to be the dominant mode, yet there are still few examples to verify speciation has occurred in this manner. A recently described morphological species in the yellow monkey flowers, Mimulus filicifolius, is an excellent candidate for local speciation because of its highly restricted geographical range. Mimulus filicifolius was formerly identified as a population of M. laciniatus due to similar lobed leaf morphology and rocky outcrop habitat. To investigate whether M. filicifolius is genetically divergent and reproductively isolated from M. laciniatus, we examined patterns of genetic diversity in ten nuclear and eight microsatellite loci, and hybrid fertility in M. filicifolius and its purported close relatives: M. laciniatus, M. guttatus and M. nasutus. We found that M. filicifolius is genetically divergent from the other species and strongly reproductively isolated from M. laciniatus. We conclude that M. filicifolius is an independent rock outcrop specialist despite being morphologically and ecologically similar to M. laciniatus, and that its small geographical range nested within other wide-ranging members of the M. guttatus species complex is consistent with local speciation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  20. Multiview Drawing Instruction: A Two-Location Experiment

    ERIC Educational Resources Information Center

    Connolly, Patrick; Holliday-Darr, Kathryn; Blasko, Dawn G.

    2006-01-01

    Several methods have been developed, presented, and discussed at recent ASEE and EDGD conferences on the topic of computer-based multiview drawing instruction. While small-scale and localized testing of these instruments and methods has been undertaken, no larger-scale or multi-location experiments have been attempted. This paper describes an…

  1. Life cycle environmental and economic tradeoffs of using fast pyrolysis products for power generation

    USDA-ARS?s Scientific Manuscript database

    Bio-oils produced from small-scale pyrolysis technology may have economic and environmental benefits for both densifying agricultural biomass and supplying local bio-energy markets (e.g., Renewable Portfolio Standards). This study presents a life cycle assessment (LCA) of a farm-scale bio-oil produ...

  2. Co-generation and innovative heat storage systems in small-medium CSP plants for distributed energy production

    NASA Astrophysics Data System (ADS)

    Giaconia, Alberto; Montagnino, Fabio; Paredes, Filippo; Donato, Filippo; Caputo, Giampaolo; Mazzei, Domenico

    2017-06-01

    CSP technologies can be applied for distributed energy production, on small-medium plants (on the 1 MW scale), to satisfy the needs of local communities, buildings and districts. In this perspective, reliable, low-cost, and flexible small/medium multi-generative CSP plants should be developed. Four pilot plants have been built in four Mediterranean countries (Cyprus, Egypt, Jordan, and Italy) to demonstrate the approach. In this paper, the plant built in Italy is presented, with specific innovations applied in the linear Fresnel collector design and the Thermal Energy Storage (TES) system, based on a single the use of molten salts but specifically tailored for small scale plants.

  3. A Multi-Scale Settlement Matching Algorithm Based on ARG

    NASA Astrophysics Data System (ADS)

    Yue, Han; Zhu, Xinyan; Chen, Di; Liu, Lingjia

    2016-06-01

    Homonymous entity matching is an important part of multi-source spatial data integration, automatic updating and change detection. Considering the low accuracy of existing matching methods in dealing with matching multi-scale settlement data, an algorithm based on Attributed Relational Graph (ARG) is proposed. The algorithm firstly divides two settlement scenes at different scales into blocks by small-scale road network and constructs local ARGs in each block. Then, ascertains candidate sets by merging procedures and obtains the optimal matching pairs by comparing the similarity of ARGs iteratively. Finally, the corresponding relations between settlements at large and small scales are identified. At the end of this article, a demonstration is presented and the results indicate that the proposed algorithm is capable of handling sophisticated cases.

  4. Scale Dependence of Dark Energy Antigravity

    NASA Astrophysics Data System (ADS)

    Perivolaropoulos, L.

    2002-09-01

    We investigate the effects of negative pressure induced by dark energy (cosmological constant or quintessence) on the dynamics at various astrophysical scales. Negative pressure induces a repulsive term (antigravity) in Newton's law which dominates on large scales. Assuming a value of the cosmological constant consistent with the recent SnIa data we determine the critical scale $r_c$ beyond which antigravity dominates the dynamics ($r_c \\sim 1Mpc $) and discuss some of the dynamical effects implied. We show that dynamically induced mass estimates on the scale of the Local Group and beyond are significantly modified due to negative pressure. We also briefly discuss possible dynamical tests (eg effects on local Hubble flow) that can be applied on relatively small scales (a few $Mpc$) to determine the density and equation of state of dark energy.

  5. Small-scale spatial variation in population dynamics and fishermen response in a coastal marine fishery.

    PubMed

    Wilson, Jono R; Kay, Matthew C; Colgate, John; Qi, Roy; Lenihan, Hunter S

    2012-01-01

    A major challenge for small-scale fisheries management is high spatial variability in the demography and life history characteristics of target species. Implementation of local management actions that can reduce overfishing and maximize yields requires quantifying ecological heterogeneity at small spatial scales and is therefore limited by available resources and data. Collaborative fisheries research (CFR) is an effective means to collect essential fishery information at local scales, and to develop the social, technical, and logistical framework for fisheries management innovation. We used a CFR approach with fishing partners to collect and analyze geographically precise demographic information for grass rockfish (Sebastes rastrelliger), a sedentary, nearshore species harvested in the live fish fishery on the West Coast of the USA. Data were used to estimate geographically distinct growth rates, ages, mortality, and length frequency distributions in two environmental subregions of the Santa Barbara Channel, CA, USA. Results indicated the existence of two subpopulations; one located in the relatively cold, high productivity western Channel, and another in the relatively warm, low productivity eastern Channel. We parameterized yield per recruit models, the results of which suggested nearly twice as much yield per recruit in the high productivity subregion relative to the low productivity subregion. The spatial distribution of fishing in the two environmental subregions demonstrated a similar pattern to the yield per recruit outputs with greater landings, effort, and catch per unit effort in the high productivity subregion relative to the low productivity subregion. Understanding how spatial variability in stock dynamics translates to variability in fishery yield and distribution of effort is important to developing management plans that maximize fishing opportunities and conservation benefits at local scales.

  6. MicroResearch--Finding sustainable solutions to local health challenges in East Africa.

    PubMed

    Kollmann, Tobias R; Bortolussi, Robert; MacDonald, Noni E

    2015-06-01

    The urgent need in Africa for research capacity building has been recognized by African leaders and governments for many years. However, lack of large research funding opportunities has been seen as a major obstacle to improving research capacity in precisely those countries that need it the most. Microfinance has shown that a small infusion of capital can "prime the pump" to creative local economic productivity. In a similar way, MicroResearch has proven effective in promoting a similar bottom-up strategy to find sustainable solutions to local health challenges through local community focused research. Specifically, MicroResearch through hands-on didactic courses, mentoring and small-scale research funding promotes small research projects that improve research skills across the entire health-care provider spectrum to unleash a culture of inquiry. This in turn stimulates health care providers to identify the locally most relevant obstacles that need to be overcome and implement locally feasible and sustainable solutions. MicroResearch is a bottom-up strategy proven effective at finding sustainable solutions to local health challenges. Copyright © 2015 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  7. Localized Flood Management

    EPA Pesticide Factsheets

    practitioners will cover a range of practices that can help communities build flood resilience, from small scale interventions such as rain gardens and permeable pavement to coordinated open space and floodplain preservation

  8. THE EFFECTS OF KINETIC INSTABILITIES ON SMALL-SCALE TURBULENCE IN EARTH’S MAGNETOSHEATH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breuillard, H.; Yordanova, E.; Vaivads, A.

    2016-09-20

    The Earth's magnetosheath is the region delimited by the bow shock and the magnetopause. It is characterized by highly turbulent fluctuations covering all scales from MHD down to kinetic scales. Turbulence is thought to play a fundamental role in key processes such as energy transport and dissipation in plasma. In addition to turbulence, different plasma instabilities are generated in the magnetosheath because of the large anisotropies in plasma temperature introduced by its boundaries. In this study we use high-quality magnetic field measurements from Cluster spacecraft to investigate the effects of such instabilities on the small-scale turbulence (from ion down tomore » electron scales). We show that the steepening of the power spectrum of magnetic field fluctuations in the magnetosheath occurs at the largest characteristic ion scale. However, the spectrum can be modified by the presence of waves/structures at ion scales, shifting the onset of the small-scale turbulent cascade toward the smallest ion scale. This cascade is therefore highly dependent on the presence of kinetic instabilities, waves, and local plasma parameters. Here we show that in the absence of strong waves the small-scale turbulence is quasi-isotropic and has a spectral index α ≈ −2.8. When transverse or compressive waves are present, we observe an anisotropy in the magnetic field components and a decrease in the absolute value of α . Slab/2D turbulence also develops in the presence of transverse/compressive waves, resulting in gyrotropy/non-gyrotropy of small-scale fluctuations. The presence of both types of waves reduces the anisotropy in the amplitude of fluctuations in the small-scale range.« less

  9. Multi-scale Food Energy and Water Dynamics in the Blue Nile Highlands

    NASA Astrophysics Data System (ADS)

    Zaitchik, B. F.; Simane, B.; Block, P. J.; Foltz, J.; Mueller-Mahn, D.; Gilioli, G.; Sciarretta, A.

    2017-12-01

    The Ethiopian highlands are often called the "water tower of Africa," giving rise to major transboundary rivers. Rapid hydropower development is quickly transforming these highlands into the "power plant of Africa" as well. For local people, however, they are first and foremost a land of small farms, devoted primarily to subsistence agriculture. Under changing climate, rapid national economic growth, and steadily increasing population and land pressures, these mountains and their inhabitants have become the focal point of a multi-scale food-energy-water nexus with significant implications across East Africa. Here we examine coupled natural-human system dynamics that emerge when basin and nation scale resource development strategies are superimposed on a local economy that is largely subsistence based. Sensitivity to local and remote climate shocks are considered, as is the role of Earth Observation in understanding and informing management of food-energy-water resources across scales.

  10. Sensitivity of local air quality to the interplay between small- and large-scale circulations: a large-eddy simulation study

    NASA Astrophysics Data System (ADS)

    Wolf-Grosse, Tobias; Esau, Igor; Reuder, Joachim

    2017-06-01

    Street-level urban air pollution is a challenging concern for modern urban societies. Pollution dispersion models assume that the concentrations decrease monotonically with raising wind speed. This convenient assumption breaks down when applied to flows with local recirculations such as those found in topographically complex coastal areas. This study looks at a practically important and sufficiently common case of air pollution in a coastal valley city. Here, the observed concentrations are determined by the interaction between large-scale topographically forced and local-scale breeze-like recirculations. Analysis of a long observational dataset in Bergen, Norway, revealed that the most extreme cases of recurring wintertime air pollution episodes were accompanied by increased large-scale wind speeds above the valley. Contrary to the theoretical assumption and intuitive expectations, the maximum NO2 concentrations were not found for the lowest 10 m ERA-Interim wind speeds but in situations with wind speeds of 3 m s-1. To explain this phenomenon, we investigated empirical relationships between the large-scale forcing and the local wind and air quality parameters. We conducted 16 large-eddy simulation (LES) experiments with the Parallelised Large-Eddy Simulation Model (PALM) for atmospheric and oceanic flows. The LES accounted for the realistic relief and coastal configuration as well as for the large-scale forcing and local surface condition heterogeneity in Bergen. They revealed that emerging local breeze-like circulations strongly enhance the urban ventilation and dispersion of the air pollutants in situations with weak large-scale winds. Slightly stronger large-scale winds, however, can counteract these local recirculations, leading to enhanced surface air stagnation. Furthermore, this study looks at the concrete impact of the relative configuration of warmer water bodies in the city and the major transport corridor. We found that a relatively small local water body acted as a barrier for the horizontal transport of air pollutants from the largest street in the valley and along the valley bottom, transporting them vertically instead and hence diluting them. We found that the stable stratification accumulates the street-level pollution from the transport corridor in shallow air pockets near the surface. The polluted air pockets are transported by the local recirculations to other less polluted areas with only slow dilution. This combination of relatively long distance and complex transport paths together with weak dispersion is not sufficiently resolved in classical air pollution models. The findings have important implications for the air quality predictions over urban areas. Any prediction not resolving these, or similar local dynamic features, might not be able to correctly simulate the dispersion of pollutants in cities.

  11. Data assimilation experiment of precipitable water vapor observed by a hyper-dense GNSS receiver network using a nested NHM-LETKF system

    NASA Astrophysics Data System (ADS)

    Oigawa, Masanori; Tsuda, Toshitaka; Seko, Hiromu; Shoji, Yoshinori; Realini, Eugenio

    2018-05-01

    We studied the assimilation of high-resolution precipitable water vapor (PWV) data derived from a hyper-dense global navigation satellite system network around Uji city, Kyoto, Japan, which had a mean inter-station distance of about 1.7 km. We focused on a heavy rainfall event that occurred on August 13-14, 2012, around Uji city. We employed a local ensemble transform Kalman filter as the data assimilation method. The inhomogeneity of the observed PWV increased on a scale of less than 10 km in advance of the actual rainfall detected by the rain gauge. Zenith wet delay data observed by the Uji network showed that the characteristic length scale of water vapor distribution during the rainfall ranged from 1.9 to 3.5 km. It is suggested that the assimilation of PWV data with high horizontal resolution (a few km) improves the forecast accuracy. We conducted the assimilation experiment of high-resolution PWV data, using both small horizontal localization radii and a conventional horizontal localization radius. We repeated the sensitivity experiment, changing the mean horizontal spacing of the PWV data from 1.7 to 8.0 km. When the horizontal spacing of assimilated PWV data was decreased from 8.0 to 3.5 km, the accuracy of the simulated hourly rainfall amount worsened in the experiment that used the conventional localization radius for the assimilation of PWV. In contrast, the accuracy of hourly rainfall amounts improved when we applied small horizontal localization radii. In the experiment that used the small horizontal localization radii, the accuracy of the hourly rainfall amount was most improved when the horizontal resolution of the assimilated PWV data was 3.5 km. The optimum spatial resolution of PWV data was related to the characteristic length scale of water vapor variability.[Figure not available: see fulltext.

  12. Using Microsoft Excel[R] to Calculate Descriptive Statistics and Create Graphs

    ERIC Educational Resources Information Center

    Carr, Nathan T.

    2008-01-01

    Descriptive statistics and appropriate visual representations of scores are important for all test developers, whether they are experienced testers working on large-scale projects, or novices working on small-scale local tests. Many teachers put in charge of testing projects do not know "why" they are important, however, and are utterly convinced…

  13. Local-scale invasion pathways and small founder numbers in introduced Sacramento pikeminnow (Ptychocheilus grandis)

    Treesearch

    Andrew P. Kinziger; Rodney J. Nakamoto; Bret C. Harvey

    2014-01-01

    Given the general pattern of invasions with severe ecological consequences commonly resulting from multiple introductions of large numbers of individuals on the intercontinental scale, we explored an example of a highly successful, ecologically significant invader introduced over a short distance, possibly via minimal propagule pressure. The Sacramento pikeminnow (

  14. Folds on Europa: implications for crustal cycling and accommodation of extension.

    PubMed

    Prockter, L M; Pappalardo, R T

    2000-08-11

    Regional-scale undulations with associated small-scale secondary structures are inferred to be folds on Jupiter's moon Europa. Formation is consistent with stresses from tidal deformation, potentially triggering compressional instability of a region of locally high thermal gradient. Folds may compensate for extension elsewhere on Europa and then relax away over time.

  15. Small scale exact coherent structures at large Reynolds numbers in plane Couette flow

    NASA Astrophysics Data System (ADS)

    Eckhardt, Bruno; Zammert, Stefan

    2018-02-01

    The transition to turbulence in plane Couette flow and several other shear flows is connected with saddle node bifurcations in which fully three-dimensional, nonlinear solutions to the Navier-Stokes equation, so-called exact coherent states (ECS), appear. As the Reynolds number increases, the states undergo secondary bifurcations and their time-evolution becomes increasingly more complex. Their spatial complexity, in contrast, remains limited so that these states cannot contribute to the spatial complexity and cascade to smaller scales expected for higher Reynolds numbers. We here present families of scaling ECS that exist on ever smaller scales as the Reynolds number is increased. We focus in particular on two such families for plane Couette flow, one centered near the midplane and the other close to a wall. We discuss their scaling and localization properties and the bifurcation diagrams. All solutions are localized in the wall-normal direction. In the spanwise and downstream direction, they are either periodic or localized as well. The family of scaling ECS localized near a wall is reminiscent of attached eddies, and indicates how self-similar ECS can contribute to the formation of boundary layer profiles.

  16. Direct comparison of nanoindentation and tensile test results on reactor-irradiated materials

    NASA Astrophysics Data System (ADS)

    Krumwiede, D. L.; Yamamoto, T.; Saleh, T. A.; Maloy, S. A.; Odette, G. R.; Hosemann, P.

    2018-06-01

    Nanoindentation testing has been used for decades to assess materials on a local scale and to obtain fundamental mechanical property parameters. Nuclear materials research often faces the challenge of testing rather small samples due to the hazardous nature, limited space in reactors, and shallow ion-irradiated zones, fostering the need for small-scale mechanical testing (SSMT). As such, correlating the results from SSMT to bulk properties is particularly of interest. This study compares macroscopic tensile test data (yield and flow stresses) to nanoindentation data (hardness) obtained on a number of different neutron-irradiated materials in order to understand the scaling behavior on radiation-damaged samples.

  17. Managing Arab-Kurd Tensions in Northern Iraq After the Withdrawal of U.S. Troops

    DTIC Science & Technology

    2011-01-01

    Troops have generated few concrete solutions. Furthermore, because the CBMs are meant to facilitate discussions on broad regional issues, the...demonstrate the value of negotiated settlements by gen- erating concrete solutions on small-scale problems that are disassociated from the more conten...sufficient local input to prevent local actors from being manipulated by broader political interests • demonstrate quick, concrete progress on local

  18. The scale-dependent market trend: Empirical evidences using the lagged DFA method

    NASA Astrophysics Data System (ADS)

    Li, Daye; Kou, Zhun; Sun, Qiankun

    2015-09-01

    In this paper we make an empirical research and test the efficiency of 44 important market indexes in multiple scales. A modified method based on the lagged detrended fluctuation analysis is utilized to maximize the information of long-term correlations from the non-zero lags and keep the margin of errors small when measuring the local Hurst exponent. Our empirical result illustrates that a common pattern can be found in the majority of the measured market indexes which tend to be persistent (with the local Hurst exponent > 0.5) in the small time scale, whereas it displays significant anti-persistent characteristics in large time scales. Moreover, not only the stock markets but also the foreign exchange markets share this pattern. Considering that the exchange markets are only weakly synchronized with the economic cycles, it can be concluded that the economic cycles can cause anti-persistence in the large time scale but there are also other factors at work. The empirical result supports the view that financial markets are multi-fractal and it indicates that deviations from efficiency and the type of model to describe the trend of market price are dependent on the forecasting horizon.

  19. WMOST 2.0 Download Page

    EPA Pesticide Factsheets

    The Watershed Management Optimization Support Tool (WMOST) is a decision support tool that facilitates integrated water management at the local or small watershed scale. WMOST models the environmental effects and costs of managemen

  20. WMOST 3.0 Download Page

    EPA Pesticide Factsheets

    The Watershed Management Optimization Support Tool (WMOST) is a decision support tool that facilitates integrated water management at the local or small watershed scale. WMOST models the environmental effects and costs of management.

  1. Practical ways to facilitate ergonomics improvements in occupational health practice.

    PubMed

    Kogi, Kazutaka

    2012-12-01

    Recent advances in participatory programs for improving workplace conditions are discussed to examine practical ways to facilitate ergonomics improvements. Participatory training programs are gaining importance, particularly in promoting occupational health and safety in small-scale workplaces. These programs have led to many improvements that can reduce work-related risks in varied situations. Recent experiences in participatory action-oriented training programs in small workplaces and agriculture are reviewed.The emphasis of the review is on training steps, types of improvements achieved, and the use of action tools by trainers and training participants. Immediate improvements in multiple technical areas are targeted, including materials handling,workstation design, physical environment, welfare facilities, and work organization. In facilitating ergonomics improvements in each local situation, it is important to focus on (a) building on local good practices; (b) applying practical, simple improvements that apply the basic principles of ergonomics; and (c) developing action-oriented toolkits for direct use by workers and managers. This facilitation process is effective when locally designed action toolkits are used by trainers, including local good examples, action checklists, and illustrated how-to guides. Intervention studies demonstrate the effectiveness of participatory steps that use these toolkits in promoting good practices and reducing work-related risks. In facilitating ergonomics improvements in small-scale workplaces, it is important to focus on practical, low-cost improvements that build on local good practices. The use of action-oriented toolkits reflecting basic ergonomics principles is helpful.The promotion of the intercountry networking of positive experiences in participatory training is suggested.

  2. Large-scale distribution patterns of mangrove nematodes: A global meta-analysis.

    PubMed

    Brustolin, Marco C; Nagelkerken, Ivan; Fonseca, Gustavo

    2018-05-01

    Mangroves harbor diverse invertebrate communities, suggesting that macroecological distribution patterns of habitat-forming foundation species drive the associated faunal distribution. Whether these are driven by mangrove biogeography is still ambiguous. For small-bodied taxa, local factors and landscape metrics might be as important as macroecology. We performed a meta-analysis to address the following questions: (1) can richness of mangrove trees explain macroecological patterns of nematode richness? and (2) do local landscape attributes have equal or higher importance than biogeography in structuring nematode richness? Mangrove areas of Caribbean-Southwest Atlantic, Western Indian, Central Indo-Pacific, and Southwest Pacific biogeographic regions. We used random-effects meta-analyses based on natural logarithm of the response ratio (lnRR) to assess the importance of macroecology (i.e., biogeographic regions, latitude, longitude), local factors (i.e., aboveground mangrove biomass and tree richness), and landscape metrics (forest area and shape) in structuring nematode richness from 34 mangroves sites around the world. Latitude, mangrove forest area, and forest shape index explained 19% of the heterogeneity across studies. Richness was higher at low latitudes, closer to the equator. At local scales, richness increased slightly with landscape complexity and decreased with forest shape index. Our results contrast with biogeographic diversity patterns of mangrove-associated taxa. Global-scale nematode diversity may have evolved independently of mangrove tree richness, and diversity of small-bodied metazoans is probably more closely driven by latitude and associated climates, rather than local, landscape, or global biogeographic patterns.

  3. Oxygen-hydrogen torch is a small-scale steam generator

    NASA Technical Reports Server (NTRS)

    Maskell, C. E.

    1966-01-01

    Standard oxygen-hydrogen torch generates steam for corrosion-rate analysis of various metals. The steam is generated through local combustion inside a test chamber under constant temperature and pressure control.

  4. Shear localization and size-dependent strength of YCd 6 quasicrystal approximant at the micrometer length scale

    DOE PAGES

    Song, Gyuho; Kong, Tai; Dusoe, Keith J.; ...

    2018-01-24

    Mechanical properties of materials are strongly dependent of their atomic arrangement as well as the sample dimension, particularly at the micrometer length scale. Here in this study, we investigated the small-scale mechanical properties of single-crystalline YCd 6, which is a rational approximant of the icosahedral Y-Cd quasicrystal. In situ microcompression tests revealed that shear localization always occurs on {101} planes, but the shear direction is not constrained to any particular crystallographic directions. Furthermore, the yield strengths show the size dependence with a power law exponent of 0.4. Shear localization on {101} planes and size-dependent yield strength are explained in termsmore » of a large interplanar spacing between {101} planes and the energetics of shear localization process, respectively. The mechanical behavior of the icosahedral Y-Cd quasicrystal is also compared to understand the influence of translational symmetry on the shear localization process in both YCd 6 and Y-Cd quasicrystal micropillars. Finally, the results of this study will provide an important insight in a fundamental understanding of shear localization process in novel complex intermetallic compounds.« less

  5. Shear localization and size-dependent strength of YCd 6 quasicrystal approximant at the micrometer length scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Gyuho; Kong, Tai; Dusoe, Keith J.

    Mechanical properties of materials are strongly dependent of their atomic arrangement as well as the sample dimension, particularly at the micrometer length scale. Here in this study, we investigated the small-scale mechanical properties of single-crystalline YCd 6, which is a rational approximant of the icosahedral Y-Cd quasicrystal. In situ microcompression tests revealed that shear localization always occurs on {101} planes, but the shear direction is not constrained to any particular crystallographic directions. Furthermore, the yield strengths show the size dependence with a power law exponent of 0.4. Shear localization on {101} planes and size-dependent yield strength are explained in termsmore » of a large interplanar spacing between {101} planes and the energetics of shear localization process, respectively. The mechanical behavior of the icosahedral Y-Cd quasicrystal is also compared to understand the influence of translational symmetry on the shear localization process in both YCd 6 and Y-Cd quasicrystal micropillars. Finally, the results of this study will provide an important insight in a fundamental understanding of shear localization process in novel complex intermetallic compounds.« less

  6. COSMIC-RAY SMALL-SCALE ANISOTROPIES AND LOCAL TURBULENT MAGNETIC FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    López-Barquero, V.; Farber, R.; Xu, S.

    2016-10-10

    Cosmic-ray anisotropy has been observed in a wide energy range and at different angular scales by a variety of experiments over the past decade. However, no comprehensive or satisfactory explanation has been put forth to date. The arrival distribution of cosmic rays at Earth is the convolution of the distribution of their sources and of the effects of geometry and properties of the magnetic field through which particles propagate. It is generally believed that the anisotropy topology at the largest angular scale is adiabatically shaped by diffusion in the structured interstellar magnetic field. On the contrary, the medium- and small-scalemore » angular structure could be an effect of nondiffusive propagation of cosmic rays in perturbed magnetic fields. In particular, a possible explanation for the observed small-scale anisotropy observed at the TeV energy scale may be the effect of particle propagation in turbulent magnetized plasmas. We perform numerical integration of test particle trajectories in low- β compressible magnetohydrodynamic turbulence to study how the cosmic rays’ arrival direction distribution is perturbed when they stream along the local turbulent magnetic field. We utilize Liouville’s theorem for obtaining the anisotropy at Earth and provide the theoretical framework for the application of the theorem in the specific case of cosmic-ray arrival distribution. In this work, we discuss the effects on the anisotropy arising from propagation in this inhomogeneous and turbulent interstellar magnetic field.« less

  7. Dissipative structures in magnetorotational turbulence

    NASA Astrophysics Data System (ADS)

    Ross, Johnathan; Latter, Henrik N.

    2018-07-01

    Via the process of accretion, magnetorotational turbulence removes energy from a disc's orbital motion and transforms it into heat. Turbulent heating is far from uniform and is usually concentrated in small regions of intense dissipation, characterized by abrupt magnetic reconnection and higher temperatures. These regions are of interest because they might generate non-thermal emission, in the form of flares and energetic particles, or thermally process solids in protoplanetary discs. Moreover, the nature of the dissipation bears on the fundamental dynamics of the magnetorotational instability (MRI) itself: local simulations indicate that the large-scale properties of the turbulence (e.g. saturation levels and the stress-pressure relationship) depend on the short dissipative scales. In this paper we undertake a numerical study of how the MRI dissipates and the small-scale dissipative structures it employs to do so. We use the Godunov code RAMSES and unstratified compressible shearing boxes. Our simulations reveal that dissipation is concentrated in ribbons of strong magnetic reconnection that are significantly elongated in azimuth, up to a scale height. Dissipative structures are hence meso-scale objects, and potentially provide a route by which large scales and small scales interact. We go on to show how these ribbons evolve over time - forming, merging, breaking apart, and disappearing. Finally, we reveal important couplings between the large-scale density waves generated by the MRI and the small-scale structures, which may illuminate the stress-pressure relationship in MRI turbulence.

  8. Small gas-turbine units for the power industry: Ways for improving the efficiency and the scale of implementation

    NASA Astrophysics Data System (ADS)

    Kosoi, A. S.; Popel', O. S.; Beschastnykh, V. N.; Zeigarnik, Yu. A.; Sinkevich, M. V.

    2017-10-01

    Small power units (<1 MW) see increasing application due to enhanced growth of the distributed power generation and smart power supply systems. They are usually used for feeding facilities whose connection to centralized networks involves certain problems of engineering or economical nature. Small power generation is based on a wide range of processes and primary sources, including renewable and local ones, such as nonconventional hydrocarbon fuel comprising associated gas, biogas, coalmine methane, etc. Characteristics of small gas-turbine units (GTU) that are most widely available on the world market are reviewed. The most promising lines for the development of the new generation of small GTUs are examined. Special emphasis is placed on the three lines selected for improving the efficiency of small GTUs: increasing the fuel efficiency, cutting down the maintenance cost, and integration with local or renewable power sources. It is demonstrated that, as to the specific fuel consumption, small GTUs of the new generation can have an efficiency 20-25% higher than those of the previous generation, require no maintenance between overhauls, and can be capable of efficient integration into intelligent electrical networks with power facilities operating on renewable or local power sources.

  9. Small-Scale, Local Area, and Transitional Millimeter Wave Propagation for 5G Communications

    NASA Astrophysics Data System (ADS)

    Rappaport, Theodore S.; MacCartney, George R.; Sun, Shu; Yan, Hangsong; Deng, Sijia

    2017-12-01

    This paper studies radio propagation mechanisms that impact handoffs, air interface design, beam steering, and MIMO for 5G mobile communication systems. Knife edge diffraction (KED) and a creeping wave linear model are shown to predict diffraction loss around typical building objects from 10 to 26 GHz, and human blockage measurements at 73 GHz are shown to fit a double knife-edge diffraction (DKED) model which incorporates antenna gains. Small-scale spatial fading of millimeter wave received signal voltage amplitude is generally Ricean-distributed for both omnidirectional and directional receive antenna patterns under both line-of-sight (LOS) and non-line-of-sight (NLOS) conditions in most cases, although the log-normal distribution fits measured data better for the omnidirectional receive antenna pattern in the NLOS environment. Small-scale spatial autocorrelations of received voltage amplitudes are shown to fit sinusoidal exponential and exponential functions for LOS and NLOS environments, respectively, with small decorrelation distances of 0.27 cm to 13.6 cm (smaller than the size of a handset) that are favorable for spatial multiplexing. Local area measurements using cluster and route scenarios show how the received signal changes as the mobile moves and transitions from LOS to NLOS locations, with reasonably stationary signal levels within clusters. Wideband mmWave power levels are shown to fade from 0.4 dB/ms to 40 dB/s, depending on travel speed and surroundings.

  10. Implication of Taylor's hypothesis on amplitude modulation

    NASA Astrophysics Data System (ADS)

    Howland, Michael; Yang, Xiang

    2017-11-01

    Amplitude modulation is a physical phenomenon which describes the non-linear inter-scale interaction between large and small scales in a turbulent wall-bounded flow. The amplitude of the small scale fluctuations are modulated by the large scale flow structures. Due to the increase of amplitude modulation as a function of Reynolds number (Reτ = δuτ / ν), this phenomenon is frequently studied using experimental temporal 1D signals, taken using hot-wire anemometry. Typically, Taylor's frozen turbulence hypothesis has been invoked where the convection by velocity fluctuations is neglected and the mean velocity is used as the convective velocity. At high Reynolds numbers, turbulent fluctuations are comparable to the mean velocity in the near wall region (y+ O(10)), and as a result, using a constant global convective velocity systematically locally compresses or stretches a velocity signal when converting from temporal to spatial domain given a positive or negative fluctuation respectively. Despite this, temporal hot-wire data from wind tunnel or field experiments of high Reynolds number boundary layer flows can still be used for measuring modulation provided that the local fluid velocity is used as the local convective velocity. MH is funded through the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1656518 and the Stanford Graduate Fellowship. XY is funded by the US AFOSR, Grant No. 1194592-1-TAAHO monitored by Dr. Ivett Leyva.

  11. Bridging the gap between small and large scale sediment budgets? - A scaling challenge in the Upper Rhone Basin, Switzerland

    NASA Astrophysics Data System (ADS)

    Schoch, Anna; Blöthe, Jan; Hoffmann, Thomas; Schrott, Lothar

    2016-04-01

    A large number of sediment budgets have been compiled on different temporal and spatial scales in alpine regions. Detailed sediment budgets based on the quantification of a number of sediment storages (e.g. talus cones, moraine deposits) exist only for a few small scale drainage basins (up to 10² km²). In contrast, large scale sediment budgets (> 10³ km²) consider only long term sediment sinks such as valley fills and lakes. Until now, these studies often neglect small scale sediment storages in the headwaters. However, the significance of these sediment storages have been reported. A quantitative verification whether headwaters function as sediment source regions is lacking. Despite substantial transport energy in mountain environments due to steep gradients and high relief, sediment flux in large river systems is frequently disconnected from alpine headwaters. This leads to significant storage of coarse-grained sediment along the flow path from rockwall source regions to large sedimentary sinks in major alpine valleys. To improve the knowledge on sediment budgets in large scale alpine catchments and to bridge the gap between small and large scale sediment budgets, we apply a multi-method approach comprising investigations on different spatial scales in the Upper Rhone Basin (URB). The URB is the largest inneralpine basin in the European Alps with a size of > 5400 km². It is a closed system with Lake Geneva acting as an ultimate sediment sink for suspended and clastic sediment. We examine the spatial pattern and volumes of sediment storages as well as the morphometry on the local and catchment-wide scale. We mapped sediment storages and bedrock in five sub-regions of the study area (Goms, Lötschen valley, Val d'Illiez, Vallée de la Liène, Turtmann valley) in the field and from high-resolution remote sensing imagery to investigate the spatial distribution of different sediment storage types (e.g. talus deposits, debris flow cones, alluvial fans). These sub-regions cover all three litho-tectonic units of the URB (Helvetic nappes, Penninic nappes, External massifs) and different catchment sizes to capture the inherent variability. Different parameters characterizing topography, surface characteristics, and vegetation cover are analyzed for each storage type. The data is then used in geostatistical models (PCA, stepwise logistic regression) to predict the spatial distribution of sediment storage for the whole URB. We further conduct morphometric analyses of the URB to gain information on the varying degree of glacial imprint and postglacial landscape evolution and their control on the spatial distribution of sediment storage in a large scale drainage basin. Geophysical methods (ground penetrating radar and electrical resistivity tomography) are applied on different sediment storage types on the local scale to estimate mean thicknesses. Additional data from published studies are used to complement our dataset. We integrate the local data in the statistical model on the spatial distribution of sediment storages for the whole URB. Hence, we can extrapolate the stored sediment volumes to the regional scale in order to bridge the gap between small and large scale studies.

  12. Strategies for implementing Climate Smart Agriculture and creating marketable Greenhouse emission reduction credits, for small scale rice farmers in Asia

    NASA Astrophysics Data System (ADS)

    Ahuja, R.; Kritee, K.; Rudek, J.; Van Sanh, N.; Thu Ha, T.

    2014-12-01

    Industrial agriculture systems, mostly in developed and some emerging economies, are far different from the small holder farms that dot the landscapes in Asia and Africa. At Environmental Defense Fund, along with our partners from non-governmental, corporate, academic and government sectors and farmers, we have worked actively in India and Vietnam for the last four years to better understand how small scale farmers working on rice paddy (and other upland crops) cultivation can best deal with climate change. Some of the questions we have tried to answer are: What types of implementable best practices, both old and new, on small farm systems lend themselves to improved yields, farm incomes, climate resilience and mitigation? Can these practices be replicated everywhere or is the change more landscape and people driven? What are the institutional, cultural, financial and risk-perception related barriers that prevent scaling up of these practices? How do we innovate and overcome these barriers? The research community needs to work more closely together and leverage multiple scientific, economic and policy disciplines to fully answer these questions. In the case of small farm systems, we find that it helps to follow certain steps if the climate-smart (or low carbon) farming programs are to succeed and the greenhouse credits generated are to be marketed: Demographic data collection and plot demarcation Farmer networks and diaries Rigorous baseline determination via surveys Alternative practice determination via consultation with local universities/experts Measurements on representative plots for 3-4 years (including GHG emissions, yields, inputs, economic and environmental savings) to help calibrate biogeochemical models and/or calculate regional emission factors. Propagation of alternative practices across the landscape via local NGOs/governments Recording of parameters necessary to extrapolate representative plot GHG emission reductions to all farmers in a given landscape under several existing and new carbon offset methodologies. In this presentation, we will discuss our initial encouraging results on the basis of which our wider team now seeks to identify and recommend policies that the local governments to be able to scale up climate smart agriculture to larger jurisdictional levels.

  13. Response approach to the squeezed-limit bispectrum: application to the correlation of quasar and Lyman-α forest power spectrum

    DOE PAGES

    Chiang, Chi-Ting; Cieplak, Agnieszka M.; Schmidt, Fabian; ...

    2017-06-12

    We present the squeezed-limit bispectrum, which is generated by nonlinear gravitational evolution as well as inflationary physics, measures the correlation of three wavenumbers, in the configuration where one wavenumber is much smaller than the other two. Since the squeezed-limit bispectrum encodes the impact of a large-scale fluctuation on the small-scale power spectrum, it can be understood as how the small-scale power spectrum ``responds'' to the large-scale fluctuation. Viewed in this way, the squeezed-limit bispectrum can be calculated using the response approach even in the cases which do not submit to perturbative treatment. To illustrate this point, we apply this approachmore » to the cross-correlation between the large-scale quasar density field and small-scale Lyman-α forest flux power spectrum. In particular, using separate universe simulations which implement changes in the large-scale density, velocity gradient, and primordial power spectrum amplitude, we measure how the Lyman-α forest flux power spectrum responds to the local, long-wavelength quasar overdensity, and equivalently their squeezed-limit bispectrum. We perform a Fisher forecast for the ability of future experiments to constrain local non-Gaussianity using the bispectrum of quasars and the Lyman-α forest. Combining with quasar and Lyman-α forest power spectra to constrain the biases, we find that for DESI the expected 1-σ constraint is err[f NL]~60. Ability for DESI to measure f NL through this channel is limited primarily by the aliasing and instrumental noise of the Lyman-α forest flux power spectrum. Lastly, the combination of response approach and separate universe simulations provides a novel technique to explore the constraints from the squeezed-limit bispectrum between different observables.« less

  14. Response approach to the squeezed-limit bispectrum: application to the correlation of quasar and Lyman-α forest power spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiang, Chi-Ting; Cieplak, Agnieszka M.; Schmidt, Fabian

    We present the squeezed-limit bispectrum, which is generated by nonlinear gravitational evolution as well as inflationary physics, measures the correlation of three wavenumbers, in the configuration where one wavenumber is much smaller than the other two. Since the squeezed-limit bispectrum encodes the impact of a large-scale fluctuation on the small-scale power spectrum, it can be understood as how the small-scale power spectrum ``responds'' to the large-scale fluctuation. Viewed in this way, the squeezed-limit bispectrum can be calculated using the response approach even in the cases which do not submit to perturbative treatment. To illustrate this point, we apply this approachmore » to the cross-correlation between the large-scale quasar density field and small-scale Lyman-α forest flux power spectrum. In particular, using separate universe simulations which implement changes in the large-scale density, velocity gradient, and primordial power spectrum amplitude, we measure how the Lyman-α forest flux power spectrum responds to the local, long-wavelength quasar overdensity, and equivalently their squeezed-limit bispectrum. We perform a Fisher forecast for the ability of future experiments to constrain local non-Gaussianity using the bispectrum of quasars and the Lyman-α forest. Combining with quasar and Lyman-α forest power spectra to constrain the biases, we find that for DESI the expected 1-σ constraint is err[f NL]~60. Ability for DESI to measure f NL through this channel is limited primarily by the aliasing and instrumental noise of the Lyman-α forest flux power spectrum. Lastly, the combination of response approach and separate universe simulations provides a novel technique to explore the constraints from the squeezed-limit bispectrum between different observables.« less

  15. Response approach to the squeezed-limit bispectrum: application to the correlation of quasar and Lyman-α forest power spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiang, Chi-Ting; Cieplak, Agnieszka M.; Slosar, Anže

    The squeezed-limit bispectrum, which is generated by nonlinear gravitational evolution as well as inflationary physics, measures the correlation of three wavenumbers, in the configuration where one wavenumber is much smaller than the other two. Since the squeezed-limit bispectrum encodes the impact of a large-scale fluctuation on the small-scale power spectrum, it can be understood as how the small-scale power spectrum ''responds'' to the large-scale fluctuation. Viewed in this way, the squeezed-limit bispectrum can be calculated using the response approach even in the cases which do not submit to perturbative treatment. To illustrate this point, we apply this approach to themore » cross-correlation between the large-scale quasar density field and small-scale Lyman-α forest flux power spectrum. In particular, using separate universe simulations which implement changes in the large-scale density, velocity gradient, and primordial power spectrum amplitude, we measure how the Lyman-α forest flux power spectrum responds to the local, long-wavelength quasar overdensity, and equivalently their squeezed-limit bispectrum. We perform a Fisher forecast for the ability of future experiments to constrain local non-Gaussianity using the bispectrum of quasars and the Lyman-α forest. Combining with quasar and Lyman-α forest power spectra to constrain the biases, we find that for DESI the expected 1−σ constraint is err[ f {sub NL}]∼60. Ability for DESI to measure f {sub NL} through this channel is limited primarily by the aliasing and instrumental noise of the Lyman-α forest flux power spectrum. The combination of response approach and separate universe simulations provides a novel technique to explore the constraints from the squeezed-limit bispectrum between different observables.« less

  16. Mesoscale Predictability and Error Growth in Short Range Ensemble Forecasts

    NASA Astrophysics Data System (ADS)

    Gingrich, Mark

    Although it was originally suggested that small-scale, unresolved errors corrupt forecasts at all scales through an inverse error cascade, some authors have proposed that those mesoscale circulations resulting from stationary forcing on the larger scale may inherit the predictability of the large-scale motions. Further, the relative contributions of large- and small-scale uncertainties in producing error growth in the mesoscales remain largely unknown. Here, 100 member ensemble forecasts are initialized from an ensemble Kalman filter (EnKF) to simulate two winter storms impacting the East Coast of the United States in 2010. Four verification metrics are considered: the local snow water equivalence, total liquid water, and 850 hPa temperatures representing mesoscale features; and the sea level pressure field representing a synoptic feature. It is found that while the predictability of the mesoscale features can be tied to the synoptic forecast, significant uncertainty existed on the synoptic scale at lead times as short as 18 hours. Therefore, mesoscale details remained uncertain in both storms due to uncertainties at the large scale. Additionally, the ensemble perturbation kinetic energy did not show an appreciable upscale propagation of error for either case. Instead, the initial condition perturbations from the cycling EnKF were maximized at large scales and immediately amplified at all scales without requiring initial upscale propagation. This suggests that relatively small errors in the synoptic-scale initialization may have more importance in limiting predictability than errors in the unresolved, small-scale initial conditions.

  17. Out-of-equilibrium dynamics driven by localized time-dependent perturbations at quantum phase transitions

    NASA Astrophysics Data System (ADS)

    Pelissetto, Andrea; Rossini, Davide; Vicari, Ettore

    2018-03-01

    We investigate the quantum dynamics of many-body systems subject to local (i.e., restricted to a limited space region) time-dependent perturbations. If the system crosses a quantum phase transition, an off-equilibrium behavior is observed, even for a very slow driving. We show that, close to the transition, time-dependent quantities obey scaling laws. In first-order transitions, the scaling behavior is universal, and some scaling functions can be computed exactly. For continuous transitions, the scaling laws are controlled by the standard critical exponents and by the renormalization-group dimension of the perturbation at the transition. Our protocol can be implemented in existing relatively small quantum simulators, paving the way for a quantitative probe of the universal off-equilibrium scaling behavior, without the need to manipulate systems close to the thermodynamic limit.

  18. Gyrokinetic turbulence cascade via predator-prey interactions between different scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Sumire, E-mail: sumire.kobayashi@lpp.polytechnique.fr; Gurcan, Ozgur D., E-mail: ozgur.gurcan@lpp.polytechnique.fr

    2015-05-15

    Gyrokinetic simulations in a closed fieldline geometry are presented to explore the physics of nonlinear transfer in plasma turbulence. As spontaneously formed zonal flows and small-scale turbulence demonstrate “predator-prey” dynamics, a particular cascade spectrum emerges. The electrostatic potential and the density spectra appear to be in good agreement with the simple theoretical prediction based on Charney-Hasegawa-Mima equation | ϕ{sup ~}{sub k} |{sup 2}∼| n{sup ~}{sub k} |{sup 2}∝k{sup −3}/(1+k{sup 2}){sup 2}, with the spectra becoming anisotropic at small scales. The results indicate that the disparate scale interactions, in particular, the refraction and shearing of larger scale eddies by the self-consistentmore » zonal flows, dominate over local interactions, and contrary to the common wisdom, the comprehensive scaling relation is created even within the energy injection region.« less

  19. Direct comparison of nanoindentation and tensile test results on reactor-irradiated materials

    DOE PAGES

    Krumweide, David L; Yamamoto, Takuya; Saleh, Tarik A.; ...

    2018-03-13

    Nanoindentation testing has been used for decades to assess materials on a local scale and to obtain fundamental mechanical property parameters. Nuclear materials research often faces the challenge of testing rather small samples due to the hazardous nature, limited space in reactors, and shallow ion-irradiated zones, fostering the need for small-scale mechanical testing (SSMT). As such, correlating the results from SSMT to bulk properties is particularly of interest. Here, this study compares macroscopic tensile test data (yield and flow stresses) to nanoindentation data (hardness) obtained on a number of different neutron-irradiated materials in order to understand the scaling behavior onmore » radiation-damaged samples.« less

  20. Direct comparison of nanoindentation and tensile test results on reactor-irradiated materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krumweide, David L; Yamamoto, Takuya; Saleh, Tarik A.

    Nanoindentation testing has been used for decades to assess materials on a local scale and to obtain fundamental mechanical property parameters. Nuclear materials research often faces the challenge of testing rather small samples due to the hazardous nature, limited space in reactors, and shallow ion-irradiated zones, fostering the need for small-scale mechanical testing (SSMT). As such, correlating the results from SSMT to bulk properties is particularly of interest. Here, this study compares macroscopic tensile test data (yield and flow stresses) to nanoindentation data (hardness) obtained on a number of different neutron-irradiated materials in order to understand the scaling behavior onmore » radiation-damaged samples.« less

  1. Destroying a Craton by Plate Subduction, Small-scale Convection, and Mantle Plume: Comparison of the Wyoming Craton and the North China Craton

    NASA Astrophysics Data System (ADS)

    Li, A.; Dave, R.

    2016-12-01

    A typical craton has a thick, strong, and neutrally buoyant lithosphere that protects it from being destructed by mantle convection. The Wyoming craton and the North China craton are two rare representatives, where the thick Archean lithosphere has been significantly thinned and partially removed as revealed in seismic tomography models. The Wyoming craton in the west-central US experienced pervasive deformation 80-55 Ma during the Laramide orogeny. It has been subsequently encroached upon by the Yellowstone hotspot since 2.0 Ma. Recent seismic models agree that the northern cratonic root in eastern Montana has been broadly removed while the thick root is still present in Wyoming. Our radial anisotropy model images a VSV>VSH anomaly associated with the deep fast anomaly in central Wyoming, indicating mantle downwelling. Continuous low velocities are observed beneath the Yellowstone hotspot and the Cheyenne belt at the craton's southern margin, suggesting mantle upwelling in the sub-lithosphere mantle. These observations evidence for small-scale mantle convection beneath the south-central Wyoming craton, which probably has been actively eroding the cratonic lithosphere. The small-scale mantle convection is probably also responsible for the observed, localized lithosphere delamination beneath the eastern North China craton. In addition, a plume-like, low-velocity feature is imaged beneath the central block of the North China craton and is suggested as the driving force for destructing the cratonic root. Like the Wyoming craton that was subducted by the Farallon plate during the Laramide orogeny, the North China craton was underlined by the ancient Pacific plate before the root destruction in Late Jurassic. In both cases, the subducted slab helped to hydrate and weaken the cratonic lithosphere above it, initiate local metasomatism and partial melting, and promote small-scale convection. The craton's interaction with a mantle plume could further strengthen the small-scale convection and lead a massive destruction of the craton.

  2. Artisanal and Small-Scale Gold Mining Without Mercury

    EPA Pesticide Factsheets

    Mercury-free techniques are safer for miners, their families and local communities. They can also help miners qualify for certification under fair-mined standards, potentially allowing them to market their gold at higher prices.

  3. Impacts of Bokashi on survival and growth rates of Pinus pseudostrobus in community reforestation projects.

    PubMed

    Jaramillo-López, P F; Ramírez, M I; Pérez-Salicrup, D R

    2015-03-01

    Community-based small-scale reforestation practices have been proposed as an alternative to low-efficiency massive reforestations conducted by external agents. These latter conventional reforestations are often carried out in soils that have been seriously degraded and this has indirectly contributed to the introduction of non-native species and/or acceptance of very low seedling survival rates. Bokashi is a fermented soil organic amendment that can be made from almost any available agricultural byproduct, and its beneficial effects in agriculture have been reported in various contexts. Here, we report the results of a community-based small-scale experimental reforestation where the provenance of pine seedlings (local and commercial) and the use of Bokashi as a soil amendment were evaluated. Bokashi was prepared locally by members of a small rural community in central Mexico. Almost two years after the establishment of the trial, survival rates for the unamended and amended local trees were 97-100% while survival of the commercial trees from unamended and amended treatments were 87-93%. Consistently through time, local and commercial seedlings planted in Bokashi-amended soils were significantly taller (x̅ = 152 cm) than those planted in unamended soils (̅x = 86 cm). An unplanned infection by Cronartium quercuum in the first year of the experiment was considered as a covariable. Infected seedlings showed malformations but this did not affect survival and growth rates. Bokashi amendment seems as an inexpensive, locally viable technology to increase seedling survival and growth and to help recover deforested areas where soils have been degraded. This allows local stakeholders to see more rapid results while helping them to maintain their interest in conservation activities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Local diurnal wind-driven variabiity and upwelling in a small coastal embayment

    NASA Astrophysics Data System (ADS)

    Walter, R. K.; Reid, E. C.; Davis, K. A.; Armenta, K. J.; Merhoff, K.; Nidzieko, N.

    2017-12-01

    The oceanic response to high-frequency local diurnal wind forcing is examined in a small coastal embayment located along an understudied stretch of the central California coast. We show that local diurnal wind forcing is the dominant control on nearshore temperature variability and circulation patterns. A complex empirical orthogonal function (CEOF) analysis of velocities in San Luis Obispo Bay reveals that the first-mode CEOF amplitude time series, which accounts for 47.9% of the variance, is significantly coherent with the local wind signal at the diurnal frequency and aligns with periods of weak and strong wind forcing. The diurnal evolution of the hydrographic structure and circulation in the bay is examined using both individual events and composite-day averages. During the late afternoon, the local wind strengthens and results in a sheared flow with near-surface warm waters directed out of the bay and a compensating flow of colder waters into the bay over the bottom portion of the water column. This cold water intrusion into the bay causes isotherms to shoal toward the surface and delivers subthermocline waters to shallow reaches of the bay, representing a mechanism for small-scale upwelling. When the local winds relax, the warm water mass advects back into the bay in the form of a buoyant plume front. Local diurnal winds are expected to play an important role in nearshore dynamics and local upwelling in other small coastal embayments with important implications for various biological and ecological processes.

  5. Local diurnal wind-driven variability and upwelling in a small coastal embayment

    NASA Astrophysics Data System (ADS)

    Walter, Ryan K.; Reid, Emma C.; Davis, Kristen A.; Armenta, Kevin J.; Merhoff, Kevin; Nidzieko, Nicholas J.

    2017-02-01

    The oceanic response to high-frequency local diurnal wind forcing is examined in a small coastal embayment located along an understudied stretch of the central California coast. We show that local diurnal wind forcing is the dominant control on nearshore temperature variability and circulation patterns. A complex empirical orthogonal function (CEOF) analysis of velocities in San Luis Obispo Bay reveals that the first-mode CEOF amplitude time series, which accounts for 47.9% of the variance, is significantly coherent with the local wind signal at the diurnal frequency and aligns with periods of weak and strong wind forcing. The diurnal evolution of the hydrographic structure and circulation in the bay is examined using both individual events and composite-day averages. During the late afternoon, the local wind strengthens and results in a sheared flow with near-surface warm waters directed out of the bay and a compensating flow of colder waters into the bay over the bottom portion of the water column. This cold water intrusion into the bay causes isotherms to shoal toward the surface and delivers subthermocline waters to shallow reaches of the bay, representing a mechanism for small-scale upwelling. When the local winds relax, the warm water mass advects back into the bay in the form of a buoyant plume front. Local diurnal winds are expected to play an important role in nearshore dynamics and local upwelling in other small coastal embayments with important implications for various biological and ecological processes.

  6. Spatial and temporal variability in forest growth in the Olympic Mountains, Washington: sensitivity to climatic variability.

    Treesearch

    Melisa L. Holman; David L. Peterson

    2006-01-01

    We compared annual basal area increment (BAI) at different spatial scales among all size classes and species at diverse locations in the wet western and dry northeastern Olympic Mountains. Weak growth correlations at small spatial scales (average R = 0.084-0.406) suggest that trees are responding to local growth conditions. However, significant...

  7. The Large-Scale Structure of Semantic Networks: Statistical Analyses and a Model of Semantic Growth

    ERIC Educational Resources Information Center

    Steyvers, Mark; Tenenbaum, Joshua B.

    2005-01-01

    We present statistical analyses of the large-scale structure of 3 types of semantic networks: word associations, WordNet, and Roget's Thesaurus. We show that they have a small-world structure, characterized by sparse connectivity, short average path lengths between words, and strong local clustering. In addition, the distributions of the number of…

  8. Moral parochialism and contextual contingency across seven societies

    PubMed Central

    Fessler, Daniel M. T.; Barrett, H. Clark; Kanovsky, Martin; Stich, Stephen; Holbrook, Colin; Henrich, Joseph; Bolyanatz, Alexander H.; Gervais, Matthew M.; Gurven, Michael; Kushnick, Geoff; Pisor, Anne C.; von Rueden, Christopher; Laurence, Stephen

    2015-01-01

    Human moral judgement may have evolved to maximize the individual's welfare given parochial culturally constructed moral systems. If so, then moral condemnation should be more severe when transgressions are recent and local, and should be sensitive to the pronouncements of authority figures (who are often arbiters of moral norms), as the fitness pay-offs of moral disapproval will primarily derive from the ramifications of condemning actions that occur within the immediate social arena. Correspondingly, moral transgressions should be viewed as less objectionable if they occur in other places or times, or if local authorities deem them acceptable. These predictions contrast markedly with those derived from prevailing non-evolutionary perspectives on moral judgement. Both classes of theories predict purportedly species-typical patterns, yet to our knowledge, no study to date has investigated moral judgement across a diverse set of societies, including a range of small-scale communities that differ substantially from large highly urbanized nations. We tested these predictions in five small-scale societies and two large-scale societies, finding substantial evidence of moral parochialism and contextual contingency in adults' moral judgements. Results reveal an overarching pattern in which moral condemnation reflects a concern with immediate local considerations, a pattern consistent with a variety of evolutionary accounts of moral judgement. PMID:26246545

  9. Moral parochialism and contextual contingency across seven societies.

    PubMed

    Fessler, Daniel M T; Barrett, H Clark; Kanovsky, Martin; Stich, Stephen; Holbrook, Colin; Henrich, Joseph; Bolyanatz, Alexander H; Gervais, Matthew M; Gurven, Michael; Kushnick, Geoff; Pisor, Anne C; von Rueden, Christopher; Laurence, Stephen

    2015-08-22

    Human moral judgement may have evolved to maximize the individual's welfare given parochial culturally constructed moral systems. If so, then moral condemnation should be more severe when transgressions are recent and local, and should be sensitive to the pronouncements of authority figures (who are often arbiters of moral norms), as the fitness pay-offs of moral disapproval will primarily derive from the ramifications of condemning actions that occur within the immediate social arena. Correspondingly, moral transgressions should be viewed as less objectionable if they occur in other places or times, or if local authorities deem them acceptable. These predictions contrast markedly with those derived from prevailing non-evolutionary perspectives on moral judgement. Both classes of theories predict purportedly species-typical patterns, yet to our knowledge, no study to date has investigated moral judgement across a diverse set of societies, including a range of small-scale communities that differ substantially from large highly urbanized nations. We tested these predictions in five small-scale societies and two large-scale societies, finding substantial evidence of moral parochialism and contextual contingency in adults' moral judgements. Results reveal an overarching pattern in which moral condemnation reflects a concern with immediate local considerations, a pattern consistent with a variety of evolutionary accounts of moral judgement. © 2015 The Authors.

  10. Structural and electron diffraction scaling of twisted graphene bilayers

    NASA Astrophysics Data System (ADS)

    Zhang, Kuan; Tadmor, Ellad B.

    2018-03-01

    Multiscale simulations are used to study the structural relaxation in twisted graphene bilayers and the associated electron diffraction patterns. The initial twist forms an incommensurate moiré pattern that relaxes to a commensurate microstructure comprised of a repeating pattern of alternating low-energy AB and BA domains surrounding a high-energy AA domain. The simulations show that the relaxation mechanism involves a localized rotation and shrinking of the AA domains that scales in two regimes with the imposed twist. For small twisting angles, the localized rotation tends to a constant; for large twist, the rotation scales linearly with it. This behavior is tied to the inverse scaling of the moiré pattern size with twist angle and is explained theoretically using a linear elasticity model. The results are validated experimentally through a simulated electron diffraction analysis of the relaxed structures. A complex electron diffraction pattern involving the appearance of weak satellite peaks is predicted for the small twist regime. This new diffraction pattern is explained using an analytical model in which the relaxation kinematics are described as an exponentially-decaying (Gaussian) rotation field centered on the AA domains. Both the angle-dependent scaling and diffraction patterns are in quantitative agreement with experimental observations. A Matlab program for extracting the Gaussian model parameters accompanies this paper.

  11. Identifying Drivers of Collective Action for the Co-management of Coastal Marine Fisheries in the Gulf of Nicoya, Costa Rica.

    PubMed

    García Lozano, Alejandro J; Heinen, Joel T

    2016-04-01

    Small-scale fisheries are important for preventing poverty, sustaining local economies, and rural livelihoods, but tend to be negatively impacted by traditional forms of management and overexploitation among other factors. Marine Areas for Responsible Fishing (Áreas Marinas de Pesca Responsable, AMPR) have emerged as a new model for the co-management of small-scale fisheries in Costa Rica, one that involves collaboration between fishers, government agencies, and NGOs. The primary objective of this paper is to elucidate some of the key variables that influence collective action among small-scale fishers in Tárcoles, a community in the Gulf of Nicoya. We examined collective action for the formation of a local marketing cooperative and participation in management through the AMPR. We apply the social-ecological framework as a diagnostic and organizational tool in the analysis of several types of qualitative data, including interviews with key informants, informal interviews, legal documents, and gray literature. Findings illustrate the importance of socio-economic community attributes (e.g., group size, homogeneity, previous cooperation), as well as that of social (e.g., equity) and ecological (e.g., improved stocks) outcomes perceived as favorable by actors. In addition, our work demonstrates the importance of certain kinds of external NGOs for facilitating and sustaining collective action.

  12. Identifying Drivers of Collective Action for the Co-management of Coastal Marine Fisheries in the Gulf of Nicoya, Costa Rica

    NASA Astrophysics Data System (ADS)

    García Lozano, Alejandro J.; Heinen, Joel T.

    2016-04-01

    Small-scale fisheries are important for preventing poverty, sustaining local economies, and rural livelihoods, but tend to be negatively impacted by traditional forms of management and overexploitation among other factors. Marine Areas for Responsible Fishing (Áreas Marinas de Pesca Responsable, AMPR) have emerged as a new model for the co-management of small-scale fisheries in Costa Rica, one that involves collaboration between fishers, government agencies, and NGOs. The primary objective of this paper is to elucidate some of the key variables that influence collective action among small-scale fishers in Tárcoles, a community in the Gulf of Nicoya. We examined collective action for the formation of a local marketing cooperative and participation in management through the AMPR. We apply the social-ecological framework as a diagnostic and organizational tool in the analysis of several types of qualitative data, including interviews with key informants, informal interviews, legal documents, and gray literature. Findings illustrate the importance of socio-economic community attributes (e.g., group size, homogeneity, previous cooperation), as well as that of social (e.g., equity) and ecological (e.g., improved stocks) outcomes perceived as favorable by actors. In addition, our work demonstrates the importance of certain kinds of external NGOs for facilitating and sustaining collective action.

  13. Demonstrating a new framework for the comparison of environmental impacts from small- and large-scale hydropower and wind power projects.

    PubMed

    Bakken, Tor Haakon; Aase, Anne Guri; Hagen, Dagmar; Sundt, Håkon; Barton, David N; Lujala, Päivi

    2014-07-01

    Climate change and the needed reductions in the use of fossil fuels call for the development of renewable energy sources. However, renewable energy production, such as hydropower (both small- and large-scale) and wind power have adverse impacts on the local environment by causing reductions in biodiversity and loss of habitats and species. This paper compares the environmental impacts of many small-scale hydropower plants with a few large-scale hydropower projects and one wind power farm, based on the same set of environmental parameters; land occupation, reduction in wilderness areas (INON), visibility and impacts on red-listed species. Our basis for comparison was similar energy volumes produced, without considering the quality of the energy services provided. The results show that small-scale hydropower performs less favourably in all parameters except land occupation. The land occupation of large hydropower and wind power is in the range of 45-50 m(2)/MWh, which is more than two times larger than the small-scale hydropower, where the large land occupation for large hydropower is explained by the extent of the reservoirs. On all the three other parameters small-scale hydropower performs more than two times worse than both large hydropower and wind power. Wind power compares similarly to large-scale hydropower regarding land occupation, much better on the reduction in INON areas, and in the same range regarding red-listed species. Our results demonstrate that the selected four parameters provide a basis for further development of a fair and consistent comparison of impacts between the analysed renewable technologies. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Small-Scale Features in Pulsating Aurora

    NASA Technical Reports Server (NTRS)

    Jones, Sarah; Jaynes, Allison N.; Knudsen, David J.; Trondsen, Trond; Lessard, Marc

    2011-01-01

    A field study was conducted from March 12-16, 2002 using a narrow-field intensified CCD camera installed at Churchill, Manitoba. The camera was oriented along the local magnetic zenith where small-scale black auroral forms are often visible. This analysis focuses on such forms occurring within a region of pulsating aurora. The observations show black forms with irregular shape and nonuniform drift with respect to the relatively stationary pulsating patches. The pulsating patches occur within a diffuse auroral background as a modulation of the auroral brightness in a localized region. The images analyzed show a decrease in the brightness of the diffuse background in the region of the pulsating patch at the beginning of the offphase of the modulation. Throughout the off phase the brightness of the diffuse aurora gradually increases back to the average intensity. The time constant for this increase is measured as the first step toward determining the physical process.

  15. Spectro-Imaging Polarimetry of the Local Corona During Solar Eclipse

    NASA Astrophysics Data System (ADS)

    Qu, Z. Q.; Dun, G. T.; Chang, L.; Murray, G.; Cheng, X. M.; Zhang, X. Y.; Deng, L. H.

    2017-02-01

    Results are presented from spectro-imaging polarimetry of radiation from the local solar corona during the 2013 total solar eclipse in Gabon. This polarimetric observation was performed from 516.3 nm to 532.6 nm using a prototype Fiber Arrayed Solar Optical Telescope (FASOT). A polarimetric noise level on the order of 10^{-3} results from a reduced polarimetric optical switching demodulation (RPOSD) procedure for data reduction. It is revealed that the modality of fractional linear polarization profiles of the green coronal line shows a diversity, which may indicate complex mechanisms. The polarization degree can approach 3.2 % above the continuum polarization level on a scale of 1500 km, and the nonuniform spatial distribution in amplitude and polarization direction is found even within a small field of view of 7500 km. All of this implies that the coronal polarization is highly structured and complex even on a small scale.

  16. Large-scale, high-density (up to 512 channels) recording of local circuits in behaving animals

    PubMed Central

    Berényi, Antal; Somogyvári, Zoltán; Nagy, Anett J.; Roux, Lisa; Long, John D.; Fujisawa, Shigeyoshi; Stark, Eran; Leonardo, Anthony; Harris, Timothy D.

