Determining erosion relevant soil characteristics with a small-scale rainfall simulator
NASA Astrophysics Data System (ADS)
Schindewolf, M.; Schmidt, J.
2009-04-01
The use of soil erosion models is of great importance in soil and water conservation. Routine application of these models on the regional scale is not at least limited by the high parameter demands. Although the EROSION 3D simulation model is operating with a comparable low number of parameters, some of the model input variables could only be determined by rainfall simulation experiments. The existing data base of EROSION 3D was created in the mid 90s based on large-scale rainfall simulation experiments on 22x2m sized experimental plots. Up to now this data base does not cover all soil and field conditions adequately. Therefore a new campaign of experiments would be essential to produce additional information especially with respect to the effects of new soil management practices (e.g. long time conservation tillage, non tillage). The rainfall simulator used in the actual campaign consists of 30 identic modules, which are equipped with oscillating rainfall nozzles. Veejet 80/100 (Spraying Systems Co., Wheaton, IL) are used in order to ensure best possible comparability to natural rainfalls with respect to raindrop size distribution and momentum transfer. Central objectives of the small-scale rainfall simulator are - effectively application - provision of comparable results to large-scale rainfall simulation experiments. A crucial problem in using the small scale simulator is the restriction on rather small volume rates of surface runoff. Under this conditions soil detachment is governed by raindrop impact. Thus impact of surface runoff on particle detachment cannot be reproduced adequately by a small-scale rainfall simulator With this problem in mind this paper presents an enhanced small-scale simulator which allows a virtual multiplication of the plot length by feeding additional sediment loaded water to the plot from upstream. Thus is possible to overcome the plot length limited to 3m while reproducing nearly similar flow conditions as in rainfall experiments on standard plots. The simulator is extensively applied to plots of different soil types, crop types and management systems. The comparison with existing data sets obtained by large-scale rainfall simulations show that results can adequately be reproduced by the applied combination of small-scale rainfall simulator and sediment loaded water influx.
NASA Astrophysics Data System (ADS)
Naufan, Ihsan; Sivakumar, Bellie; Woldemeskel, Fitsum M.; Raghavan, Srivatsan V.; Vu, Minh Tue; Liong, Shie-Yui
2018-01-01
Understanding the spatial and temporal variability of rainfall has always been a great challenge, and the impacts of climate change further complicate this issue. The present study employs the concepts of complex networks to study the spatial connections in rainfall, with emphasis on climate change and rainfall scaling. Rainfall outputs (during 1961-1990) from a regional climate model (i.e. Weather Research and Forecasting (WRF) model that downscaled the European Centre for Medium-range Weather Forecasts, ECMWF ERA-40 reanalyses) over Southeast Asia are studied, and data corresponding to eight different temporal scales (6-hr, 12-hr, daily, 2-day, 4-day, weekly, biweekly, and monthly) are analyzed. Two network-based methods are applied to examine the connections in rainfall: clustering coefficient (a measure of the network's local density) and degree distribution (a measure of the network's spread). The influence of rainfall correlation threshold (T) on spatial connections is also investigated by considering seven different threshold levels (ranging from 0.5 to 0.8). The results indicate that: (1) rainfall networks corresponding to much coarser temporal scales exhibit properties similar to that of small-world networks, regardless of the threshold; (2) rainfall networks corresponding to much finer temporal scales may be classified as either small-world networks or scale-free networks, depending upon the threshold; and (3) rainfall spatial connections exhibit a transition phase at intermediate temporal scales, especially at high thresholds. These results suggest that the most appropriate model for studying spatial connections may often be different at different temporal scales, and that a combination of small-world and scale-free network models might be more appropriate for rainfall upscaling/downscaling across all scales, in the strict sense of scale-invariance. The results also suggest that spatial connections in the studied rainfall networks in Southeast Asia are weak, especially when more stringent conditions are imposed (i.e. when T is very high), except at the monthly scale.
NASA Astrophysics Data System (ADS)
Gires, Auguste; Abbes, Jean-Baptiste; da Silva Rocha Paz, Igor; Tchiguirinskaia, Ioulia; Schertzer, Daniel
2018-03-01
In this paper we suggest to innovatively use scaling laws and more specifically Universal Multifractals (UM) to analyse simulated surface runoff and compare the retrieved scaling features with the rainfall ones. The methodology is tested on a 3 km2 semi-urbanised with a steep slope study area located in the Paris area along the Bièvre River. First Multi-Hydro, a fully distributed model is validated on this catchment for four rainfall events measured with the help of a C-band radar. The uncertainty associated with small scale unmeasured rainfall, i.e. occurring below the 1 km × 1 km × 5 min observation scale, is quantified with the help of stochastic downscaled rainfall fields. It is rather significant for simulated flow and more limited on overland water depth for these rainfall events. Overland depth is found to exhibit a scaling behaviour over small scales (10 m-80 m) which can be related to fractal features of the sewer network. No direct and obvious dependency between the overland depth multifractal features (quality of the scaling and UM parameters) and the rainfall ones was found.
USDA-ARS?s Scientific Manuscript database
Observed scale effects of runoff and erosion on hillslopes and small watersheds pose one of the most intriguing challenges to modellers, because it results from complex interactions of time-dependent rainfall input with runoff, infiltration and macro- and microtopographic structures. A little studie...
Requirements for future development of small scale rainfall simulators
NASA Astrophysics Data System (ADS)
Iserloh, Thomas; Ries, Johannes B.; Seeger, Manuel
2013-04-01
Rainfall simulation with small scale simulators is a method used worldwide to assess the generation of overland flow, soil erosion, infiltration and interrelated processes such as soil sealing, crusting, splash and redistribution of solids and solutes. Following the outcomes of the project "Comparability of simulation results of different rainfall simulators as input data for soil erosion modelling (Deutsche Forschungsgemeinschaft - DFG, Project No. Ri 835/6-1)" and the "International Rainfall Simulator Workshop 2011" in Trier, the necessity for further technical improvements of simulators and strategies towards an adaption of designs and methods becomes obvious. Uniform measurements of artificially generated rainfall and comparative measurements on a prepared bare fallow with rainfall simulators used by European research groups showed limitations of the comparability of the results. The following requirements, essential for small portable rainfall simulators, were identified: (I) Low and efficient water consumption for use in areas with water shortage, (II) easy handling and control of test conditions, (III) homogeneous spatial rainfall distribution, (IV) best possible drop spectrum (physically), (V) reproducibility and knowledge of spatial distribution and drop spectrum, (VI) easy and fast training of operators to obtain reproducible experiments and (VII) good mobility and easy installation for use in remote areas and in regions where highly erosive rainfall events are rare or irregular. The presentation discusses possibilities for a common use of identical plot designs, rainfall intensities and nozzles.
A Monte-Carlo Bayesian framework for urban rainfall error modelling
NASA Astrophysics Data System (ADS)
Ochoa Rodriguez, Susana; Wang, Li-Pen; Willems, Patrick; Onof, Christian
2016-04-01
Rainfall estimates of the highest possible accuracy and resolution are required for urban hydrological applications, given the small size and fast response which characterise urban catchments. While significant progress has been made in recent years towards meeting rainfall input requirements for urban hydrology -including increasing use of high spatial resolution radar rainfall estimates in combination with point rain gauge records- rainfall estimates will never be perfect and the true rainfall field is, by definition, unknown [1]. Quantifying the residual errors in rainfall estimates is crucial in order to understand their reliability, as well as the impact that their uncertainty may have in subsequent runoff estimates. The quantification of errors in rainfall estimates has been an active topic of research for decades. However, existing rainfall error models have several shortcomings, including the fact that they are limited to describing errors associated to a single data source (i.e. errors associated to rain gauge measurements or radar QPEs alone) and to a single representative error source (e.g. radar-rain gauge differences, spatial temporal resolution). Moreover, rainfall error models have been mostly developed for and tested at large scales. Studies at urban scales are mostly limited to analyses of propagation of errors in rain gauge records-only through urban drainage models and to tests of model sensitivity to uncertainty arising from unmeasured rainfall variability. Only few radar rainfall error models -originally developed for large scales- have been tested at urban scales [2] and have been shown to fail to well capture small-scale storm dynamics, including storm peaks, which are of utmost important for urban runoff simulations. In this work a Monte-Carlo Bayesian framework for rainfall error modelling at urban scales is introduced, which explicitly accounts for relevant errors (arising from insufficient accuracy and/or resolution) in multiple data sources (in this case radar and rain gauge estimates typically available at present), while at the same time enabling dynamic combination of these data sources (thus not only quantifying uncertainty, but also reducing it). This model generates an ensemble of merged rainfall estimates, which can then be used as input to urban drainage models in order to examine how uncertainties in rainfall estimates propagate to urban runoff estimates. The proposed model is tested using as case study a detailed rainfall and flow dataset, and a carefully verified urban drainage model of a small (~9 km2) pilot catchment in North-East London. The model has shown to well characterise residual errors in rainfall data at urban scales (which remain after the merging), leading to improved runoff estimates. In fact, the majority of measured flow peaks are bounded within the uncertainty area produced by the runoff ensembles generated with the ensemble rainfall inputs. REFERENCES: [1] Ciach, G. J. & Krajewski, W. F. (1999). On the estimation of radar rainfall error variance. Advances in Water Resources, 22 (6), 585-595. [2] Rico-Ramirez, M. A., Liguori, S. & Schellart, A. N. A. (2015). Quantifying radar-rainfall uncertainties in urban drainage flow modelling. Journal of Hydrology, 528, 17-28.
NASA Astrophysics Data System (ADS)
Ichiba, Abdellah; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel; Bompard, Philippe; Ten Veldhuis, Marie-Claire
2017-04-01
Nowadays, there is a growing interest on small-scale rainfall information, provided by weather radars, to be used in urban water management and decision-making. Therefore, an increasing interest is in parallel devoted to the development of fully distributed and grid-based models following the increase of computation capabilities, the availability of high-resolution GIS information needed for such models implementation. However, the choice of an appropriate implementation scale to integrate the catchment heterogeneity and the whole measured rainfall variability provided by High-resolution radar technologies still issues. This work proposes a two steps investigation of scale effects in urban hydrology and its effects on modeling works. In the first step fractal tools are used to highlight the scale dependency observed within distributed data used to describe the catchment heterogeneity, both the structure of the sewer network and the distribution of impervious areas are analyzed. Then an intensive multi-scale modeling work is carried out to understand scaling effects on hydrological model performance. Investigations were conducted using a fully distributed and physically based model, Multi-Hydro, developed at Ecole des Ponts ParisTech. The model was implemented at 17 spatial resolutions ranging from 100 m to 5 m and modeling investigations were performed using both rain gauge rainfall information as well as high resolution X band radar data in order to assess the sensitivity of the model to small scale rainfall variability. Results coming out from this work demonstrate scale effect challenges in urban hydrology modeling. In fact, fractal concept highlights the scale dependency observed within distributed data used to implement hydrological models. Patterns of geophysical data change when we change the observation pixel size. The multi-scale modeling investigation performed with Multi-Hydro model at 17 spatial resolutions confirms scaling effect on hydrological model performance. Results were analyzed at three ranges of scales identified in the fractal analysis and confirmed in the modeling work. The sensitivity of the model to small-scale rainfall variability was discussed as well.
Connecting spatial and temporal scales of tropical precipitation in observations and the MetUM-GA6
NASA Astrophysics Data System (ADS)
Martin, Gill M.; Klingaman, Nicholas P.; Moise, Aurel F.
2017-01-01
This study analyses tropical rainfall variability (on a range of temporal and spatial scales) in a set of parallel Met Office Unified Model (MetUM) simulations at a range of horizontal resolutions, which are compared with two satellite-derived rainfall datasets. We focus on the shorter scales, i.e. from the native grid and time step of the model through sub-daily to seasonal, since previous studies have paid relatively little attention to sub-daily rainfall variability and how this feeds through to longer scales. We find that the behaviour of the deep convection parametrization in this model on the native grid and time step is largely independent of the grid-box size and time step length over which it operates. There is also little difference in the rainfall variability on larger/longer spatial/temporal scales. Tropical convection in the model on the native grid/time step is spatially and temporally intermittent, producing very large rainfall amounts interspersed with grid boxes/time steps of little or no rain. In contrast, switching off the deep convection parametrization, albeit at an unrealistic resolution for resolving tropical convection, results in very persistent (for limited periods), but very sporadic, rainfall. In both cases, spatial and temporal averaging smoothes out this intermittency. On the ˜ 100 km scale, for oceanic regions, the spectra of 3-hourly and daily mean rainfall in the configurations with parametrized convection agree fairly well with those from satellite-derived rainfall estimates, while at ˜ 10-day timescales the averages are overestimated, indicating a lack of intra-seasonal variability. Over tropical land the results are more varied, but the model often underestimates the daily mean rainfall (partly as a result of a poor diurnal cycle) but still lacks variability on intra-seasonal timescales. Ultimately, such work will shed light on how uncertainties in modelling small-/short-scale processes relate to uncertainty in climate change projections of rainfall distribution and variability, with a view to reducing such uncertainty through improved modelling of small-/short-scale processes.
NASA Astrophysics Data System (ADS)
Cristiano, Elena; ten Veldhuis, Marie-claire; van de Giesen, Nick
2017-07-01
In urban areas, hydrological processes are characterized by high variability in space and time, making them sensitive to small-scale temporal and spatial rainfall variability. In the last decades new instruments, techniques, and methods have been developed to capture rainfall and hydrological processes at high resolution. Weather radars have been introduced to estimate high spatial and temporal rainfall variability. At the same time, new models have been proposed to reproduce hydrological response, based on small-scale representation of urban catchment spatial variability. Despite these efforts, interactions between rainfall variability, catchment heterogeneity, and hydrological response remain poorly understood. This paper presents a review of our current understanding of hydrological processes in urban environments as reported in the literature, focusing on their spatial and temporal variability aspects. We review recent findings on the effects of rainfall variability on hydrological response and identify gaps where knowledge needs to be further developed to improve our understanding of and capability to predict urban hydrological response.
NASA Astrophysics Data System (ADS)
Wei, Chiang; Yeh, Hui-Chung; Chen, Yen-Chang
2017-04-01
This study addressed the relationship between rainfall and cloud top temperature (CCT) from new generation satellite Himawari-8 imagery at different spatiotemporal scale. This satellite provides higher band, more bits for data format, spatial and temporal resolution compared with previous GMS series. The multi-infrared channels with 10-minute and 1-2 km resolution make it possible for rainfall estimating/forecasting in small/medium watershed. The preliminary result investigated at Chenyulan watershed (443.6 square kilometer) of Central Taiwan in 2016 Typhoon Megi shows the regression coefficient fitted by negative exponential equation of largest rainfall vs. CCT (B8 band) at pixel scale increases as time scales enlarges and reach 0.462 for 120-minute accumulative rainfall; the value (CTT of B15 band) decreases from 0.635 for 10-minute to 0.423 for 120-minute accumulative rainfall at basin-wide scale. More rainfall events for different regime are yet to evaluate to get solid results.
Small scale rainfall simulators: Challenges for a future use in soil erosion research
NASA Astrophysics Data System (ADS)
Ries, Johannes B.; Iserloh, Thomas; Seeger, Manuel
2013-04-01
Rainfall simulation on micro-plot scale is a method used worldwide to assess the generation of overland flow, soil erosion, infiltration and interrelated processes such as soil sealing, crusting, splash and redistribution of solids and solutes. The produced data are of great significance not only for the analysis of the simulated processes, but also as a source of input-data for soil erosion modelling. The reliability of the data is therefore of paramount importance, and quality management of rainfall simulation procedure a general responsibility of the rainfall simulation community. This was an accepted outcome at the "International Rainfall Simulator Workshop 2011" at Trier University. The challenges of the present and near future use of small scale rainfall simulations concern the comparability of results and scales, the quality of the data for soil erosion modelling, and further technical developments to overcome physical limitations and constraints. Regarding the high number of research questions, different fields of application, and due to the great technical creativity of researchers, a large number of different types of rainfall simulators is available. But each of the devices produces a different rainfall, leading to different kinetic energy values influencing soil surface and erosion processes. Plot sizes are also variable, as well as the experimental simulation procedures. As a consequence, differing runoff and erosion results are produced. The presentation summarises the three important aspects of rainfall simulations, following a processual order: 1. Input-factor "rain" and its calibration 2. Surface-factor "plot" and its documentation 3. Output-factors "runoff" and "sediment concentration" Finally, general considerations about the limitations and challenges for further developments and applications of rainfall simulation data are presented.
Measurement of surface water runoff from plots of two different sizes
NASA Astrophysics Data System (ADS)
Joel, Abraham; Messing, Ingmar; Seguel, Oscar; Casanova, Manuel
2002-05-01
Intensities and amounts of water infiltration and runoff on sloping land are governed by the rainfall pattern and soil hydraulic conductivity, as well as by the microtopography and soil surface conditions. These components are closely interrelated and occur simultaneously, and their particular contribution may change during a rainfall event, or their effects may vary at different field scales. The scale effect on the process of infiltration/runoff was studied under natural field and rainfall conditions for two plot sizes: small plots of 0·25 m2 and large plots of 50 m2. The measurements were carried out in the central region of Chile in a piedmont most recently used as natural pastureland. Three blocks, each having one large plot and five small plots, were established. Cumulative rainfall and runoff quantities were sampled every 5 min. Significant variations in runoff responses to rainfall rates were found for the two plot sizes. On average, large plots yielded only 40% of runoff quantities produced on small plots per unit area. This difference between plot sizes was observed even during periods of continuous runoff.
NASA Astrophysics Data System (ADS)
Marc, Odin; Malet, Jean-Philippe; Stumpf, Andre; Gosset, Marielle
2017-04-01
In mountainous and hilly regions, landslides are an important source of damage and fatalities. Landsliding correlates with extreme rainfall events and may increase with climate change. Still, how precipitation drives landsliding at regional scales is poorly understood quantitatively in part because constraining simultaneously landsliding and rainfall across large areas is challenging. By combining optical images acquired from satellite observation platforms and rainfall measurements from satellite constellations we are building a database of landslide events caused by with single storm events. We present results from storm-induced landslides from Brazil, Taiwan, Micronesia, Central America, Europe and the USA. We present scaling laws between rainfall metrics derived by satellites (total rainfall, mean intensity, antecedent rainfall, ...) and statistical descriptors of landslide events (total area and volume, size distribution, mean runout, ...). Total rainfall seems to be the most important parameter driving non-linearly the increase in total landslide number, and area and volume. The maximum size of bedrock landslides correlates with the total number of landslides, and thus with total rainfall, within the limits of available topographic relief. In contrast, the power-law scaling exponent of the size distribution, controlling the relative abundance of small and large landslides, appears rather independent of the rainfall metrics (intensity, duration and total rainfall). These scaling laws seem to explain both the intra-storm pattern of landsliding, at the scale of satellite rainfall measurements ( 25kmx25km), and the different impacts observed for various storms. Where possible, we evaluate the limits of standard rainfall products (TRMM, GPM, GSMaP) by comparing them to in-situ data. Then we discuss how slope distribution and other geomorphic factors (lithology, soil presence,...) modulate these scaling laws. Such scaling laws at the basin scale and based only on a-priori information (topography, lithology, …) and rainfall metrics available from meteorological forecast may allow to better anticipate and mitigates landsliding associated with extreme rainfall events.
Scale-dependency of effective hydraulic conductivity on fire-affected hillslopes
NASA Astrophysics Data System (ADS)
Langhans, Christoph; Lane, Patrick N. J.; Nyman, Petter; Noske, Philip J.; Cawson, Jane G.; Oono, Akiko; Sheridan, Gary J.
2016-07-01
Effective hydraulic conductivity (Ke) for Hortonian overland flow modeling has been defined as a function of rainfall intensity and runon infiltration assuming a distribution of saturated hydraulic conductivities (Ks). But surface boundary condition during infiltration and its interactions with the distribution of Ks are not well represented in models. As a result, the mean value of the Ks distribution (KS¯), which is the central parameter for Ke, varies between scales. Here we quantify this discrepancy with a large infiltration data set comprising four different methods and scales from fire-affected hillslopes in SE Australia using a relatively simple yet widely used conceptual model of Ke. Ponded disk (0.002 m2) and ring infiltrometers (0.07 m2) were used at the small scales and rainfall simulations (3 m2) and small catchments (ca 3000 m2) at the larger scales. We compared KS¯ between methods measured at the same time and place. Disk and ring infiltrometer measurements had on average 4.8 times higher values of KS¯ than rainfall simulations and catchment-scale estimates. Furthermore, the distribution of Ks was not clearly log-normal and scale-independent, as supposed in the conceptual model. In our interpretation, water repellency and preferential flow paths increase the variance of the measured distribution of Ks and bias ponding toward areas of very low Ks during rainfall simulations and small catchment runoff events while areas with high preferential flow capacity remain water supply-limited more than the conceptual model of Ke predicts. The study highlights problems in the current theory of scaling runoff generation.
Rainfall-runoff model parameter estimation and uncertainty evaluation on small plots
USDA-ARS?s Scientific Manuscript database
Four seasonal rainfall simulations in 2009 and 2010 were applied to a field containing 36 plots (0.75 × 2 m each), resulting in 144 runoff events. In all simulations, a constant rate of rainfall was applied, then halted 60 minutes after initiation of runoff, with plot-scale monitoring of runoff ever...
NASA Astrophysics Data System (ADS)
Carvalho, S. C. P.; de Lima, M. I. P.; de Lima, J. L. M. P.
2012-04-01
Laser disdrometers can monitor efficiently rainfall characteristics at small temporal scales, providing data on rain intensity, raindrop diameter and fall speed, and raindrop counts over time. This type of data allows for the increased understanding of the rainfall structure at small time scales. Of particular interest for many hydrological applications is the characterization of the properties of extreme events, including the intra-event variability, which are affected by different factors (e.g. geographical location, rainfall generating mechanisms). These properties depend on the microphysical, dynamical and kinetic processes that interact to produce rain. In this study we explore rainfall data obtained during two years with a laser disdrometer installed in the city of Coimbra, in the centre region of mainland Portugal. The equipment was developed by Thies Clima. The data temporal resolution is one-minute. Descriptive statistics of time series of raindrop diameter (D), fall speed, kinetic energy, and rain rate were studied at the event scale; for different variables, the average, maximum, minimum, median, variance, standard deviation, quartile, coefficient of variation, skewness and kurtosis were determined. The empirical raindrop size distribution, N(D), was also calculated. Additionally, the parameterization of rainfall was attempted by investigating the applicability of different theoretical statistical distributions to fit the empirical data (e.g. exponential, gamma and lognormal distributions). As expected, preliminary results show that rainfall properties and structure vary with rainfall type and weather conditions over the year. Although only two years were investigated, already some insight into different rain events' structure was obtained.
NASA Astrophysics Data System (ADS)
Yen, Hsin-Yi; Lin, Guan-Wei
2017-04-01
Understanding the rainfall condition which triggers mass moment on hillslope is the key to forecast rainfall-induced slope hazards, and the exact time of landslide occurrence is one of the basic information for rainfall statistics. In the study, we focused on large-scale landslides (LSLs) with disturbed area larger than 10 ha and conducted a string of studies including the recognition of landslide-induced ground motions and the analyses of different terms of rainfall thresholds. More than 10 heavy typhoons during the periods of 2005-2014 in Taiwan induced more than hundreds of LSLs and provided the opportunity to characterize the rainfall conditions which trigger LSLs. A total of 101 landslide-induced seismic signals were identified from the records of Taiwan seismic network. These signals exposed the occurrence time of landslide to assess rainfall conditions. Rainfall analyses showed that LSLs occurred when cumulative rainfall exceeded 500 mm. The results of rainfall-threshold analyses revealed that it is difficult to distinct LSLs from small-scale landslides (SSLs) by the I-D and R-D methods, but the I-R method can achieve the discrimination. Besides, an enhanced three-factor threshold considering deep water content was proposed as the rainfall threshold for LSLs.
Zwertvaegher, Ingrid Ka; Van Daele, Inge; Verheesen, Peter; Peferoen, Marnix; Nuyttens, David
2017-01-01
Rainfall greatly affects the retention of foliar-applied agroformulations. Improving their resistance to wash-off is therefore of great importance in spray applications. When developing such formulations, small-scale laboratory assays are generally required. A set-up for retention studies using only small amounts of agroformulations (<0.5 L) was developed. The set-up consists of a spray device and a rainfall simulator. The effect of rain quantity (1, 3, 6 mm) on the spray retention of agroformulations was evaluated using this set-up. The data showed that uniform and repeatable spraying was achieved with the small-scale spray device (coefficient of variation 23.4%) on potato pot plants (Solanum tuberosum L.). Rain quantity significantly affected the spray retention. Approximately 40% of the initial deposition was lost after 1 mm of rain at an intensity of 25 mm h -1 . Additional losses decreased with increasing volumes of rain (65 and 80% loss after 3 and 6 mm of rain respectively). Future studies could implement the set-up to evaluate the effect of different rainfall characteristics and formulations on spray retention in order to improve the rainfastness of agroformulations. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Uijlenhoet, R.; de Vos, L. W.; Leijnse, H.; Overeem, A.; Raupach, T. H.; Berne, A.
2017-12-01
For the purpose of urban rainfall monitoring high resolution rainfall measurements are desirable. Typically C-band radar can provide rainfall intensities at km grid cells every 5 minutes. Opportunistic sensing with commercial microwave links yields rainfall intensities over link paths within cities. Additionally, recent developments have made it possible to obtain large amounts of urban in situ measurements from weather amateurs in near real-time. With a known high resolution simulated rainfall event the accuracy of these three techniques is evaluated, taking into account their respective existing layouts and sampling methods. Under ideal measurement conditions, the weather station networks proves to be most promising. For accurate estimation with radar, an appropriate choice for Z-R relationship is vital. Though both the microwave links and the weather station networks are quite dense, both techniques will underestimate rainfall if not at least one link path / station captures the high intensity rainfall peak. The accuracy of each technique improves when considering rainfall at larger scales, especially by increasing time intervals, with the steepest improvements found in microwave links.
Required spatial resolution of hydrological models to evaluate urban flood resilience measures
NASA Astrophysics Data System (ADS)
Gires, A.; Giangola-Murzyn, A.; Tchiguirinskaia, I.; Schertzer, D.; Lovejoy, S.
2012-04-01
During a flood in urban area, several non-linear processes (rainfall, surface runoff, sewer flow, and sub-surface flow) interact. Fully distributed hydrological models are a useful tool to better understand these complex interactions between natural processes and man built environment. Developing an efficient model is a first step to improve the understanding of flood resilience in urban area. Given that the previously mentioned underlying physical phenomenon exhibit different relevant scales, determining the required spatial resolution of such model is tricky but necessary issue. For instance such model should be able to properly represent large scale effects of local scale flood resilience measures such as stop logs. The model should also be as simple as possible without being simplistic. In this paper we test two types of model. First we use an operational semi-distributed model over a 3400 ha peri-urban area located in Seine-Saint-Denis (North-East of Paris). In this model, the area is divided into sub-catchments of average size 17 ha that are considered as homogenous, and only the sewer discharge is modelled. The rainfall data, whose resolution is 1 km is space and 5 min in time, comes from the C-band radar of Trappes, located in the West of Paris, and operated by Météo-France. It was shown that the spatial resolution of both the model and the rainfall field did not enable to fully grasp the small scale rainfall variability. To achieve this, first an ensemble of realistic rainfall fields downscaled to a resolution of 100 m is generated with the help of multifractal space-time cascades whose characteristic exponents are estimated on the available radar data. Second the corresponding ensemble of sewer hydrographs is simulated by inputting each rainfall realization to the model. It appears that the probability distribution of the simulated peak flow exhibits a power-law behaviour. This indicates that there is a great uncertainty associated with small scale rainfall. Second we focus on a 50 ha catchment of this area and implement Multi-Hydro, a fully distributed urban hydrological model currently being developed at Ecole des Ponts ParisTech (El Tabach et al., 2009). The version used in this paper consists in an interactive coupling between a 2D model representing infiltration and surface runoff (TREX, Two dimensional Runoff, Erosion and eXport model, Velleux et al., 2011) and a 1D model of sewer networks (SWMM, Storm Water Management Model, Rossman, 2007). Spatial resolution ranging from 2 m to 50 m for land use, topography and rainfall are tested. A special highlight on the impact of small scales rainfall is done. To achieve this the previously mentioned methodology is implemented with rainfall fields downscaled to 10 m in space and 20 s in time. Finally, we will discuss the gains generated by the implementation of the fully distributed model.
NASA Astrophysics Data System (ADS)
von Ruette, J.; Lehmann, P.; Or, D.
2014-10-01
The occurrence of shallow landslides is often associated with intense and prolonged rainfall events, where infiltrating water reduces soil strength and may lead to abrupt mass release. Despite general understanding of the role of rainfall water in slope stability, the prediction of rainfall-induced landslides remains a challenge due to natural heterogeneity that affect hydrologic loading patterns and the largely unobservable internal progressive failures. An often overlooked and potentially important factor is the role of rainfall variability in space and time on landslide triggering that is often obscured by coarse information (e.g., hourly radar data at spatial resolution of a few kilometers). To quantify potential effects of rainfall variability on failure dynamics, spatial patterns, landslide numbers and volumes, we employed a physically based "Catchment-scale Hydromechanical Landslide Triggering" (CHLT) model for a study area where a summer storm in 2002 triggered 51 shallow landslides. In numerical experiments based on the CHLT model, we applied the measured rainfall amount of 53 mm in different artificial spatiotemporal rainfall patterns, resulting in between 30 and 100 landslides and total released soil volumes between 3000 and 60,000 m3 for the various scenarios. Results indicate that low intensity rainfall below soil's infiltration capacity resulted in the largest mechanical perturbation. This study illustrates how small-scale rainfall variability that is often overlooked by present operational rainfall data may play a key role in shaping landslide patterns.
The Effects Of Urban Landscape Patterns On Rainfall-Runoff Processes At Small Scale
NASA Astrophysics Data System (ADS)
Chen, L.
2016-12-01
Many studies have indicated that urban landscape change may alter rainfall-runoff processes. However, how urban landscape pattern affect this process is little addressed. In this study, the hydrological effects of landscape pattern on rainfall-runoff processes at small-scale was explored. Twelve residential blocks with independent drainage systems in Beijing were selected as case study areas. Impervious metrics of these blocks, i.e., total impervious area (TIA) and directly connected impervious area (DCIA), were identified. A drainage index describing catchment general drainage load and the overland flow distance, Ad, was estimated and used as one of the landscape spatial metrics. Three scenarios were designed to test the potential influence of impervious surface pattern on runoff processes. Runoff variables including total and peak runoff depth (Qt and Qp) were simulated under different rainfall conditions by Storm Water Management Model (SWMM). The relationship between landscape patterns and runoff variables were analyzed, and further among the three scenarios. The results demonstrated that, in small urban blocks, spatial patterns have inherent influences on rainfall-runoff processes. Specifically, (1) Imperviousness acts as effective indicators in predicting both Qt and Qp. As rainfall intensity increases, the major affecting factor changes from DCIA to TIA for both Qt and Qp; (2) Increasing the size of drainage area dominated by each drainage inlet will benefit the block peak flow mitigation; (3) Different spatial concentrations of impervious surfaces have inherent influences on Qp, when impervious surfaces located away from the outlet can reduce the peak flow discharge. These findings may provide insights into the role of urban landscape patterns in driving rainfall-runoff responses in urbanization, which is essential for urban planning and stormwater management.
NASA Astrophysics Data System (ADS)
Breinl, Korbinian; Di Baldassarre, Giuliano; Girons Lopez, Marc
2017-04-01
We assess uncertainties of multi-site rainfall generation across spatial scales and different climatic conditions. Many research subjects in earth sciences such as floods, droughts or water balance simulations require the generation of long rainfall time series. In large study areas the simulation at multiple sites becomes indispensable to account for the spatial rainfall variability, but becomes more complex compared to a single site due to the intermittent nature of rainfall. Weather generators can be used for extrapolating rainfall time series, and various models have been presented in the literature. Even though the large majority of multi-site rainfall generators is based on similar methods, such as resampling techniques or Markovian processes, they often become too complex. We think that this complexity has been a limit for the application of such tools. Furthermore, the majority of multi-site rainfall generators found in the literature are either not publicly available or intended for being applied at small geographical scales, often only in temperate climates. Here we present a revised, and now publicly available, version of a multi-site rainfall generation code first applied in 2014 in Austria and France, which we call TripleM (Multisite Markov Model). We test this fast and robust code with daily rainfall observations from the United States, in a subtropical, tropical and temperate climate, using rain gauge networks with a maximum site distance above 1,000km, thereby generating one million years of synthetic time series. The modelling of these one million years takes one night on a recent desktop computer. In this research, we first start the simulations with a small station network of three sites and progressively increase the number of sites and the spatial extent, and analyze the changing uncertainties for multiple statistical metrics such as dry and wet spells, rainfall autocorrelation, lagged cross correlations and the inter-annual rainfall variability. Our study contributes to the scientific community of earth sciences and the ongoing debate on extreme precipitation in a changing climate by making a stable, and very easily applicable, multi-site rainfall generation code available to the research community and providing a better understanding of the performance of multi-site rainfall generation depending on spatial scales and climatic conditions.
Moody, John A.; Ebel, Brian A.
2012-01-01
We developed a difference infiltrometer to measure time series of non-steady infiltration rates during rainstorms at the point scale. The infiltrometer uses two, tipping bucket rain gages. One gage measures rainfall onto, and the other measures runoff from, a small circular plot about 0.5-m in diameter. The small size allows the infiltration rate to be computed as the difference of the cumulative rainfall and cumulative runoff without having to route water through a large plot. Difference infiltrometers were deployed in an area burned by the 2010 Fourmile Canyon Fire near Boulder, Colorado, USA, and data were collected during the summer of 2011. The difference infiltrometer demonstrated the capability to capture different magnitudes of infiltration rates and temporal variability associated with convective (high intensity, short duration) and cyclonic (low intensity, long duration) rainstorms. Data from the difference infiltrometer were used to estimate saturated hydraulic conductivity of soil affected by the heat from a wildfire. The difference infiltrometer is portable and can be deployed in rugged, steep terrain and does not require the transport of water, as many rainfall simulators require, because it uses natural rainfall. It can be used to assess infiltration models, determine runoff coefficients, identify rainfall depth or rainfall intensity thresholds to initiate runoff, estimate parameters for infiltration models, and compare remediation treatments on disturbed landscapes. The difference infiltrometer can be linked with other types of soil monitoring equipment in long-term studies for detecting temporal and spatial variability at multiple time scales and in nested designs where it can be linked to hillslope and basin-scale runoff responses.
Rainfall–runoff model parameter estimation and uncertainty evaluation on small plots
Four seasonal rainfall simulations in 2009 and 2010were applied to a field containing 36 plots (0.75 × 2 m each), resulting in 144 runoff events. In all simulations, a constant rate of rainfall was applied then halted 60min after initiation of runoff, with plot-scale monitoring o...
Water yield issues in the jarrah forest of south-western Australia
NASA Astrophysics Data System (ADS)
Ruprecht, J. K.; Stoneman, G. L.
1993-10-01
The jarrah forest of south-western Australia produces little streamflow from moderate rainfall. Water yield from water supply catchments for Perth, Western Australia, are low, averaging 71 mm (7% of annual rainfall). The low water yields are attributed to the large soil water storage available for continuous use by the forest vegetation. A number of water yield studies in south-western Australia have examined the impact on water yield of land use practices including clearing for agricultural development, forest harvesting and regeneration, forest thinning and bauxite mining. A permanent reduction in forest cover by clearing for agriculture led to permanent increases of water yield of approximately 28% of annual rainfall in a high rainfall catchment. Thinning of a high rainfall catchment led to an increase in water yield of 20% of annual rainfall. However, it is not clear for how long the increased water yield will persist. Forest harvesting and regeneration have led to water yield increases of 16% of annual rainfall. The subsequent recovery of vegetation cover has led to water yields returning to pre-disturbance levels after an estimated 12-15 years. Bauxite mining of a high rainfall catchment led to a water yield increase of 8% of annual rainfall, followed by a return to pre-disturbance water yield after 12 years. The magnitude of specific streamflow generation mechanisms in small catchments subject to forest disturbance vary considerably, typically in a number of distinct stages. The presence of a permanent groundwater discharge area was shown to be instrumental in determining the magnitude of the streamflow response after forest disturbance. The long-term prognosis for water yield from areas subject to forest thinning, harvesting and regeneration, and bauxite mining are uncertain, owing to the complex interrelationship between vegetation cover, tree height and age, and catchment evapotranspiration. Management of the forest for water yield needs to acknowledge this complexity and evaluate forest management strategies both at the large catchment scale and at long time-scales. The extensive network of small catchment experiments, regional studies, process studies and catchment modelling at both the small and large scale, which are carried out in the jarrah forest, are all considered as integral components of the research to develop these management strategies to optimise water yield from the jarrah forest, without forfeiting other forest values.
Radar-rain-gauge rainfall estimation for hydrological applications in small catchments
NASA Astrophysics Data System (ADS)
Gabriele, Salvatore; Chiaravalloti, Francesco; Procopio, Antonio
2017-07-01
The accurate evaluation of the precipitation's time-spatial structure is a critical step for rainfall-runoff modelling. Particularly for small catchments, the variability of rainfall can lead to mismatched results. Large errors in flow evaluation may occur during convective storms, responsible for most of the flash floods in small catchments in the Mediterranean area. During such events, we may expect large spatial and temporal variability. Therefore, using rain-gauge measurements only can be insufficient in order to adequately depict extreme rainfall events. In this work, a double-level information approach, based on rain gauges and weather radar measurements, is used to improve areal rainfall estimations for hydrological applications. In order to highlight the effect that precipitation fields with different level of spatial details have on hydrological modelling, two kinds of spatial rainfall fields were computed for precipitation data collected during 2015, considering both rain gauges only and their merging with radar information. The differences produced by these two precipitation fields in the computation of the areal mean rainfall accumulation were evaluated considering 999 basins of the region Calabria, southern Italy. Moreover, both of the two precipitation fields were used to carry out rainfall-runoff simulations at catchment scale for main precipitation events that occurred during 2015 and the differences between the scenarios obtained in the two cases were analysed. A representative case study is presented in detail.
Short-term rainfall: its scaling properties over Portugal
NASA Astrophysics Data System (ADS)
de Lima, M. Isabel P.
2010-05-01
The characterization of rainfall at a variety of space- and time-scales demands usually that data from different origins and resolution are explored. Different tools and methodologies can be used for this purpose. In regions where the spatial variation of rain is marked, the study of the scaling structure of rainfall can lead to a better understanding of the type of events affecting that specific area, which is essential for many engineering applications. The relevant factors affecting rain variability, in time and space, can lead to contrasting statistics which should be carefully taken into account in design procedures and decision making processes. One such region is Mainland Portugal; the territory is located in the transitional region between the sub-tropical anticyclone and the subpolar depression zones and is characterized by strong north-south and east-west rainfall gradients. The spatial distribution and seasonal variability of rain are particularly influenced by the characteristics of the global circulation. One specific feature is the Atlantic origin of many synoptic disturbances in the context of the regional geography (e.g. latitude, orography, oceanic and continental influences). Thus, aiming at investigating the statistical signature of rain events of different origins, resulting from the large number of mechanisms and factors affecting the rainfall climate over Portugal, scale-invariant analyses of the temporal structure of rain from several locations in mainland Portugal were conducted. The study used short-term rainfall time series. Relevant scaling ranges were identified and characterized that help clarifying the small-scale behaviour and statistics of this process.
NASA Astrophysics Data System (ADS)
Oigawa, Masanori; Tsuda, Toshitaka; Seko, Hiromu; Shoji, Yoshinori; Realini, Eugenio
2018-05-01
We studied the assimilation of high-resolution precipitable water vapor (PWV) data derived from a hyper-dense global navigation satellite system network around Uji city, Kyoto, Japan, which had a mean inter-station distance of about 1.7 km. We focused on a heavy rainfall event that occurred on August 13-14, 2012, around Uji city. We employed a local ensemble transform Kalman filter as the data assimilation method. The inhomogeneity of the observed PWV increased on a scale of less than 10 km in advance of the actual rainfall detected by the rain gauge. Zenith wet delay data observed by the Uji network showed that the characteristic length scale of water vapor distribution during the rainfall ranged from 1.9 to 3.5 km. It is suggested that the assimilation of PWV data with high horizontal resolution (a few km) improves the forecast accuracy. We conducted the assimilation experiment of high-resolution PWV data, using both small horizontal localization radii and a conventional horizontal localization radius. We repeated the sensitivity experiment, changing the mean horizontal spacing of the PWV data from 1.7 to 8.0 km. When the horizontal spacing of assimilated PWV data was decreased from 8.0 to 3.5 km, the accuracy of the simulated hourly rainfall amount worsened in the experiment that used the conventional localization radius for the assimilation of PWV. In contrast, the accuracy of hourly rainfall amounts improved when we applied small horizontal localization radii. In the experiment that used the small horizontal localization radii, the accuracy of the hourly rainfall amount was most improved when the horizontal resolution of the assimilated PWV data was 3.5 km. The optimum spatial resolution of PWV data was related to the characteristic length scale of water vapor variability.[Figure not available: see fulltext.
High-Resolution Simulation of Hurricane Bonnie (1998). Part 1; The Organization of Vertical Motion
NASA Technical Reports Server (NTRS)
Braun, Scott A.; Montgomery, Michael T.; Pu, Zhaoxia
2003-01-01
Hurricanes are well known for their strong winds and heavy rainfall, particularly in the intense rainband (eyewall) surrounding the calmer eye of the storm. In some hurricanes, the rainfall is distributed evenly around the eye so that it has a donut shape on radar images. In other cases, the rainfall is concentrated on one side of the eyewall and nearly absent on the other side and is said to be asymmetric. This study examines how the vertical air motions that produce the rainfall are distributed within the eyewall of an asymmetric hurricane and the factors that cause this pattern of rainfall. We use a sophisticated numerical forecast model to simulate Hurricane Bonnie, which occurred in late August of 1998 during a special NASA field experiment designed to study hurricanes. The simulation results suggest that vertical wind shear (a rapid change in wind speed or direction with height) caused the asymmetric rainfall and vertical air motion patterns by tilting the hurricane vortex and favoring upward air motions in the direction of tilt. Although the rainfall in the hurricane eyewall may surround more than half of the eye, the updrafts that produce the rainfall are concentrated in very small-scale, intense updraft cores that occupy only about 10% of the eyewall area. The model simulation suggests that the timing and location of individual updraft cores are controlled by intense, small-scale vortices (regions of rapidly swirling flow) in the eyewall and that the updrafts form when the vortices encounter low-level air moving into the eyewall.
Comparison between fully distributed model and semi-distributed model in urban hydrology modeling
NASA Astrophysics Data System (ADS)
Ichiba, Abdellah; Gires, Auguste; Giangola-Murzyn, Agathe; Tchiguirinskaia, Ioulia; Schertzer, Daniel; Bompard, Philippe
2013-04-01
Water management in urban areas is becoming more and more complex, especially because of a rapid increase of impervious areas. There will also possibly be an increase of extreme precipitation due to climate change. The aims of the devices implemented to handle the large amount of water generate by urban areas such as storm water retention basins are usually twofold: ensure pluvial flood protection and water depollution. These two aims imply opposite management strategies. To optimize the use of these devices there is a need to implement urban hydrological models and improve fine-scale rainfall estimation, which is the most significant input. In this paper we suggest to compare two models and their sensitivity to small-scale rainfall variability on a 2.15 km2 urban area located in the County of Val-de-Marne (South-East of Paris, France). The average impervious coefficient is approximately 34%. In this work two types of models are used. The first one is CANOE which is semi-distributed. Such models are widely used by practitioners for urban hydrology modeling and urban water management. Indeed, they are easily configurable and the computation time is reduced, but these models do not take fully into account either the variability of the physical properties or the variability of the precipitations. An alternative is to use distributed models that are harder to configure and require a greater computation time, but they enable a deeper analysis (especially at small scales and upstream) of the processes at stake. We used the Multi-Hydro fully distributed model developed at the Ecole des Ponts ParisTech. It is an interacting core between open source software packages, each of them representing a portion of the water cycle in urban environment. Four heavy rainfall events that occurred between 2009 and 2011 are analyzed. The data comes from the Météo-France radar mosaic and the resolution is 1 km in space and 5 min in time. The closest radar of the Météo-France network is a C-band one located at 37 km West. In this work we compare the hydrological response of two models for the 4 rainfall events first with the available radar data. Then a particular focus is made on the impact of small-scale unmeasured rainfall variability (i.e. occurring at scales below the available one). More precisely scaling properties of rainfall are used to generate an ensemble of downscaled rainfall fields (simply by continuing the underlying cascade process whose relevant parameters are estimated on the available range of scales). An ensemble of hydrological responses is then simulated, and the variability within it analyzed. It appears that the associated uncertainty is significant and should be taken into account. Finally we will discuss the interest of deploying X-band radars (which provide an hectometric resolution) in urban environment and the potential benefits of using these models and small-scale rainfall data for the management of sewerage and retentions basin. Further analysis on these issues will be carried out next year with the installation of an X-band radar near Marne-la-Vallée (located at roughly 10 Km of the studied catchment) in the framework of the RainGain project (European project financed by the Interreg IVB funds).
Biophysical response of dryland soils to rainfall: implications for wind erosion
NASA Astrophysics Data System (ADS)
Bullard, J. E.; Strong, C. L.; Aubault, H.
2016-12-01
Dryland soils can be highly susceptible to wind erosion due to low vegetation cover. The formation of physical and biological soil crusts between vascular plants can exert some control on the soil surface erodibility. The development of these crusts is highly dependent on rainfall which causes sediment compaction and aggregate breakdown, and triggers photosynthetic activity and an increase soil organic matter within biological soil crusts. Using controlled field experiments, this study tests how biological soil crusts in different dryland geomorphic settings respond to various rainfall amounts (0, 5 or 10 mm) and how this in turn affects the resistance of soils to wind erosion. Results show that 10 mm of rainfall triggers more intense photosynthetic activity (high fluorescence) and a greater increase in extracellular polysaccharide content in biological crusts than 5 mm of rainfall but that the duration of photosynthetic activity is comparable for both quantities of rain. These biological responses have little impact on surface resistance, but results show that soils are more susceptible to wind erosion after rainfall events than in their initial dry state. This unexpected result could be explained by the detachment of surface sediments by raindrop impact and overland flow. The study highlights the complexity of soil erodibility at small scale which is driven by rain, wind and crust, and a necessity to understand how the spatial heterogeneity of crust and their ecophysiology alters small scale processes.
NASA Astrophysics Data System (ADS)
Krietemeyer, Andreas; ten Veldhuis, Marie-claire; van de Giesen, Nick
2017-04-01
Recent research has shown that assimilation of Precipitable Water Vapor (PWV) measurements into numerical weather predictions models improve the quality of rainfall now- and forecasting. Local PWV fluctuations may be related with water vapor increases in the lower troposphere which lead to deep convection. Prior studies show that about 20 minutes before rain occurs, the amount of water vapor in the atmosphere at 1 km height increases. Monitoring the small-scale temporal and spatial variability of PWV is therefore crucial to improve the weather now- and forecasting for convective storms, that are typically critical for urban stormwater systems. One established technique to obtain PWV measurements in the atmosphere is to exploit signal delays from GNSS satellites to dual-frequency receivers on the ground. Existing dual-frequency receiver networks typically have inter-station distances in the order of tens of kilometers, which is not sufficiently dense to capture the small-scale PWV variations. In this study, we will add low-cost, single-frequency GNSS receivers to an existing dual-frequency receiver network to obtain an inter-station distance of about 1 km in the Rotterdam area (Netherlands). The aim is to investigate the spatial variability of PWV in the atmosphere at this scale. We use the surrounding dual-frequency network (distributed over a radius of approximately 25 km) to apply an ionospheric delay model that accounts for the delay in the ionosphere (50-1000 km altitude) that cannot be eliminated by single-frequency receivers. The results are validated by co-aligning a single-frequency receiver to a dual-frequency receiver. In the next steps, we will investigate how the high temporal and increased spatial resolution network can help to improve high-resolution rainfall forecasts. Their supposed improved forecasting results will be evaluated based on high-resolution rainfall estimates from a polarimetric X-band rainfall radar installed in the city of Rotterdam.
ERIC Educational Resources Information Center
Moeletsi, M. E.; Mellaart, E. A. R.; Mpandeli, N. S.; Hamandawana, H.
2013-01-01
Purpose: New innovative ways of communicating agrometeorological information are needed to help farmers, especially subsistence/small-scale farmers, to cope with the high climate variability experienced in most parts of southern Africa. Design/methodology/approach: The article introduces an early warning system for farmers. It utilizes short…
NASA Astrophysics Data System (ADS)
Wei, C.; Cheng, K. S.
Using meteorological radar and satellite imagery had become an efficient tool for rainfall forecasting However few studies were aimed to predict quantitative rainfall in small watersheds for flood forecasting by using remote sensing data Due to the terrain shelter and ground clutter effect of Central Mountain Ridges the application of meteorological radar data was limited in mountainous areas of central Taiwan This study devises a new scheme to predict rainfall of a small upstream watershed by combing GOES-9 geostationary weather satellite imagery and ground rainfall records which can be applied for local quantitative rainfall forecasting during periods of typhoon and heavy rainfall Imagery of two typhoon events in 2004 and five correspondent ground raingauges records of Chitou Forest Recreational Area which is located in upstream region of Bei-Shi river were analyzed in this study The watershed accounts for 12 7 square kilometers and altitudes ranging from 1000 m to 1800 m Basin-wide Average Rainfall BAR in study area were estimated by block kriging Cloud Top Temperature CTT from satellite imagery and ground hourly rainfall records were medium correlated The regression coefficient ranges from 0 5 to 0 7 and the value decreases as the altitude of the gauge site increases The regression coefficient of CCT and next 2 to 6 hour accumulated BAR decrease as the time scale increases The rainfall forecasting for BAR were analyzed by Kalman Filtering Technique The correlation coefficient and average hourly deviates between estimated and observed value of BAR for
NASA Astrophysics Data System (ADS)
Peleg, Nadav; Blumensaat, Frank; Molnar, Peter; Fatichi, Simone; Burlando, Paolo
2016-04-01
Urban drainage response is highly dependent on the spatial and temporal structure of rainfall. Therefore, measuring and simulating rainfall at a high spatial and temporal resolution is a fundamental step to fully assess urban drainage system reliability and related uncertainties. This is even more relevant when considering extreme rainfall events. However, the current space-time rainfall models have limitations in capturing extreme rainfall intensity statistics for short durations. Here, we use the STREAP (Space-Time Realizations of Areal Precipitation) model, which is a novel stochastic rainfall generator for simulating high-resolution rainfall fields that preserve the spatio-temporal structure of rainfall and its statistical characteristics. The model enables a generation of rain fields at 102 m and minute scales in a fast and computer-efficient way matching the requirements for hydrological analysis of urban drainage systems. The STREAP model was applied successfully in the past to generate high-resolution extreme rainfall intensities over a small domain. A sub-catchment in the city of Luzern (Switzerland) was chosen as a case study to: (i) evaluate the ability of STREAP to disaggregate extreme rainfall intensities for urban drainage applications; (ii) assessing the role of stochastic climate variability of rainfall in flow response and (iii) evaluate the degree of non-linearity between extreme rainfall intensity and system response (i.e. flow) for a small urban catchment. The channel flow at the catchment outlet is simulated by means of a calibrated hydrodynamic sewer model.
Wang, Li-Pen; Ochoa-Rodríguez, Susana; Simões, Nuno Eduardo; Onof, Christian; Maksimović, Cedo
2013-01-01
The applicability of the operational radar and raingauge networks for urban hydrology is insufficient. Radar rainfall estimates provide a good description of the spatiotemporal variability of rainfall; however, their accuracy is in general insufficient. It is therefore necessary to adjust radar measurements using raingauge data, which provide accurate point rainfall information. Several gauge-based radar rainfall adjustment techniques have been developed and mainly applied at coarser spatial and temporal scales; however, their suitability for small-scale urban hydrology is seldom explored. In this paper a review of gauge-based adjustment techniques is first provided. After that, two techniques, respectively based upon the ideas of mean bias reduction and error variance minimisation, were selected and tested using as case study an urban catchment (∼8.65 km(2)) in North-East London. The radar rainfall estimates of four historical events (2010-2012) were adjusted using in situ raingauge estimates and the adjusted rainfall fields were applied to the hydraulic model of the study area. The results show that both techniques can effectively reduce mean bias; however, the technique based upon error variance minimisation can in general better reproduce the spatial and temporal variability of rainfall, which proved to have a significant impact on the subsequent hydraulic outputs. This suggests that error variance minimisation based methods may be more appropriate for urban-scale hydrological applications.
Variations in Global Precipitation: Climate-scale to Floods
NASA Technical Reports Server (NTRS)
Adler, Robert
2006-01-01
Variations in global precipitation from climate-scale to small scale are examined using satellite-based analyses of the Global Precipitation Climatology Project (GPCP) and information from the Tropical Rainfall Measuring Mission (TRMM). Global and large regional rainfall variations and possible long-term changes are examined using the 27- year (1979-2005) monthly dataset from the GPCP. In addition to global patterns associated with phenomena such as ENSO, the data set is explored for evidence of longterm change. Although the global change of precipitation in the data set is near zero, the data set does indicate a small upward trend in the Tropics (25S-25N), especially over ocean. Techniques are derived to isolate and eliminate variations due to ENS0 and major volcanic eruptions and the significance of the trend is examined. The status of TRMM estimates is examined in terms of evaluating and improving the long-term global data set. To look at rainfall variations on a much smaller scale TRMM data is used in combination with observations from other satellites to produce a 3-hr resolution, eight-year data set for examination of weather events and for practical applications such as detecting floods. Characteristics of the data set are presented and examples of recent flood events are examined.
NASA Astrophysics Data System (ADS)
Danáčová, Michaela; Valent, Peter; Výleta, Roman
2017-12-01
Nowadays, rainfall simulators are being used by many researchers in field or laboratory experiments. The main objective of most of these experiments is to better understand the underlying runoff generation processes, and to use the results in the process of calibration and validation of hydrological models. Many research groups have assembled their own rainfall simulators, which comply with their understanding of rainfall processes, and the requirements of their experiments. Most often, the existing rainfall simulators differ mainly in the size of the irrigated area, and the way they generate rain drops. They can be characterized by the accuracy, with which they produce a rainfall of a given intensity, the size of the irrigated area, and the rain drop generating mechanism. Rainfall simulation experiments can provide valuable information about the genesis of surface runoff, infiltration of water into soil and rainfall erodibility. Apart from the impact of physical properties of soil, its moisture and compaction on the generation of surface runoff and the amount of eroded particles, some studies also investigate the impact of vegetation cover of the whole area of interest. In this study, the rainfall simulator was used to simulate the impact of the slope gradient of the irrigated area on the amount of generated runoff and sediment yield. In order to eliminate the impact of external factors and to improve the reproducibility of the initial conditions, the experiments were conducted in laboratory conditions. The laboratory experiments were carried out using a commercial rainfall simulator, which was connected to an external peristaltic pump. The pump maintained a constant and adjustable inflow of water, which enabled to overcome the maximum volume of simulated precipitation of 2.3 l, given by the construction of the rainfall simulator, while maintaining constant characteristics of the simulated precipitation. In this study a 12-minute rainfall with a constant intensity of 5 mm/min was used to irrigate a corrupted soil sample. The experiment was undertaken for several different slopes, under the condition of no vegetation cover. The results of the rainfall simulation experiment complied with the expectations of a strong relationship between the slope gradient, and the amount of surface runoff generated. The experiments with higher slope gradients were characterised by larger volumes of surface runoff generated, and by shorter times after which it occurred. The experiments with rainfall simulators in both laboratory and field conditions play an important role in better understanding of runoff generation processes. The results of such small scale experiments could be used to estimate some of the parameters of complex hydrological models, which are used to model rainfall-runoff and erosion processes at catchment scale.
A Remote Sensing-Based Tool for Assessing Rainfall-Driven Hazards
Wright, Daniel B.; Mantilla, Ricardo; Peters-Lidard, Christa D.
2018-01-01
RainyDay is a Python-based platform that couples rainfall remote sensing data with Stochastic Storm Transposition (SST) for modeling rainfall-driven hazards such as floods and landslides. SST effectively lengthens the extreme rainfall record through temporal resampling and spatial transposition of observed storms from the surrounding region to create many extreme rainfall scenarios. Intensity-Duration-Frequency (IDF) curves are often used for hazard modeling but require long records to describe the distribution of rainfall depth and duration and do not provide information regarding rainfall space-time structure, limiting their usefulness to small scales. In contrast, RainyDay can be used for many hazard applications with 1-2 decades of data, and output rainfall scenarios incorporate detailed space-time structure from remote sensing. Thanks to global satellite coverage, RainyDay can be used in inaccessible areas and developing countries lacking ground measurements, though results are impacted by remote sensing errors. RainyDay can be useful for hazard modeling under nonstationary conditions. PMID:29657544
A Remote Sensing-Based Tool for Assessing Rainfall-Driven Hazards.
Wright, Daniel B; Mantilla, Ricardo; Peters-Lidard, Christa D
2017-04-01
RainyDay is a Python-based platform that couples rainfall remote sensing data with Stochastic Storm Transposition (SST) for modeling rainfall-driven hazards such as floods and landslides. SST effectively lengthens the extreme rainfall record through temporal resampling and spatial transposition of observed storms from the surrounding region to create many extreme rainfall scenarios. Intensity-Duration-Frequency (IDF) curves are often used for hazard modeling but require long records to describe the distribution of rainfall depth and duration and do not provide information regarding rainfall space-time structure, limiting their usefulness to small scales. In contrast, RainyDay can be used for many hazard applications with 1-2 decades of data, and output rainfall scenarios incorporate detailed space-time structure from remote sensing. Thanks to global satellite coverage, RainyDay can be used in inaccessible areas and developing countries lacking ground measurements, though results are impacted by remote sensing errors. RainyDay can be useful for hazard modeling under nonstationary conditions.
A Remote Sensing-Based Tool for Assessing Rainfall-Driven Hazards
NASA Technical Reports Server (NTRS)
Wright, Daniel B.; Mantilla, Ricardo; Peters-Lidard, Christa D.
2017-01-01
RainyDay is a Python-based platform that couples rainfall remote sensing data with Stochastic Storm Transposition (SST) for modeling rainfall-driven hazards such as floods and landslides. SST effectively lengthens the extreme rainfall record through temporal resampling and spatial transposition of observed storms from the surrounding region to create many extreme rainfall scenarios. Intensity-Duration-Frequency (IDF) curves are often used for hazard modeling but require long records to describe the distribution of rainfall depth and duration and do not provide information regarding rainfall space-time structure, limiting their usefulness to small scales. In contrast, Rainy Day can be used for many hazard applications with 1-2 decades of data, and output rainfall scenarios incorporate detailed space-time structure from remote sensing. Thanks to global satellite coverage, Rainy Day can be used in inaccessible areas and developing countries lacking ground measurements, though results are impacted by remote sensing errors. Rainy Day can be useful for hazard modeling under nonstationary conditions.
NASA Astrophysics Data System (ADS)
Veneziano, D.; Langousis, A.; Lepore, C.
2009-12-01
The annual maximum of the average rainfall intensity in a period of duration d, Iyear(d), is typically assumed to have generalized extreme value (GEV) distribution. The shape parameter k of that distribution is especially difficult to estimate from either at-site or regional data, making it important to constraint k using theoretical arguments. In the context of multifractal representations of rainfall, we observe that standard theoretical estimates of k from extreme value (EV) and extreme excess (EE) theories do not apply, while estimates from large deviation (LD) theory hold only for very small d. We then propose a new theoretical estimator based on fitting GEV models to the numerically calculated distribution of Iyear(d). A standard result from EV and EE theories is that k depends on the tail behavior of the average rainfall in d, I(d). This result holds if Iyear(d) is the maximum of a sufficiently large number n of variables, all distributed like I(d); therefore its applicability hinges on whether n = 1yr/d is large enough and the tail of I(d) is sufficiently well known. One typically assumes that at least for small d the former condition is met, but poor knowledge of the upper tail of I(d) remains an obstacle for all d. In fact, in the case of multifractal rainfall, also the first condition is not met because, irrespective of d, 1yr/d is too small (Veneziano et al., 2009, WRR, in press). Applying large deviation (LD) theory to this multifractal case, we find that, as d → 0, Iyear(d) approaches a GEV distribution whose shape parameter kLD depends on a region of the distribution of I(d) well below the upper tail, is always positive (in the EV2 range), is much larger than the value predicted by EV and EE theories, and can be readily found from the scaling properties of I(d). The scaling properties of rainfall can be inferred also from short records, but the limitation remains that the result holds under d → 0 not for finite d. Therefore, for different reasons, none of the above asymptotic theories applies to Iyear(d). In practice, one is interested in the distribution of Iyear(d) over a finite range of averaging durations d and return periods T. Using multifractal representations of rainfall, we have numerically calculated the distribution of Iyear(d) and found that, although not GEV, the distribution can be accurately approximated by a GEV model. The best-fitting parameter k depends on d, but is insensitive to the scaling properties of rainfall and the range of return periods T used for fitting. We have obtained a default expression for k(d) and compared it with estimates from historical rainfall records. The theoretical function tracks well the empirical dependence on d, although it generally overestimates the empirical k values, possibly due to deviations of rainfall from perfect scaling. This issue is under investigation.
Greenville, Aaron C; Wardle, Glenda M; Dickman, Chris R
2012-01-01
Extreme climatic events, such as flooding rains, extended decadal droughts and heat waves have been identified increasingly as important regulators of natural populations. Climate models predict that global warming will drive changes in rainfall and increase the frequency and severity of extreme events. Consequently, to anticipate how organisms will respond we need to document how changes in extremes of temperature and rainfall compare to trends in the mean values of these variables and over what spatial scales the patterns are consistent. Using the longest historical weather records available for central Australia – 100 years – and quantile regression methods, we investigate if extreme climate events have changed at similar rates to median events, if annual rainfall has increased in variability, and if the frequency of large rainfall events has increased over this period. Specifically, we compared local (individual weather stations) and regional (Simpson Desert) spatial scales, and quantified trends in median (50th quantile) and extreme weather values (5th, 10th, 90th, and 95th quantiles). We found that median and extreme annual minimum and maximum temperatures have increased at both spatial scales over the past century. Rainfall changes have been inconsistent across the Simpson Desert; individual weather stations showed increases in annual rainfall, increased frequency of large rainfall events or more prolonged droughts, depending on the location. In contrast to our prediction, we found no evidence that intra-annual rainfall had become more variable over time. Using long-term live-trapping records (22 years) of desert small mammals as a case study, we demonstrate that irruptive events are driven by extreme rainfalls (>95th quantile) and that increases in the magnitude and frequency of extreme rainfall events are likely to drive changes in the populations of these species through direct and indirect changes in predation pressure and wildfires. PMID:23170202
Impervious surface is known to negatively affect catchment hydrology through both its extent and spatial distribution. In this study, we empirically quantify via model simulations the impacts of different configurations of impervious surface on watershed response to rainfall. An ...
An experimental method to verify soil conservation by check dams on the Loess Plateau, China.
Xu, X Z; Zhang, H W; Wang, G Q; Chen, S C; Dang, W Q
2009-12-01
A successful experiment with a physical model requires necessary conditions of similarity. This study presents an experimental method with a semi-scale physical model. The model is used to monitor and verify soil conservation by check dams in a small watershed on the Loess Plateau of China. During experiments, the model-prototype ratio of geomorphic variables was kept constant under each rainfall event. Consequently, experimental data are available for verification of soil erosion processes in the field and for predicting soil loss in a model watershed with check dams. Thus, it can predict the amount of soil loss in a catchment. This study also mentions four criteria: similarities of watershed geometry, grain size and bare land, Froude number (Fr) for rainfall event, and soil erosion in downscaled models. The efficacy of the proposed method was confirmed using these criteria in two different downscaled model experiments. The B-Model, a large scale model, simulates watershed prototype. The two small scale models, D(a) and D(b), have different erosion rates, but are the same size. These two models simulate hydraulic processes in the B-Model. Experiment results show that while soil loss in the small scale models was converted by multiplying the soil loss scale number, it was very close to that of the B-Model. Obviously, with a semi-scale physical model, experiments are available to verify and predict soil loss in a small watershed area with check dam system on the Loess Plateau, China.
NASA Astrophysics Data System (ADS)
Caviedes-Voullième, Daniel; Domin, Andrea; Hinz, Christoph
2017-04-01
The quantitative description and prediction of hydrological response of hillslopes or hillslope-scale catchments to rainfall events is becoming evermore relevant. At the hillslope scale, the onset of runoff and the overall rainfall-runoff transformation are controlled by multiple interacting small-scale processes, that, when acting together produce a response described in terms of hydrological variables well-defined at the catchment and hillslope scales. We hypothesize that small scale features such microtopography of the land surface will will govern large scale signatures of temporal runoff evolution. This can be tested directly by numerical modelling of well-defined surface geometries and adequate process description. It requires a modelling approach consistent with fundamental fluid mechanics, well-designed numerical methods, and computational efficiency. In this work, an idealized rectangular domain representing a hillslope with an idealized 2D sinusoidal microtopography is studied by simulating surface water redistribution by means of a 2D diffusive-wave (zero-inertia) shallow water model. By studying more than 500 surfaces and performing extensive sensitivity analysis forced by a single rainfall pulse, the dependency of characteristic hydrological responses to microtopographical properties was assessed. Despite of the simplicity of periodic surface and the rain event, results indicate complex surface flow dynamics during the onset of runoff observed at the macro and micro scales. Macro scale regimes were defined in terms of characteristics hydrograph shapes and those were related to surface geometry. The reference regime was defined for smooth topography and consisted of a simple hydrograph with smoothly rising and falling limbs with an intermediate steady state. In constrast, rough surface geometry yields stepwise rising limbs and shorter steady states. Furthermore, the increase in total infiltration over the whole domain relative to the smooth reference case shows a strong non-linear dependency on slope and the ratio of the characteristic wavelength and amplitude of microtopography. The coupled analysis of spatial and hydrological results also suggests that the hydrological behaviour can be explained by the spatiotemporal variations triggered by surface connectivity. This study significantly extents previous work on 1D domains, as our results reveal complexities that require 2D representation of the runoff processes.
NASA Astrophysics Data System (ADS)
Riddle, E. E.; Hopson, T. M.; Gebremichael, M.; Boehnert, J.; Broman, D.; Sampson, K. M.; Rostkier-Edelstein, D.; Collins, D. C.; Harshadeep, N. R.; Burke, E.; Havens, K.
2017-12-01
While it is not yet certain how precipitation patterns will change over Africa in the future, it is clear that effectively managing the available water resources is going to be crucial in order to mitigate the effects of water shortages and floods that are likely to occur in a changing climate. One component of effective water management is the availability of state-of-the-art and easy to use rainfall forecasts across multiple spatial and temporal scales. We present a web-based system for displaying and disseminating ensemble forecast and observed precipitation data over central and eastern Africa. The system provides multi-model rainfall forecasts integrated to relevant hydrological catchments for timescales ranging from one day to three months. A zoom-in features is available to access high resolution forecasts for small-scale catchments. Time series plots and data downloads with forecasts, recent rainfall observations and climatological data are available by clicking on individual catchments. The forecasts are calibrated using a quantile regression technique and an optimal multi-model forecast is provided at each timescale. The forecast skill at the various spatial and temporal scales will discussed, as will current applications of this tool for managing water resources in Sudan and optimizing hydropower operations in Ethiopia and Tanzania.
NASA Astrophysics Data System (ADS)
Pande, Saket; Savenije, Hubert
2015-04-01
We present a framework to understand the socio-hydrological system dynamics of a small holder. Small holders are farmers who own less than 2 ha of farmland. It couples the dynamics of 6 main variables that are most relevant at the scale of a small holder: local storage (soil moisture and other water storage), capital, knowledge, livestock production, soil fertility and grass biomass production. The hydroclimatic variability is at sub-annual scale and influences the socio-hydrology at annual scale. The model incorporates rule-based adaptation mechanisms (for example: adjusting expenditures on food and fertilizers, selling livestocks etc.) of small holders when they face adverse socio-hydrological conditions, such as low annual rainfall, higher intra-annual variability in rainfall or variability in agricultural prices. We apply the framework to understand the socio-hydrology of a sugarcane small holder in Aurangabad, Maharashtra. This district has witnessed suicides of many sugarcane farmers who could not extricate themselves out of the debt trap. These farmers lack irrigation and are susceptible to fluctuating sugar prices and intra-annual hydro-climatic variability. We study the sensitivity of annual total capital averaged over 30 years, an indicator of small holder wellbeing, to initial capital that a small holder starts with and the prevalent wage rates. We find that a smallholder well being is low (below Rs 30000 per annum, a threshold above which a smallholder can afford a basic standard of living) and is rather insensitive to initial capital at low wage rates. Initial capital perhaps matters to small holder livelihoods at higher wage rates. Further, the small holder system appears to be resilient at around Rs 115/mandays in the sense that small perturbations in wage rates around this rate still sustains the smallholder above the basic standard of living. Our results thus indicate that government intervention to absolve the debt of farmers is not enough. It must invest in local storages that can buffer intra-annual variability in rainfall in tandem and good wages for alternative sources of income.
Assessment of Vulnerability to Extreme Flash Floods in Design Storms
Kim, Eung Seok; Choi, Hyun Il
2011-01-01
There has been an increase in the occurrence of sudden local flooding of great volume and short duration caused by heavy or excessive rainfall intensity over a small area, which presents the greatest potential danger threat to the natural environment, human life, public health and property, etc. Such flash floods have rapid runoff and debris flow that rises quickly with little or no advance warning to prevent flood damage. This study develops a flash flood index through the average of the same scale relative severity factors quantifying characteristics of hydrographs generated from a rainfall-runoff model for the long-term observed rainfall data in a small ungauged study basin, and presents regression equations between rainfall characteristics and the flash flood index. The aim of this study is to develop flash flood index-duration-frequency relation curves by combining the rainfall intensity-duration-frequency relation and the flash flood index from probability rainfall data in order to evaluate vulnerability to extreme flash floods in design storms. This study is an initial effort to quantify the flash flood severity of design storms for both existing and planned flood control facilities to cope with residual flood risks due to extreme flash floods that have ocurred frequently in recent years. PMID:21845165
Assessment of vulnerability to extreme flash floods in design storms.
Kim, Eung Seok; Choi, Hyun Il
2011-07-01
There has been an increase in the occurrence of sudden local flooding of great volume and short duration caused by heavy or excessive rainfall intensity over a small area, which presents the greatest potential danger threat to the natural environment, human life, public health and property, etc. Such flash floods have rapid runoff and debris flow that rises quickly with little or no advance warning to prevent flood damage. This study develops a flash flood index through the average of the same scale relative severity factors quantifying characteristics of hydrographs generated from a rainfall-runoff model for the long-term observed rainfall data in a small ungauged study basin, and presents regression equations between rainfall characteristics and the flash flood index. The aim of this study is to develop flash flood index-duration-frequency relation curves by combining the rainfall intensity-duration-frequency relation and the flash flood index from probability rainfall data in order to evaluate vulnerability to extreme flash floods in design storms. This study is an initial effort to quantify the flash flood severity of design storms for both existing and planned flood control facilities to cope with residual flood risks due to extreme flash floods that have ocurred frequently in recent years.
NASA Astrophysics Data System (ADS)
Yoon, S.; Lee, B.; Nakakita, E.; Lee, G.
2016-12-01
Recent climate changes and abnormal weather phenomena have resulted in increased occurrences of localized torrential rainfall. Urban areas in Korea have suffered from localized heavy rainfall, including the notable Seoul flood disaster in 2010 and 2011. The urban hydrological environment has changed in relation to precipitation, such as reduced concentration time, a decreased storage rate, and increased peak discharge. These changes have altered and accelerated the severity of damage to urban areas. In order to prevent such urban flash flood damages, we have to secure the lead time for evacuation through the improvement of radar-based quantitative precipitation forecasting (QPF). The purpose of this research is to improve the QPF products using spatial-scale decomposition method for considering the life time of storm and to assess the accuracy between traditional QPF method and proposed method in terms of urban flood management. The layout of this research is as below. First, this research applies the image filtering to separate the spatial-scale of rainfall field. Second, the separated small and large-scale rainfall fields are extrapolated by each different forecasting method. Third, forecasted rainfall fields are combined at each lead time. Finally, results of this method are evaluated and compared with the results of uniform advection model for urban flood modeling. It is expected that urban flood information using improved QPF will help to reduce casualties and property damage caused by urban flooding through this research.
NASA Astrophysics Data System (ADS)
Peng, Yu; Wang, Qinghui; Fan, Min
2017-11-01
When assessing re-vegetation project performance and optimizing land management, identification of the key ecological factors inducing vegetation degradation has crucial implications. Rainfall, temperature, elevation, slope, aspect, land use type, and human disturbance are ecological factors affecting the status of vegetation index. However, at different spatial scales, the key factors may vary. Using Helin County, Inner-Mongolia, China as the study site and combining remote sensing image interpretation, field surveying, and mathematical methods, this study assesses key ecological factors affecting vegetation degradation under different spatial scales in a semi-arid agro-pastoral ecotone. It indicates that the key factors are different at various spatial scales. Elevation, rainfall, and temperature are identified as crucial for all spatial extents. Elevation, rainfall and human disturbance are key factors for small-scale quadrats of 300 m × 300 m and 600 m × 600 m, temperature and land use type are key factors for a medium-scale quadrat of 1 km × 1 km, and rainfall, temperature, and land use are key factors for large-scale quadrats of 2 km × 2 km and 5 km × 5 km. For this region, human disturbance is not the key factor for vegetation degradation across spatial scales. It is necessary to consider spatial scale for the identification of key factors determining vegetation characteristics. The eco-restoration programs at various spatial scales should identify key influencing factors according their scales so as to take effective measurements. The new understanding obtained in this study may help to explore the forces which driving vegetation degradation in the degraded regions in the world.
NASA Astrophysics Data System (ADS)
Oh, Sungmin; Hohmann, Clara; Foelsche, Ulrich; Fuchsberger, Jürgen; Rieger, Wolfgang; Kirchengast, Gottfried
2017-04-01
WegenerNet Feldbach region (WEGN), a pioneering experiment for weather and climate observations, has recently completed its first 10-year precipitation measurement cycle. The WEGN has measured precipitation, temperature, humidity, and other parameters since the beginning of 2007, supporting local-level monitoring and modeling studies, over an area of about 20 km x 15 km centered near the City of Feldbach (46.93 ˚ N, 15.90 ˚ E) in the Alpine forelands of southeast Austria. All the 151 stations in the network are now equipped with high-quality Meteoservis sensors as of August 2016, following an equipment with Friedrichs sensors at most stations before, and continue to provide high-resolution (2 km2/5-min) gauge based precipitation measurements for interested users in hydro-meteorological communities. Here we will present overall characteristics of the WEGN, with a focus on sub-daily precipitation measurements, from the data processing (data quality control, gridded data products generation, etc.) to data applications (e.g., ground validation of satellite estimates). The latter includes our recent study on the propagation of uncertainty from rainfall to runoff. The study assesses responses of small-catchment runoff to spatial rainfall variability in the WEGN region over the Raab valley, using a physics-based distributed hydrological model; Water Flow and Balance Simulation Model (WaSiM), developed at ETH Zurich (Schulla, ETH Zurich, 1997). Given that uncertainty due to resolution of rainfall measurements is believed to be a significant source of error in hydrologic modeling especially for convective rainfall that dominates in the region during summer, the high-resolution of WEGN data furnishes a great opportunity to analyze effects of rainfall events on the runoff at different spatial resolutions. Furthermore, the assessment can be conducted not only for the lower Raab catchment (area of about 500 km2) but also for its sub-catchments (areas of about 30-70 km2). Beside the question how many stations are necessary for reliable hydrological modeling, different interpolation methods like Inverse Distance Interpolation, Elevation Dependent Regression, and combinations will be tested. This presentation will show the first results from a scale-depending analysis of spatial and temporal structures of heavy rainfall events and responses of simulated runoff at the event scale in the WEGN region.
Hazard assessment for small torrent catchments - lessons learned
NASA Astrophysics Data System (ADS)
Eisl, Julia; Huebl, Johannes
2013-04-01
The documentation of extreme events as a part of the integral risk management cycle is an important basis for the analysis and assessment of natural hazards. In July 2011 a flood event occurred in the Wölzer-valley in the province of Styria, Austria. For this event at the "Wölzerbach" a detailed event documentation was carried out, gathering data about rainfall, runoff and sediment transport as well as information on damaged objects, infrastructure or crops using various sources. The flood was triggered by heavy rainfalls in two tributaries of the Wölzer-river. Though a rain as well as a discharge gaging station exists for the Wölzer-river, the torrents affected by the high intensity rainfalls are ungaged. For these ungaged torrent catchments the common methods for hazard assessment were evaluated. The back-calculation of the rainfall event was done using a new approach for precipitation analysis. In torrent catchments especially small-scale and high-intensity rainfall events are mainly responsible for extreme events. Austria's weather surveillance radar is operated by the air traffic service "AustroControl". The usually available dataset is interpreted and shows divergences especially when it comes to high intensity rainfalls. For this study the raw data of the radar were requested and analysed. Further on the event was back-calculated with different rainfall-runoff models, hydraulic models and sediment transport models to obtain calibration parameters for future use in hazard assessment for this region. Since there are often problems with woody debris different scenarios were simulated. The calibrated and plausible results from the runoff models were used for the comparison with empirical approaches used in the practical sector. For the planning of mitigation measures of the Schöttl-torrent, which is one of the affected tributaries of the Wölzer-river, a physical scale model was used in addition to the insights of the event analysis to design a check dam for sediment retention. As far as the transport capacity of the lower reaches is limited a balance had to be found between protection on the one hand and sediment connectivity to the Wölzer-river on the other. The lessons learned kicked off discussions for future hazard assessment especially concerning the use of rainfall data and design precipitation values for small torrent catchments. Also the comparison with empirical values showed the need for differentiated concepts for hazard analysis. Therefor recommendations for the use of spatial rainfall reduction factors as well as the demarcation of hazard maps using different event scenarios are proposed.
Rainy Day: A Remote Sensing-Driven Extreme Rainfall Simulation Approach for Hazard Assessment
NASA Astrophysics Data System (ADS)
Wright, Daniel; Yatheendradas, Soni; Peters-Lidard, Christa; Kirschbaum, Dalia; Ayalew, Tibebu; Mantilla, Ricardo; Krajewski, Witold
2015-04-01
Progress on the assessment of rainfall-driven hazards such as floods and landslides has been hampered by the challenge of characterizing the frequency, intensity, and structure of extreme rainfall at the watershed or hillslope scale. Conventional approaches rely on simplifying assumptions and are strongly dependent on the location, the availability of long-term rain gage measurements, and the subjectivity of the analyst. Regional and global-scale rainfall remote sensing products provide an alternative, but are limited by relatively short (~15-year) observational records. To overcome this, we have coupled these remote sensing products with a space-time resampling framework known as stochastic storm transposition (SST). SST "lengthens" the rainfall record by resampling from a catalog of observed storms from a user-defined region, effectively recreating the regional extreme rainfall hydroclimate. This coupling has been codified in Rainy Day, a Python-based platform for quickly generating large numbers of probabilistic extreme rainfall "scenarios" at any point on the globe. Rainy Day is readily compatible with any gridded rainfall dataset. The user can optionally incorporate regional rain gage or weather radar measurements for bias correction using the Precipitation Uncertainties for Satellite Hydrology (PUSH) framework. Results from Rainy Day using the CMORPH satellite precipitation product are compared with local observations in two examples. The first example is peak discharge estimation in a medium-sized (~4000 square km) watershed in the central United States performed using CUENCAS, a parsimonious physically-based distributed hydrologic model. The second example is rainfall frequency analysis for Saint Lucia, a small volcanic island in the eastern Caribbean that is prone to landslides and flash floods. The distinct rainfall hydroclimates of the two example sites illustrate the flexibility of the approach and its usefulness for hazard analysis in data-poor regions.
Description and preliminary results of a 100 square meter rain gauge
NASA Astrophysics Data System (ADS)
Grimaldi, Salvatore; Petroselli, Andrea; Baldini, Luca; Gorgucci, Eugenio
2018-01-01
Rainfall is one of the most crucial processes in hydrology, and the direct and indirect rainfall measurement methods are constantly being updated and improved. The standard instrument used to measure rainfall rate and accumulation is the rain gauge, which provides direct observations. Though the small dimension of the orifice allows rain gauges to be installed anywhere, it also causes errors due to the splash and wind effects. To investigate the role of the orifice dimension, this study, for the first time, introduces and demonstrates an apparatus for observing rainfall called a giant-rain gauge that is characterised by a collecting surface of 100 m2. To discuss the new instrument and its technical details, a preliminary analysis of 26 rainfall events is provided. The results suggest that there are significant differences between the standard and proposed rain gauges. Specifically, major discrepancies are evident for low time aggregation scale (5, 10, and 15 min) and for high rainfall intensity values.
Using damage data to estimate the risk from summer convective precipitation extremes
NASA Astrophysics Data System (ADS)
Schroeer, Katharina; Tye, Mari
2017-04-01
This study explores the potential added value from including loss and damage data to understand the risks from high-intensity short-duration convective precipitation events. Projected increases in these events are expected even in regions that are likely to become more arid. Such high intensity precipitation events can trigger hazardous flash floods, debris flows, and landslides that put people and local assets at risk. However, the assessment of local scale precipitation extremes is hampered by its high spatial and temporal variability. In addition to this, not only are extreme events rare, but such small-scale events are likely to be underreported where they do not coincide with the observation network. Reports of private loss and damage on a local administrative unit scale (LAU 2 level) are used to explore the relationship between observed rainfall events and damages reportedly related to hydro-meteorological processes. With 480 Austrian municipalities located within our south-eastern Alpine study region, the damage data are available on a much smaller scale than the available rainfall data. Precipitation is recorded daily at 185 gauges and 52% of these stations additionally deliver sub-hourly rainfall information. To obtain physically plausible information, damage and rainfall data are grouped and analyzed on a catchment scale. The data indicate that rainfall intensities are higher on days that coincide with a damage claim than on days for which no damage was reported. However, approximately one third of the damages related to hydro-meteorological hazards were claimed on days for which no rainfall was recorded at any gauge in the respective catchment. Our goal is to assess whether these events indicate potential extreme events missing in the observations. Damage always is a consequence of an asset being exposed and susceptible to a hazardous process, and naturally, many factors influence whether an extreme rainfall event causes damage. We set up a statistical model to test whether the relationship between extreme rainfall events and damages is robust enough to estimate a potential underrepresentation of high intensity rainfall events in ungauged areas. Risk-relevant factors of socio-economic vulnerability, land cover, streamflow data, and weather type information are included to improve and sharpen the analysis. Within this study, we first aim to identify which rainfall events are most damaging and which factors affect the damages - seen as a proxy for the vulnerability - related to summer convective rainfall extremes in different catchment types. Secondly, we aim to detect potentially unreported damaging rainfall events and estimate the likelihood of such cases. We anticipate this damage perspective on summertime extreme convective precipitation to be beneficial for risk assessment, uncertainty management, and decision making with respect to weather and climate extremes on the regional-to-local level.
Impact of the rainfall pattern on synthetic pesticides and copper runoff from a vineyard catchment
NASA Astrophysics Data System (ADS)
Payraudeau, Sylvain; Meite, Fatima; Wiegert, Charline; Imfeld, Gwenaël
2017-04-01
Runoff is a major process of pesticide transport from agricultural land to downstream aquatic ecosystems. The impact of rainfall characteristics on the transport of runoff-related pesticide is rarely evaluated at the catchment scale. Here, we evaluate the influence of rainfall pattern on the mobilization of synthetic pesticides and copper fungicides in runoff from a small vineyard catchment, both at the plot and catchment scales. During two vineyard growing seasons in 2015 and 2016 (from March to October), we monitored rainfall, runoff, and concentrations of copper and 20 fungicides and herbicides applied by winegrowers at the Rouffach vineyard catchment (France, Alsace; 42.5 ha). Rainfall data were recorded within the catchment while runoff measurement and flow-proportional water sampling were carried out at the outlet of the plot (1486 m2; 87.5 × 17 m) and the catchment. In total, discharges of the 14 runoff events were continuously monitored between March and October 2015 using bubbler flow modules combined with Venturi channels. Detailed and distributed dataset on pesticide applications were extracted from survey (copper formulations and type of pesticides, amount and application dates). Pools of copper and synthetic pesticides were quantified weekly in the topsoil (0-3 cm) by systematic sampling across the catchment. The concentrations of copper (10 mg.kg-1 dried soil) and synthetic pesticides (close to the quantification limit, i.e. 0.05 µg.L-1) available in the top soil for off-site transport largely differed over time. Between March and October, an accumulation of copper of 10% was observed in the top-soil while pesticide concentration decreased below the quantification limits after a few days or weeks following application, depending of the compounds. The average runoff generated at the plot scale was very low (0.13% ± 0.30). The maximum runoff reached 1.37% during the storm of July 22, 2015. Synthetic pesticides exported by runoff was less than 1‰ of the applications. The copper mass exported represented about 1% (i.e. 2,085 g at the plot's scale) of the seasonal input, and mainly occurred during the major storm event. Copper were mainly exported in association with suspended particulate matter (SPM) (>80% of the total load). The partitioning between dissolved and SPM phases differs for the synthetic pesticides as expected by their properties. The rainfall pattern influences concentrations and loads of copper and the pesticides. Dissolved pesticide loads normalized by the pesticide mass in soil varied with larger rainfall intensities, runoff discharges and volumes. Contrasted relationships between rainfall characteristics (i.e. intensity, duration and total amount) and the load exported suggest that mechanisms of contaminant delivery from the vineyard soil differs among the pesticides and for copper. The results support the idea that, even in small catchment areas, the rainfall pattern (i.e. rainfall intensity and duration) partly controls the transport of pesticide and copper loads in runoff. Though other factors, such as the chemical characteristics and the amount and timing of applications, are important drivers for pesticide runoff, the rainfall patterns also determine the transport of pesticides from catchment to downstream aquatic ecosystems, and thus the ecotoxicological risk.
Distributional changes in rainfall and river flow in Sarawak, Malaysia
NASA Astrophysics Data System (ADS)
Sa'adi, Zulfaqar; Shahid, Shamsuddin; Ismail, Tarmizi; Chung, Eun-Sung; Wang, Xiao-Jun
2017-11-01
Climate change may not change the rainfall mean, but the variability and extremes. Therefore, it is required to explore the possible distributional changes of rainfall characteristics over time. The objective of present study is to assess the distributional changes in annual and northeast monsoon rainfall (November-January) and river flow in Sarawak where small changes in rainfall or river flow variability/distribution may have severe implications on ecology and agriculture. A quantile regression-based approach was used to assess the changes of scale and location of empirical probability density function over the period 1980-2014 at 31 observational stations. The results indicate that diverse variation patterns exist at all stations for annual rainfall but mainly increasing quantile trend at the lowers, and higher quantiles for the month of January and December. The significant increase in annual rainfall is found mostly in the north and central-coastal region and monsoon month rainfalls in the interior and north of Sarawak. Trends in river flow data show that changes in rainfall distribution have affected higher quantiles of river flow in monsoon months at some of the basins and therefore more flooding. The study reveals that quantile trend can provide more information of rainfall change which may be useful for climate change mitigation and adaptation planning.
NASA Astrophysics Data System (ADS)
Anomaa Senaviratne, G. M. M. M.; Udawatta, Ranjith P.; Anderson, Stephen H.; Baffaut, Claire; Thompson, Allen
2014-09-01
Fuzzy rainfall-runoff models are often used to forecast flood or water supply in large catchments and applications at small/field scale agricultural watersheds are limited. The study objectives were to develop, calibrate, and validate a fuzzy rainfall-runoff model using long-term data of three adjacent field scale row crop watersheds (1.65-4.44 ha) with intermittent discharge in the claypan soils of Northeast Missouri. The watersheds were monitored for a six-year calibration period starting 1991 (pre-buffer period). Thereafter, two of them were treated with upland contour grass and agroforestry (tree + grass) buffers (4.5 m wide, 36.5 m apart) to study water quality benefits. The fuzzy system was based on Mamdani method using MATLAB 7.10.0. The model predicted event-based runoff with model performance coefficients of r2 and Nash-Sutcliffe Coefficient (NSC) values greater than 0.65 for calibration and validation. The pre-buffer fuzzy system predicted event-based runoff for 30-50 times larger corn/soybean watersheds with r2 values of 0.82 and 0.68 and NSC values of 0.77 and 0.53, respectively. The runoff predicted by the fuzzy system closely agreed with values predicted by physically-based Agricultural Policy Environmental eXtender model (APEX) for the pre-buffer watersheds. The fuzzy rainfall-runoff model has the potential for runoff predictions at field-scale watersheds with minimum input. It also could up-scale the predictions for large-scale watersheds to evaluate the benefits of conservation practices.
Wu, Lei; Jiang, Jun; Li, Gou-Xia; Ma, Xiao-Yi
2018-02-27
The pulsed events of rainstorm erosion on the Loess Plateau are well-known, but little information is available concerning the characteristics of superficial soil erosion processes caused by heavy rainstorms at the watershed scale. This study statistically evaluated characteristics of pulsed runoff-erosion events based on 17 observed rainstorms from 1997-2010 in a small loess watershed on the Loess Plateau of China. Results show that: 1) Rainfall is the fundamental driving force of soil erosion on hillslopes, but the correlations of rainfall-runoff and rainfall-sediment in different rainstorms are often scattered due to infiltration-excess runoff and soil conservation measures. 2) Relationships between runoff and sediment for each rainstorm event can be regressed by linear, power, logarithmic and exponential functions. Cluster Analysis is helpful in classifying runoff-erosion events and formulating soil conservation strategies for rainstorm erosion. 3) Response characteristics of sediment yield are different in different levels of pulsed runoff-erosion events. Affected by rainfall intensity and duration, large changes may occur in the interactions between flow and sediment for different flood events. Results provide new insights into runoff-erosion processes and will assist soil conservation planning in the loess hilly region.
Robust increase in extreme summer rainfall intensity during the past four decades observed in China
NASA Astrophysics Data System (ADS)
Xiao, Chan; Wu, Peili; Zhang, Lixia; Song, Lianchun
2016-12-01
Global warming increases the moisture holding capacity of the atmosphere and consequently the potential risks of extreme rainfall. Here we show that maximum hourly summer rainfall intensity has increased by about 11.2% on average, using continuous hourly gauge records for 1971-2013 from 721 weather stations in China. The corresponding event accumulated precipitation has on average increased by more than 10% aided by a small positive trend in events duration. Linear regression of the 95th percentile daily precipitation intensity with daily mean surface air temperature shows a negative scaling of -9.6%/K, in contrast to a positive scaling of 10.6%/K for hourly data. This is made up of a positive scaling below the summer mean temperature and a negative scaling above. Using seasonal means instead of daily means, we find a consistent scaling rate for the region of 6.7-7%/K for both daily and hourly precipitation extremes, about 10% higher than the regional Clausius-Clapeyron scaling of 6.1%/K based on a mean temperature of 24.6 °C. With up to 18% further increase in extreme precipitation under continuing global warming towards the IPCC’s 1.5 °C target, risks of flash floods will exacerbate on top of the current incapability of urban drainage systems in a rapidly urbanizing China.
NASA Astrophysics Data System (ADS)
Sidle, R. C.
2013-12-01
Hydrologic, pedologic, and geomorphic processes are strongly interrelated and affected by scale. These interactions exert important controls on runoff generation, preferential flow, contaminant transport, surface erosion, and mass wasting. Measurement of hydraulic conductivity (K) and infiltration capacity at small scales generally underestimates these values for application at larger field, hillslope, or catchment scales. Both vertical and slope-parallel saturated flow and related contaminant transport are often influenced by interconnected networks of preferential flow paths, which are not captured in K measurements derived from soil cores. Using such K values in models may underestimate water and contaminant fluxes and runoff peaks. As shown in small-scale runoff plot studies, infiltration rates are typically lower than integrated infiltration across a hillslope or in headwater catchments. The resultant greater infiltration-excess overland flow in small plots compared to larger landscapes is attributed to the lack of preferential flow continuity; plot border effects; greater homogeneity of rainfall inputs, topography and soil physical properties; and magnified effects of hydrophobicity in small plots. At the hillslope scale, isolated areas with high infiltration capacity can greatly reduce surface runoff and surface erosion at the hillslope scale. These hydropedologic and hydrogeomorphic processes are also relevant to both occurrence and timing of landslides. The focus of many landslide studies has typically been either on small-scale vadose zone process and how these affect soil mechanical properties or on larger scale, more descriptive geomorphic studies. One of the issues in translating laboratory-based investigations on geotechnical behavior of soils to field scales where landslides occur is the characterization of large-scale hydrological processes and flow paths that occur in heterogeneous and anisotropic porous media. These processes are not only affected by the spatial distribution of soil physical properties and bioturbations, but also by geomorphic attributes. Interactions among preferential flow paths can induce rapid pore water pressure response within soil mantles and trigger landslides during storm peaks. Alternatively, in poorly developed and unstructured soils, infiltration occurs mainly through the soil matrix and a lag time exists between the rainfall peak and development of pore water pressures at depth. Deep, slow-moving mass failures are also strongly controlled by secondary porosity within the regolith with the timing of activation linked to recharge dynamics. As such, understanding both small and larger scale processes is needed to estimate geomorphic impacts, as well as streamflow generation and contaminant migration.
A space-time multifractal analysis on radar rainfall sequences from central Poland
NASA Astrophysics Data System (ADS)
Licznar, Paweł; Deidda, Roberto
2014-05-01
Rainfall downscaling belongs to most important tasks of modern hydrology. Especially from the perspective of urban hydrology there is real need for development of practical tools for possible rainfall scenarios generation. Rainfall scenarios of fine temporal scale reaching single minutes are indispensable as inputs for hydrological models. Assumption of probabilistic philosophy of drainage systems design and functioning leads to widespread application of hydrodynamic models in engineering practice. However models like these covering large areas could not be supplied with only uncorrelated point-rainfall time series. They should be rather supplied with space time rainfall scenarios displaying statistical properties of local natural rainfall fields. Implementation of a Space-Time Rainfall (STRAIN) model for hydrometeorological applications in Polish conditions, such as rainfall downscaling from the large scales of meteorological models to the scale of interest for rainfall-runoff processes is the long-distance aim of our research. As an introduction part of our study we verify the veracity of the following STRAIN model assumptions: rainfall fields are isotropic and statistically homogeneous in space; self-similarity holds (so that, after having rescaled the time by the advection velocity, rainfall is a fully homogeneous and isotropic process in the space-time domain); statistical properties of rainfall are characterized by an "a priori" known multifractal behavior. We conduct a space-time multifractal analysis on radar rainfall sequences selected from the Polish national radar system POLRAD. Radar rainfall sequences covering the area of 256 km x 256 km of original 2 km x 2 km spatial resolution and 15 minutes temporal resolution are used as study material. Attention is mainly focused on most severe summer convective rainfalls. It is shown that space-time rainfall can be considered with a good approximation to be a self-similar multifractal process. Multifractal analysis is carried out assuming Taylor's hypothesis to hold and the advection velocity needed to rescale the time dimension is assumed to be equal about 16 km/h. This assumption is verified by the analysis of autocorrelation functions along the x and y directions of "rainfall cubes" and along the time axis rescaled with assumed advection velocity. In general for analyzed rainfall sequences scaling is observed for spatial scales ranging from 4 to 256 km and for timescales from 15 min to 16 hours. However in most cases scaling break is identified for spatial scales between 4 and 8, corresponding to spatial dimensions of 16 km to 32 km. It is assumed that the scaling break occurrence at these particular scales in central Poland conditions could be at least partly explained by the rainfall mesoscale gap (on the edge of meso-gamma, storm-scale and meso-beta scale).
Design flood hydrograph estimation procedure for small and fully-ungauged basins
NASA Astrophysics Data System (ADS)
Grimaldi, S.; Petroselli, A.
