Bonomo, Anthony L; Isakson, Marcia J; Chotiros, Nicholas P
2015-04-01
The finite element method is used to model acoustic scattering from rough poroelastic surfaces. Both monostatic and bistatic scattering strengths are calculated and compared with three analytic models: Perturbation theory, the Kirchhoff approximation, and the small-slope approximation. It is found that the small-slope approximation is in very close agreement with the finite element results for all cases studied and that perturbation theory and the Kirchhoff approximation can be considered valid in those instances where their predictions match those given by the small-slope approximation.
Plant succession on talus slopes in northern Idaho as influenced by slope exposure
R. Daubenmire; A. W. Slipp
1943-01-01
One of the most conspicuous features of the forested regions of northern Idaho is the small treeless areas which occupy portions of the southerly exposures of especially prominent peaks and ridges. These areas, sometimes referred to as parks or balds, begin at the summits of the prominences and extend down over the south-facing slopes sometimes as much as approximately...
Geometric Hitting Set for Segments of Few Orientations
Fekete, Sandor P.; Huang, Kan; Mitchell, Joseph S. B.; ...
2016-01-13
Here we study several natural instances of the geometric hitting set problem for input consisting of sets of line segments (and rays, lines) having a small number of distinct slopes. These problems model path monitoring (e.g., on road networks) using the fewest sensors (the \\hitting points"). We give approximation algorithms for cases including (i) lines of 3 slopes in the plane, (ii) vertical lines and horizontal segments, (iii) pairs of horizontal/vertical segments. Lastly, we give hardness and hardness of approximation results for these problems. We prove that the hitting set problem for vertical lines and horizontal rays is polynomially solvable.
Explaining Space-Weathering Effects on UV-Vis-NIR Spectra with Light-Scattering Methods
NASA Astrophysics Data System (ADS)
Penttilä, Antti; Väisänen, Timo; Martikainen, Julia; Kohout, Tomas; Muinonen, Karri
2015-11-01
Space-weathering (SW) introduces changes to the asteroid reflectance spectra. In silicate minerals, SW is known to darken the spectra and reduce the silicate absorption band depths. In olivine, the neutral slope in Vis and NIR wavelengths is becoming positive [1]. In pyroxene, the positive slope over the 1 µm absorption band is decreasing, and the negative slope over the 2 µm band is increasing towards positive values with increasing SW [2].The SW process generates small nanophase iron (npFe0) inclusions in the surface layers of mineral grains. The inclusions are some tens of nm in size. This mechanism has been linked to the Moon and to a certain extent also to the silicate-rich S-complex asteroids.We offer two simple explanations from light-scattering theory to explain the SW effects on the spectral slope. First, the npFe0 will introduce a posititive general slope (reddening) to the spectra. The npFe0 inclusions (~10 nm) are in the Rayleigh domain with the wavelength λ in the UV-Vis-NIR range. Their absorption cross-section follows approximately the 1/λ-relation from the Rayleigh theory. Absorption is more efficient in the UV than in the NIR wavelengths, therefore the spectra are reddening.Second, the effect of npFe0 absorption is more efficient for originally brighter reflectance values. Explanation combines the effective medium theory and the exponential attenuation in the medium. When adding a small amount of highly absorbing npFe0, the effective absorption coefficient k will increase approximately the same Δk for the typical values of silicates. This change will increase more effectively the exponential attenuation if the original k was very small, and thus the reflectance high. Therefore, both positive and negative spectral slopes will approach zero with SW.We conclude that the SW will introduce a general reddening, and neutralize local slopes. This is verified using the SIRIS code [3], which combines geometric optics with small internal diffuse scatterers in the radiative transfer domain.[1] Kohout T. et al. (2014), Icarus 237(15), 75-83.[2] Kohout T. et al. (2015), Workshop on Space Weathering of Airless Bodies, Abstract.[3] Muinonen K. et al. (2009), JQSRT 110, 1628-1639.
Slope instability caused by small variations in hydraulic conductivity
Reid, M.E.
1997-01-01
Variations in hydraulic conductivity can greatly modify hillslope ground-water flow fields, effective-stress fields, and slope stability. In materials with uniform texture, hydraulic conductivities can vary over one to two orders of magnitude, yet small variations can be difficult to determine. The destabilizing effects caused by small (one order of magnitude or less) hydraulic conductivity variations using ground-water flow modeling, finite-element deformation analysis, and limit-equilibrium analysis are examined here. Low hydraulic conductivity materials that impede downslope ground-water flow can create unstable areas with locally elevated pore-water pressures. The destabilizing effects of small hydraulic heterogeneities can be as great as those induced by typical variations in the frictional strength (approximately 4??-8??) of texturally similar materials. Common "worst-case" assumptions about ground-water flow, such as a completely saturated "hydrostatic" pore-pressure distribution, do not account for locally elevated pore-water pressures and may not provide a conservative slope stability analysis. In site characterization, special attention should be paid to any materials that might impede downslope ground-water flow and create unstable regions.
NASA Astrophysics Data System (ADS)
Graves, Kevin; Minton, David A.; Hirabayashi, Masatoshi; Carry, Benoit; DeMeo, Francesca E.
2016-10-01
High resolution spectral observations of small S-type and Q-type Near Earth Asteroids (NEAs) have shown two important trends. The spectral slope of these asteroids, which is a good indication of the amount of space weathering the surface has received, has been shown to decrease with decreasing perihelion and size. Specifically, these trends show that there are less weathered surfaces at low perihelion and small sizes. With recent results from all-sky surveys such as the Sloan Digital Sky Survey's (SDSS) Moving Object Catalog, we have gained an additional data set to test the presence of these trends in the NEAs as well as the Mars Crossers (MCs) and the Main Belt. We use an analog to the spectral slope in the SDSS data which is the slope through the g', r' and i' filters, known as the gri-slope, to investigate the amount of weathering that is present among small asteroids throughout the inner solar system. We find that the trend of the gri-slope decreases with decreasing size at nearly the same rate in the Main Belt as in the MC and NEA regions. We propose that these results suggest a ubiquitous presence of Q-types and S-types with low spectral slopes at small sizes throughout the inner solar system, from the Main Belt to the NEA region. Additionally, we suggest that the trend of decreasing spectral slope with perihelion may only be valid at perihelia of approximately less than 1 AU. These results suggest a change in the interpretation for the formation of Q-type asteroids. Planetary encounters may help to explain the high fraction of Q-types at low perihelia, but another process which is present everywhere must also be refreshing the surfaces of these asteroids. We suggest the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect as a possible mechanism.
Model study of RCC stepped spillways with sloped converging training walls
USDA-ARS?s Scientific Manuscript database
Approximately half of the over 11,000 small watershed dams designed and constructed under the supervision of the United States Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) will reach the end of their planned service life within the next 10 years. Many of these dams...
A soil catena on schist in northwestern California
Marron, D.C.; Popenoe, J.H.
1986-01-01
Soil characteristics in a small steepland watershed underlain by schist in a rainy, tectonically active area in northwestern California show close associations with drainage-basin position and slope characteristics. Five soil-topography units based on these associations are defined in the study watershed. Spatial relationships of soil series, and patterns of soil development as indicated by B-horizon clay content and redness, reflect interactions between pedogenesis and erosion. General soil-topography patterns include: (1) decreases in soil-development moving from low-order to higher-order stream vallyes; and (2) more developed soils on north-facing as opposed to south-facing slopes. Decreases in soil-profile development moving from slopes near low-order streams to slopes near higher-order streams approximately correlate with increases in gradient, vertical relief, and drainage density, and reflect a more vigorous stripping of regolith by erosion on the slopes near the higher-order streams. The larger percentage of area covered by the more developed soils on north-facing as opposed to south-facing slopes appears to reflect a contrast in the way dominant erosional processes interact with pedogenic processes. Roadcuts on middle and upper slopes show soil discontinuities indicative of disturbance by block slides or slumps or both. Roadcuts on lower slopes show disrupted soils in small bedrock hollows that could have been created by rapid, shallow landslides or by the pulled-up root wads of toppled trees. Soil-profile characteristics and soil-topography patterns in the study area demonstrate that both erosional and pedogenic processes need to be considered when interpreting characteristics of hillslope soils. ?? 1986.
Approximate Analytical Solutions for Hypersonic Flow Over Slender Power Law Bodies
NASA Technical Reports Server (NTRS)
Mirels, Harold
1959-01-01
Approximate analytical solutions are presented for two-dimensional and axisymmetric hypersonic flow over slender power law bodies. Both zero order (M approaches infinity) and first order (small but nonvanishing values of 1/(M(Delta)(sup 2) solutions are presented, where M is free-stream Mach number and Delta is a characteristic slope. These solutions are compared with exact numerical integration of the equations of motion and appear to be accurate particularly when the shock is relatively close to the body.
Topographical scattering of gravity waves
NASA Astrophysics Data System (ADS)
Miles, J. W.; Chamberlain, P. G.
1998-04-01
A systematic hierarchy of partial differential equations for linear gravity waves in water of variable depth is developed through the expansion of the average Lagrangian in powers of [mid R:][nabla del, Hamilton operator][mid R:] (h=depth, [nabla del, Hamilton operator]h=slope). The first and second members of this hierarchy, the Helmholtz and conventional mild-slope equations, are second order. The third member is fourth order but may be approximated by Chamberlain & Porter's (1995) ‘modified mild-slope’ equation, which is second order and comprises terms in [nabla del, Hamilton operator]2h and ([nabla del, Hamilton operator]h)2 that are absent from the mild-slope equation. Approximate solutions of the mild-slope and modified mild-slope equations for topographical scattering are determined through an iterative sequence, starting from a geometrical-optics approximation (which neglects reflection), then a quasi-geometrical-optics approximation, and on to higher-order results. The resulting reflection coefficient for a ramp of uniform slope is compared with the results of numerical integrations of each of the mild-slope equation (Booij 1983), the modified mild-slope equation (Porter & Staziker 1995), and the full linear equations (Booij 1983). Also considered is a sequence of sinusoidal sandbars, for which Bragg resonance may yield rather strong reflection and for which the modified mild-slope approximation is in close agreement with Mei's (1985) asymptotic approximation.
Mullins, H.T.; Cook, H.E.
1986-01-01
Sediment gravity flow deposition along the deep-water flanks of carbonate platforms typically does not produce submarine fans. Rather, wedge-shaped carbonate aprons develop parallel to the adjacent shelf/slope break. The major difference between submarine fans and carbonate aprons is a point source with channelized sedimentation on fans, versus a line source with sheet-flow sedimentation on aprons. Two types of carbonate aprons may develop. Along relatively gentle (< 4??) platform-margin slopes, aprons form immediately adjacent to the shallow-water platform and are referred to as carbonate slope aprons. Along relatively steep (4-15??) platform margin slopes, redeposited limestones accumulate in a base-of-slope setting, by-passing an upper slope via a multitude of small submarine canyons, and are referred to as carbonate base-of-slope aprons. Both apron types are further subdivided into inner and outer facies belts. Inner apron sediments consist of thick, mud-supported conglomerates and megabreccias (Facies F) as well as thick, coarse-grained turbidites (Facies A) interbedded with subordinate amounts of fine-grained, peri-platform ooze (Facies G). Outer apron sediments consist of thinner, grain-supported conglomerates and turbidites (Facies A) as well as classical turbidites (Facies C) with recognizable Bouma divisions, interbedded with approximately equal proportions of peri-platform ooze (Facies G). Seaward, aprons grade laterally into basinal facies of thin, base-cut-out carbonate turbidites (Facies D) that are subordinate to peri-platform oozes (Facies G). Carbonate base-of-slope aprons grade shelfward into an upper slope facies of fine-grained peri-platform ooze (Facies G) cut by numerous small canyons that are filled with coarse debris, as well as intraformational truncation surfaces which result from submarine sliding. In contrast, slope aprons grade shelfward immediately into shoal-water, platform-margin facies without an intervening by-pass slope. The two carbonate apron models presented here offer alternatives to the submarine-fan model for paleoenvironmental analysis and hydrocarbon exploration for mass-transported carbonate facies. ?? 1986.
NASA Technical Reports Server (NTRS)
2004-01-01
15 May 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the results of a small landslide off of a hillslope in the Aureum Chaos region of Mars. Mass movement occurred from right (the slope) to left (the lobate feature pointed left). Small dark dots in the landslide area are large boulders. This feature is located near 2.6oS, 24.5oW. This picture covers an area approximately 3 km (1.9 mi) across and is illuminated by sunlight from the left/upper left.Sediment Pathways Across Trench Slopes: Results From Numerical Modeling
NASA Astrophysics Data System (ADS)
Cormier, M. H.; Seeber, L.; McHugh, C. M.; Fujiwara, T.; Kanamatsu, T.; King, J. W.
2015-12-01
Until the 2011 Mw9.0 Tohoku earthquake, the role of earthquakes as agents of sediment dispersal and deposition at erosional trenches was largely under-appreciated. A series of cruises carried out after the 2011 event has revealed a variety of unsuspected sediment transport mechanisms, such as tsunami-triggered sheet turbidites, suggesting that great earthquakes may in fact be important agents for dispersing sediments across trench slopes. To complement these observational data, we have modeled the pathways of sediments across the trench slope based on bathymetric grids. Our approach assumes that transport direction is controlled by slope azimuth only, and ignores obstacles smaller than 0.6-1 km; these constraints are meant to approximate the behavior of turbidites. Results indicate that (1) most pathways issued from the upper slope terminate near the top of the small frontal wedge, and thus do not reach the trench axis; (2) in turn, sediments transported to the trench axis are likely derived from the small frontal wedge or from the subducting Pacific plate. These results are consistent with the stratigraphy imaged in seismic profiles, which reveals that the slope apron does not extend as far as the frontal wedge, and that the thickness of sediments at the trench axis is similar to that of the incoming Pacific plate. We further applied this modeling technique to the Cascadia, Nankai, Middle-America, and Sumatra trenches. Where well-defined canyons carve the trench slopes, sediments from the upper slope may routinely reach the trench axis (e.g., off Costa Rica and Cascadia). In turn, slope basins that are isolated from the canyons drainage systems must mainly accumulate locally-derived sediments. Therefore, their turbiditic infill may be diagnostic of seismic activity only - and not from storm or flood activity. If correct, this would make isolated slope basins ideal targets for paleoseismological investigation.
Response effects in the perception of conjunctions of colour and form.
Chmiel, N
1989-01-01
Two experiments addressed the question whether visual search for a target defined by a conjunction of colour and form requires a central, serial, attentional process, but detection of a single feature, such as colour, is preattentive, as proposed by the feature-integration theory of attention. Experiment 1 investigated conjunction and feature search using small array sizes of up to five elements, under conditions which precluded eye-movements, in contrast to previous studies. The results were consistent with the theory. Conjunction search showed the effect of adding distractors to the display, the slopes of the curves relating RT to array size were in the approximate ratio of 2:1, consistent with a central, serial search process, exhaustive for absence responses and self-terminating for presence responses. Feature search showed no significant effect of distractors for presence responses. Experiment 2 manipulated the response requirements in conjunction search, using vocal response in a GO-NO GO procedure, in contrast to Experiment 1, which used key-press responses in a YES-NO procedure. Strikingly, presence-response RT was not affected significantly by the number of distractors in the array. The slope relating RT to array size was 3.92. The absence RT slope was 30.56, producing a slope ratio of approximately 8:1. There was no interaction of errors with array size and the presence and absence conditions, implying that RT-error trade-offs did not produce this slope ratio. This result suggests that feature-integration theory is at least incomplete.
NASA Astrophysics Data System (ADS)
Clark, J. D.; Stockli, D. F.; McKay, M. P.; Thomson, K.; Puigdefabregas, C.; Castelltort, S.; Dykstra, M.; Fildani, A.
2014-12-01
Until the 2011 Mw9.0 Tohoku earthquake, the role of earthquakes as agents of sediment dispersal and deposition at erosional trenches was largely under-appreciated. A series of cruises carried out after the 2011 event has revealed a variety of unsuspected sediment transport mechanisms, such as tsunami-triggered sheet turbidites, suggesting that great earthquakes may in fact be important agents for dispersing sediments across trench slopes. To complement these observational data, we have modeled the pathways of sediments across the trench slope based on bathymetric grids. Our approach assumes that transport direction is controlled by slope azimuth only, and ignores obstacles smaller than 0.6-1 km; these constraints are meant to approximate the behavior of turbidites. Results indicate that (1) most pathways issued from the upper slope terminate near the top of the small frontal wedge, and thus do not reach the trench axis; (2) in turn, sediments transported to the trench axis are likely derived from the small frontal wedge or from the subducting Pacific plate. These results are consistent with the stratigraphy imaged in seismic profiles, which reveals that the slope apron does not extend as far as the frontal wedge, and that the thickness of sediments at the trench axis is similar to that of the incoming Pacific plate. We further applied this modeling technique to the Cascadia, Nankai, Middle-America, and Sumatra trenches. Where well-defined canyons carve the trench slopes, sediments from the upper slope may routinely reach the trench axis (e.g., off Costa Rica and Cascadia). In turn, slope basins that are isolated from the canyons drainage systems must mainly accumulate locally-derived sediments. Therefore, their turbiditic infill may be diagnostic of seismic activity only - and not from storm or flood activity. If correct, this would make isolated slope basins ideal targets for paleoseismological investigation.
Prisk, G K; Guy, H J; Elliott, A R; Paiva, M; West, J B
1995-02-01
We used multiple-breath N2 washouts (MBNW) to study the inhomogeneity of ventilation in four normal humans (mean age 42.5 yr) before, during, and after 9 days of exposure to microgravity on Spacelab Life Sciences-1. Subjects performed 20-breath MBNW at tidal volumes of approximately 700 ml and 12-breath MBNW at tidal volumes of approximately 1,250 ml. Six indexes of ventilatory inhomogeneity were derived from data from 1) distribution of specific ventilation (SV) from mixed-expired and 2) end-tidal N2, 3) change of slope of N2 washout (semilog plot) with time, 4) change of slope of normalized phase III of successive breaths, 5) anatomic dead space, and 6) Bohr dead space. Significant ventilatory inhomogeneity was seen in the standing position at normal gravity (1 G). When we compared standing 1 G with microgravity, the distributions of SV became slightly narrower, but the difference was not significant. Also, there were no significant changes in the change of slope of the N2 washout, change of normalized phase III slopes, or the anatomic and Bohr dead spaces. By contrast, transition from the standing to supine position in 1 G resulted in significantly broader distributions of SV (P < 0.05) and significantly greater changes in the changes in slope of the N2 washouts (P < 0.001), indicating more ventilatory inhomogeneity in that posture. Thus these techniques can detect relatively small changes in ventilatory inhomogeneity. We conclude that the primary determinants of ventilatory inhomogeneity during tidal breathing in the upright posture are not gravitational in origin.
NASA Technical Reports Server (NTRS)
Prisk, G. Kim; Guy, Harold J. B.; Elliott, Ann R.; Paiva, Manuel; West, John B.
1995-01-01
We used multiple-breath N2 washouts (MBNW) to study the homogeneity of ventilation in four normal humans (mean age 42.5 yr) before, during, and after 9 days of exposure to microgravity on Spacelab Life Sciences-1. Subjects performed 20-breath MBNW at tidal volumes of approximately 700 ml and 12-breath MBNW at tidal volumes of approximately 1,250 ml. Six indexes of ventilatory inhomogeneity were derived from data from (1) distribution of specific ventilation (SV) from mixed-expired and (2) end-tidal N2, (3) change of slope of N2 washout (semilog plot) with time, (4) change of slope of normalized phase III of successive breaths, (5) anatomic lead dead space, and (6) Bohr dead space. Significant ventilatory inhomogeneity was seen in the standing position at normal gravity (1 G). When we compared standing 1 G with microgravity, the distributions of SV became slightly narrower, but the difference was not significant. Also, there were no significant changes in the change of slope of the N2 washout, change of normalized phase III slopes, or the anatomic and Bohr dead spaces. By contrast, transition from the standing to supine position in 1 G resulted in significantly broader distributions of SV and significantly greater changes in the changes in slope of the N2 washouts, indicating more ventilatory inhomogeneity in that posture. Thus these techniques can detect relatively small changes in ventilatory inhomogeneity. We conclude that the primary determinants of ventilatory inhomogeneity during tidal breathing in the upright posture are not gravitational in origin.
Nivation landforms in the western Great Basin and their paleoclimatic significance
Dohrenwend, J.C.
1984-01-01
More than 10,000 nivation landforms occur in the higher mountain ranges of the western Great Basin. They range from small, subtle hollows with head scarps a few meters high and a few tens of meters long to broad, clearly defined terraces as much as 220 m wide bounded by bold, steeply sloping head scarps as much as 30 m high and 1600 m long. Distribution of these nivation hollows is strongly influenced by elevation, slope orientation, local relief, and substrate lithology. About 95% occur between 2200 and 3000 m elevation, and nearly 80% are situated on north-northwest-to east-northeast-facing slopes. They occur mainly in areas of moderately sloping terrain and moderate local relief, and they are preferentially developed on relatively incompetent substrates including terrigenous sedimentary deposits, volcanic and metavolcanic rocks of intermediate composition, and deeply weathered granitoid rocks. Nearly all of these nivation hollows are relict. They are most abundant near areas of late Pleistocene glaciation but rarely occur within such areas. Most are veneered with colluvium and are well vegetated, and many hollows in the Mono Basin area are veneered with volcanic ash at least 700 yr old. Distribution of nivation hollows suggests that (1) the full-glacial nivation threshold altitude (NTA) rose from north to south at 190 m per degree of latitude, subparallel to, and approximately 740 m lower than, the full-glacial equilibrium-line altitude (ELA) and about 1370 m lower than the estimated modern ELA; (2) the difference between the full-glacial and modern ELAs indicates an approximate 7??C full-glacial mean-annual-temperature depression throughout the Great Basin; and (3) the full-glacial mean annual temperature at the NTA is estimated to have been approximately 0?? to 1??C, assuming little change in accumulation-season precipitation. ?? 1984.
Shape Sensing a Morphed Wing with an Optical Fiber Bragg Grating
NASA Technical Reports Server (NTRS)
Tai, Hsiang
2005-01-01
We suggest using distributed fiber Bragg sensors systems which were developed locally at Langley Research Center carefully placed on the wing surface to collect strain component information at each location. Then we used the fact that the rate change of slope in the definition of linear strain is very small and can be treated as a constant. Thereby the strain distribution information of a morphed surface can be reduced into a distribution of local slope information of a flat surface. In other words a morphed curve surface is replaced by the collection of individual flat surface of different slope. By assembling the height of individual flat surface, the morphed curved surface can be approximated. A more sophisticated graphic routine can be utilized to restore the curved morphed surface. With this information, the morphed wing can be further adjusted and controlled. A numerical demonstration is presented.
The intrinsic mechanical nonlinearity 3Q0(ω) of linear homopolymer melts
NASA Astrophysics Data System (ADS)
Cziep, Miriam Angela; Abbasi, Mahdi; Wilhelm, Manfred
2017-05-01
Medium amplitude oscillatory shear (MAOS) in combination with Fourier Transformation of the mechanical stress signal (FT rheology) was utilized to investigate the influence of molecular weight, molecular weight distribution and the monomer on the intrinsic nonlinearity 3Q0(ω). Nonlinear master curves of 3Q0(ω) have been created, applying the time-temperature superposition (TTS) principle. These master curves showed a characteristic shape with an increasing slope at small frequencies, a maximum 3Q0,max and a decreasing slope at high frequencies. 3Q0(De) master curves of monodisperse polymers were evaluated and quantified with the help of a semi-empiric equation, derived from predictions from the pom-pom and molecular stress function (MSF) models. This resulted in a monomer independent description of the nonlinear mechanical behavior of linear, monodisperse homopolymer melts, where 3Q0(ω,Z) is only a function of the frequency ω and the number of entanglements Z. For polydisperse samples, 3Q0(ω) showed a high sensitivity within the experimental window towards an increasing PDI. At small frequencies, the slope of 3Q0(ω) decreases until approximately zero as a plateau value is reached, starting at a PDI around 2 and higher.
NASA Astrophysics Data System (ADS)
Wang, Jie; Chen, Li; Yu, Zhongbo
2018-02-01
Rainfall infiltration on hillslopes is an important issue in hydrology, which is related to many environmental problems, such as flood, soil erosion, and nutrient and contaminant transport. This study aimed to improve the quantification of infiltration on hillslopes under both steady and unsteady rainfalls. Starting from Darcy's law, an analytical integral infiltrability equation was derived for hillslope infiltration by use of the flux-concentration relation. Based on this equation, a simple scaling relation linking the infiltration times on hillslopes and horizontal planes was obtained which is applicable for both small and large times and can be used to simplify the solution procedure of hillslope infiltration. The infiltrability equation also improved the estimation of ponding time for infiltration under rainfall conditions. For infiltration after ponding, the time compression approximation (TCA) was applied together with the infiltrability equation. To improve the computational efficiency, the analytical integral infiltrability equation was approximated with a two-term power-like function by nonlinear regression. Procedures of applying this approach to both steady and unsteady rainfall conditions were proposed. To evaluate the performance of the new approach, it was compared with the Green-Ampt model for sloping surfaces by Chen and Young (2006) and Richards' equation. The proposed model outperformed the sloping Green-Ampt, and both ponding time and infiltration predictions agreed well with the solutions of Richards' equation for various soil textures, slope angles, initial water contents, and rainfall intensities for both steady and unsteady rainfalls.
Backscattering from a randomly rough dielectric surface
NASA Technical Reports Server (NTRS)
Fung, Adrian K.; Li, Zongqian; Chen, K. S.
1992-01-01
A backscattering model for scattering from a randomly rough dielectric surface is developed based on an approximate solution of a pair of integral equations for the tangential surface fields. Both like and cross-polarized scattering coefficients are obtained. It is found that the like polarized scattering coefficients contain two types of terms: single scattering terms and multiple scattering terms. The single scattering terms in like polarized scattering are shown to reduce the first-order solutions derived from the small perturbation method when the roughness parameters satisfy the slightly rough conditions. When surface roughnesses are large but the surface slope is small, only a single scattering term corresponding to the standard Kirchhoff model is significant. If the surface slope is large, the multiple scattering term will also be significant. The cross-polarized backscattering coefficients satisfy reciprocity and contain only multiple scattering terms. The difference between vertical and horizontal scattering coefficients is found to increase with the dielectric constant and is generally smaller than that predicted by the first-order small perturbation model. Good agreements are obtained between this model and measurements from statistically known surfaces.
NASA Astrophysics Data System (ADS)
Kubota, T.; Aditian, A.
2014-12-01
Deriving the analysis of rainfall data in various mountainous locations, increase in rainfall that is deemed to be induced by the global climate change is obvious in Kyushu district, western Japan. On this point of view, its long term impact on the forest slope stability is analyzed with field investigation and numerical simulation such as finite element method (FEM). On the other hand, the influence of earthquake such as cracks on the slope due to seismic vibration was also analyzed with FEM. In this case, the slope stability analysis to obtain the factor of safety "Fs" is conducted. Here, in case of the Fs > 1.0, the slope is stable. In addition, the slope stabilizing effect of the forest mainly due to the roots strength is evaluated on some unstable slopes. Simultaneously, a holistic estimation over landslide groups is conducted by comparing "Fs" on forest slopes with non- forest slopes. Therefore, the following conclusions are obtained: 1) Comparing the Fs without increased rainfall from the previous decade and the one with actual rainfall, the former case is 1.04 ~1.06 times more stable than the latter. 2) On the other hand, the forest slopes are estimated to be up to approximately 1.5 to 2.5 times more stable than the slope without forest. Therefore, the slope stabilizing effect by the forest is much higher than the increasing rainfall influence i.e. the climate change effect. These results imply that an appropriate forest existence is important under the climate change condition to prevent forest slope degradation. 3) Comparing with the destabilization of the slope by seismic activities (vibration) due to the reduction of soil strength and "cracks = slope deformation" (8~9 % to 30% reduction in Fs even after an earthquake of 490gal), the influence of the long term rainfall increase on slopes (such as 1% decrease in Fs) is relatively small in the study area.
NASA Astrophysics Data System (ADS)
Voronovich, A. G.; Zavorotny, V. U.
2001-07-01
A small-slope approximation (SSA) is used for numerical calculations of a radar backscattering cross section of the ocean surface for both Ku- and C-bands for various wind speeds and incident angles. Both the lowest order of the SSA and the one that includes the next-order correction to it are considered. The calculations were made by assuming the surface-height spectrum of Elfouhaily et al for fully developed seas. Empirical scattering models CMOD2-I3 and SASS-II are used for comparison. Theoretical calculations are in good overall agreement with the experimental data represented by the empirical models, with the exception of HH-polarization in the upwind direction. It was assumed that steep breaking waves are responsible for this effect, and the probability density function of large slopes was calculated based on this assumption. The logarithm of this function in the upwind direction can be approximated by a linear combination of wind speed and the appropriate slope. The resulting backscattering cross section for upwind, downwind and cross-wind directions, for winds ranging between 5 and 15 m s-1, and for both polarizations in both wave bands corresponds to experimental results within 1-2 dB accuracy.
Size-Frequency Distribution of Small Lunar Craters: Widening with Degradation and Crater Lifetime
NASA Astrophysics Data System (ADS)
Ivanov, B. A.
2018-01-01
The review and new measurements are presented for depth/diameter ratio and slope angle evolution during small ( D < 1 km) lunar impact craters aging (degradation). Comparative analysis of available data on the areal cratering density and on the crater degradation state for selected craters, dated with returned Apollo samples, in the first approximation confirms Neukum's chronological model. The uncertainty of crater retention age due to crater degradational widening is estimated. The collected and analyzed data are discussed to be used in the future updating of mechanical models for lunar crater aging.
NASA Astrophysics Data System (ADS)
Grimshaw, R. H. J.; Baines, P. G.; Bell, R. C.
1985-07-01
We consider the three-dimensional reflection and diffraction properties of internal waves in a continuously stratified rotating fluid which are incident on the junction of a vertical slit and a half-space. This geometry is a model for submarine canyons on continental slopes in the ocean, where various physical phenomena embodying reflection and diffraction effects have been observed. Three types of incident wave are considered: (1) Kelvin waves in the slit (canyon); (2) Kelvin waves on the slope; and (3) plane internal waves incident from the half-space (ocean). These are scattered into Kelvin and Poincaré waves in the slit, a Kelvin wave on the slope and Poincaré waves in the half-space. Most of the discussion is centered around case (1). Various properties of the wave field are calculated for ranges of the parameters c/ cot θ, γα and ƒ/ω where cot θ is the topographic slope, c is the internal wave ray slope, α is the canyon half-width, γ is the down-slope wave-number, ƒ is the Coriolis parameter and ω is the wave frequency. Analytical results are obtained for small γα and some approximate results for larger values of γα. The results show that significant wave trapping may occur in oceanic situations, and that submarine canyons may act as source regions for internal Kelvin waves on the continental slope.
Total N exports from once vs. repeatedly burnt Pine plantations
NASA Astrophysics Data System (ADS)
Gonzalez Pelayo, Oscar; Hosseini, Mohammadreza; Varandas, Daniela; Machado, Ana Isabel; Prats Alegre, Sergio; Coelho, Celeste O. A.; Geissen, Violette; Ritsema, Coen; Keizer, Jan Jacob
2014-05-01
Post-fire nutrient losses in Mediterranean forested areas have been suggested as a key driver for ecosystem degradation. The role of fire recurrence in soil nutrient depletion, however, has been poorly studied. The EU-funded CASCADE project addresses this research gap in the study case in Portugal, having as overarching aim to assess if repeated wildfires lead to land degradation in Maritime Pine stands through a gradual process or, instead, through tipping-points in plant-water-soil relationships. Following a large wildfire in September 2012 affecting more than 3000 ha in the municipality of Viseu (central Portugal), total N losses are being monitored in three zones: 4x burnt since 1975; 1x burnt since 197, i.e. in 2012); unburnt since 1975. Within each zone, three replicate slopes were selected with similar slope angles and expositions and, at each slope, three pairs of erosion plots of approximately 0.25 m2 were installed on the lower, middle and lower slope section. Additionally, a catchment outlet within the 4x burned zones was equipped with a gauging station for automatic recording of water level sensor and tubidity and for collecting stream flow samples using an automatic sampler. Preliminary results from the first 6 months after the 2012-wildfire suggested that total N losses were, on average, twice as high at the 4x times burned slopes than at the 1x burned slopes. Nonetheless, temporal patterns in average losses during these initial six months were similar for the two zones. By contrast, the results obtained during the subsequent spring and summer seasons suggested that average total N losses from the 1x burned slopes closely approximated those from the 4x burned slopes. At the unburned slopes, total N losses were very small and limited to few rainfall events. Interestingly, at the catchment outlet the total N values were 66% higher compared to the 4x times burned microplots, highlighting the importance of up-scaling effects in terms of nutrient losses. Preliminary results on total N losses during the first post-fire year showed that nutrient depletion can be triggered by increasing the fire regime. The up-scaling effect suggested an increase in nutrient exportations from micro-plot to catchment scale. These results are being further investigated to establish the relationships between soil fertility losses and fire recurrence.
Maximal liquid bridges between horizontal cylinders
NASA Astrophysics Data System (ADS)
Cooray, Himantha; Huppert, Herbert E.; Neufeld, Jerome A.
2016-08-01
We investigate two-dimensional liquid bridges trapped between pairs of identical horizontal cylinders. The cylinders support forces owing to surface tension and hydrostatic pressure that balance the weight of the liquid. The shape of the liquid bridge is determined by analytically solving the nonlinear Laplace-Young equation. Parameters that maximize the trapping capacity (defined as the cross-sectional area of the liquid bridge) are then determined. The results show that these parameters can be approximated with simple relationships when the radius of the cylinders is small compared with the capillary length. For such small cylinders, liquid bridges with the largest cross-sectional area occur when the centre-to-centre distance between the cylinders is approximately twice the capillary length. The maximum trapping capacity for a pair of cylinders at a given separation is linearly related to the separation when it is small compared with the capillary length. The meniscus slope angle of the largest liquid bridge produced in this regime is also a linear function of the separation. We additionally derive approximate solutions for the profile of a liquid bridge, using the linearized Laplace-Young equation. These solutions analytically verify the above-mentioned relationships obtained for the maximization of the trapping capacity.
Modelling Bathymetric Control of Near Coastal Wave Climate: Report 3
1992-02-01
complexity would occur if we were to make the full set of restrictions appropriate to the parabolic approximation of the KP equation ( Kadomtsev ... Kadomtsev , B.B. and Petviashvili , V.I., 1970, "On the stability of solitary waves in weakly dispersing media", Soy. Phys. Dokl., 15, 539-541. 24 Kirby...bar theory. Theory for Small Amplitude Bars The theory which provides the framework for analysis here is given by an extended mild-slope equation
NASA Astrophysics Data System (ADS)
Tanaka, Takahisa; Uchida, Ken
2018-06-01
Band tails in heavily doped semiconductors are one of the important parameters that determine transfer characteristics of tunneling field-effect transistors. In this study, doping concentration and doing profile dependences of band tails in heavily doped Si nanowires were analyzed by a nonequilibrium Green function method. From the calculated band tails, transfer characteristics of nanowire tunnel field-effect transistors were numerically analyzed by Wentzel–Kramer–Brillouin approximation with exponential barriers. The calculated transfer characteristics demonstrate that the band tails induced by dopants degrade the subthreshold slopes of Si nanowires from 5 to 56 mV/dec in the worst case. On the other hand, surface doping leads to a high drain current while maintaining a small subthreshold slope.
Soil erosion and significance for carbon fluxes in a mountainous Mediterranean-climate watershed.
Smith, S V; Bullock, S H; Hinojosa-Corona, A; Franco-Vizcaíno, E; Escoto-Rodríguez, M; Kretzschmar, T G; Farfán, L M; Salazar-Ceseña, J M
2007-07-01
In topographically complex terrains, downslope movement of soil organic carbon (OC) can influence local carbon balance. The primary purpose of the present analysis is to compare the magnitude of OC displacement by erosion with ecosystem metabolism in such a complex terrain. Does erosion matter in this ecosystem carbon balance? We have used the Revised Universal Soil Loss Equation (RUSLE) erosion model to estimate lateral fluxes of OC in a watershed in northwestern Mexico. The watershed (4900 km2) has an average slope of 10 degrees +/- 9 degrees (mean +/- SD); 45% is >10 degrees, and 3% is >30 degrees. Land cover is primarily shrublands (69%) and agricultural lands (22%). Estimated bulk soil erosion averages 1350 Mg x km(-2) x yr(-1). We estimate that there is insignificant erosion on slopes < 2 degrees and that 20% of the area can be considered depositional. Estimated OC erosion rates are 10 Mg x km(-2) x yr(-1) for areas steeper than 2 degrees. Over the entire area, erosion is approximately 50% higher on shrublands than on agricultural lands, but within slope classes, erosion rates are more rapid on agricultural areas. For the whole system, estimated OC erosion is approximately 2% of net primary production (NPP), increasing in high-slope areas to approximately 3% of NPP. Deposition of eroded OC in low-slope areas is approximately 10% of low-slope NPP. Soil OC movement from erosional slopes to alluvial fans alters the mosaic of OC metabolism and storage across the landscape.
NASA Astrophysics Data System (ADS)
Link, T. E.; Kumar, M.; Pomeroy, J. W.; Seyednasrollah, B.; Ellis, C. R.; Lawler, R.; Essery, R.
2012-12-01
In mountainous, forested environments, vegetation exerts a strong control on snowcover dynamics that affect ecohydrological processes, streamflow regimes, and riparian health. Snowcover deposition and ablation patterns in forests are controlled by a complex combination of canopy interception processes coupled with radiative and turbulent heat flux patterns related to topographic and canopy cover variations. In seasonal snow environments, snowcover ablation dynamics in forests are dominated by net radiation. Recent research indicates that in small canopy gaps a net radiation minima relative to both open and forested environments can occur, but depends strongly on solar angle, gap size, slope, canopy height and stem density. The optimal gap size to minimize radiation to snow was estimated to have a diameter between 1 and 2 times the surrounding vegetation height. Physically-based snowmelt simulations indicate that gaps may increase SWE and desynchronize snowmelt by approximately 3 weeks between north and south facing slopes, relative to undisturbed forests. On east and west facing slopes, small gaps cause melt to be slightly delayed relative to intact forests, and have a minimal effect on melt synchronicity between slopes. Recent research focused on canopy thinning also indicates that a net radiation minima occurs in canopies of intermediate densities. Physically-based radiative transfer simulations using a discrete tree-based model indicate that in mid-latitude level forests, the annually-integrated radiative minima occurs at a tree spacing of 2.65 relative to the canopy height. The radiative minima was found to occur in denser forests on south-facing slopes and sparser forests on north-facing slopes. The radiative minimums in thinned forests are controlled by solar angle, crown geometry and density, tree spacing, slope, and aspect. These results indicate that both gap and homogeneous forest thinning may be used to reduce snowmelt rates or alter melt synchronicity, but the exact configuration will be highly spatially variable. Development of management strategies to conserve water on the landscape to enhance forest and riparian health in a changing climate must also rigorously evaluate the effects of canopy thinning and specific hydrometeorological conditions on net radiation, turbulent fluxes, and snow interception processes.
Development of thermoregulation and torpor in a marsupial: energetic and evolutionary implications.
Geiser, Fritz; Westman, Wendy; McAllan, Bronwyn M; Brigham, R Mark
2006-02-01
Altricial mammals and birds become endothermic at about half the size of adults and presumably would benefit energetically from entering torpor at that time. Because little is known about torpor during development in endotherms, we investigated whether after the establishment of endothermic thermoregulation (i.e. the ability to maintain a high body temperature during cold exposure), Sminthopsis macroura, a small (approximately 25 g) insectivorous marsupial, is capable of entering torpor and whether torpor patterns change with growth. Endothermic thermoregulation was established when the nest young reached a body mass of approximately 10 g, and they were capable of entering torpor early during development at approximately 10-12 g, lending some support to the view that torpor is a phylogenetically old mammalian trait. Torpor bout length shortened significantly and the minimum metabolic rate during torpor increased as juveniles approached adult size, and consequently total daily energy expenditure increased steeply with age. Relationships between total daily energy expenditure and body mass during development of S. macroura (slope approximately 1.3) differed substantially from the relationship between basal metabolism and body mass in adult endotherms (slope approximately 0.75) suggesting that the energy expenditure-size relationship during the development differs substantially from that in adults under thermo-neutral conditions. Our study shows that while torpor can substantially reduce energy expenditure during development of endotherms and hence is likely important for survival during energy bottlenecks, it also may enhance somatic growth when food is limited. We therefore hypothesize that torpor during the development in endotherms is far more widespread than is currently appreciated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwab, W.C.; Danforth, W.W.; Scanlon, K.M.
1990-06-01
An amphitheater-shaped scarp, approximately 55 km across in water depths from about 3,000 m to 6,700 m was imaged on the northern insular slope of Puerto Rico (southern slope of the Puerto Rico Trench) using the GLORIA side-scan sonar system. This scarp represents the removal of more than 1,500 m{sup 3} of Tertiary Arecibo basin strata. The head of the scarp coincides with the location of a fault zone observed on nearby seismic-reflection profiles. Interpretation of the GLORIA imagery, and a review of available bathymetric, geophysical, and stratigraphic data and tectonic-framework models suggest that the scarp formed as a consequencemore » of slope failure induced by tectonic oversteepening of the insular slope. The oversteepening may be a result of the most recent episode of convergence of the Caribbean and North American plates, which began approximately 4 million years ago. The Arecibo basin strata have been tilted approximately 4{degree} to the north and are apparently gravitationally unstable under the present seismic regime. The volume of material involved in this slope failure is comparable to the material displaced in tsunamogenic submarine landslides along the Peru Trench and Hawaiian Ridge. Therefore, if the slope failure north of Puerto Rico was catastrophic, it was large enough to have generated a tsunami that would have flooded the low ground of northern Puerto Rico.« less
Habitat degradation and fishing effects on the size structure of coral reef fish communities.
Wilson, S K; Fisher, R; Pratchett, M S; Graham, N A J; Dulvy, N K; Turner, R A; Cakacaka, A; Polunin, N V C
2010-03-01
Overfishing and habitat degradation through climate change pose the greatest threats to sustainability of marine resources on coral reefs. We examined how changes in fishing pressure and benthic habitat composition influenced the size spectra of island-scale reef fish communities in Lau, Fiji. Between 2000 and 2006 fishing pressure declined in the Lau Islands due to declining human populations and reduced demand for fresh fish. At the same time, coral cover declined and fine-scale architectural complexity eroded due to coral bleaching and outbreaks of crown-of-thorns starfish, Acanthaster planci. We examined the size distribution of reef fish communities using size spectra analysis, the linearized relationship between abundance and body size class. Spatial variation in fishing pressure accounted for 31% of the variation in the slope of the size spectra in 2000, higher fishing pressure being associated with a steeper slope, which is indicative of fewer large-bodied fish and/or more small-bodied fish. Conversely, in 2006 spatial variation in habitat explained 53% of the variation in the size spectra slopes, and the relationship with fishing pressure was much weaker (approximately 12% of variation) than in 2000. Reduced cover of corals and lower structural complexity was associated with less steep size spectra slopes, primarily due to reduced abundance of fish < 20 cm. Habitat degradation will compound effects of fishing on coral reefs as increased fishing reduces large-bodied target species, while habitat loss results in fewer small-bodied juveniles and prey that replenish stocks and provide dietary resources for predatory target species. Effective management of reef resources therefore depends on both reducing fishing pressure and maintaining processes that encourage rapid recovery of coral habitat.
NASA Technical Reports Server (NTRS)
Tye, A. R.; Fassett, C. I.; Head, J. W.; Mazarico, E.; Basilevsky, A. T.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.
2015-01-01
The interiors of the lunar south circumpolar craters Haworth, Shoemaker, Faustini, and Shackleton contain permanently shadowed regions (PSRs) and have been interpreted to contain sequestered volatiles including water ice. Altimetry data from the Lunar Orbiter Laser Altimeter (LOLA) onboard the Lunar Reconnaissance Orbiter provide a new means of examining the permanently shadowed interiors of these craters in unprecedented detail. In this study, we used extremely high-resolution gridded LOLA data of Haworth, Shoemaker, Faustini, and Shackleton to determine the size-frequency distributions and the spatial density of craters superposing their rims, inner slopes, and floors. Based on their population of superposed D greater than or equal to 2 km craters, Haworth, Shoemaker, and Faustini have pre-Nectarian formation ages. Shackleton is interpreted as having a Late Imbrian age on the basis of craters with diameter D greater than or equal to 0.5 km superposed on its rim. The local density of craters with sub-km diameters across our study area is strongly dependent on slope; because of its steep interior slopes, the lifetime of craters on the interior of Shackleton is limited. The slope-dependence of the small crater population implies that the population in this size range is controlled primarily by the rate at which craters are destroyed. This is consistent with the hypothesis that crater removal and resurfacing is a result of slopedependent processes such as diffusive mass wasting and seismic shaking, linked to micrometeorite and meteorite bombardment. Epithermal neutron flux data and UV albedo data show that these circumpolar PSRs, particularly Shoemaker, may have approximately 1-2% water ice by mass in their highly porous surface regolith, and that Shoemaker may have approximately 5% or more water ice by mass in the near subsurface. The ancient formation ages of Shoemaker, Faustini and Haworth, and the Late Imbrian (approximately 3.5 Ga) crater retention ages of their floors suggests that any water ice that might have been deposited in their permanently shadowed areas was insufficient to modify the superposed crater population since that time.
Martin, Jeffrey D.; Crawford, Charles G.; Duwelius, Richard F.; Renn, Danny E.
1990-01-01
Pond Creek and the unnamed tributary to Big Branch are streams that drain mined and unreclaimed watersheds. Approximately one-half of the Pond Creek watershed is unmined, agricultural land. Soils are very well-drained shaly silty loams that have formed or' steeply sloping spoil banks. Both watersheds contain numerous impoundments of water and have enclosed areas that do not contribute surface runoff to streamflow. The ridges of mine spoil are covered with pine trees, but much of the soil surface is devoid of vegetation.
Medium-power diode-pumped Nd:BaY2F8 laser
NASA Astrophysics Data System (ADS)
Agnesi, Antonio; Guandalini, Annalisa; Lucca, Andrea; Sani, Elisa; Toncelli, Alessandra; Tonelli, Mauro; dell'Acqua, Stefano
2003-05-01
We report what is to our knowledge the first Nd:BaY2F8 (Nd:BaYF) laser pumped with a multiwatt fiber-coupled diode array tuned at approximately 804 nm. As much as 2.4 W were obtained with 6.2 W of absorbed pump power, showing efficient operation (51% slope efficiency), excellent beam quality (M2=1.1), and weak thermal lensing. Small intracavity losses (<1%) were measured, indicating both reduced thermally induced aberrations and good optical quality of the laser crystal.
Sea Surface Scattering of Radar Signals in Ku- and C-Bands: the Role of Breaking Waves
NASA Astrophysics Data System (ADS)
Voronovich, A.; Zavorotny, V.
2001-05-01
A small-slope approximation (SSA) is used for numerical calculations of a radar backscattering cross section of the ocean surface for both Ku- and C-bands for wind speeds ranging from 5 m/s to 15 m/s as a function of an incident angle. Both the lowest order of the SSA and the one that includes the next-order correction to it are considered. The initial calculations were made assuming Gaussian statistics of sea surface and the Elfouhaily et al. surface-height spectrum for fully developed seas (T. Elfouhaily et al., J. Geophys. Res., vol.102, pp.15,781-15,796 (1997)). Empirical scattering models CMOD2-I3 and SASS-II are used for comparison. Theoretical calculations are in good overall agreement with the experiment, being within a 2 dB accuracy on average with a 3 dB maximal discrepancy. The only exception is HH-polarization in the upwind direction where discrepancies reach 5.7 dB for an incidence angle of 60{° }. Note that the SSA allows controlling the accuracy of calculations by comparing the results of the lowest order approximation with corrections originated from higher order terms. The discrepancy between our calculations and empirical data for HH polarization appears to be significantly larger then accuracy of the calculations. Hence, the reason for it should be attributed to the inadequate sea-roughness model. We have checked a hypothesis that steep waves are responsible for this effect. We assumed that the contribution from steep waves could be evaluated in the geometric optics approximation. This allowed us to retrieve the probability density function of large slopes based on comparison of theoretical calculations and experimental data for Ku-band at HH polarization. It was found that in the upwind direction this function could be approximated by a simple relationship: \\[ \\text{Log}_{10}P(a_{x},0) = -2.84 + 0.097ṡ U + 1.33ṡ a_{x}, \\] where U is wind speed in m/s and ax>0.8 is the appropriate slope. Note that such large slopes cannot belong to steady waves and rather correspond to breaking ones. Calculations were performed again for both bands and polarizations with the contribution from breakers included. Corrections to VV-polarization appeared to be relatively small, since the level of backscattering from the background roughness (without breakers) is large as compared to the case of HH-polarization. With the contribution from steep waves included, the backscattering cross section corresponds to experimental results within a 1-2 dB accuracy for winds ranging between 5 m/s and 15 m/s, for both polarizations in both wave bands. Another conclusion drawn from this research is that the Elfouhaily et al. spectrum seems to overestimate the spectral density by 2-4 dB in the case of short, centimeter-range, waves in the cross-wind direction for low winds.
Reuman, Daniel C; Gislason, Henrik; Barnes, Carolyn; Mélin, Frédéric; Jennings, Simon
2014-01-01
Distributions of species body sizes within a taxonomic group, for example, mammals, are widely studied and important because they help illuminate the evolutionary processes that produced these distributions. Distributions of the sizes of species within an assemblage delineated by geography instead of taxonomy (all the species in a region regardless of clade) are much less studied but are equally important and will illuminate a different set of ecological and evolutionary processes. We develop and test a mechanistic model of how diversity varies with body mass in marine ecosystems. The model predicts the form of the ‘diversity spectrum’, which quantifies the distribution of species' asymptotic body masses, is a species analogue of the classic size spectrum of individuals, and which we have found to be a new and widely applicable description of diversity patterns. The marine diversity spectrum is predicted to be approximately linear across an asymptotic mass range spanning seven orders of magnitude. Slope −0·5 is predicted for the global marine diversity spectrum for all combined pelagic zones of continental shelf seas, and slopes for large regions are predicted to lie between −0·5 and −0·1. Slopes of −0·5 and −0·1 represent markedly different communities: a slope of −0·5 depicts a 10-fold reduction in diversity for every 100-fold increase in asymptotic mass; a slope of −0·1 depicts a 1·6-fold reduction. Steeper slopes are predicted for larger or colder regions, meaning fewer large species per small species for such regions. Predictions were largely validated by a global empirical analysis. Results explain for the first time a new and widespread phenomenon of biodiversity. Results have implications for estimating numbers of species of small asymptotic mass, where taxonomic inventories are far from complete. Results show that the relationship between diversity and body mass can be explained from the dependence of predation behaviour, dispersal, and life history on body mass, and a neutral assumption about speciation and extinction. PMID:24588547
Frequencies of Flare Occurrence: Interaction between Convection and Coronal Loops
NASA Astrophysics Data System (ADS)
Mullan, D. J.; Paudel, R. R.
2018-02-01
Observations of solar and stellar flares have revealed the presence of power-law dependences between the flare energy and the time interval between flares. Various models have been proposed to explain these dependences and the numerical value of the power-law indices. Here, we propose a model in which convective flows in granules force the footpoints of coronal magnetic loops, which are frozen-in to photospheric gas, to undergo a random walk. In certain conditions, this can lead to a twist in the loop, which drives the loop unstable if the twist exceeds a critical value. The possibility that a solar flare is caused by such a twist-induced instability in a loop has been in the literature for decades. Here, we quantify the process in an approximate way with a view to replicating the power-law index. We find that, for relatively small flares, the random walk twisting model leads to a rather steep power-law slope that agrees very well with the index derived from a sample of 56,000+ solar X-ray flares reported by the GOES satellites. For relatively large flares, we find that the slope of the power law is shallower. The empirical power-law slopes reported for flare stars also have a range that overlaps with the slopes obtained here. We suggest that in the coolest stars, a significant change in slope should occur when the frozen-flux assumption breaks down due to low electrical conductivity.
NASA Astrophysics Data System (ADS)
Wittmann, René; Maggi, C.; Sharma, A.; Scacchi, A.; Brader, J. M.; Marini Bettolo Marconi, U.
2017-11-01
The equations of motion of active systems can be modeled in terms of Ornstein-Uhlenbeck processes (OUPs) with appropriate correlators. For further theoretical studies, these should be approximated to yield a Markovian picture for the dynamics and a simplified steady-state condition. We perform a comparative study of the unified colored noise approximation (UCNA) and the approximation scheme by Fox recently employed within this context. We review the approximations necessary to define effective interaction potentials in the low-density limit and study the conditions for which these represent the behavior observed in two-body simulations for the OUPs model and active Brownian particles. The demonstrated limitations of the theory for potentials with a negative slope or curvature can be qualitatively corrected by a new empirical modification. In general, we find that in the presence of translational white noise the Fox approach is more accurate. Finally, we examine an alternative way to define a force-balance condition in the limit of small activity.
NASA Technical Reports Server (NTRS)
Vandemack, Douglas; Crawford, Tim; Dobosy, Ron; Elfouhaily, Tanos; Busalacchi, Antonio J. (Technical Monitor)
1999-01-01
Ocean surface remote sensing techniques often rely on scattering or emission linked to shorter- scale gravity-capillary ocean wavelets. However, it is increasingly apparent that slightly longer wavelengths of O(10 to 500 cm) are vital components in the robust sea surface description needed to link varied global remote sensing data sets. This paper describes a sensor suite developed to examine sea surface slope variations in the field using an aircraft flying at very low altitude (below 30 m) and will also provide preliminary measurements detailing changes in slope characteristics versus sea state and friction velocity. Two-dimensional surface slope is measured using simultaneous range measurements from three compact short-range laser altimeters mounted in an equilateral triangle arrangement with spacing of about 1 m. In addition, all three lasers provide independent wave elevation profiles after GPS-aided correction for aircraft altitude. Laser range precision is 1 cm rms while vertical motion correction is 15 cm rms. The measurements are made along-track at approximately 1 m intervals setting the spatial scale of the measurement to cover waves of intermediate to long scale. Products available for this array then include surface elevation, two-dimensional slope distribution, and the cross- and along-track 1-D slope distributions. To complement the laser, a down-looking mm-wave radar scatterometer is centered within the laser array to measure radar backscatter simultaneously with the laser slope. The radar's footprint is nominally 1 m in diameter. Near-vertical radar backscatter is inversely proportional to the small-scale surface slope variance and to the tilt of the underlying (laser-measured) surface facet. Together the laser and radar data provide information on wave roughness from the longest scales down to about 1 cm. These measurements are complemented by aircraft turbulence probe data that provides robust surface flux information.
SPOT-VEG Based Analysis of Siberian Silkmoth Outbreak
NASA Technical Reports Server (NTRS)
Kharuk, Viatcheslav I.; Ranson, K. Jon; Im. Sergey T.
2007-01-01
The spatial and temporal dynamics of an outbreak of the Siberian silkmoth were correlated with topographic features of the affected area using SPOT-VEG data and a high resolution digital elevation model (DEM). In 2002-2003 an outbreak affected approximately 20,000 ha in the South Siberian mountains of Russia. The outbreak began between the elevations of approximately 430- 480 m and on southwest slopes with steepness < 5 degrees. As the pest searched for food it moved up and down slope, resulting in an elevation distribution split within a range of approximately 390-540 m and slope steepness up to 15 degrees. In the final phase the azimuth distribution of damaged stands became even. The correlation between the initial phase and topographic features can be used to prioritize monitoring forest areas most vulnerable to destruction by pests.
Carbon dynamics within agricultural and native sites in the loess region of Western lowa
Manies, K.L.; Harden, J.W.; Kramer, L.; Parton, W.J.
2001-01-01
In order to quantify the historical changes in carbon storage that result from agricultural conversion, this study compared the carbon dynamics of two sites in the loess region of Iowa: a native prairie and a cropland. Field data were obtained to determine present-day carbon storage and its variability within a landscape (a stable ridgetop vs. eroding upper-midslope vs. depositional lower slope). Models were used to recreate the historical carbon budget of these sites and determine the cropland's potential to be a net CO2 source or sink, relative to the atmosphere. Regardless of slope position, the cropland site contains approximately half the amount of carbon as prairie. Variability in soil carbon storage within a site as a consequence of slope position is as large or larger (variations of 200-300%) than temporal variation (???200% at all slope positions). The most extreme difference in soil carbon storage between the cropland and prairie sites is found in the soil at the upper-midslope, which is the area of greatest erosion. The models estimate that 93-172% of the carbon in the original topsoil has been lost from the cropland's eroding midslope. Much of this carbon is derived from deeper soil horizons. Either a small sink or strong source of carbon to the atmosphere is created, depending on the fate of the eroded sediment and its associated carbon.
Analysis of Terrestrial Carbon Stocks in a Small Catchment of Northeastern Siberia
NASA Astrophysics Data System (ADS)
Heard, K.; Natali, S.; Bunn, A. G.; Loranty, M. M.; Kholodov, A. L.; Schade, J. D.; Berner, L. T.; Spektor, V.; Zimov, N.; Alexander, H. D.
2015-12-01
As arctic terrestrial ecosystems comprise about one-third of the global terrestrial ecosystem carbon total, understanding arctic carbon cycling and the feedback of terrestrial carbon pools to accelerated warming is an issue of global concern. For this research, we examined above- and belowground carbon stocks in a larch-dominated catchment underlain by yedoma and located within the Kolyma River watershed in northeastern Siberia. We quantified carbon stocks in vegetation, active layer, and permafrost, and we assessed the correlation between plant and active layer carbon pools and four environmental correlates — slope, solar insolation, canopy density, and leaf area index — at 20 sites. Carbon in the active layer was approximately four times greater than aboveground carbon pools (972 g C m-2), and belowground carbon to 1 m depth was approximately 18 times greater than aboveground carbon pools. Canopy density and slope had a robust positive association with aboveground carbon pools, and soil moisture was positively related to %C in organic, thawed mineral and permafrost soil. Thaw depth was negatively correlated with moss cover and larch biomass, highlighting the importance of vegetation and surface characteristics on permafrost carbon vulnerability. These data suggest that landscape and ecosystem characteristics affect carbon accumulation and storage, but they also play an important role in stabilizing permafrost carbon pools.
An array effect of wave energy farm buoys
NASA Astrophysics Data System (ADS)
Kweon, Hyuck-Min; Lee, Jung-Lyul
2012-12-01
An ocean buoy energy farm is considered for Green energy generation and delivery to small towns along the Korean coast. The present studypresents that the floating buoy-type energy farm appears to be sufficiently feasible fortrapping more energy compared to afixed cylinder duck array. It is also seen from the numerical resultsthat the resonated waves between spaced buoys are further trapped by floating buoy motion.Our numerical study is analyzed by a plane-wave approximation, in which evanescent mode effects are included in a modified mild-slope equation based on the scattering characteristics for a single buoy.
Geology of Biblis Patera, ULYSSES Patera, and Jovis Tholus, Mars
NASA Astrophysics Data System (ADS)
Plescia, J. B.
1993-03-01
There are a variety of constructional volcanic features in Tharsis. These features range from Olympus Mons and the Tharsis Montes shields, to the small low shields and fissure eruptions that characterize much of the volcanic plains, to the smaller volcanic constructs in the northeast and western parts of Tharsis. I describe the geology of the western group, which includes Biblis Patera, Ulysses Patera, and Jovis Tholus. Each of these volcanoes has had a unique, and complex geologic history. Biblis Patera is located at 2.3 deg. N, 123.8 deg. The volcano is elongate in a northwesterly direction and has a large, faulted caldera complex. The flanks of the volcano and adjacent plains are characterized by lava flows, northwest-trending graben and troughs, and caldera-concentric graben and troughs. Biblis Patera is approximately 66 x 127 km with an oval 51 x 56 km caldera; the summit elevation is approximately 2 km above the surrounding plains. The constrcut has an estimated volume of 8-22 x 103 cu km. Ulysses Patera is located at 2.7 deg. N, 121.3 deg. W and stands approx. 2-3 km above the surrounding plain; flank slopes are approximately 7 deg. to 12 deg. The caldera floor is quite deep, lying 1.8 to 2.2 km below the caldera rim. The caldera has a void volume of approximately 5000 cu km, the total solid mass volume of the volcano is 7-16 x 103 cu km. Jovis Tholus is centered at 18.3 deg N; 117.5 deg W; it is a low relief, volcano with gentle flank slopes of between 3 and 8 deg. The construct is dominated by a series of inset calderas which make up the largest fraction of the area. The caldera complex is offset to the southwest side.
NASA Astrophysics Data System (ADS)
Chigira, Masahiro; Wu, Xiyong; Wang, Gonghui; Uchida, Osamu
2010-05-01
2008 Wenchuan earthquake induced numerous large landslides, of which many large landslides had been preceded by gravitational deformation. The deformation could be detected by linear depressions and convex slopes observed on satellite images taken before the earthquake. Ground truth survey after the earthquake also found the gravitational deformation of rocks, which could be predated before the earthquake. The Daguanbao landslide, the largest landslide induced by this earthquake, occurred on a slope of bedded carbonate rocks. The area of the landslide, based on measurements made from the ALOS/PRISM images is 7.353 km2. Its volume is estimated to be 0.837 km3 based on the comparison of the PRISM data and the SRTM DEM. It had an open V-shaped main scarp, of which one linear part was along a high angle fault and the other was approximately parallel to the bedding strike. The upslope edge of the V-shaped main scarp was observed as 2- km long linear depressions along the ridge-top on satellite image before the landslide. This indicates that this slope had been already destabilized and small movement occurred along the bedding planes and along the fault before the event. The Wenchuan earthquake pulled the final trigger of this landslide. The major sliding surface was along the bedding plane, which was observed to dip 35° or slightly gentler. It was warped convex upward and the beds were fractured, which suggests that the beds were slightly buckled before the landslide. This deformation may correspond to the formation of the linear depression. The Tangjiashan landslide in Beichuan, which produced the largest landslide dam during the earthquake, occurred on a dip slope of shale and slate. The geologic structures of the landslide was observed on the side flanks of the landslide, which indicated that the beds had been buckled gravitationally beforehand and the sliding surface was made along the bedding plane and a joint parallel to the slope surface. The buckling deformation was brittle deformation and different from the ductile deformation that accompanied the nearby tectonic folds. The Formosat II and SPOT images on Google Earth indicate that this landslide occurred on a slope with spur-crossing depressions with upslope-convex traces. This topography also indicates that this slope had been deforming by slow rock creep before the earthquake. The gravitational deformation before the landslides above stated appeared as linear depressions or spur-crossing depressions, both of which expressed small displacement in comparison with the size of the whole slope. This may suggest that they were at a critical state just before the catastrophic failure.
Investigation of statistical parameters of the evolving wind wave field using a laser slope gauge
NASA Astrophysics Data System (ADS)
Zavadsky, A.; Shemer, L.
2017-05-01
Statistical parameters of water waves generated by wind in a small scale facility are studied using extensively a Laser Slope Gauge (LSG), in addition to conventional measuring instruments such as a wave gauge and Pitot tube. The LSG enables direct measurements of two components of the instantaneous surface slope. Long sampling duration in a relatively small experimental facility allowed accumulating records of the measured parameters containing a large number of waves. Data were accumulated for a range of wind velocities at multiple fetches. Frequency spectra of the surface elevation and of the instantaneous local slope variation measured under identical conditions are compared. Higher moments of the surface slope are presented. Information on the waves' asymmetry is retrieved from the computed skewness of the surface slope components.