    2013-01-01

    Monitoring representative fractions of neurons from multiple brain circuits in behaving animals is necessary for understanding neuronal computation. Here, we describe a system that allows high-channel-count recordings from a small volume of neuronal tissue using a lightweight signal multiplexing headstage that permits free behavior of small rodents. The system integrates multishank, high-density recording silicon probes, ultraflexible interconnects, and a miniaturized microdrive. These improvements allowed for simultaneous recordings of local field potentials and unit activity from hundreds of sites without confining free movements of the animal. The advantages of large-scale recordings are illustrated by determining the electroanatomic boundaries of layers and regions in the hippocampus and neocortex and constructing a circuit diagram of functional connections among neurons in real anatomic space. These methods will allow the investigation of circuit operations and behavior-dependent interregional interactions for testing hypotheses of neural networks and brain function. PMID:24353300

  17. Local Solid Shape

    PubMed Central

    Koenderink, Jan; van Doorn, Andrea

    2015-01-01

    Local solid shape applies to the surface curvature of small surface patches—essentially regions of approximately constant curvatures—of volumetric objects that are smooth volumetric regions in Euclidean 3-space. This should be distinguished from local shape in pictorial space. The difference is categorical. Although local solid shape has naturally been explored in haptics, results in vision are not forthcoming. We describe a simple experiment in which observers judge shape quality and magnitude of cinematographic presentations. Without prior training, observers readily use continuous shape index and Casorati curvature scales with reasonable resolution. PMID:27648217

  18. Solar Wind Turbulence and the Role of Ion Instabilities

    NASA Astrophysics Data System (ADS)

    Alexandrova, O.; Chen, C. H. K.; Sorriso-Valvo, L.; Horbury, T. S.; Bale, S. D.

    Solar wind is probably the best laboratory to study turbulence in astrophysical plasmas. In addition to the presence of magnetic field, the differences with neutral fluid isotropic turbulence are: (i) weakness of collisional dissipation and (ii) presence of several characteristic space and time scales. In this paper we discuss observational properties of solar wind turbulence in a large range from the MHD to the electron scales. At MHD scales, within the inertial range, turbulence cascade of magnetic fluctuations develops mostly in the plane perpendicular to the mean field, with the Kolmogorov scaling k_{perp}^{-5/3} for the perpendicular cascade and k_⊥^{-2} for the parallel one. Solar wind turbulence is compressible in nature: density fluctuations at MHD scales have the Kolmogorov spectrum. Velocity fluctuations do not follow magnetic field ones: their spectrum is a power-law with a -3/2 spectral index. Probability distribution functions of different plasma parameters are not Gaussian, indicating presence of intermittency. At the moment there is no global model taking into account all these observed properties of the inertial range. At ion scales, turbulent spectra have a break, compressibility increases and the density fluctuation spectrum has a local flattening. Around ion scales, magnetic spectra are variable and ion instabilities occur as a function of the local plasma parameters. Between ion and electron scales, a small scale turbulent cascade seems to be established. It is characterized by a well defined power-law spectrum in magnetic and density fluctuations with a spectral index close to -2.8. Approaching electron scales, the fluctuations are no more self-similar: an exponential cut-off is usually observed (for time intervals without quasi-parallel whistlers) indicating an onset of dissipation. The small scale inertial range between ion and electron scales and the electron dissipation range can be together described by ˜ k_{perp}^{-α}exp(-k_{perp}elld), with α≃8/3 and the dissipation scale ℓ d close to the electron Larmor radius ℓ d ≃ρ e . The nature of this small scale cascade and a possible dissipation mechanism are still under debate.

  19. Utilization of Large Scale Surface Models for Detailed Visibility Analyses

    NASA Astrophysics Data System (ADS)

    Caha, J.; Kačmařík, M.

    2017-11-01

    This article demonstrates utilization of large scale surface models with small spatial resolution and high accuracy, acquired from Unmanned Aerial Vehicle scanning, for visibility analyses. The importance of large scale data for visibility analyses on the local scale, where the detail of the surface model is the most defining factor, is described. The focus is not only the classic Boolean visibility, that is usually determined within GIS, but also on so called extended viewsheds that aims to provide more information about visibility. The case study with examples of visibility analyses was performed on river Opava, near the Ostrava city (Czech Republic). The multiple Boolean viewshed analysis and global horizon viewshed were calculated to determine most prominent features and visibility barriers of the surface. Besides that, the extended viewshed showing angle difference above the local horizon, which describes angular height of the target area above the barrier, is shown. The case study proved that large scale models are appropriate data source for visibility analyses on local level. The discussion summarizes possible future applications and further development directions of visibility analyses.

  20. Variation in the population structure of Yukon River chum and coho salmon: Evaluating the potential impact of localized habitat degradation

    USGS Publications Warehouse

    Olsen, J.B.; Spearman, William J.; Sage, G.K.; Miller, S.J.; Flannery, B.G.; Wenburg, J.K.

    2004-01-01

    We used microsatellite and mitochondrial DNA-restriction fragment length polymorphism (mtDNA-RFLP) analyses to test the hypothesis that chum salmon Oncorhynchus keta and coho salmon O. kisutch in the Yukon River, Alaska, exhibit population structure at differing spatial scales. If the hypothesis is true, then the risk of losing genetic diversity because of habitat degradation from a gold mine near a Yukon River tributary could differ between the two species. For each species, collections were made from two tributaries in both the Innoko and Tanana rivers, which are tributaries to the lower and middle Yukon River. The results revealed a large difference in the degree and spatial distribution of population structure between the two species. For chum salmon, the microsatellite loci (F-statistic [FST] = 0.021) and mtDNA (F ST = -0.008) revealed a low degree of interpopulation genetic diversity on a relatively large geographic scale. This large-scale population structure should minimize, although not eliminate, the risk of genetic diversity loss due to localized habitat degradation. For coho salmon, the microsatellites (FST = 0.091) and mtDNA (FST = 0.586) revealed a high degree of interpopulation genetic diversity on a relatively small geographic scale. This small-scale population structure suggests that coho salmon are at a relatively high risk of losing genetic diversity due to lo-calized habitat degradation. Our study underscores the importance of a multispecies approach for evaluating the potential impact of land-use activities on the genetic diversity of Pacific salmon.

  1. Is small-scale irrigation an efficient pro-poor strategy in the upper Limpopo Basin in Mozambique?

    NASA Astrophysics Data System (ADS)

    Ducrot, Raphaelle

    2017-08-01

    In Sub-Saharan Africa, there is evidence that households with access to small-scale irrigation are significantly less poor than households that do not have access to irrigation. However, private motopumps tend to be distributed inequitably. This paper investigates the success of explicit pro-poor interventions with emphasis on small-scale irrigation in the semi-arid Limpopo Basin in Mozambique. It reveals that high irrigation costs are progressively excluding the poor, who are unable to generate a cash income from other activities they need to fund irrigation. In addition, the operation of collective schemes involving the poor is being jeopardized by the development of private irrigation schemes, which benefit from hidden subsidies appropriated by local elites. This results in unequal access to irrigation, which can cause resentment at community level. This weakens community cohesiveness, as well as communities' capacities for collective action and coordination, which are crucial for collective irrigation.

  2. Scaling Properties of Arctic Sea Ice Deformation in a High-Resolution Viscous-Plastic Sea Ice Model and in Satellite Observations

    NASA Astrophysics Data System (ADS)

    Hutter, Nils; Losch, Martin; Menemenlis, Dimitris

    2018-01-01

    Sea ice models with the traditional viscous-plastic (VP) rheology and very small horizontal grid spacing can resolve leads and deformation rates localized along Linear Kinematic Features (LKF). In a 1 km pan-Arctic sea ice-ocean simulation, the small-scale sea ice deformations are evaluated with a scaling analysis in relation to satellite observations of the Envisat Geophysical Processor System (EGPS) in the Central Arctic. A new coupled scaling analysis for data on Eulerian grids is used to determine the spatial and temporal scaling and the coupling between temporal and spatial scales. The spatial scaling of the modeled sea ice deformation implies multifractality. It is also coupled to temporal scales and varies realistically by region and season. The agreement of the spatial scaling with satellite observations challenges previous results with VP models at coarser resolution, which did not reproduce the observed scaling. The temporal scaling analysis shows that the VP model, as configured in this 1 km simulation, does not fully resolve the intermittency of sea ice deformation that is observed in satellite data.

  3. Scaling Properties of Arctic Sea Ice Deformation in a High-Resolution Viscous-Plastic Sea Ice Model and in Satellite Observations.

    PubMed

    Hutter, Nils; Losch, Martin; Menemenlis, Dimitris

    2018-01-01

    Sea ice models with the traditional viscous-plastic (VP) rheology and very small horizontal grid spacing can resolve leads and deformation rates localized along Linear Kinematic Features (LKF). In a 1 km pan-Arctic sea ice-ocean simulation, the small-scale sea ice deformations are evaluated with a scaling analysis in relation to satellite observations of the Envisat Geophysical Processor System (EGPS) in the Central Arctic. A new coupled scaling analysis for data on Eulerian grids is used to determine the spatial and temporal scaling and the coupling between temporal and spatial scales. The spatial scaling of the modeled sea ice deformation implies multifractality. It is also coupled to temporal scales and varies realistically by region and season. The agreement of the spatial scaling with satellite observations challenges previous results with VP models at coarser resolution, which did not reproduce the observed scaling. The temporal scaling analysis shows that the VP model, as configured in this 1 km simulation, does not fully resolve the intermittency of sea ice deformation that is observed in satellite data.

  4. Decoherence in quantum systems in a static gravitational field

    NASA Astrophysics Data System (ADS)

    Shariati, Ahmad; Khorrami, Mohammad; Loran, Farhang

    2016-09-01

    A small quantum system is studied which is a superposition of states localized in different positions in a static gravitational field. The time evolution of the correlation between different positions is investigated, and it is seen that there are two time scales for such an evolution (decoherence). Both time scales are inversely proportional to the red shift difference between the two points. These time scales correspond to decoherences which are linear and quadratic, respectively, in time.

  5. HELICITY CONSERVATION IN NONLINEAR MEAN-FIELD SOLAR DYNAMO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pipin, V. V.; Sokoloff, D. D.; Zhang, H.

    It is believed that magnetic helicity conservation is an important constraint on large-scale astrophysical dynamos. In this paper, we study a mean-field solar dynamo model that employs two different formulations of the magnetic helicity conservation. In the first approach, the evolution of the averaged small-scale magnetic helicity is largely determined by the local induction effects due to the large-scale magnetic field, turbulent motions, and the turbulent diffusive loss of helicity. In this case, the dynamo model shows that the typical strength of the large-scale magnetic field generated by the dynamo is much smaller than the equipartition value for the magneticmore » Reynolds number 10{sup 6}. This is the so-called catastrophic quenching (CQ) phenomenon. In the literature, this is considered to be typical for various kinds of solar dynamo models, including the distributed-type and the Babcock-Leighton-type dynamos. The problem can be resolved by the second formulation, which is derived from the integral conservation of the total magnetic helicity. In this case, the dynamo model shows that magnetic helicity propagates with the dynamo wave from the bottom of the convection zone to the surface. This prevents CQ because of the local balance between the large-scale and small-scale magnetic helicities. Thus, the solar dynamo can operate in a wide range of magnetic Reynolds numbers up to 10{sup 6}.« less

  6. Homogenization techniques for population dynamics in strongly heterogeneous landscapes.

    PubMed

    Yurk, Brian P; Cobbold, Christina A

    2018-12-01

    An important problem in spatial ecology is to understand how population-scale patterns emerge from individual-level birth, death, and movement processes. These processes, which depend on local landscape characteristics, vary spatially and may exhibit sharp transitions through behavioural responses to habitat edges, leading to discontinuous population densities. Such systems can be modelled using reaction-diffusion equations with interface conditions that capture local behaviour at patch boundaries. In this work we develop a novel homogenization technique to approximate the large-scale dynamics of the system. We illustrate our approach, which also generalizes to multiple species, with an example of logistic growth within a periodic environment. We find that population persistence and the large-scale population carrying capacity is influenced by patch residence times that depend on patch preference, as well as movement rates in adjacent patches. The forms of the homogenized coefficients yield key theoretical insights into how large-scale dynamics arise from the small-scale features.

  7. Local elasticity map and plasticity in a model Lennard-Jones glass.

    PubMed

    Tsamados, Michel; Tanguy, Anne; Goldenberg, Chay; Barrat, Jean-Louis

    2009-08-01

    In this work we calculate the local elastic moduli in a weakly polydispersed two-dimensional Lennard-Jones glass undergoing a quasistatic shear deformation at zero temperature. The numerical method uses coarse-grained microscopic expressions for the strain, displacement, and stress fields. This method allows us to calculate the local elasticity tensor and to quantify the deviation from linear elasticity (local Hooke's law) at different coarse-graining scales. From the results a clear picture emerges of an amorphous material with strongly spatially heterogeneous elastic moduli that simultaneously satisfies Hooke's law at scales larger than a characteristic length scale of the order of five interatomic distances. At this scale, the glass appears as a composite material composed of a rigid scaffolding and of soft zones. Only recently calculated in nonhomogeneous materials, the local elastic structure plays a crucial role in the elastoplastic response of the amorphous material. For a small macroscopic shear strain, the structures associated with the nonaffine displacement field appear directly related to the spatial structure of the elastic moduli. Moreover, for a larger macroscopic shear strain we show that zones of low shear modulus concentrate most of the strain in the form of plastic rearrangements. The spatiotemporal evolution of this local elasticity map and its connection with long term dynamical heterogeneity as well as with the plasticity in the material is quantified. The possibility to use this local parameter as a predictor of subsequent local plastic activity is also discussed.

  8. Solar Activity Across the Scales: From Small-Scale Quiet-Sun Dynamics to Magnetic Activity Cycles

    NASA Technical Reports Server (NTRS)

    Kitiashvili, Irina N.; Collins, Nancy N.; Kosovichev, Alexander G.; Mansour, Nagi N.; Wray, Alan A.

    2017-01-01

    Observations as well as numerical and theoretical models show that solar dynamics is characterized by complicated interactions and energy exchanges among different temporal and spatial scales. It reveals magnetic self-organization processes from the smallest scale magnetized vortex tubes to the global activity variation known as the solar cycle. To understand these multiscale processes and their relationships, we use a two-fold approach: 1) realistic 3D radiative MHD simulations of local dynamics together with high resolution observations by IRIS, Hinode, and SDO; and 2) modeling of solar activity cycles by using simplified MHD dynamo models and mathematical data assimilation techniques. We present recent results of this approach, including the interpretation of observational results from NASA heliophysics missions and predictive capabilities. In particular, we discuss the links between small-scale dynamo processes in the convection zone and atmospheric dynamics, as well as an early prediction of Solar Cycle 25.

  9. Solar activity across the scales: from small-scale quiet-Sun dynamics to magnetic activity cycles

    NASA Astrophysics Data System (ADS)

    Kitiashvili, I.; Collins, N.; Kosovichev, A. G.; Mansour, N. N.; Wray, A. A.

    2017-12-01

    Observations as well as numerical and theoretical models show that solar dynamics is characterized by complicated interactions and energy exchanges among different temporal and spatial scales. It reveals magnetic self-organization processes from the smallest scale magnetized vortex tubes to the global activity variation known as the solar cycle. To understand these multiscale processes and their relationships, we use a two-fold approach: 1) realistic 3D radiative MHD simulations of local dynamics together with high-resolution observations by IRIS, Hinode, and SDO; and 2) modeling of solar activity cycles by using simplified MHD dynamo models and mathematical data assimilation techniques. We present recent results of this approach, including the interpretation of observational results from NASA heliophysics missions and predictive capabilities. In particular, we discuss the links between small-scale dynamo processes in the convection zone and atmospheric dynamics, as well as an early prediction of Solar Cycle 25.

  10. TESTING THE EFFECTS OF EXPANSION ON SOLAR WIND TURBULENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vech, Daniel; Chen, Christopher H K, E-mail: dvech@umich.edu

    2016-11-20

    We present a multi-spacecraft approach to test the predictions of recent studies on the effect of solar wind expansion on the radial spectral, variance, and local 3D anisotropies of the turbulence. We found that on small scales (5000–10,000 km) the power levels of the B-trace structure functions do not depend on the sampling direction with respect to the radial suggesting that on this scale the effect of expansion is small possibly due to fast turbulent timescales. On larger scales (110–135 R{sub E}), the fluctuations of the radial magnetic field component are reduced by ∼20% compared to the transverse (perpendicular tomore » radial) ones, which could be due to expansion confining the fluctuations into the plane perpendicular to radial. For the local 3D spectral anisotropy, the B-trace structure functions showed dependence on the sampling direction with respect to radial. The anisotropy in the perpendicular plane is reduced when the increments are taken perpendicular with respect to radial, which could be an effect of expansion.« less

  11. High-resolution modeling of local air-sea interaction within the Marine Continent using COAMPS

    NASA Astrophysics Data System (ADS)

    Jensen, T. G.; Chen, S.; Flatau, M. K.; Smith, T.; Rydbeck, A.

    2016-12-01

    The Maritime Continent (MC) is a region of intense deep atmospheric convection that serves as an important source of forcing for the Hadley and Walker circulations. The convective activity in the MC region spans multiple scales from local mesoscales to regional scales, and impacts equatorial wave propagation, coupled air-sea interaction and intra seasonal oscillations. The complex distribution of islands, shallow seas with fairly small heat storage and deep seas with large heat capacity is challenging to model. Diurnal convection over land-sea is part of a land-sea breeze system on a small scale, and is highly influenced by large variations in orography over land and marginal seas. Daytime solar insolation, run-off from the Archipelago and nighttime rainfall tends to stabilize the water column, while mixing by tidal currents and locally forced winds promote vertical mixing. The runoff from land and rivers and high net precipitation result in fresh water lenses that enhance vertical stability in the water column and help maintain high SST. We use the fully coupled atmosphere-ocean-wave version of the Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS) developed at NRL with resolution of a few kilometers to investigate the air-sea interaction associated with the land-sea breeze system in the MC under active and inactive phases of the Madden-Julian Oscillation. The high resolution enables simulation of strong SST gradients associated with local upwelling in deeper waters and strong salinity gradients near rivers and from heavy precipitation.

  12. Managing artisanal and small-scale mining in forest areas: perspectives from a poststructural political ecology.

    PubMed

    Hirons, Mark

    2011-01-01

    Artisanal and small-scale mining (ASM) is an activity intimately associated with social deprivation and environmental degradation, including deforestation. This paper examines ASM and deforestation using a broadly poststructural political ecology framework. Hegemonic discourses are shown to consistently influence policy direction, particularly in emerging approaches such as Corporate Social Responsibility and the Forest Stewardship Council. A review of alternative discourses reveals that the poststructural method is useful for critiquing the international policy arena but does not inform new approaches. Synthesis of the analysis leads to conclusions that echo a growing body of literature advocating for policies to become increasingly sensitive to local contexts, synergistic between actors at difference scales, and to be integrated across sectors.

  13. Node-node correlations and transport properties in scale-free networks

    NASA Astrophysics Data System (ADS)

    Obregon, Bibiana; Guzman, Lev

    2011-03-01

    We study some transport properties of complex networks. We focus our attention on transport properties of scale-free and small-world networks and compare two types of transport: Electric and max-flow cases. In particular, we construct scale-free networks, with a given degree sequence, to estimate the distribution of conductances for different values of assortative/dissortative mixing. For the electric case we find that the distributions of conductances are affect ed by the assortative mixing of the network whereas for the max-flow case, the distributions almost do not show changes when node-node correlations are altered. Finally, we compare local and global transport in terms of the average conductance for the small-world (Watts-Strogatz) model

  14. Active earth pressure model tests versus finite element analysis

    NASA Astrophysics Data System (ADS)

    Pietrzak, Magdalena

    2017-06-01

    The purpose of the paper is to compare failure mechanisms observed in small scale model tests on granular sample in active state, and simulated by finite element method (FEM) using Plaxis 2D software. Small scale model tests were performed on rectangular granular sample retained by a rigid wall. Deformation of the sample resulted from simple wall translation in the direction `from the soil" (active earth pressure state. Simple Coulomb-Mohr model for soil can be helpful in interpreting experimental findings in case of granular materials. It was found that the general alignment of strain localization pattern (failure mechanism) may belong to macro scale features and be dominated by a test boundary conditions rather than the nature of the granular sample.

  15. Application of the multi-scale finite element method to wave propagation problems in damaged structures

    NASA Astrophysics Data System (ADS)

    Casadei, F.; Ruzzene, M.

    2011-04-01

    This work illustrates the possibility to extend the field of application of the Multi-Scale Finite Element Method (MsFEM) to structural mechanics problems that involve localized geometrical discontinuities like cracks or notches. The main idea is to construct finite elements with an arbitrary number of edge nodes that describe the actual geometry of the damage with shape functions that are defined as local solutions of the differential operator of the specific problem according to the MsFEM approach. The small scale information are then brought to the large scale model through the coupling of the global system matrices that are assembled using classical finite element procedures. The efficiency of the method is demonstrated through selected numerical examples that constitute classical problems of great interest to the structural health monitoring community.

  16. Impacts of Small-Scale Industrialized Swine Farming on Local Soil, Water and Crop Qualities in a Hilly Red Soil Region of Subtropical China

    PubMed Central

    Zhang, Di; Wang, Xingxiang; Zhou, Zhigao

    2017-01-01

    Industrialized small-scale pig farming has been rapidly developed in developing regions such as China and Southeast Asia, but the environmental problems accompanying pig farming have not been fully recognized. This study investigated 168 small-scale pig farms and 29 example pig farms in Yujiang County of China to examine current and potential impacts of pig wastes on soil, water and crop qualities in the hilly red soil region, China. The results indicated that the small-scale pig farms produced considerable annual yields of wastes, with medians of 216, 333 and 773 ton yr−1 per pig farm for manure, urine and washing wastewater, respectively, which has had significant impact on surface water quality. Taking NH4+-N, total nitrogen (TN) or total phosphorus (TP) as a criterion to judge water quality, the proportions of Class III and below Class III waters in the local surface waters were 66.2%, 78.7% and 72.5%. The well water (shallow groundwater) quality near these pig farms met the water quality standards by a wide margin. The annual output of pollutants from pig farms was the most important factor correlated with the nutrients and heavy metals in soils, and the relationship can be described by a linear equation. The impact on croplands was marked by the excessive accumulation of available phosphorus and heavy metals such as Cu and Zn. For crop safety, the over-limit ratio of Zn in vegetable samples reached 60%, other heavy metals in vegetable and rice samples tested met the food safety standard at present. PMID:29211053

  17. Impacts of Small-Scale Industrialized Swine Farming on Local Soil, Water and Crop Qualities in a Hilly Red Soil Region of Subtropical China.

    PubMed

    Zhang, Di; Wang, Xingxiang; Zhou, Zhigao

    2017-12-06

    Industrialized small-scale pig farming has been rapidly developed in developing regions such as China and Southeast Asia, but the environmental problems accompanying pig farming have not been fully recognized. This study investigated 168 small-scale pig farms and 29 example pig farms in Yujiang County of China to examine current and potential impacts of pig wastes on soil, water and crop qualities in the hilly red soil region, China. The results indicated that the small-scale pig farms produced considerable annual yields of wastes, with medians of 216, 333 and 773 ton yr -1 per pig farm for manure, urine and washing wastewater, respectively, which has had significant impact on surface water quality. Taking NH₄⁺-N, total nitrogen (TN) or total phosphorus (TP) as a criterion to judge water quality, the proportions of Class III and below Class III waters in the local surface waters were 66.2%, 78.7% and 72.5%. The well water (shallow groundwater) quality near these pig farms met the water quality standards by a wide margin. The annual output of pollutants from pig farms was the most important factor correlated with the nutrients and heavy metals in soils, and the relationship can be described by a linear equation. The impact on croplands was marked by the excessive accumulation of available phosphorus and heavy metals such as Cu and Zn. For crop safety, the over-limit ratio of Zn in vegetable samples reached 60%, other heavy metals in vegetable and rice samples tested met the food safety standard at present.

  18. Modeling when, where, and how to manage a forest epidemic, motivated by sudden oak death in California

    Treesearch

    Nik J. Cunniffe; Richard C. Cobb; Ross K. Meentemeyer; David M. Rizzo; Christopher A. Gilligan

    2016-01-01

    Sudden oak death, caused by Phytophthora ramorum, has killed millions of oak and tanoak in California since its first detection in 1995. Despite some localized small-scale management, there has been no large-scale attempt to slow the spread of the pathogen in California. Here we use a stochastic spatially-explicit model parameterized using data on...

  19. Modelling of the urban concentrations of PM2.5 on a high resolution for a period of 35 years, for the assessment of lifetime exposure and health effects

    NASA Astrophysics Data System (ADS)

    Kukkonen, Jaakko; Kangas, Leena; Kauhaniemi, Mari; Sofiev, Mikhail; Aarnio, Mia; Jaakkola, Jouni J. K.; Kousa, Anu; Karppinen, Ari

    2018-06-01

    Reliable and self-consistent data on air quality are needed for an extensive period of time for conducting long-term, or even lifetime health impact assessments. We have modelled the urban-scale concentrations of fine particulate matter (PM2.5) in the Helsinki Metropolitan Area for a period of 35 years, from 1980 to 2014. The regional background concentrations were evaluated based on reanalyses of the atmospheric composition on global and European scales, using the SILAM model. The high-resolution urban computations included both the emissions originated from vehicular traffic (separately exhaust and suspension emissions) and those from small-scale combustion, and were conducted using the road network dispersion model CAR-FMI and the multiple-source Gaussian dispersion model UDM-FMI. The modelled concentrations of PM2.5 agreed fairly well with the measured data at a regional background station and at four urban measurement stations, during 1999-2014. The modelled concentration trends were also evaluated for earlier years, until 1988, using proxy analyses. There was no systematic deterioration of the agreement of predictions and data for earlier years (the 1980s and 1990s), compared with the results for more recent years (2000s and early 2010s). The local vehicular emissions were about 5 times higher in the 1980s, compared with the emissions during the latest considered years. The local small-scale combustion emissions increased slightly over time. The highest urban concentrations of PM2.5 occurred in the 1980s; these have since decreased to about to a half of the highest values. In general, regional background was the largest contribution in this area. Vehicular exhaust has been the most important local source, but the relative shares of both small-scale combustion and vehicular non-exhaust emissions have increased in time. The study has provided long-term, high-resolution concentration databases on regional and urban scales that can be used for the assessment of health effects associated with air pollution.

  20. Warm dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horiuchi, Shunsaku, E-mail: horiuchi@vt.edu

    2016-06-21

    The cold dark matter paradigm has been extremely successful in explaining the large-scale structure of the Universe. However, it continues to face issues when confronted by observations on sub-Galactic scales. A major caveat, now being addressed, has been the incomplete treatment of baryon physics. We first summarize the small-scale issues surrounding cold dark matter and discuss the solutions explored by modern state-of-the-art numerical simulations including treatment of baryonic physics. We identify the too big to fail in field galaxies as among the best targets to study modifications to dark matter, and discuss the particular connection with sterile neutrino warm darkmore » matter. We also discuss how the recently detected anomalous 3.55 keV X-ray lines, when interpreted as sterile neutrino dark matter decay, provide a very good description of small-scale observations of the Local Group.« less

  1. Genetic structure of Zymoseptoria tritici in northern France at region, field, plant and leaf layer scales.

    PubMed

    Siah, Ali; Bomble, Myriam; Tisserant, Benoit; Cadalen, Thierry; Holvoet, Maxime; Hilbert, Jean-Louis; Halama, Patrice; Reignault, Philippe Lucien

    2018-04-16

    Population genetic structure of the worldwide-distributed wheat pathogen Zymoseptoria tritici has been extensively studied at large geographical scales, but to a much less extent at small or local spatial scales. A total of 627 single-conidial fungal isolates were sampled from several locations in northern France (Hauts-de-France Region) to assess fungal genetic structure at region, field, plant and leaf layer scales, using highly polymorphic microsatellite markers and mating type idiomorphs. Important and overall similar levels of both gene and genotype diversities (gene diversity values ≥ 0.44 and haplotype frequencies ≥ 94 %) were found at all the examined scales. Such rates of diversity are likely due to an active sexual recombination in the investigated areas, as revealed by equal proportions of the two mating types scored in all sampled populations. Interestingly, a rare occurrence of clones among lesions from a same leaf, as well as among leaves from different plant leaf layers (e.g. upper vs lower leaves), was highlighted, indicating that ascospores contribute much more than expected to Z. tritci epidemics, compared to pycnidiospores. Population structure and AMOVA analyses revealed significant genetic differentiation at the regional scale (GST = 0.23) and, as expected, not at the other more local scales (GST ≤ 0.01). Further analyses using Bayesian and unweighted neighbor-joining statistical methods detected six genetic clusters within the regional population, overall distributed according to the locations from which the isolates were sampled. Neither clear directional relative migration linked to the geographical distribution of the locations, nor isolation by distance, were observed. Separate evolutionary trajectories caused by selection and adaptations to habitat heterogeneity could be the main forces shaping such structuration. This study provides new insights into the epidemiology and the genetic structure of Z. tritici at small local and, for the first time, at single plant and leaf layer scales. Such findings would be helpful in implementing effective control strategies.

  2. Atomic-Scale Lightning Rod Effect in Plasmonic Picocavities: A Classical View to a Quantum Effect.

    PubMed

    Urbieta, Mattin; Barbry, Marc; Zhang, Yao; Koval, Peter; Sánchez-Portal, Daniel; Zabala, Nerea; Aizpurua, Javier

    2018-01-23

    Plasmonic gaps are known to produce nanoscale localization and enhancement of optical fields, providing small effective mode volumes of about a few hundred nm 3 . Atomistic quantum calculations based on time-dependent density functional theory reveal the effect of subnanometric localization of electromagnetic fields due to the presence of atomic-scale features at the interfaces of plasmonic gaps. Using a classical model, we explain this as a nonresonant lightning rod effect at the atomic scale that produces an extra enhancement over that of the plasmonic background. The near-field distribution of atomic-scale hot spots around atomic features is robust against dynamical screening and spill-out effects and follows the potential landscape determined by the electron density around the atomic sites. A detailed comparison of the field distribution around atomic hot spots from full quantum atomistic calculations and from the local classical approach considering the geometrical profile of the atoms' electronic density validates the use of a classical framework to determine the effective mode volume in these extreme subnanometric optical cavities. This finding is of practical importance for the community of surface-enhanced molecular spectroscopy and quantum nanophotonics, as it provides an adequate description of the local electromagnetic fields around atomic-scale features with use of simplified classical methods.

  3. Investigation of grain-scale microstructural variability in tantalum using crystal plasticity-finite element simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Hojun; Dingreville, Rémi; Deibler, Lisa A.

    In this research, a crystal plasticity-finite element (CP-FE) model is used to investigate the effects of microstructural variability at a notch tip in tantalum single crystals and polycrystals. It is shown that at the macroscopic scale, the mechanical response of single crystals is sensitive to the crystallographic orientation while the response of polycrystals shows relatively small susceptibility to it. However, at the microscopic scale, the local stress and strain fields in the vicinity of the crack tip are completely determined by the local crystallographic orientation at the crack tip for both single and polycrystalline specimens with similar mechanical field distributions.more » Variability in the local metrics used (maximum von Mises stress and equivalent plastic strain at 3% deformation) for 100 different realizations of polycrystals fluctuates by up to a factor of 2–7 depending on the local crystallographic texture. Comparison with experimental data shows that the CP model captures variability in stress–strain response of polycrystals that can be attributed to the grain-scale microstructural variability. In conclusion, this work provides a convenient approach to investigate fluctuations in the mechanical behavior of polycrystalline materials induced by grain morphology and crystallographic orientations.« less

  4. Investigation of grain-scale microstructural variability in tantalum using crystal plasticity-finite element simulations

    DOE PAGES

    Lim, Hojun; Dingreville, Rémi; Deibler, Lisa A.; ...

    2016-02-27

    In this research, a crystal plasticity-finite element (CP-FE) model is used to investigate the effects of microstructural variability at a notch tip in tantalum single crystals and polycrystals. It is shown that at the macroscopic scale, the mechanical response of single crystals is sensitive to the crystallographic orientation while the response of polycrystals shows relatively small susceptibility to it. However, at the microscopic scale, the local stress and strain fields in the vicinity of the crack tip are completely determined by the local crystallographic orientation at the crack tip for both single and polycrystalline specimens with similar mechanical field distributions.more » Variability in the local metrics used (maximum von Mises stress and equivalent plastic strain at 3% deformation) for 100 different realizations of polycrystals fluctuates by up to a factor of 2–7 depending on the local crystallographic texture. Comparison with experimental data shows that the CP model captures variability in stress–strain response of polycrystals that can be attributed to the grain-scale microstructural variability. In conclusion, this work provides a convenient approach to investigate fluctuations in the mechanical behavior of polycrystalline materials induced by grain morphology and crystallographic orientations.« less

  5. Impact of small-scale structures on estuarine circulation

    NASA Astrophysics Data System (ADS)

    Liu, Zhuo; Zhang, Yinglong J.; Wang, Harry V.; Huang, Hai; Wang, Zhengui; Ye, Fei; Sisson, Mac

    2018-05-01

    We present a novel and challenging application of a 3D estuary-shelf model to the study of the collective impact of many small-scale structures (bridge pilings of 1 m × 2 m in size) on larger-scale circulation in a tributary (James River) of Chesapeake Bay. We first demonstrate that the model is capable of effectively transitioning grid resolution from 400 m down to 1 m near the pilings without introducing undue numerical artifact. We then show that despite their small sizes and collectively small area as compared to the total channel cross-sectional area, the pilings exert a noticeable impact on the large-scale circulation, and also create a rich structure of vortices and wakes around the pilings. As a result, the water quality and local sedimentation patterns near the bridge piling area are likely to be affected as well. However, when evaluating over the entire waterbody of the project area, the near field effects are weighed with the areal percentage which is small compared to that for the larger unaffected area, and therefore the impact on the lower James River as a whole becomes relatively insignificant. The study highlights the importance of the use of high resolution in assessing the near-field impact of structures.

  6. Implications for the missing low-mass galaxies (satellites) problem from cosmic shear

    NASA Astrophysics Data System (ADS)

    Jimenez, Raul; Verde, Licia; Kitching, Thomas D.

    2018-06-01

    The number of observed dwarf galaxies, with dark matter mass ≲ 1011 M⊙ in the Milky Way or the Andromeda galaxy does not agree with predictions from the successful ΛCDM paradigm. To alleviate this problem a suppression of dark matter clustering power on very small scales has been conjectured. However, the abundance of dark matter halos outside our immediate neighbourhood (the Local Group) seem to agree with the ΛCDM-expected abundance. Here we connect these problems to observations of weak lensing cosmic shear, pointing out that cosmic shear can make significant statements about the missing satellites problem in a statistical way. As an example and pedagogical application we use recent constraints on small-scales power suppression from measurements of the CFHTLenS data. We find that, on average, in a region of ˜Gpc3 there is no significant small-scale power suppression. This implies that suppression of small-scale power is not a viable solution to the `missing satellites problem' or, alternatively, that on average in this volume there is no `missing satellites problem' for dark matter masses ≳ 5 × 109 M⊙. Further analysis of current and future weak lensing surveys will probe much smaller scales, k > 10h Mpc-1 corresponding roughly to masses M < 109M⊙.

  7. Natural flood risk management in flashy headwater catchments: managing runoff peaks, timing, water quality and sediment regimes

    NASA Astrophysics Data System (ADS)

    Wilkinson, Mark; Addy, Steve; Ghimire, Sohan; Kenyon, Wendy; Nicholson, Alex; Quinn, Paul; Stutter, Marc; Watson, Helen

    2013-04-01

    Over the past decade many European catchments have experienced an unusually high number of flood events. A large number of these events are the result of intense rainfall in small headwater catchments which are dominated by surface runoff generation, resulting in flash flooding of local communities. Soil erosion and related water quality issues, among others, are typically associated with such rapid runoff generation. The hazard of flooding is increasing owing to impacts of changing climatic patterns (including more intense summer storms), intensification of agriculture within rural catchments and continued pressure to build on floodplains. Concurrently, the cost of constructing and maintaining traditional flood defences in small communities outweigh the potential benefits. Hence, there is a growing interest in more cost effective natural approaches that also have multipurpose benefits in terms of sediment, water quality, and habitat creation. Many catchments in Europe are intensively farmed and there is great potential for agriculture to be part of the solution to flood risk management. Natural flood management (NFM) is the alteration, restoration or use of landscape features with the aim of reducing flood risk by slowing down, storing (and filtering) rapid surface runoff. NFM includes measures such as temporarily storing water in ponds/wetlands, increasing soil infiltration, planting trees on floodplains and within catchments, re-meandering and wood placements in streams/ditches. In this presentation we highlight case studies from densely instrumented research sites across the UK (which could be typical of many European catchments) where NFM measures have been installed in small scale flashy catchments. The presentation will give an overview of the function of these measures in these catchments and how other multiple benefits are being accrued. Study catchments include the headwater catchments of the Bowmont (3 to 8 km2) and Belford Burn (6 km2) catchments. These catchments are known for their rapid runoff generation and have downstream local communities at risk of flash flooding. In Bowmont, NFM measures are currently being put in place to restore river bars and to store water more effectively on the flood plains during these flashy events. For example, Apex engineered wood structure in the river channel and riparian zones are designed to trap sediment and log bank protection structures are being installed to stop bank erosion. Tree planting in the catchment is also taking place. In the Belford catchment storage ponds and woody debris have been installed over the past five years to help to reduce the flood risk to the village of Belford. A dense instrumentation network has provided data for analysis and modelling which shows evidence of local scale flood peak reductions along with the collection of large amounts of sediment. A modelling study carried out (using a pond network model) during an intense summer storm showed that 30 small scale pond features used in sequence could reduce the flood peak by ~35% at the local scale. Findings show that managing surface runoff and local ditch flow at local scale headwater catchments is a cost effective way of managing flashy catchment for flood risk and sediment control. Working with catchment stakeholders is vital. Information given by the local community post flooding has been useful in placing NFM measures throughout the catchments. Involving the local communities in these projects and giving them access to the data and model outputs has helped to develop these projects further.

  8. Localized saddle-point search and application to temperature-accelerated dynamics

    NASA Astrophysics Data System (ADS)

    Shim, Yunsic; Callahan, Nathan B.; Amar, Jacques G.

    2013-03-01

    We present a method for speeding up temperature-accelerated dynamics (TAD) simulations by carrying out a localized saddle-point (LSAD) search. In this method, instead of using the entire system to determine the energy barriers of activated processes, the calculation is localized by only including a small chunk of atoms around the atoms directly involved in the transition. Using this method, we have obtained N-independent scaling for the computational cost of the saddle-point search as a function of system size N. The error arising from localization is analyzed using a variety of model systems, including a variety of activated processes on Ag(100) and Cu(100) surfaces, as well as multiatom moves in Cu radiation damage and metal heteroepitaxial growth. Our results show significantly improved performance of TAD with the LSAD method, for the case of Ag/Ag(100) annealing and Cu/Cu(100) growth, while maintaining a negligibly small error in energy barriers.

  9. Nonlocal and Mixed-Locality Multiscale Finite Element Methods

    DOE PAGES

    Costa, Timothy B.; Bond, Stephen D.; Littlewood, David J.

    2018-03-27

    In many applications the resolution of small-scale heterogeneities remains a significant hurdle to robust and reliable predictive simulations. In particular, while material variability at the mesoscale plays a fundamental role in processes such as material failure, the resolution required to capture mechanisms at this scale is often computationally intractable. Multiscale methods aim to overcome this difficulty through judicious choice of a subscale problem and a robust manner of passing information between scales. One promising approach is the multiscale finite element method, which increases the fidelity of macroscale simulations by solving lower-scale problems that produce enriched multiscale basis functions. Here, inmore » this study, we present the first work toward application of the multiscale finite element method to the nonlocal peridynamic theory of solid mechanics. This is achieved within the context of a discontinuous Galerkin framework that facilitates the description of material discontinuities and does not assume the existence of spatial derivatives. Analysis of the resulting nonlocal multiscale finite element method is achieved using the ambulant Galerkin method, developed here with sufficient generality to allow for application to multiscale finite element methods for both local and nonlocal models that satisfy minimal assumptions. Finally, we conclude with preliminary results on a mixed-locality multiscale finite element method in which a nonlocal model is applied at the fine scale and a local model at the coarse scale.« less

  10. Nonlocal and Mixed-Locality Multiscale Finite Element Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa, Timothy B.; Bond, Stephen D.; Littlewood, David J.

    In many applications the resolution of small-scale heterogeneities remains a significant hurdle to robust and reliable predictive simulations. In particular, while material variability at the mesoscale plays a fundamental role in processes such as material failure, the resolution required to capture mechanisms at this scale is often computationally intractable. Multiscale methods aim to overcome this difficulty through judicious choice of a subscale problem and a robust manner of passing information between scales. One promising approach is the multiscale finite element method, which increases the fidelity of macroscale simulations by solving lower-scale problems that produce enriched multiscale basis functions. Here, inmore » this study, we present the first work toward application of the multiscale finite element method to the nonlocal peridynamic theory of solid mechanics. This is achieved within the context of a discontinuous Galerkin framework that facilitates the description of material discontinuities and does not assume the existence of spatial derivatives. Analysis of the resulting nonlocal multiscale finite element method is achieved using the ambulant Galerkin method, developed here with sufficient generality to allow for application to multiscale finite element methods for both local and nonlocal models that satisfy minimal assumptions. Finally, we conclude with preliminary results on a mixed-locality multiscale finite element method in which a nonlocal model is applied at the fine scale and a local model at the coarse scale.« less

  11. Watershed Management Optimization Support Tool v3

    EPA Science Inventory

    The Watershed Management Optimization Support Tool (WMOST) is a decision support tool that facilitates integrated water management at the local or small watershed scale. WMOST models the environmental effects and costs of management decisions in a watershed context that is, accou...

  12. Pavement management system for City of Madison : research brief.

    DOT National Transportation Integrated Search

    2016-11-01

    Keeping city streets in good state of repair has been a significant challenge for small communities : where both road repair budgets and staff resources are lacking. To prevent pavement deterioration at : a large scale, local governments need to find...

  13. Influence of heat and particle fluxes nonlocality on spatial distribution of plasma density in two-chamber inductively coupled plasma sources

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, A. A.; Serditov, K. Yu.

    2012-07-01

    This study presents 2D simulations of the two-chamber inductively coupled plasma source where power is supplied in the small discharge chamber and extends by electron thermal conductivity mechanism to the big diffusion chamber. Depending on pressure, two main scenarios of plasma density and its spatial distribution behavior were identified. One case is characterized by the localization of plasma in the small driver chamber where power is deposed. Another case describes when the diffusion chamber becomes the main source of plasma with maximum of the electron density. The differences in spatial distribution are caused by local or non-local behavior of electron energy transport in the discharge volume due to different characteristic scale of heat transfer with electronic conductivity.

  14. The importance of regional models in assessing canine cancer incidences in Switzerland

    PubMed Central

    Leyk, Stefan; Brunsdon, Christopher; Graf, Ramona; Pospischil, Andreas; Fabrikant, Sara Irina

    2018-01-01

    Fitting canine cancer incidences through a conventional regression model assumes constant statistical relationships across the study area in estimating the model coefficients. However, it is often more realistic to consider that these relationships may vary over space. Such a condition, known as spatial non-stationarity, implies that the model coefficients need to be estimated locally. In these kinds of local models, the geographic scale, or spatial extent, employed for coefficient estimation may also have a pervasive influence. This is because important variations in the local model coefficients across geographic scales may impact the understanding of local relationships. In this study, we fitted canine cancer incidences across Swiss municipal units through multiple regional models. We computed diagnostic summaries across the different regional models, and contrasted them with the diagnostics of the conventional regression model, using value-by-alpha maps and scalograms. The results of this comparative assessment enabled us to identify variations in the goodness-of-fit and coefficient estimates. We detected spatially non-stationary relationships, in particular, for the variables related to biological risk factors. These variations in the model coefficients were more important at small geographic scales, making a case for the need to model canine cancer incidences locally in contrast to more conventional global approaches. However, we contend that prior to undertaking local modeling efforts, a deeper understanding of the effects of geographic scale is needed to better characterize and identify local model relationships. PMID:29652921

  15. The importance of regional models in assessing canine cancer incidences in Switzerland.

    PubMed

    Boo, Gianluca; Leyk, Stefan; Brunsdon, Christopher; Graf, Ramona; Pospischil, Andreas; Fabrikant, Sara Irina

    2018-01-01

    Fitting canine cancer incidences through a conventional regression model assumes constant statistical relationships across the study area in estimating the model coefficients. However, it is often more realistic to consider that these relationships may vary over space. Such a condition, known as spatial non-stationarity, implies that the model coefficients need to be estimated locally. In these kinds of local models, the geographic scale, or spatial extent, employed for coefficient estimation may also have a pervasive influence. This is because important variations in the local model coefficients across geographic scales may impact the understanding of local relationships. In this study, we fitted canine cancer incidences across Swiss municipal units through multiple regional models. We computed diagnostic summaries across the different regional models, and contrasted them with the diagnostics of the conventional regression model, using value-by-alpha maps and scalograms. The results of this comparative assessment enabled us to identify variations in the goodness-of-fit and coefficient estimates. We detected spatially non-stationary relationships, in particular, for the variables related to biological risk factors. These variations in the model coefficients were more important at small geographic scales, making a case for the need to model canine cancer incidences locally in contrast to more conventional global approaches. However, we contend that prior to undertaking local modeling efforts, a deeper understanding of the effects of geographic scale is needed to better characterize and identify local model relationships.

  16. Modeling the intersections of Food, Energy, and Water in climate-vulnerable Ethiopia with an application to small-scale irrigation

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Sankaranarayanan, S.; Zaitchik, B. F.; Siddiqui, S.

    2017-12-01

    Africa is home to some of the most climate vulnerable populations in the world. Energy and agricultural development have diverse impacts on the region's food security and economic well-being from the household to the national level, particularly considering climate variability and change. Our ultimate goal is to understand coupled Food-Energy-Water (FEW) dynamics across spatial scales in order to quantify the sensitivity of critical human outcomes to FEW development strategies in Ethiopia. We are developing bottom-up and top-down multi-scale models, spanning local, sub-national and national scales to capture the FEW linkages across communities and climatic adaptation zones. The focus of this presentation is the sub-national scale multi-player micro-economic (MME) partial-equilibrium model with coupled food and energy sector for Ethiopia. With fixed large-scale economic, demographic, and resource factors from the national scale computable general equilibrium (CGE) model and inferences of behavior parameters from the local scale agent-based model (ABM), the MME studies how shocks such as drought (crop failure) and development of resilience technologies would influence FEW system at a sub-national scale. The MME model is based on aggregating individual optimization problems for relevant players. It includes production, storage, and consumption of food and energy at spatially disaggregated zones, and transportation in between with endogenously modeled infrastructure. The aggregated players for each zone have different roles such as crop producers, storage managers, and distributors, who make decisions according to their own but interdependent objective functions. The food and energy supply chain across zones is therefore captured. Ethiopia is dominated by rain-fed agriculture with only 2% irrigated farmland. Small-scale irrigation has been promoted as a resilience technology that could potentially play a critical role in food security and economic well-being in Ethiopia, but that also intersects with energy and water consumption. Here, we focus on the energy usage for small-scale irrigation and the collective impact on crop production and water resources across zones in the MME model.

  17. Homogenization of Large-Scale Movement Models in Ecology

    USGS Publications Warehouse

    Garlick, M.J.; Powell, J.A.; Hooten, M.B.; McFarlane, L.R.

    2011-01-01

    A difficulty in using diffusion models to predict large scale animal population dispersal is that individuals move differently based on local information (as opposed to gradients) in differing habitat types. This can be accommodated by using ecological diffusion. However, real environments are often spatially complex, limiting application of a direct approach. Homogenization for partial differential equations has long been applied to Fickian diffusion (in which average individual movement is organized along gradients of habitat and population density). We derive a homogenization procedure for ecological diffusion and apply it to a simple model for chronic wasting disease in mule deer. Homogenization allows us to determine the impact of small scale (10-100 m) habitat variability on large scale (10-100 km) movement. The procedure generates asymptotic equations for solutions on the large scale with parameters defined by small-scale variation. The simplicity of this homogenization procedure is striking when compared to the multi-dimensional homogenization procedure for Fickian diffusion,and the method will be equally straightforward for more complex models. ?? 2010 Society for Mathematical Biology.

  18. Simulation of nitrate reduction in groundwater - An upscaling approach from small catchments to the Baltic Sea basin

    NASA Astrophysics Data System (ADS)

    Hansen, A. L.; Donnelly, C.; Refsgaard, J. C.; Karlsson, I. B.

    2018-01-01

    This paper describes a modeling approach proposed to simulate the impact of local-scale, spatially targeted N-mitigation measures for the Baltic Sea Basin. Spatially targeted N-regulations aim at exploiting the considerable spatial differences in the natural N-reduction taking place in groundwater and surface water. While such measures can be simulated using local-scale physically-based catchment models, use of such detailed models for the 1.8 million km2 Baltic Sea basin is not feasible due to constraints on input data and computing power. Large-scale models that are able to simulate the Baltic Sea basin, on the other hand, do not have adequate spatial resolution to simulate some of the field-scale measures. Our methodology combines knowledge and results from two local-scale physically-based MIKE SHE catchment models, the large-scale and more conceptual E-HYPE model, and auxiliary data in order to enable E-HYPE to simulate how spatially targeted regulation of agricultural practices may affect N-loads to the Baltic Sea. We conclude that the use of E-HYPE with this upscaling methodology enables the simulation of the impact on N-loads of applying a spatially targeted regulation at the Baltic Sea basin scale to the correct order-of-magnitude. The E-HYPE model together with the upscaling methodology therefore provides a sound basis for large-scale policy analysis; however, we do not expect it to be sufficiently accurate to be useful for the detailed design of local-scale measures.

  19. Decent wage is more important than absolution of debts: A smallholder socio-hydrological modelling framework

    NASA Astrophysics Data System (ADS)

    Pande, Saket; Savenije, Hubert

    2015-04-01

    We present a framework to understand the socio-hydrological system dynamics of a small holder. Small holders are farmers who own less than 2 ha of farmland. It couples the dynamics of 6 main variables that are most relevant at the scale of a small holder: local storage (soil moisture and other water storage), capital, knowledge, livestock production, soil fertility and grass biomass production. The hydroclimatic variability is at sub-annual scale and influences the socio-hydrology at annual scale. The model incorporates rule-based adaptation mechanisms (for example: adjusting expenditures on food and fertilizers, selling livestocks etc.) of small holders when they face adverse socio-hydrological conditions, such as low annual rainfall, higher intra-annual variability in rainfall or variability in agricultural prices. We apply the framework to understand the socio-hydrology of a sugarcane small holder in Aurangabad, Maharashtra. This district has witnessed suicides of many sugarcane farmers who could not extricate themselves out of the debt trap. These farmers lack irrigation and are susceptible to fluctuating sugar prices and intra-annual hydro-climatic variability. We study the sensitivity of annual total capital averaged over 30 years, an indicator of small holder wellbeing, to initial capital that a small holder starts with and the prevalent wage rates. We find that a smallholder well being is low (below Rs 30000 per annum, a threshold above which a smallholder can afford a basic standard of living) and is rather insensitive to initial capital at low wage rates. Initial capital perhaps matters to small holder livelihoods at higher wage rates. Further, the small holder system appears to be resilient at around Rs 115/mandays in the sense that small perturbations in wage rates around this rate still sustains the smallholder above the basic standard of living. Our results thus indicate that government intervention to absolve the debt of farmers is not enough. It must invest in local storages that can buffer intra-annual variability in rainfall in tandem and good wages for alternative sources of income.

  20. Coherent nonlinear coupling between a long-wavelength mode and small-scale turbulence in the TEXT tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsui, H.Y.W.; Rypdal, K.; Ritz, C.P.

    1993-04-26

    Bispectral analysis of Langmuir probe data indicates that coherent nonlinear coupling, in addition to the noncoherent turbulent interactions, exists in the edge plasma of the tokamak TEXT. Not all the modes involved reside within the spectral region of the usual broadband turbulence. At a major resonant surface the small-scale turbulent activity interacts [ital coherently] with a localized long-wavelength mode; a signature of regular or coherent structure. By the observed coupling to the transport related turbulence, the long-wavelength mode can influence plasma confinement indirectly. These observations signify the influence of low-order resonant surfaces on the edge turbulence in tokamaks.

  1. High-resolution calculations of the solar global convection with the reduced speed of sound technique. I. The structure of the convection and the magnetic field without the rotation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hotta, H.; Yokoyama, T.; Rempel, M., E-mail: hotta.h@eps.s.u-tokyo.ac.jp

    2014-05-01

    We carry out non-rotating high-resolution calculations of the solar global convection, which resolve convective scales of less than 10 Mm. To cope with the low Mach number conditions in the lower convection zone, we use the reduced speed of sound technique (RSST), which is simple to implement and requires only local communication in the parallel computation. In addition, the RSST allows us to expand the computational domain upward to about 0.99 R {sub ☉}, as it can also handle compressible flows. Using this approach, we study the solar convection zone on the global scale, including small-scale near-surface convection. In particular,more » we investigate the influence of the top boundary condition on the convective structure throughout the convection zone as well as on small-scale dynamo action. Our main conclusions are as follows. (1) The small-scale downflows generated in the near-surface layer penetrate into deeper layers to some extent and excite small-scale turbulence in the region >0.9 R {sub ☉}, where R {sub ☉} is the solar radius. (2) In the deeper convection zone (<0.9 R {sub ☉}), the convection is not influenced by the location of the upper boundary. (3) Using a large eddy simulation approach, we can achieve small-scale dynamo action and maintain a field of about 0.15B {sub eq}-0.25B {sub eq} throughout the convection zone, where B {sub eq} is the equipartition magnetic field to the kinetic energy. (4) The overall dynamo efficiency varies significantly in the convection zone as a consequence of the downward directed Poynting flux and the depth variation of the intrinsic convective scales.« less

  2. Local unitary transformation method for large-scale two-component relativistic calculations: case for a one-electron Dirac Hamiltonian.

    PubMed

    Seino, Junji; Nakai, Hiromi

    2012-06-28

    An accurate and efficient scheme for two-component relativistic calculations at the spin-free infinite-order Douglas-Kroll-Hess (IODKH) level is presented. The present scheme, termed local unitary transformation (LUT), is based on the locality of the relativistic effect. Numerical assessments of the LUT scheme were performed in diatomic molecules such as HX and X(2) (X = F, Cl, Br, I, and At) and hydrogen halide clusters, (HX)(n) (X = F, Cl, Br, and I). Total energies obtained by the LUT method agree well with conventional IODKH results. The computational costs of the LUT method are drastically lower than those of conventional methods since in the former there is linear-scaling with respect to the system size and a small prefactor.

  3. Spatial scaling of bacterial community diversity at shallow hydrothermal vents: a global comparison

    NASA Astrophysics Data System (ADS)

    Pop Ristova, P.; Hassenrueck, C.; Molari, M.; Fink, A.; Bühring, S. I.

    2016-02-01

    Marine shallow hydrothermal vents are extreme environments, often characterized by discharge of fluids with e.g. high temperatures, low pH, and laden with elements toxic to higher organisms. They occur at continental margins around the world's oceans, but represent fragmented, isolated habitats of locally small areal coverage. Microorganisms contribute the main biomass at shallow hydrothermal vent ecosystems and build the basis of the food chain by autotrophic fixation of carbon both via chemosynthesis and photosynthesis, occurring simultaneously. Despite their importance and unique capacity to adapt to these extreme environments, little is known about the spatial scales on which the alpha- and beta-diversity of microbial communities vary at shallow vents, and how the geochemical habitat heterogeneity influences shallow vent biodiversity. Here for the first time we investigated the spatial scaling of microbial biodiversity patterns and their interconnectivity at geochemically diverse shallow vents on a global scale. This study presents data on the comparison of bacterial community structures on large (> 1000 km) and small (0.1 - 100 m) spatial scales as derived from ARISA and Illumina sequencing. Despite the fragmented global distribution of shallow hydrothermal vents, similarity of vent bacterial communities decreased with geographic distance, confirming the ubiquity of distance-decay relationship. Moreover, at all investigated vents, pH was the main factor locally structuring these communities, while temperature influenced both the alpha- and beta-diversity.

  4. Community-based Rehabilitation in the Philippines: Using Income Generation Projects.

    ERIC Educational Resources Information Center

    Santos Valdez, Luzviminda Joy

    1998-01-01

    Provides examples of people with disabilities who are self-employed and able to generate their own income through community-based models of rehabilitation. Suggests that these small-scale efforts demonstrate the importance of understanding the local socioeconomic context of rehabilitation. (SK)

  5. Watershed Management Optimization Support Tool (WMOST) v3: User Guide

    EPA Science Inventory

    The Watershed Management Optimization Support Tool (WMOST) is a decision support tool that facilitates integrated water management at the local or small watershed scale. WMOST models the environmental effects and costs of management decisions in a watershed context that is, accou...

  6. Watershed Management Optimization Support Tool (WMOST) v3: Theoretical Documentation

    EPA Science Inventory

    The Watershed Management Optimization Support Tool (WMOST) is a decision support tool that facilitates integrated water management at the local or small watershed scale. WMOST models the environmental effects and costs of management decisions in a watershed context, accounting fo...

  7. Photonic Crystals on the Wing

    DTIC Science & Technology

    2011-11-01

    Giraldo MA Stavenga DG (2007) Sexual dichroism and pigment localization in the wing scales of Pieris rapae butterflies. Proc R Soc B 274:97-102 4...723 41. Stavenga DG, Arikawa K (2011) Photoreceptor spectral sensitivities of the Small White butterfly Pieris rapae crucivora interpreted with

  8. Coping with Multiple Innovations in Schools: An Exploratory Study.

    ERIC Educational Resources Information Center

    Wallace, Mike

    1991-01-01

    Reviews small-scale, exploratory research into British schools' management of concurrent educational reform innovations generated by government, local education authorities, and the schools themselves. Describes changing innovations patterns, key factors influencing their adoption and implementation, the central management strategies employed, and…

  9. Reactive Gas transport in soil: Kinetics versus Local Equilibrium Approach

    NASA Astrophysics Data System (ADS)

    Geistlinger, Helmut; Jia, Ruijan

    2010-05-01

    Gas transport through the unsaturated soil zone was studied using an analytical solution of the gas transport model that is mathematically equivalent to the Two-Region model. The gas transport model includes diffusive and convective gas fluxes, interphase mass transfer between the gas and water phase, and biodegradation. The influence of non-equilibrium phenomena, spatially variable initial conditions, and transient boundary conditions are studied. The objective of this paper is to compare the kinetic approach for interphase mass transfer with the standard local equilibrium approach and to find conditions and time-scales under which the local equilibrium approach is justified. The time-scale of investigation was limited to the day-scale, because this is the relevant scale for understanding gas emission from the soil zone with transient water saturation. For the first time a generalized mass transfer coefficient is proposed that justifies the often used steady-state Thin-Film mass transfer coefficient for small and medium water-saturated aggregates of about 10 mm. The main conclusion from this study is that non-equilibrium mass transfer depends strongly on the temporal and small-scale spatial distribution of water within the unsaturated soil zone. For regions with low water saturation and small water-saturated aggregates (radius about 1 mm) the local equilibrium approach can be used as a first approximation for diffusive gas transport. For higher water saturation and medium radii of water-saturated aggregates (radius about 10 mm) and for convective gas transport, the non-equilibrium effect becomes more and more important if the hydraulic residence time and the Damköhler number decrease. Relative errors can range up to 100% and more. While for medium radii the local equilibrium approach describes the main features both of the spatial concentration profile and the time-dependence of the emission rate, it fails completely for larger aggregates (radius about 100 mm). From the comparative study of relevant scenarios with and without biodegradation it can be concluded that, under realistic field conditions, biodegradation within the immobile water phase is often mass-transfer limited and the local equilibrium approach assuming instantaneous mass transfer becomes rather questionable. References Geistlinger, H., Ruiyan Jia, D. Eisermann, and C.-F. Stange (2008): Spatial and temporal variability of dissolved nitrous oxide in near-surface groundwater and bubble-mediated mass transfer to the unsaturated zone, J. Plant Nutrition and Soil Science, in press. Geistlinger, H. (2009) Vapor transport in soil: concepts and mathematical description. In: Eds.: S. Saponari, E. Sezenna, and L. Bonoma, Vapor emission to outdoor air and enclosed spaces for human health risk assessment: Site characterization, monitoring, and modeling. Nova Science Publisher. Milano. Accepted for publication.

  10. Halo assembly bias and the tidal anisotropy of the local halo environment

    NASA Astrophysics Data System (ADS)

    Paranjape, Aseem; Hahn, Oliver; Sheth, Ravi K.

    2018-05-01

    We study the role of the local tidal environment in determining the assembly bias of dark matter haloes. Previous results suggest that the anisotropy of a halo's environment (i.e. whether it lies in a filament or in a more isotropic region) can play a significant role in determining the eventual mass and age of the halo. We statistically isolate this effect, using correlations between the large-scale and small-scale environments of simulated haloes at z = 0 with masses between 1011.6 ≲ (m/h-1 M⊙) ≲ 1014.9. We probe the large-scale environment, using a novel halo-by-halo estimator of linear bias. For the small-scale environment, we identify a variable αR that captures the tidal anisotropy in a region of radius R = 4R200b around the halo and correlates strongly with halo bias at fixed mass. Segregating haloes by αR reveals two distinct populations. Haloes in highly isotropic local environments (αR ≲ 0.2) behave as expected from the simplest, spherically averaged analytical models of structure formation, showing a negative correlation between their concentration and large-scale bias at all masses. In contrast, haloes in anisotropic, filament-like environments (αR ≳ 0.5) tend to show a positive correlation between bias and concentration at any mass. Our multiscale analysis cleanly demonstrates how the overall assembly bias trend across halo mass emerges as an average over these different halo populations, and provides valuable insights towards building analytical models that correctly incorporate assembly bias. We also discuss potential implications for the nature and detectability of galaxy assembly bias.

  11. Monitoring Local Changes in Granite Rock Under Biaxial Test: A Spatiotemporal Imaging Application With Diffuse Waves

    NASA Astrophysics Data System (ADS)

    Xie, Fan; Ren, Yaqiong; Zhou, Yongsheng; Larose, Eric; Baillet, Laurent

    2018-03-01

    Diffuse acoustic or seismic waves are highly sensitive to detect changes of mechanical properties in heterogeneous geological materials. In particular, thanks to acoustoelasticity, we can quantify stress changes by tracking acoustic or seismic relative velocity changes in the material at test. In this paper, we report on a small-scale laboratory application of an innovative time-lapse tomography technique named Locadiff to image spatiotemporal mechanical changes on a granite sample under biaxial loading, using diffuse waves at ultrasonic frequencies (300 kHz to 900 kHz). We demonstrate the ability of the method to image reversible stress evolution and deformation process, together with the development of reversible and irreversible localized microdamage in the specimen at an early stage. Using full-field infrared thermography, we visualize stress-induced temperature changes and validate stress images obtained from diffuse ultrasound. We demonstrate that the inversion with a good resolution can be achieved with only a limited number of receivers distributed around a single source, all located at the free surface of the specimen. This small-scale experiment is a proof of concept for frictional earthquake-like failure (e.g., stick-slip) research at laboratory scale as well as large-scale seismic applications, potentially including active fault monitoring.

  12. Application of Effective Medium Theory to the Three-Dimensional Heterogeneity of Mantle Anisotropy

    NASA Astrophysics Data System (ADS)

    Song, X.; Jordan, T. H.

    2015-12-01

    A self-consistent theory for the effective elastic parameters of stochastic media with small-scale 3D heterogeneities has been developed using a 2nd-order Born approximation to the scattered wavefield (T. H. Jordan, GJI, in press). Here we apply the theory to assess how small-scale variations in the local anisotropy of the upper mantle affect seismic wave propagation. We formulate a anisotropic model in which the local elastic properties are specified by a constant stiffness tensor with hexagonal symmetry of arbitrary orientation. This orientation is guided by a Gaussian random vector field with transversely isotropic (TI) statistics. If the outer scale of the statistical variability is small compared to a wavelength, then the effective seismic velocities are TI and depend on two parameters, a horizontal-to-vertical orientation ratio ξ and a horizontal-to-vertical aspect ratio, η. If ξ = 1, the symmetry axis is isotropically distributed; if ξ < 1, it is vertical biased (bipolar distribution), and if ξ > 1, it is horizontally biased (girdle distribution). If η = 1, the heterogeneity is geometrically isotropic; as η à∞, the medium becomes a horizontal stochastic laminate; as η à0, the medium becomes a vertical stochastic bundle. Using stiffness tensors constrained by laboratory measurements of mantle xenoliths, we explore the dependence of the effective P and S velocities on ξ and η. The effective velocities are strongly controlled by the orientation ratio ξ; e.g., if the hexagonal symmetry axis of the local anisotropy is the fast direction of propagation, then vPH > vPV and vSH > vSV for ξ > 1. A more surprising result is the 2nd-order insensitivity of the velocities to the heterogeneity aspect ratio η. Consequently, the geometrical anisotropy of upper-mantle heterogeneity significantly enhances seismic-wave anisotropy only through local variations in the Voigt-averaged velocities, which depend primarily on rock composition and not deformation history.