2013-12-01
The Rational Formula is the most applied equation in practical hydrology due to its simplicity and the effective compromise between theory and data availability. Although the Rational Formula is affected by several drawbacks, it is reliable and surprisingly accurate considering the paucity of input information. However, after more than a century, the recent computational, theoretical, and large-scale monitoring progresses compel us to try to suggest a more advanced yet still empirical procedure for estimating peak discharge in small and ungauged basins. In this contribution an alternative empirical procedure (named EBA4SUB - Event Based Approach for Small and Ungauged Basins) based on the common modelling steps: design hyetograph, rainfall excess, and rainfall-runoff transformation, is described. The proposed approach, accurately adapted for the fully-ungauged basin condition, provides a potentially better estimation of the peak discharge, a design hydrograph shape, and, most importantly, reduces the subjectivity of the hydrologist in its application.
Critical scales to explain urban hydrological response: an application in Cranbrook, London
NASA Astrophysics Data System (ADS)
Cristiano, Elena; ten Veldhuis, Marie-Claire; Gaitan, Santiago; Ochoa Rodriguez, Susana; van de Giesen, Nick
2018-04-01
Rainfall variability in space and time, in relation to catchment characteristics and model complexity, plays an important role in explaining the sensitivity of hydrological response in urban areas. In this work we present a new approach to classify rainfall variability in space and time and we use this classification to investigate rainfall aggregation effects on urban hydrological response. Nine rainfall events, measured with a dual polarimetric X-Band radar instrument at the CAESAR site (Cabauw Experimental Site for Atmospheric Research, NL), were aggregated in time and space in order to obtain different resolution combinations. The aim of this work was to investigate the influence that rainfall and catchment scales have on hydrological response in urban areas. Three dimensionless scaling factors were introduced to investigate the interactions between rainfall and catchment scale and rainfall input resolution in relation to the performance of the model. Results showed that (1) rainfall classification based on cluster identification well represents the storm core, (2) aggregation effects are stronger for rainfall than flow, (3) model complexity does not have a strong influence compared to catchment and rainfall scales for this case study, and (4) scaling factors allow the adequate rainfall resolution to be selected to obtain a given level of accuracy in the calculation of hydrological response.
NASA Astrophysics Data System (ADS)
Van Haren, J. L. M.; Sanchez-Canete, E. P.; Juarez, S.; Howard, E. L.; Dontsova, K.; Le Galliard, J. F.; Barron-Gafford, G.; Volkmann, T.; Troch, P. A.
2017-12-01
Basalt is one of the most important rock types in controlling atmospheric carbon dioxide concentrations on a geologic scale. At the University of Arizona's Biosphere 2 facility, we have built the world's largest geological model system - the Landscape Evolution Observatory (LEO) - to determine the hydrological and biogeochemical changes before and after the addition of plants. LEO consists of three 30x11 m and 1-m deep hillslope landscapes of basaltic tephra ground to homogenous loamy sand inside an environmentally controlled facility. Each landscape contains a sensor network capable of capturing water, carbon, and energy cycling processes at 15-min resolution and sub-meter to whole-landscape scales. At LEO, we measured the soil carbon dynamics in bare soil, with only minimal biological activity, after multiple rainfall events. These measurements consistently showed that rainfall, soil moisture, and soil gas diffusion are strong drivers of carbon uptake in a porous basalt matrix. Our expectation is that the addition of plants will dramatically change the carbon dynamics following rainfall events and produce Birch-effect-like pulses of carbon dioxide following rainfall events. We tested this prediction in smaller-scale and shorter-term experiments done at the CEREEP-ECOTRON lab in Ile de France, France, where we experimented with three different plant species grown in the same LEO soil. Soil carbon responses were similar to the LEO slope irrespective of whether plants were grown in the soil: initial wetting leads to a strong drawdown of carbon dioxide in the soil. However, due to plant activity, the soil carbon dioxide concentration recovered faster in the basalt soil when plants were present. Only in small scale incubations with a mixture of LEO soil with an organic-rich (6.5% carbon) prairie soil did we see the expected pulse of carbon dioxide following the addition of water. The smaller-scale experiments suggest that the occurrence of carbon dioxide fluxes generated by rainfall events will not occur after the addition of plants, but will depend on the development of an organic horizon within the LEO soil.
Validation of new satellite rainfall products over the Upper Blue Nile Basin, Ethiopia
NASA Astrophysics Data System (ADS)
Tesfaye Ayehu, Getachew; Tadesse, Tsegaye; Gessesse, Berhan; Dinku, Tufa
2018-04-01
Accurate measurement of rainfall is vital to analyze the spatial and temporal patterns of precipitation at various scales. However, the conventional rain gauge observations in many parts of the world such as Ethiopia are sparse and unevenly distributed. An alternative to traditional rain gauge observations could be satellite-based rainfall estimates. Satellite rainfall estimates could be used as a sole product (e.g., in areas with no (or poor) ground observations) or through integrating with rain gauge measurements. In this study, the potential of a newly available Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) rainfall product has been evaluated in comparison to rain gauge data over the Upper Blue Nile basin in Ethiopia for the period of 2000 to 2015. In addition, the Tropical Applications of Meteorology using SATellite and ground-based observations (TAMSAT 3) and the African Rainfall Climatology (ARC 2) products have been used as a benchmark and compared with CHIRPS. From the overall analysis at dekadal (10 days) and monthly temporal scale, CHIRPS exhibited better performance in comparison to TAMSAT 3 and ARC 2 products. An evaluation based on categorical/volumetric and continuous statistics indicated that CHIRPS has the greatest skills in detecting rainfall events (POD = 0.99, 1.00) and measure of volumetric rainfall (VHI = 1.00, 1.00), the highest correlation coefficients (r = 0.81, 0.88), better bias values (0.96, 0.96), and the lowest RMSE (28.45 mm dekad-1, 59.03 mm month-1) than TAMSAT 3 and ARC 2 products at dekadal and monthly analysis, respectively. CHIRPS overestimates the frequency of rainfall occurrence (up to 31 % at dekadal scale), although the volume of rainfall recorded during those events was very small. Indeed, TAMSAT 3 has shown a comparable performance with that of the CHIRPS product, mainly with regard to bias. The ARC 2 product was found to have the weakest performance underestimating rain gauge observed rainfall by about 24 %. In addition, the skill of CHIRPS is less affected by variation in elevation in comparison to TAMSAT 3 and ARC 2 products. CHIRPS resulted in average biases of 1.11, 0.99, and 1.00 at lower (< 1000 m a.s.l.), medium (1000 to 2000 m a.s.l.), and higher elevation (> 2000 m a.s.l.), respectively. Overall, the finding of this validation study shows the potentials of the CHIRPS product to be used for various operational applications such as rainfall pattern and variability study in the Upper Blue Nile basin in Ethiopia.
Runoff simulation sensitivity to remotely sensed initial soil water content
NASA Astrophysics Data System (ADS)
Goodrich, D. C.; Schmugge, T. J.; Jackson, T. J.; Unkrich, C. L.; Keefer, T. O.; Parry, R.; Bach, L. B.; Amer, S. A.
1994-05-01
A variety of aircraft remotely sensed and conventional ground-based measurements of volumetric soil water content (SW) were made over two subwatersheds (4.4 and 631 ha) of the U.S. Department of Agriculture's Agricultural Research Service Walnut Gulch experimental watershed during the 1990 monsoon season. Spatially distributed soil water contents estimated remotely from the NASA push broom microwave radiometer (PBMR), an Institute of Radioengineering and Electronics (IRE) multifrequency radiometer, and three ground-based point methods were used to define prestorm initial SW for a distributed rainfall-runoff model (KINEROS; Woolhiser et al., 1990) at a small catchment scale (4.4 ha). At a medium catchment scale (631 ha or 6.31 km2) spatially distributed PBMR SW data were aggregated via stream order reduction. The impacts of the various spatial averages of SW on runoff simulations are discussed and are compared to runoff simulations using SW estimates derived from a simple daily water balance model. It was found that at the small catchment scale the SW data obtained from any of the measurement methods could be used to obtain reasonable runoff predictions. At the medium catchment scale, a basin-wide remotely sensed average of initial water content was sufficient for runoff simulations. This has important implications for the possible use of satellite-based microwave soil moisture data to define prestorm SW because the low spatial resolutions of such sensors may not seriously impact runoff simulations under the conditions examined. However, at both the small and medium basin scale, adequate resources must be devoted to proper definition of the input rainfall to achieve reasonable runoff simulations.
NASA Astrophysics Data System (ADS)
Roh, Joon-Woo; Jee, Joon-Bum; Lim, A.-Young; Choi, Young-Jean
2015-04-01
Korean warm-season rainfall, accounting for about three-fourths of the annual precipitation, is primarily caused by Changma front, which is a kind of the East Asian summer monsoon, and localized heavy rainfall with convective instability. Various physical mechanisms potentially exert influences on heavy precipitation over South Korea. Representatively, the middle latitude and subtropical weather fronts, associated with a quasi-stationary moisture convergence zone among varying air masses, make up one of the main rain-bearing synoptic scale systems. Localized heavy rainfall events in South Korea generally arise from mesoscale convective systems embedded in these synoptic scale disturbances along the Changma front or convective instabilities resulted from unstable air mass including the direct or indirect effect of typhoons. In recent years, torrential rainfalls, which are more than 30mm/hour of precipitation amount, in warm-season has increased threefold in Seoul, which is a metropolitan city in South Korea. In order to investigate multiple potential causes of warm-season localized heavy precipitation in South Korea, a localized heavy precipitation case took place on 20 June 2014 at Seoul. This case was mainly seen to be caused by short-wave trough, which is associated with baroclinic instability in the northwest of Korea, and a thermal low, which has high moist and warm air through analysis. This structure showed convective scale torrential rain was embedded in the dynamic and in the thermodynamic structures. In addition to, a sensitivity of rainfall amount and maximum rainfall location to the integration time-step sizes was investigated in the simulations of a localized heavy precipitation case using Weather Research and Forecasting model. The simulation of time-step sizes of 9-27s corresponding to a horizontal resolution of 4.5km and 1.5km varied slightly difference of the maximum rainfall amount. However, the sensitivity of spatial patterns and temporal variations in rainfall were relatively small for the time-step sizes. The effect of topography was also important in the localized heavy precipitation simulation.
NASA Astrophysics Data System (ADS)
Patin, J.; Ribolzi, O.; Mugler, C.; Valentin, C.; Mouche, E.
2010-12-01
After years of traditional slash and burn cultures, the Houay Pano catchment is now under high land pressures due to population resettling and environmental preservation policies. This evolution leads to rapid land-use changes in the uplands, such as fallow time reductions and growing of cash crops as teaks or banana. The catchment is located in the Luang Prabang province, in the north of Lao PDR and was selected in late 1998 as a benchmark site for the Managing Soil Erosion Consortium (MSEC). It is a small (60ha) agricultural catchment representative of the rural mountainous South East Asia : it exhibits steep cultivated slopes (from 2% to more than 110%) under a wet-dry monsoon climate. To understand the partition between runoff and infiltration, data from runoff on 20 plot experiments (1m2) under natural rainfall and with representative slopes and land uses is collected from 2003 to 2009. A simulated rainfall experiment was conducted in 2002 on bare soil plots (1m2) with different antecedent cultures. We investigate the role of crust, slope and land-use on runoff production at different scales. A model accounting for small scale variability is applied to compute the time and space variations of soil infiltrability at the plot scale (1m2) and sub-catchment scale (0.6ha). From the hypothesis of exponentially distributed infiltrabilities at the centimeter scale, we found that infiltration is log-normaly distributed over time for a given land use. The median infiltrability vary from 10mm/h under teak cultures to 150mm/h on plots with fallow. Variations along a year are tribute to many meteorological and human factors.
Sensitivity of peak flow to the change of rainfall temporal pattern due to warmer climate
NASA Astrophysics Data System (ADS)
Fadhel, Sherien; Rico-Ramirez, Miguel Angel; Han, Dawei
2018-05-01
The widely used design storms in urban drainage networks has different drawbacks. One of them is that the shape of the rainfall temporal pattern is fixed regardless of climate change. However, previous studies have shown that the temporal pattern may scale with temperature due to climate change, which consequently affects peak flow. Thus, in addition to the scaling of the rainfall volume, the scaling relationship for the rainfall temporal pattern with temperature needs to be investigated by deriving the scaling values for each fraction within storm events, which is lacking in many parts of the world including the UK. Therefore, this study analysed rainfall data from 28 gauges close to the study area with a 15-min resolution as well as the daily temperature data. It was found that, at warmer temperatures, the rainfall temporal pattern becomes less uniform, with more intensive peak rainfall during higher intensive times and weaker rainfall during less intensive times. This is the case for storms with and without seasonal separations. In addition, the scaling values for both the rainfall volume and the rainfall fractions (i.e. each segment of rainfall temporal pattern) for the summer season were found to be higher than the corresponding results for the winter season. Applying the derived scaling values for the temporal pattern of the summer season in a hydrodynamic sewer network model produced high percentage change of peak flow between the current and future climate. This study on the scaling of rainfall fractions is the first in the UK, and its findings are of importance to modellers and designers of sewer systems because it can provide more robust scenarios for flooding mitigation in urban areas.
NASA Astrophysics Data System (ADS)
Cao, Xi; Wu, Renguang
2018-04-01
Large intraseasonal rainfall variations are identified over the southern South China Sea (SSCS), tropical southeastern Indian Ocean (SEIO), and east coast of the Philippines (EPHI) in boreal winter. The present study contrasts origins and propagations and investigates interrelations of intraseasonal rainfall variations on the 10-20- and 30-60-day time scales in these regions. Different origins are identified for intraseasonal rainfall anomalies over the SSCS, SEIO, and EPHI on both time scales. On the 10-20-day time scale, strong northerly or northeasterly wind anomalies related to the East Asian winter monsoon (EAWM) play a major role in intraseasonal rainfall variations over the SSCS and EPHI. On the 30-60-day time scale, both the intraseasonal signal from the tropical Indian Ocean and the EAWM-related wind anomalies contribute to intraseasonal rainfall variations over the SSCS, whereas the EAWM-related wind anomalies have a major contribution to the intraseasonal rainfall variations over the EPHI. No relation is detected between the intraseasonal rainfall variations over the SEIO and the EAWM on both the 10-20-day and 30-60-day time scales. The anomalies associated with intraseasonal rainfall variations over the SSCS and EPHI propagate northwestward and northeastward, respectively, on the 10-20- and 30-60-day time scales. The intraseasonal rainfall anomalies display northwestward and northward propagation over the Bay of Bengal, respectively, on the 10-20- and 30-60-day time scales.
Spatial and temporal resolution effects on urban catchments with different imperviousness degrees
NASA Astrophysics Data System (ADS)
Cristiano, Elena; ten Veldhuis, Marie-Claire; van de Giesen, Nick C.
2015-04-01
One of the main problems in urban hydrological analysis is to measure the rainfall at urban scale with high resolution and use these measurements to model urban runoff processes to predict flows and reduce flood risk. With the aim of building a semi-distribute hydrological sewer model for an urban catchment, high resolution rainfall data are required as input. In this study, the sensitivity of hydrological response to high resolution precipitation data for hydrodynamic models at urban scale is evaluated with different combinations of spatial and temporal resolutions. The aim is to study sensitivity in relation to catchment characteristics, especially drainage area size, imperviousness degree and hydraulic properties such as special structures (weirs, pumping stations). Rainfall data of nine storms are considered with 4 different spatial resolutions (3000m, 1000m, 500m and 100m) combined with 4 different temporal resolutions (10min, 5min, 3min and 1min). The dual polarimetric X-band weather radar, located in the Cabauw Experimental Site for Atmospheric Research (CESAR) provided the high resolution rainfall data of these rainfall events, used to improve the sewer model. The effects of spatial-temporal rainfall input resolution on response is studied in three Districts of Rotterdam (NL): Kralingen, Spaanse Polder and Centrum district. These catchments have different average drainage area size (from 2km2 to 7km2), and different general characteristics. Centrum district and Kralingen are, indeed, more various and include residential and commercial areas, big green areas and a small industrial area, while Spaanse Polder is a industrial area, densely urbanized, and presents a high percentage of imperviousness.
NASA Astrophysics Data System (ADS)
Marra, Francesco; Morin, Efrat
2018-02-01
Small scale rainfall variability is a key factor driving runoff response in fast responding systems, such as mountainous, urban and arid catchments. In this paper, the spatial-temporal autocorrelation structure of convective rainfall is derived with extremely high resolutions (60 m, 1 min) using estimates from an X-Band weather radar recently installed in a semiarid-arid area. The 2-dimensional spatial autocorrelation of convective rainfall fields and the temporal autocorrelation of point-wise and distributed rainfall fields are examined. The autocorrelation structures are characterized by spatial anisotropy, correlation distances 1.5-2.8 km and rarely exceeding 5 km, and time-correlation distances 1.8-6.4 min and rarely exceeding 10 min. The observed spatial variability is expected to negatively affect estimates from rain gauges and microwave links rather than satellite and C-/S-Band radars; conversely, the temporal variability is expected to negatively affect remote sensing estimates rather than rain gauges. The presented results provide quantitative information for stochastic weather generators, cloud-resolving models, dryland hydrologic and agricultural models, and multi-sensor merging techniques.
NASA Astrophysics Data System (ADS)
Tsai, Kuang-Jung; Chiang, Jie-Lun; Lee, Ming-Hsi; Chen, Yie-Ruey
2017-04-01
Analysis on the Critical Rainfall Value For Predicting Large Scale Landslides Caused by Heavy Rainfall In Taiwan. Kuang-Jung Tsai 1, Jie-Lun Chiang 2,Ming-Hsi Lee 2, Yie-Ruey Chen 1, 1Department of Land Management and Development, Chang Jung Christian Universityt, Tainan, Taiwan. 2Department of Soil and Water Conservation, National Pingtung University of Science and Technology, Pingtung, Taiwan. ABSTRACT The accumulated rainfall amount was recorded more than 2,900mm that were brought by Morakot typhoon in August, 2009 within continuous 3 days. Very serious landslides, and sediment related disasters were induced by this heavy rainfall event. The satellite image analysis project conducted by Soil and Water Conservation Bureau after Morakot event indicated that more than 10,904 sites of landslide with total sliding area of 18,113ha were found by this project. At the same time, all severe sediment related disaster areas are also characterized based on their disaster type, scale, topography, major bedrock formations and geologic structures during the period of extremely heavy rainfall events occurred at the southern Taiwan. Characteristics and mechanism of large scale landslide are collected on the basis of the field investigation technology integrated with GPS/GIS/RS technique. In order to decrease the risk of large scale landslides on slope land, the strategy of slope land conservation, and critical rainfall database should be set up and executed as soon as possible. Meanwhile, study on the establishment of critical rainfall value used for predicting large scale landslides induced by heavy rainfall become an important issue which was seriously concerned by the government and all people live in Taiwan. The mechanism of large scale landslide, rainfall frequency analysis ,sediment budge estimation and river hydraulic analysis under the condition of extremely climate change during the past 10 years would be seriously concerned and recognized as a required issue by this research. Hopefully, all results developed from this research can be used as a warning system for Predicting Large Scale Landslides in the southern Taiwan. Keywords:Heavy Rainfall, Large Scale, landslides, Critical Rainfall Value
NASA Astrophysics Data System (ADS)
Ten Veldhuis, M. C.; Smith, J. A.; Zhou, Z.
2017-12-01
Impacts of rainfall variability on runoff response are highly scale-dependent. Sensitivity analyses based on hydrological model simulations have shown that impacts are likely to depend on combinations of storm type, basin versus storm scale, temporal versus spatial rainfall variability. So far, few of these conclusions have been confirmed on observational grounds, since high quality datasets of spatially variable rainfall and runoff over prolonged periods are rare. Here we investigate relationships between rainfall variability and runoff response based on 30 years of radar-rainfall datasets and flow measurements for 16 hydrological basins ranging from 7 to 111 km2. Basins vary not only in scale, but also in their degree of urbanisation. We investigated temporal and spatial variability characteristics of rainfall fields across a range of spatial and temporal scales to identify main drivers for variability in runoff response. We identified 3 ranges of basin size with different temporal versus spatial rainfall variability characteristics. Total rainfall volume proved to be the dominant agent determining runoff response at all basin scales, independent of their degree of urbanisation. Peak rainfall intensity and storm core volume are of secondary importance. This applies to all runoff parameters, including runoff volume, runoff peak, volume-to-peak and lag time. Position and movement of the storm with respect to the basin have a negligible influence on runoff response, with the exception of lag times in some of the larger basins. This highlights the importance of accuracy in rainfall estimation: getting the position right but the volume wrong will inevitably lead to large errors in runoff prediction. Our study helps to identify conditions where rainfall variability matters for correct estimation of the rainfall volume as well as the associated runoff response.
NASA Astrophysics Data System (ADS)
Koskelo, Antti I.; Fisher, Thomas R.; Utz, Ryan M.; Jordan, Thomas E.
2012-07-01
SummaryBaseflow separation methods are often impractical, require expensive materials and time-consuming methods, and/or are not designed for individual events in small watersheds. To provide a simple baseflow separation method for small watersheds, we describe a new precipitation-based technique known as the Sliding Average with Rain Record (SARR). The SARR uses rainfall data to justify each separation of the hydrograph. SARR has several advantages such as: it shows better consistency with the precipitation and discharge records, it is easier and more practical to implement, and it includes a method of event identification based on precipitation and quickflow response. SARR was derived from the United Kingdom Institute of Hydrology (UKIH) method with several key modifications to adapt it for small watersheds (<50 km2). We tested SARR on watersheds in the Choptank Basin on the Delmarva Peninsula (US Mid-Atlantic region) and compared the results with the UKIH method at the annual scale and the hydrochemical method at the individual event scale. Annually, SARR calculated a baseflow index that was ˜10% higher than the UKIH method due to the finer time step of SARR (1 d) compared to UKIH (5 d). At the watershed scale, hydric soils were an important driver of the annual baseflow index likely due to increased groundwater retention in hydric areas. At the event scale, SARR calculated less baseflow than the hydrochemical method, again because of the differences in time step (hourly for hydrochemical) and different definitions of baseflow. Both SARR and hydrochemical baseflow increased with event size, suggesting that baseflow contributions are more important during larger storms. To make SARR easy to implement, we have written a MatLab program to automate the calculations which requires only daily rainfall and daily flow data as inputs.
The role of storm scale, position and movement in controlling urban flood response
NASA Astrophysics Data System (ADS)
ten Veldhuis, Marie-claire; Zhou, Zhengzheng; Yang, Long; Liu, Shuguang; Smith, James
2018-01-01
The impact of spatial and temporal variability of rainfall on hydrological response remains poorly understood, in particular in urban catchments due to their strong variability in land use, a high degree of imperviousness and the presence of stormwater infrastructure. In this study, we analyze the effect of storm scale, position and movement in relation to basin scale and flow-path network structure on urban hydrological response. A catalog of 279 peak events was extracted from a high-quality observational dataset covering 15 years of flow observations and radar rainfall data for five (semi)urbanized basins ranging from 7.0 to 111.1 km2 in size. Results showed that the largest peak flows in the event catalog were associated with storm core scales exceeding basin scale, for all except the largest basin. Spatial scale of flood-producing storm events in the smaller basins fell into two groups: storms of large spatial scales exceeding basin size or small, concentrated events, with storm core much smaller than basin size. For the majority of events, spatial rainfall variability was strongly smoothed by the flow-path network, increasingly so for larger basin size. Correlation analysis showed that position of the storm in relation to the flow-path network was significantly correlated with peak flow in the smallest and in the two more urbanized basins. Analysis of storm movement relative to the flow-path network showed that direction of storm movement, upstream or downstream relative to the flow-path network, had little influence on hydrological response. Slow-moving storms tend to be associated with higher peak flows and longer lag times. Unexpectedly, position of the storm relative to impervious cover within the basins had little effect on flow peaks. These findings show the importance of observation-based analysis in validating and improving our understanding of interactions between the spatial distribution of rainfall and catchment variability.
Determining Scale-dependent Patterns in Spatial and Temporal Datasets
NASA Astrophysics Data System (ADS)
Roy, A.; Perfect, E.; Mukerji, T.; Sylvester, L.
2016-12-01
Spatial and temporal datasets of interest to Earth scientists often contain plots of one variable against another, e.g., rainfall magnitude vs. time or fracture aperture vs. spacing. Such data, comprised of distributions of events along a transect / timeline along with their magnitudes, can display persistent or antipersistent trends, as well as random behavior, that may contain signatures of underlying physical processes. Lacunarity is a technique that was originally developed for multiscale analysis of data. In a recent study we showed that lacunarity can be used for revealing changes in scale-dependent patterns in fracture spacing data. Here we present a further improvement in our technique, with lacunarity applied to various non-binary datasets comprised of event spacings and magnitudes. We test our technique on a set of four synthetic datasets, three of which are based on an autoregressive model and have magnitudes at every point along the "timeline" thus representing antipersistent, persistent, and random trends. The fourth dataset is made up of five clusters of events, each containing a set of random magnitudes. The concept of lacunarity ratio, LR, is introduced; this is the lacunarity of a given dataset normalized to the lacunarity of its random counterpart. It is demonstrated that LR can successfully delineate scale-dependent changes in terms of antipersistence and persistence in the synthetic datasets. This technique is then applied to three different types of data: a hundred-year rainfall record from Knoxville, TN, USA, a set of varved sediments from Marca Shale, and a set of fracture aperture and spacing data from NE Mexico. While the rainfall data and varved sediments both appear to be persistent at small scales, at larger scales they both become random. On the other hand, the fracture data shows antipersistence at small scale (within cluster) and random behavior at large scales. Such differences in behavior with respect to scale-dependent changes in antipersistence to random, persistence to random, or otherwise, maybe be related to differences in the physicochemical properties and processes contributing to multiscale datasets.
The influence of El Niño-Southern Oscillation on boreal winter rainfall over Peninsular Malaysia
NASA Astrophysics Data System (ADS)
Richard, Sandra; Walsh, Kevin J. E.
2017-09-01
Multi-scale interactions between El Niño-Southern Oscillation and the Boreal Winter Monsoon contribute to rainfall variations over Malaysia. Understanding the physical mechanisms that control these spatial variations in local rainfall is crucial for improving weather and climate prediction and related risk management. Analysis using station observations and European Centre for Medium-Range Weather Forecasts Interim Reanalysis (ERA-Interim) reanalysis reveals a significant decrease in rainfall during El Niño (EL) and corresponding increase during La Niña particularly north of 2°N over Peninsular Malaysia (PM). It is noted that the southern tip of PM shows a small increase in rainfall during El Niño although not significant. Analysis of the diurnal cycle of rainfall and winds indicates that there are no significant changes in morning and evening rainfall over PM that could explain the north-south disparity. Thus, we suggest that the key factor which might explain the north-south rainfall disparity is the moisture flux convergence (MFC). During the December to January (DJF) period of EL years, except for the southern tip of PM, significant negative MFC causes drying as well as suppression of uplift over most areas. In addition, lower specific humidity combined with moisture flux divergence results in less moisture over PM. Thus, over the areas north of 2°N, less rainfall (less heavy rain days) with smaller diurnal rainfall amplitude explains the negative rainfall anomaly observed during DJF of EL. The same MFC argument might explain the dipolar pattern over other areas such as Borneo if further analysis is performed.
NASA Astrophysics Data System (ADS)
Casas-Castillo, M. Carmen; Llabrés-Brustenga, Alba; Rius, Anna; Rodríguez-Solà, Raúl; Navarro, Xavier
2018-02-01
As well as in other natural processes, it has been frequently observed that the phenomenon arising from the rainfall generation process presents fractal self-similarity of statistical type, and thus, rainfall series generally show scaling properties. Based on this fact, there is a methodology, simple scaling, which is used quite broadly to find or reproduce the intensity-duration-frequency curves of a place. In the present work, the relationship of the simple scaling parameter with the characteristic rainfall pattern of the area of study has been investigated. The calculation of this scaling parameter has been performed from 147 daily rainfall selected series covering the temporal period between 1883 and 2016 over the Catalonian territory (Spain) and its nearby surroundings, and a discussion about the relationship between the scaling parameter spatial distribution and rainfall pattern, as well as about trends of this scaling parameter over the past decades possibly due to climate change, has been presented.
Characterizing multiscale variability of zero intermittency in spatial rainfall
NASA Technical Reports Server (NTRS)
Kumar, Praveen; Foufoula-Georgiou, Efi
1994-01-01
In this paper the authors study how zero intermittency in spatial rainfall, as described by the fraction of area covered by rainfall, changes with spatial scale of rainfall measurement or representation. A statistical measure of intermittency that describes the size distribution of 'voids' (nonrainy areas imbedded inside rainy areas) as a function of scale is also introduced. Morphological algorithms are proposed for reconstructing rainfall intermittency at fine scales given the intermittency at coarser scales. These algorithms are envisioned to be useful in hydroclimatological studies where the rainfall spatial variability at the subgrid scale needs to be reconstructed from the results of synoptic- or mesoscale meteorological numerical models. The developed methodologies are demsonstrated and tested using data from a severe springtime midlatitude squall line and a mild midlatitude winter storm monitored by a meteorological radar in Norman, Oklahoma.
Effect of rainfall simulator and plot scale on overland flow and phosphorus transport.
Sharpley, Andrew; Kleinman, Peter
2003-01-01
Rainfall simulation experiments are widely used to study erosion and contaminant transport in overland flow. We investigated the use of two rainfall simulators designed to rain on 2-m-long (2-m2) and 10.7-m-long (32.6-m2) plots to estimate overland flow and phosphorus (P) transport in comparison with watershed-scale data. Simulated rainfall (75 mm h(-1)) generated more overland flow from 2-m-long (20 L m2) than from 10.7-m-long (10 L m2) plots established in grass, no-till corn (Zea mays L.), and recently tilled fields, because a relatively greater area of the smaller plots became saturated (>75% of area) during rainfall compared with large plots (<75% area). Although average concentrations of dissolved reactive phosphorus (DRP) in overland flow were greater from 2-m-long (0.50 mg L(-1)) than 10.7-m-long (0.35 mg L(-1)) plots, the relationship between DRP and Mehlich-3 soil P (as defined by regression slope) was similar for both plots and for published watershed data (0.0022 for grassed, 0.0036 for no-till, and 0.0112 for tilled sites). Conversely, sediment, particulate phosphorus (PP), and total phosphorus (TP) concentrations and selective transport of soil fines (<2 microm) were significantly lower from 2- than 10.7-m-long plots. However, slopes of the logarithmic regression between P enrichment ratio and sediment discharge were similar (0.281-0.301) for 2- and 10.7-m-long plots, and published watershed data. While concentrations and loads of P change with plot scales, processes governing DRP and PP transport in overland flow are consistent, supporting the limited use of small plots and rainfall simulators to assess the relationship between soil P and overland flow P as a function of soil type and management.
Realism of Indian Summer Monsoon Simulation in a Quarter Degree Global Climate Model
NASA Astrophysics Data System (ADS)
Salunke, P.; Mishra, S. K.; Sahany, S.; Gupta, K.
2017-12-01
This study assesses the fidelity of Indian Summer Monsoon (ISM) simulations using a global model at an ultra-high horizontal resolution (UHR) of 0.25°. The model used was the atmospheric component of the Community Earth System Model version 1.2.0 (CESM 1.2.0) developed at the National Center for Atmospheric Research (NCAR). Precipitation and temperature over the Indian region were analyzed for a wide range of space and time scales to evaluate the fidelity of the model under UHR, with special emphasis on the ISM simulations during the period of June-through-September (JJAS). Comparing the UHR simulations with observed data from the India Meteorological Department (IMD) over the Indian land, it was found that 0.25° resolution significantly improved spatial rainfall patterns over many regions, including the Western Ghats and the South-Eastern peninsula as compared to the standard model resolution. Convective and large-scale rainfall components were analyzed using the European Centre for Medium Range Weather Forecast (ECMWF) Re-Analysis (ERA)-Interim (ERA-I) data and it was found that at 0.25° resolution, there was an overall increase in the large-scale component and an associated decrease in the convective component of rainfall as compared to the standard model resolution. Analysis of the diurnal cycle of rainfall suggests a significant improvement in the phase characteristics simulated by the UHR model as compared to the standard model resolution. Analysis of the annual cycle of rainfall, however, failed to show any significant improvement in the UHR model as compared to the standard version. Surface temperature analysis showed small improvements in the UHR model simulations as compared to the standard version. Thus, one may conclude that there are some significant improvements in the ISM simulations using a 0.25° global model, although there is still plenty of scope for further improvement in certain aspects of the annual cycle of rainfall.
Centrifuge Modeling of Rainfall Induced Slope Failure
NASA Astrophysics Data System (ADS)
Ling, H.; Wu, M.
2006-12-01
Rainfall induces slope failure and debris flow which are considered as one of the major natural disasters. The scope of such failure is very large and it cannot be studied easily in the laboratory. Traditionally, small scale model tests are used to study such problem. Knowing that the behavior of soil is affected by the stress level, centrifuge modeling technique has been used to simulate more realistically full scale earth structures. In this study, two series of tests were conducted on slopes under the centrifugal field with and without the presence of rainfall. The soil used was a mixture of sand and 15 percent fines. The slopes of angle 60 degrees were prepared at optimum water content in order to achieve the maximum density. In the first series of tests, three different slope heights of 10 cm, 15 cm and 20 cm were used. The gravity was increased gradually until slope failure in order to obtain the prototype failure height. The slope model was cut after the test in order to obtain the configuration of failure surface. It was found that the slope geometry normalized by the height at failure provided unique results. Knowing the slope height or gravity at failure, the second series of tests with rainfall were conducted slightly below the critical height. That is, after attaining the desired gravity, the rainfall was induced in the centrifuge. Special nozzles were used and calibrated against different levels of gravity in order to obtain desired rainfall intensity. Five different rainfall intensities were used on the 15-cm slopes at 80g and 60g, which corresponded to 12 m and 9 m slope height, respectively. The duration until failure for different rainfall intensities was obtained. Similar to the first series of tests, the slope model was cut and investigated after the test. The results showed that the failure surface was not significantly affected by the rainfall. That is, the excess pore pressure induced by rainfall generated slope failure. The prediction curves of rainfall intensity versus duration were obtained from the test results. Such curves are extremely useful for disaster management. This study indicated feasibilities of using centrifuge modeling technique in simulating rainfall induced slope failure. The results obtained may also be used for validating numerical tools.
NASA Astrophysics Data System (ADS)
Kossieris, Panagiotis; Makropoulos, Christos; Onof, Christian; Koutsoyiannis, Demetris
2018-01-01
Many hydrological applications, such as flood studies, require the use of long rainfall data at fine time scales varying from daily down to 1 min time step. However, in the real world there is limited availability of data at sub-hourly scales. To cope with this issue, stochastic disaggregation techniques are typically employed to produce possible, statistically consistent, rainfall events that aggregate up to the field data collected at coarser scales. A methodology for the stochastic disaggregation of rainfall at fine time scales was recently introduced, combining the Bartlett-Lewis process to generate rainfall events along with adjusting procedures to modify the lower-level variables (i.e., hourly) so as to be consistent with the higher-level one (i.e., daily). In the present paper, we extend the aforementioned scheme, initially designed and tested for the disaggregation of daily rainfall into hourly depths, for any sub-hourly time scale. In addition, we take advantage of the recent developments in Poisson-cluster processes incorporating in the methodology a Bartlett-Lewis model variant that introduces dependence between cell intensity and duration in order to capture the variability of rainfall at sub-hourly time scales. The disaggregation scheme is implemented in an R package, named HyetosMinute, to support disaggregation from daily down to 1-min time scale. The applicability of the methodology was assessed on a 5-min rainfall records collected in Bochum, Germany, comparing the performance of the above mentioned model variant against the original Bartlett-Lewis process (non-random with 5 parameters). The analysis shows that the disaggregation process reproduces adequately the most important statistical characteristics of rainfall at wide range of time scales, while the introduction of the model with dependent intensity-duration results in a better performance in terms of skewness, rainfall extremes and dry proportions.
NASA Astrophysics Data System (ADS)
López-Vicente, Manuel, , Dr.; Palazón, M. Sc. Leticia; Quijano, M. Sc. Laura; Gaspar, Leticia, , Dr.; Navas, Ana, , Dr.
2015-04-01
Hydrological and soil erosion models allow mapping and quantifying spatially distributed rates of runoff depth and soil redistribution for different land uses, management and tillage practices and climatic scenarios. The different temporal and spatial [very small (< 1 km2), small (1-5 km2), medium (5-50 km2) and large catchments (50-1000 km2) or river basins (>1000 km2)] scales of numerical simulations make model selection specific to each range of scales. Additionally, the spatial resolution of the inputs is in agreement with the size of the study area. In this study, we run the GIS-based water balance DR2-2013© SAGA v1.1 model (freely downloaded as executable file at http://digital.csic.es/handle/10261/93543), in the Vandunchil stream catchment (23 km2; Ebro river basin, NE Spain). All input maps are generated at 5 x 5 m of cell size (924,573 pixels per map) allowing sound parameterization. Simulation is run at monthly scale with average climatic values. This catchment is an open hydrological system and it has a long history of human occupation, agricultural practices and water management. Numerous manmade infrastructures or landscape linear elements (LLEs: paved and unpaved trails, rock mounds in non-cultivated areas, disperse and small settlements, shallow and long drainage ditches, stone walls, small rock dams, fences and vegetation strips) appear throughout the hillslopes and streams and modify the natural runoff pathways and thus the hydrological and sediment connectivity. Rain-fed cereal fields occupy one third of the catchment area, 1% corresponds to sealed soils, and the remaining area is covered with Mediterranean forest, scrubland, pine afforestation and meadow. The parent material corresponds to Miocene sandstones and lutites and Holocene colluvial and alluvial deposits. The climate is continental Mediterranean with two humid periods, one in spring and a second in autumn that summarizes 63% of the total annual precipitation. We created a synthetic weather station (WS) from the Caseda and Uncastillo WS. The effective rainfall that reaches the soils (after canopy interception and slope correction) was 85% on average from the total rainfall depth (556 mm yr-1) and the average initial runoff, before overland flow processes, was 320 mm yr-1. The simulated effective runoff (CQeff) ranged from 0 until 29,960 mm yr-1 and the corresponding map showed the typical spatial pattern of overland flow pathways though numerous disruptions appeared along the hillslopes and the main streams due to the presence of LLEs. The total depth of annual runoff corresponds to 37.8% of the total effective rainfall (TER) and 32.0% of the total rainfall depth (TR). The remaining volume of water, the soil water content (Waa) associated with the runoff and rainfall events, meant 62.2% and 52.7% of the TER and TR, respectively. The map of the Waa presented a different spatial pattern where the land uses play a more important role than the processes of cumulative overland flow. Significant variations in the monthly values of CQeff and Waa were described. This study proves the ability of the DR2-2013© SAGA v1.1 model to simulate the hydrological response of the soils at catchment scale.
A Smallholder Socio-hydrological Modelling Framework
NASA Astrophysics Data System (ADS)
Pande, S.; Savenije, H.; Rathore, P.
2014-12-01
Small holders are farmers who own less than 2 ha of farmland. They often have low productivity and thus remain at subsistence level. A fact that nearly 80% of Indian farmers are smallholders, who merely own a third of total farmlands and belong to the poorest quartile, but produce nearly 40% of countries foodgrains underlines the importance of understanding the socio-hydrology of a small holder. We present a framework to understand the socio-hydrological system dynamics of a small holder. It couples the dynamics of 6 main variables that are most relevant at the scale of a small holder: local storage (soil moisture and other water storage), capital, knowledge, livestock production, soil fertility and grass biomass production. The model incorporates rule-based adaptation mechanisms (for example: adjusting expenditures on food and fertilizers, selling livestocks etc.) of small holders when they face adverse socio-hydrological conditions, such as low annual rainfall, higher intra-annual variability in rainfall or variability in agricultural prices. It allows us to study sustainability of small holder farming systems under various settings. We apply the framework to understand the socio-hydrology of small holders in Aurangabad, Maharashtra, India. This district has witnessed suicides of many sugarcane farmers who could not extricate themselves out of the debt trap. These farmers lack irrigation and are susceptible to fluctuating sugar prices and intra-annual hydroclimatic variability. This presentation discusses two aspects in particular: whether government interventions to absolve the debt of farmers is enough and what is the value of investing in local storages that can buffer intra-annual variability in rainfall and strengthening the safety-nets either by creating opportunities for alternative sources of income or by crop diversification.
Relating rainfall characteristics to cloud top temperatures at different scales
NASA Astrophysics Data System (ADS)
Klein, Cornelia; Belušić, Danijel; Taylor, Christopher
2017-04-01
Extreme rainfall from mesoscale convective systems (MCS) poses a threat to lives and livelihoods of the West African population through increasingly frequent devastating flooding and loss of crops. However, despite the significant impact of such extreme events, the dominant processes favouring their occurrence are still under debate. In the data-sparse West African region, rainfall radar data from the Tropical Rainfall Measuring Mission (TRMM) gives invaluable information on the distribution and frequency of extreme rainfall. The TRMM 2A25 product provides a 15-year dataset of snapshots of surface rainfall from 2-4 overpasses per day. Whilst this sampling captures the overall rainfall characteristics, it is neither long nor frequent enough to diagnose changes in MCS properties, which may be linked to the trend towards rainfall intensification in the region. On the other hand, Meteosat geostationary satellites provide long-term sub-hourly records of cloud top temperatures, raising the possibility of combining these with the high-quality rainfall data from TRMM. In this study, we relate TRMM 2A25 rainfall to Meteosat Second Generation (MSG) cloud top temperatures, which are available from 2004 at 15 minutes intervals, to get a more detailed picture of the structure of intense rainfall within the life cycle of MCS. We find TRMM rainfall intensities within an MCS to be strongly coupled with MSG cloud top temperatures: the probability for extreme rainfall increases from <10% for minimum temperatures warmer than -40°C to over 70% when temperatures drop below -70°C, confirming the potential in analysing cloud-top temperatures as a proxy for extreme rain. The sheer size of MCS raises the question which scales of sub-cloud structures are more likely to be associated with extreme rain than others. In the end, this information could help to associate scale changes in cloud top temperatures with processes that affect the probability of extreme rain. We use 2D continuous wavelets to decompose cloud top temperatures into power spectra at scales between 15 and 200km. From these, cloud sub-structures are identified as circular areas of respective scale with local power maxima in their centre. These areas are then mapped onto coinciding TRMM rainfall, allowing us to assign rainfall fields to sub-cloud features of different scales. We find a higher probability for extreme rainfall for cloud features above a scale of 30km, with features 100km contributing most to the number of extreme rainfall pixels. Over the average diurnal cycle, the number of smaller cloud features between 15-60km shows an increase between 15 - 1700UTC, gradually developing into larger ones. The maximum of extreme rainfall pixels around 1900UTC coincides with a peak for scales 100km, suggesting a dominant role of these scales for intense rain for the analysed cloud type. Our results demonstrate the suitability of 2D wavelet decomposition for the analysis of sub-cloud structures and their relation to rainfall characteristics, and help us to understand long-term changes in the properties of MCS.
NASA Astrophysics Data System (ADS)
Patin, J.; Ribolzi, O.; Mugler, C.; Valentin, C.; Mouche, E.
2009-04-01
We study the surface and sub-surface hydrology of a small agricultural catchment (60ha) located in the Luang Prabang province of Lao PDR. This catchment is representative of the rural mountainous south east Asia. It exhibits steep slopes (up to 100% and more) under a monsoon climate. After years of traditional slash and burn cultures, it is now under high land pressures due to population resettling and environment preservation policies. This evolution leads to rapid land-use changes such as shifting cultivation reduction or growing of teak forest instead of classical crops. This catchment is a benchmark site of the Managing Soil Erosion Consortium since 1998. The international consortium aims to understand the effects of agricultural changes on the catchment hydrology and soil erosion in south east Asia. The Huay Pano catchment is subdivided into small sub-catchments that are gauged and monitored. Differ- ent agricultural practices where tested along the years. At a smaller scale, plot of 1m2 are instrumented to follow runoff and detachment of soil under natural rainfall along the monsoon season. Our modeling work aims to develop a distributed hydrological model integrating experimental data at the different scales. One of the objective is to understand the impact of land-use, soil properties (slope, crust, etc) and rainfall (dry and wet seasons) on surface and subsurface flows. We present here modeling results of the runoff plot experiments (1m2 scale) performed from 2002 to 2007. The plots distribution among the catchment and over the years gives a good representativity of the different runoff responses. The role of crust, slope and land-use on runoff is examined. Finally we discuss how this plot scale will be integrated in a sub-catchment model, with a particular attention on the observed paradox: how to explain that runoff coefficients at the catchment scale are much slower than at the plot scale ?
NASA Astrophysics Data System (ADS)
Herath, Sujeewa Malwila; Sarukkalige, Ranjan; Nguyen, Van Thanh Van
2018-01-01
Understanding the relationships between extreme daily and sub-daily rainfall events and their governing factors is important in order to analyse the properties of extreme rainfall events in a changing climate. Atmospheric temperature is one of the dominant climate variables which has a strong relationship with extreme rainfall events. In this study, a temperature-rainfall binning technique is used to evaluate the dependency of extreme rainfall on daily maximum temperature. The Clausius-Clapeyron (C-C) relation was found to describe the relationship between daily maximum temperature and a range of rainfall durations from 6 min up to 24 h for seven Australian weather stations, the stations being located in Adelaide, Brisbane, Canberra, Darwin, Melbourne, Perth and Sydney. The analysis shows that the rainfall - temperature scaling varies with location, temperature and rainfall duration. The Darwin Airport station shows a negative scaling relationship, while the other six stations show a positive relationship. To identify the trend in scaling relationship over time the same analysis is conducted using data covering 10 year periods. Results indicate that the dependency of extreme rainfall on temperature also varies with the analysis period. Further, this dependency shows an increasing trend for more extreme short duration rainfall and a decreasing trend for average long duration rainfall events at most stations. Seasonal variations of the scale changing trends were analysed by categorizing the summer and autumn seasons in one group and the winter and spring seasons in another group. Most of 99th percentile of 6 min, 1 h and 24 h rain durations at Perth, Melbourne and Sydney stations show increasing trend for both groups while Adelaide and Darwin show decreasing trend. Furthermore, majority of scaling trend of 50th percentile are decreasing for both groups.
NASA Technical Reports Server (NTRS)
Zhou, Yaping; Lau, William K M.; Liu, Chuntao
2013-01-01
This study adopts a "precipitation object" approach by using 14 years of Tropical Rainfall Measuring Mission (TRMM) Precipitation Feature (PF) and National Centers for Environmental Prediction (NCEP) reanalysis data to study rainfall structure and environmental factors associated with extreme heavy rain events. Characteristics of instantaneous extreme volumetric PFs are examined and compared to those of intermediate and small systems. It is found that instantaneous PFs exhibit a much wider scale range compared to the daily gridded precipitation accumulation range. The top 1% of the rainiest PFs contribute over 55% of total rainfall and have 2 orders of rain volume magnitude greater than those of the median PFs. We find a threshold near the top 10% beyond which the PFs grow exponentially into larger, deeper, and colder rain systems. NCEP reanalyses show that midlevel relative humidity and total precipitable water increase steadily with increasingly larger PFs, along with a rapid increase of 500 hPa upward vertical velocity beyond the top 10%. This provides the necessary moisture convergence to amplify and sustain the extreme events. The rapid increase in vertical motion is associated with the release of convective available potential energy (CAPE) in mature systems, as is evident in the increase in CAPE of PFs up to 10% and the subsequent dropoff. The study illustrates distinct stages in the development of an extreme rainfall event including: (1) a systematic buildup in large-scale temperature and moisture, (2) a rapid change in rain structure, (3) explosive growth of the PF size, and (4) a release of CAPE before the demise of the event.
Modeling the roles of damage accumulation and mechanical healing on rainfall-induced landslides
NASA Astrophysics Data System (ADS)
Fan, Linfeng; Lehmann, Peter; Or, Dani
2014-05-01
The abrupt release of rainfall-induced shallow landslides is preceded by local failures that may abruptly coalesce and form a continuous failure plane within a hillslope. The mechanical status of hillslopes reflects a competition between the extent of severity of accumulated local damage during prior rainfall events and the rates of mechanically healing (i.e. regaining of strength) by closure of micro-cracks, regrowth of roots, etc. The interplay of these processes affects the initial conditions for landslide modeling and shapes potential failure patterns during future rainfall events. We incorporated these competing mechanical processes in a hydro-mechanical landslide triggering model subjected to a sequence of rainfall scenarios. The model employs the Fiber Bundle Model (FBM) with bonds (fiber bundle) with prescribed threshold linking adjacent soil columns and soil to bedrock. Prior damage was represented by a fraction of broken fibers during previous rainfall events, and the healing of broken fibers was described by strength regaining models for soil and roots at different characteristic time scales. Results show that prior damage and healing introduce highly nonlinear response to landslide triggering. For small prior damage, mechanical bonds at soil-bedrock interface may fail early in next rainfall event but lead to small perturbations onto lateral bonds without triggering a landslide. For more severe damage weakening lateral bonds, excess load due to failure at soil-bedrock interface accumulates at downslope soil columns resulting in early soil failure with patterns strongly correlated with prior damage distribution. Increasing prior damage over the hillslope decreases the volume of first landslide and prolongs the time needed to trigger the second landslide due to mechanical relaxation of the system. The mechanical healing of fibers diminishes effects of prior damage on the time of failure, and shortens waiting time between the first and second landslides. These findings highlight the need to improve definition of initial conditions and the shortcomings of assuming pristine hillslopes.
Chen, Yulong; Irfan, Muhammad; Uchimura, Taro; Zhang, Ke
2018-03-27
Rainfall-induced landslides are one of the most widespread slope instability phenomena posing a serious risk to public safety worldwide so that their temporal prediction is of great interest to establish effective warning systems. The objective of this study is to determine the effectiveness of elastic wave velocities in the surface layer of the slope in monitoring, prediction and early warning of landslide. The small-scale fixed and varied, and large-scale slope model tests were conducted. Analysis of the results has established that the elastic wave velocity continuously decreases in response of moisture content and deformation and there was a distinct surge in the decrease rate of wave velocity when failure was initiated. Based on the preliminary results of this analysis, the method using the change in elastic wave velocity proves superior for landslide early warning and suggests that a warning be issued at switch of wave velocity decrease rate.
NASA Astrophysics Data System (ADS)
Braga, Ana Cláudia F. Medeiros; Silva, Richarde Marques da; Santos, Celso Augusto Guimarães; Galvão, Carlos de Oliveira; Nobre, Paulo
2013-08-01
The coastal zone of northeastern Brazil is characterized by intense human activities and by large settlements and also experiences high soil losses that can contribute to environmental damage. Therefore, it is necessary to build an integrated modeling-forecasting system for rainfall-runoff erosion that assesses plans for water availability and sediment yield that can be conceived and implemented. In this work, we present an evaluation of an integrated modeling system for a basin located in this region with a relatively low predictability of seasonal rainfall and a small area (600 km2). The National Center for Environmental Predictions - NCEP’s Regional Spectral Model (RSM) nested within the Center for Weather Forecasting and Climate Studies - CPTEC’s Atmospheric General Circulation Model (AGCM) were investigated in this study, and both are addressed in the simulation work. The rainfall analysis shows that: (1) the dynamic downscaling carried out by the regional RSM model approximates the frequency distribution of the daily observed data set although errors were detected in the magnitude and timing (anticipation of peaks, for example) at the daily scale, (2) an unbiased precipitation forecast seemed to be essential for use of the results in hydrological models, and (3) the information directly extracted from the global model may also be useful. The simulated runoff and reservoir-stored volumes are strongly linked to rainfall, and their estimation accuracy was significantly improved at the monthly scale, thus rendering the results useful for management purposes. The runoff-erosion forecasting displayed a large sediment yield that was consistent with the predicted rainfall.
Bridging Empirical and Physical Approaches for Landslide Monitoring and Early Warning
NASA Technical Reports Server (NTRS)
Kirschbaum, Dalia; Peters-Lidard, Christa; Adler, Robert; Kumar, Sujay; Harrison, Ken
2011-01-01
Rainfall-triggered landslides typically occur and are evaluated at local scales, using slope-stability models to calculate coincident changes in driving and resisting forces at the hillslope level in order to anticipate slope failures. Over larger areas, detailed high resolution landslide modeling is often infeasible due to difficulties in quantifying the complex interaction between rainfall infiltration and surface materials as well as the dearth of available in situ soil and rainfall estimates and accurate landslide validation data. This presentation will discuss how satellite precipitation and surface information can be applied within a landslide hazard assessment framework to improve landslide monitoring and early warning by considering two disparate approaches to landslide hazard assessment: an empirical landslide forecasting algorithm and a physical slope-stability model. The goal of this research is to advance near real-time landslide hazard assessment and early warning at larger spatial scales. This is done by employing high resolution surface and precipitation information within a probabilistic framework to provide more physically-based grounding to empirical landslide triggering thresholds. The empirical landslide forecasting tool, running in near real-time at http://trmm.nasa.gov, considers potential landslide activity at the global scale and relies on Tropical Rainfall Measuring Mission (TRMM) precipitation data and surface products to provide a near real-time picture of where landslides may be triggered. The physical approach considers how rainfall infiltration on a hillslope affects the in situ hydro-mechanical processes that may lead to slope failure. Evaluation of these empirical and physical approaches are performed within the Land Information System (LIS), a high performance land surface model processing and data assimilation system developed within the Hydrological Sciences Branch at NASA's Goddard Space Flight Center. LIS provides the capabilities to quantify uncertainty from model inputs and calculate probabilistic estimates for slope failures. Results indicate that remote sensing data can provide many of the spatiotemporal requirements for accurate landslide monitoring and early warning; however, higher resolution precipitation inputs will help to better identify small-scale precipitation forcings that contribute to significant landslide triggering. Future missions, such as the Global Precipitation Measurement (GPM) mission will provide more frequent and extensive estimates of precipitation at the global scale, which will serve as key inputs to significantly advance the accuracy of landslide hazard assessment, particularly over larger spatial scales.
Franklin, D H; Butler, D M; Cabrera, M L; Calvert, V H; West, L T; Rema, J A
2011-01-01
Attenuation of rainfall within the solum may help to move contaminants and nutrients into the soil to be better sequestered or utilized by crops. Surface application of phosphorus (P) amendments to grasslands may lead to elevated concentrations of P in surface runoff and eutrophication of surface waters. Aeration of grasslands has been proposed as a treatment to reduce losses of applied P. Here, results from two small-plot aeration studies and two field-scale, paired-watershed studies are supplemented with previously unpublished soil P data and synthesized. The overall objective of these studies was to determine the impact of aeration on soil P, runoff volume, and runoff P losses from mixed tall fescue [Lolium arundinaceum (Schreb.) Darbysh.]-bermudagrass (Cynodon dactylon L.) grasslands fertilized with P. Small-scale rainfall simulations were conducted on two soil taxa using three types of aeration implements: spikes, disks, and cores. The-field scale study was conducted on four soil taxa with slit and knife aeration. Small-plot studies showed that core aeration reduced loads of total P and dissolved reactive P (DRP) in runoff from plots fertilized with broiler litter and that aeration was effective in reducing P export when it increased soil P in the upper 5 cm. In the field-scale study, slit aeration reduced DRP losses by 35% in fields with well-drained soils but not in poorly drained soils. Flow-weighted concentrations of DRP in aerated fields were related to water-soluble P applied in amendments and soil test P in the upper 5 cm. These studies show that the overall effectiveness of mechanical soil aeration on runoff volume and P losses is controlled by the interaction of soil characteristics such as internal drainage and compaction, soil P, type of surface-applied manure, and type of aeration implement.
Evaluation of different rainfall products over India for the summer monsoon
NASA Astrophysics Data System (ADS)
Prakash, Satya; Mitra, Ashis; Turner, Andrew; Collins, Mathew; AchutoRao, Krishna
2015-04-01
Summer rainfall over India forms an integral part of the Asian monsoon, which plays a key role in the global water cycle and climate system through coupled atmospheric and oceanic processes. Accurate prediction of Indian summer monsoon rainfall and its variability at various spatiotemporal scales are crucial for agriculture, water resources and hydroelectric-power sectors. Reliable rainfall observations are very important for verification of numerical model outputs and model development. However, high spatiotemporal variability of rainfall makes it difficult to measure adequately with ground-based instruments over a large region of various surface types from deserts to oceans. A number of multi-satellite rainfall products are available to users at different spatial and temporal scales. Each rainfall product has some advantages as well as limitations, hence it is essential to find a suitable region-specific data set among these rainfall products for a particular user application, such as water resources, agricultural modelling etc. In this study, we examine seasonal-mean and daily rainfall datasets for monsoon model validation. First, six multi-satellite and gauge-only rainfall products were evaluated over India at seasonal scale for 27 (JJAS 1979-2005) summer monsoon seasons against gridded 0.5-degree IMD gauge-based rainfall. Various skill metrics are computed to assess the potential of these data sets in representation of large-scale monsoon rainfall at all-India and sub-regional scales. Among the gauge-only data sets, APHRODITE and GPCC appear to outperform the others whereas GPCP is better than CMAP in the merged multi-satellite category. However, there are significant differences among these data sets indicating uncertainty in the observed rainfall over this region, with important implications for the evaluation of model simulations. At the daily scale, TRMM TMPA-3B42 is one of the best available products and is widely used for various hydro-meteorological applications. The existing version 6 (V6) products of TRMM underwent major changes and version 7 (V7) products were released in late 2012, and we compare these to the IMD daily gridded data over the 1998-2010 period. We show a clear improvement in V7 over V6 in the South Asian monsoon region using various skill metrics. Over typical monsoon rainfall zones, biases are improved by 5-10% in V7 over higher-rainfall regions. These results will help users to select appropriate rainfall product for their application. With the recent launch of the GPM Core Observatory, the release of a more advanced high-resolution multi-satellite rainfall product is expected soon.
NASA Astrophysics Data System (ADS)
Sa'adi, Zulfaqar; Shahid, Shamsuddin; Ismail, Tarmizi; Chung, Eun-Sung; Wang, Xiao-Jun
2017-11-01
This study assesses the spatial pattern of changes in rainfall extremes of Sarawak in recent years (1980-2014). The Mann-Kendall (MK) test along with modified Mann-Kendall (m-MK) test, which can discriminate multi-scale variability of unidirectional trend, was used to analyze the changes at 31 stations. Taking account of the scaling effect through eliminating the effect of autocorrelation, m-MK was employed to discriminate multi-scale variability of the unidirectional trends of the annual rainfall in Sarawak. It can confirm the significance of the MK test. The annual rainfall trend from MK test showed significant changes at 95% confidence level at five stations. The seasonal trends from MK test indicate an increasing rate of rainfall during the Northeast monsoon and a decreasing trend during the Southwest monsoon in some region of Sarawak. However, the m-MK test detected an increasing trend in annual rainfall only at one station and no significant trend in seasonal rainfall at any stations. The significant increasing trends of the 1-h maximum rainfall from the MK test are detected mainly at the stations located in the urban area giving concern to the occurrence of the flash flood. On the other hand, the m-MK test detected no significant trend in 1- and 3-h maximum rainfalls at any location. On the contrary, it detected significant trends in 6- and 72-h maximum rainfalls at a station located in the Lower Rajang basin area which is an extensive low-lying agricultural area and prone to stagnant flood. These results indicate that the trends in rainfall and rainfall extremes reported in Malaysia and surrounding region should be verified with m-MK test as most of the trends may result from scaling effect.
Spectral analysis of temporal non-stationary rainfall-runoff processes
NASA Astrophysics Data System (ADS)
Chang, Ching-Min; Yeh, Hund-Der
2018-04-01
This study treats the catchment as a block box system with considering the rainfall input and runoff output being a stochastic process. The temporal rainfall-runoff relationship at the catchment scale is described by a convolution integral on a continuous time scale. Using the Fourier-Stieltjes representation approach, a frequency domain solution to the convolution integral is developed to the spectral analysis of runoff processes generated by temporal non-stationary rainfall events. It is shown that the characteristic time scale of rainfall process increases the runoff discharge variability, while the catchment mean travel time constant plays the role in reducing the variability of runoff discharge. Similar to the behavior of groundwater aquifers, catchments act as a low-pass filter in the frequency domain for the rainfall input signal.
NASA Astrophysics Data System (ADS)
Schindewolf, Marcus; Kaiser, Andreas; Buchholtz, Arno; Schmidt, Jürgen
2017-04-01
Extreme rainfall events and resulting flash floods led to massive devastations in Germany during spring 2016. The study presented aims on the development of a early warning system, which allows the simulation and assessment of negative effects on infrastructure by radar-based heavy rainfall predictions, serving as input data for the process-based soil loss and deposition model EROSION 3D. Our approach enables a detailed identification of runoff and sediment fluxes in agricultural used landscapes. In a first step, documented historical events were analyzed concerning the accordance of measured radar rainfall and large scale erosion risk maps. A second step focused on a small scale erosion monitoring via UAV of source areas of heavy flooding events and a model reconstruction of the processes involved. In all examples damages were caused to local infrastructure. Both analyses are promising in order to detect runoff and sediment delivering areas even in a high temporal and spatial resolution. Results prove the important role of late-covering crops such as maize, sugar beet or potatoes in runoff generation. While e.g. winter wheat positively affects extensive runoff generation on undulating landscapes, massive soil loss and thus muddy flows are observed and depicted in model results. Future research aims on large scale model parameterization and application in real time, uncertainty estimation of precipitation forecast and interface developments.
NASA Astrophysics Data System (ADS)
Rogé, P.; Friedman, A. R.; Astier, M.; Altieri, M.
2015-12-01
The traditional management systems of the Mixteca Alta Region of Oaxaca, Mexico offer historical lessons about resilience to climatic variability. We interviewed small farmers to inquire about the dynamics of abandonment and persistence of a traditional management systems. We interpret farmers' narratives from a perspective of general agroecological resilience. In addition, we facilitated workshops in small farmers described their adaptation to past climate challenges and identified 14 indicators that they subsequently used to evaluate the condition of their agroecosystems. The most recent years presented increasingly extreme climatic and socioeconomic hardships: increased temperatures, delayed rainy seasons, reduced capacity of soils to retain soil moisture, changing cultural norms, and reduced rural labor. Farmers reported that their cropping systems were changing for multiple reasons: more drought, later rainfall onset, decreased rural labor, and introduced labor-saving technologies. Examination of climate data found that farmers' climate narratives were largely consistent with the observational record. There have been increases in temperature and rainfall intensity, and an increase in rainfall seasonality that may be perceived as later rainfall onset. Farmers ranked landscape-scale indicators as more marginal than farmer management or soil quality indicators. From this analysis, farmers proposed strategies to improve the ability of their agroecosystems to cope with climatic variability. Notably, they recognized that social organizing and education are required for landscape-level indicators to be improved. Transformative change is required to develop novel cropping systems and complementary activities to agriculture that will allow for farming to be sustained in the face of these challenges. Climate change adaptation by small farmers involves much more than just a set of farming practices, but also community action to tackle collective problems.
Decision tree analysis of factors influencing rainfall-related building damage
NASA Astrophysics Data System (ADS)
Spekkers, M. H.; Kok, M.; Clemens, F. H. L. R.; ten Veldhuis, J. A. E.
2014-04-01
Flood damage prediction models are essential building blocks in flood risk assessments. Little research has been dedicated so far to damage of small-scale urban floods caused by heavy rainfall, while there is a need for reliable damage models for this flood type among insurers and water authorities. The aim of this paper is to investigate a wide range of damage-influencing factors and their relationships with rainfall-related damage, using decision tree analysis. For this, district-aggregated claim data from private property insurance companies in the Netherlands were analysed, for the period of 1998-2011. The databases include claims of water-related damage, for example, damages related to rainwater intrusion through roofs and pluvial flood water entering buildings at ground floor. Response variables being modelled are average claim size and claim frequency, per district per day. The set of predictors include rainfall-related variables derived from weather radar images, topographic variables from a digital terrain model, building-related variables and socioeconomic indicators of households. Analyses were made separately for property and content damage claim data. Results of decision tree analysis show that claim frequency is most strongly associated with maximum hourly rainfall intensity, followed by real estate value, ground floor area, household income, season (property data only), buildings age (property data only), ownership structure (content data only) and fraction of low-rise buildings (content data only). It was not possible to develop statistically acceptable trees for average claim size, which suggest that variability in average claim size is related to explanatory variables that cannot be defined at the district scale. Cross-validation results show that decision trees were able to predict 22-26% of variance in claim frequency, which is considerably better compared to results from global multiple regression models (11-18% of variance explained). Still, a large part of the variance in claim frequency is left unexplained, which is likely to be caused by variations in data at subdistrict scale and missing explanatory variables.
Organization of vertical shear of wind and daily variability of monsoon rainfall
NASA Astrophysics Data System (ADS)
Gouda, K. C.; Goswami, P.
2016-10-01
Very little is known about the mechanisms that govern the day to day variability of the Indian summer monsoon (ISM) rainfall; in the current dominant view, the daily rainfall is essentially a result of chaotic dynamics. Most studies in the past have thus considered monsoon in terms of its seasonal (June-September) or monthly rainfall. We show here that the daily rainfall in June is associated with vertical shear of horizontal winds at specific scales. While vertical shear had been used in the past to investigate interannual variability of seasonal rainfall, rarely any effort has been made to examine daily rainfall. Our work shows that, at least during June, the daily rainfall variability of ISM rainfall is associated with a large scale dynamical coherence in the sense that the vertical shear averaged over large spatial extents are significantly correlated with area-averaged daily rainfall. An important finding from our work is the existence of a clearly delineated monsoon shear domain (MSD) with strong coherence between area-averaged shear and area-averaged daily rainfall in June; this association of daily rainfall is not significant with shear over only MSD. Another important feature is that the association between daily rainfall and vertical shear is present only during the month of June. Thus while ISM (June-September) is a single seasonal system, it is important to consider the dynamics and variation of June independently of the seasonal ISM rainfall. The association between large-scale organization of circulation and daily rainfall is suggested as a basis for attempting prediction of daily rainfall by ensuring accurate simulation of wind shear.
NASA Astrophysics Data System (ADS)
Wang, Jie; Chen, Li; Yu, Zhongbo
2018-02-01
Rainfall infiltration on hillslopes is an important issue in hydrology, which is related to many environmental problems, such as flood, soil erosion, and nutrient and contaminant transport. This study aimed to improve the quantification of infiltration on hillslopes under both steady and unsteady rainfalls. Starting from Darcy's law, an analytical integral infiltrability equation was derived for hillslope infiltration by use of the flux-concentration relation. Based on this equation, a simple scaling relation linking the infiltration times on hillslopes and horizontal planes was obtained which is applicable for both small and large times and can be used to simplify the solution procedure of hillslope infiltration. The infiltrability equation also improved the estimation of ponding time for infiltration under rainfall conditions. For infiltration after ponding, the time compression approximation (TCA) was applied together with the infiltrability equation. To improve the computational efficiency, the analytical integral infiltrability equation was approximated with a two-term power-like function by nonlinear regression. Procedures of applying this approach to both steady and unsteady rainfall conditions were proposed. To evaluate the performance of the new approach, it was compared with the Green-Ampt model for sloping surfaces by Chen and Young (2006) and Richards' equation. The proposed model outperformed the sloping Green-Ampt, and both ponding time and infiltration predictions agreed well with the solutions of Richards' equation for various soil textures, slope angles, initial water contents, and rainfall intensities for both steady and unsteady rainfalls.
Censored rainfall modelling for estimation of fine-scale extremes
NASA Astrophysics Data System (ADS)
Cross, David; Onof, Christian; Winter, Hugo; Bernardara, Pietro
2018-01-01
Reliable estimation of rainfall extremes is essential for drainage system design, flood mitigation, and risk quantification. However, traditional techniques lack physical realism and extrapolation can be highly uncertain. In this study, we improve the physical basis for short-duration extreme rainfall estimation by simulating the heavy portion of the rainfall record mechanistically using the Bartlett-Lewis rectangular pulse (BLRP) model. Mechanistic rainfall models have had a tendency to underestimate rainfall extremes at fine temporal scales. Despite this, the simple process representation of rectangular pulse models is appealing in the context of extreme rainfall estimation because it emulates the known phenomenology of rainfall generation. A censored approach to Bartlett-Lewis model calibration is proposed and performed for single-site rainfall from two gauges in the UK and Germany. Extreme rainfall estimation is performed for each gauge at the 5, 15, and 60 min resolutions, and considerations for censor selection discussed.
NASA Technical Reports Server (NTRS)
Over, Thomas, M.; Gupta, Vijay K.
1994-01-01
Under the theory of independent and identically distributed random cascades, the probability distribution of the cascade generator determines the spatial and the ensemble properties of spatial rainfall. Three sets of radar-derived rainfall data in space and time are analyzed to estimate the probability distribution of the generator. A detailed comparison between instantaneous scans of spatial rainfall and simulated cascades using the scaling properties of the marginal moments is carried out. This comparison highlights important similarities and differences between the data and the random cascade theory. Differences are quantified and measured for the three datasets. Evidence is presented to show that the scaling properties of the rainfall can be captured to the first order by a random cascade with a single parameter. The dependence of this parameter on forcing by the large-scale meteorological conditions, as measured by the large-scale spatial average rain rate, is investigated for these three datasets. The data show that this dependence can be captured by a one-to-one function. Since the large-scale average rain rate can be diagnosed from the large-scale dynamics, this relationship demonstrates an important linkage between the large-scale atmospheric dynamics and the statistical cascade theory of mesoscale rainfall. Potential application of this research to parameterization of runoff from the land surface and regional flood frequency analysis is briefly discussed, and open problems for further research are presented.
Land-Climate Feedbacks in Indian Summer Monsoon Rainfall
NASA Astrophysics Data System (ADS)
Asharaf, Shakeel; Ahrens, Bodo
2016-04-01
In an attempt to identify how land surface states such as soil moisture influence the monsoonal precipitation climate over India, a series of numerical simulations including soil moisture sensitivity experiments was performed. The simulations were conducted with a nonhydrostatic regional climate model (RCM), the Consortium for Small-Scale Modeling (COSMO) in climate mode (CCLM) model, which was driven by the European Center for Medium-Range Weather Forecasts (ECMWF) Interim reanalysis (ERA-Interim) data. Results showed that pre-monsoonal soil moisture has a significant impact on monsoonal precipitation formation and large-scale atmospheric circulations. The analysis revealed that even a small change in the processes that influence precipitation via changes in local evapotranspiration was able to trigger significant variations in regional soil moisture-precipitation feedback. It was observed that these processes varied spatially from humid to arid regions in India, which further motivated an examination of soil-moisture memory variation over these regions and determination of the ISM seasonal forecasting potential. A quantitative analysis indicated that the simulated soil-moisture memory lengths increased with soil depth and were longer in the western region than those in the eastern region of India. Additionally, the subsequent precipitation variance explained by soil moisture increased from east to west. The ISM rainfall was further analyzed in two different greenhouse gas emission scenarios: the Special Report on Emissions Scenario (SRES: B1) and the new Representative Concentration Pathways (RCPs: RCP4.5). To that end, the CCLM and its driving global-coupled atmospheric-oceanic model (GCM), ECHAM/MPIOM were used in order to understand the driving processes of the projected inter-annual precipitation variability and associated trends. Results inferred that the projected rainfall changes were the result of two largely compensating processes: increase of remotely induced precipitation and decrease of precipitation efficiency. However, the complementing precipitation components and their simulation uncertainties rendered climate projections of the Indian summer monsoon rainfall as an ongoing, highly ambiguous challenge for both the GCM and the RCM.
The Spatial Scaling of Global Rainfall Extremes
NASA Astrophysics Data System (ADS)
Devineni, N.; Xi, C.; Lall, U.; Rahill-Marier, B.
2013-12-01
Floods associated with severe storms are a significant source of risk for property, life and supply chains. These property losses tend to be determined as much by the duration of flooding as by the depth and velocity of inundation. High duration floods are typically induced by persistent rainfall (upto 30 day duration) as seen recently in Thailand, Pakistan, the Ohio and the Mississippi Rivers, France, and Germany. Events related to persistent and recurrent rainfall appear to correspond to the persistence of specific global climate patterns that may be identifiable from global, historical data fields, and also from climate models that project future conditions. A clear understanding of the space-time rainfall patterns for events or for a season will enable in assessing the spatial distribution of areas likely to have a high/low inundation potential for each type of rainfall forcing. In this paper, we investigate the statistical properties of the spatial manifestation of the rainfall exceedances. We also investigate the connection of persistent rainfall events at different latitudinal bands to large-scale climate phenomena such as ENSO. Finally, we present the scaling phenomena of contiguous flooded areas as a result of large scale organization of long duration rainfall events. This can be used for spatially distributed flood risk assessment conditional on a particular rainfall scenario. Statistical models for spatio-temporal loss simulation including model uncertainty to support regional and portfolio analysis can be developed.
NASA Astrophysics Data System (ADS)
Kashid, Satishkumar S.; Maity, Rajib
2012-08-01
SummaryPrediction of Indian Summer Monsoon Rainfall (ISMR) is of vital importance for Indian economy, and it has been remained a great challenge for hydro-meteorologists due to inherent complexities in the climatic systems. The Large-scale atmospheric circulation patterns from tropical Pacific Ocean (ENSO) and those from tropical Indian Ocean (EQUINOO) are established to influence the Indian Summer Monsoon Rainfall. The information of these two large scale atmospheric circulation patterns in terms of their indices is used to model the complex relationship between Indian Summer Monsoon Rainfall and the ENSO as well as EQUINOO indices. However, extracting the signal from such large-scale indices for modeling such complex systems is significantly difficult. Rainfall predictions have been done for 'All India' as one unit, as well as for five 'homogeneous monsoon regions of India', defined by Indian Institute of Tropical Meteorology. Recent 'Artificial Intelligence' tool 'Genetic Programming' (GP) has been employed for modeling such problem. The Genetic Programming approach is found to capture the complex relationship between the monthly Indian Summer Monsoon Rainfall and large scale atmospheric circulation pattern indices - ENSO and EQUINOO. Research findings of this study indicate that GP-derived monthly rainfall forecasting models, that use large-scale atmospheric circulation information are successful in prediction of All India Summer Monsoon Rainfall with correlation coefficient as good as 0.866, which may appears attractive for such a complex system. A separate analysis is carried out for All India Summer Monsoon rainfall for India as one unit, and five homogeneous monsoon regions, based on ENSO and EQUINOO indices of months of March, April and May only, performed at end of month of May. In this case, All India Summer Monsoon Rainfall could be predicted with 0.70 as correlation coefficient with somewhat lesser Correlation Coefficient (C.C.) values for different 'homogeneous monsoon regions'.
NASA Astrophysics Data System (ADS)
Pechlivanidis, Ilias; McIntyre, Neil; Wheater, Howard
2017-04-01
Rainfall, one of the main inputs in hydrological modeling, is a highly heterogeneous process over a wide range of scales in space, and hence the ignorance of the spatial rainfall information could affect the simulated streamflow. Calibration of hydrological model parameters is rarely a straightforward task due to parameter equifinality and parameters' 'nature' to compensate for other uncertainties, i.e. structural and forcing input. In here, we analyse the significance of spatial variability of rainfall on streamflow as a function of catchment scale and type, and antecedent conditions using the continuous time, semi-distributed PDM hydrological model at the Upper Lee catchment, UK. The impact of catchment scale and type is assessed using 11 nested catchments ranging in scale from 25 to 1040 km2, and further assessed by artificially changing the catchment characteristics and translating these to model parameters with uncertainty using model regionalisation. Synthetic rainfall events are introduced to directly relate the change in simulated streamflow to the spatial variability of rainfall. Overall, we conclude that the antecedent catchment wetness and catchment type play an important role in controlling the significance of the spatial distribution of rainfall on streamflow. Results show a relationship between hydrograph characteristics (streamflow peak and volume) and the degree of spatial variability of rainfall for the impermeable catchments under dry antecedent conditions, although this decreases at larger scales; however this sensitivity is significantly undermined under wet antecedent conditions. Although there is indication that the impact of spatial rainfall on streamflow varies as a function of catchment scale, the variability of antecedent conditions between the synthetic catchments seems to mask this significance. Finally, hydrograph responses to different spatial patterns in rainfall depend on assumptions used for model parameter estimation and also the spatial variation in parameters indicating the need of an uncertainty framework in such investigation.
Extreme Precipitation and High-Impact Landslides
NASA Technical Reports Server (NTRS)
Kirschbaum, Dalia; Adler, Robert; Huffman, George; Peters-Lidard, Christa
2012-01-01
It is well known that extreme or prolonged rainfall is the dominant trigger of landslides; however, there remain large uncertainties in characterizing the distribution of these hazards and meteorological triggers at the global scale. Researchers have evaluated the spatiotemporal distribution of extreme rainfall and landslides at local and regional scale primarily using in situ data, yet few studies have mapped rainfall-triggered landslide distribution globally due to the dearth of landslide data and consistent precipitation information. This research uses a newly developed Global Landslide Catalog (GLC) and a 13-year satellite-based precipitation record from Tropical Rainfall Measuring Mission (TRMM) data. For the first time, these two unique products provide the foundation to quantitatively evaluate the co-occurence of precipitation and rainfall-triggered landslides globally. The GLC, available from 2007 to the present, contains information on reported rainfall-triggered landslide events around the world using online media reports, disaster databases, etc. When evaluating this database, we observed that 2010 had a large number of high-impact landslide events relative to previous years. This study considers how variations in extreme and prolonged satellite-based rainfall are related to the distribution of landslides over the same time scales for three active landslide areas: Central America, the Himalayan Arc, and central-eastern China. Several test statistics confirm that TRMM rainfall generally scales with the observed increase in landslide reports and fatal events for 2010 and previous years over each region. These findings suggest that the co-occurrence of satellite precipitation and landslide reports may serve as a valuable indicator for characterizing the spatiotemporal distribution of landslide-prone areas in order to establish a global rainfall-triggered landslide climatology. This research also considers the sources for this extreme rainfall, citing teleconnections from ENSO as likely contributors to regional precipitation variability. This work demonstrates the potential for using satellite-based precipitation estimates to identify potentially active landslide areas at the global scale in order to improve landslide cataloging and quantify landslide triggering at daily, monthly and yearly time scales.
NASA Astrophysics Data System (ADS)
Kumar, Praveen; Foufoula-Georgiou, Efi
1993-02-01
It has been observed that the finite-dimensional distribution functions of rainfall cannot obey simple scaling laws due to rainfall intermittency (mixed distribution with an atom at zero) and the probability of rainfall being an increasing function of area. Although rainfall fluctuations do not suffer these limitations, it is interesting to note that very few attempts have been made to study them in terms of their self-similarity characteristics. This is due to the lack of unambiguous definition of fluctuations in multidimensions. This paper shows that wavelet transforms offer a convenient and consistent method for the decomposition of inhomogeneous and anisotropic rainfall fields in two dimensions and that the components of this decomposition can be looked at as fluctuations of the rainfall field. It is also shown that under some mild assumptions, the component fields can be treated as homogeneous and thus are amenable to second-order analysis, which can provide useful insight into the nature of the process. The fact that wavelet transforms are a space-scale method also provides a convenient tool to study scaling characteristics of the process. Orthogonal wavelets are used, and these properties are investigated for a squall-line storm to study the presence of self-similarity.
NASA Technical Reports Server (NTRS)
Kumar, Praveen; Foufoula-Georgiou, Efi
1993-01-01
It has been observed that the finite-dimensional distribution functions of rainfall cannot obey simple scaling laws due to rainfall intermittency (mixed distribution with an atom at zero) and the probability of rainfall being an increasing function of area. Although rainfall fluctuations do not suffer these limitations, it is interesting to note that very few attempts have been made to study them in terms of their self-similarity characteristics. This is due to the lack of unambiguous definition of fluctuations in multidimensions. This paper shows that wavelet transforms offer a convenient and consistent method for the decomposition of inhomogeneous and anisotropic rainfall fields in two dimensions and that the components of this decomposition can be looked at as fluctuations of the rainfall field. It is also shown that under some mild assumptions, the component fields can be treated as homogeneous and thus are amenable to second-order analysis, which can provide useful insight into the nature of the process. The fact that wavelet transforms are a space-scale method also provides a convenient tool to study scaling characteristics of the process. Orthogonal wavelets are used, and these properties are investigated for a squall-line storm to study the presence of self-similarity.
Universal inverse power-law distribution for temperature and rainfall in the UK region
NASA Astrophysics Data System (ADS)
Selvam, A. M.
2014-06-01
Meteorological parameters, such as temperature, rainfall, pressure, etc., exhibit selfsimilar space-time fractal fluctuations generic to dynamical systems in nature such as fluid flows, spread of forest fires, earthquakes, etc. The power spectra of fractal fluctuations display inverse power-law form signifying long-range correlations. A general systems theory model predicts universal inverse power-law form incorporating the golden mean for the fractal fluctuations. The model predicted distribution was compared with observed distribution of fractal fluctuations of all size scales (small, large and extreme values) in the historic month-wise temperature (maximum and minimum) and total rainfall for the four stations Oxford, Armagh, Durham and Stornoway in the UK region, for data periods ranging from 92 years to 160 years. For each parameter, the two cumulative probability distributions, namely cmax and cmin starting from respectively maximum and minimum data value were used. The results of the study show that (i) temperature distributions (maximum and minimum) follow model predicted distribution except for Stornowy, minimum temperature cmin. (ii) Rainfall distribution for cmin follow model predicted distribution for all the four stations. (iii) Rainfall distribution for cmax follows model predicted distribution for the two stations Armagh and Stornoway. The present study suggests that fractal fluctuations result from the superimposition of eddy continuum fluctuations.
Termites promote resistance of decomposition to spatiotemporal variability in rainfall.
Veldhuis, Michiel P; Laso, Francisco J; Olff, Han; Berg, Matty P
2017-02-01
The ecological impact of rapid environmental change will depend on the resistance of key ecosystems processes, which may be promoted by species that exert strong control over local environmental conditions. Recent theoretical work suggests that macrodetritivores increase the resistance of African savanna ecosystems to changing climatic conditions, but experimental evidence is lacking. We examined the effect of large fungus-growing termites and other non-fungus-growing macrodetritivores on decomposition rates empirically with strong spatiotemporal variability in rainfall and temperature. Non-fungus-growing larger macrodetritivores (earthworms, woodlice, millipedes) promoted decomposition rates relative to microbes and small soil fauna (+34%) but both groups reduced their activities with decreasing rainfall. However, fungus-growing termites increased decomposition rates strongest (+123%) under the most water-limited conditions, making overall decomposition rates mostly independent from rainfall. We conclude that fungus-growing termites are of special importance in decoupling decomposition rates from spatiotemporal variability in rainfall due to the buffered environment they create within their extended phenotype (mounds), that allows decomposition to continue when abiotic conditions outside are less favorable. This points at a wider class of possibly important ecological processes, where soil-plant-animal interactions decouple ecosystem processes from large-scale climatic gradients. This may strongly alter predictions from current climate change models. © 2016 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Papoulakos, Konstantinos; Pollakis, Giorgos; Moustakis, Yiannis; Markopoulos, Apostolis; Iliopoulou, Theano; Dimitriadis, Panayiotis; Koutsoyiannis, Demetris; Efstratiadis, Andreas
2017-04-01
Small islands are regarded as promising areas for developing hybrid water-energy systems that combine multiple sources of renewable energy with pumped-storage facilities. Essential element of such systems is the water storage component (reservoir), which implements both flow and energy regulations. Apparently, the representation of the overall water-energy management problem requires the simulation of the operation of the reservoir system, which in turn requires a faithful estimation of water inflows and demands of water and energy. Yet, in small-scale reservoir systems, this task in far from straightforward, since both the availability and accuracy of associated information is generally very poor. For, in contrast to large-scale reservoir systems, for which it is quite easy to find systematic and reliable hydrological data, in the case of small systems such data may be minor or even totally missing. The stochastic approach is the unique means to account for input data uncertainties within the combined water-energy management problem. Using as example the Livadi reservoir, which is the pumped storage component of the small Aegean island of Astypalaia, Greece, we provide a simulation framework, comprising: (a) a stochastic model for generating synthetic rainfall and temperature time series; (b) a stochastic rainfall-runoff model, whose parameters cannot be inferred through calibration and, thus, they are represented as correlated random variables; (c) a stochastic model for estimating water supply and irrigation demands, based on simulated temperature and soil moisture, and (d) a daily operation model of the reservoir system, providing stochastic forecasts of water and energy outflows. Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students in the Assembly.
NASA Astrophysics Data System (ADS)
Salack, S.; Worou, N. O.; Sanfo, S.; Nikiema, M. P.; Boubacar, I.; Paturel, J. E.; Tondoh, E. J.
2017-12-01
In West Africa, the risk of food insecurity linked to the low productivity of small holder farming increases as a result of rainfall extremes. In its recent evolution, the rainy season in the Sudan-Sahel zone presents mixed patterns of extreme climatic events. In addition to intense rain events, the distribution of events is associated with pockets of intra-seasonal long dry spells. The negative consequences of these mixed patterns are obvious on the farm: soil water logging, erosion of arable land, dwartness and dessication of crops, and loss in production. The capacity of local farming communities to respond accordingly to rainfall extreme events is often constrained by lack of access to climate information and advisory on smart crop management practices that can help translate extreme rainfall events into farming options. The objective of this work is to expose the framework and the pre-liminary results of a scheme that customizes climate-advisory information package delivery to subsistence farmers in Bakel (Senegal), Ouahigouya & Dano (Burkina Faso) and Bolgatanga (Ghana) for sustainable family agriculture. The package is based on the provision of timely climate information (48-hours, dekadal & seasonal) embedded with smart crop management practices to explore and exploite the potential advantage of intense rainfall and extreme dry spells in millet, maize, sorghum and cowpea farming communities. It is sent via mobile phones and used on selected farms (i.e agro-climatic farm schools) on which some small on-farm infrastructure were built to alleviate negative impacts of weather. Results provide prominent insight on how co-production of weather/climate information, customized access and guidiance on its use can induce fast learning (capacity building of actors), motivation for adaptation, sustainability, potential changes in cropping system, yields and family income in the face of a rainfall extremes at local scales of Sudan-Sahel of West Africa. Keywords: Climate Information, Smart Practices, Farming Options, Agro-Climatic Farm Schools, Sudan-Sahel
NASA Astrophysics Data System (ADS)
Grace, K.; Husak, G. J.
2016-12-01
Climate change, in the form of increasingly variable temperatures and rainfall, is anticipated to have potentially dramatic impacts on subsistence agricultural communities throughout the world. Poor people who depend on rainfall to produce food or to produce products to sell to buy food are expected to be particularly vulnerable to the negative impacts associated with climate change. Poor people have extremely limited resources that can be used to cope with weather events and these resources are even more strained when the individuals live in poor countries. While poor and rural producers are most likely to face high levels of vulnerability to food insecurity due to their dependence on rainfall for their agricultural production, annual agricultural censuses are virtually non-existent. Surveying all of the producers in a country each year is extremely costly owing to difficulties in accessing farmers and the costs associated with extensive surveys. The result, however, is very limited information on the spatial and temporal variation in production and the resulting impacts on micro-scale food insecurity and livelihood stability. In this project we use a combination of fine and coarse resolution remotely sensed data ( 1m data, 250m NDVI data and 10km rainfall data, and others) and recently collected survey data from the World Bank to estimate agricultural and land use characteristics at a fine spatial scale in Burkina Faso, Mali and Niger. The analysis will produce estimates of cultivated area that incorporate spatially dynamic climate and vegetation data but that also account for the variation in agricultural practices associated with the different ethnic and religious groups within each country. The survey data will help to calibrate the models and will also serve as a way to validate the statistical models used to estimate on the ground agricultural practices. The models will then be used to evaluate fine-scale agricultural response to climate change in the form of drying and warming.
A theoretically consistent stochastic cascade for temporal disaggregation of intermittent rainfall
NASA Astrophysics Data System (ADS)
Lombardo, F.; Volpi, E.; Koutsoyiannis, D.; Serinaldi, F.
2017-06-01
Generating fine-scale time series of intermittent rainfall that are fully consistent with any given coarse-scale totals is a key and open issue in many hydrological problems. We propose a stationary disaggregation method that simulates rainfall time series with given dependence structure, wet/dry probability, and marginal distribution at a target finer (lower-level) time scale, preserving full consistency with variables at a parent coarser (higher-level) time scale. We account for the intermittent character of rainfall at fine time scales by merging a discrete stochastic representation of intermittency and a continuous one of rainfall depths. This approach yields a unique and parsimonious mathematical framework providing general analytical formulations of mean, variance, and autocorrelation function (ACF) for a mixed-type stochastic process in terms of mean, variance, and ACFs of both continuous and discrete components, respectively. To achieve the full consistency between variables at finer and coarser time scales in terms of marginal distribution and coarse-scale totals, the generated lower-level series are adjusted according to a procedure that does not affect the stochastic structure implied by the original model. To assess model performance, we study rainfall process as intermittent with both independent and dependent occurrences, where dependence is quantified by the probability that two consecutive time intervals are dry. In either case, we provide analytical formulations of main statistics of our mixed-type disaggregation model and show their clear accordance with Monte Carlo simulations. An application to rainfall time series from real world is shown as a proof of concept.
Kooperman, Gabriel J.; Pritchard, Michael S.; O'Brien, Travis A.; ...
2018-04-01
Deficiencies in the parameterizations of convection used in global climate models often lead to a distorted representation of the simulated rainfall intensity distribution (i.e., too much rainfall from weak rain rates). While encouraging improvements in high percentile rainfall intensity have been found as the horizontal resolution of the Community Atmosphere Model is increased to ~25 km, we demonstrate no corresponding improvement in the moderate rain rates that generate the majority of accumulated rainfall. Using a statistical framework designed to emphasize links between precipitation intensity and accumulated rainfall beyond just the frequency distribution, we show that CAM cannot realistically simulate moderatemore » rain rates, and cannot capture their intensification with climate change, even as resolution is increased. However, by separating the parameterized convective and large-scale resolved contributions to total rainfall, we find that the intensity, geographic pattern, and climate change response of CAM's large-scale rain rates are more consistent with observations (TRMM 3B42), superparameterization, and theoretical expectations, despite issues with parameterized convection. Increasing CAM's horizontal resolution does improve the representation of total rainfall intensity, but not due to changes in the intensity of large-scale rain rates, which are surprisingly insensitive to horizontal resolution. Rather, improvements occur through an increase in the relative contribution of the large-scale component to the total amount of accumulated rainfall. Analysis of sensitivities to convective timescale and entrainment rate confirm the importance of these parameters in the possible development of scale-aware parameterizations, but also reveal unrecognized trade-offs from the entanglement of precipitation frequency and total amount.« less
NASA Astrophysics Data System (ADS)
Kooperman, Gabriel J.; Pritchard, Michael S.; O'Brien, Travis A.; Timmermans, Ben W.
2018-04-01
Deficiencies in the parameterizations of convection used in global climate models often lead to a distorted representation of the simulated rainfall intensity distribution (i.e., too much rainfall from weak rain rates). While encouraging improvements in high percentile rainfall intensity have been found as the horizontal resolution of the Community Atmosphere Model is increased to ˜25 km, we demonstrate no corresponding improvement in the moderate rain rates that generate the majority of accumulated rainfall. Using a statistical framework designed to emphasize links between precipitation intensity and accumulated rainfall beyond just the frequency distribution, we show that CAM cannot realistically simulate moderate rain rates, and cannot capture their intensification with climate change, even as resolution is increased. However, by separating the parameterized convective and large-scale resolved contributions to total rainfall, we find that the intensity, geographic pattern, and climate change response of CAM's large-scale rain rates are more consistent with observations (TRMM 3B42), superparameterization, and theoretical expectations, despite issues with parameterized convection. Increasing CAM's horizontal resolution does improve the representation of total rainfall intensity, but not due to changes in the intensity of large-scale rain rates, which are surprisingly insensitive to horizontal resolution. Rather, improvements occur through an increase in the relative contribution of the large-scale component to the total amount of accumulated rainfall. Analysis of sensitivities to convective timescale and entrainment rate confirm the importance of these parameters in the possible development of scale-aware parameterizations, but also reveal unrecognized trade-offs from the entanglement of precipitation frequency and total amount.
NASA Astrophysics Data System (ADS)
Cui, Y.; Zhao, P.; Hong, Y.; Fan, W.; Yan, B.; Xie, H.
2017-12-01
Abstract: As an important compont of evapotranspiration, vegetation rainfall interception is the proportion of gross rainfall that is intercepted, stored and subsequently evaporated from all parts of vegetation during or following rainfall. Accurately quantifying the vegetation rainfall interception at a high resolution is critical for rainfall-runoff modeling and flood forecasting, and is also essential for understanding its further impact on local, regional, and even global water cycle dynamics. In this study, the Remote Sensing-based Gash model (RS-Gash model) is developed based on a modified Gash model for interception loss estimation using remote sensing observations at the regional scale, and has been applied and validated in the upper reach of the Heihe River Basin of China for different types of vegetation. To eliminate the scale error and the effect of mixed pixels, the RS-Gash model is applied at a fine scale of 30 m with the high resolution vegetation area index retrieved by using the unified model of bidirectional reflectance distribution function (BRDF-U) for the vegetation canopy. Field validation shows that the RMSE and R2 of the interception ratio are 3.7% and 0.9, respectively, indicating the model's strong stability and reliability at fine scale. The temporal variation of vegetation rainfall interception loss and its relationship with precipitation are further investigated. In summary, the RS-Gash model has demonstrated its effectiveness and reliability in estimating vegetation rainfall interception. When compared to the coarse resolution results, the application of this model at 30-m fine resolution is necessary to resolve the scaling issues as shown in this study. Keywords: rainfall interception; remote sensing; RS-Gash analytical model; high resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kooperman, Gabriel J.; Pritchard, Michael S.; O'Brien, Travis A.
Deficiencies in the parameterizations of convection used in global climate models often lead to a distorted representation of the simulated rainfall intensity distribution (i.e., too much rainfall from weak rain rates). While encouraging improvements in high percentile rainfall intensity have been found as the horizontal resolution of the Community Atmosphere Model is increased to ~25 km, we demonstrate no corresponding improvement in the moderate rain rates that generate the majority of accumulated rainfall. Using a statistical framework designed to emphasize links between precipitation intensity and accumulated rainfall beyond just the frequency distribution, we show that CAM cannot realistically simulate moderatemore » rain rates, and cannot capture their intensification with climate change, even as resolution is increased. However, by separating the parameterized convective and large-scale resolved contributions to total rainfall, we find that the intensity, geographic pattern, and climate change response of CAM's large-scale rain rates are more consistent with observations (TRMM 3B42), superparameterization, and theoretical expectations, despite issues with parameterized convection. Increasing CAM's horizontal resolution does improve the representation of total rainfall intensity, but not due to changes in the intensity of large-scale rain rates, which are surprisingly insensitive to horizontal resolution. Rather, improvements occur through an increase in the relative contribution of the large-scale component to the total amount of accumulated rainfall. Analysis of sensitivities to convective timescale and entrainment rate confirm the importance of these parameters in the possible development of scale-aware parameterizations, but also reveal unrecognized trade-offs from the entanglement of precipitation frequency and total amount.« less
NASA Astrophysics Data System (ADS)
Kirschbaum, Dalia; Stanley, Thomas
2016-04-01
Remote sensing data offers the unique perspective to provide situational awareness of hydrometeorological hazards over large areas in a way that is impossible to achieve with in situ data. Recent work has shown that rainfall-triggered landslides, while typically local hazards that occupy small spatial areas, can be approximated over regional or global scales in near real-time. This work presents a regional and global approach to approximating potential landslide activity using the landslide hazard assessment for situational awareness (LHASA) model. This system couples remote sensing data, including Global Precipitation Measurement rainfall data, Shuttle Radar Topography Mission and other surface variables to estimate where and when landslide activity may be likely. This system also evaluates the effectiveness of quantitative precipitation estimates from the Goddard Earth Observing System Model, Version 5 to provide a 24 forecast of potential landslide activity. Preliminary results of the LHASA model and implications for are presented for a regional version of this system in Central America as well as a prototype global approach.
Scaling of hydrologic and erosion parameters derived from rainfall simulation
NASA Astrophysics Data System (ADS)
Sheridan, Gary; Lane, Patrick; Noske, Philip; Sherwin, Christopher
2010-05-01
Rainfall simulation experiments conducted at the temporal scale of minutes and the spatial scale of meters are often used to derive parameters for erosion and water quality models that operate at much larger temporal and spatial scales. While such parameterization is convenient, there has been little effort to validate this approach via nested experiments across these scales. In this paper we first review the literature relevant to some of these long acknowledged issues. We then present rainfall simulation and erosion plot data from a range of sources, including mining, roading, and forestry, to explore the issues associated with the scaling of parameters such as infiltration properties and erodibility coefficients.