NASA Astrophysics Data System (ADS)
Kubota, Tetsuya; Shinohara, Yoshinori; Aditian, Aril
2013-04-01
1. Objective We had a deluge in July 2012 in the northern Kyushu district with intense rainfall of 800mm and 108mm/hr. This intensity yielded countless traces of debris flow and landslides, slope failures that induced tremendous damage and causalities in the area. Hence, several field investigations and reconnaissance tasks were conducted to delve into this sediment-related disaster. The various results and the information obtained through this investigation were reported, mentioning the damage, the meteorological condition, geologic-geomorphologic features and hydraulic characteristics of the debris flows, vegetation effects, and the influence of the climate change. Increase in rainfall that may be induced by the global climate change is obvious in Kyushu district, Japan, according to the analysis of rain data observed in various locations including mountainside points that are not influenced by local warming due to urbanization. On this point of view, we are intrigued to elucidate the response of landslide to this increase in rainfall. Hence, its long term impact on this landslide disaster is also analyzed comparing with the slope destabilization due to strong seismic shaking. 2. Method and target areas Field investigation on landslides slopes, slope failures and torrents where debris flows occurred are conducted to obtain the geologic data, geo-structure, vegetation feature, soil samples and topographic data i.e. cross sections, then soil shear tests and soil permeability tests are also conducted. The rainfall data at the nearest rain observatory were obtained from the database of Japan meteorological agency. The long term impact on the slope stability at some slopes in the area is analyzed by the finite element method (FEM) combined with rain infiltration and seepage analysis with the long term rainfall fluctuation data, obtaining factor of safety ( Fs) on real landslide slopes. The results are compared with the destabilized influence on the slopes due to the soil strength reduction by seismic shaking. The target areas are located in northern Kyushu district, western Japan where they often have severe landslide disasters. The geology in research areas consists of Paleozoic and Mesozoic rocks (mainly schist, slate) and Quaternary volcanic sediment such as Aso volcano body. The vegetation consists of mainly Japanese cypress, cedar or bamboo. 3. Result and consideration Consequently, the long term rainfall increase in the region such as increment of approximately 20 mm/hr for rain intensity Ri in 36 years is confirmed statistically using Kendall's rank correlation, and it is found that its impact on slope stability is considerable and critical in other cases. In the sample landslide slopes, even the increase in rain of duration for only 10 years has impact to a certain extent on their stabilities in terms of Fs. The Fs calculated with rains in previous decade is higher than 1.0 that corresponds to stable state, whereas the Fs with present rains is lower than 1.0 such as 0.99 which means unstable state. Extremely heavy rainfall with this impact is generally cause extreme ground water pressure in the slope. It is also obvious that the extreme ground water content rendered even small landslides liquefied to be source of destructive debris flows. In this disaster, especially in the Aso volcanic region, tremendous number of debris flow occurred and even the talus cone slopes which are usually stable collapsed to flow down. However, the influence of the long term rainfall increase on the slopes (such as 1% decrease in Fs) is not relatively small compared with the destabilization of the slopes due to the reduction of soil strength by seismic shaking (8~9 % reduction in Fs after seismic shaking of even 490gal). 4. Conclusion In the disaster in July 2012, many landslides and debris flows originated from landslides induced by concentrated underground water supplied by the heavy rainfall occurred. The increase of rainfall due to climate change with the increasing rate such as 20 mm/hr surely has impact on almost landslide slopes in aspects of slope stability, although the influence of the long term rainfall increase on the slopes is relatively small compared with the destabilization of the slopes due to the reduction of soil strength by seismic shakings. Therefore, with this rain increase rate, it is possible for many forest slopes or natural slopes to become unstable and cause landslide disasters especially after potential strong earthquake in the near future.
Boulders on asteroid Toutatis as observed by Chang’e-2
Jiang, Yun; Ji, Jianghui; Huang, Jiangchuan; Marchi, Simone; Li, Yuan; Ip, Wing-Huen
2015-01-01
Boulders are ubiquitously found on the surfaces of small rocky bodies in the inner solar system and their spatial and size distributions give insight into the geological evolution and collisional history of the parent bodies. Using images acquired by the Chang’e-2 spacecraft, more than 200 boulders have been identified over the imaged area of the near-Earth asteroid Toutatis. The cumulative boulder size frequency distribution (SFD) shows a steep slope of −4.4 ± 0.1, which is indicative of a high degree of fragmentation. Similar to Itokawa, Toutatis probably has a rubble-pile structure, as most boulders on its surface cannot solely be explained by impact cratering. The significantly steeper slope for Toutatis’ boulder SFD compared to Itokawa may imply a different preservation state or diverse formation scenarios. In addition, the cumulative crater SFD has been used to estimate a surface crater retention age of approximately 1.6 ± 0.3 Gyr. PMID:26522880
NASA Astrophysics Data System (ADS)
Bourlier, C.; Berginc, G.
2004-07-01
In this paper the first- and second-order Kirchhoff approximation is applied to study the backscattering enhancement phenomenon, which appears when the surface rms slope is greater than 0.5. The formulation is reduced to the geometric optics approximation in which the second-order illumination function is taken into account. This study is developed for a two-dimensional (2D) anisotropic stationary rough dielectric surface and for any surface slope and height distributions assumed to be statistically even. Using the Weyl representation of the Green function (which introduces an absolute value over the surface elevation in the phase term), the incoherent scattering coefficient under the stationary phase assumption is expressed as the sum of three terms. The incoherent scattering coefficient then requires the numerical computation of a ten- dimensional integral. To reduce the number of numerical integrations, the geometric optics approximation is applied, which assumes that the correlation between two adjacent points is very strong. The model is then proportional to two surface slope probabilities, for which the slopes would specularly reflect the beams in the double scattering process. In addition, the slope distributions are related with each other by a propagating function, which accounts for the second-order illumination function. The companion paper is devoted to the simulation of this model and comparisons with an 'exact' numerical method.
Meter-scale slopes of candidate MER landing sites from point photoclinometry
Beyer, R.A.; McEwen, A.S.; Kirk, R.L.
2003-01-01
Photoclinometry was used to analyze the small-scale roughness of areas that fall within the proposed Mars Exploration Rover (MER) 2003 landing ellipses. The landing ellipses presented in this study were those in Athabasca Valles, Elysium Planitia, Eos Chasma, Gusev Crater, Isidis Planitia, Melas Chasma, and Meridiani Planum. We were able to constrain surface slopes on length scales comparable to the image resolution (1.5 to 12 m/pixel). The MER 2003 mission has various engineering constraints that each candidate landing ellipse must satisfy. These constraints indicate that the statistical slope values at 5 m baselines are an important criterion. We used our technique to constrain maximum surface slopes across large swaths of each image, and built up slope statistics for the images in each landing ellipse. We are confident that all MER 2003 landing site ellipses in this study, with the exception of the Melas Chasma ellipse, are within the small-scale roughness constraints. Our results have provided input into the landing hazard assessment process. In addition to evaluating the safety of the landing sites, our mapping of small-scale roughnesses can also be used to better define and map morphologic units. The morphology of a surface is characterized by the slope distribution and magnitude of slopes. In looking at how slopes are distributed, we can better define landforms and determine the boundaries of morphologic units. Copyright 2003 by the American Geophysical Union.
Felling and bunching small timber on steep slopes.
Rodger A. Arola; Edwin S. Miyata; John A. Sturos; Helmuth M. Steinhilb
1981-01-01
Discusses the results of a field test of the unique Menzi Muck machine for felling and bunching small trees on steep slopes. Includes the analysis of a detailed time study to determine the productivity, costs, and economic feasibility of this unusual machine.
Meenderink, Sebastiaan W F; van Dijk, Pim
2004-06-01
The inner ear of frogs holds two papillae specialized in detecting airborne sound, the amphibian papilla (AP) and the basilar papilla (BP). We measured input-output (I/O) curves of distortion product otoacoustic emissions (DPOAEs) from both papillae, and compared their properties. As in other vertebrates, DPOAE I/O curves showed two distinct segments, separated by a notch or kneepoint. The slope of the low-level segment was conspicuously different between the AP and the BP. For DPOAE I/O curves from the AP, slopes were < or = 1 dB/dB, similar to what is found in mammals, birds and some lizards. For DPOAE I/O curves from the BP these slopes were much steeper (approximately 2 dB/dB). Slopes found at high stimulus levels were similar in the AP and the BP (approximately 2 dB/dB). This quantitative difference between the low-level slopes for DPOAEs from the AP and the BP may signify the involvement of different mechanisms in low-level DPOAE generation for the two papillae, respectively.
Luximon, Yan; Cong, Yan; Luximon, Ameersing; Zhang, Ming
2015-06-01
High-heeled shoes are associated with instability and a high risk of fall, fracture, and ankle sprain. This study investigated the effects of heel base size (HBS) on walking stability under different walking speeds and slope angles. The trajectory of the center of pressure (COP), maximal peak pressure, pressure time integral, contact area, and perceived stability were analyzed. The results revealed that a small HBS increased the COP deviations, shifting the COP more medially at the beginning of the gait cycle. The slope angle mainly affected the COP in the anteroposterior direction. An increased slope angle shifted the COP posterior and caused greater pressure and a larger contact area in the midfoot and rearfoot regions, which can provide more support. Subjective measures on perceived stability were consistent with objective measures. The results suggested that high-heeled shoes with a small HBS did not provide stable plantar support, particularly on a small slope angle. The changes in the COP and pressure pattern caused by a small HBS might increase joint torque and muscle activity and induce lower limb problems. Copyright © 2015 Elsevier B.V. All rights reserved.
Evidence for Recent Liquid Water on Mars: Gullies at 70oS in Polar Pit Walls
NASA Technical Reports Server (NTRS)
2000-01-01
[figure removed for brevity, see original site] Gully landforms proposed to have been caused by geologically-recent seepage and runoff of liquid water on Mars are found in the most unlikely places. They typically occur in areas that are quite cold--well below freezing--all year round. Like the old adage about moss on trees, nearly all of them form on slopes that face away from sunlight. Most of the gullies occur at latitudes between 30o and 70o.The highest latitude at which martian gullies have been found is around 70o-75oS on the walls of pits developed in the south polar pitted plains. If you were at this same latitude on Earth, you would be in Antarctica. This region spends much of the winter--which lasts approximately 6 months on Mars--in darkness and at temperatures cold enough to freeze carbon dioxide (around -130oC or -200oF). Nevertheless, gullies with very sharp, deep, v-shaped channels are seen on the pit walls (above, left).Based upon the locations of the tops of the channels on the slope shown here, the inferred site of liquid seepage is located at a layer in the pit wall about 1/3 of the way down from the top of the MOC image. The channels start wide and taper downslope. The area above the channels is layered and has been eroded by mass movement--dry avalanching of debris--to form a pattern of chutes and ridges on the upper slope of the pit wall. The top layer appears to have many boulders in it (each about the size of a small house), these boulders are left behind on the upper slopes of the pit wall as debris is removed.Centered near 70.7oS, 355.7oW, the MOC image was acquired July 14, 1999, and covers an area approximately 2.8 km (1.7 mi) wide by 2.1 km (1.3 mi) high. Sunlight illuminates the MOC image from the upper left and north is toward the upper left. The context view (right) is from the Viking 2 orbiter and was acquired in 1977. The Viking picture is illuminated from the top/upper left; north is toward the upper right. The small white box in the context frame (upper right corner) shows the location of the high resolution MOC view.Mass wasting triggered by the 5 March 1987 Ecuador earthquakes
Schuster, R.L.; Nieto, A.S.; O'Rourke, T. D.; Crespo, E.; Plaza-Nieto, G.
1996-01-01
On 5 March 1987, two earthquakes (Ms=6.1 and Ms=6.9) occurred about 25 km north of Reventador Volcano, along the eastern slopes of the Andes Mountains in northeastern Ecuador. Although the shaking damaged structures in towns and villages near the epicentral area, the economic and social losses directly due to earthquake shaking were small compared to the effects of catastrophic earthquake-triggered mass wasting and flooding. About 600 mm of rain fell in the region in the month preceding the earthquakes; thus, the surficial soils had high moisture contents. Slope failures commonly started as thin slides, which rapidly turned into fluid debris avalanches and debris flows. The surficial soils and thick vegetation covering them flowed down the slopes into minor tributaries and then were carried into major rivers. Rock and earth slides, debris avalanches, debris and mud flows, and resulting floods destroyed about 40 km of the Trans-Ecuadorian oil pipeline and the only highway from Quito to Ecuador's northeastern rain forests and oil fields. Estimates of total volume of earthquake-induced mass wastage ranged from 75-110 million m3. Economic losses were about US$ 1 billion. Nearly all of the approximately 1000 deaths from the earthquakes were a consequence of mass wasting and/ or flooding.
NASA Astrophysics Data System (ADS)
Chigira, M.; Matsushi, Y.; Tsou, C.
2013-12-01
Our experience of catastrophic landslides induced by rainstorms and earthquakes in recent years suggests that many of them are preceded by deep-seated gravitational slope deformation. Deep-seated gravitational slope deformation continues slowly and continually and some of them transform into catastrophic failures, which cause devastating damage in wide areas. Some other types, however, do not change into catastrophic failure. Deep-seated gravitational slope deformation that preceded catastrophic failures induced by typhoon Talas 2011 Japan, had been surveyed with airborne laser scanner beforehand, of which high-resolution DEMs gave us an important clue to identify which type of topographic features of gravitational slope deformation is susceptible to catastrophic failure. We found that 26 of 39 deep-seated catastrophic landslides had small scarps along the heads of future landslides. These scarps were caused by gravitational slope deformation that preceded the catastrophic failure. Although the scarps may have been enlarged by degradation, their sizes relative to the whole slopes suggest that minimal slope deformation had occurred in the period immediately before the catastrophic failure. The scarp ratio, defined as the ratio of length of a scarp to that of the whole slope both measured along the slope line, ranged from 1% to 23%. 38% of the landslides with small scarps had scarp ratios less than 4%, and a half less than 8%. This fact suggests that the gravitational slope deformation preceded catastrophic failure was relatively small and may suggest that those slopes were under critical conditions just before catastrophic failure. The above scarp ratios may be characteristic to accretional complex with undulating, anastomosing thrust faults, which were major sliding surfaces of the typhoon-induced landslides. Eleven of the remaining 13 landslides occurred in landslide scars of previous landslides or occurred as an extension of landslide scars at the lower parts of gravitationally deformed slopes. Remaining one landslide had been preceded by a linear depression at its top, and the topographic precursors of the remaining one landslide could not been specified.
Absolute and relative height-pixel accuracy of SRTM-GL1 over the South American Andean Plateau
NASA Astrophysics Data System (ADS)
Satge, Frédéric; Denezine, Matheus; Pillco, Ramiro; Timouk, Franck; Pinel, Sébastien; Molina, Jorge; Garnier, Jérémie; Seyler, Frédérique; Bonnet, Marie-Paule
2016-11-01
Previously available only over the Continental United States (CONUS), the 1 arc-second mesh size (spatial resolution) SRTM-GL1 (Shuttle Radar Topographic Mission - Global 1) product has been freely available worldwide since November 2014. With a relatively small mesh size, this digital elevation model (DEM) provides valuable topographic information over remote regions. SRTM-GL1 is assessed for the first time over the South American Andean Plateau in terms of both the absolute and relative vertical point-to-point accuracies at the regional scale and for different slope classes. For comparison, SRTM-v4 and GDEM-v2 Global DEM version 2 (GDEM-v2) generated by ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) are also considered. A total of approximately 160,000 ICESat/GLAS (Ice, Cloud and Land Elevation Satellite/Geoscience Laser Altimeter System) data are used as ground reference measurements. Relative error is often neglected in DEM assessments due to the lack of reference data. A new methodology is proposed to assess the relative accuracies of SRTM-GL1, SRTM-v4 and GDEM-v2 based on a comparison with ICESat/GLAS measurements. Slope values derived from DEMs and ICESat/GLAS measurements from approximately 265,000 ICESat/GLAS point pairs are compared using quantitative and categorical statistical analysis introducing a new index: the False Slope Ratio (FSR). Additionally, a reference hydrological network is derived from Google Earth and compared with river networks derived from the DEMs to assess each DEM's potential for hydrological applications over the region. In terms of the absolute vertical accuracy on a global scale, GDEM-v2 is the most accurate DEM, while SRTM-GL1 is more accurate than SRTM-v4. However, a simple bias correction makes SRTM-GL1 the most accurate DEM over the region in terms of vertical accuracy. The relative accuracy results generally did not corroborate the absolute vertical accuracy. GDEM-v2 presents the lowest statistical results based on the relative accuracy, while SRTM-GL1 is the most accurate. Vertical accuracy and relative accuracy are two independent components that must be jointly considered when assessing a DEM's potential. DEM accuracies increased with slope. In terms of hydrological potential, SRTM products are more accurate than GDEM-v2. However, the DEMs exhibit river extraction limitations over the region due to the low regional slope gradient.
The relationship of nitrate concentrations in streams to row crop land use in Iowa
Schilling, K.E.; Libra, R.D.
2000-01-01
The relationship between row crop land use and nitrate N concentrations in surface water was evaluated for 15 Iowa watersheds ranging from 1002 to 2774 km2 and 10 smaller watersheds ranging from 47 to 775 km2 for the period 1996 to 1998. The percentage of land in row crop varied from 24 to >87% in the 15 large watersheds, and mean annual NO3-N concentrations ranged from 0.5 to 10.8 mg/L. In the small watersheds, row crop percentage varied from 28 to 87% and mean annual NO3-N concentrations ranged from 3.0 to 10.5 mg/L. In both cases, nitrate N concentrations were directly related to the percentage of row crop in the watershed (p 87% in the 15 large watersheds, and mean annual NO3-N concentrations ranged from 0.5 to 10.8 mg/L. In the small watersheds, row crop percentage varied from 28 to 87% and mean annual NO3-N concentrations ranged from 3.0 to 10.5 mg/L. In both cases, nitrate N concentrations were directly related to the percentage of row crop in the watershed (p<0.0003). Linear regression showed similar slope for both sets of watersheds (0.11) suggesting that average annual surface water nitrate concentrations in Iowa, and possibly similar agricultural areas in the midwestern USA, can be approximated by multiplying a watershed's row crop percentage by 0.1. Comparing the Iowa watershed data with similar data collected at a subwatershed scale in Iowa (0.1 to 8.1 km2) and a larger midcontinent scale (7300 to 237 100 km2) suggests that watershed scale affects the relationship of nitrate concentration and land use. The slope of nitrate concentration versus row crop percentage decreases with increasing watershed size.Mean nitrate concentrations and row crop land use were summarized for 15 larger and ten smaller watersheds in Iowa, and the relationship between NO3 concentration and land use was examined. Linear regression of mean NO3 concentration and percent row crop was highly significant for both sets of watershed data, but a stronger correlation was noted in the small-watershed data. Both data sets suggested that mean annual surface-water NO3 concentrations in the state could be approximated by multiplying the watershed's percent row crop by 0.1. The slope of NO3 concentration versus row crop percentage appeared to decrease with increasing watershed size.
Lunar terrain mapping and relative-roughness analysis
Rowan, Lawrence C.; McCauley, John F.; Holm, Esther A.
1971-01-01
Terrain maps of the equatorial zone (long 70° E.-70° W. and lat 10° N-10° S.) were prepared at scales of 1:2,000,000 and 1:1,000,000 to classify lunar terrain with respect to roughness and to provide a basis for selecting sites for Surveyor and Apollo landings as well as for Ranger and Lunar Orbiter photographs. The techniques that were developed as a result of this effort can be applied to future planetary exploration. By using the best available earth-based observational data and photographs 1:1,000,000-scale and U.S. Geological Survey lunar geologic maps and U.S. Air Force Aeronautical Chart and Information Center LAC charts, lunar terrain was described by qualitative and quantitative methods and divided into four fundamental classes: maria, terrae, craters, and linear features. Some 35 subdivisions were defined and mapped throughout the equatorial zone, and, in addition, most of the map units were illustrated by photographs. The terrain types were analyzed quantitatively to characterize and order their relative-roughness characteristics. Approximately 150,000 east-west slope measurements made by a photometric technique (photoclinometry) in 51 sample areas indicate that algebraic slope-frequency distributions are Gaussian, and so arithmetic means and standard deviations accurately describe the distribution functions. The algebraic slope-component frequency distributions are particularly useful for rapidly determining relative roughness of terrain. The statistical parameters that best describe relative roughness are the absolute arithmetic mean, the algebraic standard deviation, and the percentage of slope reversal. Statistically derived relative-relief parameters are desirable supplementary measures of relative roughness in the terrae. Extrapolation of relative roughness for the maria was demonstrated using Ranger VII slope-component data and regional maria slope data, as well as the data reported here. It appears that, for some morphologically homogeneous mare areas, relative roughness can be extrapolated to the large scales from measurements at small scales.
NASA Astrophysics Data System (ADS)
Mirzaee, S.; Motagh, M.; Akbari, B.
2017-05-01
Shabkola is a village located in Mazandaran province of northern Iran that suffers from the mass movement happening in the upstream. Deforestation and changes to land use are the main reasons for the soil instability in this region, which together with steep slope, relatively high precipitation rate and natural erosion has led to such a condition. The area of mass movement is approximately 90 hectares which is a big threat for people living in the region. In this study, we have utilized two different geodetic techniques including InSAR time-series analysis and GPS measurements to assess slope stability in Shabkola. The SAR dataset includes 19 ALOS/PALSAR images spanning from July 2007 to February 2011 while GPS observations are collected in 5 campaigns from September 2011 to May 2014. Displacement as much as approximately 11.7 m in slope direction was detected by GPS observations for the 2011-2014 time period. Most of the slope geometry is in north-south direction, for which the sensitivity of InSAR for displacement detection is low. However, ALOS PALSAR data analysis revealed a previously unknown landslide, covered by dense vegetation in the northern part of main Shabkola landslide, showing line-of-sight velocity of approximately 2cm/year in the time period 2007-2011.
Use of a small overpotential approximation to analyze Geobacter sulfurreducens biofilm impedance
NASA Astrophysics Data System (ADS)
Babauta, Jerome T.; Beyenal, Haluk
2017-07-01
The electrochemical impedance of Geobacter sulfurreducens biofilms reflects the extracellular electron transfer mechanisms determining the rate of current output. Binned into two characteristic parameters, conductance and capacitance, biofilm impedance has received significant attention. The goal of this study was to evaluate a small overpotential approximation for extracellular electron transfer in G. sulfurreducens biofilms. Our motivation was to determine whether conductance over biofilm growth behaved linearly with respect to limiting current. Biofilm impedance was tracked during growth using electrochemical impedance spectroscopy (EIS) and electrochemical quartz crystal microbalance (eQCM). We showed that normalization of the biofilm impedance is useful for characterizing the changes during growth. When the conductance and capacitance were compared to the biofilm current, we found that: 1) conductance had a linear response and 2) constant phase elements (CPE) had a saturating response that coincided with the limiting current. We provided a framework using a simple iV relationship that predicted the conductance-current slope to be 9.57 V-1. CPEs showed more variability across biofilm replicates than conductance values. Although G. sulfurreducens biofilms were used here, other electrochemically active biofilms exhibiting catalytic waves could be studied using the same methods.
Landscape Evolution Associated with Recurring Slope Lineae (RSL) on Mars
NASA Astrophysics Data System (ADS)
McEwen, A. S.; Dundas, C. M.; Chojnacki, M.; Ojha, L.
2016-12-01
RSL are low-albedo features that initiate at bedrock outcrops and extend down steep slopes. Individual slopes may have hundreds of lineae, with widths up to 5 m and lengths up to 1.5 km. RSL appear and lengthen gradually or incrementally, fade when inactive, and recur each year, normally in the warmest season. Small channels (1-20 m wide) are often present and control RSL paths. We have also detected newly-formed topographic land slumps associated with RSL fans in at least 7 locations—4 around a hill in Juventae Chasma, 2 in Garni crater in Melas Chasma, and 1 along wall slopes in Coprates Chasma. This distinctive landform assemblage is seen at several other locations within central and eastern Valles Marineris (VM): Small channels on most slope aspects of isolated hills or crater walls, extending very nearly to the tops of the hills or crater rim, associated with RSL that match the channels in size, and with a set of lobate deposits at the base of RSL fans. RSL activity in VM changes slope aspect with season—N-facing slopes in northern summer and S-facing slopes in southern summer. The slumps form midway down the RSL fans, and have a different seasonality—most active from Ls 0-120, the coldest time of year in VM. Assuming this association between gullies, RSL, and slumps is not coincidental, an integrated landscape evolution model is needed. Perhaps RSL activity carves the small gullies and deposits sediment near the base of angle-of-repose slopes, locally oversteepening the slope, which episodically slumps. RSL activity is seasonal and associated with the transient presence of hydrated salts, which indicates some role for salty water. If the RSL were caused by fluid flow, they should not be precisely confined to angle-of-repose or steeper slopes (>28 deg.), so these seem to be dry granular flows whose activity is triggered by or somehow associated with small amounts of water. There are multiple mysteries, such as how the activity recurs at the same locations for multiple Mars years, how it is nearly synchronized for many individual flows, how dry granular flows could create channels, and why the slumps happen in the cold season. This set of processes does not have a documented terrestrial analog and may prove important to understanding ancient as well as present-day Mars.
Numerical Computation of Homogeneous Slope Stability
Xiao, Shuangshuang; Li, Kemin; Ding, Xiaohua; Liu, Tong
2015-01-01
To simplify the computational process of homogeneous slope stability, improve computational accuracy, and find multiple potential slip surfaces of a complex geometric slope, this study utilized the limit equilibrium method to derive expression equations of overall and partial factors of safety. This study transformed the solution of the minimum factor of safety (FOS) to solving of a constrained nonlinear programming problem and applied an exhaustive method (EM) and particle swarm optimization algorithm (PSO) to this problem. In simple slope examples, the computational results using an EM and PSO were close to those obtained using other methods. Compared to the EM, the PSO had a small computation error and a significantly shorter computation time. As a result, the PSO could precisely calculate the slope FOS with high efficiency. The example of the multistage slope analysis indicated that this slope had two potential slip surfaces. The factors of safety were 1.1182 and 1.1560, respectively. The differences between these and the minimum FOS (1.0759) were small, but the positions of the slip surfaces were completely different than the critical slip surface (CSS). PMID:25784927
Numerical computation of homogeneous slope stability.
Xiao, Shuangshuang; Li, Kemin; Ding, Xiaohua; Liu, Tong
2015-01-01
To simplify the computational process of homogeneous slope stability, improve computational accuracy, and find multiple potential slip surfaces of a complex geometric slope, this study utilized the limit equilibrium method to derive expression equations of overall and partial factors of safety. This study transformed the solution of the minimum factor of safety (FOS) to solving of a constrained nonlinear programming problem and applied an exhaustive method (EM) and particle swarm optimization algorithm (PSO) to this problem. In simple slope examples, the computational results using an EM and PSO were close to those obtained using other methods. Compared to the EM, the PSO had a small computation error and a significantly shorter computation time. As a result, the PSO could precisely calculate the slope FOS with high efficiency. The example of the multistage slope analysis indicated that this slope had two potential slip surfaces. The factors of safety were 1.1182 and 1.1560, respectively. The differences between these and the minimum FOS (1.0759) were small, but the positions of the slip surfaces were completely different than the critical slip surface (CSS).
InSAR Monitoring of Landslides using RADARSAT and Alos
NASA Astrophysics Data System (ADS)
Singhroy, V.; Pierre-Jean, A.; Pavlic, G.
2009-05-01
We present the results of InSAR monitoring of several landslides using RADARDAT, and ALOS satellites. InSAR techniques are increasingly being used in slope stability assessment. Our research has shown that differential InSAR and coherent target monitoring techniques using field corner reflectors are useful to monitor landslide activity along strategic transportation and energy corridors. The Mackenzie Valley in northern Canada is experiencing one of the highest rates on mean annual air temperature for any region in Canada, thereby triggering melting in the permafrost, which results in active layer detachment slides. There are approximately 2000 landslides along the proposed Mackenzie Valley pipeline route. In addition, the Trans Canada Highway in the Canadian Rockies are affected by several rock avalanches and slow retrogressive slides. The ALOS PALSAR InSAR results show that we can observe deformation on both vegetated and exposed rock areas on the Little Smokey slide and the Frank Slide. RADARSAT-1 InSAR images indicate the different level of activity of the slopes (large and small) during different periods of the year. RADARSAT-2 is providing the high resolution rapid revisit capabilities needed to continuously monitor these active slopes along Canadian strategic energy and transportation corridors. The information produced by our InSAR activity maps on various landslides are used to realign the pipeline route in sensitive permafrost areas, and to install slope stability measures along the Trans-Canada and Provincial Highways. Using these different satellites we are able to develop guidelines for more reliable uses of these SAR missions Keywords: InSAR, landslides, RADARSAT, ALOS .
NASA Astrophysics Data System (ADS)
Millar, David J.; Cooper, David J.; Ronayne, Michael J.
2018-06-01
Hydrological dynamics act as a primary control on ecosystem function in mountain peatlands, serving as an important regulator of carbon fluxes. In western North America, mountain peatlands exist in different hydrogeological settings, across a range climatic conditions, and vary in floristic composition. The sustainability of these ecosystems, particularly those at the low end of their known elevation range, is susceptible to a changing climate via changes in the water cycle. We conducted a hydrological investigation of two mountain peatlands, with differing vegetation, hydrogeological setting (sloping vs basin), and climate (strong vs weak monsoon influence). Growing season saturated zone water budgets were modeled on a daily basis, and subsurface flow characterizations were performed during multiple field campaigns at each site. The sloping peatland expectedly showed a strong lateral groundwater potential gradient throughout the growing season. Alternatively, the basin peatland had low lateral gradients but more pronounced vertical gradients. A zero-flux plane was apparent at a depth of approximately 50 cm below the peat surface at the basin peatland; shallow groundwater above this depth moved upward towards the surface via evapotranspiration. The differences in groundwater flow dynamics between the two sites also influenced water budgets. Higher groundwater inflow at the sloping peatland offset higher rates of evapotranspiration losses from the saturated zone, which were apparently driven by differences in vegetative cover. This research revealed that although sloping peatlands cover relatively small portions of mountain watersheds, they provide unique settings where vegetation directly utilizes groundwater for transpiration, which were several-fold higher than typically reported for surrounding uplands.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, W.L.; Spechler, R.M.
1993-03-01
Red Snapper Sink is located on the continental shelf, 26 nautical miles east of Crescent Beach, Florida. In 1991, advanced technical-diving techniques enabled divers to explore the bottom of the sink for the first time. The opening of the sink at a depth of 88 feet is approximately 400 feet in diameter. From 88 to 134 feet, the sloping sides of the sink are developed on loose Quaternary shelly sand and Pleistocene clayey sand. Below 134 feet, Red Snapper Sink is a vertical shaft measuring about 150--170 feet in diameter. From 134 to 206 feet, the shaft transects weakly-cemented Pliocenemore » sand and silty sand. From 206 to 335 feet, the walls of the shaft are developed in clayey sands of the Upper Hawthorn Formation (Miocene). From 335 to 380 feet, the lower Hawthorn consists of a layer of dolostone containing phosphate pebbles and carbonate interclasts with phosphatic rims. The top of the Ocala Limestone (Eocene) occurs at 380 feet, and below this depth, the walls of the shaft are undercut. Two dives were made to the bottom of the sink. A sand floor was encountered at a depth of 434 feet on the south side of the shaft and at 460 feet on the northwest side. On the northwest side, the floor slopes to a depth of approximately 495 feet. During a dive to 482 feet, sea water was observed flowing into small caverns at the base of the wall. Seismic profiles indicate that Red Snapper Sink is the surficial expression of a karst breccia pipe originating at a depth of approximately 2,000 feet in Upper Cretaceous and Paleocene rocks.« less
NASA Astrophysics Data System (ADS)
Childress, L. B.; Blair, N. E.; Orpin, A. R.
2015-12-01
Active margins are particularly efficient in the burial of organic carbon due to the close proximity of highland sources to marine sediment sinks and high sediment transport rates. Compared with passive margins, active margins are dominated by small mountainous river systems, and play a unique role in marine and global carbon cycles. Small mountainous rivers drain only approximately 20% of land, but deliver approximately 40% of the fluvial sediment to the global ocean. Unlike large passive margin systems where riverine organic carbon is efficiently incinerated on continental shelves, small mountainous river dominated systems are highly effective in the burial and preservation of organic carbon due to the rapid and episodic delivery of organic carbon sourced from vegetation, soil, and rock. To investigate the erosion, transport, and burial of organic carbon in active margin small mountainous river systems we use the Waipaoa River, New Zealand. The Waipaoa River, and adjacent marine depositional environment, is a system of interest due to a large sediment yield (6800 tons km-2 yr-1) and extensive characterization. Previous studies have considered the biogeochemistry of the watershed and tracked the transport of terrestrially derived sediment and organics to the continental shelf and slope by biogeochemical proxies including stable carbon isotopes, lignin phenols, n-alkanes, and n-fatty acids. In this work we expand the spatial extent of investigation to include deep sea sediments of the Hikurangi Trough. Located in approximately 3000 m water depth 120 km from the mouth of the Waipaoa River, the Hikurangi Trough is the southern extension of the Tonga-Kermadec-Hikurangi subduction system. Piston core sediments collected by the National Institute of Water and Atmospheric Research (NIWA, NZ) in the Hikurangi Trough indicate the presence of terrestrially derived material (lignin phenols), and suggest a continuum of deposition, resuspension, and transport across the margin. Based on tephra beds identified within the sediments, this material was likely transported by a series of turbidite events, delivered to the Hikurangi Trough through Poverty Canyon.
Landslide assessment of Newell Creek Canyon, Oregon City, Oregon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Growney, L.; Burris, L.; Garletts, D.
1993-04-01
A study has been conducted in Newell Creek Canyon near Oregon City, Oregon, T3S, T2S, R2E. A landslide inventory has located 53 landslides in the 2.8 km[sup 2] area. The landslides range in area from approximately 15,000m[sup 2] to 10m[sup 2]. Past slides cover an approximate 7% of the canyon area. Landslide processes include: slump, slump-translational, slump-earthflow and earthflow. Hard, impermeable clay-rich layers in the Troutdale Formation form the failure planes for most of the slides. Slopes composed of Troutdale material may seem to be stable, but when cuts and fills are produced, slope failure is common because of themore » perched water tables and impermeable failure planes. Good examples of cut and fill failures are present on Highway 213 which passes through Newell Creek Canyon. Almost every cut and fill has failed since the road construction began. The latest failure is in the fill located at mile-post 2.1. From data gathered, a slope stability risk map was generated. Stability risk ratings are divided into three groups: high, moderate and low. High risk of slope instability is designated to all landslides mapped in the slide inventory. Moderate risk is designated to slopes in the Troutdale Formation greater than 8[degree]. Low risk is designated to slopes in the Troutdale Formation less than 8[degree].« less
Dynamic properties of small-scale solar wind plasma fluctuations.
Riazantseva, M O; Budaev, V P; Zelenyi, L M; Zastenker, G N; Pavlos, G P; Safrankova, J; Nemecek, Z; Prech, L; Nemec, F
2015-05-13
The paper presents the latest results of the studies of small-scale fluctuations in a turbulent flow of solar wind (SW) using measurements with extremely high temporal resolution (up to 0.03 s) of the bright monitor of SW (BMSW) plasma spectrometer operating on astrophysical SPECTR-R spacecraft at distances up to 350,000 km from the Earth. The spectra of SW ion flux fluctuations in the range of scales between 0.03 and 100 s are systematically analysed. The difference of slopes in low- and high-frequency parts of spectra and the frequency of the break point between these two characteristic slopes was analysed for different conditions in the SW. The statistical properties of the SW ion flux fluctuations were thoroughly analysed on scales less than 10 s. A high level of intermittency is demonstrated. The extended self-similarity of SW ion flux turbulent flow is constantly observed. The approximation of non-Gaussian probability distribution function of ion flux fluctuations by the Tsallis statistics shows the non-extensive character of SW fluctuations. Statistical characteristics of ion flux fluctuations are compared with the predictions of a log-Poisson model. The log-Poisson parametrization of the structure function scaling has shown that well-defined filament-like plasma structures are, as a rule, observed in the turbulent SW flows. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Small-scale variability in tropical tropopause layer humidity
NASA Astrophysics Data System (ADS)
Jensen, E. J.; Ueyama, R.; Pfister, L.; Karcher, B.; Podglajen, A.; Diskin, G. S.; DiGangi, J. P.; Thornberry, T. D.; Rollins, A. W.; Bui, T. V.; Woods, S.; Lawson, P.
2016-12-01
Recent advances in statistical parameterizations of cirrus cloud processes for use in global models are highlighting the need for information about small-scale fluctuations in upper tropospheric humidity and the physical processes that control the humidity variability. To address these issues, we have analyzed high-resolution airborne water vapor measurements obtained in the Airborne Tropical TRopopause EXperiment over the tropical Pacific between 14 and 20 km. Using accurate and precise 1-Hz water vapor measurements along approximately-level aircraft flight legs, we calculate structure functions spanning horizontal scales ranging from about 0.2 to 50 km, and we compare the water vapor variability in the lower (about 14 km) and upper (16-19 km) Tropical Tropopause Layer (TTL). We also compare the magnitudes and scales of variability inside TTL cirrus versus in clear-sky regions. The measurements show that in the upper TTL, water vapor concentration variance is stronger inside cirrus than in clear-sky regions. Using simulations of TTL cirrus formation, we show that small variability in clear-sky humidity is amplified by the strong sensitivity of ice nucleation rate to supersaturation, which results in highly-structured clouds that subsequently drive variability in the water vapor field. In the lower TTL, humidity variability is correlated with recent detrainment from deep convection. The structure functions indicate approximately power-law scaling with spectral slopes ranging from about -5/3 to -2.
Drainage hydraulics of permeable friction courses
NASA Astrophysics Data System (ADS)
Charbeneau, Randall J.; Barrett, Michael E.
2008-04-01
This paper describes solutions to the hydraulic equations that govern flow in permeable friction courses (PFC). PFC is a layer of porous asphalt approximately 50 mm thick that is placed as an overlay on top of an existing conventional concrete or asphalt road surface to help control splash and hydroplaning, reduce noise, and enhance quality of storm water runoff. The primary objective of this manuscript is to present an analytical system of equations that can be used in design and analysis of PFC systems. The primary assumptions used in this analysis are that the flow can be modeled as one-dimensional, steady state Darcy-type flow and that slopes are sufficiently small so that the Dupuit-Forchheimer assumptions apply. Solutions are derived for cases where storm water drainage is confined to the PFC bed and for conditions where the PFC drainage capacity is exceeded and ponded sheet flow occurs across the pavement surface. The mathematical solutions provide the drainage characteristics (depth and residence time) as a function of rainfall intensity, PFC hydraulic conductivity, pavement slope, and maximum drainage path length.
Tuo, Dengfeng; Xu, Mingxiang; Gao, Guangyao
2018-08-15
Wind and water erosion are two dominant types of erosion that lead to soil and nutrient losses. Wind and water erosion may occur simultaneously to varying extents in semi-arid regions. The contributions of wind and water erosion to total erosion and their effects on soil quality, however, remains elusive. We used cesium-137 ( 137 Cs) inventories to estimate the total soil erosion and used the Revised Universal Soil Loss Equation (RUSLE) to quantify water erosion in sloping croplands. Wind erosion was estimated from the subtraction of the two. We also used 137 Cs inventories to calculate total soil erosion and validate the relationships of the soil quality and erosion at different slope aspects and positions. The results showed that wind erosion (1460tkm -2 a -1 ) on northwest-facing slope was responsible for approximately 39.7% of the total soil loss, and water erosion (2216tkm -2 a -1 ) accounted for approximately 60.3%. The erosion rates were 58.8% higher on northwest- than on southeast-facing slopes. Northwest-facing slopes had lower soil organic carbon, total nitrogen, clay, and silt contents than southeast-facing slopes, and thus, the 137 Cs inventories were lower, and the total soil erosions were higher on the northwest-facing slopes. The variations in soil physicochemical properties were related to total soil erosion. The lowest 137 Cs inventories and nutrient contents were recorded at the upper positions on the northwest-facing slopes due to the successive occurrence of more severe wind and water erosion at the same site. The results indicated that wind and water could accelerate the spatial variability of erosion rate and soil properties and cause serious decreases in the nutrient contents in sloping fields. Our research could help researchers develop soil strategies to reduce soil erosion according to the dominant erosion type when it occurs in a hilly agricultural area. Copyright © 2018 Elsevier B.V. All rights reserved.
Schober, Jennifer; Schleicher, Dominik; Federrath, Christoph; Klessen, Ralf; Banerjee, Robi
2012-02-01
The small-scale dynamo is a process by which turbulent kinetic energy is converted into magnetic energy, and thus it is expected to depend crucially on the nature of the turbulence. In this paper, we present a model for the small-scale dynamo that takes into account the slope of the turbulent velocity spectrum v(ℓ)proportional ℓ([symbol see text])V}, where ℓ and v(ℓ) are the size of a turbulent fluctuation and the typical velocity on that scale. The time evolution of the fluctuation component of the magnetic field, i.e., the small-scale field, is described by the Kazantsev equation. We solve this linear differential equation for its eigenvalues with the quantum-mechanical WKB approximation. The validity of this method is estimated as a function of the magnetic Prandtl number Pm. We calculate the minimal magnetic Reynolds number for dynamo action, Rm_{crit}, using our model of the turbulent velocity correlation function. For Kolmogorov turbulence ([symbol see text] = 1/3), we find that the critical magnetic Reynolds number is Rm(crit) (K) ≈ 110 and for Burgers turbulence ([symbol see text] = 1/2) Rm(crit)(B) ≈ 2700. Furthermore, we derive that the growth rate of the small-scale magnetic field for a general type of turbulence is Γ proportional Re((1-[symbol see text])/(1+[symbol see text])) in the limit of infinite magnetic Prandtl number. For decreasing magnetic Prandtl number (down to Pm >/~ 10), the growth rate of the small-scale dynamo decreases. The details of this drop depend on the WKB approximation, which becomes invalid for a magnetic Prandtl number of about unity.
Deep galaxy counts in the K band with the Kech telescope
NASA Technical Reports Server (NTRS)
Djorgovski, S.; Soifer, B. T.; Pahre, M. A.; Larkin, J. E.; Smith, J. D.; Neugebauer, G.; Smail, I.; Matthews, K.; Hogg, D. W.; Blandford, R. D.
1995-01-01
We present deep galaxy counts in the K (lambda 2.2 micrometer) band, obtained at the W. M. Kech 10 m telescope. The data reach limiting magnitudes K approximately 24 mag, about 5 times deeper than the deepest published K-band images to date. The counts are performed in three small (approximately 1 min), widely separated high-latitude fields. Extensive Monte Carlo tests were used to derive the comleteness corrections and minimize photometric biases. The counts continue to rise, with no sign of a turnover, down to the limits of our data, with the logarithmic slope of d log N/dm = 0.315 +/- 0.02 between K = 20 and 24 mag. This implies a cumulative surface density of approximately 5 x 10(exp 5) galaxies/sq deg, or approximately 2 x 10(exp 10) over the entire sky, down to K = 24 mag. Our counts are in good agreement with, although slightly lower than, those from the Hawaii Deep Survey by Cowie and collaborators; the discrepancies may be due to the small differences in the aperture corrections. We compare our counts with some of the available theoretical predictions. The data do not require models with a high value of Omega(sub 0), but can be well fitted by models with no (or little) evolution, and cosmologies with a low value of Omega(sub 0). Given the uncertainties in the models, it may be premature to put useful constrains on the value of Omega(sub 0) from the counts alone. Optical-to-IR colors are computed, using CCD data obtaind previously at Palomar. We find a few red galaxies with (r-K) approximately greater than 5 mag, or (i-K) approximately greater than 5 mag; these may be ellipticals at z approximately 1. While the redshift distribution of galaxies in our counts is still unknown, the flux limits reached would allow us to detect unobscured L(sub *) galaxies out to substantial redshifts (z greater than 3?).
Bruce, Neil C
2008-08-01
This paper presents a new formulation of the 3D Kirchhoff approximation that allows calculation of the scattering of vector waves from 2D rough surfaces containing structures with infinite slopes. This type of surface has applications, for example, in remote sensing and in testing or imaging of printed circuits. Some preliminary calculations for rectangular-shaped grooves in a plane are presented for the 2D surface method and are compared with the equivalent 1D surface calculations for the Kirchhoff and integral equation methods. Good agreement is found between the methods.
USDA-ARS?s Scientific Manuscript database
In conjunction with an emission monitoring study, long-term airflow and environmental data were collected from four regional producer-owned and -operated mono-slope beef cattle facilities in the Northern Great Plains. The barns were oriented east-west, with approximate dimensions of an 8-m south wal...
NASA Technical Reports Server (NTRS)
Moore, H. J.; Wu, S. C.
1973-01-01
The effect of reading error on two hypothetical slope frequency distributions and two slope frequency distributions from actual lunar data in order to ensure that these errors do not cause excessive overestimates of algebraic standard deviations for the slope frequency distributions. The errors introduced are insignificant when the reading error is small and the slope length is large. A method for correcting the errors in slope frequency distributions is presented and applied to 11 distributions obtained from Apollo 15, 16, and 17 panoramic camera photographs and Apollo 16 metric camera photographs.
NASA Astrophysics Data System (ADS)
Kuhn, Nikolaus; (Phil) Greenwood, Philip
2014-05-01
Alpine and mountain slopes represent important pathways that link high altitude grazing areas to meadows and rangelands at lower elevations. Given the often acute gradient of mountain slopes, they represent a convenient and potentially highly efficient runoff conveyance route that facilitates the downslope transfer of fine-sediment and sediment-bound nutrients and contaminants during erosion events. Above a certain gradient, many slopes host small steps, or `terracettes`. As these are generally orientated across slope, their genesis is usually attributed to a combination of soil creep, coupled with (and often accentuated by) grazing animals. Motivated by the prevalence of these distinct landform features and lack of information on their role as runoff conveyance routes, this communication reports preliminary results from an investigation to explore the possibility that terracettes may act as preferential flow-paths, with an as yet undocumented ability to greatly influence surface hydrology in mountainous and steeply-sloping environments. A ca. 40 m2 area of vegetated terracettes and section of adjacent thalweg, with gradients ranging from approximately 25-35o, were scanned using an automated Topcon IS03 Total Station at a resolution of 0.1 * 0.1 m. Data were converted to a Digital Elevation Model (DEM) in ArcGIS 10 Geographical Information System (GIS), and queried using Spatial Analyst (Surface Hydrology; Flow Accumulation function) to identify slope-sections that could act as preferential flow-pathways during runoff events. These data were supplemented by information on soil physical properties that included grain size composition, bulk density and porosity, in order to establish spatial variations in soil characteristics associated with the vertical and horizontal terracette features. Combining the digital and in-situ data indicate that the technique is able to identify preferential surface flow-paths. Such information could greatly benefit the future management of grazing and rangelands in Alpine, mountain and steeply sloping environments. With higher resolution data covering larger areas, as well as the possibility of using fallout radionuclide data to establish sediment residence times on depositional areas, it is envisioned that runoff and transportation of fine-sediment and sediment-associated nutrients and contaminants down these flow pathways could be modeled, predicted and their effects mitigated and perhaps eventually reduced.
Riparian and upland small mammals on the east slope of the Cascade Range, Washington
John F. Lehmkuhl; Roger D. Peffer; Margaret A. O' Connell
2008-01-01
Differences in small mammal diversity and abundance between riparian and upland areas have not been consistently shown in the Pacific Northwest, and the issue is expected to be complex along the east slope of the Cascade Range with its complex biogeography and forest landscape structure. The information is important for evaluating buffer zone management and the...
NASA Astrophysics Data System (ADS)
Zhang, Shengjun; Li, Jiancheng; Jin, Taoyong; Che, Defu
2018-04-01
Marine gravity anomaly derived from satellite altimetry can be computed using either sea surface height or sea surface slope measurements. Here we consider the slope method and evaluate the errors in the slope of the corrections supplied with the Jason-1 geodetic mission data. The slope corrections are divided into three groups based on whether they are small, comparable, or large with respect to the 1 microradian error in the current sea surface slope models. (1) The small and thus negligible corrections include dry tropospheric correction, inverted barometer correction, solid earth tide and geocentric pole tide. (2) The moderately important corrections include wet tropospheric correction, dual-frequency ionospheric correction and sea state bias. The radiometer measurements are more preferred than model values in the geophysical data records for constraining wet tropospheric effect owing to the highly variable water-vapor structure in atmosphere. The items of dual-frequency ionospheric correction and sea state bias should better not be directly added to range observations for obtaining sea surface slopes since their inherent errors may cause abnormal sea surface slopes and along-track smoothing with uniform distribution weight in certain width is an effective strategy for avoiding introducing extra noises. The slopes calculated from radiometer wet tropospheric corrections, and along-track smoothed dual-frequency ionospheric corrections, sea state bias are generally within ±0.5 microradians and no larger than 1 microradians. (3) Ocean tide has the largest influence on obtaining sea surface slopes while most of ocean tide slopes distribute within ±3 microradians. Larger ocean tide slopes mostly occur over marginal and island-surrounding seas, and extra tidal models with better precision or with extending process (e.g. Got-e) are strongly recommended for updating corrections in geophysical data records.
NASA Astrophysics Data System (ADS)
Schmaltz, Elmar; Steger, Stefan; Bogaard, Thom; Van Beek, Rens; Glade, Thomas
2017-04-01
Hydromechanic slope stability models are often used to assess the landslide susceptibility of hillslopes. Some of these models are able to account for vegetation related effects when assessing slope stability. However, spatial information of required vegetation parameters (especially of woodland) that are defined by land cover type, tree species and stand density are mostly underrepresented compared to hydropedological and geomechanical parameters. The aim of this study is to assess how LiDAR-derived biomass information can help to distinguish distinct tree stand-immanent properties (e.g. stand density and diversity) and further improve the performance of hydromechanic slope stability models. We used spatial vegetation data produced from sophisticated algorithms that are able to separate single trees within a stand based on LiDAR point clouds and thus allow an extraordinary detailed determination of the aboveground biomass. Further, this information is used to estimate the species- and stand-related distribution of the subsurface biomass using an innovative approach to approximate root system architecture and development. The hydrological tree-soil interactions and their impact on the geotechnical stability of the soil mantle are then reproduced in the dynamic and spatially distributed slope stability model STARWARS/PROBSTAB. This study highlights first advances in the approximation of biomechanical reinforcement potential of tree root systems in tree stands. Based on our findings, we address the advantages and limitations of highly detailed biomass information in hydromechanic modelling and physically based slope failure prediction.
Quantifying the effect of forests on frequency and intensity of rockfalls
NASA Astrophysics Data System (ADS)
Moos, Christine; Dorren, Luuk; Stoffel, Markus
2017-02-01
Forests serve as a natural means of protection against small rockfalls. Due to their barrier effect, they reduce the intensity and the propagation probability of falling rocks and thus reduce the occurrence frequency of a rockfall event for a given element at risk. However, despite established knowledge on the protective effect of forests, they are generally neglected in quantitative rockfall risk analyses. Their inclusion in quantitative rockfall risk assessment would, however, be necessary to express their efficiency in monetary terms and to allow comparison of forests with other protective measures, such as nets and dams. The goal of this study is to quantify the effect of forests on the occurrence frequency and intensity of rockfalls. We therefore defined an onset frequency of blocks based on a power-law magnitude-frequency distribution and determined their propagation probabilities on a virtual slope based on rockfall simulations. Simulations were run for different forest and non-forest scenarios under varying forest stand and terrain conditions. We analysed rockfall frequencies and intensities at five different distances from the release area. Based on two multivariate statistical prediction models, we investigated which of the terrain and forest characteristics predominantly drive the role of forest in reducing rockfall occurrence frequency and intensity and whether they are able to predict the effect of forest on rockfall risk. The rockfall occurrence frequency below forested slopes is reduced between approximately 10 and 90 % compared to non-forested slope conditions; whereas rockfall intensity is reduced by 10 to 70 %. This reduction increases with increasing slope length and decreases with decreasing tree density, tree diameter and increasing rock volume, as well as in cases of clustered or gappy forest structures. The statistical prediction models reveal that the cumulative basal area of trees, block volume and horizontal forest structure represent key variables for the prediction of the protective effect of forests. In order to validate these results, models have to be tested on real slopes with a wide variation of terrain and forest conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGregor, B.A.; Garrison, L.E.; Kenyon, N.H.
1985-02-01
GLORIA II long-range side-scan data provide a mosaic of the continental slope in the northern Gulf of Mexico, seaward of the Texas-Louisiana coast. A swath as wide as 30 km and a 10% overlap of the data between parallel track lines provide a continuous picture of the complex slope morphology, which is largely controlled by salt deformation. Morphologic features range from piercement structures approximately 2 km in diameter to basins as much as 30 km across. The GLORIA data delineate the East Breaks submarine slide, where surface lineations are suggestive of deformation features. High-resolution 10 kHz seismic-reflection profiles indicate thatmore » the very irregular surface on the slide has a relief of 10 m. The 3 types of intraslope basins (blocked canyon, interdomal, and collapse) described by A.H. Bouma can be identified on the GLORIA data. The walls of Gyre basin, an example of a blocked canyon, have what are interpreted to be gullies, which are commonly associated with submarine canyons. Another basin downslope has similar gully-like features on the walls, which suggest that it may have been part of the original canyon system. Although many canyon-like features direct the movement of sediment downslope, the present data show that all conduits end in closed basins. No system of basins can be shown to transport sediment across the entire slope between the Mississippi Canyon and the East Breaks slide. Small-scale slumps, which can be identified on the flanks of some of the diapiric structures, also contribute sediments to basins such as Gyre basin.« less
Stallard, Robert F.; Murphy, Sheila F.
2014-01-01
An examination of the relation between runoff rate, R, and concentration, C, of twelve major constituents in four small watersheds in eastern Puerto Rico demonstrates a consistent pattern of responses. For solutes that are not substantially bioactive (alkalinity, silica, calcium, magnesium, sodium, and chloride), the log(R)–log(C) relation is almost linear and can be described as a weighted average of two sources, bedrock weathering and atmospheric deposition. The slope of the relation for each solute depends on the respective source contributions to the total river load. If a solute were strictly derived from bedrock weathering, the slope would be −0.3 to −0.4, whereas if strictly derived from atmospheric deposition, the slope would be approximately −0.1. The bioactive constituents (dissolved organic carbon, nitrate, sulfate, and potassium), which are recycled by plants and concentrated in shallow soil, demonstrate nearly flat or downward-arched log(R)–log(C) relations. The peak of the arch represents a transition from dominantly soil-matrix flow to near-surface macropore flow, and finally to overland flow. At highest observed R (80 to >90 mm/h), essentially all reactive surfaces have become wetted, and the input rate of C becomes independent of R (log(R)–log(C) slope of –1). The highest R are tenfold greater than any previous study. Slight clockwise hysteresis for many solutes in the rivers with riparian zones or substantial hyporheic flows indicates that these settings may act as mixing end-members. Particulate constituents (suspended sediment and particulate organic carbon) show slight clockwise hysteresis, indicating mobilization of stored sediment during rising stage.
Suero, Eduardo M; Citak, Musa; Cross, Michael B; Bosscher, Marianne R F; Ranawat, Anil S; Pearle, Andrew D
2012-08-01
Patients with anterior cruciate ligament (ACL) deficiency may have increased failure rates with UKA as a result of abnormal contact stresses and altered knee kinematics. Variations in the slope of the tibial component in UKA may alter tibiofemoral translation, and affect outcomes. This cadaveric study evaluated tibiofemoral translation during the Lachman and pivot shift tests after changing the slope of a fixed bearing unicondylar tibial component. Sectioning the ACL increased tibiofemoral translation in both the Lachman and pivot shift tests (P<0.05). Tibial slope leveling (decreasing the posterior slope) of the polyethylene insert in a UKA decreases anteroposterior tibiofemoral translation in the sagittal plane to a magnitude similar to that of the intact knee. With 8° of tibial slope leveling, anterior tibial translation during the Lachman test decreased by approximately 5mm. However, no variation in slope altered the pivot shift kinematics in the ACL deficient knees. Copyright © 2011 Elsevier B.V. All rights reserved.
Chaytor, Jason D.; Twichell, David C.; ten Brink, Uri S.
2012-01-01
The Munson-Nygren-Retriever (MNR) landslide complex is a series of distinct submarine landslides located between Nygren and Powell canyons on the Georges Bank lower slope. These landslides were first imaged in 1978 using widely-spaced seismic reflection profiles and were further investigated using continuous coverage GLORIA sidescan imagery collected over the landslide complex in 1987. Recent acquisition of highresolution multibeam bathymetry across these landslides has provided an unprecedented view of their complex morphology and allows for a more detailed investigation of their evacuation and deposit morphologies and sizes, modes of failure, and relationship to the adjacent sections of the margin, including the identification of an additional landslide within the MNR complex, referred to here as the Pickett slide. The evacuation zone of these landslides covers an area of approximately 1,780 km2 . The headwalls of these landslides are at a depth of approximately 1,800 m, with evacuation extending for approximately 60 km downslope to the top of the continental rise. High-relief debris deposits, in the form of blocks and ridges, are present down the length of the majority of the evacuation zones and within the deposition area at the base of the slope. On the continental rise, the deposits from each of the most recent failures of the MNR complex landslides merge with debris from earlier continental slope failures, canyon and alongslope derived deposits, and prominent upper-rise failures.
Quantitative model of diffuse speckle contrast analysis for flow measurement.
Liu, Jialin; Zhang, Hongchao; Lu, Jian; Ni, Xiaowu; Shen, Zhonghua
2017-07-01
Diffuse speckle contrast analysis (DSCA) is a noninvasive optical technique capable of monitoring deep tissue blood flow. However, a detailed study of the speckle contrast model for DSCA has yet to be presented. We deduced the theoretical relationship between speckle contrast and exposure time and further simplified it to a linear approximation model. The feasibility of this linear model was validated by the liquid phantoms which demonstrated that the slope of this linear approximation was able to rapidly determine the Brownian diffusion coefficient of the turbid media at multiple distances using multiexposure speckle imaging. Furthermore, we have theoretically quantified the influence of optical property on the measurements of the Brownian diffusion coefficient which was a consequence of the fact that the slope of this linear approximation was demonstrated to be equal to the inverse of correlation time of the speckle.
NASA Technical Reports Server (NTRS)
Brown, Clarence A , Jr
1957-01-01
A full- scale rocket-powered model of a cruciform canard missile configuration with a low- aspect - ratio wing and blunt nose has been flight tested by the Langley Pilotless Aircraft Research Division. Static and dynamic longitudinal stability and control derivatives of this interdigitated canard-wing missile configuration were determined by using the pulsed- control technique at low angles of attack and for a Mach number range of 1.2 to 2.1. The lift - curve slope showed only small nonlinearities with changes in control deflection or angle of attack but indicated a difference in lift- .curve slope of approximately 7 percent for the two control deflections of delta = 3.0 deg and delta= -0.3 deg . The large tail length of the missile tested was effective in producing damping in pitch throughout the Mach number range tested. The aerodynamic- center location was nearly constant with Mach number for the two control deflections but was shown to be less stable with the larger control deflection. The increment of lift produced by the controls was small and positive throughout the Mach number range tested, whereas the pitching moment produced by the controls exhibited a normal trend of reduced effectiveness with increasing Mach number.The effectiveness of the controls in producing angle of attack, lift, and pitching moment was good at all Mach numbers tested.
NASA Technical Reports Server (NTRS)
Brown, C. A., Jr.
1957-01-01
A full-scale rocket-powered model of a cruciform canard missile configuration with a low-aspect-ratio wing and blunt nose has been flight tested by the Langley Pilotless Aircraft Research Division. Static and dynamic longitudinal stability and control derivatives of this interdigitated canard-wing missile configuration were determined by using the pulsed-control technique at low angles of attack and for a Mach number range of 1.2 to 2.1. The lift-curve slope showed only small nonlinearities with changes in control deflection or angle of attack but indicated a difference in lift-curve slope of approximately 7 percent for the two control deflections of delta = 3.0 deg and delta = -0.3 deg. The large tail length of the missile tested was effective in producing damping in pitch throughout the Mach number range tested. The aerodynamic-center location was nearly constant with Mach number for the two control deflections but was shown to be less stable with the larger control deflection. The increment of lift produced by the controls was small and positive throughout the Mach number range tested, whereas the pitching moment produced by the controls exhibited a normal trend of reduced effectiveness with increasing Mach number. The effectiveness of the controls in producing angle of attack, lift, and pitching moment was good at all Mach numbers tested.
Decameter-Scale Regolith Textures on Mercury
NASA Astrophysics Data System (ADS)
Kreslavsky, M. A.; Zharkova, A. Yu.; Head, J. W.
2018-05-01
Like on the Moon, regolith gardening smooths the surface. Small craters are in equilibrium. “Elephant hide“ typical on the lunar slopes is infrequent on Mercury. Finely Textured Slope Patches have no analog on the Moon.
ERIC Educational Resources Information Center
Mattern, Krista D.; Patterson, Brian F.
2013-01-01
Research on the predictive bias of cognitive tests has generally shown (a) no slope effects and (b) small intercept effects, typically favoring the minority group. Aguinis, Culpepper, and Pierce (2010) simulated data and demonstrated that statistical artifacts may have led to a lack of power to detect slope differences and an overestimate of the…
Predicting Fatigue Lives Of Metal-Matrix/Fiber Composites
NASA Technical Reports Server (NTRS)
Bartolotta, Paul A.
1994-01-01
Method of prediction of fatigue lives of intermetallic-matrix/fiber composite parts at high temperatures styled after method of universal slopes. It suffices to perform relatively small numbers of fatigue tests. Data from fatigue tests correlated with tensile-test data by fitting universal-slopes equation to both sets of data. Thereafter, universal-slopes equation used to predict fatigue lives from tensile properties.
Approximate Solutions for Ideal Dam-Break Sediment-Laden Flows on Uniform Slopes
NASA Astrophysics Data System (ADS)
Ni, Yufang; Cao, Zhixian; Borthwick, Alistair; Liu, Qingquan
2018-04-01
Shallow water hydro-sediment-morphodynamic (SHSM) models have been applied increasingly widely in hydraulic engineering and geomorphological studies over the past few decades. Analytical and approximate solutions are usually sought to verify such models and therefore confirm their credibility. Dam-break flows are often evoked because such flows normally feature shock waves and contact discontinuities that warrant refined numerical schemes to solve. While analytical and approximate solutions to clear-water dam-break flows have been available for some time, such solutions are rare for sediment transport in dam-break flows. Here we aim to derive approximate solutions for ideal dam-break sediment-laden flows resulting from the sudden release of a finite volume of frictionless, incompressible water-sediment mixture on a uniform slope. The approximate solutions are presented for three typical sediment transport scenarios, i.e., pure advection, pure sedimentation, and concurrent entrainment and deposition. Although the cases considered in this paper are not real, the approximate solutions derived facilitate suitable benchmark tests for evaluating SHSM models, especially presently when shock waves can be numerically resolved accurately with a suite of finite volume methods, while the accuracy of the numerical solutions of contact discontinuities in sediment transport remains generally poorer.
Potential Risk Assessment of Mountain Torrent Disasters on Sloping Fields in China
NASA Astrophysics Data System (ADS)
GAO, X.
2017-12-01
China's sloping fields have the problems of low production and serious soil erosion, and mountain torrent disasters will bring more serious soil and water loss to traditional extensive exploitation of sloping field resources. In this paper, China's sloping fields were classified into three grades, such as slightly steep, steep and very steep grade. According to the geological hazards prevention and control regulation, the historical data of China's mountain torrent disasters were spatially interpolated and divided into five classes, such as extremely low, low, middle, high and extremely high level. And the risk level map of mountain torrents was finished in ArcGIS. By using overlaying analysis on sloping fields and risk level map, the potential risk regionalization map of sloping fields in various slope grades was obtained finally. The results shows that the very steep and steep sloping fields are mainly distributed in the first or second stage terraces in China. With the increase of hazard risk level, the area of sloping fields decreases rapidly and the sloping fields in extremely low and low risk levels of mountain torrents reach 98.9%. With the increase of slope grade, the area of sloping fields in various risk levels also declines sharply. The sloping fields take up approximately 60 65% and 26 30% in slightly steep and steep grade areas separately at different risk level. The risk regionalization map can provide effective information for returning farmland to forests or grassland and reducing water and soil erosion of sloping fields in the future.
Opposition effect of the Moon from LROC WAC data
NASA Astrophysics Data System (ADS)
Velikodsky, Yu. I.; Korokhin, V. V.; Shkuratov, Yu. G.; Kaydash, V. G.; Videen, Gorden
2016-09-01
LROC WAC images acquired in 5 bands of the visible spectral range were used to study the opposition effect for two mare and two highland regions near the lunar equator. Opposition phase curves were extracted from the images containing the opposition by separating the phase-curve effect from the albedo pattern by comparing WAC images at different phase angles (from 0° to 30°). Akimov's photometric function and the NASA Digital Terrain Model GLD100 were used in the processing. It was found that phase-curve slopes at small phase angles directly correlate with albedo, while at larger phase angles, they are anti-correlated. We suggest a parameter to characterize the coherent-backscattering component of the lunar opposition surge, which is defined as the maximum phase angle for which the opposition-surge slope increases with growing albedo. The width of the coherent-backscattering opposition effect varies from approximately 1.2° for highlands in red light to 3.9° for maria in blue light. The parameter depends on albedo, which is in agreement with the coherent-backscattering theory. The maximum amplitude of the coherent opposition effect is estimated to be near 8%. Maps of albedo and phase-curve slope at phase angles larger than those, at which the coherent-backscattering occurs, were built for the areas under study. Absolute calibration of WAC images was compared with Earth-based observations: the WAC-determined albedo is very close to the mean lunar albedo calculated using available Earth-based observations.
Do Recurring Slope Lineae (RSL) Shape their Local Landscapes?