  13. Detection of Transgenes in Local Maize Varieties of Small-Scale Farmers in Eastern Cape, South Africa

    PubMed Central

    Iversen, Marianne; Grønsberg, Idun M.; van den Berg, Johnnie; Fischer, Klara; Aheto, Denis Worlanyo; Bøhn, Thomas

    2014-01-01

    Small-scale subsistence farmers in South Africa have been introduced to genetically modified (GM) crops for more than a decade. Little is known about i) the extent of transgene introgression into locally recycled seed, ii) what short and long-term ecological and socioeconomic impacts such mixing of seeds might have, iii) how the farmers perceive GM crops, and iv) to what degree approval conditions are followed and controlled. This study conducted in the Eastern Cape, South Africa, aims primarily at addressing the first of these issues. We analysed for transgenes in 796 individual maize plants (leaves) and 20 seed batches collected in a village where GM insect resistant maize was previously promoted and grown as part of an governmental agricultural development program over a seven year period (2001–2008). Additionally, we surveyed the varieties of maize grown and the farmers’ practices of recycling and sharing of seed in the same community (26 farmers were interviewed). Recycling and sharing of seeds were common in the community and may contribute to spread and persistence of transgenes in maize on a local or regional level. By analysing DNA we found that the commonly used transgene promoter p35s occurred in one of the 796 leaf samples (0.0013%) and in five of the 20 seed samples (25%). Three of the 20 seed samples (15%) included herbicide tolerant maize (NK603) intentionally grown by the farmers from seed bought from local seed retailers or acquired through a currently running agricultural development program. The two remaining positive seed samples (10%) included genes for insect resistance (from MON810). In both cases the farmers were unaware of the transgenes present. In conclusion, we demonstrate that transgenes are mixed into seed storages of small-scale farming communities where recycling and sharing of seeds are common, i.e. spread beyond the control of the formal seed system. PMID:25551616

  14. Increasing bioenergy production on arable land: Does the regional and local climate respond? Germany as a case study

    NASA Astrophysics Data System (ADS)

    Tölle, Merja H.; Gutjahr, Oliver; Busch, Gerald; Thiele, Jan C.

    2014-03-01

    The extent and magnitude of land cover change effect on local and regional future climate during the vegetation period due to different forms of bioenergy plants are quantified for extreme temperatures and energy fluxes. Furthermore, we vary the spatial extent of plant allocation on arable land and simulate alternative availability of transpiration water to mimic both rainfed agriculture and irrigation. We perform climate simulations down to 1 km scale for 1970-1975 C20 and 2070-2075 A1B over Germany with Consortium for Small-Scale Modeling in Climate Mode. Here an impact analysis indicates a strong local influence due to land cover changes. The regional effect is decreased by two thirds of the magnitude of the local-scale impact. The changes are largest locally for irrigated poplar with decreasing maximum temperatures by 1°C in summer months and increasing specific humidity by 0.15 g kg-1. The increased evapotranspiration may result in more precipitation. The increase of surface radiative fluxes Rnet due to changes in latent and sensible heat is estimated by 5 W m-2locally. Moreover, increases in the surface latent heat flux cause strong local evaporative cooling in the summer months, whereas the associated regional cooling effect is pronounced by increases in cloud cover. The changes on a regional scale are marginal and not significant. Increasing bioenergy production on arable land may result in local temperature changes but not in substantial regional climate change in Germany. We show the effect of agricultural practices during climate transitions in spring and fall.

  15. Reindeer habitat use in relation to two small wind farms, during preconstruction, construction, and operation.

    PubMed

    Skarin, Anna; Alam, Moudud

    2017-06-01

    Worldwide there is a rush toward wind power development and its associated infrastructure. In Fennoscandia, large-scale wind farms comprising several hundred windmills are currently built in important grazing ranges used for Sámi reindeer husbandry. In this study, reindeer habitat use was assessed using reindeer fecal pellet group counts in relation to two relatively small wind farms, with 8 and 10 turbines, respectively. In 2009, 1,315 15-m 2 plots were established and pellet groups were counted and cleaned from the plots. This was repeated once a year in May, during preconstruction, construction, and operation of the wind farms, covering 6 years (2009-2014) of reindeer habitat use in the area. We modeled the presence/absence of any pellets in a plot at both the local (wind farm site) and regional (reindeer calving to autumn range) scale with a hierarchical logistic regression, where spatial correlation was accounted for via random effects, using vegetation type, and the interaction between distance to wind turbine and time period as predictor variables. Our results revealed an absolute reduction in pellet groups by 66% and 86% around each wind farm, respectively, at local scale and by 61% at regional scale during the operation phase compared to the preconstruction phase. At the regional, scale habitat use declined close to the turbines in the same comparison. However, at the local scale, we observed increased habitat use close to the wind turbines at one of the wind farms during the operation phase. This may be explained by continued use of an important migration route close to the wind farm. The reduced use at the regional scale nevertheless suggests that there may be an overall avoidance of both wind farms during operation, but further studies of reindeer movement and behavior are needed to gain a better understanding of the mechanisms behind this suggested avoidance.

  16. A simple scaling approach to produce climate scenarios of local precipitation extremes for the Netherlands

    NASA Astrophysics Data System (ADS)

    Lenderink, Geert; Attema, Jisk

    2015-08-01

    Scenarios of future changes in small scale precipitation extremes for the Netherlands are presented. These scenarios are based on a new approach whereby changes in precipitation extremes are set proportional to the change in water vapor amount near the surface as measured by the 2m dew point temperature. This simple scaling framework allows the integration of information derived from: (i) observations, (ii) a new unprecedentedly large 16 member ensemble of simulations with the regional climate model RACMO2 driven by EC-Earth, and (iii) short term integrations with a non-hydrostatic model Harmonie. Scaling constants are based on subjective weighting (expert judgement) of the three different information sources taking also into account previously published work. In all scenarios local precipitation extremes increase with warming, yet with broad uncertainty ranges expressing incomplete knowledge of how convective clouds and the atmospheric mesoscale circulation will react to climate change.

  17. Detecting cancer clusters in a regional population with local cluster tests and Bayesian smoothing methods: a simulation study

    PubMed Central

    2013-01-01

    Background There is a rising public and political demand for prospective cancer cluster monitoring. But there is little empirical evidence on the performance of established cluster detection tests under conditions of small and heterogeneous sample sizes and varying spatial scales, such as are the case for most existing population-based cancer registries. Therefore this simulation study aims to evaluate different cluster detection methods, implemented in the open soure environment R, in their ability to identify clusters of lung cancer using real-life data from an epidemiological cancer registry in Germany. Methods Risk surfaces were constructed with two different spatial cluster types, representing a relative risk of RR = 2.0 or of RR = 4.0, in relation to the overall background incidence of lung cancer, separately for men and women. Lung cancer cases were sampled from this risk surface as geocodes using an inhomogeneous Poisson process. The realisations of the cancer cases were analysed within small spatial (census tracts, N = 1983) and within aggregated large spatial scales (communities, N = 78). Subsequently, they were submitted to the cluster detection methods. The test accuracy for cluster location was determined in terms of detection rates (DR), false-positive (FP) rates and positive predictive values. The Bayesian smoothing models were evaluated using ROC curves. Results With moderate risk increase (RR = 2.0), local cluster tests showed better DR (for both spatial aggregation scales > 0.90) and lower FP rates (both < 0.05) than the Bayesian smoothing methods. When the cluster RR was raised four-fold, the local cluster tests showed better DR with lower FPs only for the small spatial scale. At a large spatial scale, the Bayesian smoothing methods, especially those implementing a spatial neighbourhood, showed a substantially lower FP rate than the cluster tests. However, the risk increases at this scale were mostly diluted by data aggregation. Conclusion High resolution spatial scales seem more appropriate as data base for cancer cluster testing and monitoring than the commonly used aggregated scales. We suggest the development of a two-stage approach that combines methods with high detection rates as a first-line screening with methods of higher predictive ability at the second stage. PMID:24314148

  18. Fire history reconstruction in grassland ecosystems: amount of charcoal reflects local area burned

    NASA Astrophysics Data System (ADS)

    Leys, Bérangère; Brewer, Simon C.; McConaghy, Scott; Mueller, Joshua; McLauchlan, Kendra K.

    2015-11-01

    Fire is one of the most prevalent disturbances in the Earth system, and its past characteristics can be reconstructed using charcoal particles preserved in depositional environments. Although researchers know that fires produce charcoal particles, interpretation of the quantity or composition of charcoal particles in terms of fire source remains poorly understood. In this study, we used a unique four-year dataset of charcoal deposited in traps from a native tallgrass prairie in mid-North America to test which environmental factors were linked to charcoal measurements on three spatial scales. We investigated small and large charcoal particles commonly used as a proxy of fire activity at different spatial scales, and charcoal morphotypes representing different types of fuel. We found that small (125-250 μm) and large (250 μm-1 mm) particles of charcoal are well-correlated (Spearman correlation = 0.88) and likely reflect the same spatial scale of fire activity in a system with both herbaceous and woody fuels. There was no significant relationship between charcoal pieces and fire parameters <500 m from the traps. Moreover, local area burned (<5 km distance radius from traps) explained the total charcoal amount, and regional burning (200 km radius distance from traps) explained the ratio of non arboreal to total charcoal (NA/T ratio). Charcoal variables, including total charcoal count and NA/T ratio, did not correlate with other fire parameters, vegetation cover, landscape, or climate variables. Thus, in long-term studies that involve fire history reconstructions, total charcoal particles, even of a small size (125-250 μm), could be an indicator of local area burned. Further studies may determine relationships among amount of charcoal recorded, fire intensity, vegetation cover, and climatic parameters.

  19. Non-Born-Oppenheimer self-consistent field calculations with cubic scaling

    NASA Astrophysics Data System (ADS)

    Moncada, Félix; Posada, Edwin; Flores-Moreno, Roberto; Reyes, Andrés

    2012-05-01

    An efficient nuclear molecular orbital methodology is presented. This approach combines an auxiliary density functional theory for electrons (ADFT) and a localized Hartree product (LHP) representation for the nuclear wave function. A series of test calculations conducted on small molecules exposed that energy and geometry errors introduced by the use of ADFT and LHP approximations are small and comparable to those obtained by the use of electronic ADFT. In addition, sample calculations performed on (HF)n chains disclosed that the combined ADFT/LHP approach scales cubically with system size (n) as opposed to the quartic scaling of Hartree-Fock/LHP or DFT/LHP methods. Even for medium size molecules the improved scaling of the ADFT/LHP approach resulted in speedups of at least 5x with respect to Hartree-Fock/LHP calculations. The ADFT/LHP method opens up the possibility of studying nuclear quantum effects on large size systems that otherwise would be impractical.

  20. Reynolds number scaling of straining motions in turbulence

    NASA Astrophysics Data System (ADS)

    Elsinga, Gerrit; Ishihara, T.; Goudar, M. V.; da Silva, C. B.; Hunt, J. C. R.

    2017-11-01

    Strain is an important fluid motion in turbulence as it is associated with the kinetic energy dissipation rate, vorticity stretching, and the dispersion of passive scalars. The present study investigates the scaling of the turbulent straining motions by evaluating the flow in the eigenframe of the local strain-rate tensor. The analysis is based on DNS of homogeneous isotropic turbulence covering a Reynolds number range Reλ = 34.6 - 1131. The resulting flow pattern reveals a shear layer containing tube-like vortices and a dissipation sheet, which both scale on the Kolmogorov length scale, η. The vorticity stretching motions scale on the Taylor length scale, while the flow outside the shear layer scales on the integral length scale. These scaling results are consistent with those in wall-bounded flow, which suggests a quantitative universality between the different flows. The overall coherence length of the vorticity is 120 η in all directions, which is considerably larger than the typical size of individual vortices, and reflects the importance of spatial organization at the small scales. Transitions in flow structure are identified at Reλ 45 and 250. Below these respective Reynolds numbers, the small-scale motions and the vorticity stretching motions appear underdeveloped.

  1. Homogeneity of small-scale earthquake faulting, stress, and fault strength

    USGS Publications Warehouse

    Hardebeck, J.L.

    2006-01-01

    Small-scale faulting at seismogenic depths in the crust appears to be more homogeneous than previously thought. I study three new high-quality focal-mechanism datasets of small (M < ??? 3) earthquakes in southern California, the east San Francisco Bay, and the aftershock sequence of the 1989 Loma Prieta earthquake. I quantify the degree of mechanism variability on a range of length scales by comparing the hypocentral disctance between every pair of events and the angular difference between their focal mechanisms. Closely spaced earthquakes (interhypocentral distance

  2. Local adaptation in Trinidadian guppies alters stream ecosystem structure at landscape scales despite high environmental variability

    USGS Publications Warehouse

    Simon, Troy N.; Bassar, Ronald D.; Binderup, Andrew J.; Flecker, Alex S.; Freeman, Mary C.; Gilliam, James F.; Marshall, Michael C.; Thomas, Steve A.; Travis, Joseph; Reznick, David N.; Pringle, Catherine M.

    2017-01-01

    While previous studies have shown that evolutionary divergence alters ecological processes in small-scale experiments, a major challenge is to assess whether such evolutionary effects are important in natural ecosystems at larger spatial scales. At the landscape scale, across eight streams in the Caroni drainage, we found that the presence of locally adapted populations of guppies (Poecilia reticulata) is associated with reduced algal biomass and increased invertebrate biomass, while the opposite trends were true in streams with experimentally introduced populations of non-locally adapted guppies. Exclusion experiments conducted in two separate reaches of a single stream showed that guppies with locally adapted phenotypes significantly reduced algae with no effect on invertebrates, while non-adapted guppies had no effect on algae but significantly reduced invertebrates. These divergent effects of phenotype on stream ecosystems are comparable in strength to the effects of abiotic factors (e.g., light) known to be important drivers of ecosystem condition. They also corroborate the results of previous experiments conducted in artificial streams. Our results demonstrate that local adaptation can produce phenotypes with significantly different effects in natural ecosystems at a landscape scale, within a tropical watershed, despite high variability in abiotic factors: five of the seven physical and chemical parameters measured across the eight study streams varied by more than one order of magnitude. Our findings suggest that ecosystem structure is, in part, an evolutionary product and not simply an ecological pattern.

  3. Detecting changes resulting from human pressure in a naturally quick-changing and heterogeneous environment: Spatial and temporal scales of variability in coastal lagoons

    NASA Astrophysics Data System (ADS)

    Pérez-Ruzafa, A.; Marcos, C.; Pérez-Ruzafa, I. M.; Barcala, E.; Hegazi, M. I.; Quispe, J.

    2007-10-01

    To detect changes in ecosystems due to human impact, experimental designs must include replicates at the appropriate scale to avoid pseudoreplication. Although coastal lagoons, with their highly variable environmental factors and biological assemblages, are relatively well-studied systems, very little is known about their natural scales of variation. In this study, we investigate the spatio-temporal scales of variability in the Mar Menor coastal lagoon (SE Spain) using structured hierarchical sampling designs, mixed and permutational multi-variate analyses of variance, and ordination multi-variate analyses applied to hydrographical parameters, nutrients, chlorophyll a and ichthyoplankton in the water column, and to macrophyte and fish benthic assemblages. Lagoon processes in the Mar Menor show heterogeneous patterns at different temporal and spatial scales. The water column characteristics (including nutrient concentration) showed small-scale spatio-temporal variability, from 10 0 to 10 1 km and from fortnightly to seasonally. Biological features (chlorophyll a concentration and ichthyoplankton assemblage descriptors) showed monthly changes and spatial patterns at the scale of 10 0 (chlorophyll a) - 10 1 km (ichthyoplankton). Benthic assemblages (macrophytes and fishes) showed significant differences between types of substrates in the same locality and between localities, according to horizontal gradients related with confinement in the lagoon, at the scale of 10 0-10 1 km. The vertical zonation of macrophyte assemblages (at scales of 10 1-10 2 cm) overlaps changes in substrata and horizontal gradients. Seasonal patterns in vegetation biomass were not significant, but the significant interaction between Locality and Season indicated that the seasons of maximum and minimum biomass depend on local environmental conditions. Benthic fish assemblages showed no significant patterns at the monthly scale but did show seasonal patterns.

  4. Vorticity, backscatter and counter-gradient transport predictions using two-level simulation of turbulent flows

    NASA Astrophysics Data System (ADS)

    Ranjan, R.; Menon, S.

    2018-04-01

    The two-level simulation (TLS) method evolves both the large-and the small-scale fields in a two-scale approach and has shown good predictive capabilities in both isotropic and wall-bounded high Reynolds number (Re) turbulent flows in the past. Sensitivity and ability of this modelling approach to predict fundamental features (such as backscatter, counter-gradient turbulent transport, small-scale vorticity, etc.) seen in high Re turbulent flows is assessed here by using two direct numerical simulation (DNS) datasets corresponding to a forced isotropic turbulence at Taylor's microscale-based Reynolds number Reλ ≈ 433 and a fully developed turbulent flow in a periodic channel at friction Reynolds number Reτ ≈ 1000. It is shown that TLS captures the dynamics of local co-/counter-gradient transport and backscatter at the requisite scales of interest. These observations are further confirmed through a posteriori investigation of the flow in a periodic channel at Reτ = 2000. The results reveal that the TLS method can capture both the large- and the small-scale flow physics in a consistent manner, and at a reduced overall cost when compared to the estimated DNS or wall-resolved LES cost.

  5. Dynamic Edge Effects in Small Mammal Communities across a Conservation-Agricultural Interface in Swaziland

    PubMed Central

    Hurst, Zachary M.; McCleery, Robert A.; Collier, Bret A.; Fletcher, Robert J.; Silvy, Nova J.; Taylor, Peter J.; Monadjem, Ara

    2013-01-01

    Across the planet, high-intensity farming has transformed native vegetation into monocultures, decreasing biodiversity on a landscape scale. Yet landscape-scale changes to biodiversity and community structure often emerge from processes operating at local scales. One common process that can explain changes in biodiversity and community structure is the creation of abrupt habitat edges, which, in turn, generate edge effects. Such effects, while incredibly common, can be highly variable across space and time; however, we currently lack a general analytical framework that can adequately capture such spatio-temporal variability. We extend previous approaches for estimating edge effects to a non-linear mixed modeling framework that captures such spatio-temporal heterogeneity and apply it to understand how agricultural land-uses alter wildlife communities. We trapped small mammals along a conservation-agriculture land-use interface extending 375 m into sugarcane plantations and conservation land-uses at three sites during dry and wet seasons in Swaziland, Africa. Sugarcane plantations had significant reductions in species richness and heterogeneity, and showed an increase in community similarity, suggesting a more homogenized small mammal community. Furthermore, our modeling framework identified strong variation in edge effects on communities across sites and seasons. Using small mammals as an indicator, intensive agricultural practices appear to create high-density communities of generalist species while isolating interior species in less than 225 m. These results illustrate how agricultural land-use can reduce diversity across the landscape and that effects can be masked or magnified, depending on local conditions. Taken together, our results emphasize the need to create or retain natural habitat features in agricultural mosaics. PMID:24040269

  6. Effective grid-dependent dispersion coefficient for conservative and reactive transport simulations in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Cortinez, J. M.; Valocchi, A. J.; Herrera, P. A.

    2013-12-01

    Because of the finite size of numerical grids, it is very difficult to correctly account for processes that occur at different spatial scales to accurately simulate the migration of conservative and reactive compounds dissolved in groundwater. In one hand, transport processes in heterogeneous porous media are controlled by local-scale dispersion associated to transport processes at the pore-scale. On the other hand, variations of velocity at the continuum- or Darcy-scale produce spreading of the contaminant plume, which is referred to as macro-dispersion. Furthermore, under some conditions both effects interact, so that spreading may enhance the action of local-scale dispersion resulting in higher mixing, dilution and reaction rates. Traditionally, transport processes at different spatial scales have been included in numerical simulations by using a single dispersion coefficient. This approach implicitly assumes that the separate effects of local-dispersion and macro-dispersion can be added and represented by a unique effective dispersion coefficient. Moreover, the selection of the effective dispersion coefficient for numerical simulations usually do not consider the filtering effect of the grid size over the small-scale flow features. We have developed a multi-scale Lagragian numerical method that allows using two different dispersion coefficients to represent local- and macro-scale dispersion. This technique considers fluid particles that carry solute mass and whose locations evolve according to a deterministic component given by the grid-scale velocity and a stochastic component that corresponds to a block-effective macro-dispersion coefficient. Mass transfer between particles due to local-scale dispersion is approximated by a meshless method. We use our model to test under which transport conditions the combined effect of local- and macro-dispersion are additive and can be represented by a single effective dispersion coefficient. We also demonstrate that for the situations where both processes are additive, an effective grid-dependent dispersion coefficient can be derived based on the concept of block-effective dispersion. We show that the proposed effective dispersion coefficient is able to reproduce dilution, mixing and reaction rates for a wide range of transport conditions similar to the ones found in many practical applications.

  7. Biomass district heating methodology and pilot installations for public buildings groups

    NASA Astrophysics Data System (ADS)

    Chatzistougianni, N.; Giagozoglou, E.; Sentzas, K.; Karastergios, E.; Tsiamitros, D.; Stimoniaris, D.; Stomoniaris, A.; Maropoulos, S.

    2016-11-01

    The objective of the paper is to show how locally available biomass can support a small-scale district heating system of public buildings, especially when taking into account energy audit in-situ measurements and energy efficiency improvement measures. The step-by-step methodology is presented, including the research for local biomass availability, the thermal needs study and the study for the biomass district heating system, with and without energy efficiency improvement measures.

  8. Occurrence of Eimeria Species Parasites on Small-Scale Commercial Chicken Farms in Africa and Indication of Economic Profitability

    PubMed Central

    Fornace, Kimberly M.; Clark, Emily L.; Macdonald, Sarah E.; Namangala, Boniface; Karimuribo, Esron; Awuni, Joseph A.; Thieme, Olaf; Blake, Damer P.; Rushton, Jonathan

    2013-01-01

    Small-scale commercial poultry production is emerging as an important form of livestock production in Africa, providing sources of income and animal protein to many poor households, yet the occurrence and impact of coccidiosis on this relatively new production system remains unknown. The primary objective of this study was to examine Eimeria parasite occurrence on small-scale commercial poultry farms in Ghana, Tanzania and Zambia. Additionally, farm economic viability was measured by calculating the farm gross margin and enterprise budget. Using these economic measures as global assessments of farm productivity, encompassing the diversity present in regional husbandry systems with a measure of fundamental local relevance, we investigated the detection of specific Eimeria species as indicators of farm profitability. Faecal samples and data on production parameters were collected from small-scale (less than 2,000 birds per batch) intensive broiler and layer farms in peri-urban Ghana, Tanzania and Zambia. All seven Eimeria species recognised to infect the chicken were detected in each country. Furthermore, two of the three genetic variants (operational taxonomic units) identified previously in Australia have been described outside of Australia for the first time. Detection of the most pathogenic Eimeria species associated with decreased farm profitability and may be considered as an indicator of likely farm performance. While a causal link remains to be demonstrated, the presence of highly pathogenic enteric parasites may pose a threat to profitable, sustainable small-scale poultry enterprises in Africa. PMID:24391923

  9. Occurrence of Eimeria species parasites on small-scale commercial chicken farms in Africa and indication of economic profitability.

    PubMed

    Fornace, Kimberly M; Clark, Emily L; Macdonald, Sarah E; Namangala, Boniface; Karimuribo, Esron; Awuni, Joseph A; Thieme, Olaf; Blake, Damer P; Rushton, Jonathan

    2013-01-01

    Small-scale commercial poultry production is emerging as an important form of livestock production in Africa, providing sources of income and animal protein to many poor households, yet the occurrence and impact of coccidiosis on this relatively new production system remains unknown. The primary objective of this study was to examine Eimeria parasite occurrence on small-scale commercial poultry farms in Ghana, Tanzania and Zambia. Additionally, farm economic viability was measured by calculating the farm gross margin and enterprise budget. Using these economic measures as global assessments of farm productivity, encompassing the diversity present in regional husbandry systems with a measure of fundamental local relevance, we investigated the detection of specific Eimeria species as indicators of farm profitability. Faecal samples and data on production parameters were collected from small-scale (less than 2,000 birds per batch) intensive broiler and layer farms in peri-urban Ghana, Tanzania and Zambia. All seven Eimeria species recognised to infect the chicken were detected in each country. Furthermore, two of the three genetic variants (operational taxonomic units) identified previously in Australia have been described outside of Australia for the first time. Detection of the most pathogenic Eimeria species associated with decreased farm profitability and may be considered as an indicator of likely farm performance. While a causal link remains to be demonstrated, the presence of highly pathogenic enteric parasites may pose a threat to profitable, sustainable small-scale poultry enterprises in Africa.

  10. Velocity Space Degrees of Freedom of Plasma Fluctuations

    NASA Astrophysics Data System (ADS)

    Mattingly, Sean

    2017-10-01

    Small scale wave modes are becoming more important in plasma physics. Examples include turbulent cascades in the solar wind, the energetics of fusion plasma electrostatic turbulence and transport, and low temperature basic plasma physics experiments. In order to improve our understanding of these modes, I present an advance in experimental plasma diagnostics and use it to show the first measurement of a plasma ion velocity-space cross-correlation matrix. From this matrix I determine the eigenmodes of fluctuations on the ion distribution function as a function of frequency. I also determine the relative strengths of these modes - these are the velocity space degrees of freedom of plasma fluctuations. This measurement can detect the aforementioned smaller scale modes in plasmas through a localized measurement. The locality of this measurement means that it may be applied to plasmas in which a single - point velocity sensitive diagnostic is available and multipoint measurements may be difficult. Examples include in situ measurements of space plasmas, fusion plasmas, trapped plasmas, and laser cooled plasmas. This fact, combined with the new perspective it can give on small scale plasma fluctuations, means it may be used to further research on the above cited subjects. Much work remains on fully understanding this measurement. This measurement opens a velocity space interpretation of small scale plasma wave modes, and understanding this perspective from theory requires the application or invention of new mathematical tools. I discuss open problems to follow up on, which include questions from experimental, theoretical, and instrumentation perspectives. NSF-DOE Program Grant DE-FG02-99ER54543.

  11. Design optimization of a vaneless ``fish-friendly'' swirl injector for small water turbines

    NASA Astrophysics Data System (ADS)

    Airody, Ajith; Peterson, Sean D.

    2015-11-01

    Small-scale hydro-electric plants are attractive options for powering remote sites, as they draw energy from local bodies of water. However, the environmental impact on the aquatic life drawn into the water turbine is a concern. To mitigate adverse consequences on the local fauna, small-scale water turbine design efforts have focused on developing ``fish-friendly'' facilities. The components of these turbines tend to have wider passages between the blades when compared to traditional turbines, and the rotors are designed to spin at much lower angular velocities, thus allowing fish to pass through safely. Galt Green Energy has proposed a vaneless casing that provides the swirl component to the flow approaching the rotor, eliminating the need for inlet guide vanes. We numerically model the flow through the casing using ANSYS CFX to assess the evolution of the axial and circumferential velocity symmetry and uniformity in various cross-sections within and downstream of the injector. The velocity distributions, as well as the pressure loss through the injector, are functions of the pitch angle and number of revolutions of the casing. Optimization of the casing design is discussed via an objective function consisting of the velocity and pressure performance measures.

  12. The Alfvénic nature of energy transfer mediation in localized, strongly nonlinear Alfvén wavepacket collisions

    NASA Astrophysics Data System (ADS)

    Verniero, J. L.; Howes, G. G.

    2018-02-01

    In space and astrophysical plasmas, violent events or instabilities inject energy into turbulent motions at large scales. Nonlinear interactions among the turbulent fluctuations drive a cascade of energy to small perpendicular scales at which the energy is ultimately converted into plasma heat. Previous work with the incompressible magnetohydrodynamic (MHD) equations has shown that this turbulent energy cascade is driven by the nonlinear interaction between counterpropagating Alfvén waves - also known as Alfvén wave collisions. Direct numerical simulations of weakly collisional plasma turbulence enables deeper insight into the nature of the nonlinear interactions underlying the turbulent cascade of energy. In this paper, we directly compare four cases: both periodic and localized Alfvén wave collisions in the weakly and strongly nonlinear limits. Our results reveal that in the more realistic case of localized Alfvén wave collisions (rather than the periodic case), all nonlinearly generated fluctuations are Alfvén waves, which mediates nonlinear energy transfer to smaller perpendicular scales.

  13. Minimizing irrigation water demand: An evaluation of shifting planting dates in Sri Lanka.

    PubMed

    Rivera, Ashley; Gunda, Thushara; Hornberger, George M

    2018-05-01

    Climate change coupled with increasing demands for water necessitates an improved understanding of the water-food nexus at a scale local enough to inform farmer adaptations. Such assessments are particularly important for nations with significant small-scale farming and high spatial variability in climate, such as Sri Lanka. By comparing historical patterns of irrigation water requirements (IWRs) to rice planting records, we estimate that shifting rice planting dates to earlier in the season could yield water savings of up to 6%. Our findings demonstrate the potential of low-cost adaptation strategies to help meet crop production demands in water-scarce environments. This local-scale assessment of IWRs in Sri Lanka highlights the value of using historical data to inform agricultural management of water resources when high-skilled forecasts are not available. Given national policies prioritizing in-country production and farmers' sensitivities to water stress, decision-makers should consider local degrees of climate variability in institutional design of irrigation management structures.

  14. Free-choice feeding of free-range meat chickens

    USDA-ARS?s Scientific Manuscript database

    Alternative feeding methods should be considered for free-range, organic, and other alternative poultry production. The number of small- and medium-scale producers raising specialty chickens for local and regional markets is growing and many of these producers do not have access to the nutritional ...

  15. Farley-Buneman Instability in the Solar Chromosphere

    NASA Astrophysics Data System (ADS)

    Gogoberidze, G.; Voitenko, Y.; Poedts, S.; Goossens, M.

    2009-11-01

    The Farley-Buneman instability (FBI) is studied in the partially ionized plasma of the solar chromosphere taking into account the finite magnetization of the ions and Coulomb collisions. We obtain the threshold value for the relative velocity between ions and electrons necessary for the instability to develop. It is shown that Coulomb collisions play a destabilizing role in the sense that they enable the instability even in the regions where the ion magnetization is larger than unity. By applying these results to chromospheric conditions, we show that the FBI cannot be responsible for the quasi-steady heating of the solar chromosphere. However, we do not exclude the instability development locally in the presence of strong cross-field currents and/or strong small-scale magnetic fields. In such cases, FBI should produce locally small-scale, ~0.1-3 m, density irregularities in the solar chromosphere. These irregularities can cause scintillations of radio waves with similar wave lengths and provide a tool for remote chromospheric sensing.

  16. FARLEY-BUNEMAN INSTABILITY IN THE SOLAR CHROMOSPHERE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gogoberidze, G.; Voitenko, Y.; Poedts, S.

    2009-11-20

    The Farley-Buneman instability (FBI) is studied in the partially ionized plasma of the solar chromosphere taking into account the finite magnetization of the ions and Coulomb collisions. We obtain the threshold value for the relative velocity between ions and electrons necessary for the instability to develop. It is shown that Coulomb collisions play a destabilizing role in the sense that they enable the instability even in the regions where the ion magnetization is larger than unity. By applying these results to chromospheric conditions, we show that the FBI cannot be responsible for the quasi-steady heating of the solar chromosphere. However,more » we do not exclude the instability development locally in the presence of strong cross-field currents and/or strong small-scale magnetic fields. In such cases, FBI should produce locally small-scale, approx0.1-3 m, density irregularities in the solar chromosphere. These irregularities can cause scintillations of radio waves with similar wave lengths and provide a tool for remote chromospheric sensing.« less

  17. On ballooning instability in current sheets

    NASA Astrophysics Data System (ADS)

    Leonovich, Anatoliy; Kozlov, Daniil

    2015-06-01

    The problem of instability of the magnetotail current sheet to azimuthally small-scale Alfvén and slow magnetosonic (SMS) waves is solved. The solutions describe unstable oscillations in the presence of a current sheet and correspond to the region of stretched closed field lines of the magnetotail. The spectra of eigen-frequencies of several basic harmonics of standing Alfvén and SMS waves are found in the local and WKB approximation, which are compared. It is shown that the oscillation properties obtained in these approximations differ radically. In the local approximation, the Alfvén waves are stable in the entire range of magnetic shells. SMS waves go into the aperiodic instability regime (the regime of the "ballooning" instability), on magnetic shells crossing the current sheet. In the WKB approximation, both the Alfvén and SMS oscillations go into an unstable regime with a non-zero real part of their eigen-frequency, on magnetic shells crossing the current sheet. The structure of azimuthally small-scale Alfvén waves across magnetic shells is determined.

  18. Smart grid integration of small-scale trigeneration systems

    NASA Astrophysics Data System (ADS)

    Vacheva, Gergana; Kanchev, Hristiyan; Hinov, Nikolay

    2017-12-01

    This paper presents a study on the possibilities for implementation of local heating, air-conditioning and electricity generation (trigeneration) as distributed energy resource in the Smart Grid. By the means of microturbine-based generators and absorption chillers buildings are able to meet partially or entirely their electrical load curve or even supply power to the grid by following their heating and air-conditioning daily schedule. The principles of small-scale cooling, heating and power generation systems are presented at first, then the thermal calculations of an example building are performed: the heat losses due to thermal conductivity and the estimated daily heating and air-conditioning load curves. By considering daily power consumption curves and weather data for several winter and summer days, the heating/air-conditioning schedule is estimated and the available electrical energy from a microturbine-based cogeneration system is estimated. Simulation results confirm the potential of using cogeneration and trigeneration systems for local distributed electricity generation and grid support in the daily peaks of power consumption.

  19. The “fire stick farming” hypothesis: Australian Aboriginal foraging strategies, biodiversity, and anthropogenic fire mosaics

    PubMed Central

    Bliege Bird, R.; Bird, D. W.; Codding, B. F.; Parker, C. H.; Jones, J. H.

    2008-01-01

    Aboriginal burning in Australia has long been assumed to be a “resource management” strategy, but no quantitative tests of this hypothesis have ever been conducted. We combine ethnographic observations of contemporary Aboriginal hunting and burning with satellite image analysis of anthropogenic and natural landscape structure to demonstrate the processes through which Aboriginal burning shapes arid-zone vegetational diversity. Anthropogenic landscapes contain a greater diversity of successional stages than landscapes under a lightning fire regime, and differences are of scale, not of kind. Landscape scale is directly linked to foraging for small, burrowed prey (monitor lizards), which is a specialty of Aboriginal women. The maintenance of small-scale habitat mosaics increases small-animal hunting productivity. These results have implications for understanding the unique biodiversity of the Australian continent, through time and space. In particular, anthropogenic influences on the habitat structure of paleolandscapes are likely to be spatially localized and linked to less mobile, “broad-spectrum” foraging economies. PMID:18809925

  20. The structure of internal stresses in the uncompacted ice cover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sukhorukov, K.K.

    1995-12-31

    Interactions between engineering structures and sea ice cover are associated with an inhomogeneous space/time field of internal stresses. Field measurements (e.g., Coon, 1989; Tucker, 1992) have revealed considerable local stresses depending on the regional stress field and ice structure. These stresses appear in different time and space scales and depend on rheologic properties of the ice. To estimate properly the stressed state a knowledge of a connection between internal stress components in various regions of the ice cover is necessary. To develop reliable algorithms for estimates of ice action on engineering structures new experimental data are required to take intomore » account both microscale (comparable with local ice inhomogeneities) and small-scale (kilometers) inhomogeneities of the ice cover. Studies of compacted ice (concentration N is nearly 1) are mostly important. This paper deals with the small-scale spatial distribution of internal stresses in the interaction zone between the ice covers of various concentrations and icebergs. The experimental conditions model a situation of the interaction between a wide structure and the ice cover. Field data on a drifting ice were collected during the Russian-US experiment in Antarctica WEDDELL-I in 1992.« less

  1. The micro-environmental impact of volatile organic compound emissions from large-scale assemblies of people in a confined space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, Tanushree

    Large-scale assemblies of people in a confined space can exert significant impacts on the local air chemistry due to human emissions of volatile organics. Variations of air-quality in such small scale can be studied by quantifying fingerprint volatile organic compounds (VOCs) such as acetone, toluene, and isoprene produced during concerts, movie screenings, and sport events (like the Olympics and the World Cup). This review summarizes the extent of VOC accumulation resulting from a large population in a confined area or in a small open area during sporting and other recreational activities. Apart from VOCs emitted directly from human bodies (e.g.,more » perspiration and exhaled breath), those released indirectly from other related sources (e.g., smoking, waste disposal, discharge of food-waste, and use of personal-care products) are also discussed. Although direct and indirect emissions of VOCs from human may constitute <1% of the global atmospheric VOCs budget, unique spatiotemporal variations in VOCs species within a confined space can have unforeseen impacts on the local atmosphere to lead to acute human exposure to harmful pollutants.« less

  2. Atomic orbital-based SOS-MP2 with tensor hypercontraction. II. Local tensor hypercontraction

    NASA Astrophysics Data System (ADS)

    Song, Chenchen; Martínez, Todd J.

    2017-01-01

    In the first paper of the series [Paper I, C. Song and T. J. Martinez, J. Chem. Phys. 144, 174111 (2016)], we showed how tensor-hypercontracted (THC) SOS-MP2 could be accelerated by exploiting sparsity in the atomic orbitals and using graphical processing units (GPUs). This reduced the formal scaling of the SOS-MP2 energy calculation to cubic with respect to system size. The computational bottleneck then becomes the THC metric matrix inversion, which scales cubically with a large prefactor. In this work, the local THC approximation is proposed to reduce the computational cost of inverting the THC metric matrix to linear scaling with respect to molecular size. By doing so, we have removed the primary bottleneck to THC-SOS-MP2 calculations on large molecules with O(1000) atoms. The errors introduced by the local THC approximation are less than 0.6 kcal/mol for molecules with up to 200 atoms and 3300 basis functions. Together with the graphical processing unit techniques and locality-exploiting approaches introduced in previous work, the scaled opposite spin MP2 (SOS-MP2) calculations exhibit O(N2.5) scaling in practice up to 10 000 basis functions. The new algorithms make it feasible to carry out SOS-MP2 calculations on small proteins like ubiquitin (1231 atoms/10 294 atomic basis functions) on a single node in less than a day.

  3. Atomic orbital-based SOS-MP2 with tensor hypercontraction. II. Local tensor hypercontraction.

    PubMed

    Song, Chenchen; Martínez, Todd J

    2017-01-21

    In the first paper of the series [Paper I, C. Song and T. J. Martinez, J. Chem. Phys. 144, 174111 (2016)], we showed how tensor-hypercontracted (THC) SOS-MP2 could be accelerated by exploiting sparsity in the atomic orbitals and using graphical processing units (GPUs). This reduced the formal scaling of the SOS-MP2 energy calculation to cubic with respect to system size. The computational bottleneck then becomes the THC metric matrix inversion, which scales cubically with a large prefactor. In this work, the local THC approximation is proposed to reduce the computational cost of inverting the THC metric matrix to linear scaling with respect to molecular size. By doing so, we have removed the primary bottleneck to THC-SOS-MP2 calculations on large molecules with O(1000) atoms. The errors introduced by the local THC approximation are less than 0.6 kcal/mol for molecules with up to 200 atoms and 3300 basis functions. Together with the graphical processing unit techniques and locality-exploiting approaches introduced in previous work, the scaled opposite spin MP2 (SOS-MP2) calculations exhibit O(N 2.5 ) scaling in practice up to 10 000 basis functions. The new algorithms make it feasible to carry out SOS-MP2 calculations on small proteins like ubiquitin (1231 atoms/10 294 atomic basis functions) on a single node in less than a day.

  4. Automatic rock detection for in situ spectroscopy applications on Mars

    NASA Astrophysics Data System (ADS)

    Mahapatra, Pooja; Foing, Bernard H.

    A novel algorithm for rock detection has been developed for effectively utilising Mars rovers, and enabling autonomous selection of target rocks that require close-contact spectroscopic measurements. The algorithm demarcates small rocks in terrain images as seen by cameras on a Mars rover during traverse. This information may be used by the rover for selection of geologically relevant sample rocks, and (in conjunction with a rangefinder) to pick up target samples using a robotic arm for automatic in situ determination of rock composition and mineralogy using, for example, a Raman spectrometer. Determining rock samples within the region that are of specific interest without physically approaching them significantly reduces time, power and risk. Input images in colour are converted to greyscale for intensity analysis. Bilateral filtering is used for texture removal while preserving rock boundaries. Unsharp masking is used for contrast enhance-ment. Sharp contrasts in intensities are detected using Canny edge detection, with thresholds that are calculated from the image obtained after contrast-limited adaptive histogram equalisation of the unsharp masked image. Scale-space representations are then generated by convolving this image with a Gaussian kernel. A scale-invariant blob detector (Laplacian of the Gaussian, LoG) detects blobs independently of their sizes, and therefore requires a multi-scale approach with automatic scale se-lection. The scale-space blob detector consists of convolution of the Canny edge-detected image with a scale-normalised LoG at several scales, and finding the maxima of squared LoG response in scale-space. After the extraction of local intensity extrema, the intensity profiles along rays going out of the local extremum are investigated. An ellipse is fitted to the region determined by significant changes in the intensity profiles. The fitted ellipses are overlaid on the original Mars terrain image for a visual estimation of the rock detection accuracy, and the number of ellipses are counted. Since geometry and illumination have the least effect on small rocks, the proposed algorithm is effective in detecting small rocks (or bigger rocks at larger distances from the camera) that consist of a small fraction of image pixels. Acknowledgements: The first author would like to express her gratitude to the European Space Agency (ESA/ESTEC) and the International Lunar Exploration Working Group (ILEWG) for their support of this work.

  5. Response of pest control by generalist predators to local-scale plant diversity: a meta-analysis.

    PubMed

    Dassou, Anicet Gbèblonoudo; Tixier, Philippe

    2016-02-01

    Disentangling the effects of plant diversity on the control of herbivores is important for understanding agricultural sustainability. Recent studies have investigated the relationships between plant diversity and arthropod communities at the landscape scale, but few have done so at the local scale. We conducted a meta-analysis of 32 papers containing 175 independent measures of the relationship between plant diversity and arthropod communities. We found that generalist predators had a strong positive response to plant diversity, that is, their abundance increased as plant diversity increased. Herbivores, in contrast, had an overall weak and negative response to plant diversity. However, specialist and generalist herbivores differed in their response to plant diversity, that is, the response was negative for specialists and not significant for generalists. While the effects of scale remain unclear, the response to plant diversity tended to increase for specialist herbivores, but decrease for generalist herbivores as the scale increased. There was no clear effect of scale on the response of generalist predators to plant diversity. Our results suggest that the response of herbivores to plant diversity at the local scale is a balance between habitat and trophic effects that vary according to arthropod specialization and habitat type. Synthesis and applications. Positive effects of plant diversity on generalist predators confirm that, at the local scale, plant diversification of agroecosystems is a credible and promising option for increasing pest regulation. Results from our meta-analysis suggest that natural control in plant-diversified systems is more likely to occur for specialist than for generalist herbivores. In terms of pest management, our results indicate that small-scale plant diversification (via the planting of cover crops or intercrops and reduced weed management) is likely to increase the control of specialist herbivores by generalist predators.

  6. Lagrangian statistics of mesoscale turbulence in a natural environment: The Agulhas return current.

    PubMed

    Carbone, Francesco; Gencarelli, Christian N; Hedgecock, Ian M

    2016-12-01

    The properties of mesoscale geophysical turbulence in an oceanic environment have been investigated through the Lagrangian statistics of sea surface temperature measured by a drifting buoy within the Agulhas return current, where strong temperature mixing produces locally sharp temperature gradients. By disentangling the large-scale forcing which affects the small-scale statistics, we found that the statistical properties of intermittency are identical to those obtained from the multifractal prediction in the Lagrangian frame for the velocity trajectory. The results suggest a possible universality of turbulence scaling.

  7. Earthquakes in the Laboratory: Continuum-Granular Interactions

    NASA Astrophysics Data System (ADS)

    Ecke, Robert; Geller, Drew; Ward, Carl; Backhaus, Scott

    2013-03-01

    Earthquakes in nature feature large tectonic plate motion at large scales of 10-100 km and local properties of the earth on the scale of the rupture width, of the order of meters. Fault gouge often fills the gap between the large slipping plates and may play an important role in the nature and dynamics of earthquake events. We have constructed a laboratory scale experiment that represents a similitude scale model of this general earthquake description. Two photo-elastic plates (50 cm x 25 cm x 1 cm) confine approximately 3000 bi-disperse nylon rods (diameters 0.12 and 0.16 cm, height 1 cm) in a gap of approximately 1 cm. The plates are held rigidly along their outer edges with one held fixed while the other edge is driven at constant speed over a range of about 5 cm. The local stresses exerted on the plates are measured using their photo-elastic response, the local relative motions of the plates, i.e., the local strains, are determined by the relative motion of small ball bearings attached to the top surface, and the configurations of the nylon rods are investigated using particle tracking tools. We find that this system has properties similar to real earthquakes and are exploring these ``lab-quake'' events with the quantitative tools we have developed.

  8. Estimating prevalence of coronary heart disease for small areas using collateral indicators of morbidity.

    PubMed

    Congdon, Peter

    2010-01-01

    Different indicators of morbidity for chronic disease may not necessarily be available at a disaggregated spatial scale (e.g., for small areas with populations under 10 thousand). Instead certain indicators may only be available at a more highly aggregated spatial scale; for example, deaths may be recorded for small areas, but disease prevalence only at a considerably higher spatial scale. Nevertheless prevalence estimates at small area level are important for assessing health need. An instance is provided by England where deaths and hospital admissions for coronary heart disease are available for small areas known as wards, but prevalence is only available for relatively large health authority areas. To estimate CHD prevalence at small area level in such a situation, a shared random effect method is proposed that pools information regarding spatial morbidity contrasts over different indicators (deaths, hospitalizations, prevalence). The shared random effect approach also incorporates differences between small areas in known risk factors (e.g., income, ethnic structure). A Poisson-multinomial equivalence may be used to ensure small area prevalence estimates sum to the known higher area total. An illustration is provided by data for London using hospital admissions and CHD deaths at ward level, together with CHD prevalence totals for considerably larger local health authority areas. The shared random effect involved a spatially correlated common factor, that accounts for clustering in latent risk factors, and also provides a summary measure of small area CHD morbidity.

  9. Estimating Prevalence of Coronary Heart Disease for Small Areas Using Collateral Indicators of Morbidity

    PubMed Central

    Congdon, Peter

    2010-01-01

    Different indicators of morbidity for chronic disease may not necessarily be available at a disaggregated spatial scale (e.g., for small areas with populations under 10 thousand). Instead certain indicators may only be available at a more highly aggregated spatial scale; for example, deaths may be recorded for small areas, but disease prevalence only at a considerably higher spatial scale. Nevertheless prevalence estimates at small area level are important for assessing health need. An instance is provided by England where deaths and hospital admissions for coronary heart disease are available for small areas known as wards, but prevalence is only available for relatively large health authority areas. To estimate CHD prevalence at small area level in such a situation, a shared random effect method is proposed that pools information regarding spatial morbidity contrasts over different indicators (deaths, hospitalizations, prevalence). The shared random effect approach also incorporates differences between small areas in known risk factors (e.g., income, ethnic structure). A Poisson-multinomial equivalence may be used to ensure small area prevalence estimates sum to the known higher area total. An illustration is provided by data for London using hospital admissions and CHD deaths at ward level, together with CHD prevalence totals for considerably larger local health authority areas. The shared random effect involved a spatially correlated common factor, that accounts for clustering in latent risk factors, and also provides a summary measure of small area CHD morbidity. PMID:20195439

  10. Modeling the effects of small turbulent scales on the drag force for particles below and above the Kolmogorov scale

    NASA Astrophysics Data System (ADS)

    Gorokhovski, Mikhael; Zamansky, Rémi

    2018-03-01

    Consistently with observations from recent experiments and DNS, we focus on the effects of strong velocity increments at small spatial scales for the simulation of the drag force on particles in high Reynolds number flows. In this paper, we decompose the instantaneous particle acceleration in its systematic and residual parts. The first part is given by the steady-drag force obtained from the large-scale energy-containing motions, explicitly resolved by the simulation, while the second denotes the random contribution due to small unresolved turbulent scales. This is in contrast with standard drag models in which the turbulent microstructures advected by the large-scale eddies are deemed to be filtered by the particle inertia. In our paper, the residual term is introduced as the particle acceleration conditionally averaged on the instantaneous dissipation rate along the particle path. The latter is modeled from a log-normal stochastic process with locally defined parameters obtained from the resolved field. The residual term is supplemented by an orientation model which is given by a random walk on the unit sphere. We propose specific models for particles with diameter smaller and larger size than the Kolmogorov scale. In the case of the small particles, the model is assessed by comparison with direct numerical simulation (DNS). Results showed that by introducing this modeling, the particle acceleration statistics from DNS is predicted fairly well, in contrast with the standard LES approach. For the particles bigger than the Kolmogorov scale, we propose a fluctuating particle response time, based on an eddy viscosity estimated at the particle scale. This model gives stretched tails of the particle acceleration distribution and dependence of its variance consistent with experiments.

  11. Adaptive strategies to climate change in Southern Malawi

    NASA Astrophysics Data System (ADS)

    Chidanti-Malunga, J.

    Climate change poses a big challenge to rural livelihoods in the Shire Valley area of Southern Malawi, where communities have depended almost entirely on rain-fed agriculture for generations. The Shire Valley area comprises of low-altitude dambo areas and uplands which have been the main agricultural areas. Since early to mid 1980s, the uplands have experienced prolonged droughts and poor rainfall distribution, while the dambos have experienced recurrent seasonal floods. This study assessed some of the adaptive strategies exercised by small-scale rural farmers in response to climate change in the Shire Valley. The methodology used in collecting information includes group discussions, household surveys in the area, secondary data, and field observations. The results show that small-scale rural farmers exercise a number of adaptive strategies in response to climate change. These adaptive strategies include: increased use of water resources for small-scale irrigation or wetland farming, mostly using simple delivery techniques; increased management of residual moisture; and increased alternative sources of income such as fishing and crop diversity. It was also observed that government promoted the use of portable motorized pumps for small-scale irrigation in order to mitigate the effects of climate change. However, these external interventions were not fully adopted; instead the farmers preferred local interventions which mostly had indigenous elements.

  12. Antibiotic Resistance in Animal and Environmental Samples Associated with Small-Scale Poultry Farming in Northwestern Ecuador.

    PubMed

    Braykov, Nikolay P; Eisenberg, Joseph N S; Grossman, Marissa; Zhang, Lixin; Vasco, Karla; Cevallos, William; Muñoz, Diana; Acevedo, Andrés; Moser, Kara A; Marrs, Carl F; Foxman, Betsy; Trostle, James; Trueba, Gabriel; Levy, Karen

    2016-01-01

    The effects of animal agriculture on the spread of antibiotic resistance (AR) are cross-cutting and thus require a multidisciplinary perspective. Here we use ecological, epidemiological, and ethnographic methods to examine populations of Escherichia coli circulating in the production poultry farming environment versus the domestic environment in rural Ecuador, where small-scale poultry production employing nontherapeutic antibiotics is increasingly common. We sampled 262 "production birds" (commercially raised broiler chickens and laying hens) and 455 "household birds" (raised for domestic use) and household and coop environmental samples from 17 villages between 2010 and 2013. We analyzed data on zones of inhibition from Kirby-Bauer tests, rather than established clinical breakpoints for AR, to distinguish between populations of organisms. We saw significantly higher levels of AR in bacteria from production versus household birds; resistance to either amoxicillin-clavulanate, cephalothin, cefotaxime, and gentamicin was found in 52.8% of production bird isolates and 16% of household ones. A strain jointly resistant to the 4 drugs was exclusive to a subset of isolates from production birds (7.6%) and coop surfaces (6.5%) and was associated with a particular purchase site. The prevalence of AR in production birds declined with bird age (P < 0.01 for all antibiotics tested except tetracycline, sulfisoxazole, and trimethoprim-sulfamethoxazole). Farming status did not impact AR in domestic environments at the household or village level. Our results suggest that AR associated with small-scale poultry farming is present in the immediate production environment and likely originates from sources outside the study area. These outside sources might be a better place to target control efforts than local management practices. IMPORTANCE In developing countries, small-scale poultry farming employing antibiotics as growth promoters is being advanced as an inexpensive source of protein and income. Here, we present the results of a large ecoepidemiological study examining patterns of antibiotic resistance (AR) in E. coli isolates from small-scale poultry production environments versus domestic environments in rural Ecuador, where such backyard poultry operations have become established over the past decade. Our previous research in the region suggests that introduction of AR bacteria through travel and commerce may be an important source of AR in villages of this region. This report extends the prior analysis by examining small-scale production chicken farming as a potential source of resistant strains. Our results suggest that AR strains associated with poultry production likely originate from sources outside the study area and that these outside sources might be a better place to target control efforts than local management practices.

  13. Estimation of fine-scale recombination intensity variation in the white-echinus interval of D. melanogaster

    PubMed Central

    Singh, Nadia D.; Aquadro, Charles F.; Clark, Andrew G.

    2009-01-01

    Accurate assessment of local recombination rate variation is crucial for understanding the recombination process and for determining the impact of natural selection on linked sites. In Drosophila, local recombination intensity has been estimated primarily by statistical approaches, estimating the local slope of the relationship between the physical and genetic maps. However, these estimates are limited in resolution, and as a result, the physical scale at which recombination intensity varies in Drosophila is largely unknown. While there is some evidence suggesting as much as a 40-fold variation in crossover rate at a local scale in D. pseudoobscura, little is known about the fine-scale structure of recombination rate variation in D. melanogaster. Here, we experimentally examine the fine-scale distribution of crossover events in a 1.2 Mb region on the D. melanogaster X chromosome using a classic genetic mapping approach. Our results show that crossover frequency is significantly heterogeneous within this region, varying ~ 3.5 fold. Simulations suggest that this degree of heterogeneity is sufficient to affect levels of standing nucleotide diversity, although the magnitude of this effect is small. We recover no statistical association between empirical estimates of nucleotide diversity and recombination intensity, which is likely due to the limited number of loci sampled in our population genetic dataset. However, codon bias is significantly negatively correlated with fine-scale recombination intensity estimates, as expected. Our results shed light on the relevant physical scale to consider in evolutionary analyses relating to recombination rate, and highlight the motivations to increase the resolution of the recombination map in Drosophila. PMID:19504037

  14. Self-consistent implementation of meta-GGA functionals for the ONETEP linear-scaling electronic structure package.

    PubMed

    Womack, James C; Mardirossian, Narbe; Head-Gordon, Martin; Skylaris, Chris-Kriton

    2016-11-28

    Accurate and computationally efficient exchange-correlation functionals are critical to the successful application of linear-scaling density functional theory (DFT). Local and semi-local functionals of the density are naturally compatible with linear-scaling approaches, having a general form which assumes the locality of electronic interactions and which can be efficiently evaluated by numerical quadrature. Presently, the most sophisticated and flexible semi-local functionals are members of the meta-generalized-gradient approximation (meta-GGA) family, and depend upon the kinetic energy density, τ, in addition to the charge density and its gradient. In order to extend the theoretical and computational advantages of τ-dependent meta-GGA functionals to large-scale DFT calculations on thousands of atoms, we have implemented support for τ-dependent meta-GGA functionals in the ONETEP program. In this paper we lay out the theoretical innovations necessary to implement τ-dependent meta-GGA functionals within ONETEP's linear-scaling formalism. We present expressions for the gradient of the τ-dependent exchange-correlation energy, necessary for direct energy minimization. We also derive the forms of the τ-dependent exchange-correlation potential and kinetic energy density in terms of the strictly localized, self-consistently optimized orbitals used by ONETEP. To validate the numerical accuracy of our self-consistent meta-GGA implementation, we performed calculations using the B97M-V and PKZB meta-GGAs on a variety of small molecules. Using only a minimal basis set of self-consistently optimized local orbitals, we obtain energies in excellent agreement with large basis set calculations performed using other codes. Finally, to establish the linear-scaling computational cost and applicability of our approach to large-scale calculations, we present the outcome of self-consistent meta-GGA calculations on amyloid fibrils of increasing size, up to tens of thousands of atoms.

  15. Self-consistent implementation of meta-GGA functionals for the ONETEP linear-scaling electronic structure package

    NASA Astrophysics Data System (ADS)

    Womack, James C.; Mardirossian, Narbe; Head-Gordon, Martin; Skylaris, Chris-Kriton

    2016-11-01

    Accurate and computationally efficient exchange-correlation functionals are critical to the successful application of linear-scaling density functional theory (DFT). Local and semi-local functionals of the density are naturally compatible with linear-scaling approaches, having a general form which assumes the locality of electronic interactions and which can be efficiently evaluated by numerical quadrature. Presently, the most sophisticated and flexible semi-local functionals are members of the meta-generalized-gradient approximation (meta-GGA) family, and depend upon the kinetic energy density, τ, in addition to the charge density and its gradient. In order to extend the theoretical and computational advantages of τ-dependent meta-GGA functionals to large-scale DFT calculations on thousands of atoms, we have implemented support for τ-dependent meta-GGA functionals in the ONETEP program. In this paper we lay out the theoretical innovations necessary to implement τ-dependent meta-GGA functionals within ONETEP's linear-scaling formalism. We present expressions for the gradient of the τ-dependent exchange-correlation energy, necessary for direct energy minimization. We also derive the forms of the τ-dependent exchange-correlation potential and kinetic energy density in terms of the strictly localized, self-consistently optimized orbitals used by ONETEP. To validate the numerical accuracy of our self-consistent meta-GGA implementation, we performed calculations using the B97M-V and PKZB meta-GGAs on a variety of small molecules. Using only a minimal basis set of self-consistently optimized local orbitals, we obtain energies in excellent agreement with large basis set calculations performed using other codes. Finally, to establish the linear-scaling computational cost and applicability of our approach to large-scale calculations, we present the outcome of self-consistent meta-GGA calculations on amyloid fibrils of increasing size, up to tens of thousands of atoms.

  16. The influence of environment on the properties of galaxies

    NASA Astrophysics Data System (ADS)

    Hashimoto, Yasuhiro

    1999-11-01

    I will present the result of the evaluation of the environmental influences on three important galactic properties; morphology, star formation rate, and interaction in the local universe. I have used a very large and homogeneous sample of 15749 galaxies drawn from the Las Campanas Redshift Survey (Shectman et al. 1996). This data set consists of galaxies inhabiting the entire range of galactic environments, from the sparsest field to the densest clusters, thus allowing me to study environmental variations without combing multiple data sets with inhomogeneous characteristics. Furthermore, I can also extend the research to a ``general'' environmental investigation by, for the first time, decoupling the very local environment, as characterized by local galaxy density, from the effects of larger-scale environments, such as membership in a cluster. The star formation rate is characterized by the strength of EW(OII), while the galactic morphology is characterized by the automatically-measured concentration index (e.g. Okamura, Kodaira, & Watanabe 1984), which is more closely related to the bulge-to-disk ratio of galaxies than Hubble type, and is therefore expected to behave more independently on star formation activity in a galaxy. On the other hand, the first systematic quantitative investigation of the environmental influence on the interaction of galaxies is made by using two automatically-determined objective measures; the asymmetry index and existence of companions. The principal conclusions of this work are: (1)The concentration of the galactic light profile (characterized by the concentration index) is predominantly correlated with the relatively small-scale environment which is characterized by the local galaxy density. (2)The star formation rate of galaxies (characterized by the EW(OII)) is correlated both with the small-scale environment (the local galaxy density) and the larger scale environment which is characterized by the cluster membership. For weakly star forming galaxies, the star formation rate is correlated both with the local galaxy density and rich cluster membership. It also shows a correlation with poor cluster membership. For strongly star forming galaxies, the star formation rate is correlated with the local density and the poor cluster membership. (3)Interacting galaxies (characterized by the asymmetry index and/or the existence of apparent companions) show no correlation with rich cluster membership, but show a fair to strong correlation with the poor cluster membership.

  17. Evaluating the reliability of equilibrium dissolution assumption from residual gasoline in contact with water saturated sands

    NASA Astrophysics Data System (ADS)

    Lekmine, Greg; Sookhak Lari, Kaveh; Johnston, Colin D.; Bastow, Trevor P.; Rayner, John L.; Davis, Greg B.

    2017-01-01

    Understanding dissolution dynamics of hazardous compounds from complex gasoline mixtures is a key to long-term predictions of groundwater risks. The aim of this study was to investigate if the local equilibrium assumption for BTEX and TMBs (trimethylbenzenes) dissolution was valid under variable saturation in two dimensional flow conditions and evaluate the impact of local heterogeneities when equilibrium is verified at the scale of investigation. An initial residual gasoline saturation was established over the upper two-thirds of a water saturated sand pack. A constant horizontal pore velocity was maintained and water samples were recovered across 38 sampling ports over 141 days. Inside the residual NAPL zone, BTEX and TMBs dissolution curves were in agreement with the TMVOC model based on the local equilibrium assumption. Results compared to previous numerical studies suggest the presence of small scale dissolution fingering created perpendicular to the horizontal dissolution front, mainly triggered by heterogeneities in the medium structure and the local NAPL residual saturation. In the transition zone, TMVOC was able to represent a range of behaviours exhibited by the data, confirming equilibrium or near-equilibrium dissolution at the scale of investigation. The model locally showed discrepancies with the most soluble compounds, i.e. benzene and toluene, due to local heterogeneities exhibiting that at lower scale flow bypassing and channelling may have occurred. In these conditions mass transfer rates were still high enough to fall under the equilibrium assumption in TMVOC at the scale of investigation. Comparisons with other models involving upscaled mass transfer rates demonstrated that such approximations with TMVOC could lead to overestimate BTEX dissolution rates and underestimate the total remediation time.

  18. Evaluating the reliability of equilibrium dissolution assumption from residual gasoline in contact with water saturated sands.

    PubMed

    Lekmine, Greg; Sookhak Lari, Kaveh; Johnston, Colin D; Bastow, Trevor P; Rayner, John L; Davis, Greg B

    2017-01-01

    Understanding dissolution dynamics of hazardous compounds from complex gasoline mixtures is a key to long-term predictions of groundwater risks. The aim of this study was to investigate if the local equilibrium assumption for BTEX and TMBs (trimethylbenzenes) dissolution was valid under variable saturation in two dimensional flow conditions and evaluate the impact of local heterogeneities when equilibrium is verified at the scale of investigation. An initial residual gasoline saturation was established over the upper two-thirds of a water saturated sand pack. A constant horizontal pore velocity was maintained and water samples were recovered across 38 sampling ports over 141days. Inside the residual NAPL zone, BTEX and TMBs dissolution curves were in agreement with the TMVOC model based on the local equilibrium assumption. Results compared to previous numerical studies suggest the presence of small scale dissolution fingering created perpendicular to the horizontal dissolution front, mainly triggered by heterogeneities in the medium structure and the local NAPL residual saturation. In the transition zone, TMVOC was able to represent a range of behaviours exhibited by the data, confirming equilibrium or near-equilibrium dissolution at the scale of investigation. The model locally showed discrepancies with the most soluble compounds, i.e. benzene and toluene, due to local heterogeneities exhibiting that at lower scale flow bypassing and channelling may have occurred. In these conditions mass transfer rates were still high enough to fall under the equilibrium assumption in TMVOC at the scale of investigation. Comparisons with other models involving upscaled mass transfer rates demonstrated that such approximations with TMVOC could lead to overestimate BTEX dissolution rates and underestimate the total remediation time. Copyright © 2016. Published by Elsevier B.V.