Impact of Climatic Variability on Hydropower Reservoirs in the Paraiba Basin, Southeast of Brazil
NASA Astrophysics Data System (ADS)
Barros, A.; simoes, s
2002-05-01
During 2000/2001, a severe drought greatly reduced the volume of water available to Brazilian hydropower plants and lead to a national water rationing plan. To undestand the potential for climatic change in hydrological regimes and its impact on hydropower we chose the Paraiba Basin located in Southeast Brazil. Three important regional multi-purpose reservoirs are operating in this basin. Moreover, the Paraiba River is of great economic and environmental importance and also constitutes a major corridor connecting the two cities of Sao Paulo and Rio de Janeiro. We analyzed monthly and daily records for rainfall, streamflow and temperature using regression and variance analysis. Rainfall records do not show any significant trend since the 1930s/1940s. By contrast, analysis of seasonal patterns show that in the last twenty years rainfall has increased during autumn and winter (dry season) and decreased during spring and summer (rainy season). Comparison between rainfall and streaflow, from small catchment without man-made influences, shows a more pronounced deficit in streamflow when compared with rainfall. The shifts in seasonal rainfall could indicate a tendency towards a more uniform rainfall pattern and could serve to reduce the streamflow. However, the largest upward trends in temperature were found in the driest months (JJA). The increase in rainfall would not be sufficient to overcome increased of evaporation expect to the same period. Instead, such increase in evaporation could create an over more pronounced streamflow deficit. Climatic variability could be reducing water availability in these reservoirs especially in the driest months. To reduce the uncertainties in hydrological predictions, planners need to incorporate climatic variability, at the catchment scale, in order to accomodate the new conditions resulting from these changes.
Aridity and decomposition processes in complex landscapes
NASA Astrophysics Data System (ADS)
Ossola, Alessandro; Nyman, Petter
2015-04-01
Decomposition of organic matter is a key biogeochemical process contributing to nutrient cycles, carbon fluxes and soil development. The activity of decomposers depends on microclimate, with temperature and rainfall being major drivers. In complex terrain the fine-scale variation in microclimate (and hence water availability) as a result of slope orientation is caused by differences in incoming radiation and surface temperature. Aridity, measured as the long-term balance between net radiation and rainfall, is a metric that can be used to represent variations in water availability within the landscape. Since aridity metrics can be obtained at fine spatial scales, they could theoretically be used to investigate how decomposition processes vary across complex landscapes. In this study, four research sites were selected in tall open sclerophyll forest along a aridity gradient (Budyko dryness index ranging from 1.56 -2.22) where microclimate, litter moisture and soil moisture were monitored continuously for one year. Litter bags were packed to estimate decomposition rates (k) using leaves of a tree species not present in the study area (Eucalyptus globulus) in order to avoid home-field advantage effects. Litter mass loss was measured to assess the activity of macro-decomposers (6mm litter bag mesh size), meso-decomposers (1 mm mesh), microbes above-ground (0.2 mm mesh) and microbes below-ground (2 cm depth, 0.2 mm mesh). Four replicates for each set of bags were installed at each site and bags were collected at 1, 2, 4, 7 and 12 months since installation. We first tested whether differences in microclimate due to slope orientation have significant effects on decomposition processes. Then the dryness index was related to decomposition rates to evaluate if small-scale variation in decomposition can be predicted using readily available information on rainfall and radiation. Decomposition rates (k), calculated fitting single pool negative exponential models, generally decreased with increasing aridity with k going from 0.0025 day-1 on equatorial (dry) facing slopes to 0.0040 day-1 on polar (wet) facing slopes. However, differences in temperature as a result of morning vs afternoon sun on east and west aspects, respectively, (not captured in the aridity metric) resulted in poor prediction of decomposition for the sites located in the intermediate aridity range. Overall the results highlight that relatively small differences in microclimate due to slope orientation can have large effects on decomposition. Future research will aim to refine the aridity metric to better resolve small scale variation in surface temperature which is important when up-scaling decomposition processes to landscapes.
NASA Astrophysics Data System (ADS)
Grimaldi, S.; Petroselli, A.; Romano, N.
2012-04-01
The Soil Conservation Service - Curve Number (SCS-CN) method is a popular rainfall-runoff model that is widely used to estimate direct runoff from small and ungauged basins. The SCS-CN is a simple and valuable approach to estimate the total stream-flow volume generated by a storm rainfall, but it was developed to be used with daily rainfall data. To overcome this drawback, we propose to include the Green-Ampt (GA) infiltration model into a mixed procedure, which is referred to as CN4GA (Curve Number for Green-Ampt), aiming to distribute in time the information provided by the SCS-CN method so as to provide estimation of sub-daily incremental rainfall excess. For a given storm, the computed SCS-CN total net rainfall amount is used to calibrate the soil hydraulic conductivity parameter of the Green-Ampt model. The proposed procedure was evaluated by analyzing 100 rainfall-runoff events observed in four small catchments of varying size. CN4GA appears an encouraging tool for predicting the net rainfall peak and duration values and has shown, at least for the test cases considered in this study, a better agreement with observed hydrographs than that of the classic SCS-CN method.
Chen, Yulong; Irfan, Muhammad; Uchimura, Taro; Zhang, Ke
2018-01-01
Rainfall-induced landslides are one of the most widespread slope instability phenomena posing a serious risk to public safety worldwide so that their temporal prediction is of great interest to establish effective warning systems. The objective of this study is to determine the effectiveness of elastic wave velocities in the surface layer of the slope in monitoring, prediction and early warning of landslide. The small-scale fixed and varied, and large-scale slope model tests were conducted. Analysis of the results has established that the elastic wave velocity continuously decreases in response of moisture content and deformation and there was a distinct surge in the decrease rate of wave velocity when failure was initiated. Based on the preliminary results of this analysis, the method using the change in elastic wave velocity proves superior for landslide early warning and suggests that a warning be issued at switch of wave velocity decrease rate. PMID:29584699
NASA Astrophysics Data System (ADS)
Panagos, Panos; Ballabio, Cristiano; Borrelli, Pasquale; Meusburger, Katrin; Alewell, Christine
2016-04-01
The erosive force of rainfall is expressed as rainfall erosivity. Rainfall erosivity considers the rainfall amount and intensity, and is most commonly expressed as the R-factor in the (R)USLE model. The R-factor is calculated from a series of single storm events by multiplying the total storm kinetic energy with the measured maximum 30-minutes rainfall intensity. This estimation requests high temporal resolution (e.g. 30 minutes) rainfall data for sufficiently long time periods (i.e. 20 years) which are not readily available at European scale. The European Commission's Joint Research Centre(JRC) in collaboration with national/regional meteorological services and Environmental Institutions made an extensive data collection of high resolution rainfall data in the 28 Member States of the European Union plus Switzerland in order to estimate rainfall erosivity in Europe. This resulted in the Rainfall Erosivity Database on the European Scale (REDES) which included 1,541 rainfall stations in 2014 and has been updated with 134 additional stations in 2015. The interpolation of those point R-factor values with a Gaussian Process Regression (GPR) model has resulted in the first Rainfall Erosivity map of Europe (Science of the Total Environment, 511, 801-815). The intra-annual variability of rainfall erosivity is crucial for modelling soil erosion on a monthly and seasonal basis. The monthly feature of rainfall erosivity has been added in 2015 as an advancement of REDES and the respective mean annual R-factor map. Almost 19,000 monthly R-factor values of REDES contributed to the seasonal and monthly assessments of rainfall erosivity in Europe. According to the first results, more than 50% of the total rainfall erosivity in Europe takes place in the period from June to September. The spatial patterns of rainfall erosivity have significant differences between Northern and Southern Europe as summer is the most erosive period in Central and Northern Europe and autumn in the Mediterranean area. This spatio-temporal analysis of rainfall erosivity at European scale is very important for policy makers and farmers for soil conservation, optimization of agricultural land use and natural hazards prediction. REDES is also used in combination with future rainfall data from WorldClim to run climate change scenarios. The projection of REDES combined with climate change scenarios (HADGEM2, RCP4.5) and using a robust geo-statistical model resulted in a 10-20% increase of the R-factor in Europe till 2050.
Rainfall extremes from TRMM data and the Metastatistical Extreme Value Distribution
NASA Astrophysics Data System (ADS)
Zorzetto, Enrico; Marani, Marco
2017-04-01
A reliable quantification of the probability of weather extremes occurrence is essential for designing resilient water infrastructures and hazard mitigation measures. However, it is increasingly clear that the presence of inter-annual climatic fluctuations determines a substantial long-term variability in the frequency of occurrence of extreme events. This circumstance questions the foundation of the traditional extreme value theory, hinged on stationary Poisson processes or on asymptotic assumptions to derive the Generalized Extreme Value (GEV) distribution. We illustrate here, with application to daily rainfall, a new approach to extreme value analysis, the Metastatistical Extreme Value Distribution (MEVD). The MEVD relaxes the above assumptions and is based on the whole distribution of daily rainfall events, thus allowing optimal use of all available observations. Using a global dataset of rain gauge observations, we show that the MEVD significantly outperforms the Generalized Extreme Value distribution, particularly for long average recurrence intervals and when small samples are available. The latter property suggests MEVD to be particularly suited for applications to satellite rainfall estimates, which only cover two decades, thus making extreme value estimation extremely challenging. Here we apply MEVD to the TRMM TMPA 3B42 product, an 18-year dataset of remotely-sensed daily rainfall providing a quasi-global coverage. Our analyses yield a global scale mapping of daily rainfall extremes and of their distributional tail properties, bridging the existing large gaps in ground-based networks. Finally, we illustrate how our global-scale analysis can provide insight into how properties of local rainfall regimes affect tail estimation uncertainty when using the GEV or MEVD approach. We find a dependence of the estimation uncertainty, for both the GEV- and MEV-based approaches, on the average annual number and on the inter-annual variability of rainy days. In particular, estimation uncertainty decreases 1) as the mean annual number of wet days increases, and 2) as the variability in the number of rainy days, expressed by its coefficient of variation, decreases. We tentatively explain this behavior in terms of the assumptions underlying the two approaches.
Spatial structure and scaling of macropores in hydrological process at small catchment scale
NASA Astrophysics Data System (ADS)
Silasari, Rasmiaditya; Broer, Martine; Blöschl, Günter
2013-04-01
During rainfall events, the formation of overland flow can occur under the circumstances of saturation excess and/or infiltration excess. These conditions are affected by the soil moisture state which represents the soil water content in micropores and macropores. Macropores act as pathway for the preferential flows and have been widely studied locally. However, very little is known about their spatial structure and conductivity of macropores and other flow characteristic at the catchment scale. This study will analyze these characteristics to better understand its importance in hydrological processes. The research will be conducted in Petzenkirchen Hydrological Open Air Laboratory (HOAL), a 64 ha catchment located 100 km west of Vienna. The land use is divided between arable land (87%), pasture (5%), forest (6%) and paved surfaces (2%). Video cameras will be installed on an agricultural field to monitor the overland flow pattern during rainfall events. A wireless soil moisture network is also installed within the monitored area. These field data will be combined to analyze the soil moisture state and the responding surface runoff occurrence. The variability of the macropores spatial structure of the observed area (field scale) then will be assessed based on the topography and soil data. Soil characteristics will be supported with laboratory experiments on soil matrix flow to obtain proper definitions of the spatial structure of macropores and its variability. A coupled physically based distributed model of surface and subsurface flow will be used to simulate the variability of macropores spatial structure and its effect on the flow behaviour. This model will be validated by simulating the observed rainfall events. Upscaling from field scale to catchment scale will be done to understand the effect of macropores variability on larger scales by applying spatial stochastic methods. The first phase in this study is the installation and monitoring configuration of video cameras and soil moisture monitoring equipment to obtain the initial data of overland flow occurrence and soil moisture state relationships.
NASA Astrophysics Data System (ADS)
Johnson, Fiona; Sharma, Ashish
2011-04-01
Empirical scaling approaches for constructing rainfall scenarios from general circulation model (GCM) simulations are commonly used in water resources climate change impact assessments. However, these approaches have a number of limitations, not the least of which is that they cannot account for changes in variability or persistence at annual and longer time scales. Bias correction of GCM rainfall projections offers an attractive alternative to scaling methods as it has similar advantages to scaling in that it is computationally simple, can consider multiple GCM outputs, and can be easily applied to different regions or climatic regimes. In addition, it also allows for interannual variability to evolve according to the GCM simulations, which provides additional scenarios for risk assessments. This paper compares two scaling and four bias correction approaches for estimating changes in future rainfall over Australia and for a case study for water supply from the Warragamba catchment, located near Sydney, Australia. A validation of the various rainfall estimation procedures is conducted on the basis of the latter half of the observational rainfall record. It was found that the method leading to the lowest prediction errors varies depending on the rainfall statistic of interest. The flexibility of bias correction approaches in matching rainfall parameters at different frequencies is demonstrated. The results also indicate that for Australia, the scaling approaches lead to smaller estimates of uncertainty associated with changes to interannual variability for the period 2070-2099 compared to the bias correction approaches. These changes are also highlighted using the case study for the Warragamba Dam catchment.
Use of a large-scale rainfall simulator reveals novel insights into stemflow generation
NASA Astrophysics Data System (ADS)
Levia, D. F., Jr.; Iida, S. I.; Nanko, K.; Sun, X.; Shinohara, Y.; Sakai, N.
2017-12-01
Detailed knowledge of stemflow generation and its effects on both hydrological and biogoechemical cycling is important to achieve a holistic understanding of forest ecosystems. Field studies and a smaller set of experiments performed under laboratory conditions have increased our process-based knowledge of stemflow production. Building upon these earlier works, a large-scale rainfall simulator was employed to deepen our understanding of stemflow generation processes. The use of the large-scale rainfall simulator provides a unique opportunity to examine a range of rainfall intensities under constant conditions that are difficult under natural conditions due to the variable nature of rainfall intensities in the field. Stemflow generation and production was examined for three species- Cryptomeria japonica D. Don (Japanese cedar), Chamaecyparis obtusa (Siebold & Zucc.) Endl. (Japanese cypress), Zelkova serrata Thunb. (Japanese zelkova)- under both leafed and leafless conditions at several different rainfall intensities (15, 20, 30, 40, 50, and 100 mm h-1) using a large-scale rainfall simulator in National Research Institute for Earth Science and Disaster Resilience (Tsukuba, Japan). Stemflow production and rates and funneling ratios were examined in relation to both rainfall intensity and canopy structure. Preliminary results indicate a dynamic and complex response of the funneling ratios of individual trees to different rainfall intensities among the species examined. This is partly the result of different canopy structures, hydrophobicity of vegetative surfaces, and differential wet-up processes across species and rainfall intensities. This presentation delves into these differences and attempts to distill them into generalizable patterns, which can advance our theories of stemflow generation processes and ultimately permit better stewardship of forest resources. ________________ Funding note: This research was supported by JSPS Invitation Fellowship for Research in Japan (Grant Award No.: S16088) and JSPS KAKENHI (Grant Award No.: JP15H05626).
Assessing manure management strategies through small-plot research and whole-farm modeling
Garcia, A.M.; Veith, T.L.; Kleinman, P.J.A.; Rotz, C.A.; Saporito, L.S.
2008-01-01
Plot-scale experimentation can provide valuable insight into the effects of manure management practices on phosphorus (P) runoff, but whole-farm evaluation is needed for complete assessment of potential trade offs. Artificially-applied rainfall experimentation on small field plots and event-based and long-term simulation modeling were used to compare P loss in runoff related to two dairy manure application methods (surface application with and without incorporation by tillage) on contrasting Pennsylvania soils previously under no-till management. Results of single-event rainfall experiments indicated that average dissolved reactive P losses in runoff from manured plots decreased by up to 90% with manure incorporation while total P losses did not change significantly. Longer-term whole farm simulation modeling indicated that average dissolved reactive P losses would decrease by 8% with manure incorporation while total P losses would increase by 77% due to greater erosion from fields previously under no-till. Differences in the two methods of inference point to the need for caution in extrapolating research findings. Single-event rainfall experiments conducted shortly after manure application simulate incidental transfers of dissolved P in manure to runoff, resulting in greater losses of dissolved reactive P. However, the transfer of dissolved P in applied manure diminishes with time. Over the annual time frame simulated by whole farm modeling, erosion processes become more important to runoff P losses. Results of this study highlight the need to consider the potential for increased erosion and total P losses caused by soil disturbance during incorporation. This study emphasizes the ability of modeling to estimate management practice effectiveness at the larger scales when experimental data is not available.
Stochastic multifractal forecasts: from theory to applications in radar meteorology
NASA Astrophysics Data System (ADS)
da Silva Rocha Paz, Igor; Tchiguirinskaia, Ioulia; Schertzer, Daniel
2017-04-01
Radar meteorology has been very inspiring for the development of multifractals. It has enabled to work on a 3D+1 field with many challenging applications, including predictability and stochastic forecasts, especially nowcasts that are particularly demanding in computation speed. Multifractals are indeed parsimonious stochastic models that require only a few physically meaningful parameters, e.g. Universal Multifractal (UM) parameters, because they are based on non-trivial symmetries of nonlinear equations. We first recall the physical principles of multifractal predictability and predictions, which are so closely related that the latter correspond to the most optimal predictions in the multifractal framework. Indeed, these predictions are based on the fundamental duality of a relatively slow decay of large scale structures and an injection of new born small scale structures. Overall, this triggers a mulfitractal inverse cascade of unpredictability. With the help of high resolution rainfall radar data (≈ 100 m), we detail and illustrate the corresponding stochastic algorithm in the framework of (causal) UM Fractionally Integrated Flux models (UM-FIF), where the rainfall field is obtained with the help of a fractional integration of a conservative multifractal flux, whose average is strictly scale invariant (like the energy flux in a dynamic cascade). Whereas, the introduction of small structures is rather straightforward, the deconvolution of the past of the field is more subtle, but nevertheless achievable, to obtain the past of the flux. Then, one needs to only fractionally integrate a multiplicative combination of past and future fluxes to obtain a nowcast realisation.
An Experimental Study of Small-Scale Variability of Raindrop Size Distribution
NASA Technical Reports Server (NTRS)
Tokay, Ali; Bashor, Paul G.
2010-01-01
An experimental study of small-scale variability of raindrop size distributions (DSDs) has been carried out at Wallops Island, Virginia. Three Joss-Waldvogel disdrometers were operated at a distance of 0.65, 1.05, and 1.70 km in a nearly straight line. The main purpose of the study was to examine the variability of DSDs and its integral parameters of liquid water content, rainfall, and reflectivity within a 2-km array: a typical size of Cartesian radar pixel. The composite DSD of rain events showed very good agreement among the disdrometers except where there were noticeable differences in midsize and large drops in a few events. For consideration of partial beam filling where the radar pixel was not completely covered by rain, a single disdrometer reported just over 10% more rainy minutes than the rainy minutes when all three disdrometers reported rainfall. Similarly two out of three disdrometers reported5%more rainy minutes than when all three were reporting rainfall. These percentages were based on a 1-min average, and were less for longer averaging periods. Considering only the minutes when all three disdrometers were reporting rainfall, just over one quarter of the observations showed an increase in the difference in rainfall with distance. This finding was based on a 15-min average and was even less for shorter averaging periods. The probability and cumulative distributions of a gamma-fitted DSD and integral rain parameters between the three disdrometers had a very good agreement and no major variability. This was mainly due to the high percentage of light stratiform rain and to the number of storms that traveled along the track of the disdrometers. At a fixed time step, however, both DSDs and integral rain parameters showed substantial variability. The standard deviation (SD) of rain rate was near 3 mm/h, while the SD of reflectivity exceeded 3 dBZ at the longest separation distance. These standard deviations were at 6-min average and were higher at shorter averaging periods. The correlations decreased with increasing separation distance. For rain rate, the correlations were higher than previous gauge-based studies. This was attributed to the differences in data processing and the difference in rainfall characteristics in different climate regions. It was also considered that the gauge sampling errors could be a factor. In this regard, gauge measurements were simulated employing existing disdrometer dataset. While a difference was noticed in cumulative distribution of rain occurrence between the simulated gauge and disdrometer observations, the correlations in simulated gauge measurements did not differ from the disdrometer measurements.
Spatial variability of extreme rainfall at radar subpixel scale
NASA Astrophysics Data System (ADS)
Peleg, Nadav; Marra, Francesco; Fatichi, Simone; Paschalis, Athanasios; Molnar, Peter; Burlando, Paolo
2018-01-01
Extreme rainfall is quantified in engineering practice using Intensity-Duration-Frequency curves (IDF) that are traditionally derived from rain-gauges and more recently also from remote sensing instruments, such as weather radars. These instruments measure rainfall at different spatial scales: rain-gauge samples rainfall at the point scale while weather radar averages precipitation on a relatively large area, generally around 1 km2. As such, a radar derived IDF curve is representative of the mean areal rainfall over a given radar pixel and neglects the within-pixel rainfall variability. In this study, we quantify subpixel variability of extreme rainfall by using a novel space-time rainfall generator (STREAP model) that downscales in space the rainfall within a given radar pixel. The study was conducted using a unique radar data record (23 years) and a very dense rain-gauge network in the Eastern Mediterranean area (northern Israel). Radar-IDF curves, together with an ensemble of point-based IDF curves representing the radar subpixel extreme rainfall variability, were developed fitting Generalized Extreme Value (GEV) distributions to annual rainfall maxima. It was found that the mean areal extreme rainfall derived from the radar underestimate most of the extreme values computed for point locations within the radar pixel (on average, ∼70%). The subpixel variability of rainfall extreme was found to increase with longer return periods and shorter durations (e.g. from a maximum variability of 10% for a return period of 2 years and a duration of 4 h to 30% for 50 years return period and 20 min duration). For the longer return periods, a considerable enhancement of extreme rainfall variability was found when stochastic (natural) climate variability was taken into account. Bounding the range of the subpixel extreme rainfall derived from radar-IDF can be of major importance for different applications that require very local estimates of rainfall extremes.
Schmidt, Kevin M.; Hanshaw, M.N.; Howle, James F.; Kean, Jason W.; Staley, Dennis M.; Stock, Jonathan D.; Bawden, Gerald W.
2011-01-01
To investigate rainfall-runoff conditions that generate post-wildfire debris flows, we instrumented and surveyed steep, small watersheds along the tectonically active front of the San Gabriel Mountains, California. Fortuitously, we recorded runoff-generated debris-flows triggered by one spatially restricted convective event with 28 mm of rainfall falling over 62 minutes. Our rain gages, nested hillslope overland-flow sensors and soil-moisture probes, as well as a time series of terrestrial laser scanning (TLS) revealed the effects of the storm. Hillslope overland-flow response, along two ~10-m long flow lines perpendicular to and originating from a drainage divide, displayed only a 10 to 20 minute delay from the onset of rainfall with accumulated totals of merely 5-10 mm. Depth-stratified soil-moisture probes displayed a greater time delay, roughly 20- 30 minutes, indicating that initial overland flow was Hortonian. Furthermore, a downstream channel-monitoring array recorded a pronounced discharge peak generated by the passage of a debris flow after 18 minutes of rainfall. At this time, only four of the eleven hillslope overlandflow sensors confirmed the presence of surface-water flow. Repeat TLS and detailed field mapping using GPS document how patterns of rainsplash, overland-flow scour, and rilling contributed to the generation of meter-scale debris flows. In response to a single small storm, the debris flows deposited irregular levees and lobate terminal snouts on hillslopes and caused widespread erosion of the valley axis with ground surface lowering exceeding 1.5 m.
Comparison of different types of medium scale field rainfall simulators
NASA Astrophysics Data System (ADS)
Dostál, Tomáš; Strauss, Peter; Schindewolf, Marcus; Kavka, Petr; Schmidt, Jürgen; Bauer, Miroslav; Neumann, Martin; Kaiser, Andreas; Iserloh, Thomas
2015-04-01
Rainfall simulators are used in numerous experiments to study runoff and soil erosion characteristics. However, they usually differ in their construction details, rainfall generation, plot size and other technical parameters. As field experiments using medium to large scale rainfall simulators (plot length 3 - 8 m) are very much time and labor consuming, close cooperation of individual teams and comparability of results is highly desirable to enlarge the database of results. Two experimental campaigns were organized to compare three field rainfall simulators of similar scale (plot size), but with different technical parameters. The results were then compared, to identify parameters that are crucial for soil loss and surface runoff formation and test if results from individual devices can be reliably compared. The rainfall simulators compared were: field rainfall simulator of CTU Prague (the Czech Republic) (Kavka et al., 2012; EGU2015-11025), field simulator of BAW (Austria) (Strauss et al., 2002) and field simulator of TU Bergakademie Freiberg (Germany) (Schindewolf & Schmidt 2012). The device of CTU Prague is usually applied to a plot size of 9,5 x 2 m employing 4 nozzles SS Full Jet 40WSQ mounted on folding arm, working pressure is 0.8 bar, height of nozzles is 2.65 m. The intensity of rainfall is regulated electronically, which leaves the nozzle opened only for certain time. The rainfall simulator of BAW is constructed as a modular system, which is usually applied for a length of 5 m (area 2 x 5 m), using 6 nozzles SS Full Jet 40WSQ. Usual working pressure is 0.25 bar. Elevation of nozzles is 2.6 m. The intensity of rainfall is regulated electronically, which leaves the nozzle opened only for certain time. The device of TU Bergakademie Freiberg is also standard modular system, working usually with a plot size of 3 x 1 m, using 3 oscillating VeeJet 80/100 nozzles with an usual operating pressure of 0.5 bar. Intensity is regulated by the frequency of sweeps above the experimental plot. Comparison was done during two independent campaigns, where always two devices were present. Rainfall intensity for the experiments varied between 40 to 60 mm/h. Mutual comparison was carried out between the CTU Prague and TU Freiberg RSs at plot size of 3 x 1 m and Between CTU Prague and BAW RSs at plot size of 5 x 2 m. In general, the experiments revealed a significant effect of potential heterogeneities at the experimental plots and an effect of raindrop energy on both surface runoff formation and mainly soil loss. Therefore, coordination of methodology of the experiments and careful control of initial conditions seem to be a crucial point for comparability of results from individual devices. Detailed results will be presented on the poster. The research has been supported by the research grants SGS14/180/OHK1/3T/11, QJ1230056 and 7AMB14AT020. References Kavka, P., Davidová, T., Janotová, B., Bauer, M. a Dostál, T. 2012. Mobilní dešťový simulátor.(in Czech), Stavební obzor. 8, 2012. Schindewolf, M. & J. Schmidt (2012): Parameterization of the EROSION 2D/3D soil erosion model using a small-scale rainfall simulator and upstream runoff simulation, Catena 91, pp. 47-55, DOI: 10.1016/j.catena.2011.01.007 Strauss P., J.Pitty, M.Pfeffer, A. Mentler (2000): Rainfall Simulation for Outdoor Experiments. In: P. Jamet, J. Cornejo(eds.): Current research methods to assess the environmental fate of pesticides. pp. 329-333, INRA Editions.
NASA Astrophysics Data System (ADS)
Návar, José
2011-09-01
SummaryStemflow hydro-ecological importance was measured in trees and assessed in Mexico's northeast forest stands by answering three basic questions: (a) what are the intra and inter-specific stemflow variations; (b) is the stemflow coefficient constant from tree level to stand scales? and (c) what is the stemflow area and wetted soil volume in individual trees and the stemflow volume discharged at the stand scale in two plant communities of northeastern Mexico? Gross rainfall and stemflow flux measurements were conducted on 78 trees of semi-arid, sub-tropical (31 Diospyros texana; 14 Acacia rigidula; four Bumelia celastrina; five Condalia hookeri; three Cordia bioissieri; three Pithecellobium pallens) and temperate forest communities (six Pinus pseudostrobus Lindl. and 12 Quercus spp.). Stemflow was extrapolated from individual trees to the stand scale using 98 inventory plots (1600 m 2 ha -1 each) placed in oak-pine forests and 37 quadrats (5 m × 5 m each) distributed across the Tamaulipan thornscrub forest range. Stemflow infiltration flux and infiltration area measurements assessed the wetted soil volume. Daily measurements were conducted from May of 1997 to November of 1998. Results showed that stemflow coefficients varied between plant communities since they averaged (confidence intervals, α = 0.05) 2.49% (0.57), 0.30% (0.09), and 0.77% (0.27) of the bulk precipitation for Tamaulipan thornscrub, pine, and oak forests, respectively. Intra-specific stemflow variations could not be identified in Tamaulipan although in temperate tree species. Basal diameter explained intra-specific stemflow variation in both plant communities. Stemflow increased threefold since it accounted for by 6.38% and 2.19% of the total bulk rainfall for Tamaulipan thornscrub quadrats and temperate oak-pine inventory plots, respectively. Small shrubs growing underneath large trees, in combination with the presence of small-diameter trees that recorded the largest stemflow coefficients appear to explain the increase of the stemflow coefficient from trees to stands. Stemflow replenishes soil moisture on the average 4.5 (1.4) times larger than does incident rainfall in open soils and appear to contribute to aquifer recharge in temperate forests due to a combination of shallow soils, high infiltration fluxes and the stemflow volume generated during rainfalls with depths >15 mm. Tracing studies should be conducted to test the hypothesis of the stemflow contribution to aquifer recharge in temperate forests of northeastern Mexico.
Yu, Xing-xiu; Li, Zhen-wei; Liu, Qian-jin; Jing, Guang-hua
2012-08-01
Relationships between phosphorus pollutant concentrations and precipitation-runoff were analyzed by monitoring pollutant losses at outlets of the Menglianggu watershed in 2010. A typical small watershed was selected to examine the runoff and quality parameters such as total phosphorus (TP), particle phosphorus (PP), dissolve phosphorus (DP) and dissolve inorganic phosphorus (DIP) in rainfall-runoff of 10 rainfall events. Precipitation was above 2 mm for all the 10 rainfall events. The results showed that the peak of phosphorus concentrations occurred before the peak of water flows, whereas change processes of the phosphorus fluxes were consistent with that of the water flows and the phosphorus flux also have a strong linear relationship with the water flows. The minimums of the phosphorus concentrations in every 10 natural rainfall events have small differences with each other, but the maximum and EMCs of the phosphorus concentrations have significant differences with each rainfall event. This was mainly influenced by the precipitation, maximum rainfall intensity and mean rainfall intensity (EMCs) and was less influenced by rainfall duration. DP and TP were mainly composed of DIP and PP, respectively. There were no significant correlations between DIP/DP dynamic changes and rainfall characteristics, whereas significant correlations between PP/TP dynamic changes and maximum rainfall intensity were detected. The production of DIP, DP, AND TP were mainly influenced by the direct runoff (DR) and base flow (BF). The EMCs of DIP, DP, TP and the variations of DIP/DP were all found to have significant polynomial relationships with DR/TR., but the dynamic changes of PP/ TP and the EMCS of PP were less influenced by the DR/TR.
NASA Astrophysics Data System (ADS)
Gianotti, Rebecca L.
The Maritime Continent experiences strong moist convection, which produces significant rainfall and drives large fluxes of heat and moisture to the upper troposphere. Despite the importance of these processes to global circulations, current predictions of climate change over this region are still highly uncertain, largely due to inadequate representation of the diurnally-varying processes related to convection. In this work, a coupled numerical model of the land-atmosphere system (RegCM3-IBIS) is used to investigate how more physically-realistic representations of these processes can be incorporated into large-scale climate models. In particular, this work improves simulations of convective-radiative feedbacks and the role of cumulus clouds in mediating the diurnal cycle of rainfall. Three key contributions are made to the development of RegCM3-IBIS. Two pieces of work relate directly to the formation and dissipation of convective clouds: a new representation of convective cloud cover, and a new parameterization of convective rainfall production. These formulations only contain parameters that can be directly quantified from observational data, are independent of model user choices such as domain size or resolution, and explicitly account for subgrid variability in cloud water content and nonlinearities in rainfall production. The third key piece of work introduces a new method for representation of cloud formation within the boundary layer. A comprehensive evaluation of the improved model was undertaken using a range of satellite-derived and ground-based datasets, including a new dataset from Singapore's Changi airport that documents diurnal variation of the local boundary layer height. The performance of RegCM3-IBIS with the new formulations is greatly improved across all evaluation metrics, including cloud cover, cloud liquid water, radiative fluxes and rainfall, indicating consistent improvement in physical realism throughout the simulation. This work demonstrates that: (1) moist convection strongly influences the near surface environment by mediating the incoming solar radiation and net radiation at the surface; (2) dissipation of convective cloud via rainfall plays an equally important role in the convectiveradiative feedback as the formation of that cloud; and (3) over parts of the Maritime Continent, rainfall is a product of diurnally-varying convective processes that operate at small spatial scales, on the order of 1 km. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs@mit.edu)
Otani, Yosuke; Hongo, Shun; Honda, Takeaki; Okamura, Hiroki; Higo, Yuma
2018-01-01
Animals are subject to various scales of temporal environmental fluctuations, among which daily and seasonal variations are two of the most widespread and significant ones. Many biotic and abiotic factors change temporally, and climatic factors are particularly important because they directly affect the cost of thermoregulation. The purpose of the present study was to determine the activity patterns of wild Japanese macaques (Macaca fuscata) with a special emphasis on the effect of thermal conditions. We set 30 camera traps in the coniferous forest of Yakushima and monitored them for a total of 8658 camera-days between July 2014 and July 2015. Over the one-year period, temperature had a positive effect, and rainfall had a negative effect on the activity of macaques during the day. Capture rate was significantly higher during the time period of one hour after sunrise and during midday. During winter days, macaques concentrated their activity around noon, and activity shifted from the morning toward the afternoon. This could be interpreted as macaques shifting their activity to warmer time periods within a single day. Japanese macaques decreased their activity during the time before sunrise in seasons with lower temperatures. It was beneficial for macaques to be less active during cooler time periods in a cold season. Even small amounts of rainfall negatively affected the activity of Japanese macaques, with capture rates decreasing significantly even when rainfall was only 0.5–1 mm/min. In conclusion, thermal conditions significantly affected the activity of wild Japanese macaques at various time scales. PMID:29293657
NASA Astrophysics Data System (ADS)
Gariano, Stefano Luigi; Brunetti, Maria Teresa; Iovine, Giulio; Melillo, Massimo; Peruccacci, Silvia; Terranova, Oreste Giuseppe; Vennari, Carmela; Guzzetti, Fausto
2015-04-01
Prediction of rainfall-induced landslides can rely on empirical rainfall thresholds. These are obtained from the analysis of past rainfall events that have (or have not) resulted in slope failures. Accurate prediction requires reliable thresholds, which need to be validated before their use in operational landslide warning systems. Despite the clear relevance of validation, only a few studies have addressed the problem, and have proposed and tested robust validation procedures. We propose a validation procedure that allows for the definition of optimal thresholds for early warning purposes. The validation is based on contingency table, skill scores, and receiver operating characteristic (ROC) analysis. To establish the optimal threshold, which maximizes the correct landslide predictions and minimizes the incorrect predictions, we propose an index that results from the linear combination of three weighted skill scores. Selection of the optimal threshold depends on the scope and the operational characteristics of the early warning system. The choice is made by selecting appropriately the weights, and by searching for the optimal (maximum) value of the index. We discuss weakness in the validation procedure caused by the inherent lack of information (epistemic uncertainty) on landslide occurrence typical of large study areas. When working at the regional scale, landslides may have occurred and may have not been reported. This results in biases and variations in the contingencies and the skill scores. We introduce two parameters to represent the unknown proportion of rainfall events (above and below the threshold) for which landslides occurred and went unreported. We show that even a very small underestimation in the number of landslides can result in a significant decrease in the performance of a threshold measured by the skill scores. We show that the variations in the skill scores are different for different uncertainty of events above or below the threshold. This has consequences in the ROC analysis. We applied the proposed procedure to a catalogue of rainfall conditions that have resulted in landslides, and to a set of rainfall events that - presumably - have not resulted in landslides, in Sicily, in the period 2002-2012. First, we determined regional event duration-cumulated event (ED) rainfall thresholds for shallow landslide occurrence using 200 rainfall conditions that have resulted in 223 shallow landslides in Sicily in the period 2002-2011. Next, we validated the thresholds using 29 rainfall conditions that have triggered 42 shallow landslides in Sicily in 2012, and 1250 rainfall events that presumably have not resulted in landslides in the same year. We performed a back analysis simulating the use of the thresholds in a hypothetical landslide warning system operating in 2012.
Space-time modeling of soil moisture
NASA Astrophysics Data System (ADS)
Chen, Zijuan; Mohanty, Binayak P.; Rodriguez-Iturbe, Ignacio
2017-11-01
A physically derived space-time mathematical representation of the soil moisture field is carried out via the soil moisture balance equation driven by stochastic rainfall forcing. The model incorporates spatial diffusion and in its original version, it is shown to be unable to reproduce the relative fast decay in the spatial correlation functions observed in empirical data. This decay resulting from variations in local topography as well as in local soil and vegetation conditions is well reproduced via a jitter process acting multiplicatively over the space-time soil moisture field. The jitter is a multiplicative noise acting on the soil moisture dynamics with the objective to deflate its correlation structure at small spatial scales which are not embedded in the probabilistic structure of the rainfall process that drives the dynamics. These scales of order of several meters to several hundred meters are of great importance in ecohydrologic dynamics. Properties of space-time correlation functions and spectral densities of the model with jitter are explored analytically, and the influence of the jitter parameters, reflecting variabilities of soil moisture at different spatial and temporal scales, is investigated. A case study fitting the derived model to a soil moisture dataset is presented in detail.
NASA Astrophysics Data System (ADS)
Kavka, Petr; Strouhal, Ludek; Weyskrabova, Lenka; Müller, Miloslav; Kozant, Petr
2017-04-01
The short-term rainfall temporal distribution is known to have a significant effect on the small watersheds' hydrological response. In Czech Republic there are limited publicly available data on rainfall patterns of short-term precipitation. On one side there are catalogues of very short-term synthetic rainfalls used in urban drainage planning and on the other side hourly distribution of daily totals of rainfalls with long return period for larger catchments analyses. This contribution introduces the preliminary outcomes of a running three years' project, which should bridge this gap and provide such data and methodology to the community of scientists, state administration as well as design planners. Six generalized 6-hours hyetographs with 1 minute resolution were derived from 10 years of radar and gauging stations data. These hyetographs are accompanied with information concerning the region of occurrence as well as their frequency related to the rainfall amount. In the next step these hyetographs are used in a complex sensitivity analysis focused on a rainfall-runoff response of small watersheds. This analysis takes into account the uncertainty related to type of the hydrological model, watershed characteristics and main model routines parameterization. Five models with different methods and structure are considered and each model is applied on 5 characteristic watersheds selected from a classification of 7700 small Czech watersheds. For each combination of model and watershed 30, rainfall scenarios were simulated and other scenarios will be used to address the parameters uncertainty. In the last step the variability of outputs will be assessed in the context of economic impacts on design of landscape water structures or mitigation measures. The research is supported by the grant QJ1520265 of the Czech Ministry of Agriculture, rainfall data were provided by the Czech Hydrometeorological Institute.
Frank, Anke S. K.; Dickman, Chris R.; Wardle, Glenda M.; Greenville, Aaron C.
2013-01-01
Arid grasslands are used worldwide for grazing by domestic livestock, generating debate about how this pastoral enterprise may influence native desert biota. One approach to resolving this question is to experimentally reduce livestock numbers and measure the effects. However, a key challenge in doing this is that historical grazing impacts are likely to be cumulative and may therefore confound comparisons of the short-term responses of desert biota to changes in stocking levels. Arid areas are also subject to infrequent flooding rainfalls that drive productivity and dramatically alter abundances of flora and fauna. We took advantage of an opportunity to study the recent effects of a property-scale cattle removal on two properties with similarly varied grazing histories in central Australia. Following the removal of cattle in 2006 and before and after a significant rainfall event at the beginning of 2007, we sampled vegetation and small vertebrates on eight occasions until October 2008. Our results revealed significant interactions of time of survey with both grazing history and grazing removal for vascular plants, small mammals and reptiles. The mammals exhibited a three-way interaction of time, grazing history and grazing removal, thus highlighting the importance of careful sampling designs and timing for future monitoring. The strongest response to the cessation of grazing after two years was depressed reproductive output of plants in areas where cattle continued to graze. Our results confirm that neither vegetation nor small vertebrates necessarily respond immediately to the removal of livestock, but that rainfall events and cumulative grazing history are key determinants of floral and faunal performance in grassland landscapes with low and variable rainfall. We suggest that improved assessments could be made of the health of arid grazing environments if long-term monitoring were implemented to track the complex interactions that influence how native biota respond to grazing. PMID:23874635
Variability of rainfall over small areas
NASA Technical Reports Server (NTRS)
Runnels, R. C.
1983-01-01
A preliminary investigation was made to determine estimates of the number of raingauges needed in order to measure the variability of rainfall in time and space over small areas (approximately 40 sq miles). The literature on rainfall variability was examined and the types of empirical relationships used to relate rainfall variations to meteorological and catchment-area characteristics were considered. Relations between the coefficient of variation and areal-mean rainfall and area have been used by several investigators. These parameters seemed reasonable ones to use in any future study of rainfall variations. From a knowledge of an appropriate coefficient of variation (determined by the above-mentioned relations) the number rain gauges needed for the precise determination of areal-mean rainfall may be calculated by statistical estimation theory. The number gauges needed to measure the coefficient of variation over a 40 sq miles area, with varying degrees of error, was found to range from 264 (10% error, mean precipitation = 0.1 in) to about 2 (100% error, mean precipitation = 0.1 in).
Pritchard, Michael S.; O'Brien, Travis A.; Timmermans, Ben W.
2018-01-01
Abstract Deficiencies in the parameterizations of convection used in global climate models often lead to a distorted representation of the simulated rainfall intensity distribution (i.e., too much rainfall from weak rain rates). While encouraging improvements in high percentile rainfall intensity have been found as the horizontal resolution of the Community Atmosphere Model is increased to ∼25 km, we demonstrate no corresponding improvement in the moderate rain rates that generate the majority of accumulated rainfall. Using a statistical framework designed to emphasize links between precipitation intensity and accumulated rainfall beyond just the frequency distribution, we show that CAM cannot realistically simulate moderate rain rates, and cannot capture their intensification with climate change, even as resolution is increased. However, by separating the parameterized convective and large‐scale resolved contributions to total rainfall, we find that the intensity, geographic pattern, and climate change response of CAM's large‐scale rain rates are more consistent with observations (TRMM 3B42), superparameterization, and theoretical expectations, despite issues with parameterized convection. Increasing CAM's horizontal resolution does improve the representation of total rainfall intensity, but not due to changes in the intensity of large‐scale rain rates, which are surprisingly insensitive to horizontal resolution. Rather, improvements occur through an increase in the relative contribution of the large‐scale component to the total amount of accumulated rainfall. Analysis of sensitivities to convective timescale and entrainment rate confirm the importance of these parameters in the possible development of scale‐aware parameterizations, but also reveal unrecognized trade‐offs from the entanglement of precipitation frequency and total amount. PMID:29861837
Precipitation Processes Derived from TRMM Satellite Data, Cloud Resolving Model and Field Campaigns
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.; Einaudi, Franco (Technical Monitor)
2001-01-01
Rainfall is a key link in the hydrologic cycle and is a primary heat source for the atmosphere. The vertical distribution of latent-heat release, which is accompanied by rainfall, modulates the large-scale circulations of the tropics and in turn can impact midlatitude weather. This latent heat release is a consequence of phase changes between vapor, liquid. and solid water. Present large-scale weather and climate models can simulate cloud latent heat release only crudely thus reducing their confidence in predictions on both global and regional scales. In this paper, NASA Tropical Rainfall Measuring (TRMM) precipitation radar (PR) derived rainfall information and the Goddard Convective and Stratiform Heating (CSH) algorithm used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to October 2000. Rainfall latent heating and radar reflectively structure between ENSO (1997-1998 winter) and non-ENSO (1998-1999 winter) periods are examined and compared. The seasonal variation of heating over various geographic locations (i.e. Indian ocean vs west Pacific; Africa vs S. America) are also analyzed. In addition, the relationship between rainfall latent heating maximum heating level), radar reflectively and SST are examined.
Satellite-based Flood Modeling Using TRMM-based Rainfall Products
Harris, Amanda; Rahman, Sayma; Hossain, Faisal; Yarborough, Lance; Bagtzoglou, Amvrossios C.; Easson, Greg
2007-01-01
Increasingly available and a virtually uninterrupted supply of satellite-estimated rainfall data is gradually becoming a cost-effective source of input for flood prediction under a variety of circumstances. However, most real-time and quasi-global satellite rainfall products are currently available at spatial scales ranging from 0.25° to 0.50° and hence, are considered somewhat coarse for dynamic hydrologic modeling of basin-scale flood events. This study assesses the question: what are the hydrologic implications of uncertainty of satellite rainfall data at the coarse scale? We investigated this question on the 970 km2 Upper Cumberland river basin of Kentucky. The satellite rainfall product assessed was NASA's Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) product called 3B41RT that is available in pseudo real time with a latency of 6-10 hours. We observed that bias adjustment of satellite rainfall data can improve application in flood prediction to some extent with the trade-off of more false alarms in peak flow. However, a more rational and regime-based adjustment procedure needs to be identified before the use of satellite data can be institutionalized among flood modelers. PMID:28903302
Adaptive strategies to climate change in Southern Malawi
NASA Astrophysics Data System (ADS)
Chidanti-Malunga, J.
Climate change poses a big challenge to rural livelihoods in the Shire Valley area of Southern Malawi, where communities have depended almost entirely on rain-fed agriculture for generations. The Shire Valley area comprises of low-altitude dambo areas and uplands which have been the main agricultural areas. Since early to mid 1980s, the uplands have experienced prolonged droughts and poor rainfall distribution, while the dambos have experienced recurrent seasonal floods. This study assessed some of the adaptive strategies exercised by small-scale rural farmers in response to climate change in the Shire Valley. The methodology used in collecting information includes group discussions, household surveys in the area, secondary data, and field observations. The results show that small-scale rural farmers exercise a number of adaptive strategies in response to climate change. These adaptive strategies include: increased use of water resources for small-scale irrigation or wetland farming, mostly using simple delivery techniques; increased management of residual moisture; and increased alternative sources of income such as fishing and crop diversity. It was also observed that government promoted the use of portable motorized pumps for small-scale irrigation in order to mitigate the effects of climate change. However, these external interventions were not fully adopted; instead the farmers preferred local interventions which mostly had indigenous elements.
Enhanced Orographic Tropical Rainfall: An Study of the Colombia's rainfall
NASA Astrophysics Data System (ADS)
Peñaranda, V. M.; Hoyos Ortiz, C. D.; Mesa, O. J.
2015-12-01
Convection in tropical regions may be enhanced by orographic barriers. The orographic enhancement is an intensification of rain rates caused by the forced lifting of air over a mountainous structure. Orographic heavy rainfall events, occasionally, comes along by flooding, debris flow and substantial amount of looses, either economics or human lives. Most of the heavy convective rainfall events, occurred in Colombia, have left a lot of victims and material damages by flash flooding. An urgent action is required by either scientific communities or society, helping to find preventive solutions against these kind of events. Various scientific literature reports address the feedback process between the convection and the local orographic structures. The orographic enhancement could arise by several physical mechanism: precipitation transport on leeward side, convection triggered by the forcing of air over topography, the seeder-feeder mechanism, among others. The identification of the physical mechanisms for orographic enhancement of rainfall has not been studied over Colombia. As far as we know, orographic convective tropical rainfall is just the main factor for the altitudinal belt of maximum precipitation, but the lack of detailed hydro-meteorological measurements have precluded a complete understanding of the tropical rainfall in Colombia and its complex terrain. The emergence of the multifractal theory for rainfall has opened a field of research which builds a framework for parsimonious modeling of physical process. Studies about the scaling behavior of orographic rainfall have found some modulating functions between the rainfall intensity probability distribution and the terrain elevation. The overall objective is to advance in the understanding of the orographic influence over the Colombian tropical rainfall based on observations and scaling-analysis techniques. We use rainfall maps, weather radars scans and ground-based rainfall data. The research strategy is the analysis of rainfall fields via first-order statistical properties, scaling functions, structure functions and spectral analysis, taking into account cloud-motion directions over mountainous slopes (windward/leeward side) and timing of the diurnal cycle. The analysis is developed for some Colombia's locations.
The Microphysical Structure of Extreme Precipitation as Inferred from Ground-Based Raindrop Spectra.
NASA Astrophysics Data System (ADS)
Uijlenhoet, Remko; Smith, James A.; Steiner, Matthias
2003-05-01
The controls on the variability of raindrop size distributions in extreme rainfall and the associated radar reflectivity-rain rate relationships are studied using a scaling-law formalism for the description of raindrop size distributions and their properties. This scaling-law formalism enables a separation of the effects of changes in the scale of the raindrop size distribution from those in its shape. Parameters controlling the scale and shape of the scaled raindrop size distribution may be related to the microphysical processes generating extreme rainfall. A global scaling analysis of raindrop size distributions corresponding to rain rates exceeding 100 mm h1, collected during the 1950s with the Illinois State Water Survey raindrop camera in Miami, Florida, reveals that extreme rain rates tend to be associated with conditions in which the variability of the raindrop size distribution is strongly number controlled (i.e., characteristic drop sizes are roughly constant). This means that changes in properties of raindrop size distributions in extreme rainfall are largely produced by varying raindrop concentrations. As a result, rainfall integral variables (such as radar reflectivity and rain rate) are roughly proportional to each other, which is consistent with the concept of the so-called equilibrium raindrop size distribution and has profound implications for radar measurement of extreme rainfall. A time series analysis for two contrasting extreme rainfall events supports the hypothesis that the variability of raindrop size distributions for extreme rain rates is strongly number controlled. However, this analysis also reveals that the actual shapes of the (measured and scaled) spectra may differ significantly from storm to storm. This implies that the exponents of power-law radar reflectivity-rain rate relationships may be similar, and close to unity, for different extreme rainfall events, but their prefactors may differ substantially. Consequently, there is no unique radar reflectivity-rain rate relationship for extreme rain rates, but the variability is essentially reduced to one free parameter (i.e., the prefactor). It is suggested that this free parameter may be estimated on the basis of differential reflectivity measurements in extreme rainfall.
Wright, Emma L; Black, Colin R; Turner, Benjamin L; Sjögersten, Sofie
2013-12-01
Tropical peatlands play an important role in the global storage and cycling of carbon (C) but information on carbon dioxide (CO2) and methane (CH4) fluxes from these systems is sparse, particularly in the Neotropics. We quantified short and long-term temporal and small scale spatial variation in CO2 and CH4 fluxes from three contrasting vegetation communities in a domed ombrotrophic peatland in Panama. There was significant variation in CO2 fluxes among vegetation communities in the order Campnosperma panamensis > Raphia taedigera > Cyperus. There was no consistent variation among sites and no discernible seasonal pattern of CH4 flux despite the considerable range of values recorded (e.g. -1.0 to 12.6 mg m(-2) h(-1) in 2007). CO2 fluxes varied seasonally in 2007, being greatest in drier periods (300-400 mg m(-2) h(-1)) and lowest during the wet period (60-132 mg m(-2) h(-1)) while very high emissions were found during the 2009 wet period, suggesting that peak CO2 fluxes may occur following both low and high rainfall. In contrast, only weak relationships between CH4 flux and rainfall (positive at the C. panamensis site) and solar radiation (negative at the C. panamensis and Cyperus sites) was found. CO2 fluxes showed a diurnal pattern across sites and at the Cyperus sp. site CO2 and CH4 fluxes were positively correlated. The amount of dissolved carbon and nutrients were strong predictors of small scale within-site variability in gas release but the effect was site-specific. We conclude that (i) temporal variability in CO2 was greater than variation among vegetation communities; (ii) rainfall may be a good predictor of CO2 emissions from tropical peatlands but temporal variation in CH4 does not follow seasonal rainfall patterns; and (iii) diurnal variation in CO2 fluxes across different vegetation communities can be described by a Fourier model. © 2013 John Wiley & Sons Ltd.
Application of a process-based shallow landslide hazard model over a broad area in Central Italy
Gioia, Eleonora; Speranza, Gabriella; Ferretti, Maurizio; Godt, Jonathan W.; Baum, Rex L.; Marincioni, Fausto
2015-01-01
Process-based models are widely used for rainfall-induced shallow landslide forecasting. Previous studies have successfully applied the U.S. Geological Survey’s Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability (TRIGRS) model (Baum et al. 2002) to compute infiltration-driven changes in the hillslopes’ factor of safety on small scales (i.e., tens of square kilometers). Soil data input for such models are difficult to obtain across larger regions. This work describes a novel methodology for the application of TRIGRS over broad areas with relatively uniform hydrogeological properties. The study area is a 550-km2 region in Central Italy covered by post-orogenic Quaternary sediments. Due to the lack of field data, we assigned mechanical and hydrological property values through a statistical analysis based on literature review of soils matching the local lithologies. We calibrated the model using rainfall data from 25 historical rainfall events that triggered landslides. We compared the variation of pressure head and factor of safety with the landslide occurrence to identify the best fitting input conditions. Using calibrated inputs and a soil depth model, we ran TRIGRS for the study area. Receiver operating characteristic (ROC) analysis, comparing the model’s output with a shallow landslide inventory, shows that TRIGRS effectively simulated the instability conditions in the post-orogenic complex during historical rainfall scenarios. The implication of this work is that rainfall-induced landslides over large regions may be predicted by a deterministic model, even where data on geotechnical and hydraulic properties as well as temporal changes in topography or subsurface conditions are not available.
NASA Astrophysics Data System (ADS)
Langousis, Andreas; Mamalakis, Antonis; Deidda, Roberto; Marrocu, Marino
2015-04-01
To improve the level skill of Global Climate Models (GCMs) and Regional Climate Models (RCMs) in reproducing the statistics of rainfall at a basin level and at hydrologically relevant temporal scales (e.g. daily), two types of statistical approaches have been suggested. One is the statistical correction of climate model rainfall outputs using historical series of precipitation. The other is the use of stochastic models of rainfall to conditionally simulate precipitation series, based on large-scale atmospheric predictors produced by climate models (e.g. geopotential height, relative vorticity, divergence, mean sea level pressure). The latter approach, usually referred to as statistical rainfall downscaling, aims at reproducing the statistical character of rainfall, while accounting for the effects of large-scale atmospheric circulation (and, therefore, climate forcing) on rainfall statistics. While promising, statistical rainfall downscaling has not attracted much attention in recent years, since the suggested approaches involved complex (i.e. subjective or computationally intense) identification procedures of the local weather, in addition to demonstrating limited success in reproducing several statistical features of rainfall, such as seasonal variations, the distributions of dry and wet spell lengths, the distribution of the mean rainfall intensity inside wet periods, and the distribution of rainfall extremes. In an effort to remedy those shortcomings, Langousis and Kaleris (2014) developed a statistical framework for simulation of daily rainfall intensities conditional on upper air variables, which accurately reproduces the statistical character of rainfall at multiple time-scales. Here, we study the relative performance of: a) quantile-quantile (Q-Q) correction of climate model rainfall products, and b) the statistical downscaling scheme of Langousis and Kaleris (2014), in reproducing the statistical structure of rainfall, as well as rainfall extremes, at a regional level. This is done for an intermediate-sized catchment in Italy, i.e. the Flumendosa catchment, using climate model rainfall and atmospheric data from the ENSEMBLES project (http://ensembleseu.metoffice.com). In doing so, we split the historical rainfall record of mean areal precipitation (MAP) in 15-year calibration and 45-year validation periods, and compare the historical rainfall statistics to those obtained from: a) Q-Q corrected climate model rainfall products, and b) synthetic rainfall series generated by the suggested downscaling scheme. To our knowledge, this is the first time that climate model rainfall and statistically downscaled precipitation are compared to catchment-averaged MAP at a daily resolution. The obtained results are promising, since the proposed downscaling scheme is more accurate and robust in reproducing a number of historical rainfall statistics, independent of the climate model used and the length of the calibration period. This is particularly the case for the yearly rainfall maxima, where direct statistical correction of climate model rainfall outputs shows increased sensitivity to the length of the calibration period and the climate model used. The robustness of the suggested downscaling scheme in modeling rainfall extremes at a daily resolution, is a notable feature that can effectively be used to assess hydrologic risk at a regional level under changing climatic conditions. Acknowledgments The research project is implemented within the framework of the Action «Supporting Postdoctoral Researchers» of the Operational Program "Education and Lifelong Learning" (Action's Beneficiary: General Secretariat for Research and Technology), and is co-financed by the European Social Fund (ESF) and the Greek State. CRS4 highly acknowledges the contribution of the Sardinian regional authorities.
A multi-sensor approach to landslide monitoring of rainfall-induced failures in Scotland.
NASA Astrophysics Data System (ADS)
Gilles, Charlie; Hoey, Trevor; Williams, Richard
2017-04-01
Landslides are of significant interest in upland areas of the United Kingdom due to their: complex mechanics, potential to channelize into hazardous debris flows and their costly potential impacts on infrastructure. The British Geological Survey National Landslide Database contains an average of 367 landslides per year (from 1970). Slope failures in the UK are typically triggered by extended periods of intense rainfall, and can occur at any time of year. In any given rainfall event that triggers landslides, most potentially vulnerable slopes remain stable. Accurate warning systems would be facilitated by identifying landslide precursors prior to failure events. This project tests whether such precursors can be identified in the valley of Glen Ogle, Scotland (87 km north-west of Edinburgh), where in summer 2004 two debris flows blocked the main road (A85), trapping fifty-seven people. Two adjacent sites have been selected on a west facing slope in Glen Ogle, one of which (the control) has been stable since at least 2004 and the other failed in 2004 and remains unstable. Understanding the immediate causes and antecedent conditions responsible for landslides requires a multi-scale approach. This project uses multiple sensors to assess failure mechanisms of landslides in Glen Ogle: (1) 3-monthly, high (1.8 arcsec) resolution terrestrial laser scanning of topography to detect changes and identify patterns of movement prior to major failure, using the Riegl VZ-1000 (NERC Geophysical Equipment Fund); (2) rainfall and soil moisture data to monitor pore pressure of landslide failure prior to and after hydrologically triggered events; (3) monitoring ground motion using grain-scale sensors which are becoming lower cost, more efficient in terms of power, and can be wirelessly networked these will be used to detect small scale movement of the landslide. Comparative data from the control and test sites will be presented, from which patterns of surface deformation between failure events will be derived.
NASA Astrophysics Data System (ADS)
Lasky, Jesse R.; Uriarte, María; Muscarella, Robert
2016-11-01
Interspecific variation in phenology is a key axis of functional diversity, potentially mediating how communities respond to climate change. The diverse drivers of phenology act across multiple temporal scales. For example, abiotic constraints favor synchronous reproduction (positive covariance among species), while biotic interactions can favor synchrony or compensatory dynamics (negative covariance). We used wavelet analyses to examine phenology of community flower and seed production for 45 tree species across multiple temporal scales in a tropical dry forest in Puerto Rico with marked rainfall seasonality. We asked three questions: (1) do species exhibit synchronous or compensatory temporal dynamics in reproduction, (2) do interspecific differences in phenology reflect variable responses to rainfall, and (3) is interspecific variation in phenology and response to a major drought associated with functional traits that mediate responses to moisture? Community-level flowering was synchronized at seasonal scales (˜5-6 mo) and at short scales (˜1 mo, following rainfall). However, seed rain exhibited significant compensatory dynamics at intraseasonal scales (˜3 mo), suggesting interspecific variation in temporal niches. Species with large leaves (associated with sensitivity to water deficit) peaked in reproduction synchronously with the peak of seasonal rainfall (˜5 mo scale). By contrast, species with high wood specific gravity (associated with drought resistance) tended to flower in drier periods. Flowering of tall species and those with large leaves was most tightly linked to intraseasonal (˜2 mo scale) rainfall fluctuations. Although the 2015 drought dramatically reduced community-wide reproduction, functional traits were not associated with the magnitude of species-specific declines. Our results suggest opposing drivers of synchronous versus compensatory dynamics at different temporal scales. Phenology associations with functional traits indicated that distinct strategies for coping with seasonality underlie phenological diversity. Observed drought responses highlight the importance of non-linear community responses to climate. Community phenology exhibits scale-specific patterns highlighting the need for multi-scale approaches to community dynamics.
Significant uncertainty in global scale hydrological modeling from precipitation data errors
NASA Astrophysics Data System (ADS)
Sperna Weiland, Frederiek C.; Vrugt, Jasper A.; van Beek, Rens (L.) P. H.; Weerts, Albrecht H.; Bierkens, Marc F. P.
2015-10-01
In the past decades significant progress has been made in the fitting of hydrologic models to data. Most of this work has focused on simple, CPU-efficient, lumped hydrologic models using discharge, water table depth, soil moisture, or tracer data from relatively small river basins. In this paper, we focus on large-scale hydrologic modeling and analyze the effect of parameter and rainfall data uncertainty on simulated discharge dynamics with the global hydrologic model PCR-GLOBWB. We use three rainfall data products; the CFSR reanalysis, the ERA-Interim reanalysis, and a combined ERA-40 reanalysis and CRU dataset. Parameter uncertainty is derived from Latin Hypercube Sampling (LHS) using monthly discharge data from five of the largest river systems in the world. Our results demonstrate that the default parameterization of PCR-GLOBWB, derived from global datasets, can be improved by calibrating the model against monthly discharge observations. Yet, it is difficult to find a single parameterization of PCR-GLOBWB that works well for all of the five river basins considered herein and shows consistent performance during both the calibration and evaluation period. Still there may be possibilities for regionalization based on catchment similarities. Our simulations illustrate that parameter uncertainty constitutes only a minor part of predictive uncertainty. Thus, the apparent dichotomy between simulations of global-scale hydrologic behavior and actual data cannot be resolved by simply increasing the model complexity of PCR-GLOBWB and resolving sub-grid processes. Instead, it would be more productive to improve the characterization of global rainfall amounts at spatial resolutions of 0.5° and smaller.
The spatial return level of aggregated hourly extreme rainfall in Peninsular Malaysia
NASA Astrophysics Data System (ADS)
Shaffie, Mardhiyyah; Eli, Annazirin; Wan Zin, Wan Zawiah; Jemain, Abdul Aziz
2015-07-01
This paper is intended to ascertain the spatial pattern of extreme rainfall distribution in Peninsular Malaysia at several short time intervals, i.e., on hourly basis. Motivation of this research is due to historical records of extreme rainfall in Peninsular Malaysia, whereby many hydrological disasters at this region occur within a short time period. The hourly periods considered are 1, 2, 3, 6, 12, and 24 h. Many previous hydrological studies dealt with daily rainfall data; thus, this study enables comparison to be made on the estimated performances between daily and hourly rainfall data analyses so as to identify the impact of extreme rainfall at a shorter time scale. Return levels based on the time aggregate considered are also computed. Parameter estimation using L-moment method for four probability distributions, namely, the generalized extreme value (GEV), generalized logistic (GLO), generalized Pareto (GPA), and Pearson type III (PE3) distributions were conducted. Aided with the L-moment diagram test and mean square error (MSE) test, GLO was found to be the most appropriate distribution to represent the extreme rainfall data. At most time intervals (10, 50, and 100 years), the spatial patterns revealed that the rainfall distribution across the peninsula differ for 1- and 24-h extreme rainfalls. The outcomes of this study would provide additional information regarding patterns of extreme rainfall in Malaysia which may not be detected when considering only a higher time scale such as daily; thus, appropriate measures for shorter time scales of extreme rainfall can be planned. The implementation of such measures would be beneficial to the authorities to reduce the impact of any disastrous natural event.
Mechanisms for Diurnal Variability of Global Tropical Rainfall Observed from TRMM
NASA Technical Reports Server (NTRS)
Yang, Song; Smith, Eric A.
2004-01-01
The behavior and various controls of diurnal variability in tropical-subtropical rainfall are investigated using Tropical Rainfall Measuring Mission (TRMM) precipitation measurements retrieved from: (1) TRMM Microwave Imager (TMI), (2) Precipitation Radar (PR), and (3) TMI/PR Combined, standard level 2 algorithms for the 1998 annual cycle. Results show that the diurnal variability characteristics of precipitation are consistent for all three algorithms, providing assurance that TRMM retrievals are providing consistent estimates of rainfall variability. As anticipated, most ocean areas exhibit more rainfall at night, while over most land areas rainfall peaks during daytime ,however, various important exceptions are found. The dominant feature of the oceanic diurnal cycle is a rainfall maximum in late-evening/early-morning (LE-EM) hours, while over land the dominant maximum occurs in the mid- to late-afternoon (MLA). In conjunction with these maxima are pronounced seasonal variations of the diurnal amplitudes. Amplitude analysis shows that the diurnal pattern and its seasonal evolution are closely related to the rainfall accumulation pattern and its seasonal evolution. In addition, the horizontal distribution of diurnal variability indicates that for oceanic rainfall there is a secondary MLA maximum, co-existing with the LE-EM maximum, at latitudes dominated by large scale convergence and deep convection. Analogously, there is a preponderance for an LE-EM maximum over land, co-existing with the stronger MLA maximum, although it is not evident that this secondary continental feature is closely associated with the large scale circulation. The ocean results clearly indicate that rainfall diurnal variability associated with large scale convection is an integral part of the atmospheric general circulation.
NASA Astrophysics Data System (ADS)
Staley, Dennis; Negri, Jacquelyn; Kean, Jason
2016-04-01
Population expansion into fire-prone steeplands has resulted in an increase in post-fire debris-flow risk in the western United States. Logistic regression methods for determining debris-flow likelihood and the calculation of empirical rainfall intensity-duration thresholds for debris-flow initiation represent two common approaches for characterizing hazard and reducing risk. Logistic regression models are currently being used to rapidly assess debris-flow hazard in response to design storms of known intensities (e.g. a 10-year recurrence interval rainstorm). Empirical rainfall intensity-duration thresholds comprise a major component of the United States Geological Survey (USGS) and the National Weather Service (NWS) debris-flow early warning system at a regional scale in southern California. However, these two modeling approaches remain independent, with each approach having limitations that do not allow for synergistic local-scale (e.g. drainage-basin scale) characterization of debris-flow hazard during intense rainfall. The current logistic regression equations consider rainfall a unique independent variable, which prevents the direct calculation of the relation between rainfall intensity and debris-flow likelihood. Regional (e.g. mountain range or physiographic province scale) rainfall intensity-duration thresholds fail to provide insight into the basin-scale variability of post-fire debris-flow hazard and require an extensive database of historical debris-flow occurrence and rainfall characteristics. Here, we present a new approach that combines traditional logistic regression and intensity-duration threshold methodologies. This method allows for local characterization of both the likelihood that a debris-flow will occur at a given rainfall intensity, the direct calculation of the rainfall rates that will result in a given likelihood, and the ability to calculate spatially explicit rainfall intensity-duration thresholds for debris-flow generation in recently burned areas. Our approach synthesizes the two methods by incorporating measured rainfall intensity into each model variable (based on measures of topographic steepness, burn severity and surface properties) within the logistic regression equation. This approach provides a more realistic representation of the relation between rainfall intensity and debris-flow likelihood, as likelihood values asymptotically approach zero when rainfall intensity approaches 0 mm/h, and increase with more intense rainfall. Model performance was evaluated by comparing predictions to several existing regional thresholds. The model, based upon training data collected in southern California, USA, has proven to accurately predict rainfall intensity-duration thresholds for other areas in the western United States not included in the original training dataset. In addition, the improved logistic regression model shows promise for emergency planning purposes and real-time, site-specific early warning. With further validation, this model may permit the prediction of spatially-explicit intensity-duration thresholds for debris-flow generation in areas where empirically derived regional thresholds do not exist. This improvement would permit the expansion of the early-warning system into other regions susceptible to post-fire debris flow.
The potential of urban rainfall monitoring with crowdsourced automatic weather stations in Amsterdam
NASA Astrophysics Data System (ADS)
de Vos, Lotte; Leijnse, Hidde; Overeem, Aart; Uijlenhoet, Remko
2017-02-01
The high density of built-up areas and resulting imperviousness of the land surface makes urban areas vulnerable to extreme rainfall, which can lead to considerable damage. In order to design and manage cities to be able to deal with the growing number of extreme rainfall events, rainfall data are required at higher temporal and spatial resolutions than those needed for rural catchments. However, the density of operational rainfall monitoring networks managed by local or national authorities is typically low in urban areas. A growing number of automatic personal weather stations (PWSs) link rainfall measurements to online platforms. Here, we examine the potential of such crowdsourced datasets for obtaining the desired resolution and quality of rainfall measurements for the capital of the Netherlands. Data from 63 stations in Amsterdam (˜ 575 km2) that measure rainfall over at least 4 months in a 17-month period are evaluated. In addition, a detailed assessment is made of three Netatmo stations, the largest contributor to this dataset, in an experimental setup. The sensor performance in the experimental setup and the density of the PWS network are promising. However, features in the online platforms, like rounding and thresholds, cause changes from the original time series, resulting in considerable errors in the datasets obtained. These errors are especially large during low-intensity rainfall, although they can be reduced by accumulating rainfall over longer intervals. Accumulation improves the correlation coefficient with gauge-adjusted radar data from 0.48 at 5 min intervals to 0.60 at hourly intervals. Spatial rainfall correlation functions derived from PWS data show much more small-scale variability than those based on gauge-adjusted radar data and those found in similar research using dedicated rain gauge networks. This can largely be attributed to the noise in the PWS data resulting from both the measurement setup and the processes occurring in the data transfer to the online PWS platform. A double mass comparison with gauge-adjusted radar data shows that the median of the stations resembles the rainfall reference better than the real-time (unadjusted) radar product. Averaging nearby raw PWS measurements further improves the match with gauge-adjusted radar data in that area. These results confirm that the growing number of internet-connected PWSs could successfully be used for urban rainfall monitoring.
Urban rainfall monitoring with crowdsourced automatic weather stations in Amsterdam
NASA Astrophysics Data System (ADS)
de Vos, Lotte; Leijnse, Hidde; Overeem, Aart; Uijlenhoet, Remko
2017-04-01
The high density of built-up areas and resulting imperviousness of the land surface makes urban areas vulnerable to extreme rainfall, which can lead to considerable damage. In order to design and manage cities to be able to deal with the growing number of extreme rainfall events, rainfall data is required at higher temporal and spatial resolutions than those needed for rural catchments. However, the density of operational rainfall monitoring networks managed by local or national authorities is typically low in urban areas. A growing number of automatic personal weather stations (PWSs) link rainfall measurements to online platforms. Here, we examine the potential of such crowdsourced datasets for obtaining the desired resolution and quality of rainfall measurements for the capital of the Netherlands. Data from 63 stations in Amsterdam (˜575 km2}) that measure rainfall over at least 4 months in a 17-month period are evaluated. In addition, a detailed assessment is made of three Netatmo stations, the largest contributor to this dataset, in an experimental set-up. The sensor performance in the experimental set-up and the density of the PWS-network are promising. However, features in the online platforms, like rounding and thresholds, cause changes from the original time series, resulting in considerable errors in the datasets obtained. These errors are especially large during low intensity rainfall, although they can be reduced by accumulating rainfall over longer intervals. Accumulation improves the correlation coefficient with gauge-adjusted radar data from 0.48 at 5 min intervals to 0.60 at hourly intervals. Spatial rainfall correlation functions derived from PWS data show much more small-scale variability than those based on gauge-adjusted radar data and those found in similar research using dedicated rain gauge networks. This can largely be attributed to the noise in the PWS data resulting from both the measurement setup and the processes occurring in the data transfer to the online PWS-platform. A double mass comparison with gauge-adjusted radar data shows that the median of the stations resembles the rainfall reference better than the real-time (unadjusted) radar product. Averaging nearby raw PWS measurements further improves the match with gauge-adjusted radar data in that area. These results confirm that the growing number of internet-connected PWSs could successfully be used for urban rainfall monitoring.
NASA Astrophysics Data System (ADS)
Velasco, David; Sempere-Torres, Daniel; Corral, Carles; Llort, Xavier; Velasco, Enrique
2010-05-01
Early Warning Systems (EWS) are commonly identified as the most efficient tools in order to improve the preparedness and risk management against heavy rains and Flash Floods (FF) with the objective of reducing economical losses and human casualties. In particular, flash floods affecting torrential Mediterranean catchments are a key element to be incorporated within operational EWSs. The characteristic high spatial and temporal variability of the storms requires high-resolution data and methods to monitor/forecast the evolution of rainfall and its hydrological impact in small and medium torrential basins. A first version of an operational FF-EWS has been implemented in Catalonia (NE Spain) under the name of EHIMI system (Integrated Tool for Hydrometeorological Forecasting) with the support of the Catalan Water Agency (ACA) and the Meteorological Service of Catalonia (SMC). Flash flood warnings are issued based on radar-rainfall estimates. Rainfall estimation is performed on radar observations with high spatial and temporal resolution (1km2 and 10 minutes) in order to adapt the warning scale to the 1-km grid of the EWS. The method is based on comparing observed accumulated rainfall against rainfall thresholds provided by the regional Intensity-Duration-Frequency (IDF) curves. The so-called "aggregated rainfall warning" at every river cell is obtained as the spatially averaged rainfall over its associated upstream draining area. Regarding the time aggregation of rainfall, the critical duration is thought to be an accumulation period similar to the concentration time of each cachtment. The warning is issued once the forecasted rainfall accumulation exceeds the rainfall thresholds mentioned above, which are associated to certain probability of occurrence. Finally, the hazard warning is provided and shown to the decision-maker in terms of exceeded return periods at every river cell covering the whole area of Catalonia. The objective of the present work includes the probabilistic component to the FF-EWS. As a first step, we have incorporated the uncertainty in rainfall estimates and forecasts based on an ensemble of equiprobable rainfall scenarios. The presented study has focused on a number of rainfall events and the performance of the FF-EWS evaluated in terms of its ability to produce probabilistic hazard warnings for decision-making support.
SUBPIXEL-SCALE RAINFALL VARIABILITY AND THE EFFECTS ON SEPARATION OF RADAR AND GAUGE RAINFALL ERRORS
One of the primary sources of the discrepancies between radar-based rainfall estimates and rain gauge measurements is the point-area difference, i.e., the intrinsic difference in the spatial dimensions of the rainfall fields that the respective data sets are meant to represent. ...
NASA Astrophysics Data System (ADS)
Zhang, Murong; Meng, Zhiyong
2018-04-01
This study investigates the stage-dependent rainfall forecast skills and the associated synoptic-scale features in a persistent heavy rainfall event in south China, Guangdong Province, during 29-31 March 2014, using operational global ensemble forecasts from the European Centre for Medium-Range Weather Forecasts. This persistent rainfall was divided into two stages with a better precipitation forecast skill in Stage 2 (S2) than Stage 1 (S1) although S2 had a longer lead time. Using ensemble-based sensitivity analysis, key synoptic-scale factors that affected the rainfall were diagnosed by correlating the accumulated precipitation of each stage to atmospheric state variables in the middle of respective stage. The precipitation in both stages was found to be significantly correlated with midlevel trough, low-level vortex, and particularly the low-level jet on the southeast flank of the vortex and its associated moisture transport. The rainfall forecast skill was mainly determined by the forecast accuracy in the location of the low-level jet, which was possibly related to the different juxtapositions between the direction of the movement of the low-level vortex and the orientation of the low-level jet. The uncertainty in rainfall forecast in S1 was mainly from the location uncertainty of the low-level jet, while the uncertainty in rainfall forecast in S2 was mainly from the width uncertainty of the low-level jet with the relatively accurate location of the low-level jet.
NASA Technical Reports Server (NTRS)
Lin, Xin; Zhang, Sara Q.; Hou, Arthur Y.
2006-01-01
Global microwave rainfall retrievals from a 5-satellite constellation, including TMI from TRMM, SSWI from DMSP F13, F14 and F15, and AMSR-E from EOS-AQUA, are assimilated into the NASA Goddard Earth Observing System (GEOS) Data Assimilation System (DAS) using a 1-D variational continuous assimilation (VCA) algorithm. The physical and dynamical impact of rainfall assimilation on GEOS analyses and forecasts is examined at various temporal and spatial scales. This study demonstrates that the 1-D VCA algorithm, which was originally developed and evaluated for rainfall assimilations over tropical oceans, can effectively assimilate satellite microwave rainfall retrievals and improve GEOS analyses over both the Tropics and the extratropics where the atmospheric processes are dominated by different large-scale dynamics and moist physics, and also over the land, where rainfall estimates from passive microwave radiometers are believed to be less accurate. Results show that rainfall assimilation renders the GEOS analysis physically and dynamically more consistent with the observed precipitation at the monthly-mean and 6-hour time scales. Over regions where the model precipitation tends to misbehave in distinctly different rainy regimes, the 1-D VCA algorithm, by compensating for errors in the model s moist time-tendency in a 6-h analysis window, is able to bring the rainfall analysis closer to the observed. The radiation and cloud fields also tend to be in better agreement with independent satellite observations in the rainfall-assimilation m especially over regions where rainfall analyses indicate large improvements. Assimilation experiments with and without rainfall data for a midlatitude frontal system clearly indicates that the GEOS analysis is improved through changes in the thermodynamic and dynamic fields that respond to the rainfall assimilation. The synoptic structures of temperature, moisture, winds, divergence, and vertical motion, as well as vorticity are more realistically captured across the front. Short-term forecasts using initial conditions assimilated with rainfall data also show slight improvements. 1
Design of a reliable and operational landslide early warning system at regional scale
NASA Astrophysics Data System (ADS)
Calvello, Michele; Piciullo, Luca; Gariano, Stefano Luigi; Melillo, Massimo; Brunetti, Maria Teresa; Peruccacci, Silvia; Guzzetti, Fausto
2017-04-01
Landslide early warning systems at regional scale are used to warn authorities, civil protection personnel and the population about the occurrence of rainfall-induced landslides over wide areas, typically through the prediction and measurement of meteorological variables. A warning model for these systems must include a regional correlation law and a decision algorithm. A regional correlation law can be defined as a functional relationship between rainfall and landslides; it is typically based on thresholds of rainfall indicators (e.g., cumulated rainfall, rainfall duration) related to different exceedance probabilities of landslide occurrence. A decision algorithm can be defined as a set of assumptions and procedures linking rainfall thresholds to warning levels. The design and the employment of an operational and reliable early warning system for rainfall-induced landslides at regional scale depend on the identification of a reliable correlation law as well as on the definition of a suitable decision algorithm. Herein, a five-step process chain addressing both issues and based on rainfall thresholds is proposed; the procedure is tested in a landslide-prone area of the Campania region in southern Italy. To this purpose, a database of 96 shallow landslides triggered by rainfall in the period 2003-2010 and rainfall data gathered from 58 rain gauges are used. First, a set of rainfall thresholds are defined applying a frequentist method to reconstructed rainfall conditions triggering landslides in the test area. In the second step, several thresholds at different exceedance probabilities are evaluated, and different percentile combinations are selected for the activation of three warning levels. Subsequently, within steps three and four, the issuing of warning levels is based on the comparison, over time and for each combination, between the measured rainfall and the pre-defined warning level thresholds. Finally, the optimal percentile combination to be employed in the regional early warning system is selected evaluating the model performance in terms of success and error indicators by means of the "event, duration matrix, performance" (EDuMaP) method.
NASA Astrophysics Data System (ADS)
Schumacher, R. S.; Peters, J. M.
2015-12-01
Mesoscale convective systems (MCSs) are responsible for a large fraction of warm-season extreme rainfall events over the continental United States, as well as other midlatitude regions globally. The rainfall production in these MCSs is determined by numerous factors, including the large-scale forcing for ascent, the organization of the convection, cloud microphysical processes, and the surrounding thermodynamic and kinematic environment. Furthermore, heavy-rain-producing MCSs are most common at night, which means that well-studied mechanisms for MCS maintenance and organization such as cold pools (gravity currents) are not always at work. In this study, we use numerical model simulations and recent field observations to investigate the sensitivity of low-level MCS structures, and their influences on rainfall, to the details of the thermodynamic environment. In particular, small alterations to the initial conditions in idealized and semi-idealized simulations result in comparatively large precipitation changes, both in terms of the intensity and the spatial distribution. The uncertainties in the thermodynamic enviroments in the model simulations will be compared with high-resolution observations from the Plains Elevated Convection At Night (PECAN) field experiment in 2015. The results have implications for the paradigms of "surface-based" versus "elevated" convection, as well as for the predictability of warm-season convective rainfall.
NASA Astrophysics Data System (ADS)
Payrastre, Olivier; Bourgin, François; Lebouc, Laurent; Le Bihan, Guillaume; Gaume, Eric
2017-04-01
The October 2015 flash-floods in south eastern France caused more than twenty fatalities, high damages and large economic losses in high density urban areas of the Mediterranean coast, including the cities of Mandelieu-La Napoule, Cannes and Antibes. Following a post event survey and preliminary analyses conducted within the framework of the Hymex project, we set up an entire simulation chain at the regional scale to better understand this outstanding event. Rainfall-runoff simulations, inundation mapping and a first estimation of the impacts are conducted following the approach developed and successfully applied for two large flash-flood events in two different French regions (Gard in 2002 and Var in 2010) by Le Bihan (2016). A distributed rainfall-runoff model applied at high resolution for the whole area - including numerous small ungauged basins - is used to feed a semi-automatic hydraulic approach (Cartino method) applied along the river network - including small tributaries. Estimation of the impacts is then performed based on the delineation of the flooded areas and geographic databases identifying buildings and population at risk.
Herbicide and nitrate distribution in central Iowa rainfall
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatfield, J.L.; Prueger, J.H.; Pfeiffer, R.L.
Herbicides are detected in rainfall; however, these are a small fraction of the total applied. This study was designed to evaluate monthly and annual variation in atrazine (6-chloro-N-ethyl-N{prime}-(1-methylethyl)-1,3,5-triazine-2,4-diamine), alachlor (2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)acetamide), metolachlor (2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide), and NO{sub 3}-N concentrations in rainfall over Walnut Creek watershed south of Ames, IA. The study began in 1991 and continued through 1994. Within the watershed, two wet/dry precipitation samplers were positioned 4 km apart. Detections varied during the year with >90% of the herbicide detections occurring in April through early July. Concentrations varied among events from nondetectable amounts to concentrations of 154 {mu}g L{sup {minus}1}, which occurredmore » when atrazine was applied during an extremely humid day immediately followed by rainfall of <10 mm that washed spray drift from the atmosphere. This was a local scale phenomenon, because the other collector had a more typical concentration of 1.7 {mu}g L{sup {minus}1} with an 8-mm rainfall. VAriation between the two collectors suggests that local scale meteorological processes affect herbicide movement. Yearly atrazine deposition totals were >100 {mu}g m{sup {minus}2} representing <0.1% of the amount applied. Nitrate-N concentrations in precipitation were uniformly distributed throughout the year and without annual variation in the concentrations. Deposition rates of NO{sub 3}-N were about 1.2 g m{sup {minus}2}. Annual loading onto the watershed was about 25% of the amount applied from all forms of N fertilizers. Movement and rates of deposition provide an understanding of the processes and magnitude of the impact of agriculture on the environment. 7 refs., 5 figs., 3 tabs.« less
Landslides Are Common In The Amazon Rainforests Of SE Peru
NASA Astrophysics Data System (ADS)
Khanal, S. P.; Muttiah, R. S.; Janovec, J. P.
2005-12-01
The recent landslides in La Conchita, California, Mumbai, India, Ratnapura, Sri Lanka and Sugozu village, Turkey have dramatically illustrated prolonged rainfall on water induced change in soil shear stress. In these examples, the human footprint may have also erased or altered the natural river drainage from small to large scales. By studying patterns of landslides in natural ecosystems, government officials, policy makers, engineers, geologists and others may be better informed about likely success of prevention or amelioration programs in risk prone areas. Our study area in the Los Amigos basin in Amazon rainforests of Southeastern Peru, has recorded several hundred landslides. The area has no large human settlements. The basin is characterized by heavy rainfall, dense vegetation, river meander and uniform soils. Our objectives were: 1). Determine the spatial pattern of landslides using GIS and Remotely sensed data, 2). Model the statistical relationship between environmental variables and, 3). Evaluate influence of drainage on landscape and soil loss. GIS layers consisted of: 50cm aerial imagery, DEMs, digitized streams, soils, geology, rainfall from the TRMM satellite, and vegetation cover from the LANDSAT and MODIS sensors.
Using SMAP Data to Investigate the Role of Soil Moisture Variability on Realtime Flood Forecasting
NASA Astrophysics Data System (ADS)
Krajewski, W. F.; Jadidoleslam, N.; Mantilla, R.
2017-12-01
The Iowa Flood Center has developed a regional high-resolution flood-forecasting model for the state of Iowa that decomposes the landscape into hillslopes of about 0.1 km2. For the model to benefit, through data assimilation, from SMAP observations of soil moisture (SM) at scales of approximately 100 km2, we are testing a framework to connect SMAP-scale observations to the small-scale SM variability calculated by our rainfall-runoff models. As a step in this direction, we performed data analyses of 15-min point SM observations using a network of about 30 TDR instruments spread throughout the state. We developed a stochastic point-scale SM model that captures 1) SM increases due to rainfall inputs, and 2) SM decay during dry periods. We use a power law model to describe soil moisture decay during dry periods, and a single parameter logistic curve to describe precipitation feedback on soil moisture. We find that the parameters of the models behave as time-independent random variables with stationary distributions. Using data-based simulation, we explore differences in the dynamical range of variability of hillslope and SMAP-scale domains. The simulations allow us to predict the runoff field and streamflow hydrographs for the state of Iowa during the three largest flooding periods (2008, 2014, and 2016). We also use the results to determine the reduction in forecast uncertainty from assimilation of unbiased SMAP-scale soil moisture observations.
Relationships between Tropical Rainfall Events and Regional Annual Rainfall Anomalies
NASA Astrophysics Data System (ADS)
Painter, C.; Varble, A.; Zipser, E. J.
2016-12-01
Regional annual precipitation anomalies strongly impact the health of regional ecosystems, water resources, agriculture, and the probability of flood and drought conditions. Individual event characteristics, including rain rate, areal coverage, and stratiform fraction are also crucial in considering large-scale impacts on these resources. Therefore, forecasting individual event characteristics is important and could potentially be improved through correlation with longer and better predicted timescale environmental variables such as annual rainfall. This study examines twelve years of retrieved rainfall characteristics from the Tropical Rainfall Measuring Mission (TRMM) satellite at a 5° x 5° resolution between 35°N and 35°S, as a function of annual rainfall anomaly derived from Global Precipitation Climatology Project data. Rainfall event characteristics are derived at a system scale from the University of Utah TRMM Precipitation Features database and at a 5-km pixel scale from TRMM 2A25 products. For each 5° x 5° grid box and year, relationships between these characteristics and annual rainfall anomaly are derived. Additionally, years are separated into wet and dry groups for each grid box and are compared versus one another. Convective and stratiform rain rates, along with system area and volumetric rainfall, generally increase during wetter years, and this increase is most prominent over oceans. This is in agreement with recent studies suggesting that convective systems become larger and rainier when regional annual rainfall increases or when the climate warms. Over some land regions, on the other hand, system rain rate, volumetric rainfall, and area actually decrease as annual rainfall increases. Therefore, land and ocean regions generally exhibit different relationships. In agreement with recent studies of extreme rainfall in a changing climate, the largest and rainiest systems increase in relative size and intensity compared to average systems, and do so as a function of annual rainfall in most tropical regions. However, select land regions such as the Congo fail to follow this tendency. Changes in seasonal and diurnal cycles of PF characteristics as a function of regional annual rainfall anomaly are also analyzed.
NASA Astrophysics Data System (ADS)
Ferreira, Carla S. S.; Shakesby, Rick A.; Bento, Célia P. M.; Walsh, Rory P. D.; Ferreira, António J. D.
2013-04-01
In recent decades, wildfire has become both frequent and severe in southern Europe leading to widespread research into its impacts on soil erosion, soil and water quality. Rainfall simulation has become established as a popular technique to assess these impacts, as it can be conducted under controlled conditions (notably, with respect to rainfall) and is a very cost-effective and rapid way to compare overland flow and suspended sediment generation within burned and unburned sites. Particular advantages are that: (1) results can be obtained before the first post-fire rainfall events; and (2) experiments can reproduce controlled storm events, with similar characteristics to natural rain. Although plot sizes vary (0.09-30m2), most researchers have used < 1m2 plots because of logistical difficulties of setting up larger plots especially in burned areas that may lack good access and local water supplies. Disadvantages with using small plots, however, particularly on burned terrain, include: (1) the difficulty of installing the plots without disturbing the soil; (2) the strong influence of plot boundaries on overland flow and sediment production. Significant replication is generally considered necessary to take account of high variability in results that are due in part to these effects. One response to these problems is a 'fixed plot' approach in which bounded plots are left in place for re-use throughout the study. A problem here, however, would be progressive sediment exhaustion due to the 'island' effect of the plots caused by their isolation from upslope sediment transfer. This paper assesses the usefulness of a repeat-simulation plot approach in assessing temporal change in overland flow and erosion in post-fire situations that minimizes the island effect by partial removal of plot boundaries between surveys. This approach was tested over a 2.5-year period in a small (9 ha) catchment in central Portugal subjected to an experimental fire in 2009. Five rainfall simulation plots 0.25m2 in size were installed close to sediment traps (contributing areas: 498-4238m2) collecting sediment eroded by overland flow caused by natural rainfall. The plots were installed pre-fire and experiments carried out under 'dry' and 'wet' antecedent conditions on six occasions from pre-fire to two years after the fire. The lateral boundaries of each plot were left in place, but the upslope boundary and central (outlet) section of the downslope boundary were removed between surveys and re-installed and sealed each time measurements were carried out. Having fixed positions of plots minimised soil disturbance on each monitoring occasion and meant that, for any given plot, results were directly comparable and gave a more reliable picture of change through time. Removing the upper and lower boundaries of the plots between measurements allowed the soil to undergo processes similar to those on the surrounding slope and reduced the 'island' effect associated with continuously bounded plots. Results from the adjacent sediment traps, which provided a parallel temporal record of hillslope-scale overland flow and sediment redistribution patterns under natural rainfall, are used to judge the usefulness of the in situ simulation plots approach.
NASA Astrophysics Data System (ADS)
Kobayashi, Kenichiro; Otsuka, Shigenori; Apip; Saito, Kazuo
2016-08-01
This paper presents a study on short-term ensemble flood forecasting specifically for small dam catchments in Japan. Numerical ensemble simulations of rainfall from the Japan Meteorological Agency nonhydrostatic model (JMA-NHM) are used as the input data to a rainfall-runoff model for predicting river discharge into a dam. The ensemble weather simulations use a conventional 10 km and a high-resolution 2 km spatial resolutions. A distributed rainfall-runoff model is constructed for the Kasahori dam catchment (approx. 70 km2) and applied with the ensemble rainfalls. The results show that the hourly maximum and cumulative catchment-average rainfalls of the 2 km resolution JMA-NHM ensemble simulation are more appropriate than the 10 km resolution rainfalls. All the simulated inflows based on the 2 and 10 km rainfalls become larger than the flood discharge of 140 m3 s-1, a threshold value for flood control. The inflows with the 10 km resolution ensemble rainfall are all considerably smaller than the observations, while at least one simulated discharge out of 11 ensemble members with the 2 km resolution rainfalls reproduces the first peak of the inflow at the Kasahori dam with similar amplitude to observations, although there are spatiotemporal lags between simulation and observation. To take positional lags into account of the ensemble discharge simulation, the rainfall distribution in each ensemble member is shifted so that the catchment-averaged cumulative rainfall of the Kasahori dam maximizes. The runoff simulation with the position-shifted rainfalls shows much better results than the original ensemble discharge simulations.
Osland, Michael J.; Enwright, Nicholas M.; Stagg, Camille L.
2014-01-01
Climate gradient-focused ecological research can provide a foundation for better understanding critical ecological transition points and nonlinear climate-ecological relationships, which is information that can be used to better understand, predict, and manage ecological responses to climate change. In this study, we examined the influence of freshwater availability upon the coverage of foundation plant species in coastal wetlands along a northwestern Gulf of Mexico rainfall gradient. Our research addresses the following three questions: (1) what are the region-scale relationships between measures of freshwater availability (e.g., rainfall, aridity, freshwater inflow, salinity) and the relative abundance of foundation plant species in tidal wetlands; (2) How vulnerable are foundation plant species in tidal wetlands to future changes in freshwater availability; and (3) What is the potential future relative abundance of tidal wetland foundation plant species under alternative climate change scenarios? We developed simple freshwater availability-based models to predict the relative abundance (i.e., coverage) of tidal wetland foundation plant species using climate data (1970-2000), estuarine freshwater inflow-focused data, and coastal wetland habitat data. Our results identify regional ecological thresholds and nonlinear relationships between measures of freshwater availability and the relative abundance of foundation plant species in tidal wetlands. In drier coastal zones, relatively small changes in rainfall could produce comparatively large landscape-scale changes in foundation plant species abundance which would affect some ecosystem good and services. Whereas a drier future would result in a decrease in the coverage of foundation plant species, a wetter future would result in an increase in foundation plant species coverage. In many ways, the freshwater-dependent coastal wetland ecological transitions we observed are analogous to those present in dryland terrestrial ecosystems.
Ndithia, Henry K.; Matson, Kevin D.; Versteegh, Maaike A.; Muchai, Muchane; Tieleman, B. Irene
2017-01-01
Timing of reproduction in birds is important for reproductive success and is known to depend on environmental cues such as day length and food availability. However, in equatorial regions, where day length is nearly constant, other factors such as rainfall and temperature are thought to determine timing of reproduction. Rainfall can vary at small spatial and temporal scales, providing a highly fluctuating and unpredictable environmental cue. In this study we investigated the extent to which spatio-temporal variation in environmental conditions can explain the timing of breeding of Red-capped Lark, Calandrella cinerea, a species that is capable of reproducing during every month of the year in our equatorial east African study locations. For 39 months in three climatically-distinct locations, we monitored nesting activities, sampled ground and flying invertebrates, and quantified rainfall, maximum (Tmax) and minimum (Tmin) temperatures. Among locations we found that lower rainfall and higher temperatures did not coincide with lower invertebrate biomasses and decreased nesting activities, as predicted. Within locations, we found that rainfall, Tmax, and Tmin varied unpredictably among months and years. The only consistent annually recurring observations in all locations were that January and February had low rainfall, high Tmax, and low Tmin. Ground and flying invertebrate biomasses varied unpredictably among months and years, but invertebrates were captured in all months in all locations. Red-capped Larks bred in all calendar months overall but not in every month in every year in every location. Using model selection, we found no clear support for any relationship between the environmental variables and breeding in any of the three locations. Contrary to popular understanding, this study suggests that rainfall and invertebrate biomass as proxy for food do not influence breeding in equatorial Larks. Instead, we propose that factors such as nest predation, female protein reserves, and competition are more important in environments where weather and food meet minimum requirements for breeding during most of the year. PMID:28419105
NASA Astrophysics Data System (ADS)
Seok, Song Young; Ho, Song Yang; Ho, Lee Jung; Moo Jong, Park
2015-04-01
Due to the increase of impervious layers caused by increased rainfall and urbanization which were brought about by the climate change after the late 1990s, the flood damage in urban watersheds is rising. The recent flood damage is occurring in medium and small stream rather than in large stream. Particularly, in medium stream which pass the cities, sudden flood occurs due to the short concentration of rainfall and urban areas suffer large damage, even though the flood damage is small, since residential areas and social infrastructures are concentrated. In spite of the importance of medium and small stream to pass the cities, there is no certain standard for classification of natural or urban stream and existing studies are mostly focused on the impervious area among the land use characteristics of watersheds. Most of existing river studies are based on the watershed scale, but in most urban watersheds where stream pass, urban areas are concentrated in the confluence, so urban areas only occupy less than 10% of the whole watershed and there is a high uncertainty in the classification of urban areas, based the watershed of stream. This study aims to suggest a classification standard of medium and small stream between local stream and small stream where suffer flood damage. According to the classified medium and small stream, this study analyzed the stream area to the stream width and distance using Arcgis Buffer tool, based on the stream line, not the existing watershed scale. This study then chose urban watersheds by analyzing the river area at certain intervals from the center of the chosen medium and small stream, in different ways. Among the land use characteristics in urban areas, the impervious area was applied to the selection standard of urban watersheds and the characteristics of urban watersheds were presented by calculating the ratio of the stream area to the impervious area using the Buffer tool. Acknowledgement "This research was supported by a grant [NEMA-NH-2011-45] from the Natural Hazard Mitigation Research Group, National Emergency Management Agency of Korea." Keywords: land use, urban watershed, medium and smaill stream, impervious area
NASA Astrophysics Data System (ADS)
Bassiouni, Maoya; Higgins, Chad W.; Still, Christopher J.; Good, Stephen P.