NASA Astrophysics Data System (ADS)
McEwen, A. S.; Dundas, C. M.; Chojnacki, M.; Ojha, L.
2017-12-01
RSL are low-albedo features on Mars that initiate at or near bedrock outcrops and extend down steep slopes, with widths up to 5 m and lengths up to 1.5 km. RSL appear and lengthen gradually or incrementally, fade when inactive, and recur each martian year in the warmest season. There are hundreds of likely RSL sites, each with up to hundreds of lineae. Small gullies (1-20 m wide) are often present and control RSL paths; such small, fresh gullies are otherwise rare in equatorial regions. The RSL flow out to the ends of distinctive fans, which may get reworked by wind-driven ripples or dunes. The fans are often relatively bright but transiently become darker, and may have a distinctive color. We have detected newly-formed topographic slumps associated with RSL fans in 12 locations in Valles Marineris (VM). A distinctive landform assemblage is seen within central and eastern VM: Small channels occur on most slope aspects of isolated hills or crater walls, extend very nearly to the tops of the hills or crater rims, are associated with seasonal RSL that extend the full length of the channels and fans, and there is a set of lobate deposits (from slumps) at the base of RSL fans. RSL activity in VM changes slope aspect with season to favor warm temperatures, but the slumps are most active from Ls 0-120, the coldest time of year in VM, especially on south-facing slopes where most of the new slumps have been seen. This association between gullies, RSL, fans, and slumps suggests integrated landscape evolution. Perhaps RSL activity erodes the small gullies and deposits sediment, creating angle-of-repose sloping fans, sometimes oversteepening the fans to cause slumping. RSL activity is associated with the transient presence of hydrated salts, which may indicate some role for salty water. If the RSL mark fluid flow, they should not be precisely confined to angle-of-repose or steeper slopes (>28°), so these must be dry granular flows with activity possibly triggered by or somehow associated with small amounts of water. There are multiple mysteries, such as how the activity recurs at the same locations for multiple Mars years, how activity is nearly synchronized for many individual flows, why similar hill slopes lack RSL, how they erode narrow gullies, why RSL fans transiently darken, and why the slumps form in the cold season.
NASA Astrophysics Data System (ADS)
Obelcz, J.; Xu, K.; Bentley, S. J.; Wood, W. T.; Georgiou, I. Y.; Maloney, J. M.; Miner, M. D.
2017-12-01
The highly publicized subsidence and decline of the Mississippi River Delta Front's (MRDF) subaerial section has recently precipitated studies of the subaqueous MRDF to assess whether it too is subsiding and regressing landward. These studies have largely focused on the area offshore the most active current distributary of the Mississippi River, Southwest Pass, during a decade (post-Hurricane Rita 2005-2014) of relatively quiescent Gulf of Mexico hurricane activity. Utilizing repeat swath bathymetric surveys, it was determined that submarine landslides not associated with major (category ≥ 3) passage are important drivers of downslope sediment transport on the MRDF. Volumetrically, sediment flux downslope without major hurricane influence is approximately half that during a given hurricane-influenced year (5.5 x 105 and 1.1 x 106 m3, respectively). This finding is notable and warrants comparison with other settings to assess the global impact on the source-to-sink budget of small but frequent landslides, but the resource-intensive repeat geophysical surveys required make it a prohibitive option at the margin and global scale. One option to quantify small-scale submarine slope failures while reducing required data acquisition is to utilize machine learning algorithms (MLAs) to intelligently estimate the occurrence and magnitude of submarine landslides based on correlated physical and geological parameters. Here, the MRDF volumetric changes described above are parsed into training and validation data, and physical and geological parameters associated with slope failure (such as porosity, steep slopes, high rates of sedimentation, and presence of gas in pore water) known from prior coring and seafloor mapping expeditions serve as potential predictive variables. The resulting submarine landslide spatial distribution and magnitude maps output by the MLAs are compared to those obtained through geophysical surveys, providing a proof of concept that machine learning can complement and expand the reach of previously acquired geophysical and geological data.
NASA Technical Reports Server (NTRS)
Morris, Richard V.; Achilles, Cherie N; Archer, Paul D.; Graff, Trevor G.; Agresti, David G.; Ming, Douglas W; Golden, Dadi C.; Mertzman, Stanley A.
2011-01-01
Visible and near-IR (VNIR) spectra from the MEx OMEGA and the MRO CRISM hyper-spectral imaging instruments have spectral features associated with the H2O molecule and M OH functional groups (M = Mg, Fe, Al, and Si). Mineralogical assignments of martian spectral features are made on the basis of laboratory VNIR spectra, which were often acquired under ambient (humid) conditions. Smectites like nontronite, saponite, and montmorillionite have interlayer H2O that is exchangeable with their environment, and we have acquired smectite reflectance spectra under dry environmental conditions for interpretation of martian surface mineralogy. We also obtained chemical, Moessbauer (MB), powder X-ray diffraction (XRD), and thermogravimetric (TG) data to understand variations in spectral properties. VNIR spectra were recorded in humid lab air at 25-35C, in a dynamic dry N2 atmosphere (50-150 ppmv H2O) after exposing the smectite samples (5 nontronites, 3 montmorillionites, and 1 saponite) to that atmosphere for up to approximately l000 hr each at 25-35C, approximately 105C, and approximately 215C, and after re-exposure to humid lab air. Heating at 105C and 215C for approximately 1000 hr is taken as a surrogate for geologic time scales at lower temperatures. Upon exposure to dry N2, the position and intensity of spectral features associated with M-OH were relatively insensitive to the dry environment, and the spectral features associated with H2O (e.g., approximately 1.90 micrometers) decreased in intensity and are sometimes not detectable by the end of the 215C heating step. The position and intensity of H2O spectral features recovered upon re-exposure to lab air. XRD data show interlayer collapse for the nontronites and Namontmorillionites, with the interlayer remaining collapsed for the latter after re-exposure to lab air. The interlayer did not collapse for the saponite and Ca-montmorillionite. TG data show that the concentration of H2O derived from structural OH was invariant to the dry N2 treatment for saponite and the montmorillionites, but the nontronites had additional structural OH after treatment. Upon exposure to dry N2, the VNIR spectra also acquired a red slope with decreasing albedo between approximately 0.4 and approximately 2.0 micrometers. The magnitude of the effects covaries with exposure time to dry N2 and heating temperature. Upon re-exposure to lab air, the slope and albedo do not completely recover to pre-exposure values. MB data show that these effects do not result from partial reduction of ferric to ferrous iron, and TG data show they do not result from loss of structural OH. Possible explanations include formation of small clusters of (superparamagnetic) ferric oxide and reduced smectite crystallinity. The difference in spectral properties between spectra acquired in humid lab air and under dry conditions are consequential for interpretation of CRISM and OMEGA spectra. For example, nontronite by itself and not nontronite plus ferrihydrite can account for the red spectral slope in martian spectra where nontronite is indicated by the Fe-OH spectral features.
Ocean processes at the Antarctic continental slope
Heywood, Karen J.; Schmidtko, Sunke; Heuzé, Céline; Kaiser, Jan; Jickells, Timothy D.; Queste, Bastien Y.; Stevens, David P.; Wadley, Martin; Thompson, Andrew F.; Fielding, Sophie; Guihen, Damien; Creed, Elizabeth; Ridley, Jeff K.; Smith, Walker
2014-01-01
The Antarctic continental shelves and slopes occupy relatively small areas, but, nevertheless, are important for global climate, biogeochemical cycling and ecosystem functioning. Processes of water mass transformation through sea ice formation/melting and ocean–atmosphere interaction are key to the formation of deep and bottom waters as well as determining the heat flux beneath ice shelves. Climate models, however, struggle to capture these physical processes and are unable to reproduce water mass properties of the region. Dynamics at the continental slope are key for correctly modelling climate, yet their small spatial scale presents challenges both for ocean modelling and for observational studies. Cross-slope exchange processes are also vital for the flux of nutrients such as iron from the continental shelf into the mixed layer of the Southern Ocean. An iron-cycling model embedded in an eddy-permitting ocean model reveals the importance of sedimentary iron in fertilizing parts of the Southern Ocean. Ocean gliders play a key role in improving our ability to observe and understand these small-scale processes at the continental shelf break. The Gliders: Excellent New Tools for Observing the Ocean (GENTOO) project deployed three Seagliders for up to two months in early 2012 to sample the water to the east of the Antarctic Peninsula in unprecedented temporal and spatial detail. The glider data resolve small-scale exchange processes across the shelf-break front (the Antarctic Slope Front) and the front's biogeochemical signature. GENTOO demonstrated the capability of ocean gliders to play a key role in a future multi-disciplinary Southern Ocean observing system. PMID:24891389
Ocean processes at the Antarctic continental slope.
Heywood, Karen J; Schmidtko, Sunke; Heuzé, Céline; Kaiser, Jan; Jickells, Timothy D; Queste, Bastien Y; Stevens, David P; Wadley, Martin; Thompson, Andrew F; Fielding, Sophie; Guihen, Damien; Creed, Elizabeth; Ridley, Jeff K; Smith, Walker
2014-07-13
The Antarctic continental shelves and slopes occupy relatively small areas, but, nevertheless, are important for global climate, biogeochemical cycling and ecosystem functioning. Processes of water mass transformation through sea ice formation/melting and ocean-atmosphere interaction are key to the formation of deep and bottom waters as well as determining the heat flux beneath ice shelves. Climate models, however, struggle to capture these physical processes and are unable to reproduce water mass properties of the region. Dynamics at the continental slope are key for correctly modelling climate, yet their small spatial scale presents challenges both for ocean modelling and for observational studies. Cross-slope exchange processes are also vital for the flux of nutrients such as iron from the continental shelf into the mixed layer of the Southern Ocean. An iron-cycling model embedded in an eddy-permitting ocean model reveals the importance of sedimentary iron in fertilizing parts of the Southern Ocean. Ocean gliders play a key role in improving our ability to observe and understand these small-scale processes at the continental shelf break. The Gliders: Excellent New Tools for Observing the Ocean (GENTOO) project deployed three Seagliders for up to two months in early 2012 to sample the water to the east of the Antarctic Peninsula in unprecedented temporal and spatial detail. The glider data resolve small-scale exchange processes across the shelf-break front (the Antarctic Slope Front) and the front's biogeochemical signature. GENTOO demonstrated the capability of ocean gliders to play a key role in a future multi-disciplinary Southern Ocean observing system.
Bedada, G; Westerbergh, A; Nevo, E; Korol, A; Schmid, K J
2014-01-01
Wild barley Hordeum spontaneum (L.) shows a wide geographic distribution and ecological diversity. A key question concerns the spatial scale at which genetic differentiation occurs and to what extent it is driven by natural selection. The Levant region exhibits a strong ecological gradient along the North–South axis, with numerous small canyons in an East–West direction and with small-scale environmental gradients on the opposing North- and South-facing slopes. We sequenced 34 short genomic regions in 54 accessions of wild barley collected throughout Israel and from the opposing slopes of two canyons. The nucleotide diversity of the total sample is 0.0042, which is about two-thirds of a sample from the whole species range (0.0060). Thirty accessions collected at ‘Evolution Canyon' (EC) at Nahal Oren, close to Haifa, have a nucleotide diversity of 0.0036, and therefore harbor a large proportion of the genetic diversity. There is a high level of genetic clustering throughout Israel and within EC, which roughly differentiates the slopes. Accessions from the hot and dry South-facing slope have significantly reduced genetic diversity and are genetically more distinct from accessions from the North-facing slope, which are more similar to accessions from other regions in Northern Israel. Statistical population models indicate that wild barley within the EC consist of three separate genetic clusters with substantial gene flow. The data indicate a high level of population structure at large and small geographic scales that shows isolation-by-distance, and is also consistent with ongoing natural selection contributing to genetic differentiation at a small geographic scale. PMID:24619177
The slippery slope: how small ethical transgressions pave the way for larger future transgressions.
Welsh, David T; Ordóñez, Lisa D; Snyder, Deirdre G; Christian, Michael S
2015-01-01
Many recent corporate scandals have been described as resulting from a slippery slope in which a series of small infractions gradually increased over time (e.g., McLean & Elkind, 2003). However, behavioral ethics research has rarely considered how unethical behavior unfolds over time. In this study, we draw on theories of self-regulation to examine whether individuals engage in a slippery slope of increasingly unethical behavior. First, we extend Bandura's (1991, 1999) social-cognitive theory by demonstrating how the mechanism of moral disengagement can reduce ethicality over a series of gradually increasing indiscretions. Second, we draw from recent research connecting regulatory focus theory and behavioral ethics (Gino & Margolis, 2011) to demonstrate that inducing a prevention focus moderates this mediated relationship by reducing one's propensity to slide down the slippery slope. We find support for the developed model across 4 multiround studies. (c) 2015 APA, all rights reserved.
The Q-Slope Method for Rock Slope Engineering
NASA Astrophysics Data System (ADS)
Bar, Neil; Barton, Nick
2017-12-01
Q-slope is an empirical rock slope engineering method for assessing the stability of excavated rock slopes in the field. Intended for use in reinforcement-free road or railway cuttings or in opencast mines, Q-slope allows geotechnical engineers to make potential adjustments to slope angles as rock mass conditions become apparent during construction. Through case studies across Asia, Australia, Central America, and Europe, a simple correlation between Q-slope and long-term stable slopes was established. Q-slope is designed such that it suggests stable, maintenance-free bench-face slope angles of, for instance, 40°-45°, 60°-65°, and 80°-85° with respective Q-slope values of approximately 0.1, 1.0, and 10. Q-slope was developed by supplementing the Q-system which has been extensively used for characterizing rock exposures, drill-core, and tunnels under construction for the last 40 years. The Q' parameters (RQD, J n, J a, and J r) remain unchanged in Q-slope. However, a new method for applying J r/ J a ratios to both sides of potential wedges is used, with relative orientation weightings for each side. The term J w, which is now termed J wice, takes into account long-term exposure to various climatic and environmental conditions such as intense erosive rainfall and ice-wedging effects. Slope-relevant SRF categories for slope surface conditions, stress-strength ratios, and major discontinuities such as faults, weakness zones, or joint swarms have also been incorporated. This paper discusses the applicability of the Q-slope method to slopes ranging from less than 5 m to more than 250 m in height in both civil and mining engineering projects.
A comparison of cloud properties at a coastal and inland site at the North Slope of Alaska
Doran, J. C.; Zhong, S.; Liljegren, J. C.; ...
2002-06-11
In this study, we have examined differences in cloud liquid water paths (LWPs) at a coastal (Barrow) and an inland (Atqasuk) location on the North Slope of Alaska using microwave radiometer (MWR) data collected by the U.S. Department of Energy's Atmospheric Radiation Measurement program for the period June-September 1999. Revised retrieval procedures and a filtering algorithm to eliminate data contaminated by wet windows on the MWRs were employed to extract high-quality data suitable for this study. For clouds with low base heights (<350 m), the LWPs at the coastal site were significantly higher than those at the inland site, butmore » for clouds with higher base heights the differences were small. Air-surface interactions may account for some of the differences. Comparisons were also made between observed LWPs and those simulated with the European Centre for Medium-Range Weather Forecasts (ECMWF) model. The model usually successfully captured the occurrence of cloudy periods but it underpredicted the LWPs by approximately a factor of two. It was also unsuccessful in reproducing the observed differences in LWPs between Barrow and Atqasuk. Some suggestions on possible improvements in the model are presented.« less
Development of Vegetation-Pervious Concrete in Grid Beam System for Soil Slope Protection.
Bao, Xiaohua; Liao, Wenyu; Dong, Zhijun; Wang, Shanyong; Tang, Waiching
2017-01-24
One of the most efficient and environmentally friendly methods for preventing a landslide on a slope is to vegetate it. Vegetation-pervious concretes have a promising potential for soil protection. In this study, the vegetation-pervious concrete with low alkalinity was developed and studied. Combined with a grid beam structure system, the stability and strength between the vegetation-pervious concrete and base soil are believed to be enhanced effectively. For improving plant adaptability, the alkalinity of concrete can be decreased innovatively by adding a self-designed admixture into the cement paste. The effects of the admixture content on alkalinity and compressive strength of the hardened pervious concrete were investigated using X-ray diffraction (XRD) and compression test, respectively. Meanwhile, the permeability of the vegetation-pervious concrete was studied as well. Through comparing with ordinary pervious concrete, the effect of low alkaline pervious concrete on vegetation growth was investigated in a small-scale field for ten weeks. The test results indicated that the alkalinity of the cement samples decreased with the increase of admixture content, and the vegetation grew successfully on previous concrete. By increasing the admixture content to approximately 3.6%, the compressive strength of pervious concrete was more than 25 MPa.
Power spectrum, correlation function, and tests for luminosity bias in the CfA redshift survey
NASA Astrophysics Data System (ADS)
Park, Changbom; Vogeley, Michael S.; Geller, Margaret J.; Huchra, John P.
1994-08-01
We describe and apply a method for directly computing the power spectrum for the galaxy distribution in the extension of the Center for Astrophysics Redshift Survey. Tests show that our technique accurately reproduces the true power spectrum for k greater than 0.03 h Mpc-1. The dense sampling and large spatial coverage of this survey allow accurate measurement of the redshift-space power spectrum on scales from 5 to approximately 200 h-1 Mpc. The power spectrum has slope n approximately equal -2.1 on small scales (lambda less than or equal 25 h-1 Mpc) and n approximately -1.1 on scales 30 less than lambda less than 120 h-1 Mpc. On larger scales the power spectrum flattens somewhat, but we do not detect a turnover. Comparison with N-body simulations of cosmological models shows that an unbiased, open universe CDM model (OMEGA h = 0.2) and a nonzero cosmological constant (CDM) model (OMEGA h = 0.24, lambdazero = 0.6, b = 1.3) match the CfA power spectrum over the wavelength range we explore. The standard biased CDM model (OMEGA h = 0.5, b = 1.5) fails (99% significance level) because it has insufficient power on scales lambda greater than 30 h-1 Mpc. Biased CDM with a normalization that matches the Cosmic Microwave Background (CMB) anisotropy (OMEGA h = 0.5, b = 1.4, sigma8 (mass) = 1) has too much power on small scales to match the observed galaxy power spectrum. This model with b = 1 matches both Cosmic Background Explorer Satellite (COBE) and the small-scale power spect rum but has insufficient power on scales lambda approximately 100 h-1 Mpc. We derive a formula for the effect of small-scale peculiar velocities on the power spectrum and combine this formula with the linear-regime amplification described by Kaiser to compute an estimate of the real-space power spectrum. Two tests reveal luminosity bias in the galaxy distribution: First, the amplitude of the power spectrum is approximately 40% larger for the brightest 50% of galaxies in volume-limited samples that have Mlim greater than M*. This bias in the power spectrum is independent of scale, consistent with the peaks-bias paradigm for galaxy formation. Second, the distribution of local density around galaxies shows that regions of moderate and high density contain both very bright (M less than M* = -19.2 + 5 log h) and fainter galaxies, but that voids preferentially harbor fainter galaxies (approximately 2 sigma significance level).
John E. Baumgras; Chris B. LeDoux
1986-01-01
Cable yarding can reduce the environmental impact of timber harvesting on steep slopes by increasing road spacing and reducing soil disturbance. To determine the cost of harvesting forest biomass with a small cable yarder, a 13.4 kW (18 hp) skyline yarder was tested on two southern Appalachian sites. At both sites, fuelwood was harvested from the boles of hardwood...
Medhi, Biswajit; Hegde, Gopalakrishna M; Gorthi, Sai Siva; Reddy, Kalidevapura Jagannath; Roy, Debasish; Vasu, Ram Mohan
2016-08-01
A simple noninterferometric optical probe is developed to estimate wavefront distortion suffered by a plane wave in its passage through density variations in a hypersonic flow obstructed by a test model in a typical shock tunnel. The probe has a plane light wave trans-illuminating the flow and casting a shadow of a continuous-tone sinusoidal grating. Through a geometrical optics, eikonal approximation to the distorted wavefront, a bilinear approximation to it is related to the location-dependent shift (distortion) suffered by the grating, which can be read out space-continuously from the projected grating image. The processing of the grating shadow is done through an efficient Fourier fringe analysis scheme, either with a windowed or global Fourier transform (WFT and FT). For comparison, wavefront slopes are also estimated from shadows of random-dot patterns, processed through cross correlation. The measured slopes are suitably unwrapped by using a discrete cosine transform (DCT)-based phase unwrapping procedure, and also through iterative procedures. The unwrapped phase information is used in an iterative scheme, for a full quantitative recovery of density distribution in the shock around the model, through refraction tomographic inversion. Hypersonic flow field parameters around a missile-shaped body at a free-stream Mach number of ∼8 measured using this technique are compared with the numerically estimated values. It is shown that, while processing a wavefront with small space-bandwidth product (SBP) the FT inversion gave accurate results with computational efficiency; computation-intensive WFT was needed for similar results when dealing with larger SBP wavefronts.
Richard G. Cline; Harold F. Haupt; Gaylon S. Campbell
1977-01-01
The hydrologic response of small clearcuts on north and south slopes in northern Idaho was investigated. On the north slope, substantial gains (27 to 35 cm) in potential water yield per year resulted from (a) removal of transpiring surfaces associated with plant cover, (b) elimination of snow interception by a closed-canopied forest, and (C) delayed reoccupation of the...
NASA Astrophysics Data System (ADS)
Liu, Jian; Ren, Zhongzhou; Xu, Chang
2018-07-01
Combining the modified Skyrme-like model and the local density approximation model, the slope parameter L of symmetry energy is extracted from the properties of finite nuclei with an improved iterative method. The calculations of the iterative method are performed within the framework of the spherical symmetry. By choosing 200 neutron rich nuclei on 25 isotopic chains as candidates, the slope parameter is constrained to be 50 MeV < L < 62 MeV. The validity of this method is examined by the properties of finite nuclei. Results show that reasonable descriptions on the properties of finite nuclei and nuclear matter can be obtained together.
High-resolution DEM Effects on Geophysical Flow Models
NASA Astrophysics Data System (ADS)
Williams, M. R.; Bursik, M. I.; Stefanescu, R. E. R.; Patra, A. K.
2014-12-01
Geophysical mass flow models are numerical models that approximate pyroclastic flow events and can be used to assess the volcanic hazards certain areas may face. One such model, TITAN2D, approximates granular-flow physics based on a depth-averaged analytical model using inputs of basal and internal friction, material volume at a coordinate point, and a GIS in the form of a digital elevation model (DEM). The volume of modeled material propagates over the DEM in a way that is governed by the slope and curvature of the DEM surface and the basal and internal friction angles. Results from TITAN2D are highly dependent upon the inputs to the model. Here we focus on a single input: the DEM, which can vary in resolution. High resolution DEMs are advantageous in that they contain more surface details than lower-resolution models, presumably allowing modeled flows to propagate in a way more true to the real surface. However, very high resolution DEMs can create undesirable artifacts in the slope and curvature that corrupt flow calculations. With high-resolution DEMs becoming more widely available and preferable for use, determining the point at which high resolution data is less advantageous compared to lower resolution data becomes important. We find that in cases of high resolution, integer-valued DEMs, very high-resolution is detrimental to good model outputs when moderate-to-low (<10-15°) slope angles are involved. At these slope angles, multiple adjacent DEM cell elevation values are equal due to the need for the DEM to approximate the low slope with a limited set of integer values for elevation. The first derivative of the elevation surface thus becomes zero. In these cases, flow propagation is inhibited by these spurious zero-slope conditions. Here we present evidence for this "terracing effect" from 1) a mathematically defined simulated elevation model, to demonstrate the terracing effects of integer valued data, and 2) a real-world DEM where terracing must be addressed. We discuss the effect on the flow model output and present possible solutions for rectification of the problem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marks, Jeffrey; Piburn, Jesse; Tootle, Glenn
2014-09-11
The Wind River Range is a continuous mountain range, approximately 160 km in length, in west-central Wyoming. The presence of glaciers results in meltwater contributions to streamflow during the late summer (July, August, and September: JAS) when snowmelt is decreasing; temperatures are high; precipitation is low; evaporation rates are high; and municipal, industrial, and irrigation water are at peak demands. Therefore, the quantification of glacier meltwater (e.g., volume and mass) contributions to late summer/early fall streamflow is important, given that this resource is dwindling owing to glacier recession. The current research expands upon previous research efforts and identifies two glaciatedmore » watersheds, one on the east slope (Bull Lake Creek) and one on the west slope (Green River) of the Wind River Range, in which unimpaired streamflow is available from 1966 to 2006. Glaciers were delineated within each watershed and area estimates (with error) were obtained for the years 1966, 1989, and 2006. Glacier volume (mass) loss (with error) was estimated by using empirically based volume-area scaling relationships. For 1966 to 2006, glacier mass contributions to JAS streamflow on the east slope were approximately 8%, whereas those on the west slope were approximately 2%. Furthermore, the volume-area scaling glacier mass estimates compared favorably with measured (stereo pair remote sensed data) estimates of glacier mass change for three glaciers (Teton, Middle Teton, and Teepe) in the nearby Teton Range and one glacier (Dinwoody) in the Wind River Range.« less
River channel patterns: Braided, meandering, and straight
Leopold, Luna Bergere; Wolman, M. Gordon
1957-01-01
Channel pattern is used to describe the plan view of a reach of river as seen from an airplane, and includes meandering, braiding, or relatively straight channels.Natural channels characteristically exhibit alternating pools or deep reaches and riffles or shallow reaches, regardless of the type of pattern. The length of the pool or distance between riffles in a straight channel equals the straight line distance between successive points of inflection in the wave pattern of a meandering river of the same width. The points of inflection are also shallow points and correspond to riffles in the straight channel. This distance, which is half the wavelength of the meander, varies approximately as a linear function of channel width. In the data we analysed the meander wavelength, or twice the distance between successive riffles, is from 7 to 12 times the channel width. It is concluded that the mechanics which may lead to meandering operate in straight channels.River braiding is characterized by channel division around alluvial islands. The growth of an island begins as the deposition of a central bar which results from sorting and deposition of the coarser fractions of the load which locally cannot be transported. The bar grows downstream and in height by continued deposition on its surface, forcing the water into the flanking channels, which, to carry the flow, deepen and cut laterally into the original banks. Such deepening locally lowers the water surface and the central bar emerges as an island which becomes stabilized by vegetation. Braiding was observed in a small river in a laboratory. Measurements of the adjustments of velocity, depth, width, and slope associated with island development lead to the conclusion that braiding is one of the many patterns which can maintain quasi-equilibrium among discharge, load, and transporting ability. Braiding does not necessarily indicate an excess of total load.Channel cross section and pattern are ultimately controlled by the discharge and load provided by the drainage basin. It is important, therefore, to develop a picture of how the several variables involved in channel shape interact to result in observed channel characteristics. Such a rationale is summarized as follows:Channel width appears to be primarily a function of near-bankfull discharge, in conjunction with the inherent resistance of bed and bank to scour. Excessive width increases the shear on the bed at the expense of that on the bank and the reverse is true for very narrow widths. Because at high stages width adjustment can take place rapidly and with the evacuation or deposition of relatively small volumes of debris, achievement of a ,relatively stable width at high flow is a primary adjustment to which the further interadjustments between depth, velocity, slope, and roughness tend to accommodate.Channel roughness, to the extent that it is determined by particle size, is an independent factor related to the drainage basin rather than to the channel. Roughness in streams carrying fine material, however, is also a function of the dunes or other characteristics of bed configuration. Where roughness is independently determined as well as discharge and load, these studies indicate that a particular slope is associated with the roughness. At the width determined by the discharge, velocity and depth must be adjusted to satisfy quasi-equilibrium in accord with the particular slope. But if roughness also is variable, depending on the transitory configuration of the bed, then a number of combinations of velocity, depth, and slope will satisfy equilibrium.An increase in load at constant discharge, width, and caliber of load tends to be associated with an increasing slope if the roughness (dune or bed configuration) changes with the load. In the laboratory river an increase of load at constant discharge, width, and caliber resulted in progressive aggradation of long reaches of channel at constant slope.The adjustments of several variables tending toward the establishment of quasi-equilibrium in river channels lead to the different channel patterns observed in nature. For example, the data indicate that at a given discharge, meanders occur at smaller values of slope than do’ braids. Further, at the same slope braided channels are associated with higher bankfull discharges than are meanders. An additional example is provided by the division of discharge around islands in braided rivers which produces numerous small channels. The changes in slope, roughness, and channel shape which accompany this division are in accord with quasi-equilibrium adjustments observed in the comparison of large and small rivers.
Seino, Satoshi; Taniguchi, Yu; Yoshida, Hiroto; Fujiwara, Yoshinori; Amano, Hidenori; Fukaya, Taro; Nishi, Mariko; Murayama, Hiroshi; Nofuji, Yu; Matsuo, Eri; Hoshikawa, Natsumi; Tsuchiya, Yumiko; Shinkai, Shoji
2014-01-01
We reported previously that a 10-year community intervention for disability prevention successfully extended healthy life expectancy at 70 years and decreased the enrollment rate of the Long-Term Care Insurance in Kusatsu, Gunma Prefecture, Japan. In order to clarify functional factors that contributed to healthy aging, this study examined changes in physical, nutritional, psychological and social functions in older adults who participated in annual health checkups over the period. Data sources were participants in annual health checkups conducted from 2002 to 2012 and respondents to biannual monitoring surveys conducted from 2003 to 2011. The target population was all older adults aged 70 years and over living in Kusatsu. The average participation rate over the period was 34.7% for the annual health checkups and 95.0% for the monitoring surveys. First, we examined the representativeness of the participants in annual health checkups by comparing them with the responders to monitoring surveys in terms of their higher-level functional capacity, as measured by the Tokyo Metropolitan Institute of Gerontology Index of Competence (TMIG-IC) (Analysis 1). Second, we examined changes in the physical (4 measures), nutritional (3 measures), and psychological and social (4 measures) functions of participants in annual health checkups over the period. In this analysis, we standardized the data for each year on 11 measures to a mean of 0 and a standard deviation of 1.0 using the 2002 data as the standard, and conducted statistical tests for the slopes of the linear approximate equation (intercept=0) (Analysis 2). In Analysis 1, the TMIG-IC scores for participants in the annual health checkups were significantly higher in both sexes than were those for responders to the monitoring surveys. However, there were no significant year×group interactions in the scores. The difference in scores between the two groups was small for participants in their seventies, but large for participants in their eighties or over. Analysis 2 showed that all physical functions improved significantly over the period in both sexes, and the slopes of the linear approximate equation were steeper for maximal and usual gait speeds (slope=0.050 and 0.048, respectively, in men; 0.067 and 0.060, respectively, in women) than for other measures. In women, in addition to physical function, scores on the Mini-Mental State Examination (slope=0.053), Geriatric Depression Scale (slope=0.027), and Social Roll Scale (slope=0.019) also increased significantly. Although participants in annual health checkups were biased toward better functioning, the degree of the bias did not change significantly over the period. During the same period, physical function for both sexes, and psychological and social functions for women, improved significantly. It may be concluded that functional improvement in older adults contributed to the healthy longevity in Kusatsu.
Eames, I; Small, I; Frampton, A; Cottenden, A M
2003-01-01
The spread of fluid from a localized source on to a flat fibrous sheet is studied. The sheet is inclined at an angle, alpha, to the horizontal, and the areal flux of the fluid released is Qa. A new experimental study is described where the dimensions of the wetted region are measured as a function of time t, Qa and alpha (>0). The down-slope length, Y, grows according to Y approximately (Qa t)(2/3) (sin alpha)(1/3); for high discharge rates and low angles of inclination, the cross-slope width, X, grows as approximately (Qa t)(1/2), while for low discharge rates or high angles of inclination, the cross-slope transport is dominated by infiltration and X approximately 2(2Ks psi* t)(1/2), where Ks is the saturated permeability and psi* is the characteristic value of capillary pressure. A scaling analysis of the underlying non-linear advection diffusion equation describing the infiltration process confirms many of the salient features of the flow observed. Good agreement is observed between the collapse of the numerical solutions and experimental results. The broader implications of these results for incontinence bed-pad research are briefly discussed.
Slope Stability Analysis of Mountain Pine Beetle Impacted Areas
NASA Astrophysics Data System (ADS)
Bogenschuetz, N. M.; Bearup, L. A.; Maxwell, R. M.; Santi, P. M.
2015-12-01
The mountain pine beetle (MPB), Dendroctonus ponderosae, has caused significant tree mortality within North America. Specifically, the MPB affects ponderosa pine and lodgepole pine forests within the Rocky Mountains with approximately 3.4 million acres of forest impacted over the past 20 years. The full impacts of such unprecedented tree mortality on hydrology and slope stability is not well understood. This work studies the affects of MPB infestation on slope instability. A large-scale statistical analysis of MPB and slope stability is combined with a more in-depth analysis of the factors that contribute to slope stability. These factors include: slope aspect, slope angle, root decay, regrowth and hydrologic properties, such as water table depth and soil moisture. Preliminary results show that MPB may affect a greater number of north- and east-facing slopes. This is in accordance with more water availability and a higher MPB impacted tree density on north-facing slopes which, in turn, could potentially increase the probability of slope failure. Root strength is predicted to decrease as the roots stop transpiring 3-4 years proceeding infestation. However, this effect on the hillslope is likely being counterbalanced by the regrowth of grasses, forbs, shrubs, and trees. In addition, the increase in water table height from the lack of transpiring trees is adding a driving force to the slopes. The combination of all these factors will be used in order to assess the effects of MPB tree mortality on slope stability.
The Effect of Uphill and Downhill Slopes on Weight Transfer, Alignment and Shot Outcome in Golf.
Blenkinsop, Glen M; Liang, Ying; Gallimore, Nicholas J; Hiley, Michael J
2018-04-13
The aim of the study was to examine changes in weight transfer, alignment and shot outcome during golf shots from flat, uphill, and downhill slopes. Twelve elite male golfers hit 30 shots with a six-iron from a computer assisted rehabilitation environment (CAREN) used to create 5° slopes while collecting 3D kinematics and kinetics of the swing. A launch monitor measured performance outcomes. A shift in the centre of pressure was found throughout the swing when performed on a slope, with the mean position moving approximately 9% closer to the lower foot. The golfers attempted to remain perpendicular to the slope, resulting in the weight transfer towards the lower foot. The golfers adopted a wider stance in the sloped conditions and moved the ball towards the higher foot at address. Ball speed was not significantly affected by the slope, but launch angle and ball spin were. As predicted by the coaching literature, golfers were more likely to hit shots to the left from an uphill slope and to the right for a downhill slope. No consistent compensatory adjustments in alignment at address or azimuth were found, with the change in final shot dispersion due to the lateral spin of the ball.
Trends in sea ice cover within habitats used by bowhead whales in the western Arctic.
Moore, Sue E; Laidre, Kristin L
2006-06-01
We examined trends in sea ice cover between 1979 and 2002 in four months (March, June, September, and November) for four large (approximately 100,000 km2) and 12 small (approximately 10,000 km2) regions of the western Arctic in habitats used by bowhead whales (Balaena mysticetus). Variation in open water with year was significant in all months except March, but interactions between region and year were not. Open water increased in both large and small regions, but trends were weak with least-squares regression accounting for < or =34% of the total variation. In large regions, positive trends in open water were strongest in September. Linear fits were poor, however, even in the East Siberian, Chukchi, and Beaufort seas, where basin-scale analyses have emphasized dramatic sea ice loss. Small regions also showed weak positive trends in open water and strong interannual variability. Open water increased consistently in five small regions where bowhead whales have been observed feeding or where oceanographic models predict prey entrainment, including: (1) June, along the northern Chukotka coast, near Wrangel Island, and along the Beaufort slope; (2) September, near Wrangel Island, the Barrow Arc, and the Chukchi Borderland; and (3) November, along the Barrow Arc. Conversely, there was very little consistent change in sea ice cover in four small regions considered winter refugia for bowhead whales in the northern Bering Sea, nor in two small regions that include the primary springtime migration corridor in the Chukchi Sea. The effects of sea ice cover on bowhead whale prey availability are unknown but can be modeled via production and advection pathways. Our conceptual model suggests that reductions in sea ice cover will increase prey availability along both pathways for this population. This analysis elucidates the variability inherent in the western Arctic marine ecosystem at scales relevant to bowhead whales and contrasts basin-scale depictions of extreme sea ice retreats, thinning, and wind-driven movements.
NASA Astrophysics Data System (ADS)
Chen, T. C.; Yen, H. Y.; Zhou, F. L.
2015-12-01
This study focuses on the depth and magnitude of the small scale landslide in slate area in Ai-Liao-Shi catchment, South Taiwan. Landslide inventory of 2009 Typhoon Morakot, 5×5 m DEM, and aero photo have been interpreted by GIS software to assess the slope type and the scale of landslide events. The research database includes 276 landslides which orthographic projection areas are smaller than 1 ha. The slopes were also classified into dip, orthoclinical-dip, escarpment, and orthoclinical- escarpment 4 types of slope based on the slope aspect to the bedding orientation. The sliding plane, or so call the failure plane, was identified by aero photo, field reconnaissance and verification, and DEM before and after the typhoon event. Colluvium material deposited on the slip plane was removed based on the scarp and foot position, mass movement pattern, weak plane orientation, and the micro topography of a landslide to achieve the reasonable sliding plane. The maximum depth of sliding surface is explored through the slope type and sliding plane in total of 276 landslide cases. Results demonstrate that the average maximum depth, Dam, of dip slope is 4.6 m, Dam of orthoclinical-dip, escarpment, and orthoclinical-escarpment slopes are 5.8, 6.0, and 6.3 m respectively. In general, Dam is creasing with the average slope of landslide, the relationship of both factor is achieved in the study. Meanwhile, the orthographic projection area of landslide is increasing with the slope angle till the angle up to 40 degree then decreasing. The depth also varies with landslide magnitude. Finally, the relation of the depth normal to slope surface and the depth in gravity direction of landslides in four types slope are proposed, the R square values are 0.862 to 0.891 showing a good correlation between two types of depth.
The absolute magnitude distribution of cold classical Kuiper belt objects
NASA Astrophysics Data System (ADS)
Petit, Jean-Marc; Bannister, Michele T.; Alexandersen, Mike; Chen, Ying-Tung; Gladman, Brett; Gwyn, Stephen; Kavelaars, JJ; Volk, Kathryn
2016-10-01
We report measurements of the low inclination component of the main Kuiper Belt showing a size freqency distribution very steep for sizes larger than H_r ~ 6.5-7.0 and then a flattening to shallower slope that is still steeper than the collisional equilibrium slope.The Outer Solar System Origins Survey (OSSOS) is ongoing and is expected to detect over 500 TNOs in a precisely calibrated and characterized survey. Combining our current sample with CFEPS and the Alexandersen et al. (2015) survey, we analyse a sample of ~180 low inclination main classical (cold) TNOs, with absolute magnitude H_r (SDSS r' like flter) in the range 5 to 8.8. We confirm that the H_r distribution can be approximated by an exponential with a very steep slope (>1) at the bright end of the distribution, as has been recognized long ago. A transition to a shallower slope occurs around H_r ~ 6.5 - 7.0, an H_r mag identified by Fraster et al (2014). Faintward of this transition, we find a second exponential to be a good approximation at least until H_r ~ 8.5, but with a slope significantly steeper than the one proposed by Fraser et al. (2014) or even the collisional equilibrium value of 0.5.The transition in the cold TNO H_r distribution thus appears to occur at larger sizes than is observed in the high inclination main classical (hot) belt, an important indicator of a different cosmogony for these two sub-components of the main classical Kuiper belt. Given the largish slope faintward of the transition, the cold population with ~100 km diameter may dominate the mass of the Kuiper belt in the 40 AU < a < 47 au region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraisler, Eli; Kronik, Leeor
2014-05-14
The fundamental gap is a central quantity in the electronic structure of matter. Unfortunately, the fundamental gap is not generally equal to the Kohn-Sham gap of density functional theory (DFT), even in principle. The two gaps differ precisely by the derivative discontinuity, namely, an abrupt change in slope of the exchange-correlation energy as a function of electron number, expected across an integer-electron point. Popular approximate functionals are thought to be devoid of a derivative discontinuity, strongly compromising their performance for prediction of spectroscopic properties. Here we show that, in fact, all exchange-correlation functionals possess a derivative discontinuity, which arises naturallymore » from the application of ensemble considerations within DFT, without any empiricism. This derivative discontinuity can be expressed in closed form using only quantities obtained in the course of a standard DFT calculation of the neutral system. For small, finite systems, addition of this derivative discontinuity indeed results in a greatly improved prediction for the fundamental gap, even when based on the most simple approximate exchange-correlation density functional – the local density approximation (LDA). For solids, the same scheme is exact in principle, but when applied to LDA it results in a vanishing derivative discontinuity correction. This failure is shown to be directly related to the failure of LDA in predicting fundamental gaps from total energy differences in extended systems.« less
A Theoretical Study of Cold Air Damming.
NASA Astrophysics Data System (ADS)
Xu, Qin
1990-12-01
The dynamics of cold air damming are examined analytically with a two-layer steady state model. The upper layer is a warm and saturated cross-mountain (easterly or southeasterly onshore) flow. The lower layer is a cold mountain-parallel (northerly) jet trapped on the windward (eastern) side of the mountain. The interface between the two layers represents a coastal front-a sloping inversion layer coupling the trapped cold dome with the warm onshore flow above through pressure continuity.An analytical expression is obtained for the inviscid upper-layer flow with hydrostatic and moist adiabatic approximations. Blackadar's PBL parameterization of eddy viscosity is used in the lower-layer equations. Solutions for the mountain-parallel jet and its associated secondary transverse circulation are obtained by expanding asymptotically upon a small parameter proportional to the square root of the inertial aspect ratio-the ratio between the mountain height and the radius of inertial oscillation. The geometric shape of the sloping interface is solved numerically from a differential-integral equation derived from the pressure continuity condition imposed at the interface.The observed flow structures and force balances of cold air damming events are produced qualitatively by the model. In the cold dome the mountain-parallel jet is controlled by the competition between the mountain-parallel pressure gradient and friction: the jet is stronger with smoother surfaces, higher mountains, and faster mountain-normal geostrophic winds. In the mountain-normal direction the vertically averaged force balance in the cold dome is nearly geostrophic and controls the geometric shape of the cold dome. The basic mountain-normal pressure gradient generated in the cold dome by the negative buoyancy distribution tends to flatten the sloping interface and expand the cold dome upstream against the mountain-normal pressure gradient (produced by the upper-layer onshore wind) and Coriolis force (induced by the lower-layer mountain-parallel jet). It is found that the interface slope increases and the cold dome shrinks as the Froude number and/or upstream mountain-parallel geostrophic wind increase, or as the Rossby number, upper-layer depth, and/or surface roughness length decrease, and vice versa. The cold dome will either vanish or not be in a steady state if the Froude number is large enough or the roughness length gets too small. The theoretical findings are explained physically based on detailed analyses of the force balance along the inversion interface.
Petrov, Pavel S; Sturm, Frédéric
2016-03-01
A problem of sound propagation in a shallow-water waveguide with a weakly sloping penetrable bottom is considered. The adiabatic mode parabolic equations are used to approximate the solution of the three-dimensional (3D) Helmholtz equation by modal decomposition of the acoustic pressure field. The mode amplitudes satisfy parabolic equations that admit analytical solutions in the special case of the 3D wedge. Using the analytical formula for modal amplitudes, an explicit and remarkably simple expression for the acoustic pressure in the wedge is obtained. The proposed solution is validated by the comparison with a solution of the 3D penetrable wedge problem obtained using a fully 3D parabolic equation that includes a leading-order cross term correction.
Characterizing Hydrological Processes in Vadose Zone by Direct Infiltration Water Sampling.
NASA Astrophysics Data System (ADS)
Mori, Y.; Higashi, N.; Somura, H.; Takeda, I.; Inoue, M.
2007-12-01
These days, planted forest mountainside was roughly maintained due to the population descent and small birth rate. Because thinning operation would delayed, forest was always dark and floor weed was rare. Management induced non point source pollution like surface soil erosion was suspected, however, we could not approach to the source with the stream water analysis. Therefore, direct soil water sampling device using glass fiber capillary force was developed to examine hydrological processes in watershed. In our design, water was collected just by the capillary force and let the excess water down through so that infiltration water was truly sampled and solute concentration kept the same quality as in soil water. The experiment was conducted at two neighboring Japanese cedar planted forest under different management, i.e., south slope was roughly maintained and west slope was well maintained by thinning operation. Load discharges were higher in south slope and lower in west slope. Infiltration water analysis revealed that ion concentration was gradually decreased at west slope, however in south slope, it dropped to lower level in soil water and increased again in stream water. The trend showed that soil buffering function was poor in south slope. Actually, disk permeameter survey revealed that hydraulic conductivity was small in south slope; TOC and biological activity were lower. This entire soil environment explained the water environmental differences in stream water. Because changes in soil environment affects water environment in the future, monitoring or examination of soil environment was considered as preventive measure for environmentally sound water and solute circulation in watershed.
Unsteady seepage flow over sloping beds in response to multiple localized recharge
NASA Astrophysics Data System (ADS)
Bansal, Rajeev K.
2017-05-01
New generalized solutions of linearized Boussinesq equation are derived to approximate the dynamic behavior of subsurface seepage flow induced by multiple localized time-varying recharges over sloping ditch-drain aquifer system. The mathematical model is based on extended Dupuit-Forchheimer assumption and treats the spatial location of recharge basins as additional parameter. Closed form analytic expressions for spatio-temporal variations in water head distribution and discharge rate into the drains are obtained by solving the governing flow equation using eigenvalue-eigenfunction method. Downward and zero-sloping aquifers are treated as special cases of main results. A numerical example is used for illustration of combined effects of various parameters such as spatial coordinates of the recharge basin, aquifer's bed slope, and recharge rate on the dynamic profiles of phreatic surface.
Plant Functional Type Shifts in Big Sagebrush Ecosystems: Impacts on Dryland Ecosystem Water Balance
NASA Astrophysics Data System (ADS)
Bogenschuetz, N. M.; Bearup, L. A.; Maxwell, R. M.; Santi, P. M.
2014-12-01
The mountain pine beetle (MPB), Dendroctonus ponderosae, has caused significant tree mortality within North America. Specifically, the MPB affects ponderosa pine and lodgepole pine forests within the Rocky Mountains with approximately 3.4 million acres of forest impacted over the past 20 years. The full impacts of such unprecedented tree mortality on hydrology and slope stability is not well understood. This work studies the affects of MPB infestation on slope instability. A large-scale statistical analysis of MPB and slope stability is combined with a more in-depth analysis of the factors that contribute to slope stability. These factors include: slope aspect, slope angle, root decay, regrowth and hydrologic properties, such as water table depth and soil moisture. Preliminary results show that MPB may affect a greater number of north- and east-facing slopes. This is in accordance with more water availability and a higher MPB impacted tree density on north-facing slopes which, in turn, could potentially increase the probability of slope failure. Root strength is predicted to decrease as the roots stop transpiring 3-4 years proceeding infestation. However, this effect on the hillslope is likely being counterbalanced by the regrowth of grasses, forbs, shrubs, and trees. In addition, the increase in water table height from the lack of transpiring trees is adding a driving force to the slopes. The combination of all these factors will be used in order to assess the effects of MPB tree mortality on slope stability.
Runoff of small rocky headwater catchments: Field observations and hydrological modeling
NASA Astrophysics Data System (ADS)
Gregoretti, C.; Degetto, M.; Bernard, M.; Crucil, G.; Pimazzoni, A.; De Vido, G.; Berti, M.; Simoni, A.; Lanzoni, S.
2016-10-01
In dolomitic headwater catchments, intense rainstorms of short duration produce runoff discharges that often trigger debris flows on the scree slopes at the base of rock cliffs. In order to measure these discharges, we placed a measuring facility at the outlet (elevation 1770 m a.s.l.) of a small, rocky headwater catchment (area ˜0.032 km2, average slope ˜320%) located in the Venetian Dolomites (North Eastern Italian Alps). The facility consists of an approximately rectangular basin, ending with a sharp-crested weir. Six runoff events were recorded in the period 2011-2014, providing a unique opportunity for characterizing the hydrological response of the catchment. The measured hydrographs display impulsive shapes, with an abrupt raise up to the peak, followed by a rapidly decreasing tail, until a nearly constant plateau is eventually reached. This behavior can be simulated by means of a distributed hydrological model if the excess rainfall is determined accurately. We show that using the Soil Conservation Service Curve-Number (SCS-CN) method and assuming a constant routing velocity invariably results in an underestimated peak flow and a delayed peak time. A satisfactory prediction of the impulsive hydrograph shape, including peak value and timing, is obtained only by combining the SCS-CN procedure with a simplified version of the Horton equation, and simulating runoff routing along the channel network through a matched diffusivity kinematic wave model. The robustness of the proposed methodology is tested through a comparison between simulated and observed timings of runoff or debris flow occurrence in two neighboring alpine basins.
NASA Astrophysics Data System (ADS)
Dutton, Aaron A.; Treu, Tommaso
2014-03-01
Recent studies have shown that massive elliptical galaxies have total mass density profiles within an effective radius that can be approximated as ρ_tot∝ r^{-γ^', with mean slope <γ'> = 2.08 ± 0.03 and scatter σ _{γ ^' } }=0.16± 0.02. The small scatter of the slope (known as the bulge-halo conspiracy) is not generic in Λ cold dark matter (ΛCDM) based models and therefore contains information about the galaxy formation process. We compute the distribution of γ' for ΛCDM-based models that reproduce the observed correlations between stellar mass, velocity dispersion, and effective radius of early-type galaxies in the Sloan Digital Sky Survey. The models have a range of stellar initial mass functions (IMFs) and dark halo responses to galaxy formation. The observed distribution of γ' is well reproduced by a model with cosmologically motivated but uncontracted dark matter haloes, and a Salpeter-type IMF. Other models are on average ruled out by the data, even though they may happen in individual cases. Models with adiabatic halo contraction (and lighter IMFs) predict too small values of γ'. Models with halo expansion, or mass-follows-light predict too high values of γ'. Our study shows that the non-homologous structure of massive early-type galaxies can be precisely reproduced by ΛCDM models if the IMF is not universal and if mechanisms, such as feedback from active galactic nuclei, or dynamical friction, effectively on average counterbalance the contraction of the halo expected as a result of baryonic cooling.
NASA Astrophysics Data System (ADS)
Kundel, Harold L.
2000-04-01
A survey of 12 studies of lung cancer detection with cancer prevalence ranging from 0.9 to 476 cancers per 1000 showed that the unit-slope index of detectability, d', decreased from a high value of 3.9 at low prevalence to 1.4 at high prevalence. A proposed explanation is that the readers are operating on an ROC curve with a slope that is less than unity approximating 0.6. On such a curve, a shift to more stringent criteria that occurs with decreasing prevalence in order to minimize false positives, would result in a increased unity- slope d'.
Sea surface mean square slope from Ku-band backscatter data
NASA Technical Reports Server (NTRS)
Jackson, F. C.; Walton, W. T.; Hines, D. E.; Walter, B. A.; Peng, C. Y.
1992-01-01
A surface mean-square-slope parameter analysis is conducted for 14-GHz airborne radar altimeter near-nadir, quasi-specular backscatter data, which in raw form obtained by least-squares fitting of an optical scattering model to the return waveform show an approximately linear dependence over the 7-15 m/sec wind speed range. Slope data are used to draw inferences on the structure of the high-wavenumber portion of the spectrum. A directionally-integrated model height spectrum that encompasses wind speed-dependent k exp -5/2 and classical Phillips k exp -3 power laws subranges in the range of gravity waves is supported by the data.
Velocity of water flow along saturated loess slopes under erosion effects
NASA Astrophysics Data System (ADS)
Huang, Yuhan; Chen, Xiaoyan; Li, Fahu; Zhang, Jing; Lei, Tingwu; Li, Juan; Chen, Ping; Wang, Xuefeng
2018-06-01
Rainfall or snow-melted water recharge easily saturates loose top soils with a less permeable underlayer, such as cultivated soil slope and partially thawed top soil layer, and thus, may influence the velocity of water flow. This study suggested a methodology and device system to supply water from the bottom soil layer at the different locations of slopes. Water seeps into and saturates the soil, when the water level is controlled at the same height of the soil surface. The structures and functions of the device, the components, and the operational principles are described in detail. A series of laboratory experiments were conducted under slope gradients of 5°, 10°, 15°, and 20° and flow rates of 2, 4, and 8 L min-1 to measure the water flow velocities over eroding and non-eroded loess soil slopes, under saturated conditions by using electrolyte tracing. Results showed that flow velocities on saturated slopes were 17% to 88% greater than those on non-saturated slopes. Flow velocity increased rapidly under high flow rates and slope gradients. Saturation conditions were suitable in maintaining smooth rill geomorphology and causing fast water flow. The saturated soil slope had a lubricant effect on the soil surface to reduce the frictional force, resulting in high flow velocity. The flow velocities of eroding rills under different slope gradients and flow rates were approximately 14% to 33% lower than those of non-eroded rills on saturated loess slopes. Compared with that on a saturated loess slope, the eroding rill on a non-saturated loess slope can produce headcuts to reduce the flow velocity. This study helps understand the hydrodynamics of soil erosion and sediment transportation of saturated soil slopes.
NASA Astrophysics Data System (ADS)
Kubota, Tetsuya; Takeda, Tsuyoshi
2017-04-01
Kumamoto earthquake on April 16th 2016 in Kumamoto prefecture, Kyushu Island, Japan with intense seismic scale of M7.3 (maximum acceleration = 1316 gal in Aso volcanic region) yielded countless instances of landslide and debris flow that induced serious damages and causalities in the area, especially in the Aso volcanic mountain range. Hence, field investigation and numerical slope stability analysis were conducted to delve into the characteristics or the prediction factors of the landslides induced by this earthquake. For the numerical analysis, Finite Element Method (FEM) and CSSDP (Critical Slip Surface analysis by Dynamic Programming theory based on limit equilibrium method) were applied to the landslide slopes with seismic acceleration observed. These numerical analysis methods can automatically detect the landslide slip surface which has minimum Fs (factor of safety). The various results and the information obtained through this investigation and analysis were integrated to predict the landslide susceptible slopes in volcanic area induced by earthquakes and rainfalls of their aftermath, considering geologic-geomorphologic features, geo-technical characteristics of the landslides and vegetation effects on the slope stability. Based on the FEM or CSSDP results, the landslides occurred in this earthquake at the mild gradient slope on the ridge have the safety factor of slope Fs=2.20 approximately (without rainfall nor earthquake, and Fs>=1.0 corresponds to stable slope without landslide) and 1.78 2.10 (with the most severe rainfall in the past) while they have approximately Fs=0.40 with the seismic forces in this earthquake (horizontal direction 818 gal, vertical direction -320 gal respectively, observed in the earthquake). It insists that only in case of earthquakes the landslide in volcanic sediment apt to occur at the mild gradient slopes as well as on the ridges with convex cross section. Consequently, the following results are obtained. 1) At volcanic hillside, mild slopes of 7-10 ° gradient with volcanic sediment such as pumice are prone to collapse to be landslide by strong earthquake. 2) The slopes at the mountain ridge with convex cross section where the seismic vibration tends to concentrate are prone to form landslides in case of earthquake. 3) Due to the most severe precipitation of the past or in the aftermath of earthquake, no landslides occurred in these mild gradient slopes or on the mountain ridges with convex cross section. This information will be a great help in the aspect of landslide prediction.
NASA Astrophysics Data System (ADS)
Li, Bo; Ling, Zongcheng; Zhang, Jiang; Chen, Jian
2017-10-01
Rock populations can supply fundamental geological information about origin and evolution of a planet. In this paper, we used Lunar Reconnaissance Orbiter (LRO) narrow-angle camera (NAC) images to identify rocks at the lunar landing sites (including Chang'e 3 (CE-3), Apollo and Surveyor series). The diameter and area of each identified rock were measured to generate distributions of rock cumulative fractional area and size-frequency on a log-log plot. The two distributions both represented the same shallow slopes at smaller diameters followed by steeper slopes at larger diameters. A reasonable explanation for the lower slopes may be the resolution and space weathering effects. By excluding the smaller diameters, rock populations derived from NAC images showed approximately linear relationships and could be fitted well by power laws. In the last, the entire rock populations derived from both NAC and in-situ imagery could be described by one power function at the lunar landing sites except the CE-3 and Apollo 11 landing sites. This may be because that the process of a large rock breaking down to small rocks even fine particles can be modeled by fractal theories. Thus, rock populations on lunar surfaces can be extrapolated along the curves of rock populations derived from NAC images to smaller diameters. In the future, we can apply rock populations from remote sensing images to estimate the number of rocks with smaller diameters to select the appropriate landing sites for the CE-4 and CE-5 missions.
Sedimentology and geomorphology of a large tsunamigenic landslide, Taan Fiord, Alaska
NASA Astrophysics Data System (ADS)
Dufresne, A.; Geertsema, M.; Shugar, D. H.; Koppes, M.; Higman, B.; Haeussler, P. J.; Stark, C.; Venditti, J. G.; Bonno, D.; Larsen, C.; Gulick, S. P. S.; McCall, N.; Walton, M.; Loso, M. G.; Willis, M. J.
2018-02-01
On 17 October 2015, a landslide of roughly 60 × 106 m3 occurred at the terminus of Tyndall Glacier in Taan Fiord, southeastern Alaska. It caused a tsunami that inundated an area over 20 km2, whereas the landslide debris itself deposited within a much smaller area of approximately 2 km2. It is a unique event in that the landslide debris was deposited into three very different environments: on the glacier surface, on land, and in the marine waters of the fjord. Part of the debris traversed the width of the fjord and re-emerged onto land, depositing coherent hummocks with preserved source stratigraphy on an alluvial fan and adjacent moraines on the far side of the fjord. Imagery from before the landslide shows that the catastrophic slope failure was preceded by deformation and sliding for at least the two decades since the glacier retreated to its current terminus location, exposing steep and extensively faulted slopes. A small volume of the total slide mass remains within the source area and is topped by striated blocks (> 10 m across) and standing trees that were transported down the slope in intact positions during the landslide. Field work was carried out in the summer of 2016, and by the time this paper was written, almost all of the supraglacial debris was advected into the fjord and half the subaerial hummocks were buried by glacial advance; this rapid change illustrates how highly active sedimentary processes in high-altitude glacial settings can skew any landslide-frequency analyses, and emphasizes the need for timely field investigations of these natural hazards.
NASA Astrophysics Data System (ADS)
Feingold, Graham; Balsells, Joseph; Glassmeier, Franziska; Yamaguchi, Takanobu; Kazil, Jan; McComiskey, Allison
2017-07-01
The relationship between the albedo of a cloudy scene A and cloud fraction fc is studied with the aid of heuristic models of stratocumulus and cumulus clouds. Existing work has shown that scene albedo increases monotonically with increasing cloud fraction but that the relationship varies from linear to superlinear. The reasons for these differences in functional dependence are traced to the relationship between cloud deepening and cloud widening. When clouds deepen with no significant increase in fc (e.g., in solid stratocumulus), the relationship between A and fc is linear. When clouds widen as they deepen, as in cumulus cloud fields, the relationship is superlinear. A simple heuristic model of a cumulus cloud field with a power law size distribution shows that the superlinear A-fc behavior is traced out either through random variation in cloud size distribution parameters or as the cloud field oscillates between a relative abundance of small clouds (steep slopes on a log-log plot) and a relative abundance of large clouds (flat slopes). Oscillations of this kind manifest in large eddy simulation of trade wind cumulus where the slope and intercept of the power law fit to the cloud size distribution are highly correlated. Further analysis of the large eddy model-generated cloud fields suggests that cumulus clouds grow larger and deeper as their underlying plumes aggregate; this is followed by breakup of large plumes and a tendency to smaller clouds. The cloud and thermal size distributions oscillate back and forth approximately in unison.
Generically large nongaussianity in small multifield inflation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bramante, Joseph
If forthcoming measurements of cosmic photon polarization restrict the primordial tensor-to-scalar ratio to r<0.01, small field inflation will be a principal candidate for the origin of the universe. Here we show that small multifield inflation, without the hybrid mechanism, typically results in large squeezed nongaussianity. Small multifield potentials contain multiple flat field directions, often identified with the gauge invariant field directions in supersymmetric potentials. We find that unless these field directions have equal slopes, large nongaussianity arises. After identifying relevant differences between large and small two-field potentials, we demonstrate that the latter naturally fulfill the Byrnes-Choi-Hall large nongaussianity conditions. Computationsmore » of the primordial power spectrum, spectral index, and squeezed bispectrum, reveal that small two-field models which otherwise match observed primordial perturbations, produce excludably large nongaussianity if the inflatons’ field directions have unequal slopes.« less
Generically large nongaussianity in small multifield inflation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bramante, Joseph, E-mail: josephbramante@gmail.com
If forthcoming measurements of cosmic photon polarization restrict the primordial tensor-to-scalar ratio to r < 0.01, small field inflation will be a principal candidate for the origin of the universe. Here we show that small multifield inflation, without the hybrid mechanism, typically results in large squeezed nongaussianity. Small multifield potentials contain multiple flat field directions, often identified with the gauge invariant field directions in supersymmetric potentials. We find that unless these field directions have equal slopes, large nongaussianity arises. After identifying relevant differences between large and small two-field potentials, we demonstrate that the latter naturally fulfill the Byrnes-Choi-Hall large nongaussianity conditions. Computationsmore » of the primordial power spectrum, spectral index, and squeezed bispectrum, reveal that small two-field models which otherwise match observed primordial perturbations, produce excludably large nongaussianity if the inflatons' field directions have unequal slopes.« less
NASA Astrophysics Data System (ADS)
Nayamatullah, M.; Rao Pillalamarri, Narasimha; Bhaganagar, Kiran
2018-04-01
A numerical investigation was performed to understand the flow dynamics of 2D density currents over sloping surfaces. Large eddy simulation was conducted for lock-exchange (L-E) release currents and overflows. 2D Navier-Stokes equations were solved using the Boussinesq approximation. The effects of the lock aspect-ratio (height/length of lock), slope, and Reynolds number on the flow structures and turbulence mixing have been analyzed. Results have confirmed buoyancy within the head of the two-dimensional currents is not conserved which contradicts the classical thermal theory. The lock aspect-ratio dictates the fraction of initial buoyancy which is carried by the head of the current at the beginning of the slumping (horizontal) and accelerating phase (over a slope), which has important implications on turbulence kinetic energy production, and hence mixing in the current. For L-E flows over a slope, increasing slope angle enhances the turbulence production. Increasing slope results in shear reversal within the density current resulting in shear-instabilities. Differences in turbulence production mechanisms and flow structures exist between the L-E and constant-flux release currents resulting in significant differences in the flow characteristics between different releases.
Assessment of Biases in MODIS Surface Reflectance Due to Lambertian Approximation
NASA Technical Reports Server (NTRS)
Wang, Yujie; Lyapustin, Alexei I.; Privette, Jeffrey L.; Cook, Robert B.; SanthanaVannan, Suresh K.; Vermote, Eric F.; Schaaf, Crystal
2010-01-01
Using MODIS data and the AERONET-based Surface Reflectance Validation Network (ASRVN), this work studies errors of MODIS atmospheric correction caused by the Lambertian approximation. On one hand, this approximation greatly simplifies the radiative transfer model, reduces the size of the look-up tables, and makes operational algorithm faster. On the other hand, uncompensated atmospheric scattering caused by Lambertian model systematically biases the results. For example, for a typical bowl-shaped bidirectional reflectance distribution function (BRDF), the derived reflectance is underestimated at high solar or view zenith angles, where BRDF is high, and is overestimated at low zenith angles where BRDF is low. The magnitude of biases grows with the amount of scattering in the atmosphere, i.e., at shorter wavelengths and at higher aerosol concentration. The slope of regression of Lambertian surface reflectance vs. ASRVN bidirectional reflectance factor (BRF) is about 0.85 in the red and 0.6 in the green bands. This error propagates into the MODIS BRDF/albedo algorithm, slightly reducing the magnitude of overall reflectance and anisotropy of BRDF. This results in a small negative bias of spectral surface albedo. An assessment for the GSFC (Greenbelt, USA) validation site shows the albedo reduction by 0.004 in the near infrared, 0.005 in the red, and 0.008 in the green MODIS bands.
Visible spectral slope survey of Jupiter Trojans
NASA Astrophysics Data System (ADS)
Erasmus, Nicolas; Rivkin, Andrew S.; Sickafoose, Amanda A.