  19. A Comprehensive Analysis of Multiscale Field-Aligned Currents: Characteristics, Controlling Parameters, and Relationships

    NASA Astrophysics Data System (ADS)

    McGranaghan, Ryan M.; Mannucci, Anthony J.; Forsyth, Colin

    2017-12-01

    We explore the characteristics, controlling parameters, and relationships of multiscale field-aligned currents (FACs) using a rigorous, comprehensive, and cross-platform analysis. Our unique approach combines FAC data from the Swarm satellites and the Advanced Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) to create a database of small-scale (˜10-150 km, <1° latitudinal width), mesoscale (˜150-250 km, 1-2° latitudinal width), and large-scale (>250 km) FACs. We examine these data for the repeatable behavior of FACs across scales (i.e., the characteristics), the dependence on the interplanetary magnetic field orientation, and the degree to which each scale "departs" from nominal large-scale specification. We retrieve new information by utilizing magnetic latitude and local time dependence, correlation analyses, and quantification of the departure of smaller from larger scales. We find that (1) FACs characteristics and dependence on controlling parameters do not map between scales in a straight forward manner, (2) relationships between FAC scales exhibit local time dependence, and (3) the dayside high-latitude region is characterized by remarkably distinct FAC behavior when analyzed at different scales, and the locations of distinction correspond to "anomalous" ionosphere-thermosphere behavior. Comparing with nominal large-scale FACs, we find that differences are characterized by a horseshoe shape, maximizing across dayside local times, and that difference magnitudes increase when smaller-scale observed FACs are considered. We suggest that both new physics and increased resolution of models are required to address the multiscale complexities. We include a summary table of our findings to provide a quick reference for differences between multiscale FACs.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Donguk; Chae, Jongchul; Yang, Heesu

    It is well-known that light bridges (LBs) inside a sunspot produce small-scale plasma ejections and transient brightenings in the chromosphere, but the nature and origin of such phenomena are still unclear. Utilizing the high-spatial and high-temporal resolution spectral data taken with the Fast Imaging Solar Spectrograph and the TiO 7057 Å broadband filter images installed at the 1.6 m New Solar Telescope of Big Bear Solar Observatory, we report arcsecond-scale chromospheric plasma ejections (1.″7) inside a LB. Interestingly, the ejections are found to be a manifestation of upwardly propagating shock waves as evidenced by the sawtooth patterns seen in themore » temporal-spectral plots of the Ca ii 8542 Å and H α intensities. We also found a fine-scale photospheric pattern (1″) diverging with a speed of about 2 km s{sup −1} two minutes before the plasma ejections, which seems to be a manifestation of magnetic flux emergence. As a response to the plasma ejections, the corona displayed small-scale transient brightenings. Based on our findings, we suggest that the shock waves can be excited by the local disturbance caused by magnetic reconnection between the emerging flux inside the LB and the adjacent umbral magnetic field. The disturbance generates slow-mode waves, which soon develop into shock waves, and manifest themselves as the arcsecond-scale plasma ejections. It also appears that the dissipation of mechanical energy in the shock waves can heat the local corona.« less

  1. Chromospheric Plasma Ejections in a Light Bridge of a Sunspot

    NASA Astrophysics Data System (ADS)

    Song, Donguk; Chae, Jongchul; Yurchyshyn, Vasyl; Lim, Eun-Kyung; Cho, Kyung-Suk; Yang, Heesu; Cho, Kyuhyoun; Kwak, Hannah

    2017-02-01

    It is well-known that light bridges (LBs) inside a sunspot produce small-scale plasma ejections and transient brightenings in the chromosphere, but the nature and origin of such phenomena are still unclear. Utilizing the high-spatial and high-temporal resolution spectral data taken with the Fast Imaging Solar Spectrograph and the TiO 7057 Å broadband filter images installed at the 1.6 m New Solar Telescope of Big Bear Solar Observatory, we report arcsecond-scale chromospheric plasma ejections (1.″7) inside a LB. Interestingly, the ejections are found to be a manifestation of upwardly propagating shock waves as evidenced by the sawtooth patterns seen in the temporal-spectral plots of the Ca II 8542 Å and Hα intensities. We also found a fine-scale photospheric pattern (1″) diverging with a speed of about 2 km s-1 two minutes before the plasma ejections, which seems to be a manifestation of magnetic flux emergence. As a response to the plasma ejections, the corona displayed small-scale transient brightenings. Based on our findings, we suggest that the shock waves can be excited by the local disturbance caused by magnetic reconnection between the emerging flux inside the LB and the adjacent umbral magnetic field. The disturbance generates slow-mode waves, which soon develop into shock waves, and manifest themselves as the arcsecond-scale plasma ejections. It also appears that the dissipation of mechanical energy in the shock waves can heat the local corona.

  2. Locating damage using integrated global-local approach with wireless sensing system and single-chip impedance measurement device.

    PubMed

    Lin, Tzu-Hsuan; Lu, Yung-Chi; Hung, Shih-Lin

    2014-01-01

    This study developed an integrated global-local approach for locating damage on building structures. A damage detection approach with a novel embedded frequency response function damage index (NEFDI) was proposed and embedded in the Imote2.NET-based wireless structural health monitoring (SHM) system to locate global damage. Local damage is then identified using an electromechanical impedance- (EMI-) based damage detection method. The electromechanical impedance was measured using a single-chip impedance measurement device which has the advantages of small size, low cost, and portability. The feasibility of the proposed damage detection scheme was studied with reference to a numerical example of a six-storey shear plane frame structure and a small-scale experimental steel frame. Numerical and experimental analysis using the integrated global-local SHM approach reveals that, after NEFDI indicates the approximate location of a damaged area, the EMI-based damage detection approach can then identify the detailed damage location in the structure of the building.

  3. An evaluation of a small-scale biodiesel production technology: Case study of Mango’o village, Center province, Cameroon

    NASA Astrophysics Data System (ADS)

    Sarantopoulos, Ioannis; Che, Franklin; Tsoutsos, Theocharis; Bakirtzoglou, Vagios; Azangue, Willy; Bienvenue, Donatien; Ndipen, Frankline Mulluh

    It is an undeniable fact that isolated areas lack sufficient energy resources and that energy supply is central in order to achieve sustainable development goals. On the other hand, agricultural materials, whose trade profit fluctuates in low levels, are produced locally in wide range. As a result, the implementation of an alternative, more effective approach, which ensures the sustainability in social, economical and environmental dimension, is a crucial issue for developing countries. In this particular study, in order to cover the local energy needs, the possibility of installing a small biodiesel plant in a rural area of Cameroon, has been analyzed. The final biodiesel product can also be disposed directly to the market leading to an additional local income. In this paper, both the monthly potential of palm oil in Mango’o region and the recommended biodiesel production process are presented. Some significant benefits that can be achieved are independence from fossil fuels, mechanization of palm oil production process and additional prevention of local depopulation.

  4. Local unitary transformation method toward practical electron correlation calculations with scalar relativistic effect in large-scale molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seino, Junji; Nakai, Hiromi, E-mail: nakai@waseda.jp; Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555

    In order to perform practical electron correlation calculations, the local unitary transformation (LUT) scheme at the spin-free infinite-order Douglas–Kroll–Hess (IODKH) level [J. Seino and H. Nakai, J. Chem. Phys.136, 244102 (2012); J. Seino and H. Nakai, J. Chem. Phys.137, 144101 (2012)], which is based on the locality of relativistic effects, has been combined with the linear-scaling divide-and-conquer (DC)-based Hartree–Fock (HF) and electron correlation methods, such as the second-order Møller–Plesset (MP2) and the coupled cluster theories with single and double excitations (CCSD). Numerical applications in hydrogen halide molecules, (HX){sub n} (X = F, Cl, Br, and I), coinage metal chain systems,more » M{sub n} (M = Cu and Ag), and platinum-terminated polyynediyl chain, trans,trans-((p-CH{sub 3}C{sub 6}H{sub 4}){sub 3}P){sub 2}(C{sub 6}H{sub 5})Pt(C≡C){sub 4}Pt(C{sub 6}H{sub 5})((p-CH{sub 3}C{sub 6}H{sub 4}){sub 3}P){sub 2}, clarified that the present methods, namely DC-HF, MP2, and CCSD with the LUT-IODKH Hamiltonian, reproduce the results obtained using conventional methods with small computational costs. The combination of both LUT and DC techniques could be the first approach that achieves overall quasi-linear-scaling with a small prefactor for relativistic electron correlation calculations.« less

  5. Ethical Accountability and Routine Moral Stress in Special Educational Needs Professionals

    ERIC Educational Resources Information Center

    Hellawell, Beate

    2015-01-01

    This small-scale interview study considers experiences, difficulties and dilemmas of local Special Educational Needs (SEN) professionals such as SEN caseworkers, and examines the neglected ethical dimensions of their role. It argues that fostering "ethical knowledge" (Campbell, 2003), rather than an increase in prescriptive guidance,…

  6. Small-Volume U-Pb Zircon Geochronology by Laser Ablation-Multicollector-ICP-MS

    DTIC Science & Technology

    2008-11-03

    Ecstall pluton in the Coast Mountains of British Columbia: Evidence for local deformation rather than large-scale transport. Journal of Geophysical...Journal of Metamorphic Geology 18, 719–735. Kalsbeek, F., Jepsen, H.F., Nutman, A.P., 2001. From source migmatites to plutons : tracking the origin of

  7. An Inclusion Initiative in Singapore for Preschool Children with Special Needs

    ERIC Educational Resources Information Center

    Yeo, Lay See; Neihart, Maureen; Tang, Hui Nee; Chong, Wan Har; Huan, Vivien S.

    2011-01-01

    This paper describes a preschool inclusion initiative in Singapore, which currently has no mandate for integrating children with special needs in mainstream schools. This very small-scale qualitative study involving children with mild learning disabilities discusses a therapy outreach programme by a local children's hospital. It explores the…

  8. Small-scale heat detection using catalytic microengines irradiated by laser

    NASA Astrophysics Data System (ADS)

    Liu, Zhaoqian; Li, Jinxing; Wang, Jiao; Huang, Gaoshan; Liu, Ran; Mei, Yongfeng

    2013-01-01

    We demonstrate a novel approach to modulating the motion speed of catalytic microtubular engines via laser irradiation/heating with regard to small-scale heat detection. Laser irradiation on the engines leads to a thermal heating effect and thus enhances the engine speed. During a laser on/off period, the motion behaviour of a microengine can be repeatable and reversible, demonstrating a regulation of motion speeds triggered by laser illumination. Also, the engine velocity exhibits a linear dependence on laser power in various fuel concentrations, which implies an application potential as local heat sensors. Our work may hold great promise in applications such as lab on a chip, micro/nano factories, and environmental detection.We demonstrate a novel approach to modulating the motion speed of catalytic microtubular engines via laser irradiation/heating with regard to small-scale heat detection. Laser irradiation on the engines leads to a thermal heating effect and thus enhances the engine speed. During a laser on/off period, the motion behaviour of a microengine can be repeatable and reversible, demonstrating a regulation of motion speeds triggered by laser illumination. Also, the engine velocity exhibits a linear dependence on laser power in various fuel concentrations, which implies an application potential as local heat sensors. Our work may hold great promise in applications such as lab on a chip, micro/nano factories, and environmental detection. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr32494f

  9. On the Local Type I Conditions for the 3D Euler Equations

    NASA Astrophysics Data System (ADS)

    Chae, Dongho; Wolf, Jörg

    2018-05-01

    We prove local non blow-up theorems for the 3D incompressible Euler equations under local Type I conditions. More specifically, for a classical solution {v\\in L^∞ (-1,0; L^2 ( B(x_0,r)))\\cap L^∞_{loc} (-1,0; W^{1, ∞} (B(x_0, r)))} of the 3D Euler equations, where {B(x_0,r)} is the ball with radius r and the center at x 0, if the limiting values of certain scale invariant quantities for a solution v(·, t) as {t\\to 0} are small enough, then { \

  10. Three-state Potts model on non-local directed small-world lattices

    NASA Astrophysics Data System (ADS)

    Ferraz, Carlos Handrey Araujo; Lima, José Luiz Sousa

    2017-10-01

    In this paper, we study the non-local directed Small-World (NLDSW) disorder effects in the three-state Potts model as a form to capture the essential features shared by real complex systems where non-locality effects play a important role in the behavior of these systems. Using Monte Carlo techniques and finite-size scaling analysis, we estimate the infinite lattice critical temperatures and the leading critical exponents in this model. In particular, we investigate the first- to second-order phase transition crossover when NLDSW links are inserted. A cluster-flip algorithm was used to reduce the critical slowing down effect in our simulations. We find that for a NLDSW disorder densities p

  11. LS-CAP: an algorithm for identifying cytogenetic aberrations in hepatocellular carcinoma using microarray data.

    PubMed

    He, Xianmin; Wei, Qing; Sun, Meiqian; Fu, Xuping; Fan, Sichang; Li, Yao

    2006-05-01

    Biological techniques such as Array-Comparative genomic hybridization (CGH), fluorescent in situ hybridization (FISH) and affymetrix single nucleotide pleomorphism (SNP) array have been used to detect cytogenetic aberrations. However, on genomic scale, these techniques are labor intensive and time consuming. Comparative genomic microarray analysis (CGMA) has been used to identify cytogenetic changes in hepatocellular carcinoma (HCC) using gene expression microarray data. However, CGMA algorithm can not give precise localization of aberrations, fails to identify small cytogenetic changes, and exhibits false negatives and positives. Locally un-weighted smoothing cytogenetic aberrations prediction (LS-CAP) based on local smoothing and binomial distribution can be expected to address these problems. LS-CAP algorithm was built and used on HCC microarray profiles. Eighteen cytogenetic abnormalities were identified, among them 5 were reported previously, and 12 were proven by CGH studies. LS-CAP effectively reduced the false negatives and positives, and precisely located small fragments with cytogenetic aberrations.

  12. Is thermodynamic irreversibility a consequence of the expansion of the Universe?

    NASA Astrophysics Data System (ADS)

    Osváth, Szabolcs

    2018-02-01

    This paper explains thermodynamic irreversibility by applying the expansion of the Universe to thermodynamic systems. The effect of metric expansion is immeasurably small on shorter scales than intergalactic distances. Multi-particle systems, however, are chaotic, and amplify any small disturbance exponentially. Metric expansion gives rise to time-asymmetric behaviour in thermodynamic systems in a short time (few nanoseconds in air, few ten picoseconds in water). In contrast to existing publications, this paper explains without any additional assumptions the rise of thermodynamic irreversibility from the underlying reversible mechanics of particles. Calculations for the special case which assumes FLRW metric, slow motions (v ≪ c) and approximates space locally by Euclidean space show that metric expansion causes entropy increase in isolated systems. The rise of time-asymmetry, however, is not affected by these assumptions. Any influence of the expansion of the Universe on the local metric causes a coupling between local mechanics and evolution of the Universe.

  13. Homogenized moment tensor and the effect of near-field heterogeneities on nonisotropic radiation in nuclear explosion

    NASA Astrophysics Data System (ADS)

    Burgos, Gaël.; Capdeville, Yann; Guillot, Laurent

    2016-06-01

    We investigate the effect of small-scale heterogeneities close to a seismic explosive source, at intermediate periods (20-50 s), with an emphasis on the resulting nonisotropic far-field radiation. First, using a direct numerical approach, we show that small-scale elastic heterogeneities located in the near-field of an explosive source, generate unexpected phases (i.e., long period S waves). We then demonstrate that the nonperiodic homogenization theory applied to 2-D and 3-D elastic models, with various pattern of small-scale heterogeneities near the source, leads to accurate waveforms at a reduced computational cost compared to direct modeling. Further, it gives an interpretation of how nearby small-scale features interact with the source at low frequencies, through an explicit correction to the seismic moment tensor. In 2-D simulations, we find a deviatoric contribution to the moment tensor, as high as 21% for near-source heterogeneities showing a 25% contrast of elastic values (relative to a homogeneous background medium). In 3-D this nonisotropic contribution reaches 27%. Second, we analyze intermediate-periods regional seismic waveforms associated with some underground nuclear explosions conducted at the Nevada National Security Site and invert for the full moment tensor, in order to quantify the relative contribution of the isotropic and deviatoric components of the tensor. The average value of the deviatoric part is about 35%. We conclude that the interactions between an explosive source and small-scale local heterogeneities of moderate amplitude may lead to a deviatoric contribution to the seismic moment, close to what is observed using regional data from nuclear test explosions.

  14. Localized sources of propagating acoustic waves in the solar photosphere

    NASA Technical Reports Server (NTRS)

    Brown, Timothy M.; Bogdan, Thomas J.; Lites, Bruce W.; Thomas, John H.

    1992-01-01

    A time series of Doppler measurements of the solar photosphere with moderate spatial resolution is described which covers a portion of the solar disk surrounding a small sunspot group. At temporal frequencies above 5.5 mHz, the Doppler field probes the spatial and temporal distribution of regions that emit acoustic energy. In the frequency range between 5.5 and 7.5 mHz, inclusive, a small fraction of the surface area emits a disproportionate amount of acoustic energy. The regions with excess emission are characterized by a patchy structure at spatial scales of a few arcseconds and by association (but not exact co-location) with regions having substantial magnetic field strength. These observations bear on the conjecture that most of the acoustic energy driving solar p-modes is created in localized regions occupying a small fraction of the solar surface area.

  15. The beaming of subhalo accretion

    NASA Astrophysics Data System (ADS)

    Libeskind, Noam I.

    2016-10-01

    We examine the infall pattern of subhaloes onto hosts in the context of the large-scale structure. We find that the infall pattern is essentially driven by the shear tensor of the ambient velocity field. Dark matter subhaloes are preferentially accreted along the principal axis of the shear tensor which corresponds to the direction of weakest collapse. We examine the dependence of this preferential infall on subhalo mass, host halo mass and redshift. Although strongest for the most massive hosts and the most massive subhaloes at high redshift, the preferential infall of subhaloes is effectively universal in the sense that its always aligned with the axis of weakest collapse of the velocity shear tensor. It is the same shear tensor that dictates the structure of the cosmic web and hence the shear field emerges as the key factor that governs the local anisotropic pattern of structure formation. Since the small (sub-Mpc) scale is strongly correlated with the mid-range (~ 10 Mpc) scale - a scale accessible by current surveys of peculiar velocities - it follows that findings presented here open a new window into the relation between the observed large scale structure unveiled by current surveys of peculiar velocities and the preferential infall direction of the Local Group. This may shed light on the unexpected alignments of dwarf galaxies seen in the Local Group.

  16. Order-disorder effects in structure and color relation of photonic-crystal-type nanostructures in butterfly wing scales.

    PubMed

    Márk, Géza I; Vértesy, Zofia; Kertész, Krisztián; Bálint, Zsolt; Biró, László P

    2009-11-01

    In order to study local and global order in butterfly wing scales possessing structural colors, we have developed a direct space algorithm, based on averaging the local environment of the repetitive units building up the structure. The method provides the statistical distribution of the local environments, including the histogram of the nearest-neighbor distance and the number of nearest neighbors. We have analyzed how the different kinds of randomness present in the direct space structure influence the reciprocal space structure. It was found that the Fourier method is useful in the case of a structure randomly deviating from an ordered lattice. The direct space averaging method remains applicable even for structures lacking long-range order. Based on the first Born approximation, a link is established between the reciprocal space image and the optical reflectance spectrum. Results calculated within this framework agree well with measured reflectance spectra because of the small width and moderate refractive index contrast of butterfly scales. By the analysis of the wing scales of Cyanophrys remus and Albulina metallica butterflies, we tested the methods for structures having long-range order, medium-range order, and short-range order.

  17. Regional variation in the hierarchical partitioning of diversity in coral-dwelling fishes.

    PubMed

    Belmaker, Jonathan; Ziv, Yaron; Shashar, Nadav; Connolly, Sean R

    2008-10-01

    The size of the regional species pool may influence local patterns of diversity. However, it is unclear whether certain spatial scales are less sensitive to regional influences than others. Additive partitioning was used to separate coral-dwelling fish diversity to its alpha and beta components, at multiple scales, in several regions across the Indo-Pacific. We then examined how the relative contribution of these components changes with increased regional diversity. By employing specific random-placement null models, we overcome methodological problems with local-regional regressions. We show that, although alpha and beta diversities within each region are consistently different from random-placement null models, the increase in beta diversities among regions was similar to that predicted once heterogeneity in coral habitat was accounted for. In contrast, alpha diversity within single coral heads was limited and increased less than predicted by the null models. This was correlated with increased intraspecific aggregation in more diverse regions and is consistent with ecological limitations on the number of coexisting species at the local scale. These results suggest that, apart from very small spatial scales, variation in the partitioning of fish diversity along regional species richness gradients is driven overwhelmingly by the corresponding gradients in coral assemblage structure.

  18. Order-disorder effects in structure and color relation of photonic-crystal-type nanostructures in butterfly wing scales

    NASA Astrophysics Data System (ADS)

    Márk, Géza I.; Vértesy, Zofia; Kertész, Krisztián; Bálint, Zsolt; Biró, László P.

    2009-11-01

    In order to study local and global order in butterfly wing scales possessing structural colors, we have developed a direct space algorithm, based on averaging the local environment of the repetitive units building up the structure. The method provides the statistical distribution of the local environments, including the histogram of the nearest-neighbor distance and the number of nearest neighbors. We have analyzed how the different kinds of randomness present in the direct space structure influence the reciprocal space structure. It was found that the Fourier method is useful in the case of a structure randomly deviating from an ordered lattice. The direct space averaging method remains applicable even for structures lacking long-range order. Based on the first Born approximation, a link is established between the reciprocal space image and the optical reflectance spectrum. Results calculated within this framework agree well with measured reflectance spectra because of the small width and moderate refractive index contrast of butterfly scales. By the analysis of the wing scales of Cyanophrys remus and Albulina metallica butterflies, we tested the methods for structures having long-range order, medium-range order, and short-range order.

  19. Geologic implications and potential hazards of scour depressions on bering shelf, Alaska

    USGS Publications Warehouse

    Larsen, M.C.; Nelson, H.; Thor, D.R.

    1979-01-01

    Flat-bottomed depression 50-150 m in diameter and 60-80 cm deep occur in the floor of Norton Sound, Bering Sea. These large erosional bedforms and associated current ripples are found in areas where sediment grain size is 0.063-0.044 mm (4-4.5 ??), speeds of bottom currents are greatest (20-30 cm/s mean speeds under nonstorm conditions, 70 cm/s during typical storms), circulation of water is constricted by major topographic shoals (kilometers in scale), and small-scale topographic disruptions, such as ice gouges, occur locally on slopes of shoals. These local obstructions on shoals appear to disrupt currents, causing separation of flow and generating eddies that produce large-scale scour. Offshore artificial structures also may disrupt bottom currents in these same areas and have the potential to generate turbulence and induce extensive scour in the area of disrupted flow. The size and character of natural scour depressions in areas of ice gouging suggest that large-scale regions of scour may develop from enlargement of local scour sites around pilings, platforms, or pipelines. Consequently, loss of substrate support for pipelines and gravity structures is possible during frequent autumn storms. ?? 1979 Springer-Verlag New York Inc.

  20. Advanced Commercial Buildings Initiative Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Sydney G.

    The Southface Advanced Commercial Buildings Initiative has developed solutions to overcome market barriers to energy reductions in small commercial buildings by building on the success of four local and Southeast regional energy efficiency deployment programs. These programs address a variety of small commercial building types, efficiency levels, owners, facility manager skills and needs for financing. The deployment programs also reach critical private sector, utility, nonprofit and government submarkets, and have strong potential to be replicated at scale. During the grant period, 200 small commercial buildings participated in Southface-sponsored energy upgrade programs, saving 166,736,703 kBtu of source energy.

  1. Trends in Deforestation and Forest Degradation after a Decade of Monitoring in the Monarch Butterfly Biosphere Reserve in Mexico

    PubMed Central

    VIDAL, OMAR; LÓPEZ-GARCÍA, JOSÉ; RENDÓN-SALINAS, EDUARDO

    2014-01-01

    We used aerial photographs, satellite images, and field surveys to monitor forest cover in the core zones of the Monarch Butterfly Biosphere Reserve in Mexico from 2001 to 2012. We used our data to assess the effectiveness of conservation actions that involved local, state, and federal authorities and community members (e.g., local landowners and private and civil organizations) in one of the world’s most iconic protected areas. From 2001 through 2012, 1254 ha were deforested (i.e., cleared areas had <10% canopy cover), 925 ha were degraded (i.e., areas for which canopy forest decreased), and 122 ha were affected by climatic conditions. Of the total 2179 ha of affected area, 2057 ha were affected by illegal logging: 1503 ha by large-scale logging and 554 ha by small-scale logging. Mexican authorities effectively enforced efforts to protect the monarch reserve, particularly from 2007 to 2012. Those efforts, together with the decade-long financial support from Mexican and international philanthropists and businesses to create local alternative-income generation and employment, resulted in the decrease of large-scale illegal logging from 731 ha affected in 2005–2007 to none affected in 2012, although small-scale logging is of growing concern. However, dire regional social and economic problems remain, and they must be addressed to ensure the reserve’s long-term conservation. The monarch butterfly (Danaus plexippus) overwintering colonies in Mexico—which engage in one of the longest known insect migrations—are threatened by deforestation, and a multistakeholder, regional, sustainable-development strategy is needed to protect the reserve. PMID:24001209

  2. Trends in deforestation and forest degradation after a decade of monitoring in the Monarch Butterfly Biosphere Reserve in Mexico.

    PubMed

    Vidal, Omar; López-García, José; Rendón-Salinas, Eduardo

    2014-02-01

    We used aerial photographs, satellite images, and field surveys to monitor forest cover in the core zones of the Monarch Butterfly Biosphere Reserve in Mexico from 2001 to 2012. We used our data to assess the effectiveness of conservation actions that involved local, state, and federal authorities and community members (e.g., local landowners and private and civil organizations) in one of the world's most iconic protected areas. From 2001 through 2012, 1254 ha were deforested (i.e., cleared areas had <10% canopy cover), 925 ha were degraded (i.e., areas for which canopy forest decreased), and 122 ha were affected by climatic conditions. Of the total 2179 ha of affected area, 2057 ha were affected by illegal logging: 1503 ha by large-scale logging and 554 ha by small-scale logging. Mexican authorities effectively enforced efforts to protect the monarch reserve, particularly from 2007 to 2012. Those efforts, together with the decade-long financial support from Mexican and international philanthropists and businesses to create local alternative-income generation and employment, resulted in the decrease of large-scale illegal logging from 731 ha affected in 2005-2007 to none affected in 2012, although small-scale logging is of growing concern. However, dire regional social and economic problems remain, and they must be addressed to ensure the reserve's long-term conservation. The monarch butterfly (Danaus plexippus) overwintering colonies in Mexico-which engage in one of the longest known insect migrations-are threatened by deforestation, and a multistakeholder, regional, sustainable-development strategy is needed to protect the reserve. © 2013 Society for Conservation Biology.

  3. Emergent dimensions and branes from large-N confinement

    NASA Astrophysics Data System (ADS)

    Cherman, Aleksey; Poppitz, Erich

    2016-12-01

    N =1 S U (N ) super-Yang-Mills theory on R3×S1 is believed to have a smooth dependence on the circle size L . Making L small leads to calculable nonperturbative color confinement, mass gap, and string tensions. For finite N , the small-L low-energy dynamics is described by a three-dimensional effective theory. The large-N limit, however, reveals surprises: the infrared dual description is in terms of a theory with an emergent fourth dimension, curiously reminiscent of T-duality in string theory. Here, however, the emergent dimension is a lattice, with momenta related to the S1-winding of the gauge field holonomy, which takes values in ZN. Furthermore, the low-energy description is given by a nontrivial gapless theory, with a space-like z =2 Lifshitz scale invariance and operators that pick up anomalous dimensions as L is increased. Supersymmetry-breaking deformations leave the long-distance theory scale-invariant, but change the Lifshitz scaling exponent to z =1 , and lead to an emergent Lorentz symmetry at small L . Adding a small number of fundamental fermion fields leads to matter localized on three-dimensional branes in the emergent four-dimensional theory.

  4. Cosmic Topology: Studying The Shape And Size Of Our Universe

    NASA Astrophysics Data System (ADS)

    Yzaguirre, Amelia; Hajian, A.

    2010-01-01

    The question of the size and the shape of our universe is a very old problem that has received considerable attention over the past few years. The simplest cosmological model predicts that the mean density of the universe is very close to the critical density, admitting a local geometry of the universe that is flat. Current results from different cosmological observations confirm this to the percent level accuracy. General Relativity (being a local theory) only determines local geometry, which allows for the possibility of a multiply connected universe with a zero (or small) curvature. To study the global shape, or topology, of the universe, one can use cosmological observations on large scales. In this project we investigate the possibility of a ``small universe'', that is, a compact finite space, by searching for planar symmetries in the CMB anisotropy maps provided by the five-year WMAP observations in two foreground cleaned maps (WMAP ILC map and the Tegmark, et al. (TOH) map ). Our results strongly suggest that the small universe model is not a viable topology for the universe.

  5. Moment Magnitudes and Local Magnitudes for Small Earthquakes: Implications for Ground-Motion Prediction and b-values

    NASA Astrophysics Data System (ADS)

    Baltay, A.; Hanks, T. C.; Vernon, F.

    2016-12-01

    We illustrate two essential consequences of the systematic difference between moment magnitude and local magnitude for small earthquakes, illuminating the underlying earthquake physics. Moment magnitude, M 2/3 log M0, is uniformly valid for all earthquake sizes [Hanks and Kanamori, 1979]. However, the relationship between local magnitude ML and moment is itself magnitude dependent. For moderate events, 3< M < 7, M and M­L are coincident; for earthquakes smaller than M3, ML log M0 [Hanks and Boore, 1984]. This is a consequence of the saturation of the apparent corner frequency fc as it becoming greater than the largest observable frequency, fmax; In this regime, stress drop no longer controls ground motion. This implies that ML and M differ by a factor of 1.5 for these small events. While this idea is not new, its implications are important as more small-magnitude data are incorporated into earthquake hazard research. With a large dataset of M<3 earthquakes recorded on the ANZA network, we demonstrate striking consequences of the difference between M and ML. ML scales as the log peak ground motions (e.g., PGA or PGV) for these small earthquakes, which yields log PGA log M0 [Boore, 1986]. We plot nearly 15,000 records of PGA and PGV at close stations, adjusted for site conditions and for geometrical spreading to 10 km. The slope of the log of ground motion is 1.0*ML­, or 1.5*M, confirming the relationship, and that fc >> fmax. Just as importantly, if this relation is overlooked, prediction of large-magnitude ground motion from small earthquakes will be misguided. We also consider the effect of this magnitude scale difference on b-value. The oft-cited b-value of 1 should hold for small magnitudes, given M. Use of ML necessitates b=2/3 for the same data set; use of mixed, or unknown, magnitudes complicates the matter further. This is of particular import when estimating the rate of large earthquakes when one has limited data on their recurrence, as is the case for induced earthquakes in the central US.

  6. A Feasibility Study of a Field-specific Weather Service for Small-scale Farms in a Topographically Complex Watershed

    NASA Astrophysics Data System (ADS)

    Kim, S. O.; Shim, K. M.; Shin, Y. S.; Yun, J. I.

    2015-12-01

    Adequate downscaling of synoptic forecasts is a prerequisite for improved agrometeorological service to rural areas in South Korea where complex terrain and small farms are common. Geospatial schemes based on topoclimatology were used to scale down the Korea Meteorological Administration (KMA) temperature forecasts to the local scale (~30 m) across a rural catchment. Local temperatures were estimated at 14 validation sites at 0600 and 1500 LST in 2013/2014 using these schemes and were compared with observations. A substantial reduction in the estimation error was found for both 0600 and 1500 temperatures compared with uncorrected KMA products. Improvement was most remarkable at low lying locations for the 0600 temperature and at the locations on west- and south-facing slopes for the 1500 temperature. Using the downscaled real-time temperature data, a pilot service has started to provide field-specific weather information tailored to meet the requirements of small-scale farms. For example, the service system makes a daily outlook on the phenology of crop species grown in a given field using the field-specific temperature data. When the temperature forecast is given for tomorrow morning, a frost risk index is calculated according to a known phenology-frost injury relationship. If the calculated index is higher than a pre-defined threshold, a warning is issued and delivered to the grower's cellular phone with relevant countermeasures to help protect crops against frost damage. The system was implemented for a topographically complex catchment of 350km2with diverse agricultural activities, and more than 400 volunteer farmers are participating in this pilot service to access user-specific weather information.

  7. Mineral resource potential map of the Raywood Flat Roadless Areas, Riverside and San Bernardino counties, California

    USGS Publications Warehouse

    Matti, Jonathan C.; Cox, Brett F.; Iverson, Stephen R.

    1983-01-01

    The area having moderate potential for base-metal resources forms a small zone in the eastern part of the recommended wilderness (A5-187). Within this zone, evidence provided by stream-sediment geochemistry suggests that crystalline bedrocks in several drainages contain concentrations of metallic elements. Because the terrain is inaccessible and covered with dense brush, most of the bedrock in the specific drainages containing the geochemical anomalies could not be examined. Thus, although we infer that mineral occurrences exist in the drainage basins, we have little data on which to base an estimate of their extent and quality. Locally, the crystalline rocks probably contain hydrothermal veins or disseminated occurrences where lead, copper, molybdenum, tin, cobalt, bismuth, and arsenic have been concentrated. However, the geochemical anomalies for these metals are small, and the stream drainages also are relatively small. Therefore, the inferred occurrences of metallic minerals probably are small scale, scattered, and low grade. There is only low probability that the inferred mineral occurrences are large scale.

  8. Small scale monitoring of a bioremediation barrier using miniature electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Sentenac, Philippe; Hogson, Tom; Keenan, Helen; Kulessa, Bernd

    2015-04-01

    The aim of this study was to assess, in the laboratory, the efficiency of a barrier of oxygen release compound (ORC) to block and divert a diesel plume migration in a scaled aquifer model using miniature electrical resistivity tomography (ERT) as the monitoring system. Two plumes of contaminant (diesel) were injected in a soil model made of local sand and clay. The diesel plumes migration was imaged and monitored using a miniature resistivity array system that has proved to be accurate in soil resistivity variations in small-scaled models of soil. ERT results reflected the lateral spreading and diversion of the diesel plumes in the unsaturated zone. One of the contaminant plumes was partially blocked by the ORC barrier and a diversion and reorganisation of the diesel in the soil matrix was observed. The technique of time-lapse ERT imaging showed that a dense non-aqueous phase liquid (DNAPL) contaminant like diesel can be monitored through a bioremediation barrier and the technique is well suited to monitor the efficiency of the barrier. Therefore, miniature ERT as a small-scale modelling tool could complement conventional techniques, which require more expensive and intrusive site investigation prior to remediation.

  9. Excess electron localization in solvated DNA bases.

    PubMed

    Smyth, Maeve; Kohanoff, Jorge

    2011-06-10

    We present a first-principles molecular dynamics study of an excess electron in condensed phase models of solvated DNA bases. Calculations on increasingly large microsolvated clusters taken from liquid phase simulations show that adiabatic electron affinities increase systematically upon solvation, as for optimized gas-phase geometries. Dynamical simulations after vertical attachment indicate that the excess electron, which is initially found delocalized, localizes around the nucleobases within a 15 fs time scale. This transition requires small rearrangements in the geometry of the bases.

  10. Excess Electron Localization in Solvated DNA Bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smyth, Maeve; Kohanoff, Jorge

    2011-06-10

    We present a first-principles molecular dynamics study of an excess electron in condensed phase models of solvated DNA bases. Calculations on increasingly large microsolvated clusters taken from liquid phase simulations show that adiabatic electron affinities increase systematically upon solvation, as for optimized gas-phase geometries. Dynamical simulations after vertical attachment indicate that the excess electron, which is initially found delocalized, localizes around the nucleobases within a 15 fs time scale. This transition requires small rearrangements in the geometry of the bases.

  11. Low-cost Landsat digital processing system for state and local information systems

    NASA Technical Reports Server (NTRS)

    Hooper, N. J.; Spann, G. W.; Faust, N. L.; Paludan, C. T. N.

    1979-01-01

    The paper details a minicomputer-based system which is well within the budget of many state, regional, and local agencies that previously could not afford digital processing capability. In order to achieve this goal a workable small-scale Landsat system is examined to provide low-cost automated processing. It is anticipated that the alternative systems will be based on a single minicomputer, but that the peripherals will vary depending on the capability emphasized in a particular system.

  12. Analysis of Multi-Scale Phenomena in Heterogeneous Materials

    DTIC Science & Technology

    2011-02-22

    requires the use of properties of the Catalan numbers to show that the series coefficients are exponentially bounded in the H1 Sobolev norm. This is joint...the use of a small number of optimal local basis functions. The local bases are supported on sub domains of fixed diameter within the computa- tional...not display a currently valid OMB control number . 1. REPORT DATE 22 FEB 2011 2. REPORT TYPE FINAL REPORT 3. DATES COVERED 03-01-2008 to 03-03

  13. Pore-scale Modeling of CO2 Local Trapping in Heterogeneous Porous Media with Inter-granular Cements

    NASA Astrophysics Data System (ADS)

    Wang, D.; Li, Y.

    2017-12-01

    Based on pore-scale modeling of CO2/brine multiphase flow in heterogeneous porous media with inter-granular cements, we numerically analyze the effects of cement-modified pore structure on CO2 local trapping. Results indicate: 1) small pore throat is the main reason for causing CO2 local trapping in front of low-porosity layers (namely dense layers) formed by inter-granular cements; 2) in the case of the same pore throat size, the smaller particle size can increase the number of flow paths for CO2 plume and equivalently enhances local permeability, which may counteract the impediment of high capillary pressure on CO2 migration to some extent and consequently disables CO2 local capillary trapping; 3) the isolated pores by inter-granular cements can lead to dramatic reduction of CO2 saturation inside the dense layers, whereas the change of connectivity of some pores due to the cements can increase CO2 accumulation in front of the dense layers by lowering the displacement area of CO2 plume.

  14. Biological impacts of local vs. regional land use on a small tributary of the Seine River (France): insights from a food web approach based on stable isotopes.

    PubMed

    Hette-Tronquart, Nicolas; Oberdorff, Thierry; Tales, Evelyne; Zahm, Amandine; Belliard, Jérôme

    2017-03-23

    As part of the landscape, streams are influenced by land use. Here, we contributed to the understanding of the biological impacts of land use on streams, investigating how landscape effects vary with spatial scales (local vs. regional). We adopted a food web approach integrating both biological structure and functioning, to focus on the overall effect of land use on stream biocœnosis. We selected 17 sites of a small tributary of the Seine River (France) for their contrasted land use, and conducted a natural experiment by sampling three organic matter sources, three macroinvertebrate taxa, and most of the fish community. Using stable isotope analysis, we calculated three food web metrics evaluating two major dimensions of the trophic diversity displayed by the fish community: (i) the diversity of exploited resources and (ii) the trophic level richness. The idea was to examine whether (1) land-use effects varied according to spatial scales, (2) land use affected food webs through an effect on community structure and (3) land use affected food webs through an effect on available resources. Beside an increase in trophic diversity from upstream to downstream, our empirical data showed that food webs were influenced by land use in the riparian corridors (local scale). The effect was complex, and depended on site's position along the upstream-downstream gradient. By contrast, land use in the catchment (regional scale) did not influence stream biocœnosis. At the local scale, community structure was weakly influenced by land use, and thus played a minor role in explaining food web modifications. Our results suggested that the amount of available resources at the base of the food web was partly responsible for food web modifications. In addition, changes in biological functioning (i.e. feeding interactions) can also explain another part of the land-use effect. These results highlight the role played by the riparian corridors as a buffer zone, and advocate that riparian corridor should be at the centre of water management attention.

  15. Fatigue Behavior of Long and Short Cracks in Wrought and Powder Aluminum Alloys.

    DTIC Science & Technology

    1983-05-01

    physically small (i.e., : 1 mm), must be considered as one of the major factors limiting the application of defect-tolerant fatigue design for airframe and...compared to the scale of local plasticity or simply physically small (i.e., 1 nm), must be considered as one of the major factors limiting the application ...particularly at near-threshold levels, a major limitation in the application of such information to defect-tolerant design must be regarded as the

  16. Species turnover drives β-diversity patterns across multiple spatial scales of plant-galling interactions in mountaintop grasslands.

    PubMed

    Coelho, Marcel Serra; Carneiro, Marco Antônio Alves; Branco, Cristina Alves; Borges, Rafael Augusto Xavier; Fernandes, Geraldo Wilson

    2018-01-01

    This study describes differences in species richness and composition of the assemblages of galling insects and their host plants at different spatial scales. Sampling was conducted along altitudinal gradients composed of campos rupestres and campos de altitude of two mountain complexes in southeastern Brazil: Espinhaço Range and Mantiqueira Range. The following hypotheses were tested: i) local and regional richness of host plants and galling insects are positively correlated; ii) beta diversity is the most important component of regional diversity of host plants and galling insects; and iii) Turnover is the main mechanism driving beta diversity of both host plants and galling insects. Local richness of galling insects and host plants increased with increasing regional richness of species, suggesting a pattern of unsaturated communities. The additive partition of regional richness (γ) into local and beta components shows that local richnesses (α) of species of galling insects and host plants are low relative to regional richness; the beta (β) component incorporates most of the regional richness. The multi-scale analysis of additive partitioning showed similar patterns for galling insects and host plants with the local component (α) incorporated a small part of regional richness. Beta diversity of galling insects and host plants were mainly the result of turnover, with little contribution from nesting. Although the species composition of galling insects and host plant species varied among sample sites, mountains and even mountain ranges, local richness remained relatively low. In this way, the addition of local habitats with different landscapes substantially affects regional richness. Each mountain contributes fundamentally to the composition of regional diversity of galling insects and host plants, and so the design of future conservation strategies should incorporate multiple scales.

  17. Effects of orography on planetary scale flow

    NASA Technical Reports Server (NTRS)

    Smith, R. B.

    1986-01-01

    The earth's orography is composed of a wide variety of scales, each contributing to the spectrum of atmospheric motions. A well studied subject (originating with Charney and Eliassen) is the direct forcing of planetary scale waves by the planetary scale orography: primarily the Tibetan plateau and the Rockies. However, because of the non-linear terms in the equations of dynamic meteorology, even the smallest scales of mountain induced flow can contribute to the planetary scale if the amplitude of the small scale disturbance is sufficintly large. Two possible mechanisms for this are illustrated. First, preferentially located lee cyclones can force planetary waves by their meridional transport of heat and momentum (Hansen and Chen). Recent theories are helping to explain the phenomena of lee cyclogenesis (e.g., Smith, 1984, J.A.S.). Second, mesoscale mountain wave and severe downslope wind phenomena produce such a large local drag, that planetary scale waves can be produced. The mechanism of upscale transfer is easy to understand in this case as the standing planetary scale wave has a wavelength which depends on the mean structure of the atmosphere, and not on the width of the mountain (just as in small scale lee wave theory). An example of a theoretical description of a severe wind flow with very large drag is shown.

  18. Efficient implicit LES method for the simulation of turbulent cavitating flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egerer, Christian P., E-mail: christian.egerer@aer.mw.tum.de; Schmidt, Steffen J.; Hickel, Stefan

    2016-07-01

    We present a numerical method for efficient large-eddy simulation of compressible liquid flows with cavitation based on an implicit subgrid-scale model. Phase change and subgrid-scale interface structures are modeled by a homogeneous mixture model that assumes local thermodynamic equilibrium. Unlike previous approaches, emphasis is placed on operating on a small stencil (at most four cells). The truncation error of the discretization is designed to function as a physically consistent subgrid-scale model for turbulence. We formulate a sensor functional that detects shock waves or pseudo-phase boundaries within the homogeneous mixture model for localizing numerical dissipation. In smooth regions of the flowmore » field, a formally non-dissipative central discretization scheme is used in combination with a regularization term to model the effect of unresolved subgrid scales. The new method is validated by computing standard single- and two-phase test-cases. Comparison of results for a turbulent cavitating mixing layer obtained with the new method demonstrates its suitability for the target applications.« less

  19. Using stable isotopes to track the effects of deforestation on small-mammal ecology in the Pacific Northwest over the last 100 years

    NASA Astrophysics Data System (ADS)

    Packard, N. R.; Cotton, J. M.; Smiley, T. M.; Terry, R. C.

    2017-12-01

    Landscape, land-use, and climate change are important factors in determining ecosystem change over a range of spatio-temporal scales. For example, within small-mammal communities, the spread of agriculture, rapid urbanization, and deforestation have been shown to alter species composition and diet, thus potentially disrupting ecological interactions and reshaping ecosystems. Small mammals integrate the isotopic composition of their diet and drinking water into their hair and therefore serve as useful proxies for vegetation and water resources in their habitat. To better understand how forest loss and land-cover change influence small-mammal ecology in the Pacific Northwest (PNW), we analyzed the hydrogen (H) and oxygen (O) isotopic composition of hair from historical Peromyscus maniculatus (North American deer mouse) specimens housed in natural history museums across the country. While deforestation along the east coast occurred hundreds of years ago, the loss of forests on the west coast occurred more recently, beginning around 1930. We use early 20th century specimens of this widespread and abundant generalist species to better understand ecosystem changes that occurred over the past 100 years of local and regional deforestation. Changing forest composition and structure during deforestation can influence both broad-scale hydrological cycling and local ecosystems. Variation in O and H isotopic composition corresponds to changes in the hydrological cycle, such as changes in the source and amount of precipitation, and changes in the moisture conditions in local ecosystems. We will present this spatial and temporal variability in the form of isoscapes, or δ18O and δD isotope landscape models, of P. maniculatus hair in the western forests of the PNW through time. Investigating isotopic signatures in small mammals can help us better understand ecosystem response to anthropogenic land-use and climate change.

  20. Complementary methods to plan pedestrian evacuation of the French Riviera's beaches in case of tsunami threat: graph- and multi-agent-based modelling

    NASA Astrophysics Data System (ADS)

    Sahal, A.; Leone, F.; Péroche, M.

    2013-07-01

    Small amplitude tsunamis have impacted the French Mediterranean shore (French Riviera) in the past centuries. Some caused casualties; others only generated economic losses. While the North Atlantic and Mediterranean tsunami warning system is being tested and is almost operational, no awareness and preparedness measure is being implemented at a local scale. Evacuation is to be considered along the French Riviera, but no plan exists within communities. We show that various approaches can provide local stakeholders with evacuation capacities assessments to develop adapted evacuation plans through the case study of the Cannes-Antibes region. The complementarity between large- and small-scale approaches is demonstrated with the use of macro-simulators (graph-based) and micro-simulators (multi-agent-based) to select shelter points and choose evacuation routes for pedestrians located on the beach. The first one allows automatically selecting shelter points and measuring and mapping their accessibility. The second one shows potential congestion issues during pedestrian evacuations, and provides leads for the improvement of urban environment. Temporal accessibility to shelters is compared to potential local and distal tsunami travel times, showing a 40 min deficit for an adequate crisis management in the first scenario, and a 30 min surplus for the second one.

  1. Meteorological determinants of air quality

    NASA Astrophysics Data System (ADS)

    Turoldo, F.; Del Frate, S.; Gallai, I.; Giaiotti, D. B.; Montanari, F.; Stel, F.; Goi, D.

    2010-09-01

    Air quality is the result of complex phenomena, among which the major role is played by human emissions of pollutants. Atmospheric processes act as determinants, e.g., modulating, dumping or amplifying the effects of emissions as an orchestra's director does with musical instruments. In this work, a series of small-scale and meso-scale meteorological determinants of air-quality are presented as they are observed in an area characterized by complex orography (Friuli Venezia Giulia, in the north-eastern side of Italy). In particular, attention is devoted to: i) meso-scale flows favouring the persistence of high concentrations of particulate matter; ii) meso-scale periodic flows (breezes) favouring high values of particulate matter; iii) local-scale thermodynamic behaviour favouring high atmospheric values of nitrogen oxides. The effects of these different classes of determinants are shown through comparisons between anthropic emissions (mainly traffic) and ground-based measurements. The relevance of complex orography (relatively steep relieves near to the sea) is shown for the meso-scale flows and, in particular, for local-scale periodic flows, which favour the increase of high pollutants concentrations mainly in summer, when the breezes regime is particularly relevant. Part of these results have been achieved through the ETS - Alpine Space EU project iMONITRAF!

  2. Linking the Scales of Scientific inquiry and Watershed Management: A Focus on Green Infrastructure

    NASA Astrophysics Data System (ADS)

    Golden, H. E.; Hoghooghi, N.

    2017-12-01

    Urbanization modifies the hydrologic cycle, resulting in potentially deleterious downstream water quality and quantity effects. However, the cumulative interacting effects of water storage, transport, and biogeochemical processes occurring within other land cover and use types of the same watershed can render management explicitly targeted to limit the negative outcomes from urbanization ineffective. For example, evidence indicates that green infrastructure, or low impact development (LID), practices can attenuate the adverse water quality and quantity effects of urbanizing systems. However, the research providing this evidence has been conducted at local scales (e.g., plots, small homogeneous urban catchments) that isolate the measurable effects of such approaches. Hence, a distinct disconnect exists between the scale of scientific inquiry and the scale of management and decision-making practices. Here we explore the oft-discussed yet rarely directly addressed scientific and management conundrum: How do we scale our well-documented scientific knowledge of the water quantity and quality responses to LID practices measured and modeled at local scales to that of "actual" management scales? We begin by focusing on LID practices in mixed land cover watersheds. We present key concepts that have emerged from LID research at the local scale, considerations for scaling this research to watersheds, recent advances and findings in scaling the effects of LID practices on water quality and quantity at watershed scales, and the use of combined novel measurements and models for these scaling efforts. We underscore these concepts with a case study that evaluates the effects of three LID practices using simulation modeling across a mixed land cover watershed. This synthesis and case study highlight that scientists are making progress toward successfully tailoring fundamental research questions with decision-making goals in mind, yet we still have a long road ahead.

  3. Large-scale data analysis of power grid resilience across multiple US service regions

    NASA Astrophysics Data System (ADS)

    Ji, Chuanyi; Wei, Yun; Mei, Henry; Calzada, Jorge; Carey, Matthew; Church, Steve; Hayes, Timothy; Nugent, Brian; Stella, Gregory; Wallace, Matthew; White, Joe; Wilcox, Robert

    2016-05-01

    Severe weather events frequently result in large-scale power failures, affecting millions of people for extended durations. However, the lack of comprehensive, detailed failure and recovery data has impeded large-scale resilience studies. Here, we analyse data from four major service regions representing Upstate New York during Super Storm Sandy and daily operations. Using non-stationary spatiotemporal random processes that relate infrastructural failures to recoveries and cost, our data analysis shows that local power failures have a disproportionally large non-local impact on people (that is, the top 20% of failures interrupted 84% of services to customers). A large number (89%) of small failures, represented by the bottom 34% of customers and commonplace devices, resulted in 56% of the total cost of 28 million customer interruption hours. Our study shows that extreme weather does not cause, but rather exacerbates, existing vulnerabilities, which are obscured in daily operations.

  4. An Outdoor Navigation Platform with a 3D Scanner and Gyro-assisted Odometry

    NASA Astrophysics Data System (ADS)

    Yoshida, Tomoaki; Irie, Kiyoshi; Koyanagi, Eiji; Tomono, Masahiro

    This paper proposes a light-weight navigation platform that consists of gyro-assisted odometry, a 3D laser scanner and map-based localization for human-scale robots. The gyro-assisted odometry provides highly accurate positioning only by dead-reckoning. The 3D laser scanner has a wide field of view and uniform measuring-point distribution. The map-based localization is robust and computationally inexpensive by utilizing a particle filter on a 2D grid map generated by projecting 3D points on to the ground. The system uses small and low-cost sensors, and can be applied to a variety of mobile robots in human-scale environments. Outdoor navigation experiments were conducted at the Tsukuba Challenge held in 2009 and 2010, which is an open proving ground for human-scale robots. Our robot successfully navigated the assigned 1-km courses in a fully autonomous mode multiple times.

  5. Fine-scale detection of pollutants by a benthic marine jellyfish.

    PubMed

    Epstein, Hannah E; Templeman, Michelle A; Kingsford, Michael J

    2016-06-15

    Local sources of pollution can vary immensely on small geographic scales and short time frames due to differences in runoff and adjacent land use. This study examined the rate of uptake and retention of trace metals in Cassiopea maremetens, a benthic marine jellyfish, over a short time frame and in the presence of multiple pollutants. This study also validated the ability of C. maremetens to uptake metals in the field. Experimental manipulation demonstrated that metal accumulation in jellyfish tissue began within 24h of exposure to treated water and trended for higher accumulation in the presence of multiple pollutants. C. maremetens was found to uptake trace metals in the field and provide unique signatures among locations. This fine-scale detection and rapid accumulation of metals in jellyfish tissue can have major implications for both biomonitoring and the trophic transfer of pollutants through local ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Best Phd thesis Prize: Statistical analysis of ALFALFA galaxies: insights in galaxy

    NASA Astrophysics Data System (ADS)

    Papastergis, E.

    2013-09-01

    We use the rich dataset of local universe galaxies detected by the ALFALFA 21cm survey to study the statistical properties of gas-bearing galaxies. In particular, we measure the number density of galaxies as a function of their baryonic mass ("baryonic mass function") and rotational velocity ("velocity width function"), and we characterize their clustering properties ("two-point correlation function"). These statistical distributions are determined by both the properties of dark matter on small scales, as well as by the complex baryonic processes through which galaxies form over cosmic time. We interpret the ALFALFA measurements with the aid of publicly available cosmological N-body simulations and we present some key results related to galaxy formation and small-scale cosmology.

  7. East African wetland-catchment data base for sustainable wetland management

    NASA Astrophysics Data System (ADS)

    Leemhuis, Constanze; Amler, Esther; Diekkrüger, Bernd; Gabiri, Geofrey; Näschen, Kristian

    2016-10-01

    Wetlands cover an area of approx. 18 Mio ha in the East African countries of Kenya, Rwanda, Uganda and Tanzania, with still a relative small share being used for food production. Current upland agricultural use intensification in these countries due to demographic growth, climate change and globalization effects are leading to an over-exploitation of the resource base, followed by an intensification of agricultural wetland use. We aim on translating, transferring and upscaling knowledge on experimental test-site wetland properties, small-scale hydrological processes, and water related ecosystem services under different types of management from local to national scale. This information gained at the experimental wetland/catchment scale will be embedded as reference data within an East African wetland-catchment data base including catchment physical properties and a regional wetland inventory serving as a base for policy advice and the development of sustainable wetland management strategies.

  8. Vibration-based structural health monitoring of the aircraft large component

    NASA Astrophysics Data System (ADS)

    Pavelko, V.; Kuznetsov, S.; Nevsky, A.; Marinbah, M.

    2017-10-01

    In the presented paper there are investigated the basic problems of the local system of SHM of large scale aircraft component. Vibration-based damage detection is accepted as a basic condition, and main attention focused to a low-cost solution that would be attractive for practice. The conditions of small damage detection in the full scale structural component at low-frequency excitation were defined in analytical study and modal FEA. In experimental study the dynamic test of the helicopter Mi-8 tail beam was performed at harmonic excitation with frequency close to first natural frequency of the beam. The index of correlation coefficient deviation (CCD) was used for extraction of the features due to embedded pseudo-damage. It is shown that the problem of vibration-based detection of a small damage in the large scale structure at low-frequency excitation can be solved successfully.

  9. On Efficient Multigrid Methods for Materials Processing Flows with Small Particles

    NASA Technical Reports Server (NTRS)

    Thomas, James (Technical Monitor); Diskin, Boris; Harik, VasylMichael

    2004-01-01

    Multiscale modeling of materials requires simulations of multiple levels of structural hierarchy. The computational efficiency of numerical methods becomes a critical factor for simulating large physical systems with highly desperate length scales. Multigrid methods are known for their superior efficiency in representing/resolving different levels of physical details. The efficiency is achieved by employing interactively different discretizations on different scales (grids). To assist optimization of manufacturing conditions for materials processing with numerous particles (e.g., dispersion of particles, controlling flow viscosity and clusters), a new multigrid algorithm has been developed for a case of multiscale modeling of flows with small particles that have various length scales. The optimal efficiency of the algorithm is crucial for accurate predictions of the effect of processing conditions (e.g., pressure and velocity gradients) on the local flow fields that control the formation of various microstructures or clusters.

  10. Tundra landform and vegetation productivity trend maps for the Arctic Coastal Plain of northern Alaska

    NASA Astrophysics Data System (ADS)

    Lara, Mark J.; Nitze, Ingmar; Grosse, Guido; McGuire, A. David

    2018-04-01

    Arctic tundra landscapes are composed of a complex mosaic of patterned ground features, varying in soil moisture, vegetation composition, and surface hydrology over small spatial scales (10-100 m). The importance of microtopography and associated geomorphic landforms in influencing ecosystem structure and function is well founded, however, spatial data products describing local to regional scale distribution of patterned ground or polygonal tundra geomorphology are largely unavailable. Thus, our understanding of local impacts on regional scale processes (e.g., carbon dynamics) may be limited. We produced two key spatiotemporal datasets spanning the Arctic Coastal Plain of northern Alaska (~60,000 km2) to evaluate climate-geomorphological controls on arctic tundra productivity change, using (1) a novel 30 m classification of polygonal tundra geomorphology and (2) decadal-trends in surface greenness using the Landsat archive (1999-2014). These datasets can be easily integrated and adapted in an array of local to regional applications such as (1) upscaling plot-level measurements (e.g., carbon/energy fluxes), (2) mapping of soils, vegetation, or permafrost, and/or (3) initializing ecosystem biogeochemistry, hydrology, and/or habitat modeling.

  11. Tundra landform and vegetation productivity trend maps for the Arctic Coastal Plain of northern Alaska.

    PubMed

    Lara, Mark J; Nitze, Ingmar; Grosse, Guido; McGuire, A David

    2018-04-10

    Arctic tundra landscapes are composed of a complex mosaic of patterned ground features, varying in soil moisture, vegetation composition, and surface hydrology over small spatial scales (10-100 m). The importance of microtopography and associated geomorphic landforms in influencing ecosystem structure and function is well founded, however, spatial data products describing local to regional scale distribution of patterned ground or polygonal tundra geomorphology are largely unavailable. Thus, our understanding of local impacts on regional scale processes (e.g., carbon dynamics) may be limited. We produced two key spatiotemporal datasets spanning the Arctic Coastal Plain of northern Alaska (~60,000 km 2 ) to evaluate climate-geomorphological controls on arctic tundra productivity change, using (1) a novel 30 m classification of polygonal tundra geomorphology and (2) decadal-trends in surface greenness using the Landsat archive (1999-2014). These datasets can be easily integrated and adapted in an array of local to regional applications such as (1) upscaling plot-level measurements (e.g., carbon/energy fluxes), (2) mapping of soils, vegetation, or permafrost, and/or (3) initializing ecosystem biogeochemistry, hydrology, and/or habitat modeling.

  12. Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors

    NASA Astrophysics Data System (ADS)

    Kerr, Benjamin; Riley, Margaret A.; Feldman, Marcus W.; Bohannan, Brendan J. M.

    2002-07-01

    One of the central aims of ecology is to identify mechanisms that maintain biodiversity. Numerous theoretical models have shown that competing species can coexist if ecological processes such as dispersal, movement, and interaction occur over small spatial scales. In particular, this may be the case for non-transitive communities, that is, those without strict competitive hierarchies. The classic non-transitive system involves a community of three competing species satisfying a relationship similar to the children's game rock-paper-scissors, where rock crushes scissors, scissors cuts paper, and paper covers rock. Such relationships have been demonstrated in several natural systems. Some models predict that local interaction and dispersal are sufficient to ensure coexistence of all three species in such a community, whereas diversity is lost when ecological processes occur over larger scales. Here, we test these predictions empirically using a non-transitive model community containing three populations of Escherichia coli. We find that diversity is rapidly lost in our experimental community when dispersal and interaction occur over relatively large spatial scales, whereas all populations coexist when ecological processes are localized.

  13. Statistical analysis of catalogs of extragalactic objects. II - The Abell catalog of rich clusters

    NASA Technical Reports Server (NTRS)

    Hauser, M. G.; Peebles, P. J. E.

    1973-01-01

    The results of a power-spectrum analysis are presented for the distribution of clusters in the Abell catalog. Clear and direct evidence is found for superclusters with small angular scale, in agreement with the recent study of Bogart and Wagoner (1973). It is also found that the degree and angular scale of the apparent superclustering varies with distance in the manner expected if the clustering is intrinsic to the spatial distribution rather than a consequence of patchy local obscuration.

  14. Direct Numerical Simulations of Small-Scale Gravity Wave Instability Dynamics in Variable Stratification and Shear

    NASA Astrophysics Data System (ADS)

    Mixa, T.; Fritts, D. C.; Laughman, B.; Wang, L.; Kantha, L. H.

    2015-12-01

    Multiple observations provide compelling evidence that gravity wave dissipation events often occur in multi-scale environments having highly-structured wind and stability profiles extending from the stable boundary layer into the mesosphere and lower thermosphere. Such events tend to be highly localized and thus yield local energy and momentum deposition and efficient secondary gravity wave generation expected to have strong influences at higher altitudes [e.g., Fritts et al., 2013; Baumgarten and Fritts, 2014]. Lidars, radars, and airglow imagers typically cannot achieve the spatial resolution needed to fully quantify these small-scale instability dynamics. Hence, we employ high-resolution modeling to explore these dynamics in representative environments. Specifically, we describe numerical studies of gravity wave packets impinging on a sheet of high stratification and shear and the resulting instabilities and impacts on the gravity wave amplitude and momentum flux for various flow and gravity wave parameters. References: Baumgarten, Gerd, and David C. Fritts (2014). Quantifying Kelvin-Helmholtz instability dynamics observed in noctilucent clouds: 1. Methods and observations. Journal of Geophysical Research: Atmospheres, 119.15, 9324-9337. Fritts, D. C., Wang, L., & Werne, J. A. (2013). Gravity wave-fine structure interactions. Part I: Influences of fine structure form and orientation on flow evolution and instability. Journal of the Atmospheric Sciences, 70(12), 3710-3734.

  15. Profiling protein function with small molecule microarrays

    PubMed Central

    Winssinger, Nicolas; Ficarro, Scott; Schultz, Peter G.; Harris, Jennifer L.

    2002-01-01

    The regulation of protein function through posttranslational modification, local environment, and protein–protein interaction is critical to cellular function. The ability to analyze on a genome-wide scale protein functional activity rather than changes in protein abundance or structure would provide important new insights into complex biological processes. Herein, we report the application of a spatially addressable small molecule microarray to an activity-based profile of proteases in crude cell lysates. The potential of this small molecule-based profiling technology is demonstrated by the detection of caspase activation upon induction of apoptosis, characterization of the activated caspase, and inhibition of the caspase-executed apoptotic phenotype using the small molecule inhibitor identified in the microarray-based profile. PMID:12167675

  16. ICE911 Research: Preserving and Rebuilding Reflective Ice

    NASA Astrophysics Data System (ADS)

    Field, L. A.; Chetty, S.; Manzara, A.; Venkatesh, S.

    2014-12-01

    We have developed a localized surface albedo modification technique that shows promise as a method to increase reflective multi-year ice using floating materials, chosen so as to have low subsidiary environmental impact. It is now well-known that multi-year reflective ice has diminished rapidly in the Arctic over the past 3 decades and this plays a part in the continuing rapid decrease of summer-time ice. As summer-time bright ice disappears, the Arctic is losing its ability to reflect summer insolation, and this has widespread climatic effects, as well as a direct effect on sea level rise, as oceans heat and once-land-based ice melts into the sea. We have tested the albedo modification technique on a small scale over six Winter/Spring seasons at sites including California's Sierra Nevada Mountains, a Canadian lake, and a small man-made lake in Minnesota, using various materials and an evolving array of instrumentation. The materials can float and can be made to minimize effects on marine habitat and species. The instrumentation is designed to be deployed in harsh and remote locations. Localized snow and ice preservation, and reductions in water heating, have been quantified in small-scale testing. We have continued to refine our material and deployment approaches, and we have had laboratory confirmation by NASA. In the field, the materials were successfully deployed to shield underlying snow and ice from melting; applications of granular materials remained stable in the face of local wind and storms. We are evaluating the effects of snow and ice preservation for protection of infrastructure and habitat stabilization, and we are concurrently developing our techniques to aid in water conservation. Localized albedo modification options such as those being studied in this work may act to preserve ice, glaciers, permafrost and seasonal snow areas, and perhaps aid natural ice formation processes. If this method is deployed on a large enough scale, it could conceivably bring about a reduction in the Ice-Albedo Feedback Effect, possibly slowing one of the key effects and factors in climate change.

  17. Identification of unknown apple cultivars demonstrates the impact of local breeding program on cultivar diversity

    USDA-ARS?s Scientific Manuscript database

    Apple trees, either abandoned or cared for, are common on the North American landscape. These trees can live for decades, and therefore represent a record of large- and small-scale agricultural practices through time. Here, we assessed the genetic diversity and identity of 330 unknown apple trees in...

  18. Managing the Primary Curriculum: Policy into Practice in England

    ERIC Educational Resources Information Center

    Gillard, Linda; Whitby, Virginia

    2007-01-01

    This paper reports on research into how effective non-statutory guidance has been in managing the primary science curriculum in England. A small-scale qualitative study was used to elicit the views of teachers, local education authority advisors, an Ofsted inspector and a policy-maker. The findings indicate that the guidance is influencing the…

  19. Synchrony in small mammal community dynamics across a forested landscape

    Treesearch

    Ryan B. Stephens; Daniel J. Hocking; Mariko Yamasaki; Rebecca J. Rowe

    2016-01-01

    Long- term studies at local scales indicate that fluctuations in abundance among trophically similar species are often temporally synchronized. Complementary studies on synchrony across larger spatial extents are less common, as are studies that investigate the subsequent impacts on community dynamics across the landscape. We investigate the impact of species...