2018-06-01
Vegetation controls on soil moisture dynamics are challenging to measure and translate into scale- and site-specific ecohydrological parameters for simple soil water balance models. We hypothesize that empirical probability density functions (pdfs) of relative soil moisture or soil saturation encode sufficient information to determine these ecohydrological parameters. Further, these parameters can be estimated through inverse modeling of the analytical equation for soil saturation pdfs, derived from the commonly used stochastic soil water balance framework. We developed a generalizable Bayesian inference framework to estimate ecohydrological parameters consistent with empirical soil saturation pdfs derived from observations at point, footprint, and satellite scales. We applied the inference method to four sites with different land cover and climate assuming (i) an annual rainfall pattern and (ii) a wet season rainfall pattern with a dry season of negligible rainfall. The Nash-Sutcliffe efficiencies of the analytical model's fit to soil observations ranged from 0.89 to 0.99. The coefficient of variation of posterior parameter distributions ranged from < 1 to 15 %. The parameter identifiability was not significantly improved in the more complex seasonal model; however, small differences in parameter values indicate that the annual model may have absorbed dry season dynamics. Parameter estimates were most constrained for scales and locations at which soil water dynamics are more sensitive to the fitted ecohydrological parameters of interest. In these cases, model inversion converged more slowly but ultimately provided better goodness of fit and lower uncertainty. Results were robust using as few as 100 daily observations randomly sampled from the full records, demonstrating the advantage of analyzing soil saturation pdfs instead of time series to estimate ecohydrological parameters from sparse records. Our work combines modeling and empirical approaches in ecohydrology and provides a simple framework to obtain scale- and site-specific analytical descriptions of soil moisture dynamics consistent with soil moisture observations.
Assessment of groundwater recharge in an ash-fall mantled karst aquifer of southern Italy
NASA Astrophysics Data System (ADS)
Manna, F.; Nimmo, J. R.; De Vita, P.; Allocca, V.
2014-12-01
In southern Italy, Mesozoic carbonate formations, covered by ash-fall pyroclastic soils, are large karst aquifers and major groundwater resources. For these aquifers, even though Allocca et al., 2014 estimated a mean annual groundwater recharge coefficient at regional scale, a more complete understanding of the recharge processes at small spatio-temporal scale is a primary scientific target. In this paper, we study groundwater recharge processes in the Acqua della Madonna test site (Allocca et al., 2008) through the integrated analysis of piezometric levels, rainfall, soil moisture and air temperature data. These were gathered with hourly frequency by a monitoring station in 2008. We applied the Episodic Master Recharge method (Nimmo et al., 2014) to identify episodes of recharge and estimate the Recharge to Precipitation Ratio (RPR) at both the individual-episode and annual time scales. For different episodes of recharge observed, RPR ranges from 97% to 37%, with an annual mean around 73%. This result has been confirmed by a soil water balance and the application of the Thornthwaite-Mather method to estimate actual evapotranspiration. Even though it seems higher than RPRs typical of some parts of the world, it is very close to the mean annual groundwater recharge coefficient estimated at the regional scale for the karst aquifers of southern Italy. In addition, the RPR is affected at the daily scale by both antecedent soil moisture and rainfall intensity, as demonstrated by a statistically significant multiple linear regression among such hydrological variables. In particular, the recharge magnitude is great for low storm intensity and high antecedent soil moisture value. The results advance the comprehension of groundwater recharge processes in karst aquifers, and the sensitivity of RPR to antecedent soil moisture and rainfall intensity facilitates the prediction of the influence of climate and precipitation regime change on the groundwater recharge process.
Strontium-90 Accumulation on Plant Foliage During Rainfall.
Menzel, R G; Roberts, H; Stewart, E H; Mackenzie, A J
1963-11-01
Accumulation of strontium-90 in field-grown crops was measured during the spring of 1962. Each rainfall markedly increased the strontium-90 content of the crops, except when the plants were very small. Accumulation between rains was comparatively small, about equal to the expected uptake from the soil.
NASA Astrophysics Data System (ADS)
Verdon-Kidd, D.; Kiem, A. S.
2008-10-01
In this paper regional (synoptic) and large-scale climate drivers of rainfall are investigated for Victoria, Australia. A non-linear classification methodology known as self-organizing maps (SOM) is used to identify 20 key regional synoptic patterns, which are shown to capture a range of significant synoptic features known to influence the climate of the region. Rainfall distributions are assigned to each of the 20 patterns for nine rainfall stations located across Victoria, resulting in a clear distinction between wet and dry synoptic types at each station. The influence of large-scale climate modes on the frequency and timing of the regional synoptic patterns is also investigated. This analysis revealed that phase changes in the El Niño Southern Oscillation (ENSO), the Southern Annular Mode (SAM) and/or Indian Ocean Dipole (IOD) are associated with a shift in the relative frequency of wet and dry synoptic types. Importantly, these results highlight the potential to utilise the link between the regional synoptic patterns derived in this study and large-scale climate modes to improve rainfall forecasting for Victoria, both in the short- (i.e. seasonal) and long-term (i.e. decadal/multi-decadal scale). In addition, the regional and large-scale climate drivers identified in this study provide a benchmark by which the performance of Global Climate Models (GCMs) may be assessed.
NASA Astrophysics Data System (ADS)
von Storch, Hans; Zorita, Eduardo; Cubasch, Ulrich
1993-06-01
A statistical strategy to deduct regional-scale features from climate general circulation model (GCM) simulations has been designed and tested. The main idea is to interrelate the characteristic patterns of observed simultaneous variations of regional climate parameters and of large-scale atmospheric flow using the canonical correlation technique.The large-scale North Atlantic sea level pressure (SLP) is related to the regional, variable, winter (DJF) mean Iberian Peninsula rainfall. The skill of the resulting statistical model is shown by reproducing, to a good approximation, the winter mean Iberian rainfall from 1900 to present from the observed North Atlantic mean SLP distributions. It is shown that this observed relationship between these two variables is not well reproduced in the output of a general circulation model (GCM).The implications for Iberian rainfall changes as the response to increasing atmospheric greenhouse-gas concentrations simulated by two GCM experiments are examined with the proposed statistical model. In an instantaneous `2 C02' doubling experiment, using the simulated change of the mean North Atlantic SLP field to predict Iberian rainfall yields, there is an insignificant increase of area-averaged rainfall of 1 mm/month, with maximum values of 4 mm/month in the northwest of the peninsula. In contrast, for the four GCM grid points representing the Iberian Peninsula, the change is 10 mm/month, with a minimum of 19 mm/month in the southwest. In the second experiment, with the IPCC scenario A ("business as usual") increase Of C02, the statistical-model results partially differ from the directly simulated rainfall changes: in the experimental range of 100 years, the area-averaged rainfall decreases by 7 mm/month (statistical model), and by 9 mm/month (GCM); at the same time the amplitude of the interdecadal variability is quite different.
Williams-Sether, Tara; Asquith, William H.; Thompson, David B.; Cleveland, Theodore G.; Fang, Xing
2004-01-01
A database of incremental cumulative-rainfall values for storms that occurred in small urban and rural watersheds in north and south central Texas during the period from 1959 to 1986 was used to develop empirical, dimensionless, cumulative-rainfall hyetographs. Storm-quartile classifications were determined from the cumulative-rainfall values, which were divided into data groups on the basis of storm-quartile classification (first, second, third, fourth, and first through fourth combined), storm duration (0 to 6, 6 to 12, 12 to 24, 24 to 72, and 0 to 72 hours), and rainfall amount (1 inch or more). Removal of long leading tails, in effect, shortened the storm duration and, in some cases, affected the storm-quartile classification. Therefore, two storm groups, untrimmed and trimmed, were used for analysis. The trimmed storms generally are preferred for interpretation. For a 12-hour or less trimmed storm duration, approximately 49 percent of the storms are first quartile. For trimmed storm durations of 12 to 24 and 24 to 72 hours, 47 and 38 percent, respectively, of the storms are first quartile. For a trimmed storm duration of 0 to 72 hours, the first-, second-, third-, and fourth-quartile storms accounted for 46, 21, 20, and 13 percent of all storms, respectively. The 90th-percentile curve for first-quartile storms indicated about 90 percent of the cumulative rainfall occurs during the first 20 percent of the storm duration. The 10th-percentile curve for first-quartile storms indicated about 30 percent of the cumulative rainfall occurs during the first 20 percent of the storm duration. The 90th-percentile curve for fourth-quartile storms indicated about 33 percent of the cumulative rainfall occurs during the first 20 percent of the storm duration. The 10th-percentile curve for fourth-quartile storms indicated less than 5 percent of the cumulative rainfall occurs during the first 20 percent of the storm duration. Statistics for the empirical, dimensionless, cumulative-rainfall hyetographs are presented in the report along with hyetograph curves and tables. The curves and tables presented do not present exact mathematical relations but can be used to estimate distributions of rainfall with time for small drainage areas of less than about 160 square miles in urban and small rural watersheds in north and south central Texas.
NASA Astrophysics Data System (ADS)
Müller, Eva; Pfister, Angela; Gerd, Büger; Maik, Heistermann; Bronstert, Axel
2015-04-01
Hydrological extreme events can be triggered by rainfall on different spatiotemporal scales: river floods are typically caused by event durations of between hours and days, while urban flash floods as well as soil erosion or contaminant transport rather result from storms events of very short duration (minutes). Still, the analysis of climate change impacts on rainfall-induced extreme events is usually carried out using daily precipitation data at best. Trend analyses of extreme rainfall at sub-daily or even sub-hourly time scales are rare. In this contribution two lines of research are combined: first, we analyse sub-hourly rainfall data for several decades in three European regions.Second, we investigate the scaling behaviour of heavy short-term precipitation with temperature, i.e. the dependence of high intensity rainfall on the atmospheric temperature at that particular time and location. The trend analysis of high-resolution rainfall data shows for the first time that the frequency of short and intensive storm events in the temperate lowland regions in Germany has increased by up to 0.5 events per year over the last decades. I.e. this trend suggests that the occurrence of these types of storms have multiplied over only a few decades. Parallel to the changes in the rainfall regime, increases in the annual and seasonal average temperature and changes in the occurrence of circulation patterns responsible for the generation of high-intensity storms have been found. The analysis of temporally highly resolved rainfall records from three European regions further indicates that extreme precipitation events are more intense with warmer temperatures during the rainfall event. These observations follow partly the Clausius-Clapeyron relation. Based on this relation one may derive a general rule of maximum rainfall intensity associated to the event temperature, roughly following the Clausius-Clapeyron (CC) relation. This rule might be used for scenarios of future maximum rainfall intensities under a warming climate.
Multiple runoff processes and multiple thresholds control agricultural runoff generation
NASA Astrophysics Data System (ADS)
Saffarpour, Shabnam; Western, Andrew W.; Adams, Russell; McDonnell, Jeffrey J.
2016-11-01
Thresholds and hydrologic connectivity associated with runoff processes are a critical concept for understanding catchment hydrologic response at the event timescale. To date, most attention has focused on single runoff response types, and the role of multiple thresholds and flow path connectivities has not been made explicit. Here we first summarise existing knowledge on the interplay between thresholds, connectivity and runoff processes at the hillslope-small catchment scale into a single figure and use it in examining how runoff response and the catchment threshold response to rainfall affect a suite of runoff generation mechanisms in a small agricultural catchment. A 1.37 ha catchment in the Lang Lang River catchment, Victoria, Australia, was instrumented and hourly data of rainfall, runoff, shallow groundwater level and isotope water samples were collected. The rainfall, runoff and antecedent soil moisture data together with water levels at several shallow piezometers are used to identify runoff processes in the study site. We use isotope and major ion results to further support the findings of the hydrometric data. We analyse 60 rainfall events that produced 38 runoff events over two runoff seasons. Our results show that the catchment hydrologic response was typically controlled by the Antecedent Soil Moisture Index and rainfall characteristics. There was a strong seasonal effect in the antecedent moisture conditions that led to marked seasonal-scale changes in runoff response. Analysis of shallow well data revealed that streamflows early in the runoff season were dominated primarily by saturation excess overland flow from the riparian area. As the runoff season progressed, the catchment soil water storage increased and the hillslopes connected to the riparian area. The hillslopes transferred a significant amount of water to the riparian zone during and following events. Then, during a particularly wet period, this connectivity to the riparian zone, and ultimately to the stream, persisted between events for a period of 1 month. These findings are supported by isotope results which showed the dominance of pre-event water, together with significant contributions of event water early (rising limb and peak) in the event hydrograph. Based on a combination of various hydrometric analyses and some isotope and major ion data, we conclude that event runoff at this site is typically a combination of subsurface event flow and saturation excess overland flow. However, during high intensity rainfall events, flashy catchment flow was observed even though the soil moisture threshold for activation of subsurface flow was not exceeded. We hypothesise that this was due to the activation of infiltration excess overland flow and/or fast lateral flow through preferential pathways on the hillslope and saturation overland flow from the riparian zone.
NASA Astrophysics Data System (ADS)
Gatlin, P. N.; Thurai, M.; Petersen, W. A.; Bringi, V. N.
2017-12-01
As GPM facilitates precipitation estimation at higher latitudes where light rainfall is more common it becomes more important that we can fully describe the raindrop size distribution (RSD) across the continuum of observed raindrop sizes. An adequate understanding and the capability to represent the RSD in light rain and drizzle extends from GPM radar algorithms into radiometer-based algorithms, where auto-conversion from cloud to rainwater contents and size distributions becomes important for light rain/drizzle estimation. This study provides insights into the effect of small raindrops on our ability to accurately map rainfall. The RSD has been widely defined using a gamma distribution—the assumption often being verified and approach being reinforced using measurements that imperfectly measure the small end of the RSD. However, we find that the gamma model as it is applied in its current form, to include commonly used disdrometer measurements to define it, is not capable of accurately describing the small raindrops we have observed during light rainfall. We demonstrate the difficulty encountered at light rain rates (e.g., 0.5 mm/hr or less) and for drops typically < 0.6 - 0.7 mm in diameter using a disdrometer with a pixel resolution of 50 microns operated alongside a 2DVD, with both instruments inside a small DFIR wind fence. Measurements were made in two locations with different climates—Greely, Colorado and Huntsville, Alabama. The resultant comparison reveals that the gamma RSD model overestimates the characteristic raindrop diameter (Dm), especially for light rainfall. A generalized gamma distribution provides a closer fit to the RSD observations across the continuum of raindrop sizes and highlights a drizzle mode of the RSD exists that would otherwise not be described with the commonly used gamma RSD model. Our analysis also suggests that RSD-based separation of stratiform and convective rainfall requires special consideration for light rainfall cases, especially those with small mass-weighted mean diameters (Dm < 0.6 mm).
Regional groundwater flow modeling of the Geba basin, northern Ethiopia
NASA Astrophysics Data System (ADS)
Gebreyohannes, Tesfamichael; De Smedt, Florimond; Walraevens, Kristine; Gebresilassie, Solomon; Hussien, Abdelwassie; Hagos, Miruts; Amare, Kassa; Deckers, Jozef; Gebrehiwot, Kindeya
2017-05-01
The Geba basin is one of the most food-insecure areas of the Tigray regional state in northern Ethiopia due to recurrent drought resulting from erratic distribution of rainfall. Since the beginning of the 1990s, rain-fed agriculture has been supported through small-scale irrigation schemes mainly by surface-water harvesting, but success has been limited. Hence, use of groundwater for irrigation purposes has gained considerable attention. The main purpose of this study is to assess groundwater resources in the Geba basin by means of a MODFLOW modeling approach. The model is calibrated using observed groundwater levels, yielding a clear insight into the groundwater flow systems and reserves. Results show that none of the hydrogeological formations can be considered as aquifers that can be exploited for large-scale groundwater exploitation. However, aquitards can be identified that can support small-scale groundwater abstraction for irrigation needs in regions that are either designated as groundwater discharge areas or where groundwater levels are shallow and can be tapped by hand-dug wells or shallow boreholes.
NASA Astrophysics Data System (ADS)
Latif, M.; Syed, F. S.; Hannachi, A.
2017-06-01
The study of regional rainfall trends over South Asia is critically important for food security and economy, as both these factors largely depend on the availability of water. In this study, South Asian summer monsoon rainfall trends on seasonal and monthly (June-September) time scales have been investigated using three observational data sets. Our analysis identify a dipole-type structure in rainfall trends over the region north of the Indo-Pak subcontinent, with significant increasing trends over the core monsoon region of Pakistan and significant decreasing trends over the central-north India and adjacent areas. The dipole is also evident in monthly rainfall trend analyses, which is more prominent in July and August. We show, in particular, that the strengthening of northward moisture transport over the Arabian Sea is a likely reason for the significant positive trend of rainfall in the core monsoon region of Pakistan. In contrast, over the central-north India region, the rainfall trends are significantly decreasing due to the weakening of northward moisture transport over the Bay of Bengal. The leading empirical orthogonal functions clearly show the strengthening (weakening) patterns of vertically integrated moisture transport over the Arabian Sea (Bay of Bengal) in seasonal and monthly interannual time scales. The regression analysis between the principal components and rainfall confirm the dipole pattern over the region. Our results also suggest that the extra-tropical phenomena could influence the mean monsoon rainfall trends over Pakistan by enhancing the cross-equatorial flow of moisture into the Arabian Sea.
NASA Astrophysics Data System (ADS)
Haruki, W.; Iseri, Y.; Takegawa, S.; Sasaki, O.; Yoshikawa, S.; Kanae, S.
2016-12-01
Natural disasters caused by heavy rainfall occur every year in Japan. Effective countermeasures against such events are important. In 2015, a catastrophic flood occurred in Kinu river basin, which locates in the northern part of Kanto region. The remarkable feature of this flood event was not only in the intensity of rainfall but also in the spatial characteristics of heavy rainfall area. The flood was caused by continuous overlapping of heavy rainfall area over the Kinu river basin, suggesting consideration of spatial extent is quite important to assess impacts of heavy rainfall events. However, the spatial extent of heavy rainfall events cannot be properly measured through rainfall measurement by rain gauges at observation points. On the other hand, rainfall measurements by radar observations provide spatially and temporarily high resolution rainfall data which would be useful to catch the characteristics of heavy rainfall events. For long term effective countermeasure, extreme heavy rainfall scenario considering rainfall area and distribution is required. In this study, a new method for generating extreme heavy rainfall events using Monte Carlo Simulation has been developed in order to produce extreme heavy rainfall scenario. This study used AMeDAS analyzed precipitation data which is high resolution grid precipitation data made by Japan Meteorological Agency. Depth area duration (DAD) analysis has been conducted to extract extreme rainfall events in the past, considering time and spatial scale. In the Monte Carlo Simulation, extreme rainfall event is generated based on events extracted by DAD analysis. Extreme heavy rainfall events are generated in specific region in Japan and the types of generated extreme heavy rainfall events can be changed by varying the parameter. For application of this method, we focused on Kanto region in Japan. As a result, 3000 years rainfall data are generated. 100 -year probable rainfall and return period of flood in Kinu River Basin (2015) are obtained using generated data. We compared 100-year probable rainfall calculated by this method with other traditional method. New developed method enables us to generate extreme rainfall events considering time and spatial scale and produce extreme rainfall scenario.
Ten-Year Climatology of Summertime Diurnal Rainfall Rate Over the Conterminous U.S.
NASA Technical Reports Server (NTRS)
Matsui, Toshihisa; Mocko, David; Lee, Myong-In; Tao, Wei-Kuo; Suarez, Max J.; Pielke, Roger A., Sr.
2010-01-01
Diurnal cycles of summertime rainfall rates are examined over the conterminous United States, using radar-gauge assimilated hourly rainfall data. As in earlier studies, rainfall diurnal composites show a well-defined region of rainfall propagation over the Great Plains and an afternoon maximum area over the south and eastern portion of the United States. Zonal phase speeds of rainfall in three different small domains are estimated, and rainfall propagation speeds are compared with background zonal wind speeds. Unique rainfall propagation speeds in three different regions can be explained by the evolution of latent-heat theory linked to the convective available potential energy, than by gust-front induced or gravity wave propagation mechanisms.
Scaling laws for testing of high lift airfoils under heavy rainfall
NASA Technical Reports Server (NTRS)
Bilanin, A. J.
1985-01-01
The results of studies regarding the effect of rainfall about aircraft are briefly reviewed. It is found that performance penalties on airfoils have been identified in subscale tests. For this reason, it is of great importance that scaling laws be dveloped to aid in the extrapolation of these data to fullscale. The present investigation represents an attempt to develop scaling laws for testing subscale airfoils under heavy rain conditions. Attention is given to rain statistics, airfoil operation in heavy rain, scaling laws, thermodynamics of condensation and/or evaporation, rainfall and airfoil scaling, aspects of splash back, film thickness, rivulets, and flap slot blockage. It is concluded that the extrapolation of airfoil performance data taken at subscale under simulated heavy rain conditions to fullscale must be undertaken with caution.
Sensitivity of Rainfall Extremes Under Warming Climate in Urban India
NASA Astrophysics Data System (ADS)
Ali, H.; Mishra, V.
2017-12-01
Extreme rainfall events in urban India halted transportation, damaged infrastructure, and affected human lives. Rainfall extremes are projected to increase under the future climate. We evaluated the relationship (scaling) between rainfall extremes at different temporal resolutions (daily, 3-hourly, and 30 minutes), daily dewpoint temperature (DPT) and daily air temperature at 850 hPa (T850) for 23 urban areas in India. Daily rainfall extremes obtained from Global Surface Summary of Day Data (GSOD) showed positive regression slopes for most of the cities with median of 14%/K for the period of 1979-2013 for DPT and T850, which is higher than Clausius-Clapeyron (C-C) rate ( 7%). Moreover, sub-daily rainfall extremes are more sensitive to both DPT and T850. For instance, 3-hourly rainfall extremes obtained from Tropical Rainfall Measurement Mission (TRMM 3B42 V7) showed regression slopes more than 16%/K aginst DPT and T850 for the period of 1998-2015. Half-hourly rainfall extremes from the Integrated Multi-satellitE Retrievals (IMERGE) of Global precipitation mission (GPM) also showed higher sensitivity against changes in DPT and T850. The super scaling of rainfall extremes against changes in DPT and T850 can be attributed to convective nature of precipitation in India. Our results show that urban India may witness non-stationary rainfall extremes, which, in turn will affect stromwater designs and frequency and magniture of urban flooding.
Spatial Scaling of Global Rainfall and Flood Extremes
NASA Astrophysics Data System (ADS)
Devineni, Naresh; Lall, Upmanu; Xi, Chen; Ward, Philip
2014-05-01
Floods associated with severe storms are a significant source of risk for property, life and supply chains. These property losses tend to be determined as much by the duration and spatial extent of flooding as by the depth and velocity of inundation. High duration floods are typically induced by persistent rainfall (up to 30 day duration) as seen recently in Thailand, Pakistan, the Ohio and the Mississippi Rivers, France, and Germany. Events related to persistent and recurrent rainfall appear to correspond to the persistence of specific global climate patterns that may be identifiable from global, historical data fields, and also from climate models that project future conditions. In this paper, we investigate the statistical properties of the spatial manifestation of the rainfall exceedances and floods. We present the first ever results on a global analysis of the scaling characteristics of extreme rainfall and flood event duration, volumes and contiguous flooded areas as a result of large scale organization of long duration rainfall events. Results are organized by latitude and with reference to the phases of ENSO, and reveal surprising invariance across latitude. Speculation as to the potential relation to the dynamical factors is presented
ENSO Precipitation Variations as Seen by GPM and TRMM Radar and Passive Microwave Observations
NASA Astrophysics Data System (ADS)
Adler, R. F.; Wang, J. J.
2017-12-01
Tropical precipitation variations related to ENSO are the largest-scale such variations both spatially and in magnitude and are also the main driver of surface temperature-surface rainfall relationships on the inter-annual scale. GPM (and TRMM before it) provide a unique capability to examine these relations with both the passive and active microwave approaches. Documenting the phase and magnitudes of these relationships are important to understand these large-scale processes and to validate climate models. However, as past research by the authors have shown, the results of these relations have been different for passive vs. radar retrievals. In this study we re-examine these relations with the new GPM Version 5 products, focusing on the 2015-2016 El Nino event. The recent El Nino peaked in Dec. 2015 through Feb. 2016 with the usual patterns of precipitation anomalies across the Tropics as evident in both the GPM GMI and the Near Surface (NS) DPR (single frequency) retrievals. Integrating both the rainfall anomalies and the SST anomalies over the entire tropical ocean area (25N-25S) and comparing how they vary as a function of time on a monthly scale during the GPM era (2014-2017), the radar-based results show contrasting results to those from the GMI-based (and GPCP) results. The passive microwave data (GMI and GPCP) indicates a slope of 17%/C for the precipitation variations, while the radar NS indicates about half that ( 8%/C). This NS slope is somewhat less than calculated before with GPM's V4 data, but is larger than obtained with TRMM PR data ( 0%/C) for an earlier period during the TRMM era. Very similar results as to the DPR NS calculations are also obtained for rainfall at 2km and 4km altitude and for the Combined (DPR + GMI) product. However, at 6km altitude, although the reflectivity and rainfall magnitudes are much less than at lower altitudes, the slope of the rainfall/SST relation is 17%/C, the same as calculated with the passive microwave data. The reasons for these differences are explored and lead to conclusions that the radar-based estimates of surface rainfall with GPM have limitations (and are negatively biased) in relatively intense rainfall and this leads to an underestimation of large-scale rainfall under El Nino conditions, where more oceanic rainfall, and more intense rainfall are prevalent.
Rainfall recharge estimation on a nation-wide scale using satellite information in New Zealand
NASA Astrophysics Data System (ADS)
Westerhoff, Rogier; White, Paul; Moore, Catherine
2015-04-01
Models of rainfall recharge to groundwater are challenged by the need to combine uncertain estimates of rainfall, evapotranspiration, terrain slope, and unsaturated zone parameters (e.g., soil drainage and hydraulic conductivity of the subsurface). Therefore, rainfall recharge is easiest to estimate on a local scale in well-drained plains, where it is known that rainfall directly recharges groundwater. In New Zealand, this simplified approach works in the policy framework of regional councils, who manage water allocation at the aquifer and sub-catchment scales. However, a consistent overview of rainfall recharge is difficult to obtain at catchment and national scale: in addition to data uncertainties, data formats are inconsistent between catchments; the density of ground observations, where these exist, differs across regions; each region typically uses different local models for estimating recharge components; and different methods and ground observations are used for calibration and validation of these models. The research described in this paper therefore presents a nation-wide approach to estimate rainfall recharge in New Zealand. The method used is a soil water balance approach, with input data from national rainfall and soil and geology databases. Satellite data (i.e., evapotranspiration, soil moisture, and terrain) aid in the improved calculation of rainfall recharge, especially in data-sparse areas. A first version of the model has been implemented on a 1 km x 1 km and monthly scale between 2000 and 2013. A further version will include a quantification of recharge estimate uncertainty: with both "top down" input error propagation methods and catchment-wide "bottom up" assessments of integrated uncertainty being adopted. Using one nation-wide methodology opens up new possibilities: it can, for example, help in more consistent estimation of water budgets, groundwater fluxes, or other hydrological parameters. Since recharge is estimated for the entire land surface, and not only the known aquifers, the model also identifies other zones that could potentially recharge aquifers, including large areas (e.g., mountains) that are currently regarded as impervious. The resulting rainfall recharge data have also been downscaled in a 200 m x 200 m calculation of a national monthly water table. This will lead to better estimation of hydraulic conductivity, which holds considerable potential for further research in unconfined aquifers in New Zealand.
NASA Astrophysics Data System (ADS)
Nasri, S.; Cudennec, C.; Albergel, J.; Berndtsson, R.
2004-02-01
In the beginning of the 1990s, the Tunisian Ministry of Agriculture launched an ambitious program for constructing small hillside reservoirs in the northern and central region of the country. At present, more than 720 reservoirs have been created. They consist of small compacted earth dams supplied with a horizontal overflow weir. Due to lack of hydrological data and the area's extreme floods, however, it is very difficult to design the overflow weirs. Also, catchments are very sensitive to erosion and the reservoirs are rapidly silted up. Consequently, prediction of flood volumes for important rainfall events becomes crucial. Few hydrological observations, however, exist for the catchment areas. For this purpose a geomorphological model methodology is presented to predict shape and volume of hydrographs for important floods. This model is built around a production function that defines the net storm rainfall (portion of rainfall during a storm which reaches a stream channel as direct runoff) from the total rainfall (observed rainfall in the catchment) and a transfer function based on the most complete possible definition of the surface drainage system. Observed rainfall during 5-min time steps was used in the model. The model runoff generation is based on surface drainage characteristics which can be easily extracted from maps. The model was applied to two representative experimental catchments in central Tunisia. The conceptual rainfall-runoff model based on surface topography and drainage network was seen to reproduce observed runoff satisfactory. The calibrated model was used to estimate runoff from 5, 10, 20, and 50 year rainfall return periods regarding runoff volume, maximum runoff, as well as the general shape of the runoff hydrograph. Practical conclusions to design hill reservoirs and to extrapolate results using this model methodology for ungauged small catchments in semiarid Tunisia are made.
USDA-ARS?s Scientific Manuscript database
Real-time rainfall accumulation estimates at the global scale is useful for many applications. However, the real-time versions of satellite-based rainfall products are known to contain errors relative to real rainfall observed in situ. Recent studies have demonstrated how information about rainfall ...
NASA Astrophysics Data System (ADS)
Pohle, Ina; Niebisch, Michael; Zha, Tingting; Schümberg, Sabine; Müller, Hannes; Maurer, Thomas; Hinz, Christoph
2017-04-01
Rainfall variability within a storm is of major importance for fast hydrological processes, e.g. surface runoff, erosion and solute dissipation from surface soils. To investigate and simulate the impacts of within-storm variabilities on these processes, long time series of rainfall with high resolution are required. Yet, observed precipitation records of hourly or higher resolution are in most cases available only for a small number of stations and only for a few years. To obtain long time series of alternating rainfall events and interstorm periods while conserving the statistics of observed rainfall events, the Poisson model can be used. Multiplicative microcanonical random cascades have been widely applied to disaggregate rainfall time series from coarse to fine temporal resolution. We present a new coupling approach of the Poisson rectangular pulse model and the multiplicative microcanonical random cascade model that preserves the characteristics of rainfall events as well as inter-storm periods. In the first step, a Poisson rectangular pulse model is applied to generate discrete rainfall events (duration and mean intensity) and inter-storm periods (duration). The rainfall events are subsequently disaggregated to high-resolution time series (user-specified, e.g. 10 min resolution) by a multiplicative microcanonical random cascade model. One of the challenges of coupling these models is to parameterize the cascade model for the event durations generated by the Poisson model. In fact, the cascade model is best suited to downscale rainfall data with constant time step such as daily precipitation data. Without starting from a fixed time step duration (e.g. daily), the disaggregation of events requires some modifications of the multiplicative microcanonical random cascade model proposed by Olsson (1998): Firstly, the parameterization of the cascade model for events of different durations requires continuous functions for the probabilities of the multiplicative weights, which we implemented through sigmoid functions. Secondly, the branching of the first and last box is constrained to preserve the rainfall event durations generated by the Poisson rectangular pulse model. The event-based continuous time step rainfall generator has been developed and tested using 10 min and hourly rainfall data of four stations in North-Eastern Germany. The model performs well in comparison to observed rainfall in terms of event durations and mean event intensities as well as wet spell and dry spell durations. It is currently being tested using data from other stations across Germany and in different climate zones. Furthermore, the rainfall event generator is being applied in modelling approaches aimed at understanding the impact of rainfall variability on hydrological processes. Reference Olsson, J.: Evaluation of a scaling cascade model for temporal rainfall disaggregation, Hydrology and Earth System Sciences, 2, 19.30
Effect of Spatio-Temporal Variability of Rainfall on Stream flow Prediction of Birr Watershed
NASA Astrophysics Data System (ADS)
Demisse, N. S.; Bitew, M. M.; Gebremichael, M.
2012-12-01
The effect of rainfall variability on our ability to forecast flooding events was poorly studied in complex terrain region of Ethiopia. In order to establish relation between rainfall variability and stream flow, we deployed 24 rain gauges across Birr watershed. Birr watershed is a medium size mountainous watershed with an area of 3000 km2 and elevation ranging between 1435 m.a.s.l and 3400 m.a.s.l in the central Ethiopia highlands. One summer monsoon rainfall of 2012 recorded at high temporal scale of 15 minutes interval and stream flow recorded at an hourly interval in three sub-watershed locations representing different scales were used in this study. Based on the data obtained from the rain gauges and stream flow observations, we quantify extent of temporal and spatial variability of rainfall across the watershed using standard statistical measures including mean, standard deviation and coefficient of variation. We also establish rainfall-runoff modeling system using a physically distributed hydrological model: the Soil and Water Assessment Tool (SWAT) and examine the effect of rainfall variability on stream flow prediction. The accuracy of predicted stream flow is measured through direct comparison with observed flooding events. The results demonstrate the significance of relation between stream flow prediction and rainfall variability in the understanding of runoff generation mechanisms at watershed scale, determination of dominant water balance components, and effect of variability on accuracy of flood forecasting activities.
Power-law scaling in daily rainfall patterns and consequences in urban stream discharges
NASA Astrophysics Data System (ADS)
Park, Jeryang; Krueger, Elisabeth H.; Kim, Dongkyun; Rao, Suresh C.
2016-04-01
Poissonian rainfall has been frequently used for modelling stream discharge in a catchment at the daily scale. Generally, it is assumed that the daily rainfall depth is described by memoryless exponential distribution which is transformed to stream discharge, resulting in an analytical pdf for discharge [Gamma distribution]. While it is true that catchment hydrological filtering processes (censored by constant rate ET losses, and first-order recession) increases "memory", reflected in 1/f noise in discharge time series. Here, we show that for urban watersheds in South Korea: (1) the observation of daily rainfall depths follow power-law pdfs, and spectral slopes range between 0.2 ~ 0.4; and (2) the stream discharge pdfs have power-law tails. These observation results suggest that multiple hydro-climatic factors (e.g., non-stationarity of rainfall patterns) and hydrologic filtering (increasing impervious area; more complex urban drainage networks) influence the catchment hydrologic responses. We test the role of such factors using a parsimonious model, using different types of daily rainfall patterns (e.g., power-law distributed rainfall depth with Poisson distribution in its frequency) and urban settings to reproduce patterns similar to those observed in empirical records. Our results indicate that fractality in temporally up-scaled rainfall, and the consequences of large extreme events are preserved as high discharge events in urbanizing catchments. Implications of these results to modeling urban hydrologic responses and impacts on receiving waters are discussed.
NASA Astrophysics Data System (ADS)
Hale, R. L.; Turnbull, L.; Earl, S.; Grimm, N. B.
2011-12-01
There has been an abundance of literature on the effects of urbanization on downstream ecosystems, particularly due to changes in nutrient inputs as well as hydrology. Less is known, however, about nutrient transport processes and processing in urban watersheds. Engineered drainage systems are likely to play a significant role in controlling the transport of water and nutrients downstream, and variability in these systems within and between cities may lead to differences in the effects of urbanization on downstream ecosystems over time and space. We established a nested stormwater sampling network with 12 watersheds ranging in scale from 5 to 17000 ha in the Indian Bend Wash watershed in Scottsdale, AZ. Small (<200ha) watersheds had uniform land cover (medium density residential), but were drained by a variety of stormwater infrastructure including surface runoff, pipes, natural or modified washes, and retention basins. At the outlet of each of these catchments we monitored rainfall and discharge, and sampled stormwater throughout runoff events for dissolved nitrogen (N), phosphorus (P), and organic carbon (oC). Urban stormwater infrastructure is characterized by a range of hydrologic connectivity. Piped watersheds are highly connected and runoff responds linearly to rainfall events, in contrast to watersheds drained with retention basins and washes, where runoff exhibits a nonlinear threshold response to rainfall events. Nutrient loads from piped watersheds scale linearly with total storm rainfall. Because of frequent flushing, nutrient concentrations from these sites are lower than from wash and retention basin drained sites and total nutrient loads exhibit supply limitation, e.g., nutrient loads are poorly predicted by storm rainfall and are strongly controlled by factors that determine the amount of nutrients stored within the watershed, such as antecedent dry days. In contrast, wash and retention basin-drained watersheds exhibit transport limitation. These watersheds flow less frequently than pipe-drained sites and therefore stormwater has higher concentrations of nutrients, although total loads are significantly lower. Nonlinearities in cross-storm rainfall-nutrient loading relationships for the wash and retention basin watersheds suggest that these systems may become supply limited during large rain events. Results show that characteristics of the hydrologic network such as hydrologic connectivity mediate terrestrial-aquatic linkages. Specifically, we see that increased hydrologic connectivity, as in the piped watershed, actually decreases the predictive power of storm size with regard to nutrient export, whereas nutrient loads from poorly connected watersheds are strongly predicted by storm size.
NASA Astrophysics Data System (ADS)
Foresti, Loris; Reyniers, Maarten; Delobbe, Laurent
2014-05-01
The Short-Term Ensemble Prediction System (STEPS) is a probabilistic precipitation nowcasting scheme developed at the Australian Bureau of Meteorology in collaboration with the UK Met Office. In order to account for the multiscaling nature of rainfall structures, the radar field is decomposed into an 8 levels multiplicative cascade using a Fast Fourier Transform. The cascade is advected using the velocity field estimated with optical flow and evolves stochastically according to a hierarchy of auto-regressive processes. This allows reproducing the empirical observation that the rate of temporal evolution of the small scales is faster than the large scales. The uncertainty in radar rainfall measurement and the unknown future development of the velocity field are also considered by stochastic modelling in order to reflect their typical spatial and temporal variability. Recently, a 4 years national research program has been initiated by the University of Leuven, the Royal Meteorological Institute (RMI) of Belgium and 3 other partners: PLURISK ("forecasting and management of extreme rainfall induced risks in the urban environment"). The project deals with the nowcasting of rainfall and subsequent urban inundations, as well as socio-economic risk quantification, communication, warning and prevention. At the urban scale it is widely recognized that the uncertainty of hydrological and hydraulic models is largely driven by the input rainfall estimation and forecast uncertainty. In support to the PLURISK project the RMI aims at integrating STEPS in the current operational deterministic precipitation nowcasting system INCA-BE (Integrated Nowcasting through Comprehensive Analysis). This contribution will illustrate examples of STEPS ensemble and probabilistic nowcasts for a few selected case studies of stratiform and convective rain in Belgium. The paper focuses on the development of STEPS products for potential hydrological users and a preliminary verification of the nowcasts, especially to analyze the spatial distribution of forecast errors. The analysis of nowcast biases reveals the locations where the convective initiation, rainfall growth and decay processes significantly reduce the forecast accuracy, but also points out the need for improving the radar-based quantitative precipitation estimation product that is used both to generate and verify the nowcasts. The collection of fields of verification statistics is implemented using an online update strategy, which potentially enables the system to learn from forecast errors as the archive of nowcasts grows. The study of the spatial or temporal distribution of nowcast errors is a key step to convey to the users an overall estimation of the nowcast accuracy and to drive future model developments.
NASA Astrophysics Data System (ADS)
Klein, Cornelia; Belušić, Danijel; Taylor, Christopher M.
2018-03-01
Mesoscale convective systems (MCSs) are frequently associated with rainfall extremes and are expected to further intensify under global warming. However, despite the significant impact of such extreme events, the dominant processes favoring their occurrence are still under debate. Meteosat geostationary satellites provide unique long-term subhourly records of cloud top temperatures, allowing to track changes in MCS structures that could be linked to rainfall intensification. Focusing on West Africa, we show that Meteosat cloud top temperatures are a useful proxy for rainfall intensities, as derived from snapshots from the Tropical Rainfall Measuring Mission 2A25 product: MCSs larger than 15,000 km2 at a temperature threshold of -40°C are found to produce 91% of all extreme rainfall occurrences in the study region, with 80% of the storms producing extreme rain when their minimum temperature drops below -80°C. Furthermore, we present a new method based on 2-D continuous wavelet transform to explore the relationship between cloud top temperature and rainfall intensity for subcloud features at different length scales. The method shows great potential for separating convective and stratiform cloud parts when combining information on temperature and scale, improving the common approach of using a temperature threshold only. We find that below -80°C, every fifth pixel is associated with deep convection. This frequency is doubled when looking at subcloud features smaller than 35 km. Scale analysis of subcloud features can thus help to better exploit cloud top temperature data sets, which provide much more spatiotemporal detail of MCS characteristics than available rainfall data sets alone.
NASA Astrophysics Data System (ADS)
Hori, Toshikazu; Mohri, Yoshiyuki; Matsushima, Kenichi; Ariyoshi, Mitsuru
In recent years the increase in the number of heavy rainfall occurrences such as through unpredictable cloudbursts have resulted in the safety of the embankments of small earth dams needing to be improved. However, the severe financial condition of the government and local autonomous bodies necessitate the cost of improving them to be reduced. This study concerns the development of a method of evaluating the life cycle cost of small earth dams considered to pose a risk and in order to improve the safety of the downstream areas of small earth dams at minimal cost. Use of a safety evaluation method that is based on a combination of runoff analysis, saturated and unsaturated seepage analysis, and slope stability analysis enables the probability of a dam breach and its life cycle cost with the risk of heavy rainfall taken into account to be calculated. Moreover, use of the life cycle cost evaluation method will lead to the development of a technique for selecting the method of the optimal improvement or countermeasures against heavy rainfall.
Development and validation of a runoff and erosion model for lowland drained catchments
NASA Astrophysics Data System (ADS)
Grangeon, Thomas; Cerdan, Olivier; Vandromme, Rosalie; Landemaine, Valentin; Manière, Louis; Salvador-Blanes, Sébastien; Foucher, Anthony; Evrard, Olivier
2017-04-01
Modelling water and sediment transfer in lowland catchments is complex as both hortonian and saturation excess-flow occur in these environments. Moreover, their dynamics was complexified by the installation of tile drainage networks or stream redesign. To the best of our knowledge, few models are able to simulate saturation runoff as well as hortonian runoff in tile-drained catchments. Most of the time, they are used for small scale applications due to their high degree of complexity. In this context, a model of intermediate complexity was developed to simulate the hydrological and erosion processes at the catchment scale in lowland environments. This GIS-based, spatially distributed and lumped model at the event scale uses a theoretical hydrograph to approximate within-event temporal variations. It comprises two layers used to represent surface and subsurface transfers. Observations of soil surface characteristics (i.e. vegetation density, soil crusting and roughness) were used to document spatial variations of physical soil characteristics (e.g. infiltration capacity). Flow was routed depending on the local slope, using LIDAR elevation data. Both the diffuse and the gully erosion are explicitly described. The model ability to simulate water and sediment dynamics at the catchment scale was evaluated using the monitoring of a selection of flood events in a small, extensively cultivated catchment (the Louroux catchment, Loire River basin, central France; 25 km2). In this catchment, five monitoring stations were equipped with water level sensors, turbidity probes, and automatic samplers. Discharge and suspended sediment concentration were deduced from field measurements. One station was installed at the outlet of a tile drain and was used to parameterize fluxes supplied by the drainage network. The selected floods were representative of various rainfall and soil surface conditions (e.g. low-intensity rainfall occurring on saturated soils as well as intense rainfall occurring on dry soils in spring). The model was able to reproduce the runoff volumes for these different situations, and performed well, especially in winter (the relationship between observed and modeled values has R2=0.72) when most of the sediment are transferred. Therefore, future work will evaluate the model ability to reproduce the erosion and sediment dynamics in this catchment in order to provide a tool for sediment management in these lowland environments draining agricultural land where river siltation is problematic.
Analysis of rainfall seasonality from observations and climate models
NASA Astrophysics Data System (ADS)
Pascale, Salvatore; Lucarini, Valerio; Feng, Xue; Porporato, Amilcare; Hasson, Shabeh ul
2015-06-01
Two new indicators of rainfall seasonality based on information entropy, the relative entropy (RE) and the dimensionless seasonality index (DSI), together with the mean annual rainfall, are evaluated on a global scale for recently updated precipitation gridded datasets and for historical simulations from coupled atmosphere-ocean general circulation models. The RE provides a measure of the number of wet months and, for precipitation regimes featuring a distinct wet and dry season, it is directly related to the duration of the wet season. The DSI combines the rainfall intensity with its degree of seasonality and it is an indicator of the extent of the global monsoon region. We show that the RE and the DSI are fairly independent of the time resolution of the precipitation data, thereby allowing objective metrics for model intercomparison and ranking. Regions with different precipitation regimes are classified and characterized in terms of RE and DSI. Comparison of different land observational datasets reveals substantial difference in their local representation of seasonality. It is shown that two-dimensional maps of RE provide an easy way to compare rainfall seasonality from various datasets and to determine areas of interest. Models participating to the Coupled Model Intercomparison Project platform, Phase 5, consistently overestimate the RE over tropical Latin America and underestimate it in West Africa, western Mexico and East Asia. It is demonstrated that positive RE biases in a general circulation model are associated with excessively peaked monthly precipitation fractions, too large during the wet months and too small in the months preceding and following the wet season; negative biases are instead due, in most cases, to an excess of rainfall during the premonsoonal months.
NASA Astrophysics Data System (ADS)
Casas-Castillo, M. Carmen; Rodríguez-Solà, Raúl; Navarro, Xavier; Russo, Beniamino; Lastra, Antonio; González, Paula; Redaño, Angel
2018-01-01
The fractal behavior of extreme rainfall intensities registered between 1940 and 2012 by the Retiro Observatory of Madrid (Spain) has been examined, and a simple scaling regime ranging from 25 min to 3 days of duration has been identified. Thus, an intensity-duration-frequency (IDF) master equation of the location has been constructed in terms of the simple scaling formulation. The scaling behavior of probable maximum precipitation (PMP) for durations between 5 min and 24 h has also been verified. For the statistical estimation of the PMP, an envelope curve of the frequency factor ( k m ) based on a total of 10,194 station-years of annual maximum rainfall from 258 stations in Spain has been developed. This curve could be useful to estimate suitable values of PMP at any point of the Iberian Peninsula from basic statistical parameters (mean and standard deviation) of its rainfall series. [Figure not available: see fulltext.
NASA Technical Reports Server (NTRS)
Kirschbaum, Dalia; Adler, Robert; Adler, David; Peters-Lidard, Christa; Huffman, George
2012-01-01
It is well known that extreme or prolonged rainfall is the dominant trigger of landslides worldwide. While research has evaluated the spatiotemporal distribution of extreme rainfall and landslides at local or regional scales using in situ data, few studies have mapped rainfall-triggered landslide distribution globally due to the dearth of landslide data and consistent precipitation information. This study uses a newly developed Global Landslide Catalog (GLC) and a 13-year satellite-based precipitation record from TRMM data. For the first time, these two unique products provide the foundation to quantitatively evaluate the co-occurrence of precipitation and landslides globally. Evaluation of the GLC indicates that 2010 had a large number of high-impact landslide events relative to previous years. This study considers how variations in extreme and prolonged satellite-based rainfall are related to the distribution of landslides over the same time scales for three active landslide areas: Central America, the Himalayan Arc, and central-eastern China. Several test statistics confirm that TRMM rainfall generally scales with the observed increase in landslide reports and fatal events for 2010 and previous years over each region. These findings suggest that the co-occurrence of satellite precipitation and landslide reports may serve as a valuable indicator for characterizing the spatiotemporal distribution of landslide-prone areas in order to establish a global rainfall-triggered landslide climatology. This study characterizes the variability of satellite precipitation data and reported landslide activity at the globally scale in order to improve landslide cataloging, forecasting and quantify potential triggering sources at daily, monthly and yearly time scales.
NASA Technical Reports Server (NTRS)
Lau, K.-M.; Wu, H. T.
2000-01-01
Using global rainfall and sea surface temperature (SST) data for the past two decades (1979-1998), we have investigated the intrinsic modes of Asian summer monsoon (ASM) and ENSO co-variability. Three recurring ASM rainfall-SST coupled modes were identified. The first is a basin scale mode that features SST and rainfall variability over the entire tropics (including the ASM region), identifiable with those occurring during El Nino or La Nina. This mode is further characterized by a pronounced biennial variation in ASM rainfall and SST associated with fluctuations of the anomalous Walker circulation that occur during El Nino/La Nina transitions. The second mode comprises mixed regional and basin-scale rainfall and SST signals, with pronounced intraseasonal and interannual variabilities. This mode features a SST pattern associated with a developing La Nina, with a pronounced low level anticyclone in the subtropics of the western Pacific off the coast of East Asia. The third mode depicts an east-west rainfall and SST dipole across the southern equatorial Indian Ocean, most likely stemming from coupled ocean-atmosphere processes within the ASM region. This mode also possesses a decadal time scale and a linear trend, which are not associated with El Nino/La Nina variability. Possible causes of year-to-year rainfall variability over the ASM and sub-regions have been evaluated from a reconstruction of the observed rainfall from singular eigenvectors of the coupled modes. It is found that while basin-scale SST can account for portions of ASM rainfall variability during ENSO events (up to 60% in 1998), regional processes can accounts up to 20-25% of the rainfall variability in typical non-ENSO years. Stronger monsoon-ENSO relationship tends to occur in the boreal summer immediately preceding a pronounced La Nina, i.e., 1998, 1988 and 1983. Based on these results, we discuss the possible impacts of the ASM on ENSO variability via the west Pacific anticyclone and articulate a hypothesis that anomalous wind forcings derived from the anticyclone may be instrumental in inducing a strong biennial modulation to natural ENSO cycles.
Structural practices for controlling sediment transport from erosion
NASA Astrophysics Data System (ADS)
Gabriels, Donald; Verbist, Koen; Van de Linden, Bruno
2013-04-01
Erosion on agricultural fields in the hilly regions of Flanders, Belgium has been recognized as an important economical and ecological problem that requires effective control measures. This has led to the implementation of on-site and off-site measures such as reduced tillage and the installation of grass buffers trips, and dams made of vegetative materials. Dams made out of coir (coconut) and wood chips were evaluated on three different levels of complexity. Under laboratory conditions, one meter long dams were submitted to two different discharges and three sediment concentrations under two different slopes, to assess the sediment delivery ratios under variable conditions. At the field scale, discharge and sediment concentrations were monitored under natural rainfall conditions on six 3 m wide plots, of which three were equipped with coir dams, while the other three served as control plots. The same plots were also used for rainfall simulations, which allowed controlling sediment delivery boundary conditions more precisely. Results show a clear advantage of these dams to reduce discharge by minimum 49% under both field and laboratory conditions. Sediment delivery ratios (SDR) were very small under laboratory and field rainfall simulations (4-9% and 2% respectively), while larger SDRs were observed under natural conditions (43%), probably due to the small sediment concentrations (1-5 g l-1) observed and as such a larger influence of boundary effects. Also a clear enrichment of larger sand particles (+167%) could be observed behind the dams, showing a significant selective filtering effect.
NASA Astrophysics Data System (ADS)
Payraudeau, S.; Tournoud, M. G.; Cernesson, F.
Distributed modelling in hydrology assess catchment subdivision to take into account physic characteristics. In this paper, we test the effect of land use aggregation scheme on catchment hydrological response. Evolution of intra-subcatchment land use is studied using statistic and entropy methods. The SCS-CN method is used to calculate effective rainfall which is here assimilated to hydrological response. Our purpose is to determine the existence of a critical threshold-area appropriate for the application of hydrological modelling. Land use aggregation effects on effective rainfall is assessed on small mediterranean catchment. The results show that land use aggregation and land use classification type have significant effects on hydrological modelling and in particular on effective rainfall modelling.
Alonso-Carné, J; García-Martín, A; Estrada-Peña, A
2015-01-01
Ticks are sensitive to changes in relative humidity and saturation deficit at the microclimate scale. Trends and changes in rainfall are commonly used as descriptors of field observations of tick populations, to capture the climate niche of ticks or to predict the climate suitability for ticks under future climate scenarios. We evaluated daily and monthly relationships between rainfall, relative humidity and saturation deficit over different ecosystems in Europe using daily climate values from 177 stations over a period of 10 years. We demonstrate that rainfall is poorly correlated with both relative humidity and saturation deficit in any of the ecological domains studied. We conclude that the amount of rainfall recorded in 1 day does not correlate with the values of humidity or saturation deficit recorded 24 h later: rainfall is not an adequate surrogate for evaluating the physiological processes of ticks at regional scales. We compared the Normalized Difference Vegetation Index (NDVI), a descriptor of photosynthetic activity, at a spatial resolution of 0.05°, with monthly averages of relative humidity and saturation deficit and also determined a lack of significant correlation. With the limitations of spatial scale and habitat coverage of this study, we suggest that the rainfall or NDVI cannot replace relative humidity or saturation deficit as descriptors of tick processes.
Soft Water Level Sensors for Characterizing the Hydrological Behaviour of Agricultural Catchments
Crabit, Armand; Colin, François; Bailly, Jean Stéphane; Ayroles, Hervé; Garnier, François
2011-01-01
An innovative soft water level sensor is proposed to characterize the hydrological behaviour of agricultural catchments by measuring rainfall and stream flows. This sensor works as a capacitor coupled with a capacitance to frequency converter and measures water level at an adjustable time step acquisition. It was designed to be handy, minimally invasive and optimized in terms of energy consumption and low-cost fabrication so as to multiply its use on several catchments under natural conditions. It was used as a stage recorder to measure water level dynamics in a channel during a runoff event and as a rain gauge to measure rainfall amount and intensity. Based on the Manning equation, a method allowed estimation of water discharge with a given uncertainty and hence runoff volume at an event or annual scale. The sensor was tested under controlled conditions in the laboratory and under real conditions in the field. Comparisons of the sensor to reference devices (tipping bucket rain gauge, hydrostatic pressure transmitter limnimeter, Venturi channels…) showed accurate results: rainfall intensities and dynamic responses were accurately reproduced and discharges were estimated with an uncertainty usually acceptable in hydrology. Hence, it was used to monitor eleven small agricultural catchments located in the Mediterranean region. Both catchment reactivity and water budget have been calculated. Dynamic response of the catchments has been studied at the event scale through the rising time determination and at the annual scale by calculating the frequency of occurrence of runoff events. It provided significant insight into catchment hydrological behaviour which could be useful for agricultural management perspectives involving pollutant transport, flooding event and global water balance. PMID:22163868
NASA Astrophysics Data System (ADS)
Liu, M.; Yang, L.; Smith, J. A.; Vecchi, G. A.
2017-12-01
Extreme rainfall and flooding associated with landfalling tropical cyclones (TC) is responsible for vast socioeconomic losses and fatalities. Landfalling tropical cyclones are an important element of extreme rainfall and flood peak distributions in the eastern United States. Record floods for USGS stream gauging stations over the eastern US are closely tied to landfalling hurricanes. A small number of storms account for the largest record floods, most notably Hurricanes Diane (1955) and Agnes (1972). The question we address is: if the synoptic conditions accompanying those hurricanes were to be repeated in the future, how would the thermodynamic and dynamic storm properties and associated extreme rainfall differ in response to climate change? We examine three hurricanes: Diane (1955), Agnes (1972) and Irene (2011), due to the contrasts in structure/evolution properties and their important roles in dictating the upper tail properties of extreme rainfall and flood frequency over eastern US. Extreme rainfall from Diane is more localized as the storm maintains tropical characteristics, while synoptic-scale vertical motion associated with extratropical transition is a central feature for extreme rainfall induced by Agnes. Our analyses are based on ensemble simulations using the Weather Research and Forecasting (WRF) model, considering combinations of different physics options (i.e., microphysics, boundary layer schemes). The initial and boundary conditions of WRF simulations for the present-day climate are using the Twentieth Century Reanalysis (20thCR). A sub-selection of GCMs is used, as part of phase 5 of the Coupled Model Intercomparison Project (CMIP5), to provide future climate projections. For future simulations, changes in model fields (i.e., temperature, humidity, geopotential height) between present-day and future climate are first derived and then added to the same 20thCR initial and boundary data used for the present-day simulations, and the ensemble is rerun using identical model configurations. Response of extreme rainfall as well as changes in thermodynamic and dynamic storm properties will be presented and analyzed. Contrasting responses across the three storm events to climate change will shed light on critical environmental factors for TC-related extreme rainfall over eastern US.
NASA Astrophysics Data System (ADS)
Hanshaw, M. N.; Schmidt, K. M.; Jorgensen, D. P.; Stock, J. D.
2007-12-01
Constraining the distribution of rainfall is essential to evaluating the post-fire mass-wasting response of steep soil-mantled landscapes. As part of a pilot early-warning project for flash floods and debris flows, NOAA deployed a portable truck-mounted Shared Mobile Atmospheric Research and Teaching Radar (SMART-R) to the 2006 Day fire in the Transverse Ranges of Southern California. In conjunction with a dense array of ground- based instruments, including 8 tipping-bucket rain gages located within an area of 170 km2, this C-band mobile Doppler radar provided 200-m grid cell estimates of precipitation data at fine temporal and spatial scales in burned steeplands at risk from hazardous flash floods and debris flows. To assess the utility of using this data in process models for flood and debris flow initiation, we converted grids of radar reflectivity to hourly time-steps of precipitation using an empirical relationship for convective storms, sampling the radar data at the locations of each rain gage as determined by GPS. The SMART-R was located 14 km from the farthest rain gage, but <10 km away from our intensive research area, where 5 gages are located within <1-2 km of each other. Analyses of the nine storms imaged by radar throughout the 2006/2007 winter produced similar cumulative rainfall totals between the gages and their SMART-R grid location over the entire season which correlate well on the high side, with gages recording the most precipitation agreeing to within 11% of the SMART-R. In contrast, on the low rainfall side, totals between the two recording systems are more variable, with a 62% variance between the minimums. In addition, at the scale of individual storms, a correlation between ground-based rainfall measurements and radar-based rainfall estimates is less evident, with storm totals between the gages and the SMART-R varying between 7 and 88%, a possible result of these being relatively small, fast-moving storms in an unusually dry winter. The SMART-R also recorded higher seasonal cumulative rainfall than the terrestrial gages, perhaps indicating that not all precipitation reached the ground. For one storm in particular, time-lapse photographs of the ground document snow. This could explain, in part, the discrepancy between storm-specific totals when the rain gages recorded significantly lower totals than the SMART-R. For example, during the storm where snow was observed, the SMART-R recorded a maximum of 66% higher rainfall than the maximum recorded by the gages. Unexpectedly, the highest elevation gage, located in a pre-fire coniferous vegetation community, consistently recorded the lowest precipitation, whereas gages in the lower elevation pre- fire chaparral community recorded the highest totals. The spatial locations of the maximum rainfall inferred by the SMART-R and the terrestrial gages are also offset by 1.6 km, with terrestrial values shifted easterly. The observation that the SMART-R images high rainfall intensities recorded by rain gages suggests that this technology has the ability to quantitatively estimate the spatial distribution over larger areas at a high resolution. Discrepancies on the storm scale, however, need to be investigated further, but we are optimistic that such high resolution data from the SMART-R and the terrestrial gages may lead to the effective application of a prototype debris-flow warning system where such processes put lives at risk.
Assessing the radar rainfall estimates in watershed-scale water quality model
USDA-ARS?s Scientific Manuscript database
Watershed-scale water quality models are effective science-based tools for interpreting change in complex environmental systems that affect hydrology cycle, soil erosion and nutrient fate and transport in watershed. Precipitation is one of the primary input data to achieve a precise rainfall-runoff ...
Climate change impacts on rainfall extremes and urban drainage: state-of-the-art review
NASA Astrophysics Data System (ADS)
Willems, Patrick; Olsson, Jonas; Arnbjerg-Nielsen, Karsten; Beecham, Simon; Pathirana, Assela; Bülow Gregersen, Ida; Madsen, Henrik; Nguyen, Van-Thanh-Van
2013-04-01
Under the umbrella of the IWA/IAHR Joint Committee on Urban Drainage, the International Working Group on Urban Rainfall (IGUR) has reviewed existing methodologies for the analysis of long-term historical and future trends in urban rainfall extremes and their effects on urban drainage systems, due to anthropogenic climate change. Current practises have several limitations and pitfalls, which are important to be considered by trend or climate change impact modellers and users of trend/impact results. The review considers the following aspects: Analysis of long-term historical trends due to anthropogenic climate change: influence of data limitation, instrumental or environmental changes, interannual variations and longer term climate oscillations on trend testing results. Analysis of long-term future trends due to anthropogenic climate change: by complementing empirical historical data with the results from physically-based climate models, dynamic downscaling to the urban scale by means of Limited Area Models (LAMs) including explicitly small-scale cloud processes; validation of RCM/GCM results for local conditions accounting for natural variability, limited length of the available time series, difference in spatial scales, and influence of climate oscillations; statistical downscaling methods combined with bias correction; uncertainties associated with the climate forcing scenarios, the climate models, the initial states and the statistical downscaling step; uncertainties in the impact models (e.g. runoff peak flows, flood or surcharge frequencies, and CSO frequencies and volumes), including the impacts of more extreme conditions than considered during impact model calibration and validation. Implications for urban drainage infrastructure design and management: upgrading of the urban drainage system as part of a program of routine and scheduled replacement and renewal of aging infrastructure; how to account for the uncertainties; flexible and sustainable solutions; adaptive approach that provides inherent flexibility and reversibility and avoids closing off options; importance of active learning. References: Willems, P., Olsson, J., Arnbjerg-Nielsen, K., Beecham, S., Pathirana, A., Bülow Gregersen, I., Madsen, H., Nguyen, V-T-V. (2012). Impacts of climate change on rainfall extremes and urban drainage. IWA Publishing, 252 p., Paperback Print ISBN 9781780401256; Ebook ISBN 9781780401263 Willems, P., Arnbjerg-Nielsen, K., Olsson, J., Nguyen, V.T.V. (2012), 'Climate change impact assessment on urban rainfall extremes and urban drainage: methods and shortcomings', Atmospheric Research, 103, 106-118
Wilson, Raymond C.
1997-01-01
Broad-scale variations in long-term precipitation climate may influence rainfall/debris-flow threshold values along the U.S. Pacific coast, where both the mean annual precipitation (MAP) and the number of rainfall days (#RDs) are controlled by topography, distance from the coastline, and geographic latitude. Previous authors have proposed that rainfall thresholds are directly proportional to MAP, but this appears to hold only within limited areas (< 1?? latitude), where rainfall frequency (#RDs) is nearly constant. MAP-normalized thresholds underestimate the critical rainfall when applied to areas to the south, where the #RDs decrease, and overestimate threshold rainfall when applied to areas to the north, where the #RDs increase. For normalization between climates where both MAP and #RDs vary significantly, thresholds may best be described as multiples of the rainy-day normal, RDN = MAP/#RDs. Using data from several storms that triggered significant debris-flow activity in southern California, the San Francisco Bay region, and the Pacific Northwest, peak 24-hour rainfalls were plotted against RDN values, displaying a linear relationship with a lower bound at about 14 RDN. RDN ratios in this range may provide a threshold for broad-scale regional forecasting of debris-flow activity.
Changes in Intense Precipitation Events in West Africa and the central U.S. under Global Warming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Kerry H.; Vizy, Edward
The purpose of the proposed project is to improve our understanding of the physical processes and large-scale connectivity of changes in intense precipitation events (high rainfall rates) under global warming in West Africa and the central U.S., including relationships with low-frequency modes of variability. This is in response to the requested subject area #2 “simulation of climate extremes under a changing climate … to better quantify the frequency, duration, and intensity of extreme events under climate change and elucidate the role of low frequency climate variability in modulating extremes.” We will use a regional climate model and emphasize an understandingmore » of the physical processes that lead to an intensification of rainfall. The project objectives are as follows: 1. Understand the processes responsible for simulated changes in warm-season rainfall intensity and frequency over West Africa and the Central U.S. associated with greenhouse gas-induced global warming 2. Understand the relationship between changes in warm-season rainfall intensity and frequency, which generally occur on regional space scales, and the larger-scale global warming signal by considering modifications of low-frequency modes of variability. 3. Relate changes simulated on regional space scales to global-scale theories of how and why atmospheric moisture levels and rainfall should change as climate warms.« less
NASA Astrophysics Data System (ADS)
Croghan, Danny; Van Loon, Anne; Bradley, Chris; Sadler, Jon; Hannnah, David
2017-04-01
Studies relating rainfall events to river water quality are frequently hindered by the lack of high resolution rainfall data. Local studies are particularly vulnerable due to the spatial variability of precipitation, whilst studies in urban environments require precipitation data at high spatial and temporal resolutions. The use of point-source data makes identifying causal effects of storms on water quality problematic and can lead to erroneous interpretations. High spatial and temporal resolution rainfall radar data offers great potential to address these issues. Here we use rainfall radar data with a 1km spatial resolution and 5 minute temporal resolution sourced from the UK Met Office Nimrod system to study the effects of storm events on water temperature (WTemp) in Birmingham, UK. 28 WTemp loggers were placed over 3 catchments on a rural-urban land use gradient to identify trends in WTemp during extreme events within urban environments. Using GIS, the catchment associated with each logger was estimated, and 5 min. rainfall totals and intensities were produced for each sub-catchment. Comparisons of rainfall radar data to meteorological stations in the same grid cell revealed the high accuracy of rainfall radar data in our catchments (<5% difference for studied months). The rainfall radar data revealed substantial differences in rainfall quantity between the three adjacent catchments. The most urban catchment generally received more rainfall, with this effect greatest in the highest intensity storms, suggesting the possibility of urban heat island effects on precipitation dynamics within the catchment. Rainfall radar data provided more accurate sub-catchment rainfall totals allowing better modelled estimates of storm flow, whilst spatial fluctuations in both discharge and WTemp can be simply related to precipitation intensity. Storm flow inputs for each sub-catchment were estimated and linked to changes in WTemp. WTemp showed substantial fluctuations (>1 °C) over short durations (<30 minutes) during storm events in urbanised sub-catchments, however WTemp recovery times were more prolonged. Use of the rainfall radar data allowed increased accuracy in estimates of storm flow timings and rainfall quantities at each sub-catchment, from which the impact of storm flow on WTemp could be quantified. We are currently using the radar data to derive thresholds for rainfall amount and intensity at which these storm deviations occur for each logger, from which the relative effects of land use and other catchment characteristics in each sub-catchment can be assessed. Our use of the rainfall radar data calls into question the validity of using station based data for small scale studies, particularly in urban areas, with high variation apparent in rainfall intensity both spatially and temporally. Variation was particularly high within the heavily urbanised catchment. For water quality studies, high resolution rainfall radar can be implemented to increase the reliability of interpretations of the response of water quality variables to storm water inputs in urban catchments.
Scaling water and energy fluxes in climate systems - Three land-atmospheric modeling experiments
NASA Technical Reports Server (NTRS)
Wood, Eric F.; Lakshmi, Venkataraman
1993-01-01
Three numerical experiments that investigate the scaling of land-surface processes - either of the inputs or parameters - are reported, and the aggregated processes are compared to the spatially variable case. The first is the aggregation of the hydrologic response in a catchment due to rainfall during a storm event and due to evaporative demands during interstorm periods. The second is the spatial and temporal aggregation of latent heat fluxes, as calculated from SiB. The third is the aggregation of remotely sensed land vegetation and latent and sensible heat fluxes using TM data from the FIFE experiment of 1987 in Kansas. In all three experiments it was found that the surface fluxes and land characteristics can be scaled, and that macroscale models based on effective parameters are sufficient to account for the small-scale heterogeneities investigated.
The collaborative historical African rainfall model: description and evaluation
Funk, Christopher C.; Michaelsen, Joel C.; Verdin, James P.; Artan, Guleid A.; Husak, Gregory; Senay, Gabriel B.; Gadain, Hussein; Magadazire, Tamuka
2003-01-01
In Africa the variability of rainfall in space and time is high, and the general availability of historical gauge data is low. This makes many food security and hydrologic preparedness activities difficult. In order to help overcome this limitation, we have created the Collaborative Historical African Rainfall Model (CHARM). CHARM combines three sources of information: climatologically aided interpolated (CAI) rainfall grids (monthly/0.5° ), National Centers for Environmental Prediction reanalysis precipitation fields (daily/1.875° ) and orographic enhancement estimates (daily/0.1° ). The first set of weights scales the daily reanalysis precipitation fields to match the gridded CAI monthly rainfall time series. This produces data with a daily/0.5° resolution. A diagnostic model of orographic precipitation, VDELB—based on the dot-product of the surface wind V and terrain gradient (DEL) and atmospheric buoyancy B—is then used to estimate the precipitation enhancement produced by complex terrain. Although the data are produced on 0.1° grids to facilitate integration with satellite-based rainfall estimates, the ‘true’ resolution of the data will be less than this value, and varies with station density, topography, and precipitation dynamics. The CHARM is best suited, therefore, to applications that integrate rainfall or rainfall-driven model results over large regions. The CHARM time series is compared with three independent datasets: dekadal satellite-based rainfall estimates across the continent, dekadal interpolated gauge data in Mali, and daily interpolated gauge data in western Kenya. These comparisons suggest reasonable accuracies (standard errors of about half a standard deviation) when data are aggregated to regional scales, even at daily time steps. Thus constrained, numerical weather prediction precipitation fields do a reasonable job of representing large-scale diurnal variations.
NASA Astrophysics Data System (ADS)
Rodrigo Comino, Jesús; Iserloh, Thomas; Morvan, Xavier; Malam Issa, Oumarou; Naisse, Christophe; Keesstra, Saskia; Cerdà, Artemi; Prosdocimi, Massimo; Arnáez, José; Lasanta, Teodoro; Concepción Ramos, María; José Marqués, María; Ruiz Colmenero, Marta; Bienes, Ramón; Damián Ruiz Sinoga, José; Seeger, Manuel; Ries, Johannes B.
2016-04-01
Small portable rainfall simulators are considered as a useful tool to analyze soil erosion processes in cultivated lands. European research groups of Spain (Valencia, Málaga, Lleida, Madrid and La Rioja), France (Reims) or Germany (Trier) have used different rainfall simulators (varying in drop size distribution and fall velocities, kinetic energy, plot forms and sizes, and field of application)to study soil loss, surface flow, runoff and infiltration coefficients in different experimental plots (Valencia, Montes de Málaga, Penedès, Campo Real and La Rioja in Spain, Champagne in France and Mosel-Ruwer valley in Germany). The measurements and experiments developed by these research teams give an overview of the variety in the methodologies with rainfall simulations in studying the problem of soil erosion and describing the erosion features in different climatic environments, management practices and soil types. The aim of this study is: i) to investigate where, how and why researchers from different wine-growing regions applied rainfall simulations with successful results as a tool to measure soil erosion processes; ii) to make a qualitative comparison about the general soil erosion processes in European terroirs; iii) to demonstrate the importance of the development a standard method for soil erosion processes in vineyards, using rainfall simulators; iv) and to analyze the key factors that should be taken into account to carry out rainfall simulations. The rainfall simulations in all cases allowed knowing the infiltration capacity and the susceptibility of the soil to be detached and to generate sediment loads to runoff. Despite using small plots, the experiments were useful to analyze the influence of soil cover to reduce soil erosion and to make comparison between different locations or the influence of different soil characteristics.
NASA Astrophysics Data System (ADS)
Martin, Gill; Levine, Richard; Klingaman, Nicholas; Bush, Stephanie; Turner, Andrew; Woolnough, Steven
2015-04-01
Despite considerable efforts worldwide to improve model simulations of the Asian summer monsoon, significant biases still remain in climatological seasonal mean rainfall distribution, timing of the onset, and northward and eastward extent of the monsoon domain (Sperber et al., 2013). Many modelling studies have shown sensitivity to convection and boundary layer parameterization, cloud microphysics and land surface properties, as well as model resolution. Here we examine the problems in representing short-timescale rainfall variability (related to convection parameterization), problems in representing synoptic-scale systems such as monsoon depressions (related to model resolution), and the relationship of each of these with longer-term systematic biases. Analysis of the spatial distribution of rainfall intensity on a range of timescales ranging from ~30 minutes to daily, in the MetUM and in observations (where available), highlights how rainfall biases in the South Asian monsoon region on different timescales in different regions can be achieved in models through a combination of the incorrect frequency and/or intensity of rainfall. Over the Indian land area, the typical dry bias is related to sub-daily rainfall events being too infrequent, despite being too intense when they occur. In contrast, the wet bias regions over the equatorial Indian Ocean are mainly related to too frequent occurrence of lower-than-observed 3-hourly rainfall accumulations which result in too frequent occurrence of higher-than-observed daily rainfall accumulations. This analysis sheds light on the model deficiencies behind the climatological seasonal mean rainfall biases that many models exhibit in this region. Changing physical parameterizations alters this behaviour, with associated adjustments in the climatological rainfall distribution, although the latter is not always improved (Bush et al., 2014). This suggests a more complex interaction between the diabatic heating and the large-scale circulation than is indicated by the intensity and frequency of rainfall alone. Monsoon depressions and low pressure systems are important contributors to monsoon rainfall over central and northern India, areas where MetUM climate simulations typically show deficient monsoon rainfall. Analysis of MetUM climate simulations at resolutions ranging from N96 (~135km) to N512 (~25km) suggests that at lower resolution the numbers and intensities of monsoon depressions and low pressure systems and their associated rainfall are very low compared with re-analyses/observations. We show that there are substantial increases with horizontal resolution, but resolution is not the only factor. Idealised simulations, either using nudged atmospheric winds or initialised coupled hindcasts, which improve (strengthen) the mean state monsoon and cyclonic circulation over the Indian peninsula, also result in a substantial increase in monsoon depressions and associated rainfall. This suggests that a more realistic representation of monsoon depressions is possible even at lower resolution if the larger-scale systematic error pattern in the monsoon is improved.
Scaling properties of Polish rain series
NASA Astrophysics Data System (ADS)
Licznar, P.
2009-04-01
Scaling properties as well as multifractal nature of precipitation time series have not been studied for local Polish conditions until recently due to lack of long series of high-resolution data. The first Polish study of precipitation time series scaling phenomena was made on the base of pluviograph data from the Wroclaw University of Environmental and Life Sciences meteorological station located at the south-western part of the country. The 38 annual rainfall records from years 1962-2004 were converted into digital format and transformed into a standard format of 5-minute time series. The scaling properties and multifractal character of this material were studied by means of several different techniques: power spectral density analysis, functional box-counting, probability distribution/multiple scaling and trace moment methods. The result proved the general scaling character of time series at the range of time scales ranging form 5 minutes up to at least 24 hours. At the same time some characteristic breaks at scaling behavior were recognized. It is believed that the breaks were artificial and arising from the pluviograph rain gauge measuring precision limitations. Especially strong limitations at the precision of low-intensity precipitations recording by pluviograph rain gauge were found to be the main reason for artificial break at energy spectra, as was reported by other authors before. The analysis of co-dimension and moments scaling functions showed the signs of the first-order multifractal phase transition. Such behavior is typical for dressed multifractal processes that are observed by spatial or temporal averaging on scales larger than the inner-scale of those processes. The fractal dimension of rainfall process support derived from codimension and moments scaling functions geometry analysis was found to be 0.45. The same fractal dimension estimated by means of the functional box-counting method was equal to 0.58. At the final part of the study implementation of double trace moment method allowed for estimation of local universal multifractal rainfall parameters (α=0.69; C1=0.34; H=-0.01). The research proved the fractal character of rainfall process support and multifractal character of the rainfall intensity values variability among analyzed time series. It is believed that scaling of local Wroclaw's rainfalls for timescales at the range from 24 hours up to 5 minutes opens the door for future research concerning for example random cascades implementation for daily precipitation totals disaggregation for smaller time intervals. The results of such a random cascades functioning in a form of 5 minute artificial rainfall scenarios could be of great practical usability for needs of urban hydrology, and design and hydrodynamic modeling of storm water and combined sewage conveyance systems.
Similarity and scale in catchment storm response
NASA Technical Reports Server (NTRS)
Wood, Eric F.; Sivapalan, Murugesu; Beven, Keith
1993-01-01
Until recently, very little progress had been made in understanding the relationship between small-scale variability of topography, soil, and rainfalls and the storm response seen at the catchment scale. The work reviewed here represents the first attempt at a systematic theoretical framework for such understanding in the context of surface runoff generation by different processes. The parameterization of hydrological processes over a range of scales is examined, and the concept of the 'representative elementary area' (REA) is introduced. The REA is a fundamental scale for catchment modeling at which continuum assumptions can be applied for the spatially variable controls and parameters, and spatial patterns no longer have to be considered explicitly. The investigation of scale leads into the concept of hydrologic similarity in which the effects of the environmental controls on runoff generation and flood frequency response be investigated independently of catchment scale. The paper reviews the authors' initial results and hopefully will motivate others to also investigate the issues of hydrologic scale and similarity.
Analyzing energy-water exchange dynamics in the Thar desert
NASA Astrophysics Data System (ADS)
Raja, P.; Singh, Nilendu; Srinivas, C. V.; Singhal, Mohit; Chauhan, Pankaj; Singh, Maharaj; Sinha, N. K.
2017-07-01
Regions of strong land-atmosphere coupling will be more susceptible to the hydrological impacts in the intensifying hydrological cycle. In this study, micrometeorological experiments were performed to examine the land-atmosphere coupling strength over a heat low region (Thar desert, NW India), known to influence the Indian summer monsoon (ISM). Within the vortex of Thar desert heat low, energy-water exchange and coupling behavior were studied for 4 consecutive years (2011-2014) based on sub-hourly measurements of radiative-convective flux, state parameters and sub-surface thermal profiles using lead-lag analysis between various E-W balance components. Results indicated a strong (0.11-0.35) but variable monsoon season (July-September) land-atmosphere coupling events. Coupling strength declined with time, becomes negative beyond 10-day lag. Evapotranspiration (LE) influences rainfall at the monthly time-scale (20-40 days). Highly correlated monthly rainfall and LE anomalies (r = 0.55, P < 0.001) suggested a large precipitation memory linked to the local land surface state. Sensible heating (SH) during March and April are more strongly (r = 0.6-0.7) correlated to ISM rainfall than heating during May or June (r = 0.16-0.36). Analyses show strong and weak couplings among net radiation (Rn)-vapour pressure deficit (VPD), LE-VPD and Rn-LE switching between energy-limited to water-limited conditions. Consistently, +ve and -ve residual energy [(dE) = (Rn - G) - (SH + LE)] were associated with regional wet and dry spells respectively with a lead of 10-40 days. Dew deposition (18.8-37.9 mm) was found an important component in the annual surface water balance. Strong association of variation of LE and rainfall was found during monsoon at local-scale and with regional-scale LE (MERRA 2D) but with a lag which was more prominent at local-scale than at regional-scale. Higher pre-monsoon LE at local-scale as compared to low and monotonous variation in regional-scale LE led to hypothesize that excess energy and water vapour brought through advection caused by pre-monsoon rainfall might have been recycled through rainfall to compensate for early part of monsoon rainfall at local-scale. However, long-term measurements and isotope analysis would be able to strengthen this hypothesis. This study would fill the key gaps in the global flux studies and improve understanding on local E-W exchange pathways, responses and feedbacks.
The assessment of Global Precipitation Measurement estimates over the Indian subcontinent
NASA Astrophysics Data System (ADS)
Murali Krishna, U. V.; Das, Subrata Kumar; Deshpande, Sachin M.; Doiphode, S. L.; Pandithurai, G.
2017-08-01
Accurate and real-time precipitation estimation is a challenging task for current and future spaceborne measurements, which is essential to understand the global hydrological cycle. Recently, the Global Precipitation Measurement (GPM) satellites were launched as a next-generation rainfall mission for observing the global precipitation characteristics. The purpose of the GPM is to enhance the spatiotemporal resolution of global precipitation. The main objective of the present study is to assess the rainfall products from the GPM, especially the Integrated Multi-satellitE Retrievals for the GPM (IMERG) data by comparing with the ground-based observations. The multitemporal scale evaluations of rainfall involving subdaily, diurnal, monthly, and seasonal scales were performed over the Indian subcontinent. The comparison shows that the IMERG performed better than the Tropical Rainfall Measuring Mission (TRMM)-3B42, although both rainfall products underestimated the observed rainfall compared to the ground-based measurements. The analyses also reveal that the TRMM-3B42 and IMERG data sets are able to represent the large-scale monsoon rainfall spatial features but are having region-specific biases. The IMERG shows significant improvement in low rainfall estimates compared to the TRMM-3B42 for selected regions. In the spatial distribution, the IMERG shows higher rain rates compared to the TRMM-3B42, due to its enhanced spatial and temporal resolutions. Apart from this, the characteristics of raindrop size distribution (DSD) obtained from the GPM mission dual-frequency precipitation radar is assessed over the complex mountain terrain site in the Western Ghats, India, using the DSD measured by a Joss-Waldvogel disdrometer.
NASA Astrophysics Data System (ADS)
Groenen, D.; Bourassa, M. A.
2017-12-01
The rainfall in Mesoamerica (Mexico and Central America) has influences from two bodies of water, interesting topography, and complex wind patterns, which complicates weather forecasting. Knowing the approximate onset and demise of the rainy season is critical for the optimal growth and development of key crops in this region such as coffee, bananas, rice, and maize. This study compares three methods to calculate the onset/demise dates of the individual years' rainy season, using area-averaged rainfall data (7-28 °N/77-109 °W) from two datasets. After these onset/demise dates are obtained using rainfall data, the atmospheric and oceanic phenomena associated with the timing is analyzed using MERRA-2 reanalysis data. The objective is to link the large-scale phenomena to the individual years' onset/demise dates, as well as link the weather phenomena to the interannual variability of the onset/demise dates. In addition, the broad scale rainy season will be connected with regional onset/demise dates on the scale of 400km. Linking the broad scale rainfall regimes to the regional regimes will allow a more cohesive view of the dynamics related to rainfall variability in the Mesoamerican region. A smoothing method will be used to analyze the timing and intensity of the mid-summer drought (MSD), a minimum in rainfall typically occurring during July and August. The goal of this research is to link the physical and dynamical mechanisms that cause the Mesoamerican rainy season and mid-summer drought (MSD) in order to better understand the predictability of Mesoamerican rainfall and ensure the health and safety of key crops.
Wind erodibility response of physical and biological crusts to rain and flooding
NASA Astrophysics Data System (ADS)
Aubault, H.; Bullard, J. E.; Strong, C. L.; Ghadiri, H.; McTainsh, G. H.
2015-12-01
Soil surface crusts are important controllers of the small-scale wind entrainment processes that occur across all dust source regions globally. The crust type influences water and wind erosion by impacting infiltration, runoff, threshold wind velocity and surface storage capacity of both water and loose erodible material. The spatial and temporal patterning of both physical and biological crusts is known to change with rainfall and flooding. However, little is known about the impact of differing water quantity (from light rainfall through to flooding) on soil crusting characteristics (strength, roughness, sediment loss). This study compares the response of two soil types (loamy sand - LS, sandy loam - SL) with and without BSCs to three different rainfall events (2mm, 8mm, 15mm). Two BSC treatments were used one that simulated a young cyanobacteria dominated crust and an older flood induced multi species biological crust. For both soil types, soil surface strength increased with increasing rainfall amount with LS having consistently higher resistance to rupture than SL. Regardless of texture, soils with BSCs were more resistant and strength did not change in response to rainfall impact. Soil loss due to wind erosion was substantially higher on bare LS (4 times higher) and SL (3 times higher) soils compared with those with BSCs. Our results also show that young biological crust (formed by the rainfall event) have reduced soil erodibility with notably greater strength, roughness and reduced sediment losses when compared to soils with physical crust. Interestingly though, the erodibility of the old BSC did not differ greatly from that of the young BSC with respect to strength, roughness and sediment loss. This raises questions regarding the rapid soil surface protection offered by young colonising cyanobacteria crusts. Further analyses exploring the role of biological soil crusts on surface response to rainfall and wind saltation impact are ongoing.
Cheng, Jianbo; Qiao, Junjing; Chen, Yucheng; Yang, Zhimin
2015-10-01
Small-scale composting is applied to recycle manure and biomass around the globe. Piles frequently site outside near field where bio-waste comes or compost goes within developing rural regions. However, little equipment or policy besides cover of common materials addressed concerns about its exposure to rainfall and subsequent leachate towards groundwater. In addition, little is known about its nutrient load to groundwater and covers' effect on nutrient unloading. Differently covered swine manure piles were composted outdoors with exposure to rain, then columns consisted of resultant compost of varying maturing age and soil were leached by simulated rainfall. Leachate TN, NH4 (+)-N, NO3 (-)-N, TP, and DP were modeled by regression analysis, and further, integral of quadratic curve or nutrient load index (NLI) was designated as proxy for nutrient load. Log response ratio was employed to qualify covers' effect on nutrient unloading. This case raised higher concern about leachate NH4 (+)-N than NO3 (-)-N for former's lower category in groundwater quality standard. The integrated NLIs or general nutrient load for six intervals, averagely divided from composting day of 60-120, decreased by 31, 37, 45, 56, and 73 % consecutively. Covers could unload nutrient to underground and function better to prevent P than N from leaching. Capabilities of piles covered by rice straw (CR) and soil (CS) to unload respectively are 77 and 72 % of by film (CF).
Biological Soil Crusts are Ecohydrological Hotspots in Dryland and Subhumid Regions
NASA Astrophysics Data System (ADS)
Belnap, J.; Chamizo de la Piedra, S.
2015-12-01
Dry and subhumid lands cover ~41% of Earth's terrestrial surface and biocrusts are often a dominant lifeform in these regions. These soil surface communities are known to be critical component in determining dryland hydrologic cycles by altering infiltration, runoff and evaporation processes; thus, they create a hotspot for ecohydrologic processes. Biocrust properties, such as micro-topography and the spatial distribution of overall cover and individual species, are believed to be the most influential; these properties vary with climate. Across the gradient from higher potential evapo-transpiration (PET; lower rainfall/higher temperatures such as hyper-arid deserts) to lower PET (higher rainfall/lower temperature such as semi-arid steppe), the external morphology of biocrusts generally goes from very smooth to highly roughened, with water residence time thus increasing as well. This change in PET is also accompanied by increasing species number and biomass; while these changes increase water absorption, they also clogs soil pores. It has long been believed that as biocrust roughness, species, and biomass increases, so does water infiltration and retention. However, the majority of these studies have occurred at a very small (< 2m2) spatial scale. Interesting, when done at the small scale, the current dogma holds: smooth biocrusts with low biomass decrease infiltration and increase runoff, whereas roughened ones with higher biomass increase infiltration. However, studies done at larger spatial scales across a gradient of roughness, species composition, and biomass, show biocrusts almost always increase infiltration and decrease runoff, regardless of biocrust characteristics. This finding runs counter to long-held views regarding the role of biocrusts in hydrologic cycles. These findings have large implications for modelling of soil moisture cycles in drylands under current and future conditions and the concept of ecohydrologic hotspots and hot moments in drylands.
A series of simulated rainfall run-off experiments with applications of different manure types (cattle solid pats, poultry dry litter, swine slurry) was conducted across four seasons on a field containing 36 plots (0.75 × 2 m each), resulting in 144 rainfall run-off events....
Influences of the MJO on the space-time organization of tropical convection
NASA Astrophysics Data System (ADS)
Dias, Juliana; Sakaeda, Naoko; Kiladis, George N.; Kikuchi, Kazuyoshi
2017-08-01
The fact that the Madden-Julian Oscillation (MJO) is characterized by large-scale patterns of enhanced tropical rainfall has been widely recognized for decades. However, the precise nature of any two-way feedback between the MJO and the properties of smaller-scale organization that makes up its convective envelope is not well understood. Satellite estimates of brightness temperature are used here as a proxy for tropical rainfall, and a variety of diagnostics are applied to determine the degree to which tropical convection is affected either locally or globally by the MJO. To address the multiscale nature of tropical convective organization, the approach ranges from space-time spectral analysis to an object-tracking algorithm. In addition to the intensity and distribution of global tropical rainfall, the relationship between the MJO and other tropical processes such as convectively coupled equatorial waves, mesoscale convective systems, and the diurnal cycle of tropical convection is also analyzed. The main findings of this paper are that, aside from the well-known increase in rainfall activity across scales within the MJO convective envelope, the MJO does not favor any particular scale or type of organization, and there is no clear signature of the MJO in terms of the globally integrated distribution of brightness temperature or rainfall.
Xiang Li; Qingfu Xiao; Jianzhi Niu; Salli Dymond; Natalie S. van Doorn; Xinxiao Yu; Baoyuan Xie; Xizhi Lv; Kebin Zhang; Jiao Li
2016-01-01
Rainfall interception by a tree's crown is one of the most important hydrological processes in an ecosystem, yet the mechanisms of interception are not well understood. A process-based experiment was conducted under five simulated rainfall intensities (from 10 to 150 mm hâ1) to directly quantify tree crown interception and examine the effect...
Weak linkage between the heaviest rainfall and tallest storms.
Hamada, Atsushi; Takayabu, Yukari N; Liu, Chuntao; Zipser, Edward J
2015-02-24
Conventionally, the heaviest rainfall has been linked to the tallest, most intense convective storms. However, the global picture of the linkage between extreme rainfall and convection remains unclear. Here we analyse an 11-year record of spaceborne precipitation radar observations and establish that a relatively small fraction of extreme convective events produces extreme rainfall rates in any region of the tropics and subtropics. Robust differences between extreme rainfall and convective events are found in the rainfall characteristics and environmental conditions, irrespective of region; most extreme rainfall events are characterized by less intense convection with intense radar echoes not extending to extremely high altitudes. Rainfall characteristics and environmental conditions both indicate the importance of warm-rain processes in producing extreme rainfall rates. Our results demonstrate that, even in regions where severe convective storms are representative extreme weather events, the heaviest rainfall events are mostly associated with less intense convection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
von Storch, H.; Zorita, E.; Cubasch, U.
A statistical strategy to deduct regional-scale features from climate general circulation model (GCM) simulations has been designed and tested. The main idea is to interrelate the characteristic patterns of observed simultaneous variations of regional climate parameters and of large-scale atmospheric flow using the canonical correlation technique. The large-scale North Atlantic sea level pressure (SLP) is related to the regional, variable, winter (DJF) mean Iberian Peninsula rainfall. The skill of the resulting statistical model is shown by reproducing, to a good approximation, the winter mean Iberian rainfall from 1900 to present from the observed North Atlantic mean SLP distributions. It ismore » shown that this observed relationship between these two variables is not well reproduced in the output of a general circulation model (GCM). The implications for Iberian rainfall changes as the response to increasing atmospheric greenhouse-gas concentrations simulated by two GCM experiments are examined with the proposed statistical model. In an instantaneous [open quotes]2 CO[sub 2][close quotes] doubling experiment, using the simulated change of the mean North Atlantic SLP field to predict Iberian rainfall yields, there is an insignificant increase of area-averaged rainfall of I mm/month, with maximum values of 4 mm/month in the northwest of the peninsula. In contrast, for the four GCM grid points representing the lberian Peninsula, the change is - 10 mm/month, with a minimum of - 19 mm/month in the southwest. In the second experiment, with the IPCC scenario A ([open quotes]business as usual[close quotes]) increase of CO[sub 2], the statistical-model results partially differ from the directly simulated rainfall changes: in the experimental range of 100 years, the area-averaged rainfall decreases by 7 mm/month (statistical model), and by 9 mm/month (GCM); at the same time the amplitude of the interdecadal variability is quite different. 17 refs., 10 figs.« less
CMIP5 ensemble-based spatial rainfall projection over homogeneous zones of India
NASA Astrophysics Data System (ADS)
Akhter, Javed; Das, Lalu; Deb, Argha
2017-09-01
Performances of the state-of-the-art CMIP5 models in reproducing the spatial rainfall patterns over seven homogeneous rainfall zones of India viz. North Mountainous India (NMI), Northwest India (NWI), North Central India (NCI), Northeast India (NEI), West Peninsular India (WPI), East Peninsular India (EPI) and South Peninsular India (SPI) have been assessed using different conventional performance metrics namely spatial correlation (R), index of agreement (d-index), Nash-Sutcliffe efficiency (NSE), Ratio of RMSE to the standard deviation of the observations (RSR) and mean bias (MB). The results based on these indices revealed that majority of the models are unable to reproduce finer-scaled spatial patterns over most of the zones. Thereafter, four bias correction methods i.e. Scaling, Standardized Reconstruction, Empirical Quantile Mapping and Gamma Quantile Mapping have been applied on GCM simulations to enhance the skills of the GCM projections. It has been found that scaling method compared to other three methods shown its better skill in capturing mean spatial patterns. Multi-model ensemble (MME) comprising 25 numbers of better performing bias corrected (Scaled) GCMs, have been considered for developing future rainfall patterns over seven zones. Models' spread from ensemble mean (uncertainty) has been found to be larger in RCP 8.5 than RCP4.5 ensemble. In general, future rainfall projections from RCP 4.5 and RCP 8.5 revealed an increasing rainfall over seven zones during 2020s, 2050s, and 2080s. The maximum increase has been found over southwestern part of NWI (12-30%), northwestern part of WPI (3-30%), southeastern part of NEI (5-18%) and northern and eastern part of SPI (6-24%). However, the contiguous region comprising by the southeastern part of NCI and northeastern part of EPI, may experience slight decreasing rainfall (about 3%) during 2020s whereas the western part of NMI may also receive around 3% reduction in rainfall during both 2050s and 2080s.
Bias correction of satellite-based rainfall data
NASA Astrophysics Data System (ADS)
Bhattacharya, Biswa; Solomatine, Dimitri
2015-04-01
Limitation in hydro-meteorological data availability in many catchments limits the possibility of reliable hydrological analyses especially for near-real-time predictions. However, the variety of satellite based and meteorological model products for rainfall provides new opportunities. Often times the accuracy of these rainfall products, when compared to rain gauge measurements, is not impressive. The systematic differences of these rainfall products from gauge observations can be partially compensated by adopting a bias (error) correction. Many of such methods correct the satellite based rainfall data by comparing their mean value to the mean value of rain gauge data. Refined approaches may also first find out a suitable time scale at which different data products are better comparable and then employ a bias correction at that time scale. More elegant methods use quantile-to-quantile bias correction, which however, assumes that the available (often limited) sample size can be useful in comparing probabilities of different rainfall products. Analysis of rainfall data and understanding of the process of its generation reveals that the bias in different rainfall data varies in space and time. The time aspect is sometimes taken into account by considering the seasonality. In this research we have adopted a bias correction approach that takes into account the variation of rainfall in space and time. A clustering based approach is employed in which every new data point (e.g. of Tropical Rainfall Measuring Mission (TRMM)) is first assigned to a specific cluster of that data product and then, by identifying the corresponding cluster of gauge data, the bias correction specific to that cluster is adopted. The presented approach considers the space-time variation of rainfall and as a result the corrected data is more realistic. Keywords: bias correction, rainfall, TRMM, satellite rainfall
Quantifying macropore recharge: Examples from a semi-arid area
Wood, W.W.; Rainwater, Ken A.; Thompson, D.B.
1997-01-01
The purpose of this paper is to illustrate the significantly increased resolution of determining macropore recharge by combining physical, chemical, and isotopic methods of analysis. Techniques for quantifying macropore recharge were developed for both small-scale (1 to 10 km2) and regional-scale areas in and semi-arid areas. The Southern High Plains region of Texas and New Mexico was used as a representative field site to test these methods. Macropore recharge in small-scale areas is considered to be the difference between total recharge through floors of topographically dosed basins and interstitial recharge through the same area. On the regional scale, macropore recharge was considered to be the difference between regional average annual recharge and interstitial recharge measured in the unsaturated zone. Stable isotopic composition of ground water and precipitation was used us an independent estimate of macropore recharge on the regional scale. Results of this analysis suggest that in the Southern High Plains recharge flux through macropores is between 60 and 80 percent of the total 11 mm/y. Between 15 and 35 percent of the recharge occurs by interstitial recharge through the basin floors. Approximately 5 percent of the total recharge occurs as either interstitial or matrix recharge between the basin floors, representing approximately 95 percent of the area. The approach is applicable to other arid and semi-arid areas that focus rainfall into depressions or valleys.The purpose of this paper is to illustrate the significantly increased resolution of determining macropore recharge by combining physical, chemical, and isotopic methods of analysis. Techniques for quantifying macropore recharge were developed for both small-scale (1 to 10 km2) and regional-scale areas in arid and semi-arid areas. The Southern High Plains region of Texas and New Mexico was used as a representative field site to test these methods. Macropore recharge in small-scale areas is considered to be the difference between total recharge through floors of topographically closed basins and interstitial recharge through the same area. On the regional scale, macropore recharge was considered to be the difference between regional average annual recharge and interstitial recharge measured in the unsaturated zone. Stable isotopic composition of ground water and precipitation was used as an independent estimate of macropore recharge on the regional scale. Results of this analysis suggest that in the Southern High Plains recharge flux through macropores is between 60 and 80 percent of the total 11 mm/y. Between 15 and 35 percent of the recharge occurs by interstitial recharge through the basin floors. Approximately 5 percent of the total recharge occurs as either interstitial or matrix recharge between the basin floors, representing approximately 95 percent of the area. The approach is applicable to other arid and semi-arid areas that focus rainfall into depressions or valleys.