2016-10-01
Jupiter's Trojans are predicted by the Nice Model [1,2] to be Trans-Neptunian Objects (TNOs) that moved from 30+ AU to 5.2 AU during the early evolution period of the Solar System. This model, predicting giant planet migration and widespread transport of material throughout the Solar System, is however still lacking important constraints. Correlations between the composition, size, and orbital geometry of Jupiter's Trojans can provide additional information to test predicted migration and evolution models.Two main colour groups have been observed, roughly equivalent to the C (plus low-albedo X) and D classes with distinguishable spectral slopes, and one interpretation is that the two groups have different compositions [3]. Independent compositions together with hints of differing orbital inclination distributions could imply separate formation locations; therefore, determining the relative fractions of C and D asteroids at different sizes would provide a key test for Solar System dynamical models. However, there is a caveat: the distinct colour groups could also arise by other means. Regolith processes or "space weathering" such as micrometeorite impacts and UV irradiation of ice are also plausible explanations for a range of spectrographic slopes from C-like to D-like [4].Here we report on our latest survey observations at Sutherland, South Africa of approximately 50 Trojan targets using the Sutherland High Speed Optical Camera (SHOC) [5] on the 74" telescope. These observations are part of a larger multi-telescope survey to determine the spectral slopes (C-like or D-like) for multiple Trojans, focusing on those of small size. These slopes can be used to determine the relative fraction of C+X and D asteroids at different sizes to determine whether what is seen is more consistent with regolith processes or different compositions.References:[1] A. Morbidelli, et al. Nature, 435, 462-465, (2005)[2] R. Gomes, et al. Nature 435, 466-469 (2005)[3] J.P. Emery, et al. The Astronomical Journal, 141, 25, (2010)[4] R. Brunetto et al. Asteroids IV, 597-616 (2015)[5] R. Coppejans, et al. Publ. Astr. Soc. Pacific, 125, 976-988, (2013)
Direct observations of the Antarctic Slope Current transport at 113°E
NASA Astrophysics Data System (ADS)
Peña-Molino, B.; McCartney, M. S.; Rintoul, S. R.
2016-10-01
The Antarctic Slope Current (ASC), defined here as the region of westward flow along the continental slope off Antarctica, forms the southern limb of the subpolar gyres. It regulates the exchange of water across the shelf break and provides a path for interbasin westward transport. Despite its significance, the ASC remains largely unobserved around most of the Antarctic continent. Here we present direct velocity observations from a 17 month current meter moored array deployed across the continental slope between the 1000 and the 4200 m isobaths, in the southeastern Indian Ocean near 113°E. The observed time-mean flow consists of a surface-intensified jet associated with the Antarctic Slope Front (ASF) and a broader bottom-intensified westward flow that extends out to approximately the 4000 m isobath and is strongest along the upper slope. The time-mean transport of the ASC is -29.2 Sv. Fluctuations in the transport are large, typically exceeding the mean by a factor of 2. They are mainly due to changes in the northward extent of the current over the lower slope. However, seasonal changes in the wind also drive variations in the transport of the ASF and the flow in the upper slope. Both mean and variability are largely barotropic, thus invisible to traditional geostrophic methods.
NASA Technical Reports Server (NTRS)
Venkatesan, M. I.; Ruth, E.; Steinberg, S.; Kaplan, I. R.
1987-01-01
Organic geochemical measurements of the lipid fraction, comparing saturated and aromatic hydrocarbons, fatty acids, alcohols and sterols, have been carried out on six sediments cores collected from the Atlantic shelf, slope and the rise areas to evaluate the cross-shelf transport of the organic carbon. The concentration of most of the organic compound classes studied is correlated with the total organic carbon, which decreases from the shelf through slope to the rise. Terrigenous carbon is recognizable even in the slope and rise sediments, but terrestrial influx decreases relative to marine generated lipids in the slope and rise organic matter. We estimate that approximately 50% of the shelf organic matter is exported to the slope. Data of sediment trap material collected at 1200 m from 1250 m water depth are discussed and compared with that of surface sediment from 1280 m water depth (slope). Fluxes for specific organic compound classes have been computed. The fluxes are of the same magnitude as for equatorial North Atlantic trap particulates at comparable water depth, studied by other investigations.
High resolution optical surface metrology with the slope measuring portable optical test system
NASA Astrophysics Data System (ADS)
Maldonado, Alejandro V.
New optical designs strive to achieve extreme performance, and continually increase the complexity of prescribed optical shapes, which often require wide dynamic range and high resolution. SCOTS, or the Software Configurable Optical Test System, can measure a wide range of optical surfaces with high sensitivity using surface slope. This dissertation introduces a high resolution version of SCOTS called SPOTS, or the Slope measuring Portable Optical Test System. SPOTS improves the metrology of surface features on the order of sub-millimeter to decimeter spatial scales and nanometer to micrometer level height scales. Currently there is no optical surface metrology instrument with the same utility. SCOTS uses a computer controlled display (such as an LCD monitor) and camera to measure surface slopes over the entire surface of a mirror. SPOTS differs in that an additional lens is placed near the surface under test. A small prototype system is discussed in general, providing the support for the design of future SPOTS devices. Then the SCOTS instrument transfer function is addressed, which defines the way the system filters surface heights. Lastly, the calibration and performance of larger SPOTS device is analyzed with example measurements of the 8.4-m diameter aspheric Large Synoptic Survey Telescope's (LSST) primary mirror. In general optical systems have a transfer function, which filters data. In the case of optical imaging systems the instrument transfer function (ITF) follows the modulation transfer function (MTF), which causes a reduction of contrast as a function of increasing spatial frequency due to diffraction. In SCOTS, ITF is shown to decrease the measured height of surface features as their spatial frequency increases, and thus the SCOTS and SPOTS ITF is proportional to their camera system's MTF. Theory and simulations are supported by a SCOTS measurement of a test piece with a set of lithographically written sinusoidal surface topographies. In addition, an example of a simple inverse filtering technique is provided. The success of a small SPOTS proof of concept instrument paved the way for a new larger prototype system, which is intended to measure subaperture regions on large optical mirrors. On large optics, the prototype SPOTS is light weight and it rests on the surface being tested. One advantage of this SPOTS is stability over time in maintaining its calibration. Thus the optician can simply place SPOTS on the mirror, perform a simple alignment, collect measurement data, then pick the system up and repeat at a new location. The entire process takes approximately 5 to 10 minutes, of which 3 minutes is spent collecting data. SPOTS' simplicity of design, light weight, robustness, wide dynamic range, and high sensitivity make it a useful tool for optical shop use during the fabrication and testing process of large and small optics.
Geomorphology and Sediment Stability of a Segment of the U.S. Continental Slope off New Jersey.
Robb, J M; Hampson, J C; Twichell, D C
1981-02-27
The morphology of complex deposits of Pleistocene sediments covering the upper continental slope between Lindenkohl Canyon and South Toms Canyon results from both depositional and erosional processes. Small slump or slide features were detected primarily on the flanks of canyons or valleys and were observed to occur only within Pleistocene-aged sediments. Eocene to Miocene sediments are exposed over much of the mid- and lower slope in this area.
An approximate JKR solution for a general contact, including rough contacts
NASA Astrophysics Data System (ADS)
Ciavarella, M.
2018-05-01
In the present note, we suggest a simple closed form approximate solution to the adhesive contact problem under the so-called JKR regime. The derivation is based on generalizing the original JKR energetic derivation assuming calculation of the strain energy in adhesiveless contact, and unloading at constant contact area. The underlying assumption is that the contact area distributions are the same as under adhesiveless conditions (for an appropriately increased normal load), so that in general the stress intensity factors will not be exactly equal at all contact edges. The solution is simply that the indentation is δ =δ1 -√{ 2 wA‧ /P″ } where w is surface energy, δ1 is the adhesiveless indentation, A‧ is the first derivative of contact area and P‧‧ the second derivative of the load with respect to δ1. The solution only requires macroscopic quantities, and not very elaborate local distributions, and is exact in many configurations like axisymmetric contacts, but also sinusoidal waves contact and correctly predicts some features of an ideal asperity model used as a test case and not as a real description of a rough contact problem. The solution permits therefore an estimate of the full solution for elastic rough solids with Gaussian multiple scales of roughness, which so far was lacking, using known adhesiveless simple results. The result turns out to depend only on rms amplitude and slopes of the surface, and as in the fractal limit, slopes would grow without limit, tends to the adhesiveless result - although in this limit the JKR model is inappropriate. The solution would also go to adhesiveless result for large rms amplitude of roughness hrms, irrespective of the small scale details, and in agreement with common sense, well known experiments and previous models by the author.
NASA Astrophysics Data System (ADS)
Mahanti, P.; Robinson, M. S.; Boyd, A. K.
2013-12-01
Craters ~20-km diameter and above significantly shaped the lunar landscape. The statistical nature of the slope distribution on their walls and floors dominate the overall slope distribution statistics for the lunar surface. Slope statistics are inherently useful for characterizing the current topography of the surface, determining accurate photometric and surface scattering properties, and in defining lunar surface trafficability [1-4]. Earlier experimental studies on the statistical nature of lunar surface slopes were restricted either by resolution limits (Apollo era photogrammetric studies) or by model error considerations (photoclinometric and radar scattering studies) where the true nature of slope probability distribution was not discernible at baselines smaller than a kilometer[2,3,5]. Accordingly, historical modeling of lunar surface slopes probability distributions for applications such as in scattering theory development or rover traversability assessment is more general in nature (use of simple statistical models such as the Gaussian distribution[1,2,5,6]). With the advent of high resolution, high precision topographic models of the Moon[7,8], slopes in lunar craters can now be obtained at baselines as low as 6-meters allowing unprecedented multi-scale (multiple baselines) modeling possibilities for slope probability distributions. Topographic analysis (Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) 2-m digital elevation models (DEM)) of ~20-km diameter Copernican lunar craters revealed generally steep slopes on interior walls (30° to 36°, locally exceeding 40°) over 15-meter baselines[9]. In this work, we extend the analysis from a probability distribution modeling point-of-view with NAC DEMs to characterize the slope statistics for the floors and walls for the same ~20-km Copernican lunar craters. The difference in slope standard deviations between the Gaussian approximation and the actual distribution (2-meter sampling) was computed over multiple scales. This slope analysis showed that local slope distributions are non-Gaussian for both crater walls and floors. Over larger baselines (~100 meters), crater wall slope probability distributions do approximate Gaussian distributions better, but have long distribution tails. Crater floor probability distributions however, were always asymmetric (for the baseline scales analyzed) and less affected by baseline scale variations. Accordingly, our results suggest that use of long tailed probability distributions (like Cauchy) and a baseline-dependant multi-scale model can be more effective in describing the slope statistics for lunar topography. Refrences: [1]Moore, H.(1971), JGR,75(11) [2]Marcus, A. H.(1969),JGR,74 (22).[3]R.J. Pike (1970),U.S. Geological Survey Working Paper [4]N. C. Costes, J. E. Farmer and E. B. George (1972),NASA Technical Report TR R-401 [5]M. N. Parker and G. L. Tyler(1973), Radio Science, 8(3),177-184 [6]Alekseev, V. A.et al (1968), Soviet Astronomy, Vol. 11, p.860 [7]Burns et al. (2012) Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XXXIX-B4, 483-488.[8]Smith et al. (2010) GRL 37, L18204, DOI: 10.1029/2010GL043751. [9]Wagner R., Robinson, M., Speyerer E., Mahanti, P., LPSC 2013, #2924.
NASA Technical Reports Server (NTRS)
Coltrane, Lucille C.
1959-01-01
A cone with a blunt nose tip and a 10.7 deg cone half angle and an ogive with a blunt nose tip and a 20 deg flared cylinder afterbody have been tested in free flight over a Mach number range of 0.30 to 2.85 and a Reynolds number range of 1 x 10(exp 6) to 23 x 10(exp 6). Time histories, cross plots of force and moment coefficients, and plots of the longitudinal force,coefficient, rolling velocity, aerodynamic center, normal- force-curve slope, and dynamic stability are presented. With the center-of-gravity location at about 50 percent of the model length, the models were both statically and dynamically stable throughout the Mach number range. For the cone, the average aerodynamic center moved slightly forward with decreasing speeds and the normal-force-curve slope was fairly constant throughout the speed range. For the ogive, the average aerodynamic center remained practically constant and the normal-force-curve slope remained practically constant to a Mach number of approximately 1.6 where a rising trend is noted. Maximum drag coefficient for the cone, with reference to the base area, was approximately 0.6, and for the ogive, with reference to the area of the cylindrical portion, was approximately 2.1.
NASA Technical Reports Server (NTRS)
Petty, Grant W.; Katsaros, Kristina B.
1994-01-01
Based on a geometric optics model and the assumption of an isotropic Gaussian surface slope distribution, the component of ocean surface microwave emissivity variation due to large-scale surface roughness is parameterized for the frequencies and approximate viewing angle of the Special Sensor Microwave/Imager. Independent geophysical variables in the parameterization are the effective (microwave frequency dependent) slope variance and the sea surface temperature. Using the same physical model, the change in the effective zenith angle of reflected sky radiation arising from large-scale roughness is also parameterized. Independent geophysical variables in this parameterization are the effective slope variance and the atmospheric optical depth at the frequency in question. Both of the above model-based parameterizations are intended for use in conjunction with empirical parameterizations relating effective slope variance and foam coverage to near-surface wind speed. These empirical parameterizations are the subject of a separate paper.
Measuring acoustic emissions in an avalanche slope
NASA Astrophysics Data System (ADS)
Reiweger, Ingrid; Schweizer, Jürg
2014-05-01
Measurements of acoustic emissions are a common technique for monitoring damage and predicting imminent failure of a material. Within natural hazards it has already been used to successfully predict the break-off of a hanging glacier. To explore the applicability of the acoustic emission (AE) technique for avalanche prediction, we installed two acoustic sensors (with 30 kHz and 60 kHz resonance frequency) in an avalanche prone slope at the Mittelgrat in the Parsenn ski area above Davos, Switzerland. The slope is north-east facing, frequently wind loaded, and approximately 35° steep. The AE signals - in particular the event energy and waiting time distributions - were compared with slope stability. The latter was determined by observing avalanche activity. The results of two winter's measurements yielded that the exponent β of the inverse cumulative distribution of event energy showed a significant drop (from a value of 3.5 to roughly 2.5) at very unstable conditions, i.e. on the three days during our measurement periods when spontaneous avalanches released on our study slope.
Nested taxa-area curves for eastern United States floras
Bennett, J.P.
1997-01-01
The slopes of log-log species-area curves have been studied extensively and found to be influenced by the range of areas under study. Two such studies of eastern United States floras have yielded species-area curve slopes which differ by more than 100%: 0.251 and 0.113. The first slope may be too steep because the flora of the world was included, and both may be too steep because noncontiguous areas were used. These two hypotheses were tested using a set of nested floras centered in Ohio and continuing up to the flora of the world. The results suggest that this set of eastern United States floras produces a log-log species-area curve with a slope of approximately 0.20 with the flora of the world excluded, and regardless of whether or not the floras are from nested areas. Genera- and family-area curves are less steep than species-area curves and show similar patterns. Taxa ratio curves also increase with area, with the species/family ratio showing the steepest slope.
Average Emissivity Curve of Batse Gamma-Ray Bursts with Different Intensities
NASA Technical Reports Server (NTRS)
Mitrofanov, Igor G.; Litvak, Maxim L.; Briggs, Michael S.; Paciesas, William S.; Pendleton, Geoffrey N.; Preece, Robert D.; Meegan, Charles A.
1999-01-01
Six intensity groups with approximately 150 BATSE gamma-ray bursts each are compared using average emissivity curves. Time stretch factors for each of the dimmer groups are estimated with respect to the brightest group, which serves as the reference, taking into account the systematics of counts-produced noise effects and choice statistics. A stretching/intensity anticorrelation is found with good statistical significance during the average back slopes of bursts. A stretch factor approximately 2 is found between the 150 dimmest bursts, with peak flux less than 0.45 photons/sq cm.s, and the 147 brightest bursts, with peak flux greater than 4.1 photons/sq cm.s. On the other hand, while a trend of increasing stretching factor may exist for rise fronts for bursts with decreasing peak flux from greater than 4.1 photons/sq cm.s down to 0.7 photons/sq cm.s, the magnitude of the stretching factor is less than approximately 1.4 and is therefore inconsistent with stretching factor of back slope.
Response mechanism of post-earthquake slopes under heavy rainfall
NASA Astrophysics Data System (ADS)
Qiu, Hong-zhi; Kong, Ji-ming; Wang, Ren-chao; Cui, Yun; Huang, Sen-wang
2017-07-01
This paper uses the catastrophic landslide that occurred in Zhongxing Town, Dujiangyan City, as an example to study the formation mechanism of landslides induced by heavy rainfall in the post-Wenchuan earthquake area. The deformation characteristics of a slope under seismic loading were investigated via a shaking table test. The results show that a large number of cracks formed in the slope due to the tensile and shear forces of the vibrations, and most of the cracks had angles of approximately 45° with respect to the horizontal. A series of flume tests were performed to show how the duration and intensity of rainfall influence the responses of the shaken and non-shaken slopes. Wetting fronts were recorded under different rainfall intensities, and the depth of rainfall infiltration was greater in the shaken slope than in the non-shaken slope because the former experienced a greater extreme rainfall intensity under the same early rainfall and rainfall duration conditions. At the beginning of the rainfall infiltration experiment, the pore water pressure in the slope was negative, and settling occurred at the top of the slope. With increasing rainfall, the pore water pressure changed from negative to positive, and cracks were observed on the back surface of the slope and the shear outlet of the landslide on the front of the slope. The shaken slope was more susceptible to crack formation than the non-shaken slope under the same rainfall conditions. A comparison of the responses of the shaken and non-shaken slopes under heavy rainfall revealed that cracks formed by earthquakes provided channels for infiltration. Soil particles in the cracks of slopes were washed away, and the pore water pressure increased rapidly, especially the transient pore water pressure in the slope caused by short-term concentrated rainfall which decreased rock strength and slope stability.
Power spectrum, correlation function, and tests for luminosity bias in the CfA redshift survey
NASA Technical Reports Server (NTRS)
Park, Changbom; Vogeley, Michael S.; Geller, Margaret J.; Huchra, John P.
1994-01-01
We describe and apply a method for directly computing the power spectrum for the galaxy distribution in the extension of the Center for Astrophysics Redshift Survey. Tests show that our technique accurately reproduces the true power spectrum for k greater than 0.03 h Mpc(exp -1). The dense sampling and large spatial coverage of this survey allow accurate measurement of the redshift-space power spectrum on scales from 5 to approximately 200 h(exp -1) Mpc. The power spectrum has slope n approximately equal -2.1 on small scales (lambda less than or equal 25 h(exp -1) Mpc) and n approximately -1.1 on scales 30 less than lambda less than 120 h(exp -1) Mpc. On larger scales the power spectrum flattens somewhat, but we do not detect a turnover. Comparison with N-body simulations of cosmological models shows that an unbiased, open universe CDM model (OMEGA h = 0.2) and a nonzero cosmological constant (CDM) model (OMEGA h = 0.24, lambda(sub zero) = 0.6, b = 1.3) match the CfA power spectrum over the wavelength range we explore. The standard biased CDM model (OMEGA h = 0.5, b = 1.5) fails (99% significance level) because it has insufficient power on scales lambda greater than 30 h(exp -1) Mpc. Biased CDM with a normalization that matches the Cosmic Microwave Background (CMB) anisotropy (OMEGA h = 0.5, b = 1.4, sigma(sub 8) (mass) = 1) has too much power on small scales to match the observed galaxy power spectrum. This model with b = 1 matches both Cosmic Background Explorer Satellite (COBE) and the small-scale power spect rum but has insufficient power on scales lambda approximately 100 h(exp -1) Mpc. We derive a formula for the effect of small-scale peculiar velocities on the power spectrum and combine this formula with the linear-regime amplification described by Kaiser to compute an estimate of the real-space power spectrum. Two tests reveal luminosity bias in the galaxy distribution: First, the amplitude of the pwer spectrum is approximately 40% larger for the brightest 50% of galaxies in volume-limited samples that have M(sub lim) greater than M*. This bias in the power spectrum is independent of scale, consistent with the peaks-bias paradigm for galaxy formation. Second, the distribution of local density around galaxies shows that regions of moderate and high density contain both very bright (M less than M* = -19.2 + 5 log h) and fainter galaxies, but that voids preferentially harbor fainter galaxies (approximately 2 sigma significance level).
Development of Vegetation-Pervious Concrete in Grid Beam System for Soil Slope Protection
Bao, Xiaohua; Liao, Wenyu; Dong, Zhijun; Wang, Shanyong; Tang, Waiching
2017-01-01
One of the most efficient and environmentally friendly methods for preventing a landslide on a slope is to vegetate it. Vegetation-pervious concretes have a promising potential for soil protection. In this study, the vegetation-pervious concrete with low alkalinity was developed and studied. Combined with a grid beam structure system, the stability and strength between the vegetation-pervious concrete and base soil are believed to be enhanced effectively. For improving plant adaptability, the alkalinity of concrete can be decreased innovatively by adding a self-designed admixture into the cement paste. The effects of the admixture content on alkalinity and compressive strength of the hardened pervious concrete were investigated using X-ray diffraction (XRD) and compression test, respectively. Meanwhile, the permeability of the vegetation-pervious concrete was studied as well. Through comparing with ordinary pervious concrete, the effect of low alkaline pervious concrete on vegetation growth was investigated in a small-scale field for ten weeks. The test results indicated that the alkalinity of the cement samples decreased with the increase of admixture content, and the vegetation grew successfully on previous concrete. By increasing the admixture content to approximately 3.6%, the compressive strength of pervious concrete was more than 25 MPa. PMID:28772454
NASA Astrophysics Data System (ADS)
Hoffmeister, Dirk; Kramm, Tanja; Curdt, Constanze; Maleki, Sedigheh; Khormali, Farhad; Kehl, Martin
2016-04-01
The Iranian loess plateau is covered by loess deposits, up to 70 m thick. Tectonic uplift triggered deep erosion and valley incision into the loess and underlying marine deposits. Soil development strongly relates to the aspect of these incised slopes, because on northern slopes vegetation protects the soil surface against erosion and facilitates formation and preservation of a Cambisol, whereas on south-facing slopes soils were probably eroded and weakly developed Entisols formed. While the whole area is intensively stocked with sheep and goat, rain-fed cropping of winter wheat is practiced on the valley floors. Most time of the year, the soil surface is unprotected against rainfall, which is one of the factors promoting soil erosion and serious flooding. However, little information is available on soil distribution, plant cover and the geomorphological evolution of the plateau, as well as on potentials and problems in land use. Thus, digital landform and soil mapping is needed. As a requirement of digital landform and soil mapping, four different landform classification methods were compared and evaluated. These geomorphometric classifications were run on two different scales. On the whole area an ASTER GDEM and SRTM dataset (30 m pixel resolution) was used. Likewise, two high-resolution digital elevation models were derived from Pléiades satellite stereo-imagery (< 1m pixel resolution, 10 by 10 km). The high-resolution information of this dataset was aggregated to datasets of 5 and 10 m scale. The applied classification methods are the Geomorphons approach, an object-based image approach, the topographical position index and a mainly slope based approach. The accuracy of the classification was checked with a location related image dataset obtained in a field survey (n ~ 150) in September 2015. The accuracy of the DEMs was compared to measured DGPS trenches and map-based elevation data. The overall derived accuracy of the landform classification based on the high-resolution DEM with a resolution of 5 m is approximately 70% and on a 10 m resolution >58%. For the 30 m resolution datasets is the achieved accuracy approximately 40%, as several small scale features are not recognizable in this resolution. Thus, for an accurate differentiation between different important landform types, high-resolution datasets are necessary for this strongly shaped area. One major problem of this approach are the different classes derived by each method and the various class annotations. The result of this evaluation will be regarded for the derivation of landform and soil maps.
2003-03-13
This mosaic of daytime infrared images of Gusev Crater, taken by NASA Mars Odyssey spacecraft, has been draped over topography data obtained by NASA Mars Global Surveyor. The daytime temperatures range from approximately minus 45 degrees C (black) to minus 5 degrees C (white). The temperature differences in these daytime images are due primarily to lighting effects, where sunlit slopes are warm (bright) and shadowed slopes are cool (dark). Gusev crater is a potential landing site for the Mars Exploration Rovers. The large ancient river channel of Ma'Adim that once flowed into Gusev can be seen at the top of the mosaic. This image mosaic covers an area approximately 180 kilometers (110 miles) on each side centered near 14 degrees S, 175 degrees E, looking toward the south in this simulated view. http://photojournal.jpl.nasa.gov/catalog/PIA04260
Watt, Janet Tilden; Johnson, Samuel Y.; Hartwell, Stephen R.; Roberts, Michelle
2015-01-01
Sea level was approximately 120 to 130 m lower during the Last Glacial Maximum (about 21 ka). This approximate depth corresponds to the modern shelf break, a lateral change from the gently dipping (0.8° to 1.0°) outer shelf to the slightly more steeply dipping (about 1.5° to 2.5°) upper slope in the central and northern parts of the map area. South of Point San Luis in San Luis Bay, deltaic deposits offshore of the mouth of the Santa Maria River (11 km south of the map area) have prograded across the shelf break and now form a continuous low-angle (about 0.8°) ramp that extends to water depths of more than 160 m. The shelf break defines the landward boundary of slope deposits. North of Estero Bay, the shelf break is characterized by a distinctly sharp slope break that is mapped as a landslide headscarp above landslide deposits. Multibeam imagery and seismic-reflection profiles across this part of the shelf break show evidence of slope failure, such as slumping, sliding, and soft-sediment deformation, along the entire length of the scarp. Notably, this shelf-break scarp corresponds to a west splay of the Hosgri Fault that dies out just north of the scarp, suggesting that faulting is controlling the location (and instability) of the shelf break in this area.
Wave run-up on a high-energy dissipative beach
Ruggiero, P.; Holman, R.A.; Beach, R.A.
2004-01-01
Because of highly dissipative conditions and strong alongshore gradients in foreshore beach morphology, wave run-up data collected along the central Oregon coast during February 1996 stand in contrast to run-up data currently available in the literature. During a single data run lasting approximately 90 min, the significant vertical run-up elevation varied by a factor of 2 along the 1.6 km study site, ranging from 26 to 61% of the offshore significant wave height, and was found to be linearly dependent on the local foreshore beach slope that varied by a factor of 5. Run-up motions on this high-energy dissipative beach were dominated by infragravity (low frequency) energy with peak periods of approximately 230 s. Incident band energy levels were 2.5 to 3 orders of magnitude lower than the low-frequency spectral peaks and typically 96% of the run-up variance was in the infragravity band. A broad region of the run-up spectra exhibited an f-4 roll off, typical of saturation, extending to frequencies lower than observed in previous studies. The run-up spectra were dependent on beach slope with spectra for steeper foreshore slopes shifted toward higher frequencies than spectra for shallower foreshore slopes. At infragravity frequencies, run-up motions were coherent over alongshore length scales in excess of 1 km, significantly greater than decorrelation length scales on moderate to reflective beaches. Copyright 2004 by the American Geophysical Union.
Seismic monitoring of the unstable rock slope at Aaknes, Norway
NASA Astrophysics Data System (ADS)
Roth, M.; Blikra, L. H.
2009-04-01
The unstable rock slope at Aaknes has an estimated volume of about 70 million cubic meters, and parts of the slope are moving at a rate between 2-15 cm/year. Amongst many other direct monitoring systems we have installed a small-scale seismic network (8 three-component geophones over an area of 250 x 150 meters) in order to monitor microseismic events related to the movement of the slope. The network has been operational since November 2005 with only a few short-term outages. Seismic data are transferred in real-time from the site to NORSAR for automatic detection processing. The resulting detection lists and charts and the associated waveform are forwarded immediately to the early warning centre of the Municipality of Stranda. Furthermore, we make them available after a delay of about 10-15 minutes on our public project web page (http://www.norsar.no/pc-47-48-Latest-Data.aspx). Seismic monitoring provides independent and complementary data to the more direct monitoring systems at Aaknes. We observe increased seismic activity in periods of heavy rain fall or snow melt, when laser ranging data and extensometer readings indicate temporary acceleration phases of the slope. The seismic network is too small and the velocity structure is too heterogeneous in order to obtain reliable localizations of the microseismic events. In summer 2009 we plan to install a high-sensitive broadband seismometer (60 s - 100 Hz) in the middle of the unstable slope. This will allow us to better constrain the locations of the microseismic events and to investigate potential low-frequency signals associated with the slope movement.
Study on Stability Analysis and Monitoring Technology of Deep Concave Open-Pit Mine Slope
NASA Astrophysics Data System (ADS)
Xue, Dinglong; Ren, Fenghua; Li, Yuan
2018-05-01
In this paper, using the FLAC3D software to establish the numerical model of the rock slope in the south of Washan stope and to compare and verify with the monitoring result, reference is made to the original engineering and hydrogeological data of Washan stope. The results show that the stability of the South slope is mainly affected by the dominant structural plane, and the potential slip surface and the dominant structure surface are the same. During the recovery period of -120m platform residual mine, the disturbance stress is increasing but the overall amplitude is small and the slope is relatively stable.
Threshold setting by the surround of cat retinal ganglion cells.
Barlow, H B; Levick, W R
1976-08-01
1. The slope of curves relating the log increment threshold to log background luminance in cat retinal ganglion cells is affected by the area and duration of the test stimulus, as it is in human pyschophysical experiments. 2. Using large area, long duration stimuli the slopes average 0-82 and approach close to 1 (Weber's Law) in the steepest cases. Small stimuli gave an average of 0-53 for on-centre units using brief stimuli, and 0-56 for off-centre units, using long stimuli. Slopes under 0-5 (square root law) were not found over an extended range of luminances. 3. On individual units the slope was generally greater for larger and longer test stimulus, but no unit showed the full extent of change from slope of 0-5 to slope of 1. 4. The above differences hold for objective measures of quantum/spike ratio, as well as for thresholds either judged by ear or assessed by calculation. 5. The steeper slope of the curves for large area, long duration test stimuli compared with small, long duration stimuli, is associated with the increased effectiveness of antagonism from the surround at high backgrounds. This change may be less pronounced in off-centre units, one of which (probably transient Y-type) showed no difference of slope, and gave parallel area-threshold curves at widely separated background luminances, confirming the importance of differential surround effectiveness in changing the slope of the curves. 6. In on-centre units, the increased relative effectiveness of the surround is associated with the part of the raised background light that falls on the receptive field centre. 7. It is suggested that the variable surround functions as a zero-offset control that sets the threshold excitation required for generating impulses, and that this is separate from gain-setting adaptive mechanisms. This may be how ganglion cells maintain high incremental sensitivity in spite of a strong maintained excitatory drive that would otherwise cause compressive response non-linearities.
Granular flows at recurring slope lineae on Mars indicate a limited role for liquid water
NASA Astrophysics Data System (ADS)
Dundas, Colin M.; McEwen, Alfred S.; Chojnacki, Matthew; Milazzo, Moses P.; Byrne, Shane; McElwaine, Jim N.; Urso, Anna
2017-12-01
Recent liquid water flow on Mars has been proposed based on geomorphological features, such as gullies. Recurring slope lineae — seasonal flows that are darker than their surroundings — are candidate locations for seeping liquid water on Mars today, but their formation mechanism remains unclear. Topographical analysis shows that the terminal slopes of recurring slope lineae match the stopping angle for granular flows of cohesionless sand in active Martian aeolian dunes. In Eos Chasma, linea lengths vary widely and are longer where there are more extensive angle-of-repose slopes, inconsistent with models for water sources. These observations suggest that recurring slope lineae are granular flows. The preference for warm seasons and the detection of hydrated salts are consistent with some role for water in their initiation. However, liquid water volumes may be small or zero, alleviating planetary protection concerns about habitable environments.
Granular flows at recurring slope lineae on Mars indicate a limited role for liquid water
Dundas, Colin M.; McEwen, Alfred S.; Chojnacki, Matthew; Milazzo, Moses; Byrne, Shane; McElwaine, Jim; Urso, Anna
2017-01-01
Recent liquid water flow on Mars has been proposed based on geomorphological features, such as gullies. Recurring slope lineae — seasonal flows that are darker than their surroundings — are candidate locations for seeping liquid water on Mars today, but their formation mechanism remains unclear. Topographical analysis shows that the terminal slopes of recurring slope lineae match the stopping angle for granular flows of cohesionless sand in active Martian aeolian dunes. In Eos Chasma, linea lengths vary widely and are longer where there are more extensive angle-of-repose slopes, inconsistent with models for water sources. These observations suggest that recurring slope lineae are granular flows. The preference for warm seasons and the detection of hydrated salts are consistent with some role for water in their initiation. However, liquid water volumes may be small or zero, alleviating planetary protection concerns about habitable environments.
A Laboratory Study of Slope Flows Dynamics
NASA Astrophysics Data System (ADS)
Capriati, Andrea; Cenedese, Antonio; Monti, Paolo
2003-11-01
Slope flows currents can contribute significantly in the diurnal circulation and air quality of complex terrain regions (mountains, valleys, etc.). During the daytime, solar heating warms the valley sides, causing up-slope (or anabatic) winds. In contrast, radiative cooling of the valley sides results in cold down-slope (drainage or katabatic) flows, characterized by small vertical extensions (usually 10-200 m) and with the typical features of dense gravity currents. In this paper, some preliminary results on slope flows obtained by means of a series of experiments conducted in the laboratory using a temperature controlled water tank are shown. Rakes of thermocouples are used to determine the temperature structure and particle tracking velocimetry is used for the velocity measurements. A simple slope consisting of a plate in which the temperature is forced via a set of Peltier Cells is used. The analysis is performed considering different slope angles, background thermal stratifications and surface heat fluxes as well. Comparisons with theoretical and empirical laws found in literature are reported.
The role of benchmark crudes in crude oil pricing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wildblood, P.
1993-12-31
Most of the world`s oil, whether sold on a spot basis or as part of a term contract, will be priced on a relationship with one or other of a small number of marker crude oils. Generally, the markers used are West Texas Intermediate (WTI) and Alaskan North Slope (ANS) for crude oil coming into North and South America; Dubai or Oman for crudes being delivered into the Far Eastern markets; and Brent for any crude being delivered into Europe. For a variety of reasons, over the laster two years, Brent blend has become more predominant in the pricing processmore » for crude oils throughout the world. This has resulted in the fact that, directly or indirectly, Brent is now used to price approximately 65% of the world`s crude oil. So why is it that a crude oil with a comparatively small production base of around 700,000 barrels per day has now come to dominate the pricing of the lion`s share of the world`s crude oil? The answer to this question is discussed.« less
Slow and fast light via SBS in optical fibers for short pulses and broadband pump
NASA Astrophysics Data System (ADS)
Kalosha, V. P.; Chen, Liang; Bao, Xiaoyi
2006-12-01
Slow-light effect via stimulated Brillouin scattering (SBS) in single-mode optical fibers was considered for short probe pulses of nanosecond duration relevant to Gb/s data streams. Unlike recent estimations of delay versus pump based on steady-state small-signal approximation we have used numerical solution of three-wave equations describing SBS for a realistic fiber length. Both regimes of small signal and pump depletion (gain saturation) were considered. The physical origin of Stokes pulse distortion is revealed which is related to excitation of long-living acoustic field behind the pulse and prevents effective delay control by pump power increase at cw pumping. We have shown different slope of the gain-dependent delay for different pulse durations. Spectrally broadened pumping by multiple cw components, frequency-modulated pump and pulse train were studied for short pulses which allow to obtain large delay and suppress pulse distortion. In the pump-depletion regime of pumping by pulse train, both pulse delay and distortion decrease with increasing pump, and the pulse achieves advancement.
Conceptualization of preferential flow for hillslope stability assessment
NASA Astrophysics Data System (ADS)
Kukemilks, Karlis; Wagner, Jean-Frank; Saks, Tomas; Brunner, Philip
2018-03-01
This study uses two approaches to conceptualize preferential flow with the goal to investigate their influence on hillslope stability. Synthetic three-dimensional hydrogeological models using dual-permeability and discrete-fracture conceptualization were subsequently integrated into slope stability simulations. The slope stability simulations reveal significant differences in slope stability depending on the preferential flow conceptualization applied, despite similar small-scale hydrogeological responses of the system. This can be explained by a local-scale increase of pore-water pressures observed in the scenario with discrete fractures. The study illustrates the critical importance of correctly conceptualizing preferential flow for slope stability simulations. It further demonstrates that the combination of the latest generation of physically based hydrogeological models with slope stability simulations allows for improvement to current modeling approaches through more complex consideration of preferential flow paths.
Estimating Paleoflood Magnitude From Tree-Ring Anatomy and the Height of Abrasion Scars
NASA Astrophysics Data System (ADS)
Yanosky, T. M.; Jarrett, R. D.
2003-12-01
Evidence of floods preserved in the growth rings of trees can be used to extend the historical record of flooding or to estimate the magnitude of extraordinary floods on ungaged streams. Floods that damage the aerial parts of trees during the growing season sometimes induce striking anatomical changes in subsequent growth of rings in the lower trunk. In ring-porous species, this growth most commonly produces concentric bands of atypically large vessels within the latewood. The number and diameter of anomalous vessels seem positively related to the amount of flood damage, and thus can be used to refine estimates of flood magnitude when also considering the position of the tree relative to the channel and its approximate height during the flood. Floods of long duration on low-gradient streams are less likely to damage trees directly, but prolonged root flooding often results in the formation of narrow rings with atypically small vessels; shorter-duration floods, sometimes inundating roots for as little as several days, are followed by the production of fibers (non-conducting cells) with large lumens and thin walls that appear as light-colored bands compared to earlier-formed tissue. In these instances, a series of trees increasingly distant from the channel can be used to estimate a minimum flood elevation. Abrasion scars from flood-borne debris often are the most easily observed evidence of flood damage and, like anatomical abnormalities, can be precisely dated. The relation between the heights of scars and maximum flood stages depends in part upon channel slope. Previous studies have indicated that scar heights along low-gradient streams are the same or slightly lower than maximum flood elevations. Along the high-gradient (6% maximum slope) Buffalo Creek, Colorado USA, scar heights measured in 102 trees following a flood in 1996 ranged from -0.6 to +1.5 m relative to the actual crest elevation. Scar elevations exceeding flood elevations by 3-4 m, however, were observed following a flood in 2002 along a small Colorado stream with slopes ranging from 6 to 15%.
Use of Slopes of Small Martian Edifices to Discriminate Between Formation Mechanisms
NASA Astrophysics Data System (ADS)
Glaze, L. S.; Sakimoto, S. E.
2001-05-01
We have looked at Mars Orbiter Laser Altimeter (MOLA) topographic profiles of several small Martian edifices (3 - 50 km in size) in a variety of volcanic regions from the mid-latitudes to the poles. Viking and Mars Observer Camera (MOC) images and recent MOLA gridded topography data reveal a wide range of small edifice geometries (e.g., Garvin et al., 2000; Won et al., 2001), and a larger number of edifices than previously detected (e.g., Sakimoto, et al., 2001). We have attempted to characterize the average slopes of these edifices using a variety of statistics. Because of the curvature of many of the slopes, simple unweighted and weighted averages are not adequate for characterization. However, most of the flanks can be well described by a parabolic regression (R squared values greater than 90%). As a starting point, we have used the 'slope' term from the parabolic regression for comparison between the various features. The parabolic regression has the form: elevation = a - b sqrt(distance), where the constant 'a' is a vertical offset and 'b' is analogous to the slope. The true instantaneous slope at any point on the flank is found by taking the derivative of the expression above and is necessarily a function of location on the flank. The following table contains values of 'b' for the South and North facing flanks of several volcanic features found in different geologic settings: Feature: (South) (North)\\Polar moderate cratered cone (large crater) B1: (8.588) (7.46)\\Polar steep cratered cone (small crater) B5: (9.90) (10.613)\\Mid-latitude Tempe Terra shield TS1: (2.158) (1.964)\\Mid-latitude Tempe Terra cone TC1: (4.934) (4.591) As can be seen from the table, the individual features are very consistent between their South and North facing flanks. There is also a clear distinction between B5, TS1 and TC1. The uncertainty (standard error) in the 'b' values given above is typically less than 1, suggesting the possibility of at least three separate feature types represented above. In addition to this simple comparison between parabolic slopes, we can also compare the actual shapes of the features. For example, the TS1 shield-type feature has less curvature than the others and may be better characterized by a linear fit. This also distinguishes it from the other features purely by the shape of its flanks. These comparisons allow us to quantitatively document the differences between the small Martian shield volcanoes as a feature class from their more explosive counterparts. Garvin, J.B., et al., Icarus, 145, 648-652, 2000. Wong, M.P., et al., LPSC XXXII, CDROM, abstract #1563, 2001. Sakimoto, S.E.H., et al., LPSC XXXII, CDROM, abstract #1808, 2001.
NASA Astrophysics Data System (ADS)
Schnyder, Jara S. D.; Jo, Andrew; Eberli, Gregor P.; Betzler, Christian; Lindhorst, Sebastian; Schiebel, Linda; Hebbeln, Dierk; Wintersteller, Paul; Mulder, Thierry; Principaud, Melanie
2014-05-01
An approximately 5000km2 hydroacoustic and seismic data set provides the high-resolution bathymetry map of along the western slope of Great Bahama Bank, the world's largest isolated carbonate platform. This large data set in combination with core and sediment samples, provides and unprecedented insight into the variability of carbonate slope morphology and the processes affecting the platform margin and the slope. This complete dataset documents how the interplay of platform derived sedimentation, distribution by ocean currents, and local slope and margin failure produce a slope-parallel facies distribution that is not governed by downslope gradients. Platform-derived sediments produce a basinward thinning sediment wedge that is modified by currents that change directions and strength depending on water depth and location. As a result, winnowing and deposition change with water depth and distance from the margin. Morphological features like the plunge pool and migrating antidunes are the result of currents flowing from the banktop, while the ocean currents produce contourites and drifts. These continuous processes are punctuated by submarine slope failures of various sizes. The largest of these slope failures produce several hundred of km2 of mass transport complexes and could generate tsunamis. Closer to the Cuban fold and thrust belt, large margin collapses pose an equal threat for tsunami generation. However, the debris from margin and slope failure is the foundation for a teeming community of cold-water corals.
2014-01-01
In the current practice, to determine the safety factor of a slope with two-dimensional circular potential failure surface, one of the searching methods for the critical slip surface is Genetic Algorithm (GA), while the method to calculate the slope safety factor is Fellenius' slices method. However GA needs to be validated with more numeric tests, while Fellenius' slices method is just an approximate method like finite element method. This paper proposed a new method to determine the minimum slope safety factor which is the determination of slope safety factor with analytical solution and searching critical slip surface with Genetic-Traversal Random Method. The analytical solution is more accurate than Fellenius' slices method. The Genetic-Traversal Random Method uses random pick to utilize mutation. A computer automatic search program is developed for the Genetic-Traversal Random Method. After comparison with other methods like slope/w software, results indicate that the Genetic-Traversal Random Search Method can give very low safety factor which is about half of the other methods. However the obtained minimum safety factor with Genetic-Traversal Random Search Method is very close to the lower bound solutions of slope safety factor given by the Ansys software. PMID:24782679
PARTIAL RESTRAINING FORCE INTRODUCTION METHOD FOR DESIGNING CONSTRUCTION COUNTERMESURE ON ΔB METHOD
NASA Astrophysics Data System (ADS)
Nishiyama, Taku; Imanishi, Hajime; Chiba, Noriyuki; Ito, Takao
Landslide or slope failure is a three-dimensional movement phenomenon, thus a three-dimensional treatment makes it easier to understand stability. The ΔB method (simplified three-dimensional slope stability analysis method) is based on the limit equilibrium method and equals to an approximate three-dimensional slope stability analysis that extends two-dimensional cross-section stability analysis results to assess stability. This analysis can be conducted using conventional spreadsheets or two-dimensional slope stability computational software. This paper describes the concept of the partial restraining force in-troduction method for designing construction countermeasures using the distribution of the restraining force found along survey lines, which is based on the distribution of survey line safety factors derived from the above-stated analysis. This paper also presents the transverse distributive method of restraining force used for planning ground stabilizing on the basis of the example analysis.
NASA Astrophysics Data System (ADS)
Macmannis, K. R.; Hawley, R. J.
2013-12-01
The mechanisms controlling stability on small streams in steep settings are not well documented but have many implications related to stream integrity and water quality. For example, channel instability on first and second order streams is a potential source of sediment in regulated areas with Total Maximum Daily Loads (TMDLs) on water bodies that are impaired for sedimentation, such as the Chesapeake Bay. Management strategies that preserve stream integrity and protect channel stability are critical to communities that may otherwise require large capital investments to meet TMDLs and other water quality criteria. To contribute to an improved understanding of ephemeral step-pool systems, we collected detailed hydrogeomorphic data on 4 steep (0.06 - 0.12 meter/meter) headwater streams draining to lower relief alluvial valleys in Spencer County, Kentucky, USA. The step-pool streams (mean step height of 0.47 meter, mean step spacing of 4 meters) drained small undeveloped catchments dominated by early successional forest. Data collection for each of the 4 streams included 2 to 3 cross section surveys, bed material particle counts at cross section locations, and profile surveys ranging from approximately 125 to 225 meters in length. All survey data was systematically processed to understand geometric parameters such as cross sectional area, depth, and top width; bed material gradations; and detailed profile measurements such as slope, pool and riffle lengths, pool spacing, pool depth, step height, and step length. We documented the location, frequency, and type of step-forming materials (i.e., large woody debris (LWD), rock, and tree roots), compiling a database of approximately 130 total steps. Lastly, we recorded a detailed tree assessment of all trees located within 2 meters of the top of bank, detailing the species of tree, trunk diameter, and approximate distance from the top of bank. Analysis of geometric parameters illustrated correlations between channel characteristics (e.g., step height was positively correlated to slope while pool spacing was inversely correlated to slope). Most importantly, we assessed the step-forming materials with respect to channel stability. LWD has been widely documented as an important component of geomorphic stability and habitat diversity across many settings; however, our research highlights the importance of roots in providing bed stability in steep, first and second-order ephemeral streams, as 40 percent of the steps in these step-pool systems were controlled by tree roots. Similar to the key member in naturally-occurring log jams, lateral tree roots frequently served as the anchor for channel steps that were often supplemented by rocks or LWD. Assessment of the trees throughout the riparian zone suggested average tree densities of 0.30 trees/square meter or 0.40 trees/meter could provide adequate riparian zone coverage to promote channel stability. These results have implications to land use planning and stormwater management. For example, on developments draining to step-pool systems, maintaining the integrity of the riparian zone would seem to be as important as ensuring hydrologic mimicry if channel integrity is to be preserved.
Scintigraphy for Pulmonary Capillary Protein Leak
1982-09-01
called this rising ratio the "slope of injury" or "slope index" ýS1). In previous canine oloic acid studies, we have found that the SI was proportional...cannulation. 2. Canine Studios Dogs weighing approximately 20 kg, were anest•:etized with 30 mg/kg sodium pentobarbital, intubated, and ventilated at...SI was seen, analogous to that seen with 0.05 ml/kg ujeic acid and the SI was repro- ducible two hours following lCI. e. Canine Endotoxin Studies: Two
Yang, Wenjuan; Wang, Yanhui; Wang, Shunli; Webb, Ashley A; Yu, Pengtao; Liu, Xiande; Zhang, Xuelong
2017-07-17
Forest restoration in dryland mountainous areas is extremely difficult due to dry climate, complex topography and accelerating climate change. Thus, exact identification of suitable sites is required. This study at a small watershed of Qilian Mountains, Northwest China, aimed to determine the important factors and their thresholds limiting the spatial distribution of forests of Qinghai spruce (Picea crassifolia), a locally dominant tree species. The watershed was divided into 342 spatial units. Their location, terrain and vegetation characteristics were recorded. Statistical analysis showed that the potential distribution area of Qinghai spruce forests is within an ellipse with the axes of elevation (from 2673.6 to 3202.2 m a.s.l.) and slope aspect (from -162.1° to 75.1° deviated from North). Within this ellipse, the forested sites have a soil thickness ≥40 cm, and slope positions of lower-slope, lower- or middle-slope, anywhere if the elevation is <2800, 2800-2900, >2900 m a.s.l, respectively. The corresponding mean annual air temperature at upper elevation boundary is -2.69 °C, while the mean annual precipitation at lower elevation boundary is 374 (331) mm within the small watershed (study area). The high prediction accuracy using these 4 factors can help to identify suitable sites and increase the success of afforestation.
Agro-hydrologic landscapes in the Upper Mississippi and Ohio River basins.
Schilling, Keith E; Wolter, Calvin F; McLellan, Eileen
2015-03-01
A critical part of increasing conservation effectiveness is targeting the "right practice" to the "right place" where it can intercept pollutant flowpaths. Conceptually, these flowpaths can be inferred from soil and slope characteristics, and in this study, we developed an agro-hydrologic classification to identify N and P loss pathways and priority conservation practices in small watersheds in the U.S. Midwest. We developed a GIS framework to classify 11,010 small watersheds in the Upper Mississippi and Ohio River basins based on soil permeability and slope characteristics of agricultural cropland areas in each watershed. The amount of cropland in any given watershed varied from <10 to >60 %. Cropland areas were classified into five main categories, with slope classes of <2, 2-5, and >5 %, and soil drainage classes of poorly and well drained. Watersheds in the Upper Mississippi River basin (UMRB) were dominated by cropland areas in low slopes and poorly drained soils, whereas less-intensively cropped watersheds in Wisconsin and Minnesota (in the UMRB) and throughout the Ohio River basin were overwhelmingly well drained. Hydrologic differences in cropped systems indicate that a one-size-fits-all approach to conservation selection will not work. Consulting the classification scheme proposed herein may be an appropriate first-step in identifying those conservation practices that might be most appropriate for small watersheds in the basin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, R.R.; Staub, W.P.
1993-08-01
Two environmental assessments considered the potential cumulative environmental impacts resulting from the development of eight proposed hydropower projects in the Nooksack River Basin and 11 proposed projects in the Skagit River Basin, North Cascades, Washington, respectively. While not identified as a target resource, slope stability and the alteration of sediment supply to creeks and river mainstems significantly affect other resources. The slope stability assessment emphasized the potential for cumulative impacts under disturbed conditions (e.g., road construction and timber harvesting) and a landslide-induced pipeline rupture scenario. In the case of small-scale slides, the sluicing action of ruptured pipeline water on themore » fresh landslide scarp was found to be capable of eroding significantly more material than the original landslide. For large-scale landslides, sluiced material was found to be a small increment of the original landslide. These results predicted that hypothetical accidental pipeline rupture by small-scale landslides may result in potential cumulative impacts for 12 of the 19 projects with pending license applications in both river basins. 5 refs., 2 tabs.« less
Moore, B C; Peters, R W; Glasberg, B R
1999-12-01
Psychometric functions for detecting increments or decrements in level of sinusoidal pedestals were measured for increment and decrement durations of 5, 10, 20, 50, 100, and 200 ms and for frequencies of 250, 1000, and 4000 Hz. The sinusoids were presented in background noise intended to mask spectral splatter. A three-interval, three-alternative procedure was used. The results indicated that, for increments, the detectability index d' was approximately proportional to delta I/I. For decrements, d' was approximately proportional to delta L. The slopes of the psychometric functions increased (indicating better performance) with increasing frequency for both increments and decrements. For increments, the slopes increased with increasing increment duration up to 200 ms at 250 and 1000 Hz, but at 4000 Hz they increased only up to 50 ms. For decrements, the slopes increased for durations up to 50 ms, and then remained roughly constant, for all frequencies. For a center frequency of 250 Hz, the slopes of the psychometric functions for increment detection increased with duration more rapidly than predicted by a "multiple-looks" hypothesis, i.e., more rapidly than the square root of duration, for durations up to 50 ms. For center frequencies of 1000 and 4000 Hz, the slopes increased less rapidly than predicted by a multiple-looks hypothesis, for durations greater than about 20 ms. The slopes of the psychometric functions for decrement detection increased with decrement duration at a rate slightly greater than the square root of duration, for durations up to 50 ms, at all three frequencies. For greater durations, the increase in slope was less than proportional to the square root of duration. The results were analyzed using a model incorporating a simulated auditory filter, a compressive nonlinearity, a sliding temporal integrator, and a decision device based on a template mechanism. The model took into account the effects of both the external noise and an assumed internal noise. The model was able to account for the major features of the data for both increment and decrement detection.
Two-step single slope/SAR ADC with error correction for CMOS image sensor.
Tang, Fang; Bermak, Amine; Amira, Abbes; Amor Benammar, Mohieddine; He, Debiao; Zhao, Xiaojin
2014-01-01
Conventional two-step ADC for CMOS image sensor requires full resolution noise performance in the first stage single slope ADC, leading to high power consumption and large chip area. This paper presents an 11-bit two-step single slope/successive approximation register (SAR) ADC scheme for CMOS image sensor applications. The first stage single slope ADC generates a 3-bit data and 1 redundant bit. The redundant bit is combined with the following 8-bit SAR ADC output code using a proposed error correction algorithm. Instead of requiring full resolution noise performance, the first stage single slope circuit of the proposed ADC can tolerate up to 3.125% quantization noise. With the proposed error correction mechanism, the power consumption and chip area of the single slope ADC are significantly reduced. The prototype ADC is fabricated using 0.18 μ m CMOS technology. The chip area of the proposed ADC is 7 μ m × 500 μ m. The measurement results show that the energy efficiency figure-of-merit (FOM) of the proposed ADC core is only 125 pJ/sample under 1.4 V power supply and the chip area efficiency is 84 k μ m(2) · cycles/sample.
Hydrology of two slopes in subarctic Yukon, Canada
NASA Astrophysics Data System (ADS)
Carey, Sean K.; Woo, Ming-Ko
1999-11-01
Two subarctic forested slopes in central Wolf Creek basin, Yukon, were studied in 1996-1997 to determine the seasonal pattern of the hydrologic processes. A south-facing slope has a dense aspen forest on silty soils with seasonal frost only and a north-facing slope has open stands of black spruce and an organic layer on top of clay sediments with permafrost. Snowmelt is advanced by approximately one month on the south-facing slope due to greater radiation receipt. Meltwater infiltrates its seasonally frozen soil with low ice content, recharging the soil moisture reservoir but yielding no lateral surface or subsurface flow. Summer evaporation depletes this recharged moisture and any additional rainfall input, at the expense of surface or subsurface flow. The north-facing slope with an ice rich substrate hinders deep percolation. Snow meltwater is impounded within the organic layer to produce surface runoff in rills and gullies, and subsurface flow along pipes and within the matrix of the organic soil. During the summer, most subsurface flows are confined to the organic layer which has hydraulic conductivities orders of magnitudes larger than the underlying boulder-clay. Evaporation on the north-facing slope declines as both the frost table and the water table descend in the summer. A water balance of the two slopes demonstrates that vertical processes of infiltration and evaporation dominate moisture exchanges on the south-facing slope, whereas the retardation of deep drainage by frost and by clayey soil on the permafrost slope promotes a strong lateral flow component, principally within the organic layer. These results have the important implication that permafrost slopes and organic horizons are the principal controls on streamflow generation in subarctic catchments.
NASA Astrophysics Data System (ADS)
Akin, Mutluhan
2013-03-01
This paper presents a case study regarding slope stability problems and the remedial slope stabilization work executed during the construction of two reinforced concrete water storage tanks on a steep hill in Manisa, Turkey. Water storage tanks of different capacities were planned to be constructed, one under the other, on closely jointed and deformed shale and sandstone units. The tank on the upper elevation was constructed first and an approximately 20-m cut slope with two benches was excavated in front of this upper tank before the construction of the lower tank. The cut slope failed after a week and the failure threatened the stability of the upper water tank. In addition to re-sloping, a 15.6-m deep contiguous retaining pile wall without anchoring was built to support both the cut slope and the upper tank. Despite the construction of a retaining pile wall, a maximum of 10 mm of displacement was observed by inclinometer measurements due to the re-failure of the slope on the existing slip surface. Permanent stability was achieved after the placement of a granular fill buttress on the slope. Back analysis based on the non-linear (Hoek-Brown) failure criterion indicated that the geological strength index (GSI) value of the slope-forming material is around 21 and is compatible with the in situ-determined GSI value (24). The calculated normal-shear stress plots are also consistent with the Hoek-Brown failure envelope of the rock mass, indicating that the location of the sliding surface, GSI value estimated by back analysis, and the rock mass parameters are well defined. The long-term stability analysis illustrates a safe slope design after the placement of a permanent toe buttress.
NASA Astrophysics Data System (ADS)
Sun, Zhe; Wang, Yibo; Sun, Yan; Niu, Fujun; Li, Guoyu; Gao, Zeyong
2017-09-01
A thaw slump in the permafrost region of the Qinghai-Tibet Plateau was monitored to investigate typical characteristics of creep positions and processes in combination with soil property analyses. The results show that the thaw settlement exhibits a contraction effect in the horizontal direction because of uneven thaw settlement. Slope displacement of creep occurs only in the top 50 cm of the soil. The gravimetric water content, soil porosity, and soil temperature are higher near the thaw slump in thaw seasons compared with the undisturbed soil; however, the shear strength is lower. Melting ground ice releases thaw water that converges along the slope and forms an overland flow at the front part of the gentle slope area and a ponding depression at the slope bottom. The analyses of slope stability using the infinite slope model shows that the headwall of the slope is inevitably unstable and slides under saturated conditions, whereas the gentle slope area and slope bottom with slight creep displacement are relatively stable. The small retrogressive thaw slump is in an early development stage. With increasing degree of thaw settlement and rate of erosion, the headwall will become steeper and a thermokarst lake will form at the slope bottom.
Experimental wave attenuation study over flexible plants on a submerged slope
NASA Astrophysics Data System (ADS)
Yin, Zegao; Yang, Xiaoyu; Xu, Yuanzhao; Ding, Meiling; Lu, Haixiang
2017-12-01
Using plants is a kind of environmentally-friendly coastal protection to attenuate wave energy. In this paper, a set of experiments were conducted to investigate the wave attenuation performance using flexible grasses on a submerged slope, and the wave attenuation coefficient for these experiments was calculated for different still water depths, slope and grass configurations. It was found that the slope plays a significant role in wave attenuation. The wave attenuation coefficient increases with increasing relative row number and relative density. For a small relative row number, the two configurations from the slope top to its toe and from the slope toe to its top performed equally to a large extent. For a medium relative row number, the configuration from the slope toe to its top performed more poorly than that from the slope top to its toe; however, it performed better than that from the slope top to its toe for a high relative row number. With a single row of grasses close to the slope top from the slope toe, the wave attenuation coefficient shows double peaks. With increasing grass rows or still water depth, the grass location corresponding to the maximum wave attenuation coefficient is close to the slope top. The dimensional analysis and the least square method were used to derive an empirical equation of the wave attenuation coefficient considering the effect of relative density, the slope, the relative row number and the relative location of the middle row, and the equation was validated to experimental data.
Craters of the Pluto-Charon system
NASA Astrophysics Data System (ADS)
Robbins, Stuart J.; Singer, Kelsi N.; Bray, Veronica J.; Schenk, Paul; Lauer, Tod R.; Weaver, Harold A.; Runyon, Kirby; McKinnon, William B.; Beyer, Ross A.; Porter, Simon; White, Oliver L.; Hofgartner, Jason D.; Zangari, Amanda M.; Moore, Jeffrey M.; Young, Leslie A.; Spencer, John R.; Binzel, Richard P.; Buie, Marc W.; Buratti, Bonnie J.; Cheng, Andrew F.; Grundy, William M.; Linscott, Ivan R.; Reitsema, Harold J.; Reuter, Dennis C.; Showalter, Mark R.; Tyler, G. Len; Olkin, Catherine B.; Ennico, Kimberly S.; Stern, S. Alan; New Horizons Lorri, Mvic Instrument Teams
2017-05-01
NASA's New Horizons flyby mission of the Pluto-Charon binary system and its four moons provided humanity with its first spacecraft-based look at a large Kuiper Belt Object beyond Triton. Excluding this system, multiple Kuiper Belt Objects (KBOs) have been observed for only 20 years from Earth, and the KBO size distribution is unconstrained except among the largest objects. Because small KBOs will remain beyond the capabilities of ground-based observatories for the foreseeable future, one of the best ways to constrain the small KBO population is to examine the craters they have made on the Pluto-Charon system. The first step to understanding the crater population is to map it. In this work, we describe the steps undertaken to produce a robust crater database of impact features on Pluto, Charon, and their two largest moons, Nix and Hydra. These include an examination of different types of images and image processing, and we present an analysis of variability among the crater mapping team, where crater diameters were found to average ± 10% uncertainty across all sizes measured (∼0.5-300 km). We also present a few basic analyses of the crater databases, finding that Pluto's craters' differential size-frequency distribution across the encounter hemisphere has a power-law slope of approximately -3.1 ± 0.1 over diameters D ≈ 15-200 km, and Charon's has a slope of -3.0 ± 0.2 over diameters D ≈ 10-120 km; it is significantly shallower on both bodies at smaller diameters. We also better quantify evidence of resurfacing evidenced by Pluto's craters in contrast with Charon's. With this work, we are also releasing our database of potential and probable impact craters: 5287 on Pluto, 2287 on Charon, 35 on Nix, and 6 on Hydra.
Craters of the Pluto-Charon System
NASA Technical Reports Server (NTRS)
Robbins, Stuart J.; Singer, Kelsi N.; Bray, Veronica J.; Schenk, Paul; Lauer, Todd R.; Weaver, Harold A.; Runyon, Kirby; Mckinnon, William B.; Beyer, Ross A.; Porter, Simon;
2016-01-01
NASA's New Horizons flyby mission of the Pluto-Charon binary system and its four moons provided humanity with its first spacecraft-based look at a large Kuiper Belt Object beyond Triton. Excluding this system, multiple Kuiper Belt Objects (KBOs) have been observed for only 20 years from Earth, and the KBO size distribution is unconstrained except among the largest objects. Because small KBOs will remain beyond the capabilities of ground-based observatories for the foreseeable future, one of the best ways to constrain the small KBO population is to examine the craters they have made on the Pluto-Charon system. The first step to understanding the crater population is to map it. In this work, we describe the steps undertaken to produce a robust crater database of impact features on Pluto, Charon, and their two largest moons, Nix and Hydra. These include an examination of different types of images and image processing, and we present an analysis of variability among the crater mapping team, where crater diameters were found to average +/-10% uncertainty across all sizes measured (approx.0.5-300 km). We also present a few basic analyses of the crater databases, finding that Pluto's craters' differential size-frequency distribution across the encounter hemisphere has a power-law slope of approximately -3.1 +/- 0.1 over diameters D approx. = 15-200 km, and Charon's has a slope of -3.0 +/- 0.2 over diameters D approx. = 10-120 km; it is significantly shallower on both bodies at smaller diameters. We also better quantify evidence of resurfacing evidenced by Pluto's craters in contrast with Charon's. With this work, we are also releasing our database of potential and probable impact craters: 5287 on Pluto, 2287 on Charon, 35 on Nix, and 6 on Hydra.
Quantitative surface topography determination by Nomarski reflection microscopy I. Theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lessor, D.L.; Hartman, J.S.; Gordon, R.L.
1979-02-01
The Nomarksi differential interference contrast microscope is examined as a tool for determination of metallic mirror surface topography. This discussion includes the development of an optical model for the Nomarski system, an examination of the key results of the model's application to sloped sample surfaces, and recommended procedures for implementation. The functional relationship is developed between image intensity and the component of surface slope along the Nomarski shear direction, the fixed parameters in the Nimarksi system, and the adjustable phase shifts related to Nomarski prism position. Equations are also developed to allow the determination of surface slope from relative imagemore » intensity when sample reflectively is uniform and slopes are small.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Weidong; Marshak, Alexander; McBride, Patrick J.
2016-12-01
We use the spectrally invariant method to study the variability of cloud optical thickness τ and droplet effective radius reff in transition zones (between the cloudy and clear sky columns) observed from Solar Spectral Flux Radiometer (SSFR) and Shortwave Array Spectroradiometer-Zenith (SASZe) during the Marine ARM GPCI Investigation of Clouds (MAGIC) field campaign. The measurements from the SSFR and the SASZe are different, however inter-instrument differences of self-normalized measurements (divided by their own spectra at a fixed time) are small. The spectrally invariant method approximates the spectra in the cloud transition zone as a linear combination of definitely clear andmore » cloudy spectra, where the coefficients, slope and intercept, character-ize the spectrally invariant properties of the transition zone. Simulation results from the SBDART (Santa Barbara DISORT Atmospheric Radiative Transfer) model demonstrate that (1) the slope of the visible band is positively correlated with the cloud optical thickness τ while the intercept of the near-infrared band has high negative cor-relation with the cloud drop effective radius reff even without the exact knowledge of τ; (2) the above relations hold for all Solar Zenith Angle (SZA) and for cloud-contaminated skies. In observations using redundant measure-ments from SSFR and SASZe, we find that during cloudy-to-clear transitions, (a) the slopes of the visible band de-crease, and (b) the intercepts of the near-infrared band remain almost constant near cloud edges. The findings in simulations and observations suggest that, while the optical thickness decreases during the cloudy-to-clear transition, the cloud drop effective radius does not change when cloud edges are approached. These results sup-port the hypothesis that inhomogeneous mixing dominates near cloud edges in the studied cases.« less
Yang, Weidong; Marshak, Alexander; McBride, Patrick J.; ...