  20. Progressive Mid-latitude Afforestation: Local and Remote Climate Impacts in the Framework of Two Coupled Earth System Models

    NASA Astrophysics Data System (ADS)

    Lague, Marysa

    Vegetation influences the atmosphere in complex and non-linear ways, such that large-scale changes in vegetation cover can drive changes in climate on both local and global scales. Large-scale land surface changes have been shown to introduce excess energy to one hemisphere, causing a shift in atmospheric circulation on a global scale. However, past work has not quantified how the climate response scales with the area of vegetation. Here, we systematically evaluate the response of climate to linearly increasing the area of forest cover over the northern mid-latitudes. We show that the magnitude of afforestation of the northern mid-latitudes determines the climate response in a non-linear fashion, and identify a threshold in vegetation-induced cloud feedbacks - a concept not previously addressed by large-scale vegetation manipulation experiments. Small increases in tree cover drive compensating cloud feedbacks, while latent heat fluxes reach a threshold after sufficiently large increases in tree cover, causing the troposphere to warm and dry, subsequently reducing cloud cover. Increased absorption of solar radiation at the surface is driven by both surface albedo changes and cloud feedbacks. We identify how vegetation-induced changes in cloud cover further feedback on changes in the global energy balance. We also show how atmospheric cross-equatorial energy transport changes as the area of afforestation is incrementally increased (a relationship which has not previously been demonstrated). This work demonstrates that while some climate effects (such as energy transport) of large scale mid-latitude afforestation scale roughly linearly across a wide range of afforestation areas, others (such as the local partitioning of the surface energy budget) are non-linear, and sensitive to the particular magnitude of mid-latitude forcing. Our results highlight the importance of considering both local and remote climate responses to large-scale vegetation change, and explore the scaling relationship between changes in vegetation cover and the resulting climate impacts.

  1. The effects of rotational flow, viscosity, thickness, and shape on transonic flutter dip phenomena

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Srivastava, Rakesh; Kaza, Krishna Rao V.

    1988-01-01

    The transonic flutter dip phenomena on thin airfoils, which are employed for propfan blades, is investigated using an integrated Euler/Navier-Stokes code and a two degrees of freedom typical section structural model. As a part of the code validation, the flutter characteristics of the NACA 64A010 airfoil are also investigated. In addition, the effects of artificial dissipation models, rotational flow, initial conditions, mean angle of attack, viscosity, airfoil thickness and shape on flutter are investigated. The results obtained with a Euler code for the NACA 64A010 airfoil are in reasonable agreement with published results obtained by using transonic small disturbance and Euler codes. The two artificial dissipation models, one based on the local pressure gradient scaled by a common factor and the other based on the local pressure gradient scaled by a spectral radius, predicted the same flutter speeds except in the recovery region for the case studied. The effects of rotational flow, initial conditions, mean angle of attack, and viscosity for the Reynold's number studied seem to be negligible or small on the minima of the flutter dip.

  2. Quantification of the Early Small-Scale Fishery in the North-Eastern Baltic Sea in the Late 17th Century

    PubMed Central

    Verliin, Aare; Ojaveer, Henn; Kaju, Katre; Tammiksaar, Erki

    2013-01-01

    Historical perspectives on fisheries and related human behaviour provide valuable information on fishery resources and their exploitation, helping to more appropriately set management targets and determine relevant reference levels. In this study we analyse historical fisheries and fish trade at the north-eastern Baltic Sea coast in the late 17th century. Local consumption and export together amounted to the annual removal of about 200 tonnes of fish from the nearby sea and freshwater bodies. The fishery was very diverse and exploited altogether one cyclostome and 17 fish species with over 90% of the catch being consumed locally. The exported fish consisted almost entirely of high-valued species with Stockholm (Sweden) being the most important export destination. Due to rich political history and natural features of the region, we suggest that the documented evidence of this small-scale fishery should be considered as the first quantitative summary of exploitation of aquatic living resources in the region and can provide a background for future analyses. PMID:23861914

  3. Efficient Computation of Sparse Matrix Functions for Large-Scale Electronic Structure Calculations: The CheSS Library.

    PubMed

    Mohr, Stephan; Dawson, William; Wagner, Michael; Caliste, Damien; Nakajima, Takahito; Genovese, Luigi

    2017-10-10

    We present CheSS, the "Chebyshev Sparse Solvers" library, which has been designed to solve typical problems arising in large-scale electronic structure calculations using localized basis sets. The library is based on a flexible and efficient expansion in terms of Chebyshev polynomials and presently features the calculation of the density matrix, the calculation of matrix powers for arbitrary powers, and the extraction of eigenvalues in a selected interval. CheSS is able to exploit the sparsity of the matrices and scales linearly with respect to the number of nonzero entries, making it well-suited for large-scale calculations. The approach is particularly adapted for setups leading to small spectral widths of the involved matrices and outperforms alternative methods in this regime. By coupling CheSS to the DFT code BigDFT, we show that such a favorable setup is indeed possible in practice. In addition, the approach based on Chebyshev polynomials can be massively parallelized, and CheSS exhibits excellent scaling up to thousands of cores even for relatively small matrix sizes.

  4. Metacommunity versus Biogeography: A Case Study of Two Groups of Neotropical Vegetation-Dwelling Arthropods

    PubMed Central

    Gonçalves-Souza, Thiago; Romero, Gustavo Q.; Cottenie, Karl

    2014-01-01

    Biogeography and metacommunity ecology provide two different perspectives on species diversity. Both are spatial in nature but their spatial scales do not necessarily match. With recent boom of metacommunity studies, we see an increasing need for clear discrimination of spatial scales relevant for both perspectives. This discrimination is a necessary prerequisite for improved understanding of ecological phenomena across scales. Here we provide a case study to illustrate some spatial scale-dependent concepts in recent metacommunity studies and identify potential pitfalls. We presented here the diversity patterns of Neotropical lepidopterans and spiders viewed both from metacommunity and biogeographical perspectives. Specifically, we investigated how the relative importance of niche- and dispersal-based processes for community assembly change at two spatial scales: metacommunity scale, i.e. within a locality, and biogeographical scale, i.e. among localities widely scattered along a macroclimatic gradient. As expected, niche-based processes dominated the community assembly at metacommunity scale, while dispersal-based processes played a major role at biogeographical scale for both taxonomical groups. However, we also observed small but significant spatial effects at metacommunity scale and environmental effects at biogeographical scale. We also observed differences in diversity patterns between the two taxonomical groups corresponding to differences in their dispersal modes. Our results thus support the idea of continuity of processes interactively shaping diversity patterns across scales and emphasize the necessity of integration of metacommunity and biogeographical perspectives. PMID:25549332

  5. Demographic and genetic viability of a medium-sized ground-dwelling mammal in a fire prone, rapidly urbanizing landscape.

    PubMed

    Ramalho, Cristina E; Ottewell, Kym M; Chambers, Brian K; Yates, Colin J; Wilson, Barbara A; Bencini, Roberta; Barrett, Geoff

    2018-01-01

    The rapid and large-scale urbanization of peri-urban areas poses major and complex challenges for wildlife conservation. We used population viability analysis (PVA) to evaluate the influence of urban encroachment, fire, and fauna crossing structures, with and without accounting for inbreeding effects, on the metapopulation viability of a medium-sized ground-dwelling mammal, the southern brown bandicoot (Isoodon obesulus), in the rapidly expanding city of Perth, Australia. We surveyed two metapopulations over one and a half years, and parameterized the PVA models using largely field-collected data. The models revealed that spatial isolation imposed by housing and road encroachment has major impacts on I. obesulus. Although the species is known to persist in small metapopulations at moderate levels of habitat fragmentation, the models indicate that these populations become highly vulnerable to demographic decline, genetic deterioration, and local extinction under increasing habitat connectivity loss. Isolated metapopulations were also predicted to be highly sensitive to fire, with large-scale fires having greater negative impacts on population abundance than small-scale ones. To reduce the risk of decline and local extirpation of I. obesulus and other small- to medium-sized ground-dwelling mammals in urbanizing, fire prone landscapes, we recommend that remnant vegetation and vegetated, structurally-complex corridors between habitat patches be retained. Well-designed road underpasses can be effective to connect habitat patches and reduce the probability of inbreeding and genetic differentiation; however, adjustment of fire management practices to limit the size of unplanned fires and ensure the retention of long unburnt vegetation will also be required to ensure persistence. Our study supports the evidence that in rapidly urbanizing landscapes, a pro-active conservation approach is required that manages species at the metapopulation level and that prioritizes metapopulations and habitat with greater long-term probability of persistence and conservation capacity, respectively. This strategy may help us prevent future declines and local extirpations, and currently relatively common species from becoming rare.

  6. Demographic and genetic viability of a medium-sized ground-dwelling mammal in a fire prone, rapidly urbanizing landscape

    PubMed Central

    Ottewell, Kym M.; Chambers, Brian K.; Yates, Colin J.; Wilson, Barbara A.; Bencini, Roberta; Barrett, Geoff

    2018-01-01

    The rapid and large-scale urbanization of peri-urban areas poses major and complex challenges for wildlife conservation. We used population viability analysis (PVA) to evaluate the influence of urban encroachment, fire, and fauna crossing structures, with and without accounting for inbreeding effects, on the metapopulation viability of a medium-sized ground-dwelling mammal, the southern brown bandicoot (Isoodon obesulus), in the rapidly expanding city of Perth, Australia. We surveyed two metapopulations over one and a half years, and parameterized the PVA models using largely field-collected data. The models revealed that spatial isolation imposed by housing and road encroachment has major impacts on I. obesulus. Although the species is known to persist in small metapopulations at moderate levels of habitat fragmentation, the models indicate that these populations become highly vulnerable to demographic decline, genetic deterioration, and local extinction under increasing habitat connectivity loss. Isolated metapopulations were also predicted to be highly sensitive to fire, with large-scale fires having greater negative impacts on population abundance than small-scale ones. To reduce the risk of decline and local extirpation of I. obesulus and other small- to medium-sized ground-dwelling mammals in urbanizing, fire prone landscapes, we recommend that remnant vegetation and vegetated, structurally-complex corridors between habitat patches be retained. Well-designed road underpasses can be effective to connect habitat patches and reduce the probability of inbreeding and genetic differentiation; however, adjustment of fire management practices to limit the size of unplanned fires and ensure the retention of long unburnt vegetation will also be required to ensure persistence. Our study supports the evidence that in rapidly urbanizing landscapes, a pro-active conservation approach is required that manages species at the metapopulation level and that prioritizes metapopulations and habitat with greater long-term probability of persistence and conservation capacity, respectively. This strategy may help us prevent future declines and local extirpations, and currently relatively common species from becoming rare. PMID:29444118

  7. Adaptive nest clustering and density-dependent nest survival in dabbling ducks

    USGS Publications Warehouse

    Ringelman, Kevin M.; Eadie, John M.; Ackerman, Joshua T.

    2014-01-01

    Density-dependent population regulation is observed in many taxa, and understanding the mechanisms that generate density dependence is especially important for the conservation of heavily-managed species. In one such system, North American waterfowl, density dependence is often observed at continental scales, and nest predation has long been implicated as a key factor driving this pattern. However, despite extensive research on this topic, it remains unclear if and how nest density influences predation rates. Part of this confusion may have arisen because previous studies have studied density-dependent predation at relatively large spatial and temporal scales. Because the spatial distribution of nests changes throughout the season, which potentially influences predator behavior, nest survival may vary through time at relatively small spatial scales. As such, density-dependent nest predation might be more detectable at a spatially- and temporally-refined scale and this may provide new insights into nest site selection and predator foraging behavior. Here, we used three years of data on nest survival of two species of waterfowl, mallards and gadwall, to more fully explore the relationship between local nest clustering and nest survival. Throughout the season, we found that the distribution of nests was consistently clustered at small spatial scales (˜50–400 m), especially for mallard nests, and that this pattern was robust to yearly variation in nest density and the intensity of predation. We demonstrated further that local nest clustering had positive fitness consequences – nests with closer nearest neighbors were more likely to be successful, a result that is counter to the general assumption that nest predation rates increase with nest density.

  8. Antibiotic Resistance in Animal and Environmental Samples Associated with Small-Scale Poultry Farming in Northwestern Ecuador

    PubMed Central

    Braykov, Nikolay P.; Eisenberg, Joseph N. S.; Grossman, Marissa; Zhang, Lixin; Vasco, Karla; Cevallos, William; Muñoz, Diana; Acevedo, Andrés; Moser, Kara A.; Marrs, Carl F.; Trostle, James; Trueba, Gabriel

    2016-01-01

    ABSTRACT The effects of animal agriculture on the spread of antibiotic resistance (AR) are cross-cutting and thus require a multidisciplinary perspective. Here we use ecological, epidemiological, and ethnographic methods to examine populations of Escherichia coli circulating in the production poultry farming environment versus the domestic environment in rural Ecuador, where small-scale poultry production employing nontherapeutic antibiotics is increasingly common. We sampled 262 “production birds” (commercially raised broiler chickens and laying hens) and 455 “household birds” (raised for domestic use) and household and coop environmental samples from 17 villages between 2010 and 2013. We analyzed data on zones of inhibition from Kirby-Bauer tests, rather than established clinical breakpoints for AR, to distinguish between populations of organisms. We saw significantly higher levels of AR in bacteria from production versus household birds; resistance to either amoxicillin-clavulanate, cephalothin, cefotaxime, and gentamicin was found in 52.8% of production bird isolates and 16% of household ones. A strain jointly resistant to the 4 drugs was exclusive to a subset of isolates from production birds (7.6%) and coop surfaces (6.5%) and was associated with a particular purchase site. The prevalence of AR in production birds declined with bird age (P < 0.01 for all antibiotics tested except tetracycline, sulfisoxazole, and trimethoprim-sulfamethoxazole). Farming status did not impact AR in domestic environments at the household or village level. Our results suggest that AR associated with small-scale poultry farming is present in the immediate production environment and likely originates from sources outside the study area. These outside sources might be a better place to target control efforts than local management practices. IMPORTANCE In developing countries, small-scale poultry farming employing antibiotics as growth promoters is being advanced as an inexpensive source of protein and income. Here, we present the results of a large ecoepidemiological study examining patterns of antibiotic resistance (AR) in E. coli isolates from small-scale poultry production environments versus domestic environments in rural Ecuador, where such backyard poultry operations have become established over the past decade. Our previous research in the region suggests that introduction of AR bacteria through travel and commerce may be an important source of AR in villages of this region. This report extends the prior analysis by examining small-scale production chicken farming as a potential source of resistant strains. Our results suggest that AR strains associated with poultry production likely originate from sources outside the study area and that these outside sources might be a better place to target control efforts than local management practices. PMID:27303705

  9. On the Dynamics of Small-Scale Solar Magnetic Elements

    NASA Technical Reports Server (NTRS)

    Berger, T. E.; Title, A. M.

    1996-01-01

    We report on the dynamics of the small-scale solar magnetic field, based on analysis of very high resolution images of the solar photosphere obtained at the Swedish Vacuum Solar Telescope. The data sets are movies from 1 to 4 hr in length, taken in several wavelength bands with a typical time between frames of 20 s. The primary method of tracking small-scale magnetic elements is with very high contrast images of photospheric bright points, taken through a 12 A bandpass filter centered at 4305 A in the Fraunhofer 'G band.' Previous studies have established that such bright points are unambiguously associated with sites of small-scale magnetic flux in the photosphere, although the details of the mechanism responsible for the brightening of the flux elements remain uncertain. The G band bright points move in the intergranular lanes at speeds from 0.5 to 5 km/s. The motions appear to be constrained to the intergranular lanes and are primarily driven by the evolution of the local granular convection flow field. Continual fragmentation and merging of flux is the fundamental evolutionary mode of small-scale magnetic structures in the solar photosphere. Rotation and folding of chains or groups of bright points are also observed. The timescale for magnetic flux evolution in active region plage is on the order of the correlation time of granulation (typically 6-8 minutes), but significant morphological changes can occur on timescales as short as 100 S. Smaller fragments are occasionally seen to fade beyond observable contrast. The concept of a stable, isolated subarcsecond magnetic 'flux tube' in the solar photosphere is inconsistent with the observations presented here.

  10. Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment

    NASA Astrophysics Data System (ADS)

    Santamaría, Luis

    2002-06-01

    Non-marine aquatic vascular plants generally show broad distributional ranges. Climatic factors seem to have limited effects on their distributions, besides the determination of major disjunctions (tropical-temperate-subarctic). Dispersal should have been frequent enough to assure the quick colonisation of extensive areas following glacial retreat, but dispersal limitation is still apparent in areas separated by geographic barriers. Aquatic vascular plants also show limited taxonomic differentiation and low within-species genetic variation. Variation within populations is particularly low, but variation among populations seems to be relatively high, mainly due to the persistence of long-lived clones. Ecotypic differentiation is often related to factors that constrain clonal reproduction (salinity and ephemeral inundation). Inland aquatic habitats are heterogeneous environments, but this heterogeneity largely occurs at relatively small scales (within waterbodies and among neighbouring ones). They also represent a stressful environment for plants, characterised by low carbon availability, shaded conditions, sediment anoxia, mechanical damage by currents and waves, significant restrictions to sexual reproduction, and sometimes also osmotic stress and limited nutrient supply. I propose that the generality of broad distributions and low differentiation among the inland aquatic flora is best explained by a combination of: (1) selection for stress-tolerant taxa with broad tolerance ranges. (2) The selective advantages provided by clonal growth and multiplication, which increases plant tolerance to stress, genet survivorship and population viability. (3) Long-distance dispersal of sexual propagules and high local dispersal of asexual clones. (4) The generality of broad plastic responses, promoted by the combination of clonal growth, high local dispersal, small-scale spatial heterogeneity and temporal variability.

  11. Does small-bodied salmon spawning activity enhance streambed mobility?

    NASA Astrophysics Data System (ADS)

    Hassan, Marwan A.; Tonina, Daniele; Buxton, Todd H.

    2015-09-01

    Female salmonids bury and lay their eggs in streambeds by digging a pit, which is then covered with sediment from a second pit that is dug immediately upstream. The spawning process alters streambed topography, winnows fine sediment, and mixes sediment in the active layer. The resulting egg nests (redds) contain coarser and looser sediments than those of unspawned streambed areas, and display a dune-like shape with an amplitude and length that vary with fish size, substrate conditions, and flow conditions. Redds increase local bed surface roughness (<10-1 channel width, W), but may reduce the size of macro bedforms by eroding reach-scale topography (100-101W). Research has suggested that spawning may increase flow resistance due to redd form drag, resulting in lower grain shear stress and less particle mobility. Spawning, also prevents streambed armoring by mixing surface and subsurface material, potentially increasing particle mobility. Here we use two-dimensional hydraulic modeling with detailed prespawning and postspawning bathymetries and field observations to test the effect of spawning by small-bodied salmonids on sediment transport. Our results show that topographical roughness from small salmon redds has negligible effects on shear stress at the reach-unit scale, and limited effects at the local scale. Conversely, results indicate sediment mixing reduces armoring and enhances sediment mobility, which increases potential bed load transport by subsequent floods. River restoration in fish-bearing streams should take into consideration the effects of redd excavation on channel stability. This is particularly important for streams that historically supported salmonids and are the focus of habitat restoration actions.

  12. When small changes matter: the role of cross-scale interactions between habitat and ecological connectivity in recovery.

    PubMed

    Thrush, Simon F; Hewitt, Judi E; Lohrer, Andrew M; Chiaroni, Luca D

    2013-01-01

    Interaction between the diversity of local communities and the degree of connectivity between them has the potential to influence local recovery rates and thus profoundly affect community dynamics in the face of the cumulative impacts that occur across regions. Although such complex interactions have been modeled, field experiments in natural ecosystems to investigate the importance of interactions between local and regional processes are rare, especially so in coastal marine seafloor habitats subjected to many types of disturbance. We conducted a defaunation experiment at eight subtidal sites, incorporating manipulation of habitat structure, to test the relative importance of local habitat features and colonist supply in influencing macrobenthic community recovery rate. Our sites varied in community composition, habitat characteristics, and hydrodynamic conditions, and we conducted the experiment in two phases, exposing defaunated plots to colonists during periods of either high or low larval colonist supply. In both phases of the experiment, five months after disturbance, we were able to develop models that explained a large proportion of variation in community recovery rate between sites. Our results emphasize that the connectivity to the regional species pool influences recovery rate, and although local habitat effects were important, the strength of these effects was affected by broader-scale site characteristics and connectivity. Empirical evidence that cross-scale interactions are important in disturbance-recovery dynamics emphasizes the complex dynamics underlying seafloor community responses to cumulative disturbance.

  13. Detection of large-scale concentric gravity waves from a Chinese airglow imager network

    NASA Astrophysics Data System (ADS)

    Lai, Chang; Yue, Jia; Xu, Jiyao; Yuan, Wei; Li, Qinzeng; Liu, Xiao

    2018-06-01

    Concentric gravity waves (CGWs) contain a broad spectrum of horizontal wavelengths and periods due to their instantaneous localized sources (e.g., deep convection, volcanic eruptions, or earthquake, etc.). However, it is difficult to observe large-scale gravity waves of >100 km wavelength from the ground for the limited field of view of a single camera and local bad weather. Previously, complete large-scale CGW imagery could only be captured by satellite observations. In the present study, we developed a novel method that uses assembling separate images and applying low-pass filtering to obtain temporal and spatial information about complete large-scale CGWs from a network of all-sky airglow imagers. Coordinated observations from five all-sky airglow imagers in Northern China were assembled and processed to study large-scale CGWs over a wide area (1800 km × 1 400 km), focusing on the same two CGW events as Xu et al. (2015). Our algorithms yielded images of large-scale CGWs by filtering out the small-scale CGWs. The wavelengths, wave speeds, and periods of CGWs were measured from a sequence of consecutive assembled images. Overall, the assembling and low-pass filtering algorithms can expand the airglow imager network to its full capacity regarding the detection of large-scale gravity waves.

  14. Scale-specific correlations between habitat heterogeneity and soil fauna diversity along a landscape structure gradient.

    PubMed

    Vanbergen, Adam J; Watt, Allan D; Mitchell, Ruth; Truscott, Anne-Marie; Palmer, Stephen C F; Ivits, Eva; Eggleton, Paul; Jones, T Hefin; Sousa, José Paulo

    2007-09-01

    Habitat heterogeneity contributes to the maintenance of diversity, but the extent that landscape-scale rather than local-scale heterogeneity influences the diversity of soil invertebrates-species with small range sizes-is less clear. Using a Scottish habitat heterogeneity gradient we correlated Collembola and lumbricid worm species richness and abundance with different elements (forest cover, habitat richness and patchiness) and qualities (plant species richness, soil variables) of habitat heterogeneity, at landscape (1 km(2)) and local (up to 200 m(2)) scales. Soil fauna assemblages showed considerable turnover in species composition along this habitat heterogeneity gradient. Soil fauna species richness and turnover was greatest in landscapes that were a mosaic of habitats. Soil fauna diversity was hump-shaped along a gradient of forest cover, peaking where there was a mixture of forest and open habitats in the landscape. Landscape-scale habitat richness was positively correlated with lumbricid diversity, while Collembola and lumbricid abundances were negatively and positively related to landscape spatial patchiness. Furthermore, soil fauna diversity was positively correlated with plant diversity, which in turn peaked in the sites that were a mosaic of forest and open habitat patches. There was less evidence that local-scale habitat variables (habitat richness, tree cover, plant species richness, litter cover, soil pH, depth of organic horizon) affected soil fauna diversity: Collembola diversity was independent of all these measures, while lumbricid diversity positively and negatively correlated with vascular plant species richness and tree canopy density. Landscape-scale habitat heterogeneity affects soil diversity regardless of taxon, while the influence of habitat heterogeneity at local scales is dependent on taxon identity, and hence ecological traits, e.g. body size. Landscape-scale habitat heterogeneity by providing different niches and refuges, together with passive dispersal and population patch dynamics, positively contributes to soil faunal diversity.

  15. A numerical study of the interaction between unsteady free-stream disturbances and localized variations in surface geometry

    NASA Technical Reports Server (NTRS)

    Bodonyi, R. J.; Tadjfar, M.; Welch, W. J. C.; Duck, P. W.

    1989-01-01

    A numerical study of the generation of Tollmien-Schlichting (T-S) waves due to the interaction between a small free-stream disturbance and a small localized variation of the surface geometry has been carried out using both finite-difference and spectral methods. The nonlinear steady flow is of the viscous-inviscid interactive type while the unsteady disturbed flow is assumed to be governed by the Navier-Stokes equations linearized about this flow. Numerical solutions illustrate the growth or decay of the T-S waves generated by the interaction between the free-stream disturbance and the surface distortion, depending on the value of the scaled Strouhal number. An important result of this receptivity problem is the numerical determination of the amplitude of the T-S waves.

  16. Three Mars Years of Surface Albedo Changes Observed by the Mars Reconnaissance Orbiter MARCI Investigation

    NASA Astrophysics Data System (ADS)

    Bell, J. F.; Wellington, D. F.; Anderson, R. B.; Wolff, M. J.; Supulver, K. D.; Cantor, B. A.; Malin, M. C.

    2012-12-01

    The NASA Mars Reconnaissance Orbiter (MRO) spacecraft has been in its prime mapping orbit of the Red Planet since November 2006, a little over three Mars years. MRO's Mars Color Imager (MARCI) investigation has been acquiring wide-angle, approximately 1 km/pixel resolution multispectral images (from the UV to the short-wave near-IR) throughout the mission from the spacecraft's 300 km circular polar orbit. As of fall 2012, MARCI has acquired more than 25,000 image sequences, with its 180 degree field of view covering local solar times of approximately 15:00 +/- 2 hours at the equator. These images can be merged and map projected to provide near-global imaging coverage of Mars for almost every sol of the mission. These maps have been used to characterize and monitor changes in seasonal and interannual dust and water ice cloud opacity, growth and decay of local- to global-scale dust storms, and polar cap growth and recession. The data are also well-suited for studying small- to large-scale changes in surface albedo markings, important for understanding the nature of aeolian transport of dust and sand in the current Martian environment, as well as for modeling the radiative influence of the darker (warmer) or brighter (cooler) surface on local-scale atmospheric circulation and storm systems. We are using calibrated, map-projected, coregistered subsets of MARCI images to characterize and investigate surface albedo changes in a number of specific regions of interest, based on past Viking Orbiter, Hubble Space Telescope, and Mars Global Surveyor images of changing large-scale surface albedo patterns over recent decades, as well as recent surface missions that have characterized small-scale changes in surface albedo. Specific areas of study of large-scale changes include the dark areas Syrtis Major, Acidalia, Cimmeria, Sirenum, and Solis Lacus, and our initial focus areas for small-scale variations include regions in and around the landing sites of the Mars Exploration Rovers Spirit (Gusev crater) and Opportunity (Meridiani Planum), as well as Gale crater, the landing site for the Mars Science Laboratory rover Curiosity. Time-lapse animations of albedo changes in and around Gale crater, for example, reveal tens of km-scale changes in low albedo surface markings both within the crater (including near the rover's planned traverse path) as well as within the 500 km long low albedo wind streak south of the crater. Combined with morphologic, thermal inertia, and compositional/mineralogic constraints from other data sets, MARCI albedo variation measurements can help to constrain present rates of dust and sand transport in a variety of environments on Mars.

  17. How large is large enough for insects? Forest fragmentation effects at three spatial scales

    NASA Astrophysics Data System (ADS)

    Ribas, C. R.; Sobrinho, T. G.; Schoereder, J. H.; Sperber, C. F.; Lopes-Andrade, C.; Soares, S. M.

    2005-02-01

    Several mechanisms may lead to species loss in fragmented habitats, such as edge and shape effects, loss of habitat and heterogeneity. Ants and crickets were sampled in 18 forest remnants in south-eastern Brazil, to test whether a group of small remnants maintains the same insect species richness as similar sized large remnants, at three spatial scales. We tested hypotheses about alpha and gamma diversity to explain the results. Groups of remnants conserve as many species of ants as a single one. Crickets, however, showed a scale-dependent pattern: at small scales there was no significant or important difference between groups of remnants and a single one, while at the larger scale the group of remnants maintained more species. Alpha diversity (local species richness) was similar in a group of remnants and in a single one, at the three spatial scales, both for ants and crickets. Gamma diversity, however, varied both with taxa (ants and crickets) and spatial scale, which may be linked to insect mobility, remnant isolation, and habitat heterogeneity. Biological characteristics of the organisms involved have to be considered when studying fragmentation effects, as well as spatial scale at which it operates. Mobility of the organisms influences fragmentation effects, and consequently conservation strategies.

  18. An adaptive two-stage analog/regression model for probabilistic prediction of small-scale precipitation in France

    NASA Astrophysics Data System (ADS)

    Chardon, Jérémy; Hingray, Benoit; Favre, Anne-Catherine

    2018-01-01

    Statistical downscaling models (SDMs) are often used to produce local weather scenarios from large-scale atmospheric information. SDMs include transfer functions which are based on a statistical link identified from observations between local weather and a set of large-scale predictors. As physical processes driving surface weather vary in time, the most relevant predictors and the regression link are likely to vary in time too. This is well known for precipitation for instance and the link is thus often estimated after some seasonal stratification of the data. In this study, we present a two-stage analog/regression model where the regression link is estimated from atmospheric analogs of the current prediction day. Atmospheric analogs are identified from fields of geopotential heights at 1000 and 500 hPa. For the regression stage, two generalized linear models are further used to model the probability of precipitation occurrence and the distribution of non-zero precipitation amounts, respectively. The two-stage model is evaluated for the probabilistic prediction of small-scale precipitation over France. It noticeably improves the skill of the prediction for both precipitation occurrence and amount. As the analog days vary from one prediction day to another, the atmospheric predictors selected in the regression stage and the value of the corresponding regression coefficients can vary from one prediction day to another. The model allows thus for a day-to-day adaptive and tailored downscaling. It can also reveal specific predictors for peculiar and non-frequent weather configurations.

  19. Local dynamics and spatiotemporal chaos. The Kuramoto- Sivashinsky equation: A case study

    NASA Astrophysics Data System (ADS)

    Wittenberg, Ralf Werner

    The nature of spatiotemporal chaos in extended continuous systems is not yet well-understood. In this thesis, a model partial differential equation, the Kuramoto- Sivashinsky (KS) equation ut+uxxxx+uxx+uux =0 on a large one-dimensional periodic domain, is studied analytically, numerically, and through modeling to obtain a more detailed understanding of the observed spatiotemporally complex dynamics. In particular, with the aid of a wavelet decomposition, the relevant dynamical interactions are shown to be localized in space and scale. Motivated by these results, and by the idea that the attractor on a large domain may be understood via attractors on smaller domains, a spatially localized low- dimensional model for a minimal chaotic box is proposed. A (de)stabilized extension of the KS equation has recently attracted increased interest; for this situation, dissipativity and analyticity areproven, and an explicit shock-like solution is constructed which sheds light on the difficulties in obtaining optimal bounds for the KS equation. For the usual KS equation, the spatiotemporally chaotic state is carefully characterized in real, Fourier and wavelet space. The wavelet decomposition provides good scale separation which isolates the three characteristic regions of the dynamics: large scales of slow Gaussian fluctuations, active scales containing localized interactions of coherent structures, and small scales. Space localization is shown through a comparison of various correlation lengths and a numerical experiment in which different modes are uncoupled to estimate a dynamic interaction length. A detailed picture of the contributions of different scales to the spatiotemporally complex dynamics is obtained via a Galerkin projection of the KS equation onto the wavelet basis, and an extensive series of numerical experiments in which different combinations of wavelet levels are eliminated or forced. These results, and a formalism to derive an effective equation for periodized subsystems externally forced from a larger system, motivate various models for spatially localized forced systems. There is convincing evidence that short periodized systems, internally forced at the largest scales, form a minimal model for the observed extensively chaotic dynamics in larger domains.

  20. Fine-scale genetic response to landscape change in a gliding mammal.

    PubMed

    Goldingay, Ross L; Harrisson, Katherine A; Taylor, Andrea C; Ball, Tina M; Sharpe, David J; Taylor, Brendan D

    2013-01-01

    Understanding how populations respond to habitat loss is central to conserving biodiversity. Population genetic approaches enable the identification of the symptoms of population disruption in advance of population collapse. However, the spatio-temporal scales at which population disruption occurs are still too poorly known to effectively conserve biodiversity in the face of human-induced landscape change. We employed microsatellite analysis to examine genetic structure and diversity over small spatial (mostly 1-50 km) and temporal scales (20-50 years) in the squirrel glider (Petaurus norfolcensis), a gliding mammal that is commonly subjected to a loss of habitat connectivity. We identified genetically differentiated local populations over distances as little as 3 km and within 30 years of landscape change. Genetically isolated local populations experienced the loss of genetic diversity, and significantly increased mean relatedness, which suggests increased inbreeding. Where tree cover remained, genetic differentiation was less evident. This pattern was repeated in two landscapes located 750 km apart. These results lend support to other recent studies that suggest the loss of habitat connectivity can produce fine-scale population genetic change in a range of taxa. This gives rise to the prediction that many other vertebrates will experience similar genetic changes. Our results suggest the future collapse of local populations of this gliding mammal is likely unless habitat connectivity is maintained or restored. Landscape management must occur on a fine-scale to avert the erosion of biodiversity.

  1. Micro-structure and motion of two-dimensional dense short spherocylinder liquids

    NASA Astrophysics Data System (ADS)

    Wang, Wen; Lin, Jyun-Ting; Su, Yen-Shuo; I, Lin

    2018-03-01

    We numerically investigate the micro-structure and motion of 2D liquids composed of dense short spherocylinders, by reducing the shape aspect ratio from 3. It is found that reducing shape aspect ratio from 3 causes a smooth transition from heterogeneous structures composed of crystalline ordered domains with good tetratic alignment order to those with good hexagonal bond-orientational order at an aspect ratio equaling 1.35. In the intermediate regime, both structural orders are strongly deteriorated, and the translational hopping rate reaches a maximum due to the poor particle interlocking of the disordered structure. Shortening rod length allows easier rotation, induces monotonic increase of rotational hopping rates, and resumes the separation of rotational and translational hopping time scales at the small aspect ratio end, after the crossover of their rates in the intermediate regime. At the large shape aspect ratio end, the poor local tetratic order has the same positive effects on facilitating local rotational and translational hopping. In contrast, at the small shape aspect ratio end, the poor local bond orientational order has the opposite effects on facilitating local rotational and translational hopping.

  2. Influence of static habitat attributes on local and regional Rocky intertidal community structure

    USGS Publications Warehouse

    Konar, B.; Iken, K.; Coletti, H.; Monson, Daniel H.; Weitzman, Ben P.

    2016-01-01

    Rocky intertidal communities are structured by local environmental drivers, which can be dynamic, fluctuating on various temporal scales, or static and not greatly varying across years. We examined the role of six static drivers (distance to freshwater, tidewater glacial presence, wave exposure, fetch, beach slope, and substrate composition) on intertidal community structure across the northern Gulf of Alaska. We hypothesized that community structure is less similar at the local scale compared with the regional scale, coinciding with static drivers being less similar on smaller than larger scales. We also hypothesized that static attributes mainly drive local biological community structure. For this, we surveyed five to six sites in each of the six regions in the mid and low intertidal strata. Across regions, static attributes were not consistently different and only small clusters of sites had similar attributes. Additionally, intertidal communities were less similar on the site compared with the region level. These results suggest that these biological communities are not strongly influenced by the local static attributes measured in this study. An alternative explanation is that static attributes among our regions are not different enough to influence the biological communities. This lack of evidence for a strong static driver may be a result of our site selection, which targeted rocky sheltered communities. This suggests that this habitat may be ideal to examine the influence of dynamic drivers. We recommend that future analyses of dynamic attributes may best be performed after analyses have demonstrated that sites do not differ in static attributes.

  3. Defining ecologically relevant scales for spatial protection with long-term data on an endangered seabird and local prey availability.

    PubMed

    Sherley, Richard B; Botha, Philna; Underhill, Les G; Ryan, Peter G; van Zyl, Danie; Cockcroft, Andrew C; Crawford, Robert J M; Dyer, Bruce M; Cook, Timothée R

    2017-12-01

    Human activities are important drivers of marine ecosystem functioning. However, separating the synergistic effects of fishing and environmental variability on the prey base of nontarget predators is difficult, often because prey availability estimates on appropriate scales are lacking. Understanding how prey abundance at different spatial scales links to population change can help integrate the needs of nontarget predators into fisheries management by defining ecologically relevant areas for spatial protection. We investigated the local population response (number of breeders) of the Bank Cormorant (Phalacrocorax neglectus), a range-restricted endangered seabird, to the availability of its prey, the heavily fished west coast rock lobster (Jasus lalandii). Using Bayesian state-space modeled cormorant counts at 3 colonies, 22 years of fisheries-independent data on local lobster abundance, and generalized additive modeling, we determined the spatial scale pertinent to these relationships in areas with different lobster availability. Cormorant numbers responded positively to lobster availability in the regions with intermediate and high abundance but not where regime shifts and fishing pressure had depleted lobster stocks. The relationships were strongest when lobsters 20-30 km offshore of the colony were considered, a distance greater than the Bank Cormorant's foraging range when breeding, and may have been influenced by prey availability for nonbreeding birds, prey switching, or prey ecology. Our results highlight the importance of considering the scale of ecological relationships in marine spatial planning and suggest that designing spatial protection around focal species can benefit marine predators across their full life cycle. We propose the precautionary implementation of small-scale marine protected areas, followed by robust assessment and adaptive-management, to confirm population-level benefits for the cormorants, their prey, and the wider ecosystem, without negative impacts on local fisheries. © 2017 Society for Conservation Biology.

  4. Identifying food deserts and swamps based on relative healthy food access: a spatio-temporal Bayesian approach.

    PubMed

    Luan, Hui; Law, Jane; Quick, Matthew

    2015-12-30

    Obesity and other adverse health outcomes are influenced by individual- and neighbourhood-scale risk factors, including the food environment. At the small-area scale, past research has analysed spatial patterns of food environments for one time period, overlooking how food environments change over time. Further, past research has infrequently analysed relative healthy food access (RHFA), a measure that is more representative of food purchasing and consumption behaviours than absolute outlet density. This research applies a Bayesian hierarchical model to analyse the spatio-temporal patterns of RHFA in the Region of Waterloo, Canada, from 2011 to 2014 at the small-area level. RHFA is calculated as the proportion of healthy food outlets (healthy outlets/healthy + unhealthy outlets) within 4-km from each small-area. This model measures spatial autocorrelation of RHFA, temporal trend of RHFA for the study region, and spatio-temporal trends of RHFA for small-areas. For the study region, a significant decreasing trend in RHFA is observed (-0.024), suggesting that food swamps have become more prevalent during the study period. For small-areas, significant decreasing temporal trends in RHFA were observed for all small-areas. Specific small-areas located in south Waterloo, north Kitchener, and southeast Cambridge exhibited the steepest decreasing spatio-temporal trends and are classified as spatio-temporal food swamps. This research demonstrates a Bayesian spatio-temporal modelling approach to analyse RHFA at the small-area scale. Results suggest that food swamps are more prevalent than food deserts in the Region of Waterloo. Analysing spatio-temporal trends of RHFA improves understanding of local food environment, highlighting specific small-areas where policies should be targeted to increase RHFA and reduce risk factors of adverse health outcomes such as obesity.

  5. Birth order in small multihospital systems.

    PubMed

    Luke, R D; Ozcan, Y A; Begun, J W

    1990-06-01

    The strategic behaviors of small multihospital systems have received little attention in the literature despite the fact that small systems are the predominant scale among multihospital systems. This study examines one important aspect of small-system strategic behaviors: the birth-order or evolutionary patterns of hospital acquisition. The evolutionary patterns of acquisition are compared across three strategic model types studied elsewhere: local market, investment, and historical. Using data obtained from a variety of sources, local market model systems are found, in the sequence of acquisition, to be significantly different from the other two model types in terms of relative distances of acquisitions from the initiating or parent hospital, the sizes of acquisition hospitals, the complexity of those hospitals, and the likelihood that the acquisitions are located in rural areas. Differences between parents and acquisitions are also significant, as hypothesized, for the market model system types, although they are not generally significant for the other two model types. The findings suggest that the market model represents an important strategic form that may have important implications for the restructuring of hospital markets.

  6. Too Big, Too Small, or Just Right? Cost-Efficiency of Environmental Inspection Services in Connecticut.

    PubMed

    Cohen, Jeffrey P; Checko, Patricia J

    2017-12-01

    To assess optimal activity size/mix of Connecticut local public health jurisdictions, through estimating economies of scale/scope/specialization for environmental inspections/services. Connecticut's 74 local health jurisdictions (LHJs) must provide environmental health services, but their efficiency or reasons for wide cost variation are unknown. The public health system is decentralized, with variation in organizational structure/size. We develop/compile a longitudinal dataset covering all 74 LHJs, annually from 2005 to 2012. We estimate a public health services/inspections cost function, where inputs are translated into outputs. We consider separate estimates of economies of scale/scope/specialization for four mandated inspection types. We obtain data from Connecticut Department of Public Health databases, reports, and other publicly available sources. There has been no known previous utilization of this combined dataset. On average, regional districts, municipal departments, and part-time LHJs are performing fewer than the efficient number of inspections. The full-time municipal departments and regional districts are more efficient but still not at the minimum efficient scale. The regional districts' elasticities of scale are larger, implying they are more efficient than municipal health departments. Local health jurisdictions may enhance efficiency by increasing inspections and/or sharing some services. © Health Research and Educational Trust.

  7. Long-wave instabilities of two interlaced helical vortices

    NASA Astrophysics Data System (ADS)

    Quaranta, H. U.; Brynjell-Rahkola, M.; Leweke, T.; Henningson, D. S.

    2016-09-01

    We present a comparison between experimental observations and theoretical predictions concerning long-wave displacement instabilities of the helical vortices in the wake of a two-bladed rotor. Experiments are performed with a small-scale rotor in a water channel, using a set-up that allows the individual triggering of various instability modes at different azimuthal wave numbers, leading to local or global pairing of successive vortex loops. The initial development of the instability and the measured growth rates are in good agreement with the predictions from linear stability theory, based on an approach where the helical vortex system is represented by filaments. At later times, local pairing develops into large-scale distortions of the vortices, whereas for global pairing the non-linear evolution returns the system almost to its initial geometry.

  8. Paleoenvironmental reconstruction of the early Neolithic to middle Bronze Age Peña Larga rock shelter (Álava, Spain) from the small mammal record

    NASA Astrophysics Data System (ADS)

    Rofes, Juan; Zuluaga, Mari Cruz; Murelaga, Xabier; Fernández-Eraso, Javier; Bailon, Salvador; Iriarte, María José; Ortega, Luis Ángel; Alonso-Olazabal, Ainhoa

    2013-03-01

    The Peña Larga site, a rock shelter on the southern slopes of the Cantabrian cordillera (north Spain), is an archeological deposit covering nearly 4000 years, from the early Neolithic to the middle Bronze Age (Atlantic/Subboreal chronozones). It was used both as a household and as a stable, with a hiatus in the Chalcolithic when it was used as a collective sepulcher. Nearly twenty-eight thousand small vertebrate elements were recovered from its seven stratigraphic units, of which 2553 items were identified to the genus and/or species levels. The assemblage is composed of mammals, birds, reptiles, and amphibians. Of these, small mammals were used for paleoenvironmental reconstruction since they are very sensitive to climatic conditions, the sample sizes are large, and their preservation is good. Their distributions over time, measured in terms of relative abundance, serve as reliable proxies of habitat and climate change. The reconstruction of Peña Larga's past environments based on small mammals roughly coincides with the pollen and the amphibian/reptile records on the local scale, and with that of an ice core from Central Greenland on the global scale. This makes it a valuable tool for comparative purposes both in the regional and continental scales.

  9. Recent advances in small-scale mechanical property measurement by nanoindentation

    DOE PAGES

    Pharr, George Mathews

    2015-08-25

    Since its initial development in the early 1980’s [1], nanoindentation has matured into one of the premier testing techniques for measuring mechanical properties at the micrometer and sub-micrometer scales and has emerged as a critical tool that has helped to shape the nanotechnology revolution. At the heart of the technique are testing systems with simple but precise force actuators and displacement measuring devices that record the force–displacement record as a diamond indenter, usually the form of a pyramid or a sphere, is pressed into and withdrawn from a small region in the surface of a material of interest. The nano-scalemore » force–displacement data, which can be obtained with a spatial resolution as small as a few nanometers, contains a wealth of information about the local mechanical properties [2], [3] and [4]. This enables the mechanical characterization of very thin films, like those used in the semiconductor, magnetic storage, and hard coatings industries, as well as very small precipitates, particles and second phases, many of which may not exist in bulk form and cannot be characterized by traditional mechanical testing methods. Here, computer automation of nanoindentation testing systems now routinely provides for complete two-dimensional mapping of properties over regions stretching from sub-micron to millimeters in scale.« less

  10. Residents' attitudes toward tourism development: a case study of Washington, NC

    Treesearch

    Yasong Wang; Robert E. Pfister; Duarte B. Morais

    2007-01-01

    This study examined the relationship between socio-economic and demographic attributes of local residents and their attitudes toward tourism in Washington, NC, a small community where tourism is in its development stage. Residents' attitudes toward tourism were measured by adapting 20 items from the Tourism Impact Attitude Scale developed by Lankford and Howard (...

  11. Mechanisms of cell damage in agitated microcarrier tissue culture reactors

    NASA Technical Reports Server (NTRS)

    Cherry, Robert S.; Papoutsakis, E. Terry

    1986-01-01

    Cells growing on microcarriers may be damaged by collisions of the microcarrier against another microcarrier or the reactor agitator. Bead-bead collisions are caused by small-scale turbulence, which can also cause high local shear stress on the cells. The cells are also exposed to 10-20 Hz cyclic shear stress by bead rotation.

  12. Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time

    Treesearch

    Sarah C. Elmendorf; Gregory H.R. Henry; Robert D. Hollister; Robert G. Björk; Anne D. Bjorkman; Terry V. Callaghan; [and others] NO-VALUE; William Gould; Joel Mercado

    2012-01-01

    Understanding the sensitivity of tundra vegetation to climate warming is critical to forecasting future biodiversity and vegetation feedbacks to climate. In situ warming experiments accelerate climate change on a small scale to forecast responses of local plant communities. Limitations of this approach include the apparent site-specificity of results and uncertainty...

  13. ABA and Diverse Cultural and Linguistic Environments: A Welsh Perspective

    ERIC Educational Resources Information Center

    Jones, E. W.; Hoerger, M.; Hughes, J. C.; Williams, B. M.; Jones, B.; Moseley, Y.; Hughes, D. R.; Prys, D.

    2011-01-01

    Gwynedd Local Education Authority (LEA) in North West Wales, UK, is funding a small-scale autism-specific specialist education service using ABA methodology. The program is available through the medium of Welsh, English or bilingually, depending on the individual needs of the child (Jones and Hoerger in Eur J Behav Anal 10:249-253,…

  14. Qualitative Experimentation, Local Generalizability, and Other Oxymoronic Opportunities for Educated Researchers

    ERIC Educational Resources Information Center

    Brooks, Gordon P.

    2011-01-01

    As lines between research paradigms continue to blur with the ever-increasing popularity of mixed methods research, there are useful, and occasionally oxymoronic, opportunities for educational researchers to juxtapose tools from opposing methods. The gold standard is just not possible in so much of what we do with small-scale research, nor is it…

  15. The use and application of phylogeography for invertebrate conservation research and planning

    Treesearch

    Ryan C. Garrick; Chester J. Sands; Paul Sunnucks

    2006-01-01

    To conserve evolutionary processes within taxa as well as local co-evolutionary associations among taxa, habitat reservation and production forestry management needs to take account of natural genetic-geographic patterns. While vertebrates tend to have at least moderate dispersal and gene flow on a landscape-scale, there are good reasons to expect many small,...

  16. Attitudes and Factors that Influence Decision-Making in Adoption from Care in Northern Ireland

    ERIC Educational Resources Information Center

    Barr, Lily

    2004-01-01

    This is a small-scale local study aimed at exploring the thinking and attitudes that inform or influence decision-making around proceeding to adoption. It also sought to explore or establish practitioners' views of potential tensions in this area and potential supports. It included open questions, attitudinal questions and required respondents to…

  17. Improving Student Retention through Evidence Based Proactive Systems at the Open University (UK)

    ERIC Educational Resources Information Center

    Gibbs, Graham; Regan, Peter; Simpson, Ormond

    2007-01-01

    The Open University has been undertaking an extended initiative to improve student retention through enhanced support for at-risk students. This initiative has evolved through a series of stages from ad hoc small scale local interventions relying largely on tutors and student self-referral, to an institution-wide pro-active system implemented by…

  18. African goat improvement project: A feed the future initiative harnessing genetic diversity for conservation, disease resistance, and improved productivity

    USDA-ARS?s Scientific Manuscript database

    Food production systems in Africa depend heavily on the use of locally adapted animals. These animals are of agricultural, cultural, and economic importance to humans. Goats, in particular, are critical to the small-scale farmer as they are easier to acquire, maintain, and act as scavengers in spar...

  19. Goat breeding in the tropics: development and application of the genomic tools in a USAID "Feed the Future" program

    USDA-ARS?s Scientific Manuscript database

    Food production systems in Africa depend heavily on the use of locally adapted animals. These animals are of agricultural, cultural, and economic importance. Goats, in particular, are critical to the small-scale farmer as they are easier to acquire and maintain. Goats act as scavengers in sparse p...

  20. Opportunities and contradictions in maritime heritage and small-scale fishing--a case study of Catalonia.

    PubMed

    Carbonell, Eliseu

    2014-03-01

    Much has been written in recent years about the crisis in fisheries caused by the critical reduction in catches and about the strategies developed by local communities of fishers in response. The aim of this article is to demonstrate that the use of maritime heritage can also be considered part of these strategies. Like fishers elsewhere, Catalan small-scale fishers face severe threats to their professional survival. Recently some of them have became involved in activities related to maritime heritage as a strategy to draw the attention of policy makers and the general public to their problems, a strategy not without clear contradictions. But beyond these contradictions, the article points out the opportunities that use of maritime heritage offers to fishers in Catalonia as well as elsewhere.

  1. Studies of small-scale plasma inhomogeneities in the cusp ionosphere using sounding rocket data

    NASA Astrophysics Data System (ADS)

    Chernyshov, Alexander A.; Spicher, Andres; Ilyasov, Askar A.; Miloch, Wojciech J.; Clausen, Lasse B. N.; Saito, Yoshifumi; Jin, Yaqi; Moen, Jøran I.

    2018-04-01

    Microprocesses associated with plasma inhomogeneities are studied on the basis of data from the Investigation of Cusp Irregularities (ICI-3) sounding rocket. The ICI-3 rocket is devoted to investigating a reverse flow event in the cusp F region ionosphere. By numerical stability analysis, it is demonstrated that inhomogeneous-energy-density-driven (IEDD) instability can be a mechanism for the excitation of small-scale plasma inhomogeneities. The Local Intermittency Measure (LIM) method also applied the rocket data to analyze irregular structures of the electric field during rocket flight in the cusp. A qualitative agreement between high values of the growth rates of the IEDD instability and the regions with enhanced LIM is observed. This suggests that IEDD instability is connected to turbulent non-Gaussian processes.

  2. Recent Developments in Gravity Wave Effects in Climate Models, and the Global Distribution of Gravity Wave Momentum Flux from Observations and Models

    DTIC Science & Technology

    2009-01-01

    super-pressure balloon observations. Intermit - tency in this work was quantified via 1 = (1 + σ2/µ2)−1 where µ is the mean momentum flux in each...can be very local- ized in both space and time, a concept termed intermit - tency. Because of intermittency, local values can be more than an order of... Fast Fourier synoptic mapping. J. Atmos. Sci., 39, 2601-2614. Sato, K. 1993: Small-scale wind disturbances observed by the MU radar during the passage

  3. The lack of luminous matter in the poles

    NASA Astrophysics Data System (ADS)

    Shatsova, R. B.; Anisimova, G. B.

    2010-01-01

    Many RR Lyral type stars, globular clusters and dwarf galaxus of Local Group are localized in the thin oval envelopes around the holes. 12 ovals over ▵b = 30° are in the zone of Polar Ring of the Galaxy l = (97° and 277°)+/-30°. IRAS sources on λ = 60° and 100 mμ have roughly similar distribution. These small formations partly resemble the cells of large scale of the Universe and maybe have the identical nature. It is possible that the observable picture is formed by the dark matter.

  4. Unsteady Heat Transfer in Channel Flow using Small-Scale Vorticity Concentrations Effected by a Vibrating Reed

    NASA Astrophysics Data System (ADS)

    Hidalgo, Pablo; Glezer, Ari

    2011-11-01

    Heat transfer enhancement by small-scale vorticity concentrations that are induced within the core flow of a mm-scale heated channel are investigated experimentally. These small-scale motions are engendered by the cross stream vibrations of a streamwise cantilevered reed that spans most of the channel's width. The interactions between the reed the core flow over a range of flow rates lead to the formation, shedding, and advection of time-periodic vorticity concentrations that interact with the wall boundary layers, and increase cross stream mixing of the core flow. Heating of the channel walls is controlled using microfabricated serpentine resistive heaters embedded with streamwise arrays of temperature sensors. It is shown that the actuation disrupts the thermal boundary layers and result in significant enhancement of the local and global heat transfer along the channel compared to the baseline flow in the absence of the reed. The effect of the reed on the cross flow is measured using high resolution particle image velocimetry (PIV), and the reed motion is characterized using a laser-based position sensor. The blockage induced by the presence of the reed and its cross stream motion is characterized using detailed streamwise pressure distributions. Supported by DARPA and UTRC.

  5. Signatures of selection in the three-spined stickleback along a small-scale brackish water - freshwater transition zone.

    PubMed

    Konijnendijk, Nellie; Shikano, Takahito; Daneels, Dorien; Volckaert, Filip A M; Raeymaekers, Joost A M

    2015-09-01

    Local adaptation is often obvious when gene flow is impeded, such as observed at large spatial scales and across strong ecological contrasts. However, it becomes less certain at small scales such as between adjacent populations or across weak ecological contrasts, when gene flow is strong. While studies on genomic adaptation tend to focus on the former, less is known about the genomic targets of natural selection in the latter situation. In this study, we investigate genomic adaptation in populations of the three-spined stickleback Gasterosteus aculeatus L. across a small-scale ecological transition with salinities ranging from brackish to fresh. Adaptation to salinity has been repeatedly demonstrated in this species. A genome scan based on 87 microsatellite markers revealed only few signatures of selection, likely owing to the constraints that homogenizing gene flow puts on adaptive divergence. However, the detected loci appear repeatedly as targets of selection in similar studies of genomic adaptation in the three-spined stickleback. We conclude that the signature of genomic selection in the face of strong gene flow is weak, yet detectable. We argue that the range of studies of genomic divergence should be extended to include more systems characterized by limited geographical and ecological isolation, which is often a realistic setting in nature.

  6. Non-linear coherent mode interactions and the control of shear layers

    NASA Technical Reports Server (NTRS)

    Nikitopoulos, D. E.; Liu, J. T. C.

    1990-01-01

    A nonlinear integral formulation, based on local linear stability considerations, is used to study the collective interactions between discrete wave-modes associated with large-scale structures and the mean flow in a developing shear layer. Aspects of shear layer control are examined in light of the sensitivity of these interactions to the initial frequency parameter, modal energy contents and modal phases. Manipulation of the large-scale structure is argued to be an effective means of controlling the flow, including the small-scale turbulence dominated region far downstream. Cases of fundamental, 1st and 2nd subharmonic forcing are discussed in conjunction with relevant experiments.

  7. New numerical solutions of three-dimensional compressible hydrodynamic convection. [in stars

    NASA Technical Reports Server (NTRS)

    Hossain, Murshed; Mullan, D. J.

    1990-01-01

    Numerical solutions of three-dimensional compressible hydrodynamics (including sound waves) in a stratified medium with open boundaries are presented. Convergent/divergent points play a controlling role in the flows, which are dominated by a single frequency related to the mean sound crossing time. Superposed on these rapid compressive flows, slower eddy-like flows eventually create convective transport. The solutions contain small structures stacked on top of larger ones, with vertical scales equal to the local pressure scale heights, H sub p. Although convective transport starts later in the evolution, vertical scales of H sub p are apparently selected at much earlier times by nonlinear compressive effects.

  8. Impact of materials engineering on edge placement error (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Freed, Regina; Mitra, Uday; Zhang, Ying

    2017-04-01

    Transistor scaling has transitioned from wavelength scaling to multi-patterning techniques, due to the resolution limits of immersion of immersion lithography. Deposition and etch have enabled scaling in the by means of SADP and SAQP. Spacer based patterning enables extremely small linewidths, sufficient for several future generations of transistors. However, aligning layers in Z-direction, as well as aligning cut and via patterning layers, is becoming a road-block due to global and local feature variation and fidelity. This presentation will highlight the impact of deposition and etch on this feature alignment (EPE) and illustrate potential paths toward lowering EPE using material engineering.

  9. Data gaps in evidence-based research on small water enterprises in developing countries.

    PubMed

    Opryszko, Melissa C; Huang, Haiou; Soderlund, Kurt; Schwab, Kellogg J

    2009-12-01

    Small water enterprises (SWEs) are water delivery operations that predominantly provide water at the community level. SWEs operate beyond the reach of piped water systems, selling water to households throughout the world. Their ubiquity in the developing world and access to vulnerable populations suggests that these small-scale water vendors may prove valuable in improving potable water availability. This paper assesses the current literature on SWEs to evaluate previous studies and determine gaps in the evidence base. Piped systems and point-of-use products were not included in this assessment. Results indicate that SWES are active in urban, peri-urban and rural areas of Africa, Asia and Latin America. Benefits of SWEs include: no upfront connection fees; demand-driven and flexible to local conditions; and service to large populations without high costs of utility infrastructure. Disadvantages of SWEs include: higher charges for water per unit of volume compared with infrastructure-based utilities; lack of regulation; operation often outside legal structures; no water quality monitoring; increased potential for conflict with local utilities; and potential for extortion by local officials. No rigorous, evidence-based, peer-reviewed scientific studies that control for confounders examining the effectiveness of SWEs in providing potable water were identified.

  10. Local order and crystallization of dense polydisperse hard spheres

    NASA Astrophysics Data System (ADS)

    Coslovich, Daniele; Ozawa, Misaki; Berthier, Ludovic

    2018-04-01

    Computer simulations give precious insight into the microscopic behavior of supercooled liquids and glasses, but their typical time scales are orders of magnitude shorter than the experimentally relevant ones. We recently closed this gap for a class of models of size polydisperse fluids, which we successfully equilibrate beyond laboratory time scales by means of the swap Monte Carlo algorithm. In this contribution, we study the interplay between compositional and geometric local orders in a model of polydisperse hard spheres equilibrated with this algorithm. Local compositional order has a weak state dependence, while local geometric order associated to icosahedral arrangements grows more markedly but only at very high density. We quantify the correlation lengths and the degree of sphericity associated to icosahedral structures and compare these results to those for the Wahnström Lennard-Jones mixture. Finally, we analyze the structure of very dense samples that partially crystallized following a pattern incompatible with conventional fractionation scenarios. The crystal structure has the symmetry of aluminum diboride and involves a subset of small and large particles with size ratio approximately equal to 0.5.

  11. Early Breakdown of Area-Law Entanglement at the Many-Body Delocalization Transition

    NASA Astrophysics Data System (ADS)

    Devakul, Trithep; Singh, Rajiv R. P.

    2015-10-01

    We introduce the numerical linked cluster expansion as a controlled numerical tool for the study of the many-body localization transition in a disordered system with continuous nonperturbative disorder. Our approach works directly in the thermodynamic limit, in any spatial dimension, and does not rely on any finite size scaling procedure. We study the onset of many-body delocalization through the breakdown of area-law entanglement in a generic many-body eigenstate. By looking for initial signs of an instability of the localized phase, we obtain a value for the critical disorder, which we believe should be a lower bound for the true value, that is higher than current best estimates from finite size studies. This implies that most current methods tend to overestimate the extent of the localized phase due to finite size effects making the localized phase appear stable at small length scales. We also study the mobility edge in these systems as a function of energy density, and we find that our conclusion is the same at all examined energies.

  12. The AdS3 propagator and the fate of locality

    NASA Astrophysics Data System (ADS)

    Chen, Hongbin; Fitzpatrick, A. Liam; Kaplan, Jared; Li, Daliang

    2018-04-01

    We recently used Virasoro symmetry considerations to propose an exact formula for a bulk proto-field ϕ in AdS3. In this paper we study the propagator < ϕϕ>. We show that many techniques from the study of conformal blocks can be generalized to compute it, including the semiclassical monodromy method and both forms of the Zamolodchikov recursion relations. When the results from recursion are expanded at large central charge, they match gravitational perturbation theory for a free scalar field coupled to gravity in our chosen gauge. We find that although the propagator is finite and well-defined at long distances, its perturbative expansion in {G}_N=3/2c exhibits UV/IR mixing effects. If we nevertheless interpret < ϕϕ> as a probe of bulk locality, then when {G}_{N{m}_{φ }}≪ 1 locality breaks down at the new short-distance scale {σ}_{\\ast}˜ √[4]{G_N{R}_{AdS}^3} . For ϕ with very large bulk mass, or at small central charge, bulk locality fails at the AdS length scale. In all cases, locality `breakdown' manifests as singularities or branch cuts at spacelike separation arising from non-perturbative quantum gravitational effects.

  13. The Origins of Order: Self-Organization and Selection in Evolution

    NASA Astrophysics Data System (ADS)

    Kauffman, Stuart A.

    The following sections are included: * Introduction * Fitness Landscapes in Sequence Space * The NK Model of Rugged Fitness Landscapes * The NK Model of Random Epistatic Interactions * The Rank Order Statistics on K = N - 1 Random Landscapes * The number of local optima is very large * The expected fraction of fitter 1-mutant neighbors dwindles by 1/2 on each improvement step * Walks to local optima are short and vary as a logarithmic function of N * The expected time to reach an optimum is proportional to the dimensionality of the space * The ratio of accepted to tried mutations scales as lnN/N * Any genotype can only climb to a small fraction of the local optima * A small fraction of the genotypes can climb to any one optimum * Conflicting constraints cause a "complexity catastrophe": as complexity increase accessible adaptive peaks fall toward the mean fitness * The "Tunable" NK Family of Correlated Landscapes * Other Combinatorial Optimization Problems and Their Landscapes * Summary * References

  14. Localization of a small change in a multiple scattering environment without modeling of the actual medium.

    PubMed

    Rakotonarivo, S T; Walker, S C; Kuperman, W A; Roux, P

    2011-12-01

    A method to actively localize a small perturbation in a multiple scattering medium using a collection of remote acoustic sensors is presented. The approach requires only minimal modeling and no knowledge of the scatterer distribution and properties of the scattering medium and the perturbation. The medium is ensonified before and after a perturbation is introduced. The coherent difference between the measured signals then reveals all field components that have interacted with the perturbation. A simple single scatter filter (that ignores the presence of the medium scatterers) is matched to the earliest change of the coherent difference to localize the perturbation. Using a multi-source/receiver laboratory setup in air, the technique has been successfully tested with experimental data at frequencies varying from 30 to 60 kHz (wavelength ranging from 0.5 to 1 cm) for cm-scale scatterers in a scattering medium with a size two to five times bigger than its transport mean free path. © 2011 Acoustical Society of America

  15. Shallowing-upward cyclic patterns within larger-scale transgressive-regressive (T-R) sedimentary sequences, St. Peter through Decorah Formations, Ordovician, Iowa area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witzke, B.J.

    1993-03-01

    Four large-scale (2--8 Ma) T-R sedimentary sequences of M. Ord. age (late Chaz.-Sherm.) were delimited by Witzke Kolata (1980) in the Iowa area, each bounded by local to regional unconformity/disconformity surfaces. These encompass both siliciclastic and carbonate intervals, in ascending order: (1) St. Peter-Glenwood fms., (2) Platteville Fm., (3) Decorah Fm., (4) Dunleith/upper Decorah fms. Finer-scale resolution of depth-related depositional features has led to regional recognition of smaller-scale shallowing-upward cyclicity contained within each large-scale sequence. Such smaller-scale cyclicity encompasses stratigraphic intervals of 1--10 m thickness, with estimated durations of 0.5--1.5 Ma. The St. Peter Sandst. has long been regarded asmore » a classic transgressive sheet sand. However, four discrete shallowing-upward packages characterize the St. Peter-Glenwood interval regionally (IA, MN, NB, KS), including western facies displaying coarsening-upward sandstone packages with condensed conodont-rich brown shale and phosphatic sediments in their lower part (local oolitic ironstone), commonly above pyritic hardgrounds. Regional continuity of small-scale cyclic patterns in M. Ord. strata of the Iowa area may suggest eustatic controls; this can be tested through inter-regional comparisons.« less

  16. Numerical Study of Rotating Turbulence with External Forcing

    NASA Technical Reports Server (NTRS)

    Yeung, P. K.; Zhou, Ye

    1998-01-01

    Direct numerical simulation at 256(exp 3) resolution have been carried out to study the response of isotropic turbulence to the concurrent effects of solid-body rotation and numerical forcing at the large scales. Because energy transfer to the smaller scales is weakened by rotation, energy input from forcing gradually builds up at the large scales, causing the overall kinetic energy to increase. At intermediate wavenumbers the energy spectrum undergoes a transition from a limited k(exp -5/3) inertial range to k(exp -2) scaling recently predicted in the literature. Although the Reynolds stress tensor remains approximately isotropic and three-components, evidence for anisotropy and quasi- two-dimensionality in length scales and spectra in different velocity components and directions is strong. The small scales are found to deviate from local isotropy, primarily as a result of anisotropic transfer to the high wavenumbers. To understand the spectral dynamics of this flow we study the detailed behavior of nonlinear triadic interactions in wavenumber space. Spectral transfer in the velocity component parallel to the axis of rotation is qualitatively similar to that in non-rotating turbulence; however the perpendicular component is characterized by a greatly suppressed energy cascade at high wavenumber and a local reverse transfer at the largest scales. The broader implications of this work are briefly addressed.