Runoff curve numbers for 10 small forested watersheds in the mountains of the eastern United States
Negussie H. Tedela; Steven C. McCutcheon; Todd C. Rasmussen; Richard H. Hawkins; Wayne T. Swank; John L. Campbell; Mary Beth Adams; C. Rhett Jackson; Ernest W. Tollner
2012-01-01
Engineers and hydrologists use the curve number method to estimate runoff from rainfall for different land use and soil conditions; however, large uncertainties occur for estimates from forested watersheds. This investigation evaluates the accuracy and consistency of the method using rainfall-runoff series from 10 small forested-mountainous watersheds in the eastern...
NASA Astrophysics Data System (ADS)
Tang, L.; Hossain, F.
2009-12-01
Understanding the error characteristics of satellite rainfall data at different spatial/temporal scales is critical, especially when the scheduled Global Precipitation Mission (GPM) plans to provide High Resolution Precipitation Products (HRPPs) at global scales. Satellite rainfall data contain errors which need ground validation (GV) data for characterization, while satellite rainfall data will be most useful in the regions that are lacking in GV. Therefore, a critical step is to develop a spatial interpolation scheme for transferring the error characteristics of satellite rainfall data from GV regions to Non-GV regions. As a prelude to GPM, The TRMM Multi-satellite Precipitation Analysis (TMPA) products of 3B41RT and 3B42RT (Huffman et al., 2007) over the US spanning a record of 6 years are used as a representative example of satellite rainfall data. Next Generation Radar (NEXRAD) Stage IV rainfall data are used as the reference for GV data. Initial work by the authors (Tang et al., 2009, GRL) has shown promise in transferring error from GV to Non-GV regions, based on a six-year climatologic average of satellite rainfall data assuming only 50% of GV coverage. However, this transfer of error characteristics needs to be investigated for a range of GV data coverage. In addition, it is also important to investigate if proxy-GV data from an accurate space-borne sensor, such as the TRMM PR (or the GPM DPR), can be leveraged for the transfer of error at sparsely gauged regions. The specific question we ask in this study is, “what is the minimum coverage of GV data required for error transfer scheme to be implemented at acceptable accuracy in hydrological relevant scale?” Three geostatistical interpolation methods are compared: ordinary kriging, indicator kriging and disjunctive kriging. Various error metrics are assessed for transfer such as, Probability of Detection for rain and no rain, False Alarm Ratio, Frequency Bias, Critical Success Index, RMSE etc. Understanding the proper space-time scales at which these metrics can be reasonably transferred is also explored in this study. Keyword: Satellite rainfall, error transfer, spatial interpolation, kriging methods.
NASA Astrophysics Data System (ADS)
Verdon-Kidd, D. C.; Kiem, A. S.
2009-04-01
In this paper regional (synoptic) and large-scale climate drivers of rainfall are investigated for Victoria, Australia. A non-linear classification methodology known as self-organizing maps (SOM) is used to identify 20 key regional synoptic patterns, which are shown to capture a range of significant synoptic features known to influence the climate of the region. Rainfall distributions are assigned to each of the 20 patterns for nine rainfall stations located across Victoria, resulting in a clear distinction between wet and dry synoptic types at each station. The influence of large-scale climate modes on the frequency and timing of the regional synoptic patterns is also investigated. This analysis revealed that phase changes in the El Niño Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD) and/or the Southern Annular Mode (SAM) are associated with a shift in the relative frequency of wet and dry synoptic types on an annual to inter-annual timescale. In addition, the relative frequency of synoptic types is shown to vary on a multi-decadal timescale, associated with changes in the Inter-decadal Pacific Oscillation (IPO). Importantly, these results highlight the potential to utilise the link between the regional synoptic patterns derived in this study and large-scale climate modes to improve rainfall forecasting for Victoria, both in the short- (i.e. seasonal) and long-term (i.e. decadal/multi-decadal scale). In addition, the regional and large-scale climate drivers identified in this study provide a benchmark by which the performance of Global Climate Models (GCMs) may be assessed.
NASA Astrophysics Data System (ADS)
Deidda, Roberto; Mascaro, Giuseppe; Hellies, Matteo; Baldini, Luca; Roberto, Nicoletta
2013-04-01
COSMO Sky-Med (CSK) is an important programme of the Italian Space Agency aiming at supporting environmental monitoring and management of exogenous, endogenous and anthropogenic risks through X-band Synthetic Aperture Radar (X-SAR) on board of 4 satellites forming a constellation. Most of typical SAR applications are focused on land or ocean observation. However, X-band SAR can be detect precipitation that results in a specific signature caused by the combination of attenuation of surface returns induced by precipitation and enhancement of backscattering determined by the hydrometeors in the SAR resolution volume. Within CSK programme, we conducted an intercomparison between the statistical properties of precipitation fields derived by CSK SARs and those derived by the CNR Polar 55C (C-band) ground based weather radar located in Rome (Italy). This contribution presents main results of this research which was aimed at the robust characterisation of rainfall statistical properties across different scales by means of scale-invariance analysis and multifractal theory. The analysis was performed on a dataset of more two years of precipitation observations collected by the CNR Polar 55C radar and rainfall fields derived from available images collected by the CSK satellites during intense rainfall events. Scale-invariance laws and multifractal properties were detected on the most intense rainfall events derived from the CNR Polar 55C radar for spatial scales from 4 km to 64 km. The analysis on X-SAR retrieved rainfall fields, although based on few images, leaded to similar results and confirmed the existence of scale-invariance and multifractal properties for scales larger than 4 km. These outcomes encourage investigating SAR methodologies for future development of meteo-hydrological forecasting models based on multifractal theory.
NASA Astrophysics Data System (ADS)
Mari, X.; Guinot, B. P.; Thuoc, C. V.; Brune, J.; Lefebvre, J. P.; Raimbault, P.; Niggemann, J.; Dittmar, T.
2016-02-01
Black Carbon (BC) is an aerosol emitted during biomass burning and fossil fuel combustion. The atmospheric lifetime of Black Carbon (BC) ranges from a few days in rainy climates up to one month in dry regions, and on a global scale wet deposition of atmospheric BC accounts for about 80% of the BC input to the ocean. The rain-mediated input of BC to the ocean was studied in a coastal site located in a regional hotspot of atmospheric BC concentration, North Vietnam. We monitored changes in atmospheric and marine BC during a 24-h cycle impacted by a short and heavy rainfall event. During the rainfall event, atmospheric BC concentration decreased by a factor of 8 (i.e. from 5230 to 660 µg BC m-3). This cleaning of the air column was immediately followed by a significant increase (by a factor of 2 to 4) of particulate BC (PBC) and POC concentrations in the surface microlayer (SML) and at 1.5 m depth. In the SML, this event was also followed by a significant increase of DOC and dissolved BC (DBC) concentrations. Interestingly, the concentration of DOC decreased by >10% after the rainfall at 1.5 m depth, suggesting an adsorption of DOC onto sinking PBC. Concomitantly with the increase in particulate BC, nutrient concentrations increased by a factor of 2 in the SML, while no change was observed in the underlying water column. After the rainfall, the particle size spectra, measured along the water column with a LISST (Laser In-Situ Scattering and Transmissometry probe), changed in that the concentration of small particles (<5 µm) decreased and the concentration of large particles (>100 µm) increased. This alteration of the particle size spectra was restricted to a thin layer of about 20 cm thickness, probably corresponding to a BC-enriched layer adsorbing DOC and small particles, and stimulating aggregation during sinking from the surface to deeper water layers. The concentrations of POC, DOC, PBC, DBC and nutrients reached pre-rainfall levels 4 hours after the event.
Monsoon Rainfall and Landslides in Nepal
NASA Astrophysics Data System (ADS)
Dahal, R. K.; Hasegawa, S.; Bhandary, N. P.; Yatabe, R.
2009-12-01
A large number of human settlements on the Nepal Himalayas are situated either on old landslide mass or on landslide-prone areas. As a result, a great number of people are affected by large- and small-scale landslides all over the Himalayas especially during monsoon periods. In Nepal, only in the half monsoon period (June 10 to August 15), 70, 50 and 68 people were killed from landslides in 2007, 2008 and 2009, respectively. In this context, this paper highlights monsoon rainfall and their implications in the Nepal Himalaya. In Nepal, monsoon is major source of rainfall in summer and approximately 80% of the annual total rainfall occurs from June to September. The measured values of mean annual precipitation in Nepal range from a low of approximately 250 mm at area north of the Himalaya to many areas exceeding 6,000 mm. The mean annual rainfall varying between 1500 mm and 2500 mm predominate over most of the country. In Nepal, the daily distribution of precipitation during rainy season is also uneven. Sometime 10% of the total annual precipitation can occur in a single day. Similarly, 50% total annual rainfall also can occur within 10 days of monsoon. This type of uneven distribution plays an important role in triggering many landslides in Nepal. When spatial distribution of landslides was evaluated from record of more than 650 landslides, it is found that more landslides events were concentrated at central Nepal in the area of high mean annual rainfall. When monsoon rainfall and landslide relationship was taken into consideration, it was noticed that a considerable number of landslides were triggered in the Himalaya by continuous rainfall of 3 to 90 days. It has been noticed that continuous rainfall of few days (5 days or 7 days or 10 days) are usually responsible for landsliding in the Nepal Himalaya. Monsoon rains usually fall with interruptions of 2-3 days and are generally characterized by low intensity and long duration. Thus, there is a strong role of antecedent rainfall in triggering landslides. It is noticed that a moderate correlation exists between the antecedent rainfalls of 3 to 10 days and the daily rainfall at failure in the Nepal Himalaya. The rainfall thresholds are utilized to develop early warning systems. Taking reference of the intensity-duration threshold and normalized rainfall intensity threshold, two proto-type models of early warning systems (RIEWS and N-RIEWS) are proposed. Early warning models show less time for evacuation in the case of short duration and high intensity rainfall, whereas for long duration rainfall, warning time is enough and when warning information disseminate to the people, people will aware to possible landslide risk. In the meantime, they will be mentally ready to tackle with possible disaster of coming hours or days and will avoid the consequences. On the basis of coarse hydro-meteorological data of developing country like Nepal, this simple and rather easy model of early warning will certainly help to reduce fatalities from landslides.
Flooding from Intense Rainfall: an overview of project SINATRA
NASA Astrophysics Data System (ADS)
Cloke, Hannah
2014-05-01
Project SINATRA (Susceptibility of catchments to INTense RAinfall and flooding) is part of the UK NERC's Flooding From Intense Rainfall (FFIR) research programme which aims to reduce the risks of damage and loss of life caused by surface water and flash floods through improved identification, characterisation and prediction of interacting meteorological, hydrological and hydro-morphological processes that contribute to flooding associated with high-intensity rainfall events. Extreme rainfall events may only last for a few hours at most, but can generate terrifying and destructive floods. Their impact can be affected by a wide range factors (or processes) such as the location and intensity of the rainfall, the shape and steepness of the catchment it falls on, how much sediment is moved by the water and the vulnerability of the communities in the flood's path. Furthermore, FFIR are by their nature rapid, making it very difficult for researchers to 'capture' measurements during events. The complexity, speed and lack of field measurements on FFIR make it difficult to create computer models to predict flooding and often we are uncertain as to their accuracy. In addition there is no consensus on how to identify how particular catchments may be vulnerable to FFIR, due to factors such as catchment area, shape, geology and soil type as well as land-use. Additionally, the catchments most susceptible to FFIR are often small and un-gauged. Project SINATRA will: (1) Increase our understanding of what factors cause FFIR and gathering new, high resolution measurements of FFIR by: assembling an archive of past FFIR events in Britain and their impacts, as a prerequisite for improving our ability to predict future occurrences of FFIR; making real time observations of flooding during flood events as well as post-event surveys and historical event reconstruction, using fieldwork and crowd-sourcing methods; and characterizing the physical drivers for UK summer flooding events by identifying the large-scale atmospheric conditions associated with FFIR events, and linking them to catchment type. (2) Use this new understanding and data to improve models of FFIR so we can predict where they may happen nationwide by: employing an integrated catchment/urban scale modelling approach to FFIR at high spatial and temporal scales, modelling rapid catchment response to flash floods and their impacts in urban areas; scaling up to larger catchments by improving the representation of fast riverine and surface water flooding and hydromorphic change (including debris flow) in regional scale models of FFIR; improving the representation of FFIR in the JULES land surface model by integrating river routing and fast runoff processes, and performing assimilation of soil moisture and river discharge into the model run (3) Use these new findings and predictions to provide the Environment Agency and other professionals with information and software they can use to manage FFIR, reducing their damage and impact to communities by: developing tools to enable prediction of future FFIR impacts to support the Flood Forecasting Centre in issuing new 'impacts-based' warnings about their occurrence; developing a FFIR analysis tool to assess risks associated with rare events in complex situations involving incomplete knowledge, analogous to those developed for safety assessment in radioactive waste management.
Palmer, Todd M.; Charles, Grace K.; Helgen, Kristofer M.; Kinyua, Stephen N.; Maclean, Janet E.; Turner, Benjamin L.; Young, Hillary S.
2013-01-01
Large mammalian herbivores (LMH) strongly influence plant communities, and these effects can propagate indirectly throughout food webs. Most existing large-scale manipulations of LMH presence/absence consist of a single exclusion treatment, and few are replicated across environmental gradients. Thus, important questions remain about the functional roles of different LMH, and how these roles depend on abiotic context. In September 2008, we constructed a series of 1-ha herbivore-exclusion plots across a 20-km rainfall gradient in central Kenya. Dubbed "UHURU" (Ungulate Herbivory Under Rainfall Uncertainty), this experiment aims to illuminate the ecological effects of three size classes of LMH, and how rainfall regimes shape the direction and magnitude of these effects. UHURU consists of four treatments: total-exclusion (all ungulate herbivores), mesoherbivore-exclusion (LMH >120-cm tall), megaherbivore-exclusion (elephants and giraffes), and unfenced open plots. Each treatment is replicated three times at three locations (“sites”) along the rainfall gradient: low (440 mm/year), intermediate (580 mm/year), and high (640 mm/year). There was limited variation across sites in soil attributes and LMH activity levels. Understory-plant cover was greater in plots without mesoherbivores, but did not respond strongly to the exclusion of megaherbivores, or to the additional exclusion of dik-dik and warthog. Eleven of the thirteen understory plant species that responded significantly to exclusion treatment were more common in exclusion plots than open ones. Significant interactions between site and treatment on plant communities, although uncommon, suggested that differences between treatments may be greater at sites with lower rainfall. Browsers reduced densities of several common overstory species, along with growth rates of the three dominant Acacia species. Small-mammal densities were 2–3 times greater in total-exclusion than in open plots at all sites. Although we expect patterns to become clearer with time, results from 2008–2012 show that the effects of excluding successively smaller-bodied subsets of the LMH community are generally non-additive for a given response variable, and inconsistent across response variables, indicating that the different LMH size classes are not functionally redundant. Several response variables showed significant treatment-by-site interactions, suggesting that the nature of plant-herbivore interactions can vary across restricted spatial scales. PMID:23405122
Goheen, Jacob R; Palmer, Todd M; Charles, Grace K; Helgen, Kristofer M; Kinyua, Stephen N; Maclean, Janet E; Turner, Benjamin L; Young, Hillary S; Pringle, Robert M
2013-01-01
Large mammalian herbivores (LMH) strongly influence plant communities, and these effects can propagate indirectly throughout food webs. Most existing large-scale manipulations of LMH presence/absence consist of a single exclusion treatment, and few are replicated across environmental gradients. Thus, important questions remain about the functional roles of different LMH, and how these roles depend on abiotic context. In September 2008, we constructed a series of 1-ha herbivore-exclusion plots across a 20-km rainfall gradient in central Kenya. Dubbed "UHURU" (Ungulate Herbivory Under Rainfall Uncertainty), this experiment aims to illuminate the ecological effects of three size classes of LMH, and how rainfall regimes shape the direction and magnitude of these effects. UHURU consists of four treatments: total-exclusion (all ungulate herbivores), mesoherbivore-exclusion (LMH >120-cm tall), megaherbivore-exclusion (elephants and giraffes), and unfenced open plots. Each treatment is replicated three times at three locations ("sites") along the rainfall gradient: low (440 mm/year), intermediate (580 mm/year), and high (640 mm/year). There was limited variation across sites in soil attributes and LMH activity levels. Understory-plant cover was greater in plots without mesoherbivores, but did not respond strongly to the exclusion of megaherbivores, or to the additional exclusion of dik-dik and warthog. Eleven of the thirteen understory plant species that responded significantly to exclusion treatment were more common in exclusion plots than open ones. Significant interactions between site and treatment on plant communities, although uncommon, suggested that differences between treatments may be greater at sites with lower rainfall. Browsers reduced densities of several common overstory species, along with growth rates of the three dominant Acacia species. Small-mammal densities were 2-3 times greater in total-exclusion than in open plots at all sites. Although we expect patterns to become clearer with time, results from 2008-2012 show that the effects of excluding successively smaller-bodied subsets of the LMH community are generally non-additive for a given response variable, and inconsistent across response variables, indicating that the different LMH size classes are not functionally redundant. Several response variables showed significant treatment-by-site interactions, suggesting that the nature of plant-herbivore interactions can vary across restricted spatial scales.
Statistical downscaling modeling with quantile regression using lasso to estimate extreme rainfall
NASA Astrophysics Data System (ADS)
Santri, Dewi; Wigena, Aji Hamim; Djuraidah, Anik
2016-02-01
Rainfall is one of the climatic elements with high diversity and has many negative impacts especially extreme rainfall. Therefore, there are several methods that required to minimize the damage that may occur. So far, Global circulation models (GCM) are the best method to forecast global climate changes include extreme rainfall. Statistical downscaling (SD) is a technique to develop the relationship between GCM output as a global-scale independent variables and rainfall as a local- scale response variable. Using GCM method will have many difficulties when assessed against observations because GCM has high dimension and multicollinearity between the variables. The common method that used to handle this problem is principal components analysis (PCA) and partial least squares regression. The new method that can be used is lasso. Lasso has advantages in simultaneuosly controlling the variance of the fitted coefficients and performing automatic variable selection. Quantile regression is a method that can be used to detect extreme rainfall in dry and wet extreme. Objective of this study is modeling SD using quantile regression with lasso to predict extreme rainfall in Indramayu. The results showed that the estimation of extreme rainfall (extreme wet in January, February and December) in Indramayu could be predicted properly by the model at quantile 90th.
Is climate change modifying precipitation extremes?
NASA Astrophysics Data System (ADS)
Montanari, Alberto; Papalexiou, Simon Michael
2016-04-01
The title of the present contribution is a relevant question that is frequently posed to scientists, technicians and managers of local authorities. Although several research efforts were recently dedicated to rainfall observation, analysis and modelling, the above question remains essentially unanswered. The question comes from the awareness that the frequency of floods and the related socio-economic impacts are increasing in many countries, and climate change is deemed to be the main trigger. Indeed, identifying the real reasons for the observed increase of flood risk is necessary in order to plan effective mitigation and adaptation strategies. While mitigation of climate change is an extremely important issue at the global level, at small spatial scales several other triggers may interact with it, therefore requiring different mitigation strategies. Similarly, the responsibilities of administrators are radically different at local and global scales. This talk aims to provide insights and information to address the question expressed by its title. High resolution and long term rainfall data will be presented, as well as an analysis of the frequency of their extremes and its progress in time. The results will provide pragmatic indications for the sake of better planning flood risk mitigation policies.
USDA-ARS?s Scientific Manuscript database
A series of simulated rainfall-runoff experiments with applications of different manure types (cattle solid pats, poultry dry litter, swine slurry) were conducted across four seasons on a field containing 36 plots (0.75 × 2 m each), resulting in 144 rainfall-runoff events. Simulating time-varying re...
Rainfall and streamflow from small tree-covered and fern-covered and burned watersheds in Hawaii
H. W. Anderson; P. D. Duffy; Teruo Yamamoto
1966-01-01
Streamflow from two 30-acre watersheds near Honolulu was studied by using principal components regression analysis. Models using data on monthly, storm, and peak discharges were tested against several variables expressing amount and intensity of rainfall, and against variables expressing antecedent rainfall. Explained variation ranged from 78 to 94 percent. The...
Rainfall thresholds for possible landslide occurrence in Italy
NASA Astrophysics Data System (ADS)
Peruccacci, Silvia; Brunetti, Maria Teresa; Gariano, Stefano Luigi; Melillo, Massimo; Rossi, Mauro; Guzzetti, Fausto
2017-08-01
The large physiographic variability and the abundance of landslide and rainfall data make Italy an ideal site to investigate variations in the rainfall conditions that can result in rainfall-induced landslides. We used landslide information obtained from multiple sources and rainfall data captured by 2228 rain gauges to build a catalogue of 2309 rainfall events with - mostly shallow - landslides in Italy between January 1996 and February 2014. For each rainfall event with landslides, we reconstructed the rainfall history that presumably caused the slope failure, and we determined the corresponding rainfall duration D (in hours) and cumulated event rainfall E (in mm). Adopting a power law threshold model, we determined cumulated event rainfall-rainfall duration (ED) thresholds, at 5% exceedance probability, and their uncertainty. We defined a new national threshold for Italy, and 26 regional thresholds for environmental subdivisions based on topography, lithology, land-use, land cover, climate, and meteorology, and we used the thresholds to study the variations of the rainfall conditions that can result in landslides in different environments, in Italy. We found that the national and the environmental thresholds cover a small part of the possible DE domain. The finding supports the use of empirical rainfall thresholds for landslide forecasting in Italy, but poses an empirical limitation to the possibility of defining thresholds for small geographical areas. We observed differences between some of the thresholds. With increasing mean annual precipitation (MAP), the thresholds become higher and steeper, indicating that more rainfall is needed to trigger landslides where the MAP is high than where it is low. This suggests that the landscape adjusts to the regional meteorological conditions. We also observed that the thresholds are higher for stronger rocks, and that forested areas require more rainfall than agricultural areas to initiate landslides. Finally, we observed that a 20% exceedance probability national threshold was capable of predicting all the rainfall-induced landslides with casualties between 1996 and 2014, and we suggest that this threshold can be used to forecast fatal rainfall-induced landslides in Italy. We expect the method proposed in this work to define and compare the thresholds to have an impact on the definition of new rainfall thresholds for possible landslide occurrence in Italy, and elsewhere.
Rainfall and Extratropical Transition of Tropical Cyclones: Simulation, Prediction, and Projection
NASA Astrophysics Data System (ADS)
Liu, Maofeng
Rainfall and associated flood hazards are one of the major threats of tropical cyclones (TCs) to coastal and inland regions. The interaction of TCs with extratropical systems can lead to enhanced precipitation over enlarged areas through extratropical transition (ET). To achieve a comprehensive understanding of rainfall and ET associated with TCs, this thesis conducts weather-scale analyses by focusing on individual storms and climate-scale analyses by focusing on seasonal predictability and changing properties of climatology under global warming. The temporal and spatial rainfall evolution of individual storms, including Hurricane Irene (2011), Hurricane Hanna (2008), and Hurricane Sandy (2012), is explored using the Weather Research and Forecast (WRF) model and a variety of hydrometeorological datasets. ET and Orographic mechanism are two key players in the rainfall distribution of Irene over regions experiencing most severe flooding. The change of TC rainfall under global warming is explored with the Forecast-oriented Low Ocean Resolution (FLOR) climate model under representative concentration pathway (RCP) 4.5 scenario. Despite decreased TC frequency, FLOR projects increased landfalling TC rainfall over most regions of eastern United States, highlighting the risk of increased flood hazards. Increased storm rain rate is an important player of increased landfalling TC rainfall. A higher atmospheric resolution version of FLOR (HiFLOR) model projects increased TC rainfall at global scales. The increase of TC intensity and environmental water vapor content scaled by the Clausius-Clapeyron relation are two key factors that explain the projected increase of TC rainfall. Analyses on the simulation, prediction, and projection of the ET activity with FLOR are conducted in the North Atlantic. FLOR model exhibits good skills in simulating many aspects of present-day ET climatology. The 21st-century-projection under RCP4.5 scenario demonstrates the dominant role of ET events on the projected increase of TC frequency in the eastern North Atlantic, highlighting increased exposure of the northeastern United States and Western Europe to storm hazards. Retrospective seasonal forecast experiments demonstrate the skill of HiFLOR in predicting basinwide and regional ET frequency. This skill, however, is not seen in the seasonal prediction of ET rate. More work on the property of signal-to-noise ratio of ET rate is needed.
Regional climate modeling over the Maritime Continent: Assessment of RegCM3-BATS1e and RegCM3-IBIS
NASA Astrophysics Data System (ADS)
Gianotti, R. L.; Zhang, D.; Eltahir, E. A.
2010-12-01
Despite its importance to global rainfall and circulation processes, the Maritime Continent remains a region that is poorly simulated by climate models. Relatively few studies have been undertaken using a model with fine enough resolution to capture the small-scale spatial heterogeneity of this region and associated land-atmosphere interactions. These studies have shown that even regional climate models (RCMs) struggle to reproduce the climate of this region, particularly the diurnal cycle of rainfall. This study builds on previous work by undertaking a more thorough evaluation of RCM performance in simulating the timing and intensity of rainfall over the Maritime Continent, with identification of major sources of error. An assessment was conducted of the Regional Climate Model Version 3 (RegCM3) used in a coupled system with two land surface schemes: Biosphere Atmosphere Transfer System Version 1e (BATS1e) and Integrated Biosphere Simulator (IBIS). The model’s performance in simulating precipitation was evaluated against the 3-hourly TRMM 3B42 product, with some validation provided of this TRMM product against ground station meteorological data. It is found that the model suffers from three major errors in the rainfall histogram: underestimation of the frequency of dry periods, overestimation of the frequency of low intensity rainfall, and underestimation of the frequency of high intensity rainfall. Additionally, the model shows error in the timing of the diurnal rainfall peak, particularly over land surfaces. These four errors were largely insensitive to the choice of boundary conditions, convective parameterization scheme or land surface scheme. The presence of a wet or dry bias in the simulated volumes of rainfall was, however, dependent on the choice of convection scheme and boundary conditions. This study also showed that the coupled model system has significant error in overestimation of latent heat flux and evapotranspiration from the land surface, and specifically overestimation of interception loss with concurrent underestimation of transpiration, irrespective of the land surface scheme used. Discussion of the origin of these errors is provided, with some suggestions for improvement.
NASA Astrophysics Data System (ADS)
Zhou, Z. Q.; Xie, S. P.; Zhou, W.
2016-12-01
Atmosphere general circulation model (AGCM), forced with specified SST, has been widely used in climate studies. On one hand, AGCM is much faster to run compared to coupled general circulation model (CGCM). Also, the identical SST forcing allows a clean evaluation of the atmospheric component of CGCM. On the other hand, the coupling between atmosphere and ocean is missed in such atmosphere-only simulations. It is not clear how such simplification could affect the simulate of the atmosphere. In this study, the impact of ocean-atmosphere coupling is studied by comparing a CGCM simulation with an AGCM simulation which is forced with monthly SSTs specified from the CGCM simulation. Particularly, we focus on the climatology and interannual variability of rainfall over the IONWP during boreal summer. The IONWP is a unique region with a strong negative correlation between sea surface temperature (SST) and rainfall during boreal summer on the interannual time scale. The lead/lag correlation analysis suggests a negative feedback of rainfall on SST, which is only reasonably captured by CGCMs. We find that the lack of the negative feedback in AGCM not only enhances the climatology and interannual variability of rainfall but also increases the internal variability of rainfall over the IONWP. A simple mechanism is proposed to explain such enhancement. In addition, AGCM is able to capture the large-scale rainfall pattern over the IONWP during boreal summer, this is because that rainfall here is caused by remote ENSO effect on the interannual time scale. Our results herein suggest that people should be more careful when using an AGCM for climate change studies.
HD Hydrological modelling at catchment scale using rainfall radar observations
NASA Astrophysics Data System (ADS)
Ciampalini
2017-04-01
Hydrological simulations at catchment scale repose on the quality and data availability both for soil and rainfall data. Soil data are quite easy to be collected, although their quality depends on the resources devoted to this task, rainfall data observations, instead, need further effort because of their spatiotemporal variability. Rainfalls are normally recorded with rain gauges located in the catchment, they can provide detailed temporal data, but, the representativeness is limited to the point where the data are collected. Combining different gauges in space can provide a better representation of the rainfall event but the spatialization is often the main obstacle to obtain data close to the reality. Since several years, radar observations overcome this gap providing continuous data registration, that, when properly calibrated, can offer an adequate, continuous, cover in space and time for medium-wide catchments. Here, we use radar records for the south of the France on the La Peyne catchment with the protocol there adopted by the national meteo agency, with resolution of 1 km space and 5' time scale observations. We present here the realisation of a model able to perform from rainfall radar observations, continuous hydrological and soil erosion simulations. The model is semi-theoretically based, once it simulates water fluxes (infiltration-excess overland flow, saturation overland flow, infiltration and channel routing) with a cinematic wave using the St. Venant equation on a simplified "bucket" conceptual model for ground water, and, an empirical representation of sediment load as adopted in models such as STREAM-LANDSOIL (Cerdan et al., 2002, Ciampalini et al., 2012). The advantage of this approach is to furnish a dynamic representation - simulation of the rainfall-runoff events more easily than using spatialized rainfalls from meteo stations and to offer a new look on the spatial component of the events.
Nandargi, S.; Mulye, S. S.
2012-01-01
There are limitations in using monthly rainfall totals in studies of rainfall climatology as well as in hydrological and agricultural investigations. Variations in rainfall may be considered to result from frequency changes in the daily rainfall of the respective regime. In the present study, daily rainfall data of the stations inside the Koyna catchment has been analysed for the period of 1961–2005 to understand the relationship between the rain and rainy days, mean daily intensity (MDI) and seasonal rainfall over the catchment on monthly as well as seasonal scale. Considering the topographical location of the catchment, analysis of seasonal rainfall data of 8 stations suggests that a linear relationship fits better than the logarithmic relationship in the case of seasonal rainfall versus mean daily intensity. So far as seasonal rainfall versus number of rainy days is considered, the logarithmic relationship is found to be better. PMID:22654646
NASA Astrophysics Data System (ADS)
Prakash, Satya; Mahesh, C.; Gairola, Rakesh M.
2011-12-01
Large-scale precipitation estimation is very important for climate science because precipitation is a major component of the earth's water and energy cycles. In the present study, the GOES precipitation index technique has been applied to the Kalpana-1 satellite infrared (IR) images of every three-hourly, i.e., of 0000, 0300, 0600,…., 2100 hours UTC, for rainfall estimation as a preparatory to the INSAT-3D. After the temperatures of all the pixels in a grid are known, they are distributed to generate a three-hourly 24-class histogram of brightness temperatures of IR (10.5-12.5 μm) images for a 1.0° × 1.0° latitude/longitude box. The daily, monthly, and seasonal rainfall have been estimated using these three-hourly rain estimates for the entire south-west monsoon period of 2009 in the present study. To investigate the potential of these rainfall estimates, the validation of monthly and seasonal rainfall estimates has been carried out using the Global Precipitation Climatology Project and Global Precipitation Climatology Centre data. The validation results show that the present technique works very well for the large-scale precipitation estimation qualitatively as well as quantitatively. The results also suggest that the simple IR-based estimation technique can be used to estimate rainfall for tropical areas at a larger temporal scale for climatological applications.
NASA Astrophysics Data System (ADS)
Wei, Zhongwang; Lee, Xuhui; Liu, Zhongfang; Seeboonruang, Uma; Koike, Masahiro; Yoshimura, Kei
2018-04-01
Many paleoclimatic records in Southeast Asia rely on rainfall isotope ratios as proxies for past hydroclimatic variability. However, the physical processes controlling modern rainfall isotopic behaviors in the region is poorly constrained. Here, we combined isotopic measurements at six sites across Thailand with an isotope-incorporated atmospheric circulation model (IsoGSM) and the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model to investigate the factors that govern the variability of precipitation isotope ratios in this region. Results show that rainfall isotope ratios are both correlated with local rainfall amount and regional outgoing longwave radiation, suggesting that rainfall isotope ratios in this region are controlled not only by local rain amount (amount effect) but also by large-scale convection. As a transition zone between the Indian monsoon and the western North Pacific monsoon, the spatial difference of observed precipitation isotope among different sites are associated with moisture source. These results highlight the importance of regional processes in determining rainfall isotope ratios in the tropics and provide constraints on the interpretation of paleo-precipitation isotope records in the context of regional climate dynamics.
Assessing future changes in the occurrence of rainfall-induced landslides at a regional scale.
Gariano, S L; Rianna, G; Petrucci, O; Guzzetti, F
2017-10-15
According to the fifth report of the Intergovernmental Panel on Climate Change, an increase in the frequency and the intensity of extreme rainfall is expected in the Mediterranean area. Among different impacts, this increase might result in a variation in the frequency and the spatial distribution of rainfall-induced landslides, and in an increase in the size of the population exposed to landslide risk. We propose a method for the regional-scale evaluation of future variations in the occurrence of rainfall-induced landslides, in response to changes in rainfall regimes. We exploit information on the occurrence of 603 rainfall-induced landslides in Calabria, southern Italy, in the period 1981-2010, and daily rainfall data recorded in the same period in the region. Furthermore, we use high-resolution climate projections based on RCP4.5 and RCP8.5 scenarios. In particular, we consider the mean variations between a 30-year future period (2036-2065) and the reference period 1981-2010 in three variables assumed as proxy for landslide activity: annual rainfall, seasonal cumulated rainfall, and annual maxima of daily rainfall. Based on reliable correlations between landslide occurrence and weather variables estimated in the reference period, we assess future variations in rainfall-induced landslide occurrence for all the municipalities of Calabria. A +45.7% and +21.2% average regional variation in rainfall-induced landslide occurrence is expected in the region for the period 2036-2065, under the RCP4.5 and RCP8.5 scenario, respectively. We also investigate the future variations in the impact of rainfall-induced landslides on the population of Calabria. We find a +80.2% and +54.5% increase in the impact on the population for the period 2036-2065, under the RCP4.5 and RCP8.5 scenario, respectively. The proposed method is quantitative and reproducible, thus it can be applied in similar regions, where adequate landslide and rainfall information is available. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Balaguer-Puig, Matilde; Marqués-Mateu, Ángel; Lerma, José Luis; Ibáñez-Asensio, Sara
2017-10-01
The quantitative estimation of changes in terrain surfaces caused by water erosion can be carried out from precise descriptions of surfaces given by means of digital elevation models (DEMs). Some stages of water erosion research efforts are conducted in the laboratory using rainfall simulators and soil boxes with areas less than 1 m2. Under these conditions, erosive processes can lead to very small surface variations and high precision DEMs are needed to account for differences measured in millimetres. In this paper, we used a photogrammetric Structure from Motion (SfM) technique to build DEMs of a 0.5 m2 soil box to monitor several simulated rainfall episodes in the laboratory. The technique of DEM of difference (DoD) was then applied using GIS tools to compute estimates of volumetric changes between each pair of rainfall episodes. The aim was to classify the soil surface into three classes: erosion areas, deposition areas, and unchanged or neutral areas, and quantify the volume of soil that was eroded and deposited. We used a thresholding criterion of changes based on the estimated error of the difference of DEMs, which in turn was obtained from the root mean square error of the individual DEMs. Experimental tests showed that the choice of different threshold values in the DoD can lead to volume differences as large as 60% when compared to the direct volumetric difference. It turns out that the choice of that threshold was a key point in this method. In parallel to photogrammetric work, we collected sediments from each rain episode and obtained a series of corresponding measured sediment yields. The comparison between computed and measured sediment yields was significantly correlated, especially when considering the accumulated value of the five simulations. The computed sediment yield was 13% greater than the measured sediment yield. The procedure presented in this paper proved to be suitable for the determination of sediment yields in rainfall-driven soil erosion experiments conducted in the laboratory.
NASA Astrophysics Data System (ADS)
Zhu, Q.; Xu, Y. P.; Gu, H.
2014-12-01
Traditionally, regional frequency analysis methods were developed for stationary environmental conditions. Nevertheless, recent studies have identified significant changes in hydrological records, leading to the 'death' of stationarity. Besides, uncertainty in hydrological frequency analysis is persistent. This study aims to investigate the impact of one of the most important uncertainty sources, parameter uncertainty, together with nonstationarity, on design rainfall depth in Qu River Basin, East China. A spatial bootstrap is first proposed to analyze the uncertainty of design rainfall depth estimated by regional frequency analysis based on L-moments and estimated on at-site scale. Meanwhile, a method combining the generalized additive models with 30-year moving window is employed to analyze non-stationarity existed in the extreme rainfall regime. The results show that the uncertainties of design rainfall depth with 100-year return period under stationary conditions estimated by regional spatial bootstrap can reach 15.07% and 12.22% with GEV and PE3 respectively. On at-site scale, the uncertainties can reach 17.18% and 15.44% with GEV and PE3 respectively. In non-stationary conditions, the uncertainties of maximum rainfall depth (corresponding to design rainfall depth) with 0.01 annual exceedance probability (corresponding to 100-year return period) are 23.09% and 13.83% with GEV and PE3 respectively. Comparing the 90% confidence interval, the uncertainty of design rainfall depth resulted from parameter uncertainty is less than that from non-stationarity frequency analysis with GEV, however, slightly larger with PE3. This study indicates that the spatial bootstrap can be successfully applied to analyze the uncertainty of design rainfall depth on both regional and at-site scales. And the non-stationary analysis shows that the differences between non-stationary quantiles and their stationary equivalents are important for decision makes of water resources management and risk management.
A Decade-long Continental-Scale Convection-Resolving Climate Simulation on GPUs
NASA Astrophysics Data System (ADS)
Leutwyler, David; Fuhrer, Oliver; Lapillonne, Xavier; Lüthi, Daniel; Schär, Christoph
2016-04-01
The representation of moist convection in climate models represents a major challenge, due to the small scales involved. Convection-resolving models have proven to be very useful tools in numerical weather prediction and in climate research. Using horizontal grid spacings of O(1km), they allow to explicitly resolve deep convection leading to an improved representation of the water cycle. However, due to their extremely demanding computational requirements, they have so far been limited to short simulations and/or small computational domains. Innovations in the supercomputing domain have led to new supercomputer-designs that involve conventional multicore CPUs and accelerators such as graphics processing units (GPUs). One of the first atmospheric models that has been fully ported to GPUs is the Consortium for Small-Scale Modeling weather and climate model COSMO. This new version allows us to expand the size of the simulation domain to areas spanning continents and the time period up to one decade. We present results from a decade-long, convection-resolving climate simulation using the GPU-enabled COSMO version. The simulation is driven by the ERA-interim reanalysis. The results illustrate how the approach allows for the representation of interactions between synoptic-scale and meso-scale atmospheric circulations at scales ranging from 1000 to 10 km. We discuss the performance of the convection-resolving modeling approach on the European scale. Specifically we focus on the annual cycle of convection in Europe, on the organization of convective clouds and on the verification of hourly rainfall with various high resolution datasets.
NASA Astrophysics Data System (ADS)
Doan, M. L.; Bièvre, G.; Jongmans, D.; Helmstetter, A.; Radiguet, M.
2016-12-01
The Avignonet landslide is an active clay landslide near Grenoble, France, and therefore one of the monitored site of OMIV observatory. Previous geophysical investigation, including borehole drilling and surface geophysics proved that the landslide deformation is accommodated by several localized shear zones. The shallowest shear zone is about 5 m deep and extends over 100 m. Several sensors monitor the landslide. They record several precursors prior to a major disturbance of the landslide in autumn 2012, that affects all sensors in the landslide for several months. After major rainfalls, the two piezometers located near the 5 m deep interface got larger impulsional response to rainfall. The moderate rainfalls of Oct 26th caused the hydraulic head both reached a plateau before experiencing a sudden change, triggered by the small rainfall of Oct 31st. It's not the bigger rainfall that induced the disturbance. It was not the first rainfall neither.Other sensors suggest that the destabilization of the landslide was progressive. Spontaneous potential sensors regularly spaced within the 100 m wide sensors begin to separate after Oct 28th, suggesting a landslide wide precursor. Repeated microseismic events, of high frequency, suggesting a local origin, are more frequent. Their occurrence peaks after the small rainfall of Oct 29th and again on Oct 31st, before the rainfall that triggered the disturbance. They stop at the same time as sudden change in piezometric data. Despite the lack of displacement sensor, it is assumed that the 5 m deep shear zone slipped on Oct 31st, since it affects the piezometer sampling this interface. The data shows a progressive path towards destabilization. Especially, triggering of the landslide disturbances is associated to the cumulative effect of seismic activity and rainfall, even minor. This suggests a hydromechanical process.
NASA Astrophysics Data System (ADS)
Deng, Mingfeng; Chen, Ningsheng; Ding, Haitao
2018-02-01
The Parlung Zangbo Basin in the southeastern Tibet Plateau is affected by the summer monsoon from the Indian Ocean, which produces large rainfall gradients in the basin. Rainfall data during 2012-2015 from five new meteorological stations are used to analyse the rainfall characteristics. The daily rainfall, rainfall duration, mean rainfall intensity, and peak rainfall intensity are consistent, but sometimes contrasting. For example, these values decrease with increasing altitude, and the gradient is large downstream and small upstream, respectively. Moreover, the rainfall intensity peaks between 01:00 and 06:00 and increases during the afternoon. Based on the analysis of 14 debris flow cases in the basin, differences in the rainfall threshold differ depending on the location as sediment varieties. The sediment in the middle portions of the basin is wet and well structured; thus, long-duration, high-intensity rainfall is required to generate debris flows. Ravels in the upstream area are arid and not well structured, and short-duration rainfall is required to trigger debris flows. Between the above two locations, either long-duration, low-intensity rainfall or short-duration, high-intensity rainfall could provoke debris flows. Clearly, differences in rainfall characteristics and rainfall thresholds that are associated with the location must be considered in debris flow monitoring and warnings.
Multi-scale landslide hazard assessment: Advances in global and regional methodologies
NASA Astrophysics Data System (ADS)
Kirschbaum, Dalia; Peters-Lidard, Christa; Adler, Robert; Hong, Yang
2010-05-01
The increasing availability of remotely sensed surface data and precipitation provides a unique opportunity to explore how smaller-scale landslide susceptibility and hazard assessment methodologies may be applicable at larger spatial scales. This research first considers an emerging satellite-based global algorithm framework, which evaluates how the landslide susceptibility and satellite derived rainfall estimates can forecast potential landslide conditions. An analysis of this algorithm using a newly developed global landslide inventory catalog suggests that forecasting errors are geographically variable due to improper weighting of surface observables, resolution of the current susceptibility map, and limitations in the availability of landslide inventory data. These methodological and data limitation issues can be more thoroughly assessed at the regional level, where available higher resolution landslide inventories can be applied to empirically derive relationships between surface variables and landslide occurrence. The regional empirical model shows improvement over the global framework in advancing near real-time landslide forecasting efforts; however, there are many uncertainties and assumptions surrounding such a methodology that decreases the functionality and utility of this system. This research seeks to improve upon this initial concept by exploring the potential opportunities and methodological structure needed to advance larger-scale landslide hazard forecasting and make it more of an operational reality. Sensitivity analysis of the surface and rainfall parameters in the preliminary algorithm indicates that surface data resolution and the interdependency of variables must be more appropriately quantified at local and regional scales. Additionally, integrating available surface parameters must be approached in a more theoretical, physically-based manner to better represent the physical processes underlying slope instability and landslide initiation. Several rainfall infiltration and hydrological flow models have been developed to model slope instability at small spatial scales. This research investigates the potential of applying a more quantitative hydrological model to larger spatial scales, utilizing satellite and surface data inputs that are obtainable over different geographic regions. Due to the significant role that data and methodological uncertainties play in the effectiveness of landslide hazard assessment outputs, the methodology and data inputs are considered within an ensemble uncertainty framework in order to better resolve the contribution and limitations of model inputs and to more effectively communicate the model skill for improved landslide hazard assessment.
Fusing Multiple Satellite Datasets Toward Defining and Understanding Organized Convection
NASA Astrophysics Data System (ADS)
Elsaesser, G.; Del Genio, A. D.
2017-12-01
How do we differentiate unorganized from organized convection? We might think of organized convection as being long lasting (at least longer than the lifetime of any individual cumulus cell), clustered at larger spatial scales (>100 km), and responsible for substantial rainfall accumulation. Organized convection is sustained on such scales due to the arrangement of moist/dry and buoyant/non-buoyant mesoscale circulations. The nature of these circulations is tied to system diabatic heating profiles; in particular, the 2nd baroclinic (top-heavy), stratiform heating mode is thought to be important for organized convection maintenance/propagation. We investigate the extent to which these characteristics are jointly found in propagating convective systems. Lifecycle information comes from hi-res IR data. Diabatic heating profiles, convective fractions and rainfall are provided by GPM retrievals mapped to convective system tracks. Moisture is provided by AIRS/AMSU and passive microwave retrievals. Instead of compositing heating profile information along a system track, where information is smoothed out, we sort system heating profile structures according to their "top heaviness" and then analyze PDFs of system rainfall, system sizes, durations, convective/stratiform ratios, etc. as a function of diabatic heating structure. Perhaps contrary to expectation, we find only small differences in PDFs of rainfall rates, system sizes, and system duration for different heating profile structures. If organization is defined according to heating structures, then one possible interpretation of these results is that organization is independent of system size, duration, and many times, even lifecycle stage. Is it possible that most systems "hobble" along and exhibit varying degrees of organization, dependent on local environment moisture/buoyancy variations, unlike the archetypical MCS paradigm? This presentation will also discuss the questions posed above within the context of parameterizing organized convection in the GISS GCM. GCMs must make/sustain the right heating profile at the right time, which requires observations-based understanding of such distinctions. Such knowledge is important for simulating and understanding the deep convective contribution to cloud feedback in a changing climate.
NASA Astrophysics Data System (ADS)
Latorre Torres, I. B.; Amatya, D. M.; Callahan, T. J.; Levine, N. S.
2007-12-01
Hydrology research in the Southeast U.S. has primarily focused on upland mountainous areas; however, much less is known about hydrological processes in Lower Coastal Plain (LCP) watersheds. Such watersheds are difficult to characterize due to shallow water table conditions, low topographic gradient, complex surface- subsurface water interaction, and lack of detailed soil information. Although opportunities to conduct long term monitoring in relatively undeveloped watersheds are often limited, stream flow and rainfall in the Turkey Creek watershed (third-order watershed, about 7200 ha in the Francis Marion National Forest near Charleston, SC) have been monitored since 1964. In this study, event runoff-rainfall ratios have been determined for 51 storm events using historical data from 1964-1973. One of our objectives was to characterize relationships between seasonal event rainfall and storm outflow in this watershed. To this end, observed storm event data were compared with values predicted by established hydrological methods such as the Soil Conservation Service runoff curve number (SCS-CN) and the rational method integrated within a Geographical Information System (GIS), to estimate total event runoff and peak discharge, respectively. Available 1:15000 scale aerial images were digitized to obtain land uses, which were used with the SCS soil hydrologic groups to obtain the runoff coefficients (C) for the rational method and the CN values for the SCS-CN method. These methods are being tested with historical storm event responses in the Turkey Creek watershed scale, and then will be used to predict event runoff in Quinby Creek, an ungauged third-order watershed (8700 ha) adjacent to Turkey Creek. Successful testing with refinement of parameters in the rational method and SCS-CN method, both designed for small urban and agricultural dominated watersheds, may allow widespread application of these methods for studying the event rainfall-runoff dynamics for similar watersheds in the Lower Coastal Plain of the Southeast U.S.
Why continuous simulation? The role of antecedent moisture in design flood estimation
NASA Astrophysics Data System (ADS)
Pathiraja, S.; Westra, S.; Sharma, A.
2012-06-01
Continuous simulation for design flood estimation is increasingly becoming a viable alternative to traditional event-based methods. The advantage of continuous simulation approaches is that the catchment moisture state prior to the flood-producing rainfall event is implicitly incorporated within the modeling framework, provided the model has been calibrated and validated to produce reasonable simulations. This contrasts with event-based models in which both information about the expected sequence of rainfall and evaporation preceding the flood-producing rainfall event, as well as catchment storage and infiltration properties, are commonly pooled together into a single set of "loss" parameters which require adjustment through the process of calibration. To identify the importance of accounting for antecedent moisture in flood modeling, this paper uses a continuous rainfall-runoff model calibrated to 45 catchments in the Murray-Darling Basin in Australia. Flood peaks derived using the historical daily rainfall record are compared with those derived using resampled daily rainfall, for which the sequencing of wet and dry days preceding the heavy rainfall event is removed. The analysis shows that there is a consistent underestimation of the design flood events when antecedent moisture is not properly simulated, which can be as much as 30% when only 1 or 2 days of antecedent rainfall are considered, compared to 5% when this is extended to 60 days of prior rainfall. These results show that, in general, it is necessary to consider both short-term memory in rainfall associated with synoptic scale dependence, as well as longer-term memory at seasonal or longer time scale variability in order to obtain accurate design flood estimates.
Evaluating Satellite-based Rainfall Estimates for Basin-scale Hydrologic Modeling
NASA Astrophysics Data System (ADS)
Yilmaz, K. K.; Hogue, T. S.; Hsu, K.; Gupta, H. V.; Mahani, S. E.; Sorooshian, S.
2003-12-01
The reliability of any hydrologic simulation and basin outflow prediction effort depends primarily on the rainfall estimates. The problem of estimating rainfall becomes more obvious in basins with scarce or no rain gauges. We present an evaluation of satellite-based rainfall estimates for basin-scale hydrologic modeling with particular interest in ungauged basins. The initial phase of this study focuses on comparison of mean areal rainfall estimates from ground-based rain gauge network, NEXRAD radar Stage-III, and satellite-based PERSIANN (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks) and their influence on hydrologic model simulations over several basins in the U.S. Six-hourly accumulations of the above competing mean areal rainfall estimates are used as input to the Sacramento Soil Moisture Accounting Model. Preliminary experiments for the Leaf River Basin in Mississippi, for the period of March 2000 - June 2002, reveals that seasonality plays an important role in the comparison. There is an overestimation during the summer and underestimation during the winter in satellite-based rainfall with respect to the competing rainfall estimates. The consequence of this result on the hydrologic model is that simulated discharge underestimates the major observed peak discharges during early spring for the basin under study. Future research will entail developing correction procedures, which depend on different factors such as seasonality, geographic location and basin size, for satellite-based rainfall estimates over basins with dense rain gauge network and/or radar coverage. Extension of these correction procedures to satellite-based rainfall estimates over ungauged basins with similar characteristics has the potential for reducing the input uncertainty in ungauged basin modeling efforts.
Variability of rainfall over Lake Kariba catchment area in the Zambezi river basin, Zimbabwe
NASA Astrophysics Data System (ADS)
Muchuru, Shepherd; Botai, Joel O.; Botai, Christina M.; Landman, Willem A.; Adeola, Abiodun M.
2016-04-01
In this study, average monthly and annual rainfall totals recorded for the period 1970 to 2010 from a network of 13 stations across the Lake Kariba catchment area of the Zambezi river basin were analyzed in order to characterize the spatial-temporal variability of rainfall across the catchment area. In the analysis, the data were subjected to intervention and homogeneity analysis using the Cumulative Summation (CUSUM) technique and step change analysis using rank-sum test. Furthermore, rainfall variability was characterized by trend analysis using the non-parametric Mann-Kendall statistic. Additionally, the rainfall series were decomposed and the spectral characteristics derived using Cross Wavelet Transform (CWT) and Wavelet Coherence (WC) analysis. The advantage of using the wavelet-based parameters is that they vary in time and can therefore be used to quantitatively detect time-scale-dependent correlations and phase shifts between rainfall time series at various localized time-frequency scales. The annual and seasonal rainfall series were homogeneous and demonstrated no apparent significant shifts. According to the inhomogeneity classification, the rainfall series recorded across the Lake Kariba catchment area belonged to category A (useful) and B (doubtful), i.e., there were zero to one and two absolute tests rejecting the null hypothesis (at 5 % significance level), respectively. Lastly, the long-term variability of the rainfall series across the Lake Kariba catchment area exhibited non-significant positive and negative trends with coherent oscillatory modes that are constantly locked in phase in the Morlet wavelet space.
Missing pieces of the puzzle: understanding decadal variability of Sahel Rainfall
NASA Astrophysics Data System (ADS)
Vellinga, Michael; Roberts, Malcolm; Vidale, Pier-Luigi; Mizielinski, Matthew; Demory, Marie-Estelle; Schiemann, Reinhard; Strachan, Jane; Bain, Caroline
2015-04-01
The instrumental record shows that substantial decadal fluctuations affected Sahel rainfall from the West African monsoon throughout the 20th century. Climate models generally underestimate the magnitude of decadal Sahel rainfall changes compared to observations. This shows that the processes that control low-frequency Sahel rainfall change are misrepresented in most CMIP5-era climate models. Reliable climate information of future low-frequency rainfall changes thus remains elusive. Here we identify key processes that control the magnitude of the decadal rainfall recovery in the Sahel since the mid-1980s. We show its sensitivity to model resolution and physics in a suite of experiments with global HadGEM3 model configurations at resolutions between 130-25 km. The decadal rainfall trend increases with resolution and at 60-25 km falls within the observed range. Higher resolution models have stronger increases of moisture supply and of African Easterly wave activity. Easterly waves control the occurrence of strong organised rainfall events which carry most of the decadal trend. Weak rainfall events occur too frequently at all resolutions and at low resolution contribute substantially to the decadal trend. All of this behaviour is seen across CMIP5, including future scenarios. Additional simulations with a global 12km version of HadGEM3 show that treating convection explicitly dramatically improves the properties of Sahel rainfall systems. We conclude that interaction between convective scale and global scale processes is key to decadal rainfall changes in the Sahel. This work is distributed under the Creative Commons Attribution 3.0 Unported License together with an author copyright. This license does not conflict with the regulations of the Crown Copyright.Crown Copyright
NASA Astrophysics Data System (ADS)
Zahmatkesh, Zahra; Karamouz, Mohammad; Nazif, Sara
2015-09-01
Simulation of rainfall-runoff process in urban areas is of great importance considering the consequences and damages of extreme runoff events and floods. The first issue in flood hazard analysis is rainfall simulation. Large scale climate signals have been proved to be effective in rainfall simulation and prediction. In this study, an integrated scheme is developed for rainfall-runoff modeling considering different sources of uncertainty. This scheme includes three main steps of rainfall forecasting, rainfall-runoff simulation and future runoff prediction. In the first step, data driven models are developed and used to forecast rainfall using large scale climate signals as rainfall predictors. Due to high effect of different sources of uncertainty on the output of hydrologic models, in the second step uncertainty associated with input data, model parameters and model structure is incorporated in rainfall-runoff modeling and simulation. Three rainfall-runoff simulation models are developed for consideration of model conceptual (structural) uncertainty in real time runoff forecasting. To analyze the uncertainty of the model structure, streamflows generated by alternative rainfall-runoff models are combined, through developing a weighting method based on K-means clustering. Model parameters and input uncertainty are investigated using an adaptive Markov Chain Monte Carlo method. Finally, calibrated rainfall-runoff models are driven using the forecasted rainfall to predict future runoff for the watershed. The proposed scheme is employed in the case study of the Bronx River watershed, New York City. Results of uncertainty analysis of rainfall-runoff modeling reveal that simultaneous estimation of model parameters and input uncertainty significantly changes the probability distribution of the model parameters. It is also observed that by combining the outputs of the hydrological models using the proposed clustering scheme, the accuracy of runoff simulation in the watershed is remarkably improved up to 50% in comparison to the simulations by the individual models. Results indicate that the developed methodology not only provides reliable tools for rainfall and runoff modeling, but also adequate time for incorporating required mitigation measures in dealing with potentially extreme runoff events and flood hazard. Results of this study can be used in identification of the main factors affecting flood hazard analysis.
Nowcasting of rainfall and of combined sewage flow in urban drainage systems.
Achleitner, Stefan; Fach, Stefan; Einfalt, Thomas; Rauch, Wolfgang
2009-01-01
Nowcasting of rainfall may be used additionally to online rain measurements to optimize the operation of urban drainage systems. Uncertainties quoted for the rain volume are in the range of 5% to 10% mean square error (MSE), where for rain intensities 45% to 75% MSE are noted. For larger forecast periods up to 3 hours, the uncertainties will increase up to some hundred percents. Combined with the growing number of real time control concepts in sewer systems, rainfall forecast is used more and more in urban drainage systems. Therefore it is of interest how the uncertainties influence the final evaluation of a defined objective function. Uncertainty levels associated with the forecast itself are not necessarily transferable to resulting uncertainties in the catchment's flow dynamics. The aim of this paper is to analyse forecasts of rainfall and specific sewer output variables. For this study the combined sewer system of the city of Linz in the northern part of Austria located on the Danube has been selected. The city itself represents a total area of 96 km2 with 39 municipalities connected. It was found that the available weather radar data leads to large deviations in the forecast for precipitation at forecast horizons larger than 90 minutes. The same is true for sewer variables such a CSO overflow for small sub-catchments. Although the results improve for larger spatial scales, acceptable levels at forecast horizons larger than 90 minutes are not reached.
Hydrological processes in major types of Chinese forest
NASA Astrophysics Data System (ADS)
Wei, X.; Liu, S.; Zhou, G.; Wang, C.
2005-01-01
Overexploitation of forest resources in China has caused serious concerns over its negative impacts on water resources, biodiversity, soil erosion, wildlife habitat and community stability. One key concern is the impact of forestry practices on hydrological processes, particularly the effect of forest harvest on water quality and quantity. Since the mid 1980s, a series of scientific studies on forest hydrology have been initiated in major types of forest across the country, including Korean pine (Pinus koraiensis), Chinese fir (Cunninghamia lanceolata), oak (Quercus mongolica), larch (Larix gmelinii), faber fir (Abies fabri), Chinese pine (Pinus tabulaeformis), armand pine (Pinus arandi), birch (Betula platyphylla) and some tropical forests. These studies measured rainfall interception, streamflow, evapotranspiration and impacts of forest management (clearcutting and reforestation). This paper reviews key findings from these forest hydrological studies conducted over the past 20 years in China.
NASA Astrophysics Data System (ADS)
Shi, Zhao; Wei, Fangqiang; Chandrasekar, Venkatachalam
2018-03-01
Both Ms 8.0 Wenchuan earthquake on 12 May 2008 and Ms 7.0 Lushan earthquake on 20 April 2013 occurred in the province of Sichuan, China. In the earthquake-affected mountainous area, a large amount of loose material caused a high occurrence of debris flow during the rainy season. In order to evaluate the rainfall intensity-duration (I-D) threshold of the debris flow in the earthquake-affected area, and to fill up the observational gaps caused by the relatively scarce and low-altitude deployment of rain gauges in this area, raw data from two S-band China New Generation Doppler Weather Radar (CINRAD) were captured for six rainfall events that triggered 519 debris flows between 2012 and 2014. Due to the challenges of radar quantitative precipitation estimation (QPE) over mountainous areas, a series of improvement measures are considered: a hybrid scan mode, a vertical reflectivity profile (VPR) correction, a mosaic of reflectivity, a merged rainfall-reflectivity (R - Z) relationship for convective and stratiform rainfall, and rainfall bias adjustment with Kalman filter (KF). For validating rainfall accumulation over complex terrains, the study areas are divided into two kinds of regions by the height threshold of 1.5 km from the ground. Three kinds of radar rainfall estimates are compared with rain gauge measurements. It is observed that the normalized mean bias (NMB) is decreased by 39 % and the fitted linear ratio between radar and rain gauge observation reaches at 0.98. Furthermore, the radar-based I-D threshold derived by the frequentist method is I = 10.1D-0.52 and is underestimated by uncorrected raw radar data. In order to verify the impacts on observations due to spatial variation, I-D thresholds are identified from the nearest rain gauge observations and radar observations at the rain gauge locations. It is found that both kinds of observations have similar I-D thresholds and likewise underestimate I-D thresholds due to undershooting at the core of convective rainfall. It is indicated that improvement of spatial resolution and measuring accuracy of radar observation will lead to the improvement of identifying debris flow occurrence, especially for events triggered by the strong small-scale rainfall process in the study area.
NASA Astrophysics Data System (ADS)
KIM, H.; Lee, D. K.; Yoo, S.
2014-12-01
As regional torrential rains become frequent due to climate change, urban flooding happens very often. That is why it is necessary to prepare for integrated measures against a wide range of rainfall. This study proposes introduction of effective rainwater management facilities to maximize the rainwater runoff reductions and recover natural water circulation for unpredictable extreme rainfall in apartment complex scale. The study site is new apartment complex in Hanam located in east of Seoul, Korea. It has an area of 7.28ha and is analysed using the EPA-SWMM and STORM model. First, it is analyzed that green infrastructure(GI) had efficiency of flood reduction at the various rainfall events and soil characteristics, and then the most effective value of variables are derived. In case of rainfall event, Last 10 years data of 15 minutes were used for analysis. A comparison between A(686mm rainfall during 22days) and B(661mm/4days) knew that soil infiltration of A is 17.08% and B is 5.48% of the rainfall. Reduction of runoff after introduction of the GI of A is 24.76% and B is 6.56%. These results mean that GI is effective to small rainfall intensity, and artificial rainwater retarding reservoir is needed at extreme rainfall. Second, set of target year is conducted for the recovery of hydrological cycle at the predevelopment. And an amount of infiltration, evaporation, surface runoff of the target year and now is analysed on the basis of land coverage, and an arrangement of LID facilities. Third, rainwater management scenarios are established and simulated by the SWMM-LID. Rainwater management facilities include GI(green roof, porous pavement, vegetative swale, ecological pond, and raingarden), and artificial rainwater. Design scenarios are categorized five type: 1)no GI, 2)conventional GI design(current design), 3)intensive GI design, 4)GI design+rainwater retarding reservoir 5)maximized rainwater retarding reservoir. Intensive GI design is to have attribute value to obtain the maximum efficiency for each GI facility with in-depth experts interviews. Climate change scenario is also used to set the capacity of the rainwater management facilities considering the extreme precipitation. These all scenarios are not only simulated for calculating the hydrological balance but analysed the cost for each scenarios effect.
The Tropical Rainfall Measuring (TRMM) - What Have We Learned and What Does the Future Hold?
NASA Technical Reports Server (NTRS)
Kummerow, C.; Hong, Y.; Olsen, W. S.
2000-01-01
Rainfall is important in the hydrological cycle and to the lives and welfare of humans. In addition to being a life-giving resource, rainfall processes also plays a crucial role in the dynamics of the global atmospheric circulation. Three-fourths of the energy that drives the atmospheric wind circulation comes from the latent heat released by tropical precipitation. It varies greatly in space and time. The rain-producing cloud systems may last several hours or days. Their dimensions range from 10 km to several hundred km. This makes it difficult to incorporate rainfall directly large-scale weather and climate models. Until the end of 1997, precipitation in the global tropics was not known to within a factor of two. Regarding "global warming", the various large-scale models differed among themselves in the predicted magnitude of the warming and in the expected regional effects of these temperature and moisture changes. The Tropical Rainfall Measuring Mission (TRMM) satellite has yielded important interim results related to rainfall observations, data assimilation and model forecast skills when rainfall data is assimilated. This talk will summarize where the TRMM science team is with regards to answering some of these important scientific challenges, as well as discuss the future Global Precipitation Mission which will provide 3 hourly rainfall coverage and offers some unique collaborative potential for NOAA and NASA.
NASA Astrophysics Data System (ADS)
Wen-feng, Tang; You-biao, Hu
2018-05-01
This paper studies the characteristics of atmospheric pollutant (SO2, NO2, PM2.5 and PM10) and the effects of rainfall on the removal of atmospheric pollutants. The results show atmospheric pollutants concentration vary in different seasons and functional area: atmospheric pollutants concentration in summer and autumn is lower than that in winter and spring; the concentration of SO2 and NO2 in coal-chemical industry areas and light industrial areas is higher, the concentration difference of PM2.5 and PM10 in different functional areas is very small, the removal efficiency of rainfall on atmospheric pollutant is gradually improved with the increasing of daily rainfall, rainfall intensity and rainfall duration, the ability of rainfall to remove pollutants tends to be stable after daily rainfall and rainfall intensity exceeds 30mm and 20mm/h respectively, the effect of rainfall on the removal of PM2.5 was slightly worse than the effect of rainfall on other atmospheric pollutants, the rainfall duration should be 60min, 60min and 80min respectively when the effect of rainfall on NO2, PM10 and SO2 tends to be stable.
NASA Astrophysics Data System (ADS)
Gowin, John; Bunclark, Lisa
2013-04-01
Africa is seen by many as the continent with the greatest potential for agricultural growth, but land degradation and environmental change threaten the African soil resource more severely than in many other regions of the planet. Achieving future food security will depend mainly on increasing production from rainfed agriculture. The challenge of delivering the required sustainable intensification in rainfed agriculture is most acute in the drylands - the semi-arid and dry sub-humid climatic regions. There are two broad strategies for increasing yields under these circumstances: (1) capturing more rainwater and storing it (increasing water availability), and (2) using the available water more effectively by increasing the plant growth and/or reducing non-productive soil evaporation (increasing water productivity). We focus on the first of these options - water harvesting, which is defined as, "the collection and concentration of rainfall runoff, or floodwaters, for plant production". The benefits of water harvesting have been documented from small scale experimental plot studies, but evidence of successful adoption and impact is weak. As a contribution to improving the evidence base, we present results from an investigation conducted in SSA to gather information on progress with efforts to promote adoption of water harvesting. The intention was to investigate in detail the processes and outcomes on a large enough sample area to draw some common conclusions. This was not a comprehensive analysis of all that is happening in each country, nor was it a random sample; this was a purposive sample guided by available baseline information to permit comparative analysis. Water harvesting seems to have made the most progress where techniques can be adopted by individual farmers: in Burkina Faso and Niger micro- scale zaï /tassa and demi-lune systems; in Sudan and Tanzania meso-scale majaruba and teras systems. Macro-scale systems requiring social organisation may offer greater potential benefits, but they are more difficult to implement, nevertheless some success stories are apparent: e.g. micro-watersheds in Ethiopia; floodwater harvesting in Sudan and Kenya. There is a marked contrast with much of the experience in India, where there has been greater emphasis on groundwater recharge. The very limited development of groundwater in SSA explains this, but in the absence of groundwater recharge the storage of runoff for supplementary irrigation depends entirely on small ponds. The challenge now is to develop effective methods to disseminate knowledge of successful water harvesting. We consider in particular the influence of available information on soils and rainfall.
Meteorological impact assessment of possible large scale irrigation in Southwest Saudi Arabia
NASA Astrophysics Data System (ADS)
Ter Maat, H. W.; Hutjes, R. W. A.; Ohba, R.; Ueda, H.; Bisselink, B.; Bauer, T.
2006-11-01
On continental to regional scales feedbacks between landuse and landcover change and climate have been widely documented over the past 10-15 years. In the present study we explore the possibility that also vegetation changes over much smaller areas may affect local precipitation regimes. Large scale (˜ 10 5 ha) irrigated plantations in semi-arid environments under particular conditions may affect local circulations and induce additional rainfall. Capturing this rainfall 'surplus' could then reduce the need for external irrigation sources and eventually lead to self-sustained water cycling. This concept is studied in the coastal plains in South West Saudi Arabia where the mountains of the Asir region exhibit the highest rainfall of the peninsula due to orographic lifting and condensation of moisture imported with the Indian Ocean monsoon and with disturbances from the Mediterranean Sea. We use a regional atmospheric modeling system (RAMS) forced by ECMWF analysis data to resolve the effect of complex surface conditions in high resolution (Δ x = 4 km). After validation, these simulations are analysed with a focus on the role of local processes (sea breezes, orographic lifting and the formation of fog in the coastal mountains) in generating rainfall, and on how these will be affected by large scale irrigated plantations in the coastal desert. The validation showed that the model simulates the regional and local weather reasonably well. The simulations exhibit a slightly larger diurnal temperature range than those captured by the observations, but seem to capture daily sea-breeze phenomena well. Monthly rainfall is well reproduced at coarse resolutions, but appears more localized at high resolutions. The hypothetical irrigated plantation (3.25 10 5 ha) has significant effects on atmospheric moisture, but due to weakened sea breezes this leads to limited increases of rainfall. In terms of recycling of irrigation gifts the rainfall enhancement in this particular setting is rather insignificant.
Exploring streamflow response to effective rainfall across event magnitude scale
Teemu Kokkonen; Harri Koivusalo; Tuomo Karvonen; Barry Croke; Anthony Jakeman
2004-01-01
Sets of flow events from four catchments were selected to study how dynamics in the conversion of effective rainfall into streamflow depends on the event size. The approach taken was to optimize parameters of a linear delay function and effective rainfall series concurrently from precipitation streamflow data without imposing a functional form of the precipitation...
USDA-ARS?s Scientific Manuscript database
Research to measure soil erosion rates in the United States from natural rainfall runoff plots began in the early 1900’s. In Brazil, the first experimental study at the plot-scale was conducted in the 1940’s; however, the monitoring process and the creation of new experimental field plots have not c...
Is there a stratospheric pacemaker controlling the daily cycle of tropical rainfall?
NASA Astrophysics Data System (ADS)
Sakazaki, T.; Hamilton, K.; Zhang, C.; Wang, Y.
2017-02-01
Rainfall in the tropics exhibits a large, 12 h Sun-synchronous variation with coherent phase around the globe. A long-standing, but unproved, hypothesis for this phenomenon is excitation by the prominent 12 h atmospheric tide, which itself is significantly forced remotely by solar heating of the stratospheric ozone layer. We investigated the relative roles of large-scale tidal forcing and more local effects in accounting for the 12 h variation of tropical rainfall. A model of the atmosphere run with the diurnal cycle of solar heating artificially suppressed below the stratosphere still simulated a strong coherent 12 h rainfall variation ( 50% of control run), demonstrating that stratospherically forced atmospheric tide propagates downward to the troposphere and contributes to the organization of large-scale convection. The results have implications for theories of excitation of tropical atmospheric waves by moist convection, for the evaluation of climate models, and for explaining the recently discovered lunar tidal rainfall cycle.
Generalizing a nonlinear geophysical flood theory to medium-sized river networks
Gupta, Vijay K.; Mantilla, Ricardo; Troutman, Brent M.; Dawdy, David; Krajewski, Witold F.
2010-01-01
The central hypothesis of a nonlinear geophysical flood theory postulates that, given space-time rainfall intensity for a rainfall-runoff event, solutions of coupled mass and momentum conservation differential equations governing runoff generation and transport in a self-similar river network produce spatial scaling, or a power law, relation between peak discharge and drainage area in the limit of large area. The excellent fit of a power law for the destructive flood event of June 2008 in the 32,400-km2 Iowa River basin over four orders of magnitude variation in drainage areas supports the central hypothesis. The challenge of predicting observed scaling exponent and intercept from physical processes is explained. We show scaling in mean annual peak discharges, and briefly discuss that it is physically connected with scaling in multiple rainfall-runoff events. Scaling in peak discharges would hold in a non-stationary climate due to global warming but its slope and intercept would change.
Rainfall Observed Over Bangladesh 2000-2008: A Comparison of Spatial Interpolation Methods
NASA Astrophysics Data System (ADS)
Pervez, M.; Henebry, G. M.
2010-12-01
In preparation for a hydrometeorological study of freshwater resources in the greater Ganges-Brahmaputra region, we compared the results of four methods of spatial interpolation applied to point measurements of daily rainfall over Bangladesh during a seven year period (2000-2008). Two univariate (inverse distance weighted and spline-regularized and tension) and two multivariate geostatistical (ordinary kriging and kriging with external drift) methods were used to interpolate daily observations from a network of 221 rain gauges across Bangladesh spanning an area of 143,000 sq km. Elevation and topographic index were used as the covariates in the geostatistical methods. The validity of the interpolated maps was analyzed through cross-validation. The quality of the methods was assessed through the Pearson and Spearman correlations and root mean square error measurements of accuracy in cross-validation. Preliminary results indicated that the univariate methods performed better than the geostatistical methods at daily scales, likely due to the relatively dense sampled point measurements and a weak correlation between the rainfall and covariates at daily scales in this region. Inverse distance weighted produced the better results than the spline. For the days with extreme or high rainfall—spatially and quantitatively—the correlation between observed and interpolated estimates appeared to be high (r2 ~ 0.6 RMSE ~ 10mm), although for low rainfall days the correlations were poor (r2 ~ 0.1 RMSE ~ 3mm). The performance quality of these methods was influenced by the density of the sample point measurements, the quantity of the observed rainfall along with spatial extent, and an appropriate search radius defining the neighboring points. Results indicated that interpolated rainfall estimates at daily scales may introduce uncertainties in the successive hydrometeorological analysis. Interpolations at 5-day, 10-day, 15-day, and monthly time scales are currently under investigation.
Application of a CROPWAT Model to Analyze Crop Yields in Nicaragua
NASA Astrophysics Data System (ADS)
Doria, R.; Byrne, J. M.
2013-12-01
ABSTRACT Changes in climate are likely to influence crop yields due to varying evapotranspiration and precipitation over agricultural regions. In Nicaragua, agriculture is extensive, with new areas of land brought into production as the population increases. Nicaraguan staple food items (maize and beans) are produced mostly by small scale farmers with less than 10 hectares, but they are critical for income generation and food security for rural communities. Given that the majority of these farmers are dependent on rain for crop irrigation, and that maize and beans are sensitive to variations in temperature and rainfall patterns, the present study was undertaken to assess the impact of climate change on these crop yields. Climate data were generated per municipio representing the three major climatic zones of the country: the wet Pacific lowland, the cooler Central highland, and the Caribbean lowland. Historical normal climate data from 1970-2000 (baseline period) were used as input to CROPWAT model to analyze the potential and actual evapotranspiration (ETo and ETa, respectively) that affects crop yields. Further, generated local climatic data of future years (2030-2099) under various scenarios were inputted to the CROPWAT to determine changes in ETo and ETa from the baseline period. Spatial variability maps of both ETo and ETa as well as crop yields were created. Results indicated significant variation in seasonal rainfall depth during the baseline period and predicted decreasing trend in the future years that eventually affects yields. These maps enable us to generate appropriate adaptation measures and best management practices for small scale farmers under future climate change scenarios. KEY WORDS: Climate change, evapotranspiration, CROPWAT, yield, Nicaragua
NASA Astrophysics Data System (ADS)
Blakeley, S. L.; Husak, G. J.; Harrison, L.; Funk, C. C.; Osgood, D. E.; Peterson, P.
2017-12-01
Index insurance is increasingly used as a safety net and productivity tool in order to improve the resilience of small-holder farmers in developing countries. In West Africa, there are already index insurance projects in many countries, and various non-governmental organizations are eager to expand implementation of this risk management tool. Often, index insurance payouts rely on rainfall to determine drought years, but designation of years based on precipitation variations is particularly complex in places like West Africa where precipitation is subject to much natural variability across timescales [Giannini 2003, among others]. Furthermore, farmers must also rely on other weather factors for good crop yields, such as the availability of moisture for their plants to absorb and maximum daily temperatures staying within an acceptable range for the crops. In this presentation, the payouts of an index based on rainfall (as measured by the Climate Hazards Group Infrared Precipitation with Stations {CHIRPS} dataset) is compared to the payouts of an index using reference evapotranspiration data (using the ASCE's Penmen-Monteith formula and MERRA-2 drivers). The West African rainfall index exhibits a fair amount of long-term variability, reflective of the Atlantic Multidecadal Oscillation, but the reference evapotranspiration index shows different variability, through changes in radiative forcing and temperatures. Therefore, the use of rainfall for an index is appropriate for capturing rainfall deficits, but reference evapotranspiration may also be an appropriate addition to an index or as a stand-alone index for capturing crop stress. In summary, the results point to farmer input as an invaluable source of knowledge in determining the most appropriate dataset as an index for crop insurance. Alessandra Giannini, R Saravanan, and P Chang. Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science, 302(5647):1027-1030, 2003.
NASA Astrophysics Data System (ADS)
Smitha, P. S.; Narasimhan, B.; Sudheer, K. P.; Annamalai, H.
2018-01-01
Regional climate models (RCMs) are used to downscale the coarse resolution General Circulation Model (GCM) outputs to a finer resolution for hydrological impact studies. However, RCM outputs often deviate from the observed climatological data, and therefore need bias correction before they are used for hydrological simulations. While there are a number of methods for bias correction, most of them use monthly statistics to derive correction factors, which may cause errors in the rainfall magnitude when applied on a daily scale. This study proposes a sliding window based daily correction factor derivations that help build reliable daily rainfall data from climate models. The procedure is applied to five existing bias correction methods, and is tested on six watersheds in different climatic zones of India for assessing the effectiveness of the corrected rainfall and the consequent hydrological simulations. The bias correction was performed on rainfall data downscaled using Conformal Cubic Atmospheric Model (CCAM) to 0.5° × 0.5° from two different CMIP5 models (CNRM-CM5.0, GFDL-CM3.0). The India Meteorological Department (IMD) gridded (0.25° × 0.25°) observed rainfall data was considered to test the effectiveness of the proposed bias correction method. The quantile-quantile (Q-Q) plots and Nash Sutcliffe efficiency (NSE) were employed for evaluation of different methods of bias correction. The analysis suggested that the proposed method effectively corrects the daily bias in rainfall as compared to using monthly factors. The methods such as local intensity scaling, modified power transformation and distribution mapping, which adjusted the wet day frequencies, performed superior compared to the other methods, which did not consider adjustment of wet day frequencies. The distribution mapping method with daily correction factors was able to replicate the daily rainfall pattern of observed data with NSE value above 0.81 over most parts of India. Hydrological simulations forced using the bias corrected rainfall (distribution mapping and modified power transformation methods that used the proposed daily correction factors) was similar to those simulated by the IMD rainfall. The results demonstrate that the methods and the time scales used for bias correction of RCM rainfall data have a larger impact on the accuracy of the daily rainfall and consequently the simulated streamflow. The analysis suggests that the distribution mapping with daily correction factors can be preferred for adjusting RCM rainfall data irrespective of seasons or climate zones for realistic simulation of streamflow.
NASA Astrophysics Data System (ADS)
Grishkan, I.; Zaady, E.; Kidron, G.
2012-04-01
On a regional scale, we examined variations in microfungal communities inhabiting the biological soil crusts (BSC) and non-crusted soil of the northern and central Negev desert in 10 locations along a southward rainfall gradient (from 325 mm to 81 mm of annual rainfall). A total of 87 species from 49 genera were isolated using the soil dilution plate method. The mycobiota of BSC (80 species) was characterized by dominance of melanin-containing fungi, remarkable contribution of sexual Ascomycota, and low abundance of the typical soil genera Penicillium and Aspergillus. Morphological adaptations to the stressful desert environment were expressed in the prevalence of dark-colored microfungi with large, many-celled spores in the localities of the "drier" part of the rainfall gradient and in dark thick-walled fruit bodies of sexual ascomycetes. The abundance of melanin-containing species with multicellular spores was the only characteristic showed a highly significant (negative) correlation with the rainfall amount. We assume that the main factor influencing the content of these species was the latitudinal position of the locations, determining also the intensity of solar (UV) radiation. In the BSC communities, the xeric "desert" component (melanics, slow-reproducing fungi with large, thick-walled spores) was significantly more pronounced and the mesic "forest" component (Penicillium, fast-reproducing fungi with small, light-colored, and thin-walled spores) was much less represented than in the non-crusted shrub communities. In BSC, density of fungal isolates which can be considered an indirect characteristic of fungal biomass was significantly lower than in the non-crusted soil. Cluster analysis indicated that in most cases, the BSC and shrub localities, separated only by a few meters or less, differed on microfungal community structure much more significantly than BSC or shrub localities in the distance of tens of kilometers. The results of this analysis, together with the fact that the rainfall amount weakly influenced spatial variations of the most observed mycological characteristics, indicated that microenvironmental (edaphic) factors played a more essential role in the formation of studied communities than macroenvironmental (climatic) factors. On a local scale, we studied variations in microfungal communities from different crust types (cyanobacterial - moss-dominated) at the Nizzana research station, the western Negev Desert, and their relationship with moisture retention time and intensity of solar radiation. A total of 78 species from 48 genera was isolated. Microfungal communities in the Nizzana crusts were also dominated by melanin-containing species with large, thick-walled and multi-celled conidia. Abundance of this xeric group significantly increased with the increase of radiation intensity, while abundance of mesic Penicillium spp. and Zygomycota displayed the opposite trend. Density of microfungal isolates showed significant positive non-linear relationship with moisture retention time. The moss dominated crust differed markedly from the cyanobacterial crusts on species relative abundances, diversity level, and isolate density. The study showed the parallelism between structure of crust microfungal communities along a regional precipitation gradient in the Negev desert and within a small drainage basin of the Nizzana research station.
NASA Astrophysics Data System (ADS)
Hong, Yang
Precipitation estimation from satellite information (VISIBLE , IR, or microwave) is becoming increasingly imperative because of its high spatial/temporal resolution and board coverage unparalleled by ground-based data. After decades' efforts of rainfall estimation using IR imagery as basis, it has been explored and concluded that the limitations/uncertainty of the existing techniques are: (1) pixel-based local-scale feature extraction; (2) IR temperature threshold to define rain/no-rain clouds; (3) indirect relationship between rain rate and cloud-top temperature; (4) lumped techniques to model high variability of cloud-precipitation processes; (5) coarse scales of rainfall products. As continuing studies, a new version of Precipitation Estimation from Remotely Sensed Information using Artificial Neural Network (PERSIANN), called Cloud Classification System (CCS), has been developed to cope with these limitations in this dissertation. CCS includes three consecutive components: (1) a hybrid segmentation algorithm, namely Hierarchically Topographical Thresholding and Stepwise Seeded Region Growing (HTH-SSRG), to segment satellite IR images into separated cloud patches; (2) a 3D feature extraction procedure to retrieve both pixel-based local-scale and patch-based large-scale features of cloud patch at various heights; (3) an ANN model, Self-Organizing Nonlinear Output (SONO) network, to classify cloud patches into similarity-based clusters, using Self-Organizing Feature Map (SOFM), and then calibrate hundreds of multi-parameter nonlinear functions to identify the relationship between every cloud types and their underneath precipitation characteristics using Probability Matching Method and Multi-Start Downhill Simplex optimization techniques. The model was calibrated over the Southwest of United States (100°--130°W and 25°--45°N) first and then adaptively adjusted to the study region of North America Monsoon Experiment (65°--135°W and 10°--50°N) using observations from Geostationary Operational Environmental Satellite (GOES) IR imagery, Next Generation Radar (NEXRAD) rainfall network, and Tropical Rainfall Measurement Mission (TRMM) microwave rain rate estimates. CCS functions as a distributed model that first identifies cloud patches and then dispatches different but the best matching cloud-precipitation function for each cloud patch to estimate instantaneous rain rate at high spatial resolution (4km) and full temporal resolution of GOES IR images (every 30-minute). Evaluated over a range of spatial and temporal scales, the performance of CCS compared favorably with GOES Precipitation Index (GPI), Universal Adjusted GPI (UAGPI), PERSIANN, and Auto-Estimator (AE) algorithms, consistently. Particularly, the large number of nonlinear functions and optimum IR-rain rate thresholds of CCS model are highly variable, reflecting the complexity of dominant cloud-precipitation processes from cloud patch to cloud patch over various regions. As a result, CCS can more successfully capture variability in rain rate at small scales than existing algorithms and potentially provides rainfall product from GOES IR-NEXARD-TRMM TMI (SSM/I) at 0.12° x 0.12° and 3-hour resolution with relative low standard error (˜=3.0mm/hr) and high correlation coefficient (˜=0.65).
Probabilistic forecasts based on radar rainfall uncertainty
NASA Astrophysics Data System (ADS)
Liguori, S.; Rico-Ramirez, M. A.
2012-04-01
The potential advantages resulting from integrating weather radar rainfall estimates in hydro-meteorological forecasting systems is limited by the inherent uncertainty affecting radar rainfall measurements, which is due to various sources of error [1-3]. The improvement of quality control and correction techniques is recognized to play a role for the future improvement of radar-based flow predictions. However, the knowledge of the uncertainty affecting radar rainfall data can also be effectively used to build a hydro-meteorological forecasting system in a probabilistic framework. This work discusses the results of the implementation of a novel probabilistic forecasting system developed to improve ensemble predictions over a small urban area located in the North of England. An ensemble of radar rainfall fields can be determined as the sum of a deterministic component and a perturbation field, the latter being informed by the knowledge of the spatial-temporal characteristics of the radar error assessed with reference to rain-gauges measurements. This approach is similar to the REAL system [4] developed for use in the Southern-Alps. The radar uncertainty estimate can then be propagated with a nowcasting model, used to extrapolate an ensemble of radar rainfall forecasts, which can ultimately drive hydrological ensemble predictions. A radar ensemble generator has been calibrated using radar rainfall data made available from the UK Met Office after applying post-processing and corrections algorithms [5-6]. One hour rainfall accumulations from 235 rain gauges recorded for the year 2007 have provided the reference to determine the radar error. Statistics describing the spatial characteristics of the error (i.e. mean and covariance) have been computed off-line at gauges location, along with the parameters describing the error temporal correlation. A system has then been set up to impose the space-time error properties to stochastic perturbations, generated in real-time at gauges location, and then interpolated back onto the radar domain, in order to obtain probabilistic radar rainfall fields in real time. The deterministic nowcasting model integrated in the STEPS system [7-8] has been used for the purpose of propagating the uncertainty and assessing the benefit of implementing the radar ensemble generator for probabilistic rainfall forecasts and ultimately sewer flow predictions. For this purpose, events representative of different types of precipitation (i.e. stratiform/convective) and significant at the urban catchment scale (i.e. in terms of sewer overflow within the urban drainage system) have been selected. As high spatial/temporal resolution is required to the forecasts for their use in urban areas [9-11], the probabilistic nowcasts have been set up to be produced at 1 km resolution and 5 min intervals. The forecasting chain is completed by a hydrodynamic model of the urban drainage network. The aim of this work is to discuss the implementation of this probabilistic system, which takes into account the radar error to characterize the forecast uncertainty, with consequent potential benefits in the management of urban systems. It will also allow a comparison with previous findings related to the analysis of different approaches to uncertainty estimation and quantification in terms of rainfall [12] and flows at the urban scale [13]. Acknowledgements The authors would like to acknowledge the BADC, the UK Met Office and Dr. Alan Seed from the Australian Bureau of Meteorology for providing the radar data and the nowcasting model. The authors acknowledge the support from the Engineering and Physical Sciences Research Council (EPSRC) via grant EP/I012222/1.
Quantitative mapping of rainfall rates over the oceans utilizing Nimbus-5 ESMR data
NASA Technical Reports Server (NTRS)
Rao, M. S. V.; Abbott, W. V.
1976-01-01
The electrically scanning microwave radiometer (ESMR) data from the Nimbus 5 satellite was used to deduce estimates of precipitation amount over the oceans. An atlas of the global oceanic rainfall was prepared and the global rainfall maps analyzed and related to available ground truth information as well as to large scale processes in the atmosphere. It was concluded that the ESMR system provides the most reliable and direct approach yet known for the estimation of rainfall over sparsely documented, wide oceanic regions.
Effect of intense short rainfall events on coastal water quality parameters from remote sensing data
NASA Astrophysics Data System (ADS)
Corbari, Chiara; Lassini, Fabio; Mancini, Marco
2016-07-01
Strong rainfall events, especially during summer, in small river basins cause spills in the sea that often compromise the quality of coastal waters. The goal of this paper is then to study the changes of coastal waters quality as a result of intense rainfall events during the bathing season through the use of remote sensing data. These analyses are performed at the outlets of small watersheds which are not usually affected by high sediment transport as in the case of large basins which are persistently affected by intense solid transport which does not allow retrieving a reliable correlation between rainfall events and water quality parameters. Four small watersheds in different Italian regions on the Mediterranean Sea are selected for this study. The remotely sensed parameters of turbidity, total suspend solids and secchi disk depth, are retrieved from MODIS data. Secchi disk depths are also compared to available ground data during the summer seasons between 2003 and 2006 showing good correlations. Then the spatial and temporal changes of these parameters are analyzed after intense short storm events. Increases of turbidity and total suspend solids are found to be around 35 NTU and 20 mg L-1 respectively depending on the intensity of the rainfall event and on the distance from the shoreline. Moreover the recovery of water quality after the rain event is reached after two or three days.
Nonlinear scaling of the Unit Hydrograph Peaking Factor for dam safety
NASA Astrophysics Data System (ADS)
Pradhan, N. R.; Loney, D.
2017-12-01
Existing U.S. Army Corps of Engineers (USACE) policy suggests unit hydrograph peaking factor (UHPF), the ratio of an observed and modeled event unit hydrograph peak, range between 1.25 and 1.50 to ensure dam safety. It is pertinent to investigate the impact of extreme flood events on the validity of this range through physically based rainfall-runoff models not available during the planning and design of most USACE dams. The UHPF range was analyzed by deploying the Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model in the Goose Creek, VA, watershed to develop a UHPF relationship with excess rainfall across various return-period events. An effective rainfall factor (ERF) is introduced to validate existing UHPF guidance as well as provide a nonlinear UHPF scaling relation when effective rainfall does not match that of the UH design event.
NASA Astrophysics Data System (ADS)
Mahmud, M. R.
2014-02-01
This paper presents the simplified and operational approach of mapping the water yield in tropical watershed using space-based multi sensor remote sensing data. Two main critical hydrological rainfall variables namely rainfall and evapotranspiration are being estimated by satellite measurement and reinforce the famous Thornthwaite & Mather water balance model. The satellite rainfall and ET estimates were able to represent the actual value on the ground with accuracy under considerable conditions. The satellite derived water yield had good agreement and relation with actual streamflow. A high bias measurement may result due to; i) influence of satellite rainfall estimates during heavy storm, and ii) large uncertainties and standard deviation of MODIS temperature data product. The output of this study managed to improve the regional scale of hydrology assessment in Peninsular Malaysia.
NASA Astrophysics Data System (ADS)
Blume, T.; Zehe, E.; Bronstert, A.
2009-07-01
Spatial patterns as well as temporal dynamics of soil moisture have a major influence on runoff generation. The investigation of these dynamics and patterns can thus yield valuable information on hydrological processes, especially in data scarce or previously ungauged catchments. The combination of spatially scarce but temporally high resolution soil moisture profiles with episodic and thus temporally scarce moisture profiles at additional locations provides information on spatial as well as temporal patterns of soil moisture at the hillslope transect scale. This approach is better suited to difficult terrain (dense forest, steep slopes) than geophysical techniques and at the same time less cost-intensive than a high resolution grid of continuously measuring sensors. Rainfall simulation experiments with dye tracers while continuously monitoring soil moisture response allows for visualization of flow processes in the unsaturated zone at these locations. Data was analyzed at different spacio-temporal scales using various graphical methods, such as space-time colour maps (for the event and plot scale) and binary indicator maps (for the long-term and hillslope scale). Annual dynamics of soil moisture and decimeter-scale variability were also investigated. The proposed approach proved to be successful in the investigation of flow processes in the unsaturated zone and showed the importance of preferential flow in the Malalcahuello Catchment, a data-scarce catchment in the Andes of Southern Chile. Fast response times of stream flow indicate that preferential flow observed at the plot scale might also be of importance at the hillslope or catchment scale. Flow patterns were highly variable in space but persistent in time. The most likely explanation for preferential flow in this catchment is a combination of hydrophobicity, small scale heterogeneity in rainfall due to redistribution in the canopy and strong gradients in unsaturated conductivities leading to self-reinforcing flow paths.
NASA Astrophysics Data System (ADS)
Takayabu, Yukari; Hamada, Atsushi; Mori, Yuki; Murayama, Yuki; Liu, Chuntao; Zipser, Edward
2015-04-01
While extreme rainfall has a huge impact upon human society, the characteristics of the extreme precipitation vary from region to region. Seventeen years of three dimensional precipitation measurements from the space-borne precipitation radar equipped with the Tropical Precipitation Measurement Mission satellite enabled us to describe the characteristics of regional extreme precipitation globally. Extreme rainfall statistics are based on rainfall events defined as a set of contiguous PR rainy pixels. Regional extreme rainfall events are defined as those in which maximum near-surface rainfall rates are higher than the corresponding 99.9th percentile in each 2.5degree x2.5degree horizontal resolution grid. First, regional extreme rainfall is characterized in terms of its intensity and event size. Regions of ''intense and extensive'' extreme rainfall are found mainly over oceans near coastal areas and are likely associated with tropical cyclones and convective systems associated with the establishment of monsoons. Regions of ''intense but less extensive'' extreme rainfall are distributed widely over land and maritime continents, probably related to afternoon showers and mesoscale convective systems. Regions of ''extensive but less intense'' extreme rainfall are found almost exclusively over oceans, likely associated with well-organized mesoscale convective systems and extratropical cyclones. Secondly, regional extremes in terms of surface rainfall intensity and those in terms of convection height are compared. Conventionally, extremely tall convection is considered to contribute the largest to the intense rainfall. Comparing probability density functions (PDFs) of 99th percentiles in terms of the near surface rainfall intensity in each regional grid and those in terms of the 40dBZ echo top heights, it is found that heaviest precipitation in the region is not associated with tallest systems, but rather with systems with moderate heights. Interestingly, this separation of extremely heavy precipitation from extremely tall convection is found to be quite universal, irrespective of regions. Rainfall characteristics and environmental conditions both indicate the importance of warm-rain processes in producing extreme rainfall rates. Thus it is demonstrated that, even in regions where severe convective storms are representative extreme weather events, the heaviest rainfall events are mostly associated with less intense convection. Third, the size effect of rainfall events on the precipitation intensity is investigated. Comparisons of normalized PDFs of foot-print size rainfall intensity for different sizes of rainfall events show that footprint-scale extreme rainfall becomes stronger as the rainfall events get larger. At the same time, stratiform ratio in area as well as in rainfall amount increases with the size, confirming larger sized features are more organized systems. After all, it is statistically shown that organization of precipitation not only brings about an increase in extreme volumetric rainfall but also an increase in probability of the satellite footprint scale extreme rainfall.
Mapping Soil Erosion Factors and Potential Erosion Risk for the National Park "Central Balkan"
NASA Astrophysics Data System (ADS)
Ilieva, Diliana; Malinov, Ilia
2014-05-01
Soil erosion is widely recognised environmental problem. The report aims at presenting the main results from assessment and mapping of the factors of sheet water erosion and the potential erosion risk on the territory of National Park "Central Balkan". For this purpose, the Universal Soil Loss Equation (USLE) was used for predicting soil loss from erosion. The influence of topography (LS-factor) and soil erodibility (K-factor) was assessed using small-scale topographic and soil maps. Rainfall erosivity (R-factor) was calculated from data of rainfalls with amounts exceeding 9.5 mm from 14 hydro-meteorological stations. The values of the erosion factors (R, K and LS) were presented for the areas of forest, sub-alpine and alpine zones. Using the methods of GIS, maps were plotted presenting the area distribution among the classes of the soil erosion factors and the potential risk in the respective zones. The results can be used for making accurate decisions for soil conservation and sustainable land management in the park.