2016-08-11
We use the spectrally invariant method to study the variability of cloud optical thickness τ and droplet effective radius r eff in transition zones (between the cloudy and clear sky columns) observed from Solar Spectral Flux Radiometer (SSFR) and Shortwave Array Spectroradiometer-Zenith (SASZe) during the Marine ARM GPCI Investigation of Clouds (MAGIC) field campaign. The measurements from the SSFR and the SASZe are different, however inter-instrument differences of self-normalized measurements (divided by their own spectra at a fixed time) are small. The spectrally invariant method approximates the spectra in the cloud transition zone as a linear combination of definitely clearmore » and cloudy spectra, where the coefficients, slope and intercept, characterize the spectrally invariant properties of the transition zone. Simulation results from the SBDART (Santa Barbara DISORT Atmospheric Radiative Transfer) model demonstrate that (1) the slope of the visible band is positively correlated with the cloud optical thickness τ while the intercept of the near-infrared band has high negative correlation with the cloud drop effective radius r eff even without the exact knowledge of τ; (2) the above relations hold for all Solar Zenith Angle (SZA) and for cloud-contaminated skies. In observations using redundant measurements from SSFR and SASZe, we find that during cloudy-to-clear transitions, (a) the slopes of the visible band decrease, and (b) the intercepts of the near-infrared band remain almost constant near cloud edges. The findings in simulations and observations suggest that, while the optical thickness decreases during the cloudy-to-clear transition, the cloud drop effective radius does not change when cloud edges are approached. Furthermore, these results support the hypothesis that inhomogeneous mixing dominates near cloud edges in the studied cases.« less
NASA Technical Reports Server (NTRS)
Yang, Weidong; Marshak, Alexander; McBride, Patrick; Chiu, J. Christine; Knyazikhin, Yuri; Schmidt, K. Sebastian; Flynn, Connor; Lewis, Ernie R.; Eloranta, Edwin W.
2016-01-01
We use the spectrally invariant method to study the variability of cloud optical thickness tau and droplet effective radius r(sub eff) in transition zones (between the cloudy and clear sky columns) observed from Solar Spectral Flux Radiometer (SSFR) and Shortwave Array Spectroradiometer-Zenith (SASZe) during the Marine ARM GPCI Investigation of Clouds (MAGIC) field campaign. The measurements from the SSFR and the SASZe are different, however inter-instrument differences of self-normalized measurements (divided by their own spectra at a fixed time) are small. The spectrally invariant method approximates the spectra in the cloud transition zone as a linear combination of definitely clear and cloudy spectra, where the coefficients, slope and intercept, characterize the spectrally invariant properties of the transition zone. Simulation results from the SBDART (Santa Barbara DISORT Atmospheric Radiative Transfer) model demonstrate that (1) the slope of the visible band is positively correlated with the cloud optical thickness t while the intercept of the near-infrared band has high negative correlation with the cloud drop effective radius r(sub eff)even without the exact knowledge of tau; (2) the above relations hold for all Solar Zenith Angle (SZA) and for cloud-contaminated skies. In observations using redundant measurements from SSFR and SASZe, we find that during cloudy-to-clear transitions, (a) the slopes of the visible band decrease, and (b) the intercepts of the near-infrared band remain almost constant near cloud edges. The findings in simulations and observations suggest that, while the optical thickness decreases during the cloudy-to-clear transition, the cloud drop effective radius does not change when cloud edges are approached. These results support the hypothesis that inhomogeneous mixing dominates near cloud edges in the studied cases.
Morphometry of terrestrial shield volcanoes
NASA Astrophysics Data System (ADS)
Grosse, Pablo; Kervyn, Matthieu
2018-03-01
Shield volcanoes are described as low-angle edifices built primarily by the accumulation of successive lava flows. This generic view of shield volcano morphology is based on a limited number of monogenetic shields from Iceland and Mexico, and a small set of large oceanic islands (Hawaii, Galápagos). Here, the morphometry of 158 monogenetic and polygenetic shield volcanoes is analyzed quantitatively from 90-meter resolution SRTM DEMs using the MORVOLC algorithm. An additional set of 24 lava-dominated 'shield-like' volcanoes, considered so far as stratovolcanoes, are documented for comparison. Results show that there is a large variation in shield size (volumes from 0.1 to > 1000 km3), profile shape (height/basal width (H/WB) ratios mostly from 0.01 to 0.1), flank slope gradients (average slopes mostly from 1° to 15°), elongation and summit truncation. Although there is no clear-cut morphometric difference between shield volcanoes and stratovolcanoes, an approximate threshold can be drawn at 12° average slope and 0.10 H/WB ratio. Principal component analysis of the obtained database enables to identify four key morphometric descriptors: size, steepness, plan shape and truncation. Hierarchical cluster analysis of these descriptors results in 12 end-member shield types, with intermediate cases defining a continuum of morphologies. The shield types can be linked in terms of growth stages and shape evolution, related to (1) magma composition and rheology, effusion rate and lava/pyroclast ratio, which will condition edifice steepness; (2) spatial distribution of vents, in turn related to the magmatic feeding system and the tectonic framework, which will control edifice plan shape; and (3) caldera formation, which will condition edifice truncation.
Nalbant, Demet; Cancelas, José A; Mock, Donald M; Kyosseva, Svetlana V; Schmidt, Robert L; Cress, Gretchen A; Zimmerman, M Bridget; Strauss, Ronald G; Widness, John A
2018-02-01
Critically ill preterm very-low-birthweight (VLBW) neonates (birthweight ≤ 1.5 kg) frequently develop anemia that is treated with red blood cell (RBC) transfusions. Although RBCs transfused to adults demonstrate progressive decreases in posttransfusion 24-hour RBC recovery (PTR 24 ) during storage-to a mean of approximately 85% of the Food and Drug Administration-allowed 42-day storage-limited data in infants indicate no decrease in PTR 24 with storage. We hypothesized that PTR 24 of allogeneic RBCs transfused to anemic VLBW newborns: 1) will be greater than PTR 24 of autologous RBCs transfused into healthy adults and 2) will not decrease with increasing storage duration. RBCs were stored at 4°C for not more than 42 days in AS-3 or AS-5. PTR 24 was determined in 46 VLBW neonates using biotin-labeled RBCs and in 76 healthy adults using 51 Cr-labeled RBCs. Linear mixed-model analysis was used to estimate slopes and intercepts of PTR 24 versus duration of RBC storage. For VLBW newborns, the estimated slope of PTR 24 versus storage did not decrease with the duration of storage (p = 0.18) while for adults it did (p < 0.0001). These estimated slopes differed significantly in adults compared to newborns (p = 0.04). At the allowed 42-day storage limit, projected mean neonatal PTR 24 was 95.9%; for adults, it was 83.8% (p = 0.0002). These data provide evidence that storage duration of allogeneic RBCs intended for neonates can be increased without affecting PTR 24 . This conclusion supports the practice of transfusing RBCs stored up to 42 days for small-volume neonatal transfusions to limit donor exposure. © 2017 AABB.
76 FR 16804 - Alaska Native Claims Selection
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-25
... Bureau of Land Management (BLM) will issue an appealable decision to Arctic Slope Regional Corporation.... Aggregating approximately 39,679 acres. Notice of the decision will also be published four times in the Arctic...
Response surface method in geotechnical/structural analysis, phase 1
NASA Astrophysics Data System (ADS)
Wong, F. S.
1981-02-01
In the response surface approach, an approximating function is fit to a long running computer code based on a limited number of code calculations. The approximating function, called the response surface, is then used to replace the code in subsequent repetitive computations required in a statistical analysis. The procedure of the response surface development and feasibility of the method are shown using a sample problem in slop stability which is based on data from centrifuge experiments of model soil slopes and involves five random soil parameters. It is shown that a response surface can be constructed based on as few as four code calculations and that the response surface is computationally extremely efficient compared to the code calculation. Potential applications of this research include probabilistic analysis of dynamic, complex, nonlinear soil/structure systems such as slope stability, liquefaction, and nuclear reactor safety.
Geomorphology of Ma'adim Vallis, Mars,and Associated Paleolake Basins
NASA Technical Reports Server (NTRS)
Irwin, Rossman, P., III; Howard, Alan D.; Maxwell, Ted A.
2004-01-01
Ma'adim Vallis, one of the largest valleys in the Martian highlands, appears to have originated by catastrophic overflow of a large paleola ke located south of the valley heads. Ma'adim Vallis debouched to Gus ev crater, 900 km to the north, the landing site for the Spirit Mars Exploration Rover. Support for the paleolake overflow hypothesis come s from the following characteristics: (I) With a channel width of 3 km at its head, Ma'adim Vallis originates at two (eastern and western) gaps incised into the divide of the approximately 1.1 M km(exp 2) enc losed Eridania head basin, which suggests a lake as the water source. (2) The sinuous course of Ma'adim Vallis is consistent with overland flow controlled by preexisting surface topography, and structural con trol is not evident or required to explain the valley course. (3) The nearly constant approximately 5 km width of the inner channel through crater rim breaches, the anastomosing course of the wide western tri butary, the migration of the inner channel to the outer margins of be nds in the valley's lower reach, a medial sedimentary bar approximate ly 200 m in height, and a step-pool" sequence are consistent with modeled flows of 1-5 x l0 (exp 6) m(exp 3)/s. Peak discharges were likely higher but are poorly constrained by the relict channel geometry. (4 ) Small direct tributary valleys to Ma'adim Vallis have convex-up lon gitudinal profiles, suggesting a hanging relationship to a valley that was incised quickly relative to the timescales of tributary developm ent. (5) The Eridania basin had adequate volume between the initial d ivide and the incised gap elevations to carve Ma'adim Vallis during a single flood. (6) The Eridania basin is composed of many overlapping , highly degraded and deeply buried impact craters. The floor materials of the six largest craters have an unusually high internal relief ( approximately 1 km) and slope (approximately 0.5-1.5 degrees) among d egraded Martian craters, which are usually flat-floored. Long-term, fluvial sediment transport appears to have been inhibited within these craters, and the topography is inconsistent with basaltic infilling. (7) Fluvial valleys do not dissect the slopes of these deeper crater floor depressions, unlike similar slopes that are dissected at higher levels in the watershed. These characteristics (6, 7) suggest that wa ter mantled at least the lower parts of the Eridania basin floor thro ughout the period of relatively intense erosion early in Martian hist ory. The lake level increased and an overflow occurred near the close of the Noachian (age determined using >5 km crater counts). Initially , the Eridania basin debouched northward at two locations into the in termediate basin, a highly degraded impact crater approximately 500 k m in diameter. As this intermediate basin was temporarily filled with water, erosion took place first along the lower (northern) reach of Ma'adim Vallis, debouching to Gusev crater. The western overflow point was later abandoned, and erosion of the intermediate basin interior was concentrated along the eastern pathway. Subsequent air fall depos ition, impact gardening, tectonism, and limited fluvial erosion modified the Eridania basin region, so evidence for a paleolake is restrict ed to larger landforms that could survive post-Noachian degradation p rocesses.
[Impact of land use type on stability and organic carbon of soil aggregates in Jinyun Mountain].
Li, Jian-Lin; Jiang, Chang-Sheng; Hao, Qing-Ju
2014-12-01
Soil aggregates have the important effect on soil fertility, soil quality and the sustainable utilization of soil, and they are the mass bases of water and fertilizer retention ability of soil and the supply or release of soil nutrients. In this paper, in order to study the impact of land use type on stability and organic carbon of soil aggregates in Jinyun Mountain, we separated four land use types of soil, which are woodland, abandoned land, orchard and sloping farmland by wet sieving method, then we got the proportion of large macroaggregates (> 2 mm), small macroaggregates (0.25-2 mm), microaggregates (53 μm-0.25 mm) and silt + clay (< 53 μm) and measured the content of organic carbon in each aggregate fraction in soil depth of 0-60 cm and calculated the total content of organic carbon of all aggregates fraction in each soil. The results showed that reclamation of woodland will lead to fragmentation of macroaggregates and deterioration of soil structure, and the proportion of macroaggrgates (> 0.25 mm) were 44.62% and 32.28% respectively in the soils of orchard and sloping farmland, which reduced 38.58% (P < 0.05) and 91.52% (P < 0.05) compared with woodland. While after changing the sloping farmland to abandoned land, which lead to the conversion of soil fraction from silt + clay to large macroaggregates and small macroaggregates, so it will improve the soil structure. MWD (mean weight diameter) and GMD (geometric mean diameter) are important indicators of evaluating the stability of soil aggregates. We found the MWD and GWD in soil depth of 0-60 cm in orchards and sloping farmland were significantly lower than those in woodland (P < 0.05), while after changing the sloping farmland to abandoned land, the MWD and GWD increased significantly (P < 0.05), which indicated that reclamation of woodland will lead to the decrease of stability of soil aggregates, and they will be separated more easily by water. However, after changing the sloping farmland to abandoned land will enhance the stability of soil aggregates, and improve the ability of soil to resist external damage. The organic carbon content in each soil aggregate of four land use types decreased with the increase of soil depth. In soil depth of 0-60 cm, the storage of organic carbon of large macroaggregates in each soil are in orders of woodland (14.98 Mg x hm(-2)) > abandoned land (8.71 Mg x hm(-2)) > orchard (5.82 Mg x hm(-2)) > sloping farmland (2.13 Mg x hm(-2)), and abandoned land (35.61 Mg x hm(-2)) > woodland (20.38 Mg x hm-(-2)) > orchard (13.83 Mg x hm(-2)) > sloping farmland (6.77 Mg x hm(-2)) in small macroaggregates, and abandoned land (22.44 Mg x hm(-2)) > woodland (10.20 Mg x hm(-2)) > orchard (6.80 Mg x hm(-2)) > sloping farmland (5. 60 Mg x hm(-2)) in microaggregates, and abandoned land (22.21 Mg x hm(-2)) > woodland (17.01 Mg x hm(-2)) > orchard (16.70 Mg x hm(-2)) > sloping farmland (9.85 Mg x hm(-2)) in silt and clay fraction. Storage of organic carbon in each aggregate in the soils of woodland and abandoned land were higher than those in the soils of orchard and sloping farmland, which indicated that reclamation of woodland will lead to a loss of organic carbon in each soil aggregate fraction, while after changing the sloping farmland to abandoned land will contribute to restore and sequestrate the soil organic carbon. In addition, it showed that most organic carbon accumulated in small macroaggregate in soils of woodland and abandoned land, while they are in silt and clay in soils of orchard and sloping farmland, indicating that organic carbon in larger aggregates is unstable and is easier to convert during the land use change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, Anthony M.; Williams, Liliya L.R.; Hjorth, Jens, E-mail: amyoung@astro.umn.edu, E-mail: llrw@astro.umn.edu, E-mail: jens@dark-cosmology.dk
One usually thinks of a radial density profile as having a monotonically changing logarithmic slope, such as in NFW or Einasto profiles. However, in two different classes of commonly used systems, this is often not the case. These classes exhibit non-monotonic changes in their density profile slopes which we call oscillations for short. We analyze these two unrelated classes separately. Class 1 consists of systems that have density oscillations and that are defined through their distribution function f ( E ), or differential energy distribution N ( E ), such as isothermal spheres, King profiles, or DARKexp, a theoretically derivedmore » model for relaxed collisionless systems. Systems defined through f ( E ) or N ( E ) generally have density slope oscillations. Class 1 system oscillations can be found at small, intermediate, or large radii but we focus on a limited set of Class 1 systems that have oscillations in the central regions, usually at log( r / r {sub −2}) ∼< −2, where r {sub −2} is the largest radius where d log(ρ)/ d log( r ) = −2. We show that the shape of their N ( E ) can roughly predict the amplitude of oscillations. Class 2 systems which are a product of dynamical evolution, consist of observed and simulated galaxies and clusters, and pure dark matter halos. Oscillations in the density profile slope seem pervasive in the central regions of Class 2 systems. We argue that in these systems, slope oscillations are an indication that a system is not fully relaxed. We show that these oscillations can be reproduced by small modifications to N ( E ) of DARKexp. These affect a small fraction of systems' mass and are confined to log( r / r {sub −2}) ∼< 0. The size of these modifications serves as a potential diagnostic for quantifying how far a system is from being relaxed.« less
Flexure Bearing Reduces Startup Friction
NASA Technical Reports Server (NTRS)
Clingman, W. Dean
1991-01-01
Design concept for ball bearing incorporates small pieces of shim stock, wire spokes like those in bicycle wheels, or other flexing elements to reduce both stiction and friction slope. In flexure bearing, flexing elements placed between outer race of ball bearing and outer ring. Elements flex when ball bearings encounter small frictional-torque "bumps" or even larger ones when bearing balls encounter buildups of grease on inner or outer race. Flexure of elements reduce high friction slopes of "bumps", helping to keep torque between outer ring and inner race low and more nearly constant. Concept intended for bearings in gimbals on laser and/or antenna mirrors.
Predictive modeling of slope deposits and comparisons of two small areas in Northern Germany
NASA Astrophysics Data System (ADS)
Shary, Peter A.; Sharaya, Larisa S.; Mitusov, Andrew V.
2017-08-01
Methods for correct quantitative comparison of several terrains are important in the development and use of quantitative landscape evolution models, and they need to introduce specific modeling parameters. We introduce such parameters and compare two small terrains with respect to the link slope-valley for the description of slope deposits (colluvium) in them. We show that colluvium accumulation in small areas cannot be described by linear models and thus introduce non-linear models. Two small areas, Perdoel (0.29 ha) and Bornhöved (3.2 ha), are studied. Slope deposits in the both are mainly in dry valleys, with a total thickness Mtotal up to 2.0 m in Perdoel and up to 1.2 m in Bornhöved. Parent materials are mainly Pleistocene sands aged 30 kyr BP. Exponential models of multiple regression that use a 1-m LiDAR DEM (digital elevation model) explained 70-93% of spatial variability in Mtotal. Parameters DH12 and DV12 of horizontal and vertical distances are introduced that permit to characterize and compare conditions of colluvium formation for various terrains. The study areas differ 3.7 times by the parameter DH12 that describes a horizontal distance from thalwegs at which Mtotal diminishes 2.72 times. DH12 is greater in Bornhöved (29.7 m) than in Perdoel (8.12 m). We relate this difference in DH12 to the distinction between types of the link slope-valley: a regional type if catchment area of a region outside a given small area plays an important role, and a local type when accumulation of colluvium from valley banks within a small area is of more importance. We argue that the link slope-valley is regional in Perdoel and local in Bornhöved. Peaks of colluvium thickness were found on thalwegs of three studied valleys by both direct measurements in a trench, and model surfaces of Mtotal. A hypothesis on the formation mechanism of such peaks is discussed. The parameter DV12 describes a vertical distance from a peak of colluvium thickness along valley bottom at which Mtotal diminishes 2.72 times; values of this parameter differ 1.4 times for the study areas. DV12 is greater in Perdoel (3.0 m) than in Bornhöved (2.1 m) thus indicating more sharp peaks of Mtotal in Bornhöved. Exponential models allow construction of predictive maps of buried Pleistocene surfaces for both the terrains and calculate colluvium volumes with an error 4.2% for Perdoel and 7.1% for Bornhöved. Comparisons of buried and present surfaces showed that the latter are more smoothed, more strongly in valleys where flow branching is increased.
Circum-Antarctic Shoreward Heat Transport Derived From an Eddy- and Tide-Resolving Simulation
NASA Astrophysics Data System (ADS)
Stewart, Andrew L.; Klocker, Andreas; Menemenlis, Dimitris
2018-01-01
Almost all heat reaching the bases of Antarctica's ice shelves originates from warm Circumpolar Deep Water in the open Southern Ocean. This study quantifies the roles of mean and transient flows in transporting heat across almost the entire Antarctic continental slope and shelf using an ocean/sea ice model run at eddy- and tide-resolving (1/48°) horizontal resolution. Heat transfer by transient flows is approximately attributed to eddies and tides via a decomposition into time scales shorter than and longer than 1 day, respectively. It is shown that eddies transfer heat across the continental slope (ocean depths greater than 1,500 m), but tides produce a stronger shoreward heat flux across the shelf break (ocean depths between 500 m and 1,000 m). However, the tidal heat fluxes are approximately compensated by mean flows, leaving the eddy heat flux to balance the net shoreward heat transport. The eddy-driven cross-slope overturning circulation is too weak to account for the eddy heat flux. This suggests that isopycnal eddy stirring is the principal mechanism of shoreward heat transport around Antarctica, though likely modulated by tides and surface forcing.
Decimetric type III radio bursts and associated hard X-ray spikes
NASA Technical Reports Server (NTRS)
Dennis, B. R.; Benz, A. O.; Ranieri, M.; Simnett, G. M.
1984-01-01
For a relatively weak solar flare on August 6, 1981, at 10:32 UT, a detailed comparison is made between hard X-ray spikes and decimetric type III radio bursts. The hard X-ray observations are made at energies above 30 keV, and the radio data are obtained in the frequency range from 100 to 1000 MHz. The time resolution for all the data sets is approximately 0.1 s or better. The dynamic radio spectrum exhibits many fast drift type III radio bursts with both normal and reverse slope, whereas the X-ray time profile contains many well resolved short spikes with durations less than or equal to 1 s. Some of the X-ray spikes are seen to be associated in time with reverse-slope bursts, indicating either that the electron beams producing the radio burst contain two or three orders of magnitude more fast electrons than has previously been assumed or that the electron beams can induce the acceleration of additional electrons or occur in coincidence with this acceleration. A case is presented in which a normal slope radio burst at approximately 600 MHz occurs in coincidence with the peak of an X-ray spike to within 0.1 s.
Analytical method for determining rill detachment of purple soil as compared with that of loess soil
USDA-ARS?s Scientific Manuscript database
Rills are commonly found on sloping farmlands in both the loess and purple soil regions of China. Rill erosion is an important component of slope water erosion, and primary sediment sources in small catchments in the areas. A comparative study on rill erosion on loess and purple soils is important t...
Small-Maturity Asymptotics for the At-The-Money Implied Volatility Slope in Lévy Models
Gerhold, Stefan; Gülüm, I. Cetin; Pinter, Arpad
2016-01-01
ABSTRACT We consider the at-the-money (ATM) strike derivative of implied volatility as the maturity tends to zero. Our main results quantify the behaviour of the slope for infinite activity exponential Lévy models including a Brownian component. As auxiliary results, we obtain asymptotic expansions of short maturity ATM digital call options, using Mellin transform asymptotics. Finally, we discuss when the ATM slope is consistent with the steepness of the smile wings, as given by Lee’s moment formula. PMID:27660537
Slope activity in Gale crater, Mars
Dundas, Colin M.; McEwen, Alfred S.
2015-01-01
High-resolution repeat imaging of Aeolis Mons, the central mound in Gale crater, reveals active slope processes within tens of kilometers of the Curiosity rover. At one location near the base of northeastern Aeolis Mons, dozens of transient narrow lineae were observed, resembling features (Recurring Slope Lineae) that are potentially due to liquid water. However, the lineae faded and have not recurred in subsequent Mars years. Other small-scale slope activity is common, but has different spatial and temporal characteristics. We have not identified confirmed RSL, which Rummel et al. (Rummel, J.D. et al. [2014]. Astrobiology 14, 887–968) recommended be treated as potential special regions for planetary protection. Repeat images acquired as Curiosity approaches the base of Aeolis Mons could detect changes due to active slope processes, which could enable the rover to examine recently exposed material.
The coupled response to slope-dependent basal melting
NASA Astrophysics Data System (ADS)
Little, C. M.; Goldberg, D. N.; Sergienko, O. V.; Gnanadesikan, A.
2009-12-01
Ice shelf basal melting is likely to be strongly controlled by basal slope. If ice shelves steepen in response to intensified melting, it suggests instability in the coupled ice-ocean system. The dynamic response of ice shelves governs what stable morphologies are possible, and thus the influence of melting on buttressing and grounding line migration. Simulations performed using a 3-D ocean model indicate that a simple form of slope-dependent melting is robust under more complex oceanographic conditions. Here we utilize this parameterization to investigate the shape and grounding line evolution of ice shelves, using a shallow-shelf approximation-based model that includes lateral drag. The distribution of melting substantially affects the shape and aspect ratio of unbuttressed ice shelves. Slope-dependent melting thins the ice shelf near the grounding line, reducing velocities throughout the shelf. Sharp ice thickness gradients evolve at high melting rates, yet grounding lines remain static. In foredeepened, buttressed ice shelves, changes in grounding line flux allow two additional options: stable or unstable retreat. Under some conditions, slope-dependent melting results in stable configurations even at high melt rates.
Li, Zeng-quan; Jiang, Chang-sheng; Hao, Qing-ju
2015-11-01
In this study, four land use types including subtropical evergreen broad-leaved forest (abbreviation: forest), sloping farmland, orchard and abandoned land were selected to collect soil samples from 0 to 60 cm depth at the same altitude in Jinyun Mountain. Four sizes of large macroaggregates (> 2 mm), small macroaggregates (0.25-2 mm), microaggregates (0.053-0.25 mm) and silt + clay (< 0.053 mm) were achieved by wet sieving method and the contents of microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) in each aggregate fraction were measured to study the impacts of the different land use types on MBC and MBN in soil aggregates. The results showed that the contents of MBC and MBN in all aggregates in the four land use types decreased with the increasing soil depth. Except large macroaggregetes, the contents of MBC and MBN in the other three soil aggregates decreased when the forest was reclamated into orchard and sloping farmland. MBC and MBN contents in large macroaggregates, small macroaggregates and microaggregates all increased when the sloping farmland was abandoned. The storages of organic carbon and nitrogen in soil depth of 0-60 cm in the four proportions were calculated by the equivalent soil mass method. The results revealed that MBC storages in the other three sizes except silt + clay were higher in the forest than those in orchard and sloping land. And MBC storages in the all aggregates were higher in the abandoned land than those in the sloping land. MBN storages in small macroaggregates and microaggregates were higher in the forest than those in orchard and sloping land. And MBN storages in the other three aggregates except silt + clay were higher in the abandoned land than those in the sloping land. Generally speaking, the storages of MBC in soil aggregates of forest and abandoned land were higher than in orchard and sloping land, MBN storage in soil aggregates of forest was nearly equal to the storage in orchard. However, the storages of MBN in soil aggregates of forest and abandoned land were higher than those in sloping land. The results showed that the reclamation of the forest resulted in the loss of MBC and MBN in soil aggregates of sloping land. However, the abandon of the sloping land contributed to the acumulation of MBC and MBN in soil aggregates. In the process of land use change, the direction and quantity of change in MBC in the soil aggregates were not consistent with those of the total soil organic carbon, which meant the microbial quotient in soil aggregates was not suitable for using to evaluate the impact of land use change on soil quality, using the total organic carbon as an index to express the sensitivity of the land use change may be better.
NASA Astrophysics Data System (ADS)
Sayres, D. S.; Dobosy, R.; Dumas, E. J.; Kochendorfer, J.; Wilkerson, J.; Anderson, J. G.
2017-12-01
The Arctic contains a large reservoir of organic matter stored in permafrost and clathrates. Varying geology and hydrology across the Arctic, even on small scales, can cause large variability in surface carbon fluxes and partitioning between methane and carbon dioxide. This makes upscaling from point source measurements such as small flux towers or chambers difficult. Ground based measurements can yield high temporal resolution and detailed information about a specific location, but due to the inaccessibility of most of the Arctic to date have only made measurements at very few sites. In August 2013, a small aircraft, flying low over the surface (5-30 m), and carrying an air turbulence probe and spectroscopic instruments to measure methane, carbon dioxide, nitrous oxide, water vapor and their isotopologues, flew over the North Slope of Alaska. During the six flights multiple comparisons were made with a ground based Eddy Covariance tower as well as three region surveys flights of fluxes over three areas each approximately 2500 km2. We present analysis using the Flux Fragment Method and surface landscape classification maps to relate the fluxes to different surface land types. We show examples of how we use the aircraft data to upscale from a eddy covariance tower and map spatial variability across different ecotopes.
Roughness, resistance, and dispersion: Relationships in small streams
NASA Astrophysics Data System (ADS)
Noss, Christian; Lorke, Andreas
2016-04-01
Although relationships between roughness, flow, and transport processes in rivers and streams have been investigated for several decades, the prediction of flow resistance and longitudinal dispersion in small streams is still challenging. Major uncertainties in existing approaches for quantifying flow resistance and longitudinal dispersion at the reach scale arise from limitations in the characterization of riverbed roughness. In this study, we characterized the riverbed roughness in small moderate-gradient streams (0.1-0.5% bed slope) and investigated its effects on flow resistance and dispersion. We analyzed high-resolution transect-based measurements of stream depth and width, which resolved the complete roughness spectrum with scales ranging from the micro to the reach scale. Independently measured flow resistance and dispersion coefficients were mainly affected by roughness at spatial scales between the median grain size and the stream width, i.e., by roughness between the micro- and the mesoscale. We also compared our flow resistance measurements with calculations using various flow resistance equations. Flow resistance in our study streams was well approximated by the equations that were developed for high gradient streams (>1%) and it was overestimated by approaches developed for sand-bed streams with a smooth riverbed or ripple bed. This article was corrected on 10 MAY 2016. See the end of the full text for details.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, C.; Jin, C.; Yamauchi, H.
We report measurements of thermoelectric power (TEP) for high-pressure synthesized CuBa{sub 2}Ca{sub 3}Cu{sub 4}O{sub 11{minus}{delta}} superconductors. The magnitude of TEP for the sample with {ital T}{sub {ital c},zero}=115.9 K is very small and shows a sign crossover at {approximately}160 K. The TEP shows a peak behavior and displays an approximately linear temperature dependence with a negative slope {minus}0.033 {mu}V/K{sup 2} for 120{le}{ital T}{le}240 K. These features resemble those for other known high-{ital T}{sub {ital c}} cuprate superconductors, in particular {ital S}{sub {ital a}} in the {ital a} direction for an untwinned YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} single crystal and polycrystalline Tl-2201more » samples. A brief discussion is given on the TEP behavior in comparison with CuBa{sub 2}YCu{sub 2}O{sub 7{minus}{delta}} cuprate superconductors by considering their similar structure of building blocks and type of charge reservoir. {copyright} {ital 1996 The American Physical Society.}« less
NASA Astrophysics Data System (ADS)
Hernández, E. R.; Brodholt, J.; Alfè, D.
2015-03-01
In this paper we report a computational study of the structural and vibrational properties of the Mg-end members forsterite, wadsleyite and ringwoodite of Mg2SiO4 , and akimotoite, majorite and the perovskite phase of MgSiO3 . Our calculations have been carried out in the framework of Density Functional Theory (DFT) using a plane wave basis set and the Projector-augmented Wave (PAW) method to account for the core electrons. All structures have been fully relaxed at a series of volumes corresponding to the pressure range relevant to the transition zone in the Earth's mantle, and at each volume the phonon frequencies have been obtained and classified. Using the quasi-harmonic approximation, we have estimated a series of thermodynamic properties for each structure, including the Gibbs free energy, from which we have computed approximate phase diagrams for Mg2SiO4 and MgSiO3 . In spite of our reliance on the quasi-harmonic approximation, which is expected to break down at high temperatures, our calculated phase diagrams qualitatively reproduce the main features expected from diagrams fitted to experimental data. For example, from the computed phase diagram for Mg2SiO4 we obtain a post-spinel boundary at P = 22.1 GPa at T = 1873 K, with a slope of -3.4 MPa/K.This supports experimental results suggesting a relatively large slope rather than those favouring a much flatter one. It also suggests that vertical deflections of the 660 km discontinuity due to thermal signatures from plumes and slabs should be similar to those at the 410 km, and that a deflection of 35 km as seen in recent seismic studies could be caused by a thermal anomaly as small as 330 K. We also identify the triple point between the ringwoodite, ilmenite (plus periclase) and perovskite (plus periclase) phases to be at P = 22.9 GPa and T = 1565 K. Our results clearly illustrate the stringent requirements made on theoretical models in order to extract predictions compatible with the available experimental data.
Slope stability radar for monitoring mine walls
NASA Astrophysics Data System (ADS)
Reeves, Bryan; Noon, David A.; Stickley, Glen F.; Longstaff, Dennis
2001-11-01
Determining slope stability in a mining operation is an important task. This is especially true when the mine workings are close to a potentially unstable slope. A common technique to determine slope stability is to monitor the small precursory movements, which occur prior to collapse. The slope stability radar has been developed to remotely scan a rock slope to continuously monitor the spatial deformation of the face. Using differential radar interferometry, the system can detect deformation movements of a rough wall with sub-millimeter accuracy, and with high spatial and temporal resolution. The effects of atmospheric variations and spurious signals can be reduced via signal processing means. The advantage of radar over other monitoring techniques is that it provides full area coverage without the need for mounted reflectors or equipment on the wall. In addition, the radar waves adequately penetrate through rain, dust and smoke to give reliable measurements, twenty-four hours a day. The system has been trialed at three open-cut coal mines in Australia, which demonstrated the potential for real-time monitoring of slope stability during active mining operations.
Influence of the posterior tibial slope on the flexion gap in total knee arthroplasty.
Okazaki, Ken; Tashiro, Yasutaka; Mizu-uchi, Hideki; Hamai, Satoshi; Doi, Toshio; Iwamoto, Yukihide
2014-08-01
Adjusting the joint gap length to be equal in both extension and flexion is an important issue in total knee arthroplasty (TKA). It is generally acknowledged that posterior tibial slope affects the flexion gap; however, the extent to which changes in the tibial slope angle directly affect the flexion gap remains unclear. This study aimed to clarify the influence of tibial slope changes on the flexion gap in cruciate-retaining (CR) or posterior-stabilizing (PS) TKA. The flexion gap was measured using a tensor device with the femoral trial component in 20 cases each of CR- and PS-TKA. A wedge plate with a 5° inclination was placed on the tibial cut surface by switching its front-back direction to increase or decrease the tibial slope by 5°. The flexion gap after changing the tibial slope was compared to that of the neutral slope measured with a flat plate that had the same thickness as that of the wedge plate center. When the tibial slope decreased or increased by 5°, the flexion gap decreased or increased by 1.9 ± 0.6mm or 1.8 ± 0.4mm, respectively, with CR-TKA and 1.2 ± 0.4mm or 1.1 ± 0.3mm, respectively, with PS-TKA. The influence of changing the tibial slope by 5° on the flexion gap was approximately 2mm with CR-TKA and 1mm with PS-TKA. This information is useful when considering the effect of manipulating the tibial slope on the flexion gap when performing CR- or PS-TKA. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pedersen, Gro; Grosse, Pablo
2014-05-01
The two main types of subglacial volcanic edifices, tuyas and tindars, have classicaly been known for their distinct morphometric characteristics. Tuyas are roughly equidimensional, steep-sided, flat topped mountains, while tindars are elongate, linear, steep sided, serrated ridges. In particular, the passage zone is morphometrically diagnostic, with a break in slope marking the transition from steep scree flanks to a low sloping lava cap [e.g. 1]. The passage zone thereby records the englacial water level coeval with delta formation and thereby provides important paleoenvironmental parameters regarding ice thickness, paleo-ice surface and the eruption environment. This study utilizes these morphometric characteristics to make a broad scale assessment of Icelandic subglacial edifices in the neovolcanic zone based on the TK-50 digital elevation model (20m/pixel) from the company Loftmyndir ehf. The edifice boundaries are delimited by concave breaks in slope around their bases and the passage zones are extracted as convex breaks in slope. This extraction is performed through object-based image analysis of slope and profile curvature maps with the eCognition program [2]. The MORVOLC code [3] is then used to calculate several morphometric parameters for each edifice: volume, edifice height, passage zone height, slope, base area, base width, ellipticity and irregularity. Analysis of the morphometric parameters allows grouping of subglacial edifices by to volume, with a continuum of landforms ranging from small tindars (group 1) to large tuyas (group 3), with an intermediate complex group of edifices (group 2). The plan shape indexes (ellipticity and irregularity) and the strike of main elongation show a first order correlation with the 3 classes and groups. Furthermore, correlations of passage zone heights, volumes and information regarding englacial lake stability allows us to investigate several aspects of tuya formation, including(1) spatial distribution of tuya sizes in rift and plume dominated volcanic systems, (2) estimation of paleo-ice surface height based on passage zone elevation, and (3) correlation between eruption size, approximate paleo-ice surface height and meltwater drainage. This study shows how a new semi-automated geomorphometric analysis of subglacial volcanic morphologies can provide information on the eruption environment. Furthermore, the technique can be used for submarine and planetary volcanic environments given a sufficiently accurate topographic model, providing a consistent approach to compare volcanic edifices in different environments. [1] Jones (1969) Quarterly Journal of the Geological Society 124, 197-211. [2] Benz et al. (2004) ISPRS Journal of photogrammetry & remote sensing 58, 239-258. [3] Grosse et al. (2012) Geomorphology 136, 114-131.
Towards a geophysical decision-support system for monitoring and managing unstable slopes
NASA Astrophysics Data System (ADS)
Chambers, J. E.; Meldrum, P.; Wilkinson, P. B.; Uhlemann, S.; Swift, R. T.; Inauen, C.; Gunn, D.; Kuras, O.; Whiteley, J.; Kendall, J. M.
2017-12-01
Conventional approaches for condition monitoring, such as walk over surveys, remote sensing or intrusive sampling, are often inadequate for predicting instabilities in natural and engineered slopes. Surface observations cannot detect the subsurface precursors to failure events; instead they can only identify failure once it has begun. On the other hand, intrusive investigations using boreholes only sample a very small volume of ground and hence small scale deterioration process in heterogeneous ground conditions can easily be missed. It is increasingly being recognised that geophysical techniques can complement conventional approaches by providing spatial subsurface information. Here we describe the development and testing of a new geophysical slope monitoring system. It is built around low-cost electrical resistivity tomography instrumentation, combined with integrated geotechnical logging capability, and coupled with data telemetry. An automated data processing and analysis workflow is being developed to streamline information delivery. The development of this approach has provided the basis of a decision-support tool for monitoring and managing unstable slopes. The hardware component of the system has been operational at a number of field sites associated with a range of natural and engineered slopes for up to two years. We report on the monitoring results from these sites, discuss the practicalities of installing and maintaining long-term geophysical monitoring infrastructure, and consider the requirements of a fully automated data processing and analysis workflow. We propose that the result of this development work is a practical decision-support tool that can provide near-real-time information relating to the internal condition of problematic slopes.
Simulation of an active underwater imaging through a wavy sea surface
NASA Astrophysics Data System (ADS)
Gholami, Ali; Saghafifar, Hossein
2018-06-01
A numerical simulation for underwater imaging through a wavy sea surface has been done. We have used a common approach to model the sea surface elevation and its slopes as an important source of image disturbance. The simulation algorithm is based on a combination of ray tracing and optical propagation, which has taken to different approaches for downwelling and upwelling beams. The nature of randomly focusing and defocusing property of surface waves causes a fluctuated irradiance distribution as an illuminating source of immersed object, while it gives rise to a great disturbance on the image through a coordinate change of image pixels. We have also used a modulation transfer function based on Well's small angle approximations to consider the underwater optical properties effect on the transferring of the image. As expected, the absorption effect reduces the light intensity and scattering decreases image contrast by blurring the image.
Competition between pressure and gravity confinement in Lyman Alpha forest observations
NASA Technical Reports Server (NTRS)
Charlton, Jane C.; Salpeter, Edwin E.; Linder, Suzanne M.
1994-01-01
A break in the distribution function of Lyman Alpha clouds (at a typical redshift of 2.5) has been reported by Petit-jean et al. (1993). This feature is what would be expected from a transition between pressure confinement and gravity confinement (as predicted in Charlton, Salpeter & Hogan 1993). The column density at which the feature occurs has been used to determine the external confining pressure approximately 10 per cu cm K, which could be due to a hot, intergalactic medium. For models that provide a good fit to the data, the contribution of the gas in clouds to omega is small. The specific shape of the distribution function at the transition (predicted by models to have a nonmonotonic slope) can serve as a diagnostic of the distribution of dark matter around Lyman Alpha forest clouds, and the present data already eliminate certain models.
NASA Astrophysics Data System (ADS)
Isakson, Marcia; Camin, H. John; Canepa, Gaetano
2005-04-01
The reflection coefficient from a sand/water interface is an important parameter in modeling the acoustics of littoral environments. Many models have been advanced to describe the influence of the sediment parameters and interface roughness parameters on the reflection coefficient. In this study, the magnitude and phase of the reflection coefficient from 30 to 160 kHz is measured in a bistatic experiment on a smoothed water/sand interface at grazing angles from 5 to 75 degrees. The measured complex reflection coefficient is compared with the fluid model, the elastic model and poro-elastic models. Effects of rough surface scattering are investigated using the Bottom Response from Inhomogeneities and Surface using Small Slope Approximation (BoRIS-SSA). Spherical wave effects are modeled using plane wave decomposition. Models are considered for their ability to predict the measured results using realistic parameters. [Work supported by ONR, Ocean Acoustics.
NASA Astrophysics Data System (ADS)
Pedrosa, Mayte; Camerlengui, Angelo; de Mol, Ben; Lucchi, Renata. G.; Úrgeles, Roger; Rebesco, Michele; Winsborrow, Monica; Laberg, Jan. S.; Andreassen, Karin; Accettella, Daniela
2010-05-01
This seafloor morphological study of the Storfjorden Trough Mouth Fan (TMF) (offshore Svalbard, NW Barents Sea) is based on new multibeam bathymetry and chirp sub-bottom profiler data acquired in 2007 during the BIO Hespérides cruise SVAIS that provides an unprecedented image of the sedimentary processes that accompanied the last advance and retreat of the Storfjorden Ice Stream. Compared to other glacial-marine sedimentary systems (such as the adjacent Bjørnøyrenna TMF), the Storfjorden TMF system is small and associated to a relatively small terrestrial ice sheet, approximately 40.000 km2, with local provenance from Svalbard and the Spitsbergen Bank. Due to this short distance from the ice source to the calving areas and the resulting short residence time of ice in the ice sheet, therefore the glacio -marine system of the Storfjorden reacts rapidly to climatic changes. The Storfjorden continental slope is characterized by three depositional lobes, produced by focused sedimentation at the terminus of ice streams that have changed their location with time. The superficial morphology features associated to the two northernmost lobes are straight gullies in the upper slope, and debris lobes starting from the midslope onwards. The seafloor expression of the southernmost lobe, adjacent to the much smaller Kveithola TMF, demonstrate almost no gully incisions and is dominated by the widespread occurrence of small-scale submarine landslides. The subbottom profiles illustrate that sediment failures occurred throughout the Late Neogene evolution of the southern Storfjorden and Kveithola margin, including large-scale mass transport deposits of up to 200 m thick. Seismic facies of the Neogene sequence shows an alternation of glacigenic debris flows and laminated sediment drape inferred to be plumites. Gullies incising glacigenic debris flows at the surface and subsurface and are filled by an interglacial drape sequence. The gullies are formed during each deglaciation phase, most likely by the erosive action of short-lived high density currents originated by sediment-loaded subglacial melt water discharge.At the outer continental shelf of the southernmost lobe a striking fresh linear straight, which has a width of 1, 5 kilometres and cut the morainal deposits. These features are interpreted as mega-scale glacial lineations, which are tentatively attributed to mega-iceberg scours. These lineations are witness the latest advances of the Storfjorden ice streams before the final retreat which was located at the southernmost lobe. One of the main pre-conditioning factors to slope instability on the southern part of the Storfjorden TMF is identified as high sedimentation rate plumites deposited on the middle-upper continental slope by glacial melt water plumes. This study is part of the SVAIS project (funded by the Spanish IPY), that has a main objective to improve the understanding and the relationship between sedimentation and ice sheet dynamics under natural climatic changes.
Early-time solution of the horizontal unconfined aquifer in the build-up phase
NASA Astrophysics Data System (ADS)
Gravanis, Elias; Akylas, Evangelos
2017-04-01
The Boussinesq equation is a dynamical equation for the free surface of saturated subsurface flows over an impervious bed. Boussinesq equation is non-linear. The non-linearity comes from the reduction of the dimensionality of the problem: The flow is assumed to be vertically homogeneous, therefore the flow rate through a cross section of the flow is proportional to the free surface height times the hydraulic gradient, which is assumed to be equal to the slope of the free surface (Dupuit approximation). In general, 'vertically' means normally on the bed; combining the Dupuit approximation with the continuity equation leads to the Boussinesq equation. There are very few transient exact solutions. Self- similar solutions have been constructed in the past by various authors. A power series type of solution was derived for a self-similar Boussinesq equation by Barenblatt in 1990. That type of solution has generated a certain amount of literature. For the unconfined flow case for zero recharge rate Boussinesq derived for the horizontal aquifer an exact solution assuming separation of variables. This is actually an exact asymptotic solution of the horizontal aquifer recession phase for late times. The kinematic wave is an interesting solution obtained by dropping the non-linear term in the Boussinesq equation. Although it is an approximate solution, and holds well only for small values of the Henderson and Wooding λ parameter (that is, for steep slopes, high conductivity or small recharge rate), it becomes less and less approximate for smaller values of the parameter, that is, it is asymptotically exact with respect to that parameter. In the present work we consider the case of the unconfined subsurface flow over horizontal bed in the build-up phase under constant recharge rate. This is a case with an infinite Henderson and Wooding parameter, that is, it is the limiting case where the non-linear term is present in the Boussinesq while the linear spatial derivative term goes away. Nonetheless, no analogue of the kinematic wave or the Boussinesq separable solution exists in this case. The late time state of the build-up phase under constant recharge rate is very simply the steady state solution. Our aim is to construct the early time asymptotic solution of this problem. The solution is expressed as a power series of a suitable similarity variable, which is constructed so that to satisfy the boundary conditions at both ends of the aquifer, that is, it is a polynomial approximation of the exact solution. The series turn out to be asymptotic and it is regularized by re-summation techniques which are used to define divergent series. The outflow rate in this regime is linear in time, and the (dimensionless) coefficient is calculated to eight significant figures. The local error of the series is quantified by its deviation from satisfying the self-similar Boussinesq equation at every point. The local error turns out to be everywhere positive, hence, so is the integrated error, which in turn quantifies the degree of convergence of the series to the exact solution.
NASA Astrophysics Data System (ADS)
Wang, Chunxiang; Watanabe, Naoki; Marui, Hideaki
2013-04-01
The hilly slopes of Mt. Medvednica are stretched in the northwestern part of Zagreb City, Croatia, and extend to approximately 180km2. In this area, landslides, e.g. Kostanjek landslide and Črešnjevec landslide, have brought damage to many houses, roads, farmlands, grassland and etc. Therefore, it is necessary to predict the potential landslides and to enhance landslide inventory for hazard mitigation and security management of local society in this area. We combined deterministic method and probabilistic method to assess potential landslides including their locations, size and sliding surfaces. Firstly, this study area is divided into several slope units that have similar topographic and geological characteristics using the hydrology analysis tool in ArcGIS. Then, a GIS-based modified three-dimensional Hovland's method for slope stability analysis system is developed to identify the sliding surface and corresponding three-dimensional safety factor for each slope unit. Each sliding surface is assumed to be the lower part of each ellipsoid. The direction of inclination of the ellipsoid is considered to be the same as the main dip direction of the slope unit. The center point of the ellipsoid is randomly set to the center point of a grid cell in the slope unit. The minimum three-dimensional safety factor and corresponding critical sliding surface are also obtained for each slope unit. Thirdly, since a single value of safety factor is insufficient to evaluate the slope stability of a slope unit, the ratio of the number of calculation cases in which the three-dimensional safety factor values less than 1.0 to the total number of trial calculation is defined as the failure probability of the slope unit. If the failure probability is more than 80%, the slope unit is distinguished as 'unstable' from other slope units and the landslide hazard can be mapped for the whole study area.
NASA Astrophysics Data System (ADS)
Shakespeare, B.; Gooseff, M. N.
2005-12-01
Understanding what role particular catchment attributes (slope, aspect, landcover, and contributing area) play in the contribution of stream flow is important for land management decisions, especially in the semi-arid western areas of the United States. Our study site is paired small catchments (approximately 9 and 11 km2) in the headwaters of the Weber drainage basin in Northern Utah. These catchments are surrounded by Wasatch formation with loamy textured soils. One catchment is predominantly underlain by quartzite while the other catchment is mostly underlain by limestone. We measured lateral flow gains every 200 to 400 meters using salt dilution gauging techniques throughout the ~5 km long streams. These measurements were taken synoptically 3 times during the seasonal discharge recession (summer 2005). The flows ranged spatially from 4 L s-1 to 55 L s-1 and varied temporally by as much as 50% when comparing the same reaches. Using GIS software, landscape analysis of slope, aspect, contributing area, topographic convergence, riparian and hillslope area, and landcover was performed for each of the delineated stream reach contributing areas. The results were tested for correlations between lateral flow gains measured in the field and different landscape characteristics. Each of the synoptic events was compared with each other to explore effects of seasonal recession on the relationships between flow gain and landscape characteristics.
NASA Technical Reports Server (NTRS)
Sharpton, V. L.; Head, J. W., III
1986-01-01
The range of 3 degree by 3 degree regional slopes of the Earth and Venus is similar (approximately 0.0-2.4 degrees), although the surface distribution of these values differs significantly. On earth, cratonic and abyssal plains form extensive regions of 0.0 degree slope. Within these regions a variety of features (mid-ocean ridges, volcanic island chains, subduction zones, and floded mountains) have regional slope characteristics influenced by seafloor spreading and plate recycling, as well as an active weathering regime. The plains provinces of Venus are much more rugged than earth's plains and are marked by numerous closely spaced circular and linear features (0.1-0.2 degree regional slope) concentrated into broad linear zones of global extent. Although Venus highlands are bounded by narrow zones of relatively steep slope, the margins of Aphrodite Terra and Beta Regio are not as steep as earth's continental margins and appear to be best developed parallel to the trends of major chasmata within these regions. Ishtar Terra's margins are significantly steeper and more continuous than other highland margins and are comparable to passive margins on earth. The Venus highlands do not contain appreciable smooth, flat interior regions, implying that highland topography is not significantly modified by erosion or deposition.
NASA Technical Reports Server (NTRS)
Fouke, B. W.; Farmer, J. D.; Des Marais, D. J.; Pratt, L.; Sturchio, N. C.; Burns, P. C.; Discipulo, M. K.
2000-01-01
Petrographic and geochemical analyses of travertine-depositing hot springs at Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, have been used to define five depositional facies along the spring drainage system. Spring waters are expelled in the vent facies at 71 to 73 degrees C and precipitate mounded travertine composed of aragonite needle botryoids. The apron and channel facies (43-72 degrees C) is floored by hollow tubes composed of aragonite needle botryoids that encrust sulfide-oxidizing Aquificales bacteria. The travertine of the pond facies (30-62 degrees C) varies in composition from aragonite needle shrubs formed at higher temperatures to ridged networks of calcite and aragonite at lower temperatures. Calcite "ice sheets", calcified bubbles, and aggregates of aragonite needles ("fuzzy dumbbells") precipitate at the air-water interface and settle to pond floors. The proximal-slope facies (28-54 degrees C), which forms the margins of terracette pools, is composed of arcuate aragonite needle shrubs that create small microterracettes on the steep slope face. Finally, the distal-slope facies (28-30 degrees C) is composed of calcite spherules and calcite "feather" crystals. Despite the presence of abundant microbial mat communities and their observed role in providing substrates for mineralization, the compositions of spring-water and travertine predominantly reflect abiotic physical and chemical processes. Vigorous CO2 degassing causes a +2 unit increase in spring water pH, as well as Rayleigh-type covariations between the concentration of dissolved inorganic carbon and corresponding delta 13C. Travertine delta 13C and delta 18O are nearly equivalent to aragonite and calcite equilibrium values calculated from spring water in the higher-temperature (approximately 50-73 degrees C) depositional facies. Conversely, travertine precipitating in the lower-temperature (< approximately 50 degrees C) depositional facies exhibits delta 13C and delta 18O values that are as much as 4% less than predicted equilibrium values. This isotopic shift may record microbial respiration as well as downstream transport of travertine crystals. Despite the production of H2S and the abundance of sulfide oxidizing microbes, preliminary delta 34S data do not uniquely define the microbial metabolic pathways present in the spring system. This suggests that the high extent of CO2 degassing and large open-system solute reservoir in these thermal systems overwhelm biological controls on travertine crystal chemistry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fouke, B.W.; Farmer, J.D.; Des Marais, D.J.
Petrographic and geochemical analyses of travertine-depositing hot springs at Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, have been used to define five depositional facies along the spring drainage system. Spring waters are expelled in the vent facies at 71 to 73 C and precipitate mounded travertine composed of aragonite needle botryoids. The apron and channel facies (43--72 C) is floored by hollow tubes composed of aragonite needle botryoids that encrust sulfide-oxidizing Aquificales bacteria. The travertine of the pond facies (30--62 C) varies in composition from aragonite needle shrubs formed at higher temperatures to ridged networks of calcite and aragonitemore » at lower temperatures. Calcite ice sheets, calcified bubbles, and aggregates of aragonite needles (fuzzy dumbbells) precipitate at the air-water interface and settle to pond floors. The proximal-slope facies (28--54 C), which forms the margins of terracette pools, is composed of arcuate aragonite needle shrubs that create small microterracettes on the steep slope face. Finally, the distal-slope facies (28--30 C) is composed of calcite spherules and calcite feather crystals. Despite the presence of abundant microbial mat communities and their observed role in providing substrates for mineralization, the compositions of spring-water and travertine predominantly reflect abiotic physical and chemical processes. Vigorous CO{sub 2} degassing causes a +2 unit increase in spring water pH, as well as Rayleigh-type covariations between the concentration of dissolved inorganic carbon and corresponding {delta}{sup 13}C. Travertine {delta}{sup 13}C and {delta}{sup 18}O are nearly equivalent to aragonite and calcite equilibrium values calculated from spring water in the higher-temperature ({approximately}50--73 C) depositional facies. Conversely, travertine precipitating in the lower-temperature (<{approximately}50 C) depositional facies exhibits {delta}{sup 13}C and {delta}{sup 18}O values that are as much as 4% less than predicted equilibrium values. This isotopic shift may record microbial respiration as well as downstream transport of travertine crystals. Despite the production of H{sub 2}S and the abundance of sulfide-oxidizing microbes, preliminary {delta}{sub 34}S data do not uniquely define the microbial metabolic pathways present in the spring system. This suggests that the high extent of CO{sub 2} degassing and large open-system solute reservoir in these thermal systems overwhelm biological controls on travertine crystal chemistry.« less
Fouke, B W; Farmer, J D; Des Marais, D J; Pratt, L; Sturchio, N C; Burns, P C; Discipulo, M K
2000-05-01
Petrographic and geochemical analyses of travertine-depositing hot springs at Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, have been used to define five depositional facies along the spring drainage system. Spring waters are expelled in the vent facies at 71 to 73 degrees C and precipitate mounded travertine composed of aragonite needle botryoids. The apron and channel facies (43-72 degrees C) is floored by hollow tubes composed of aragonite needle botryoids that encrust sulfide-oxidizing Aquificales bacteria. The travertine of the pond facies (30-62 degrees C) varies in composition from aragonite needle shrubs formed at higher temperatures to ridged networks of calcite and aragonite at lower temperatures. Calcite "ice sheets", calcified bubbles, and aggregates of aragonite needles ("fuzzy dumbbells") precipitate at the air-water interface and settle to pond floors. The proximal-slope facies (28-54 degrees C), which forms the margins of terracette pools, is composed of arcuate aragonite needle shrubs that create small microterracettes on the steep slope face. Finally, the distal-slope facies (28-30 degrees C) is composed of calcite spherules and calcite "feather" crystals. Despite the presence of abundant microbial mat communities and their observed role in providing substrates for mineralization, the compositions of spring-water and travertine predominantly reflect abiotic physical and chemical processes. Vigorous CO2 degassing causes a +2 unit increase in spring water pH, as well as Rayleigh-type covariations between the concentration of dissolved inorganic carbon and corresponding delta 13C. Travertine delta 13C and delta 18O are nearly equivalent to aragonite and calcite equilibrium values calculated from spring water in the higher-temperature (approximately 50-73 degrees C) depositional facies. Conversely, travertine precipitating in the lower-temperature (< approximately 50 degrees C) depositional facies exhibits delta 13C and delta 18O values that are as much as 4% less than predicted equilibrium values. This isotopic shift may record microbial respiration as well as downstream transport of travertine crystals. Despite the production of H2S and the abundance of sulfide oxidizing microbes, preliminary delta 34S data do not uniquely define the microbial metabolic pathways present in the spring system. This suggests that the high extent of CO2 degassing and large open-system solute reservoir in these thermal systems overwhelm biological controls on travertine crystal chemistry.
Progress in the application of landform analysis in studies of semiarid erosion
Schumm, Stanley Alfred; Hadley, R.F.
1961-01-01
The analysis of topographic and hydrologic data gathered during studies of erosion in semiarid areas of Western United States show the following relation: (a) Mean annual sediment yield from small drainage basins is related to a ratio of basin relief to length; (b) mean annual runoff from small drainage basins is related to drainage density; (c) mean annual sediment yield per unit area decreases with increase in drainage area; (d) the form of some convex hill slopes is related to surficial creep; (e) asymmetry of drainage basins, including differences in hill-slope erosion and drainage density, is related to microclimatic variations on slopes of diverse exposure; .(f) the cutting of discontinuous gullies is closely related to steepening by deposition of the semiarid valley floor; (g) aggradation in ephemeral streams seems to be most prevalent in reaches where the ratio of contributing drainage area to channel length is relatively small; and (h) streamchannel shape, expressed as a width-depth ratio, is related to the percentage of silt-clay in bed and bank alluvium. The above relations cannot be detected without measurement of terrain characteristics. They further indicate the importance of quantitative terrain analysis in studies of erosion.
Mitigating Large Fires in Drossel-Schwabl Forest Fire Models
NASA Astrophysics Data System (ADS)
Yoder, M.; Turcotte, D.; Rundle, J.; Morein, G.
2008-12-01
We employ variations of the traditional Drossel-Schwabl cellular automata Forest Fire Models (FFM) to study wildfire dynamics. The traditional FFM produces a very robust power law distribution of events, as a function of size, with frequency-size slope very close to -1. Observed data from Australia, the US and northern Mexico suggest that real wild fires closely follow power laws in frequency size with slopes ranging from close to -2 to -1.3 (B.D. Malamud et al. 2005). We suggest two models that, by fracturing and trimming large clusters, reduce the number of large fires while maintaining scale invariance. These fracturing and trimming processes can be justified in terms of real physical processes. For each model, we achieve slopes in the frequency-size relation ranging from approximately -1.77 to -1.06.
Possible Lack of Low-Mass Meteoroids in the Earth's Meteoroid Flux Due to Space Erosion?
NASA Technical Reports Server (NTRS)
Rubincam, David Parry
2017-01-01
The Earth's cumulative meteoroid flux, as found by Halliday et al. (1996), may have a shallower slope for meteoroid masses in the range 0.1-2.5 kg compared to those with masses greater than 2.5 kg when plotted on a log flux vs. log mass graph. This would indicate a lack of low-mass objects. While others such as Ceplecha (1992) find no shallow slope, there may be a reason for a lack of 0.1-2.5 kg meteoroids which supports Halliday et al.'s finding. Simple models show that a few centimeters of space erosion in stony meteoroids can reproduce the bend in Halliday et al.'s curve at approximately 2.5 kg and give the shallower slope.
NASA Astrophysics Data System (ADS)
Anugrahadi, A.
2018-01-01
Remote sensing technology is to support the identification and assessment of resources and disasters in coastal areas and oceans, because it has the advantage of covering large areas and the highest of the spatial and temporal resolution. Aster GDEM image is used to determine the slope and the length of cross the incision on exposed area abrasion and accretion. Western coastal of Banten Province has experienced abrasion with the furthest distance of 125.05 m to 274.73 m. and experienced accretion with the furthest distance of 31.65 m to 111, 58 m. ASTER GDEM results of image analysis in areas of abrasion has a slope about 1.4° to 3.3° and cross the incision length is approximately 350.52 meters to 506.57 meters. At the accretion region has a slope about 2.0° to 3.1° and cross the incision length about 306.62 m to 562.05 m.
Historic bluff retreat and stabilization at Flag Harbor, Chesapeake Bay, Maryland
Clark, Inga; Larsen, Curtis E.; McRae, Michele
2002-01-01
Studies of bluff erosion and slope stability along the western shore of Chesapeake Bay suggest relative evolution from steep, eroding coastal bluffs to stable slopes at angles of repose ca. 35 degrees over decades. Because of the dating methods in those studies, it was impossible to precisely define rates of change. The present study provides historic age control. A pair of small harbor structures were constructed in the early 1950's at Chesapeake Beach, MD to maintain a dredged channel to a small marina occupying a ravine in the Calvert Cliffs. Prior to construction, this section of shoreline was comprised of eroding steep bluffs cut into Miocene-age sediments. Downdrift erosion is now apparent south of the structures as is updrift deposition behind the northern jetty. Since construction the updrift sand body has prograded northward and progressively deposited protective beaches along the toes of the bluffs. Former eroding bluffs nearest the harbor are now stable, vegetated slopes at angles near 35 degrees. Slope angles widen to the north and to the northern limit of the sand body. Beyond this are eroding bluffs standing at angles of 70-80 degrees. The relative time required for eroding bluffs to reach stability is estimated by interpolating the distance and time for the sand body to prograde northward since harbor construction. We measured slope angles at intervals northward from the updrift structure for a distance of 2000 feet. A least squares regression of slope angle vs distance showed progressive decrease in angle from north to south. Actively eroding 70-80 degree bluffs gave way to vegetated, but slumping slopes, and finally to stable 35-degree slopes at the harbor. A relationship between time and distance along the shore allowed us to estimate a stabilization time for this location of 35-40 years. The shortness of this time scale allows us to suggest that attempts to artificially stabilize eroding bluffs along this coast is not a simple task of protecting the toes of slopes from wave action. Once shoreline retreat ends, sloughing of sediment from bluff faces gives way to longer-term landslide processes. The bluff top recedes until a stable 35-degree slope is attained. Thus, simple shoreline protection methods may not preserve property at the bluff edge.
Small-scale dynamo at low magnetic Prandtl numbers
NASA Astrophysics Data System (ADS)
Schober, Jennifer; Schleicher, Dominik; Bovino, Stefano; Klessen, Ralf S.
2012-12-01
The present-day Universe is highly magnetized, even though the first magnetic seed fields were most probably extremely weak. To explain the growth of the magnetic field strength over many orders of magnitude, fast amplification processes need to operate. The most efficient mechanism known today is the small-scale dynamo, which converts turbulent kinetic energy into magnetic energy leading to an exponential growth of the magnetic field. The efficiency of the dynamo depends on the type of turbulence indicated by the slope of the turbulence spectrum v(ℓ)∝ℓϑ, where v(ℓ) is the eddy velocity at a scale ℓ. We explore turbulent spectra ranging from incompressible Kolmogorov turbulence with ϑ=1/3 to highly compressible Burgers turbulence with ϑ=1/2. In this work, we analyze the properties of the small-scale dynamo for low magnetic Prandtl numbers Pm, which denotes the ratio of the magnetic Reynolds number, Rm, to the hydrodynamical one, Re. We solve the Kazantsev equation, which describes the evolution of the small-scale magnetic field, using the WKB approximation. In the limit of low magnetic Prandtl numbers, the growth rate is proportional to Rm(1-ϑ)/(1+ϑ). We furthermore discuss the critical magnetic Reynolds number Rmcrit, which is required for small-scale dynamo action. The value of Rmcrit is roughly 100 for Kolmogorov turbulence and 2700 for Burgers. Furthermore, we discuss that Rmcrit provides a stronger constraint in the limit of low Pm than it does for large Pm. We conclude that the small-scale dynamo can operate in the regime of low magnetic Prandtl numbers if the magnetic Reynolds number is large enough. Thus, the magnetic field amplification on small scales can take place in a broad range of physical environments and amplify week magnetic seed fields on short time scales.
Small-scale dynamo at low magnetic Prandtl numbers.