  17. Characterizing multi-scale self-similar behavior and non-statistical properties of fluctuations in financial time series

    NASA Astrophysics Data System (ADS)

    Ghosh, Sayantan; Manimaran, P.; Panigrahi, Prasanta K.

    2011-11-01

    We make use of wavelet transform to study the multi-scale, self-similar behavior and deviations thereof, in the stock prices of large companies, belonging to different economic sectors. The stock market returns exhibit multi-fractal characteristics, with some of the companies showing deviations at small and large scales. The fact that, the wavelets belonging to the Daubechies’ (Db) basis enables one to isolate local polynomial trends of different degrees, plays the key role in isolating fluctuations at different scales. One of the primary motivations of this work is to study the emergence of the k-3 behavior [X. Gabaix, P. Gopikrishnan, V. Plerou, H. Stanley, A theory of power law distributions in financial market fluctuations, Nature 423 (2003) 267-270] of the fluctuations starting with high frequency fluctuations. We make use of Db4 and Db6 basis sets to respectively isolate local linear and quadratic trends at different scales in order to study the statistical characteristics of these financial time series. The fluctuations reveal fat tail non-Gaussian behavior, unstable periodic modulations, at finer scales, from which the characteristic k-3 power law behavior emerges at sufficiently large scales. We further identify stable periodic behavior through the continuous Morlet wavelet.

  18. National Earthquake Information Center Seismic Event Detections on Multiple Scales

    NASA Astrophysics Data System (ADS)

    Patton, J.; Yeck, W. L.; Benz, H.; Earle, P. S.; Soto-Cordero, L.; Johnson, C. E.

    2017-12-01

    The U.S. Geological Survey National Earthquake Information Center (NEIC) monitors seismicity on local, regional, and global scales using automatic picks from more than 2,000 near-real time seismic stations. This presents unique challenges in automated event detection due to the high variability in data quality, network geometries and density, and distance-dependent variability in observed seismic signals. To lower the overall detection threshold while minimizing false detection rates, NEIC has begun to test the incorporation of new detection and picking algorithms, including multiband (Lomax et al., 2012) and kurtosis (Baillard et al., 2014) pickers, and a new bayesian associator (Glass 3.0). The Glass 3.0 associator allows for simultaneous processing of variably scaled detection grids, each with a unique set of nucleation criteria (e.g., nucleation threshold, minimum associated picks, nucleation phases) to meet specific monitoring goals. We test the efficacy of these new tools on event detection in networks of various scales and geometries, compare our results with previous catalogs, and discuss lessons learned. For example, we find that on local and regional scales, rapid nucleation of small events may require event nucleation with both P and higher-amplitude secondary phases (e.g., S or Lg). We provide examples of the implementation of a scale-independent associator for an induced seismicity sequence (local-scale), a large aftershock sequence (regional-scale), and for monitoring global seismicity. Baillard, C., Crawford, W. C., Ballu, V., Hibert, C., & Mangeney, A. (2014). An automatic kurtosis-based P-and S-phase picker designed for local seismic networks. Bulletin of the Seismological Society of America, 104(1), 394-409. Lomax, A., Satriano, C., & Vassallo, M. (2012). Automatic picker developments and optimization: FilterPicker - a robust, broadband picker for real-time seismic monitoring and earthquake early-warning, Seism. Res. Lett. , 83, 531-540, doi: 10.1785/gssrl.83.3.531.

  19. Transition from the adiabatic to the sudden limit in core-level photoemission: A model study of a localized system

    NASA Astrophysics Data System (ADS)

    Lee, J. D.; Gunnarsson, O.; Hedin, L.

    1999-09-01

    We consider core electron photoemission in a localized system, where there is a charge transfer excitation. Examples are transition metal and rare earth compounds, chemisorption systems, and high-Tc compounds. The system is modeled by three electron levels, one core level, and two outer levels. In the initital state the core level and one outer level is filled (a spinless two-electron problem). This model system is embedded in a solid state environment, and the implications of our model system results for solid state photoemission are discussed. When the core hole is created, the more localized outer level (d) is pulled below the less localized level (L). The spectrum has a leading peak corresponding to a charge transfer between L and d (``shakedown''), and a satellite corresponding to no charge transfer. The model has a Coulomb interaction between these levels and the continuum states into which the core electron is emitted. The model is simple enough to allow an exact numerical solution, and with a separable potential an analytic solution. Analytic results are also obtained in lowest order perturbation theory, and in the high-energy limit of the semiclassical approximation. We calculate the ratio r(ω) between the weights of the satellite and the main peak as a function of the photon energy ω. The transition from the adiabatic to the sudden limit is found to take place for quite small kinetic energies of the photoelectron. For such small energies, the variation of the dipole matrix elements is substantial and described by the energy scale E~d. Without the coupling to the photoelectron, the corresponding ratio r0(ω) shows a smooth turn-on of the satellite intensity, due to the turn on of the dipole matrix element. The characteristic energy scales are E~d and the satellite excitation energy δE. When the interaction potential with the continuum states is introduced an energy scale E~s=1/(2R~2s) enters, where R~s is a length scale of the interaction (scattering) potential. At threshold there is typically a (weak) constructive interference between intrinsic and extrinsic contributions, and the ratio r(ω)/r0(ω) is larger than its limiting value for large ω. The interference becomes small or weakly destructive for photoelectron energies of the order E~s. For larger photoelectron energies r(ω)/r0(ω) therefore typically has a weak undershoot. If this undershoot is neglected, r(ω)/r0(ω) reaches its limiting value on the energy scale E~s for the parameter range considered here. In a ``shake-up'' scenario, where the two outer levels do not cross as the core hole is created, we instead find that r(ω)/r0(ω) is typically reduced for small ω by interference effects, as in the case of plasmon excitation. Even for this shake-down case, however, the results are very different from those for a simple metal, where plasmons dominate the picture. In particular, the adiabatic to sudden transition takes place at much lower energies in the case of a localized excitation. The reasons for the differences are briefly discussed.

  20. Think locally, act locally: detection of small, medium-sized, and large communities in large networks.

    PubMed

    Jeub, Lucas G S; Balachandran, Prakash; Porter, Mason A; Mucha, Peter J; Mahoney, Michael W

    2015-01-01

    It is common in the study of networks to investigate intermediate-sized (or "meso-scale") features to try to gain an understanding of network structure and function. For example, numerous algorithms have been developed to try to identify "communities," which are typically construed as sets of nodes with denser connections internally than with the remainder of a network. In this paper, we adopt a complementary perspective that communities are associated with bottlenecks of locally biased dynamical processes that begin at seed sets of nodes, and we employ several different community-identification procedures (using diffusion-based and geodesic-based dynamics) to investigate community quality as a function of community size. Using several empirical and synthetic networks, we identify several distinct scenarios for "size-resolved community structure" that can arise in real (and realistic) networks: (1) the best small groups of nodes can be better than the best large groups (for a given formulation of the idea of a good community); (2) the best small groups can have a quality that is comparable to the best medium-sized and large groups; and (3) the best small groups of nodes can be worse than the best large groups. As we discuss in detail, which of these three cases holds for a given network can make an enormous difference when investigating and making claims about network community structure, and it is important to take this into account to obtain reliable downstream conclusions. Depending on which scenario holds, one may or may not be able to successfully identify "good" communities in a given network (and good communities might not even exist for a given community quality measure), the manner in which different small communities fit together to form meso-scale network structures can be very different, and processes such as viral propagation and information diffusion can exhibit very different dynamics. In addition, our results suggest that, for many large realistic networks, the output of locally biased methods that focus on communities that are centered around a given seed node (or set of seed nodes) might have better conceptual grounding and greater practical utility than the output of global community-detection methods. They also illustrate structural properties that are important to consider in the development of better benchmark networks to test methods for community detection.

  1. Think locally, act locally: Detection of small, medium-sized, and large communities in large networks

    NASA Astrophysics Data System (ADS)

    Jeub, Lucas G. S.; Balachandran, Prakash; Porter, Mason A.; Mucha, Peter J.; Mahoney, Michael W.

    2015-01-01

    It is common in the study of networks to investigate intermediate-sized (or "meso-scale") features to try to gain an understanding of network structure and function. For example, numerous algorithms have been developed to try to identify "communities," which are typically construed as sets of nodes with denser connections internally than with the remainder of a network. In this paper, we adopt a complementary perspective that communities are associated with bottlenecks of locally biased dynamical processes that begin at seed sets of nodes, and we employ several different community-identification procedures (using diffusion-based and geodesic-based dynamics) to investigate community quality as a function of community size. Using several empirical and synthetic networks, we identify several distinct scenarios for "size-resolved community structure" that can arise in real (and realistic) networks: (1) the best small groups of nodes can be better than the best large groups (for a given formulation of the idea of a good community); (2) the best small groups can have a quality that is comparable to the best medium-sized and large groups; and (3) the best small groups of nodes can be worse than the best large groups. As we discuss in detail, which of these three cases holds for a given network can make an enormous difference when investigating and making claims about network community structure, and it is important to take this into account to obtain reliable downstream conclusions. Depending on which scenario holds, one may or may not be able to successfully identify "good" communities in a given network (and good communities might not even exist for a given community quality measure), the manner in which different small communities fit together to form meso-scale network structures can be very different, and processes such as viral propagation and information diffusion can exhibit very different dynamics. In addition, our results suggest that, for many large realistic networks, the output of locally biased methods that focus on communities that are centered around a given seed node (or set of seed nodes) might have better conceptual grounding and greater practical utility than the output of global community-detection methods. They also illustrate structural properties that are important to consider in the development of better benchmark networks to test methods for community detection.

  2. Multi-scale characterization of pore evolution in a combustion metamorphic complex, Hatrurim basin, Israel: Combining (ultra) small-angle neutron scattering and image analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hsiu-Wen; Anovitz, Lawrence; Burg, Avihu

    Backscattered scanning electron micrograph and ultra small- and small-angle neutron scattering data have been combined to provide statistically meaningful data on the pore/grain structure and pore evolution of combustion metamorphic complexes from the Hatrurim basin, Israel. Three processes, anti-sintering roughening, alteration of protolith (dehydration, decarbonation, and oxidation) and crystallization of high-temperature minerals, occurred simultaneously, leading to significant changes in observed pore/grain structures. Pore structures in the protoliths, and in lowand high-grade metamorphic rocks show surface (Ds) and mass (Dm) pore fractal geometries with gradual increases in both Ds and Dm values as a function of metamorphic grade. This suggests thatmore » increases in pore volume and formation of less branching pore networks are accompanied by a roughening of pore/grain interfaces. Additionally, pore evolution during combustion metamorphism is also characterized by reduced contributions from small-scale pores to the cumulative porosity in the high-grade rocks. At high temperatures, small-scale pores may be preferentially closed by the formation of high-temperature minerals, producing a rougher morphology with increasing temperature. Alternatively, large-scale pores may develop at the expense of small-scale pores. These observations (pore fractal geometry and cumulative porosity) indicate that the evolution of pore/grain structures is correlated with the growth of high-temperature phases and is a consequence of the energy balance between pore/grain surface energy and energy arising from heterogeneous phase contacts. The apparent pore volume density further suggests that the localized time/temperature development of the high-grade Hatrurim rocks is not simply an extension of that of the low-grade rocks. The former likely represents the "hot spots (burning foci)" in the overall metamorphic terrain while the latter may represent contact aureoles.« less

  3. Multiresolution representation and numerical algorithms: A brief review

    NASA Technical Reports Server (NTRS)

    Harten, Amiram

    1994-01-01

    In this paper we review recent developments in techniques to represent data in terms of its local scale components. These techniques enable us to obtain data compression by eliminating scale-coefficients which are sufficiently small. This capability for data compression can be used to reduce the cost of many numerical solution algorithms by either applying it to the numerical solution operator in order to get an approximate sparse representation, or by applying it to the numerical solution itself in order to reduce the number of quantities that need to be computed.

  4. Module Degradation Mechanisms Studied by a Multi-Scale Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, Steve; Al-Jassim, Mowafak; Hacke, Peter

    2016-11-21

    A key pathway to meeting the Department of Energy SunShot 2020 goals is to reduce financing costs by improving investor confidence through improved photovoltaic (PV) module reliability. A comprehensive approach to further understand and improve PV reliability includes characterization techniques and modeling from module to atomic scale. Imaging techniques, which include photoluminescence, electroluminescence, and lock-in thermography, are used to locate localized defects responsible for module degradation. Small area samples containing such defects are prepared using coring techniques and are then suitable and available for microscopic study and specific defect modeling and analysis.

  5. A Bird's-Eye View of Eco-Geomorphology From a Small Unmanned Aircraft System (UAS)

    NASA Astrophysics Data System (ADS)

    LeClair, A. J.; Hugenholtz, C.

    2012-12-01

    Physical disturbance regimes play important roles in shaping ecosystems and landscapes; however, our ability to detect disturbance often depends on the method and scale of observation. Here we use a relatively new method in order to detect and map the eco-geomorphic impacts of fossorial mammals in a grassland setting. It is well-known that digging and mound building activity by these animals is a form of biological disturbance that has a number of eco-geomorphic consequences, including: soil formation, hydrology, nutrient cycling, and succession. All these processes contribute to landscape heterogeneity and often increase local micro-topographic variations through mound formation. Most studies that have examined the eco-geomorphic role of fossorial mammals have been limited to observations using traditional field-based methods. While this has yielded important data about the localized effects, the cumulative, landscape-level impacts of such small-scale disturbance events are still largely unknown. While fossorial mammals such as pocket gophers (family Geomyidae) are assumed to be ubiquitous in the environments in which they occur, the small size of individual mounds has meant that mapping their biological footprint using traditional methods has been extremely difficult. Individual mounds disappear in the pixels of conventional remote sensing imagery, while their spatial distribution makes it impractical to study them beyond the plot scale. However, recent advances in both low cost, high-resolution digital cameras, and unmanned aerial systems (UAS), have made it possible to acquire landscape-level data that matches the scale of their disturbance, thus potentially bridging the gap between ground-based field methods and traditional remote sensing imagery. In this study we used UAS-acquired, sub-decimeter resolution imagery to map and quantify the extent of fossorial mammal disturbance in a 4 km2 area of the Great Sand Hills - a stabilized dune field in southwestern Saskatchewan, Canada. This area is densely populated by both the northern pocket gopher (Thomomys talpoides) and the thirteen-lined ground squirrel (Ictidomys tridecemlineatus), both of which are active throughout the growing season. Mounds of bare sand occur both singly, and in larger, clustered networks. Older mounds are darker due to higher vegetation cover and litter accumulation, while more recent mounds are brighter due to absence of vegetation and litter. Based on objective image classification we estimate that nearly 20% of the landscape is affected by mound disturbance, while in some localized regions up to 50% of the surface is affected by recent disturbance. Overall, our case study demonstrates the potential value of UAS platforms for acquiring high-resolution remote sensing data for detecting and mapping small-scale biological disturbance.

  6. Local domains of motor cortical activity revealed by fiber-optic calcium recordings in behaving nonhuman primates.

    PubMed

    Adelsberger, Helmuth; Zainos, Antonio; Alvarez, Manuel; Romo, Ranulfo; Konnerth, Arthur

    2014-01-07

    Brain mapping experiments involving electrical microstimulation indicate that the primary motor cortex (M1) directly regulates muscle contraction and thereby controls specific movements. Possibly, M1 contains a small circuit "map" of the body that is formed by discrete local networks that code for specific movements. Alternatively, movements may be controlled by distributed, larger-scale overlapping circuits. Because of technical limitations, it remained unclear how movement-determining circuits are organized in M1. Here we introduce a method that allows the functional mapping of small local neuronal circuits in awake behaving nonhuman primates. For this purpose, we combined optic-fiber-based calcium recordings of neuronal activity and cortical microstimulation. The method requires targeted bulk loading of synthetic calcium indicators (e.g., OGB-1 AM) for the staining of neuronal microdomains. The tip of a thin (200 µm) optical fiber can detect the coherent activity of a small cluster of neurons, but is insensitive to the asynchronous activity of individual cells. By combining such optical recordings with microstimulation at two well-separated sites of M1, we demonstrate that local cortical activity was tightly associated with distinct and stereotypical simple movements. Increasing stimulation intensity increased both the amplitude of the movements and the level of neuronal activity. Importantly, the activity remained local, without invading the recording domain of the second optical fiber. Furthermore, there was clear response specificity at the two recording sites in a trained behavioral task. Thus, the results provide support for movement control in M1 by local neuronal clusters that are organized in discrete cortical domains.

  7. Revealing small-scale diffracting discontinuities by an optimization inversion algorithm

    NASA Astrophysics Data System (ADS)

    Yu, Caixia; Zhao, Jingtao; Wang, Yanfei

    2017-02-01

    Small-scale diffracting geologic discontinuities play a significant role in studying carbonate reservoirs. The seismic responses of them are coded in diffracted/scattered waves. However, compared with reflections, the energy of these valuable diffractions is generally one or even two orders of magnitude weaker. This means that the information of diffractions is strongly masked by reflections in the seismic images. Detecting the small-scale cavities and tiny faults from the deep carbonate reservoirs, mainly over 6 km, poses an even bigger challenge to seismic diffractions, as the signals of seismic surveyed data are weak and have a low signal-to-noise ratio (SNR). After analyzing the mechanism of the Kirchhoff migration method, the residual of prestack diffractions located in the neighborhood of the first Fresnel aperture is found to remain in the image space. Therefore, a strategy for extracting diffractions in the image space is proposed and a regularized L 2-norm model with a smooth constraint to the local slopes is suggested for predicting reflections. According to the focusing conditions of residual diffractions in the image space, two approaches are provided for extracting diffractions. Diffraction extraction can be directly accomplished by subtracting the predicted reflections from seismic imaging data if the residual diffractions are focused. Otherwise, a diffraction velocity analysis will be performed for refocusing residual diffractions. Two synthetic examples and one field application demonstrate the feasibility and efficiency of the two proposed methods in detecting the small-scale geologic scatterers, tiny faults and cavities.

  8. Extraction of Extended Small-Scale Objects in Digital Images

    NASA Astrophysics Data System (ADS)

    Volkov, V. Y.

    2015-05-01

    Detection and localization problem of extended small-scale objects with different shapes appears in radio observation systems which use SAR, infra-red, lidar and television camera. Intensive non-stationary background is the main difficulty for processing. Other challenge is low quality of images, blobs, blurred boundaries; in addition SAR images suffer from a serious intrinsic speckle noise. Statistics of background is not normal, it has evident skewness and heavy tails in probability density, so it is hard to identify it. The problem of extraction small-scale objects is solved here on the basis of directional filtering, adaptive thresholding and morthological analysis. New kind of masks is used which are open-ended at one side so it is possible to extract ends of line segments with unknown length. An advanced method of dynamical adaptive threshold setting is investigated which is based on isolated fragments extraction after thresholding. Hierarchy of isolated fragments on binary image is proposed for the analysis of segmentation results. It includes small-scale objects with different shape, size and orientation. The method uses extraction of isolated fragments in binary image and counting points in these fragments. Number of points in extracted fragments is normalized to the total number of points for given threshold and is used as effectiveness of extraction for these fragments. New method for adaptive threshold setting and control maximises effectiveness of extraction. It has optimality properties for objects extraction in normal noise field and shows effective results for real SAR images.

  9. Temporal length-scale cascade and expansion rate on planar liquid jet instability

    NASA Astrophysics Data System (ADS)

    Sirignano, William; Zandian, Arash; Hussain, Fazle

    2016-11-01

    Using the local radius of curvature of the surface and the local transverse dimension of the two-phase (i.e., spray) domain as length scales, we obtained two PDFs over a wide range of length-scales at different times and for different Reynolds and Weber (We) numbers. The PDFs were developed via post-processing of DNS Navier-Stokes results for a 3D planar liquid sheet segment with level-set and Volume-of-Fluid surface tracking, giving better statistical data for the length scales compared to the former methods. The radius PDF shows that, with increasing We , the average radius of curvature decreases, number of small droplets increases, and cascade occurs at a faster rate. In time, the mean of the radius PDF decreases while the rms increases. The other PDF represents the spray expansion in a more realistic and meaningful form, showing that the spray angle is larger at higher We and density-ratios. Both the mean and the rms of the spray-size PDF increase with time. The PDFs also track the transitions between symmetric and anti-symmetric modes.

  10. Islands Climatology at Local Scale. Downscaling with CIELO model

    NASA Astrophysics Data System (ADS)

    Azevedo, Eduardo; Reis, Francisco; Tomé, Ricardo; Rodrigues, Conceição

    2016-04-01

    Islands with horizontal scales of the order of tens of km, as is the case of the Atlantic Islands of Macaronesia, are subscale orographic features for Global Climate Models (GCMs) since the horizontal scales of these models are too coarse to give a detailed representation of the islands' topography. Even the Regional Climate Models (RCMs) reveals limitations when they are forced to reproduce the climate of small islands mainly by the way they flat and lowers the elevation of the islands, reducing the capacity of the model to reproduce important local mechanisms that lead to a very deep local climate differentiation. Important local thermodynamics mechanisms like Foehn effect, or the influence of topography on radiation balance, have a prominent role in the climatic spatial differentiation. Advective transport of air - and the consequent induced adiabatic cooling due to orography - lead to transformations of the state parameters of the air that leads to the spatial configuration of the fields of pressure, temperature and humidity. The same mechanism is in the origin of the orographic clouds cover that, besides the direct role as water source by the reinforcement of precipitation, act like a filter to direct solar radiation and as a source of long-wave radiation that affect the local balance of energy. Also, the saturation (or near saturation) conditions that they provide constitute a barrier to water vapour diffusion in the mechanisms of evapotranspiration. Topographic factors like slope, aspect and orographic mask have also significant importance in the local energy balance. Therefore, the simulation of the local scale climate (past, present and future) in these archipelagos requires the use of downscaling techniques to adjust locally outputs obtained at upper scales. This presentation will discuss and analyse the evolution of the CIELO model (acronym for Clima Insular à Escala LOcal) a statistical/dynamical technique developed at the University of the Azores, which has been improved since its original version, constituting currently a downscaling tool widely applied with success in different islands of Macaronesia. Recently the CIELO model has been tested against data from the Eastern North Atlantic (ENA), Graciosa Island ARM facility programme (established and supported by the U.S. Department of Energy with the collaboration of the local government and the University of the Azores).

  11. Newmark local time stepping on high-performance computing architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rietmann, Max, E-mail: max.rietmann@erdw.ethz.ch; Institute of Geophysics, ETH Zurich; Grote, Marcus, E-mail: marcus.grote@unibas.ch

    In multi-scale complex media, finite element meshes often require areas of local refinement, creating small elements that can dramatically reduce the global time-step for wave-propagation problems due to the CFL condition. Local time stepping (LTS) algorithms allow an explicit time-stepping scheme to adapt the time-step to the element size, allowing near-optimal time-steps everywhere in the mesh. We develop an efficient multilevel LTS-Newmark scheme and implement it in a widely used continuous finite element seismic wave-propagation package. In particular, we extend the standard LTS formulation with adaptations to continuous finite element methods that can be implemented very efficiently with very strongmore » element-size contrasts (more than 100x). Capable of running on large CPU and GPU clusters, we present both synthetic validation examples and large scale, realistic application examples to demonstrate the performance and applicability of the method and implementation on thousands of CPU cores and hundreds of GPUs.« less

  12. Local and regional factors affecting atmospheric mercury speciation at a remote location

    USGS Publications Warehouse

    Manolopoulos, H.; Schauer, J.J.; Purcell, M.D.; Rudolph, T.M.; Olson, M.L.; Rodger, B.; Krabbenhoft, D.P.

    2007-01-01

    Atmospheric concentrations of elemental (Hg0), reactive gaseous (RGM), and particulate (PHg) mercury were measured at two remote sites in the midwestern United States. Concurrent measurements of Hg0, PHg, and RGM obtained at Devil's Lake and Mt. Horeb, located approximately 65 km apart, showed that Hg0 and PHg concentrations were affected by regional, as well as local sources, while RGM was mainly impacted by local sources. Plumes reaching the Devil's Lake site from a nearby coal-fired power plant significantly impacted SO2 and RGM concentrations at Devil's Lake, but had little impact on Hg0. Our findings suggest that traditional modeling approaches to assess sources of mercury deposited that utilize source emissions and large-scale grids may not be sufficient to predict mercury deposition at sensitive locations due to the importance of small-scale sources and processes. We suggest the use of a receptor-based monitoring to better understand mercury source-receptor relationships. ?? 2007 NRC Canada.

  13. Analytic study of small scale structure on cosmic strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polchinski, Joseph; Rocha, Jorge V.; Department of Physics, University of California, Santa Barbara, California 93106

    2006-10-15

    The properties of string networks at scales well below the horizon are poorly understood, but they enter critically into many observables. We argue that in some regimes, stretching will be the only relevant process governing the evolution. In this case, the string two-point function is determined up to normalization: the fractal dimension approaches one at short distance, but the rate of approach is characterized by an exponent that plays an essential role in network properties. The smoothness at short distance implies, for example, that cosmic string lensing images are almost undistorted. We then add in loop production as a perturbationmore » and find that it diverges at small scales. This need not invalidate the stretching model, since the loop production occurs in localized regions, but it implies a complicated fragmentation process. Our ability to model this process is limited, but we argue that loop production peaks a few orders of magnitude below the horizon scale, without the inclusion of gravitational radiation. We find agreement with some features of simulations, and interesting discrepancies that must be resolved by future work.« less

  14. Multi-scale strain localization within orthogneiss during subduction and exhumation (Tenda unit, Alpine Corsica)

    NASA Astrophysics Data System (ADS)

    Beaudoin, Alexandre; Augier, Romain; Jolivet, Laurent; Raimbourg, Hugues; Jourdon, Anthony; Scaillet, Stéphane; Cardello, Giovanni Luca

    2016-04-01

    Strain localization depends upon scale-related factors resulting in a gap between small-scale studies of deformation mechanisms and large-scale numerical and tectonic models. The former often ignore the variations in composition and water content across tectonic units, while the latter oversimplify the role of the deformation mechanisms. This study aims to heal this gap, by considering microstructures and strain localization not only at a single shear zone-scale but across a 40km-wide tectonic unit and throughout its complex polyphased evolution. The Tenda unit (Alpine Corsica) is an external continental unit mainly composed of granites, bounded by the East Tenda Shear Zone (ETSZ) that separates it from the overlying oceanic-derived HP tectonic units. Previous studies substantially agreed on (1) the burial of the Tenda unit down to blueschist-facies conditions associated with top-to-the-west shearing (D1) and (2) subsequent exhumation accommodated by a localized top-to-the-east shear zone (D2). Reaction-softening is the main localizing mechanism proposed in the literature, being associated with the transformation of K-feldspar into white-mica. In this work, the Tenda unit is reviewed through (1) the construction of a new field-based strain map accompanied by cross-sections representing volumes of rock deformed at different grades related to large-scale factors of strain localization and (2) the structural study of hand-specimens and thin-sections coupled with EBSD analysis in order to target the deformation processes. We aim to find how softening and localization are in relation to the map-scale distribution of strain. The large-scale study shows that the whole Tenda unit is affected by the two successive stages of deformation. However, a more intense deformation is observed along the eastern margin, which originally led to the definition of the ETSZ, with a present-day anastomosed geometry of deformation. Strain localization is clearly linked to rheological/lithological contrasts as it concentrates either along preexisting intrusive and tectonic contacts. As K-feldspar-poor granites remain relatively undeformed, reaction-softening seems to be a major mechanism during D1. However, evidences suggest that this mechanism is in competition with dynamic recrystallization: at outcrop and hand-specimen scale, the correlation between localized structures such as C-planes and phengite-rich zones is not always observed. This same competition remains active during D2 where top-to-the-east C-planes are common in phengite-rich layers, but an overall grain-size reduction is also observed across the different strain grades, suggesting that dynamic recrystallization remains active during the whole story. Final localization is sometimes observed in phengite-poor aplitic ultramylonites characterized by a very fine quartz-albite matrix suggesting that grain-size sensitive flow would be the major mechanism involved in the final rheology of the ETSZ.

  15. Environmental management of small-scale and artisanal mining: the Portovelo-Zaruma goldmining area, southern Ecuador.

    PubMed

    Tarras-Wahlberg, N H

    2002-06-01

    This paper considers technical measures and policy initiatives needed to improve environmental management in the Portovelo-Zaruma mining district of southern Ecuador. In this area, gold is mined by a large number of small-scale and artisanal operators, and discharges of cyanide and metal-laden tailings have had a severe impact on the shared Ecuadorian-Peruvian Puyango river system. It is shown to be technically possible to confine mining waste and tailings at a reasonable cost. However, the complex topography of the mining district forces tailings management to be communal, where all operators are connected to one central tailings impoundment. This, in turn, implies two things: (i) that a large number of operators must agree to pool resources to bring such a facility into reality; and (ii) that miners must move away from rudimentary operations that survive on a day-to-day basis, towards bigger, mechanized and longer-term sustainable operations that are based on proven ore reserves. It is deemed unlikely that existing environmental regulations and the provision of technical solutions will be sufficient to resolve the environmental problems. Important impediments relate to the limited financial resources available to each individual miner and the problems of pooling these resources, and to the fact that the main impacts of pollution are suffered downstream of the mining district and, hence, do not affect the miners themselves. Three policy measures are therefore suggested. First, the enforcement of existing regulations must be improved, and this may be achieved by the strengthening of the central authority charged with supervision and control of mining activities. Second, local government involvement and local public participation in environmental management needs to be promoted. Third, a clear policy should be defined which promotes the reorganisation of small operations into larger units that are strong enough to sustain rational exploration and environmental obligations. The case study suggests that mining policy in lesser-developed countries should develop to enable small-scale and artisanal miners to form entities that are of a sufficiently large scale to allow adequate and cost-effective environmental protection.

  16. Tundra landform and vegetation productivity trend maps for the Arctic Coastal Plain of northern Alaska

    PubMed Central

    Lara, Mark J.; Nitze, Ingmar; Grosse, Guido; McGuire, A. David

    2018-01-01

    Arctic tundra landscapes are composed of a complex mosaic of patterned ground features, varying in soil moisture, vegetation composition, and surface hydrology over small spatial scales (10–100 m). The importance of microtopography and associated geomorphic landforms in influencing ecosystem structure and function is well founded, however, spatial data products describing local to regional scale distribution of patterned ground or polygonal tundra geomorphology are largely unavailable. Thus, our understanding of local impacts on regional scale processes (e.g., carbon dynamics) may be limited. We produced two key spatiotemporal datasets spanning the Arctic Coastal Plain of northern Alaska (~60,000 km2) to evaluate climate-geomorphological controls on arctic tundra productivity change, using (1) a novel 30 m classification of polygonal tundra geomorphology and (2) decadal-trends in surface greenness using the Landsat archive (1999–2014). These datasets can be easily integrated and adapted in an array of local to regional applications such as (1) upscaling plot-level measurements (e.g., carbon/energy fluxes), (2) mapping of soils, vegetation, or permafrost, and/or (3) initializing ecosystem biogeochemistry, hydrology, and/or habitat modeling. PMID:29633984

  17. Tundra landform and vegetation productivity trend maps for the Arctic Coastal Plain of northern Alaska

    USGS Publications Warehouse

    Lara, Mark J.; Nitze, Ingmar; Grosse, Guido; McGuire, A. David

    2018-01-01

    Arctic tundra landscapes are composed of a complex mosaic of patterned ground features, varying in soil moisture, vegetation composition, and surface hydrology over small spatial scales (10–100 m). The importance of microtopography and associated geomorphic landforms in influencing ecosystem structure and function is well founded, however, spatial data products describing local to regional scale distribution of patterned ground or polygonal tundra geomorphology are largely unavailable. Thus, our understanding of local impacts on regional scale processes (e.g., carbon dynamics) may be limited. We produced two key spatiotemporal datasets spanning the Arctic Coastal Plain of northern Alaska (~60,000 km2) to evaluate climate-geomorphological controls on arctic tundra productivity change, using (1) a novel 30 m classification of polygonal tundra geomorphology and (2) decadal-trends in surface greenness using the Landsat archive (1999–2014). These datasets can be easily integrated and adapted in an array of local to regional applications such as (1) upscaling plot-level measurements (e.g., carbon/energy fluxes), (2) mapping of soils, vegetation, or permafrost, and/or (3) initializing ecosystem biogeochemistry, hydrology, and/or habitat modeling.

  18. Advanced Algorithms for Local Routing Strategy on Complex Networks

    PubMed Central

    Lin, Benchuan; Chen, Bokui; Gao, Yachun; Tse, Chi K.; Dong, Chuanfei; Miao, Lixin; Wang, Binghong

    2016-01-01

    Despite the significant improvement on network performance provided by global routing strategies, their applications are still limited to small-scale networks, due to the need for acquiring global information of the network which grows and changes rapidly with time. Local routing strategies, however, need much less local information, though their transmission efficiency and network capacity are much lower than that of global routing strategies. In view of this, three algorithms are proposed and a thorough investigation is conducted in this paper. These algorithms include a node duplication avoidance algorithm, a next-nearest-neighbor algorithm and a restrictive queue length algorithm. After applying them to typical local routing strategies, the critical generation rate of information packets Rc increases by over ten-fold and the average transmission time 〈T〉 decreases by 70–90 percent, both of which are key physical quantities to assess the efficiency of routing strategies on complex networks. More importantly, in comparison with global routing strategies, the improved local routing strategies can yield better network performance under certain circumstances. This is a revolutionary leap for communication networks, because local routing strategy enjoys great superiority over global routing strategy not only in terms of the reduction of computational expense, but also in terms of the flexibility of implementation, especially for large-scale networks. PMID:27434502

  19. Advanced Algorithms for Local Routing Strategy on Complex Networks.

    PubMed

    Lin, Benchuan; Chen, Bokui; Gao, Yachun; Tse, Chi K; Dong, Chuanfei; Miao, Lixin; Wang, Binghong

    2016-01-01

    Despite the significant improvement on network performance provided by global routing strategies, their applications are still limited to small-scale networks, due to the need for acquiring global information of the network which grows and changes rapidly with time. Local routing strategies, however, need much less local information, though their transmission efficiency and network capacity are much lower than that of global routing strategies. In view of this, three algorithms are proposed and a thorough investigation is conducted in this paper. These algorithms include a node duplication avoidance algorithm, a next-nearest-neighbor algorithm and a restrictive queue length algorithm. After applying them to typical local routing strategies, the critical generation rate of information packets Rc increases by over ten-fold and the average transmission time 〈T〉 decreases by 70-90 percent, both of which are key physical quantities to assess the efficiency of routing strategies on complex networks. More importantly, in comparison with global routing strategies, the improved local routing strategies can yield better network performance under certain circumstances. This is a revolutionary leap for communication networks, because local routing strategy enjoys great superiority over global routing strategy not only in terms of the reduction of computational expense, but also in terms of the flexibility of implementation, especially for large-scale networks.

  20. A new blind snake (Serpentes: Typhlopidae) from an endangered habitat in south-eastern Queensland, Australia.

    PubMed

    Venchi, Alberto; Wilson, Steve K; Borsboom, Adrian C

    2015-07-24

    A new species of blind snake is described from south-eastern Queensland, eastern Australia. Anilios insperatus sp. nov. differs from all of its congeners in having:16 scales around the body; 442 paravertebral scales; snout slightly trilobed from above and bluntly angular in profile; small, inconspicuous eyes, located within the ocular scale at its junction with the preocular and the supraocular scales; and uniform light colouration. The unique specimen was collected from pasture that was formally Queensland regional ecosystem 12.8.24, a eucalypt dominated ecosystem currently listed as endangered. The site is less than 100 km from Queensland's capital, Brisbane. Given the locality, habitat and absence of additional specimens, the species is probably of conservation concern.

  1. Habitat structure mediates biodiversity effects on ecosystem properties

    PubMed Central

    Godbold, J. A.; Bulling, M. T.; Solan, M.

    2011-01-01

    Much of what we know about the role of biodiversity in mediating ecosystem processes and function stems from manipulative experiments, which have largely been performed in isolated, homogeneous environments that do not incorporate habitat structure or allow natural community dynamics to develop. Here, we use a range of habitat configurations in a model marine benthic system to investigate the effects of species composition, resource heterogeneity and patch connectivity on ecosystem properties at both the patch (bioturbation intensity) and multi-patch (nutrient concentration) scale. We show that allowing fauna to move and preferentially select patches alters local species composition and density distributions, which has negative effects on ecosystem processes (bioturbation intensity) at the patch scale, but overall positive effects on ecosystem functioning (nutrient concentration) at the multi-patch scale. Our findings provide important evidence that community dynamics alter in response to localized resource heterogeneity and that these small-scale variations in habitat structure influence species contributions to ecosystem properties at larger scales. We conclude that habitat complexity forms an important buffer against disturbance and that contemporary estimates of the level of biodiversity required for maintaining future multi-functional systems may need to be revised. PMID:21227969

  2. Habitat structure mediates biodiversity effects on ecosystem properties.

    PubMed

    Godbold, J A; Bulling, M T; Solan, M

    2011-08-22

    Much of what we know about the role of biodiversity in mediating ecosystem processes and function stems from manipulative experiments, which have largely been performed in isolated, homogeneous environments that do not incorporate habitat structure or allow natural community dynamics to develop. Here, we use a range of habitat configurations in a model marine benthic system to investigate the effects of species composition, resource heterogeneity and patch connectivity on ecosystem properties at both the patch (bioturbation intensity) and multi-patch (nutrient concentration) scale. We show that allowing fauna to move and preferentially select patches alters local species composition and density distributions, which has negative effects on ecosystem processes (bioturbation intensity) at the patch scale, but overall positive effects on ecosystem functioning (nutrient concentration) at the multi-patch scale. Our findings provide important evidence that community dynamics alter in response to localized resource heterogeneity and that these small-scale variations in habitat structure influence species contributions to ecosystem properties at larger scales. We conclude that habitat complexity forms an important buffer against disturbance and that contemporary estimates of the level of biodiversity required for maintaining future multi-functional systems may need to be revised.

  3. On the lower altitude limit of the Venusian ionopause

    NASA Astrophysics Data System (ADS)

    Mahajan, K. K.; Mayr, H. G.; Brace, L. H.; Cloutier, P. A.

    1989-07-01

    It has been observed from the plasma experiments on the Pioneer Venus Orbiter that the altitude of the upper boundary of the ionosphere decreases in response to increasing solar wind dynamic pressure. However, at pressures above about 2.5 x 10 to the -8th dynes/sq cm, the further decrease in the ionopause height is rather small. Following the model of Cloutier et al. (1969), it is suggested that during high solar wind conditions, when the ionopause is formed at lower altitudes, the solar wind induces vertical and horizontal flows which sweep away the ionospheric plasma that is produced locally by photoionization. As a result, a disturbed photodynamical ionosphere is formed which has the scale height of the ionizable neutral constituent. It is shown that such a photodynamical ionosphere is observed at the subsolar ionopause under these conditions. As a consequence of this interaction, the ionopause altitude is observed to follow the small-scale height of the ionizable species, atomic oxygen, showing only small changes with solar wind pressure.

  4. Human dimensions of climate change: the vulnerability of small farmers in the Amazon.

    PubMed

    Brondizio, Eduardo S; Moran, Emilio F

    2008-05-27

    This paper argues for a twofold perspective on human adaptation to climate change in the Amazon. First, we need to understand the processes that mediate perceptions of environmental change and the behavioural responses at the levels of the individual and the local population. Second, we should take into account the process of production and dissemination of global and national climate information and models to regional and local populations, especially small farmers. We discuss the sociocultural and environmental diversity of small farmers in the Amazon and their susceptibility to climate change associated with drought, flooding and accidental fire. Using survey, ethnographic and archival data from study areas in the state of Pará, we discuss farmers' sources of knowledge and long-term memory of climatic events, drought and accidental fire; their sources of climate information; their responses to drought and fire events and the impact of changing rainfall patterns on land use. We highlight the challenges of adaptation to climate change created by the influence of migration and family turnover on collective action and memory, the mismatch of scales used to monitor and disseminate climate data and the lack of extension services to translate large-scale forecasts to local needs. We found that for most farmers, memories of extended drought tend to decrease significantly after 3 years. Over 50% of the farmers interviewed in 2002 did not remember as significant the El Niño Southern Oscillation (ENSO) drought of 1997/1998. This helps explain why approximately 40% of the farmers have not changed their land-use behaviours in the face of the strongest ENSO event of the twentieth century.

  5. Threatened fish and fishers along the Brazilian Atlantic Forest Coast.

    PubMed

    Begossi, Alpina; Salivonchyk, Svetlana; Hallwass, Gustavo; Hanazaki, Natalia; Lopes, Priscila F M; Silvano, Renato A M

    2017-12-01

    Small-scale fisheries of the Brazilian Atlantic Forest Coast (BAFC) depend on fish resources for food and income. Thus, if the catch diminishes or if fish species that are a target for fishers are overexploited or impacted, this could affect fishers' livelihoods. The exclusion of threatened fish species from the catch is believed to be a threat to small-scale fisheries, which is likely to be the case along the BAFC. Many fish species are currently listed as threatened or vulnerable, whereas there is not enough biological information available to determine the status of the majority of the other species. Failure to protect the BAFC biodiversity might negatively impact fishers' income and the regional economy of local small-scale fisheries. We collected data from 1986 to 2009 through 347 interviews and 24-h food recall surveys at seven southeastern coastal sites of the Atlantic Forest. We show that important species of consumed fish are currently threatened: of the 65 species mentioned by fishers as the most consumed fishes, 33% are decreasing and 54% have an unknown status. Thus, biological and ecological data for BAFC marine species are urgently needed, along with co-management, to promote fish conservation.

  6. Single field double inflation and primordial black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kannike, K.; Marzola, L.; Raidal, M.

    Within the framework of scalar-tensor theories, we study the conditions that allow single field inflation dynamics on small cosmological scales to significantly differ from that of the large scales probed by the observations of cosmic microwave background. The resulting single field double inflation scenario is characterised by two consequent inflation eras, usually separated by a period where the slow-roll approximation fails. At large field values the dynamics of the inflaton is dominated by the interplay between its non-minimal coupling to gravity and the radiative corrections to the inflaton self-coupling. For small field values the potential is, instead, dominated by amore » polynomial that results in a hilltop inflation. Without relying on the slow-roll approximation, which is invalidated by the appearance of the intermediate stage, we propose a concrete model that matches the current measurements of inflationary observables and employs the freedom granted by the framework on small cosmological scales to give rise to a sizeable population of primordial black holes generated by large curvature fluctuations. We find that these features generally require a potential with a local minimum. We show that the associated primordial black hole mass function is only approximately lognormal.« less

  7. Trading off natural resources and rural livelihoods. A framework for sustainability assessment of small-scale food production in water-limited regions

    NASA Astrophysics Data System (ADS)

    Recanati, Francesca; Castelletti, Andrea; Dotelli, Giovanni; Melià, Paco

    2017-12-01

    Enhancing local production is key to promoting food security, especially in rural households of low-income countries, but may conflict with limited natural resources and ecosystems preservation. We propose a framework integrating the water-food nexus and a sustainable livelihoods perspective to assess small-scale food production in water-poor regions. We demonstrate it by assessing alternative production scenarios in the Gaza Strip at different spatial scales. At the scale of a single farm, there is a clear conflict among objectives: while cash crops ensure good incomes but contribute scarcely to domestic protein supply, crops performing well from the nutritional and environmental viewpoint are among the worst from the economic one. At the regional scale, domestic production might cover an important fraction of nutritional needs while contributing to household income, but water scarcity impairs the satisfaction of food demand by domestic production alone. Pursuing food security under multiple constraints thus requires a holistic perspective: we discuss how a multidimensional approach can promote the engagement of different stakeholders and allow the exploration of trade-offs between food security, sustainable exploitation of natural resources and economic viability.

  8. Reaching extended length-scales with temperature-accelerated dynamics

    NASA Astrophysics Data System (ADS)

    Amar, Jacques G.; Shim, Yunsic

    2013-03-01

    In temperature-accelerated dynamics (TAD) a high-temperature molecular dynamics (MD) simulation is used to accelerate the search for the next low-temperature activated event. While TAD has been quite successful in extending the time-scales of simulations of non-equilibrium processes, due to the fact that the computational work scales approximately as the cube of the number of atoms, until recently only simulations of relatively small systems have been carried out. Recently, we have shown that by combining spatial decomposition with our synchronous sublattice algorithm, significantly improved scaling is possible. However, in this approach the size of activated events is limited by the processor size while the dynamics is not exact. Here we discuss progress in developing an alternate approach in which high-temperature parallel MD along with localized saddle-point (LSAD) calculations, are used to carry out TAD simulations without restricting the size of activated events while keeping the dynamics ``exact'' within the context of harmonic transition-state theory. In tests of our LSAD method applied to Ag/Ag(100) annealing and Cu/Cu(100) growth simulations we find significantly improved scaling of TAD, while maintaining a negligibly small error in the energy barriers. Supported by NSF DMR-0907399.

  9. Action detection by double hierarchical multi-structure space-time statistical matching model

    NASA Astrophysics Data System (ADS)

    Han, Jing; Zhu, Junwei; Cui, Yiyin; Bai, Lianfa; Yue, Jiang

    2018-03-01

    Aimed at the complex information in videos and low detection efficiency, an actions detection model based on neighboring Gaussian structure and 3D LARK features is put forward. We exploit a double hierarchical multi-structure space-time statistical matching model (DMSM) in temporal action localization. First, a neighboring Gaussian structure is presented to describe the multi-scale structural relationship. Then, a space-time statistical matching method is proposed to achieve two similarity matrices on both large and small scales, which combines double hierarchical structural constraints in model by both the neighboring Gaussian structure and the 3D LARK local structure. Finally, the double hierarchical similarity is fused and analyzed to detect actions. Besides, the multi-scale composite template extends the model application into multi-view. Experimental results of DMSM on the complex visual tracker benchmark data sets and THUMOS 2014 data sets show the promising performance. Compared with other state-of-the-art algorithm, DMSM achieves superior performances.

  10. Scaling relations for watersheds

    NASA Astrophysics Data System (ADS)

    Fehr, E.; Kadau, D.; Araújo, N. A. M.; Andrade, J. S., Jr.; Herrmann, H. J.

    2011-09-01

    We study the morphology of watersheds in two and three dimensional systems subjected to different degrees of spatial correlations. The response of these objects to small, local perturbations is also investigated with extensive numerical simulations. We find the fractal dimension of the watersheds to generally decrease with the Hurst exponent, which quantifies the degree of spatial correlations. Moreover, in two dimensions, our results match the range of fractal dimensions 1.10≤df≤1.15 observed for natural landscapes. We report that the watershed is strongly affected by local perturbations. For perturbed two and three dimensional systems, we observe a power-law scaling behavior for the distribution of areas (volumes) enclosed by the original and the displaced watershed and for the distribution of distances between outlets. Finite-size effects are analyzed and the resulting scaling exponents are shown to depend significantly on the Hurst exponent. The intrinsic relation between watershed and invasion percolation, as well as relations between exponents conjectured in previous studies with two dimensional systems, are now confirmed by our results in three dimensions.

  11. Conformal Fermi Coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Liang; Pajer, Enrico; Schmidt, Fabian, E-mail: ldai@ias.edu, E-mail: Enrico.pajer@gmail.com, E-mail: fabians@mpa-garching.mpg.de

    Fermi Normal Coordinates (FNC) are a useful frame for isolating the locally observable, physical effects of a long-wavelength spacetime perturbation. Their cosmological application, however, is hampered by the fact that they are only valid on scales much smaller than the horizon. We introduce a generalization that we call Conformal Fermi Coordinates (CFC). CFC preserve all the advantages of FNC, but in addition are valid outside the horizon. They allow us to calculate the coupling of long- and short-wavelength modes on all scales larger than the sound horizon of the cosmological fluid, starting from the epoch of inflation until today, bymore » removing the complications of the second order Einstein equations to a large extent, and eliminating all gauge ambiguities. As an application, we present a calculation of the effect of long-wavelength tensor modes on small scale density fluctuations. We recover previous results, but clarify the physical content of the individual contributions in terms of locally measurable effects and ''projection'' terms.« less

  12. Landscape Pattern Determines Neighborhood Size and Structure within a Lizard Population

    PubMed Central

    Ryberg, Wade A.; Hill, Michael T.; Painter, Charles W.; Fitzgerald, Lee A.

    2013-01-01

    Although defining population structure according to discrete habitat patches is convenient for metapopulation theories, taking this approach may overlook structure within populations continuously distributed across landscapes. For example, landscape features within habitat patches direct the movement of organisms and define the density distribution of individuals, which can generate spatial structure and localized dynamics within populations as well as among them. Here, we use the neighborhood concept, which describes population structure relative to the scale of individual movements, to illustrate how localized dynamics within a population of lizards (Sceloporus arenicolus) arise in response to variation in landscape pattern within a continuous habitat patch. Our results emphasize links between individual movements at small scales and the emergence of spatial structure within populations which resembles metapopulation dynamics at larger scales. We conclude that population dynamics viewed in a landscape context must consider the explicit distribution and movement of individuals within continuous habitat as well as among habitat patches. PMID:23441217

  13. Action detection by double hierarchical multi-structure space–time statistical matching model

    NASA Astrophysics Data System (ADS)

    Han, Jing; Zhu, Junwei; Cui, Yiyin; Bai, Lianfa; Yue, Jiang

    2018-06-01

    Aimed at the complex information in videos and low detection efficiency, an actions detection model based on neighboring Gaussian structure and 3D LARK features is put forward. We exploit a double hierarchical multi-structure space-time statistical matching model (DMSM) in temporal action localization. First, a neighboring Gaussian structure is presented to describe the multi-scale structural relationship. Then, a space-time statistical matching method is proposed to achieve two similarity matrices on both large and small scales, which combines double hierarchical structural constraints in model by both the neighboring Gaussian structure and the 3D LARK local structure. Finally, the double hierarchical similarity is fused and analyzed to detect actions. Besides, the multi-scale composite template extends the model application into multi-view. Experimental results of DMSM on the complex visual tracker benchmark data sets and THUMOS 2014 data sets show the promising performance. Compared with other state-of-the-art algorithm, DMSM achieves superior performances.

  14. A program for handling map projections of small-scale geospatial raster data

    USGS Publications Warehouse

    Finn, Michael P.; Steinwand, Daniel R.; Trent, Jason R.; Buehler, Robert A.; Mattli, David M.; Yamamoto, Kristina H.

    2012-01-01

    Scientists routinely accomplish small-scale geospatial modeling using raster datasets of global extent. Such use often requires the projection of global raster datasets onto a map or the reprojection from a given map projection associated with a dataset. The distortion characteristics of these projection transformations can have significant effects on modeling results. Distortions associated with the reprojection of global data are generally greater than distortions associated with reprojections of larger-scale, localized areas. The accuracy of areas in projected raster datasets of global extent is dependent on spatial resolution. To address these problems of projection and the associated resampling that accompanies it, methods for framing the transformation space, direct point-to-point transformations rather than gridded transformation spaces, a solution to the wrap-around problem, and an approach to alternative resampling methods are presented. The implementations of these methods are provided in an open-source software package called MapImage (or mapIMG, for short), which is designed to function on a variety of computer architectures.

  15. Spatio-temporal hierarchy in the dynamics of a minimalist protein model

    NASA Astrophysics Data System (ADS)

    Matsunaga, Yasuhiro; Baba, Akinori; Li, Chun-Biu; Straub, John E.; Toda, Mikito; Komatsuzaki, Tamiki; Berry, R. Stephen

    2013-12-01

    A method for time series analysis of molecular dynamics simulation of a protein is presented. In this approach, wavelet analysis and principal component analysis are combined to decompose the spatio-temporal protein dynamics into contributions from a hierarchy of different time and space scales. Unlike the conventional Fourier-based approaches, the time-localized wavelet basis captures the vibrational energy transfers among the collective motions of proteins. As an illustrative vehicle, we have applied our method to a coarse-grained minimalist protein model. During the folding and unfolding transitions of the protein, vibrational energy transfers between the fast and slow time scales were observed among the large-amplitude collective coordinates while the other small-amplitude motions are regarded as thermal noise. Analysis employing a Gaussian-based measure revealed that the time scales of the energy redistribution in the subspace spanned by such large-amplitude collective coordinates are slow compared to the other small-amplitude coordinates. Future prospects of the method are discussed in detail.

  16. Children and Young People's Views on Web 2.0 Technologies. LGA Research Report

    ERIC Educational Resources Information Center

    Rudd, Peter; Walker, Matthew

    2010-01-01

    Web 2.0 technologies are online tools that allow users to share, collaborate and interact with one another. This small-scale project focused on young people's personal use of social media, and on the potential to use these tools to collect the views of young people and involve them in democracy in communities and local authorities. The main…

  17. A Study of the Effectiveness of Music Appreciation TV Programs for Young Children in Hong Kong

    ERIC Educational Resources Information Center

    Yim, Hoi-Yin Bonnie

    2005-01-01

    This paper provides a preliminary report of a small-scale research examining the effectiveness of a series of Music Appreciation segments of "Pre-school: Learn to Fly"--a locally designed and produced early childhood TV program in Hong Kong. Four aspects of young children's musical development were studied: 1) musical exposure; 2)…

  18. The USDA Feed the Future Initiative for genetic improvement of African goats: an update on genomic resources and genetic characterization of indigenous breeds

    USDA-ARS?s Scientific Manuscript database

    Food production systems in Africa depend heavily on the use of locally adapted animals such as goats which are critical to small-scale farmers as they are easier to acquire, maintain, and act as scavengers in sparse pasture and marginal crop regions. Indigenous goat ecotypes have undergone generatio...

  19. Built for Quality: The Capacity Needed to Oversee Charter Schools. Authorizer Issue Brief. Number 3

    ERIC Educational Resources Information Center

    Smith, Nelson; Herdman, Paul

    2004-01-01

    The term "authorizer" conveys an imposing sense of size and authority, but in the world of charter schools, the authorizer is often a small-scale office or, more commonly, a single employee for whom chartering is just one among many responsibilities amidst a large institution like a state or local board of education, university, or private…

  20. Maple sugaring with vacuum pumping during the fall season

    Treesearch

    H. Clay Smith; Alan G., Jr. Snow

    1971-01-01

    Vacuum pumping of sugar maple trees during the late fall and early winter months is not advisable in northern Vermont. However, fall pumping may be profitable in other areas of the sugar maple range. It is recommended that the weather pattern in a given locale be observed; and if conditions are favorable, vacuum pumping should be tried on a small scale before...

  1. On microscopic structure of the QCD vacuum

    NASA Astrophysics Data System (ADS)

    Pak, D. G.; Lee, Bum-Hoon; Kim, Youngman; Tsukioka, Takuya; Zhang, P. M.

    2018-05-01

    We propose a new class of regular stationary axially symmetric solutions in a pure QCD which correspond to monopole-antimonopole pairs at macroscopic scale. The solutions represent vacuum field configurations which are locally stable against quantum gluon fluctuations in any small space-time vicinity. This implies that the monopole-antimonopole pair can serve as a structural element in microscopic description of QCD vacuum formation.

  2. Supported Employment for Young People with Intellectual Disabilities Facilitated through Peer Support: A Pilot Study

    ERIC Educational Resources Information Center

    Kaehne, Axel; Beyer, Stephen

    2013-01-01

    The article reports the evaluation of a small-scale-supported employment project in a local authority in England. The study examined whether or not the peer support model could be used to deliver supported employment to a group of young people with intellectual disabilities. We utilised a mixed-method approach involving activity data, family…

  3. Dissipative structures of diffuse molecular gas. III. Small-scale intermittency of intense velocity-shears

    NASA Astrophysics Data System (ADS)

    Hily-Blant, P.; Falgarone, E.; Pety, J.

    2008-04-01

    Aims: We further characterize the structures tentatively identified on thermal and chemical grounds as the sites of dissipation of turbulence in molecular clouds (Papers I and II). Methods: Our study is based on two-point statistics of line centroid velocities (CV), computed from three large 12CO maps of two fields. We build the probability density functions (PDF) of the CO line centroid velocity increments (CVI) over lags varying by an order of magnitude. Structure functions of the line CV are computed up to the 6th order. We compare these statistical properties in two translucent parsec-scale fields embedded in different large-scale environments, one far from virial balance and the other virialized. We also address their scale dependence in the former, more turbulent, field. Results: The statistical properties of the line CV bear the three signatures of intermittency in a turbulent velocity field: (1) the non-Gaussian tails in the CVI PDF grow as the lag decreases, (2) the departure from Kolmogorov scaling of the high-order structure functions is more pronounced in the more turbulent field, (3) the positions contributing to the CVI PDF tails delineate narrow filamentary structures (thickness ~0.02 pc), uncorrelated to dense gas structures and spatially coherent with thicker ones (~0.18 pc) observed on larger scales. We show that the largest CVI trace sharp variations of the extreme CO linewings and that they actually capture properties of the underlying velocity field, uncontaminated by density fluctuations. The confrontation with theoretical predictions leads us to identify these small-scale filamentary structures with extrema of velocity-shears. We estimate that viscous dissipation at the 0.02 pc-scale in these structures is up to 10 times higher than average, consistent with their being associated with gas warmer than the bulk. Last, their average direction is parallel (or close) to that of the local magnetic field projection. Conclusions: Turbulence in these translucent fields exhibits the statistical and structural signatures of small-scale and inertial-range intermittency. The more turbulent field on the 30 pc-scale is also the more intermittent on small scales. The small-scale intermittent structures coincide with those formerly identified as sites of enhanced dissipation. They are organized into parsec-scale coherent structures, coupling a broad range of scales. Based on observations carried out with the IRAM-30 m telescope. IRAM is supported by INSU-CNRS/MPG/IGN.

  4. A numerical study on flow and pollutant transport in Singapore coastal waters.

    PubMed

    Xu, Ming; Chua, Vivien P

    2016-10-15

    Intensive economic and shipping activities in Singapore Strait have caused Singapore coastal waters to be under high risk of water pollution. A nested three-dimensional unstructured-grid SUNTANS model is applied to Singapore coastal waters to simulate flow and pollutant transport. The small domain (~50m resolution) Singapore coastal model is nested within a large domain (~200m resolution) regional model. The nested model is able to predict water surface elevations and velocities with high R(2) values of 0.96 and 0.91, respectively. Model results delineate the characteristics of circulation pattern in Singapore coastal waters during the Northeast and Southwest monsoons. The pollutants are modeled as passive tracers, and are released at six key sailing locations Points 1-6 in Singapore coastal waters and are named as Passive Tracers 1-6, respectively. Our results show that the rate of dispersion is twice as large for the Northeast monsoon compared to the Southwest monsoon due to differences in large-scale monsoons and small-scale local winds. The volume averaged concentration (VAC) diminishes faster and the local flushing time is shorter during the Northeast monsoon than the Southwest monsoon. Dispersion coefficients K and the VAC decreasing rate are maximum for Tracers 2 and 3 with shortest local flushing time due to the strong surrounding currents and abrupt bathymetry changes near Senang and St. John Islands. Dispersion coefficients K and the VAC decreasing rate are minimum for Tracer 1 due to weak currents induced by the semi-enclosed coastline near Tuas. It is found that both the lateral dispersion coefficient Ky and the compound dispersion coefficient K obey a "4/3-law", which defines a linear correlation between dispersion coefficients and 4/3-power of selected length scale. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. An analysis of spatial representativeness of air temperature monitoring stations

    NASA Astrophysics Data System (ADS)

    Liu, Suhua; Su, Hongbo; Tian, Jing; Wang, Weizhen

    2018-05-01

    Surface air temperature is an essential variable for monitoring the atmosphere, and it is generally acquired at meteorological stations that can provide information about only a small area within an r m radius ( r-neighborhood) of the station, which is called the representable radius. In studies on a local scale, ground-based observations of surface air temperatures obtained from scattered stations are usually interpolated using a variety of methods without ascertaining their effectiveness. Thus, it is necessary to evaluate the spatial representativeness of ground-based observations of surface air temperature before conducting studies on a local scale. The present study used remote sensing data to estimate the spatial distribution of surface air temperature using the advection-energy balance for air temperature (ADEBAT) model. Two target stations in the study area were selected to conduct an analysis of spatial representativeness. The results showed that one station (AWS 7) had a representable radius of about 400 m with a possible error of less than 1 K, while the other station (AWS 16) had the radius of about 250 m. The representable radius was large when the heterogeneity of land cover around the station was small.

  6. Changes in Landscape-level Carbon Balance of an Arctic Coastal Plain Tundra Ecosystem Between 1970-2100, in Response to Projected Climate Change

    NASA Astrophysics Data System (ADS)

    Lara, M. J.; McGuire, A. D.; Euskirchen, E. S.; Genet, H.; Sloan, V. L.; Iversen, C. M.; Norby, R. J.; Zhang, Y.; Yuan, F.

    2014-12-01

    Northern permafrost regions are estimated to cover 16% of the global soil area and account for approximately 50% of the global belowground organic carbon pool. However, there are considerable uncertainties regarding the fate of this soil carbon pool with projected climate warming over the next century. In northern Alaska, nearly 65% of the terrestrial surface is composed of polygonal tundra, where geomorphic land cover types such as high-, flat-, and low-center polygons influence local surface hydrology, plant community composition, nutrient and biogeochemical cycling, over small spatial scales. Due to the lack of representation of these fine-scale geomorphic types and ecosystem processes, in large-scale terrestrial ecosystem models, future uncertainties are large for this tundra region. In this study, we use a new version of the terrestrial ecosystem model (TEM), that couples a dynamic vegetation model (in which plant functional types compete for water, nitrogen, and light) with a dynamic soil organic model (in which temperature, moisture, and associated organic/inorganic carbon and nitrogen pools/fluxes vary together in vertically resolved layers) to simulate ecosystem carbon balance. We parameterized and calibrated this model using data specific to the local climate, vegetation, and soil associated with tundra geomorphic types. We extrapolate model results at a 1km2 resolution across the ~1800 km2 Barrow Peninsula using a tundra geomorphology map, describing ten dominant geomorphic tundra types (Lara et al. submitted), to estimate the likely change in landscape-level carbon balance between 1970 and 2100 in response to projected climate change. Preliminary model runs for this region indicated temporal variability in carbon and active layer dynamics, specific to tundra geomorphic type over time. Overall, results suggest that it is important to consider small-scale discrete polygonal tundra geomorphic types that control local structure and function in regional estimates of carbon balance in northern Alaska.

  7. Environmental factors influence both abundance and genetic diversity in a widespread bird species

    PubMed Central

    Liu, Yang; Webber, Simone; Bowgen, Katharine; Schmaltz, Lucie; Bradley, Katharine; Halvarsson, Peter; Abdelgadir, Mohanad; Griesser, Michael

    2013-01-01

    Genetic diversity is one of the key evolutionary variables that correlate with population size, being of critical importance for population viability and the persistence of species. Genetic diversity can also have important ecological consequences within populations, and in turn, ecological factors may drive patterns of genetic diversity. However, the relationship between the genetic diversity of a population and how this interacts with ecological processes has so far only been investigated in a few studies. Here, we investigate the link between ecological factors, local population size, and allelic diversity, using a field study of a common bird species, the house sparrow (Passer domesticus). We studied sparrows outside the breeding season in a confined small valley dominated by dispersed farms and small-scale agriculture in southern France. Population surveys at 36 locations revealed that sparrows were more abundant in locations with high food availability. We then captured and genotyped 891 house sparrows at 10 microsatellite loci from a subset of these locations (N = 12). Population genetic analyses revealed weak genetic structure, where each locality represented a distinct substructure within the study area. We found that food availability was the main factor among others tested to influence the genetic structure between locations. These results suggest that ecological factors can have strong impacts on both population size per se and intrapopulation genetic variation even at a small scale. On a more general level, our data indicate that a patchy environment and low dispersal rate can result in fine-scale patterns of genetic diversity. Given the importance of genetic diversity for population viability, combining ecological and genetic data can help to identify factors limiting population size and determine the conservation potential of populations. PMID:24363897

  8. Europa's small impactor flux and seismic detection predictions

    NASA Astrophysics Data System (ADS)

    Tsuji, Daisuke; Teanby, Nicholas A.