NASA Astrophysics Data System (ADS)
Hussain, Yawar; Satgé, Frédéric; Hussain, Muhammad Babar; Martinez-Carvajal, Hernan; Bonnet, Marie-Paule; Cárdenas-Soto, Martin; Roig, Henrique Llacer; Akhter, Gulraiz
2018-02-01
The present study aims at the assessment of six satellite rainfall estimates (SREs) in Pakistan. For each assessed products, both real-time (RT) and post adjusted (Adj) versions are considered to highlight their potential benefits in the rainfall estimation at annual, monthly, and daily temporal scales. Three geomorphological climatic zones, i.e., plain, mountainous, and glacial are taken under considerations for the determination of relative potentials of these SREs over Pakistan at global and regional scales. All SREs, in general, have well captured the annual north-south rainfall decreasing patterns and rainfall amounts over the typical arid regions of the country. Regarding the zonal approach, the performance of all SREs has remained good over mountainous region comparative to arid regions. This poor performance in accurate rainfall estimation of all the six SREs over arid regions has made their use questionable in these regions. Over glacier region, all SREs have highly overestimated the rainfall. One possible cause of this overestimation may be due to the low surface temperature and radiation absorption over snow and ice cover, resulting in their misidentification with rainy clouds as daily false alarm ratio has increased from mountainous to glacial regions. Among RT products, CMORPH-RT is the most biased product. The Bias was almost removed on CMORPH-Adj thanks to the gauge adjustment. On a general way, all Adj versions outperformed their respective RT versions at all considered temporal scales and have confirmed the positive effects of gauge adjustment. CMORPH-Adj and TMPA-Adj have shown the best agreement with in situ data in terms of Bias, RMSE, and CC over the entire study area.
Global intensification in observed short-duration rainfall extremes
NASA Astrophysics Data System (ADS)
Fowler, H. J.; Lewis, E.; Guerreiro, S.; Blenkinsop, S.; Barbero, R.; Westra, S.; Lenderink, G.; Li, X.
2017-12-01
Extreme rainfall events are expected to intensify with a warming climate and this is currently driving extensive research. While daily rainfall extremes are widely thought to have increased globally in recent decades, changes in rainfall extremes on shorter timescales, often associated with flash flooding, have not been documented at global scale due to surface observational limitations and the lack of a global sub-daily rainfall database. The access to and use of such data remains a challenge. For the first time, we have synthesized across multiple data sources providing gauge-based sub-daily rainfall observations across the globe over the last 6 decades. This forms part of the INTENSE project (part of the World Climate Research Programme (WCRP)'s Grand Challenge on 'Understanding and Predicting Weather and Climate Extremes' and the Global Water and Energy Exchanges (GEWEX) Hydroclimate Project cross-cut on sub-daily rainfall). A set of global hydroclimatic indices have been produced based upon stakeholder recommendations including indices that describe maximum rainfall totals and timing, the intensity, duration and frequency of storms, frequency of storms above specific thresholds and information about the diurnal cycle. This will provide a unique global data resource on sub-daily precipitation whose derived indices will be freely available to the wider scientific community. Because of the physical connection between global warming and the moisture budget, we also sought to infer long-term changes in sub-daily rainfall extremes contingent on global mean temperature. Whereas the potential influence of global warming is uncertain at regional scales, where natural variability dominates, aggregating surface stations across parts of the world may increase the global warming-induced signal. Changes in terms of annual maximum rainfall across various resolutions ranging from 1-h to 24-h are presented and discussed.
NASA Astrophysics Data System (ADS)
Torn, M. S.; Bernard, S. M.; Castanha, C.; Fischer, M. L.; Hopkins, F. M.; Placella, S. A.; St. Clair, S. B.; Salve, R.; Sudderth, E.; Herman, D.; Ackerly, D.; Firestone, M. K.
2007-12-01
Climate change can influence terrestrial ecosystems at multiple biological levels: gene expression, species, and ecosystem. We are studying California grassland mesocosms with seven annual species (five grasses, two forbs) that were started in 2005. In the 2006-2007 growing season, they were exposed to three rainfall treatments (297, 552, and 867 mm y-1) and soil and air temperature (ambient and elevated +4oC) in replicated greenhouses. This presentation will combine plant and ecosystem level results with transcript level analyses associated with key enzymes, such as rubisco and glutamine synthetase (GS). Because rainfall is the dominant climate variable for most processes in this Mediterranean ecosystem, the effect of warming was strongly mediated by rainfall. In fact, we saw significant interactions between temperature and rainfall treatments at all three biological levels. For example, at the ecosystem level, warming led to a decrease in aboveground and total NPP under low rainfall, and an increase under high rainfall. For the dominant species, Avena barbata, warming had no effect under high rainfall, but suppressed Avena NPP in low rainfall. At the same time, warmer, wetter conditions accelerated Avena flowering by almost 15 days. This shift in phenology was presaged by observations at the transcript level. Specifically, in the high temperature, high rainfall treatment, the levels of mRNAs for RbcS and GS2 (encoding the small subunit of rubisco and the chloroplastic isoform of GS, respectively) declined while GS1 (encoding the cytosolic isoform of GS) was upregulated several weeks before heading. The transcript level response (along with soil and plant nitrogen data) indicated the leaf had switched from a carbon and nitrogen sink to a source - consistent with more mature plant function and earlier flowering. Soil CO2 respiration also showed strong rain-by-temperature interactions that were due mainly to changes in root response (respiration and/or exudates) rather than in microbial respiration. Overall, the pervasive rain-by-temperature interactions mean that it may be very difficult to predict the effect of warming alone, without accounting for changes in precipitation (in our Mediterranean system). While predictions of warming of 3-6°C in the next 100 years are fairly certain, changes in precipitation are much more uncertain, with some forecasts drier and others wetter for a given location. We suggest that uncertainty about future precipitation and the interacting influences of temperature and moisture on ecosystems are currently key limitations in predicting ecosystem response to climate change, particularly in Mediterranean ecosystems such as the one studied here.
NASA Astrophysics Data System (ADS)
Saha, Saurav; Chakraborty, Debasish; Paul, Ranjit Kumar; Samanta, Sandipan; Singh, S. B.
2017-10-01
Rainfall anomaly during crop-growing season can have large impact on the agricultural output of a country, especially like India, where two-thirds of the crop land is rain-fed. In such situation, decreased agricultural production not only challenges food security of the country but directly and immediately hits the livelihood of its farming community. In a vast country like India, rainfall or its anomalies hardly follow a specific pattern, rather it is having high variability in spatial domain. This study focused on the trends of national and regional rainfall anomalies (wetness/dryness) along with their interrelationship using time series data of past 158 years. The significant reducing wetness trend (p < 0.05) over north mountainous India was prominent with an increasing trend over southern peninsular India (p < 0.10). However, long-term annual wetness was increasing over entire peninsular India. The results of change point tests indicate that major abrupt changes occurred between early to mid-twentieth century having regional variations. The regional interrelationship was studied using principal component, hierarchical clustering, and pair-wise difference test, which clearly indicated a significantly different pattern in rainfall anomalies for north east India (p = 0.022), north central India (p = 0.022), and north mountainous India (p = 0.011) from that of the all India. Result of this study affirmed high spatial variability in rainfall anomaly and most importantly established the unalike pattern in trends of regional rainfall vis-à-vis national level, ushering towards paradigm shift in rainfall forecast from country scale to regional scale for pragmatic planning.
Ghosh, Subimal; Vittal, H.; Sharma, Tarul; Karmakar, Subhankar; Kasiviswanathan, K. S.; Dhanesh, Y.; Sudheer, K. P.; Gunthe, S. S.
2016-01-01
India’s agricultural output, economy, and societal well-being are strappingly dependent on the stability of summer monsoon rainfall, its variability and extremes. Spatial aggregate of intensity and frequency of extreme rainfall events over Central India are significantly increasing, while at local scale they are spatially non-uniform with increasing spatial variability. The reasons behind such increase in spatial variability of extremes are poorly understood and the trends in mean monsoon rainfall have been greatly overlooked. Here, by using multi-decadal gridded daily rainfall data over entire India, we show that the trend in spatial variability of mean monsoon rainfall is decreasing as exactly opposite to that of extremes. The spatial variability of extremes is attributed to the spatial variability of the convective rainfall component. Contrarily, the decrease in spatial variability of the mean rainfall over India poses a pertinent research question on the applicability of large scale inter-basin water transfer by river inter-linking to address the spatial variability of available water in India. We found a significant decrease in the monsoon rainfall over major water surplus river basins in India. Hydrological simulations using a Variable Infiltration Capacity (VIC) model also revealed that the water yield in surplus river basins is decreasing but it is increasing in deficit basins. These findings contradict the traditional notion of dry areas becoming drier and wet areas becoming wetter in response to climate change in India. This result also calls for a re-evaluation of planning for river inter-linking to supply water from surplus to deficit river basins. PMID:27463092
NASA Astrophysics Data System (ADS)
Huang, Ling; Luo, Yali; Zhang, Da-Lin
2018-04-01
A spectral analysis of daily rainfall data has been performed to investigate extreme rainfall events in south China during the presummer rainy seasons between 1998 and 2015 (excluding 1999, 2006, 2011, and 2014). The results reveal a dominant frequency mode at the synoptic scale with pronounced positive rainfall anomalies. By analyzing the synoptic-scale bandpass-filtered anomalous circulations, 24 extreme rainfall episodes (defined as those with a daily rainfall amount in the top 5%) are categorized into "cyclone" (15) and "trough" (8) types, with the remaining events as an "anticyclone" type, according to the primary anomalous weather system contributing to each extreme rainfall episode. The 15 cyclone-type episodes are further separated into (11) lower- and (4) upper-tropospheric migratory anomalies. An analysis of their anomalous fields shows that both types could be traced back to the generation of cyclonic anomalies downstream of the Tibetan Plateau, except for two episodes of lower-tropospheric migratory anomalies originating over the South China Sea. However, a lower-tropospheric cyclonic anomaly appears during all phases in the former type, but only in the wettest phase in the latter type, with its peak disturbance occurring immediately beneath an upper-level warm anomaly. The production of extreme rainfall in the trough-type episodes is closely related to a deep trough anomaly extending from an intense cyclonic anomaly over north China, which in turn could be traced back to a midlatitude Rossby wave train passing by the Tibetan Plateau. The results have important implications for understanding the origin, structure, and evolution of synoptic disturbances associated with the presummer extreme rainfall in south China.
NASA Astrophysics Data System (ADS)
Rauniyar, S. P.; Protat, A.; Kanamori, H.
2017-05-01
This study investigates the regional and seasonal rainfall rate retrieval uncertainties within nine state-of-the-art satellite-based rainfall products over the Maritime Continent (MC) region. The results show consistently larger differences in mean daily rainfall among products over land, especially over mountains and along coasts, compared to over ocean, by about 20% for low to medium rain rates and 5% for heavy rain rates. However, rainfall differences among the products do not exhibit any seasonal dependency over both surface types (land and ocean) of the MC region. The differences between products largely depends on the rain rate itself, with a factor 2 difference for light rain and 30% for intermediate and high rain rates over ocean. The rain-rate products dominated by microwave measurements showed less spread among themselves over ocean compared to the products dominated by infrared measurements. Conversely, over land, the rain gauge-adjusted post-real-time products dominated by microwave measurements produced the largest spreads, due to the usage of different gauge analyses for the bias corrections. Intercomparisons of rainfall characteristics of these products revealed large discrepancies in detecting the frequency and intensity of rainfall. These satellite products are finally evaluated at subdaily, daily, monthly, intraseasonal, and seasonal temporal scales against high-quality gridded rainfall observations in the Sarawak (Malaysia) region for the 4 year period 2000-2003. No single satellite-based rainfall product clearly outperforms the other products at all temporal scales. General guidelines are provided for selecting a product that could be best suited for a particular application and/or temporal resolution.
Ghosh, Subimal; Vittal, H; Sharma, Tarul; Karmakar, Subhankar; Kasiviswanathan, K S; Dhanesh, Y; Sudheer, K P; Gunthe, S S
2016-01-01
India's agricultural output, economy, and societal well-being are strappingly dependent on the stability of summer monsoon rainfall, its variability and extremes. Spatial aggregate of intensity and frequency of extreme rainfall events over Central India are significantly increasing, while at local scale they are spatially non-uniform with increasing spatial variability. The reasons behind such increase in spatial variability of extremes are poorly understood and the trends in mean monsoon rainfall have been greatly overlooked. Here, by using multi-decadal gridded daily rainfall data over entire India, we show that the trend in spatial variability of mean monsoon rainfall is decreasing as exactly opposite to that of extremes. The spatial variability of extremes is attributed to the spatial variability of the convective rainfall component. Contrarily, the decrease in spatial variability of the mean rainfall over India poses a pertinent research question on the applicability of large scale inter-basin water transfer by river inter-linking to address the spatial variability of available water in India. We found a significant decrease in the monsoon rainfall over major water surplus river basins in India. Hydrological simulations using a Variable Infiltration Capacity (VIC) model also revealed that the water yield in surplus river basins is decreasing but it is increasing in deficit basins. These findings contradict the traditional notion of dry areas becoming drier and wet areas becoming wetter in response to climate change in India. This result also calls for a re-evaluation of planning for river inter-linking to supply water from surplus to deficit river basins.
Djennad, Abdelmajid; Lo Iacono, Giovanni; Sarran, Christophe; Fleming, Lora E; Kessel, Anthony; Haines, Andy; Nichols, Gordon L
2018-04-27
To understand the impact of weather on infectious diseases, information on weather parameters at patient locations is needed, but this is not always accessible due to confidentiality or data availability. Weather parameters at nearby locations are often used as a proxy, but the accuracy of this practice is not known. Daily Campylobacter and Cryptosporidium cases across England and Wales were linked to local temperature and rainfall at the residence postcodes of the patients and at the corresponding postcodes of the laboratory where the patient's specimen was tested. The paired values of daily rainfall and temperature for the laboratory versus residence postcodes were interpolated from weather station data, and the results were analysed for agreement using linear regression. We also assessed potential dependency of the findings on the relative geographic distance between the patient's residence and the laboratory. There was significant and strong agreement between the daily values of rainfall and temperature at diagnostic laboratories with the values at the patient residence postcodes for samples containing the pathogens Campylobacter or Cryptosporidium. For rainfall, the R-squared was 0.96 for the former and 0.97 for the latter, and for maximum daily temperature, the R-squared was 0.99 for both. The overall mean distance between the patient residence and the laboratory was 11.9 km; however, the distribution of these distances exhibited a heavy tail, with some rare situations where the distance between the patient residence and the laboratory was larger than 500 km. These large distances impact the distributions of the weather variable discrepancies (i.e. the differences between weather parameters estimated at patient residence postcodes and those at laboratory postcodes), with discrepancies up to ±10 °C for the minimum and maximum temperature and 20 mm for rainfall. Nevertheless, the distributions of discrepancies (estimated separately for minimum and maximum temperature and rainfall), based on the cases where the distance between the patient residence and the laboratory was within 20 km, still exhibited tails somewhat longer than the corresponding exponential fits suggesting modest small scale variations in temperature and rainfall. The findings confirm that, for the purposes of studying the relationships between meteorological variables and infectious diseases using data based on laboratory postcodes, the weather results are sufficiently similar to justify the use of laboratory postcode as a surrogate for domestic postcode. Exclusion of the small percentage of cases where there is a large distance between the residence and the laboratory could increase the precision of estimates, but there are generally strong associations between daily weather parameters at residence and laboratory.
NASA Astrophysics Data System (ADS)
Kevane, Michael; Gray, Leslie
2008-07-01
Data on rainfall patterns only weakly corroborate the claim that climate change explains the Darfur conflict that began in 2003 and has claimed more than 200 000 lives and displaced more than two million persons. Rainfall in Darfur did not decline significantly in the years prior to the eruption of major conflict in 2003; rainfall exhibited a flat trend in the thirty years preceding the conflict (1972 2002). The rainfall evidence suggests instead a break around 1971. Rainfall is basically stationary over the pre- and post-1971 sub-periods. The break is larger for the more northerly rainfall stations, and is less noticeable for En Nahud. Rainfall in Darfur did indeed decline, but the decline happened over 30 years before the conflict erupted. Preliminary analysis suggests little merit to the proposition that a structural break several decades earlier is a reasonable predictor of the outbreak of large-scale civil conflict in Africa.
A new physically-based model considered antecedent rainfall for shallow landslide
NASA Astrophysics Data System (ADS)
Luo, Yu; He, Siming
2017-04-01
Rainfall is the most significant factor to cause landslide especially shallow landslide. In previous studies, rainfall intensity and duration are take part in the physically based model to determining the occurrence of the rainfall-induced landslides, but seldom considered the antecedent rainfall. In this study, antecedent rainfall is took into account to derive a new physically based model for shallow landslides prone area predicting at the basin scale. Based on the Rosso's equation of seepage flow considering the antecedent rainfall to construct the hillslope hydrology model. And then, the infinite slope stability theory is using to construct the slope stability model. At last, the model is apply in the Baisha river basin of Chengdu, Sichuan, China, and the results are compared with the one's from unconsidered antecedent rainfall. The results show that the model is simple, but has the capability of consider antecedent rainfall in the triggering mechanism of shallow landslide. Meanwhile, antecedent rainfall can make an obvious effect on shallow landslides, so in shallow landslide hazard assessment, the influence of the antecedent rainfall can't be ignored.
Shrivastava, R; Dash, S K; Hegde, M N; Pradeepkumar, K S; Sharma, D N
2014-12-01
The TRMM rainfall product 3B42 is compared with rain gauge observations for Kaiga, India on monthly and seasonal time scales. This comparison is carried out for the years 2004-2007 spanning four monsoon seasons. A good correlation is obtained between the two data sets however; magnitude wise, the cumulative precipitation of the satellite product on monthly and seasonal time scales is deficient by almost 33-40% as compared to the rain gauge data. The satellite product is also compared with APHRODITE's Monsoon Asia data set on the same time scales. This comparison indicates a much better agreement since both these data sets represent an average precipitation over the same area. The scavenging coefficients for (131)I and (137)Cs are estimated using TRMM 3B42, rain gauge and APHRODITE data. The values obtained using TRMM 3B42 rainfall data compare very well with those obtained using rain gauge and APHRODITE data. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shimizu, Y.; Ishizuka, T.; Osanai, N.; Okazumi, T.
2014-12-01
In this study, the sediment-related disaster prediction method which based ground gauged rainfall-data, currently practiced in Japan was coupled with satellite rainfall data and applied to domestic large-scale sediment-related disasters. The study confirmed the feasibility of this integrated method. In Asia, large-scale sediment-related disasters which can sweep away an entire settlement occur frequently. Leyte Island suffered from a huge landslide in 2004, and Typhoon Molakot in 2009 caused huge landslides in Taiwan. In the event of these sediment-related disasters, immediate responses by central and local governments are crucial in crisis management. In general, there are not enough rainfall gauge stations in developing countries. Therefore national and local governments have little information to determine the risk level of water induced disasters in their service areas. In the Japanese methodology, a criterion is set by combining two indices: the short-term rainfall index and long-term rainfall index. The short-term rainfall index is defined as the 60-minute total rainfall; the long-term rainfall index as the soil-water index, which is an estimation of the retention status of fallen rainfall in soil. In July 2009, a high-density sediment related disaster, or a debris flow, occurred in Hofu City of Yamaguchi Prefecture, in the western region of Japan. This event was calculated by the Japanese standard methodology, and then analyzed for its feasibility. Hourly satellite based rainfall has underestimates compared with ground based rainfall data. Long-term index correlates with each other. Therefore, this study confirmed that it is possible to deliver information on the risk level of sediment-related disasters such as shallow landslides and debris flows. The prediction method tested in this study is expected to assist for timely emergency responses to rainfall-induced natural disasters in sparsely gauged areas. As the Global Precipitation Measurement (GPM) Plan progresses, spatial resolution, time resolution and accuracy of rainfall data should be further improved and will be more effective in practical use.
NASA Astrophysics Data System (ADS)
Chawla, Ila; Osuri, Krishna K.; Mujumdar, Pradeep P.; Niyogi, Dev
2018-02-01
Reliable estimates of extreme rainfall events are necessary for an accurate prediction of floods. Most of the global rainfall products are available at a coarse resolution, rendering them less desirable for extreme rainfall analysis. Therefore, regional mesoscale models such as the advanced research version of the Weather Research and Forecasting (WRF) model are often used to provide rainfall estimates at fine grid spacing. Modelling heavy rainfall events is an enduring challenge, as such events depend on multi-scale interactions, and the model configurations such as grid spacing, physical parameterization and initialization. With this background, the WRF model is implemented in this study to investigate the impact of different processes on extreme rainfall simulation, by considering a representative event that occurred during 15-18 June 2013 over the Ganga Basin in India, which is located at the foothills of the Himalayas. This event is simulated with ensembles involving four different microphysics (MP), two cumulus (CU) parameterizations, two planetary boundary layers (PBLs) and two land surface physics options, as well as different resolutions (grid spacing) within the WRF model. The simulated rainfall is evaluated against the observations from 18 rain gauges and the Tropical Rainfall Measuring Mission Multi-Satellite Precipitation Analysis (TMPA) 3B42RT version 7 data. From the analysis, it should be noted that the choice of MP scheme influences the spatial pattern of rainfall, while the choice of PBL and CU parameterizations influences the magnitude of rainfall in the model simulations. Further, the WRF run with Goddard MP, Mellor-Yamada-Janjic PBL and Betts-Miller-Janjic CU scheme is found to perform best
in simulating this heavy rain event. The selected configuration is evaluated for several heavy to extremely heavy rainfall events that occurred across different months of the monsoon season in the region. The model performance improved through incorporation of detailed land surface processes involving prognostic soil moisture evolution in Noah scheme compared to the simple Slab model. To analyse the effect of model grid spacing, two sets of downscaling ratios - (i) 1 : 3, global to regional (G2R) scale and (ii) 1 : 9, global to convection-permitting scale (G2C) - are employed. Results indicate that a higher downscaling ratio (G2C) causes higher variability and consequently large errors in the simulations. Therefore, G2R is adopted as a suitable choice for simulating heavy rainfall event in the present case study. Further, the WRF-simulated rainfall is found to exhibit less bias when compared with the NCEP FiNaL (FNL) reanalysis data.
NASA Astrophysics Data System (ADS)
Ogden, Fred L.
2016-11-01
Tropical Storm Erika was a weakly organized tropical storm when its center of circulation passed more than 150 km north of the island of Dominica on August 27, 2015. Hurricane hunter flights had difficulty finding the center of circulation as the storm encountered a high shear environment. Satellite and radar observations showed gyres imbedded within the broader circulation. Radar observations from Guadeloupe show that one of these gyres formed in convergent mid-level flow triggered by orographic convection over the island of Dominica. Gauge-adjusted radar rainfall data indicated between 300 and 750 mm of rainfall on Dominica, most of it over a four hour period. The result was widespread flooding, destruction of property, and loss of life. The extremity of the rainfall on steep watersheds covered with shallow soils was hypothesized to result in near-equilibrium runoff conditions where peak runoff rates equal the watershed-average peak rainfall rate minus a small constant loss rate. Rain gauge adjusted radar rainfall estimates and indirect peak discharge (IPD) measurements from 16 rivers at watershed areas ranging from 0.9 to 31.4 km2 using the USGS Slope-Area method allowed testing of this hypothesis. IPD measurements were compared against the global envelope of maximum observed flood peaks versus drainage area and against simulations using the U.S. Army Corps of Engineers Gridded Surface/Subsurface Hydrologic Analysis (GSSHA) model to detect landslide-affected peak flows. Model parameter values were estimated from the literature. Reasonable agreement was found between GSSHA simulated peak flows and IPD measurements in some watersheds. Results showed that landslide dam failure affected peak flows in 5 of the 16 rivers, with peak flows significantly greater than the envelope curve values for the flood of record for like-sized watersheds on the planet. GSSHA simulated peak discharges showed that the remaining 11 peak flow values were plausible. Simulations of an additional 24 watersheds ranging in size from 2.2 to 75.4 km2 provided confirmation that the IPD measurements varied from 40 to nearly 100% of the envelope curve value depending on storm-total rainfall. Results presented in this paper support the hypothesis that on average, the peak discharges scaled linearly with drainage area, and the constant of proportionality was equivalent to 134 mm h-1, or a unit discharge of 37.22 m3 s-1 km-2. The results also indicate that after the available watershed storage was filled after approximately 450-500 mm of rain fell, runoff efficiencies exceeded 50-60%, and peak runoff rates were more than 80% of the peak rainfall rate minus a small constant loss rate of 20 mm h-1. These findings have important implications for design of resilient infrastructure, and means that rainfall rate was the primary determinant of peak flows once the available storage was filled in the absences of landslide dam failure.
NASA Astrophysics Data System (ADS)
Dieng, Hamady; Rahman, G. M. Saifur; Abu Hassan, A.; Che Salmah, M. R.; Satho, Tomomitsu; Miake, Fumio; Boots, Michael; Sazaly, Abubakar
2012-01-01
Larvae of Aedes albopictus Skuse typically inhabit natural and artificial containers. Since these larval habitats are replenished by rainfall, Ae. albopictus may experience increased loss of immature stages in areas with high levels of rainfall. In this study, we investigated the effects of rainfall and container water level on population density, and oviposition activity of Ae. albopictus. In field and laboratory experiments, we found that rainfall resulted in the flushing of breeding habitats. Excess rain negatively impacted larval and pupal retention, especially in small habitats. When filled with water to overflowing, container habitats were significantly repellent to ovipositing females. Taken together, these data suggest that rainfall triggers population loss of Ae. albopictus and related species through a direct detrimental effect (flushing out) and an indirect effect (ovipositional repellency).
Akbarzadeh, Ali; Ghorbani-Dashtaki, Shoja; Naderi-Khorasgani, Mehdi; Kerry, Ruth; Taghizadeh-Mehrjardi, Ruhollah
2016-12-01
Understanding the occurrence of erosion processes at large scales is very difficult without studying them at small scales. In this study, soil erosion parameters were investigated at micro-scale and macro-scale in forests in northern Iran. Surface erosion and some vegetation attributes were measured at the watershed scale in 30 parcels of land which were separated into 15 fire-affected (burned) forests and 15 original (unburned) forests adjacent to the burned sites. The soil erodibility factor and splash erosion were also determined at the micro-plot scale within each burned and unburned site. Furthermore, soil sampling and infiltration studies were carried out at 80 other sites, as well as the 30 burned and unburned sites, (a total of 110 points) to create a map of the soil erodibility factor at the regional scale. Maps of topography, rainfall, and cover-management were also determined for the study area. The maps of erosion risk and erosion risk potential were finally prepared for the study area using the Revised Universal Soil Loss Equation (RUSLE) procedure. Results indicated that destruction of the protective cover of forested areas by fire had significant effects on splash erosion and the soil erodibility factor at the micro-plot scale and also on surface erosion, erosion risk, and erosion risk potential at the watershed scale. Moreover, the results showed that correlation coefficients between different variables at the micro-plot and watershed scales were positive and significant. Finally, assessment and monitoring of the erosion maps at the regional scale showed that the central and western parts of the study area were more susceptible to erosion compared with the western regions due to more intense crop-management, greater soil erodibility, and more rainfall. The relationships between erosion parameters and the most important vegetation attributes were also used to provide models with equations that were specific to the study region. The results of this paper can be useful for better understanding erosion processes at the micro-scale and macro-scale in any region having similar vegetation attributes to the forests of northern Iran.
A Decade-Long European-Scale Convection-Resolving Climate Simulation on GPUs
NASA Astrophysics Data System (ADS)
Leutwyler, D.; Fuhrer, O.; Ban, N.; Lapillonne, X.; Lüthi, D.; Schar, C.
2016-12-01
Convection-resolving models have proven to be very useful tools in numerical weather prediction and in climate research. However, due to their extremely demanding computational requirements, they have so far been limited to short simulations and/or small computational domains. Innovations in the supercomputing domain have led to new supercomputer designs that involve conventional multi-core CPUs and accelerators such as graphics processing units (GPUs). One of the first atmospheric models that has been fully ported to GPUs is the Consortium for Small-Scale Modeling weather and climate model COSMO. This new version allows us to expand the size of the simulation domain to areas spanning continents and the time period up to one decade. We present results from a decade-long, convection-resolving climate simulation over Europe using the GPU-enabled COSMO version on a computational domain with 1536x1536x60 gridpoints. The simulation is driven by the ERA-interim reanalysis. The results illustrate how the approach allows for the representation of interactions between synoptic-scale and meso-scale atmospheric circulations at scales ranging from 1000 to 10 km. We discuss some of the advantages and prospects from using GPUs, and focus on the performance of the convection-resolving modeling approach on the European scale. Specifically we investigate the organization of convective clouds and on validate hourly rainfall distributions with various high-resolution data sets.
Mitigation of Sri Lanka Island Effects in Colombo Sounding Data during DYNAMO
NASA Astrophysics Data System (ADS)
Ciesielski, P. E.; Johnson, R. H.; Yoneyama, K.
2013-12-01
During the Dynamics of the MJO (DYNAMO) field campaign, upper-air soundings were launched at Colombo, Sri Lanka as part of the enhanced northern sounding array (NSA) of the experiment. The Colombo soundings were affected at low-levels by diurnal heating of this large island and by flow blocking due to elevated terrain to the east of the Colombo site. Because of the large spacing between sounding sites, these small-scale effects are aliased onto the larger scale impacting analyses and atmospheric budgets over the DYNAMO NSA. To mitigate these local island effects on the large-scale budgets, a procedure was designed which uses ECMWF-analyzed fields in the vicinity of Sri Lanka to estimate open-ocean conditions (i.e, as if this island were not present). These 'unperturbed' ECMWF fields at low-levels are then merged with observed Colombo soundings. This procedure effectively mutes the blocking effects and large diurnal cycle observed in the low-level Colombo fields. In westerly flow regimes, adjusted Colombo winds increase the low-level westerlies by 2-3 m/s with a similar increase of the low-level easterlies in easterly flow regimes. In general, over the NSA the impact of the adjusted Colombo winds results in more low-level divergence (convergence), more mid-level subsidence (rising motion) and reduced (increased) rainfall during the westerly (easterly) wind regimes. In comparison to independent TRMM rainfall estimates, both the mean budget-derived rainfall and its temporal correlation are improved by using the adjusted Colombo soundings. In addition, use of the 'unperturbed' fields result in a more realistic moisture budget analyses, both in its diurnal cycle and during the build-up phase of the November MJO when a gradual deepening of apparent drying was observed. Overall, use of the adjusted Colombo soundings appears to have a beneficial impact on the NSA analyses and budgets.
NASA Astrophysics Data System (ADS)
Kirkby, M. J.
2012-04-01
Although the concept of connectivity has been increasingly canvassed in the last 10 years, there have been relatively few, and sometimes contradictory operational definitions. Connectivity can be reasonably associated with water flow, sediment transport and ecological habitats, and either generally or along specific pathways, for example in hyporheic exchanges, and inherits a legacy from concepts such as contributing area and hydraulic routing. Here we focus on a single mode, for overland flow, but there remain a bewildering range of operational definitions. Connectivity between two points A and B, on a flow line, can be described as a nominal variable (presence or absence of connection), as a scalar (time delay or breakthrough volume), or as increasingly complex vectors (hydrograph at B for given input at A), even at steady state for a conservative system. Detailed descriptions of dynamic connectivity between adjacent points across an area form one critical ingredient of fine scale process-based models, such as CRUM or MAHLERAN. In this way, connectivity provides a valuable way of conceptualizing the local persistence and continuity of overland flow, particularly in semi-arid areas with short bursts of rainfall and patchy surface properties. For time-spans over which the soils and topography can respond, the division between structural and functional connectivity is also valuable; structure providing a necessary pre-condition for functional connection, and function a necessary condition for change in structure. Beyond the strictly local scale, we would like to collapse the detail of overland flow connectivity into summary index variables, providing one or a few parameters that, for example, scale the response of a hillslope or small catchment to storm rainfall. Candidate indices include average travel times from runoff generating cells, average residence times and contributing areas, all potentially time-varying in response to catchment condition and storm rainfall. However, no magic bullet has yet emerged to summarize the complexity of catchment response.
Hydrodynamic behaviour of crusted soils in the Sahel: a possible cause for runoff increase?
NASA Astrophysics Data System (ADS)
Malam Abdou, M.; Vandervaere, J.-P.; Bouzou Moussa, I.; Descroix, L.
2012-04-01
Crusted soils are in extension in the Sahel. As rainfall has decreased over the past decades (it is now increasing again in the central Sahel) and no significant change was observed in rainfall intensity and in its time and space distribution, it is supposed that land use management is the main cause for crusts cover increase. Fallow shortening, lack of manure, and land overexploitation (wood harvesting, overgrazing) are frequently cited as main factors of soil degradation. Based on field measurements in some small catchments of Western Niger, the hydrodynamics behaviour of the newly crusted soils of this area is described, mostly constituted by erosion crusts. A strong fall in soil saturated conductivity and in the active porosity as well as a rise in bulk density all lead to a quick onset of runoff production. Results are shown from field experiments in sedimentary and basement areas leading to similar conclusions. In both contexts, runoff plot production was measured at the rain event scale from 10-m2 parcels as well as at the catchment outlet. Soil saturated conductivity was reduced by one order of magnitude when crusting occurs, leading to a sharp runoff coefficient increase, from 4% in a weeded millet field and 10% in an old fallow to more than 60% in a erosion-crusted topsoil at the plot scale. At the experimental catchment scale, runoff coefficient has doubled in less than 20 years. In pure Sahelian basins, this resulted in endorheism breaching, and in a widespread river discharge increase. For some right bank tributaries of the Niger River, discharge is three times higher now than before the drought years, in spite of the remaining rainfall deficit. On the other hand, a general increase in flooding hazard frequency is observed in the whole Sahelian stripe. The role of surface crusts in the Sahel is discussed leading to the implementation of new experiments in the future.
Seasonal Evolution and Variability Associated with the West African Monsoon System
NASA Technical Reports Server (NTRS)
Gu, Guojun; Adler, Robert F.
2003-01-01
In this study, we investigate the seasonal variations in surface rainfall and associated large-scale processes in the tropical eastern Atlantic and West African region. The 5-yr (1998-2002) high-quality TRMM rainfall, sea surface temperature (SST), water vapor and cloud liquid water observations are applied along with the NCEP/NCAR reanalysis wind components and a 3-yr (2000-2002) Quickscat satellite-observed surface wind product. Major mean rainfall over West Africa tends to be concentrated in two regions and is observed in two different seasons, manifesting an abrupt shift of the mean rainfall zone during June-July. (i) Near the Gulf of Guinea (about 5 degN), intense convection and rainfall are seen during April-June and roughly follow the seasonality of SST in the tropical eastern Atlantic. (ii) Along the latitudes of about 10 deg. N over the interior West African continent, a second intense rain belt begins to develop from July and remains there during the later summer season. This belt co-exists with a northwardmoved African Easterly Jet (AEJ) and its accompanying horizonal and vertical shear zones, the appearance and intensification of an upper tropospheric Tropical Easterly Jet (TEJ), and a strong low-level westerly flow. Westward-propagating wave signals [ i e . , African easterly waves (AEWs)] dominate the synoptic-scale variability during July-September, in contrast to the evident eastward-propagating wave signals during May- June. The abrupt shift of mean rainfall zone thus turns out to be a combination of two different physical processes: (i) Evident seasonal cycles in the tropical eastern Atlantic ocean which modulate convection and rainfall in the Gulf of Guinea by means of SST thermal forcing and SST-related meridional gradient; (ii) The interaction among the AEJ, TEJ, low-level westerly flow, moist convection and AEWs during July-September which modulates rainfall variability in the interior West Africa, primarily within the ITCZ rain band. Evident seasonality in synoptic-scale wave signals is shown to be a good evidence for this seasonal evolution.
NASA Astrophysics Data System (ADS)
Mascaro, G.; Vivoni, E. R.; Gochis, D. J.; Watts, C. J.; Rodriguez, J. C.
2013-12-01
In northwest Mexico, the statistical properties of rainfall at high temporal resolution (up to 1 min) have been poorly characterized, mainly due to a lack of observations. Under a combined effort of US and Mexican institutions initiated during the North American Monsoon-Soil Moisture Experiment in 2004 (NAME-SMEX04), a network of 8 tipping-bucket rain gauges were installed across a topographic transect in the Sierra Los Locos basin of Sonora, Mexico. The transect spans a distance of ~14 km and an elevation difference of 748 m, thus including valley, mid-elevation and ridge sites where rainfall generation mechanisms in the summer and winter seasons are potentially affected by orography. In this study, we used the data collected during the period of 2007-2010 to characterize the rainfall statistical properties in a wide range of time scales (1 min to ~45 days) and analyzed how these properties change as a function of elevation, the gauge separation distance, and the summer and winter seasons. We found that the total summer (winter) rainfall decreases (increases) with elevation, and that rainfall has a clear diurnal cycle in the summertime, with a peak around 9 pm at all gauges. The correlation structure across the transect indicates that: (i) when times series are aggregated at a resolution greater than 3 hours, the correlation distance is greater than the maximum separation distance (~14 km), while it dramatically decreases for lower time resolutions (e.g., it is ~1.5 km when the resolution is 10 min). Consistent with other semiarid regions, spectral and scale invariance analyses show the presence of different scaling regimes, which are associated to single convective events and larger stratiform systems, with different intermittency properties dependent on the rainfall season. Results of this work are useful for the interpretation of storm generation mechanisms and hydrologic response in the region, as well as for the calibration of high-resolution, stochastic rainfall models used in climate, hydrology, and engineering applications.
NASA Astrophysics Data System (ADS)
Dunkerley, David
2018-01-01
The characteristic intermittency of rainfall includes temporary cessations (hiatuses), as well as periods of very low intensity within more intense events. To understand how these characteristics of rainfall affect overland flow production, rainfall simulations involving repeated cycles of on-off intermittency were carried out on dryland soils in arid western New South Wales, Australia. Periods of rain (10 mm/h) and no-rain were applied in alternation with cycle times from 3 min to 25 min, in experiments lasting 1-1.5 h. Results showed that intermittency could delay the onset of runoff by more than 30 min, reduce the runoff ratio, reduce the peak runoff rate, and reduce the apparent event infiltration rate by 30-45%. When hiatuses in rainfall were longer than 15-20 min, runoff that had resulted from prior rain ceased completely before the recommencement of rain. Results demonstrate that if rainfall intermittency is not accounted for, estimates of infiltrability based on runoff plot data can be systematically in error. Despite the use of intermittent rain, the episodic occurrence of runoff could be predicted successfully by fitting multiple affine Horton infiltration equations, whose changing f0 and Kf coefficients, but uniform values of fc, reflected the redistribution of soil moisture and the change in the infiltrability f during hiatuses in rainfall. The value of fc varied little among the fitted equations, so constituting an affine set of relationships. This new approach provides an alternative to the use of steady-state methods that are common in rainfall simulation experiments and which typically yield only an estimate of fc. The new field results confirm that intermittency affects infiltration and runoff depths and timing at plot scale and on intra-event timescales. Additional work on other soil types, and at other spatial and temporal scales, is needed to test the generality of these findings.
Climatological determinants of woody cover in Africa.
Good, Stephen P; Caylor, Kelly K
2011-03-22
Determining the factors that influence the distribution of woody vegetation cover and resolving the sensitivity of woody vegetation cover to shifts in environmental forcing are critical steps necessary to predict continental-scale responses of dryland ecosystems to climate change. We use a 6-year satellite data record of fractional woody vegetation cover and an 11-year daily precipitation record to investigate the climatological controls on woody vegetation cover across the African continent. We find that-as opposed to a relationship with only mean annual rainfall-the upper limit of fractional woody vegetation cover is strongly influenced by both the quantity and intensity of rainfall events. Using a set of statistics derived from the seasonal distribution of rainfall, we show that areas with similar seasonal rainfall totals have higher fractional woody cover if the local rainfall climatology consists of frequent, less intense precipitation events. Based on these observations, we develop a generalized response surface between rainfall climatology and maximum woody vegetation cover across the African continent. The normalized local gradient of this response surface is used as an estimator of ecosystem vegetation sensitivity to climatological variation. A comparison between predicted climate sensitivity patterns and observed shifts in both rainfall and vegetation during 2009 reveals both the importance of rainfall climatology in governing how ecosystems respond to interannual fluctuations in climate and the utility of our framework as a means to forecast continental-scale patterns of vegetation shifts in response to future climate change.
A field evaluation of a satellite microwave rainfall sensor network
NASA Astrophysics Data System (ADS)
Caridi, Andrea; Caviglia, Daniele D.; Colli, Matteo; Delucchi, Alessandro; Federici, Bianca; Lanza, Luca G.; Pastorino, Matteo; Randazzo, Andrea; Sguerso, Domenico
2017-04-01
An innovative environmental monitoring system - Smart Rainfall System (SRS) - that estimates rainfall in real-time by means of the analysis of the attenuation of satellite signals (DVB-S in the microwave Ku band) is presented. Such a system consists in a set of peripheral microwave sensors placed on the field of interest, and connected to a central processing and analysis node. It has been developed jointly by the University of Genoa, with its departments DITEN and DICCA and the Genoese SME "Darts Engineering Srl". This work discusses the rainfall intensity measurements accuracy and sensitivity performance of SRS, based on preliminary results from a field comparison experiment at the urban scale. The test-bed is composed by a set of preliminary measurement sites established from Autumn 2016 in the Genoa (Italy) municipality and the data collected from the sensors during a selection of rainfall events is studied. The availability of point-scale rainfall intensity measurements made by traditional tipping-bucket rain gauges and radar areal observations allows a comparative analysis of the SRS performance. The calibration of the reference rain gauges has been carried out at the laboratories of DICCA using a rainfall simulator and the measurements have been processed taking advantage of advanced algorithms to reduce counting errors. The experimental set-up allows a fine tuning of the retrieval algorithm and a full characterization of the accuracy of the rainfall intensity estimates from the microwave signal attenuation as a function of different precipitation regimes.
NASA Astrophysics Data System (ADS)
Tchiguirinskaia, Ioulia; Schertzer, Daniel; Paz, Igor; Gires, Auguste; Ichiba, Abdellah; Scour-Plakali, Elektra; Lee, Jisun
2017-04-01
To make our cities weather ready and climate proof has become a fundamental societal issue in the context of an on-going urbanization and growing population density (http://www.nws.noaa.gov/com/weatherreadynation/). This is a challenging question in a region like Île-de-France, which corresponds to one of the largest, if not the largest, concentration of assets and infrastructures in Europe. More than ever, there is an urgent need to cross-fertilise research and operational hydrology, whereas they have both suffered from a long-lasting divorce (Schertzer et al., 2010). A preliminary step is to use the best available measurement technologies. In this presentation we discuss the potentials of the polarimetric X-band radar technology to measure small scale rainfalls in urban environment. Particularly intense rainy episodes have struck hard various regions of France during the period of May-June 2016, notably Ile-de-France and its neighbourhoods. The data collected during those days by the X-band radar of Ecole des Pont ParisTech (http://www.enpc.fr/hydrologie-meteorologie-et-complexite) allow to observe the fast aggregation of strong cells of small sizes in a multi-cellular thunderstorm. Certain cells make initially hardly more than a radar pixel (250m x 250m), while just three quarters of hour later they form a multi-cellular well-organised thunderstorm over tenths of kilometres. These observations have triggered the development of new methods of immediate forecast taking into account the multi-scale and strongly intermittent character of such rainfall fields to better manage the crises, particularly for strongly vulnerable urban systems. We present the results of the multifractal analysis and simulations of the polarimetric X-band radar data that first contribute to better understanding of the three-dimensional dynamics of such events, and then allows representing of how strong cores of haste precipitation contribute to the rainfall amounts striking the ground. The overall message of this presentation is that it seems to be timely and possible to improve the present polarimetric radar products to widen their actual use in every day urban hydrology practices.
Estimating the Risk of Domestic Water Source Contamination following Precipitation Events
Eisenhauer, Ian F.; Hoover, Christopher M.; Remais, Justin V.; Monaghan, Andrew; Celada, Marco; Carlton, Elizabeth J.
2016-01-01
Climate change is expected to increase precipitation extremes, threatening water quality. In low resource settings, it is unclear which water sources are most vulnerable to contamination following rainfall events. We evaluated the relationship between rainfall and drinking water quality in southwest Guatemala where heavy rainfall is frequent and access to safe water is limited. We surveyed 59 shallow household wells, measured precipitation, and calculated simple hydrological variables. We compared Escherichia coli concentration at wells where recent rainfall had occurred versus had not occurred, and evaluated variability in the association between rainfall and E. coli concentration under different conditions using interaction models. Rainfall in the past 24 hours was associated with greater E. coli concentrations, with the strongest association between rainfall and fecal contamination at wells where pigs were nearby. Because of the small sample size, these findings should be considered preliminary, but provide a model to evaluate vulnerability to climate change. PMID:27114298
NASA Technical Reports Server (NTRS)
Kundu, Prasun K.; Bell, T. L.; Lau, William K. M. (Technical Monitor)
2002-01-01
A characteristic feature of rainfall statistics is that they in general depend on the space and time scales over which rain data are averaged. As a part of an earlier effort to determine the sampling error of satellite rain averages, a space-time model of rainfall statistics was developed to describe the statistics of gridded rain observed in GATE. The model allows one to compute the second moment statistics of space- and time-averaged rain rate which can be fitted to satellite or rain gauge data to determine the four model parameters appearing in the precipitation spectrum - an overall strength parameter, a characteristic length separating the long and short wavelength regimes and a characteristic relaxation time for decay of the autocorrelation of the instantaneous local rain rate and a certain 'fractal' power law exponent. For area-averaged instantaneous rain rate, this exponent governs the power law dependence of these statistics on the averaging length scale $L$ predicted by the model in the limit of small $L$. In particular, the variance of rain rate averaged over an $L \\times L$ area exhibits a power law singularity as $L \\rightarrow 0$. In the present work the model is used to investigate how the statistics of area-averaged rain rate over the tropical Western Pacific measured with ship borne radar during TOGA COARE (Tropical Ocean Global Atmosphere Coupled Ocean Atmospheric Response Experiment) and gridded on a 2 km grid depends on the size of the spatial averaging scale. Good agreement is found between the data and predictions from the model over a wide range of averaging length scales.
NASA Astrophysics Data System (ADS)
Luke, E. P.; Kollias, P.
2016-12-01
Shallow cumulus clouds are by far the most frequently observed cloud type over the Earth's oceans and frequently produce warm rain. However, quantitative rainfall estimates from these clouds are challenging to acquire from satellites due to their small horizontal scale. Here, two years of observations from the US Department of Energy Atmospheric Radiation Measurement Program (ARM) Eastern North Atlantic (ENA) site located on Graciosa Island in the Azores are used to characterize the frequency, intensity, and fractional coverage of shallow cumulus precipitation. The analyzed dataset is the most comprehensive of its type, considering both its temporal extent and the sophistication of the ground-based observations. The precipitation rate at the base of shallow cumulus is estimated using combined radar-lidar observations and the rain retrievals are compared to the rainfall measurements available at the ground by optical disdrometers. Using synergy between surfaced-based observations of aerosols and thermodynamic soundings, the vertical structure of the Marine Boundary Layer and the temporal variability of the cloud condensation nuclei (CCN) number concentration are determined. The observed variability in shallow cumulus precipitation is examined in relation to the variability of the large-scale environment as captured by the humidity profile, the magnitude of the low-level horizontal winds and aerosol loading.
Multi-scale hydrometeorological observation and modelling for flash flood understanding
NASA Astrophysics Data System (ADS)
Braud, I.; Ayral, P.-A.; Bouvier, C.; Branger, F.; Delrieu, G.; Le Coz, J.; Nord, G.; Vandervaere, J.-P.; Anquetin, S.; Adamovic, M.; Andrieu, J.; Batiot, C.; Boudevillain, B.; Brunet, P.; Carreau, J.; Confoland, A.; Didon-Lescot, J.-F.; Domergue, J.-M.; Douvinet, J.; Dramais, G.; Freydier, R.; Gérard, S.; Huza, J.; Leblois, E.; Le Bourgeois, O.; Le Boursicaud, R.; Marchand, P.; Martin, P.; Nottale, L.; Patris, N.; Renard, B.; Seidel, J.-L.; Taupin, J.-D.; Vannier, O.; Vincendon, B.; Wijbrans, A.
2014-09-01
This paper presents a coupled observation and modelling strategy aiming at improving the understanding of processes triggering flash floods. This strategy is illustrated for the Mediterranean area using two French catchments (Gard and Ardèche) larger than 2000 km2. The approach is based on the monitoring of nested spatial scales: (1) the hillslope scale, where processes influencing the runoff generation and its concentration can be tackled; (2) the small to medium catchment scale (1-100 km2), where the impact of the network structure and of the spatial variability of rainfall, landscape and initial soil moisture can be quantified; (3) the larger scale (100-1000 km2), where the river routing and flooding processes become important. These observations are part of the HyMeX (HYdrological cycle in the Mediterranean EXperiment) enhanced observation period (EOP), which will last 4 years (2012-2015). In terms of hydrological modelling, the objective is to set up regional-scale models, while addressing small and generally ungauged catchments, which represent the scale of interest for flood risk assessment. Top-down and bottom-up approaches are combined and the models are used as "hypothesis testing" tools by coupling model development with data analyses in order to incrementally evaluate the validity of model hypotheses. The paper first presents the rationale behind the experimental set-up and the instrumentation itself. Second, we discuss the associated modelling strategy. Results illustrate the potential of the approach in advancing our understanding of flash flood processes on various scales.
Multi-scale hydrometeorological observation and modelling for flash-flood understanding
NASA Astrophysics Data System (ADS)
Braud, I.; Ayral, P.-A.; Bouvier, C.; Branger, F.; Delrieu, G.; Le Coz, J.; Nord, G.; Vandervaere, J.-P.; Anquetin, S.; Adamovic, M.; Andrieu, J.; Batiot, C.; Boudevillain, B.; Brunet, P.; Carreau, J.; Confoland, A.; Didon-Lescot, J.-F.; Domergue, J.-M.; Douvinet, J.; Dramais, G.; Freydier, R.; Gérard, S.; Huza, J.; Leblois, E.; Le Bourgeois, O.; Le Boursicaud, R.; Marchand, P.; Martin, P.; Nottale, L.; Patris, N.; Renard, B.; Seidel, J.-L.; Taupin, J.-D.; Vannier, O.; Vincendon, B.; Wijbrans, A.
2014-02-01
This paper presents a coupled observation and modelling strategy aiming at improving the understanding of processes triggering flash floods. This strategy is illustrated for the Mediterranean area using two French catchments (Gard and Ardèche) larger than 2000 km2. The approach is based on the monitoring of nested spatial scales: (1) the hillslope scale, where processes influencing the runoff generation and its concentration can be tackled; (2) the small to medium catchment scale (1-100 km2) where the impact of the network structure and of the spatial variability of rainfall, landscape and initial soil moisture can be quantified; (3) the larger scale (100-1000 km2) where the river routing and flooding processes become important. These observations are part of the HyMeX (Hydrological Cycle in the Mediterranean Experiment) Enhanced Observation Period (EOP) and lasts four years (2012-2015). In terms of hydrological modelling the objective is to set up models at the regional scale, while addressing small and generally ungauged catchments, which is the scale of interest for flooding risk assessment. Top-down and bottom-up approaches are combined and the models are used as "hypothesis testing" tools by coupling model development with data analyses, in order to incrementally evaluate the validity of model hypotheses. The paper first presents the rationale behind the experimental set up and the instrumentation itself. Second, we discuss the associated modelling strategy. Results illustrate the potential of the approach in advancing our understanding of flash flood processes at various scales.
NASA Astrophysics Data System (ADS)
Ramos-Scharron, C. E.; LaFevor, M. C.; Roy, J.
2017-12-01
Developing a conceptually sound yet practical understanding of runoff and sediment delivery from human occupied lands to tropical ocean waters still represents a pivotal need of coral reef management worldwide. In the dry tropical and ephemeral streamflow setting that typifies the small watersheds ( 1s km2) draining the US Virgin Islands, changes in hydrologic and sediment delivery dynamics provoked by unsurfaced road networks represent a major threat to coral reefs and other sensitive marine ecosystems. Through a combined empirical and modeling approach, this study evaluates how road building and associated stormflow restoration strategies affect rainfall thresholds for runoff generation at varying spatial scales and their impact on land-to-sea connectivity. Rainfall thresholds and runoff coefficients for precipitation excess on unpaved roads are 2-3 mm and 22-30% (respectively) or a full order of magnitude different from those for undisturbed hillslopes and watersheds. Here we discuss the use of a `volume-to-breakthrough' inspired index to predict the potential of road runoff to reach downslope portions of the watershed and the coastline as runon. The index integrates the effects of storm-by-storm runoff accumulation for every road drainage point with its flow distance to specific locations along the stream network. While large runoff volumes and short flow distances imply a relatively high connectivity potential, small volumes and long distances are associated to low delivery potential. The index has proven able to discern observed runoff responses under a variety of road-stream network scenarios and rainfall conditions. These results enhance our understanding of ephemeral stream hydrology and are serving to improve coral reef management strategies throughout the Northeastern Caribbean.
NASA Astrophysics Data System (ADS)
Blume, T.; Zehe, E.; Bronstert, A.
2007-08-01
Spatial patterns as well as temporal dynamics of soil moisture have a major influence on runoff generation. The investigation of these dynamics and patterns can thus yield valuable information on hydrological processes, especially in data scarce or previously ungauged catchments. The combination of spatially scarce but temporally high resolution soil moisture profiles with episodic and thus temporally scarce moisture profiles at additional locations provides information on spatial as well as temporal patterns of soil moisture at the hillslope transect scale. This approach is better suited to difficult terrain (dense forest, steep slopes) than geophysical techniques and at the same time less cost-intensive than a high resolution grid of continuously measuring sensors. Rainfall simulation experiments with dye tracers while continuously monitoring soil moisture response allows for visualization of flow processes in the unsaturated zone at these locations. Data was analyzed at different spacio-temporal scales using various graphical methods, such as space-time colour maps (for the event and plot scale) and indicator maps (for the long-term and hillslope scale). Annual dynamics of soil moisture and decimeter-scale variability were also investigated. The proposed approach proved to be successful in the investigation of flow processes in the unsaturated zone and showed the importance of preferential flow in the Malalcahuello Catchment, a data-scarce catchment in the Andes of Southern Chile. Fast response times of stream flow indicate that preferential flow observed at the plot scale might also be of importance at the hillslope or catchment scale. Flow patterns were highly variable in space but persistent in time. The most likely explanation for preferential flow in this catchment is a combination of hydrophobicity, small scale heterogeneity in rainfall due to redistribution in the canopy and strong gradients in unsaturated conductivities leading to self-reinforcing flow paths.
Vegetation Response to Rainfall and Soil Moisture Variability in Botswana
1991-01-01
Effects of Varying Soil Type on the NDVI /Rainfall and NDVI /Soil Moisture...examine the effects of different soil types on the vegetation growth/rainfall relationship. The goals are to determine whether differences in the water-use...34first step" in removing the soil effect (Huete et al., 1985). Indeed, no large-scale soil corrections have been attempted as yet on NDVI data.
Rainfall Climatology over Asir Region, Saudi Arabia
NASA Astrophysics Data System (ADS)
Sharif, H.; Furl, C.; Al-Zahrani, M.
2012-04-01
Arid and semi-arid lands occupy about one-third of the land surface of the earth and support about one-fifth of the world population. The Asir area in Saudi Arabia is an example of these areas faced with the problem of maintaining sustainable water resources. This problem is exacerbated by the high levels of population growth, land use changes, increasing water demand, and climate variability. In this study, the characteristics of decade-scale variations in precipitation are examined in more detail for Asir region. The spatio-temporal distributions of rainfall over the region are analyzed. The objectives are to identify the sensitivity, magnitude, and range of changes in annual and seasonal evapotranspiration resulting from observed decade-scale precipitation variations. An additional objective is to characterize orographic controls on the space-time variability of rainfall. The rainfall data is obtained from more than 30 rain gauges spread over the region.
NASA Astrophysics Data System (ADS)
Endale, Dinku M.; Fisher, Dwight S.; Steiner, Jean L.
2006-01-01
Few studies have reported runoff from small agricultural watersheds over sufficiently long period so that the effect of different cover types on runoff can be examined. We analyzed 45-yrs of monthly and annual rainfall-runoff characteristics of a small (7.8 ha) zero-order typical Southern Piedmont watershed in southeastern United States. Agricultural land use varied as follows: 1. Row cropping (5-yrs); 2. Kudzu ( Pueraria lobata; 5-yrs); 3. Grazed kudzu and rescuegrass ( Bromus catharticus; 7-yrs); and 4. Grazed bermudagrass and winter annuals ( Cynodon dactylon; 28-yrs). Land use and rainfall variability influenced runoff characteristics. Row cropping produced the largest runoff amount, percentage of the rainfall partitioned into runoff, and peak flow rates. Kudzu reduced spring runoff and almost eliminated summer runoff, as did a mixture of kudzu and rescuegrass (KR) compared to row cropping. Peak flow rates were also reduced during the kudzu and KR. Peak flow rates increased under bermudagrass but were lower than during row cropping. A simple process-based 'tanh' model modified to take the previous month's rainfall into account produced monthly rainfall and runoff correlations with coefficient of determination ( R2) of 0.74. The model was tested on independent data collected during drought. Mean monthly runoff was 1.65 times the observed runoff. Sustained hydrologic monitoring is essential to understanding long-term rainfall-runoff relationships in agricultural watersheds.
NASA Astrophysics Data System (ADS)
Siegert, C. M.; Leathers, D. J.; Levia, D. F.
2017-05-01
Synoptic classification is a methodology that represents diverse atmospheric variables and allows researchers to relate large-scale atmospheric circulation patterns to regional- and small-scale terrestrial processes. Synoptic classification has often been applied to questions concerning the surface environment. However, full applicability has been under-utilized to date, especially in disciplines such as hydroclimatology, which are intimately linked to atmospheric inputs. This paper aims to (1) outline the development of a daily synoptic calendar for the Mid-Atlantic (USA), (2) define seasonal synoptic patterns occurring in the region, and (3) provide hydroclimatological examples whereby the cascading response of precipitation characteristics, soil moisture, and streamflow are explained by synoptic classification. Together, achievement of these objectives serves as a guide for development and use of a synoptic calendar for hydroclimatological studies. In total 22 unique synoptic types were identified, derived from a combination of 12 types occurring in the winter (DJF), 13 in spring (MAM), 9 in summer (JJA), and 11 in autumn (SON). This includes six low pressure systems, four high pressure systems, one cold front, three north/northwest flow regimes, three south/southwest flow regimes, and five weakly defined regimes. Pairwise comparisons indicated that 84.3 % had significantly different rainfall magnitudes, 86.4 % had different rainfall durations, and 84.7 % had different rainfall intensities. The largest precipitation-producing classifications were not restricted to low pressure systems, but rather to patterns with access to moisture sources from the Atlantic Ocean and easterly (on-shore) winds, which transport moisture inland. These same classifications resulted in comparable rates of soil moisture recharge and streamflow discharge, illustrating the applicability of synoptic classification for a range of hydroclimatological research objectives.
NASA Astrophysics Data System (ADS)
Zhou, Z.; Smith, J. A.; Yang, L.; Baeck, M. L.; Liu, S.; Ten Veldhuis, M. C.
2016-12-01
The objective of this study is to develop a broad characterization of land surface and hydrometeorological controls of urban flood frequency. We focus on a collection of "small" urban watersheds (with drainage area ranging from 7 to 200 km2) in Charlotte metropolitan region, North Carolina. These watersheds are contrasted by a variety of land surface properties, such as size, shape, land use/land cover type, impervious coverage pattern, stormwater infrastructure, etc. We carried out empirical analyses based on long-term (15 years), high-resolution (1 15 minutes) instantaneous USGS stream gaging observations as well as bias-corrected, high-resolution (1 km2, 15 min) radar rainfall fields developed through the Hydro-NEXRAD system. Extreme floods in Charlotte urban watersheds are primarily induced by a mixture of flood agents including warm season thunderstorms and tropical cyclones, which ultimately contributed to the upper-tail properties of flood frequency. Flood response in urban watersheds is dominantly dictated by space-time characteristics of rainfall, with relatively significant correlation between runoff and rainfall over more developed watersheds. The roles of antecedent soil moisture and stormwater management infrastructure in flood response are also contrasted across the urban watersheds. The largest variability of flood response, in terms of flood peak and timing, exists in the watershed at a scale of 100 km2. The scale-dependent hydrological response is closely related to the pattern and evolution of urban development across watersheds. Our analyses show the complexities of urban flood response in Charlotte metropolitan region. There are no simple metrics that could perfectly explain the contrasts in flood response across urban watersheds. Future research is directed towards sophisticated modeling studies for a predictive understanding of flood frequency in urban watersheds.
Satellite-based Flood Modeling Using TRMM-based Rainfall Products.
Harris, Amanda; Rahman, Sayma; Hossain, Faisal; Yarborough, Lance; Bagtzoglou, Amvrossios C; Easson, Greg
2007-12-20
Increasingly available and a virtually uninterrupted supply of satellite-estimatedrainfall data is gradually becoming a cost-effective source of input for flood predictionunder a variety of circumstances. However, most real-time and quasi-global satelliterainfall products are currently available at spatial scales ranging from 0.25 o to 0.50 o andhence, are considered somewhat coarse for dynamic hydrologic modeling of basin-scaleflood events. This study assesses the question: what are the hydrologic implications ofuncertainty of satellite rainfall data at the coarse scale? We investigated this question onthe 970 km² Upper Cumberland river basin of Kentucky. The satellite rainfall productassessed was NASA's Tropical Rainfall Measuring Mission (TRMM) Multi-satellitePrecipitation Analysis (TMPA) product called 3B41RT that is available in pseudo real timewith a latency of 6-10 hours. We observed that bias adjustment of satellite rainfall data canimprove application in flood prediction to some extent with the trade-off of more falsealarms in peak flow. However, a more rational and regime-based adjustment procedureneeds to be identified before the use of satellite data can be institutionalized among floodmodelers.
Is the negative IOD during 2016 the reason for monsoon failure over southwest peninsular India?
NASA Astrophysics Data System (ADS)
Sreelekha, P. N.; Babu, C. A.
2018-01-01
The study investigates the mechanism responsible for the deficit rainfall over southwest peninsular India during the 2016 monsoon season. Analysis shows that the large-scale variation in circulation pattern due to the strong, negative Indian Ocean Dipole phenomenon was the reason for the deficit rainfall. Significant reduction in the number of northward-propagating monsoon-organized convections together with fast propagation over the southwest peninsular India resulted in reduction in rainfall. On the other hand, their persistence for longer time over the central part of India resulted in normal rainfall. It was found that the strong convection over the eastern equatorial Indian Ocean creates strong convergence over that region. The combined effect of the sinking due to the well-developed Walker circulation originated over the eastern equatorial Indian Ocean and the descending limb of the monsoon Hadley cell caused strong subsidence over the western equatorial Indian Ocean. The tail of this large-scale sinking extended up to the southern parts of India. This hinders formation of monsoon-organized convections leading to a large deficiency of rainfall during monsoon 2016 over the southwest peninsular India.
Yu, Yang; Kojima, Keisuke; An, Kyoungjin; Furumai, Hiroaki
2013-01-01
Combined sewer overflow (CSO) from urban areas is recognized as a major pollutant source to the receiving waters during wet weather. This study attempts to categorize rainfall events and corresponding CSO behaviours to reveal the relationship between rainfall patterns and CSO behaviours in the Shingashi urban drainage areas of Tokyo, Japan where complete service by a combined sewer system (CSS) and CSO often takes place. In addition, outfalls based on their annual overflow behaviours were characterized for effective storm water management. All 117 rainfall events recorded in 2007 were simulated by a distributed model InfoWorks CS to obtain CSO behaviours. The rainfall events were classified based on two sets of parameters of rainfall pattern as well as CSO behaviours. Clustered rainfall and CSO groups were linked by similarity analysis. Results showed that both small and extreme rainfalls had strong correlations with the CSO behaviours, while moderate rainfall had a weak relationship. This indicates that important and negligible rainfalls from the viewpoint of CSO could be identified by rainfall patterns, while influences from the drainage area and network should be taken into account when estimating moderate rainfall-induced CSO. Additionally, outfalls were finally categorized into six groups indicating different levels of impact on the environment.
Models for estimating daily rainfall erosivity in China
NASA Astrophysics Data System (ADS)
Xie, Yun; Yin, Shui-qing; Liu, Bao-yuan; Nearing, Mark A.; Zhao, Ying
2016-04-01
The rainfall erosivity factor (R) represents the multiplication of rainfall energy and maximum 30 min intensity by event (EI30) and year. This rainfall erosivity index is widely used for empirical soil loss prediction. Its calculation, however, requires high temporal resolution rainfall data that are not readily available in many parts of the world. The purpose of this study was to parameterize models suitable for estimating erosivity from daily rainfall data, which are more widely available. One-minute resolution rainfall data recorded in sixteen stations over the eastern water erosion impacted regions of China were analyzed. The R-factor ranged from 781.9 to 8258.5 MJ mm ha-1 h-1 y-1. A total of 5942 erosive events from one-minute resolution rainfall data of ten stations were used to parameterize three models, and 4949 erosive events from the other six stations were used for validation. A threshold of daily rainfall between days classified as erosive and non-erosive was suggested to be 9.7 mm based on these data. Two of the models (I and II) used power law functions that required only daily rainfall totals. Model I used different model coefficients in the cool season (Oct.-Apr.) and warm season (May-Sept.), and Model II was fitted with a sinusoidal curve of seasonal variation. Both Model I and Model II estimated the erosivity index for average annual, yearly, and half-month temporal scales reasonably well, with the symmetric mean absolute percentage error MAPEsym ranging from 10.8% to 32.1%. Model II predicted slightly better than Model I. However, the prediction efficiency for the daily erosivity index was limited, with the symmetric mean absolute percentage error being 68.0% (Model I) and 65.7% (Model II) and Nash-Sutcliffe model efficiency being 0.55 (Model I) and 0.57 (Model II). Model III, which used the combination of daily rainfall amount and daily maximum 60-min rainfall, improved predictions significantly, and produced a Nash-Sutcliffe model efficiency for daily erosivity index prediction of 0.93. Thus daily rainfall data was generally sufficient for estimating annual average, yearly, and half-monthly time scales, while sub-daily data was needed when estimating daily erosivity values.
Validation Of TRMM For Hazard Assessment In The Remote Context Of Tropical Africa
NASA Astrophysics Data System (ADS)
Monsieurs, E.; Kirschbaum, D.; Tan, J.; Jacobs, L.; Kervyn, M.; Demoulin, A.; Dewitte, O.
2017-12-01
Accurate rainfall data is fundamental for understanding and mitigating the disastrous effects of many rainfall-triggered hazards, especially when one considers the challenges arising from climate change and rainfall variability. In tropical Africa in particular, the sparse operational rainfall gauging network hampers the ability to understand these hazards. Satellite rainfall estimates (SRE) can therefore be of great value. Yet, rigorous validation is required to identify the uncertainties when using SRE for hazard applications. We evaluated the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B42 Research Derived Daily Product from 1998 to 2017, at 0.25° x 0.25° spatial and 24 h temporal resolution. The validation was done over the western branch of the East African Rift, with the perspective of regional landslide hazard assessment in mind. Even though we collected an unprecedented dataset of 47 gauges with a minimum temporal resolution of 24 h, the sparse and heterogeneous temporal coverage in a region with high rainfall variability poses challenges for validation. In addition, the discrepancy between local-scale gauge data and spatially averaged ( 775 km²) TMPA data in the context of local convective storms and orographic rainfall is a crucial source of uncertainty. We adopted a flexible framework for SRE validation that fosters explorative research in a remote context. Results show that TMPA performs reasonably well during the rainy seasons for rainfall intensities <20 mm/day. TMPA systematically underestimates rainfall, but most problematic is the decreasing probability of detection of high intensity rainfalls. We suggest that landslide hazard might be efficiently assessed if we take account of the systematic biases in TMPA data and determine rainfall thresholds modulated by controls on, and uncertainties of, TMPA revealed in this study. Moreover, it is found relevant in mapping regional-scale rainfall-triggered hazards that are in any case poorly covered by the sparse available gauges. We anticipate validation of TMPA's successor (Integrated Multi-satellitE Retrievals for Global Precipitation Measurement; 10 km × 10 km, half-hourly) using the proposed framework, as soon as this product will be available in early 2018 for the 1998-present period.
NASA Astrophysics Data System (ADS)
Eltahir, E. A. B.; IM, E. S.
2014-12-01
This study investigates the impact of potential large-scale (about 400,000 km2) and medium-scale (about 60,000 km2) irrigation on the climate of West Africa using the MIT Regional Climate Model. A new irrigation module is implemented to assess the impact of location and scheduling of irrigation on rainfall distribution over West Africa. A control simulation (without irrigation) and various sensitivity experiments (with irrigation) are performed and compared to discern the effects of irrigation location, size and scheduling. In general, the irrigation-induced surface cooling due to anomalously wet soil tends to suppress moist convection and rainfall, which in turn induces local subsidence and low level anti-cyclonic circulation. These local effects are dominated by a consistent reduction of local rainfall over the irrigated land, irrespective of its location. However, the remote response of rainfall distribution to irrigation exhibits a significant sensitivity to the latitudinal position of irrigation. The low-level northeasterly flow associated with anti-cyclonic circulation centered over the irrigation area can enhance the extent of low level convergence through interaction with the prevailing monsoon flow, leading to significant increase in rainfall. Despite much reduced forcing of irrigation water, the medium-scale irrigation seems to draw the same response as large-scale irrigation, which supports the robustness of the response to irrigation in our modeling system. Both large-scale and medium-scale irrigation experiments show that an optimal irrigation location and scheduling exists that would lead to a more efficient use of irrigation water. The approach of using a regional climate model to investigate the impact of location and size of irrigation schemes may be the first step in incorporating land-atmosphere interactions in the design of location and size of irrigation projects. However, this theoretical approach is still in early stages of development and further research is needed before any practical application in water resources planning. Acknowledgements.This research was supported by the National Research Foundation Singapore through the Singapore MIT Alliance for Research and Technology's Center for Environmental Sensing and Modeling interdisciplinary research program.
NASA Technical Reports Server (NTRS)
Rodriguez-Fonseca, Belen; Mohino, Elsa; Mechoso, Carlos R.; Caminade, Cyril; Biasutti, Michela; Gaetani, Marco; Garcia-Serrano, J.; Vizy, Edward K.; Cook, Kerry; Xue, Yongkang;
2015-01-01
The Sahel experienced a severe drought during the 1970s and 1980s after wet periods in the 1950s and 1960s. Although rainfall partially recovered since the 1990s, the drought had devastating impacts on society. Most studies agree that this dry period resulted primarily from remote effects of sea surface temperature (SST) anomalies amplified by local land surface-atmosphere interactions. This paper reviews advances made during the last decade to better understand the impact of global SST variability on West African rainfall at interannual to decadal time scales. At interannual time scales, a warming of the equatorial Atlantic and Pacific/Indian Oceans results in rainfall reduction over the Sahel, and positive SST anomalies over the Mediterranean Sea tend to be associated with increased rainfall. At decadal time scales, warming over the tropics leads to drought over the Sahel, whereas warming over the North Atlantic promotes increased rainfall. Prediction systems have evolved from seasonal to decadal forecasting. The agreement among future projections has improved from CMIP3 to CMIP5, with a general tendency for slightly wetter conditions over the central part of the Sahel, drier conditions over the western part, and a delay in the monsoon onset. The role of the Indian Ocean, the stationarity of teleconnections, the determination of the leader ocean basin in driving decadal variability, the anthropogenic role, the reduction of the model rainfall spread, and the improvement of some model components are among the most important remaining questions that continue to be the focus of current international projects.
NASA Technical Reports Server (NTRS)
Takayabu, Yukari N.; Shige, Shoichi; Tao, Wei-Kuo; Hirota, Nagio
2010-01-01
The global hydrological cycle is central to the Earth's climate system, with rainfall and the physics of its formation acting as the key links in the cycle. Two-thirds of global rainfall occurs in the Tropics. Associated with this rainfall is a vast amount of heat, which is known as latent heat. It arises mainly due to the phase change of water vapor condensing into liquid droplets; three-fourths of the total heat energy available to the Earth's atmosphere comes from tropical rainfall. In addition, fresh water provided by tropical rainfall and its variability exerts a large impact upon the structure and motions of the upper ocean layer. Three-dimensional distributions of latent heating estimated from Tropical Rainfall Measuring Mission Precipitation Radar (TRMM PR)utilizing the Spectral Latent Heating (SLH) algorithm are analyzed. Mass-weighted and vertically integrated latent heating averaged over the tropical oceans is estimated as approx.72.6 J/s (approx.2.51 mm/day), and that over tropical land is approx.73.7 J/s (approx.2.55 mm/day), for 30degN-30degS. It is shown that non-drizzle precipitation over tropical and subtropical oceans consists of two dominant modes of rainfall systems, deep systems and congestus. A rough estimate of shallow mode contribution against the total heating is about 46.7 % for the average tropical oceans, which is substantially larger than 23.7 % over tropical land. While cumulus congestus heating linearly correlates with the SST, deep mode is dynamically bounded by large-scale subsidence. It is notable that substantial amount of rain, as large as 2.38 mm day-1 in average, is brought from congestus clouds under the large-scale subsiding circulation. It is also notable that even in the region with SST warmer than 28 oC, large-scale subsidence effectively suppresses the deep convection, remaining the heating by congestus clouds. Our results support that the entrainment of mid-to-lower-tropospheric dry air, which accompanies the large-scale subsidence is the major factor suppressing the deep convection. Therefore, representation of the realistic entrainment is very important for proper reproduction of precipitation distribution and resultant large-scale circulation.
Predicting monthly precipitation along coastal Ecuador: ENSO and transfer function models
NASA Astrophysics Data System (ADS)
de Guenni, Lelys B.; García, Mariangel; Muñoz, Ángel G.; Santos, José L.; Cedeño, Alexandra; Perugachi, Carlos; Castillo, José
2017-08-01
It is well known that El Niño-Southern Oscillation (ENSO) modifies precipitation patterns in several parts of the world. One of the most impacted areas is the western coast of South America, where Ecuador is located. El Niño events that occurred in 1982-1983, 1987-1988, 1991-1992, and 1997-1998 produced important positive rainfall anomalies in the coastal zone of Ecuador, bringing considerable damage to livelihoods, agriculture, and infrastructure. Operational climate forecasts in the region provide only seasonal scale (e.g., 3-month averages) information, but during ENSO events it is key for decision-makers to use reliable sub-seasonal scale forecasts, which at the present time are still non-existent in most parts of the world. This study analyzes the potential predictability of coastal Ecuador rainfall at monthly scale. Instead of the discrete approach that considers training models using only particular seasons, continuous (i.e., all available months are used) transfer function models are built using standard ENSO indices to explore rainfall forecast skill along the Ecuadorian coast and Galápagos Islands. The modeling approach considers a large-scale contribution, represented by the role of a sea-surface temperature index, and a local-scale contribution represented here via the use of previous precipitation observed in the same station. The study found that the Niño3 index is the best ENSO predictor of monthly coastal rainfall, with a lagged response varying from 0 months (simultaneous) for Galápagos up to 3 months for the continental locations considered. Model validation indicates that the skill is similar to the one obtained using principal component regression models for the same kind of experiments. It is suggested that the proposed approach could provide skillful rainfall forecasts at monthly scale for up to a few months in advance.
Colson, B.E.
1986-01-01
In 1964 the U.S. Geological Survey in Mississippi expanded the small stream gaging network for collection of rainfall and runoff data to 92 stations. To expedite availability of flood frequency information a rainfall-runoff model using available long-term rainfall data was calibrated to synthesize flood peaks. Results obtained from observed annual peak flow data for 51 sites having 16 yr to 30 yr of annual peaks are compared with the synthetic results. Graphical comparison of the 2, 5, 10, 25, 50, and 100-year flood discharges indicate good agreement. The root mean square error ranges from 27% to 38% and the synthetic record bias from -9% to -18% in comparison with the observed record. The reduced variance in the synthetic results is attributed to use of only four long-term rainfall records and model limitations. The root mean square error and bias is within the accuracy considered to be satisfactory. (Author 's abstract)
The deadliest storm of the 20th century striking Portugal: Flood impacts and atmospheric circulation
NASA Astrophysics Data System (ADS)
Trigo, Ricardo M.; Ramos, Catarina; Pereira, Susana S.; Ramos, Alexandre M.; Zêzere, José L.; Liberato, Margarida L. R.
2016-10-01
The deadliest storm affecting Portugal since, at least, the early 19th century, took place on the 25 and 26 November 1967 causing more than 500 fatalities. This work aims to assess the most relevant aspects of this episode. This includes describing the associated meteorological conditions and key hydrological characterisation such as the level of exceptionality of the observed precipitation at different temporal scales, or the estimation of peak discharge values in 20 small river catchments affected. Additionally, from a human impact perspective we provide a full account of all the main socio-economic impacts, particularly the numbers and location of victims (dead, injured, homeless and evacuated). Based on the sub-daily time series of a representative station, and its Intensity-Duration-Frequency curves, we have found that the exceptionality of this rainfall event is particularly linked to rainfall intensities ranging in duration from 4 to 9 h compatible with return periods of 100-years or more. This range of time scale which are similar to the estimated concentration time values of the hydrographic basins affected by the flash flood event. From a meteorological perspective, this episode was characterised by strong convection at the regional scale, fuelled by high availability of moisture over the Lisbon region associated with a low pressure system centered near Lisbon that favoured the convective instability. Most victims were sleeping or were caught by surprise at home in the small river catchments around the main Lisbon metropolitan area. The majority of people who died or who were severely affected by the flood lived in degraded housing conditions often raised in a clandestine way, occupying flood plains near the stream beds. This level of destruction observed at the time is in stark contrast to what was observed in subsequent episodes of similar amplitude. In particular, since 1967 the Lisbon area, was struck by two comparable intense precipitation events in 1983 and 2008 but generating considerably fewer deaths and evacuated people.
Increased autumn rainfall disrupts predator-prey interactions in fragmented boreal forests.
Terraube, Julien; Villers, Alexandre; Poudré, Léo; Varjonen, Rauno; Korpimäki, Erkki
2017-04-01
There is a pressing need to understand how changing climate interacts with land-use change to affect predator-prey interactions in fragmented landscapes. This is particularly true in boreal ecosystems facing fast climate change and intensification in forestry practices. Here, we investigated the relative influence of autumn climate and habitat quality on the food-storing behaviour of a generalist predator, the pygmy owl, using a unique data set of 15 850 prey items recorded in western Finland over 12 years. Our results highlighted strong effects of autumn climate (number of days with rainfall and with temperature <0 °C) on food-store composition. Increasing frequency of days with precipitation in autumn triggered a decrease in (i) total prey biomass stored, (ii) the number of bank voles (main prey) stored, and (iii) the scaled mass index of pygmy owls. Increasing proportions of old spruce forests strengthened the functional response of owls to variations in vole abundance and were more prone to switch from main prey to alternative prey (passerine birds) depending on local climate conditions. High-quality habitat may allow pygmy owls to buffer negative effects of inclement weather and cyclic variation in vole abundance. Additionally, our results evidenced sex-specific trends in body condition, as the scaled mass index of smaller males increased while the scaled mass index of larger females decreased over the study period, probably due to sex-specific foraging strategies and energy requirements. Long-term temporal stability in local vole abundance refutes the hypothesis of climate-driven change in vole abundance and suggests that rainier autumns could reduce the vulnerability of small mammals to predation by pygmy owls. As small rodents are key prey species for many predators in northern ecosystems, our findings raise concern about the impact of global change on boreal food webs through changes in main prey vulnerability. © 2016 John Wiley & Sons Ltd.
Predictive ability of severe rainfall events over Catalonia for the year 2008
NASA Astrophysics Data System (ADS)
Comellas, A.; Molini, L.; Parodi, A.; Sairouni, A.; Llasat, M. C.; Siccardi, F.
2011-07-01
This paper analyses the predictive ability of quantitative precipitation forecasts (QPF) and the so-called "poor-man" rainfall probabilistic forecasts (RPF). With this aim, the full set of warnings issued by the Meteorological Service of Catalonia (SMC) for potentially-dangerous events due to severe precipitation has been analysed for the year 2008. For each of the 37 warnings, the QPFs obtained from the limited-area model MM5 have been verified against hourly precipitation data provided by the rain gauge network covering Catalonia (NE of Spain), managed by SMC. For a group of five selected case studies, a QPF comparison has been undertaken between the MM5 and COSMO-I7 limited-area models. Although MM5's predictive ability has been examined for these five cases by making use of satellite data, this paper only shows in detail the heavy precipitation event on the 9-10 May 2008. Finally, the "poor-man" rainfall probabilistic forecasts (RPF) issued by SMC at regional scale have also been tested against hourly precipitation observations. Verification results show that for long events (>24 h) MM5 tends to overestimate total precipitation, whereas for short events (≤24 h) the model tends instead to underestimate precipitation. The analysis of the five case studies concludes that most of MM5's QPF errors are mainly triggered by very poor representation of some of its cloud microphysical species, particularly the cloud liquid water and, to a lesser degree, the water vapor. The models' performance comparison demonstrates that MM5 and COSMO-I7 are on the same level of QPF skill, at least for the intense-rainfall events dealt with in the five case studies, whilst the warnings based on RPF issued by SMC have proven fairly correct when tested against hourly observed precipitation for 6-h intervals and at a small region scale. Throughout this study, we have only dealt with (SMC-issued) warning episodes in order to analyse deterministic (MM5 and COSMO-I7) and probabilistic (SMC) rainfall forecasts; therefore we have not taken into account those episodes that might (or might not) have been missed by the official SMC warnings. Therefore, whenever we talk about "misses", it is always in relation to the deterministic LAMs' QPFs.
The physics of rainclouds, what is behind rainfall trends?
NASA Astrophysics Data System (ADS)
Junkermann, Wolfgang; Hacker, Jorg
2017-04-01
In several locations in the world rainfall was significantly declining during the last four decades since about 1970, despite during the same timespan the water vapor availability in the planetary boundary layer (PBL) was increasing by about five percent. Increasing water vapor levels in the PBL are a result of climate change and well in agreement with the observed one degree increase of air temperature over the oceans. Increasing water vapor availability due to an increase in evaporation should lead to a higher turnover rate within the hydrological cycle, which should result either in more frequent or in more intense rainfall. Several regional observations especially along the Australian coastline show a contrary picture. Often rainfall is less frequent and the annual rainfall is declining. Also the number of rainy days goes down. This behavior could be caused by a number of different processes affecting both, the amount of liquid water in the atmosphere and the microphysical properties of clouds. Within the discussions are: -A change in the large scale advection patterns due to global warming, shifting the trajectories of low pressure systems, a slow process that takes several decades. -A change in land use by deforestation leading to lower roughness, higher albedo and lower convective energy. Such a land use change might happen within about one decade (e.g. Western Australia). -A change in aerosol abundance. Addition of anthropogenic cloud condensation nuclei lead instantly to smaller cloud droplets and subsequently to a regional to continental scale redistribution of rainfall within the time scales of cloud lifetime (hours to days). Airborne experiments show that indeed the number of aerosols in several of the respective areas investigated up to now was increasing roughly in time with the observed rainfall changes. However, only in few of the areas the availability of historical aerosol data is sufficient for a more detailed investigation. We show results from experiments in search for physical reasons for a regional scale rainfall decline observed along the Australian coastline. Here the historical database including an airborne survey in the early 70's allows to reconstruct a 'laboratory' notebook an aerosol trends. This makes the area a perfect 'natural laboratory' for such studies on the physical background for climate change trends and to disentangle different climate / hydrological cycle relevant physical processes.
Detecting Climate Variability in Tropical Rainfall
NASA Astrophysics Data System (ADS)
Berg, W.
2004-05-01
A number of satellite and merged satellite/in-situ rainfall products have been developed extending as far back as 1979. While the availability of global rainfall data covering over two decades and encompassing two major El Niño events is a valuable resource for a variety of climate studies, significant differences exist between many of these products. Unfortunately, issues such as availability often determine the use of a product for a given application instead of an understanding of the strengths and weaknesses of the various products. Significant efforts have been made to address the impact of sparse sampling by satellite sensors of variable rainfall processes by merging various satellite and in-situ rainfall products. These combine high spatial and temporal frequency satellite infrared data with higher quality passive microwave observations and rain gauge observations. Combining such an approach with spatial and temporal averaging of the data can reduce the large random errors inherent in satellite rainfall estimates to very small levels. Unfortunately, systematic biases can and do result in artificial climate signals due to the underconstrained nature of the rainfall retrieval problem. Because all satellite retrieval algorithms make assumptions regarding the cloud structure and microphysical properties, systematic changes in these assumed parameters between regions and/or times results in regional and/or temporal biases in the rainfall estimates. These biases tend to be relatively small compared to random errors in the retrieval, however, when random errors are reduced through spatial and temporal averaging for climate applications, they become the dominant source of error. Whether or not such biases impact the results for climate studies is very much dependent on the application. For example, all of the existing satellite rainfall products capture the increased rainfall in the east Pacific associated with El Niño, however, the resulting tropical response to El Niño is substantially smaller due to decreased rainfall in the west Pacific partially canceling increases in the central and east Pacific. These differences are not limited to the long-term merged rainfall products using infrared data, but are also exist in state-of-the-art rainfall retrievals from the active and passive microwave sensors on board the Tropical Rainfall Measuring Mission (TRMM). For example, large differences exist in the response of tropical mean rainfall retrieved from the TRMM microwave imager (TMI) 2A12 algorithm and the precipitation radar (PR) 2A25 algorithm to the 1997/98 El Niño. To assist scientists attempting to wade through the vast array of climate rainfall products currently available, and to help them determine whether systematic biases in these rainfall products impact the conclusions of a given study, we have developed a Climate Rainfall Data Center (CRDC). The CRDC web site (rain.atmos.colostate.edu/CRDC) provides climate researchers information on the various rainfall datasets available as well as access to experts in the field of satellite rainfall retrievals to assist them in the appropriate selection and use of climate rainfall products.
Variability of the raindrop size distribution at small spatial scales
NASA Astrophysics Data System (ADS)
Berne, A.; Jaffrain, J.
2010-12-01
Because of the interactions between atmospheric turbulence and cloud microphysics, the raindrop size distribution (DSD) is strongly variable in space and time. The spatial variability of the DSD at small spatial scales (below a few km) is not well documented and not well understood, mainly because of a lack of adequate measurements at the appropriate resolutions. A network of 16 disdrometers (Parsivels) has been designed and set up over EPFL campus in Lausanne, Switzerland. This network covers a typical operational weather radar pixel of 1x1 km2. The question of the significance of the variability of the DSD at such small scales is relevant for radar remote sensing of rainfall because the DSD is often assumed to be uniform within a radar sample volume and because the Z-R relationships used to convert the measured radar reflectivity Z into rain rate R are usually derived from point measurements. Thanks to the number of disdrometers, it was possible to quantify the spatial variability of the DSD at the radar pixel scale and to show that it can be significant. In this contribution, we show that the variability of the total drop concentration, of the median volume diameter and of the rain rate are significant, taking into account the sampling uncertainty associated with disdrometer measurements. The influence of this variability on the Z-R relationship can be non-negligible. Finally, the spatial structure of the DSD is quantified using a geostatistical tool, the variogram, and indicates high spatial correlation within a radar pixel.
NASA Astrophysics Data System (ADS)
Campo, Lorenzo; Caparrini, Francesca
2013-04-01
The need for accurate distributed hydrological modelling has constantly increased in last years for several purposes: agricultural applications, water resources management, hydrological balance at watershed scale, floods forecast. The main input for the hydrological numerical models is rainfall data that present, at the same time, a large availability of measures (in gauged regions, with respect to other micro-meteorological variables) and the most complex spatial patterns. While also in presence of densely gauged watersheds the spatial interpolation of the rainfall is a non-trivial problem, due to the spatial intermittence of the variable (especially at finer temporal scales), ungauged regions need an alternative source of rainfall data in order to perform the hydrological modelling. Such source can be constituted by the satellite-estimated rainfall fields, with reference to both geostationary and polar-orbit platforms. In this work the rainfall product obtained by the Aqua-AIRS sensor were used in order to assess the feasibility of the use of satellite-based rainfall as input for distributed hydrological modelling. The MOBIDIC (MOdello di BIlancio Distribuito e Continuo) model, developed at the Department of civil and Environmental Engineering of the University of Florence and operationally used by Tuscany Region and Umbria Region for flood prediction and management, was used for the experiments. In particular three experiments were carried on: a) hydrological simulation with the use of rain-gauges data, b) simulation with the use of satellite-only rainfall estimates, c) simulation with the combined use of the two sources of data in order to obtain an optimal estimate of the actual rainfall fields. The domain of the study was the central Italy. Several critical events occurred in the area were analyzed. A discussion of the results is provided.
Evaluation of Rainfall-induced Landslide Potential
NASA Astrophysics Data System (ADS)
Chen, Y. R.; Tsai, K. J.; Chen, J. W.; Chue, Y. S.; Lu, Y. C.; Lin, C. W.
2016-12-01
Due to Taiwan's steep terrain, rainfall-induced landslides often occur and lead to human causalities and properties loss. Taiwan's government has invested huge reconstruction funds to the affected areas. However, after rehabilitation they still face the risk of secondary sediment disasters. Therefore, this study assessed rainfall-induced landslide potential and spatial distribution in some watersheds of Southern Taiwan to configure reasonable assessment process and methods for landslide potential. This study focused on the multi-year multi-phase heavy rainfall events after 2009 Typhoon Morakot and applied the analysis techniques for the classification of satellite images of research region before and after rainfall to obtain surface information and hazard log data. GIS and DEM were employed to obtain the ridge and water system and to explore characteristics of landslide distribution. A multivariate hazards evaluation method was applied to quantitatively analyze the weights of various hazard factors. Furthermore, the interaction between rainfall characteristic, slope disturbance and landslide mechanism was analyzed. The results of image classification show that the values of coefficient of agreement are at medium-high level. The agreement of landslide potential map is at around 80% level compared with historical disaster sites. The relations between landslide potential level, slope disturbance degree, and the ratio of number and area of landslide increment corresponding heavy rainfall events are positive. The ratio of landslide occurrence is proportional to the value of instability index. Moreover, for each rainfall event, the number and scale of secondary landslide sites are much more than those of new landslide sites. The greater the slope land disturbance, the more likely it is that the scale of secondary landslide become greater. The spatial distribution of landslide depends on the interaction of rainfall patterns, slope, and elevation of the research area.
Intrastorm scale rainfall interception dynamics in a mature coniferous forest stand
NASA Astrophysics Data System (ADS)
Iida, Shin'ichi; Levia, Delphis F.; Shimizu, Akira; Shimizu, Takanori; Tamai, Koji; Nobuhiro, Tatsuhiko; Kabeya, Naoki; Noguchi, Shoji; Sawano, Shinji; Araki, Makoto
2017-05-01
Canopy interception of rainfall is an important process in the water balance of forests. The intrastorm dynamics of canopy interception is less well understood than event scale interception. Accordingly, armed with measurements of hourly interception intensity (i) from the field, this study is among the first to examine the differences in canopy interception dynamics between the first and second halves of rainfall events to quantify dynamic storage values for a coniferous forest in Japan. At this site, experimental results demonstrated that: (1) the relationship between interception loss (I) and gross rainfall (GR) at the event scale is better explained by a parabolic curve than a linear relationship, and there is a low correlation between rainfall intensity (gr) and i; (2) the ratio of accumulated i during the first half (IF) to that of gr (GRF) was larger than the second half (IS/GRS), with no significant correlations between potential evaporation during first half (PEF) vs IF or the second half (PES) vs IS; and (3) water storage capacity was similar to the magnitude of maximum I. By emphasizing the comparison between IF and IS, this study concludes that the water storage on tree surface is more important than losses by wet canopy evaporation and splash during rain. This study also adds insights into intrastorm interception dynamics of coniferous forests which are necessary to better model and forecast interception losses.
Convective Systems Over the South China Sea: Cloud-Resolving Model Simulations
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Shie, C.-L.; Johnson, D.; Simpson, J.; Braun, S.; Johnson, R.; Ciesielski, P. E.; Starr, David OC. (Technical Monitor)
2002-01-01
The South China Sea Monsoon Experiment (SCSMEX) was conducted in May-June 1998. One of its major objectives is to better understand the key physical processes for the onset and evolution of the summer monsoon over Southeast Asia and southern China. Multiple observation platforms (e.g., upper-air soundings, Doppler radar, ships, wind profilers, radiometers, etc.) during SCSMEX provided a first attempt at investigating the detailed characteristics of convective storms and air pattern changes associated with monsoons over the South China Sea region. SCSMEX also provided rainfall estimates which allows for comparisons with those obtained from the Tropical Rainfall Measuring Mission (TRMM), a low earth orbit satellite designed to measure rainfall from space. The Goddard Cumulus Ensemble (GCE) model (with 1-km grid size) is used to understand and quantify the precipitation processes associated with the summer monsoon over the South China Sea. This is the first (loud-resolving model used to simulate precipitation processes in this particular region. The GCE-model results captured many of the observed precipitation characteristics because it used a fine grid size. For example, the temporal variation of the simulated rainfall compares quite well to the sounding-estimated rainfall variation. The time and domain-averaged temperature (heating/cooling) and water vapor (drying/ moistening) budgets are in good agreement with observations. The GCE-model-simulated rainfall amount also agrees well with TRMM rainfall data. The results show there is more evaporation from the ocean surface prior to the onset of the monsoon than after the on-et of monsoon when rainfall increases. Forcing due to net radiation (solar heating minus longwave cooling) is responsible for about 25% of the precipitation in SCSMEX The transfer of heat from the ocean into the atmosphere does not contribute significantly to the rainfall in SCSMEX. Model sensitivity tests indicated that total rain production is reduced 17-18% in runs neglecting the ice phase. The SCSMEX results are compared to other GCE-model-simulated weather systems that developed during other field campaigns (i.e., west Pacific warm pool region, eastern Atlantic region and central USA). Large-scale forcing vie temperature and water vapor tendency, is the major energy source for net condensation in the tropical cases. The effects of large-scale cooling exceed that of large-scale moistening in the west pacific warm pool region and eastern Atlantic region. For SCSMEX, however, the effects of large-scale moistening predominate. Net radiation and sensible and latent hc,it fluxes play a much more important role in the central USA.
NASA Astrophysics Data System (ADS)
Adera, S.; Larsen, L.; Levy, M. C.; Thompson, S. E.
2017-12-01
In the Brazilian rainforest-savanna transition zone, deforestation has the potential to significantly affect rainfall by disrupting rainfall recycling, the process by which regional evapotranspiration contributes to regional rainfall. Understanding rainfall recycling in this region is important not only for sustaining Amazon and Cerrado ecosystems, but also for cattle ranching, agriculture, hydropower generation, and drinking water management. Simulations in previous studies suggest complex, scale-dependent interactions between forest cover connectivity and rainfall. For example, the size and distribution of deforested patches has been found to affect rainfall quantity and spatial distribution. Here we take an empirical approach, using the spatial connectivity of rainfall as an indicator of rainfall recycling, to ask: as forest cover connectivity decreased from 1981 - 2015, how did the spatial connectivity of rainfall change in the Brazilian rainforest-savanna transition zone? We use satellite forest cover and rainfall data covering this period of intensive forest cover loss in the region (forest cover from the Hansen Global Forest Change dataset; rainfall from the Climate Hazards Infrared Precipitation with Stations dataset). Rainfall spatial connectivity is quantified using transfer entropy, a metric from information theory, and summarized using network statistics. Networks of connectivity are quantified for paired deforested and non-deforested regions before deforestation (1981-1995) and during/after deforestation (2001-2015). Analyses reveal a decline in spatial connectivity networks of rainfall following deforestation.
A simple stochastic rainstorm generator for simulating spatially and temporally varying rainfall
NASA Astrophysics Data System (ADS)
Singer, M. B.; Michaelides, K.; Nichols, M.; Nearing, M. A.
2016-12-01
In semi-arid to arid drainage basins, rainstorms often control both water supply and flood risk to marginal communities of people. They also govern the availability of water to vegetation and other ecological communities, as well as spatial patterns of sediment, nutrient, and contaminant transport and deposition on local to basin scales. All of these landscape responses are sensitive to changes in climate that are projected to occur throughout western North America. Thus, it is important to improve characterization of rainstorms in a manner that enables statistical assessment of rainfall at spatial scales below that of existing gauging networks and the prediction of plausible manifestations of climate change. Here we present a simple, stochastic rainstorm generator that was created using data from a rich and dense network of rain gauges at the Walnut Gulch Experimental Watershed (WGEW) in SE Arizona, but which is applicable anywhere. We describe our methods for assembling pdfs of relevant rainstorm characteristics including total annual rainfall, storm area, storm center location, and storm duration. We also generate five fitted intensity-duration curves and apply a spatial rainfall gradient to generate precipitation at spatial scales below gauge spacing. The model then runs by Monte Carlo simulation in which a total annual rainfall is selected before we generate rainstorms until the annual precipitation total is reached. The procedure continues for decadal simulations. Thus, we keep track of the hydrologic impact of individual storms and the integral of precipitation over multiple decades. We first test the model using ensemble predictions until we reach statistical similarity to the input data from WGEW. We then employ the model to assess decadal precipitation under simulations of climate change in which we separately vary the distribution of total annual rainfall (trend in moisture) and the intensity-duration curves used for simulation (trends in storminess). We demonstrate the model output through spatial maps of rainfall and through statistical comparisons of relevant parameters and distributions. Finally, discuss how the model can be used to understand basin-scale hydrology in terms of soil moisture, runoff, and erosion.