Schober, Jennifer; Schleicher, Dominik; Bovino, Stefano; Klessen, Ralf S
2012-12-01
The present-day Universe is highly magnetized, even though the first magnetic seed fields were most probably extremely weak. To explain the growth of the magnetic field strength over many orders of magnitude, fast amplification processes need to operate. The most efficient mechanism known today is the small-scale dynamo, which converts turbulent kinetic energy into magnetic energy leading to an exponential growth of the magnetic field. The efficiency of the dynamo depends on the type of turbulence indicated by the slope of the turbulence spectrum v(ℓ)∝ℓ^{ϑ}, where v(ℓ) is the eddy velocity at a scale ℓ. We explore turbulent spectra ranging from incompressible Kolmogorov turbulence with ϑ=1/3 to highly compressible Burgers turbulence with ϑ=1/2. In this work, we analyze the properties of the small-scale dynamo for low magnetic Prandtl numbers Pm, which denotes the ratio of the magnetic Reynolds number, Rm, to the hydrodynamical one, Re. We solve the Kazantsev equation, which describes the evolution of the small-scale magnetic field, using the WKB approximation. In the limit of low magnetic Prandtl numbers, the growth rate is proportional to Rm^{(1-ϑ)/(1+ϑ)}. We furthermore discuss the critical magnetic Reynolds number Rm_{crit}, which is required for small-scale dynamo action. The value of Rm_{crit} is roughly 100 for Kolmogorov turbulence and 2700 for Burgers. Furthermore, we discuss that Rm_{crit} provides a stronger constraint in the limit of low Pm than it does for large Pm. We conclude that the small-scale dynamo can operate in the regime of low magnetic Prandtl numbers if the magnetic Reynolds number is large enough. Thus, the magnetic field amplification on small scales can take place in a broad range of physical environments and amplify week magnetic seed fields on short time scales.
North Slope (Wahluke Slope) expedited response action cleanup plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The purpose of this action is to mitigate any threat to public health and the environment from hazards on the North Slope and meet the expedited response action (ERA) objective of cleanup to a degree requiring no further action. The ERA may be the final remediation of the 100-I-3 Operable Unit. A No Action record of decision (ROD) may be issued after remediation completion. The US Department of Energy (DOE) currently owns or administers approximately 140 mi{sup 2} (about 90,000 acres) of land north and east of the Columbia River (referred to as the North Slope) that is part ofmore » the Hanford Site. The North Slope, also commonly known as the Wahluke Slope, was not used for plutonium production or support facilities; it was used for military air defense of the Hanford Site and vicinity. The North Slope contained seven antiaircraft gun emplacements and three Nike-Ajax missile positions. These military positions were vacated in 1960--1961 as the defense requirements at Hanford changed. They were demolished in 1974. Prior to government control in 1943, the North Slope was homesteaded. Since the initiation of this ERA in the summer of 1992, DOE signed the modified Hanford Federal Agreement and Consent Order (Tri-Party Agreement) with the Washington Department of Ecology (Ecology) and the US Environmental Protection Agency (EPA), in which a milestone was set to complete remediation activities and a draft closeout report by October 1994. Remediation activities will make the North Slope area available for future non-DOE uses. Thirty-nine sites have undergone limited characterization to determine if significant environmental hazards exist. This plan documents the results of that characterization and evaluates the potential remediation alternatives.« less
Lunar Roving Vehicle parked in lunar depression on slope of Stone Mountain
NASA Technical Reports Server (NTRS)
1972-01-01
The Lunar Roving Vehicle appears to be parked in a deep lunar depression on the slope of Stone Mountain in this photograph of the lunar scene at Station no. 4, taken during the second Apollo 16 extravehicular activity (EVA-2) at the Descartes landing site. A sample collection bag is in the right foreground. Note field of small boulders at upper right.
The relationship between loudness intensity functions and the click-ABR wave V latency.
Serpanos, Y C; O'Malley, H; Gravel, J S
1997-10-01
To assess the relationship of loudness growth and the click-evoked auditory brain stem response (ABR) wave V latency-intensity function (LIF) in listeners with normal hearing or cochlear hearing loss. The effect of hearing loss configuration on the intensity functions was also examined. Behavioral and electrophysiological intensity functions were obtained using click stimuli of comparable intensities in listeners with normal hearing (Group I; n = 10), and cochlear hearing loss of flat (Group II; n = 10) or sloping (Group III; n = 10) configurations. Individual intensity functions were obtained from measures of loudness growth using the psychophysical methods of absolute magnitude estimation and production of loudness (geometrically averaged to provide the measured loudness function), and from the wave V latency measures of the ABR. Slope analyses for the behavioral and electrophysiological intensity functions were separately performed by group. The loudness growth functions for the groups with cochlear hearing loss approximated the normal function at high intensities, with overall slope values consistent with those reported from previous psychophysical research. The ABR wave V LIF for the group with a flat configuration of cochlear hearing loss approximated the normal function at high intensities, and was displaced parallel to the normal function for the group with sloping configuration. The relationship between the behavioral and electrophysiological intensity functions was examined at individual intensities across the range of the functions for each subject. A significant relationship was obtained between loudness and the ABR wave V LIFs for the groups with normal hearing and flat configuration of cochlear hearing loss; the association was not significant (p = 0.10) for the group with a sloping configuration of cochlear hearing loss. The results of this study established a relationship between loudness and the ABR wave V latency for listeners with normal hearing, and flat cochlear hearing loss. In listeners with a sloping configuration of cochlear hearing loss, the relationship was not significant. This suggests that the click-evoked ABR may be used to estimate loudness growth at least for individuals with normal hearing and those with a flat configuration of cochlear hearing loss. Predictive equations were derived to estimate loudness growth for these groups. The use of frequency-specific stimuli may provide more precise information on the nature of the relationship between loudness growth and the ABR wave V latency, particularly for listeners with sloping configurations of cochlear hearing loss.
NASA Astrophysics Data System (ADS)
Pardyjak, E.
2014-12-01
The MATERHORN (Mountain Terrain Atmospheric Modeling and Observation) Program is a multiuniversity, multidisciplinary research initiative designed to improve numerical weather prediction in complex terrain and to better understand the physics of complex terrain flow phenomena across a wide range of scales. As part of MATERHORN, field campaigns were conducted at Dugway, UT, USA in Autumn 2012 and Spring 2013. A subset of the campaigns included dense observations along the East Slope of Granite Peak (40.096° N, -113.253° W), as well as additional observations on the opposing west facing slope. East Slope observations included five multi-sonic anemometer eddy covariance towers (two with full energy budget stations), eleven small energy budget stations, fifteen automated weather stations, a distributed temperature sensing (DTS) system, hot-film anemometry, infrared camera surface temperature observations and up to three Doppler lidars. West Slope operations were less intense with three main towers, two of which included sonic anemometry and one, which included full surface energy balance observations. For this presentation, our analysis will focus on characterizing and contrasting the response of mean wind circulations and thermodynamics variables, as well as turbulence quantities during the evening transitions on both the East Slope and West Slope when solar irradiation differences of the slope surfaces is extremely large.
Response Characteristics of Dissolved Organic Carbon Flushing in a Subarctic Alpine Catchment
NASA Astrophysics Data System (ADS)
Carey, S. K.
2002-12-01
Dissolved organic carbon (DOC) is an important part of ecosystem-scale carbon balances and in the transport of contaminants as it interacts with other dissolved substances including trace metals. It also can be used as a surrogate hydrological tracer in permafrost regions as near-surface waters are often DOC enriched due to the presence of thick organic soils. In a small subarctic alpine catchment within the Wolf Creek Research Basin, Yukon, Canada, DOC was studied in the summer of 2001 and spring of 2002 to determine the role frost (both permanent and seasonal), snowmelt and summer storms on DOC flushing. Peak DOC concentrations occurred during the snowmelt period, approximately one week prior to peak discharge. However, peak discharge took place several weeks after snow on south facing exposures had melted. Within the hillslopes, DOC concentrations were three to five times greater in wells underlain with permafrost compared with seasonal frost. Groundwater DOC concentrations declined during snowmelt, yet remained at levels above the streamflow. After peaking, streamflow DOC concentrations declined exponentially suggesting a simple flushing mechanism, however there did not appear to be a relation between DOC and topographic position. Following melt, permafrost underlain slopes had near-surface water tables and retained elevated levels of DOC, whereas slopes without permafrost had rapidly declining water tables at upslope locations with low DOC concentrations at all positions except near-stream riparian zones. The influence of summer rainstorms on DOC was monitored on three occasions. In each case DOC peaked on the ascending limb of the runoff hydrograph and declined exponentially on the receding limb and hysteretic behavior occurred between discharge and DOC during all events. Patterns of DOC within the hillslopes and streams suggest that runoff from permafrost-underlain slopes control DOC flushing within the stream during both snowmelt and summer periods. This flushing mechanism conforms with conceptual models of runoff generation in discontinuous permafrost catchments whereby water tables within permafrost-underlain slopes rise into porous organic-layers, whereupon DOC is leached into the water and rapidly conveyed to the stream.
Propagation of coherent light pulses with PHASE
NASA Astrophysics Data System (ADS)
Bahrdt, J.; Flechsig, U.; Grizzoli, W.; Siewert, F.
2014-09-01
The current status of the software package PHASE for the propagation of coherent light pulses along a synchrotron radiation beamline is presented. PHASE is based on an asymptotic expansion of the Fresnel-Kirchhoff integral (stationary phase approximation) which is usually truncated at the 2nd order. The limits of this approximation as well as possible extensions to higher orders are discussed. The accuracy is benchmarked against a direct integration of the Fresnel-Kirchhoff integral. Long range slope errors of optical elements can be included by means of 8th order polynomials in the optical element coordinates w and l. Only recently, a method for the description of short range slope errors has been implemented. The accuracy of this method is evaluated and examples for realistic slope errors are given. PHASE can be run either from a built-in graphical user interface or from any script language. The latter method provides substantial flexibility. Optical elements including apertures can be combined. Complete wave packages can be propagated, as well. Fourier propagators are included in the package, thus, the user may choose between a variety of propagators. Several means to speed up the computation time were tested - among them are the parallelization in a multi core environment and the parallelization on a cluster.
Mars Climate History: Insights From Impact Crater Wall Slope Statistics
NASA Astrophysics Data System (ADS)
Kreslavsky, Mikhail A.; Head, James W.
2018-02-01
We use the global distribution of the steepest slopes on crater walls derived from Mars Orbiter Laser Altimeter profile data to assess the magnitudes of degradational processes with latitude, altitude, and time. We independently confirm that Amazonian polar/high-latitude crater slope modification is substantial, but that craters in the low latitudes have essentially escaped significant slope modification since the Early Hesperian. We find that the total amount of crater wall degradation in the Late Noachian is very small in comparison to the circumpolar regions in the Late Amazonian, an observation that we interpret to mean that the Late Noachian climate was not characterized by persistent and continuous warm and wet conditions. A confirmed elevational zonality in degradation in the Early Hesperian is interpreted to mean that the atmosphere was denser than today.
Steve R. Auten; Nadia Hamey
2012-01-01
On August 12, 2009, the Lockheed Fire ignited the west slope of the Santa Cruz Mountains burning approximately 7,819 acres. A mixture of vegetation types were in the path of the fire, including approximately 2,420 acres of redwood forest and 1,951 acres of mixed conifer forest types representative of the Santa Cruz Mountains. Foresters and land managers were left with...
Eros: Shape, topography, and slope processes
Thomas, P.C.; Joseph, J.; Carcich, B.; Veverka, J.; Clark, B.E.; Bell, J.F.; Byrd, A.W.; Chomko, R.; Robinson, M.; Murchie, S.; Prockter, L.; Cheng, A.; Izenberg, N.; Malin, M.; Chapman, C.; McFadden, L.A.; Kirk, R.; Gaffey, M.; Lucey, P.G.
2002-01-01
Stereogrammetric measurement of the shape of Eros using images obtained by NEAR's Multispectral Imager provides a survey of the major topographic features and slope processes on this asteroid. This curved asteroid has radii ranging from 3.1 to 17.7 km and a volume of 2535 ?? 20 km3. The center of figure is within 52 m of the center of mass provided by the Navigation team; this minimal difference suggests that there are only modest variations in density or porosity within the asteroid. Three large depressions 10, 8, and 5.3 km across represent different stages of degradation of large impact craters. Slopes on horizontal scales of ???300 m are nearly all less than 35??, although locally scarps are much steeper. The area distribution of slopes is similar to those on Ida, Phobos, and Deimos. Regions that have slopes greater than 25?? have distinct brighter markings and have fewer large ejecta blocks than do flatter areas. The albedo patterns that suggest downslope transport of regolith have sharper boundaries than those on Phobos, Deimos, and Gaspra. The morphology of the albedo patterns, their lack of discrete sources, and their concentration on steeper slopes suggest transport mechanisms different from those on the previously well-observed small bodies, perhaps due to a reduced relative effectiveness of impact gardening on Eros. Regolith is also transported in talus cones and in connected, sinuous paths extending as much as 2 km, with some evident as relatively darker material. Talus material in at least one area is a discrete superposed unit, a feature not resolved on other small bodies. Flat-floored craters that apparently contain ponded material also suggest discrete units that are not well mixed by impacts. ?? 2002 Elsevier Science (USA).
Low-energy isovector and isoscalar dipole response in neutron-rich nuclei
NASA Astrophysics Data System (ADS)
Vretenar, D.; Niu, Y. F.; Paar, N.; Meng, J.
2012-04-01
The self-consistent random-phase approximation, based on the framework of relativistic energy density functionals, is employed in the study of isovector and isoscalar dipole response in 68Ni,132Sn, and 208Pb. The evolution of pygmy dipole states (PDSs) in the region of low excitation energies is analyzed as a function of the density dependence of the symmetry energy for a set of relativistic effective interactions. The occurrence of PDSs is predicted in the response to both the isovector and the isoscalar dipole operators, and its strength is enhanced with the increase in the symmetry energy at saturation and the slope of the symmetry energy. In both channels, the PDS exhausts a relatively small fraction of the energy-weighted sum rule but a much larger percentage of the inverse energy-weighted sum rule. For the isovector dipole operator, the reduced transition probability B(E1) of the PDSs is generally small because of pronounced cancellation of neutron and proton partial contributions. The isoscalar-reduced transition amplitude is predominantly determined by neutron particle-hole configurations, most of which add coherently, and this results in a collective response of the PDSs to the isoscalar dipole operator.
A human intermediate conductance calcium-activated potassium channel.
Ishii, T M; Silvia, C; Hirschberg, B; Bond, C T; Adelman, J P; Maylie, J
1997-10-14
An intermediate conductance calcium-activated potassium channel, hIK1, was cloned from human pancreas. The predicted amino acid sequence is related to, but distinct from, the small conductance calcium-activated potassium channel subfamily, which is approximately 50% conserved. hIK1 mRNA was detected in peripheral tissues but not in brain. Expression of hIK1 in Xenopus oocytes gave rise to inwardly rectifying potassium currents, which were activated by submicromolar concentrations of intracellular calcium (K0.5 = 0.3 microM). Although the K0.5 for calcium was similar to that of small conductance calcium-activated potassium channels, the slope factor derived from the Hill equation was significantly reduced (1.7 vs. 3. 5). Single-channel current amplitudes reflected the macroscopic inward rectification and revealed a conductance level of 39 pS in the inward direction. hIK1 currents were reversibly blocked by charybdotoxin (Ki = 2.5 nM) and clotrimazole (Ki = 24.8 nM) but were minimally affected by apamin (100 nM), iberiotoxin (50 nM), or ketoconazole (10 microM). These biophysical and pharmacological properties are consistent with native intermediate conductance calcium-activated potassium channels, including the erythrocyte Gardos channel.
NASA Astrophysics Data System (ADS)
Olsen, S.; Zaliapin, I.
2008-12-01
We establish positive correlation between the local spatio-temporal fluctuations of the earthquake magnitude distribution and the occurrence of regional earthquakes. In order to accomplish this goal, we develop a sequential Bayesian statistical estimation framework for the b-value (slope of the Gutenberg-Richter's exponential approximation to the observed magnitude distribution) and for the ratio a(t) between the earthquake intensities in two non-overlapping magnitude intervals. The time-dependent dynamics of these parameters is analyzed using Markov Chain Models (MCM). The main advantage of this approach over the traditional window-based estimation is its "soft" parameterization, which allows one to obtain stable results with realistically small samples. We furthermore discuss a statistical methodology for establishing lagged correlations between continuous and point processes. The developed methods are applied to the observed seismicity of California, Nevada, and Japan on different temporal and spatial scales. We report an oscillatory dynamics of the estimated parameters, and find that the detected oscillations are positively correlated with the occurrence of large regional earthquakes, as well as with small events with magnitudes as low as 2.5. The reported results have important implications for further development of earthquake prediction and seismic hazard assessment methods.
Pattern of distribution and diversity of demersal assemblages in the central Mediterranean Sea
NASA Astrophysics Data System (ADS)
Colloca, F.; Cardinale, M.; Belluscio, A.; Ardizzone, G.
2003-03-01
A highly diversified mix of fish species, cephalopods and crustaceans, together with several macro-epibenthic organisms, compose trawl catches in the Mediterranean Sea. Management of Mediterranean trawling needs a multispecies approach that considers the community and not the single species as the basic unit of the analysis. While many studies have correlated several environmental factors to the spatial organizations of demersal organisms, few have focused on the role of macro-epibenthic communities in structuring demersal assemblages. In this paper, the following hypotheses were tested: (1) there are discrete demersal assemblages in the central Mediterranean Sea; (2) the distribution and diversity of demersal communities does not change on small temporal scales (1 year); (3) the demersal assemblages were segregated across both different epibenthic assemblages and depth gradients. Shallow stations were separated into coastal and middle-deep shelf assemblages while stations on the slope formed three main assemblages: slope edge, upper slope and middle slope assemblages. The demersal community did not show a substantial change at the small temporal scale. Sandy, sand-muddy and detritic epibenthic communities characterized coastal shelf assemblages, while epibenthic assemblage on muddy bottoms were dominant in the deeper areas of the shelf. A well-defined difference in macro-epibenthic faunal associations among stations on the slope (depth >200 m) was not found. Depth appeared to affect diversity of the main taxa of demersal organisms in different ways. Teleostean diversity did not show any trend with depth, the number of cephalopod species increased on the shelf and decreased on the slope while crustacean and elasmobranch species richness increased significantly from the shelf to the middle slope. The strong correlation shown in this study between epifaunal benthic communities and demersal fish assemblages requires the formulation of an ecosystem-based management for the Mediterranean Sea trawl fisheries. The existence of such biological diversity certainly contributes to the Mediterranean ecosystem health and its conservation should become one of the main objective of demersal resources management in the future.
NASA Astrophysics Data System (ADS)
Böhme, Martina; Hermanns, Reginald L.; Oppikofer, Thierry; Penna, Ivanna
2016-04-01
Unstable rock slopes that can cause large failures of the rock-avalanche type have been mapped in Norway for almost two decades. Four sites have earlier been characterized as high-risk objects based on expertise of few researchers. This resulted in installing continuous monitoring systems and set-up of an early-warning system for those four sites. Other unstable rock slopes have not been ranked related to their hazard or risk. There are ca. 300 other sites known of which 70 sites were installed for periodic deformation measurements using multiple techniques (Global Navigation Satellite Systems, extensometers, measurement bolts, and others). In 2012 a systematic hazard and risk classification system for unstable rock slopes was established in Norway and the mapping approach adapted to that in 2013. Now, the first 22 sites were classified for hazard, consequences and risk using this classification system. The selection of the first group of sites to be classified was based on an assumed high hazard or risk and importance given to the sites by Norwegian media and the public. Nine of the classified 22 unstable rock slopes are large sites that deform inhomogeneously or are strongly broken up in individual blocks. This suggests that different failure scenarios are possible that need to be analyzed individually. A total of 35 failure scenarios for those nine unstable rock slopes were considered. The hazard analyses were based on 9 geological parameters defined in the classification system. The classification system will be presented based on the Gamanjunni unstable rock slope. This slope has a well developed back scarp that exposes 150 m preceding displacement. The lateral limits of the unstable slope are clearly visible in the morphology and InSAR displacement data. There have been no single structures observed that allow sliding kinematically. The lower extend of the displacing rock mass is clearly defined in InSAR data and by a zone of higher rock fall activity. Yearly average displacement rates of up to 6 cm are measured with differential GNSS and InSAR. Cosmogenic nuclide dating suggests an acceleration of the present displacement compared to the average displacement since the initiation of the gravitational movement approximately 7000 years ago. Furthermore, there exists a pre-historic rock avalanche 3 km north along the same slope. These characteristics result in a very high hazard for the Gamanjunni unstable rock slope. The consequence analyses focus on the possibility of life loss only. For this the number of persons in the area that can be affected by either the rock slope failure itself and/or its secondary consequence of a displacement wave in case that a rock slope failure would hit a water body is estimated. For Gamanjunni the direct consequences are approximately 40 casualties, representing medium consequences. A total of 48 scenarios were finally analyzed for hazard, consequences and risk. The results are plotted in a risk matrix with 5 hazard and 5 consequence classes, leading to 4 risk classes. One unstable rock slope was classified as very high hazard, 9 scenarios as high hazard, 25 as medium hazard and 13 as low hazard, while none were classified as very low hazard. The consequence analyses for those scenarios resulted in 5 scenarios with very high consequences (>1000 potential casualties), 13 scenarios with high consequences (100-1000 casualties), 9 scenarios with medium consequences (10-100 casualties), 6 scenarios with low consequences (1-10 casualties) and 15 scenarios with very low consequences (0-1 casualties). This resulted in a high risk for 6 scenarios, medium to high risk for 16 scenarios, medium risk for 7 scenarios and low risk for 19 scenarios. These results allow determining which unstable rock slopes do not require further follow-up and on which further investigations and/or mitigation measures should be considered.
Survival and aging of a small laboratory population of a marine mollusc, Aplysia californica.
Hirsch, H R; Peretz, B
1984-09-01
In an investigation of the postmetamorphic survival of a population of 112 Aplysia californica, five animals died before 100 days of age and five after 200 days. The number of survivors among the 102 animals which died between 100 and 220 days declined approximately linearly with age. The median age at death was 155 days. The animals studied were those that died of natural causes within a laboratory population that was established to provide Aplysia for sacrifice in an experimental program. Actuarial separation of the former group from the latter was justified by theoretical consideration. Age-specific mortality rates were calculated from the survival data. Statistical fluctuation arising from the small size of the population was reduced by grouping the data in bins of unequal age duration. The durations were specified such that each bin contained approximately the same number of data points. An algorithm for choosing the number of data bins was based on the requirement that the precision with which the age of a group is determined should equal the precision with which the number of deaths in the groups is known. The Gompertz and power laws of mortality were fitted to the age-specific mortality-rate data with equally good results. The positive values of slope associated with the mortality-rate functions as well as the linear shape of the curve of survival provide actuarial evidence that Aplysia age. Since Aplysia grow linearly without approaching a limiting size, the existence of senescence indicates especially clearly the falsity of Bidder's hypothesis that aging is a by-product of the cessation of growth.
NASA Technical Reports Server (NTRS)
McClanahan, T. P.; Mitrofanov, I. G.; Boynton, W. V.; Chin, G.; Bodnarik, J.; Droege, G.; Evans, L. G.; Golovin, D.; Hamara, D.; Harshman, K.;
2015-01-01
The Lunar Exploration Neutron Detector (LEND) onboard the Lunar Reconnaissance Orbiter (LRO) detects a widespread suppression of the epithermal neutron leakage flux that is coincident with the pole-facing slopes (PFS) of the Moon's southern hemisphere. Suppression of the epithermal neutron flux is consistent with an interpretation of enhanced concentrations of hydrogen-bearing volatiles within the upper meter of the regolith. Localized flux suppression in PFS suggests that the reduced solar irradiation and lowered temperature on PFS constrains volatility to a greater extent than in surrounding regions. Epithermal neutron flux mapped with LEND's Collimated Sensor for Epithermal Neutrons (CSETN) was analyzed as a function of slope geomorphology derived from the Lunar Orbiting Laser Altimeter (LOLA) and the results compared to co-registered maps of diurnally averaged temperature from the Diviner Lunar Radiometer Experiment and an averaged illumination map derived from LOLA. The suppression in the average south polar epithermal neutron flux on equator-facing slopes (EFS) and PFS (85-90 deg S) is 3.3 +/- 0.04% and 4.3 +/- 0.05% respectively (one-sigma-uncertainties), relative to the average count-rate in the latitude band 45-90 deg S. The discrepancy of 1.0 +/- 0.06% between EFS and PFS neutron flux corresponds to an average of approximately 23 parts-per-million-by-weight (ppmw) more hydrogen on PFS than on EFS. Results show that the detection of hydrogen concentrations on PFS is dependent on their spatial scale. Epithermal flux suppression on large scale PFS was found to be enhanced to 5.2 +/- 0.13%, a discrepancy of approximately 45 ppmw hydrogen relative to equivalent EFS. Enhanced poleward hydration of PFS begins between 50 deg S and 60 deg S latitude. Polar regolith temperature contrasts do not explain the suppression of epithermal neutrons on pole-facing slopes. The Supplemental on-line materials include supporting results derived from the uncollimated Lunar Prospector Neutron Spectrometer and the LEND Sensor for Epithermal Neutrons.
Measurements of the near-surface flow over a hill
NASA Astrophysics Data System (ADS)
Vosper, S. B.; Mobbs, S. D.; Gardiner, B. A.
2002-10-01
The near-surface flow over a hill with moderate slope and height comparable with the boundary-layer depth is investigated through field measurements of the mean flow (at 2 m), surface pressure, and turbulent momentum flux divergence between 8 and 15 m. The measurements were made along an east-west transect across the hill Tighvein (height 458 m, approximate width 8 km) on the Isle of Arran, south-west Scotland, during two separate periods, each of around three-weeks duration. Radiosonde ascents are used to determine the variation of a Froude number, FL = U/NL, where U is the wind speed at the middle-layer height, hm, N is the mean Brunt-Väisälä frequency below this height and L is a hill length-scale. Measurements show that for moderately stratified flows (for which FL
0.25) a minimum in the hill-induced surface-pressure perturbation occurs across the summit and this is accompanied by a maximum in the near-surface wind speed. In the more strongly stratified case (FL
0.25) the pressure field is more asymmetric and the lee-slope flow is generally stronger than on the windward slope. Such a flow pattern is qualitatively consistent with that predicted by stratified linear boundary-layer and gravity-wave theories. The near-surface momentum budget is analysed by evaluating the dominant terms in a Bernoulli equation suitable for turbulent flow. Measurements during periods of westerly flow are used to evaluate the dominant terms, and the equation is shown to hold to a reasonable approximation on the upwind slope of the hill and also on the downwind slope, away from the summit. Immediately downwind of the summit, however, the Bernoulli equation does not hold. Possible reasons for this, such as non-separated sheltering and flow separation, are discussed.
Slope basins, headless canyons, and submarine palaeoseismology of the Cascadia accretionary complex
McAdoo, B.G.; Orange, D.L.; Screaton, Elizabeth; Lee, H.; Kayen, R.
1997-01-01
A combination of geomorphological, seismic reflection and geotechnical data constrains this study of sediment erosion and deposition at the toe of the Cascadia accretionary prism. We conducted a series of ALVIN dives in a region south of Astoria Canyon to examine the interrelationship of fluid flow and slope failure in a series of headless submarine canyons. Elevated head gradients at the inflection point of canyons have been inferred to assist in localized failures that feed sediment into a closed slope basin. Measured head gradients are an order of magnitude too low to cause seepage-induced slope failure alone; we therefore propose transient slope failure mechanisms. Intercanyon slopes are uniformly unscarred and smooth, although consolidation tests indicate that up to several metres of material may have been removed. A sheet-like failure would remove sediment uniformly, preserving the observed smooth intercanyon slope. Earthquake-induced liquefaction is a likely trigger for this type of sheet failure as the slope is too steep and short for sediment flow to organize itself into channels. Bathymetric and seismic reflection data suggest sediment in a trench slope basin between the second and third ridges from the prism's deformation is derived locally. A comparison of the amounts of material removed from the slopes and that in the basin shows that the amount of material removed from the slopes may slightly exceed the amount of material in the basin, implying that a small amount of sediment has escaped the basin, perhaps when the second ridge was too low to form a sufficient dam, or through a gap in the second ridge to the south. Regardless, almost 80% of the material shed off the slopes around the basin is deposited locally, whereas the remaining 20% is redeposited on the incoming section and will be re-accreted.
NASA Astrophysics Data System (ADS)
Chen, Yichin
2017-04-01
Mudstone badlands are the area characteristized by its rapid erosion and steep, fractured, and barren landforms. Monitoring the topography changes in badland help improve our knowledge of the hillslope and river processing on landforms and develop susceptibility model for surface erosion hazards. Recently, advances in unmanned aerial system (UAS) and close-range photogrammetry technology have opened up the possibility of effectively measuring topography changes with high spatiotemporal resolutions. In this study, we used the UAS and close-range photogrammetry technology to monitor the topography changes in a rapidly eroded badland, south-western Taiwan. A small mudstone hillslope with area of 0.2 ha approximately and with slope gradient of 37 degrees was selected as the study site. A widely used and commercial quadcopter equipped non-metric camera was used to take images with ground sampling distance (GSD) 5 mm approximately. The Pix4DMapper, a commercial close-range photogrammetry software, was used to perform stereo matching, extract point clouds, generate digital surface models (DSMs) and orthoimage. To control model accuracy, a set of ground control points was surveyed by using eGPS. The monitoring was carried out after every significant rainfall event that may induced observable erosion in the badland site. The results show that DSMs have the GSDs of 4.0 5.4 mm and vertical accuracy of 61 116 mm. The accuracy largely depends on the quality of ground control points. The spatial averaged erosion rate during six months of monitoring was 328 mm, which is higher in the gully sides than in the ridges. The erosion rate is positively correlated with the slope gradient and drainage contributing area that implies the important role of surface gully erosion in mudstone badland erosion. This study shows that UAS and close-range photogrammetry technology can be used to monitor the topography change in badland areas effectively and can provide high spatiotemporal resolutions of DSMs for developing distributed surface erosion models.
Beryllium-7 in vegetation, soil, sediment and runoff on the northern Loess Plateau.
Zhang, Fengbao; Yang, Mingyi; Zhang, Jiaqiong
2018-06-01
Beryllium-7 ( 7 Be), as a potentially powerful tracer, was widely used to document soil redistribution and identify sediment sources in recent decades, but the quantity and distribution of 7 Be in vegetation, soil, sediment and runoff on the Loess Plateau have not been fully described. In this study, we measured 7 Be in vegetation, soil, sediment and runoff on the northern Loess Plateau of China and analyzed its variations during the rainy season to assess the potential of the 7 Be method for documenting soil redistribution and identifying sediment sources in a wide range of environments. The results indicated that vegetation, soil, and sediment samples showed higher levels and larger variations of 7 Be activities during the rainy season. The drying plants showed 7 Be mass activity that was more than three times higher than that of living and semi-decomposed plants. 7 Be mass activity in plants and sediment was much higher than in the soil. 7 Be activity in runoff water with a few submicron suspended particles varied slightly and was far lower than in plant, soil and sediment samples. The cumulative precipitation generally determined 7 Be inventory held by plants and soil. An inverse relationship was found between the 7 Be mass activity in sediment and the sediment amount. Globally, approximate 30% of the total 7 Be was held by plants in both the herbaceous and subshrub plots. Approximate 10% of the total 7 Be was lost with sediment from the bare plot. A very small proportion of 7 Be (1.18%-3.20%) was lost with runoff, and the vast majority of 7 Be was retained in the slope soil at the end of rainy season. Vegetation cover and soil erosion significantly affected the spatial distribution and variations of the 7 Be inventory in soil, providing a necessary condition for the development of a 7 Be method to document soil erosion on slopes with vegetation. Copyright © 2018 Elsevier B.V. All rights reserved.
The So-Called 'Face on Mars' in Infrared
NASA Technical Reports Server (NTRS)
2002-01-01
[figure removed for brevity, see original site] (Released 24 July 2002) This set of THEMIS infrared images shows the so-called 'face on Mars' landform located in the northern plains of Mars near 40o N, 10o W (350 o E). The 'face' is located near the center of the image approximately 1/6 of the way down from the top, and is one of a large number of knobs, mesas, hills, and buttes that are visible in this THEMIS image. The THEMIS infrared camera has ten different filters between 6.2 and 15 micrometers - nine view the surface and one views the CO2 atmosphere. The calibrated and geometrically projected data from all of the nine surface-viewing filters are shown in this figure. The major differences seen in this region are due to temperature effects -- sunlit slopes are warm (bright), whereas those in shadow are cold (dark), The temperature in this scene ranges from 50 oC (darkest) to 15 oC (brightest). The major differences between the different filters are due to the expected variation in the amount of energy emitted from the surface at different wavelengths. Minor spectral differences (infrared 'color') also exist between the different filters, but these differences are small in this region due to the uniform composition of the rocks and soils exposed at the surface. The THEMIS infrared camera provides an excellent regional view of Mars - this image covers an area 32 kilometers (20 miles) by approximately 200 kilometers (125 miles) at a resolution of 100 meters per picture element ('pixel'). This image provides a broad perspective of the landscape and geology of the Cydonia region, showing numerous knobs and hills that have been eroded into a remarkable array of different shapes. In this 'big picture' view the Cydonia region is seen to be covered with dozens of interesting knobs and mesas that are similar in many ways to the knob named the 'face' - so many in fact that it requires care to discover the 'face' among this jumble of knobs and hills. The 3-km long 'face' knob was first imaged by the Viking spacecraft in the 1970's and was seen by some to resemble a face carved into the rocks of Mars. Since that time the Mars Orbiter Camera on the Mars Global Surveyor spacecraft has provided detailed views of this hill that clearly show that it is a normal geologic feature with slopes and ridges carved by eons of wind and downslope motion due to gravity. Many of the knobs in Cydonia, including the 'face', have several flat ledges partway up the hill slopes. These ledges are made of more resistant layers of rock and are the last remnants of layers that once were continuous across this entire region. Erosion has completely removed these layers in most places, leaving behind only the small isolated hills and knobs seen today.
Himalayan Foothills, Bangladesh
NASA Technical Reports Server (NTRS)
1992-01-01
This remarkably clear, pre-monsoon view of the Himalayan foothills of Bangladesh (26.0N, 89.5E) shows the deforestation of the lower slopes for agriculture and pasture lands. The cleared lower slopes are generally used for tea cultivation. The intensity of agricultural land use, mostly in the form of small, family subsistance farms on the Ganges Plain is evident over most of the scene. Note also, the aircraft contrail and Tista River.
Webb, Robert H.; Magirl, Christopher S.; Griffiths, Peter G.; Boyer, Diane E.
2008-01-01
From July 31 to August 1, 2006, an unusual set of atmospheric conditions aligned to produce record floods and an unprecedented number of slope failures and debris flows in southeastern Arizona. During the week leading up to the event, an upper-level low-pressure system centered over New Mexico generated widespread and locally heavy rainfall in southeastern Arizona, culminating in a series of strong, mesoscale convective systems that affected the region in the early morning hours of July 31 and August 1. Rainfall from July 27 through 30 provided sufficient antecedent moisture that the storms of July 31 through August 1 resulted in record streamflow flooding in northeastern Pima County and eastern Pinal County. The rainfall caused at least 623 slope failures in four mountain ranges, including more than 30 near Bowie Mountain in the northern Chiracahua Mountains, and 113 at the southern end of the Huachuca Mountains within and adjacent to Coronado National Memorial. In the Santa Catalina Mountains north of Tucson, 435 slope failures spawned debris flows on July 31 that, together with flood runoff, damaged structures and roads, affecting infrastructure within Tucson's urban boundary. Heavy, localized rainfall in the Galiuro Mountains on August 1, 2006, resulted in at least 45 slope failures and an unknown number of debris flows in Aravaipa Canyon. In the southern Santa Catalina Mountains, the maximum 3-day precipitation measured at a climate station for July 29-31 was 12.04 in., which has a 1,200-year recurrence interval. Other rainfall totals from late July to August 1 in southeastern Arizona also exceeded 1,000-year recurrence intervals. The storms produced floods of record along six watercourses, and these floods had recurrence intervals of 100-500 years. Repeat photography suggests that the spate of slope failures was historically unprecedented, and geologic mapping and cosmogenic dating of ancient debris-flow deposits indicate that debris flows reaching alluvial fans in the Tucson basin are extremely rare events. Although recent watershed changes - particularly the impacts of recent wildland fires - may be important locally, the record number of slope failures and debris flows were related predominantly to extreme precipitation, not other factors such as fire history. The large number of slope failures and debris flows in an area with few such occurrences historically underscores the rarity of this type of meteorological event in southeastern Arizona. Most slope failures appeared to be shallow-seated slope failures of colluvium on steep slopes that caused deep scour of chutes and substantial aggradation of channels downstream. In the southern Santa Catalina Mountains, we estimate that 1.5 million tons of sediment were released from slope failures into the channels of ten drainage basins. Thirty-six percent of this sediment (527,000 tons) is gravel-sized or smaller and is likely to be transported by streamflow out of the mountain drainages and into the drainage network of metropolitan Tucson. This sediment poses a potential flood hazard by reducing conveyance in fixed-section flood control structures along Rillito Creek and its major tributaries, although our estimates suggest that deposition may be small if it is distributed widely along the channel, which is expected. Using the stochastic debris-flow model LAHARZ, we simulated debris-flow transport from slope failures to the apices of alluvial fans flanking the southern Santa Catalina Mountains. Despite considerable uncertainty in applying coefficients developed from worldwide observations to conditions in the southern Santa Catalina Mountains, we predicted the approximate area of depositional zones for several 2006 debris flows, particularly for Soldier Canyon. Better results could be achieved in some canyons if sediment budgets could be developed to account for alternating transport and deposition zones in channels with abrupt expansions and contractions, such
Triangle based TVD schemes for hyperbolic conservation laws
NASA Technical Reports Server (NTRS)
Durlofsky, Louis J.; Osher, Stanley; Engquist, Bjorn
1990-01-01
A triangle based total variation diminishing (TVD) scheme for the numerical approximation of hyperbolic conservation laws in two space dimensions is constructed. The novelty of the scheme lies in the nature of the preprocessing of the cell averaged data, which is accomplished via a nearest neighbor linear interpolation followed by a slope limiting procedures. Two such limiting procedures are suggested. The resulting method is considerably more simple than other triangle based non-oscillatory approximations which, like this scheme, approximate the flux up to second order accuracy. Numerical results for linear advection and Burgers' equation are presented.
A soil water budget model for precipitation-induced shallow landslides
NASA Astrophysics Data System (ADS)
Yeh, Hsin-Fu; Lee, Cheng-Haw
2013-04-01
Precipitation infiltration influences both the quantity and quality of slope systems. Knowledge of the mechanisms leading to precipitation-induced slope failures is of great importance to the management of landslide hazard. In this study, a soil water balance model is developed to estimate soil water flux during the process of infiltration from rainfall data, with consideration of storm periods and non-storm periods. Two important assumptions in this study are given: (1) instantaneous uniform distribution of the degree of effective saturation and (2) a linear relationship between evapotranspiration and the related degree of saturation degree. For storm periods, the Brooks and Corey model estimates both the soil water retention curve (SWRC) and soil water parameters. The infiltration partition is employed by an infinite-series solution of Philip in conjunction with the time compression approximation (TCA). For none-storm periods, evapotranspiration can be derived for the moisture depletion of soil water. This study presents a procedure for calculating the safety factor for an unsaturated slope suffering from precipitation infiltration. The process of infiltration into a slope due to rainfall and its effect on soil slope behavior are examined using modified Mohr-Coulomb failure criterion in conjunction with a soil water balance model. The results indicate that the matric suction, which is closely related to slope stability, is affected by the effective degree of saturation controlled by rainfall events.
NASA Technical Reports Server (NTRS)
Scambos, Ted
2003-01-01
A technique for improving elevation maps of the polar ice sheets has been developed using AVHRR images. The technique is based on 'photoclinometry' or 'shape from shading', a technique used in the past for mapping planetary surfaces where little elevation information was available. The fundamental idea behind photoclinometry is using the brightness of imaged areas to infer their surface slope in the sun-illuminated direction. Our version of the method relies on a calibration of the images based on an existing lower-resolution digital elevation model (DEM), and then using the images to improve the input DEM resolution to the scale of the image data. Most current DEMs covering the ice sheets are based on Radar altimetry data, and have an inherent resolution of 10 to 25 km at best - although the grid scale of the DEM is often finer. These DEMs are highly accurate (to less than 1 meter); but they report the mean elevation of a broad area, thus erasing smaller features of glaciological interest. AVHRR image data, when accurately geolocated and calibrated, provides surface slope measurements (based on the pixel brightness under known lighting conditions) every approximately 1.1 km. The limitations of the technique are noisiness in the image data, small variations in the albedo of the snow surface, and the integration technique used to create an elevation field from the image-derived slopes. Our study applied the technique to several ice sheet areas having some elevation data; Greenland, the Amery Ice Shelf, the Institute Ice Stream, and the Siple Coast. For the latter, the input data set was laser-altimetry data collected under NSF's SOAR Facility (Support Office for Aerogeophysical Research) over the onset area of the Siple Coast. Over the course of the grant, the technique was greatly improved and modified, significantly improving accuracy and reducing noise from the images. Several publications resulted from the work, and a follow-on proposal to NASA has been submitted to apply the same method to MODIS data using ICESat and other elevation input information. This follow-on grant will explore two applications that are facilitated by the improved surface morphology characterizations of the ice sheets: accumulation and temperature variations near small undulations in the ice.
Controls on alluvial fans morphology
NASA Astrophysics Data System (ADS)
Delorme, P.; Devauchelle, O.; Lajeunesse, E.; Barrier, L.; Métivier, F.
2017-12-01
Using laboratory experiments, we investigate the influence of water and sediment discharges on the morphology of an alluvial fan. In our flume, a single-thread laminar river deposits corundum sand (0.4 mm) into a conical fan. We record the fan progradation with top-view images, and measure its shape using the deformation of a Moiré pattern. The fan remains virtually self-affine as it grows, with a nearly constant slope. We find that, when the sediment discharge is small, the longitudinal slope of the fan remains close to that of a river at the threshold for sediment transport. A higher sediment discharge causes the fan's slope to depart from the threshold value. Due to the downstream decrease of the sediment load, this slope gets shallower towards the fan's toe. This mechanism generates a slightly concave fan profile. This suggests that the proximal slope of an alluvial fan could be a proxy for the sediment flux that feeds the fan.Finally, we discuss the applicability of these results to natural systems.
Stebbings, J H; Fogleman, D G
1979-07-01
Pulmonary function test results on 224 parochial schoolchildren collected during and after the Pittsburgh air pollution episode of November 1975 were reanalyzed to determine whether a small subgroup of susceptible children could be defined. Individual regressions of three-quarter second forced expiratory volumes (FEV.75) and forced vital capacities (FVC) on time over the six-day study period were calculated, and the distributions of individual slopes for the four exposed and two control schools were compared. Excesses of strong upward trends in the exposed areas would suggest effects of suspended particulate air pollution by indicating significant improvement following the episode. A highly statistically significant excess of strong upward trends in the FVC among exposed students was observed, and was consistent by sex and by school within sex. Approximately 10--15% of the students appear susceptible to an average impairment of about 20% of the FVC. The findings are limited by the small number of subjects with strong post-episode upward trends in the FVC, and by lack of validation by replication of the study design, but do suggest that episode levels of suspended particulates induce lung damage, and that this may occur only in a small susceptible subgroup. Children with low baseline pulmonary function values, histories of asthma, or with acute respiratory symptoms immediately following the episode were not found to be especially susceptible to these effects of suspended particulates.
Modified rockfall catch fence Mayflower Creek - Detroit Dam : final report.
DOT National Transportation Integrated Search
1988-08-08
The experimental features project is located on the North Santiam Highway (#162) between Mayflower Creek and Detroit Dam, approximately 40 miles east of Salem. Here access is limited and the slope is nonuniform. To deal with the constant problem of f...
Modified rockfall catch fence Mayflower Creek - Detroit Dam : interim Report.
DOT National Transportation Integrated Search
1986-07-01
This experimental features project is located on the North Santiam Highway (#162) between Mayflower Creek and Detroit Dam, approximately 40 miles east of Salem. Here access is limited and the slope is non-uniform. To deal with the problem of falling ...
Seasonal flows on warm Martian slopes
McEwen, A.S.; Ojha, L.; Dundas, C.M.; Mattson, S.S.; Byrne, S.; Wray, J.J.; Cull, S.C.; Murchie, S.L.; Thomas, N.; Gulick, V.C.
2011-01-01
Water probably flowed across ancient Mars, but whether it ever exists as a liquid on the surface today remains debatable. Recurring slope lineae (RSL) are narrow (0.5 to 5 meters), relatively dark markings on steep (25?? to 40??) slopes; repeat images from the Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment show them to appear and incrementally grow during warm seasons and fade in cold seasons. They extend downslope from bedrock outcrops, often associated with small channels, and hundreds of them form in some rare locations. RSL appear and lengthen in the late southern spring and summer from 48??S to 32??S latitudes favoring equator-facing slopes, which are times and places with peak surface temperatures from ???250 to 300 kelvin. Liquid brines near the surface might explain this activity, but the exact mechanism and source of water are not understood.
NASA Astrophysics Data System (ADS)
Chiyonobu, Shun; Yamamoto, Yuzuru; Saito, Saneatsu
2017-07-01
The geological structure and calcareous nannofossil biostratigraphy of the Middle to Late Miocene trench-slope succession in the southern Boso Peninsula, central Japan, were examined to obtain chronological constraints on the accretion and formation of the trench-slope architecture. As a result, trench-slope cover sediments (Kinone and Amatsu Formations) are clearly distinguishable from the Early Miocene Hota accretionary complex (Hota Group). The Hota accretionary complex was deposited below the carbonate compensation depth (CCD) and was affected by intense shearing, forming an east-west trending and south-verging fold and thrust belt. In contrast, the trench-slope cover sediments basically have a homoclinal dip, except at the northern rim where they are bounded by fault contact. They contain many species of calcareous nannofossils and foraminifers, which are indicative of their depositional environment above the CCD, and they show shallowing-upward sedimentary structures. Biostratigraphy revealed that the depositional age of the trench-slope sediments is ca. 15-5.5 Ma, suggesting that there is an approximately 2 myr hiatus beween the Miura Group and the underlying accretionary prism. Based on these results, the age of accretion of the Hota Group is inferred to be between ca. 17-15 Ma, and the group is covered by trench-slope sediments overlain on it after ca. 15 Ma. The timing of accretion and the age of the trench-slope basin tend to be younger southward of the Boso Peninsula. The accretionary system of the Boso Peninsula apparently developed in two stages, in the Middle Miocene and in the Late Miocene to Pliocene.
Li, Rui; Jiang, Chang-sheng; Hao, Qing-ju
2015-09-01
Four land utilization patterns were selected for this study in Jinyun mountain, including subtropical evergreen broad-leaved forest (abbreviation: forest), sloping farmland, orchard and abandoned land. Soil samples were taken every 10 cm in the depth of 60 cm soil and proportions of large macroaggregates (> 2 mm), small macroaggregates (0. 25-2 mm), microaggregates (0. 053 - 0. 25 mm) and silt + clay (<0. 053 mm) were obtained by wet sieving method to measure the content of organic carbon and labile organic carbon in each aggregate fraction and analyze impacts of land uses on organic carbon and labile organic carbon of soil aggregates. LOC content of four soil aggregates were significantly reduced with the increase of soil depth; in layers of 0-60 cm soil depth, our results showed that LOC contents of forest and abandoned land were higher than orchard and sloping farmland. Reserves of labile organic carbon were estimated by the same soil quality, it revealed that forest (3. 68 Mg.hm-2) > abandoned land (1. 73 Mg.hm-2) > orchard (1. 43 Mg.hm-2) >sloping farmland (0.54 Mg.hm-2) in large macroaggregates, abandoned land (7.77, 5. 01 Mg.hm-2) > forest (4. 96, 2.71 Mg.hm-2) > orchard (3. 33, 21. 10 Mg.hm-2) > sloping farmland (1. 68, 1. 35 Mg.hm-2) in small macroaggregates and microaggregates, and abandoned land(4. 32 Mg.hm-2) > orchard(4. 00 Mg.hm-2) > forest(3. 22 Mg.hm-2) > sloping farmland (2.37 Mg.hm-2) in silt + clay, forest and abandoned land were higher than orchard and sloping farmland in other three soil aggregates except silt + clay. It was observed that the level of organic carbon and labile organic carbon were decreased when bringing forest under cultivation to orchard or farmland, and augments on organic carbon and labile organic carbon were found after exchanging farmland to abandoned land. The most reverses of forest and abandoned land emerged in small macroaggregates, orchard and sloping farmland were in microaggregates. That was, during the transformations of land utilization pattern, soil aggregates with bigger size were easier to accumulate or lose labile organic carbon. Allocation ratios of labile organic carbon to soil organic carbon under four land uses were decreased as the soil depth added. Allocation ratios of orchard and sloping farmland were a bit higher than forest and abandoned land, which indicated that organic carbon of forest and abandoned land were more steady and available for soil as a carbon sink, meanwhile, the forest and abandoned land would avoid more CO2 diffusing to the atmosphere from the decomposition of soil organic carbon.
Application of soil nails to the stability of mine waste slopes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tant, C.R.; Drumm, E.C.; Mauldon, M.
1996-12-31
The traditional soil nailed structure incorporates grouted or driven nails, and a wire mesh reinforced shotcrete facing to increase the stability of a slope or wall. This paper describes the construction and monitoring of a full-scale demonstration of nailing to stabilize coal mine spoil. The purpose of the investigation is to evaluate the performance of nailed slopes in mine spoil using methods proven for the stabilization of soil walls and slopes. The site in eastern Tennessee is a 12 meter high slope of dumped fill, composed of weathered shale chips, sandstone, and coal. The slope was formed by {open_quotes}pre-regulatory{close_quotes} contourmore » surface mining operations and served as a work bench during mining. The material varies in size from silt to boulders, and has a small amount of cohesion. Portions of the mine spoil slope have experienced slope instability and erosion which have hampered subsequent reclamation activities. Three different nail spacings and three different nail lengths were used in the design. The 12 meter high structure is instrumented to permit measurement of nail strain, and vertical inclinometer readings and survey measurements will be used for the detection of ground movement. The results of this study will aid in the development of design recommendations and construction guidelines for the application of soil nailing to stabilize mine spoil.« less
Dem Generation with WORLDVIEW-2 Images
NASA Astrophysics Data System (ADS)
Büyüksalih, G.; Baz, I.; Alkan, M.; Jacobsen, K.
2012-07-01
For planning purposes 42 km coast line of the Black Sea, starting at the Bosporus going in West direction, with a width of approximately 5 km, was imaged by WorldView-2. Three stereo scenes have been oriented at first by 3D-affine transformation and later by bias corrected RPC solution. The result is nearly the same, but it is limited by identification of the control points in the images. Nevertheless after blunder elimination by data snooping root mean square discrepancies below 1 pixel have been reached. The root mean square discrepancy at control point height reached 0.5 m up to 1.3 m with a base to height relation between 1:1.26 and 1:1.80. Digital Surface models (DSM) with 4 m spacing have been generated by least squares matching with region growing, supported by image pyramids. A higher percentage of the mountainous area is covered by forest, requiring the approximation based on image pyramids. In the forest area the approximation just by region growing leads to larger gaps in the DSM. Caused by the good image quality of WorldView-2 the correlation coefficients reached by least squares matching are high and even in most forest areas a satisfying density of accepted points was reached. Two stereo models have an overlapping area of 1.6 km times 6.7 km allowing an accuracy evaluation. Small, but nevertheless significant differences in scene orientation have been eliminated by least squares shift of both overlapping height models to each other. The root mean square differences of both independent DSM are 1.06m or as a function of terrain inclination 0.74 m + 0.55 m tangent (slope). The terrain inclination in the average is 7° with 12% exceeding 17°. The frequency distribution of height discrepancies is not far away from normal distribution, but as usual, larger discrepancies are more often available as corresponding to normal distribution. This also can be seen by the normalized medium absolute deviation (NMAS) related to 68% probability level of 0.83m being significant smaller as the root mean square differences. Nevertheless the results indicate a standard deviation of the single height models of 0.75 m or 0.52 m + 0.39* tangent (slope), corresponding to approximately 0.6 pixels for the x-parallax in flat terrain, being very satisfying for the available land cover. An interpolation over 10 m enlarged the root mean square differences of both height models nearly by 50%.
NASA Astrophysics Data System (ADS)
Hill, J. C.; Brothers, D. S.; Ten Brink, U. S.; Andrews, B. D.
2017-12-01
The U.S. Atlantic margin encompasses a wide variety of slope failure processes, ranging from small canyon-confined failures on the upper slope to large, open slope landslides originating in deeper water. Here we used a suite of high-resolution multibeam bathymetry and detailed multichannel seismic data coverage to investigate the relationship between modern seafloor morphology, pre-existing stratigraphy and sediment accumulation patterns. We suggest that a combination of sediment supply and antecedent margin physiography, whereby variations in margin evolution during the Miocene have influenced the modern seafloor morphology, controls both the location of slope sediment accumulation and the style of slope failure. Oversteepened margins with angular shelf breaks and steep upper slopes, referred to as oblique margins, are characterized by downslope mass transport and densely-spaced canyon formation. These margins are most likely the locus of canyon-confined failures and smaller lower slope fan-apron failures (e.g., much of the Mid-Atlantic). Sigmoidal margins with prograded slopes, a rounded shelf edge, and a low gradient slope morphology can support significant sediment accumulation across a broad area, with limited canyon development. These margins are often associated with high sediment supply and are prone to large, upper slope slab-style failures (e.g., the Hudson Apron, southwestern New England, the Currituck and Cape Fear Slide complexes). Areas with morphologies in between these two end members are characterized by limited shelf-edge accommodation space and large-scale lower slope accumulation and onlap, representing transitional stages of equilibrium slope adjustment. Large failures along these intermediate-type margins tend to develop lower on the slope where thick wedges of onlapping sediment are found (e.g., around Washington Canyon, Cape Lookout and southeastern New England). As antecedent topography and sediment loading appear to play an important role in determining the spatial distribution of submarine slope failures, other key processes that contribute to the development of overpressure (e.g., sediment compaction and fluid migration) should be examined with this in mind to improve our understanding of the geologic factors that precondition slopes for failure.
Archaeological Mitigation of AR-102.
1978-07-16
obsidian is especially noticeable. Roxey and Tully noted three discrete lithic areas on this slope adjacent to the fence (see map). The first area was...Polvadera Peak obsidian . These I I I 1 I I II Ii -6- [I points were probably lost during hunts on the slope. Several bifacial knives with heavy...of Polvadera Peak obsidian , the only concentration of this material observed in the survey area. There are small flakes, shatter and similar debitage
Buse, Jörn; Fassbender, Samuel; Entling, Martin H; Pavlicek, Tomas
2015-01-01
Large valleys with opposing slopes may act as a model system with which the effects of strong climatic gradients on biodiversity can be evaluated. The advantage of such comparisons is that the impact of a change of climate can be studied on the same species pool without the need to consider regional differences. The aim of this study was to compare the assemblage of saproxylic beetles on such opposing slopes at Lower Nahal Oren, Mt. Carmel, Israel (also known as "Evolution Canyon") with a 200-800% higher solar radiation on the south-facing (SFS) compared to the north-facing slope (NFS). We tested specific hypotheses of species richness patterns, assemblage structure, and body size resulting from interslope differences in microclimate. Fifteen flight-interception traps per slope were distributed over three elevation levels ranging from 50 to 100 m a.s.l. Richness of saproxylic beetles was on average 34% higher on the SFS compared with the NFS, with no detected influence of elevation levels. Both assemblage structure and average body size were determined by slope aspect, with more small-bodied beetles found on the SFS. Both the increase in species richness and the higher prevalence of small species on the SFS reflect ecological rules present on larger spatial grain (species-energy hypothesis and community body size shift hypothesis), and both can be explained by the metabolic theory of ecology. This is encouraging for the complementary use of micro- and macroclimatic gradients to study impacts of climate warming on biodiversity.
NASA Astrophysics Data System (ADS)
Campos C., Adolfo
2010-08-01
This study addressed the effects of land use and slope position on soil inorganic nitrogen and was conducted in small watersheds. The study covered three land use types: tropical cloud forest, grassland, and coffee crop. To conduct this research, typical slope small watersheds were chosen in each land use type. Slopes were divided into three positions: shoulder, backslope, and footslope. At the center of each slope position, soil sampling was carried out. Soil inorganic nitrogen was measured monthly during a period of 14 months (July 2005-August 2006) with 11 observations. Significant differences in soil NH4 +-N and NO3 --N content were detected for both land use and sampling date effects, as well as for interactions. A significant slope position-by-sampling date interaction was found only in coffee crop for NO3 --N content. In tropical cloud forest and grassland, high soil NH4 +-N and low NO3 --N content were recorded, while soil NO3 --N content was high in coffee crop. Low NO3 --N contents could mean a substantial microbial assimilation of NO3 --N, constituting an important mechanism for nitrogen retention. Across the entire land use set, the relationship between soil temperature and soil inorganic N concentration was described by an exponential decay function ( N = 33 + 2459exp-0.23T, R 2 = 0.44, P < 0.0001). This study also showed that together, soil temperature and gravimetric soil water content explained more variation in soil inorganic N concentration than gravimetric soil water content alone.
Montgomery, D.R.; Schmidt, K.M.; Dietrich, W.E.; McKean, J.
2009-01-01
The middle of a hillslope hollow in the Oregon Coast Range failed and mobilized as a debris flow during heavy rainfall in November 1996. Automated pressure transducers recorded high spatial variability of pore water pressure within the area that mobilized as a debris flow, which initiated where local upward flow from bedrock developed into overlying colluvium. Postfailure observations of the bedrock surface exposed in the debris flow scar reveal a strong spatial correspondence between elevated piezometric response and water discharging from bedrock fractures. Measurements of apparent root cohesion on the basal (Cb) and lateral (Cl) scarp demonstrate substantial local variability, with areally weighted values of Cb = 0.1 and Cl = 4.6 kPa. Using measured soil properties and basal root strength, the widely used infinite slope model, employed assuming slope parallel groundwater flow, provides a poor prediction of hydrologie conditions at failure. In contrast, a model including lateral root strength (but neglecting lateral frictional strength) gave a predicted critical value of relative soil saturation that fell within the range defined by the arithmetic and geometric mean values at the time of failure. The 3-D slope stability model CLARA-W, used with locally observed pore water pressure, predicted small areas with lower factors of safety within the overall slide mass at sites consistent with field observations of where the failure initiated. This highly variable and localized nature of small areas of high pore pressure that can trigger slope failure means, however, that substantial uncertainty appears inevitable for estimating hydrologie conditions within incipient debris flows under natural conditions. Copyright 2009 by the American Geophysical Union.
Monitoring winter flow conditions on the Ivishak River, Alaska : final report.
DOT National Transportation Integrated Search
2017-09-01
The Sagavanirktok River, a braided river on the Alaska North Slope, flows adjacent to the trans-Alaska pipeline for approximately 100 miles south of Prudhoe Bay. During an unprecedented flooding event in mid-May 2015, the pipeline was exposed in an a...
Knapp, E.E.; Keeley, J.E.
2006-01-01
Structural heterogeneity in forests of the Sierra Nevada was historically produced through variation in fire regimes and local environmental factors. The amount of heterogeneity that prescription burning can achieve might now be more limited owing to high fuel loads and increased fuel continuity. Topography, woody fuel loading, and vegetative composition were quantified in plots within replicated early and late season burn units. Two indices of fire severity were evaluated in the same plots after the burns. Scorch height ranged from 2.8 to 25.4 m in early season plots and 3.1 to 38.5 m in late season plots, whereas percentage of ground surface burned ranged from 24 to 96% in early season plots and from 47 to 100% in late season plots. Scorch height was greatest in areas with steeper slopes, higher basal area of live trees, high percentage of basal area composed of pine, and more small woody fuel. Percentage of area burned was greatest in areas with less bare ground and rock cover (more fuel continuity), steeper slopes, and units burned in the fall (lower fuel moisture). Thus topographic and biotic factors still contribute to the abundant heterogeneity in fire severity with prescribed burning, even under the current high fuel loading conditions. Burning areas with high fuel loads in early season when fuels are moister may lead to patterns of heterogeneity in fire effects that more closely approximate the expected patchiness of historical fires.
Numerical Simulation of Turbulent Combustion Using Vortex Methods
1988-09-27
laminar burning velocity times the flame length measured along the line of maximum reaction rate. Following the burning of the eddy core, the strain...is approximately the same as the flame length at t - 0. In the second stage, and as the eddy starts to roll up, the flame front forms a fold within the...Rp, which is the slope of the curve in Fig. 9, can be approximated by the product of the flame length times the average burning velocity along the
Modeling crater topography and albedo from monoscopic Viking orbiter images 1. Methodology.
Davis, P.A.; Soderblom, L.A.
1984-01-01
A new photoclinometric technique for extraction of topographic data from single planetary images is presented that overcomes many previous limitations. The procedure fully compensates for oblique viewing geometry prevalent in spacecraft images. Albedo variations have been overcome in the topographic solution by simultaneously utilizing brightness data from a pair of profiles. Test results indicate an accuracy and precision of approximately 2o for slopes of typical bowl-shaped craters, which translates to approximately 5% for depths.-from Authors
Fibrich, Martin; Jelínková, Helena; Sulc, Jan; Nejezchleb, Karel; Skoda, Václav
2010-08-01
A cw Pr:YAlO(3) microchip-laser operation in the near-IR spectral region is reported. A microchip resonator was formed by dielectric mirrors directly deposited on the Pr:YAlO(3) crystal surfaces. For active medium pumping, a GaN laser diode providing up to 1W of output power at approximately 448 nm was used. 139mW of laser radiation at 747nm wavelength has been extracted from the microchip-laser system. Slope efficiency related to the incident pumping power was approximately 25%.
NASA Technical Reports Server (NTRS)
Gopalswamy, Nat; Akiyama, Sachiko; Yashiro, Seiji; Xie, Hong; Makela, Pertti; Michalek, Grzegorz
2014-01-01
The familiar correlation between the speed and angular width of coronal mass ejections (CMEs) is also found in solar cycle 24, but the regression line has a larger slope: for a given CME speed, cycle 24 CMEs are significantly wider than those in cycle 23. The slope change indicates a significant change in the physical state of the heliosphere, due to the weak solar activity. The total pressure in the heliosphere (magnetic + plasma) is reduced by approximately 40%, which leads to the anomalous expansion of CMEs explaining the increased slope. The excess CME expansion contributes to the diminished effectiveness of CMEs in producing magnetic storms during cycle 24, both because the magnetic content of the CMEs is diluted and also because of the weaker ambient fields. The reduced magnetic field in the heliosphere may contribute to the lack of solar energetic particles accelerated to very high energies during this cycle.
NASA Astrophysics Data System (ADS)
Patin, J.; Ribolzi, O.; Mugler, C.; Valentin, C.; Mouche, E.
2010-12-01
After years of traditional slash and burn cultures, the Houay Pano catchment is now under high land pressures due to population resettling and environmental preservation policies. This evolution leads to rapid land-use changes in the uplands, such as fallow time reductions and growing of cash crops as teaks or banana. The catchment is located in the Luang Prabang province, in the north of Lao PDR and was selected in late 1998 as a benchmark site for the Managing Soil Erosion Consortium (MSEC). It is a small (60ha) agricultural catchment representative of the rural mountainous South East Asia : it exhibits steep cultivated slopes (from 2% to more than 110%) under a wet-dry monsoon climate. To understand the partition between runoff and infiltration, data from runoff on 20 plot experiments (1m2) under natural rainfall and with representative slopes and land uses is collected from 2003 to 2009. A simulated rainfall experiment was conducted in 2002 on bare soil plots (1m2) with different antecedent cultures. We investigate the role of crust, slope and land-use on runoff production at different scales. A model accounting for small scale variability is applied to compute the time and space variations of soil infiltrability at the plot scale (1m2) and sub-catchment scale (0.6ha). From the hypothesis of exponentially distributed infiltrabilities at the centimeter scale, we found that infiltration is log-normaly distributed over time for a given land use. The median infiltrability vary from 10mm/h under teak cultures to 150mm/h on plots with fallow. Variations along a year are tribute to many meteorological and human factors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Leary, D.W.