    2016-10-01

    Europa is an attractive target for future lander missions due to its dynamic surface and potentially habitable sub-surface environment. Seismology has the potential to provide powerful new constraints on the internal structure using natural sources such as faults or meteorite impacts. Here we predict how many meteorite impacts are likely to be detected using a single seismic station on Europa to inform future mission planning efforts. To this end, we derive: (1) the current small impactor flux on Europa from Jupiter impact rate observations and models; (2) a crater diameter versus impactor energy scaling relation for icy moons by merging previous experiments and simulations; and (3) scaling relations for seismic signal amplitudes as a function of distance from the impact site for a given crater size, based on analogue explosive data obtained on Earth's ice sheets. Finally, seismic amplitudes are compared to predicted noise levels and seismometer performance to determine detection rates. We predict detection of 0.002-20 small local impacts per year based on P-waves travelling directly through the ice crust. Larger regional and global-scale impact events, detected through mantle-refracted waves, are predicted to be extremely rare (10-8-1 detections per year), so are unlikely to be detected by a short duration mission. Estimated ranges include uncertainties from internal seismic attenuation, impactor flux, and seismic amplitude scaling. Internal attenuation is the most significant unknown and produces extreme uncertainties in the mantle-refracted P-wave amplitudes. Our nominal best-guess attenuation model predicts 0.002-5 local direct P detections and 6 × 10-6-0.2 mantle-refracted detections per year. Given that a plausible Europa landed mission will only last around 30 days, we conclude that impacts should not be relied upon for a seismic exploration of Europa. For future seismic exploration, faulting due to stresses in the rigid outer ice shell is likely to be a much more viable mechanism for probing Europa's interior.

  9. Spatial connections in regional climate model rainfall outputs at different temporal scales: Application of network theory

    NASA Astrophysics Data System (ADS)

    Naufan, Ihsan; Sivakumar, Bellie; Woldemeskel, Fitsum M.; Raghavan, Srivatsan V.; Vu, Minh Tue; Liong, Shie-Yui

    2018-01-01

    Understanding the spatial and temporal variability of rainfall has always been a great challenge, and the impacts of climate change further complicate this issue. The present study employs the concepts of complex networks to study the spatial connections in rainfall, with emphasis on climate change and rainfall scaling. Rainfall outputs (during 1961-1990) from a regional climate model (i.e. Weather Research and Forecasting (WRF) model that downscaled the European Centre for Medium-range Weather Forecasts, ECMWF ERA-40 reanalyses) over Southeast Asia are studied, and data corresponding to eight different temporal scales (6-hr, 12-hr, daily, 2-day, 4-day, weekly, biweekly, and monthly) are analyzed. Two network-based methods are applied to examine the connections in rainfall: clustering coefficient (a measure of the network's local density) and degree distribution (a measure of the network's spread). The influence of rainfall correlation threshold (T) on spatial connections is also investigated by considering seven different threshold levels (ranging from 0.5 to 0.8). The results indicate that: (1) rainfall networks corresponding to much coarser temporal scales exhibit properties similar to that of small-world networks, regardless of the threshold; (2) rainfall networks corresponding to much finer temporal scales may be classified as either small-world networks or scale-free networks, depending upon the threshold; and (3) rainfall spatial connections exhibit a transition phase at intermediate temporal scales, especially at high thresholds. These results suggest that the most appropriate model for studying spatial connections may often be different at different temporal scales, and that a combination of small-world and scale-free network models might be more appropriate for rainfall upscaling/downscaling across all scales, in the strict sense of scale-invariance. The results also suggest that spatial connections in the studied rainfall networks in Southeast Asia are weak, especially when more stringent conditions are imposed (i.e. when T is very high), except at the monthly scale.

  10. A representation of an NTCP function for local complication mechanisms

    NASA Astrophysics Data System (ADS)

    Alber, M.; Nüsslin, F.

    2001-02-01

    A mathematical formalism was tailored for the description of mechanisms complicating radiation therapy with a predominantly local component. The functional representation of an NTCP function was developed based on the notion that it has to be robust against population averages in order to be applicable to experimental data. The model was required to be invariant under scaling operations of the dose and the irradiated volume. The NTCP function was derived from the model assumptions that the complication is a consequence of local tissue damage and that the probability of local damage in a small reference volume is independent of the neighbouring volumes. The performance of the model was demonstrated with an animal model which has been published previously (Powers et al 1998 Radiother. Oncol. 46 297-306).

  11. New estimation architecture for multisensor data fusion

    NASA Astrophysics Data System (ADS)

    Covino, Joseph M.; Griffiths, Barry E.

    1991-07-01

    This paper describes a novel method of hierarchical asynchronous distributed filtering called the Net Information Approach (NIA). The NIA is a Kalman-filter-based estimation scheme for spatially distributed sensors which must retain their local optimality yet require a nearly optimal global estimate. The key idea of the NIA is that each local sensor-dedicated filter tells the global filter 'what I've learned since the last local-to-global transmission,' whereas in other estimation architectures the local-to-global transmission consists of 'what I think now.' An algorithm based on this idea has been demonstrated on a small-scale target-tracking problem with many encouraging results. Feasibility of this approach was demonstrated by comparing NIA performance to an optimal centralized Kalman filter (lower bound) via Monte Carlo simulations.

  12. Complexity Induced Anisotropic Bimodal Intermittent Turbulence in Space Plasmas

    NASA Technical Reports Server (NTRS)

    Chang, Tom; Tam, Sunny W. Y.; Wu, Cheng-Chin

    2004-01-01

    The "physics of complexity" in space plasmas is the central theme of this exposition. It is demonstrated that the sporadic and localized interactions of magnetic coherent structures arising from the plasma resonances can be the source for the coexistence of nonpropagating spatiotemporal fluctuations and propagating modes. Non-Gaussian probability distribution functions of the intermittent fluctuations from direct numerical simulations are obtained and discussed. Power spectra and local intermittency measures using the wavelet analyses are presented to display the spottiness of the small-scale turbulent fluctuations and the non-uniformity of coarse-grained dissipation that can lead to magnetic topological reconfigurations. The technique of the dynamic renormalization group is applied to the study of the scaling properties of such type of multiscale fluctuations. Charged particle interactions with both the propagating and nonpropagating portions of the intermittent turbulence are also described.

  13. Small lakes in big landscape: Multi-scale drivers of littoral ecosystem in alpine lakes.

    PubMed

    Zaharescu, Dragos G; Burghelea, Carmen I; Hooda, Peter S; Lester, Richard N; Palanca-Soler, Antonio

    2016-05-01

    In low nutrient alpine lakes, the littoral zone is the most productive part of the ecosystem, and it is a biodiversity hotspot. It is not entirely clear how the scale and physical heterogeneity of surrounding catchment, its ecological composition, and larger landscape gradients work together to sustain littoral communities. A total of 113 alpine lakes from the central Pyrenees were surveyed to evaluate the functional connectivity between littoral zoobenthos and landscape physical and ecological elements at geographical, catchment and local scales, and to ascertain how they affect the formation of littoral communities. At each lake, the zoobenthic composition was assessed together with geolocation, catchment hydrodynamics, geomorphology and topography, riparian vegetation composition, the presence of trout and frogs, water pH and conductivity. Multidimensional fuzzy set models integrating benthic biota and environmental variables revealed that at geographical scale, longitude unexpectedly surpassed altitude and latitude in its effect on littoral ecosystem. This reflects a sharp transition between Atlantic and Mediterranean climates and suggests a potentially high horizontal vulnerability to climate change. Topography (controlling catchment type, snow coverage and lakes connectivity) was the most influential catchment-scale driver, followed by hydrodynamics (waterbody size, type and volume of inflow/outflow). Locally, riparian plant composition significantly related to littoral community structure, richness and diversity. These variables, directly and indirectly, create habitats for aquatic and terrestrial stages of invertebrates, and control nutrient and water cycles. Three benthic associations characterised distinct lakes. Vertebrate predation, water conductivity and pH had no major influence on littoral taxa. This work provides exhaustive information from relatively pristine sites, and unveils a strong connection between littoral ecosystem and catchment heterogeneity at scales beyond the local environment. This underpins the role of alpine lakes as sensors of local and large-scale environmental changes, which can be used in monitoring networks to evaluate further impacts. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. The Role of Convective Shell Thickness on Dynamo Scaling Laws for Magnetic Field Morphology: Implications for the Ice Giants and Future Earth

    NASA Astrophysics Data System (ADS)

    Stanley, S.; Tian, B. Y.

    2016-12-01

    Previous dynamo scaling law studies (Christensen and Aubert, 2006) have demonstrated that the morphology of a planet's magnetic field is determined by the local Rossby number (Rol): a non-dimensional diagnostic variable that quantifies the ratio of inertial forces to Coriolis forces on the average length scale of the flow. Dynamos with Rol < 0.1 produce dipolar dominated magnetic fields whereas dynamos with Rol > 0.1 produce multipolar magnetic fields. Scaling studies have also determined the dependence of the local Rossby number on non-dimensional parameters governing the system - specifically the Ekman, Prandtl, magnetic Prandtl and flux-based Rayleigh numbers (Olson and Christensen, 2006). However, those studies focused on the specific convective shell thickness of the Earth's core and hence could not determine the influence of convective shell thickness on the local Rossby number. Aubert et al. (2009) investigated the role of convective shell thickness on dynamo scaling laws in order to investigate the palaeo-evolution of the geodynamo. Due to the focus of that study, they varied the ratio of the inner to outer core radii (rio) from 0 to 0.35 and found Rol scales with (1+rio). Here we consider a larger range of convective shell thicknesses and find an exponential dependence of rio on the local Rossby number. Our results are consistent with Aubert et al. (2009) for their small rio values. With this new scaling dependence on convective shell thickness, we find that Uranus and Neptune reside deeply in the multipolar regime, whereas without the dependence on rio, they resided near Rol =0.1; i.e. on the boundary between dipolar and multipolar fields and close to where Earth resides in the parameter space. We also find that Earth will reside more deeply in the multipolar regime, and hence not produce a stable dipolar field once the inner core has grown such that rio = 0.4.

  15. Alongshore wind forcing of coastal sea level as a function of frequency

    USGS Publications Warehouse

    Ryan, H.F.; Noble, M.A.

    2006-01-01

    The amplitude of the frequency response function between coastal alongshore wind stress and adjusted sea level anomalies along the west coast of the United States increases linearly as a function of the logarithm (log10) of the period for time scales up to at least 60, and possibly 100, days. The amplitude of the frequency response function increases even more rapidly at longer periods out to at least 5 yr. At the shortest periods, the amplitude of the frequency response function is small because sea level is forced only by the local component of the wind field. The regional wind field, which controls the wind-forced response in sea level for periods between 20 and 100 days, not only has much broader spatial scales than the local wind, but also propagates along the coast in the same direction as continental shelf waves. Hence, it has a stronger coupling to and an increased frequency response for sea level. At periods of a year or more, observed coastal sea level fluctuations are not only forced by the regional winds, but also by joint correlations among the larger-scale climatic patterns associated with El Nin??o. Therefore, the amplitude of the frequency response function is large, despite the fact that the energy in the coastal wind field is relatively small. These data show that the coastal sea level response to wind stress forcing along the west coast of the United States changes in a consistent and predictable pattern over a very broad range of frequencies with time scales from a few days to several years.

  16. Magnetic Doppler imaging of Ap stars

    NASA Astrophysics Data System (ADS)

    Silvester, J.; Wade, G. A.; Kochukhov, O.; Landstreet, J. D.; Bagnulo, S.

    2008-04-01

    Historically, the magnetic field geometries of the chemically peculiar Ap stars were modelled in the context of a simple dipole field. However, with the acquisition of increasingly sophisticated diagnostic data, it has become clear that the large-scale field topologies exhibit important departures from this simple model. Recently, new high-resolution circular and linear polarisation spectroscopy has even hinted at the presence of strong, small-scale field structures, which were completely unexpected based on earlier modelling. This project investigates the detailed structure of these strong fossil magnetic fields, in particular the large-scale field geometry, as well as small scale magnetic structures, by mapping the magnetic and chemical surface structure of a selected sample of Ap stars. These maps will be used to investigate the relationship between the local field vector and local surface chemistry, looking for the influence the field may have on the various chemical transport mechanisms (i.e., diffusion, convection and mass loss). This will lead to better constraints on the origin and evolution, as well as refining the magnetic field model for Ap stars. Mapping will be performed using high resolution and signal-to-noise ratio time-series of spectra in both circular and linear polarisation obtained using the new-generation ESPaDOnS (CFHT, Mauna Kea, Hawaii) and NARVAL spectropolarimeters (Pic du Midi Observatory). With these data we will perform tomographic inversion of Doppler-broadened Stokes IQUV Zeeman profiles of a large variety of spectral lines using the INVERS10 magnetic Doppler imaging code, simultaneously recovering the detailed surface maps of the vector magnetic field and chemical abundances.

  17. Improving awareness of mercury pollution in small-scale gold mining communities: challenges and ways forward in rural Ghana.

    PubMed

    Hilson, Gavin; Hilson, Christopher J; Pardie, Sandra

    2007-02-01

    This paper critiques the approach taken by the Ghanaian Government to address mercury pollution in the artisanal and small-scale gold mining sector. Unmonitored releases of mercury-used in the gold-amalgamation process-have caused numerous environmental complications throughout rural Ghana. Certain policy, technological and educational initiatives taken to address the mounting problem, however, have proved marginally effective at best, having been designed and implemented without careful analysis of mine community dynamics, the organization of activities, operators' needs and local geological conditions. Marked improvements can only be achieved in this area through increased government-initiated dialogue with the now-ostracized illegal galamsey mining community; introducing simple, cost-effective techniques for the reduction of mercury emissions; and effecting government-sponsored participatory training exercises as mediums for communicating information about appropriate technologies and the environment.

  18. Pesticide Use and Risk Perceptions among Small-Scale Farmers in Anqiu County, China.

    PubMed

    Jin, Jianjun; Wang, Wenyu; He, Rui; Gong, Haozhou

    2016-12-30

    The unsafe use and misuse of pesticides in China are major threats to farmers' health and the environment. The purpose of this study is to evaluate small-scale farmers' practices with regard to pesticide use and identify the determinants of their behavior in Anqiu County, China. The results show that the frequency of pesticide application by local farmers is high and that the improper disposal of pesticides after use is common in the study area. Although most farmers felt that they were at some degree of risk when using pesticides, farmers were found to overuse pesticides in the study area. The probability of pesticide overuse significantly decreased with farmers' risk perceptions, willingness to reduce pesticide use, better social relationships, and strict government monitoring. The perception of risk can thus be an important element in education and communication efforts.

  19. Dark Energy Domination In The Virgocentric Flow

    NASA Astrophysics Data System (ADS)

    Byrd, Gene; Chernin, A. D.; Karachentsev, I. D.; Teerikorpi, P.; Valtonen, M.; Dolgachev, V. P.; Domozhilova, L. M.

    2011-04-01

    Dark energy (DE) was first observationally detected at large Gpc distances. If it is a vacuum energy formulated as Einstein's cosmological constant, Λ, DE should also have dynamical effects at much smaller scales. Previously, we found its effects on much smaller Mpc scales in our Local Group (LG) as well as in other nearby groups. We used new HST observations of member 3D distances from the group centers and Doppler shifts. We find each group's gravity dominates a bound central system of galaxies but DE antigravity results in a radial recession increasing with distance from the group center of the outer members. Here we focus on the much larger (but still cosmologically local) Virgo Cluster and systems around it using new observations of velocities and distances. We propose an analytic model whose key parameter is the zero-gravity radius (ZGR) from the cluster center where gravity and DE antigravity balance. DE brings regularity to the Virgocentric flow. Beyond Virgo's 10 Mpc ZGR, the flow curves to approach a linear global Hubble law at larger distances. The Virgo cluster and its outer flow are similar to the Local Group and its local outflow with a scaling factor of about 10; the ZGR for Virgo is 10 times larger than that of the LG. The similarity of the two systems on the scales of 1 to 30 Mpc suggests that a quasi-stationary bound central component and an expanding outflow applies to a wide range of groups and clusters due to small scale action of DE as well as gravity. Chernin, et al 2009 Astronomy and Astrophysics 507, 1271 http://arxiv.org/abs/1006.0066 http://arxiv.org/abs/1006.0555

  20. Determinants of Spatial Distribution in a Bee Community: Nesting Resources, Flower Resources, and Body Size

    PubMed Central

    Torné-Noguera, Anna; Rodrigo, Anselm; Arnan, Xavier; Osorio, Sergio; Barril-Graells, Helena; da Rocha-Filho, Léo Correia; Bosch, Jordi

    2014-01-01

    Understanding biodiversity distribution is a primary goal of community ecology. At a landscape scale, bee communities are affected by habitat composition, anthropogenic land use, and fragmentation. However, little information is available on local-scale spatial distribution of bee communities within habitats that are uniform at the landscape scale. We studied a bee community along with floral and nesting resources over a 32 km2 area of uninterrupted Mediterranean scrubland. Our objectives were (i) to analyze floral and nesting resource composition at the habitat scale. We ask whether these resources follow a geographical pattern across the scrubland at bee-foraging relevant distances; (ii) to analyze the distribution of bee composition across the scrubland. Bees being highly mobile organisms, we ask whether bee composition shows a homogeneous distribution or else varies spatially. If so, we ask whether this variation is irregular or follows a geographical pattern and whether bees respond primarily to flower or to nesting resources; and (iii) to establish whether body size influences the response to local resource availability and ultimately spatial distribution. We obtained 6580 specimens belonging to 98 species. Despite bee mobility and the absence of environmental barriers, our bee community shows a clear geographical pattern. This pattern is mostly attributable to heterogeneous distribution of small (<55 mg) species (with presumed smaller foraging ranges), and is mostly explained by flower resources rather than nesting substrates. Even then, a large proportion (54.8%) of spatial variability remains unexplained by flower or nesting resources. We conclude that bee communities are strongly conditioned by local effects and may exhibit spatial heterogeneity patterns at a scale as low as 500–1000 m in patches of homogeneous habitat. These results have important implications for local pollination dynamics and spatial variation of plant-pollinator networks. PMID:24824445

  1. Determinants of spatial distribution in a bee community: nesting resources, flower resources, and body size.

    PubMed

    Torné-Noguera, Anna; Rodrigo, Anselm; Arnan, Xavier; Osorio, Sergio; Barril-Graells, Helena; da Rocha-Filho, Léo Correia; Bosch, Jordi

    2014-01-01

    Understanding biodiversity distribution is a primary goal of community ecology. At a landscape scale, bee communities are affected by habitat composition, anthropogenic land use, and fragmentation. However, little information is available on local-scale spatial distribution of bee communities within habitats that are uniform at the landscape scale. We studied a bee community along with floral and nesting resources over a 32 km2 area of uninterrupted Mediterranean scrubland. Our objectives were (i) to analyze floral and nesting resource composition at the habitat scale. We ask whether these resources follow a geographical pattern across the scrubland at bee-foraging relevant distances; (ii) to analyze the distribution of bee composition across the scrubland. Bees being highly mobile organisms, we ask whether bee composition shows a homogeneous distribution or else varies spatially. If so, we ask whether this variation is irregular or follows a geographical pattern and whether bees respond primarily to flower or to nesting resources; and (iii) to establish whether body size influences the response to local resource availability and ultimately spatial distribution. We obtained 6580 specimens belonging to 98 species. Despite bee mobility and the absence of environmental barriers, our bee community shows a clear geographical pattern. This pattern is mostly attributable to heterogeneous distribution of small (<55 mg) species (with presumed smaller foraging ranges), and is mostly explained by flower resources rather than nesting substrates. Even then, a large proportion (54.8%) of spatial variability remains unexplained by flower or nesting resources. We conclude that bee communities are strongly conditioned by local effects and may exhibit spatial heterogeneity patterns at a scale as low as 500-1000 m in patches of homogeneous habitat. These results have important implications for local pollination dynamics and spatial variation of plant-pollinator networks.

  2. Ice911 Research: Preserving and Rebuilding Multi-Year Ice

    NASA Astrophysics Data System (ADS)

    Field, L. A.; Chetty, S.; Manzara, A.

    2013-12-01

    A localized surface albedo modification technique is being developed that shows promise as a method to increase multi-year ice using reflective floating materials, chosen so as to have low subsidiary environmental impact. Multi-year ice has diminished rapidly in the Arctic over the past 3 decades (Riihela et al, Nature Climate Change, August 4, 2013) and this plays a part in the continuing rapid decrease of summer-time ice. As summer-time ice disappears, the Arctic is losing its ability to act as the earth's refrigeration system, and this has widespread climatic effects, as well as a direct effect on sea level rise, as oceans heat, and once-land-based ice melts into the sea. We have tested the albedo modification technique on a small scale over five Winter/Spring seasons at sites including California's Sierra Nevada Mountains, a Canadian lake, and a small man-made lake in Minnesota, using various materials and an evolving array of instrumentation. The materials can float and can be made to minimize effects on marine habitat and species. The instrumentation is designed to be deployed in harsh and remote locations. Localized snow and ice preservation, and reductions in water heating, have been quantified in small-scale testing. Climate modeling is underway to analyze the effects of this method of surface albedo modification in key areas on the rate of oceanic and atmospheric temperature rise. We are also evaluating the effects of snow and ice preservation for protection of infrastructure and habitat stabilization. This paper will also discuss a possible reduction of sea level rise with an eye to quantification of cost/benefit. The most recent season's experimentation on a man-made private lake in Minnesota saw further evolution in the material and deployment approach. The materials were successfully deployed to shield underlying snow and ice from melting; applications of granular materials remained stable in the face of local wind and storms. Localized albedo modification options such as the one being studied in this work may act to preserve ice, glaciers, permafrost and seasonal snow areas, and perhaps aid natural ice formation processes. If this method could be deployed on a large enough scale, it could conceivably bring about a reduction in the Ice-Albedo Feedback Effect, possibly slowing one of the key effects and factors in climate change. Test site at man-made lake in Minnesota 2013

  3. Coexistence and relative abundance in plant communities are determined by feedbacks when the scale of feedback and dispersal is local.

    PubMed

    Mack, Keenan M L; Bever, James D

    2014-09-01

    1. Negative plant-soil feedback occurs when the presence of an individual of a particular species at a particular site decreases the relative success of individuals of the same species compared to those other species at that site. This effect favors heterospecifics thereby facilitating coexistence and maintaining diversity. Empirical work has demonstrated that the average strengths of these feedbacks correlate with the relative abundance of species within a community, suggesting that feedbacks are an important driver of plant community composition. Understanding what factors contribute to the generation of this relationship is necessary for diagnosing the dynamic forces that maintain diversity in plant communities. 2. We used a spatially explicit, individual-based computer simulation to test the effects of dispersal distance, the size of feedback neighbourhoods, the strength of pairwise feedbacks and community wide variation of feedbacks, community richness, as well as life-history differences on the dependence of relative abundance on strength of feedback. 3. We found a positive dependence of relative abundance of a species on its average feedback for local scale dispersal and feedback. However, we found that the strength of this dependence decreased as either the spatial scale of dispersal and/or the spatial scale of feedback increased. We also found that for spatially local (i.e. relatively small) scale interaction and dispersal, as the mean strength of feedbacks in the community becomes less negative, the greater the increase in abundance produced by a comparable increase in species-specific average feedback. We found that life-history differences such as mortality rate did not generate a pattern with abundance, nor did they affect the relationship between abundance and average feedback. 4. Synthesis . Our results support the claim that empirical observations of a positive correlation between relative abundance and strength of average feedback serves as evidence that local scale negative feedbacks play a prominent role in structuring plant communities. We also identify that this relationship depends upon local scale plant dispersal and feedback which generates clumping and magnifies the negative feedbacks.

  4. Using Friends as Sensors to Detect Global-Scale Contagious Outbreaks

    PubMed Central

    Garcia-Herranz, Manuel; Moro, Esteban; Cebrian, Manuel; Christakis, Nicholas A.; Fowler, James H.

    2014-01-01

    Recent research has focused on the monitoring of global–scale online data for improved detection of epidemics, mood patterns, movements in the stock market political revolutions, box-office revenues, consumer behaviour and many other important phenomena. However, privacy considerations and the sheer scale of data available online are quickly making global monitoring infeasible, and existing methods do not take full advantage of local network structure to identify key nodes for monitoring. Here, we develop a model of the contagious spread of information in a global-scale, publicly-articulated social network and show that a simple method can yield not just early detection, but advance warning of contagious outbreaks. In this method, we randomly choose a small fraction of nodes in the network and then we randomly choose a friend of each node to include in a group for local monitoring. Using six months of data from most of the full Twittersphere, we show that this friend group is more central in the network and it helps us to detect viral outbreaks of the use of novel hashtags about 7 days earlier than we could with an equal-sized randomly chosen group. Moreover, the method actually works better than expected due to network structure alone because highly central actors are both more active and exhibit increased diversity in the information they transmit to others. These results suggest that local monitoring is not just more efficient, but also more effective, and it may be applied to monitor contagious processes in global–scale networks. PMID:24718030

  5. Study of solar wind spectra by nonlinear waves interaction

    NASA Astrophysics Data System (ADS)

    Dwivedi, Navin; Sharma, Rampal; Narita, Yasuhito

    2014-05-01

    The nature of small-scale turbulent fluctuations in the solar wind (SW) turbulence is a topic that is being investigated extensively nowadays, both theoretically and observationally. Although recent observations predict the evidence of the dominance of kinetic Alfvén waves (KAW) at sub-ion scales with frequency below than ion cyclotron frequency, while other studies suggest that the KAW mode cannot carry the turbulence cascade down to electron scales and that the whistler mode is more relevant. In the present work, nonlinear interaction of kinetic Alfvén wave with whistler wave is considered as one of the possible cause responsible for the solar wind turbulence. A set of coupled dimensionless equations are derived for the intermediate beta plasmas and the nonlinear interaction between these two wave modes has been studied. As a consequence of ponderomotive nonlinearity, the pump KAW becomes filamented when its power exceeds the threshold for the filamentation instability. Whistler is considered to be weak and thus doesn't have enough intensity to initiate its own localization. It gets localized while propagating through the density channel created by KAW localization. In addition, spectral scales of power spectra of KAW and whistler are also calculated. The steeper spectra are found with scaling greater than -5/3. This type of nonlinear interaction between different wave modes and steeper spectra is one of the reasons for the solar wind turbulence and particles acceleration. This work is partially supported by DST (India) and FP7/STORM (313038)

  6. Using friends as sensors to detect global-scale contagious outbreaks.

    PubMed

    Garcia-Herranz, Manuel; Moro, Esteban; Cebrian, Manuel; Christakis, Nicholas A; Fowler, James H

    2014-01-01

    Recent research has focused on the monitoring of global-scale online data for improved detection of epidemics, mood patterns, movements in the stock market political revolutions, box-office revenues, consumer behaviour and many other important phenomena. However, privacy considerations and the sheer scale of data available online are quickly making global monitoring infeasible, and existing methods do not take full advantage of local network structure to identify key nodes for monitoring. Here, we develop a model of the contagious spread of information in a global-scale, publicly-articulated social network and show that a simple method can yield not just early detection, but advance warning of contagious outbreaks. In this method, we randomly choose a small fraction of nodes in the network and then we randomly choose a friend of each node to include in a group for local monitoring. Using six months of data from most of the full Twittersphere, we show that this friend group is more central in the network and it helps us to detect viral outbreaks of the use of novel hashtags about 7 days earlier than we could with an equal-sized randomly chosen group. Moreover, the method actually works better than expected due to network structure alone because highly central actors are both more active and exhibit increased diversity in the information they transmit to others. These results suggest that local monitoring is not just more efficient, but also more effective, and it may be applied to monitor contagious processes in global-scale networks.

  7. Fine-Scale Genetic Response to Landscape Change in a Gliding Mammal

    PubMed Central

    Goldingay, Ross L.; Harrisson, Katherine A.; Taylor, Andrea C.; Ball, Tina M.; Sharpe, David J.; Taylor, Brendan D.

    2013-01-01

    Understanding how populations respond to habitat loss is central to conserving biodiversity. Population genetic approaches enable the identification of the symptoms of population disruption in advance of population collapse. However, the spatio-temporal scales at which population disruption occurs are still too poorly known to effectively conserve biodiversity in the face of human-induced landscape change. We employed microsatellite analysis to examine genetic structure and diversity over small spatial (mostly 1-50 km) and temporal scales (20-50 years) in the squirrel glider (Petaurus norfolcensis), a gliding mammal that is commonly subjected to a loss of habitat connectivity. We identified genetically differentiated local populations over distances as little as 3 km and within 30 years of landscape change. Genetically isolated local populations experienced the loss of genetic diversity, and significantly increased mean relatedness, which suggests increased inbreeding. Where tree cover remained, genetic differentiation was less evident. This pattern was repeated in two landscapes located 750 km apart. These results lend support to other recent studies that suggest the loss of habitat connectivity can produce fine-scale population genetic change in a range of taxa. This gives rise to the prediction that many other vertebrates will experience similar genetic changes. Our results suggest the future collapse of local populations of this gliding mammal is likely unless habitat connectivity is maintained or restored. Landscape management must occur on a fine-scale to avert the erosion of biodiversity. PMID:24386079

  8. Physical controls on half-hourly, daily, and monthly turbulent flux and energy budget over a high-altitude small lake on the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Wang, Binbin; Ma, Yaoming; Ma, Weiqiang; Su, Zhongbo

    2017-02-01

    Precise measurements of evaporation and understanding of the physical controls on turbulent heat flux over lakes have fundamental significance for catchment-scale water balance analysis and local-scale climate modeling. The observation and simulation of lake-air turbulent flux processes have been widely carried out, but studies that examine high-altitude lakes on the Tibetan Plateau are still rare, especially for small lakes. An eddy covariance (EC) system, together with a four-component radiation sensor and instruments for measuring water temperature profiles, was set up in a small lake within the Nam Co basin in April 2012 for long-term evaporation and energy budget observations. With the valuable measurements collected during the ice-free periods in 2012 and 2013, the main conclusions are summarized as follows: First, a bulk aerodynamic transfer model (B model), with parameters optimized for the specific wave pattern in the small lake, could provide reliable and consistent results with EC measurements, and B model simulations are suitable for data interpolation due to inadequate footprint or malfunction of the EC instrument. Second, the total evaporation in this small lake (812 mm) is approximately 200 mm larger than that from adjacent Nam Co (approximately 627 mm) during their ice-free seasons. Third, wind speed shows significance at temporal scales of half hourly, whereas water vapor and temperature gradients have higher correlations over temporal scales of daily and monthly in lake-air turbulent heat exchange. Finally, energy stored during April to June is mainly released during September to November, suggesting an energy balance closure value of 0.97.

  9. Comparison of unitary associations and probabilistic ranking and scaling as applied to mesozoic radiolarians

    NASA Astrophysics Data System (ADS)

    Baumgartner, Peter O.

    A database on Middle Jurassic-Early Cretaceous radiolarians consisting of first and final occurrences of 110 species in 226 samples from 43 localities was used to compute Unitary Associations and probabilistic ranking and scaling (RASC), in order to test deterministic versus probabilistic quantitative biostratigraphic methods. Because the Mesozoic radiolarian fossil record is mainly dissolution-controlled, the sequence of events differs greatly from section to section. The scatter of local first and final appearances along a time scale is large compared to the species range; it is asymmetrical, with a maximum near the ends of the range and it is non-random. Thus, these data do not satisfy the statistical assumptions made in ranking and scaling. Unitary Associations produce maximum ranges of the species relative to each other by stacking cooccurrence data from all sections and therefore compensate for the local dissolution effects. Ranking and scaling, based on the assumption of a normal random distribution of the events, produces average ranges which are for most species much shorter than the maximum UA-ranges. There are, however, a number of species with similar ranges in both solutions. These species are believed to be the most dissolution-resistant and, therefore, the most reliable ones for the definition of biochronozones. The comparison of maximum and average ranges may be a powerful tool to test reliability of species for biochronology. Dissolution-controlled fossil data yield high crossover frequencies and therefore small, statistically insignificant interfossil distances. Scaling has not produced a useful sequence for this type of data.

  10. Accounting for Fault Roughness in Pseudo-Dynamic Ground-Motion Simulations

    NASA Astrophysics Data System (ADS)

    Mai, P. Martin; Galis, Martin; Thingbaijam, Kiran K. S.; Vyas, Jagdish C.; Dunham, Eric M.

    2017-09-01

    Geological faults comprise large-scale segmentation and small-scale roughness. These multi-scale geometrical complexities determine the dynamics of the earthquake rupture process, and therefore affect the radiated seismic wavefield. In this study, we examine how different parameterizations of fault roughness lead to variability in the rupture evolution and the resulting near-fault ground motions. Rupture incoherence naturally induced by fault roughness generates high-frequency radiation that follows an ω-2 decay in displacement amplitude spectra. Because dynamic rupture simulations are computationally expensive, we test several kinematic source approximations designed to emulate the observed dynamic behavior. When simplifying the rough-fault geometry, we find that perturbations in local moment tensor orientation are important, while perturbations in local source location are not. Thus, a planar fault can be assumed if the local strike, dip, and rake are maintained. We observe that dynamic rake angle variations are anti-correlated with the local dip angles. Testing two parameterizations of dynamically consistent Yoffe-type source-time function, we show that the seismic wavefield of the approximated kinematic ruptures well reproduces the radiated seismic waves of the complete dynamic source process. This finding opens a new avenue for an improved pseudo-dynamic source characterization that captures the effects of fault roughness on earthquake rupture evolution. By including also the correlations between kinematic source parameters, we outline a new pseudo-dynamic rupture modeling approach for broadband ground-motion simulation.

  11. the observation, simulation and evaluation of lake-air interaction process over a high altitude small lake on the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Wang, Binbin; Ma, Yaoming; Ma, Weiqiang; Su, Bob

    2017-04-01

    Lakes are an important part of the landscape on the Tibetan Plateau. The area that contains most of the plateau lakes has been expanding in recent years, but the impact of lakes on lake-atmosphere energy and water interactions is poorly understood because of a lack of observational data and adequate modeling systems. Furthermore, Precise measurements of evaporation and understanding of the physical controls on turbulent heat flux over lakes at different time scales have fundamental significance for catchment-scale water balance analysis and local-scale climate modeling. To test the performance of lake-air turbulent exchange models over high-altitude lakes and to understanding the driving forces for turbulent heat flux and obtain the actual evaporation over the small high-altitude lakes, an eddy covariance observational system was built above the water surface of the small Nam Co Lake (with an altitude of 4715 m and an area of approximately 1 km2) in April 2012. Firstly, we proposed the proper Charnock coefficient (0.031) and the roughness Reynolds number (0.54) for simulation using turbulent data in 2012, and validated the results using data in 2013 independently; secondly, wind speed shows significance at half-hourly time scales, whereas water vapor and temperature gradients have higher correlations over daily and monthly time scales in lake-air turbulent heat exchange; thirdly, the total evaporation in this small lake (812 mm) is approximately 200 mm larger than that from adjacent Nam Co (approximately 627 mm) during their ice-free seasons. Moreover, the energy stored during April to June is mainly released during September to November, suggesting an energy balance closure value of 0.97 over the entire ice-free season; lastly, 10 evaporation estimation methods are evaluated with the prepared datasets.

  12. Comparative Tectonics of Europa and Ganymede

    NASA Astrophysics Data System (ADS)

    Pappalardo, R. T.; Collins, G. C.; Prockter, L. M.; Head, J. W.

    2000-10-01

    Europa and Ganymede are sibling satellites with tectonic similarities and differences. Ganymede's ancient dark terrain is crossed by furrows, probably related to ancient large impacts, and has been normal faulted to various degrees. Bright grooved is pervasively deformed at multiple scales and is locally highly strained, consistent with normal faulting of an ice-rich lithosphere above a ductile asthenosphere, along with minor horizontal shear. Little evidence has been identified for compressional structures. The relative roles of tectonism and icy cryovolcanism in creating bright grooved terrain is an outstanding issue. Some ridge and trough structures within Europa's bands show tectonic similarities to Ganymede's grooved terrain, specifically sawtooth structures resembling normal fault blocks. Small-scale troughs are consistent with widened tension fractures. Shearing has produced transtensional and transpressional structures in Europan bands. Large-scale folds are recognized on Europa, with synclinal small-scale ridges and scarps probably representing folds and/or thrust blocks. Europa's ubiquitous double ridges may have originated as warm ice upwelled along tidally heated fracture zones. The morphological variety of ridges and troughs on Europa imply that care must be taken in inferring their origin. The relative youth of Europa's surface means that the satellite has preserved near-pristine morphologies of many structures, though sputter erosion could have altered the morphology of older topography. Moderate-resolution imaging has revealed lesser apparent diversity in Ganymede's ridge and trough types. Galileo's 28th orbit has brought new 20 m/pixel imaging of Ganymede, allowing direct comparison to Europa's small-scale structures.

  13. [Evaluation of the learning curve of residents in localizing a phantom target with ultrasonography].

    PubMed

    Dessieux, T; Estebe, J-P; Bloc, S; Mercadal, L; Ecoffey, C

    2008-10-01

    Few information are available regarding the learning curve in ultrasonography and even less for ultrasound-guided regional anesthesia. This study aimed to evaluate in a training program the learning curve on a phantom of 12 residents novice in ultrasonography. Twelve trainees inexperienced in ultrasonography were given introductory training consisting of didactic formation on the various components of the portable ultrasound machine (i.e. on/off button, gain, depth, resolution, and image storage). Then, students performed three trials, in two sets of increased difficulty, at executing these predefined tasks: adjustments of the machine, then localization of a small plastic piece introduced into roasting pork (3 cm below the surface). At the end of the evaluation, the residents were asked to insert a 22 G needle into an exact predetermined target (i.e. point of fascia intersection). The progression of the needle was continuously controlled by ultrasound visualization using injection of a small volume of water (needle perpendicular to the longitudinal plane of the ultrasound beam). Two groups of two different examiners evaluated for each three trials the skill of the residents (quality, time to perform the machine adjustments, to localize the plastic target, and to hydrolocalize, and volume used for hydrolocalization). After each trial, residents evaluated their performance using a difficulty scale (0: easy to 10: difficult). All residents performed the adjustments from the last trial of each set, with a learning curve observed in terms of duration. Localization of the plastic piece was achieved by all residents at the 6th trial, with a shorter duration of localization. Hydrolocalization was achieved after the 4th trial by all subjects. Difficulty scale was correlated to the number of trials. All these results were independent of the experience of residents in regional anesthesia. Four trials were necessary to adjust correctly the machine, to localize a target, and to complete hydrolocalization. Ultrasonography in regional anesthesia seems to be a fast-learning technique, using this kind of practical training.

  14. Assimilation of global versus local data sets into a regional model of the Gulf Stream system. 1. Data effectiveness

    NASA Astrophysics Data System (ADS)

    Malanotte-Rizzoli, Paola; Young, Roberta E.

    1995-12-01

    The primary objective of this paper is to assess the relative effectiveness of data sets with different space coverage and time resolution when they are assimilated into an ocean circulation model. We focus on obtaining realistic numerical simulations of the Gulf Stream system typically of the order of 3-month duration by constructing a "synthetic" ocean simultaneously consistent with the model dynamics and the observations. The model used is the Semispectral Primitive Equation Model. The data sets are the "global" Optimal Thermal Interpolation Scheme (OTIS) 3 of the Fleet Numerical Oceanography Center providing temperature and salinity fields with global coverage and with bi-weekly frequency, and the localized measurements, mostly of current velocities, from the central and eastern array moorings of the Synoptic Ocean Prediction (SYNOP) program, with daily frequency but with a very small spatial coverage. We use a suboptimal assimilation technique ("nudging"). Even though this technique has already been used in idealized data assimilation studies, to our knowledge this is the first study in which the effectiveness of nudging is tested by assimilating real observations of the interior temperature and salinity fields. This is also the first work in which a systematic assimilation is carried out of the localized, high-quality SYNOP data sets in numerical experiments longer than 1-2 weeks, that is, not aimed to forecasting. We assimilate (1) the global OTIS 3 alone, (2) the local SYNOP observations alone, and (3) both OTIS 3 and SYNOP observations. We assess the success of the assimilations with quantitative measures of performance, both on the global and local scale. The results can be summarized as follows. The intermittent assimilation of the global OTIS 3 is necessary to keep the model "on track" over 3-month simulations on the global scale. As OTIS 3 is assimilated at every model grid point, a "gentle" weight must be prescribed to it so as not to overconstrain the model. However, in these assimilations the predicted velocity fields over the SYNOP arrays are greatly in error. The continuous assimilation of the localized SYNOP data sets with a strong weight is necessary to obtain local realistic evolutions. Then assimilation of velocity measurements alone recovers the density structure over the array area. However, the spatial coverage of the SYNOP measurements is too small to constrain the model on the global scale. Thus the blending of both types of datasets is necessary in the assimilation as they constrain different time and space scales. Our choice of "gentle" nudging weight for the global OTIS 3 and "strong" weight for the local SYNOP data provides for realistic simulations of the Gulf Stream system, both globally and locally, on the 3- to 4-month-long timescale, the one governed by the Gulf Stream jet internal dynamics.

  15. Photon Localization and Dicke Superradiance in Atomic Gases

    NASA Astrophysics Data System (ADS)

    Akkermans, E.; Gero, A.; Kaiser, R.

    2008-09-01

    Photon propagation in a gas of N atoms is studied using an effective Hamiltonian describing photon-mediated atomic dipolar interactions. The density P(Γ) of photon escape rates is determined from the spectrum of the N×N random matrix Γij=sin⁡(xij)/xij, where xij is the dimensionless random distance between any two atoms. Varying disorder and system size, a scaling behavior is observed for the escape rates. It is explained using microscopic calculations and a stochastic model which emphasizes the role of cooperative effects in photon localization and provides an interesting relation with statistical properties of “small world networks.”

  16. Finite-size effects in Anderson localization of one-dimensional Bose-Einstein condensates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cestari, J. C. C.; Foerster, A.; Gusmao, M. A.

    We investigate the disorder-induced localization transition in Bose-Einstein condensates for the Anderson and Aubry-Andre models in the noninteracting limit using exact diagonalization. We show that, in addition to the standard superfluid fraction, other tools such as the entanglement and fidelity can provide clear signatures of the transition. Interestingly, the fidelity exhibits good sensitivity even for small lattices. Effects of the system size on these quantities are analyzed in detail, including the determination of a finite-size-scaling law for the critical disorder strength in the case of the Anderson model.

  17. Silicon solar cell process development, fabrication and analysis

    NASA Technical Reports Server (NTRS)

    Leung, D. C.; Iles, P. A.

    1983-01-01

    Measurements of minority carrier diffusion lengths were made on the small mesa diodes from HEM Si and SILSO Si. The results were consistent with previous Voc and Isc measurements. Only the medium grain SILSO had a distinct advantage for the non grain boundary diodes. Substantial variations were observed for the HEM ingot 4141C. Also a quantitatively scaled light spot scan was being developed for localized diffusion length measurements in polycrystalline silicon solar cells. A change to a more monochromatic input for the light spot scan results in greater sensitivity and in principle, quantitative measurement of local material qualities is now possible.

  18. Consumer preference for seeds and seedlings of rare species impacts tree diversity at multiple scales.

    PubMed

    Young, Hillary S; McCauley, Douglas J; Guevara, Roger; Dirzo, Rodolfo

    2013-07-01

    Positive density-dependent seed and seedling predation, where herbivores selectively eat seeds or seedlings of common species, is thought to play a major role in creating and maintaining plant community diversity. However, many herbivores and seed predators are known to exhibit preferences for rare foods, which could lead to negative density-dependent predation. In this study, we first demonstrate the occurrence of increased predation of locally rare tree species by a widespread group of insular seed and seedling predators, land crabs. We then build computer simulations based on these empirical data to examine the effects of such predation on diversity patterns. Simulations show that herbivore preferences for locally rare species are likely to drive scale-dependent effects on plant community diversity: at small scales these foraging patterns decrease plant community diversity via the selective consumption of rare plant species, while at the landscape level they should increase diversity, at least for short periods, by promoting clustered local dominance of a variety of species. Finally, we compared observed patterns of plant diversity at the site to those obtained via computer simulations, and found that diversity patterns generated under simulations were highly consistent with observed diversity patterns. We posit that preference for rare species by herbivores may be prevalent in low- or moderate-diversity systems, and that these effects may help explain diversity patterns across different spatial scales in such ecosystems.

  19. Himalayan glaciers: understanding contrasting patterns of glacier behavior using multi-temporal satellite imagery

    NASA Astrophysics Data System (ADS)

    Racoviteanu, A.

    2014-12-01

    High rates of glacier retreat for the last decades are often reported, and believed to be induced by 20th century climate changes. However, regional glacier fluctuations are complex, and depend on a combination of climate and local topography. Furthermore, in ares such as the Hindu-Kush Himalaya, there are concerns about warming, decreasing monsoon precipitation and their impact on local glacier regimes. Currently, the challenge is in understanding the magnitude of feedbacks between large-scale climate forcing and small-scale glacier behavior. Spatio-temporal patterns of glacier distribution are still llimited in some areas of the high Hindu-Kush Himalaya, but multi-temporal satellite imagery has helped fill spatial and temporal gaps in regional glacier parameters in the last decade. Here I present a synopsis of the behavior of glaciers across the Himalaya, following a west to east gradient. In particular, I focus on spatial patterns of glacier parameters in the eastern Himalaya, which I investigate at multi-spatial scales using remote sensing data from declassified Corona, ASTER, Landsat ETM+, Quickbird and Worldview2 sensors. I also present the use of high-resolution imagery, including texture and thermal analysis for mapping glacier features at small scale, which are particularly useful in understanding surface trends of debris-covered glaciers, which are prevalent in the Himalaya. I compare and contrast spatial patterns of glacier area and élévation changes in the monsoon-influenced eastern Himalaya (the Everest region in the Nepal Himalaya and Sikkim in the Indian Himalaya) with other observations from the dry western Indian Himalaya (Ladakh and Lahul-Spiti), both field measurements and remote sensing-based. In the eastern Himalaya, results point to glacier area change of -0.24 % ± 0.08% per year from the 1960's to the 2006's, with a higher rate of retreat in the last decade (-0.43% /yr). Debris-covered glacier tongues show thinning trends of -30.8 m± 39 m on average over the last four decades, similar to other studies in the same climatic area. However, at small scales, the behavior of glaciers is highly heterogenous, with contrasting patterns of thickening glacier termini versus retreating nad thinning glacier tongues.

  20. Small scale endemism in Brazil's Atlantic Forest: 14 new species of Mesabolivar (Araneae, Pholcidae), each known from a single locality.

    PubMed

    Huber, Bernhard A

    2015-04-07

    In an ongoing mega-transect project that aims at analyzing pholcid spider diversity and distribution in the Atlantic Forest of Brazil, many species appear restricted to small geographic ranges. Of the 84 species collected between 2003 and 2011 at 17 sites between Bahia and Santa Catarina, 51 species (61%) were found at only one locality. The present paper focuses on such species in the genus Mesabolivar, and compares diversity and distribution patterns of this genus within and outside the Atlantic Forest. The percentage of species known from single localities is higher in the Atlantic Forest (34 of 52 species; 65%) than outside the Atlantic Forest (10 of 25; 40%). Distribution rages of species in the Atlantic Forest are significantly smaller than of species outside the Atlantic Forest (mean maximum distances between localities: 184 versus 541 km; medians: 10 km versus 220 km). The following species are newly described (arranged from north to south), each currently known from the respective type locality only: M. caipora; M. kathrinae; M. bonita; M. pau (Bahia); M. monteverde; M. perezi (Espírito Santo); M. giupponii; M. goitaca; M. sai (Rio de Janeiro); M. tamoio; M. unicornis; M. gabettae; M. inornatus (São Paulo); M. itapoa (Santa Catarina).

  1. Identification of genes that function in the biogenesis and localization of small nucleolar RNAs in Saccharomyces cerevisiae.

    PubMed

    Qiu, Hui; Eifert, Julia; Wacheul, Ludivine; Thiry, Marc; Berger, Adam C; Jakovljevic, Jelena; Woolford, John L; Corbett, Anita H; Lafontaine, Denis L J; Terns, Rebecca M; Terns, Michael P

    2008-06-01

    Small nucleolar RNAs (snoRNAs) orchestrate the modification and cleavage of pre-rRNA and are essential for ribosome biogenesis. Recent data suggest that after nucleoplasmic synthesis, snoRNAs transiently localize to the Cajal body (in plant and animal cells) or the homologous nucleolar body (in budding yeast) for maturation and assembly into snoRNPs prior to accumulation in their primary functional site, the nucleolus. However, little is known about the trans-acting factors important for the intranuclear trafficking and nucleolar localization of snoRNAs. Here, we describe a large-scale genetic screen to identify proteins important for snoRNA transport in Saccharomyces cerevisiae. We performed fluorescence in situ hybridization analysis to visualize U3 snoRNA localization in a collection of temperature-sensitive yeast mutants. We have identified Nop4, Prp21, Tao3, Sec14, and Htl1 as proteins important for the proper localization of U3 snoRNA. Mutations in genes encoding these proteins lead to specific defects in the targeting or retention of the snoRNA to either the nucleolar body or the nucleolus. Additional characterization of the mutants revealed impairment in specific steps of U3 snoRNA processing, demonstrating that snoRNA maturation and trafficking are linked processes.

  2. Cleaner fish drives local fish diversity on coral reefs.

    PubMed

    Grutter, Alexandra S; Murphy, Jan Maree; Choat, J Howard

    2003-01-08

    Coral reefs are one of the most diverse habitats in the world, yet our understanding of the processes affecting their biodiversity is limited. At the local scale, cleaner fish are thought to have a disproportionate effect, in relation to their abundance and size, on the activity of many other fish species, but confirmation of this species' effect on local fish diversity has proved elusive. The cleaner fish Labroides dimidiatus has major effects on fish activity patterns and may indirectly affect fish demography through the removal of large numbers of parasites. Here we show that small reefs where L. dimidiatus had been experimentally excluded for 18 months had half the species diversity of fish and one-fourth the abundance of individuals. Only fish that move among reefs, however, were affected. These fish include large species that themselves can affect other reef organisms. In contrast, the distribution of resident fish was not affected by cleaner fish. Thus, many fish appear to choose reefs based on the presence of cleaner fish. Our findings indicate that a single small and not very abundant fish has a strong influence on the movement patterns, habitat choice, activity, and local diversity and abundance of a wide variety of reef fish species.

  3. Five critical questions of scale for the coastal zone

    NASA Astrophysics Data System (ADS)

    Swaney, D. P.; Humborg, C.; Emeis, K.; Kannen, A.; Silvert, W.; Tett, P.; Pastres, R.; Solidoro, C.; Yamamuro, M.; Hénocque, Y.; Nicholls, R.

    2012-01-01

    Social and ecological systems around the world are becoming increasingly globalized. From the standpoint of understanding coastal ecosystem behavior, system boundaries are not sufficient to define causes of change. A flutter in the stock market in Tokyo or Hong Kong can affect salmon producers in Norway or farmers in Togo. The globalization of opportunistic species and the disempowerment of people trying to manage their own affairs on a local scale seem to coincide with the globalization of trade. Human-accelerated environmental change, including climate change, can exacerbate this sense of disenfranchisement. The structure and functioning of coastal ecosystems have been developed over thousands of years subject to environmental forces and constraints imposed mainly on local scales. However, phenomena that transcend these conventional scales have emerged with the explosion of human population, and especially with the rise of modern global culture. Here, we examine five broad questions of scale in the coastal zone: How big are coastal ecosystems and why should we care? Temporal scales of change in coastal waters and watersheds: Can we detect shifting baselines due to economic development and other drivers? Are footprints more important than boundaries? What makes a decision big? The tyranny of small decisions in coastal regions. Scales of complexity in coastal waters: the simple, the complicated or the complex? These questions do not have straightforward answers. There is no single "scale" for coastal ecosystems; their multiscale nature complicates our understanding and management of them. Coastal ecosystems depend on their watersheds as well as spatially-diffuse "footprints" associated with modern trade and material flows. Change occurs both rapidly and slowly on human time scales, and observing and responding to changes in coastal environments is a fundamental challenge. Apparently small human decisions collectively have potentially enormous consequences for coastal environmental quality, and our success in managing the effects of these decisions will determine the quality of life in the coastal zone in the 21st century and beyond. Vigilant monitoring, creative synthesis of information, and continued research will be necessary to properly understand and govern our coastal environments into the future.

  4. Stochastic Reconnection for Large Magnetic Prandtl Numbers

    NASA Astrophysics Data System (ADS)

    Jafari, Amir; Vishniac, Ethan T.; Kowal, Grzegorz; Lazarian, Alex

    2018-06-01

    We consider stochastic magnetic reconnection in high-β plasmas with large magnetic Prandtl numbers, Pr m > 1. For large Pr m , field line stochasticity is suppressed at very small scales, impeding diffusion. In addition, viscosity suppresses very small-scale differential motions and therefore also the local reconnection. Here we consider the effect of high magnetic Prandtl numbers on the global reconnection rate in a turbulent medium and provide a diffusion equation for the magnetic field lines considering both resistive and viscous dissipation. We find that the width of the outflow region is unaffected unless Pr m is exponentially larger than the Reynolds number Re. The ejection velocity of matter from the reconnection region is also unaffected by viscosity unless Re ∼ 1. By these criteria the reconnection rate in typical astrophysical systems is almost independent of viscosity. This remains true for reconnection in quiet environments where current sheet instabilities drive reconnection. However, if Pr m > 1, viscosity can suppress small-scale reconnection events near and below the Kolmogorov or viscous damping scale. This will produce a threshold for the suppression of large-scale reconnection by viscosity when {\\Pr }m> \\sqrt{Re}}. In any case, for Pr m > 1 this leads to a flattening of the magnetic fluctuation power spectrum, so that its spectral index is ∼‑4/3 for length scales between the viscous dissipation scale and eddies larger by roughly {{\\Pr }}m3/2. Current numerical simulations are insensitive to this effect. We suggest that the dependence of reconnection on viscosity in these simulations may be due to insufficient resolution for the turbulent inertial range rather than a guide to the large Re limit.

  5. Observation of Anisotropy in the Arrival Directions of Galactic Cosmic Rays at Multiple Angular Scales with IceCube

    NASA Astrophysics Data System (ADS)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brown, A. M.; Buitink, S.; Caballero-Mora, K. S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Daughhetee, J.; Davis, J. C.; De Clercq, C.; Demirörs, L.; Denger, T.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Gora, D.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Hajismail, A.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Heinen, D.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lünemann, J.; Madajczyk, B.; Madsen, J.; Majumdar, P.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Ono, M.; Panknin, S.; Paul, L.; Pérez de los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, C. C.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schmidt, T.; Schönwald, A.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stössl, A.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Stür, M.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.; IceCube Collaboration

    2011-10-01

    Between 2009 May and 2010 May, the IceCube neutrino detector at the South Pole recorded 32 billion muons generated in air showers produced by cosmic rays with a median energy of 20 TeV. With a data set of this size, it is possible to probe the southern sky for per-mil anisotropy on all angular scales in the arrival direction distribution of cosmic rays. Applying a power spectrum analysis to the relative intensity map of the cosmic ray flux in the southern hemisphere, we show that the arrival direction distribution is not isotropic, but shows significant structure on several angular scales. In addition to previously reported large-scale structure in the form of a strong dipole and quadrupole, the data show small-scale structure on scales between 15° and 30°. The skymap exhibits several localized regions of significant excess and deficit in cosmic ray intensity. The relative intensity of the smaller-scale structures is about a factor of five weaker than that of the dipole and quadrupole structure. The most significant structure, an excess localized at (right ascension α = 122fdg4 and declination δ = -47fdg4), extends over at least 20° in right ascension and has a post-trials significance of 5.3σ. The origin of this anisotropy is still unknown.

  6. Levodopa modulates small-world architecture of functional brain networks in Parkinson's disease.

    PubMed

    Berman, Brian D; Smucny, Jason; Wylie, Korey P; Shelton, Erika; Kronberg, Eugene; Leehey, Maureen; Tregellas, Jason R

    2016-11-01

    PD is associated with disrupted connectivity to a large number of distributed brain regions. How the disease alters the functional topological organization of the brain, however, remains poorly understood. Furthermore, how levodopa modulates network topology in PD is largely unknown. The objective of this study was to use resting-state functional MRI and graph theory to determine how small-world architecture is altered in PD and affected by levodopa administration. Twenty-one PD patients and 20 controls underwent functional MRI scanning. PD patients were scanned off medication and 1 hour after 200 mg levodopa. Imaging data were analyzed using 226 nodes comprising 10 intrinsic brain networks. Correlation matrices were generated for each subject and converted into cost-thresholded, binarized adjacency matrices. Cost-integrated whole-brain global and local efficiencies were compared across groups and tested for relationships with disease duration and severity. Data from 2 patients and 4 controls were excluded because of excess motion. Patients off medication showed no significant changes in global efficiency and overall local efficiency, but in a subnetwork analysis did show increased local efficiency in executive (P = 0.006) and salience (P = 0.018) networks. Levodopa significantly decreased local efficiency (P = 0.039) in patients except within the subcortical network, in which it significantly increased local efficiency (P = 0.007). Levodopa modulates global and local efficiency measures of small-world topology in PD, suggesting that degeneration of nigrostriatal neurons in PD may be associated with a large-scale network reorganization and that levodopa tends to normalize the disrupted network topology in PD. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.

  7. Approximating local observables on projected entangled pair states

    NASA Astrophysics Data System (ADS)

    Schwarz, M.; Buerschaper, O.; Eisert, J.

    2017-06-01

    Tensor network states are for good reasons believed to capture ground states of gapped local Hamiltonians arising in the condensed matter context, states which are in turn expected to satisfy an entanglement area law. However, the computational hardness of contracting projected entangled pair states in two- and higher-dimensional systems is often seen as a significant obstacle when devising higher-dimensional variants of the density-matrix renormalization group method. In this work, we show that for those projected entangled pair states that are expected to provide good approximations of such ground states of local Hamiltonians, one can compute local expectation values in quasipolynomial time. We therefore provide a complexity-theoretic justification of why state-of-the-art numerical tools work so well in practice. We finally turn to the computation of local expectation values on quantum computers, providing a meaningful application for a small-scale quantum computer.

  8. The Problem of Soil Erosion in Developing Countries--Direct and Indirect Causes and Recommendations for Reducing It to a Sustainable Level.

    ERIC Educational Resources Information Center

    Middlebrook, Cathy H.; Goode, Pamela M.

    1992-01-01

    Presents direct and indirect causes of erosion in developing countries. Identifies soil conservation developments ranging from major international policy reforms to small-scale, local farming programs. Suggests that strategies at all levels, and the political will to implement them, are needed if erosion is to be reduced to a sustainable rate. (23…

  9. The Vermont Bioenergy Initiative: Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callahan, Chris; Sawyer, Scott; Kahler, Ellen

    The purpose of the Vermont Bioenergy Initiative (VBI) was to foster the development of sustainable, distributed, small-scale biodiesel and grass/mixed fiber industries in Vermont in order to produce bioenergy for local transportation, agricultural, and thermal applications, as a replacement for fossil fuel based energy. The VBI marked the first strategic effort to reduce Vermont’s dependency on petroleum through the development of homegrown alternatives.

  10. Small scale morphodynamics of shoreface-connected ridges and their impact on benthic macrofauna

    NASA Astrophysics Data System (ADS)

    Markert, Edith; Kröncke, Ingrid; Kubicki, Adam

    2015-05-01

    The first interdisciplinary analysis (biological and sedimentological) of macrofauna communities influenced by long-term morphodynamics of shoreface-connected ridges in the German Bight on a small scale is presented in this study. The study area covering 4 km2 was located off the island of Spiekeroog, in an area known as a Tellina fabula community. Sediment samples taken at 27 sample sites were coupled with side-scan sonar data to draw a precise sediment map of the area, as well as with high-resolution multi-beam bathymetry data to understand the morphodynamic changes of the seabed between 2003 and 2010. The macrofauna data acquired at the same 27 sites were analysed for community structure using non-metric multidimensional scaling, the ANOSIM and PERMANOVA tests. Correlations between biological and environmental variables were examined with the BIOENV procedure. The study revealed a shore-parallel sediment zonation with clear and sharp borders induced by local morphodynamics, which together with specific local bathymetry affected the formation of three different macrofauna affinity groups. One group was located on the shoreface and in the troughs (dominant species: Scoloplos armiger, Lanice conchilega, Notomastus latericeus), one on the landward flanks of the ridges (dominant species: Aonides paucibranchiata, Goniadella bobretzkii), and one on the ridge crests (dominant species: Ophelia spp. juv., Spio goniocephala). The spatial distribution of the affinity groups, their taxa number and abundance of species was dependent on a surface sediment pattern resulting from local hydrodynamics, which in turn is known to influence the food availability. A seaward steepening of ridges took place and was an effect of erosion up to 0.34 m on landward flanks in and accumulation up to 0.29 m on seaward flanks in seven years. The studied shoreface-connected ridges migrated seawards with a pace of 5 m/year for the large ridge and 20 m/year for the small ridge. Elongated mud-pockets were common in the deepest parts of the troughs, but seemed to be unstable in time. The identified general seaward migration of shoreface-connected ridges seemed to be slow enough for the macrofauna communities to migrate with the morphodynamics of the ridges.

  11. Studies of small scale irregularities in the cusp ionosphere using sounding rockets: recent results

    NASA Astrophysics Data System (ADS)

    Spicher, A.; Ilyasov, A. A.; Miloch, W. J.; Chernyshov, A. A.; Moen, J.; Clausen, L. B. N.; Saito, Y.

    2017-12-01

    Plasma irregularities occurring over many scale sizes are common in the ionosphere. Understanding and characterizing the phenomena responsible for these irregularities is not only important from a theoretical point of view, but also in the context of space weather, as the irregularities can disturb HF communication and Global Navigation Satellite Systems signals. Overall, research about the small-scale turbulence has not progressed as fast for polar regions as for the equatorial ones, and for the high latitude ionosphere there is still no agreement nor detailed explanation regarding the formation of irregularities. To investigate plasma structuring at small scales in the cusp ionosphere, we use high resolution measurements from the Investigation of Cusp Irregularities (ICI) sounding rockets, and investigate a region associated with density enhancements and a region characterized by flow shears. Using the ICI-2 electron density data, we give further evidence of the importance of the gradient drift instability for plasma structuring inside the polar cap. In particular, using higher-order statistics, we provide new insights into the nature of the resulting plasma structures and show that they are characterized by intermittency. Using the ICI-3 data, we show that the entire region associated with a reversed flow event (RFE), with the presence of meter-scale irregularities, several flow shears and particle precipitation, is highly structured. By performing a numerical stability analysis, we show that the inhomogeneous-energy-density-driven instability (IEDDI) may be active in relation to RFEs at the rocket's altitude. In particular, we show that the presence of particle precipitation decreases the growth rates of IEDDI and, using a Local Intermittency Measure, we observe a correlation between IEDDI growth rates and electric field fluctuations over several scales. These findings support the view that large-scale inhomogeneities may provide a background for the development of micro-scale instabilities. Such interplay between macro- and micro-processes might be an important mechanism for the development of small-scale plasma gradients, and as a source for ion heating in the cusp ionosphere.

  12. A multi-scale comparison of trait linkages to environmental and spatial variables in fish communities across a large freshwater lake.

    PubMed

    Strecker, Angela L; Casselman, John M; Fortin, Marie-Josée; Jackson, Donald A; Ridgway, Mark S; Abrams, Peter A; Shuter, Brian J

    2011-07-01

    Species present in communities are affected by the prevailing environmental conditions, and the traits that these species display may be sensitive indicators of community responses to environmental change. However, interpretation of community responses may be confounded by environmental variation at different spatial scales. Using a hierarchical approach, we assessed the spatial and temporal variation of traits in coastal fish communities in Lake Huron over a 5-year time period (2001-2005) in response to biotic and abiotic environmental factors. The association of environmental and spatial variables with trophic, life-history, and thermal traits at two spatial scales (regional basin-scale, local site-scale) was quantified using multivariate statistics and variation partitioning. We defined these two scales (regional, local) on which to measure variation and then applied this measurement framework identically in all 5 study years. With this framework, we found that there was no change in the spatial scales of fish community traits over the course of the study, although there were small inter-annual shifts in the importance of regional basin- and local site-scale variables in determining community trait composition (e.g., life-history, trophic, and thermal). The overriding effects of regional-scale variables may be related to inter-annual variation in average summer temperature. Additionally, drivers of fish community traits were highly variable among study years, with some years dominated by environmental variation and others dominated by spatially structured variation. The influence of spatial factors on trait composition was dynamic, which suggests that spatial patterns in fish communities over large landscapes are transient. Air temperature and vegetation were significant variables in most years, underscoring the importance of future climate change and shoreline development as drivers of fish community structure. Overall, a trait-based hierarchical framework may be a useful conservation tool, as it highlights the multi-scaled interactive effect of variables over a large landscape.