Rainfall-runoff data from small watersheds in Colorado, October 1974 through September 1977
Cochran, Betty J.; Hodges, H.E.; Livingston, R.K.; Jarret, R.D.
1979-01-01
Rainfall-runoff data from small watersheds in Colorado are being collected and analyzed for the purpose of defining the flood characteristics of these and other similar areas. Data collected from October 1974 through September 1977 at a total of 18 urban stations, 10 Denver Federal Center stations, and 48 rural (or highway) stations are tabulated at 5-minute time intervals. Additional information presented includes station descriptions and methods of data collection and analysis. (Kosco-USGS)
NASA Astrophysics Data System (ADS)
Bedford, D.
2012-12-01
We studied the effects of small-scale roughness on overland flow/runoff and the spatial pattern of infiltration. Our semi-arid sites include a grassland and shrubland in Central New Mexico and a shrubland in the Eastern Mojave Desert. Vegetation exerts strong controls on small-scale surface roughness in the form of plant mounds and other microtopography such as depressions and rills. We quantified the effects of densely measured soil surface heterogeneity using model simulations of runoff and infiltration. Microtopographic roughness associated with vegetation patterns, on the scale of mm-cm's in height, has a larger effect on runoff and infiltration than spatially correlated saturated conductivity. The magnitude and pattern of the effect of roughness largely depends on the vegetation and landform type, and rainfall depth and intensity. In all cases, runoff and infiltration amount and patterns were most strongly affected by depression storage. In the grassland we studied in central New Mexico, soil surface roughness had a large effect on runoff and infiltration where vegetation mounds coalesced, forming large storage volumes that require filling and overtopping in order for overland flow to concentrate into runoff. Total discharge over rough surfaces was reduced 100-200% compared to simulations in which no surface roughness was accounted for. For shrublands, total discharge was reduced 30-40% by microtopography on gently sloping alluvial fans and only 10-20% on steep hillslopes. This difference is largely due to the lack of storage elements on steep slopes. For our sites, we found that overland flow can increase infiltration by up to 2.5 times the total rainfall by filling depressions. The redistribution of water via overland flow can affect up to 20% of an area but varies with vegetation type and landform. This infiltration augmentation by overland flow tends to occur near the edges of vegetation canopies where overland flow depths are deep and infiltration rates are moderate. Infiltration augmentation is greatest in microtopographic depressions and flow threads. These results show that some vegetation-landform settings are efficient at trapping and concentrating the primary limiting resource, and demonstrate the importance of micro-scale soil characteristics for the ecohydrologic function of semi-arid environments. Since other essential attributes for plant ecosystems, such as nutrients, likely co-vary with water availability, further research is needed to elucidate ecosystem dynamics that may lead to self-organized behavior and determine thresholds for ecosystem stability.
NASA Astrophysics Data System (ADS)
Barros, A. P.; Prat, O. P.; Sun, X.; Shrestha, P.; Miller, D.
2009-04-01
The classic conceptual model of orographic rainfall depicts strong stationary horizontal gradients in rainfall accumulations and landcover contrasts across topographic divides (i.e. the rainshadow) at the broad scale of mountain ranges, or isolated orographic features. Whereas this model is sufficient to fingerprint the land-modulation of precipitation at the macroscale in climate studies, and can be useful to force geological models of land evolution for example, it fails to describe the active 4D space-time gradients that are critical at the fundamental scale of mountain hydrometeorology and hydrology, that is the headwater catchment. That is, the scale at which flash-floods are generated and landslides are triggered. Our work surveying the spatial and temporal habits of clouds and rainfall for some of the world's major mountain ranges from remotely-sensed data shows a close alignment of spatial scaling behavior with landform down to the mountain fold scale, that is the ridge-valley. Likewise, we find that diurnal and seasonal cycles are organized and constrained by topography from the macro- to the meso- to the alpha-scale of individual basins varying with synoptic weather conditions. At the catchment scale, the diurnal cycle exhibits an oscillatory behavior with storm features moving up and down from the ridge crests to the valley floor and back and forth from head to mouth along the valley with strong variations in rainfall intensity and duration. Direct observations to provide quantitative estimates of precipitation at this scale are beyond the capability of satellite-based observations present and anticipated in the next 10-20 years. This limitation can be addressed by assimilating the space-time modes of variability of rainfall into satellite-observations at coarser scale using multiscale blending algorithms. The challenge is to characterize the modes of space-time variability of precipitation in a systematic, and quantitative fashion that can be generalized. It requires understanding the physical controls that govern the diurnal cycle and how these physical controls translate into spatial and temporal variability of dynamics and microphysics of precipitation in headwater catchments, and especially in the context of extreme events for natural hazards assessments. Toward this goal, we have initiated a sequence of number of intense observing period (IOP) campaigns in the Great Smoky Mountains National Park using radiosondes, tethersondes, microrain radars, and a high resolution raingauge network that for the first time monitors rainfall systematically along ridges in the Appalachians. Along with field observations, a high-resolution coupled model has been implemented to diagnose the evolution of the 4D structure of regional circulations and associated precipitation for IOP conditions and for reconstructing historical extremes associated with the interaction of tropical cyclones with the mountains. A synthesis of data analysis and model simulations will be presented.
2015-01-01
A proxy rainfall record for northeastern South Africa based on carbon isotope analysis of four baobab (Adansonia digitata L.) trees shows centennial and decadal scale variability over the last 1,000 years. The record is in good agreement with a 200-year tree ring record from Zimbabwe, and it indicates the existence of a rainfall dipole between the summer and winter rainfall areas of South Africa. The wettest period was c. AD 1075 in the Medieval Warm Period, and the driest periods were c. AD 1635, c. AD 1695 and c. AD1805 during the Little Ice Age. Decadal-scale variability suggests that the rainfall forcing mechanisms are a complex interaction between proximal and distal factors. Periods of higher rainfall are significantly associated with lower sea-surface temperatures in the Agulhas Current core region and a negative Dipole Moment Index in the Indian Ocean. The correlation between rainfall and the El Niño/Southern Oscillation Index is non-static. Wetter conditions are associated with predominantly El Niño conditions over most of the record, but since about AD 1970 this relationship inverted and wet conditions are currently associated with la Nina conditions. The effect of both proximal and distal oceanic influences are insufficient to explain the rainfall regime shift between the Medieval Warm Period and the Little Ice Age, and the evidence suggests that this was the result of a northward shift of the subtropical westerlies rather than a southward shift of the Intertropical Convergence Zone. PMID:25970402
Woodborne, Stephan; Hall, Grant; Robertson, Iain; Patrut, Adrian; Rouault, Mathieu; Loader, Neil J; Hofmeyr, Michele
2015-01-01
A proxy rainfall record for northeastern South Africa based on carbon isotope analysis of four baobab (Adansonia digitata L.) trees shows centennial and decadal scale variability over the last 1,000 years. The record is in good agreement with a 200-year tree ring record from Zimbabwe, and it indicates the existence of a rainfall dipole between the summer and winter rainfall areas of South Africa. The wettest period was c. AD 1075 in the Medieval Warm Period, and the driest periods were c. AD 1635, c. AD 1695 and c. AD1805 during the Little Ice Age. Decadal-scale variability suggests that the rainfall forcing mechanisms are a complex interaction between proximal and distal factors. Periods of higher rainfall are significantly associated with lower sea-surface temperatures in the Agulhas Current core region and a negative Dipole Moment Index in the Indian Ocean. The correlation between rainfall and the El Niño/Southern Oscillation Index is non-static. Wetter conditions are associated with predominantly El Niño conditions over most of the record, but since about AD 1970 this relationship inverted and wet conditions are currently associated with la Nina conditions. The effect of both proximal and distal oceanic influences are insufficient to explain the rainfall regime shift between the Medieval Warm Period and the Little Ice Age, and the evidence suggests that this was the result of a northward shift of the subtropical westerlies rather than a southward shift of the Intertropical Convergence Zone.
Validation of satellite daily rainfall estimates in complex terrain of Bali Island, Indonesia
NASA Astrophysics Data System (ADS)
Rahmawati, Novi; Lubczynski, Maciek W.
2017-11-01
Satellite rainfall products have different performances in different geographic regions under different physical and climatological conditions. In this study, the objective was to select the most reliable and accurate satellite rainfall products for specific, environmental conditions of Bali Island. The performances of four spatio-temporal satellite rainfall products, i.e., CMORPH25, CMORPH8, TRMM, and PERSIANN, were evaluated at the island, zonation (applying elevation and climatology as constraints), and pixel scales, using (i) descriptive statistics and (ii) categorical statistics, including bias decomposition. The results showed that all the satellite products had low accuracy because of spatial scale effect, daily resolution and the island complexity. That accuracy was relatively lower in (i) dry seasons and dry climatic zones than in wet seasons and wet climatic zones; (ii) pixels jointly covered by sea and mountainous land than in pixels covered by land or by sea only; and (iii) topographically diverse than uniform terrains. CMORPH25, CMORPH8, and TRMM underestimated and PERSIANN overestimated rainfall when comparing them to gauged rain. The CMORPH25 had relatively the best performance and the PERSIANN had the worst performance in the Bali Island. The CMORPH25 had the lowest statistical errors, the lowest miss, and the highest hit rainfall events; it also had the lowest miss rainfall bias and was relatively the most accurate in detecting, frequent in Bali, ≤ 20 mm day-1 rain events. Lastly, the CMORPH25 coarse grid better represented rainfall events from coastal to inlands areas than other satellite products, including finer grid CMORPH8.
Monsoon climate response in Indian teak (Tectona grandis L.f.) along a transect from coast to inland
NASA Astrophysics Data System (ADS)
Sengupta, Saikat; Borgaonkar, Hemant; Joy, Reji Mariya; Ram, Somaru
2017-11-01
Indian monsoon (June-September) and post monsoon (October-November) rainfall show a distinct trend from coast to inland primarily due to moisture availability. However, the response of this synoptic-scale variation of rainfall amount to annual ring growth of Indian teak has not been studied systematically yet. The study is important as (1) ring width of Indian teak is considered as a reliable proxy for studying monsoon climate variability in multi-centennial time scale and (2) observed meteorological data show systematic changes in rainfall variation from coast to inland since last three decades. Towards this, we present here tree-ring width data from two locations—Thatibanda (1747-1979) and Nagzira (1728-2000) and use similar published data from two other locations—Allapalli (1866-1897) and Edugurapalli (1827-2000). The locations fall along a southeast northwest transect from south east Indian coast to inland. Monthly mean data from nearest observatories show an increasing trend in monsoon rainfall and a pronounced decreasing trend in post monsoon rainfall towards inland. Ring width data show moderately positive response to monsoon rainfall and negative response to summer (March-May) temperature for all stations suggesting moisture deficit in hot summer and intense precipitation in monsoon affect ring growth pattern in different ways. Ring width indices also exhibit significantly positive response with post monsoon rainfall at coastal location. The response gradually reduces towards inland. This preliminary study, thus, suggests that Indian teak has a potential to capture signals of the synoptic variation of post monsoon rainfall from coast to inland.
Shafique, Muhammad; Kim, Reeho; Kyung-Ho, Kwon
2018-01-01
This field study elaborates the role of grass swale in the management of stormwater in an urban parking lot. Grass swale was constructed by using different vegetations and local soil media in the parking lot of Mapu-gu Seoul, Korea. In this study, rainfall runoff was first retained in soil and the vegetation layers of the grass swale, and then infiltrated rainwater was collected with the help of underground perforated pipe, and passed to an underground storage trench. In this way, grass swale detained a large amount of rainwater for a longer period of time and delayed peak discharge. In this field study, various real storm events were monitored and the research results were analyzed to evaluate the performance of grass swale for managing rainfall runoff in an urban area. From the analysis of field experiments, grass swale showed the significant rainfall runoff retention in different rain events. Grass swale markedly reduced total rainfall runoff volume and peak flow during the small storm events of intensity about 30 mm/h. From the analysis, on average rainfall runoff retention from the grass swale was found around 40 to 75% during the various small rain events. From the results, we can say that grass swale is a stormwater mitigation practice which can help avoid flash flooding problems in urban areas. PMID:29547567
Shafique, Muhammad; Kim, Reeho; Kyung-Ho, Kwon
2018-03-16
This field study elaborates the role of grass swale in the management of stormwater in an urban parking lot. Grass swale was constructed by using different vegetations and local soil media in the parking lot of Mapu-gu Seoul, Korea. In this study, rainfall runoff was first retained in soil and the vegetation layers of the grass swale, and then infiltrated rainwater was collected with the help of underground perforated pipe, and passed to an underground storage trench. In this way, grass swale detained a large amount of rainwater for a longer period of time and delayed peak discharge. In this field study, various real storm events were monitored and the research results were analyzed to evaluate the performance of grass swale for managing rainfall runoff in an urban area. From the analysis of field experiments, grass swale showed the significant rainfall runoff retention in different rain events. Grass swale markedly reduced total rainfall runoff volume and peak flow during the small storm events of intensity about 30 mm/h. From the analysis, on average rainfall runoff retention from the grass swale was found around 40 to 75% during the various small rain events. From the results, we can say that grass swale is a stormwater mitigation practice which can help avoid flash flooding problems in urban areas.
NASA Astrophysics Data System (ADS)
Alves de Souza, Bianca; da Silva Rocha Paz, Igor; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel
2016-04-01
The complexity of urban hydrology results both from that of urban systems and the extreme rainfall variability. The latter can display strongly localised rain cells that can be extremely damaging when hitting vulnerable parts of urban systems. This paper investigates this complexity on a semi-urban sub-catchment - located in Massy (South of Paris, France) - of the Bievre river, which is known for its frequent flashfloods. Advanced geo-processing techniques were used to find the ideal pixel size for this 6.326km2 basin. C-band and X-band radar data are multifractally downscaled at various resolutions and input to the fully distributed hydrological model Multi-Hydro. The latter has been developed at Ecole des Ponts ParisTech. It integrates validated modules dealing with surface flow, saturated and unsaturated surface flow, and sewer flow. The C-band radar is located in Trappes, approx. 21km East of the catchment, is operated by Méteo-France and has a resolution of 1km x 1km x 5min. The X-band radar operated by Ecole des Ponts Paris Tech on its campus has a resolution of 125m x 125m x 3.4min. The performed multifractal downscaling enables both the generation of large ensemble realizations and easy change of resolution (e.g. down to 10 m in the present study). This in turn allows a detailed analysis of the impacts of small scale variability and the required resolution to obtain accurate simulations, therefore predictions. This will be shown on two rainy episodes over the chosen sub-catchment of the Bievre river.
Accounting for Rainfall Spatial Variability in Prediction of Flash Floods
NASA Astrophysics Data System (ADS)
Saharia, M.; Kirstetter, P. E.; Gourley, J. J.; Hong, Y.; Vergara, H. J.
2016-12-01
Flash floods are a particularly damaging natural hazard worldwide in terms of both fatalities and property damage. In the United States, the lack of a comprehensive database that catalogues information related to flash flood timing, location, causative rainfall, and basin geomorphology has hindered broad characterization studies. First a representative and long archive of more than 20,000 flooding events during 2002-2011 is used to analyze the spatial and temporal variability of flash floods. We also derive large number of spatially distributed geomorphological and climatological parameters such as basin area, mean annual precipitation, basin slope etc. to identify static basin characteristics that influence flood response. For the same period, the National Severe Storms Laboratory (NSSL) has produced a decadal archive of Multi-Radar/Multi-Sensor (MRMS) radar-only precipitation rates at 1-km spatial resolution with 5-min temporal resolution. This provides an unprecedented opportunity to analyze the impact of event-level precipitation variability on flooding using a big data approach. To analyze the impact of sub-basin scale rainfall spatial variability on flooding, certain indices such as the first and second scaled moment of rainfall, horizontal gap, vertical gap etc. are computed from the MRMS dataset. Finally, flooding characteristics such as rise time, lag time, and peak discharge are linked to derived geomorphologic, climatologic, and rainfall indices to identify basin characteristics that drive flash floods. Next the model is used to predict flash flooding characteristics all over the continental U.S., specifically over regions poorly covered by hydrological observations. So far studies involving rainfall variability indices have only been performed on a case study basis, and a large scale approach is expected to provide a deeper insight into how sub-basin scale precipitation variability affects flooding. Finally, these findings are validated using the National Weather Service storm reports and a historical flood fatalities database. This analysis framework will serve as a baseline for evaluating distributed hydrologic model simulations such as the Flooded Locations And Simulated Hydrographs Project (FLASH) (http://flash.ou.edu).
Accounting for rainfall spatial variability in the prediction of flash floods
NASA Astrophysics Data System (ADS)
Saharia, Manabendra; Kirstetter, Pierre-Emmanuel; Gourley, Jonathan J.; Hong, Yang; Vergara, Humberto; Flamig, Zachary L.
2017-04-01
Flash floods are a particularly damaging natural hazard worldwide in terms of both fatalities and property damage. In the United States, the lack of a comprehensive database that catalogues information related to flash flood timing, location, causative rainfall, and basin geomorphology has hindered broad characterization studies. First a representative and long archive of more than 15,000 flooding events during 2002-2011 is used to analyze the spatial and temporal variability of flash floods. We also derive large number of spatially distributed geomorphological and climatological parameters such as basin area, mean annual precipitation, basin slope etc. to identify static basin characteristics that influence flood response. For the same period, the National Severe Storms Laboratory (NSSL) has produced a decadal archive of Multi-Radar/Multi-Sensor (MRMS) radar-only precipitation rates at 1-km spatial resolution with 5-min temporal resolution. This provides an unprecedented opportunity to analyze the impact of event-level precipitation variability on flooding using a big data approach. To analyze the impact of sub-basin scale rainfall spatial variability on flooding, certain indices such as the first and second scaled moment of rainfall, horizontal gap, vertical gap etc. are computed from the MRMS dataset. Finally, flooding characteristics such as rise time, lag time, and peak discharge are linked to derived geomorphologic, climatologic, and rainfall indices to identify basin characteristics that drive flash floods. The database has been subjected to rigorous quality control by accounting for radar beam height and percentage snow in basins. So far studies involving rainfall variability indices have only been performed on a case study basis, and a large scale approach is expected to provide a deeper insight into how sub-basin scale precipitation variability affects flooding. Finally, these findings are validated using the National Weather Service storm reports and a historical flood fatalities database. This analysis framework will serve as a baseline for evaluating distributed hydrologic model simulations such as the Flooded Locations And Simulated Hydrographs Project (FLASH) (http://flash.ou.edu).
Scaling Linguistic Characterization of Precipitation Variability
NASA Astrophysics Data System (ADS)
Primo, C.; Gutierrez, J. M.
2003-04-01
Rainfall variability is influenced by changes in the aggregation of daily rainfall. This problem is of great importance for hydrological, agricultural and ecological applications. Rainfall averages, or accumulations, are widely used as standard climatic parameters. However different aggregation schemes may lead to the same average or accumulated values. In this paper we present a fractal method to characterize different aggregation schemes. The method provides scaling exponents characterizing weekly or monthly rainfall patterns for a given station. To this aim, we establish an analogy with linguistic analysis, considering precipitation as a discrete variable (e.g., rain, no rain). Each weekly, or monthly, symbolic precipitation sequence of observed precipitation is then considered as a "word" (in this case, a binary word) which defines a specific weekly rainfall pattern. Thus, each site defines a "language" characterized by the words observed in that site during a period representative of the climatology. Then, the more variable the observed weekly precipitation sequences, the more complex the obtained language. To characterize these languages, we first applied the Zipf's method obtaining scaling histograms of rank ordered frequencies. However, to obtain significant exponents, the scaling must be maintained some orders of magnitude, requiring long sequences of daily precipitation which are not available at particular stations. Thus this analysis is not suitable for applications involving particular stations (such as regionalization). Then, we introduce an alternative fractal method applicable to data from local stations. The so-called Chaos-Game method uses Iterated Function Systems (IFS) for graphically representing rainfall languages, in a way that complex languages define complex graphical patterns. The box-counting dimension and the entropy of the resulting patterns are used as linguistic parameters to quantitatively characterize the complexity of the patterns. We illustrate the high climatological discrimination power of the linguistic parameters in the Iberian peninsula, when compared with other standard techniques (such as seasonal mean accumulated precipitation). As an example, standard and linguistic parameters are used as inputs for a clustering regionalization method, comparing the resulting clusters.
Conceptual modelling of E. coli in urban stormwater drains, creeks and rivers
NASA Astrophysics Data System (ADS)
Jovanovic, Dusan; Hathaway, Jon; Coleman, Rhys; Deletic, Ana; McCarthy, David T.
2017-12-01
Accurate estimation of faecal microorganism levels in water systems, such as stormwater drains, creeks and rivers, is needed for appropriate assessment of impacts on receiving water bodies and the risks to human health. The underlying hypothesis for this work is that a single conceptual model (the MicroOrganism Prediction in Urban Stormwater model - i.e. MOPUS) can adequately simulate microbial dynamics over a variety of water systems and wide range of scales; something which has not been previously tested. Additionally, the application of radar precipitation data for improvement of the model performance at these scales via more accurate areal averaged rainfall intensities was tested. Six comprehensive Escherichia coli (E. coli) datasets collected from five catchments in south-eastern Australia and one catchment in Raleigh, USA, were used to calibrate the model. The MOPUS rainfall-runoff model performed well at all scales (Nash-Sutcliffe E for instantaneous flow rates between 0.70 and 0.93). Sensitivity analysis showed that wet weather urban stormwater flows can be modelled with only three of the five rainfall runoff model parameters: routing coefficient (K), effective imperviousness (IMP) and time of concentration (TOC). The model's performance for representing instantaneous E. coli fluctuations ranged from 0.17 to 0.45 in catchments drained via pipe or open creek, and was the highest for a large riverine catchment (0.64); performing similarly, if not better, than other microbial models in literature. The model could also capture the variability in event mean concentrations (E = 0.17-0.57) and event loads (E = 0.32-0.97) at all scales. Application of weather radar-derived rainfall inputs caused lower overall performance compared to using gauged rainfall inputs in representing both flow and E. coli levels in urban drain catchments, with the performance improving with increasing catchment size and being comparable to the models that use gauged rainfall inputs at the large riverine catchment. These results demonstrate the potential of the MOPUS model and its ability to be applied to a wide range of catchment scales, including large riverine systems.
NASA Astrophysics Data System (ADS)
Velasquez, N.; Ochoa, A.; Castillo, S.; Hoyos Ortiz, C. D.
2017-12-01
The skill of river discharge simulation using hydrological models strongly depends on the quality and spatio-temporal representativeness of precipitation during storm events. All precipitation measurement strategies have their own strengths and weaknesses that translate into discharge simulation uncertainties. Distributed hydrological models are based on evolving rainfall fields in the same time scale as the hydrological simulation. In general, rainfall measurements from a dense and well maintained rain gauge network provide a very good estimation of the total volume for each rainfall event, however, the spatial structure relies on interpolation strategies introducing considerable uncertainty in the simulation process. On the other hand, rainfall retrievals from radar reflectivity achieve a better spatial structure representation but with higher uncertainty in the surface precipitation intensity and volume depending on the vertical rainfall characteristics and radar scan strategy. To assess the impact of both rainfall measurement methodologies on hydrological simulations, and in particular the effects of the rainfall spatio-temporal variability, a numerical modeling experiment is proposed including the use of a novel QPE (Quantitative Precipitation Estimation) method based on disdrometer data in order to estimate surface rainfall from radar reflectivity. The experiment is based on the simulation of 84 storms, the hydrological simulations are carried out using radar QPE and two different interpolation methods (IDW and TIN), and the assessment of simulated peak flow. Results show significant rainfall differences between radar QPE and the interpolated fields, evidencing a poor representation of storms in the interpolated fields, which tend to miss the precise location of the intense precipitation cores, and to artificially generate rainfall in some areas of the catchment. Regarding streamflow modelling, the potential improvement achieved by using radar QPE depends on the density of the rain gauge network and its distribution relative to the precipitation events. The results for the 84 storms show a better model skill using radar QPE than the interpolated fields. Results using interpolated fields are highly affected by the dominant rainfall type and the basin scale.
NASA Astrophysics Data System (ADS)
Nossent, Jiri; Pereira, Fernando; Bauwens, Willy
2015-04-01
Precipitation is one of the key inputs for hydrological models. As long as the values of the hydrological model parameters are fixed, a variation of the rainfall input is expected to induce a change in the model output. Given the increased awareness of uncertainty on rainfall records, it becomes more important to understand the impact of this input - output dynamic. Yet, modellers often still have the intention to mimic the observed flow, whatever the deviation of the employed records from the actual rainfall might be, by recklessly adapting the model parameter values. But is it actually possible to vary the model parameter values in such a way that a certain (observed) model output can be generated based on inaccurate rainfall inputs? Thus, how important is the rainfall uncertainty for the model output with respect to the model parameter importance? To address this question, we apply the Sobol' sensitivity analysis method to assess and compare the importance of the rainfall uncertainty and the model parameters on the output of the hydrological model. In order to be able to treat the regular model parameters and input uncertainty in the same way, and to allow a comparison of their influence, a possible approach is to represent the rainfall uncertainty by a parameter. To tackle the latter issue, we apply so called rainfall multipliers on hydrological independent storm events, as a probabilistic parameter representation of the possible rainfall variation. As available rainfall records are very often point measurements at a discrete time step (hourly, daily, monthly,…), they contain uncertainty due to a latent lack of spatial and temporal variability. The influence of the latter variability can also be different for hydrological models with different spatial and temporal scale. Therefore, we perform the sensitivity analyses on a semi-distributed model (SWAT) and a lumped model (NAM). The assessment and comparison of the importance of the rainfall uncertainty and the model parameters is achieved by considering different scenarios for the included parameters and the state of the models.
Topographic relationships for design rainfalls over Australia
NASA Astrophysics Data System (ADS)
Johnson, F.; Hutchinson, M. F.; The, C.; Beesley, C.; Green, J.
2016-02-01
Design rainfall statistics are the primary inputs used to assess flood risk across river catchments. These statistics normally take the form of Intensity-Duration-Frequency (IDF) curves that are derived from extreme value probability distributions fitted to observed daily, and sub-daily, rainfall data. The design rainfall relationships are often required for catchments where there are limited rainfall records, particularly catchments in remote areas with high topographic relief and hence some form of interpolation is required to provide estimates in these areas. This paper assesses the topographic dependence of rainfall extremes by using elevation-dependent thin plate smoothing splines to interpolate the mean annual maximum rainfall, for periods from one to seven days, across Australia. The analyses confirm the important impact of topography in explaining the spatial patterns of these extreme rainfall statistics. Continent-wide residual and cross validation statistics are used to demonstrate the 100-fold impact of elevation in relation to horizontal coordinates in explaining the spatial patterns, consistent with previous rainfall scaling studies and observational evidence. The impact of the complexity of the fitted spline surfaces, as defined by the number of knots, and the impact of applying variance stabilising transformations to the data, were also assessed. It was found that a relatively large number of 3570 knots, suitably chosen from 8619 gauge locations, was required to minimise the summary error statistics. Square root and log data transformations were found to deliver marginally superior continent-wide cross validation statistics, in comparison to applying no data transformation, but detailed assessments of residuals in complex high rainfall regions with high topographic relief showed that no data transformation gave superior performance in these regions. These results are consistent with the understanding that in areas with modest topographic relief, as for most of the Australian continent, extreme rainfall is closely aligned with elevation, but in areas with high topographic relief the impacts of topography on rainfall extremes are more complex. The interpolated extreme rainfall statistics, using no data transformation, have been used by the Australian Bureau of Meteorology to produce new IDF data for the Australian continent. The comprehensive methods presented for the evaluation of gridded design rainfall statistics will be useful for similar studies, in particular the importance of balancing the need for a continentally-optimum solution that maintains sufficient definition at the local scale.
Vadose zone process that control landslide initiation and debris flow propagation
NASA Astrophysics Data System (ADS)
Sidle, Roy C.
2015-04-01
Advances in the areas of geotechnical engineering, hydrology, mineralogy, geomorphology, geology, and biology have individually advanced our understanding of factors affecting slope stability; however, the interactions among these processes and attributes as they affect the initiation and propagation of landslides and debris flows are not well understood. Here the importance of interactive vadose zone processes is emphasized related to the mechanisms, initiation, mode, and timing of rainfall-initiated landslides that are triggered by positive pore water accretion, loss of soil suction and increase in overburden weight, and long-term cumulative rain water infiltration. Both large- and small-scale preferential flow pathways can both contribute to and mitigate instability, by respectively concentrating and dispersing subsurface flow. These mechanisms are influenced by soil structure, lithology, landforms, and biota. Conditions conducive to landslide initiation by infiltration versus exfiltration are discussed relative to bedrock structure and joints. The effects of rhizosphere processes on slope stability are examined, including root reinforcement of soil mantles, evapotranspiration, and how root structures affect preferential flow paths. At a larger scale, the nexus between hillslope landslides and in-channel debris flows is examined with emphasis on understanding the timing of debris flows relative to chronic and episodic infilling processes, as well as the episodic nature of large rainfall and related stormflow generation in headwater streams. The hydrogeomorphic processes and conditions that determine whether or not landslides immediately mobilize into debris flows is important for predicting the timing and extent of devastating debris flow runout in steep terrain. Given the spatial footprint of individual landslides, it is necessary to assess vadose zone processes at appropriate scales to ascertain impacts on mass wasting phenomena. Articulating the appropriate level of detail of small-scale vadose zone processes into landslide models is a particular challenge. As such, understanding flow pathways in regoliths susceptible to mass movement is critical, including distinguishing between conditions conducive to vertical recharge of water through relatively homogeneous soil mantles and conditions where preferential flow dominates - either by rapid infiltration and lateral flow through interconnected preferential flow networks or via exfiltration through bedrock fractures. These different hydrologic scenarios have major implications for the occurrence, timing, and mode of slope failures.
Streamflow variation of forest covered catchments
NASA Astrophysics Data System (ADS)
Gribovszki, Z.; Kalicz, P.; Kucsara, M.
2003-04-01
Rainfall concentration and runoff, otherwise rainfall-runoff processes, which cause river water discharge fluctuation, is one of the basic questions of hydrology. Several social-economy demands have a strong connection with small or bigger rivers from the point of view both quantity and quality of the water. Gratification or consideration of these demands is complicated substantially that we have still poor knowledge about our stream-flow regime. Water resources mainly stem from upper watersheds. These upper watersheds are the basis of the water concentration process; therefore we have to improve our knowledge about hydrological processes coming up in these territories. In this article we present runoff regime of two small catchments on the basis of one year data. Both catchments have a similar magnitude 0.6 and 0.9 km^2. We have been analyzed in detail some hydrological elements: features of rainfall, discharge, rainfall induced flooding waves and basic discharge in rainless periods. Variances of these parameters have been analyzed in relation to catchments surface, vegetation coverage and forest management. Result data set well enforce our knowledge about small catchments hydrological processes. On the basis of these fundamentals we can plan more established the management of these lands (forest practices, civil engineering works, and usage of natural water resources).
A new, long-term daily satellite-based rainfall dataset for operational monitoring in Africa
NASA Astrophysics Data System (ADS)
Maidment, Ross I.; Grimes, David; Black, Emily; Tarnavsky, Elena; Young, Matthew; Greatrex, Helen; Allan, Richard P.; Stein, Thorwald; Nkonde, Edson; Senkunda, Samuel; Alcántara, Edgar Misael Uribe
2017-05-01
Rainfall information is essential for many applications in developing countries, and yet, continually updated information at fine temporal and spatial scales is lacking. In Africa, rainfall monitoring is particularly important given the close relationship between climate and livelihoods. To address this information gap, this paper describes two versions (v2.0 and v3.0) of the TAMSAT daily rainfall dataset based on high-resolution thermal-infrared observations, available from 1983 to the present. The datasets are based on the disaggregation of 10-day (v2.0) and 5-day (v3.0) total TAMSAT rainfall estimates to a daily time-step using daily cold cloud duration. This approach provides temporally consistent historic and near-real time daily rainfall information for all of Africa. The estimates have been evaluated using ground-based observations from five countries with contrasting rainfall climates (Mozambique, Niger, Nigeria, Uganda, and Zambia) and compared to other satellite-based rainfall estimates. The results indicate that both versions of the TAMSAT daily estimates reliably detects rainy days, but have less skill in capturing rainfall amount—results that are comparable to the other datasets.
On the dust load and rainfall relationship in South Asia: an analysis from CMIP5
NASA Astrophysics Data System (ADS)
Singh, Charu; Ganguly, Dilip; Dash, S. K.
2018-01-01
This study is aimed at examining the consistency of the relationship between load of dust and rainfall simulated by different climate models and its implication for the Indian summer monsoon system. Monthly mean outputs of 12 climate models, obtained from the archive of the Coupled Model Intercomparison Project phase 5 (CMIP5) for the period 1951-2004, are analyzed to investigate the relationship between dust and rainfall. Comparative analysis of the model simulated precipitation with the India Meteorological Department (IMD) gridded rainfall, CRU TS3.21 and GPCP version 2.2 data sets show significant differences between the spatial patterns of JJAS rainfall as well as annual cycle of rainfall simulated by various models and observations. Similarly, significant inter-model differences are also noted in the simulation of load of dust, nevertheless it is further noted that most of the CMIP5 models are able to capture the major dust sources across the study region. Although the scatter plot analysis and the lead-lag pattern correlation between the dust load and the rainfall show strong relationship between the dust load over distant sources and the rainfall in the South Asian region in individual models, the temporal scale of this association indicates large differences amongst the models. Our results caution that it would be pre-mature to draw any robust conclusions on the time scale of the relationship between dust and the rainfall in the South Asian region based on either CMIP5 results or limited number of previous studies. Hence, we would like to emphasize upon the fact that any conclusions drawn on the relationship between the dust load and the South Asian rainfall using model simulation is highly dependent on the degree of complexity incorporated in those models such as the representation of aerosol life cycle, their interaction with clouds, precipitation and other components of the climate system.
Analysing the origin of rain- and subsurface water in seasonal wetlands of north-central Namibia
NASA Astrophysics Data System (ADS)
Hiyama, Tetsuya; Kanamori, Hironari; Kambatuku, Jack R.; Kotani, Ayumi; Asai, Kazuyoshi; Mizuochi, Hiroki; Fujioka, Yuichiro; Iijima, Morio
2017-03-01
We investigated the origins of rain- and subsurface waters of north-central Namibia’s seasonal wetlands, which are critical to the region’s water and food security. The region includes the southern part of the Cuvelai system seasonal wetlands (CSSWs) of the Cuvelai Basin, a transboundary river basin covering southern Angola and northern Namibia. We analysed stable water isotopes (SWIs) of hydrogen (HDO) and oxygen (H2 18O) in rainwater, surface water and shallow groundwater. Rainwater samples were collected during every rainfall event of the rainy season from October 2013 to April 2014. The isotopic ratios of HDO (δD) and oxygen H2 18O (δ 18O) were analysed in each rainwater sample and then used to derive the annual mean value of (δD, δ 18O) in precipitation weighted by each rainfall volume. Using delta diagrams (plotting δD vs. δ 18O), we showed that the annual mean value was a good indicator for determining the origins of subsurface waters in the CSSWs. To confirm the origins of rainwater and to explain the variations in isotopic ratios, we conducted atmospheric water budget analysis using Tropical Rainfall Measuring Mission (TRMM) multi-satellite precipitation analysis (TMPA) data and ERA-Interim atmospheric reanalysis data. The results showed that around three-fourths of rainwater was derived from recycled water at local-regional scales. Satellite-observed outgoing longwave radiation (OLR) and complementary satellite data from MODerate-resolution Imaging Spectroradiometer (MODIS) and Advanced Microwave Scanning Radiometer (AMSR) series implied that the isotopic ratios in rainwater were affected by evaporation of raindrops falling from convective clouds. Consequently, integrated SWI analysis of rain-, surface and subsurface waters, together with the atmospheric water budget analysis, revealed that shallow groundwater of small wetlands in this region was very likely to be recharged from surface waters originating from local rainfall, which was temporarily pooled in small wetlands. This was also supported by tritium (3H) counting of the current rain- and subsurface waters in the region. We highly recommend that shallow groundwater not be pumped intensively to conserve surface and subsurface waters, both of which are important water resources in the region.
NASA Astrophysics Data System (ADS)
Gires, A.; Tchiguirinskaia, I.; Schertzer, D. J.; Lovejoy, S.
2011-12-01
In large urban areas, storm water management is a challenge with enlarging impervious areas. Many cities have implemented real time control (RTC) of their urban drainage system to either reduce overflow or limit urban contamination. A basic component of RTC is hydraulic/hydrologic model. In this paper we use the multifractal framework to suggest an innovative way to test the sensitivity of such a model to the spatio-temporal variability of its rainfall input. Indeed the rainfall variability is often neglected in urban context, being considered as a non-relevant issue at the scales involve. Our results show that on the contrary the rainfall variability should be taken into account. Universal multifractals (UM) rely on the concept of multiplicative cascade and are a standard tool to analyze and simulate with a reduced number of parameters geophysical processes that are extremely variable over a wide range of scales. This study is conducted on a 3 400 ha urban area located in Seine-Saint-Denis, in the North of Paris (France). We use the operational semi-distributed model that was calibrated by the local authority (Direction Eau et Assainnissement du 93) that is in charge of urban drainage. The rainfall data comes from the C-Band radar of Trappes operated by Météo-France. The rainfall event of February 9th, 2009 was used. A stochastic ensemble approach was implemented to quantify the uncertainty on discharge associated to the rainfall variability occurring at scales smaller than 1 km x 1 km x 5 min that is usually available with C-band radar networks. An analysis of the quantiles of the simulated peak flow showed that the uncertainty exceeds 20 % for upstream links. To evaluate a potential gain from a direct use of the rainfall data available at the resolution of X-band radar, we performed similar analysis of the rainfall fields of the degraded resolution of 9 km x 9 km x 20 min. The results show a clear decrease in uncertainty when the original resolution of C-band radar data is used. This analysis highlights the interest of implementing X-band radars in urban areas. Indeed such radars provide the rainfall data at a hectometric resolution that would enable a better nowcasting and management of storm water. The multifractal properties of the simulated hydrographs were analysed with the help of simulated rainfall fields of resolution 111 m x 111 m x 1 min, lasting 4 hours, and corresponding to a 5 year return period event. On the whole, the discharge exhibits a good scaling behaviour over the range 4 h - 5 min. Both UM parameters tend to be greater for the discharge than for the rainfall. The notion of maximum probable singularity was used to clarify the consequences on the assessment of extremes. It appears that the urban drainage network basically reproduces the extremes, or only slightly damps them, at least in terms of multifractal statistics. The results were obtained with the financial support from the EU FP7 SMARTesT Project and the Chair "Hydrology for Resilient Cities" (sponsored by Veolia) of Ecole des Ponts ParisTech.
Automated canopy estimator (ACE): Enhancing crop modelling and decision making in agriculture
USDA-ARS?s Scientific Manuscript database
The Caribbean agriculture sector is dominated by small holdings, which are overly reliant on rainfall and highly dependent on manual means of optimization. The sector is therefore very vulnerable to the vagaries of climate variability and change, with rainfall variations being of particular concern...
Spatio-temporal analysis of annual rainfall in Crete, Greece
NASA Astrophysics Data System (ADS)
Varouchakis, Emmanouil A.; Corzo, Gerald A.; Karatzas, George P.; Kotsopoulou, Anastasia
2018-03-01
Analysis of rainfall data from the island of Crete, Greece was performed to identify key hydrological years and return periods as well as to analyze the inter-annual behavior of the rainfall variability during the period 1981-2014. The rainfall spatial distribution was also examined in detail to identify vulnerable areas of the island. Data analysis using statistical tools and spectral analysis were applied to investigate and interpret the temporal course of the available rainfall data set. In addition, spatial analysis techniques were applied and compared to determine the rainfall spatial distribution on the island of Crete. The analysis presented that in contrast to Regional Climate Model estimations, rainfall rates have not decreased, while return periods vary depending on seasonality and geographic location. A small but statistical significant increasing trend was detected in the inter-annual rainfall variations as well as a significant rainfall cycle almost every 8 years. In addition, statistically significant correlation of the island's rainfall variability with the North Atlantic Oscillation is identified for the examined period. On the other hand, regression kriging method combining surface elevation as secondary information improved the estimation of the annual rainfall spatial variability on the island of Crete by 70% compared to ordinary kriging. The rainfall spatial and temporal trends on the island of Crete have variable characteristics that depend on the geographical area and on the hydrological period.
Estimating Basin-Scale Water Budgets with SMAP Level 2 Soil Moisture Data
NASA Technical Reports Server (NTRS)
Koster, Randal; Crow, Wade; Reichle, Rolf; Mahanama, Sarith P.
2018-01-01
The SMAP estimates of rainfall and streamflow are not perfect, but they do contain relevant information. At the very least, they should prove useful for constraining, or otherwise contributing to, rainfall and streamflow estimates obtained with more conventional approaches.
NASA Astrophysics Data System (ADS)
D'Onofrio, Donatella; von Hardenberg, Jost; Baudena, Mara
2017-04-01
Savannas occupy about a fifth of the global land surface and store approximately 15% of the terrestrial carbon. They also encompass about 85% of the global land area burnt annually. Along an increasing rainfall gradient, they are the intermediate biome between grassland and forest. Undergoing and predicted increasing temperature and CO2 concentration, modified precipitation regimes, as well as increasing land-use intensity, are expected to induce important shifts in savanna structure and in the distribution of grasslands, savannas and forests. Owing to the large extent and productivity of savanna biomes, these changes could have larger impacts on the global biogeochemical cycle and precipitation than for any other biome, thus influencing the vegetation-climate system. The dynamics of these biomes has been long studied, and the current theory postulates that while arid savannas are observed because of tree-water limitation, and competition with grasses, in mesic conditions savannas persist because a grass-fire feedback exists, which can maintain them as an alternatively stable state to closed forests. This feedback is reinforced by the different responses of savanna and forest tree type. In this context, despite their relevance, grasses and tree types have been studied mostly in small scale ecological studies, while continental analyses focused on total tree cover only. Here we analyze a recent MODIS product including explicitly the non-tree vegetation cover, allowing us to illustrate for the first time at continental scale the importance of grass cover and of tree-fire responses in determining the emergence of the different biomes. We analyze the relationships of woody and herbaceous cover with fire return time (all from MODIS satellite observations), rainfall annual average and seasonality (from TRMM satellite measurements), and we include tree phenology information, based on the ESA Global Land Cover map, also used to exclude areas with large anthropogenic land use. From this analysis we distinctively observe that tropical vegetation dynamics changes along a rainfall gradient more markedly than previously observed, in particular identifying three zones: (i) a dry region, where grasses are dominant and water-limited, and fires are rare; (ii) an intermediate rainfall range, where savanna with grass dominance is the predominant biome, maintained by frequent fires and rainfall seasonality; and (iii) a more humid area, where both savannas and forests can occur, as determined by the grass-fire feedback and the occurrence of different types of trees. The analysis of these important ecological processes can also be applied to the evaluation of Dynamic Global Vegetation Models, that currently have particular difficulties in simulating tropical vegetation.
Observed Land Impacts on Clouds, Water Vapor, and Rainfall at Continental Scales
NASA Technical Reports Server (NTRS)
Jin, Menglin; King, Michael D.
2005-01-01
How do the continents affect large-scale hydrological cycles? How important can one continent be to the climate system? To address these questions, 4-years of National Aeronautics and Space Administration (NASA) Terra Moderate Resolution Imaging Spectroradiometer (MODIS) observations, Tropical Rainfall Measuring Mission (TRMM) observations, and the Global Precipitation Climatology Project (GPCP) global precipitation analysis, were used to assess the land impacts on clouds, rainfall, and water vapor at continental scales. At these scales, the observations illustrate that continents are integrated regions that enhance the seasonality of atmospheric and surface hydrological parameters. Specifically, the continents of Eurasia and North America enhance the seasonality of cloud optical thickness, cirrus fraction, rainfall, and water vapor. Over land, both liquid water and ice cloud effective radii are smaller than over oceans primarily because land has more aerosol particles. In addition, different continents have similar impacts on hydrological variables in terms of seasonality, but differ in magnitude. For example, in winter, North America and Eurasia increase cloud optical thickness to 17.5 and 16, respectively, while in summer, Eurasia has much smaller cloud optical thicknesses than North America. Such different land impacts are determined by each continent s geographical condition, land cover, and land use. These new understandings help further address the land-ocean contrasts on global climate, help validate global climate model simulated land-atmosphere interactions, and help interpret climate change over land.
Doubly stochastic Poisson process models for precipitation at fine time-scales
NASA Astrophysics Data System (ADS)
Ramesh, Nadarajah I.; Onof, Christian; Xie, Dichao
2012-09-01
This paper considers a class of stochastic point process models, based on doubly stochastic Poisson processes, in the modelling of rainfall. We examine the application of this class of models, a neglected alternative to the widely-known Poisson cluster models, in the analysis of fine time-scale rainfall intensity. These models are mainly used to analyse tipping-bucket raingauge data from a single site but an extension to multiple sites is illustrated which reveals the potential of this class of models to study the temporal and spatial variability of precipitation at fine time-scales.
Birkett, Patricia J; Vanak, Abi T; Muggeo, Vito M R; Ferreira, Salamon M; Slotow, Rob
2012-01-01
The identification of temporal thresholds or shifts in animal movement informs ecologists of changes in an animal's behaviour, which contributes to an understanding of species' responses in different environments. In African savannas, rainfall, temperature and primary productivity influence the movements of large herbivores and drive changes at different scales. Here, we developed a novel approach to define seasonal shifts in movement behaviour by examining the movements of a highly mobile herbivore (elephant; Loxodonta africana), in relation to local and regional rainfall patterns. We used speed to determine movement changes of between 8 and 14 GPS-collared elephant cows, grouped into five spatial clusters, in Kruger National Park, South Africa. To detect broad-scale patterns of movement, we ran a three-year daily time-series model for each individual (2007-2009). Piecewise regression models provided the best fit for elephant movement, which exhibited a segmented, waveform pattern over time. Major breakpoints in speed occurred at the end of the dry and wet seasons of each year. During the dry season, female elephant are constrained by limited forage and thus the distances they cover are shorter and less variable. Despite the inter-annual variability of rainfall, speed breakpoints were strongly correlated with both local and regional rainfall breakpoints across all three years. Thus, at a multi-year scale, rainfall patterns significantly affect the movements of elephant. The variability of both speed and rainfall breakpoints across different years highlights the need for an objective definition of seasonal boundaries. By using objective criteria to determine behavioural shifts, we identified a biologically meaningful indicator of major changes in animal behaviour in different years. We recommend the use of such criteria, from an animal's perspective, for delineating seasons or other extrinsic shifts in ecological studies, rather than arbitrarily fixed definitions based on convention or common practice.
Potter, N.J.; Zhang, L.; Milly, P.C.D.; McMahon, T.A.; Jakeman, A.J.
2005-01-01
An important factor controlling catchment‐scale water balance is the seasonal variation of climate. The aim of this study is to investigate the effect of the seasonal distributions of water and energy, and their interactions with the soil moisture store, on mean annual water balance in Australia at catchment scales using a stochastic model of soil moisture balance with seasonally varying forcing. The rainfall regime at 262 catchments around Australia was modeled as a Poisson process with the mean storm arrival rate and the mean storm depth varying throughout the year as cosine curves with annual periods. The soil moisture dynamics were represented by use of a single, finite water store having infinite infiltration capacity, and the potential evapotranspiration rate was modeled as an annual cosine curve. The mean annual water budget was calculated numerically using a Monte Carlo simulation. The model predicted that for a given level of climatic aridity the ratio of mean annual evapotranspiration to rainfall was larger where the potential evapotranspiration and rainfall were in phase, that is, in summer‐dominant rainfall catchments, than where they were out of phase. The observed mean annual evapotranspiration ratios have opposite results. As a result, estimates of mean annual evapotranspiration from the model compared poorly with observational data. Because the inclusion of seasonally varying forcing alone was not sufficient to explain variability in the mean annual water balance, other catchment properties may play a role. Further analysis showed that the water balance was highly sensitive to the catchment‐scale soil moisture capacity. Calibrations of this parameter indicated that infiltration‐excess runoff might be an important process, especially for the summer‐dominant rainfall catchments; most similar studies have shown that modeling of infiltration‐excess runoff is not required at the mean annual timescale.
Attribution of Extreme Rainfall Events in the South of France Using EURO-CORDEX Simulations
NASA Astrophysics Data System (ADS)
Luu, L. N.; Vautard, R.; Yiou, P.
2017-12-01
The Mediterranean region regularly undergoes episodes of intense precipitation in the fall season that exceed 300mm a day. This study focuses on the role of climate change on the dynamics of the events that occur in the South of France. We used an ensemble of 10 EURO-CORDEX model simulations with two horizontal resolutions (EUR-11: 0.11° and EUR-44: 0.44°) for the attribution of extreme rainfall in the fall in the Cevennes mountain range (South of France). The biases of the simulations were corrected with simple scaling adjustment and a quantile correction (CDFt). This produces five datasets including EUR-44 and EUR-11 with and without scaling adjustment and CDFt-EUR-11, on which we test the impact of resolution and bias correction on the extremes. Those datasets, after pooling all of models together, are fitted by a stationary Generalized Extreme Value distribution for several periods to estimate a climate change signal in the tail of distribution of extreme rainfall in the Cévenne region. Those changes are then interpreted by a scaling model that links extreme rainfall with mean and maximum daily temperature. The results show that higher-resolution simulations with bias adjustment provide a robust and confident increase of intensity and likelihood of occurrence of autumn extreme rainfall in the area in current climate in comparison with historical climate. The probability (exceedance probability) of 1-in-1000-year event in historical climate may increase by a factor of 1.8 under current climate with a confident interval of 0.4 to 5.3 following the CDFt bias-adjusted EUR-11. The change of magnitude appears to follow the Clausius-Clapeyron relation that indicates a 7% increase in rainfall per 1oC increase in temperature.
NASA Astrophysics Data System (ADS)
Wang, L.-P.; Ochoa-Rodríguez, S.; Onof, C.; Willems, P.
2015-09-01
Gauge-based radar rainfall adjustment techniques have been widely used to improve the applicability of radar rainfall estimates to large-scale hydrological modelling. However, their use for urban hydrological applications is limited as they were mostly developed based upon Gaussian approximations and therefore tend to smooth off so-called "singularities" (features of a non-Gaussian field) that can be observed in the fine-scale rainfall structure. Overlooking the singularities could be critical, given that their distribution is highly consistent with that of local extreme magnitudes. This deficiency may cause large errors in the subsequent urban hydrological modelling. To address this limitation and improve the applicability of adjustment techniques at urban scales, a method is proposed herein which incorporates a local singularity analysis into existing adjustment techniques and allows the preservation of the singularity structures throughout the adjustment process. In this paper the proposed singularity analysis is incorporated into the Bayesian merging technique and the performance of the resulting singularity-sensitive method is compared with that of the original Bayesian (non singularity-sensitive) technique and the commonly used mean field bias adjustment. This test is conducted using as case study four storm events observed in the Portobello catchment (53 km2) (Edinburgh, UK) during 2011 and for which radar estimates, dense rain gauge and sewer flow records, as well as a recently calibrated urban drainage model were available. The results suggest that, in general, the proposed singularity-sensitive method can effectively preserve the non-normality in local rainfall structure, while retaining the ability of the original adjustment techniques to generate nearly unbiased estimates. Moreover, the ability of the singularity-sensitive technique to preserve the non-normality in rainfall estimates often leads to better reproduction of the urban drainage system's dynamics, particularly of peak runoff flows.
Use of microwave satellite data to study variations in rainfall over the Indian Ocean
NASA Technical Reports Server (NTRS)
Hinton, Barry B.; Martin, David W.; Auvine, Brian; Olson, William S.
1990-01-01
The University of Wisconsin Space Science and Engineering Center mapped rainfall over the Indian Ocean using a newly developed Scanning Multichannel Microwave Radiometer (SMMR) rain-retrieval algorithm. The short-range objective was to characterize the distribution and variability of Indian Ocean rainfall on seasonal and annual scales. In the long-range, the objective is to clarify differences between land and marine regimes of monsoon rain. Researchers developed a semi-empirical algorithm for retrieving Indian Ocean rainfall. Tools for this development have come from radiative transfer and cloud liquid water models. Where possible, ground truth information from available radars was used in development and testing. SMMR rainfalls were also compared with Indian Ocean gauge rainfalls. Final Indian Ocean maps were produced for months, seasons, and years and interpreted in terms of historical analysis over the sub-continent.
Incident rainfall in Rome and its relation to biodeterioration of buildings
NASA Astrophysics Data System (ADS)
Caneva, G.; Gori, E.; Danin, A.
Intensity and distribution of incident rainfall in Rome, and degree of lithobiont cover of building walls, were estimated, and their correlation was discussed. Rainfall and wind data over 10 years for the Rome Meteorological Observatory of Torre Calandrelli (UCEA) were used to calculate the actual hydrocontribution received over walls at various exposures. The biological colonization by lithobionts was evaluated on a sample of 14 buildings in various places of the city, using a phytosociological scale for quantifying their total cover. During all seasons the rainfall shows a significant peak in the south and the southeast exposures, where the highest cover of lithobionts is found. These results show the role of incident rainfall in the climatic conditions of Rome as the main driving factor for the growth of lithobionts on walls where rainfall is their principal source of water.
NASA Technical Reports Server (NTRS)
Bell, Thomas L.; Abdullah, A.; Martin, Russell L.; North, Gerald R.
1990-01-01
Estimates of monthly average rainfall based on satellite observations from a low earth orbit will differ from the true monthly average because the satellite observes a given area only intermittently. This sampling error inherent in satellite monitoring of rainfall would occur even if the satellite instruments could measure rainfall perfectly. The size of this error is estimated for a satellite system being studied at NASA, the Tropical Rainfall Measuring Mission (TRMM). First, the statistical description of rainfall on scales from 1 to 1000 km is examined in detail, based on rainfall data from the Global Atmospheric Research Project Atlantic Tropical Experiment (GATE). A TRMM-like satellite is flown over a two-dimensional time-evolving simulation of rainfall using a stochastic model with statistics tuned to agree with GATE statistics. The distribution of sampling errors found from many months of simulated observations is found to be nearly normal, even though the distribution of area-averaged rainfall is far from normal. For a range of orbits likely to be employed in TRMM, sampling error is found to be less than 10 percent of the mean for rainfall averaged over a 500 x 500 sq km area.
Li, Rui-ling; Zhang, Yong-chun; Liu, Zhuang; Zeng, Yuan; Li, Wei-xin; Zhang, Hong-ling
2010-05-01
To investigate the effect of rainfall on agricultural nonpoint source pollution, watershed scale experiments were conducted to study the characteristics of nutrients in surface runoff under different rainfall intensities from farmlands in gentle slope hilly areas around Taihu Lake. Rainfall intensity significantly affected N and P concentrations in runoff. Rainfall intensity was positively related to TP, PO4(3-) -P and NH4+ -N event mean concentrations(EMC). However, this study have found the EMC of TN and NO3- -N to be positively related to rainfall intensity under light rain and negatively related to rainfall intensity under heavy rain. TN and TP site mean amounts (SMA) in runoff were positively related to rainfall intensity and were 1.91, 311.83, 127.65, 731.69 g/hm2 and 0.04, 7.77, 2.99, 32.02 g/hm2 with rainfall applied under light rain, moderate rain, heavy rain and rainstorm respectively. N in runoff was mainly NO3- -N and NH4+ -N and was primarily in dissolved form from Meilin soils. Dissolved P (DP) was the dominant form of TP under light rain, but particulate P (PP) mass loss increased with the increase of rainfall intensity and to be the dominant form when the rainfall intensity reaches rainstorm. Single relationships were used to describe the dependence of TN and TP mass losses in runoff on rainfall, maximum rainfall intensity, average rainfall intensity and rainfall duration respectively. The results showed a significant positive correlation between TN mass loss and rainfall, maximum rainfall intensity respectively (p < 0.01) and also TP mass loss and rainfall, maximum rainfall intensity respectively (p < 0.01).
NASA Astrophysics Data System (ADS)
Bermúdez, María; Neal, Jeffrey C.; Bates, Paul D.; Coxon, Gemma; Freer, Jim E.; Cea, Luis; Puertas, Jerónimo
2016-04-01
Flood inundation models require appropriate boundary conditions to be specified at the limits of the domain, which commonly consist of upstream flow rate and downstream water level. These data are usually acquired from gauging stations on the river network where measured water levels are converted to discharge via a rating curve. Derived streamflow estimates are therefore subject to uncertainties in this rating curve, including extrapolating beyond the maximum observed ratings magnitude. In addition, the limited number of gauges in reach-scale studies often requires flow to be routed from the nearest upstream gauge to the boundary of the model domain. This introduces additional uncertainty, derived not only from the flow routing method used, but also from the additional lateral rainfall-runoff contributions downstream of the gauging point. Although generally assumed to have a minor impact on discharge in fluvial flood modeling, this local hydrological input may become important in a sparse gauge network or in events with significant local rainfall. In this study, a method to incorporate rating curve uncertainty and the local rainfall-runoff dynamics into the predictions of a reach-scale flood inundation model is proposed. Discharge uncertainty bounds are generated by applying a non-parametric local weighted regression approach to stage-discharge measurements for two gauging stations, while measured rainfall downstream from these locations is cascaded into a hydrological model to quantify additional inflows along the main channel. A regional simplified-physics hydraulic model is then applied to combine these inputs and generate an ensemble of discharge and water elevation time series at the boundaries of a local-scale high complexity hydraulic model. Finally, the effect of these rainfall dynamics and uncertain boundary conditions are evaluated on the local-scale model. Improvements in model performance when incorporating these processes are quantified using observed flood extent data and measured water levels from a 2007 summer flood event on the river Severn. The area of interest is a 7 km reach in which the river passes through the city of Worcester, a low water slope, subcritical reach in which backwater effects are significant. For this domain, the catchment area between flow gauging stations extends over 540 km2. Four hydrological models from the FUSE framework (Framework for Understanding Structural Errors) were set up to simulate the rainfall-runoff process over this area. At this regional scale, a 2-dimensional hydraulic model that solves the local inertial approximation of the shallow water equations was applied to route the flow, whereas the full form of these equations was solved at the local scale to predict the urban flow field. This nested approach hence allows an examination of water fluxes from the catchment to the building scale, while requiring short setup and computational times. An accurate prediction of the magnitude and timing of the flood peak was obtained with the proposed method, in spite of the unusual structure of the rain episode and the complexity of the River Severn system. The findings highlight the importance of estimating boundary condition uncertainty and local rainfall contribution for accurate prediction of river flows and inundation.
NASA Astrophysics Data System (ADS)
Koshimizu, K.; Uchida, T.
2015-12-01
Initial large-scale sediment yield caused by heavy rainfall or major storms have made a strong impression on us. Previous studies focusing on landslide management investigated the initial sediment movement and its mechanism. However, integrated management of catchment-scale sediment movements requires estimating the sediment yield, which is produced by the subsequent expanded landslides due to rainfall, in addition to the initial landslide movement. This study presents a quantitative analysis of expanded landslides by surveying the Shukushubetsu River basin, at the foot of the Hidaka mountain range in central Hokkaido, Japan. This area recorded heavy rainfall in 2003, reaching a maximum daily precipitation of 388 mm. We extracted the expanded landslides from 2003 to 2008 using aerial photographs taken over the river area. In particular, we calculated the probability of expansion for each landslide, the ratio of the landslide area in 2008 as compared with that in 2003, and the amount of the expanded landslide area corresponding to the initial landslide area. As a result, it is estimated 24% about probability of expansion for each landslide. In addition, each expanded landslide area is smaller than the initial landslide area. Furthermore, the amount of each expanded landslide area in 2008 is approximately 7% of their landslide area in 2003. Therefore, the sediment yield from subsequent expanded landslides is equal to or slightly greater than the sediment yield in a typical base flow. Thus, we concluded that the amount of sediment yield from subsequent expanded landslides is lower than that of initial large-scale sediment yield caused by a heavy rainfall in terms of effect on management of catchment-scale sediment movement.
NASA Astrophysics Data System (ADS)
Darma Tarigan, Suria
2016-01-01
Flooding is caused by excessive rainfall flowing downstream as cumulative surface runoff. Flooding event is a result of complex interaction of natural system components such as rainfall events, land use, soil, topography and channel characteristics. Modeling flooding event as a result of interaction of those components is a central theme in watershed management. The model is usually used to test performance of various management practices in flood mitigation. There are various types of management practices for flood mitigation including vegetative and structural management practices. Existing hydrological model such as SWAT and HEC-HMS models have limitation to accommodate discrete management practices such as infiltration well, small farm reservoir, silt pits in its analysis due to the lumped structure of these models. Aim of this research is to use raster spatial analysis functions of Geo-Information System (RGIS-HM) to model flooding event in Ciliwung watershed and to simulate impact of discrete management practices on surface runoff reduction. The model was validated using flooding data event of Ciliwung watershed on 29 January 2004. The hourly hydrograph data and rainfall data were available during period of model validation. The model validation provided good result with Nash-Suthcliff efficiency of 0.8. We also compared the RGIS-HM with Netlogo Hydrological Model (NL-HM). The RGIS-HM has similar capability with NL-HM in simulating discrete management practices in watershed scale.
NASA Astrophysics Data System (ADS)
Fletcher, T. D.; Andrieu, H.; Hamel, P.
2013-01-01
Urban hydrology has evolved to improve the way urban runoff is managed for flood protection, public health and environmental protection. There have been significant recent advances in the measurement and prediction of urban rainfall, with technologies such as radar and microwave networks showing promise. The ability to predict urban hydrology has also evolved, to deliver models suited to the small temporal and spatial scales typical of urban and peri-urban applications. Urban stormwater management increasingly consider the needs of receiving environments as well as those of humans. There is a clear trend towards approaches that attempt to restore pre-development flow-regimes and water quality, with an increasing recognition that restoring a more natural water balance benefits not only the environment, but enhances the liveability of the urban landscape. Once regarded only as a nuisance, stormwater is now increasingly regarded as a resource. Despite the advances, many important challenges in urban hydrology remain. Further research into the spatio-temporal dynamics of urban rainfall is required to improve short-term rainfall prediction. The performance of stormwater technologies in restoring the water balance and in removing emerging priority pollutants remain poorly quantified. All of these challenges are overlaid by the uncertainty of climate change, which imposes a requirement to ensure that stormwater management systems are adaptable and resilient to changes. Urban hydrology will play a critical role in addressing these challenges.
Transient hazard model using radar data for predicting debris flows in Madison County, Virginia
Morrissey, M.M.; Wieczorek, G.F.; Morgan, B.A.
2004-01-01
During the rainstorm of June 27, 1995, roughly 330-750 mm of rain fell within a 16-hour period, initiating floods and over 600 debris flows in a small area (130 km2) of Madison County, VA. We developed a distributed version of Iverson's transient response model for regional slope stability analysis for the Madison County debris flows. This version of the model evaluates pore-pressure head response and factor of safety on a regional scale in areas prone to rainfall-induced shallow (<2-3 m) landslides. These calculations used soil properties of shear strength and hydraulic conductivity from laboratory measurements of soil samples collected from field sites where debris flows initiated. Rainfall data collected by radar every 6 minutes provided a basis for calculating the temporal variation of slope stability during the storm. The results demonstrate that the spatial and temporal variation of the factor of safety correlates with the movement of the storm cell. When the rainstorm was treated as two separate rainfall events and a larger hydraulic conductivity and friction angle than the laboratory values were used, the timing and location of landslides predicted by the model were in closer agreement with eyewitness observations of debris flows. Application of spatially variable initial pre-storm water table depth and soil properties may improve both the spatial and temporal prediction of instability.
NASA Astrophysics Data System (ADS)
Sidle, Roy C.; Ziegler, Alan D.
2017-01-01
The interception and smoothing effect of forest canopies on pulses of incident rainfall and its delivery to the soil has been suggested as a factor in moderating peak pore water pressure in soil mantles, thus reducing the risk of shallow landslides. Here we provide 3 years of rainfall and throughfall data in a tropical secondary dipterocarp forest characterized by few large trees in northern Thailand, along with selected soil moisture dynamics, to address this issue. Throughfall was an estimated 88 % of rainfall, varying from 86 to 90 % in individual years. Data from 167 events demonstrate that canopy interception was only weakly associated (via a nonlinear relationship) with total event rainfall, but not significantly correlated with duration, mean intensity, or antecedent 2-day precipitation (API2). Mean interception during small events (≤ 35 mm) was 17 % (n = 135 events) compared with only 7 % for large events (> 35 mm; n = 32). Examining small temporal intervals within the largest and highest intensity events that would potentially trigger landslides revealed complex patterns of interception. The tropical forest canopy had little smoothing effect on incident rainfall during the largest events. During events with high peak intensities, high wind speeds, and/or moderate-to-high pre-event wetting, measured throughfall was occasionally higher than rainfall during large event peaks, demonstrating limited buffering. However, in events with little wetting and low-to-moderate wind speed, early event rainfall peaks were buffered by the canopy. As rainfall continued during most large events, there was little difference between rainfall and throughfall depths. A comparison of both rainfall and throughfall depths to conservative mean intensity-duration thresholds for landslide initiation revealed that throughfall exceeded the threshold in 75 % of the events in which rainfall exceeded the threshold for both wet and dry conditions. Throughfall intensity for the 11 largest events (rainfall = 65-116 mm) plotted near or above the intensity-duration threshold for landslide initiation during wet conditions; 5 of the events were near or above the threshold for dry conditions. Soil moisture responses during large events were heavily and progressively buffered at depths of 1 to 2 m, indicating that the timescale of any short-term smoothing of peak rainfall inputs (i.e., ≤ 1 h) has little influence on peak pore water pressure at depths where landslides would initiate in this area. Given these findings, we conclude that canopy interception would have little effect on mitigating shallow landslide initiation during the types of monsoon rainfall conditions in this and similar tropical secondary forest sites.
Measurements of effective non-rainfall in soil with the use of time-domain reflectometry technique
NASA Astrophysics Data System (ADS)
Nakonieczna, Anna; Kafarski, Marcin; Wilczek, Andrzej; Szypłowska, Agnieszka; Skierucha, Wojciech
2014-05-01
The non-rainfall vectors are fog, dew, hoarfrost and vapour adsorption directly from the atmosphere. The measurements of the amount of water supplied to the soil due to their temporary existence are essential, because in dry areas such water uptake can exceed that of rainfall. Although several devices and methods were proposed for estimating the effective non-rainfall input into the soil, the measurement standard has not yet been established. This is mainly due to obstacles in measuring small water additions to the medium, problems with taking readings in actual soil samples and atmospheric disturbances during their course in natural environment. There still exists the need for automated devices capable of measuring water deposition on real-world soil surfaces, whose resolution is high enough to measure the non-rainfall intensity and increase rate, which are usually very low. In order to achieve the desirable resolution and accuracy of the effective non-rainfall measurements the time-domain reflectometry (TDR) technique was employed. The TDR sensor designed and made especially for the purpose was an untypical waveguide. It consisted of a base made of laminate covered with copper, which served as a bottom of a cuboidal open container in which the examined materials were placed, and a copper signal wire placed on the top of the container. The wire adhered along its entire length to the tested material in order to eliminate the formation of air gaps between the two, what enhanced the accuracy of the measurements. The tested porous materials were glass beads, rinsed sand and three soil samples, which were collected in south-eastern Poland. The diameter ranges of their constituent particles were measured with the use of the laser diffraction technique. The sensor filled with the wetted material was placed on a scale and connected to the TDR meter. The automated readings of mass and TDR time were collected simultaneously every minute. The TDR time was correlated with the mass loss, which was a measure of the amount of water that evaporated from the porous medium. Preliminary measurements demonstrated that the temperature control is dispensable for the conducted laboratory studies, because small temperature variations do not influence the results noticeably. However, field measurements would definitely require advanced temperature calibration. The aim of the research was to test the designed sensor for the effective non-rainfall intensity measurements in actual soil samples. It turned out that the device is highly sensitive to the amount of water present in the investigated medium. The geometry of the sensor allowed obtaining satisfactory resolution, which in the case of soil samples did not exceed 0.015 mm of water. Moreover, the direct translation of the TDR time into the water amount present in the examined media is straightforward and workable among the tested materials, which is the main advantage of the presented measurement method. Hence, both the applied TDR technique and the construction of the sensor proved to be adequate for the planned measurements of the effective non-rainfall intensity.
NASA Technical Reports Server (NTRS)
Smith, Eric A.; Wai, Mickey M.-K.; Cooper, Harry J.; Rubes, Michael T.; Hsu, Ann
1994-01-01
Surface, aircraft, and satellite observations are analyzed for the 21-day 1989 intensive field campaign of the First ISLSCP Field Experiment (FIFE) to determine the effect of precipitation, vegetation, and soil moisture distributions on the thermal properties of the surface including the heat and moisture fluxes, and the corresponding response in the boundary-layer circulation. Mean and variance properties of the surface variables are first documented at various time and space scales. These calculations are designed to set the stage for Part 2, a modeling study that will focus on how time-space dependent rainfall distribution influences the intensity of the feedback between a vegetated surface and the atmospheric boundary layer. Further analysis shows strongly demarked vegetation and soil moisture gradients extending across the FIFE experimental site that were developed and maintained by the antecedent and ongoing spatial distribution of rainfall over the region. These gradients are shown to have a pronounced influence on the thermodynamic properties of the surface. Furthermore, perturbation surface wind analysis suggests for both short-term steady-state conditions and long-term averaged conditions that the gradient pattern maintained a diurnally oscillating local direct circulation with perturbation vertical velocities of the same order as developing cumulus clouds. Dynamical and scaling considerations suggest that the embedded perturbation circulation is driven by surface heating/cooling gradients and terrain ef fects rather than the manifestation of an inertial oscillation. The implication is that at even relatively small scales (less than 30 km), the differential evolution in vegetation density and soil moisture distribution over a relatively homogenous ecotone can give rise to preferential boundary-layer circulations capable of modifying local-scale horizontal and vertical motions.
Watershed scale rainfall‐runoff models are used for environmental management and regulatory modeling applications, but their effectiveness are limited by predictive uncertainties associated with model input data. This study evaluated the effect of temporal and spatial rainfall re...
NASA Astrophysics Data System (ADS)
Moshtaghi, M.; Pande, S.; Savenije, H. H. G.; den Besten, N. I.
2016-12-01
Eighty percent of the farmland in Sub-Saharan Africa is managed by smallholders and they are often economically stressed; low income as a result of poor crop yields. Indeed, smallholders' well-being is naturally important, which often suffers due to hydro-climatic variability and fluctuations in prices of inputs (seeds, fertilizer) and outputs (crops). Appropriate designed insurances can guarantee their wellbeing and food security in whole continent, if they focus on specified requirement of smallholders in each region. In this research, we apply recently developed socio-hydrologic modelling, which interprets a small scale farm system as a coupled system of 6 variables: soil moisture, solid fertility, capital, livestock, fodder and labor availability. By using datasets of potential evaporation, rainfall, land cover and etc, we want to make a comparison between application of yield index insurance, weather index insurance and biomass Index Insurance to highlight the importance of considering the interplay between fertilizer and water availability in food security and also determine type of regional insurance which works better in a certain land.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ukkola, Anna M.; Pitman, Andy J.; Decker, Mark
Surface fluxes from land surface models (LSMs) have traditionally been evaluated against monthly, seasonal or annual mean states. The limited ability of LSMs to reproduce observed evaporative fluxes under water-stressed conditions has been previously noted, but very few studies have systematically evaluated these models during rainfall deficits. We evaluated latent heat fluxes simulated by the Community Atmosphere Biosphere Land Exchange (CABLE) LSM across 20 flux tower sites at sub-annual to inter-annual timescales, in particular focusing on model performance during seasonal-scale rainfall deficits. The importance of key model processes in capturing the latent heat flux was explored by employing alternative representations of hydrology, leafmore » area index, soil properties and stomatal conductance. We found that the representation of hydrological processes was critical for capturing observed declines in latent heat during rainfall deficits. By contrast, the effects of soil properties, LAI and stomatal conductance were highly site-specific. Whilst the standard model performs reasonably well at annual scales as measured by common metrics, it grossly underestimates latent heat during rainfall deficits. A new version of CABLE, with a more physically consistent representation of hydrology, captures the variation in the latent heat flux during seasonal-scale rainfall deficits better than earlier versions, but remaining biases point to future research needs. Lastly, our results highlight the importance of evaluating LSMs under water-stressed conditions and across multiple plant functional types and climate regimes.« less
Ukkola, Anna M.; Pitman, Andy J.; Decker, Mark; ...
2016-06-21
Surface fluxes from land surface models (LSMs) have traditionally been evaluated against monthly, seasonal or annual mean states. The limited ability of LSMs to reproduce observed evaporative fluxes under water-stressed conditions has been previously noted, but very few studies have systematically evaluated these models during rainfall deficits. We evaluated latent heat fluxes simulated by the Community Atmosphere Biosphere Land Exchange (CABLE) LSM across 20 flux tower sites at sub-annual to inter-annual timescales, in particular focusing on model performance during seasonal-scale rainfall deficits. The importance of key model processes in capturing the latent heat flux was explored by employing alternative representations of hydrology, leafmore » area index, soil properties and stomatal conductance. We found that the representation of hydrological processes was critical for capturing observed declines in latent heat during rainfall deficits. By contrast, the effects of soil properties, LAI and stomatal conductance were highly site-specific. Whilst the standard model performs reasonably well at annual scales as measured by common metrics, it grossly underestimates latent heat during rainfall deficits. A new version of CABLE, with a more physically consistent representation of hydrology, captures the variation in the latent heat flux during seasonal-scale rainfall deficits better than earlier versions, but remaining biases point to future research needs. Lastly, our results highlight the importance of evaluating LSMs under water-stressed conditions and across multiple plant functional types and climate regimes.« less
NASA Astrophysics Data System (ADS)
Foufoula, Efi; Ebtehaj, Ardeshir M.; Bras, Rafael L.
2015-04-01
Resolving accurately the space-time structure of precipitation over remote areas of the world where in-situ observations are not available is one of the biggest challenges in hydrology in view of the pressure to understand and mitigate climate and human-induced hydrologic and eco-geomorphologic changes. Two especially vulnerable areas are snow covered highlands (earlier snowmelt and changes in land-atmosphere feedbacks affecting storm dynamics and hydrologic response) and coastal areas (threats due to extreme storms and flooding in view of sea level rise and land-use changes affecting hazard potential in these overly populated low land areas). The GPM constellation of satellites offers the potential to retrieve precipitation over these complex surfaces but not without significant new ideas in the retrieval techniques for operational products. Here we present recent results from a new Bayesian inversion Passive Microwave Rainfall Retrieval algorithm (called ShARP) which introduces two main innovations: (1) a new distance metric in the space of retrieval (physically-derived or observational databases of brightness temperature and rainfall profiles) to create neighborhoods whose closeness is judged not on the basis of spatial averages but in terms of spatial structure in the space of spectral brightness temperatures, and (2) computes weights of those elements by minimizing a log-likelihood function plus a prior density of the spatial precipitation gradients. Both innovations rely on extending the typical Least squares (ℓ2) distance metric used in inverse problems to a mixed ℓ2 - ℓ1 metric (via regularization) and showing that this new metric is consistent with the localized small-scale spatial rainfall structure of sharp features embedded within more homogeneous domains. Using the data provided by the Tropical Rainfall Measuring Mission (TRMM) satellite, we demonstrate marked improvements in the ShARP rainfall retrievals in comparison with the standard TRMM-2A12 operational products by analysis of case studies in the Tibetan Highlands and the Ganges-Brahmaputra-Meghna river basin and its coastal delta.
Infiltration and runoff generation processes in fire-affected soils
Moody, John A.; Ebel, Brian A.
2014-01-01
Post-wildfire runoff was investigated by combining field measurements and modelling of infiltration into fire-affected soils to predict time-to-start of runoff and peak runoff rate at the plot scale (1 m2). Time series of soil-water content, rainfall and runoff were measured on a hillslope burned by the 2010 Fourmile Canyon Fire west of Boulder, Colorado during cyclonic and convective rainstorms in the spring and summer of 2011. Some of the field measurements and measured soil physical properties were used to calibrate a one-dimensional post-wildfire numerical model, which was then used as a ‘virtual instrument’ to provide estimates of the saturated hydraulic conductivity and high-resolution (1 mm) estimates of the soil-water profile and water fluxes within the unsaturated zone.Field and model estimates of the wetting-front depth indicated that post-wildfire infiltration was on average confined to shallow depths less than 30 mm. Model estimates of the effective saturated hydraulic conductivity, Ks, near the soil surface ranged from 0.1 to 5.2 mm h−1. Because of the relatively small values of Ks, the time-to-start of runoff (measured from the start of rainfall), tp, was found to depend only on the initial soil-water saturation deficit (predicted by the model) and a measured characteristic of the rainfall profile (referred to as the average rainfall acceleration, equal to the initial rate of change in rainfall intensity). An analytical model was developed from the combined results and explained 92–97% of the variance of tp, and the numerical infiltration model explained 74–91% of the variance of the peak runoff rates. These results are from one burned site, but they strongly suggest that tp in fire-affected soils (which often have low values of Ks) is probably controlled more by the storm profile and the initial soil-water saturation deficit than by soil hydraulic properties.
Soil Texture Mediates the Response of Tree Cover to Rainfall Intensity in African Savannas
NASA Astrophysics Data System (ADS)
Case, M. F.; Staver, A. C.
2017-12-01
Global circulation models predict widespread shifts in the frequency and intensity of rainfall, even where mean annual rainfall does not change. Resulting changes in soil moisture dynamics could have major consequences for plant communities and ecosystems, but the direction of potential vegetation responses can be challenging to predict. In tropical savannas, where tree and grasses coexist, contradictory lines of evidence have suggested that tree cover could respond either positively or negatively to less frequent, more intense rainfall. Here, we analyzed remote sensing data and continental-scale soils maps to examine whether soil texture or fire could explain heterogeneous responses of savanna tree cover to intra-annual rainfall variability across sub-Saharan Africa. We find that tree cover generally increases with mean wet-season rainfall, decreases with mean wet-season rainfall intensity, and decreases with fire frequency. However, soil sand content mediates these relationships: the response to rainfall intensity switches qualitatively depending on soil texture, such that tree cover decreases dramatically with less frequent, more intense rainfall on clay soils but increases with rainfall intensity on sandy soils in semi-arid savannas. We propose potential ecohydrological mechanisms for this heterogeneous response, and emphasize that predictions of savanna vegetation responses to global change should account for interactions between soil texture and changing rainfall patterns.
NASA Astrophysics Data System (ADS)
Santos, Monica; Fragoso, Marcelo
2010-05-01
Extreme precipitation events are one of the causes of natural hazards, such as floods and landslides, making its investigation so important, and this research aims to contribute to the study of the extreme rainfall patterns in a Portuguese mountainous area. The study area is centred on the Arcos de Valdevez county, located in the northwest region of Portugal, the rainiest of the country, with more than 3000 mm of annual rainfall at the Peneda-Gerês mountain system. This work focus on two main subjects related with the precipitation variability on the study area. First, a statistical analysis of several precipitation parameters is carried out, using daily data from 17 rain-gauges with a complete record for the 1960-1995 period. This approach aims to evaluate the main spatial contrasts regarding different aspects of the rainfall regime, described by ten parameters and indices of precipitation extremes (e.g. mean annual precipitation, the annual frequency of precipitation days, wet spells durations, maximum daily precipitation, maximum of precipitation in 30 days, number of days with rainfall exceeding 100 mm and estimated maximum daily rainfall for a return period of 100 years). The results show that the highest precipitation amounts (from annual to daily scales) and the higher frequency of very abundant rainfall events occur in the Serra da Peneda and Gerês mountains, opposing to the valleys of the Lima, Minho and Vez rivers, with lower precipitation amounts and less frequent heavy storms. The second purpose of this work is to find a method of mapping extreme rainfall in this mountainous region, investigating the complex influence of the relief (e.g. elevation, topography) on the precipitation patterns, as well others geographical variables (e.g. distance from coast, latitude), applying tested geo-statistical techniques (Goovaerts, 2000; Diodato, 2005). Models of linear regression were applied to evaluate the influence of different geographical variables (altitude, latitude, distance from sea and distance to the highest orographic barrier) on the rainfall behaviours described by the studied variables. The techniques of spatial interpolation evaluated include univariate and multivariate methods: cokriging, kriging, IDW (inverse distance weighted) and multiple linear regression. Validation procedures were used, assessing the estimated errors in the analysis of descriptive statistics of the models. Multiple linear regression models produced satisfactory results in relation to 70% of the rainfall parameters, suggested by lower average percentage of error. However, the results also demonstrates that there is no an unique and ideal model, depending on the rainfall parameter in consideration. Probably, the unsatisfactory results obtained in relation to some rainfall parameters was motivated by constraints as the spatial complexity of the precipitation patterns, as well as to the deficient spatial coverage of the territory by the rain-gauges network. References Diodato, N. (2005). The influence of topographic co-variables on the spatial variability of precipitation over small regions of complex terrain. Internacional Journal of Climatology, 25(3), 351-363. Goovaerts, P. (2000). Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology, 228, 113 - 129.
A decision support system for map projections of small scale data
Finn, Michael P.; Usery, E. Lynn; Posch, Stephan T.; Seong, Jeong Chang
2004-01-01
The use of commercial geographic information system software to process large raster datasets of terrain elevation, population, land cover, vegetation, soils, temperature, and rainfall requires both projection from spherical coordinates to plane coordinate systems and transformation from one plane system to another. Decision support systems deliver information resulting in knowledge that assists in policies, priorities, or processes. This paper presents an approach to handling the problems of raster dataset projection and transformation through the development of a Web-enabled decision support system to aid users of transformation processes with the selection of appropriate map projections based on data type, areal extent, location, and preservation properties.
NASA Astrophysics Data System (ADS)
Appels, Willemijn M.; Bogaart, Patrick W.; van der Zee, Sjoerd E. A. T. M.
2017-12-01
In winter, saturation excess (SE) ponding is observed regularly in temperate lowland regions. Surface runoff dynamics are controlled by small topographical features that are unaccounted for in hydrological models. To better understand storage and routing effects of small-scale topography and their interaction with shallow groundwater under SE conditions, we developed a model of reduced complexity to investigate SE runoff generation, emphasizing feedbacks between shallow groundwater dynamics and mesotopography. The dynamic specific yield affected unsaturated zone water storage, causing rapid switches between negative and positive head and a flatter groundwater mound than predicted by analytical agrohydrological models. Accordingly, saturated areas were larger and local groundwater fluxes smaller than predicted, leading to surface runoff generation. Mesotopographic features routed water over larger distances, providing a feedback mechanism that amplified changes to the shape of the groundwater mound. This in turn enhanced runoff generation, but whether it also resulted in runoff events depended on the geometry and location of the depressions. Whereas conditions favorable to runoff generation may abound during winter, these feedbacks profoundly reduce the predictability of SE runoff: statistically identical rainfall series may result in completely different runoff generation. The model results indicate that waterlogged areas in any given rainfall event are larger than those predicted by current analytical groundwater models used for drainage design. This change in the groundwater mound extent has implications for crop growth and damage assessments.
NASA Astrophysics Data System (ADS)
Lewis, Sophie; Karoly, David
2013-04-01
Changes in extreme climate events pose significant challenges for both human and natural systems. Some climate extremes are likely to become "more frequent, more widespread and/or more intense during the 21st century" (Intergovernmental Panel on Climate Change, 2007) due to anthropogenic climate change. Particularly in Australia, El Niño-Southern Oscillation (ENSO) has a relationship to the relative frequency of temperature and precipitation extremes. In this study, we investigate the record high two-summer rainfall observed in Australia (2010-2011 and 2011-2012). This record rainfall occurred in association with a two year extended La Niña event and resulted in severe and extensive flooding. We examine simulated changes in seasonal-scale rainfall extremes in the Australian region in a suite of models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5). In particular, we utilise the novel CMIP5 detection and attribution historical experiments with various forcings (natural forcings only and greenhouse gas forcings only) to examine the impact of various anthropogenic forcings on seasonal-scale extreme rainfall across Australia. Using these standard detection and attribution experiments over the period of 1850 to 2005, we examine La Niña contributions to the 2-season record rainfall, as well as the longer-term climate change contribution to rainfall extremes. Was there an anthropogenic influence in the record high Australian summer rainfall over 2010 to 2012, and if so, how much influence? Intergovernmental Panel on Climate Change (2007), Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report on the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., 996 pp., Cambridge Univ. Press, Cambridge, U. K.
Interannual Rainfall Variability in the Tropical Atlantic Region
NASA Technical Reports Server (NTRS)
Gu, Guojun
2005-01-01
Rainfall variability on seasonal and interannual-to-interdecadal time scales in the tropical Atlantic is quantified using a 25-year (1979-2003) monthly rainfall dataset from the Global Precipitation Climatology Project (GPCP). The ITCZ measured by monthly rainfall between 15-37.5 deg W attains its peak as moving to the northernmost latitude (4-10 deg N) during July-September in which the most total rainfall is observed in the tropical Atlantic basin (17.5 deg S-22.5 deg N, 15 deg-37.5 deg W); the ITCZ becomes weakest during January-February with the least total rainfall as it moves to the south. In contrast, rainfall variability on interannual to interdecadal time scales shows a quite different seasonal preference. The most intense interannual variability occurs during March-May when the ITCZ tends to be near the equator and becomes weaker. Significant, negative correlations between the ITCZ strength and latitude anomalies are observed during boreal spring and early summer. The ITCZ strength and total rainfall amount in the tropical Atlantic basin are significantly modulated by the Pacific El Nino and the Atlantic equatorial mode (or Atlantic Nino) particularly during boreal spring and summer; whereas the impact of the Atlantic interhemispheric mode is considerably weaker. Regarding the anomalous latitudes of the ITCZ, the influence can come from both local, i.e., the Atlantic interhemispheric and equatorial modes, and remote forcings, i. e., El Nino; however, a direct impact of El Nino on the latitudes of the ITCZ can only be found during April-July, not in winter and early spring in which the warmest SST anomalies are usually observed in the equatorial Pacific.
NASA Astrophysics Data System (ADS)
von Ruette, J.; Lehmann, P.; Or, D.
2013-10-01
Rainfall-induced shallow landslides may occur abruptly without distinct precursors and could span a wide range of soil mass released during a triggering event. We present a rainfall-induced landslide-triggering model for steep catchments with surfaces represented as an assembly of hydrologically and mechanically interconnected soil columns. The abruptness of failure was captured by defining local strength thresholds for mechanical bonds linking soil and bedrock and adjacent columns, whereby a failure of a single bond may initiate a chain reaction of subsequent failures, culminating in local mass release (a landslide). The catchment-scale hydromechanical landslide-triggering model (CHLT) was applied to results from two event-based landslide inventories triggered by two rainfall events in 2002 and 2005 in two nearby catchments located in the Prealps in Switzerland. Rainfall radar data, surface elevation and vegetation maps, and a soil production model for soil depth distribution were used for hydromechanical modeling of failure patterns for the two rainfall events at spatial and temporal resolutions of 2.5 m and 0.02 h, respectively. The CHLT model enabled systematic evaluation of the effects of soil type, mechanical reinforcement (soil cohesion and lateral root strength), and initial soil water content on landslide characteristics. We compared various landslide metrics and spatial distribution of simulated landslides in subcatchments with observed inventory data. Model parameters were optimized for the short but intense rainfall event in 2002, and the calibrated model was then applied for the 2005 rainfall, yielding reasonable predictions of landslide events and volumes and statistically reproducing localized landslide patterns similar to inventory data. The model provides a means for identifying local hot spots and offers insights into the dynamics of locally resolved landslide hazards in mountainous regions.
Constraining continuous rainfall simulations for derived design flood estimation
NASA Astrophysics Data System (ADS)
Woldemeskel, F. M.; Sharma, A.; Mehrotra, R.; Westra, S.
2016-11-01
Stochastic rainfall generation is important for a range of hydrologic and water resources applications. Stochastic rainfall can be generated using a number of models; however, preserving relevant attributes of the observed rainfall-including rainfall occurrence, variability and the magnitude of extremes-continues to be difficult. This paper develops an approach to constrain stochastically generated rainfall with an aim of preserving the intensity-durationfrequency (IFD) relationships of the observed data. Two main steps are involved. First, the generated annual maximum rainfall is corrected recursively by matching the generated intensity-frequency relationships to the target (observed) relationships. Second, the remaining (non-annual maximum) rainfall is rescaled such that the mass balance of the generated rain before and after scaling is maintained. The recursive correction is performed at selected storm durations to minimise the dependence between annual maximum values of higher and lower durations for the same year. This ensures that the resulting sequences remain true to the observed rainfall as well as represent the design extremes that may have been developed separately and are needed for compliance reasons. The method is tested on simulated 6 min rainfall series across five Australian stations with different climatic characteristics. The results suggest that the annual maximum and the IFD relationships are well reproduced after constraining the simulated rainfall. While our presentation focusses on the representation of design rainfall attributes (IFDs), the proposed approach can also be easily extended to constrain other attributes of the generated rainfall, providing an effective platform for post-processing of stochastic rainfall generators.
Robbins, Clarence H.
1982-01-01
Peak stages, discharges, and rainfall recorded at 22 gaging stations on streams draining small (less than 25 mi super 2) urbanized basins across Tennessee are presented. The gaged basins are in 17 different municipalities with populations ranging between 5,000 and 100,000. The report gives a description of each gaged site along with a data sheet on which peak stages, discharges, and corresponding rainfall are listed. The description gives the station location, type of gage, basin characteristics, and general remarks. (USGS)
High resolution land surface response of inland moving Indian monsoon depressions over Bay of Bengal
NASA Astrophysics Data System (ADS)
Rajesh, P. V.; Pattnaik, S.
2016-05-01
During Indian summer monsoon (ISM) season, nearly about half of the monsoonal rainfall is brought inland by the low pressure systems called as Monsoon Depressions (MDs). These systems bear large amount of rainfall and frequently give copious amount of rainfall over land regions, therefore accurate forecast of these synoptic scale systems at short time scale can help in disaster management, flood relief, food safety. The goal of this study is to investigate, whether an accurate moisture-rainfall feedback from land surface can improve the prediction of inland moving MDs. High Resolution Land Data Assimilation System (HRLDAS) is used to generate improved land state .i.e. soil moisture and soil temperature profiles by means of NOAH-MP land-surface model. Validation of the model simulated basic atmospheric parameters at surface layer and troposphere reveals that the incursion of high resolution land state yields least Root Mean Squared Error (RMSE) with a higher correlation coefficient and facilitates accurate depiction of MDs. Rainfall verification shows that HRLDAS simulations are spatially and quantitatively in more agreement with the observations and the improved surface characteristics could result in the realistic reproduction of the storm spatial structure, movement as well as intensity. These results signify the necessity of investigating more into the land surface-rainfall feedbacks through modifications in moisture flux convergence within the storm.
Knebl, M R; Yang, Z-L; Hutchison, K; Maidment, D R
2005-06-01
This paper develops a framework for regional scale flood modeling that integrates NEXRAD Level III rainfall, GIS, and a hydrological model (HEC-HMS/RAS). The San Antonio River Basin (about 4000 square miles, 10,000 km2) in Central Texas, USA, is the domain of the study because it is a region subject to frequent occurrences of severe flash flooding. A major flood in the summer of 2002 is chosen as a case to examine the modeling framework. The model consists of a rainfall-runoff model (HEC-HMS) that converts precipitation excess to overland flow and channel runoff, as well as a hydraulic model (HEC-RAS) that models unsteady state flow through the river channel network based on the HEC-HMS-derived hydrographs. HEC-HMS is run on a 4 x 4 km grid in the domain, a resolution consistent with the resolution of NEXRAD rainfall taken from the local river authority. Watershed parameters are calibrated manually to produce a good simulation of discharge at 12 subbasins. With the calibrated discharge, HEC-RAS is capable of producing floodplain polygons that are comparable to the satellite imagery. The modeling framework presented in this study incorporates a portion of the recently developed GIS tool named Map to Map that has been created on a local scale and extends it to a regional scale. The results of this research will benefit future modeling efforts by providing a tool for hydrological forecasts of flooding on a regional scale. While designed for the San Antonio River Basin, this regional scale model may be used as a prototype for model applications in other areas of the country.
Agricultural diversification as an important strategy for achieving food security in Africa.
Waha, Katharina; van Wijk, Mark T; Fritz, Steffen; See, Linda; Thornton, Philip K; Wichern, Jannike; Herrero, Mario
2018-03-31
Farmers in Africa have long adapted to climatic and other risks by diversifying their farming activities. Using a multi-scale approach, we explore the relationship between farming diversity and food security and the diversification potential of African agriculture and its limits on the household and continental scale. On the household scale, we use agricultural surveys from more than 28,000 households located in 18 African countries. In a next step, we use the relationship between rainfall, rainfall variability, and farming diversity to determine the available diversification options for farmers on the continental scale. On the household scale, we show that households with greater farming diversity are more successful in meeting their consumption needs, but only up to a certain level of diversity per ha cropland and more often if food can be purchased from off-farm income or income from farm sales. More diverse farming systems can contribute to household food security; however, the relationship is influenced by other factors, for example, the market orientation of a household, livestock ownership, nonagricultural employment opportunities, and available land resources. On the continental scale, the greatest opportunities for diversification of food crops, cash crops, and livestock are located in areas with 500-1,000 mm annual rainfall and 17%-22% rainfall variability. Forty-three percent of the African cropland lacks these opportunities at present which may hamper the ability of agricultural systems to respond to climate change. While sustainable intensification practices that increase yields have received most attention to date, our study suggests that a shift in the research and policy paradigm toward agricultural diversification options may be necessary. © 2018 The Authors Global Change Biology Published by John Wiley & Sons Ltd.
Bare soil erosion modelling with rainfall simulations: experiments on crop and recently burned areas
NASA Astrophysics Data System (ADS)
Catani, F.; Menci, S.; Moretti, S.; Keizer, J.
2006-12-01
The use of numerical models is of fundamental importance in the comprehension and prediction of soil erosion. At the very basis of the calibration process of the numerical models are the direct measurements of the governing parameters, carried out during field or laboratory tests. To measure and model soil erosion rainfall simulations can be used, that allow the reproduction of project rainfall having chosen characteristics of intensity and duration. The main parameters that rainfall simulators can measure are hydraulic conductivity, parameters of soil erodibility, rate and features of splash erosion, discharge coefficient and sediment yield. Other important parameters can be estimated during the rainfall simulations through the use of photogrammetric instruments able to memorize high definition stereographic models of the soil plot under analysis at different time steps. In this research rainfall simulator experiments (rse) were conducted to measure and quantify runoff and erosion processes on selected bare soil plots. The selected plots are located in some vineyards, olive groves and crops in central Italy and in some recently burned areas in north-central Portugal, affected by a wildfire during early July 2005 and, at the time, largely covered by commercial eucalypt plantations. On the Italian crops the choice of the rainfall intensities and durations were performed on the basis of the previous knowledge of the selected test areas. The procedure was based on an initial phase of soil wetting and a following phase of 3 erosion cycles. The first should reproduce the effects of a normal rainfall with a return time of 2 years (23 mm/h). The second should represent a serious episode with a return time of 10 years (34 mm/h). The third has the objective to reproduce and understand the effects of an intense precipitation event, with a return time of 50 years (41 mm/h). During vineyards experiments some photogrammetric surveys were carried out as well. In the Portugal burned areas, to measure the influence of rain intensities, two rainfall simulations have been carried out simultaneously, one with an intensity of 45 mm/h and one with 85 mm/h. In both cases, before the experiments, soil and vegetation cover description have been made and soil samples have been taken. During the simulations soil samples leaving the parcels were taken at suitable time intervals to measure the sediment yield and the runoff. The rse data have been thought to provide a sufficient basis for erosion modelling at the small-plot scale and, through upscaling, for predicting erosion rates at the slope scale. For this purpose two soil erosion models, WEPP and MEFIDIS, have been selected and then compared. The comparison has shown a certain degree of uncertainty in numeric erosion prediction, due to the non linearity of the overland erosion processes, and to technical and conceptual difficulties, including the data collection. In the following laboratory phase high resolution (2 by 2 mm) DEMs of the vineyards plot are being produced for each meaningful processing phase. The digital elevation models will then be analysed to asses calibration parameters such as soil roughness (expressed by standard deviation of elevations, fractal dimension and local relief energy), soil and sediment transfer (hypsometric curves, local elevation and volume differences) and rill network evolution (Horton ordering, stream lengths, contributing area, drainage density, Hack's law)
Lower Boundary Forcing related to the Occurrence of Rain in the Tropical Western Pacific
NASA Astrophysics Data System (ADS)
Li, Y.; Carbone, R. E.