1989-03-01
The US Geological Survey's remote sensing instrument for regional imaging of the deep sea floor (> 400 m water depth) is the GLORIA (Geologic Long-Range Inclined Asdic) sidescan sonar system, designed and operated by the British Institute of Oceanographic Sciences. A 30-sec sweep rate provides for a swath width of approximately 45 km, depending on water depth. The return signal is digitally recorded as 8 bit data to provide a cross-range pixel dimension of 50 m. Postcruise image processing is carried out by using USGS software. Processing includes precision water-column removal, geometric and radiometric corrections, and contrast enhancement. Mosaicking includesmore » map grid fitting, concatenation, and tone matching. Seismic reflection profiles, acquired along track during the survey, are image correlative and provide a subsurface dimension unique to marine remote sensing. Generally GLORIA image interpretation is based on brightness variations which are largely a function of (1) surface roughness at a scale of approximately 1 m and (2) slope changes of more than about 4/degrees/ over distances of at least 50 m. Broader, low-frequency changes in slope that cannot be detected from the Gloria data can be determined from seismic profiles. Digital files of bathymetry derived from echo-sounder data can be merged with GLORIA image data to create relief models of the sea floor for geomorphic interpretation of regional slope effects.« less
Rocks Exposed on Slope in Aram Chaos
NASA Technical Reports Server (NTRS)
2003-01-01
MGS MOC Release No. MOC2-550, 20 November 2003
This spectacular vista of sedimentary rocks outcropping on a slope in Aram Chaos was acquired by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) on 14 November 2003. Dark piles of coarse talus have come down the slopes as these materials continue to erode over time. Note that there are no small meteor impact craters in this image, indicating that erosion of these outcrops has been recent, if not on-going. This area is located near 2.8oS, 20.5oW. The 200 meter scale bar is about 656 feet across. Sunlight illuminates the scene from the lower right.NASA Astrophysics Data System (ADS)
Steger, Stefan; Schmaltz, Elmar; Glade, Thomas
2017-04-01
Empirical landslide susceptibility maps spatially depict the areas where future slope failures are likely due to specific environmental conditions. The underlying statistical models are based on the assumption that future landsliding is likely to occur under similar circumstances (e.g. topographic conditions, lithology, land cover) as past slope failures. This principle is operationalized by applying a supervised classification approach (e.g. a regression model with a binary response: landslide presence/absence) that enables discrimination between conditions that favored past landslide occurrences and the circumstances typical for landslide absences. The derived empirical relation is then transferred to each spatial unit of an area. Literature reveals that the specific topographic conditions representative for landslide presences are frequently extracted from derivatives of digital terrain models at locations were past landslides were mapped. The underlying morphology-based landslide identification becomes possible due to the fact that the topography at a specific locality usually changes after landslide occurrence (e.g. hummocky surface, concave and steep scarp). In a strict sense, this implies that topographic predictors used within conventional statistical landslide susceptibility models relate to post-failure topographic conditions - and not to the required pre-failure situation. This study examines the assumption that models calibrated on the basis of post-failure topographies may not be appropriate to predict future landslide locations, because (i) post-failure and pre-failure topographic conditions may differ and (ii) areas were future landslides will occur do not yet exhibit such a distinct post-failure morphology. The study was conducted for an area located in the Walgau region (Vorarlberg, western Austria), where a detailed inventory consisting of shallow landslides was available. The methodology comprised multiple systematic comparisons of models generated on the basis of post-failure conditions (i.e. the standard approach) with models based on an approximated pre-failure topography. Pre-failure topography was approximated by (i) erasing the area of mapped landslide polygons within a digital terrain model and (ii) filling these "empty" areas by interpolating elevation points located outside the mapped landslides. Landslide presence information was extracted from the respective landslide scarp locations while an equal number of randomly sampled points represented landslide absences. After an initial exploratory data analysis, mixed-effects logistic regression was applied to model landslide susceptibility on the basis of two predictor sets (post-failure versus pre-failure predictors). Furthermore, all analyses were separately conducted for five different modelling resolutions to elaborate the suspicion that the degree of generalization of topographic parameters may as well play a role on how the respective models may differ. Model evaluation was conducted by means of multiple procedures (i.e. odds ratios, k-fold cross validation, permutation-based variable importance, difference maps of predictions). The results revealed that models based on highest resolutions (e.g. 1 m, 2.5 m) and post-failure topography performed best from a purely quantitative perspective. A confrontation of models (post-failure versus pre-failure based models) based on an identical modelling resolution exposed that validation results, modelled relationships as well as the prediction pattern tended to converge with a decreasing raster resolution. Based on the results, we concluded that an approximation of pre-failure topography does not significantly contribute to improved landslide susceptibility models in the case (i) the underlying inventory consists of small landslide features and (ii) the models are based on coarse raster resolutions (e.g. 25 m). However, in the case modelling with high raster resolutions is envisaged (e.g. 1 m, 2.5 m) or the inventory mainly consists of larger events, a reconstruction of pre-failure conditions might be highly expedient, even though conventional validation results might indicate an opposite tendency. Finally, we recommend to consider that topographic predictors highly useful to detect past slope movements (e.g. roughness) are not necessarily valuable to predict future slope instabilities.
Morphological characteristics of overdeepenings in high-mountain glacier beds
NASA Astrophysics Data System (ADS)
Haeberli, Wilfried; Cochachin, Alejo; Fischer, Urs; Giráldez, Claudia; Linsbauer, Andreas; Salazar, Cesar
2014-05-01
Overdeepenings, i.e. closed topographic depressions with adverse slopes in the flow direction, are characteristic for glacier beds and glacially sculpted landscapes. Besides their importance as geomorphological landforms, groundwater bodies and sedimentary archives, they are of increasing interest in relation to climate-induced lake formation in de-glaciating landscapes and to depth erosion under ice age conditions in connection with the long-term safety of radioactive waste repositories in some mid-latitude countries. Quantitative predictions of their shape, distribution and conditions of occurrence, however, remain difficult. One major problem thereby relates to the still unsatisfactory treatment in glacier erosion theory of sediment evacuation at glacier beds, especially by subglacial meltwater. An alternative way of searching for realistic/empirical quantitative estimates is, therefore, to analyse the geometry of well-documented overdeepenings. The present study attempts to do this by combining statistical analyses of (a) detailed bathymetries from recently exposed lakes in the Peruvian Andes, (b) numerous bed overdeepenigs below still existing glaciers of the Swiss Alps and the Himalaya-Karakoram region modelled with a robust shear stress approximation linking surface slope to ice thickness at high resolution, and (c, for comparison) reconstructed overdeepenings produced by ice age glaciers in the Swiss Plateau based on numerous drillings and geophysical soundings. The sample of (a) has the advantage that geometries are exactly measured and only subject to young/small sedimentation effects. Sample (b) allows for a comparison with a modern model calculation and with known glacier characteristics. Sample (c) may provide some insights into the question how safely results from high mountain topography can be transferred to sites with markedly different topographic, climatic and glaciological controls (cold-arid lowland). Where possible, mean and maximum values of the parameters surface area, length, width, depth, volume, forward/adverse slope and their statistical interrelations are determined with their corresponding uncertainty ranges. For sample (b) basal shear stress (as used in the model), thermal ice types, glacier size/type, relation to flow characteristics (position along flow, confined-unconfined, confluence-diffluence-channel-forefield) are also included. As a principal problem thereby remains the unsolved question of when exactly the overdeepenings had formed (present-day conditions, Holocene maximum stages, ice ages?). Some results nevertheless remain safe. The most striking phenomenon is the high variability of geometries observed with modelled as well as measured forms: small features can, for instance, be deep and large features shallow. Overdeepenings can form under conditions of low to high basal shear stresses at cirque, confluence, channel and terminus positions. Rather than the exact size, locations and general parameter values of overdeepenings from different model runs appear to be robust and comparable. Only weak correlations seem to exist between the investigated geometrical parameters; rather uncertain indications are found of an optimal elongation for maximum depths. Inclinations of adverse slopes do not differ significantly from those of forward slopes and are in most cases far higher than limiting values for floatation within the overdeepenings. Lakes, which fill exposed overdeepenings, can be dammed by huge (lateral/terminal) moraines or may form in polished rock beds but have comparable spreads of geometrical characteristics in both cases.
NASA Astrophysics Data System (ADS)
Dugonjić Jovančević, Sanja; Peranić, Josip; Ružić, Igor; Arbanas, Željko; Kalajžić, Duje; Benac, Čedomir
2016-04-01
Numerous instability phenomena have been recorded in the Rječina River Valley, near the City of Rijeka, in the past 250 years. Large landslides triggered by rainfall and floods, were registered on both sides of the Valley. Landslide inventory in the Valley was established based on recorded historical events and LiDAR imagery. The Rječina River is a typical karstic river 18.7km long, originating from the Gorski Kotar Mountains. The central part of the Valley, belongs to the dominant morphostructural unit that strikes in the northwest-southeast direction along the Rječina River. Karstified limestone rock mass is visible on the top of the slopes, while the flysch rock mass is present on the lower slopes and at the bottom of the Valley. Different types of movements can be distinguished in the area, such as the sliding of slope deposits over the flysch bedrock, rockfalls from limestone cliffs, sliding of huge rocky blocks, and active landslide on the north-eastern slope. The paper presents investigation of the dormant landslide located on the south-western slope of the Valley, which was recorded in 1870 in numerous historical descriptions. Due to intense and long-term rainfall, the landslide was reactivated in 1885, destroying and damaging houses in the eastern part of the Grohovo Village. To predict possible reactivation of the dormant landslide on the south-western side of the Valley, 2D stability back analyses were performed on the basis of landslide features, in order to approximate the position of sliding surface and landslide dimensions. The landslide topography is very steep, and the slope is covered by unstable debris material, so therefore hard to perform any terrestrial geodetic survey. Consumer-grade DJI Phantom 2 Remotely Piloted Aircraft System (RPAS) was used to provide the data about the present slope topography. The landslide 3D point cloud was derived from approximately 200 photographs taken with RPAS, using structure-from-motion (SfM) photogrammetry. Images were processed using the online Autodesk service "ReCap". Ground control points (GCP) collected with Total Station are identified on photorealistic point cloud and used for geo-referencing. Cloud Compare software was used for the point cloud processing. This study compared georeferenced landslide point cloud delivered from images with data acquired from laser scanning. RAPS and SfM application produced high accuracy landslide 3D point cloud, characterized by safe and quick data acquisition. Based on the adopted rock mass strength parameters, obtained from the back analysis, a stability analysis of the present slope situation was performed, and the present stability of the landslide body is determined. The unfavourable conditions and possible triggering factors such as saturation of the slope, caused by heavy rain and earthquake, were included in the analyses what enabled estimation of future landslide hazard and risk.
Physical properties of ambient and laboratory-generated secondary organic aerosol
NASA Astrophysics Data System (ADS)
O'Brien, Rachel E.; Neu, Alexander; Epstein, Scott A.; MacMillan, Amanda C.; Wang, Bingbing; Kelly, Stephen T.; Nizkorodov, Sergey A.; Laskin, Alexander; Moffet, Ryan C.; Gilles, Mary K.
2014-06-01
The size and thickness of organic aerosol particles collected by impaction in five field campaigns were compared to those of laboratory-generated secondary organic aerosols (SOA). Scanning transmission X-ray microscopy was used to measure the total carbon absorbance (TCA) by individual particles as a function of their projection areas on the substrate. Particles with higher viscosity/surface tension can be identified by a steeper slope on a plot of TCA versus size because they flatten less upon impaction. The slopes of the ambient data are statistically similar indicating a small range of average viscosities/surface tensions across five field campaigns. Steeper slopes were observed for the plots corresponding to ambient particles, while smaller slopes were indicative of the laboratory-generated SOA. This comparison indicates that ambient organic particles have higher viscosities/surface tensions than those typically generated in laboratory SOA studies.
Chen, Yulong; Irfan, Muhammad; Uchimura, Taro; Zhang, Ke
2018-03-27
Rainfall-induced landslides are one of the most widespread slope instability phenomena posing a serious risk to public safety worldwide so that their temporal prediction is of great interest to establish effective warning systems. The objective of this study is to determine the effectiveness of elastic wave velocities in the surface layer of the slope in monitoring, prediction and early warning of landslide. The small-scale fixed and varied, and large-scale slope model tests were conducted. Analysis of the results has established that the elastic wave velocity continuously decreases in response of moisture content and deformation and there was a distinct surge in the decrease rate of wave velocity when failure was initiated. Based on the preliminary results of this analysis, the method using the change in elastic wave velocity proves superior for landslide early warning and suggests that a warning be issued at switch of wave velocity decrease rate.
Seasonal flows on warm Martian slopes
McEwen, Alfred S.; Ojha, Lujendra; Dundas, Colin M.; Mattson, Sarah S.; Byrne, Shane; Wray, James J.; Cull, Selby C.; Murchie, Scott L.; Thomas, Nicolas; Gulick, Virginia C.
2011-01-01
Water probably flowed across ancient Mars, but whether it ever exists as a liquid on the surface today remains debatable. Recurring slope lineae (RSL) are narrow (0.5 to 5 meters), relatively dark markings on steep (25° to 40°) slopes; repeat images from the Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment show them to appear and incrementally grow during warm seasons and fade in cold seasons. They extend downslope from bedrock outcrops, often associated with small channels, and hundreds of them form in some rare locations. RSL appear and lengthen in the late southern spring and summer from 48°S to 32°S latitudes favoring equator-facing slopes, which are times and places with peak surface temperatures from ~250 to 300 kelvin. Liquid brines near the surface might explain this activity, but the exact mechanism and source of water are not understood.
Seasonal flows on warm Martian slopes.
McEwen, Alfred S; Ojha, Lujendra; Dundas, Colin M; Mattson, Sarah S; Byrne, Shane; Wray, James J; Cull, Selby C; Murchie, Scott L; Thomas, Nicolas; Gulick, Virginia C
2011-08-05
Water probably flowed across ancient Mars, but whether it ever exists as a liquid on the surface today remains debatable. Recurring slope lineae (RSL) are narrow (0.5 to 5 meters), relatively dark markings on steep (25° to 40°) slopes; repeat images from the Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment show them to appear and incrementally grow during warm seasons and fade in cold seasons. They extend downslope from bedrock outcrops, often associated with small channels, and hundreds of them form in some rare locations. RSL appear and lengthen in the late southern spring and summer from 48°S to 32°S latitudes favoring equator-facing slopes, which are times and places with peak surface temperatures from ~250 to 300 kelvin. Liquid brines near the surface might explain this activity, but the exact mechanism and source of water are not understood.
Distribution and features of landslides induced by the 2008 Wengchuan Earthquake, Sichuan, China
NASA Astrophysics Data System (ADS)
Chigira, M.; Xiyong, W.; Inokuchi, T.; Gonghui, W.
2009-04-01
2008 Sichuan earthquake with a magnitude of Mw 7.9 induced numerous mass movements around the fault surface ruptures of which maximum separations we observed were 3.6 m vertical and 1.5 m horizontal (right lateral). The affected area was mountainous areas with elevations from 1000 m to 4500 m on the west of the Sichuan Basin. The NE-trending Longmenshan fault zone runs along the boundary between the mountains on the west and the Sichuan basin (He and Tsukuda, 2003), of which Yinghsiuwan-Beichuan fault was the main fault that generated the 2008 earthquake (Xu, 2008). The basement rocks of the mountainous areas range from Precambrian to Cretaceous in age. They are basaltic rocks, granite, phyllite, dolostone, limestone, alternating beds of sandstone and shale, etc. There were several types of landslides ranging from small, shallow rockslide, rockfall, debris slide, deep rockslide, and debris flows. Shallow rockslide, rock fall, and debris slide were most common and occurred on convex slopes or ridge tops. When we approached the epicentral area, first appearing landslides were of this type and the most conspicuous was a failure of isolated ridge-tops, where earthquake shaking would be amplified. As for rock types, slopes of granitic rocks, hornfels, and carbonate rocks failed in wide areas to the most. They are generally hard and their fragments apparently collided and repelled to each other and detached from the slopes. Alternating beds of sandstone and mudstone failed on many slopes near the fault ruptures, including Yinghsiuwan near the epicenter. Many rockfalls occurred on cliffs, which had taluses on their feet. The fallen rocks tumbled down and mostly stopped within the talus surfaces, which is quite reasonable because taluses generally develop by this kind of processes. Many rockslides occurred on slopes of carbonate rocks, in which dolostone or dolomitic limestone prevails. Deep-seated rockslide occurred on outfacing slopes and shallow rockslide and rockfall occurred on infacing slopes. Infacing slopes generally are steeper than outfacing slopes and hence surface rocks on infacing slopes tend to be loosened by gravity. Detachment surfaces of carbonate rocks are generally not smooth surfaces but are rough surfaces with dimple-like depressions, which are made by dissolution of these rocks. This feature is one of the most important causes to induce landslide in carbonate rocks. Many gravitational deformations were observed on phyllite slopes. Landslides on the west of Beichuan city is probably of weathered phyllite, which had been preceded by gravitational deformation beforehand. Taochishan landslide in Beichuan occurred on probable outfacing slope of phyllite. The Formosat II images on Google earth indicated that this landslide was also preceded by gravitational deformation, which appeared as spur-crossing depressions with upslope-convex traces on plan. Satellite images indicated that some landslides had long lobate forms, suggesting that they were flow. One of them was Shechadientsu landslide 34 km northeast of Dujiangyan, occurring across the probable earthquake fault rupture. It was 1.5 km long with a maximum width of 250 m and an apparent friction angle of 22°. The top of this landslide area was a steep cliff of Precambrian granite, which failed to go down a small valley. The volume of the slope failure was estimated much less than the volume of the deposit. The small valley had sporadic patches of bedrock consisting of alternating beds of sandstone and mudstone of Triassic in age. The bedrock was covered by bluish grey, clayey, water-saturated debris, which was not disturbed and in turn covered by water-saturated brownish debris with rubbles. The landslide deposits had wrinkles on the surface and streaks of same color rock fragments. In addition, cross section near the distal part had clearly defined reverse grading, in which larger rubbles with a maximum diameter of 5 m concentrated at the surface part. These characteristics strongly suggest that valley-fill sediments mobilized by the earthquake and flowed down the valley, getting higher at the outer side of the valley bent. The largest landslide with an estimated volume of 1 billion m3 occurred on an outfacing carbonate rock slope, which had been preceded by gravitational deformation appearing as a ridge-top depression. The second largest one occurred on a smooth outfacing slope that had been undercut.
What Is a Hill? An Analysis of the Meanings of Generic Topographic Terms
1985-08-01
to describe the di,.ferent characters of forms. FLAT: An area or surface with gantle, non-varying slope, that is highly platykurtic but not...Slo;e Change Index value of zero. ROLLING: A surface without elevated or Inverted forms, with platykurtic slo a Slope Ctange Index value of zero and...and contour planes of similar extent. POCKMARKEC (pitted): A surface that has within its contour repeated, small, circular or elliptical platykurtic
Pascazio, Vito; Schirinzi, Gilda
2002-01-01
In this paper, a technique that is able to reconstruct highly sloped and discontinuous terrain height profiles, starting from multifrequency wrapped phase acquired by interferometric synthetic aperture radar (SAR) systems, is presented. We propose an innovative unwrapping method, based on a maximum likelihood estimation technique, which uses multifrequency independent phase data, obtained by filtering the interferometric SAR raw data pair through nonoverlapping band-pass filters, and approximating the unknown surface by means of local planes. Since the method does not exploit the phase gradient, it assures the uniqueness of the solution, even in the case of highly sloped or piecewise continuous elevation patterns with strong discontinuities.
Laser altimeter observations from MESSENGER's first Mercury flyby.
Zuber, Maria T; Smith, David E; Solomon, Sean C; Phillips, Roger J; Peale, Stanton J; Head, James W; Hauck, Steven A; McNutt, Ralph L; Oberst, Jürgen; Neumann, Gregory A; Lemoine, Frank G; Sun, Xiaoli; Barnouin-Jha, Olivier; Harmon, John K
2008-07-04
A 3200-kilometers-long profile of Mercury by the Mercury Laser Altimeter on the MESSENGER spacecraft spans approximately 20% of the near-equatorial region of the planet. Topography along the profile is characterized by a 5.2-kilometer dynamic range and 930-meter root-mean-square roughness. At long wavelengths, topography slopes eastward by 0.02 degrees , implying a variation of equatorial shape that is at least partially compensated. Sampled craters on Mercury are shallower than their counterparts on the Moon, at least in part the result of Mercury's higher gravity. Crater floors vary in roughness and slope, implying complex modification over a range of length scales.
NASA Astrophysics Data System (ADS)
Dessauges-Zavadsky, Miroslava; Adamo, Angela
2018-06-01
Star-forming clumps dominate the rest-frame ultraviolet morphology of galaxies at the peak of cosmic star formation. If turbulence driven fragmentation is the mechanism responsible for their formation, we expect their stellar mass function to follow a power-law of slope close to -2. We test this hypothesis performing the first analysis of the stellar mass function of clumps hosted in galaxies at z ˜ 1 - 3.5. The sample is gathered from the literature with similar detection thresholds and stellar masses determined in a homogeneous way. To overcome the small number statistics per galaxy (each galaxy hosts up to a few tens of clumps only), we combine all high-redshift clumps. The resulting clump mass function follows a power-law of slope ˜-1.7 and flattens at masses below 2 × 107 M⊙. By means of randomly sampled clump populations, drawn out of a power-law mass function of slope -2, we test the effect of combining small clump populations, detection limits of the surveys, and blending on the mass function. Our numerical exercise reproduces all the features observed in the real clump mass function confirming that it is consistent with a power-law of slope ≃ -2. This result supports the high-redshift clump formation through fragmentation in a similar fashion as in local galaxies, but under different gas conditions.
Cinematic modeling of local morphostructures evolution
NASA Astrophysics Data System (ADS)
Bronguleev, Vadim
2013-04-01
With the use of a simple 3-dimensional cinematic model of slope development some characteristic features of morphostructure evolution were shown. We assume that the velocity of slope degradation along normal vector to a surface is determined by three morphological parameters: slope angle, its profile curvature and its plan curvature. This leads to the equation of parabolic type: where h=h(x,y,t) is the altitude of slope surface, Kpr(x,y,t)is the profile curvature of the slope, Kpl(x,y,t) is the plan curvature, f(x,y,t) is the velocity of tectonic deformation (or base level movement), A, B, and C are the coefficients which may depend on coordinates and time. The first term in the right part of the equation describes parallel slope retreat, typical to arid environment, the second term describes slope vertical grading due to viscous flow, typical to humid conditions, and the third term is responsible for slope plan grading due to such processes as desquamation, frost weathering, etc. This simple model describes a wide range of local morphostructures evolution: stepped slopes and piedmont benchlands, lithogenic forms - terraces and passages, flattened summits and rounded hills. Using different types of the function f (block rise, swell, tilt), we obtained interesting reformations of initial tectonic landforms during the concurrent action of denudation processes. The result of such action differs from that of the successive action of tectonic movements and denudation. The relation of rates of the endogenous and exogenous processes strongly affects the formation of local morphostructures. Preservation of initial features of slope such as steps or bends as well as their formation due to tectonics or lithology is possible if coefficients B and Care small in comparison toA.
NASA Technical Reports Server (NTRS)
Brunt, Kelly M.; Neumann, Thomas Allen; Walsh, Kaitlin M.; Markus, Thorsten
2013-01-01
The greatest changes in elevation in Greenland and Antarctica are happening along the margins of the ice sheets where the surface frequently has significant slopes. For this reason, the upcoming Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) mission utilizes pairs of laser altimeter beams that are perpendicular to the flight direction in order to extract slope information in addition to elevation. The Multiple Altimeter Beam Experimental Lidar (MABEL) is a high-altitude airborne laser altimeter designed as a simulator for ICESat-2. The MABEL design uses multiple beams at fixed angles and allows for local slope determination. Here, we present local slopes as determined by MABEL and compare them to those determined by the Airborne Topographic Mapper (ATM) over the same flight lines in Greenland. We make these comparisons with consideration for the planned ICESat-2 beam geometry. Results indicate that the mean slope residuals between MABEL and ATM remain small (< 0.05 degrees) through a wide range of localized slopes using ICESat-2 beam geometry. Furthermore, when MABEL data are subsampled by a factor of 4 to mimic the planned ICESat-2 transmit-energy configuration, the results are indistinguishable from the full-data-rate analysis. Results from MABEL suggest that ICESat-2 beam geometry and transmit-energy configuration are appropriate for the determination of slope on approx. 90-m spatial scales, a measurement that will be fundamental to deconvolving the effects of surface slope from the ice-sheet surface change derived from ICESat-2.
NASA Technical Reports Server (NTRS)
Brunt, Kelly M.; Neumann, Thomas A.; Walsh, Kaitlin M.; Markus, Thorsten
2014-01-01
The greatest changes in elevation in Greenland and Antarctica are happening along the margins of the ice sheets where the surface frequently has significant slopes. For this reason, the upcoming Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) mission utilizes pairs of laser altimeter beams that are perpendicular to the flight direction in order to extract slope information in addition to elevation. The Multiple Altimeter Beam Experimental Lidar (MABEL) is a high-altitude airborne laser altimeter designed as a simulator for ICESat-2. The MABEL design uses multiple beams at fixed angles and allows for local slope determination. Here, we present local slopes as determined by MABEL and compare them to those determined by the Airborne Topographic Mapper (ATM) over the same flight lines in Greenland. We make these comparisons with consideration for the planned ICESat-2 beam geometry. Results indicate that the mean slope residuals between MABEL and ATM remain small (< 0.05?) through a wide range of localized slopes using ICESat-2 beam geometry. Furthermore, when MABEL data are subsampled by a factor of 4 to mimic the planned ICESat-2 transmit-energy configuration, the results are indistinguishable from the full-data-rate analysis. Results from MABEL suggest that ICESat-2 beam geometry and transmit-energy configuration are appropriate for the determination of slope on 90-m spatial scales, a measurement that will be fundamental to deconvolving the effects of surface slope from the ice-sheet surface change derived from ICESat-2.
Systematic study of doping dependence on linear magnetoresistance in p-PbTe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, J. M.; Chitta, V. A.; Oliveira, N. F.
2014-10-20
We report on a large linear magnetoresistance effect observed in doped p-PbTe films. While undoped p-PbTe reveals a sublinear magnetoresistance, p-PbTe films doped with BaF{sub 2} exhibit a transition to a nearly perfect linear magnetoresistance behaviour that is persistent up to 30 T. The linear magnetoresistance slope ΔR/ΔB is to a good approximation, independent of temperature. This is in agreement with the theory of Quantum Linear Magnetoresistance. We also performed magnetoresistance simulations using a classical model of linear magnetoresistance. We found that this model fails to explain the experimental data. A systematic study of the doping dependence reveals that the linearmore » magnetoresistance response has a maximum for small BaF{sub 2} doping levels and diminishes rapidly for increasing doping levels. Exploiting the huge impact of doping on the linear magnetoresistance signal could lead to new classes of devices with giant magnetoresistance behavior.« less
Thrust law effects on the long-period modes of aerospace craft
NASA Technical Reports Server (NTRS)
Markopoulos, Nikos; Mease, Kenneth D.; Vinh, Nguyen X.
1989-01-01
An analytical study is presented of the longitudinal long-period dynamics of an aerospace craft in a nearly circular orbit, with a thrust law depending arbitrarily on the speed and altitude. A plane of engine possibilities is first defined, with points corresponding to propulsion systems having prescribed thrust slopes with respect to speed and altitude. Approximate expressions for the characteristic roots and times are obtained by first identifying a small quantity in the coefficients of the characteristic equation, and then expanding in a perturbation series about the origin of the plane of engine possibilities, for which the solution is always known. These expressions agree very well with the exact solutions over a wide range of altitudes and thrust laws. The period of the oscillatory translational mode (phugoid) is found to be independent to first order of the thrust law, generalizing results found by previous investigators for specific thrust laws. The results apply to the speed range from hypersonic to orbital.
The evolution of the intergalactic medium and the origin of the galaxy luminosity function
NASA Technical Reports Server (NTRS)
Valls-Gabaud, David; Blanchard, Alain; Mamon, Gary
1993-01-01
The coupling of the Press and Schechter prescription with the CDM scenario and the Hoyle-Rees-Ostriker cooling criterion leads to a galaxy formation scenario in which galaxies are overproduced by a large factor. Although star formation might be suppressed in the smaller halos, a large amount of energy per galactic mass is needed to account for the present number density of galaxies. The evolution of the intergalactic medium (IGM) provides a simple criterion to prevent galaxy formation without requiring feedback, since halos with small virial temperatures are not able to retain the infalling hot gas of the IGM. If the ionizing background has decreased since z is approximately 1 - 2, then this criterion explains the slope of the luminosity function at the faint end. In addition, this scenario predicts two populations of dwarf galaxies, well differentiated in age, gas content, stellar populations, and clustering properties, which can be identified with dE and dIm galaxies.
Honda, Michitaka
2014-04-01
Several improvements were implemented in the edge method of presampled modulation transfer function measurements (MTFs). The estimation technique for edge angle was newly developed by applying an algorithm for principal components analysis. The error in the estimation was statistically confirmed to be less than 0.01 even in the presence of quantum noise. Secondly, the geometrical edge slope was approximated using a rationalized number, making it possible to obtain an oversampled edge response function (ESF) with equal intervals. Thirdly, the final MTFs were estimated using the average of multiple MTFs calculated for local areas. This averaging operation eliminates the errors caused by the rationalized approximation. Computer-simulated images were used to evaluate the accuracy of our method. The relative error between the estimated MTF and the theoretical MTF at the Nyquist frequency was less than 0.5% when the MTF was expressed as a sinc function. For MTFs representing an indirect detector and phase-contrast detector, good agreement was also observed for the estimated MTFs for each. The high accuracy of the MTF estimation was also confirmed, even for edge angles of around 10 degrees, which suggests the potential for simplification of the measurement conditions. The proposed method could be incorporated into an automated measurement technique using a software application.
Update on GPS-Acoustics Measurements on the Continental Slope of the Cascadia Subduction Zone
NASA Astrophysics Data System (ADS)
Chadwell, C. D.
2017-12-01
Land-based GPS measurements suggest the megathrust is locked offshore along the Cascadia Subduction Zone. However, land-based data alone lack geometric resolution to constrain the how the slip is distributed. GPS-Acoustic measurements can provide these constraints, but using traditional GPS-Acoustic approaches employing a ship is costly. Wave Gliders, a wave- and solar-powered, remotely-piloted sea surface platform, provide a low cost method for collecting GPS-A data. We have adapted GPS-Acoustic technology to the Wave Glider and in 2016 began annual measurements at three sites in the Cascadia Subduction Zone (CSZ). Here, we review positioning results collected during summer 2017 at two sites on the continental slope of the Cascadia Subduction Zone: One site is approximately 45 NM offshore central Oregon and the other approximately 50 NM offshore central Washington State. A third site is approximately 90 NM offshore central Oregon on the incoming Juan de Fuca plate. We will report on initial results of the GPS-A data collection and operational experiences of the missions in 2016 and 2017. Wave Glider based GPS-A measurement have the potential to significantly increase the number and frequency of measurements of strain accumulation in Cascadia Subduction Zone and elsewhere.
William M. Ford; M. Alex Menzel; David W. McGill; Joshua Laerm; Timothy S. McCay
1999-01-01
As part of the Wine Spring Creek ecosystem management project on the Nantahala National forest, North Carolina, we assessed effects of a community restoration fire on small mammals and herpetofauna in the upper slope pitch pine (Pinus rigida) stands, neighboring midslope oak (Quercus spp.) stands and rhododendron (...
Experimental Deformation of Dehydrating Antigorite: Challenging Models of Dehydration Embrittlement
NASA Astrophysics Data System (ADS)
Hirth, Greg; Chernak, Linda
2010-05-01
To test the hypothesis that intermediate depth earthquakes in subduction zones are caused by the dehydration of hydrous phases, we conducted temperature-ramping experiments on antigorite serpentinite. Cold-pressed powdered samples of antigorite were deformed to a high differential stress at 400°C and 1.0 GPa, within the antigorite stability field, where we have shown that deformation localizes. Temperature was then increased at different rates, 1800°C/hr and 180°C/hr, to cross the reaction boundary while the sample continued to deform; samples were deformed at strain rates of 10-4 s-1, 10-5 s-1 and 10-6 s-1. Two additional experiments were conducted in a similar manner at 300°C, 1.5 GPa and 10-5 s-1 but samples remained 'statically' at high stress during the temperature increase. Our results show that although the decrease in stress during temperature ramping is large, stress relaxes stably, even after dehydration. We find that the slopes of the unloading curves are approximately the same for constant values of the ratio (strain rate/ramp rate) and that the unloading slope is greater for higher values of this ratio. In addition, we find that the unloading curves with the greatest slopes are similar to the apparatus compliance, suggesting that we are generating 'slow earthquakes' in our experiments over the course 5 to 10s of minutes. A strain rate stepping experiment indicates that antigorite has velocity strengthening behavior at 700°C and 1.5 GPa suggesting that as soon as an instability develops in the antigorite, the material strengthens sufficiently to not go unstable. Our results thus suggest that antigorite dehydration does not result in 'dehydration embrittlement' but that it may promote slow earthquakes. We have also conducted a preliminary experiment to study the role of effective pressure on deformation behavior after dehydration. A cold-pressed powdered sample of antigorite with a small core of coarse-grained olivine at one end was deformed at 700°C, 1.5 GPa and a strain rate of 10-5 s-1. This sample had a strength of 300 MPa, which is significantly higher than samples deformed at the same conditions without olivine present; strengths were approximately 100 MPa for these samples. We hypothesize that the highly porous and permeable olivine layer provided a reservoir for the water released by the dehydration reaction and suggests that the presence of water causes the strength of antigorite to decrease.
Ontogenetic development of otoliths in Alligator Gar
Long, James M.; Snow, Richard A.
2016-01-01
The Alligator Gar Atractosteus spatula is a species of conservation concern throughout its range, and better definition of otoliths during early development would aid understanding its life history and ecology. We conducted X-ray computed tomography scans, scanning electron microscopy, and light microscopy to examine the three pairs of otoliths and how they developed over time in relation to fish size and age. The sagittae are the largest, possessing distinct dorsal and ventral lobes covered with small otoconia concentrated in the sulcul region. The sagittae exhibited allometric growth, increasing more rapidly in the ventral lobe than in the dorsal. The asterisci were smaller and also exhibited small otoconia on their surface, but much less than the sagittae. The lapilli were oriented laterally, in contrast to the sagittae and asterisci, which were oriented vertically, with a hump on the dorsum and very large otoconia on the lateral surface that appeared to fuse into the main otolith as the fish grew. Based on size measurements and ring counts in all three pairs of otoliths from 101 known-age Alligator Gar sampled weekly through 91 d after hatch, we developed regression models to examine otolith growth and predict age. All relationships were significant and highly explanatory, but the strongest relationships were between otolith and fish size (for measurements from sagittae) and for age predictions from the lapillus. Age prediction models all resulted in a slope near unity, indicating that ring deposition occurred approximately daily. The first ring in sagittae and lapilli corresponded to swim-up, whereas the first ring formed in asterisci approximately 8 d after swim-up. These results fill a gap in knowledge and can aid understanding of evolutionary processes as well as provide useful information for management and conservation.
A galaxy formation cookbook: Recipes and utensils
NASA Astrophysics Data System (ADS)
Katz, Neal Steven
Numerical simulations of hierarchial galaxy formation including gas dynamics are presented. These simulations are conducted using a general-purpose program for evolving self-gravitating systems in three dimensions. The gravitational forces are calculated using a hierarchial tree algorithm while the gas dynamic properties are determined using smoothed particle hydrodynamics. Since in this method the complete thermodynamic state of the gas is known everywhere, dissipational effects can be included by allowing the gas to cool radiatively, using standard cooling curves, and star formation can be prescribed in a physical manner. The simulations model the collapse of isolated constant density perturbations, made of dark and baryonic matter in a 10 to 1 ratio, initially in solid rotation and in Hubble flow. Small scale power is added using the Zel'dovich approximation assuming a power law slope of either -2.5 or 0. The simulations are successful in making systems that resemble spirals and ellipticals. Of the parameters that are investigated - the small scale power amplitude, the initial angular momentum, and the star formation rate - it is the amplitude of the small scale power that is most important in determining the final Hubble type. Systems form through the merger of sub-clumps. The systems with larger small scale power have clumps with higher central densities. Higher density clumps retain their identities longer than lower density clumps and are able to lose more angular momentum. These systems form ellipticals. Spirals form when these clumps are not very distinct and little angular momentum transport occurs. Since the Hubble type is determined by how much small scale power is present when compared to the height of the galaxy-sized peak, the density-morphology relation is easily explained. The formation and equilibrium characteristics of systems formed through dissipationless collapse using similar initial conditions are also studied.
Characterization of the Jure (Sindhupalchok, Nepal) Landslide by TLS and field investigations
NASA Astrophysics Data System (ADS)
Jaboyedoff, Michel; Leibundgut, Geoffroy; Penna, Ivanna; Dahal, Ranjan Kumar; Sevkota, Sanjaya; Sudmeier, Karen
2015-04-01
On August 2nd 2014, a huge rockslide of approximately 5 million m3 blocked the Sun-Koshi River upstream of Jure village (Northeast of Kathmandu, Nepal). This landslide killed approximately 155 people, destroying approximately 120 houses completely and 37 partially. The main road leading to China was cut and the Sun-Koshi hydropower plant was affected. The landslide dammed the river, creating a 2 km long lake. During the whole month of August the authorities and the army managed to drain the lake in order to avoid a potential dam collapse and a disaster by flooding downstream. In addition, a road was built very quickly in the opposite slope of the rockslide. The main road was reopened in November 2014 crossing the rock avalanche deposit to reach China border. Rocky steep slope on right bank of lake is used for earthen road construction. After the quick draining of the lake water on October 5, 2014, many landslides were induced or reactivated on the slopes along the lake shore. Some are affecting the slopes over several hundred in uphill section. However, the roads are also promoting shallow landslides or old landslides reactivation. The DEM extracted from merging 16 terrestrial laser scanner (TLS) acquisitions permits to analyse the rock fall avalanche volume, scar structure and deposits. The rockslide was developed in phyllites, quartzite and sandstones. The stratification is folded but mainly subhorizontal in the scar area, while the scar is defined by several faults and visible joint sets. Using TLS and SRTM data the volume of the rockslide can be approximated at 5 million m3. From TLS data it is also possible to identify regional faults, which form the back scar with a dip of approximately 165°/60°. The discontinuity sets ~250°/60° and 075°/45° are forming oblique shallow wedges. In addition, subvertical joints which are cutting the whole scar are oriented north 145°. All these structures permits to define the volume involved in the rockslide. Satellite images since 2000 indicate an increasing rock fall and scarp development activity of the landslide before this catastrophic event and scarp development. In addition, it seems that some ephemeral springs developed below the unstable mass. The rockslide generated a rock avalanche, which is documented by the effect of volume on the travel distance. This Farböshung varies between 22° and 24° depending on the type of substratum, which is a bit above the standard values. The spreading of the rock mass can be also reproduced by simulations. It seems that the rockslide ran up the opposite slope and then receded as proposed by Crosta et al. (2003) for Val Pola. Furthermore the upper layer of soils on the failure area created an area of "mud splash" in the frontal part of the rock avalanche. Mud splash is supported by the mud and dust cover found in the trees on the opposite slope near the landslide dam. The analysis of this rock avalanche confirmed the general observation that can be made for present rockslides in general. It reactivated large scale instabilities. In addition, the location of such rockslide developed in complex structures accompanied by a degradation of the rock mass conditions. In addition, the impact of the lake on slope stability in and around the reservoir can be noticed. References: Crosta G.B., Imposimato S. and Roddeman D. G. (2003): Numerical modelling of large landslides stability and runout. Natural Hazards and Earth System Sciences, 3: 523-538 ICIMOD (2015): Eye on the Sun Koshi Landslide: Monitoring and Infrastructure Planning Key to Minimizing Scale of Disasters. http://www.icimod.org/?q=14356 NRSM (2014): Landslide on River Sun Koshi, Nepal. http://www.nrsc.gov.in/Nepal_Landslide.html Petley D. (2015): Sunkoshi landslide in Nepal - still no reduction in the lake. The landslide Blog.Blogs.agu.org. SANDRP (2015): Massive landslide blocks Sunkoshi River, Downstream Nepal-India under threat. http://sandrp.wordpress.com/2014/08/02/massive-landslide-blocks-sunkoshi-river-downstream-nepal-india-under-threat/
Natural hazards in the Alps triggered by ski slope engineering and artificial snow production
NASA Astrophysics Data System (ADS)
de Jong, C.
2012-04-01
In the Alps there is increasing concern of man-made triggering of natural hazards in association with ski slope engineering and pressures from climate change. However literature on the topic is rare. Ski run development has been intensified in the past decade to accommodate a higher density of skiers. In order to absorb the increased flux of skiers promoted by continually increasing lift capacity, ski runs are subject to more and more enlargement, straightening and leveling. This has required large-scale re-leveling of slopes with the removal of soil and protective vegetation using heavy machinery during the summer season. Slope-ward incision on steep slopes, creation of artificial embankments by leeward deposition and development of straight ski runs perpendicular to steep slopes have resulted in both shallow and deep erosion, gullying, triggering of small landslides and even bedload transport in marginal channels. Other natural hazards have been triggered directly or indirectly due to intensification of artificial snow production. This has increased exponentially in the last decade in order to secure the skiing season under increasingly warm temperatures and erratic snowfall and decreasing snow depth and snow duration in association with climate change. The consequences are multiple. Firstly, in order to economize both costs and quantity of artificial snow production, ski runs are leveled as far as possible in order to avoid topographical irregularities, protruding vegetation or rocks. The combination of topsoil removal and prolonged duration of artificial snow cover results in a decreased vegetation cover and period as well as species alteration. Together with greatly decreased permeability of the underground, snowmelt and intensive summer precipitation trigger surface runoff, erosion and even small landslides. After more than a decade of intensive cover by artificial snow, most such steep ski runs at altitudes above 1400 m are reduced into highly erosive, vegetation-poor scree slopes in summertime. Secondly, the production of artificial snow requires increasingly large quantities of water during low flow periods and causes an exponential increase in the construction of water reservoirs and pipelines. Such reservoirs are often constructed in depressions occupied by wetlands but also on slopes, hilltops and in proglacial locations at high altitudes up to 3000m. Reservoir construction removes vegetation, soil and regolith over surface areas of up to 150 000 m2 and depths of more than 20 m. During their construction, the temporary or permanent storage of large quantities of sediment on steep slopes has lead in several cases to the production of debris flows. Each reservoir requires road construction and vehicle parking areas for heavy weight vehicle access. These are frequently subject to erosion, gullying, and small landslides. Some reservoirs are vulnerable to catastrophic drainage triggered by earthquakes, avalanches and other natural hazards typical for mountain environments since they are only sealed with plastic membranes. Thirdly, the melt of artificial snow introduced by water transfers from other catchments can cause a relatively large local surplus of water which in turn increases spring and summer flood peaks as well as sediment transport. Most steep ski runs have introduced artificial drainage canals across the ski runs to avoid concentration of surface flow and to prevent erosion. Slopes are also covered with organic soils and re-vegetated where possible. However, given the present trends of intensification of use and precipitation extremes, it is unlikely that erosion and mass movements can be prevented in the next few decades for the duration of the amortization of investments.
Rockfall catchment area design guide : metric edition : appendices.
DOT National Transportation Integrated Search
2001-12-01
The appendices belong to "Rockfall catchment area design guide : metric edition". : The data gathered from an exhaustive research project consisting of rolling a total of approximately 11,250 rocks off vertical; 4V:1H;2V;1H;1.33V:1H;1.0V:1.0H slopes ...
Bianchini, Edmilson; Garcia, Cristina C; Pimenta, José A; Torezan, José M D
2010-09-01
Size structure and spatial arrangement of 13 abundant tree species were determined in a riparian forest fragment in Paraná State, South Brazil (23°16'S and 51°01'W). The studied species were Aspidosperma polyneuron Müll. Arg., Astronium graveolens Jacq. and Gallesia integrifolia (Spreng) Harms (emergent species); Alseis floribunda Schott, Ruprechtia laxiflora Meisn. and Bougainvillea spectabilis Willd. (shade-intolerant canopy species); Machaerium paraguariense Hassl, Myroxylum peruiferum L. and Chrysophyllum gonocarpum (Mart. & Eichler ex Miq.) Engl. (shade-tolerant canopy species); Sorocea bonplandii (Baill.) Bürger, Trichilia casaretti C. Dc, Trichilia catigua A. Juss. and Actinostemon concolor (Spreng.) Müll. Arg. (understory small trees species). Height and diameter structures and basal area of species were analyzed. Spatial patterns and slope correlation were analyzed by Moran's / spatial autocorrelation coefficient and partial Mantel test, respectively. The emergent and small understory species showed the highest and the lowest variations in height, diameter and basal area. Size distribution differed among emergent species and also among canopy shade-intolerant species. The spatial pattern ranged among species in all groups, except in understory small tree species. The slope was correlated with spatial pattern for A. polyneuron, A. graveolens, A. floribunda, R. laxiflora, M. peruiferum and T. casaretti. The results indicated that most species occurred in specific places, suggesting that niche differentiation can be an important factor in structuring the tree community.
Energy Spectra, Composition, and Other Properties of Ground-Level Events During Solar Cycle 23
NASA Technical Reports Server (NTRS)
Mewaldt, R. A.; COhen, C. M. S.; Labrador, A. W.; Leske, R. A.; Looper, M. D.; Haggerty, D. K.; Mason, G. M.; Mazur, J. E.; vonRosenvinge, T. T.
2012-01-01
We report spacecraft measurements of the energy spectra of solar protons and other solar energetic particle properties during the 16 Ground Level Events (GLEs) of Solar Cycle 23. The measurements were made by eight instruments on the ACE, GOES, SAMPBX, and STEREO spacecraft and extend from approximately 0.1 to approximately 500-700 MeV. All of the proton spectra exhibit spectral breaks at energies ranging from approximately 2 to approximately 46 MeV and all are well fit by a double power-law shape. A comparison of GLE events with a larger sample of other solar energetic particle (SEP) events shows that the typical spectral indices are harder in GLE events, with a mean slope of -3.18 at greater than 40 MeV/nuc. In the energy range 45 to 80 MeV/nucleon about approximately 50% of GLE events have properties in common with impulsive He-3-rich SEP events, including enrichments in Ne/O, Fe/O, Ne-22/Ne-20, and elevated mean charge states of Fe. These He-3 rich events contribute to the seed population accelerated by CME-driven shocks. An analysis is presented of whether highly-ionized Fe ions observed in five events could be due to electron stripping during shock acceleration in the low corona. Making use of stripping calculations by others and a coronal density model, we can account for events with mean Fe charge states of (Q(sub Fe) is approximately equal to +20 if the acceleration starts at approximately 1.24-1.6 solar radii, consistent with recent comparisons of CME trajectories and type-II radio bursts. In addition, we suggest that gradual stripping of remnant ions from earlier large SEP events may also contribute a highly-ionized suprathermal seed population. We also discuss how observed SEP spectral slopes relate to the energetics of particle acceleration in GLE and other large SEP events.
NASA Astrophysics Data System (ADS)
Kluesner, J. W.; Silver, E. A.; Gibson, J. C.; Bangs, N. L.; McIntosh, K.; von Huene, R.; Orange, D.; Ranero, C. R.
2012-12-01
Offshore southern Costa Rica we have identified 161 potential fluid seepage sites on the shelf and slope regions within an 11 x 55 km strip where no fluid indicators had been reported previously using conventional deep-water mutlibeam bathymetry (100 m grid cell size) and deep towed side scan sonar. Evidence includes large and small pockmarks, mounds, ridges, and slope failure features with localized anomalous high-amplitude backscatter strength. The majority of seepage indicators are associated with shallow sub-bottom reversed polarity bright spots and flat spots imaged within the CRISP 3D seismic grid. Data were collected ~50 km west of Osa Peninsula, Costa Rica onboard the R/V Marcus G. Langseth during the spring of 2011. We obtained EM122 multibeam data using fixed, closely spaced receiver beams and 9-10 times swath overlap, which greatly improved the signal-to-noise ratio and sounding density and allowed for very small grid and mosaic cell sizes (2-10 m). A gas plume in the water column, seen on a 3.5 kHz profile, is located along a fault trace and above surface and subsurface seep indicators. Fluid indicators on the outer shelf occur largely on a dense array of faults, some of which cut through the reflective basement. Seismic flat spots commonly underlie axes of large anticlines on the shelf and slope. Pockmarks are also located at the foot of mid-slope canyons, very near to the upper end of the BSR. These pockmarks appear to be associated with canyon abandonment and folded beds that channel fluids upward, causing hydrate instability. Our findings suggest that significant amounts of methane are venting into ocean and potentially into the atmosphere across the heavily deformed shelf and slope of Costa Rica.
A Streamflow Statistics (StreamStats) Web Application for Ohio
Koltun, G.F.; Kula, Stephanie P.; Puskas, Barry M.
2006-01-01
A StreamStats Web application was developed for Ohio that implements equations for estimating a variety of streamflow statistics including the 2-, 5-, 10-, 25-, 50-, 100-, and 500-year peak streamflows, mean annual streamflow, mean monthly streamflows, harmonic mean streamflow, and 25th-, 50th-, and 75th-percentile streamflows. StreamStats is a Web-based geographic information system application designed to facilitate the estimation of streamflow statistics at ungaged locations on streams. StreamStats can also serve precomputed streamflow statistics determined from streamflow-gaging station data. The basic structure, use, and limitations of StreamStats are described in this report. To facilitate the level of automation required for Ohio's StreamStats application, the technique used by Koltun (2003)1 for computing main-channel slope was replaced with a new computationally robust technique. The new channel-slope characteristic, referred to as SL10-85, differed from the National Hydrography Data based channel slope values (SL) reported by Koltun (2003)1 by an average of -28.3 percent, with the median change being -13.2 percent. In spite of the differences, the two slope measures are strongly correlated. The change in channel slope values resulting from the change in computational method necessitated revision of the full-model equations for flood-peak discharges originally presented by Koltun (2003)1. Average standard errors of prediction for the revised full-model equations presented in this report increased by a small amount over those reported by Koltun (2003)1, with increases ranging from 0.7 to 0.9 percent. Mean percentage changes in the revised regression and weighted flood-frequency estimates relative to regression and weighted estimates reported by Koltun (2003)1 were small, ranging from -0.72 to -0.25 percent and -0.22 to 0.07 percent, respectively.
Time-Frequency Variability of Kuroshio Meanders in Tokara Strait
NASA Astrophysics Data System (ADS)
Nakamura, H.; Yamashiro, T.; Nishina, A.; Ichikawa, H.
2006-12-01
The Kuroshio path in the northern Okinawa Trough, Japan, located between the continental slope and Tokara Strait, exhibits meandering motions with largest displacements in the East China Sea; these motions have dominant periods in the broad range of 30-90 days. Understanding the dynamic nature of such meanders is crucial to predicting small and large meanders of the Kuroshio path off the south coast of Japan. Previous numerical simulations suggest that the Kuroshio path meanders in the northern Okinawa Trough become nonstationary in variance because of changes in background states of the Kuroshio in the northern Okinawa Trough, but a detailed analysis based on observed data has yet to be performed. The purpose of the present study is to provide a detailed description of the time-frequency variability of Kuroshio path meanders observed in Tokara Strait. Three Kuroshio indicators were subjected to wavelet analysis for the period 1984-2004: the Kuroshio Position Index (KPI) in Tokara Strait, Kuroshio Volume Transport (KVT) in Tokara Strait, and the basal current velocity of the Kuroshio on the continental slope in the northern Okinawa Trough. The 30-90 day variance of the KPI shows a season-fixed nature, with larger amplitudes in the period December-July. The amplitude of the variance in this phenomenon is also modulated by interannual variations, with small variance recorded during 1989-1992, large variance during 1993-1998, and a return to small variance from 1999-2003. This interannual variation is positively correlated with that of the KVT. The largest variance of the KPI during February-April precedes the largest volume transport in April-May by about 1 month, suggesting that eddy vorticity flux strengthens the mean current field. Previous numerical simulations reproduce the recirculation gyre as a cyclonic eddy in the area between the continental slope and Tokara Strait; this gyre is analogous to the northern recirculation gyre associated with the eastward jet. On the basis of data from a moored current-meter situated on the continental slope, the genesis of the 30-90 day meanders within Tokara Strait is ascribed to nonlinear energy transfer from 8-25 day meanders on the continental slope.
Cox, Robert H; Fromme, Samantha
2016-12-01
We have shown that three components contribute to functional voltage gated K + (K v ) currents in rat small mesenteric artery myocytes: (1) Kv1.2 plus Kv1.5 with Kvβ1.2 subunits, (2) Kv2.1 probably associated with Kv9.3 subunits, and (3) Kv7.4 subunits. To confirm and address subunit stoichiometry of the first two, we have compared the biophysical properties of K v currents in small mesenteric artery myocytes with those of K v subunits heterologously expressed in HEK293 cells using whole cell voltage clamp methods. Selective inhibitors of Kv1 (correolide, COR) and Kv2 (stromatoxin, ScTx) channels were used to separate these K v current components. Conductance-voltage and steady state inactivation data along with time constants of activation, inactivation, and deactivation of native K v components were generally well represented by those of Kv1.2-1.5-β1.2 and Kv2.1-9.3 channels. The slope of the steady state inactivation-voltage curve (availability slope) proved to be the most sensitive measure of accessory subunit presence. The availability slope curves exhibited a single peak for both native K v components. Availability slope curves for Kv1.2-1.5-β1.2 and Kv2.1-9.3 channels expressed in human embryonic kidney cells also exhibited a single peak that shifted to more depolarized voltages with increasing accessory to α subunit transfection ratio. Availability slope curves for SxTc-insensitive currents were similar to those of Kv1.2-1.5 expressed with Kvβ1.2 at a 1:5 molar ratio while curves for COR-insensitive currents closely resembled those of Kv2.1 expressed with Kv9.3 at a 1:1 molar ratio. These results support the suggested K v subunit combinations in small mesenteric artery, and further suggest that Kv1 α and Kvβ1.2 but not Kv2.1 and Kv9.3 subunits are present in a saturated (4:4) stoichiometry.
Rainfall and sheet power model for interrill erosion in steep slope
NASA Astrophysics Data System (ADS)
Shin, Seung Sook; Deog Park, Sand; Nam, Myeong Jun
2015-04-01
The two-phase process of interrill erosion consist of the splash and detachment of individual particles from soil mass by impact of raindrops and the transport by erosive running water. Most experimental results showed that the effect of interaction between rainfall impact and surface runoff increases soil erosion in low or gentle slope. Especially, the combination of rain splash and sheet flow is the dominant runoff and erosion mechanism occurring on most steep hillslopes. In this study, a rainfall simulation was conducted to evaluate interrill erosion in steep slope with cover or non-cover. The kinetic energy of raindrops of rainfall simulator was measured by disdrometer used to measure the drop size distribution and velocity of falling raindrops and showed about 0.563 rate of that calculated from empirical equation between rainfall kinetic energy and rainfall intensity. Surface and subsurface runoff and sediment yield depended on rainfall intensity, gradient of slope, and existence of cover. Sediment from steep plots under rainfall simulator is greatly reduced by existence of the strip cover that the kinetic energy of raindrop approximates to zero. Soil erosion in steep slope with non-cover was nearly 4.93 times of that measured in plots with strip cover although runoff was only 1.82 times. The equation of a rainfall and sheet power was used to evaluate sediment yields in steep slope with cover or non-cover. The power model successfully explained physical processes for interrill erosion that combination of raindrop impact and sheet flow increases greatly soil erosion in steep slope. This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(No. 2013R1A1A3011962).
An analysis of river bank slope and unsaturated flow effects on bank storage.
Doble, Rebecca; Brunner, Philip; McCallum, James; Cook, Peter G
2012-01-01
Recognizing the underlying mechanisms of bank storage and return flow is important for understanding streamflow hydrographs. Analytical models have been widely used to estimate the impacts of bank storage, but are often based on assumptions of conditions that are rarely found in the field, such as vertical river banks and saturated flow. Numerical simulations of bank storage and return flow in river-aquifer cross sections with vertical and sloping banks were undertaken using a fully-coupled, surface-subsurface flow model. Sloping river banks were found to increase the bank infiltration rates by 98% and storage volume by 40% for a bank slope of 3.4° from horizontal, and for a slope of 8.5°, delay bank return flow by more than four times compared with vertical river banks and saturated flow. The results suggested that conventional analytical approximations cannot adequately be used to quantify bank storage when bank slope is less than 60° from horizontal. Additionally, in the unconfined aquifers modeled, the analytical solutions did not accurately model bank storage and return flow even in rivers with vertical banks due to a violation of the dupuit assumption. Bank storage and return flow were also modeled for more realistic cross sections and river hydrograph from the Fitzroy River, Western Australia, to indicate the importance of accurately modeling sloping river banks at a field scale. Following a single wet season flood event of 12 m, results showed that it may take over 3.5 years for 50% of the bank storage volume to return to the river. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.
NASA Astrophysics Data System (ADS)
Beverly, D.; Speckman, H. N.; Klatt, A. L.; Ewers, B. E.
2016-12-01
Whole-plant hydraulic conductance is now used in many processed-based ecohydrological models running at the plot to regional scales. Many models, such as Dynamic Global Vegetation Model (DGVM), predict entire ecosystem evapotranspiration (ET) based on a single unvarying plant conductance parameter that assumes no variation in plant traits. However, whole-plant conductance varies in space, time, and with topography. Understanding this variation increases model predictive power for stand and ecosystem level estimates of ET, ultimately reducing uncertainty in predictions of the water balance. We hypothesize that whole-plant conductance (Kw) is water limited in the up-slope stands due to water flow paths and energy limited in down-slope stands due to shading. To test this hypothesis in two adjacent stands in the Medicine Bow Mountains of southern Wyoming. Both mixed conifer stands were south-facing, with the upper stand being 300 m above the down-slope stand. Whole-plant conductance was quantified measuring sapflow (Js) and leaf water potential (WPL) throughout the growing season. To quantify Js, each stand was instrumented with 30 Granier-type sapflow sensors. Leaf-water potentials were measured in monthly 48-hour campaigns sampling every 3 hours. The upper slope stand exhibited significantly lower Kw (approximately 35% lower in spruce and pine) and decreased throughout the growing season, driven by drying soils resulting in lower predawn WPL. In contrast, the down-slope stand Kw peaked in July before decreasing for rest of the summer. Down-slope predawn WPL maintained a consistent predawn WPL until October reflecting consistent water input from the upper slopes and ground water. Including this topographical variation in whole-plant conductance will increase the predictive power of models simulating evapotranspiration at the watershed scale.
Reservoir geology of Landslide field, southern San Joaquin basin, California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carr, T.R.; Tucker, R.D.; Singleton, M.T.
1991-02-01
The Landslide field, which is located on the southern margin of the San Joaquin basin, was discovered in 1985 and consists of 13 producers and six injectors. Cumulative production as of mid-1990 was approximately 10 million bbl of oil with an average daily production of 4700 BOPD. Production is from a series of late Miocene turbidite sands (Stevens Sand) that were deposited as a small constructional submarine fan (less than 2 mi in diameter). Based on interpretation of wireline logs and engineering data, deposition of the fan and of individual lobes within the fan was strongly influenced by preexisting paleotopographymore » and small syndepositional slump features. Based on mapping of individual depositional units and stratigraphic dipmeter analysis, transport direction of the sand was to the north-north across these paleotopographic breaks in slope. Dipmeter data and pressure data from individual sands are especially useful for recognition and mapping of individual flow units between well bores. Detailed engineering, geophysical and geological studies have increased our understanding of the dimensions, continuity, geometry, and inherent reservoir properties of the individual flow units within the reservoir. Based on the results of these studies a series of water isolation workovers and extension wells were proposed and successfully undertaken. This work has increased recoverable reserves and arrested the rapid production decline.« less
Improvement of thermal management in the composite Yb:YAG/YAG thin-disk laser
NASA Astrophysics Data System (ADS)
Kuznetsov, I. I.; Mukhin, I. B.; Palashov, O. V.
2016-04-01
To improve the thermal management in the composite Yb:YAG/YAG thin-disk laser a new design of laser head is developed. Thermal-induced phase distortions, small signal gain and lasing in the upgraded laser head are investigated and compared with previously published results. A substantial decrease of the thermal lens optical power and phase aberrations and increase of the laser slope efficiency are observed. A continuous-wave laser with 440 W average power and 44% slope efficiency is constructed.
Payne, S J
2004-11-01
The effects of gravitational forces and wall thickness on the behaviour of a model of blood flow through axisymmetric vessels were studied. The governing fluid dynamic equations were derived from the Navier-Stokes equations for an incompressible fluid and linked to a simple model of the vessel wall. A closed form of the hyperbolic partial differential equations was found, including a significant source term from the gravitational forces. The inclination of the vessel is modelled using a slope parameter that varied between -1 and 1. The wave speed was shown to be related to the wall thickness, and the time to first shock formation was shown to be directly proportional to this thickness. Two non-dimensional parameters were derived for the ratio of gravitational forces to viscous and momentum forces, respectively, and their values were calculated for the different types of vessel found in the human vasculature, showing that gravitational forces were significant in comparison with either viscous or momentum forces for every type of vessel. The steady-state solution of the governing equations showed that gravitational forces cause an increase in area of approximately 5% per metre per unit slope. Numerical simulations of the flow field in the aorta showed that a positive slope causes a velocity pulse to change in amplitude approximately linearly with distance: -4% per metre and +5% per metre for vessels inclined vertically upwards and downwards, respectively, in comparison with only +0.5% for a horizontal vessel. These simulations also showed that the change relative to the zero slope condition in the maximum rate of change of area with distance, which was taken to be a measure of the rate of shock formation, is proportional to both the slope and the wall thickness-to-inner radius ratio, with a constant of proportionality of 1.2. At a ratio of 0.25, typical of that found in human arteries, the distance to shock formation is thus decreased and increased by 30% for vessels inclined vertically downwards and upwards, respectively. Gravity and wall thickness thus have a significant impact on a number of aspects of the fluid and wall behaviour, despite conventionally being neglected.
Development of a Coastal Inventory in Greece
NASA Astrophysics Data System (ADS)
Karditsa, Aikaterini; Poulos, Serafim; Velegrakis, Adonis; Ghionis, George; Petrakis, Stelios; Alexandrakis, George; Andreadis, Olympos; Monioudi, Isavella
2015-04-01
Greek coastline that accounts more than 16.000 km hosts hundreds of beaches, which constitute a great touristic destination. However, no gathered information exists relative to its qualitative and quantitative characteristics (e.g. physicogeographical characteristics, artificial structures, nearby land use). Therefore, the development of a coastal database that would successfully concentrate all relative data, in the form of a National Inventory, could be a valuable tool for the management and the sustainable use and exploitation of beaches and the coastal zone. This work presents an example of the development of a beach inventory in the case of the beach zones of Heraklion and Lassithi counties in the Island of Crete, which is one of the most touristic areas in Greece. Data were initially abstracted from satellite images and combined with in situ observations carried out along 98 beaches with shoreline length >100 m. The collected data included geomorphological, topographic and bathymetric mapping, sediment sampling from the subaerial and underwater part and recording of artificial structures. The initial mapping showed that beaches represent only the 18%, with 74% of the total coastline to be rocky while 8% of the coastline host some kind of artificial intervention. The combination of satellite and in situ mapping led to the development of a coastal geomorphological map. Beach widths were found to be limited with the majority of beaches (59%) to have maximum widths less than 25 m, 35% to range between 25 and 50m and about 6% with maximum widths >50m. Concerning beach length, the threshold of 1000 m is overcome only by the 46% of the beaches. Beaches with very smooth slopes (<2.5) are infrequent (~6%), whilst beaches with low slopes (2.5-5%) are the majority (42%) along with beaches with moderate slopes (5-7.5%) that account approximately the 32%. Beaches with high slopes (7.5-10%) are about 11%, whereas very high slopes and extremely high slopes are much less being equally to 6% and 3%, respectively. With respect to beach position, the majority of the south beaches are characterized by slopes of 5-7.5%,, whilst most of the north beaches present lower slopes in the order of 2.5-5%. In terms of sediment texture, 41% of the beaches were found to consist mostly of medium and coarse sands (gS and (g)S) and 31% of gravels with some sand presence ((s)G and sG). The exclusively sandy beaches correspond to the 11% when the exclusively gravelly beaches accounts for 16%. North sided beaches were found to be more fine grained compared to the south beaches; this most probably is due to the more persistent wave regime. The main human interventions along the coast of the study area are associated with four main ports (Heraklion, Ag. Nikolaos, Sitia and Ierapetra) and twelve small fishing ports (twelve in the north, one in the east and eight in the south), coastal residential and touristic development, coastal protection works and river management schemes. The study is supported by the project BEACHTOUR (11SYN- 8-1466) of the Operational Program Cooperation 2011, Competitiveness and Entrepreneurship" co-funded by the European Regional Development Fund (ERDF) and the Ministry of Education and Relegious Affairs.
Shi, Chong; Xu, Fu-gang
2013-01-01
Two important features of the high slopes at Gushui Hydropower Station are layered accumulations (rock-soil aggregate) and multilevel toppling failures of plate rock masses; the Gendakan slope is selected for case study in this paper. Geological processes of the layered accumulation of rock and soil particles are carried out by the movement of water flow; the main reasons for the toppling failure of plate rock masses are the increasing weight of the upper rock-soil aggregate and mountain erosion by river water. Indoor triaxial compression test results show that, the cohesion and friction angle of the rock-soil aggregate decreased with the increasing water content; the cohesion and the friction angle for natural rock-soil aggregate are 57.7 kPa and 31.3° and 26.1 kPa and 29.1° for saturated rock-soil aggregate, respectively. The deformation and failure mechanism of the rock-soil aggregate slope is a progressive process, and local landslides will occur step by step. Three-dimensional limit equilibrium analysis results show that the minimum safety factor of Gendakan slope is 0.953 when the rock-soil aggregate is saturated, and small scale of landslide will happen at the lower slope. PMID:24082854
Lee, Jonathan K.; Visser, H.M.; Jenter, H.L.; Duff, M.P.