  13. Evaluation of parallel milliliter-scale stirred-tank bioreactors for the study of biphasic whole-cell biocatalysis with ionic liquids.

    PubMed

    Dennewald, Danielle; Hortsch, Ralf; Weuster-Botz, Dirk

    2012-01-01

    As clear structure-activity relationships are still rare for ionic liquids, preliminary experiments are necessary for the process development of biphasic whole-cell processes involving these solvents. To reduce the time investment and the material costs, the process development of such biphasic reaction systems would profit from a small-scale high-throughput platform. Exemplarily, the reduction of 2-octanone to (R)-2-octanol by a recombinant Escherichia coli in a biphasic ionic liquid/water system was studied in a miniaturized stirred-tank bioreactor system allowing the parallel operation of up to 48 reactors at the mL-scale. The results were compared to those obtained in a 20-fold larger stirred-tank reactor. The maximum local energy dissipation was evaluated at the larger scale and compared to the data available for the small-scale reactors, to verify if similar mass transfer could be obtained at both scales. Thereafter, the reaction kinetics and final conversions reached in different reactions setups were analysed. The results were in good agreement between both scales for varying ionic liquids and for ionic liquid volume fractions up to 40%. The parallel bioreactor system can thus be used for the process development of the majority of biphasic reaction systems involving ionic liquids, reducing the time and resource investment during the process development of this type of applications. Copyright © 2011. Published by Elsevier B.V.

  14. Local versus offshore production of ready-to-use therapeutic foods and small quantity lipid-based nutrient supplements.

    PubMed

    Segrè, Joel; Liu, Grace; Komrska, Jan

    2017-10-01

    Manufacturers on four continents currently produce ready-to-use therapeutic foods (RUTF). Some produce locally, near their intended users, while others produce offshore and ship their product long distances. Small quantity lipid-based nutrient supplements (SQ-LNS) such as Nutriset's Enov'Nutributter are not yet in widespread production. There has been speculation whether RUTF and SQ-LNS should be produced primarily offshore, locally, or both. We analyzed The United Nations Children's Fund (UNICEF) Supply Division data, reviewed published literature, and interviewed local manufacturers to identify key benefits and challenges to local versus offshore manufacture of RUTF. Both prices and estimated costs for locally produced product have consistently been higher than offshore prices. Local manufacture faces challenges in taxation on imported ingredients, low factory utilization, high interest rates, long cash conversion cycle, and less convenient access to quality testing labs. Benefits to local economies are not likely to be significant. Although offshore manufacturers offer RUTF at lower cost, local production is getting closer to cost parity for RUTF. UNICEF, which buys the majority of RUTF globally, continues to support local production, and efforts are underway to narrow the cost gap further. Expansion of RUTF producers into the production of other ready-to-use foods, including SQ-LNS in order to reach a larger market and achieve a more sustainable scale, may further close the cost and price gap. Local production of both RUTF and SQ-LNS could be encouraged by a favorable tax environment, assistance in lending, consistent forecasts from buyers, investment in reliable input supply chains, and local laboratory testing. © 2016 John Wiley & Sons Ltd.

  15. Command and Control Warfare. Putting Another Tool in the War-Fighter’s Data Base

    DTIC Science & Technology

    1994-09-01

    information dominance , friendly commanders will be able to work inside the enemy commander’s decision-making cycle forcing him to be reactive and thus cede the initiative and advantage to friendly forces. In any conflict, from large scale transregional to small scale, localized counter-insurgency, a joint or coalition team drawn together from the capabilities of each service and orchestrated by the joint force or theater- level commander will execute the responses of the United States armed forces. Units should perform their specific roles in accordance with the

  16. Neuron array with plastic synapses and programmable dendrites.

    PubMed

    Ramakrishnan, Shubha; Wunderlich, Richard; Hasler, Jennifer; George, Suma

    2013-10-01

    We describe a novel neuromorphic chip architecture that models neurons for efficient computation. Traditional architectures of neuron array chips consist of large scale systems that are interfaced with AER for implementing intra- or inter-chip connectivity. We present a chip that uses AER for inter-chip communication but uses fast, reconfigurable FPGA-style routing with local memory for intra-chip connectivity. We model neurons with biologically realistic channel models, synapses and dendrites. This chip is suitable for small-scale network simulations and can also be used for sequence detection, utilizing directional selectivity properties of dendrites, ultimately for use in word recognition.

  17. The internal architecture of dendritic spines revealed by super-resolution imaging: What did we learn so far?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacGillavry, Harold D., E-mail: h.d.macgillavry@uu.nl; Hoogenraad, Casper C., E-mail: c.hoogenraad@uu.nl

    2015-07-15

    The molecular architecture of dendritic spines defines the efficiency of signal transmission across excitatory synapses. It is therefore critical to understand the mechanisms that control the dynamic localization of the molecular constituents within spines. However, because of the small scale at which most processes within spines take place, conventional light microscopy techniques are not adequate to provide the necessary level of resolution. Recently, super-resolution imaging techniques have overcome the classical barrier imposed by the diffraction of light, and can now resolve the localization and dynamic behavior of proteins within small compartments with nanometer precision, revolutionizing the study of dendritic spinemore » architecture. Here, we highlight exciting new findings from recent super-resolution studies on neuronal spines, and discuss how these studies revealed important new insights into how protein complexes are assembled and how their dynamic behavior shapes the efficiency of synaptic transmission.« less

  18. Peculiar motions, accelerated expansion, and the cosmological axis

    NASA Astrophysics Data System (ADS)

    Tsagas, Christos G.

    2011-09-01

    Peculiar velocities change the expansion rate of any observer moving relative to the smooth Hubble flow. As a result, observers in a galaxy like our Milky Way can experience accelerated expansion within a globally decelerating universe, even when the drift velocities are small. The effect is local, but the affected scales can be large enough to give the false impression that the whole cosmos has recently entered an accelerating phase. Generally, peculiar velocities are also associated with dipolelike anisotropies, triggered by the fact that they introduce a preferred spatial direction. This implies that observers experiencing locally accelerated expansion, as a result of their own drift motion, may also find that the acceleration is maximized in one direction and minimized in the opposite. We argue that, typically, such a dipole anisotropy should be relatively small and the axis should probably lie fairly close to the one seen in the spectrum of the cosmic microwave background.

  19. Scale dependence of the alignment between strain rate and rotation in turbulent shear flow

    NASA Astrophysics Data System (ADS)

    Fiscaletti, D.; Elsinga, G. E.; Attili, A.; Bisetti, F.; Buxton, O. R. H.

    2016-10-01

    The scale dependence of the statistical alignment tendencies of the eigenvectors of the strain-rate tensor ei, with the vorticity vector ω , is examined in the self-preserving region of a planar turbulent mixing layer. Data from a direct numerical simulation are filtered at various length scales and the probability density functions of the magnitude of the alignment cosines between the two unit vectors | ei.ω ̂| are examined. It is observed that the alignment tendencies are insensitive to the concurrent large-scale velocity fluctuations, but are quantitatively affected by the nature of the concurrent large-scale velocity-gradient fluctuations. It is confirmed that the small-scale (local) vorticity vector is preferentially aligned in parallel with the large-scale (background) extensive strain-rate eigenvector e1, in contrast to the global tendency for ω to be aligned in parallel with the intermediate strain-rate eigenvector [Hamlington et al., Phys. Fluids 20, 111703 (2008), 10.1063/1.3021055]. When only data from regions of the flow that exhibit strong swirling are included, the so-called high-enstrophy worms, the alignment tendencies are exaggerated with respect to the global picture. These findings support the notion that the production of enstrophy, responsible for a net cascade of turbulent kinetic energy from large scales to small scales, is driven by vorticity stretching due to the preferential parallel alignment between ω and nonlocal e1 and that the strongly swirling worms are kinematically significant to this process.

  20. On the evolution of flow topology in turbulent Rayleigh-Bénard convection

    NASA Astrophysics Data System (ADS)

    Dabbagh, F.; Trias, F. X.; Gorobets, A.; Oliva, A.

    2016-11-01

    Small-scale dynamics is the spirit of turbulence physics. It implicates many attributes of flow topology evolution, coherent structures, hairpin vorticity dynamics, and mechanism of the kinetic energy cascade. In this work, several dynamical aspects of the small-scale motions have been numerically studied in a framework of Rayleigh-Bénard convection (RBC). To do so, direct numerical simulations have been carried out at two Rayleigh numbers Ra = 108 and 1010, inside an air-filled rectangular cell of aspect ratio unity and π span-wise open-ended distance. As a main feature, the average rate of the invariants of the velocity gradient tensor (QG, RG) has displayed the so-called "teardrop" spiraling shape through the bulk region. Therein, the mean trajectories are swirling inwards revealing a periodic spin around the converging origin of a constant period that is found to be proportional to the plumes lifetime. This suggests that the thermal plumes participate in the coherent large-scale circulation and the turbulent wind created in the bulk. Particularly, it happens when the plumes elongate substantially to contribute to the large-scale eddies at the lower turbulent state. Supplementary small-scale properties, which are widely common in many turbulent flows have been observed in RBC. For example, the strong preferential alignment of vorticity with the intermediate eigenstrain vector, and the asymmetric alignment between vorticity and the vortex-stretching vector. It has been deduced that in a hard turbulent flow regime, local self-amplifications of straining regions aid in contracting the vorticity worms, and enhance the local interactions vorticity/strain to support the linear vortex-stretching contributions. On the other hand, the evolution of invariants pertained to the traceless part of velocity-times-temperature gradient tensor has also been considered in order to determine the role of thermals in the fine-scale dynamics. These new invariants show an incorporation of kinetic and thermal gradient dynamics that indicate directly the evolution and lifetime of thermal plume structures. By applying an identical approach, the rates of the new invariants have shown a symmetric cycling behaviour decaying towards two skew-symmetric converging origins at the lower Ra number. The trajectories near origins address the hot and cold coherent plumes that travel as an average large-scale heat flux in the sidewall vicinities, and denote a periodic spin period close to the plumes lifetime. At the hard turbulent case, the spiraling trajectories travel in shorter tracks to reveal the reduced lifetime of plumes under the dissipative and mixing effects. The turbulent background kinetic derivatives get self-amplified and the trajectories converge to a zero-valued origin indicating that there is no contribution from the plumes to the average coherent large scales of heat flux. These and other peculiar scrutinies on the small-scale motions in RBC have been enlightened, and may have a fruitful consequence on modelling approaches of buoyancy-driven turbulence.

  1. Turbulence sources, character, and effects in the stable boundary layer: Insights from multi-scale direct numerical simulations and new, high-resolution measurements

    NASA Astrophysics Data System (ADS)

    Fritts, Dave; Wang, Ling; Balsley, Ben; Lawrence, Dale

    2013-04-01

    A number of sources contribute to intermittent small-scale turbulence in the stable boundary layer (SBL). These include Kelvin-Helmholtz instability (KHI), gravity wave (GW) breaking, and fluid intrusions, among others. Indeed, such sources arise naturally in response to even very simple "multi-scale" superpositions of larger-scale GWs and smaller-scale GWs, mean flows, or fine structure (FS) throughout the atmosphere and the oceans. We describe here results of two direct numerical simulations (DNS) of these GW-FS interactions performed at high resolution and high Reynolds number that allow exploration of these turbulence sources and the character and effects of the turbulence that arises in these flows. Results include episodic turbulence generation, a broad range of turbulence scales and intensities, PDFs of dissipation fields exhibiting quasi-log-normal and more complex behavior, local turbulent mixing, and "sheet and layer" structures in potential temperature that closely resemble high-resolution measurements. Importantly, such multi-scale dynamics differ from their larger-scale, quasi-monochromatic gravity wave or quasi-horizontally homogeneous shear flow instabilities in significant ways. The ability to quantify such multi-scale dynamics with new, very high-resolution measurements is also advancing rapidly. New in-situ sensors on small, unmanned aerial vehicles (UAVs), balloons, or tethered systems are enabling definition of SBL (and deeper) environments and turbulence structure and dissipation fields with high spatial and temporal resolution and precision. These new measurement and modeling capabilities promise significant advances in understanding small-scale instability and turbulence dynamics, in quantifying their roles in mixing, transport, and evolution of the SBL environment, and in contributing to improved parameterizations of these dynamics in mesoscale, numerical weather prediction, climate, and general circulation models. We expect such measurement and modeling capabilities to also aid in the design of new and more comprehensive future SBL measurement programs.

  2. Promotion of a healthy work life at small enterprises in Thailand by participatory methods.

    PubMed

    Krungkraiwong, Sudthida; Itani, Toru; Amornratanapaichit, Ratanaporn

    2006-01-01

    The major problems of small enterprises include unfavourable working conditions and environment that affect safety and health of workers. The WISE (Work Improvement in Small Enterprises) methodology developed by the ILO has been widely applied to improve occupational safety and health in small enterprises in Thailand. The participatory methods building on local good practices and focusing on practicable improvements have proven effective in controlling the occupational hazards in these enterprises at their sources. As a result of applying the methods in small-scale industries, the frequency of occupational accidents was reduced and the working environment actually improved in the cases studied. The results prove that the participatory approach taken by the WISE activities is a useful and effective tool to make owner/managers and workers in small enterprises voluntarily improve their own working conditions and environment. In promoting a healthy work life at small enterprises in Thailand, it is important to further develop and spread the approach.

  3. The Portland Basin: A (big) river runs through it

    USGS Publications Warehouse

    Evarts, Russell C.; O'Connor, Jim E.; Wells, Ray E.; Madin, Ian P.

    2009-01-01

    Metropolitan Portland, Oregon, USA, lies within a small Neogene to Holocene basin in the forearc of the Cascadia subduction system. Although the basin owes its existence and structural development to its convergent-margin tectonic setting, the stratigraphic architecture of basin-fill deposits chiefly reflects its physiographic position along the lower reaches of the continental-scale Columbia River system. As a result of this globally unique setting, the basin preserves a complex record of aggradation and incision in response to distant as well as local tectonic, volcanic, and climatic events. Voluminous flood basalts, continental and locally derived sediment and volcanic debris, and catastrophic flood deposits all accumulated in an area influenced by contemporaneous tectonic deformation and variations in regional and local base level.

  4. Do Europa's Mountains Have Roots? Modeling Flow Along the Ice-Water Interface

    NASA Astrophysics Data System (ADS)

    Cutler, B. B.; Goodman, J. C.

    2016-12-01

    Are topographic features on the surface of Europa and other icy worlds isostatically compensated by variations in shell thickness (Airy isostasy)? This is only possible if variations in shell thickness can remain stable over geologic time. In this work we demonstrate that local shell thickness perturbations will relax due to viscous flow in centuries. We present a model of Europa's ice crust which includes thermal conduction, viscous flow of ice, and a mobile ice/water interface: the topography along the ice-water interface varies in response to melting, freezing, and ice flow. Temperature-dependent viscosity, conductivity, and density lead to glacier-like flow along the base of the ice shell, as well as solid-state convection in its interior. We considered both small scale processes, such as an isostatically-compensated ridge or lenticula, or heat flux from a hydrothermal plume; and a larger model focusing on melting and flow on the global scale. Our local model shows that ice-basal topographic features 5 kilometers deep and 4 kilometers wide can be filled in by glacial flow in about 200 years; even very large cavities can be infilled in 1000 years. "Hills" (locally thick areas) are removed faster than "holes". If a strong local heat flux (10x global average) is applied to the base of the ice, local melting will be prevented by rapid inflow of ice from nearby. On the large scale, global ice flow from the thick cool pole to the warmer and thinner equator removes global-scale topography in about 1 Ma; melting and freezing from this process may lead to a coupled feedback with the ocean flow. We find that glacial flow at the base of the ice shell is so rapid that Europa's ice-water interface is likely to be very flat. Local surface topography probably cannot be isostatically compensated by thickness variations: Europa's mountains may have no roots.

  5. Nonlinear time series analysis of normal and pathological human walking

    NASA Astrophysics Data System (ADS)

    Dingwell, Jonathan B.; Cusumano, Joseph P.

    2000-12-01

    Characterizing locomotor dynamics is essential for understanding the neuromuscular control of locomotion. In particular, quantifying dynamic stability during walking is important for assessing people who have a greater risk of falling. However, traditional biomechanical methods of defining stability have not quantified the resistance of the neuromuscular system to perturbations, suggesting that more precise definitions are required. For the present study, average maximum finite-time Lyapunov exponents were estimated to quantify the local dynamic stability of human walking kinematics. Local scaling exponents, defined as the local slopes of the correlation sum curves, were also calculated to quantify the local scaling structure of each embedded time series. Comparisons were made between overground and motorized treadmill walking in young healthy subjects and between diabetic neuropathic (NP) patients and healthy controls (CO) during overground walking. A modification of the method of surrogate data was developed to examine the stochastic nature of the fluctuations overlying the nominally periodic patterns in these data sets. Results demonstrated that having subjects walk on a motorized treadmill artificially stabilized their natural locomotor kinematics by small but statistically significant amounts. Furthermore, a paradox previously present in the biomechanical literature that resulted from mistakenly equating variability with dynamic stability was resolved. By slowing their self-selected walking speeds, NP patients adopted more locally stable gait patterns, even though they simultaneously exhibited greater kinematic variability than CO subjects. Additionally, the loss of peripheral sensation in NP patients was associated with statistically significant differences in the local scaling structure of their walking kinematics at those length scales where it was anticipated that sensory feedback would play the greatest role. Lastly, stride-to-stride fluctuations in the walking patterns of all three subject groups were clearly distinguishable from linearly autocorrelated Gaussian noise. As a collateral benefit of the methodological approach taken in this study, some of the first steps at characterizing the underlying structure of human locomotor dynamics have been taken. Implications for understanding the neuromuscular control of locomotion are discussed.

  6. Application of ultra-small-angle X-ray scattering / X-ray photon correlation spectroscopy to relate equilibrium or non-equilibrium dynamics to microstructure

    NASA Astrophysics Data System (ADS)

    Allen, Andrew; Zhang, Fan; Levine, Lyle; Ilavsky, Jan

    2013-03-01

    Ultra-small-angle X-ray scattering (USAXS) can probe microstructures over the nanometer-to-micrometer scale range. Through use of a small instrument entrance slit, X-ray photon correlation spectroscopy (XPCS) exploits the partial coherence of an X-ray synchrotron undulator beam to provide unprecedented sensitivity to the dynamics of microstructural change. In USAXS/XPCS studies, the dynamics of local structures in a scale range of 100 nm to 1000 nm can be related to an overall hierarchical microstructure extending from 1 nm to more than 1000 nm. Using a point-detection scintillator mode, the equilibrium dynamics at ambient temperature of small particles (which move more slowly than nanoparticles) in aqueous suspension have been quantified directly for the first time. Using a USAXS-XPCS scanning mode for non-equilibrium dynamics incipient processes within dental composites have been elucidated, prior to effects becoming detectable using any other technique. Use of the Advanced Photon Source, an Office of Science User Facility operated for the United States Department of Energy (U.S. DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357.

  7. Adaptation of a pattern-scaling approach for assessment of local (village/valley) scale water resources and related vulnerabilities in the Upper Indus Basin

    NASA Astrophysics Data System (ADS)

    Forsythe, Nathan; Kilsby, Chris G.; Fowler, Hayley J.; Archer, David R.

    2010-05-01

    The water resources of the Upper Indus Basin (UIB) are of the utmost importance to the economic wellbeing of Pakistan. The irrigated agriculture made possible by Indus river runoff underpins the food security for Pakistan's nearly 200 million people. Contributions from hydropower account for more than one fifth of peak installed electrical generating capacity in a country where widespread, prolonged load-shedding handicaps business activity and industrial development. Pakistan's further socio-economic development thus depends largely on optimisation of its precious water resources. Confident, accurate seasonal predictions of water resource availability coupled with sound understanding of interannual variability are urgent insights needed by development planners and infrastructure managers at all levels. This study focuses on the challenge of providing meaningful quantitative information at the village/valley scale in the upper reaches of the UIB. Proceeding by progressive reductions in scale, the typology of the observed UIB hydrological regimes -- glacial, nival and pluvial -- are examined with special emphasis on interannual variability for individual seasons. Variations in discharge (runoff) are compared to observations of climate parameters (temperature, precipitation) and available spatial data (elevation, snow cover and snow-water-equivalent). The first scale presented is composed of the large-scale, long-record gauged UIB tributary basins. The Pakistan Water and Power Development Authority (WAPDA) has maintained these stations for several decades in order to monitor seasonal flows and accumulate data for design of further infrastructure. Data from basins defined by five gauging stations on the Indus, Hunza, Gilgit and Astore rivers are examined. The second scale presented is a set of smaller gauged headwater catchments with short records. These gauges were installed by WAPDA and its partners amongst the international development agencies to assess potential sites for medium-scale infrastructure projects. These catchments are placed in their context within the hydrological regime classification using the spatial data and (remote sensing) observations as well as river gauging measurements. The study assesses the degree of similarity with the larger basins of the same hydrological regime. This assessment focuses on the measured response to observed climate variable anomalies. The smallest scale considered is comprised of a number of case studies at the ungauged village/valley scale. These examples are based on the delineation of areas to which specific communities (villages) have customary (riparian) water rights. These examples were suggested by non-governmental organisations working on grassroots economic development initiatives and small-scale infrastructure projects in the region. The direct observations available for these subcatchments are limited to spatial data (elevation, snow parameters). The challenge at this level is to accurately extrapolate areal values (precipitation, temperature, runoff) from point observations at the basin scale. The study assesses both the degree of similarity in the distribution of spatial parameters to the larger gauged basins and the interannual variability (spatial heterogeneity) of remotely-sensed snow cover and snow-water-equivalent at this subcatchment scale. Based upon the characterisation of spatial and interannual variability at these three spatial scales, the challenges facing local water resource managers and infrastructure operators are enumerated. Local vulnerabilities include, but are not limited to, varying thresholds in irrigation water requirements based on crop-type, minimum base flows for micro-hydropower generation during winter (high load) months and relatively small but growing demand for domestic water usage. In conclusion the study posits potential strategies for managing interannual variability and potential emerging trends. Suggested strategies are guided by the principles of low-risk adaptation, participative decision making and local capacity building.

  8. Atoll-scale patterns in coral reef community structure: Human signatures on Ulithi Atoll, Micronesia.

    PubMed

    Crane, Nicole L; Nelson, Peter; Abelson, Avigdor; Precoda, Kristin; Rulmal, John; Bernardi, Giacomo; Paddack, Michelle

    2017-01-01

    The dynamic relationship between reefs and the people who utilize them at a subsistence level is poorly understood. This paper characterizes atoll-scale patterns in shallow coral reef habitat and fish community structure, and correlates these with environmental characteristics and anthropogenic factors, critical to conservation efforts for the reefs and the people who depend on them. Hierarchical clustering analyses by site for benthic composition and fish community resulted in the same 3 major clusters: cluster 1-oceanic (close proximity to deep water) and uninhabited (low human impact); cluster 2-oceanic and inhabited (high human impact); and cluster 3-lagoonal (facing the inside of the lagoon) and inhabited (highest human impact). Distance from village, reef exposure to deep water and human population size had the greatest effect in predicting the fish and benthic community structure. Our study demonstrates a strong association between benthic and fish community structure and human use across the Ulithi Atoll (Yap State, Federated States of Micronesia) and confirms a pattern observed by local people that an 'opportunistic' scleractinian coral (Montipora sp.) is associated with more highly impacted reefs. Our findings suggest that small human populations (subsistence fishing) can nevertheless have considerable ecological impacts on reefs due, in part, to changes in fishing practices rather than overfishing per se, as well as larger global trends. Findings from this work can assist in building local capacity to manage reef resources across an atoll-wide scale, and illustrates the importance of anthropogenic impact even in small communities.

  9. A global/local affinity graph for image segmentation.

    PubMed

    Xiaofang Wang; Yuxing Tang; Masnou, Simon; Liming Chen

    2015-04-01

    Construction of a reliable graph capturing perceptual grouping cues of an image is fundamental for graph-cut based image segmentation methods. In this paper, we propose a novel sparse global/local affinity graph over superpixels of an input image to capture both short- and long-range grouping cues, and thereby enabling perceptual grouping laws, including proximity, similarity, continuity, and to enter in action through a suitable graph-cut algorithm. Moreover, we also evaluate three major visual features, namely, color, texture, and shape, for their effectiveness in perceptual segmentation and propose a simple graph fusion scheme to implement some recent findings from psychophysics, which suggest combining these visual features with different emphases for perceptual grouping. In particular, an input image is first oversegmented into superpixels at different scales. We postulate a gravitation law based on empirical observations and divide superpixels adaptively into small-, medium-, and large-sized sets. Global grouping is achieved using medium-sized superpixels through a sparse representation of superpixels' features by solving a ℓ0-minimization problem, and thereby enabling continuity or propagation of local smoothness over long-range connections. Small- and large-sized superpixels are then used to achieve local smoothness through an adjacent graph in a given feature space, and thus implementing perceptual laws, for example, similarity and proximity. Finally, a bipartite graph is also introduced to enable propagation of grouping cues between superpixels of different scales. Extensive experiments are carried out on the Berkeley segmentation database in comparison with several state-of-the-art graph constructions. The results show the effectiveness of the proposed approach, which outperforms state-of-the-art graphs using four different objective criteria, namely, the probabilistic rand index, the variation of information, the global consistency error, and the boundary displacement error.

  10. Anderson transition in a three-dimensional kicked rotor

    NASA Astrophysics Data System (ADS)

    Wang, Jiao; García-García, Antonio M.

    2009-03-01

    We investigate Anderson localization in a three-dimensional (3D) kicked rotor. By a finite-size scaling analysis we identify a mobility edge for a certain value of the kicking strength k=kc . For k>kc dynamical localization does not occur, all eigenstates are delocalized and the spectral correlations are well described by Wigner-Dyson statistics. This can be understood by mapping the kicked rotor problem onto a 3D Anderson model (AM) where a band of metallic states exists for sufficiently weak disorder. Around the critical region k≈kc we carry out a detailed study of the level statistics and quantum diffusion. In agreement with the predictions of the one parameter scaling theory (OPT) and with previous numerical simulations, the number variance is linear, level repulsion is still observed, and quantum diffusion is anomalous with ⟨p2⟩∝t2/3 . We note that in the 3D kicked rotor the dynamics is not random but deterministic. In order to estimate the differences between these two situations we have studied a 3D kicked rotor in which the kinetic term of the associated evolution matrix is random. A detailed numerical comparison shows that the differences between the two cases are relatively small. However in the deterministic case only a small set of irrational periods was used. A qualitative analysis of a much larger set suggests that deviations between the random and the deterministic kicked rotor can be important for certain choices of periods. Heuristically it is expected that localization effects will be weaker in a nonrandom potential since destructive interference will be less effective to arrest quantum diffusion. However we have found that certain choices of irrational periods enhance Anderson localization effects.

  11. [Application of health questionnaires for health management in small- and medium-sized enterprises].

    PubMed

    Kishida, K; Saito, M; Hasegawa, T; Aoki, S; Suzuki, S

    1986-01-01

    Two kinds of health questionnaires, the Todai Health Index (THI) and Cumulative Fatigue Index (CFI), were applied as a screening device for health management of workers belonging to small-medium sized enterprises. A total of 495 workers composed of 452 male workers of a glass-bottle manufacturing factory and 43 male workers of a soft-drink bottling factory were the subjects of the present study. It was found that the two kinds of health questionnaires were different from each other and have their own characteristics. Twelve scales of THI were grouped into two, the first consisting of ten scales (SUSY, RESP, EYSK, MOUT, DIGE, IMPU, MENT, DEPR, NERV, and LIFE) and the second consisting of two scales (AGGR and LISC). Nine categories of CFI were grouped into one by using principal factor analysis. It was confirmed that the twelve scale scores of THI obtained at small-medium sized factories differed from those scale scores of a reference group investigated at a large-sized enterprise. It is on the basis of the scales of aggressiveness and lies and also of the scale of mental unstability which characterizes workers, locality, job (clerical or field work), and size of industry (large or small sized) that the difference could be evaluated. Urban life characterized by a life style of staying up late at night and waking up late in the morning has been reflected on the scale of life irregularity. Irregularity of life induced by transformation of working schedule, such as two or three shifts of work and overtime, was also reflected on this scale. Two scales of THI test, i.e., many subjective symptoms and digestive organ complaints, seemed to be the representative scales indicating a close relation between work load and health level. The discriminant score for diagnosis of psychosomatic diseases is considered to be one of the most useful assessments of the individual's health condition. As mentioned above, THI is recommended as a convenient assessment method for health management of workers and for screening individuals or groups requiring health management from the total respondents belonging to small-medium sized enterprises where health administrators or professionals for health services are not available. A combined use of THI and CFI is more effective in evaluating health status of field workers than the independent use of one of these two tests, because the causal relationship between work load and health status cannot be satisfactorily observed, only through THI.

  12. Population Genetics of Trypanosoma evansi from Camel in the Sudan

    PubMed Central

    Salim, Bashir; de Meeûs, Thierry; Bakheit, Mohammed A.; Kamau, Joseph; Nakamura, Ichiro; Sugimoto, Chihiro

    2011-01-01

    Genetic variation of microsatellite loci is a widely used method for the analysis of population genetic structure of microorganisms. We have investigated genetic variation at 15 microsatellite loci of T. evansi isolated from camels in Sudan and Kenya to evaluate the genetic information partitioned within and between individuals and between sites. We detected a strong signal of isolation by distance across the area sampled. The results also indicate that either, and as expected, T. evansi is purely clonal and structured in small units at very local scales and that there are numerous allelic dropouts in the data, or that this species often sexually recombines without the need of the “normal” definitive host, the tsetse fly or as the recurrent immigration from sexually recombined T. brucei brucei. Though the first hypothesis is the most likely, discriminating between these two incompatible hypotheses will require further studies at much localized scales. PMID:21666799

  13. Type-curve estimation of statistical heterogeneity

    NASA Astrophysics Data System (ADS)

    Neuman, Shlomo P.; Guadagnini, Alberto; Riva, Monica

    2004-04-01

    The analysis of pumping tests has traditionally relied on analytical solutions of groundwater flow equations in relatively simple domains, consisting of one or at most a few units having uniform hydraulic properties. Recently, attention has been shifting toward methods and solutions that would allow one to characterize subsurface heterogeneities in greater detail. On one hand, geostatistical inverse methods are being used to assess the spatial variability of parameters, such as permeability and porosity, on the basis of multiple cross-hole pressure interference tests. On the other hand, analytical solutions are being developed to describe the mean and variance (first and second statistical moments) of flow to a well in a randomly heterogeneous medium. We explore numerically the feasibility of using a simple graphical approach (without numerical inversion) to estimate the geometric mean, integral scale, and variance of local log transmissivity on the basis of quasi steady state head data when a randomly heterogeneous confined aquifer is pumped at a constant rate. By local log transmissivity we mean a function varying randomly over horizontal distances that are small in comparison with a characteristic spacing between pumping and observation wells during a test. Experimental evidence and hydrogeologic scaling theory suggest that such a function would tend to exhibit an integral scale well below the maximum well spacing. This is in contrast to equivalent transmissivities derived from pumping tests by treating the aquifer as being locally uniform (on the scale of each test), which tend to exhibit regional-scale spatial correlations. We show that whereas the mean and integral scale of local log transmissivity can be estimated reasonably well based on theoretical ensemble mean variations of head and drawdown with radial distance from a pumping well, estimating the log transmissivity variance is more difficult. We obtain reasonable estimates of the latter based on theoretical variation of the standard deviation of circumferentially averaged drawdown about its mean.

  14. The emerging threats of climate change on tropical coastal ecosystem services, public health, local economies and livelihood sustainability of small islands: Cumulative impacts and synergies.

    PubMed

    Hernández-Delgado, E A

    2015-12-15

    Climate change has significantly impacted tropical ecosystems critical for sustaining local economies and community livelihoods at global scales. Coastal ecosystems have largely declined, threatening the principal source of protein, building materials, tourism-based revenue, and the first line of defense against storm swells and sea level rise (SLR) for small tropical islands. Climate change has also impacted public health (i.e., altered distribution and increased prevalence of allergies, water-borne, and vector-borne diseases). Rapid human population growth has exacerbated pressure over coupled social-ecological systems, with concomitant non-sustainable impacts on natural resources, water availability, food security and sovereignty, public health, and quality of life, which should increase vulnerability and erode adaptation and mitigation capacity. This paper examines cumulative and synergistic impacts of climate change in the challenging context of highly vulnerable small tropical islands. Multiple adaptive strategies of coupled social-ecological ecosystems are discussed. Multi-level, multi-sectorial responses are necessary for adaptation to be successful. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Geological modeling of submeter scale heterogeneity and its influence on tracer transport in a fluvial aquifer

    NASA Astrophysics Data System (ADS)

    Ronayne, Michael J.; Gorelick, Steven M.; Zheng, Chunmiao

    2010-10-01

    We developed a new model of aquifer heterogeneity to analyze data from a single-well injection-withdrawal tracer test conducted at the Macrodispersion Experiment (MADE) site on the Columbus Air Force Base in Mississippi (USA). The physical heterogeneity model is a hybrid that combines 3-D lithofacies to represent submeter scale, highly connected channels within a background matrix based on a correlated multivariate Gaussian hydraulic conductivity field. The modeled aquifer architecture is informed by a variety of field data, including geologic core sampling. Geostatistical properties of this hybrid heterogeneity model are consistent with the statistics of the hydraulic conductivity data set based on extensive borehole flowmeter testing at the MADE site. The representation of detailed, small-scale geologic heterogeneity allows for explicit simulation of local preferential flow and slow advection, processes that explain the complex tracer response from the injection-withdrawal test. Based on the new heterogeneity model, advective-dispersive transport reproduces key characteristics of the observed tracer recovery curve, including a delayed concentration peak and a low-concentration tail. Importantly, our results suggest that intrafacies heterogeneity is responsible for local-scale mass transfer.

  16. Entanglement convertibility by sweeping through the quantum phases of the alternating bonds XXZ chain

    PubMed Central

    Tzeng, Yu-Chin; Dai, Li; Chung, Ming-Chiang; Amico, Luigi; Kwek, Leong-Chuan

    2016-01-01

    We study the entanglement structure and the topological edge states of the ground state of the spin-1/2 XXZ model with bond alternation. We employ parity-density matrix renormalization group with periodic boundary conditions. The finite-size scaling of Rényi entropies S2 and S∞ are used to construct the phase diagram of the system. The phase diagram displays three possible phases: Haldane type (an example of symmetry protected topological ordered phases), Classical Dimer and Néel phases, the latter bounded by two continuous quantum phase transitions. The entanglement and non-locality in the ground state are studied and quantified by the entanglement convertibility. We found that, at small spatial scales, the ground state is not convertible within the topological Haldane dimer phase. The phenomenology we observe can be described in terms of correlations between edge states. We found that the entanglement spectrum also exhibits a distinctive response in the topological phase: the effective rank of the reduced density matrix displays a specifically large “susceptibility” in the topological phase. These findings support the idea that although the topological order in the ground state cannot be detected by local inspection, the ground state response at local scale can tell the topological phases apart from the non-topological phases. PMID:27216970

  17. Terrestrial Water Storage in African Hydrological Regimes Derived from GRACE Mission Data: Intercomparison of Spherical Harmonics, Mass Concentration, and Scalar Slepian Methods.

    PubMed

    Rateb, Ashraf; Kuo, Chung-Yen; Imani, Moslem; Tseng, Kuo-Hsin; Lan, Wen-Hau; Ching, Kuo-En; Tseng, Tzu-Pang

    2017-03-10

    Spherical harmonics (SH) and mascon solutions are the two most common types of solutions for Gravity Recovery and Climate Experiment (GRACE) mass flux observations. However, SH signals are degraded by measurement and leakage errors. Mascon solutions (the Jet Propulsion Laboratory (JPL) release, herein) exhibit weakened signals at submascon resolutions. Both solutions require a scale factor examined by the CLM4.0 model to obtain the actual water storage signal. The Slepian localization method can avoid the SH leakage errors when applied to the basin scale. In this study, we estimate SH errors and scale factors for African hydrological regimes. Then, terrestrial water storage (TWS) in Africa is determined based on Slepian localization and compared with JPL-mascon and SH solutions. The three TWS estimates show good agreement for the TWS of large-sized and humid regimes but present discrepancies for the TWS of medium and small-sized regimes. Slepian localization is an effective method for deriving the TWS of arid zones. The TWS behavior in African regimes and its spatiotemporal variations are then examined. The negative TWS trends in the lower Nile and Sahara at -1.08 and -6.92 Gt/year, respectively, are higher than those previously reported.

  18. Local and Landscape Constraints on Coffee Leafhopper (Hemiptera: Cicadellidae) Diversity.

    PubMed

    Vaidya, Chatura; Cruz, Magdalena; Kuesel, Ryan; Gonthier, David J; Iverson, Aaron; Ennis, Katherine K; Perfecto, Ivette

    2017-01-01

    The intensification of agriculture drives many ecological and environmental consequences including impacts on crop pest populations and communities. These changes are manifested at multiple scales including small-scale management practices and changes to the composition of land-use types in the surrounding landscape. In this study, we sought to examine the influence of local and landscape-scale agricultural factors on a leafhopper herbivore community in Mexican coffee plantations. We sampled leafhopper (Hemiptera: Cicadellidae) diversity in 38 sites from 9 coffee plantations of the Soconusco region of Chiapas, Mexico. While local management factors such as coffee density, branches per coffee bush, tree species, and density were not important in explaining leafhopper abundance and richness, shade management at the landscape level and elevation significantly affected leafhoppers. Specifically, the percentage of low-shade coffee in the landscape (1,000-m radius surrounding sites) increased total leafhopper abundance. In addition, Shannon's diversity of leafhoppers was increased with coffee density. Our results show that abundance and diversity of leafhoppers are greater in simplified landscapes, thereby suggesting that these landscapes will have higher pest pressure and may be more at-risk for diseases vectored by these species in an economically important crop. © The Author 2017. Published by Oxford University Press on behalf of the Entomological Society of America.

  19. Entanglement convertibility by sweeping through the quantum phases of the alternating bonds XXZ chain.

    PubMed

    Tzeng, Yu-Chin; Dai, Li; Chung, Ming-Chiang; Amico, Luigi; Kwek, Leong-Chuan

    2016-05-24

    We study the entanglement structure and the topological edge states of the ground state of the spin-1/2 XXZ model with bond alternation. We employ parity-density matrix renormalization group with periodic boundary conditions. The finite-size scaling of Rényi entropies S2 and S∞ are used to construct the phase diagram of the system. The phase diagram displays three possible phases: Haldane type (an example of symmetry protected topological ordered phases), Classical Dimer and Néel phases, the latter bounded by two continuous quantum phase transitions. The entanglement and non-locality in the ground state are studied and quantified by the entanglement convertibility. We found that, at small spatial scales, the ground state is not convertible within the topological Haldane dimer phase. The phenomenology we observe can be described in terms of correlations between edge states. We found that the entanglement spectrum also exhibits a distinctive response in the topological phase: the effective rank of the reduced density matrix displays a specifically large "susceptibility" in the topological phase. These findings support the idea that although the topological order in the ground state cannot be detected by local inspection, the ground state response at local scale can tell the topological phases apart from the non-topological phases.

  20. Terrestrial Water Storage in African Hydrological Regimes Derived from GRACE Mission Data: Intercomparison of Spherical Harmonics, Mass Concentration, and Scalar Slepian Methods

    PubMed Central

    Rateb, Ashraf; Kuo, Chung-Yen; Imani, Moslem; Tseng, Kuo-Hsin; Lan, Wen-Hau; Ching, Kuo-En; Tseng, Tzu-Pang

    2017-01-01

    Spherical harmonics (SH) and mascon solutions are the two most common types of solutions for Gravity Recovery and Climate Experiment (GRACE) mass flux observations. However, SH signals are degraded by measurement and leakage errors. Mascon solutions (the Jet Propulsion Laboratory (JPL) release, herein) exhibit weakened signals at submascon resolutions. Both solutions require a scale factor examined by the CLM4.0 model to obtain the actual water storage signal. The Slepian localization method can avoid the SH leakage errors when applied to the basin scale. In this study, we estimate SH errors and scale factors for African hydrological regimes. Then, terrestrial water storage (TWS) in Africa is determined based on Slepian localization and compared with JPL-mascon and SH solutions. The three TWS estimates show good agreement for the TWS of large-sized and humid regimes but present discrepancies for the TWS of medium and small-sized regimes. Slepian localization is an effective method for deriving the TWS of arid zones. The TWS behavior in African regimes and its spatiotemporal variations are then examined. The negative TWS trends in the lower Nile and Sahara at −1.08 and −6.92 Gt/year, respectively, are higher than those previously reported. PMID:28287453

  1. Restricted gene flow and fine-scale population structuring in tool using New Caledonian crows

    NASA Astrophysics Data System (ADS)

    Rutz, C.; Ryder, T. B.; Fleischer, R. C.

    2012-04-01

    New Caledonian crows Corvus moneduloides are the most prolific avian tool users. It has been suggested that some aspects of their complex tool use behaviour are under the influence of cultural processes, involving the social transmission—and perhaps even progressive refinement—of tool designs. Using microsatellite and mt-haplotype profiling of crows from three distinct habitats (dry forest, farmland and beachside habitat), we show that New Caledonian crow populations can exhibit significant fine-scale genetic structuring. Our finding that some sites of <10 km apart were highly differentiated demonstrates considerable potential for genetic and/or cultural isolation of crow groups. Restricted movement of birds between local populations at such small spatial scales, especially across habitat boundaries, illustrates how specific tool designs could be preserved over time, and how tool technologies of different crow groups could diverge due to drift and local selection pressures. Young New Caledonian crows have an unusually long juvenile dependency period, during which they acquire complex tool-related foraging skills. We suggest that the resulting delayed natal dispersal drives population-divergence patterns in this species. Our work provides essential context for future studies that examine the genetic makeup of crow populations across larger geographic areas, including localities with suspected cultural differences in crow tool technologies.

  2. Concordance cosmology without dark energy

    NASA Astrophysics Data System (ADS)

    Rácz, Gábor; Dobos, László; Beck, Róbert; Szapudi, István; Csabai, István

    2017-07-01

    According to the separate universe conjecture, spherically symmetric sub-regions in an isotropic universe behave like mini-universes with their own cosmological parameters. This is an excellent approximation in both Newtonian and general relativistic theories. We estimate local expansion rates for a large number of such regions, and use a scale parameter calculated from the volume-averaged increments of local scale parameters at each time step in an otherwise standard cosmological N-body simulation. The particle mass, corresponding to a coarse graining scale, is an adjustable parameter. This mean field approximation neglects tidal forces and boundary effects, but it is the first step towards a non-perturbative statistical estimation of the effect of non-linear evolution of structure on the expansion rate. Using our algorithm, a simulation with an initial Ωm = 1 Einstein-de Sitter setting closely tracks the expansion and structure growth history of the Λ cold dark matter (ΛCDM) cosmology. Due to small but characteristic differences, our model can be distinguished from the ΛCDM model by future precision observations. Moreover, our model can resolve the emerging tension between local Hubble constant measurements and the Planck best-fitting cosmology. Further improvements to the simulation are necessary to investigate light propagation and confirm full consistency with cosmic microwave background observations.

  3. Pesticide Use and Risk Perceptions among Small-Scale Farmers in Anqiu County, China

    PubMed Central

    Jin, Jianjun; Wang, Wenyu; He, Rui; Gong, Haozhou

    2016-01-01

    The unsafe use and misuse of pesticides in China are major threats to farmers’ health and the environment. The purpose of this study is to evaluate small-scale farmers’ practices with regard to pesticide use and identify the determinants of their behavior in Anqiu County, China. The results show that the frequency of pesticide application by local farmers is high and that the improper disposal of pesticides after use is common in the study area. Although most farmers felt that they were at some degree of risk when using pesticides, farmers were found to overuse pesticides in the study area. The probability of pesticide overuse significantly decreased with farmers’ risk perceptions, willingness to reduce pesticide use, better social relationships, and strict government monitoring. The perception of risk can thus be an important element in education and communication efforts. PMID:28042850

  4. Small-scale fisheries, population dynamics, and resource use in Africa: the case of Moree, Ghana.

    PubMed

    Marquette, Catherine M; Koranteng, Kwame A; Overå, Ragnhild; Aryeetey, Ellen Bortei-Doku

    2002-06-01

    We consider population dynamics and sustainable use and development of fishery resources in Moree, a small-scale fishing and coastal community of 20,000 people in the Central Region of Ghana near Cape Coast. Moree suggests that relationships between population dynamics and fishery resources are more complex than the concept of Malthusian overfishing implies. Reasons include changing biophysical characteristics of the upwelling system along the coast of West Africa; qualitative as well as quantitative changes in fishing activity throughout the year; the market nature of fishing activity and nonlocal demands for fish; regular fishery migration; and institutions regulating fishery resource access at home and at migration destinations. Population and resource relationships in Moree may be the effects of fishery resource and economic changes on migration rather than population pressure on fishery resources. Fisheries management policies must take into account processes that lie beyond the influence of local fishermen.

  5. The suite of small-angle neutron scattering instruments at Oak Ridge National Laboratory

    DOE PAGES

    Heller, William T.; Cuneo, Matthew J.; Debeer-Schmitt, Lisa M.; ...

    2018-02-21

    Oak Ridge National Laboratory is home to the High Flux Isotope Reactor (HFIR), a high-flux research reactor, and the Spallation Neutron Source (SNS), the world's most intense source of pulsed neutron beams. The unique co-localization of these two sources provided an opportunity to develop a suite of complementary small-angle neutron scattering instruments for studies of large-scale structures: the GP-SANS and Bio-SANS instruments at the HFIR and the EQ-SANS and TOF-USANS instruments at the SNS. This article provides an overview of the capabilities of the suite of instruments, with specific emphasis on how they complement each other. As a result, amore » description of the plans for future developments including greater integration of the suite into a single point of entry for neutron scattering studies of large-scale structures is also provided.« less

  6. The suite of small-angle neutron scattering instruments at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heller, William T.; Cuneo, Matthew J.; Debeer-Schmitt, Lisa M.

    Oak Ridge National Laboratory is home to the High Flux Isotope Reactor (HFIR), a high-flux research reactor, and the Spallation Neutron Source (SNS), the world's most intense source of pulsed neutron beams. The unique co-localization of these two sources provided an opportunity to develop a suite of complementary small-angle neutron scattering instruments for studies of large-scale structures: the GP-SANS and Bio-SANS instruments at the HFIR and the EQ-SANS and TOF-USANS instruments at the SNS. This article provides an overview of the capabilities of the suite of instruments, with specific emphasis on how they complement each other. As a result, amore » description of the plans for future developments including greater integration of the suite into a single point of entry for neutron scattering studies of large-scale structures is also provided.« less

  7. Demystifying the Complexities of Gravity Wave Dynamics in the Middle Atmosphere: a Roadmap to Improved Weather Forecasts through High-Fidelity Modeling

    NASA Astrophysics Data System (ADS)

    Mixa, T.; Fritts, D. C.; Bossert, K.; Laughman, B.; Wang, L.; Lund, T.; Kantha, L. H.

    2017-12-01

    Gravity waves play a profound role in the mixing of the atmosphere, transporting vast amounts of momentum and energy among different altitudes as they propagate vertically. Above 60km in the middle atmosphere, high wave amplitudes enable a series of complex, nonlinear interactions with the background environment that produce highly-localized wind and temperature variations which alter the layering structure of the atmosphere. These small-scale interactions account for a significant portion of energy transport in the middle atmosphere, but they are difficult to characterize, occurring at spatial scales that are both challenging to observe with ground instruments and prohibitively small to include in weather forecasting models. Using high fidelity numerical simulations, these nuanced wave interactions are analyzed to better our understanding of these dynamics and improve the accuracy of long-term weather forecasting.

  8. Characterization of self-affinity in the global regime

    NASA Astrophysics Data System (ADS)

    Neimark, Alexander V.

    1994-11-01

    Methods for characterization of self-affine surfaces and measurements of their roughness exponents H are developed. It is shown that for smoothed surfaces, which underwent particular coarse graining or averaging of the small-scale fluctuations, the excess surface area Sex and the mean square root radius of curvature ac are related by two distinct asymptotic power laws if ac is well below or well above a certain crossover scale acr. In the local regime of self-affinity, when ac<>acr, Sex~(ac/acr)-2(1-H)/(2-H). The former scaling relationship is consistent with the well known definition of local fractal dimensions dloc=dtop+1-H. The latter scaling relationship offers alternatives for characterization of self-affinity over large scales by means of excess dimensions defined as dex=dtop+2(1-H)/(2-H) and can be used for determination of roughness exponents from the measurements provided in the global regime. The thermodynamic method of fractal analysis, proposed earlier for self-similar surfaces (A.V. Neimark, Pis'ma Zh. Eksp. Teor. Fiz. 51, 535 (1990) [JETP Lett. 51, 607 (1990)]; Physica A 191, 258 (1992)), is extended for self-affine surfaces for determination of fractal dimensions and roughness exponents from adsorption and capillary experimental data.

  9. Kinetic roughening and porosity scaling in film growth with subsurface lateral aggregation.

    PubMed

    Reis, F D A Aarão

    2015-06-01

    We study surface and bulk properties of porous films produced by a model in which particles incide perpendicularly to a substrate, interact with deposited neighbors in its trajectory, and aggregate laterally with probability of order a at each position. The model generalizes ballisticlike models by allowing attachment to particles below the outer surface. For small values of a, a crossover from uncorrelated deposition (UD) to correlated growth is observed. Simulations are performed in 1+1 and 2+1 dimensions. Extrapolation of effective exponents and comparison of roughness distributions confirm Kardar-Parisi-Zhang roughening of the outer surface for a>0. A scaling approach for small a predicts crossover times as a(-2/3) and local height fluctuations as a(-1/3) at the crossover, independent of substrate dimension. These relations are different from all previously studied models with crossovers from UD to correlated growth due to subsurface aggregation, which reduces scaling exponents. The same approach predicts the porosity and average pore height scaling as a(1/3) and a(-1/3), respectively, in good agreement with simulation results in 1+1 and 2+1 dimensions. These results may be useful for modeling samples with desired porosity and long pores.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fabbri, Andrea; Bonifazi, Giuseppe; Serranti, Silvia, E-mail: silvia.serranti@uniroma1.it

    Highlights: • BioMethane Potential of grape marcs was investigated. • Grape marcs were characterized to realize a micro-scale energy recovery. • Comparative BMP batch-tests utilizing lab-scale reactors were performed. • Biogas valorization by grape marcs anaerobic digestion at small scale is evaluated. - Abstract: The BiochemicalMethanePotential (BMP) of winery organic waste, with reference to two Italian red and white grapes (i.e. Nero Buono and Greco) by-products was investigated. The study was carried out to verify the possibility to reduce the production impact in a green-waste-management-chain-perspective. The possibility to efficiently utilize wine-related-by-products for energy production at a micro-scale (i.e. small-medium scalemore » winery production plant) was also verified. Results showed as a good correlation can be established between the percentage of COD removal and the biogas production, as the winery can produce, from its waste methanization, about 7800 kW h year{sup −1} electrical and 8900 kW h year{sup −1} thermal. A critical evaluation was performed about the possibility to utilize the proposed approach to realize an optimal biomass waste management and an energetic valorization in a local-energy-production-perspective.« less

  11. Crustal evolution inferred from Apollo magnetic measurements

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Daily, W. D.; Vanian, L. L.

    1978-01-01

    The topology of lunar remanent fields is investigated by analyzing simultaneous magnetometer and solar wind spectrometer data. The diffusion model proposed by Vanyan (1977) to describe the field-plasma interaction at the lunar surface is extended to describe the interaction with fields characterized by two scale lengths, and the extended model is compared with data from three Apollo landing sites (Apollo 12, 15 and 16) with crustal fields of differing intensity and topology. Local remanent field properties from this analysis are compared with high spatial resolution magnetic maps obtained from the electron reflection experiment. It is concluded that remanent fields over most of the lunar surface are characterized by spatial variations as small as a few kilometers. Large regions (50 to 100 km) of the lunar crust were probably uniformly magnetized early in the evolution of the crust. Smaller scale (5 to 10 km) magnetic sources close to the surface were left by bombardment and subsequent gardening of the upper layers of these magnetized regions. The small scale sized remanent fields of about 100 gammas are measured by surface experiments, whereas the larger scale sized fields of about 0.1 gammas are measured by the orbiting subsatellite experiments.

  12. Temporal Changes in Forest Contexts at Multiple Extents: Three Decades of Fragmentation in the Gran Chaco (1979-2010), Central Argentina.

    PubMed

    Frate, Ludovico; Acosta, Alicia T R; Cabido, Marcelo; Hoyos, Laura; Carranza, Maria Laura

    2015-01-01

    The context in which a forest exists strongly influences its function and sustainability. Unveiling the multi-scale nature of forest fragmentation context is crucial to understand how human activities affect the spatial patterns of forests across a range of scales. However, this issue remains almost unexplored in subtropical ecosystems. In this study, we analyzed temporal changes (1979-2010) in forest contexts in the Argentinean dry Chaco at multiple extents. We classified forests over the last three decades based on forest context amount (Pf) and structural connectivity (Pff), which were measured using a moving window approach fixed at eight different extents (from local, ~ 6 ha, to regional, ~ 8300 ha). Specific multi-scale forest context profiles (for the years 1979 and 2010) were defined by projecting Pf vs. Pff mean values and were compared across spatial extents. The distributions of Pf across scales were described by scalograms and their shapes over time were compared. The amount of agricultural land and rangelands across the scales were also analyzed. The dry Chaco has undergone an intensive process of fragmentation, resulting in a shift from landscapes dominated by forests with gaps of rangelands to landscapes where small forest patches are embedded in agricultural lands. Multi-scale fragmentation analysis depicted landscapes in which local exploitation, which perforates forest cover, occurs alongside extensive forest clearings, reducing forests to small and isolated patches surrounded by agricultural lands. In addition, the temporal diminution of Pf's variability along with the increment of the mean slope of the Pf 's scalograms, indicate a simplification of the spatial pattern of forest over time. The observed changes have most likely been the result of the interplay between human activities and environmental constraints, which have shaped the spatial patterns of forests across scales. Based on our results, strategies for the conservation and sustainable management of the dry Chaco should take into account both the context of each habitat location and the scales over which a forest pattern might be preserved, altered or restored.

  13. Temporal Changes in Forest Contexts at Multiple Extents: Three Decades of Fragmentation in the Gran Chaco (1979-2010), Central Argentina

    PubMed Central

    Frate, Ludovico; Acosta, Alicia T. R.; Cabido, Marcelo; Hoyos, Laura; Carranza, Maria Laura

    2015-01-01

    The context in which a forest exists strongly influences its function and sustainability. Unveiling the multi-scale nature of forest fragmentation context is crucial to understand how human activities affect the spatial patterns of forests across a range of scales. However, this issue remains almost unexplored in subtropical ecosystems. In this study, we analyzed temporal changes (1979–2010) in forest contexts in the Argentinean dry Chaco at multiple extents. We classified forests over the last three decades based on forest context amount (P f) and structural connectivity (P ff), which were measured using a moving window approach fixed at eight different extents (from local, ~ 6 ha, to regional, ~ 8300 ha). Specific multi-scale forest context profiles (for the years 1979 and 2010) were defined by projecting P f vs. P ff mean values and were compared across spatial extents. The distributions of P f across scales were described by scalograms and their shapes over time were compared. The amount of agricultural land and rangelands across the scales were also analyzed. The dry Chaco has undergone an intensive process of fragmentation, resulting in a shift from landscapes dominated by forests with gaps of rangelands to landscapes where small forest patches are embedded in agricultural lands. Multi-scale fragmentation analysis depicted landscapes in which local exploitation, which perforates forest cover, occurs alongside extensive forest clearings, reducing forests to small and isolated patches surrounded by agricultural lands. In addition, the temporal diminution of P f’s variability along with the increment of the mean slope of the P f ‘s scalograms, indicate a simplification of the spatial pattern of forest over time. The observed changes have most likely been the result of the interplay between human activities and environmental constraints, which have shaped the spatial patterns of forests across scales. Based on our results, strategies for the conservation and sustainable management of the dry Chaco should take into account both the context of each habitat location and the scales over which a forest pattern might be preserved, altered or restored. PMID:26630387

  14. Comparison of prestellar core elongations and large-scale molecular cloud structures in the Lupus I region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poidevin, Frédérick; Ade, Peter A. R.; Hargrave, Peter C.

    2014-08-10

    Turbulence and magnetic fields are expected to be important for regulating molecular cloud formation and evolution. However, their effects on sub-parsec to 100 parsec scales, leading to the formation of starless cores, are not well understood. We investigate the prestellar core structure morphologies obtained from analysis of the Herschel-SPIRE 350 μm maps of the Lupus I cloud. This distribution is first compared on a statistical basis to the large-scale shape of the main filament. We find the distribution of the elongation position angle of the cores to be consistent with a random distribution, which means no specific orientation of themore » morphology of the cores is observed with respect to the mean orientation of the large-scale filament in Lupus I, nor relative to a large-scale bent filament model. This distribution is also compared to the mean orientation of the large-scale magnetic fields probed at 350 μm with the Balloon-borne Large Aperture Telescope for Polarimetry during its 2010 campaign. Here again we do not find any correlation between the core morphology distribution and the average orientation of the magnetic fields on parsec scales. Our main conclusion is that the local filament dynamics—including secondary filaments that often run orthogonally to the primary filament—and possibly small-scale variations in the local magnetic field direction, could be the dominant factors for explaining the final orientation of each core.« less

  15. Assessing sufficiency of thermal riverscapes for resilient ...

    EPA Pesticide Factsheets

    Resilient salmon populations require river networks that provide water temperature regimes sufficient to support a diversity of salmonid life histories across space and time. Efforts to protect, enhance and restore watershed thermal regimes for salmon may target specific locations and features within stream networks hypothesized to provide disproportionately high-value functional resilience to salmon populations. These include relatively small-scale features such as thermal refuges, and larger-scale features such as entire watersheds or aquifers that support thermal regimes buffered from local climatic conditions. Quantifying the value of both small and large scale thermal features to salmon populations has been challenged by both the difficulty of mapping thermal regimes at sufficient spatial and temporal resolutions, and integrating thermal regimes into population models. We attempt to address these challenges by using newly-available datasets and modeling approaches to link thermal regimes to salmon populations across scales. We will describe an individual-based modeling approach for assessing sufficiency of thermal refuges for migrating salmon and steelhead in large rivers, as well as a population modeling approach for assessing large-scale climate refugia for salmon in the Pacific Northwest. Many rivers and streams in the Pacific Northwest are currently listed as impaired under the Clean Water Act as a result of high summer water temperatures. Adverse effec

  16. Snow Tweets: Emergency Information Dissemination in a US County During 2014 Winter Storms

    PubMed Central

    Bonnan-White, Jess; Shulman, Jason; Bielecke, Abigail

    2014-01-01

    Introduction: This paper describes how American federal, state, and local organizations created, sourced, and disseminated emergency information via social media in preparation for several winter storms in one county in the state of New Jersey (USA). Methods: Postings submitted to Twitter for three winter storm periods were collected from selected organizations, along with a purposeful sample of select private local users. Storm-related posts were analyzed for stylistic features (hashtags, retweet mentions, embedded URLs). Sharing and re-tweeting patterns were also mapped using NodeXL. Results: Results indicate emergency management entities were active in providing preparedness and response information during the selected winter weather events. A large number of posts, however, did not include unique Twitter features that maximize dissemination and discovery by users. Visual representations of interactions illustrate opportunities for developing stronger relationships among agencies. Discussion: Whereas previous research predominantly focuses on large-scale national or international disaster contexts, the current study instead provides needed analysis in a small-scale context. With practice during localized events like extreme weather, effective information dissemination in large events can be enhanced. PMID:25685629

  17. Snow Tweets: Emergency Information Dissemination in a US County During 2014 Winter Storms.

    PubMed

    Bonnan-White, Jess; Shulman, Jason; Bielecke, Abigail

    2014-12-22

    This paper describes how American federal, state, and local organizations created, sourced, and disseminated emergency information via social media in preparation for several winter storms in one county in the state of New Jersey (USA). Postings submitted to Twitter for three winter storm periods were collected from selected organizations, along with a purposeful sample of select private local users. Storm-related posts were analyzed for stylistic features (hashtags, retweet mentions, embedded URLs). Sharing and re-tweeting patterns were also mapped using NodeXL. RESULTS indicate emergency management entities were active in providing preparedness and response information during the selected winter weather events. A large number of posts, however, did not include unique Twitter features that maximize dissemination and discovery by users. Visual representations of interactions illustrate opportunities for developing stronger relationships among agencies. Whereas previous research predominantly focuses on large-scale national or international disaster contexts, the current study instead provides needed analysis in a small-scale context. With practice during localized events like extreme weather, effective information dissemination in large events can be enhanced.

  18. SMALL-SCALE SOLAR WIND TURBULENCE DUE TO NONLINEAR ALFVÉN WAVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Sanjay; Moon, Y.-J.; Sharma, R. P., E-mail: sanjaykumar@khu.ac.kr

    We present an evolution of wave localization and magnetic power spectra in solar wind plasma using kinetic Alfvén waves (AWs) and fast AWs. We use a two-fluid model to derive the dynamical equations of these wave modes and then numerically solve these nonlinear dynamical equations to analyze the power spectra and wave localization at different times. The ponderomotive force associated with the kinetic AW (or pump) is responsible for the wave localization, and these thin slabs (or sheets) become more chaotic as the system evolves with time until the modulational instability (or oscillating two-stream instability) saturates. From our numerical results,more » we notice a steepening of the spectra from the inertial range (k{sup −1.67}) to the dispersion range (k{sup −3.0}). The steepening of the spectra could be described as the energy transference from longer to smaller scales. The formation of complex magnetic thin slabs and the change of the spectral index may be considered to be the main reason for the charged particles acceleration in solar wind plasma.« less

  19. Effect of crystallographic orientations of grains on the global mechanical properties of steel sheets by depth sensing indentation

    NASA Astrophysics Data System (ADS)

    Burik, P.; Pesek, L.; Kejzlar, P.; Andrsova, Z.; Zubko, P.

    2017-01-01

    The main idea of this work is using a physical model to prepare a virtual material with required properties. The model is based on the relationship between the microstructure and mechanical properties. The macroscopic (global) mechanical properties of steel are highly dependent upon microstructure, crystallographic orientation of grains, distribution of each phase present, etc... We need to know the local mechanical properties of each phase separately in multiphase materials. The grain size is a scale, where local mechanical properties are responsible for the behavior. Nanomechanical testing using depth sensing indentation (DSI) provides a straightforward solution for quantitatively characterizing each of phases in microstructure because it is very powerful technique for characterization of materials in small volumes. The aim of this experimental investigation is: (i) to prove how the mixing rule works for local mechanical properties (indentation hardness HIT) in microstructure scale using the DSI technique on steel sheets with different microstructure; (ii) to compare measured global properties with properties achieved by mixing rule; (iii) to analyze the effect of crystallographic orientations of grains on the mixing rule.

  20. Effects of topoclimatic complexity on the composition of woody plant communities.

    PubMed

    Oldfather, Meagan F; Britton, Matthew N; Papper, Prahlad D; Koontz, Michael J; Halbur, Michelle M; Dodge, Celeste; Flint, Alan L; Flint, Lorriane E; Ackerly, David D

    2016-01-01

    Topography can create substantial environmental variation at fine spatial scales. Shaped by slope, aspect, hill-position and elevation, topoclimate heterogeneity may increase ecological diversity, and act as a spatial buffer for vegetation responding to climate change. Strong links have been observed between climate heterogeneity and species diversity at broader scales, but the importance of topoclimate for woody vegetation across small spatial extents merits closer examination. We established woody vegetation monitoring plots in mixed evergreen-deciduous woodlands that spanned topoclimate gradients of a topographically heterogeneous landscape in northern California. We investigated the association between the structure of adult and regenerating size classes of woody vegetation and multidimensional topoclimate at a fine scale. We found a significant effect of topoclimate on both single-species distributions and community composition. Effects of topoclimate were evident in the regenerating size class for all dominant species (four Quercus spp., Umbellularia californica and Pseudotsuga menziesii) but only in two dominant species (Quercus agrifolia and Quercus garryana) for the adult size class. Adult abundance was correlated with water balance parameters (e.g. climatic water deficit) and recruit abundance was correlated with an interaction between the topoclimate parameters and conspecific adult abundance (likely reflecting local seed dispersal). However, in all cases, the topoclimate signal was weak. The magnitude of environmental variation across our study site may be small relative to the tolerance of long-lived woody species. Dispersal limitations, management practices and patchy disturbance regimes also may interact with topoclimate, weakening its influence on woody vegetation distributions. Our study supports the biological relevance of multidimensional topoclimate for mixed woodland communities, but highlights that this relationship might be mediated by interacting factors at local scales. Published by Oxford University Press on behalf of the Annals of Botany Company.

Top