2013-12-01
Global weather and climate models have a long and somewhat tortured history with respect to simulation and prediction of tropical rainfall in the relative absence of balanced flow in the geostrophic sense. An important correlate with tropical rainfall is sea surface temperature (SST). The introduction of SST information to convective rainfall parameterization in global models has improved model climatologies of tropical oceanic rainfall. Nevertheless, large systematic errors have persisted, several of which are common to most atmospheric models. Models have evolved to the point where increased spatial resolution demands representation of the SST field at compatible temporal and spatial scales, leading to common usage of monthly SST fields at scales of 10-100 km. While large systematic errors persist, significant skill has been realized from various atmospheric and coupled ocean models, including assimilation of weekly or even daily SST fields, as tested by the European Center for Medium Range Weather Forecasting. A few investigators have explored the role of SST gradients in relation to the occurrence of precipitation. Some of this research has focused on large scale gradients, mainly associated with surface ocean-atmosphere climatology. These studies conclude that lower boundary atmospheric convergence, under some conditions, could be substantially enhanced over SST gradients, destabilizing the atmosphere, and thereby enabling moist convection. While the concept has a firm theoretical foundation, it has not gained a sizeable following far beyond the realm of western boundary currents. Li and Carbone 2012 examined the role of transient mesoscale (~ 100 km) SST gradients in the western Pacific warm pool by means of GHRSST and CMORPH rainfall data. They found that excitation of deep moist convection was strongly associated with the Laplacian of SST (LSST). Specifically, -LSST is associated with rainfall onset in 75% of 10,000 events over 4 years, whereas the background ocean is symmetric about zero Laplacian. This finding is fully consistent with theory for gradients of order ~1degC in low mean wind conditions, capable of inducing atmospheric convergence of N x 10-5s-1. We will present new findings resulting from the application of a Madden-Julian oscillation (MJO) passband filter to GHRSST/CMORPH data. It shows that the -LSST field organizes at scales of 1000-2000 km and can persist for periods of two weeks to 3 months. Such -LSST anomalies are in quadrature with MJO rainfall, tracking and leading the wet phase of the MJO by 10-14 days, from the Indian Ocean to the dateline. More generally, an evaluation of SST structure in rainfall production will be presented, which represents a decidedly alternative view to conventional wisdom. Li, Yanping, and R.E. Carbone, 2012: Excitation of Rainfall over the Tropical Western Pacific, J. Atmos. Sci., 69, 2983-2994.
Eddy covariance and lysimeter measurements of moisture fluxes over supraglacial debris
NASA Astrophysics Data System (ADS)
Brock, Benjamin
2015-04-01
Supraglacial debris covers have the potential to evaporate large quantities of water derived from either sub-debris ice melt or precipitation. Currently, knowledge of evaporation and condensation rates in supraglacial debris is limited due to the difficulty of making direct measurements. This paper presents eddy covariance and lysimeter measurements of moisture fluxes made over a 0.2 m debris layer at Miage debris covered glacier, Italian Alps, during the 2013 ablation season. The meteorological data are complimented by reflectometer measurements of volumetric water fraction in the saturated and vadose zones of the debris layer. The lysimeters were designed specifically to mimic the debris cover and were embedded within the debris matrix, level with the surface. Over the ablation season, the latent heat flux is dominated by evaporation, and the flux magnitude closely follows the daily cycle of daytime solar heating and night time radiative cooling of debris. Mean flux values are of the order of 1 kg m-2 day-1, but often higher for short periods following rainfall. Condensation rates are relatively small and restricted to night time and humid conditions when the debris-atmosphere vapour pressure gradient reverses due to relatively warm air overlying cold debris. The reflectometer measurements provide evidence of vertical water movement through capillary rise in the upper part of the fine-grained debris layer, just above the saturated horizon, and demonstrate how debris bulk water content increases after rainfall. The latent heat flux responds directly to changes in wind speed, indicating that atmospheric turbulence can penetrate porous upper debris layers to the saturated horizon. Hence, vertical sorting of debris sediments and antecedent rainfall are important in determining evaporation rates, in addition to current meteorological conditions. Comparison of lysimeter measurements with rainfall data provides an estimate that between 45% and 89% of rainfall is evaporated directly back to the atmosphere. Rainfall evaporation rates increase with debris impermeability and temperature, with highest rates occurring when a shower falls on hot debris. If these point measurements are representative of larger scales, evaporation rates of the order of 1000 tonnes km-2 day-1 are implied, with higher rates following rainfall. This has important implications for downstream runoff, sub-debris ice melt rates (due to consumption of evaporative latent heat energy) and, possibly, convective atmospheric processes.
Symbolic Regression for the Estimation of Transfer Functions of Hydrological Models
NASA Astrophysics Data System (ADS)
Klotz, D.; Herrnegger, M.; Schulz, K.
2017-11-01
Current concepts for parameter regionalization of spatially distributed rainfall-runoff models rely on the a priori definition of transfer functions that globally map land surface characteristics (such as soil texture, land use, and digital elevation) into the model parameter space. However, these transfer functions are often chosen ad hoc or derived from small-scale experiments. This study proposes and tests an approach for inferring the structure and parametrization of possible transfer functions from runoff data to potentially circumvent these difficulties. The concept uses context-free grammars to generate possible proposition for transfer functions. The resulting structure can then be parametrized with classical optimization techniques. Several virtual experiments are performed to examine the potential for an appropriate estimation of transfer function, all of them using a very simple conceptual rainfall-runoff model with data from the Austrian Mur catchment. The results suggest that a priori defined transfer functions are in general well identifiable by the method. However, the deduction process might be inhibited, e.g., by noise in the runoff observation data, often leading to transfer function estimates of lower structural complexity.
Temporal and spatial variations of rainfall erosivity in Southern Taiwan
NASA Astrophysics Data System (ADS)
Lee, Ming-Hsi; Lin, Huan-Hsuan; Chu, Chun-Kuang
2014-05-01
Soil erosion models are essential in developing effective soil and water resource conservation strategies. Soil erosion is generally evaluated using the Universal Soil Loss Equation (USLE) with an appropriate regional scale description. Among factors in the USLE model, the rainfall erosivity index (R) provides one of the clearest indications of the effects of climate change. Accurate estimation of rainfall erosivity requires continuous rainfall data; however, such data rarely demonstrate good spatial and temporal coverage. The data set consisted of 9240 storm events for the period 1993 to 2011, monitored by 27 rainfall stations of the Central Weather Bureau (CWB) in southern Taiwan, was used to analyze the temporal-spatial variations of rainfall erosivity. The spatial distribution map was plotted based on rainfall erosivity by the Kriging interpolation method. Results indicated that rainfall erosivity is mainly concentrated in rainy season from June to November typically contributed 90% of the yearly R factor. The temporal variations of monthly rainfall erosivity during June to November and annual rainfall erosivity have increasing trend from 1993 to 2011. There is an increasing trend from southwest to northeast in spatial distribution of rainfall erosivity in southern Taiwan. The results further indicated that there is a higher relationship between elevation and rainfall erosivity. The method developed in this study may also be useful for sediment disasters on Climate Change.
[Characteristics of rainfall and runoff in urban drainage based on the SWMM model.
Xiong, Li Jun; Huang, Fei; Xu, Zu Xin; Li, Huai Zheng; Gong, Ling Ling; Dong, Meng Ke
2016-11-18
The characteristics of 235 rainfall and surface runoff events, from 2009 to 2011 in a typical urban drainage area in Shanghai were analyzed by using SWMM model. The results showed that the rainfall events in the region with high occurrence frequency were characterized by small rainfall amount and low intensity. The most probably occurred rainfall had total amount less than 10 mm, or mean intensity less than 5 mm·h -1 ,or peak intensity less than 10 mm·h -1 , accounting for 66.4%, 88.8% and 79.6% of the total rainfall events, respectively. The study was of great significance to apply low-impact development to reduce runoff and non-point source pollution under condition of less rainfall amount or low mean rainfall intensity in the area. The runoff generally increased with the increase of rainfall. The threshold of regional occurring runoff was controlled by not only rainfall amount, but also mean rainfall intensity and rainfall duration. In general, there was no surface runoff when the rainfall amount was less than 2 mm. When the rainfall amount was between 2 to 4 mm and the mean rainfall intensity was below 1.6 mm·h -1 , the runoff was less than 1 mm. When the rainfall exceeded 4 mm and the mean rainfall intensity was larger than 1.6 mm·h -1 , the runoff would occur generally. Based on the results of the SWMM simulation, three regression equations that were applicable to regional runoff amount and rainfall factors were established. The adjustment R 2 of the three equations were greater than 0.97. This indicated that the equations could reflect well the relationship between runoff and rainfall variables. The results provided the basis of calculations to plan low impact development and better reduce overflow pollution in local drainage area. It also could serve as a useful reference for runoff study in similar drainage areas.
Characteristics of Heavy Summer Rainfall in Southwestern Taiwan in Relation to Orographic Effects
NASA Technical Reports Server (NTRS)
Chen, Ching-Sen; Chen, Wan-Chin; Tao, Wei-Kuo
2004-01-01
On the windward side of southwestern Taiwan, about a quarter to a half of all rainfall during mid-July through August from 1994 to 2000 came from convective systems embedded in the southwesterly monsoon flow. k this study, the causes of two heavy rainfall events (daily rainfall exceeding 100 mm day over at least three rainfall stations) observed over the slopes and/or lowlands of southwestern Taiwan were examined. Data from European Center for Medium-Range Weather Forecasts /Tropical Ocean- Global Atmosphere (EC/TOGA) analyses, the rainfall stations of the Automatic Rainfall and Meteorological Telemetry System (ARMTS) and the conventional surface stations over Taiwan, and the simulation results from a regional-scale numerical model were used to accomplish the objectives. In one event (393 mm day on 9 August 1999), heavy rainfall was observed over the windward slopes of southern Taiwan in a potentially unstable environment with very humid air around 850 hPa. The extreme accumulation was simulated and attributed to orographic lifting effects. No preexisting convection drifted in from the Taiwan Strait into western Taiwan.
NASA Astrophysics Data System (ADS)
Meena, Hari Mohan; Machiwal, Deepesh; Santra, Priyabrata; Moharana, Pratap Chandra; Singh, D. V.
2018-05-01
Knowledge of rainfall variability is important for regional-scale planning and management of water resources in agriculture. This study explores spatio-temporal variations, trends, and homogeneity in monthly, seasonal, and annual rainfall series of 62 stations located in arid region of Rajasthan, India using 55 year (1957-2011) data. Box-whisker plots indicate presence of outliers and extremes in annual rainfall, which made the distribution of annual rainfall right-skewed. Mean and coefficient of variation (CV) of rainfall reveals a high inter-annual variability (CV > 200%) in the western portion where the mean annual rainfall is very low. A general gradient of the mean monthly, seasonal, and annual rainfall is visible from northwest to southeast direction, which is orthogonal to the gradient of CV. The Sen's innovative trend test is found over-sensitive in evaluating statistical significance of the rainfall trends, while the Mann-Kendall test identifies significantly increasing rainfall trends in June and September. Rainfall in July shows prominently decreasing trends although none of them are found statistically significant. Monsoon and annual rainfall show significantly increasing trends at only four stations. The magnitude of trends indicates that the rainfall is increasing at a mean rate of 1.11, 2.85, and 2.89 mm year-1 in August, monsoon season, and annual series. The rainfall is found homogeneous over most of the area except for few stations situated in the eastern and northwest portions where significantly increasing trends are observed. Findings of this study indicate that there are few increasing trends in rainfall of this Indian arid region.
NASA Astrophysics Data System (ADS)
Philipp, Andy; Kerl, Florian; Büttner, Uwe; Metzkes, Christine; Singer, Thomas; Wagner, Michael; Schütze, Niels
2016-05-01
In recent years, the Free State of Saxony (Eastern Germany) was repeatedly hit by both extensive riverine flooding, as well as flash flood events, emerging foremost from convective heavy rainfall. Especially after a couple of small-scale, yet disastrous events in 2010, preconditions, drivers, and methods for deriving flash flood related early warning products are investigated. This is to clarify the feasibility and the limits of envisaged early warning procedures for small catchments, hit by flashy heavy rain events. Early warning about potentially flash flood prone situations (i.e., with a suitable lead time with regard to required reaction-time needs of the stakeholders involved in flood risk management) needs to take into account not only hydrological, but also meteorological, as well as communication issues. Therefore, we propose a threefold methodology to identify potential benefits and limitations in a real-world warning/reaction context. First, the user demands (with respect to desired/required warning products, preparation times, etc.) are investigated. Second, focusing on small catchments of some hundred square kilometers, two quantitative precipitation forecasts are verified. Third, considering the user needs, as well as the input parameter uncertainty (i.e., foremost emerging from an uncertain QPF), a feasible, yet robust hydrological modeling approach is proposed on the basis of pilot studies, employing deterministic, data-driven, and simple scoring methods.
Simulated transient thermal infrared emissions of forest canopies during rainfall events
NASA Astrophysics Data System (ADS)
Ballard, Jerrell R.; Hawkins, William R.; Howington, Stacy E.; Kala, Raju V.
2017-05-01
We describe the development of a centimeter-scale resolution simulation framework for a theoretical tree canopy that includes rainfall deposition, evaporation, and thermal infrared emittance. Rainfall is simulated as discrete raindrops with specified rate. The individual droplets will either fall through the canopy and intersect the ground; adhere to a leaf; bounce or shatter on impact with a leaf resulting in smaller droplets that are propagated through the canopy. Surface physical temperatures are individually determined by surface water evaporation, spatially varying within canopy wind velocities, solar radiation, and water vapor pressure. Results are validated by theoretical canopy gap and gross rainfall interception models.
A new perspective on the regional hydrologic cycle over North and South America
NASA Astrophysics Data System (ADS)
Weng, Shu-Ping
The GEOS-1 vertically-integrated 3-hr moisture flux reanalyses and hourly-gridded United States station precipitation plus a satellite-based, 6-hr global precipitation estimate were employed to investigate the impacts of nocturnal low-level jets (LLJs) on the regional hydrological cycle over the central United States (Part I) and the subtropical plains of South America (Part II). Research stressed the influences of upper-level synoptic-scale waves (i.e., synoptic-scale forcings) upon the regional hydrologic processes, which were explored by the impacts associated with the occurrence of LLJ. Besides the conventional budget analysis, the adopted `synoptic-forcing approach' was proven illustrative in describing these impacts through the down-scaling process of LLJs. In Part 1, the major findings include: (1)the seasonal-averaged hydrological cycle over the Great Plains is strongly affected by the occurrence of GPLLJ, (2)the synoptic-scale forcing provided by the upper-level propagating jet (ULJ) streams is essential in generating the large-scale precipitation after the GPLLJ forms from the diurnal boundary layer process, (3)without the dynamic coupling between the ULJ and LLJ, the impact of LLJ on the hydrological cycle is demonstrated to be less important, and (4)the importance of synoptic-scale forcings in preconditioning the setting of wet/dry seasons in the interannual variability of rainfall anomaly is further illustrated by examining the changes of intensity as well as the occurrence frequency between the different types of LLJ. In Part II of this study, it was found that the occurrence of Andean LLJ represents a transient episode that detours the climatic rainfall activity along the South Atlantic Convergent Zone (SACZ) to the subtropical plains (Brazilian Nordeste) in its southwestern (northeastern) flank. The appearance of a seesaw pattern in the rainfall and flux convergence anomalies along the southeastern portion of South America, which is spatially in quadrature with the seasonal mean circulation, reflects the synoptic-scale forcing generated by the upper-level propagating transient-scale waves. In this regard, the function of the Andean LLJ in providing a scale-interaction mechanism that links the synoptic-scale setting with the localized rainfall event is the same as the GPLLJ. Due to the unique geographic background such as the narrow east-west landmass extension and the relative orientation between the Andean LLJ and the ULJ, however, the enhanced rainfall activity over the subtropical plains in response to the perturbed flux convergence is smaller than the case in the GPLLJ.
NASA Astrophysics Data System (ADS)
Uijlenhoet, R.; Leijnse, H.; Overeem, A.
2017-12-01
Accurate and timely surface precipitation measurements are crucial for water resources management, agriculture, weather prediction, climate research, as well as ground validation of satellite-based precipitation estimates. However, the majority of the land surface of the earth lacks such data, and in many parts of the world the density of surface precipitation gauging networks is even rapidly declining. This development can potentially be counteracted by using received signal level data from the enormous number of microwave links used worldwide in commercial cellular communication networks. Along such links, radio signals propagate from a transmitting antenna at one base station to a receiving antenna at another base station. Rain-induced attenuation and, subsequently, path-averaged rainfall intensity can be retrieved from the signal's attenuation between transmitter and receiver. We have previously shown how one such a network can be used to retrieve the space-time dynamics of rainfall for an entire country (The Netherlands, ˜35,500 km2), based on an unprecedented number of links (˜2,400) and a rainfall retrieval algorithm that can be applied in real time. This demonstrated the potential of such networks for real-time rainfall monitoring, in particular in those parts of the world where networks of dedicated ground-based rainfall sensors are often virtually absent. The presentation will focus on the potential for upscaling this technique to continental-scale rainfall monitoring in Europe. In addition, several examples of recent applications of this technique on other continents (South America, Africa, Asia and Australia) will be given.
Climate Change Assessment of Precipitation in Tandula Reservoir System
NASA Astrophysics Data System (ADS)
Jaiswal, Rahul Kumar; Tiwari, H. L.; Lohani, A. K.
2018-02-01
The precipitation is the principle input of hydrological cycle affect availability of water in spatial and temporal scale of basin due to widely accepted climate change. The present study deals with the statistical downscaling using Statistical Down Scaling Model for rainfall of five rain gauge stations (Ambagarh, Bhanpura, Balod, Chamra and Gondli) in Tandula, Kharkhara and Gondli reservoirs of Chhattisgarh state of India to forecast future rainfall in three different periods under SRES A1B and A2 climatic forcing conditions. In the analysis, twenty-six climatic variables obtained from National Centers for Environmental Prediction were used and statistically tested for selection of best-fit predictors. The conditional process based statistical correlation was used to evolve multiple linear relations in calibration for period of 1981-1995 was tested with independent data of 1996-2003 for validation. The developed relations were further used to predict future rainfall scenarios for three different periods 2020-2035 (FP-1), 2046-2064 (FP-2) and 2081-2100 (FP-3) and compared with monthly rainfalls during base period (1981-2003) for individual station and all three reservoir catchments. From the analysis, it has been found that most of the rain gauge stations and all three reservoir catchments may receive significant less rainfall in future. The Thiessen polygon based annual and seasonal rainfall for different catchments confirmed a reduction of seasonal rainfall from 5.1 to 14.1% in Tandula reservoir, 11-19.2% in Kharkhara reservoir and 15.1-23.8% in Gondli reservoir. The Gondli reservoir may be affected the most in term of water availability in future prediction periods.
NASA Astrophysics Data System (ADS)
Renard, Florent
2017-04-01
The Greater Lyon area is strongly built up, grouping 58 communes and a population of 1.3 million in approximately 500 km2. The flood risk is high as the territory is crossed by two large watercourses and by streams with torrential flow. Floods may also occur in case of runoff after heavy rain or because of a rise in the groundwater level. The whole territory can therefore be affected, and it is necessary to possess in-depth knowledge of the depths, causes and consequences of rainfall to achieve better management of precipitation in urban areas and to reduce flood risk. This study is thus focused on the effects of topography and land cover on the occurrence, intensity and area of intense rainfall cells. They are identified by local radar meteorology (C-band) combined with a processing algorithm running in a geographic information system (GIS) which identified 109,979 weighted mean centres of them in a sample composed of the five most intense rainfall events from 2001 to 2005. First, analysis of spatial distribution at an overall scale is performed, completed by study at a more detailed scale. The results show that the distribution of high-intensity rainfall cells is spread in cluster form. Subsequently, comparison of intense rainfall cells with the topography shows that cell density is closely linked with land slope but that, above all, urbanised zones feature nearly twice as many rainfall cells as farm land or forest, with more intense intensity.
NASA Astrophysics Data System (ADS)
Segoni, Samuele; Rosi, Ascanio; Lagomarsino, Daniela; Fanti, Riccardo; Casagli, Nicola
2018-03-01
We communicate the results of a preliminary investigation aimed at improving a state-of-the-art RSLEWS (regional-scale landslide early warning system) based on rainfall thresholds by integrating mean soil moisture values averaged over the territorial units of the system. We tested two approaches. The simplest can be easily applied to improve other RSLEWS: it is based on a soil moisture threshold value under which rainfall thresholds are not used because landslides are not expected to occur. Another approach deeply modifies the original RSLEWS: thresholds based on antecedent rainfall accumulated over long periods are substituted with soil moisture thresholds. A back analysis demonstrated that both approaches consistently reduced false alarms, while the second approach reduced missed alarms as well.
A new, long-term daily satellite-based rainfall dataset for operational monitoring in Africa
Maidment, Ross I.; Grimes, David; Black, Emily; Tarnavsky, Elena; Young, Matthew; Greatrex, Helen; Allan, Richard P.; Stein, Thorwald; Nkonde, Edson; Senkunda, Samuel; Alcántara, Edgar Misael Uribe
2017-01-01
Rainfall information is essential for many applications in developing countries, and yet, continually updated information at fine temporal and spatial scales is lacking. In Africa, rainfall monitoring is particularly important given the close relationship between climate and livelihoods. To address this information gap, this paper describes two versions (v2.0 and v3.0) of the TAMSAT daily rainfall dataset based on high-resolution thermal-infrared observations, available from 1983 to the present. The datasets are based on the disaggregation of 10-day (v2.0) and 5-day (v3.0) total TAMSAT rainfall estimates to a daily time-step using daily cold cloud duration. This approach provides temporally consistent historic and near-real time daily rainfall information for all of Africa. The estimates have been evaluated using ground-based observations from five countries with contrasting rainfall climates (Mozambique, Niger, Nigeria, Uganda, and Zambia) and compared to other satellite-based rainfall estimates. The results indicate that both versions of the TAMSAT daily estimates reliably detects rainy days, but have less skill in capturing rainfall amount—results that are comparable to the other datasets. PMID:28534868
Climate Change Impact on Rainfall: How will Threaten Wheat Yield?
NASA Astrophysics Data System (ADS)
Tafoughalti, K.; El Faleh, E. M.; Moujahid, Y.; Ouargaga, F.
2018-05-01
Climate change has a significant impact on the environmental condition of the agricultural region. Meknes has an agrarian economy and wheat production is of paramount importance. As most arable area are under rainfed system, Meknes is one of the sensitive regions to rainfall variability and consequently to climate change. Therefore, the use of changes in rainfall is vital for detecting the influence of climate system on agricultural productivity. This article identifies rainfall temporal variability and its impact on wheat yields. We used monthly rainfall records for three decades and wheat yields records of fifteen years. Rainfall variability is assessed utilizing the precipitation concentration index and the variation coefficient. The association between wheat yields and cumulative rainfall amounts of different scales was calculated based on a regression model. The analysis shown moderate seasonal and irregular annual rainfall distribution. Yields fluctuated from 210 to 4500 Kg/ha with 52% of coefficient of variation. The correlation results shows that wheat yields are strongly correlated with rainfall of the period January to March. This investigation concluded that climate change is altering wheat yield and it is crucial to adept the necessary adaptation to challenge the risk.
Midweek Intensification of Rain in the U.S.: Does Air Pollution Invigorate Storms?
NASA Technical Reports Server (NTRS)
Bell, T. L.; Rosenfeld, D.; Hahnenberger, M.
2005-01-01
The effect of pollution on rainfall has been observed to depend both on the type of pollution and the precipitating environment. The climatological consequences of pollution for rainfall are uncertain. In some urban areas, pollution varies with the day of the week because of weekly variations in human activity, in effect providing a repeated experiment on the effects of pollution. Weekly variations in temperature, pressure, cloud characteristics, hails and lightning are observed in many areas. Observing a weekly cycle in rainfall statistics has proven to be more difficult, although there is some evidence for it. Here we examine rainfall statistics from the Tropical Rainfall Measuring Mission (TRMM) satellite over the southern U.S. and adjacent waters, and find that there is a distinct, statistically significant weekly cycle in summertime rainfall over the southeast U.S., as well as weekly variations in rainfall over the nearby Atlantic and the Gulf of Mexico. Rainfall over land peaks in the middle of the week, suggesting that summer rainfall on large scales may increase as pollution levels rise. Both rain statistics over land and what appear to be compensating effects over adjacent seas support the suggestion that air pollution invigorates convection and outflow aloft.
NASA Technical Reports Server (NTRS)
Mascaro, Giuseppe; Vivoni, Enrique R.; Deidda, Roberto
2010-01-01
Accounting for small-scale spatial heterogeneity of soil moisture (theta) is required to enhance the predictive skill of land surface models. In this paper, we present the results of the development, calibration, and performance evaluation of a downscaling model based on multifractal theory using aircraft!based (800 m) theta estimates collected during the southern Great Plains experiment in 1997 (SGP97).We first demonstrate the presence of scale invariance and multifractality in theta fields of nine square domains of size 25.6 x 25.6 sq km, approximately a satellite footprint. Then, we estimate the downscaling model parameters and evaluate the model performance using a set of different calibration approaches. Results reveal that small-scale theta distributions are adequately reproduced across the entire region when coarse predictors include a dynamic component (i.e., the spatial mean soil moisture
NASA Astrophysics Data System (ADS)
Williams, C.; Silins, U.; Wagner, M. J.; Bladon, K. D.; Martens, A. M.; Anderson, A.; Stone, M.; Emelko, M. B.
2014-12-01
Interception of precipitation in sub-alpine forests is likely to be strongly reduced after wildfire, potentially producing large increases in net precipitation. Objectives of this study were to describe changes in rainfall and snow interception, and net precipitation after the severe 2003 Lost Creek wildfire as part of the Southern Rockies Watershed Project in the south-west Rocky Mountains of Alberta, Canada. Throughfall troughs and stemflow gauges were used to explore relationships between throughfall, stemflow, and net rainfall with variation in gross rainfall in burned and undisturbed stands during the summers of 2006-2008. These relationships were used to scale the effects of the wildfire on net rainfall for the first decade after the wildfire (2004-2013) using a 10 year rainfall record in the watershed. Annual snowpack surveys (5 snow courses in each of burned and reference stands) measured peak snowpack depth, density, and snow water equivalent (SWE) for this same period. Mean annual P was 1140 mm (684-1519 mm) during the first 10 years after the wildfire, with 61% falling as snow. Throughfall and stemflow in the burned forest accounted for 86% and 7% of gross rainfall, respectively, compared with 53% and 0.002% in the unburned stands in the summers of 2006-2008. Scaled rainfall interception relationships (=f(rainfall event size)) indicated annual increases in net rainfall were 192 mm/yr (133-347 mm) for 10 years after the fire. Similarly, mean increases in peak SWE were 134 mm/yr (93-216 mm). Collectively, the mean increase in net precipitation was 325 mm/yr (226-563 mm; 29%) for the first decade after the wildfire. Hydrologic forcing by increased net precipitation may be a particularly important element of wildfire impacts on sub-alpine watersheds. Furthermore, because of the very slow growth rates of sub-alpine forests, increases in net precipitation are likely to persist and affect precipitation-runoff relationships for decades in these environments.
Hancock, G R; Verdon-Kidd, D; Lowry, J B C
2017-12-01
Landscape Evolution Modelling (LEM) technologies provide a means by which it is possible to simulate the long-term geomorphic stability of a conceptual rehabilitated landform. However, simulations rarely consider the potential effects of anthropogenic climate change and consequently risk not accounting for the range of rainfall variability that might be expected in both the near and far future. One issue is that high resolution (both spatial and temporal) rainfall projections incorporating the potential effects of greenhouse forcing are required as input. However, projections of rainfall change are still highly uncertain for many regions, particularly at sub annual/seasonal scales. This is the case for northern Australia, where a decrease or an increase in rainfall post 2030 is considered equally likely based on climate model simulations. The aim of this study is therefore to investigate a spatial analogue approach to develop point scale hourly rainfall scenarios to be used as input to the CAESAR - Lisflood LEM to test the sensitivity of the geomorphic stability of a conceptual rehabilitated landform to potential changes in climate. Importantly, the scenarios incorporate the range of projected potential increase/decrease in rainfall for northern Australia and capture the expected envelope of erosion rates and erosion patterns (i.e. where erosion and deposition occurs) over a 100year modelled period. We show that all rainfall scenarios produce sediment output and gullying greater than that of the surrounding natural system, however a 'wetter' future climate produces the highest output. Importantly, incorporating analogue rainfall scenarios into LEM has the capacity to both improve landform design and enhance the modelling software. Further, the method can be easily transferred to other sites (both nationally and internationally) where rainfall variability is significant and climate change impacts are uncertain. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
A comparison of methods to estimate future sub-daily design rainfall
NASA Astrophysics Data System (ADS)
Li, J.; Johnson, F.; Evans, J.; Sharma, A.
2017-12-01
Warmer temperatures are expected to increase extreme short-duration rainfall due to the increased moisture-holding capacity of the atmosphere. While attention has been paid to the impacts of climate change on future design rainfalls at daily or longer time scales, the potential changes in short duration design rainfalls have been often overlooked due to the limited availability of sub-daily projections and observations. This study uses a high-resolution regional climate model (RCM) to predict the changes in sub-daily design rainfalls for the Greater Sydney region in Australia. Sixteen methods for predicting changes to sub-daily future extremes are assessed based on different options for bias correction, disaggregation and frequency analysis. A Monte Carlo cross-validation procedure is employed to evaluate the skill of each method in estimating the design rainfall for the current climate. It is found that bias correction significantly improves the accuracy of the design rainfall estimated for the current climate. For 1 h events, bias correcting the hourly annual maximum rainfall simulated by the RCM produces design rainfall closest to observations, whereas for multi-hour events, disaggregating the daily rainfall total is recommended. This suggests that the RCM fails to simulate the observed multi-duration rainfall persistence, which is a common issue for most climate models. Despite the significant differences in the estimated design rainfalls between different methods, all methods lead to an increase in design rainfalls across the majority of the study region.
NASA Astrophysics Data System (ADS)
Hu, Yijia; Zhong, Zhong; Zhu, Yimin; Ha, Yao
2018-04-01
In this paper, a statistical forecast model using the time-scale decomposition method is established to do the seasonal prediction of the rainfall during flood period (FPR) over the middle and lower reaches of the Yangtze River Valley (MLYRV). This method decomposites the rainfall over the MLYRV into three time-scale components, namely, the interannual component with the period less than 8 years, the interdecadal component with the period from 8 to 30 years, and the interdecadal component with the period larger than 30 years. Then, the predictors are selected for the three time-scale components of FPR through the correlation analysis. At last, a statistical forecast model is established using the multiple linear regression technique to predict the three time-scale components of the FPR, respectively. The results show that this forecast model can capture the interannual and interdecadal variation of FPR. The hindcast of FPR during 14 years from 2001 to 2014 shows that the FPR can be predicted successfully in 11 out of the 14 years. This forecast model performs better than the model using traditional scheme without time-scale decomposition. Therefore, the statistical forecast model using the time-scale decomposition technique has good skills and application value in the operational prediction of FPR over the MLYRV.
Medina, Anderson Matos; Lopes, Priscila Paixão
2014-01-01
Dung beetle (Coleoptera: Scarabaeoidea: Scarabaeinae) activity is influenced by rainfall seasonality. We hypothesized that rainfall might also play a major role in regulating the community structure of this group. In this study, we describe seasonal changes in the richness, composition, and structure of the Scarabaeinae community in a Brazilian tropical dry forest. A fragment of arboreal Caatinga was sampled using baited pitfall traps during the early dry season (EDS), late dry season (LDS), early wet season (EWS), and middle wet season (MWS). We compared the dung beetle community in each season in relationship to species richness, rank-dominance, curves, and composition. We collected 1352 Scarabaeinae individuals , belonging to 15 species. Dichotomius aff. laevicollis Felsche (Coleoptera: Scarabaeidae) was the dominant species, representing 73.89% of the individuals. There were no seasonal changes in the rank dominance curves; all had a single dominant species and a few species with low abundance, typical for arid areas. Estimated richness was highest in MWS, followed by EWS. Dry-season samples (EDS and LDS) had lower richness, with no significant difference between the dry seasons. Although species richness increased as the habitat became wetter, the difference between the wet and dry seasons was small, which differs completely from the findings of other studies in Neotropical dry forests, where almost all species cease activities in the dry season. Species composition changes were found in non-metric multidimensional scaling and sustained by analysis of similarity. All the seasons had pairwise differences in composition, with the exception of EDS and MWS, which indicates that the dung beetle community in this fragment requires more than three months of drought to trigger changes in species composition; this is probably due to small changes in the forest canopy. There was no difference in composition between EDS and MWS. As in other tropical dry forests, although to a lesser extent, the dung beetle community of this fragment responded to rainfall seasonality with changes in species composition and reduced species richness. Such responses, even to this lesser extent, may occur because of small changes in tree cover and minor microclimate changes. This is an open access paper. We use the Creative Commons Attribution 3.0 license that permits unrestricted use, provided that the paper is properly attributed.
A Global-Scale Examination of Monsoon-Related Precipitation.
NASA Astrophysics Data System (ADS)
Janowiak, John E.; Xie, Pingping
2003-12-01
A pentad version of the Global Precipitation Climatology Project global precipitation dataset is used to document the annual and interannual variations in precipitation over monsoon regions around the globe. An algorithm is described that determines objectively wet season onset and withdrawal for individual years, and this tool is used to examine the behavior of various characteristics of the major monsoon systems. The definition of onset and withdrawal are determined by examining the ramp-up and diminution of rainfall within the context of the climatological rainfall at each location. Also examined are interannual variations in onset and withdrawal and their relationship to rainy season precipitation accumulations. Changes in the distribution of “heavy” and “light” precipitation events are examined for years in which “abundant” and “poor” wet seasons are observed, and associations with variations in large-scale atmospheric general circulation features are also examined. In particular, some regions of the world have strong associations between wet season rainfall and global-scale patterns of 200-hPa streamfunction anomalies.
Versini, Pierre-Antoine; Gires, Auguste; Tchinguirinskaia, Ioulia; Schertzer, Daniel
2016-10-01
Currently widespread in new urban projects, green roofs have shown a positive impact on urban runoff at the building scale: decrease and slow-down of the peak discharge, and decrease of runoff volume. The present work aims to study their possible impact at the catchment scale, more compatible with stormwater management issues. For this purpose, a specific module dedicated to simulating the hydrological behaviour of a green roof has been developed in the distributed rainfall-runoff model (Multi-Hydro). It has been applied on a French urban catchment where most of the building roofs are flat and assumed to accept the implementation of a green roof. Catchment responses to several rainfall events covering a wide range of meteorological situations have been simulated. The simulation results show green roofs can significantly reduce runoff volume and the magnitude of peak discharge (up to 80%) depending on the rainfall event and initial saturation of the substrate. Additional tests have been made to assess the susceptibility of this response regarding both spatial distributions of green roofs and precipitation. It appears that the total area of greened roofs is more important than their locations. On the other hand, peak discharge reduction seems to be clearly dependent on spatial distribution of precipitation.
Borneo vortex and meso-scale convective rainfall
NASA Astrophysics Data System (ADS)
Koseki, S.; Koh, T.-Y.; Teo, C.-K.
2013-08-01
We have investigated how the Borneo vortex develops over the equatorial South China Sea under cold surge conditions in December during the Asian winter monsoon. Composite analysis using reanalysis and satellite datasets has revealed that absolute vorticity and water vapour are transported by strong cold surges from upstream of the South China Sea to around the equator. Rainfall is correspondingly enhanced over the equatorial South China Sea. A semi-idealized experiment reproduced the Borneo vortex over the equatorial South China Sea during a "perpetual" cold surge. The Borneo vortex is manifested as a meso-α cyclone with a comma-shaped rainband in the northeast sector of the cyclone. Vorticity budget analysis showed that the growth of the meso-α cyclone was achieved mainly by vortex stretching. The comma-shaped rainband consists of clusters of meso-β scale rainfall patches. The warm and wet cyclonic southeasterly flow meets with the cold and dry northeasterly surge forming a confluence front in the northeastern sector of the cyclone. Intense upward motion and heavy rainfall result both due to the low-level convergence and the favourable thermodynamic profile at the confluence front. At both meso-α and meso-β scales, the convergence is ultimately caused by the deviatoric strain in the confluence wind pattern but is much enhanced by nonlinear self-enhancement dynamics.
Yao, Lei; Chen, Liding; Wei, Wei
2017-01-01
In the context of global urbanization, urban flood risk in many cities has become a serious environmental issue, threatening the health of residents and the environment. A number of hydrological studies have linked urban flooding issues closely to the spectrum of spatial patterns of urbanization, but relatively little attention has been given to small-scale catchments within the realm of urban systems. This study aims to explore the hydrological effects of small-scaled urbanized catchments assigned with various landscape patterns. Twelve typical residential catchments in Beijing were selected as the study areas. Total Impervious Area (TIA), Directly Connected Impervious Area (DCIA), and a drainage index were used as the catchment spatial metrics. Three scenarios were designed as different spatial arrangement of catchment imperviousness. Runoff variables including total and peak runoff depth (Qt and Qp) were simulated by using Strom Water Management Model (SWMM). The relationship between catchment spatial patterns and runoff variables were determined, and the results demonstrated that, spatial patterns have inherent influences on flood risks in small urbanized catchments. Specifically: (1) imperviousness acts as an effective indicator in affecting both Qt and Qp; (2) reducing the number of rainwater inlets appropriately will benefit the catchment peak flow mitigation; (3) different spatial concentrations of impervious surfaces have inherent influences on Qp. These findings provide insights into the role of urban spatial patterns in driving rainfall-runoff processes in small urbanized catchments, which is essential for urban planning and flood management. PMID:28264521
Yao, Lei; Chen, Liding; Wei, Wei
2017-02-28
In the context of global urbanization, urban flood risk in many cities has become a serious environmental issue, threatening the health of residents and the environment. A number of hydrological studies have linked urban flooding issues closely to the spectrum of spatial patterns of urbanization, but relatively little attention has been given to small-scale catchments within the realm of urban systems. This study aims to explore the hydrological effects of small-scaled urbanized catchments assigned with various landscape patterns. Twelve typical residential catchments in Beijing were selected as the study areas. Total Impervious Area ( TIA ), Directly Connected Impervious Area ( DCIA ), and a drainage index were used as the catchment spatial metrics. Three scenarios were designed as different spatial arrangement of catchment imperviousness. Runoff variables including total and peak runoff depth ( Q t and Q p ) were simulated by using Strom Water Management Model (SWMM). The relationship between catchment spatial patterns and runoff variables were determined, and the results demonstrated that, spatial patterns have inherent influences on flood risks in small urbanized catchments. Specifically: (1) imperviousness acts as an effective indicator in affecting both Q t and Q p ; (2) reducing the number of rainwater inlets appropriately will benefit the catchment peak flow mitigation; (3) different spatial concentrations of impervious surfaces have inherent influences on Q p . These findings provide insights into the role of urban spatial patterns in driving rainfall-runoff processes in small urbanized catchments, which is essential for urban planning and flood management.
Diagnostics of Rainfall Anomalies in the Nordeste During the Global Weather Experiment
NASA Technical Reports Server (NTRS)
Sikdar, D. M.
1984-01-01
The relationship of the daily variability of large-scale pressure, cloudiness and upper level wind patterns over the Brazil-Atlantic sector during March/April 1979 to rainfall anomalies in northern Nordeste was investigated. The experiment divides the rainy season (March/April) of 1979 into wet and dry days, then composites bright cloudiness, sea level pressure, and upper level wind fields with respect to persistent rainfall episodes. Wet and dry anomalies are analyzed along with seasonal mean conditions.
Design of the primary pre-TRMM and TRMM ground truth site
NASA Technical Reports Server (NTRS)
Garstang, Michael
1988-01-01
The primary objective of the Tropical Rain Measuring Mission (TRMM) were to: integrate the rain gage measurements with radar measurements of rainfall using the KSFC/Patrick digitized radar and associated rainfall network; delineate the major rain bearing systems over Florida using the Weather Service reported radar/rainfall distributions; combine the integrated measurements with the delineated rain bearing systems; use the results of the combined measurements and delineated rain bearing systems to represent patterns of rainfall which actually exist and contribute significantly to the rainfall to test sampling strategies and based on the results of these analyses decide upon the ground truth network; and complete the design begun in Phase 1 of a multi-scale (space and time) surface observing precipitation network centered upon KSFC. Work accomplished and in progress is discussed.
Trends in autumn rain of West China from 1961 to 2014
NASA Astrophysics Data System (ADS)
Zhang, Chi; Wang, Zunya; Zhou, Botao; Li, Yonghua; Tang, Hongyu; Xiang, Bo
2018-02-01
Autumn rain of West China is a typical climate phenomenon, which is characterized by continuous rainy days and large rainfall amounts and exerts profound impacts on the economic society. Based on daily precipitation data from 524 observation stations for the period of 1961-2014, this article comprehensively examined secular changes in autumn rain of West China, including its amount, frequency, intensity, and associated extremes. The results generally show a significant reduction of rainfall amount and rainy days and a significant enhancement of mean rainfall intensity for the average of West China during autumn (September-October) since 1961. Meanwhile, decreasing trends are consistently observed in the maximum daily rainfall, the longest consecutive rainy days, the greatest consecutive rainfall amount, and the frequencies of the extreme daily rainfall, consecutive rainfall, and consecutive rainfall process. Further analysis indicates that the decreases of autumn rainfall and related extremes in West China are associated with the decreases in both water vapor content and atmospheric unstable stratification during the past decades. On the regional scale, some differences exist in the changes of autumn rainfall between the eastern and western parts of West China. Besides, it is found that the autumn rainy season tends to start later and terminate earlier particularly in eastern West China.
Estimation of Rainfall Erosivity via 1-Minute to Hourly Rainfall Data from Taipei, Taiwan
NASA Astrophysics Data System (ADS)
Huang, Ting-Yin; Yang, Ssu-Yao; Jan, Chyan-Deng
2017-04-01
Soil erosion is a natural process on hillslopes that threats people's life and properties, having a considerable environmental and economic implications for soil degradation, agricultural activity and water quality. The rainfall erosivity factor (R-factor) in the Universal Soil Loss Equation (USLE), composed of total kinetic energy (E) and the maximum 30-min rainfall intensity (I30), is widely used as an indicator to measure the potential risks of soil loss caused by rainfall at a regional scale. This R factor can represent the detachment and entrainment involved in climate conditions on hillslopes, but lack of 30-min rainfall intensity data usually lead to apply this factor more difficult in many regions. In recent years, fixed-interval, hourly rainfall data is readily available and widely used due to the development of automatic weather stations. Here we assess the estimations of R, E, and I30 based on 1-, 5-, 10-, 15-, 30-, 60-minute rainfall data, and hourly rainfall data obtained from Taipei weather station during 2004 to 2010. Results show that there is a strong correlation among R-factors estimated from different interval rainfall data. Moreover, the shorter time-interval rainfall data (e.g., 1-min) yields larger value of R-factor. The conversion factors of rainfall erosivity (ratio of values estimated from the resolution lower than 30-min rainfall data to those estimated from 60-min and hourly rainfall data, respectively) range from 1.85 to 1.40 (resp. from 1.89 to 1.02) for 60-min (resp. hourly) rainfall data as the time resolution increasing from 30-min to 1-min. This paper provides useful information on estimating R-factor when hourly rainfall data is only available.
NASA Astrophysics Data System (ADS)
Iserloh, Thomas; Cerdà, Artemi; Fister, Wolfgang; Seitz, Steffen; Keesstra, Saskia; Green, Daniel; Gabriels, Donald
2017-04-01
Rainfall simulators are used extensively within the hydrological and geomorphological sciences and provide a useful investigative tool to understand many processes, such as: (i) plot-scale runoff, infiltration and erosion; (ii) irrigation and crop management, and; (iii) investigations into flooding within a laboratory setting. Although natural rainfall is desirable as it represents actual conditions in a given geographic location, data acquisition relying on natural rainfall is often hindered by its unpredictable nature. Furthermore, rainfall characteristics such as the intensity, duration, drop size distribution and kinetic energy cannot be spatially or temporally regulated or repeated between experimentation. Rainfall simulators provide a suitable method to overcome the issues associated with depending on potentially erratic and unpredictable natural rainfall as they allow: (i) multiple measurements to be taken quickly without waiting for suitable natural rainfall conditions; (ii) the simulation of spatially and/or temporally controlled rainfall patterns over a given plot area, and; (iii) the creation of a closed environment, allowing simplified measurement of input and output conditions. There is no standardisation of rainfall simulation and as such, rainfall simulators differ in their design, rainfall characteristics and research application. Although this impedes drawing meaningful comparisons between studies, this allows researchers to create a bespoke and tailored rainfall simulator for the specific research application. This paper summarises the rainfall simulators used in European research institutions (Universities of Trier, Valencia, Basel, Tuebingen, Wageningen, Loughborough and Ghent) to investigate a number of hydrological and geomorphological issues and includes details on the design specifications (such as the extent and characteristics of simulated rainfall), as well as a discussion of the purpose and application of the rainfall simulator.
TRMM rainfall estimative coupled with Bell (1969) methodology for extreme rainfall characterization
NASA Astrophysics Data System (ADS)
Schiavo Bernardi, E.; Allasia, D.; Basso, R.; Freitas Ferreira, P.; Tassi, R.
2015-06-01
The lack of rainfall data in Brazil, and, in particular, in Rio Grande do Sul State (RS), hinders the understanding of the spatial and temporal distribution of rainfall, especially in the case of the more complex extreme events. In this context, rainfall's estimation from remote sensors is seen as alternative to the scarcity of rainfall gauges. However, as they are indirect measures, such estimates needs validation. This paper aims to verify the applicability of the Tropical Rainfall Measuring Mission (TRMM) satellite information for extreme rainfall determination in RS. The analysis was accomplished at different temporal scales that ranged from 5 min to daily rainfall while spatial distribution of rainfall was investigated by means of regionalization. An initial test verified TRMM rainfall estimative against measured rainfall at gauges for 1998-2013 period considering different durations and return periods (RP). Results indicated that, for the RP of 2, 5, 10 and 15 years, TRMM overestimated on average 24.7% daily rainfall. As TRMM minimum time-steps is 3 h, in order to verify shorter duration rainfall, the TRMM data were adapted to fit Bell's (1969) generalized IDF formula (based on the existence of similarity between the mechanisms of extreme rainfall events as they are associated to convective cells). Bell`s equation error against measured precipitation was around 5-10%, which varied based on location, RP and duration while the coupled BELL+TRMM error was around 10-35%. However, errors were regionally distributed, allowing a correction to be implemented that reduced by half these values. These findings in turn permitted the use of TRMM+Bell estimates to improve the understanding of spatiotemporal distribution of extreme hydrological rainfall events.
Rainfall-ground movement modelling for natural gas pipelines through landslide terrain
DOE Office of Scientific and Technical Information (OSTI.GOV)
O`Neil, G.D.; Simmonds, G.R.; Grivas, D.A.
1996-12-31
Perhaps the greatest challenge to geotechnical engineers is to maintain the integrity of pipelines at river crossings where landslide terrain dominates the approach slopes. The current design process at NOVA Gas Transmission Ltd. (NGTL) has developed to the point where this impact can be reasonably estimated using in-house models of pipeline-soil interaction. To date, there has been no method to estimate ground movements within unexplored slopes at the outset of the design process. To address this problem, rainfall and slope instrumentation data have been processed to derive rainfall-ground movement relationships. Early results indicate that the ground movements exhibit two components:more » a steady, small rate of movement independent of the rainfall, and, increased rates over short periods of time following heavy amounts of rainfall. Evidence exists of a definite threshold value of rainfall which has to be exceeded before any incremental movement is induced. Additional evidence indicates a one-month lag between rainfall and ground movement. While these models are in the preliminary stage, results indicate a potential to estimate ground movements for both initial design and planned maintenance actions.« less
NASA Astrophysics Data System (ADS)
Pillai, Prasanth A.; Aher, Vaishali R.
2018-01-01
Intraseasonal oscillation (ISO), which appears as "active" and "break" spells of rainfall, is an important component of Indian summer monsoon (ISM). The present study investigates the potential of new National Centre for Environmental Prediction (NCEP) climate forecast system version 2 (CFSv2) in simulating the ISO with emphasis to its interannual variability (IAV) and its possible role in the seasonal mean rainfall. The present analysis shows that the spatial distribution of CFSv2 rainfall has noticeable differences with observations in both ISO and IAV time scales. Active-break cycle of CFSv2 has similar evolution during both strong and weak years. Regardless of a reasonable El Niño Southern Oscillation (ENSO)-monsoon teleconnection in the model, the overestimated Arabian Sea (AS) sea surface temperature (SST)-convection relationship hinters the large-scale influence of ENSO over the ISM region and adjacent oceans. The ISO scale convections over AS and Bay of Bengal (BoB) have noteworthy contribution to the seasonal mean rainfall, opposing the influence of boundary forcing in these areas. At the same time, overwhelming contribution of ISO component over AS towards the seasonal mean modifies the effect of slow varying boundary forcing to large-scale summer monsoon. The results here underline that, along with the correct simulation of monsoon ISO, its IAV and relationship with the boundary forcing also need to be well captured in coupled models for the accurate simulation of seasonal mean anomalies of the monsoon and its teleconnections.
NASA Astrophysics Data System (ADS)
Chen, Chi-Wen; Oguchi, Takashi; Hayakawa, Yuichi S.; Saito, Hitoshi; Chen, Hongey; Lin, Guan-Wei; Wei, Lun-Wei; Chao, Yi-Chiung
2018-02-01
Debris sourced from landslides will result in environmental problems such as increased sediment discharge in rivers. This study analyzed the sediment discharge of 17 main rivers in Taiwan during 14 typhoon events, selected from the catchment area and river length, that caused landslides according to government reports. The measured suspended sediment and water discharge, collected from hydrometric stations of the Water Resources Agency of Taiwan, were used to establish rating-curve relationships, a power-law relation between them. Then sediment discharge during typhoon events was estimated using the rating-curve method and the measured data of daily water discharge. Positive correlations between sediment discharge and rainfall conditions for each river indicate that sediment discharge increases when a greater amount of rainfall or a higher intensity of rainfall falls during a typhoon event. In addition, the amount of sediment discharge during a typhoon event is mainly controlled by the total amount of rainfall, not by peak rainfall. Differences in correlation equations among the rivers suggest that catchments with larger areas produce more sediment. Catchments with relatively low sediment discharge show more distinct increases in sediment discharge in response to increases in rainfall, owing to the little opportunity for deposition in small catchments with high connectivity to rivers and the transportation of the majority of landslide debris to rivers during typhoon events. Also, differences in geomorphic and geologic conditions among catchments around Taiwan lead to a variety of suspended sediment dynamics and the sediment budget. Positive correlation between average sediment discharge and average area of landslides during typhoon events indicates that when larger landslides are caused by heavier rainfall during a typhoon event, more loose materials from the most recent landslide debris are flushed into rivers, resulting in higher sediment discharge. The high proportion of large landslides in Taiwan contributes significantly to the high annual sediment yield, which is among the world's highest despite the small area of Taiwan.
Design and development of surface rainfall forecast products on GRAPES_MESO model
NASA Astrophysics Data System (ADS)
Zhili, Liu
2016-04-01
In this paper, we designed and developed the surface rainfall forecast products using medium scale GRAPES_MESO model precipitation forecast products. The horizontal resolution of GRAPES_MESO model is 10km*10km, the number of Grids points is 751*501, vertical levels is 26, the range is 70°E-145.15°E, 15°N-64.35 °N. We divided the basin into 7 major watersheds. Each watersheds was divided into a number of sub regions. There were 95 sub regions in all. Tyson polygon method is adopted in the calculation of surface rainfall. We used 24 hours forecast precipitation data of GRAPES_MESO model to calculate the surface rainfall. According to the site of information and boundary information of the 95 sub regions, the forecast surface rainfall of each sub regions was calculated. We can provide real-time surface rainfall forecast products every day. We used the method of fuzzy evaluation to carry out a preliminary test and verify about the surface rainfall forecast product. Results shows that the fuzzy score of heavy rain, rainstorm and downpour level forecast rainfall were higher, the fuzzy score of light rain level was lower. The forecast effect of heavy rain, rainstorm and downpour level surface rainfall were better. The rate of missing and empty forecast of light rainfall level surface rainfall were higher, so it's fuzzy score were lower.
Techniques for estimating magnitude and frequency of floods on streams in Indiana
Glatfelter, D.R.
1984-01-01
A rainfall-runoff model was tlsed to synthesize long-term peak data at 11 gaged locations on small streams. Flood-frequency curves developed from the long-term synthetic data were combined with curves based on short-term observed data to provide weighted estimates of flood magnitude and frequency at the rainfall-runoff stations.
NASA Astrophysics Data System (ADS)
Versini, Pierre-Antoine; Sempere-Torres, Daniel
2010-05-01
Important damages occur in small headwater catchments when they are hit by severe storms with complex spatio-temporal structure, sometimes resulting in flash floods. As these catchments are mostly not covered by sensor networks, it is difficult to forecast these floods. This is particularly true for road submersions. These are major concerns for flood event managers. The use of Quantitative Precipitation Estimates and Forecasts (QPE/QPF) especially based on radar measurements could particularly be adequate to evaluate rainfall-induced risks. Although their characteristic time and space scales would make them suitable for flash flood modelling, the impact of their uncertainties remain uncertain and have to be evaluated. The Gard region (France) has been chosen as case study. This area is frequently affected by severe flash floods and different kinds of rainfall observations are available in real time: radar rainfall estimates and nowcasts from METEO FRANCE and the CALAMAR system from SPC (state authority in charge of flood forecasting). An application devoted to the road network, has also been recently developed for this region. It combines distributed hydro-meteorological very short range forecasts and vulnerability analysis to provide warnings of road submersions. The first results demonstrate that it is technically possible to provide distributed short-term forecasts for a large number of sites. The study also demonstrates that a reliable estimation of the spatial distribution of rainfall is essential. For this reason, the road submersion warning system can be used to evaluate the quality of rainfall estimates and nowcasts. The warning system has been tested on the specific storm of the 29-30 September 2007. During this event, more than 300mm dropped on the South part of the Gard and many roads were submerged. Each of the mentioned rainfall datasets (i.e. estimates and nowcasts) was available in real time. They have been used to forecast the exact location of road submersions and the results have been compared to the effective road submersions actually occurred during the event as listed by the emergency services. The results confirm that the road submersion warning system represents a promising tool for anticipating and quantifying the consequences of storm events at ground. It rates the submersion risk with an acceptable level of accuracy and a reasonable false alarm ratio. It demonstrates also the quality of high spatial and temporal resolution radar rainfall data in real time, and the possibility to use them despite their uncertainties. However because of the quality of rainfall nowcasts falls drastically with time, it is not often sufficient to provide valuable information for lead times exceeding one hour.
NASA Astrophysics Data System (ADS)
Fraedrich, K.
2014-12-01
Processes along the continental rainfall-runoff chain cover a wide range of time and space scales which are presented here combining observations (ranging from minutes to decades) and minimalist concepts. (i) Rainfall, which can be simulated by a censored first-order autoregressive process (vertical moisture fluxes), exhibits 1/f-spectra if presented as binary events (tropics), while extrema world wide increase with duration according to Jennings' scaling law. (ii) Runoff volatility (Yangtze) shows data collapse which, linked to an intra-annual 1/f-spectrum, is represented by a single function not unlike physical systems at criticality and the short and long return times of extremes are Weibull-distributed. Atmospheric and soil moisture variabilities are also discussed. (iii) Soil moisture (in a bucket), whose variability is interpreted by a biased coinflip Ansatz for rainfall events, adds an equation of state to energy and water flux balances comprising Budyko's frame work for quasi-stationary watershed analysis. Eco-hydrologic state space presentations in terms of surface flux ratios of energy excess (loss by sensible heat over supply by net radiation) versus water excess (loss by discharge over gain by precipitation) allow attributions of state change to external (or climate) and internal (or anthropogenic) causes. Including the vegetation-greenness index (NDVI) as an active tracer extends the eco-hydrologic state space analysis to supplement the common geographical presentations. Two examples demonstrate the approach combining ERA and MODIS data sets: (a) global geobotanic classification by combining first and second moments of the dryness ratio (net radiation over precipitation) and (b) regional attributions (Tibetan Plateau) of vegetation changes.
NASA Astrophysics Data System (ADS)
Bechet, Jacques; Duc, Julien; Loye, Alexandre; Jaboyedoff, Michel; Mathys, Nicolle; Malet, Jean-Philippe; Klotz, Sébastien; Le Bouteiller, Caroline; Rudaz, Benjamin; Travelletti, Julien
2016-10-01
The Roubine catchment located in the experimental research station of Draix-Bléone (south French Alps) is situated in Callovo-Oxfordian black marls, a lithology particularly prone to erosion and weathering processes. For 30 years, this small watershed (0.13 ha) has been monitored for analysing hillslope processes on the scale of elementary gullies. Since 2007, surface changes have been monitored by comparing high-resolution digital elevation models (HRDEMs) produced from terrestrial laser scanner (TLS). The objectives are (1) to detect and (2) to quantify the sediment production and the evolution of the gully morphology in terms of sediment availability/transport capacity vs. rainfall and runoff generation. Time series of TLS observations have been acquired periodically based on the seasonal runoff activity with a very high point cloud density ensuring a resolution of the digital elevation model (DEM) on the centimetre scale. The topographic changes over a time span of 2 years are analysed. Quantitative analyses of the seasonal erosion activity and of the sediment fluxes show and confirm that during winter, loose regolith is created by mechanical weathering, and it is eroded and accumulates in the rills and gullies. Because of limited rainfall intensity in spring, part of the material is transported in the main gullies, which are assumed to be a transport-limited erosion system. In the late spring and summer the rainfall intensities increase, allowing the regolith, weathered and accumulated in the gullies and rills during the earlier seasons, to be washed out. Later in the year the catchment acts as a sediment-limited system because no more loose regolith is available. One interesting result is the fact that in the gullies the erosion-deposition processes are more active around the slope angle value of 35°, which probably indicates a behaviour close to dry granular material. It is also observed that there exist thresholds for the rainfall events that are able to trigger significant erosion; they are above 9 mm rainfall or of an intensity of more than 1 mm min-1, values which can vary if antecedent precipitation is significant within the last 5 days.
This study improves knowledge of the spatial distribution of erosion seasonality in badlands and demonstrates the potential of careful 3-D high-resolution topography using TLS to improve the understanding of erosive processes.
NASA Astrophysics Data System (ADS)
Papadimitriou, Constantinos; Donner, Reik V.; Stolbova, Veronika; Balasis, Georgios; Kurths, Jürgen
2015-04-01
Indian Summer monsoon is one of the most anticipated and important weather events with vast environmental, economical and social effects. Predictability of the Indian Summer Monsoon strength is crucial question for life and prosperity of the Indian population. In this study, we are attempting to uncover the relationship between the spatial complexity of Indian Summer Monsoon rainfall patterns, and the monsoon strength, in an effort to qualitatively determine how spatial organization of the rainfall patterns differs between strong and weak instances of the Indian Summer Monsoon. Here, we use observational satellite data from 1998 to 2012 from the Tropical Rainfall Measuring Mission (TRMM 3B42V7) and reanalysis gridded daily rainfall data for a time period of 57 years (1951-2007) (Asian Precipitation Highly Resolved Observational Data Integration Towards the Evaluation of Water Resources, APHRODITE). In order to capture different aspects of the system's dynamics, first, we convert rainfall time series to binary symbolic sequences, exploring various thresholding criteria. Second, we apply the Shannon entropy formulation (in a block-entropy sense) using different measures of normalization of the resulting entropy values. Finally, we examine the effect of various large-scale climate modes such as El-Niño-Southern Oscillation, North Atlantic Oscillation, and Indian Ocean Dipole, on the emerging complexity patterns, and discuss the possibility for the utilization of such pattern maps in the forecasting of the spatial variability and strength of the Indian Summer Monsoon.
NASA Astrophysics Data System (ADS)
Romano, N.; Petroselli, A.; Grimaldi, S.
2012-04-01
With the aim of combining the practical advantages of the Soil Conservation Service - Curve Number (SCS-CN) method and Green-Ampt (GA) infiltration model, we have developed a mixed procedure, which is referred to as CN4GA (Curve Number for Green-Ampt). The basic concept is that, for a given storm, the computed SCS-CN total net rainfall amount is used to calibrate the soil hydraulic conductivity parameter of the Green-Ampt model so as to distribute in time the information provided by the SCS-CN method. In a previous contribution, the proposed mixed procedure was evaluated on 100 observed events showing encouraging results. In this study, a sensitivity analysis is carried out to further explore the feasibility of applying the CN4GA tool in small ungauged catchments. The proposed mixed procedure constrains the GA model with boundary and initial conditions so that the GA soil hydraulic parameters are expected to be insensitive toward the net hyetograph peak. To verify and evaluate this behaviour, synthetic design hyetograph and synthetic rainfall time series are selected and used in a Monte Carlo analysis. The results are encouraging and confirm that the parameter variability makes the proposed method an appropriate tool for hydrologic predictions in ungauged catchments. Keywords: SCS-CN method, Green-Ampt method, rainfall excess, ungauged basins, design hydrograph, rainfall-runoff modelling.
Runoff Response at Three Spatial Scale from a Burned Watershed
NASA Astrophysics Data System (ADS)
Moody, J. A.; Kinner, D. A.
2007-12-01
The hypothesis that the magnitude and timing of runoff from burned watersheds are functions of the properties of flow paths at multiple scales was investigated at three nested spatial scales within an area burned by the 2005 Harvard Fire near Burbank, California. Water depths were measured using pressure sensors: at the outlet of a subwatershed (10000 m2); in 3-inch Parshall flumes near the outlets of three mini-watersheds (820-1780 m2) within the subwatershed; and by 12 overland-flow detectors in 6 micro-watersheds (~11-15 m2) within one of the mini-watersheds. Rainfall intensities were measured using recording raingages deployed around the perimeter of the mini-watersheds and at the subwatershed outlet. Time-to-concentration, TC, and lag time, TL, were computed for the 15 largest of 30 rainstorms (maximum 30- minute intensities were 3.3-13.0 mm/h) between December 2005 and April 2006. TC , elapsed time from the beginning of the rain until the first increase in water depth, averaged 1.0 hours at the micro-scale, 1.7 hours at the mini-scale, and 1.5 hours at the subwatershed scale. TL is the lag time that produced the maximum cross- correlation coefficient between the time series of rainfall intensities and the series of water depths. TL averaged 0.15 hours at the micro-scale, 0.35 hours at the mini-scale, and 0.39 hours at the subwatershed scale. The coefficient was >0.50 for 43% (N=168) of the measurements at the micro-scale, for 61% (N=54) at the mini- scale, and for 67% (N=6) at the subwatershed scale indicating the runoff response lagged but was often well correlated with the time-varying rainfall intensity.
Significant or negligible sediment and nutrient losses after fire? Pre- and post-fire comparisons
NASA Astrophysics Data System (ADS)
Shakesby, R. A.; Ferreira, A. J. D.; Ferreira, C. S. S.; Stoof, C. R.; Urbanek, E.; Walsh, R. P. D.
2009-04-01
Prescribed fire (or a controlled burn) is a management tool used in wildfire-prone areas to reduce the fuel load of living and dead biomass, while attempting to keep disturbance of the ground surface and soil to a minimum. We know that wildfire, particularly of moderate or extreme severity, can cause important changes to the chemical and physical properties of soil, typically leading to a reduction in aggregate stability, surface roughness and water storage capacity, and an increase in overland flow. It has also been shown that wildfire disturbance can cause major loss of soil, particularly at plot and hillslope scales. There is less information on soil losses at catchment scales, but it is known that losses particularly of organic-rich fine sediment and nutrients can undergo hillslope to channel transfer, where they can affect water quality. Far less research has been carried out into the effects of prescribed fire on soil and nutrient losses at all scales, but particularly at catchment scales. This paper considers the impact of an experimental fire (equivalent to a severe prescribed fire) on soil and nutrient losses. These losses have been monitored at a range of scales (small rainfall simulation plots, long-term erosion plot, erosion plot, hillslope sediment traps (sediment fences) and catchment) before and after the fire in a 10-ha catchment near Góis, central Portugal, which forms part of the 5-year DESIRE research programme concerning desertification and its mitigation at a range of study sites worldwide. The catchment has steep slopes covered mainly with scrub vegetation ranging from c. 0.15 to 2m in height. The soil is thin, stony and highly water repellent. Long-term pre-burn erosion rates are known from a c. 10-year record of soil losses from a small erosion plot (8 x 2m in size) and sediment accumulation in the weir pool of a subcatchment gauging station. Rainfall simulations carried out under dry and wet antecedent conditions before and after the fire, eroded soil collected in sediment fences installed in strategic locations on the catchment slopes and suspended sediment and bedload determinations at the catchment gauging station provide the evidence for pre- and post-fire erosional losses. Comparison with wildfire effects is provided by instrumented scrub-covered hillslopes burnt in early summer 2008 in the same area. In addition to monitoring soil losses in the small catchment, losses of selected nutrients in eroded soil and runoff together with determinations of pre- and post-fire vegetation cover, fuel loads and soil water repellency have been determined. The soil degradational implications are discussed and placed in the context of the literature on prescribed fire and wildfire impacts from elsewhere in the Mediterranean and from further afield.
NASA Astrophysics Data System (ADS)
Sarkar, S.; Peters-Lidard, C.; Chiu, L.; Kafatos, M.
2005-12-01
Increasing population and urbanization have created stress on developing nations. The quickly shifting patterns of vegetation change in different parts of the world have given rise to the pertinent question of feedback on the climate prevailing on local to regional scales. It is now known with some certainty, that vegetation changes can affect the climate by influencing the heat and water balance. The hydrological cycle particularly is susceptible to changes in vegetation. The Monsoon rainfall forms a vital link in the hydrological cycle prevailing over South East Asia This work examines the variability of vegetation over South East Asia and assesses its impact on the monsoon rainfall. We explain the role of changing vegetation and show how this change has affected the heat and energy balance. We demonstrate the role of vegetation one season earlier in influencing rainfall intensity over specific areas in South East Asia and show the ramification of vegetation change on the summer rainfall behavior. The vegetation variability study specifically focuses on India and China, two of the largest and most populous nations. We have done an assessment to find out the key meteorological and human induced parameters affecting vegetation over the study area through a spatial analysis of monthly NDVI values. This study highlights the role of monsoon rainfall, regional climate dynamics and large scale human induced pollution to be the crucial factors governing the vegetation and vegetation distribution. The vegetation is seen to follow distinct spatial patterns that have been found to be crucial in its eventual impact on monsoon rainfall. We have carried out a series of sensitivity experiments using a land surface hydrologic modeling scheme. The vital energy and water balance parameters are identified and the daily climatological cycles are examined for possible change in behavior for different boundary conditions. It is found that the change from native deciduous forest vegetation to crop land affects monsoon rainfall in two ways: 1) The presence of cropland increases the sensible heat release from ground, increasing the chances for development of forced convection; 2) Large scale irrigation associated with spring crop development creates a moister lower boundary layer thus inducing more moist instability and free convection in the succeeding season.
Improving Assimilated Global Climate Data Using TRMM and SSM/I Rainfall and Moisture Data
NASA Technical Reports Server (NTRS)
Hou, Arthur Y.; Zhang, Sara Q.; daSilva, Arlindo M.; Olson, William S.
1999-01-01
Current global analyses contain significant errors in primary hydrological fields such as precipitation, evaporation, and related cloud and moisture in the tropics. Work has been underway at NASA's Data Assimilation Office to explore the use of TRMM and SSM/I-derived rainfall and total precipitable water (TPW) data in global data assimilation to directly constrain these hydrological parameters. We found that assimilating these data types improves not only the precipitation and moisture estimates but also key climate parameters directly linked to convection such as the outgoing longwave radiation, clouds, and the large-scale circulation in the tropics. We will present results showing that assimilating TRMM and SSM/I 6-hour averaged rain rates and TPW estimates significantly reduces the state-dependent systematic errors in assimilated products. Specifically, rainfall assimilation improves cloud and latent heating distributions, which, in turn, improves the cloudy-sky radiation and the large-scale circulation, while TPW assimilation reduces moisture biases to improve radiation in clear-sky regions. Rainfall and TPW assimilation also improves tropical forecasts beyond 1 day.
NASA Astrophysics Data System (ADS)
Sirianni, M.; Comas, X.; Shoemaker, B.
2017-12-01
Wetland methane emissions are highly variable both in space and time, and are controlled by changes in certain biogeochemical controls (i.e. organic matter availability; redox potential) and/or other environmental factors (i.e. soil temperature; water level). Consequently, hot spots (areas with disproportionally high emissions) may develop where biogeochemical and environmental conditions are especially conducive for enhancing certain microbial processes such as methanogenesis. The Big Cypress National Preserve is a collection of subtropical wetlands in southwestern Florida, including extensive forested (cypress, pine, hardwood) and sawgrass ecosystems that dry and flood annually in response to rainfall. In addition to rainfall, hydroperiod, fire regime, elevation above mean sea level, dominant vegetation type and underlying geological controls contribute to the development and evolution of organic and calcitic soils found throughout the Preserve. Currently, the U.S. Geological Survey employs eddy covariance methods within the Preserve to quantify carbon and methane exchanges over several spatially extensive vegetation communities. While eddy covariance towers are a convenient tool for measuring gas exchanges at the ecosystem scale, their spatially extensive footprint (hundreds of meters) may mask smaller scale spatial variabilities that may be conducive to the development of hot spots. Similarly, temporal resolution (i.e. sampling effort) at scales smaller that the eddy covariance measurement footprint is important since low resolution data may overlook rapid emission events and the temporal variability of discrete hot spots. In this work, we intend to estimate small-scale contributions of organic and calcitic soils to gas exchanges measured by the eddy covariance towers using a unique combination of ground penetrating radar (GPR), capacitance probes, gas traps, and time-lapse photography. By using an array of methods that vary in spatio-temporal resolution, we hope to better understand the uncertainties associated with measuring wetland methane fluxes across different spatial and temporal scales. Our results have implications for characterizing and refining methane flux estimates in subtropical peat soils that could be used for climate models.
Using Remotely Sensed Information for Near Real-Time Landslide Hazard Assessment
NASA Technical Reports Server (NTRS)
Kirschbaum, Dalia; Adler, Robert; Peters-Lidard, Christa
2013-01-01
The increasing availability of remotely sensed precipitation and surface products provides a unique opportunity to explore how landslide susceptibility and hazard assessment may be approached at larger spatial scales with higher resolution remote sensing products. A prototype global landslide hazard assessment framework has been developed to evaluate how landslide susceptibility and satellite-derived precipitation estimates can be used to identify potential landslide conditions in near-real time. Preliminary analysis of this algorithm suggests that forecasting errors are geographically variable due to the resolution and accuracy of the current susceptibility map and the application of satellite-based rainfall estimates. This research is currently working to improve the algorithm through considering higher spatial and temporal resolution landslide susceptibility information and testing different rainfall triggering thresholds, antecedent rainfall scenarios, and various surface products at regional and global scales.
Scaling properties of rainfall records in some Mexican zones
NASA Astrophysics Data System (ADS)
Angulo-Fernández, Fercia; Reyes-Ramírez, Israel; Flores-Márquez, Elsa Leticia
2018-04-01
Since the 1990 decade, it has been suggested that atmospheric processes associated with rainfall could be a self-organized critical (SOC) phenomenon similar, for example, to seismicity. In this sense, the rain events taken as the output of the complex atmospheric system (sun's radiation, water evaporation, clouds, etc.) are analogous to earthquakes, as the output of a relaxation process of the earth crust. A clue on this possible SOC behavior of rain phenomenon has been the ubiquitous presence of power laws in rain statistics. In the present article, we report the scaling properties of rain precipitation data taken from meteorological stations located at six zones of Mexico. Our results are consistent with those that assert that rainfall is a SOC phenomenon. We also analyze the Hurst exponent, which is appropriate to measure long-term memory of time series.
Climatic controls on the global distribution, abundance, and species richness of mangrove forests
Osland, Michael J.; Feher, Laura C.; Griffith, Kereen; Cavanaugh, Kyle C.; Enwright, Nicholas M.; Day, Richard H.; Stagg, Camille L.; Krauss, Ken W.; Howard, Rebecca J.; Grace, James B.; Rogers, Kerrylee
2017-01-01
Mangrove forests are highly productive tidal saline wetland ecosystems found along sheltered tropical and subtropical coasts. Ecologists have long assumed that climatic drivers (i.e., temperature and rainfall regimes) govern the global distribution, structure, and function of mangrove forests. However, data constraints have hindered the quantification of direct climate-mangrove linkages in many parts of the world. Recently, the quality and availability of global-scale climate and mangrove data have been improving. Here, we used these data to better understand the influence of air temperature and rainfall regimes upon the distribution, abundance, and species richness of mangrove forests. Although our analyses identify global-scale relationships and thresholds, we show that the influence of climatic drivers is best characterized via regional range limit-specific analyses. We quantified climatic controls across targeted gradients in temperature and/or rainfall within 14 mangrove distributional range limits. Climatic thresholds for mangrove presence, abundance, and species richness differed among the 14 studied range limits. We identified minimum temperature-based thresholds for range limits in eastern North America, eastern Australia, New Zealand, eastern Asia, eastern South America, and southeast Africa. We identified rainfall-based thresholds for range limits in western North America, western Gulf of Mexico, western South America, western Australia, Middle East, northwest Africa, east central Africa, and west central Africa. Our results show that in certain range limits (e.g., eastern North America, western Gulf of Mexico, eastern Asia), winter air temperature extremes play an especially important role. We conclude that rainfall and temperature regimes are both important in western North America, western Gulf of Mexico, and western Australia. With climate change, alterations in temperature and rainfall regimes will affect the global distribution, abundance, and diversity of mangrove forests. In general, warmer winter temperatures are expected to allow mangroves to expand poleward at the expense of salt marshes. However, dispersal and habitat availability constraints may hinder expansion near certain range limits. Along arid and semi-arid coasts, decreases or increases in rainfall are expected to lead to mangrove contraction or expansion, respectively. Collectively, our analyses quantify climate-mangrove linkages and improve our understanding of the expected global- and regional-scale effects of climate change upon mangrove forests.
NASA Astrophysics Data System (ADS)
Matsumoto, Kengo; Kato, Kuranoshin; Otani, Kazuo
2017-04-01
In East Asia the significant subtropical frontal zone called the Meiyu (in China) / Baiu (in Japan) appears in early summer (just before the midsummer) and the huge rainfall is brought due to the frequent appearance of the "heavy rainfall days" (referred to as HRDs hereafter) mainly in that western part. On the other hand, large-scale fields around the front in eastern Japan is rather different from that in western Japan but the total precipitation in the eastern Japan is still considerable compared to that in the other midlatitude regions. Thus, it is also interesting to examine how the rainfall characteristics and large-scale atmospheric fields on HRDs (with more than 50 mm/day) in the eastern Japan in the mature stage of the Baiu season (16 June 15 July), together with those in midsummer (1 31 August). Based on such scientific background, further analyses were performed in this study mainly with the daily and the hourly precipitation data and the NCEP/NCAR re-analysis date from 1971 to 2010, succeeding to our previous results (e.g., EGU2015). As reported at EGU2014 and 2015, about half of HRDs at Tokyo (eastern Japan) were related to the typhoon even in the Baiu season. Interestingly, half of HRDs were characterized by the large contribution of moderate rain less than 10 mm/h. While, the precipitation on HRDs at Tokyo in midsummer was mainly brought by the intense rainfall with more than 10 mm/h, in association with the typhoons. In the present study, we examined the composite meridional structure of the rainfall area along 140E. In the pattern only associated with a typhoons in the Baiu season (Pattern A), the heavy rainfall area (more than 50 mm/day) with large contribution of the intense rain (stronger than 10 mm/h) showed rather wide meridional extension. The area was characterized by the duration of the intermittent enhancement of the rainfall. In the pattern associated with a typhoon and a front (Pattern B), while the contribution ratio of the rainfall more than 10mm/h was large in the southern half of the heavy rainfall area, moderate rain with less than 10 mm/h contributed greatly to the total rainfall in the northern half. In Patter B, that heavy rainfall area was located just in the area with strong low-level warm advection around the Baiu front to the east of the typhoon. The warm advection near the heavy rainfall area was also found in Pattern A, the heavy rainfall occurred just on the southwest of the large advection. It is noted that, although the very warm humid air can intrude northward by the strong S-ly wind to the east of the typhoon in both Pattern A and B, the low-level baroclinicity around the eastern Japan was stronger in Pattern B. In midsummer, the similar situations to while the "Pattern B"-like situation was not seen. This might be greatly reflected by the seasonal change in the southern boundary of the Okhotsk air mass from the Baiu to midsummer and we will also examine that in the future.
Kim, Eung Seok; Choi, Hyun Il
2012-01-01
An increase in the occurrence of sudden local flooding of great volume and short duration has caused significant danger and loss of life and property in Korea as well as many other parts of the World. Since such floods usually accompanied by rapid runoff and debris flow rise quite quickly with little or no advance warning to prevent flood damage, this study presents a new flash flood indexing methodology to promptly provide preliminary observations regarding emergency preparedness and response to flash flood disasters in small ungauged catchments. Flood runoff hydrographs are generated from a rainfall-runoff model for the annual maximum rainfall series of long-term observed data in the two selected small ungauged catchments. The relative flood severity factors quantifying characteristics of flood runoff hydrographs are standardized by the highest recorded maximum value, and then averaged to obtain the flash flood index only for flash flood events in each study catchment. It is expected that the regression equations between the proposed flash flood index and rainfall characteristics can provide the basis database of the preliminary information for forecasting the local flood severity in order to facilitate flash flood preparedness in small ungauged catchments. PMID:22690208
A procedure for assessing future trends of subdaily precipitation values on point scale
NASA Astrophysics Data System (ADS)
Rianna, Guido; Villani, Veronica; Mercogliano, Paola; Vezzoli, Renata
2015-04-01
In many areas of Italy, urban flooding or floods in small mountain basins, induced by heavy precipitations on subdaily scale, represent remarkable hazards able to cause huge damages and casualties often increased by very high population density. A proper assessment about how frequency and magnitude of such events could change under the effect of Climate Changes (CC) is crucial for the development of future territorial planning (such as early warning systems). The current constraints of climate modeling, also using high resolution RCM, prevent an adequate representation of subdaily precipitation patterns (mainly concerning extreme values) while available observed datasets are often unsuitable for the application of the bias-correction (BC) techniques requiring long time series. In this work, a new procedure is proposed: at point scale, precipitation outputs on 24 and 48 hours are provided by high resolution (about 8km) climate simulation performed through the RCM COSMO_CLM driven by GCM CMCC_CM and bias-corrected by quantile mapping approach. These ones are adopted for a monthly stochastic disaggregation approach combining Random Parameter Bartlett-Lewis (RPBL) gamma model with appropriate rainfall disaggregation technique. The last one implements empirical correction procedures, called adjusting procedures, to modify the model rainfall output, so that it is consistent with the observed rainfall values on daily time scale. In order to take into account the great difficulties related to minimization of objective function required by retrieving the 7 RPBL parameters, for each dataset the computations are repeated twenty times. Moreover, adopting statistical properties on 24 and 48 hours to retrieve RPBL parameters allows, according Bo et al. (1994), to infer statistical properties until hourly scale maintaining the information content about the possible changes in precipitation patterns due to CC. The entire simulation chain is tested on Baiso weather station, in Northern Italy; the station is representative of a basin of Secchia river, tributary of the Po River; for this station, are available hourly data on 2003-2012 time span while, since 1981, are available daily data and maximum yearly values until hourly scale. In order to evaluate the uncertainties related to stand-alone approach for retrieving hourly data, it is first tested adopting, as input, observed data on 1981-2010 period; after, for the same time interval, RPBL parameters are estimated using BC RCM precipitation data. However, as control, the available hourly data cover only a part of this span. The results show how the approach, in term of mean and maximum values, return satisfying results until 6 hours while for higher resolutions the errors became significant. Finally, in order to assess the possible effects of CC on subdaily precipitation patterns, the same simulation chain is adopted to provide hourly precipitation datasets also for thirty years 2071-2100 under concentration scenarios RCPs 4.5 and RCP 8.5; the comparison between these ones and control period, permits to understand how, in wet season, the expected warming could produce a reduction in mean duration of precipitation events but with higher rainfall intensity; however, during the summer, the strong reduction in precipitation values could deeply affect also hourly values.
Tree-Ring Reconstruction of Wet Season Rainfall Totals in the Amazon
NASA Astrophysics Data System (ADS)
Stahle, D. W.; Lopez, L.; Granato-Souza, D.; Barbosa, A. C. M. C.; Torbenson, M.; Villalba, R.; Pereira, G. D. A.; Feng, S.; Schongart, J.; Cook, E. R.
2017-12-01
The Amazon Basin is a globally important center of deep atmospheric convection, energy balance, and biodiversity, but only a handful of weather stations in this vast Basin have recorded rainfall measurements for at least 50 years. The available rainfall and river level observations suggest that the hydrologic cycle in the Amazon may have become amplified in the last 40-years, with more extreme rainfall and streamflow seasonality, deeper droughts, and more severe flooding. These changes in the largest hydrological system on earth may be early evidence of the expected consequences of anthropogenic climate change and deforestation in the coming century. Placing these observed and simulated changes in the context of natural climate variability during the late Holocene is a significant challenge for high-resolution paleoclimatology. We have developed exactly dated and well-replicated annual tree-ring chronologies from two native Amazonian tree species (Cedrela sp and Centrolobium microchaete). These moisture sensitive chronologies have been used to compute two reconstructions of wet season rainfall totals, one in the southern Amazon based on Centrolobium and another in the eastern equatorial Amazon using Cedrela. Both reconstructions are over 200-years long and extend the available instrumental observations in each region by over 150-years. These reconstructions are well correlated with the same regional and large-scale climate dynamics that govern the inter-annual variability of the instrumental wet season rainfall totals. Increased multi-decadal variability is reconstructed after 1950 with the Centrolobium chronologies in the southern Amazon. The Cedrela reconstruction from the eastern Amazon exhibits changes in the spatial pattern of correlation with regional rainfall stations and the large-scale sea surface temperature field after 1990 that may be consistent with recent changes in the mean position of the Inter-Tropical Convergence Zone in March over the western Atlantic and South American sector.
NASA Astrophysics Data System (ADS)
Adarsh, S.; Reddy, M. Janga
2017-07-01
In this paper, the Hilbert-Huang transform (HHT) approach is used for the multiscale characterization of All India Summer Monsoon Rainfall (AISMR) time series and monsoon rainfall time series from five homogeneous regions in India. The study employs the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) for multiscale decomposition of monsoon rainfall in India and uses the Normalized Hilbert Transform and Direct Quadrature (NHT-DQ) scheme for the time-frequency characterization. The cross-correlation analysis between orthogonal modes of All India monthly monsoon rainfall time series and that of five climate indices such as Quasi Biennial Oscillation (QBO), El Niño Southern Oscillation (ENSO), Sunspot Number (SN), Atlantic Multi Decadal Oscillation (AMO), and Equatorial Indian Ocean Oscillation (EQUINOO) in the time domain showed that the links of different climate indices with monsoon rainfall are expressed well only for few low-frequency modes and for the trend component. Furthermore, this paper investigated the hydro-climatic teleconnection of ISMR in multiple time scales using the HHT-based running correlation analysis technique called time-dependent intrinsic correlation (TDIC). The results showed that both the strength and nature of association between different climate indices and ISMR vary with time scale. Stemming from this finding, a methodology employing Multivariate extension of EMD and Stepwise Linear Regression (MEMD-SLR) is proposed for prediction of monsoon rainfall in India. The proposed MEMD-SLR method clearly exhibited superior performance over the IMD operational forecast, M5 Model Tree (MT), and multiple linear regression methods in ISMR predictions and displayed excellent predictive skill during 1989-2012 including the four extreme events that have occurred during this period.
Towards estimates of future rainfall erosivity in Europe based on REDES and WorldClim datasets
NASA Astrophysics Data System (ADS)
Panagos, Panos; Ballabio, Cristiano; Meusburger, Katrin; Spinoni, Jonathan; Alewell, Christine; Borrelli, Pasquale
2017-05-01
The policy requests to develop trends in soil erosion changes can be responded developing modelling scenarios of the two most dynamic factors in soil erosion, i.e. rainfall erosivity and land cover change. The recently developed Rainfall Erosivity Database at European Scale (REDES) and a statistical approach used to spatially interpolate rainfall erosivity data have the potential to become useful knowledge to predict future rainfall erosivity based on climate scenarios. The use of a thorough statistical modelling approach (Gaussian Process Regression), with the selection of the most appropriate covariates (monthly precipitation, temperature datasets and bioclimatic layers), allowed to predict the rainfall erosivity based on climate change scenarios. The mean rainfall erosivity for the European Union and Switzerland is projected to be 857 MJ mm ha-1 h-1 yr-1 till 2050 showing a relative increase of 18% compared to baseline data (2010). The changes are heterogeneous in the European continent depending on the future projections of most erosive months (hot period: April-September). The output results report a pan-European projection of future rainfall erosivity taking into account the uncertainties of the climatic models.
Towards estimates of future rainfall erosivity in Europe based on REDES and WorldClim datasets.
Panagos, Panos; Ballabio, Cristiano; Meusburger, Katrin; Spinoni, Jonathan; Alewell, Christine; Borrelli, Pasquale
2017-05-01
The policy requests to develop trends in soil erosion changes can be responded developing modelling scenarios of the two most dynamic factors in soil erosion, i.e. rainfall erosivity and land cover change. The recently developed Rainfall Erosivity Database at European Scale (REDES) and a statistical approach used to spatially interpolate rainfall erosivity data have the potential to become useful knowledge to predict future rainfall erosivity based on climate scenarios. The use of a thorough statistical modelling approach (Gaussian Process Regression), with the selection of the most appropriate covariates (monthly precipitation, temperature datasets and bioclimatic layers), allowed to predict the rainfall erosivity based on climate change scenarios. The mean rainfall erosivity for the European Union and Switzerland is projected to be 857 MJ mm ha -1 h -1 yr -1 till 2050 showing a relative increase of 18% compared to baseline data (2010). The changes are heterogeneous in the European continent depending on the future projections of most erosive months (hot period: April-September). The output results report a pan-European projection of future rainfall erosivity taking into account the uncertainties of the climatic models.
Predicting of soil erosion with regarding to rainfall erosivity and soil erodibility
NASA Astrophysics Data System (ADS)
Suif, Zuliziana; Razak, Mohd Amirun Anis Ab; Ahmad, Nordila
2018-02-01
The soil along the hill and slope are wearing away due to erosion and it can take place due to occurrence of weak and heavy rainfall. The aim of this study is to predict the soil erosion degree in Universiti Pertahanan Nasional Malaysia (UPNM) area focused on two major factor which is soil erodibility and rainfall erosivity. Soil erodibility is the possibilities of soil to detach and carried away during rainfall and runoff. The "ROM" scale was used in this study to determine the degree of soil erodibility, namely low, moderate, high, and very high. As for rainfall erosivity, the erosive power caused by rainfall that cause soil loss. A daily rainfall data collected from January to April was analyzed by using ROSE index classification to identify the potential risk of soil erosion. The result shows that the soil erodibilty are moderate at MTD`s hill, high at behind of block Lestari and Landslide MTD hill, and critical at behind the mess cadet. While, the highest rainfall erosivity was recorded in March and April. Overall, this study would benefit the organization greatly in saving cost in landslide protection as relevant authorities can take early measures repairing the most affected area of soil erosion.
Studying the Diurnal Cycle of Convection Using a TRMM-Calibrated Infrared Rain Algorithm
NASA Technical Reports Server (NTRS)
Negri, Andrew J.
2005-01-01
The development of a satellite infrared (IR) technique for estimating convective and stratiform rainfall and its application in studying the diurnal variability of rainfall on a global scale is presented. The Convective-Stratiform Technique (CST), calibrated by coincident, physically retrieved rain rates from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR), is applied over the global tropics. The technique makes use of the IR data from the TRMM Visible/Infrared Scanner (VIRS) before application to global geosynchronous satellite data. The calibrated CST technique has the advantages of high spatial resolution (4 km), filtering of nonraining cirrus clouds, and the stratification of the rainfall into its convective and stratiform components, the last being important for the calculation of vertical profiles of latent heating. The diurnal cycle of rainfall, as well as the division between convective and Stratiform rainfall will be presented. The technique is validated using available data sets and compared to other global rainfall products such as Global Precipitation Climatology Project (GPCP) IR product, calibrated with TRMM Microwave Imager (TMI) data. Results from five years of PR data will show the global-tropical partitioning of convective and stratiform rainfall.
Do Plot Scale Studies Yield Useful Data When Assessing Field Scale Practices?
USDA-ARS?s Scientific Manuscript database
Plot scale data has been used to develop models used to assess field and watershed scale nutrient losses. The objective of this study was to determine if phosphorus (P) loss results from plot scale rainfall simulation studies are “directionally correct” when compared to field scale P losses. Two fie...
Modelling rainfall amounts using mixed-gamma model for Kuantan district
NASA Astrophysics Data System (ADS)
Zakaria, Roslinazairimah; Moslim, Nor Hafizah
2017-05-01
An efficient design of flood mitigation and construction of crop growth models depend upon good understanding of the rainfall process and characteristics. Gamma distribution is usually used to model nonzero rainfall amounts. In this study, the mixed-gamma model is applied to accommodate both zero and nonzero rainfall amounts. The mixed-gamma model presented is for the independent case. The formulae of mean and variance are derived for the sum of two and three independent mixed-gamma variables, respectively. Firstly, the gamma distribution is used to model the nonzero rainfall amounts and the parameters of the distribution (shape and scale) are estimated using the maximum likelihood estimation method. Then, the mixed-gamma model is defined for both zero and nonzero rainfall amounts simultaneously. The formulae of mean and variance for the sum of two and three independent mixed-gamma variables derived are tested using the monthly rainfall amounts from rainfall stations within Kuantan district in Pahang Malaysia. Based on the Kolmogorov-Smirnov goodness of fit test, the results demonstrate that the descriptive statistics of the observed sum of rainfall amounts is not significantly different at 5% significance level from the generated sum of independent mixed-gamma variables. The methodology and formulae demonstrated can be applied to find the sum of more than three independent mixed-gamma variables.
Nonlinear Meridional Moisture Advection and the ENSO-Southern China Rainfall Teleconnection
NASA Astrophysics Data System (ADS)
Wang, Qiang; Cai, Wenju; Zeng, Lili; Wang, Dongxiao
2018-05-01
In the boreal cooler months of 2015, southern China (SC) experienced the largest rainfall since 1950, exceeding 4 times the standard deviation of SC rainfall. Although an El Niño typically induces a positive SC rainfall anomaly during these months, the unprecedented rainfall increase cannot be explained by the strong El Niño of 2015/2016, and the dynamics is unclear. Here we show that a nonlinear meridional moisture advection contributes substantially to the unprecedented rainfall increase. During cooler months of 2015, the meridional flow anomaly over the South China Sea region, which acts on an El Niño-induced anomalous meridional moisture gradient, is particularly large and is supported by an anomalous zonal sea surface temperature gradient over the northwestern Pacific, which recorded its largest value in 2015 since 1950. Our study highlights, for the first time, the importance of the nonlinear process associated with the combined impact of a regional sea surface temperature gradient and large-scale El Niño anomalies in forcing El Niño rainfall teleconnection.
Landslides in West Coast Metropolitan Areas: The Role of Extreme Weather Events
NASA Technical Reports Server (NTRS)
Biasutti, Michela; Seager, Richard; Kirschbaum, Dalia B.
2016-01-01
Rainfall-induced landslides represent a pervasive issue in areas where extreme rainfall intersects complex terrain. A farsighted management of landslide risk requires assessing how landslide hazard will change in coming decades and thus requires, inter alia, that we understand what rainfall events are most likely to trigger landslides and how global warming will affect the frequency of such weather events. We take advantage of 9 years of landslide occurrence data compiled by collating Google news reports and of a high-resolution satellite-based daily rainfall data to investigate what weather triggers landslide along the West Coast US. We show that, while this landslide compilation cannot provide consistent and widespread monitoring everywhere, it captures enough of the events in the major urban areas that it can be used to identify the relevant relationships between landslides and rainfall events in Puget Sound, the Bay Area, and greater Los Angeles. In all these regions, days that recorded landslides have rainfall distributions that are skewed away from dry and low-rainfall accumulations and towards heavy intensities. However, large daily accumulation is the main driver of enhanced hazard of landslides only in Puget Sound. There, landslide are often clustered in space and time and major events are primarily driven by synoptic scale variability, namely "atmospheric rivers" of high humidity air hitting anywhere along the West Coast, and the interaction of frontal system with the coastal orography. The relationship between landslide occurrences and daily rainfall is less robust in California, where antecedent precipitation (in the case of the Bay area) and the peak intensity of localized downpours at sub-daily time scales (in the case of Los Angeles) are key factors not captured by the same-day accumulations. Accordingly, we suggest that the assessment of future changes in landslide hazard for the entire the West Coast requires consideration of future changes in the occurrence and intensity of atmospheric rivers, in their duration and clustering, and in the occurrence of short-duration (sub-daily) extreme rainfall as well. Major regional landslide events, in which multiple occurrences are recorded in the catalog for the same day, are too rare to allow a statistical characterization of their triggering events, but a case study analysis indicates that a variety of synoptic-scale events can be involved, including not only atmospheric rivers but also broader cold- and warm-front precipitation. That a news-based catalog of landslides is accurate enough to allow the identification of different landslide/ rainfall relationships in the major urban areas along the US West Coast suggests that this technology can potentially be used for other English-language cities and could become an even more powerful tool if expanded to other languages and non-traditional news sources, such as social media.
NASA Astrophysics Data System (ADS)
Nytch, C. J.; Meléndez-Ackerman, E. J.
2014-12-01
There is a pressing need to generate spatially-explicit models of rainfall-runoff dynamics in the urban humid tropics that can characterize flow pathways and flood magnitudes in response to erratic precipitation events. To effectively simulate stormwater runoff processes at multiple scales, complex spatio-temporal parameters such as rainfall, evapotranspiration, and antecedent soil moisture conditions must be accurately represented, in addition to uniquely urban factors including stormwater conveyance structures and connectivity between green and gray infrastructure elements. In heavily urbanized San Juan, Puerto Rico, stream flashiness and frequent flooding are major issues, yet still lacking is a hydrological analysis that models the generation and movement of fluvial and pluvial stormwater through the watershed. Our research employs a novel and multifaceted approach to dealing with this problem that integrates 1) field-based rainfall interception and infiltration methodologies to quantify the hydrologic functions of natural and built infrastructure in San Juan; 2) remote sensing analysis to produce a fine-scale typology of green and gray cover types in the city and determine patterns of spatial distribution and connectivity; 3) assessment of precipitation and streamflow variability at local and basin-wide scales using satellite and radar precipitation estimates in concert with rainfall and stream gauge point data and participatory flood mapping; 4) simulation of historical, present-day, and future stormwater runoff scenarios with a fully distributed hydrologic model that couples diverse components of urban socio-hydrological systems from formal and informal knowledge sources; and 5) bias and uncertainty analysis of parameters and model structure within a Bayesian hierarchical framework. Preliminary results from the rainfall interception study suggest that canopy structure and leaf area index of different tree species contribute to variable throughfall and stemflow responses. Additional investigations are pending. The findings from this work will help inform urban planning and design, and build adaptive capacity to reduce flood vulnerability in the context of a changing climate.