2000-01-01
U.S. Geological Survey (USGS) hydrologists and ecologist are conducting studies to quantify vegetative flow resistance in order to improve numerical models of surface-water flow in the Florida Everglades. Water-surface slope is perhaps the most difficult of the flow resistance parameters to measure in the Everglades due to the very low gradients of the topography and flow. In an effort to measure these very small slopes, a unique pipe manometer was developed for the local measurement of water-surface slopes on the order of 1 centimeter per kilometer (cm/km). According to theory, a very precise measurement of centerline velocity obtained inside the pipe manometer should serve as a unique proxy for water-surface slope in the direction of the pipe axis. In order to confirm this theoretical relationship and calibrate the pipe manometer, water-surface elevation and pipe centerline velocity data were simultaneously measured in a set of experiments carried out in the tilting flume at the USGS Hydraulic Laboratory Facility at Stennis Space Center, Mississippi. A description of the instrumentation and methods used to evaluate this technique for measuring water-surface slope as well as a summary of the entire data set is presented.
Dark Streaks Over-riding Inactive Dunes
NASA Technical Reports Server (NTRS)
2000-01-01
Not all sand dunes on Mars are active in the modern martian environment. This example from the Lycus Sulci (Olympus Mons'aureole') region shows a case where small windblown dunes at the base of a slope have been over-ridden by more recent dark streaks (arrows). The dark streaks are most likely caused by what geologists call mass wasting or mass movement (landslides and avalanches are mass movements). Dark slope streaks such as these are common in dustier regions of Mars, and they appear to result from movement of extremely dry dust or sand in an almost fluidlike manner down a slope. This movement disrupts the bright dust coating on the surface and thus appears darker than the surrounding terrain.In this case, the dark slope streaks have moved up and over the dunes at the bottom of the slope, indicating that the process that moves sediment down the slope is more active (that is, it has occurred more recently and hence is more likely to occur) in the modern environment than is the movement of dunes and ripples at this location on Mars. The dunes, in fact, are probably mantled by dust. This October 1997 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) picture is illuminated from the left and located near 31.6oN, 134.0oW.Slope stability analysis using limit equilibrium method in nonlinear criterion.
Lin, Hang; Zhong, Wenwen; Xiong, Wei; Tang, Wenyu
2014-01-01
In slope stability analysis, the limit equilibrium method is usually used to calculate the safety factor of slope based on Mohr-Coulomb criterion. However, Mohr-Coulomb criterion is restricted to the description of rock mass. To overcome its shortcomings, this paper combined Hoek-Brown criterion and limit equilibrium method and proposed an equation for calculating the safety factor of slope with limit equilibrium method in Hoek-Brown criterion through equivalent cohesive strength and the friction angle. Moreover, this paper investigates the impact of Hoek-Brown parameters on the safety factor of slope, which reveals that there is linear relation between equivalent cohesive strength and weakening factor D. However, there are nonlinear relations between equivalent cohesive strength and Geological Strength Index (GSI), the uniaxial compressive strength of intact rock σ ci , and the parameter of intact rock m i . There is nonlinear relation between the friction angle and all Hoek-Brown parameters. With the increase of D, the safety factor of slope F decreases linearly; with the increase of GSI, F increases nonlinearly; when σ ci is relatively small, the relation between F and σ ci is nonlinear, but when σ ci is relatively large, the relation is linear; with the increase of m i , F decreases first and then increases.
Slope Stability Analysis Using Limit Equilibrium Method in Nonlinear Criterion
Lin, Hang; Zhong, Wenwen; Xiong, Wei; Tang, Wenyu
2014-01-01
In slope stability analysis, the limit equilibrium method is usually used to calculate the safety factor of slope based on Mohr-Coulomb criterion. However, Mohr-Coulomb criterion is restricted to the description of rock mass. To overcome its shortcomings, this paper combined Hoek-Brown criterion and limit equilibrium method and proposed an equation for calculating the safety factor of slope with limit equilibrium method in Hoek-Brown criterion through equivalent cohesive strength and the friction angle. Moreover, this paper investigates the impact of Hoek-Brown parameters on the safety factor of slope, which reveals that there is linear relation between equivalent cohesive strength and weakening factor D. However, there are nonlinear relations between equivalent cohesive strength and Geological Strength Index (GSI), the uniaxial compressive strength of intact rock σ ci, and the parameter of intact rock m i. There is nonlinear relation between the friction angle and all Hoek-Brown parameters. With the increase of D, the safety factor of slope F decreases linearly; with the increase of GSI, F increases nonlinearly; when σ ci is relatively small, the relation between F and σ ci is nonlinear, but when σ ci is relatively large, the relation is linear; with the increase of m i, F decreases first and then increases. PMID:25147838
Zhou, Jia-wen; Shi, Chong; Xu, Fu-gang
2013-01-01
Two important features of the high slopes at Gushui Hydropower Station are layered accumulations (rock-soil aggregate) and multilevel toppling failures of plate rock masses; the Gendakan slope is selected for case study in this paper. Geological processes of the layered accumulation of rock and soil particles are carried out by the movement of water flow; the main reasons for the toppling failure of plate rock masses are the increasing weight of the upper rock-soil aggregate and mountain erosion by river water. Indoor triaxial compression test results show that, the cohesion and friction angle of the rock-soil aggregate decreased with the increasing water content; the cohesion and the friction angle for natural rock-soil aggregate are 57.7 kPa and 31.3° and 26.1 kPa and 29.1° for saturated rock-soil aggregate, respectively. The deformation and failure mechanism of the rock-soil aggregate slope is a progressive process, and local landslides will occur step by step. Three-dimensional limit equilibrium analysis results show that the minimum safety factor of Gendakan slope is 0.953 when the rock-soil aggregate is saturated, and small scale of landslide will happen at the lower slope.
Application of Soil Nailing Technique for Protection and Preservation Historical Buildings
NASA Astrophysics Data System (ADS)
Kulczykowski, Marek; Przewłócki, Jarosław; Konarzewska, Bogusława
2017-10-01
Soil nailing is one of the recent in situ techniques used for soil improvement and in stabilizing slopes. The process of soil nailing consists of reinforcing the natural ground with relatively small steel bars or metal rods, grouted in the pre-drilled holes. This method has a wide range of applications for stabilizing deep excavations and steep slopes. Soil nailing has recently become a very common method of slope stabilisation especially where situated beneath or adjacent to historical buildings. Stabilisation by nails drilled into existing masonry structures such as failing retaining walls abutments, provide long term stability without demolition and rebuilding costs. Two cases of soil nailing technology aimed at stabilising slopes beneath old buildings in Poland are presented in this paper. The first concerns application of this technology to repair a retaining wall supporting the base of the dam at the historic hydroelectric power plant in Rutki. The second regards a concept of improving the slope of the Castle Hill in Sandomierz. An analysis of the slope stability for the latter case, using stabilisation technique with the piling system and soil nailing was performed. Some advantages of soil nailing especially for protection of historical buildings, are also underlined. And, the main results of an economic comparison analysis are additionally presented.
Earth Observations taken by the Expedition 27 Crew
2011-05-15
ISS027-E-031908 (15 May 2011) --- The Horseshoe 2 fire is featured in this image photographed by an Expedition 27 crew member on the International Space Station. The Horseshoe 2 fire, located along the southeastern flank of the Chiricahua Mountains in southeastern Arizona, began on May 8, 2011 at approximately 11:00 a.m. The fire is thought to have been started by human activities. This photograph illustrates the area (approximately 8,900 hectares, or 22,110 acres) and position of the fire within the mountains on May 15, 2011, as well as an extensive smoke plume extending to the east-northeast over a distance of at least 60 kilometers (approximately 40 miles). As of May 19, 2011, the fire had burned an area of nearly 14,000 hectares (approximately 34,400 acres) of grasses, shrubs, and trees along the mountain slopes. The Chiricahua Mountains are included within the Chiricahua National Monument located near the borders of Arizona, USA; New Mexico, USA; and Chihuahua, United Mexican States. Elevations in the mountains range from approximately 914 – 3,267 meters (300 – 10,720 feet) above sea level. The higher elevations—known regionally as “sky islands”—allow for biologically diverse plant and animal communities, adapted to cooler and wetter conditions, to survive while surrounded by semi-arid to arid desert conditions at lower elevations. The image highlights this contrast in environments; pine and oak forest contributes to the dark coloration of the upper slopes and peaks of the Chiricahuas at center, while the flat, gray to tan surface of Willcox Playa (an interior-draining basin or dry lake) to the northwest is indicative of the adjacent desert environment.
Hierarchical formation of dark matter halos and the free streaming scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishiyama, Tomoaki, E-mail: ishiyama@ccs.tsukuba.ac.jp
2014-06-10
The smallest dark matter halos are formed first in the early universe. According to recent studies, the central density cusp is much steeper in these halos than in larger halos and scales as ρ∝r {sup –(1.5-1.3)}. We present the results of very large cosmological N-body simulations of the hierarchical formation and evolution of halos over a wide mass range, beginning from the formation of the smallest halos. We confirmed early studies that the inner density cusps are steeper in halos at the free streaming scale. The cusp slope gradually becomes shallower as the halo mass increases. The slope of halosmore » 50 times more massive than the smallest halo is approximately –1.3. No strong correlation exists between the inner slope and the collapse epoch. The cusp slope of halos above the free streaming scale seems to be reduced primarily due to major merger processes. The concentration, estimated at the present universe, is predicted to be 60-70, consistent with theoretical models and earlier simulations, and ruling out simple power law mass-concentration relations. Microhalos could still exist in the present universe with the same steep density profiles.« less
NASA Astrophysics Data System (ADS)
Bottari, C.; Albano, M.; Capizzi, P.; D'Alessandro, A.; Doumaz, F.; Martorana, R.; Moro, M.; Saroli, M.
2018-01-01
Seismotectonic activity and slope instability are a permanent threat in the archaeological site of Abakainon and in the nearby village of Tripi in NE Sicily. In recent times, signs of an ancient earthquake have been identified in the necropolis of Abakainon which dating was ascertained to the first century AD earthquake. The site is located on a slope of Peloritani Mts. along the Tindari Fault Line and contains evidence for earthquake-induced landslide, including fallen columns and blocks, horizontal shift and counter slope tilting of the tomb basements. In this paper, we used an integrated geomorphological and geophysical analysis to constrain the landslide. The research was directed to the acquisition of deep geological data for the reconstruction of slope process and the thickness of mobilized materials. The applied geophysical techniques included seismic refraction tomography and electrical resistivity tomography. The surveys were performed to delineate the sliding surface and to assess approximately the thickness of mobilized materials. The geophysical and geomorphologic data confirmed the presence of different overlapped landslides in the studied area. Moreover, a numerical simulation of the slope under seismic loads supports the hypothesis of a mobilization of the landslide mass in case of strong earthquakes (PGA > 0.3 g). However, numerical results highlight that the main cause of destruction for the Abakainon necropolis is the amplification of the seismic waves, occasionally accompanied by surficial sliding.
A new package in MODFLOW to simulate unconfined groundwater flow in sloping aquifers.
Wang, Quanrong; Zhan, Hongbin; Tang, Zhonghua
2014-01-01
The nonhorizontal-model-layer (NHML) grid system is more accurate than the horizontal-model-layer grid system to describe groundwater flow in an unconfined sloping aquifer on the basis of MODFLOW-2000. However, the finite-difference scheme of NHML was based on the Dupuit-Forchheimer assumption that the streamlines were horizontal, which was acceptable for slope less than 0.10. In this study, we presented a new finite-difference scheme of NHML based on the Boussinesq assumption and developed a new package SLOPE which was incorporated into MODFLOW-2000 to become the MODFLOW-SP model. The accuracy of MODFLOW-SP was tested against solution of Mac Cormack (1969). The differences between the solutions of MODFLOW-2000 and MODFLOW-SP were nearly negligible when the slope was less than 0.27, and they were noticeable during the transient flow stage and vanished in steady state when the slope increased above 0.27. We established a model considering the vertical flow using COMSOL Multiphysics to test the robustness of constrains used in MODFLOW-SP. The results showed that streamlines quickly became parallel with the aquifer base except in the narrow regions near the boundaries when the initial flow was not parallel to the aquifer base. MODFLOW-SP can be used to predict the hydraulic head of an unconfined aquifer along the profile perpendicular to the aquifer base when the slope was smaller than 0.50. The errors associated with constrains used in MODFLOW-SP were small but noticeable when the slope increased to 0.75, and became significant for the slope of 1.0. © 2013, National Ground Water Association.
Debby K. Fantz; Rochelle B. Renken
1997-01-01
We conducted a capture-recapture study on northeast-facing slopes to determine the pre-treatment landscape-scale effect of even- and uneven-aged silvicultural treatments upon the species composition, species richness, and relative abundance of small mammals on Missouri Ozark Forest Ecosystem Project (MOFEP) sites. Similarity indices of species composition between sites...
Low-flow characteristics of streams in the Puget Sound region, Washington
Hidaka, F.T.
1973-01-01
Periods of low streamflow are usually the most critical factor in relation to most water uses. The purpose of this report is to present data on low-flow characteristics of streams in the Puget Sound region, Washington, and to briefly explain some of the factors that influence low flow in the various basins. Presented are data on low-flow frequencies of streams in the Puget Sound region, as gathered at 150 gaging stations. Four indexes were computed from the flow-flow-frequency curves and were used as a basis to compare the low-flow characteristics of the streams. The indexes are the (1) low-flow-yield index, expressed in unit runoff per square mile; (2) base-flow index, or the ratio of the median 7-day low flow to the average discharge; (3) slope index, or slope of annual 7-day low-flow-frequency curve; and (4) spacing index, or spread between the 7-day and 183-day low-flow-frequency curves. The indexes showed a wide variation between streams due to the complex interrelation between climate, topography, and geology. The largest low-flow-yield indexes determined--greater than 1.5 cfs (cubic feet per second) per square mile--were for streams that head at high altitudes in the Cascade and Olympic Mountains and have their sources at glaciers. The smallest low-flow-yield indexes--less than 0.5 cfs per square mile--were for the small streams that drain the lowlands adjacent to Puget Sound. Indexes between the two extremes were for nonglacial streams that head at fairly high altitudes in areas of abundant precipitation. The base-flow index has variations that can be attributed to a basin's hydrogeology, with very little influence from climate. The largest base-flow indexes were obtained for streams draining permeable unconsolidated glacial and alluvial sediments in parts of the lowlands adjacent to Puget Sound. Large volume of ground water in these materials sustain flows during late summer. The smallest indexes were computed for streams draining areas underlain by relatively impermeable igneous, sedimentary, and metamorphic rocks or by relatively impermeable glacial till. Melt water from snow and ice influences the index for streams which originate at glaciers, and result in fairly large indexes--0.25 or greater. The slope index is influenced principally by the character of the geologic materials that underlie the basin. The largest slope indexes were computed for small streams that drain areas underlain by compact glacial till or consolidated sedimentary rocks. In contrast, lowland streams that flow through areas underlain by unconsolidated alluvia and glacial deposits have the smallest indexes. Small slope indexes also are characteristic of glacial streams and show the moderating effect of the snow and ice storage in the high mountain basins. The spacing indexes are similar to the slope indexes in that they are affected by the character of the geologic materials underlying a basin. The largest spacing indexes are characteristic of small streams whose basins are underlain by glacial till or by consolidated sedimentary rocks. The smallest indexes were computed for some lowland streams draining areas underlain by permeable glacial and alluvial sediments. The indexes do not appear to have a definite relation to each other. The low-flow-yield indexes are not related to either the slope or spacing indexes because snow and ice storage has a great influence on the low-flow-yield index, while the character of the geologic materials influences the slope and spacing indexes. A relation exists between the slope and spacing indexes but many anomalies occur that cannot be explained by the geology of the basins.
Shortwave radiation parameterization scheme for subgrid topography
NASA Astrophysics Data System (ADS)
Helbig, N.; LöWe, H.
2012-02-01
Topography is well known to alter the shortwave radiation balance at the surface. A detailed radiation balance is therefore required in mountainous terrain. In order to maintain the computational performance of large-scale models while at the same time increasing grid resolutions, subgrid parameterizations are gaining more importance. A complete radiation parameterization scheme for subgrid topography accounting for shading, limited sky view, and terrain reflections is presented. Each radiative flux is parameterized individually as a function of sky view factor, slope and sun elevation angle, and albedo. We validated the parameterization with domain-averaged values computed from a distributed radiation model which includes a detailed shortwave radiation balance. Furthermore, we quantify the individual topographic impacts on the shortwave radiation balance. Rather than using a limited set of real topographies we used a large ensemble of simulated topographies with a wide range of typical terrain characteristics to study all topographic influences on the radiation balance. To this end slopes and partial derivatives of seven real topographies from Switzerland and the United States were analyzed and Gaussian statistics were found to best approximate real topographies. Parameterized direct beam radiation presented previously compared well with modeled values over the entire range of slope angles. The approximation of multiple, anisotropic terrain reflections with single, isotropic terrain reflections was confirmed as long as domain-averaged values are considered. The validation of all parameterized radiative fluxes showed that it is indeed not necessary to compute subgrid fluxes in order to account for all topographic influences in large grid sizes.
Hayashi, Ken; Hayashi, Hideyuki
2004-08-01
To compare the impairment in visual function caused by glare with 2 acrylic intraocular lenses (IOLs) with different modified optic edges. Hayashi Eye Hospital, Fukuoka, Japan. Fifty-four patients had implantation of an IOL with a textured edge (Alcon MA60AC) in 1 eye and an IOL with a round-anterior, sloped-sided edge (AMO AR40e) in the opposite eye. Visual acuity was measured at 5 contrast visual targets (100%, 25%, 10%, 5%, and 2.5%) (contrast visual acuity) under photopic and mesopic conditions with and without a glare source approximately 1 month after surgery using the Contrast Sensitivity Accurate Tester (Menicon CAT-2000). The mean mesopic contrast visual acuity at moderate- to low-contrast visual targets was significantly worse in the presence of a glare source in both groups, whereas photopic contrast visual acuity did not change significantly. There were no significant differences between the 2 groups in the mean visual acuity or in photopic or mesopic lighting contrast visual acuity with and without a glare source. Furthermore, there was no significant difference in loss of contrast visual acuity in the presence of glare. Mesopic contrast sensitivity with both acrylic IOLs was impaired significantly in the presence of glare, but the impairment of contrast sensitivity from glare was approximately the same between eyes with a textured-edge IOL and eyes with a round-anterior, sloped-sided edge IOL.
Response Growth With Sound Level in Auditory-Nerve Fibers After Noise-Induced Hearing Loss
Heinz, Michael G.; Young, Eric D.
2010-01-01
People with sensorineural hearing loss are often constrained by a reduced acoustic dynamic range associated with loudness recruitment; however, the neural correlates of loudness and recruitment are still not well understood. The growth of auditory-nerve (AN) activity with sound level was compared in normal-hearing cats and in cats with a noise-induced hearing loss to test the hypothesis that AN-fiber rate-level functions are steeper in impaired ears. Stimuli included best-frequency and fixed-frequency tones, broadband noise, and a brief speech token. Three types of impaired responses were observed. 1) Fibers with rate-level functions that were similar across all stimuli typically had broad tuning, consistent with outer-hair-cell (OHC) damage. 2) Fibers with a wide dynamic range and shallow slope above threshold often retained sharp tuning, consistent with primarily inner-hair-cell (IHC) damage. 3) Fibers with very steep rate-level functions for all stimuli had thresholds above approximately 80 dB SPL and very broad tuning, consistent with severe IHC and OHC damage. Impaired rate-level slopes were on average shallower than normal for tones, and were steeper in only limited conditions. There was less variation in rate-level slopes across stimuli in impaired fibers, presumably attributable to the lack of suppression-induced reductions in slopes for complex stimuli relative to BF-tone slopes. Sloping saturation was observed less often in impaired fibers. These results illustrate that AN fibers do not provide a simple representation of the basilar-membrane I/O function and suggest that both OHC and IHC damage can affect AN response growth. PMID:14534289
Zhang, Xuyang; Liu, Xingmei; Zhang, Minghua; Dahlgren, Randy A; Eitzel, Melissa
2010-01-01
Vegetated buffers are a well-studied and widely used agricultural management practice for reducing nonpoint-source pollution. A wealth of literature provides experimental data on their mitigation efficacy. This paper aggregated many of these results and performed a meta-analysis to quantify the relationships between pollutant removal efficacy and buffer width, buffer slope, soil type, and vegetation type. Theoretical models for removal efficacy (Y) vs. buffer width (w) were derived and tested against data from the surveyed literature using statistical analyses. A model of the form Y = K x (1-e(-bxw)), (0 < K < or = 100) successfully captured the relationship between buffer width and pollutant removal, where K reflects the maximum removal efficacy of the buffer and b reflects its probability to remove any single particle of pollutant in a unit distance. Buffer width alone explains 37, 60, 44, and 35% of the total variance in removal efficacy for sediment, pesticides, N, and P, respectively. Buffer slope was linearly associated with sediment removal efficacy either positively (when slope < or = 10%) or negatively (when slope > 10%). Buffers composed of trees have higher N and P removal efficacy than buffers composed of grasses or mixtures of grasses and trees. Soil drainage type did not show a significant effect on pollutant removal efficacy. Based on our analysis, a 30-m buffer under favorable slope conditions (approximately 10%) removes more than 85% of all the studied pollutants. These models predicting optimal buffer width/slope can be instrumental in the design, implementation, and modeling of vegetated buffers for treating agricultural runoff.
GLORIA imagery links sedimentation in Aleutian Trench to Yakutat margin via surveyor channel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, P.R.; Bruns, T.R.; Mann, D.M.
1990-06-01
GLORIA side-scan sonar imagery shows that the continental slope developing along the active margin of the Gulf of Alaska is devoid of large submarine canyons, in spite of the presence of large glacially formed sea valleys that cross the continental shelf. In the western and northern Gulf, discontinuous, actively growing deformation structures disrupt or divert the downslope transport of sediment into the Aleutian Trench. To the east of Middleton Island, the slope is intensively gullied and incised only by relatively small canyons. At the base of the gullied slope between Pamplona Spur and Alsek Valley, numerous small slope gullies coalescemore » into three turbidity current channels that merge to form the Surveyor deep-sea channel. About 350 km from the margin, the channel crosses the structural barrier formed by the Kodiak-Bowie Seamount chain and heads south for another 150 km where it bends northerly, perhaps influenced by the oceanic basement relief of the Patton Seamounts. The channel, now up to 5 km wide and deeply entrenched to 450 m, continues northerly for 200 km where it intercepts the Aleutian Trench, some 700 km from the Yakutat margin. South of Surveyor Channel, GLORIA imagery revealed evidence of another older channel. The older channel meanders through a gap in the seamount chain and eventually bends northwesterly. This now inactive, largely buried channel may have carried turbidity currents to the Aleutian Trench concurrent with the active Surveyor Channel.« less
Occurrences of alunite, prophyllite, and clays in the Cerro La Tiza area, Puerto Rico
Hildebrand, Fred Adelbert; Smith, Raymond J.
1959-01-01
A deposit of hydrothermally altered rocks in the Cerro La Tiza area located between the towns of Comerio and Aguas Buenas, approximately 25 kilometers southwest of San Juan, Puerto Rico, was mapped and studied to determine the principal minerals, their extent distribution and origin, and the possibility of their economic utilization, especially in Puerto Rico. The Cerro la Tiza area is about 7? kilometers long, has an average width of about 1? kilometers and embraces a total area of approximately 15 square kilometers. The principal mineralized zone, a dike-like mass of light-colored rocks surrounded by dark-colored volcanic country rocks, occupies the crest and upper slopes of east-trending Cerro La Tiza ridge and is believed to be of Late Cretaceous or Eocene age. This zone is approximately 5,300 meters long, 430 meters wide and has an area of approximately 225 hectares (556 acres). The rocks of the mineralized zone are of mixed character and consist mainly of massive quartzose rocks and banded quartz-alunite rocks closely associated with foliated pyrophyllitic, sericitic and clayey rocks. The principal minerals in probably order of abundance are quartz, alunite, pyrophyllite, kaolin group clays (kaolinite and halloysite) and sericite. Minerals of minor abundance are native sulfure, diaspore, svanbergite (?), sunyite (?), hematite, goethite, pyrite, rutile (?) and very small quantities of unidentified minerals. The mineralized zone has broken down to deposits of earth-rock debris of Quaternary age that cover much of the slopes and flanks of Cerro La Tiza. This debris consists generally of fragments and boulders with a very large size range embedded in a clayey matrix. The distribution of the earth-rock debris with respect to the present topography and drainage suggests that it may have undergone at least two cycles of erosion. Underlying the earth-rock debris and completely enclosing the mineralized zone are country rocks of probably Late Cretaceous age. These consist principally of low flows and volcanic and flow breccias but contain thin interbedded siltstones and sandstones. The lavas are generally predominant at the western end of the area and the breccias at the eastern end. The mineralized zone and the country rocks are sheared along two predominant directions that are approximately N 70 degrees E and N 70 degrees W. The ridge of Cerro La Tiza appears to be a broad shear zone through which hydrothermal emanations gained access to the country rocks. The emanations are believed to have originated from intrusive rocks that probably underlie the area. The surrounding area contains both large and small exposed intrusive bodies. The largest one is the San Lorenzo batholith of Late Cretaceous or Eocene age whose exposed northwest edge is approximately 19 kilometers southeast of the eastern end of the Cerro La Tiza area. Other zones of hydrothermally altered rocks were discovered along a mineralized belt extending eastward from Cerro La Tiza through the Rio Gurabo Valley nearly to the Vieques Passage bordering the east coast of Puerto Rico. Other zones were discovered north and south of this belt and still others were found circumventing the San Lorenzo batholith. The most abundant minerals of the mineralized zone can be exploited for economic utilization in Puerto Rico. Alunite can be utilized in the manufacture of aluminum sulfate for water purification. It can also be used in the manufacture of alumina refractory materials. Pyrophyllite can be used as a carrier for insecticides and fungicides. It can also be utilized for the manufacture of ceramic products, as a filler in the soap industry and as a carrier for paint pigments. Kaolinite can be used in the ceramic industry and in the manufacture of glass as a substitute for feldspar. Halloysite might be utilized as a catalyst support in the cracking of petroleum. Tonnages of reserve ore on Cerro La Tiza are calculated to be 1,590,000 inferred short tons (1,4
Rockfall catchment area design guide : final report.
DOT National Transportation Integrated Search
2001-11-01
The data gathered from an extensive research project consisting of rolling approximately 11,250 rocks off vertical; 0.25H:1V; 0.5H:1V; 0.75H:1V; and 1.0H:1.0V slopes of three different heights (40, 60 and 80 feet) into three differently inclined catc...
On the Power of Multivariate Latent Growth Curve Models to Detect Correlated Change
ERIC Educational Resources Information Center
Hertzog, Christopher; Lindenberger, Ulman; Ghisletta, Paolo; Oertzen, Timo von
2006-01-01
We evaluated the statistical power of single-indicator latent growth curve models (LGCMs) to detect correlated change between two variables (covariance of slopes) as a function of sample size, number of longitudinal measurement occasions, and reliability (measurement error variance). Power approximations following the method of Satorra and Saris…
Algorithms and a short description of the D1_Flow program for numerical modeling of one-dimensional steady-state flow in horizontally heterogeneous aquifers with uneven sloping bases are presented. The algorithms are based on the Dupuit-Forchheimer approximations. The program per...
Rockfall catchment area design guide : final report : appendices.
DOT National Transportation Integrated Search
2001-11-01
The data gathered from an extensive research project consisting of rolling approximately 11,250 rocks off vertical; 0.25H:1V; 0.5H:1V; 0.75H:1V; and 1.0H:1.0V slopes of three different heights (40, 60 and 80 feet) into three differently inclined catc...
Rockfall catchment area design guide : final report
DOT National Transportation Integrated Search
2001-12-01
The data gathered from an exhaustive research project consisting of rolling a total of approximately 11,250 rocks off vertical; 4V:1H;2V;1H;1.33V:1H;1.0V:1.0H slopes of three different heights (12.2, 18.3, and 24.4 meters) into three differently incl...
A Natural Approach to the Number "e"
ERIC Educational Resources Information Center
Doerr, Helen M.; Meehan, Donna J.; O'Neil, AnnMarie H.
2012-01-01
In this article, the authors introduce the value of "e" by building on students' prior knowledge of slope and using their abilities to analyze, approximate, and interpret rates of change using graphs, symbols, and numerical data. This approach allows students to construct and interpret the value of "e" while laying the conceptual foundation for…
Quasi-analytical treatment of spatially averaged radiation transfer in complex terrain
NASA Astrophysics Data System (ADS)
Löwe, H.; Helbig, N.
2012-04-01
We provide a new quasi-analytical method to compute the topographic influence on the effective albedo of complex topography as required for meteorological, land-surface or climate models. We investigate radiative transfer in complex terrain via the radiosity equation on isotropic Gaussian random fields. Under controlled approximations we derive expressions for domain averages of direct, diffuse and terrain radiation and the sky view factor. Domain averaged quantities are related to a type of level-crossing probability of the random field which is approximated by longstanding results developed for acoustic scattering at ocean boundaries. This allows us to express all non-local horizon effects in terms of a local terrain parameter, namely the mean squared slope. Emerging integrals are computed numerically and fit formulas are given for practical purposes. As an implication of our approach we provide an expression for the effective albedo of complex terrain in terms of the sun elevation angle, mean squared slope, the area averaged surface albedo, and the direct-to-diffuse ratio of solar radiation. As an application, we compute the effective albedo for the Swiss Alps and discuss possible generalizations of the method.
Thermal and energetic constraints on ectotherm abundance: A global test using lizards
Buckley, L.B.; Rodda, G.H.; Jetz, W.
2008-01-01
Population densities of birds and mammals have been shown to decrease with body mass at approximately the same rate as metabolic rates increase, indicating that energetic needs constrain endotherm population densities. In ectotherms, the exponential increase of metabolic rate with body temperature suggests that environmental temperature may additionally constrain population densities. Here we test simple bioenergetic models for an ecologically important group of ectothermic vertebrates by examining 483 lizard populations. We find that lizard population densities decrease as a power law of body mass with a slope approximately inverse to the slope of the relationship between metabolic rates and body mass. Energy availability should limit population densities. As predicted, environmental productivity has a positive effect on lizard density, strengthening the relationship between lizard density and body mass. In contrast, the effect of environmental temperature is at most weak due to behavioral thermoregulation, thermal evolution, or the temperature dependence of ectotherm performance. Our results provide initial insights into how energy needs and availability differentially constrain ectotherm and endotherm density across broad spatial scales. ?? 2008 by the Ecological Society of America.
Thermal and energetic constraints on ectotherm abundance: a global test using lizards.
Buckley, Lauren B; Rodda, Gordon H; Jetz, Walter
2008-01-01
Population densities of birds and mammals have been shown to decrease with body mass at approximately the same rate as metabolic rates increase, indicating that energetic needs constrain endotherm population densities. In ectotherms, the exponential increase of metabolic rate with body temperature suggests that environmental temperature may additionally constrain population densities. Here we test simple bioenergetic models for an ecologically important group of ectothermic vertebrates by examining 483 lizard populations. We find that lizard population densities decrease as a power law of body mass with a slope approximately inverse to the slope of the relationship between metabolic rates and body mass. Energy availability should limit population densities. As predicted, environmental productivity has a positive effect on lizard density, strengthening the relationship between lizard density and body mass. In contrast, the effect of environmental temperature is at most weak due to behavioral thermoregulation, thermal evolution, or the temperature dependence of ectotherm performance. Our results provide initial insights into how energy needs and availability differentially constrain ectotherm and endotherm density across broad spatial scales.
The impact of periglacial cover beds on runoff generation in a small spring catchment, Ore Mountains
NASA Astrophysics Data System (ADS)
Heller, Katja; Hübner, Rico; Kleber, Arno
2010-05-01
The knowledge of hillslope processes is essential to improve pollutant research and flood prediction. Relic periglacial covers are widespread on slopes of the central European low mountain ranges. Cover beds are assumed to be an important control factor for subcutaneous water flow paths. Periglacial cover beds originated by solifluction, kryoturbation and accumulation of loess during Pleistocene times. Differences in bulk density, sediment type, as well as structure and rate of coarse clasts in the layers result in vertical disparity in hydraulic conductivity (anisotropy), leading to interflow. This hypothesis has been testing in an ongoing study in a small spring catchment (6 ha) in the eastern Ore Mountains, south-eastern Germany, since November 2007. The study area is underlain by gneiss and is formed as a slope hollow. The cover beds consist of a 3-layer complex with upper layer, intermediate layer and basal layer. Soil water tension within the layers is measured with 76 recording tensiometers. Electrical resistivity tomography was used to monitor the spatial dispersal of soil moisture. Results of hydrometrical measurements and of electrical resistivity surveys will be described and new findings on slope water dynamics will be presented.
NASA Astrophysics Data System (ADS)
Anderson, Suzanne P.; Foster, Melissa A.; Anderson, Scott W.; Dühnforth, Miriam; Anderson, Robert S.
2015-04-01
Erosion rates are expected vary with lithology, climate, and topographic slope, yet assembling these variations for an entire landscape is rarely done. The Front Range of the southern Rocky Mountains in Colorado, USA, exhibits contrasts in all three parameters. The range comprises ~2300 m in relief from the Plains to the crags of the Continental Divide. Its abrupt mountain front coincides closely with the boundary between marine sedimentary rocks to the east and Proterozoic crystalline rocks (primarily granodiorite and gneiss) to the west. Mean annual temperature declines and mean annual precipitation increases with elevation, from ~11° C/490 mm at the western edge of the Plains to -3.7° C/930 mm on Niwot Ridge near the range crest. The range contains regions of low relief with rolling topography, in which slopes rarely exceed 20° , as well as deeply incised glacial valleys and fluvial canyons lined by steep slopes (>25° ). Cosmogenic 10Be based erosion rates vary by a factor of ~5 within crystalline rock across the range. The lowest rates (5-10 mm/ka) are found on low relief summit tors in the alpine, where temperatures are low and precipitation is high. Slightly higher erosion rates (20-30 mm/ka) are found in low relief crystalline rock areas with montane forest cover. Taken together, these rates suggest that on low slopes, rock-weathering rates (which place a fundamental limit on erosion rates) are lower in cold alpine settings. Over the 40-150 ka averaging time of 10Be erosion rates, lower rates are found where periglacial/tundra conditions have prevailed, while moderate rates occur where conditions have varied from periglacial/tundra in the past to frigid regime/montane forest in the Holocene. Higher basin-averaged erosion rates of 40-60 mm/ka are reported for 'canyon edge' basins (Dethier et al., 2014, Geology), which are small, steep basins responding to fluvial bedrock incision that formed the canyons in the late Cenozoic. Are higher erosion rates in canyon-edge basins evidence that topographic slope affects weathering rates? We argue that it is more likely that these high erosion rates reflect faster weathering in areas with thinner soil cover. A recent major storm unleashed landslides and debris flows from ~10% of these canyon-edge basins. On average, the volume of material evacuated in these basins was equivalent to ~300 years of soil production by weathering at these rates, approximately the recurrence interval of the storm. The conceptual model that emerges is that agents that cut into rock (bedrock rivers, glaciers) set the pace for exhumation. Adjoining hillslopes erode at a pace set by weathering in the prevailing climate/vegetation regime, conditioned by the ability of sediment transport processes to limit soil thickness on the slopes.
Estimating stochastic noise using in situ measurements from a linear wavefront slope sensor.
Bharmal, Nazim Ali; Reeves, Andrew P
2016-01-15
It is shown how the solenoidal component of noise from the measurements of a wavefront slope sensor can be utilized to estimate the total noise: specifically, the ensemble noise variance. It is well known that solenoidal noise is orthogonal to the reconstruction of the wavefront under conditions of low scintillation (absence of wavefront vortices). Therefore, it can be retrieved even with a nonzero slope signal present. By explicitly estimating the solenoidal noise from an ensemble of slopes, it can be retrieved for any wavefront sensor configuration. Furthermore, the ensemble variance is demonstrated to be related to the total noise variance via a straightforward relationship. This relationship is revealed via the method of the explicit estimation: it consists of a small, heuristic set of four constants that do not depend on the underlying statistics of the incoming wavefront. These constants seem to apply to all situations-data from a laboratory experiment as well as many configurations of numerical simulation-so the method is concluded to be generic.
Chen, Yulong; Irfan, Muhammad; Uchimura, Taro; Zhang, Ke
2018-01-01
Rainfall-induced landslides are one of the most widespread slope instability phenomena posing a serious risk to public safety worldwide so that their temporal prediction is of great interest to establish effective warning systems. The objective of this study is to determine the effectiveness of elastic wave velocities in the surface layer of the slope in monitoring, prediction and early warning of landslide. The small-scale fixed and varied, and large-scale slope model tests were conducted. Analysis of the results has established that the elastic wave velocity continuously decreases in response of moisture content and deformation and there was a distinct surge in the decrease rate of wave velocity when failure was initiated. Based on the preliminary results of this analysis, the method using the change in elastic wave velocity proves superior for landslide early warning and suggests that a warning be issued at switch of wave velocity decrease rate. PMID:29584699
Slope streaks on Mars: A new “wet” mechanism
NASA Astrophysics Data System (ADS)
Kreslavsky, Mikhail A.; Head, James W.
2009-06-01
Slope steaks are one of the most intriguing modern phenomena observed on Mars. They have been mostly interpreted as some specific type of granular flow. We propose another mechanism for slope streak formation on Mars. It involves natural seasonal formation of a modest amount of highly concentrated chloride brines within a seasonal thermal skin, and runaway propagation of percolation fronts. Given the current state of knowledge of temperature regimes and the composition and structure of the surface layer in the slope streak regions, this mechanism is consistent with the observational constraints; it requires an assumption that a significant part of the observed chlorine to be in form of calcium and ferric chloride, and a small part of the observed hydrogen to be in form of water ice. This "wet" mechanism has a number of appealing advantages in comparison to the widely accepted "dry" granular flow mechanism. Potential tests for the "wet" mechanism include better modeling of the temperature regime and observations of the seasonality of streak formation.
Oliver, Ian W; Graham, Margaret C; MacKenzie, Angus B; Ellam, Robert M; Farmer, John G
2008-12-15
The mobility and bioavailability of depleted uranium (DU) in soils at a UK Ministry of Defence (UK MoD) weapons testing range were investigated. Soil and vegetation were collected near a test-firing position and at eight points along a transect line extending approximately 200 m down-slope, perpendicular to the firing line, toward a small stream. Earthworms and porewaters were subsequently separated from the soils and both total filtered porewater (<0.2 microm) and discrete size fractions (0.2 microm-100 kDa, 100-30 kDa, 30-3 kDa, and <3 kDa)obtainedvia centrifugal ultrafiltration were examined. Uranium concentrations were determined by inductively coupled plasma optical emission spectrometry (ICP-OES) for soils and ICP-mass spectrometry (MS) for earthworms and porewaters, while 235U:238U atom ratios were determined by multicollector (MC)-ICP-MS. Comparison of the porewater and earthworm isotopic values with those of the soil solids indicated that DU released into the environment during weapons test-firing operations was more labile and more bioavailable than naturally occurring U in the soils at the testing range. Importantly, DU was shown to be present in soil porewater even at a distance of approximately 185 m from the test-firing position and, along the extent of the transect was apparently associated with organic colloids.
An approximate fluvial equilibrium topography for the Alps
NASA Astrophysics Data System (ADS)
Stüwe, K.; Hergarten, S.
2012-04-01
This contribution addresses the question whether the present topography of the Alps can be approximated by a fluvial equilibrium topography and whether this can be used to determine uplift rates. Based on a statistical analysis of the present topography we use a stream-power approach for erosion where the erosion rate is proportional to the square root of the catchment size for catchment sizes larger than 12 square kilometers and a logarithmic dependence to mimic slope processes at smaller catchment sizes. If we assume a homogeneous uplift rate over the entire region (block uplift), the best-fit fluvial equilibrium topography differs from the real topography by about 500 m RMS (root mean square) with a strong systematic deviation. Regions of low elevation are too high in the equilibrium topography, while high-mountain regions are too low. The RMS difference significantly decreases if a spatially variable uplift function is allowed. If a strong variation of the uplift rate on a scale of 5 km is allowed, the systematic deviation becomes rather small, and the RMS difference decreases to about 150 m. A significant part of the remaining deviation apparently arises from glacially-shaped valleys, while another part may result from prematurity of the relief (Hergarten, Wagner & Stüwe, EPSL 297:453, 2010). The best-fit uplift function can probably be used for forward or backward simulation of the landform evolution.
Direct Numerical Simulations of High-Speed Turbulent Boundary Layers over Riblets
NASA Technical Reports Server (NTRS)
Duan, Lian; Choudhari, Meelan, M.
2014-01-01
Direct numerical simulations (DNS) of spatially developing turbulent boundary layers over riblets with a broad range of riblet spacings are conducted to investigate the effects of riblets on skin friction at high speeds. Zero-pressure gradient boundary layers under two flow conditions (Mach 2:5 with T(sub w)/T(sub r) = 1 and Mach 7:2 with T(sub w)/T(sub r) = 0:5) are considered. The DNS results show that the drag-reduction curve (delta C(sub f)/C(sub f) vs l(sup +)(sub g )) at both supersonic speeds follows the trend of low-speed data and consists of a `viscous' regime for small riblet size, a `breakdown' regime with optimal drag reduction, and a `drag-increasing' regime for larger riblet sizes. At l l(sup +)(sub g) approx. 10 (corresponding to s+ approx 20 for the current triangular riblets), drag reduction of approximately 7% is achieved at both Mach numbers, and con rms the observations of the few existing experiments under supersonic conditions. The Mach- number dependence of the drag-reduction curve occurs for riblet sizes that are larger than the optimal size, with smaller slopes of (delta C(sub f)/C(sub f) for larger freestream Mach numbers. The Reynolds analogy holds with 2(C(sub h)=C(sub f) approximately equal to that of at plates for both drag-reducing and drag-increasing configurations.
NASA Astrophysics Data System (ADS)
Marcato, G.; Fujisawa, K.; Mantovani, M.; Pasuto, A.; Silvano, S.; Tagliavini, F.; Zabuski, L.
2007-11-01
The aim of the paper is to present the modelling of the ground effects of seismic waves on a large debris deposit lying on a steep mountain slope, with particular attention paid to the potential triggering of slope movements. The study site is a mass of 2.5 million m3 rock fall deposit, named "Monte Salta Landslide", located on the northern slope of the Vajont valley, at the border between Veneto and Friuli Venezia Giulia regions in north-eastern Italy. Several historical landslide events were reported in the area in the past, first one dating back to the 17th century. The landslide deposit completely mantles the slope with a thick cover of rock blocks. The Mt. Salta landslide is conditioned by the presence of Mt. Borgà regional thrust, which uplifts Jurassic limestone on the top of Cretaceous rock units. Above the thrust zone, folded and highly fractured rock mass dips steeply towards the slope free face, producing highly unstable setting. The study area has been classified as high seismic hazard and different vulnerable elements can be affected by the remobilisation of debris, among which a village, a national road and a big quarry that was opened, with the intent to exploit the part of the landslide deposit for construction purposes. In this study, numerical analysis was performed, to simulate the slope behaviour using distinct element method and applying UDEC code. The 2-D models were built on three cross-sections and elasto-plastic behaviour was assumed, both for rock matrix and discontinuities. The earthquake effect was modelled in pseudo-dynamic way, i.e. by magnifying the acceleration and applying also its horizontal component. The expected seismic acceleration in the study area was calculated on the basis of previous studies as equal to 0.28 g. The results proved that the increase of the vertical component alone has a small influence on the deformational behaviour of the system. Hence, the acceleration vector was deviated at 5° and then at 10° from the vertical. A small increment of the displacement was observed in the first case, whereas very large movements occurred in the second. Therefore, it can be concluded that, besides the magnitude of the earthquake, even small seismic waves in horizontal direction could trigger significant movements and therefore hazardous conditions. The modelled scenario should be helpful for planning of the functional countermeasure works and civil defence evacuation plan.
NASA Astrophysics Data System (ADS)
Baar, Anne W.; de Smit, Jaco; Uijttewaal, Wim S. J.; Kleinhans, Maarten G.
2018-01-01
Large-scale morphology, in particular meander bend depth, bar dimensions, and bifurcation dynamics, are greatly affected by the deflection of sediment transport on transverse bed slopes due to gravity and by secondary flows. Overestimating the transverse bed slope effect in morphodynamic models leads to flattening of the morphology, while underestimating leads to unrealistically steep bars and banks and a higher braiding index downstream. However, existing transverse bed slope predictors are based on a small set of experiments with a minor range of flow conditions and sediment sizes, and in practice models are calibrated on measured morphology. The objective of this research is to experimentally quantify the transverse bed slope effect for a large range of near-bed flow conditions with varying secondary flow intensity, sediment sizes (0.17-4 mm), sediment transport mode, and bed state to test existing predictors. We conducted over 200 experiments in a rotating annular flume with counterrotating floor, which allows control of the secondary flow intensity separate from the streamwise flow velocity. Flow velocity vectors were determined with a calibrated analytical model accounting for rough bed conditions. We isolated separate effects of all important parameters on the transverse slope. Resulting equilibrium transverse slopes show a clear trend with varying sediment mobilities and secondary flow intensities that deviate from known predictors depending on Shields number, and strongly depend on bed state and sediment transport mode. Fitted functions are provided for application in morphodynamic modeling.
NASA Astrophysics Data System (ADS)
Majumdar, Paulami; Greeley, Jeffrey
2018-04-01
Linear scaling relations of adsorbate energies across a range of catalytic surfaces have emerged as a central interpretive paradigm in heterogeneous catalysis. They are, however, typically developed for low adsorbate coverages which are not always representative of realistic heterogeneous catalytic environments. Herein, we present generalized linear scaling relations on transition metals that explicitly consider adsorbate-coadsorbate interactions at variable coverages. The slopes of these scaling relations do not follow the simple bond counting principles that govern scaling on transition metals at lower coverages. The deviations from bond counting are explained using a pairwise interaction model wherein the interaction parameter determines the slope of the scaling relationship on a given metal at variable coadsorbate coverages, and the slope across different metals at fixed coadsorbate coverage is approximated by adding a coverage-dependent correction to the standard bond counting contribution. The analysis provides a compact explanation for coverage-dependent deviations from bond counting in scaling relationships and suggests a useful strategy for incorporation of coverage effects into catalytic trends studies.
Qian, Bang-Ping; Jiang, Jun; Qiu, Yong; Wang, Bin; Yu, Yang; Zhu, Ze-Zhang
2014-11-19
Pelvic retroversion is one of the mechanisms for regulating sagittal balance in patients with a kyphotic deformity. This retroversion is limited by hip extension, which prevents the pelvis from becoming excessively retroverted, achieving a sacral slope of <0°. However, a negative sacral slope can be found in some patients with ankylosing spondylitis with thoracolumbar kyphosis. The purpose of this study was to analyze this finding. We performed a retrospective review of 106 consecutive Chinese Han patients with ankylosing spondylitis with thoracolumbar kyphosis treated at our center from October 2005 to October 2012. Forty-one patients in whom the upper third of the femur was clearly visualized on lateral radiographs were analyzed. Seventeen had a sacral slope of <0° (group A) and twenty-four had a sacral slope of ≥0° (group B). Eight sagittal parameters were measured and compared between the two groups. Correlations among sacral slope, the femoral obliquity angle, and the other sagittal parameters were analyzed. Mean global kyphosis, lumbar lordosis, pelvic tilt, the sagittal vertical axis, and the femoral obliquity angle were significantly larger in group A than in group B, whereas mean pelvic incidence and sacral slope were significantly smaller in group A (p < 0.05 for all). Global kyphosis, lumbar lordosis, pelvic tilt, and the sagittal vertical axis were significantly negatively associated with sacral slope but positively associated with the femoral obliquity angle, whereas pelvic incidence was significantly positively associated with sacral slope but negatively associated with the femoral obliquity angle (p < 0.05 for all). The femoral obliquity angle was significantly negatively associated with sacral slope (p < 0.05). Negative sacral slope does exist in Chinese Han patients with ankylosing spondylitis with thoracolumbar kyphosis. This appears to be caused by severe kyphosis, an initially small sacral slope, and pronounced tilting of the femoral shaft as a result of knee flexion, resulting in the pelvis becoming further retroverted. Copyright © 2014 by The Journal of Bone and Joint Surgery, Incorporated.
Engineering geologic conditions at the sinkhole entrance to Logan Cave, Benton County, Arkansas
Schulz, William H.; McKenna, Jonathan P.
2004-01-01
Logan Cave, located in Benton County, Arkansas, is inhabited by several endangered and threatened species. The cave and surrounding area was designated a National Wildlife Refuge under the control of the U.S. Fish and Wildlife Service (USFWS) in 1989. Cave researchers access the cave through a steep-sided sinkhole entrance, which also is one of the two access points used by endangered bats. There is evidence of instability of one of the entrance slopes that has raised concerns that the entrance could close if slope failure was to occur. At the request of USFWS, we performed an engineering geologic investigation of the sinkhole to evaluate stability of this slope, which is comprised of soil, and other mechanisms of sediment transport into the cave entrance. The investigation included engineering geologic mapping, sampling and laboratory testing of subsurface geologic materials, and slope-stability analysis. We found that the sinkhole slope that extends into the entrance of the cave is comprised of sandy and gravelly soil to the depths explored (6.4 meters). This soil likely was deposited as alluvium within a previous, larger sinkhole. Based on properties of the alluvium, geometry of the slope, and results of finite-element slope-stability analyses, we conclude that the slope is marginally stable. Future failures of the slope probably would be relatively thin and small, thus several would be required to completely close the cave entrance. However, sediment is accumulating within the cave entrance due to foot traffic of those accessing the cave, surface-water erosion and transport, and shallow slope failures from the other sinkhole slopes. We conclude that the entrance will be closed by sediment in the future, similar to another entrance that we identified that completely closed in the past. Several measures could be taken to reduce the potential for closure of the cave entrance, including periodic sediment removal, installation of materials that reduce erosion by foot traffic and surface water, construction of a sediment-retention wall, and excavation of the soil slope. Any measures taken must be carefully planned and executed so that they have no impact on organisms within the cave.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCray, John; Navarre-Sitchler, Alexis; Mouzakis, Katherine
Injection of CO2 into underground rock formations can reduce atmospheric CO2 emissions. Caprocks present above potential storage formations are the main structural trap inhibiting CO2 from leaking into overlying aquifers or back to the Earth's surface. Dissolution and precipitation of caprock minerals resulting from reaction with CO2 may alter the pore network where many pores are of the micrometer to nanometer scale, thus altering the structural trapping potential of the caprock. However, the distribution, geometry and volume of pores at these scales are poorly characterized. In order to evaluate the overall risk of leakage of CO2 from storage formations, amore » first critical step is understanding the distribution and shape of pores in a variety of different caprocks. As the caprock is often comprised of mudstones, we analyzed samples from several mudstone formations with small angle neutron scattering (SANS) and high-resolution transmission electron microscopy (TEM) imaging to compare the pore networks. Mudstones were chosen from current or potential sites for carbon sequestration projects including the Marine Tuscaloosa Group, the Lower Tuscaloosa Group, the upper and lower shale members of the Kirtland Formation, and the Pennsylvanian Gothic shale. Expandable clay contents ranged from 10% to approximately 40% in the Gothic shale and Kirtland Formation, respectively. During SANS, neutrons effectively scatter from interfaces between materials with differing scattering length density (i.e., minerals and pores). The intensity of scattered neutrons, I(Q), where Q is the scattering vector, gives information about the volume and arrangement of pores in the sample. The slope of the scattering data when plotted as log I(Q) vs. log Q provides information about the fractality or geometry of the pore network. On such plots slopes from -2 to -3 represent mass fractals while slopes from -3 to -4 represent surface fractals. Scattering data showed surface fractal dimensions for the Kirtland formation and one sample from the Tuscaloosa formation close to 3, indicating very rough surfaces. In contrast, scattering data for the Gothic shale formation exhibited mass fractal behavior. In one sample of the Tuscaloosa formation the data are described by a surface fractal at low Q (larger pores) and a mass fractal at high Q (smaller pores), indicating two pore populations contributing to the scattering behavior. These small angle neutron scattering results, combined with high-resolution TEM imaging, provided a means for both qualitative and quantitative analysis of the differences in pore networks between these various mudstones.« less
Purely Dry Mergers do not Explain the Observed Evolution of Massive Early-type Galaxies since z ~ 1
NASA Astrophysics Data System (ADS)
Sonnenfeld, Alessandro; Nipoti, Carlo; Treu, Tommaso
2014-05-01
Several studies have suggested that the observed size evolution of massive early-type galaxies (ETGs) can be explained as a combination of dry mergers and progenitor bias, at least since z ~ 1. In this paper we carry out a new test of the dry-merger scenario based on recent lensing measurements of the evolution of the mass density profile of ETGs. We construct a theoretical model for the joint evolution of the size and mass density profile slope γ' driven by dry mergers occurring at rates given by cosmological simulations. Such dry-merger model predicts a strong decrease of γ' with cosmic time, inconsistent with the almost constant γ' inferred from observations in the redshift range 0 < z < 1. We then show with a simple toy model that a modest amount of cold gas in the mergers—consistent with the upper limits on recent star formation in ETGs—is sufficient to reconcile the model with measurements of γ'. By fitting for the amount of gas accreted during mergers, we find that models with dissipation are consistent with observations of the evolution in both size and density slope, if ~4% of the total final stellar mass arises from the gas accreted since z ~ 1. Purely dry merger models are ruled out at >99% CL. We thus suggest a scenario where the outer regions of massive ETGs grow by accretion of stars and dark matter, while small amounts of dissipation and nuclear star formation conspire to keep the mass density profile constant and approximately isothermal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kassianov, Evgueni I.; Flynn, Connor J.; Koontz, Annette S.
2013-09-11
Well-known cloud-screening algorithms, which are designed to remove cloud-contaminated aerosol optical depths (AOD) from AOD measurements, have shown great performance at many middle-to-low latitude sites around the world. However, they may occasionally fail under challenging observational conditions, such as when the sun is low (near the horizon) or when optically thin clouds with small spatial inhomogeneity occur. Such conditions have been observed quite frequently at the high-latitude Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) sites. A slightly modified cloud-screening version of the standard algorithm is proposed here with a focus on the ARM-supported Multifilter Rotating Shadowband Radiometer (MFRSR)more » and Normal Incidence Multifilter Radiometer (NIMFR) data. The modified version uses approximately the same techniques as the standard algorithm, but it additionally examines the magnitude of the slant-path line of sight transmittance and eliminates points when the observed magnitude is below a specified threshold. Substantial improvement of the multi-year (1999-2012) aerosol product (AOD and its Angstrom exponent) is shown for the NSA sites when the modified version is applied. Moreover, this version reproduces the AOD product at the ARM Southern Great Plains (SGP) site, which was originally generated by the standard cloud-screening algorithms. The proposed minor modification is easy to implement and its application to existing and future cloud-screening algorithms can be particularly beneficial for challenging observational conditions.« less
Detecting skin malignancy using elastic light scattering spectroscopy
NASA Astrophysics Data System (ADS)
Canpolat, Murat; Akman, Ayşe; Çiftçioğlu, M. Akif; Alpsoy, Erkan
2007-07-01
We have used elastic light scattering spectroscopy to differentiate between malign and benign skin lesions. The system consists of a UV spectrometer, a single optical fiber probe and a laptop. The single optical fiber probe was used for both delivery and detection of white light to tissue and from the tissue. The single optical fiber probe received singly scattered photons rather than diffused photons in tissue. Therefore, the spectra are correlated with morphological differences of the cells. It has been shown that spectra of malign skin lesions are different than spectra of benign skin lesions. While slopes of the spectra taken on benign lesions or normal skin tissues were positive, slopes of the spectra taken on malign skin lesions tissues were negative. In vivo experiments were conducted on 20 lesions from 18 patients (11 men with mean age of 68 +/- 9 years and 7 women with mean age of 52 +/- 20 years) applied to the Department of Dermatology and Venerology. Before the biopsy, spectra were taken on the lesion and adjacent (approximately 1 cm distant) normal-appearing skin. Spectra of the normal skin were used as a control group. The spectra were correlated to the pathology results with sensitivity and specificity of 82% and 89%, respectively. Due to small diameter of fiber probe and limited number of sampling (15), some positive cases are missed, which is lowered the sensitivity of the system. The results are promising and could suggest that the system may be able to detect malignant skin lesion non-invasively and in real time.
Using Airborne Laser Altimetry to Detect Topographic Change at Long Valley Caldera, California
NASA Technical Reports Server (NTRS)
Hofton, M. A.; Minster, J.-B.; Ridgway, J. R.; Williams, N. P.; Blair, J.-B.; Rabine, D. L.; Bufton, J. L.
1999-01-01
The topography of the Long Valley caldera, California, was sampled using airborne laser altimetry in 1993, 1995, and 1997 to test the feasibility of using airborne laser altimetry for monitoring deformation of volcanic origin. Results show the laser altimeters are able to resolve subtle topographic features such as a gradual slope and to detect small transient changes in lake elevation. Crossover and repeat pass analyses of laser tracks indicate decimeter-level vertical precision is obtained over flat and low-sloped terrain for altimeter systems performing waveform digitization. Comparisons with complementary, ground-based GPS data at a site close to Bishop airport indicate that the laser and GPS-derived elevations agree to within the error inherent in the measurement and that horizontal locations agree to within the radius of the laser footprint. A comparison of the data at two sites, one where no change and the other where the maximum amount of vertical uplift is expected, indicates approximately 10 cm of relative uplift occurred 1993-1997, in line with predictions from continuous GPS measurements in the region. Extensive terrain mapping flights during the 1995 and 1997 missions demonstrate some of the unique abilities of laser altimetry; the straightforward creation of high resolution, high accuracy digital elevation models of overflown terrain, and the ability to determine ground topography in the presence of significant ground cover such as dense tree canopies. These capabilities make laser altimetry an attractive technique for quantifying topographic change of volcanic origin, especially in forested regions of the world where other remote sensing instruments have difficulty detecting the underlying topography.
Using Airborne Laser Altimetry to Detect Topographic Change at Long Valley Caldera California
NASA Technical Reports Server (NTRS)
Hofton, M. A.; Minster, J.-B.; Ridgway, J. R.; Williams, N. P.; Blair, J. B.; Rabine, D. L.; Bufton, J. L.
2000-01-01
The topography of the Long Valley caldera, California, was sampled using airborne laser altimetry in 1993, 1995, and 1997 to test the feasibility of using airborne laser altimetry for monitoring deformation of volcanic origin. Results show the laser altimeters are able to resolve subtle topographic features such as a gradual slope and to detect small transient changes in lake elevation. Crossover and repeat pass analyses of laser tracks indicate decimeter-level vertical precision is obtained over flat and low-sloped terrain for altimeter systems performing waveform digitization. Comparisons with complementary, ground-based CPS data at a site close to Bishop airport indicate that the laser and GPS-derived elevations agree to within the error inherent in the measurement and that horizontal locations agree to within the radius of the laser footprint. A comparison of the data at two sites, one where no change and the other where the maximum amount of vertical uplift is expected, indicates approximately 10 cm of relative uplift occurred 1993-1997, in line with predictions from continuous CPS measurements in the region. Extensive terrain mapping flights during the 1995 and 1997 missions demonstrate some of the unique abilities of laser altimetry; the straightforward creation of high resolution, high accuracy digital elevation models of overflown terrain, and the ability to determine ground topography in the presence of significant ground cover such as dense tree canopies. These capabilities make laser altimetry an attractive technique for quantifying topographic change of volcanic origin, especially in forested regions of the world where other remote sensing instruments have difficulty detecting the underlying topography.
Centrifuge Modeling of Rainfall Induced Slope Failure
NASA Astrophysics Data System (ADS)
Ling, H.; Wu, M.
2006-12-01
Rainfall induces slope failure and debris flow which are considered as one of the major natural disasters. The scope of such failure is very large and it cannot be studied easily in the laboratory. Traditionally, small scale model tests are used to study such problem. Knowing that the behavior of soil is affected by the stress level, centrifuge modeling technique has been used to simulate more realistically full scale earth structures. In this study, two series of tests were conducted on slopes under the centrifugal field with and without the presence of rainfall. The soil used was a mixture of sand and 15 percent fines. The slopes of angle 60 degrees were prepared at optimum water content in order to achieve the maximum density. In the first series of tests, three different slope heights of 10 cm, 15 cm and 20 cm were used. The gravity was increased gradually until slope failure in order to obtain the prototype failure height. The slope model was cut after the test in order to obtain the configuration of failure surface. It was found that the slope geometry normalized by the height at failure provided unique results. Knowing the slope height or gravity at failure, the second series of tests with rainfall were conducted slightly below the critical height. That is, after attaining the desired gravity, the rainfall was induced in the centrifuge. Special nozzles were used and calibrated against different levels of gravity in order to obtain desired rainfall intensity. Five different rainfall intensities were used on the 15-cm slopes at 80g and 60g, which corresponded to 12 m and 9 m slope height, respectively. The duration until failure for different rainfall intensities was obtained. Similar to the first series of tests, the slope model was cut and investigated after the test. The results showed that the failure surface was not significantly affected by the rainfall. That is, the excess pore pressure induced by rainfall generated slope failure. The prediction curves of rainfall intensity versus duration were obtained from the test results. Such curves are extremely useful for disaster management. This study indicated feasibilities of using centrifuge modeling technique in simulating rainfall induced slope failure. The results obtained may also be used for validating numerical tools.
Lu, Xiaoying; Tobacman, Larry S; Kawai, Masataka
2006-12-01
The effect of temperature on isometric tension and cross-bridge kinetics was studied with a tropomyosin (Tm) internal deletion mutant AS-Delta23Tm (Ala-Ser-Tm Delta(47-123)) in bovine cardiac muscle fibers by using the thin filament extraction and reconstitution technique. The results are compared with those from actin reconstituted alone, cardiac muscle-derived control acetyl-Tm, and recombinant control AS-Tm. In all four reconstituted muscle groups, isometric tension and stiffness increased linearly with temperature in the range 5-40 degrees C for fibers activated in the presence of saturating ATP and Ca(2+). The slopes of the temperature-tension plots of the two controls were very similar, whereas the slope derived from fibers with actin alone had approximately 40% the control value, and the slope from mutant Tm had approximately 36% the control value. Sinusoidal analysis was performed to study the temperature dependence of cross-bridge kinetics. All three exponential processes A, B, and C were identified in the high temperature range (30-40 degrees C); only processes B and C were identified in the mid-temperature range (15-25 degrees C), and only process C was identified in the low temperature range (5-10 degrees C). At a given temperature, similar apparent rate constants (2pia, 2pib, 2pic) were observed in all four muscle groups, whereas their magnitudes were markedly less in the order of AS-Delta23Tm < Actin < AS-Tm approximately Acetyl-Tm groups. Our observations are consistent with the hypothesis that Tm enhances hydrophobic and stereospecific interactions (positive allosteric effect) between actin and myosin, but Delta23Tm decreases these interactions (negative allosteric effect). Our observations further indicate that tension/cross-bridge is increased by Tm, but is diminished by Delta23Tm. We conclude that Tm affects the conformation of actin so as to increase the area of hydrophobic interaction between actin and myosin molecules.
Regional comparisons of Vs30 and Spectral Ratio Methods
NASA Astrophysics Data System (ADS)
McNamara, D. E.; Gee, L. S.; Stephenson, W. J.; Odum, J. K.; Williams, R. A.; Hartzell, S.
2013-12-01
Earthquake damage is often increased due to local ground-motion amplification in soft soils and thick basin sediments with factors such as topographic effects and water saturation. Seismic hazard assessments depend on detailed information on local site response and many different methods have been developed to estimate site response. Based on numerous empirical studies, the average shear-wave velocity in the upper 30 m (Vs30) has become the most common means of classifying site conditions and has been adopted in the NEHRP design provisions for new buildings. In general, higher Vs30 values are associated with firm, dense rock and lower levels of ground shaking while lower Vs30 values are associated with softer soils and high site amplification. Vs30 is commonly computed by measuring the time it takes for shear-waves to travel from 30m depth to the surface using either active sources such as explosions or passive ambient noise microtremor sources. Since this approach is limited to locations where active measurements are undertaken, recent methods have sought to approximate Vs30 regionally, such as using topographic slope as a proxy. In this presentation, we compute a standard site response, horizontal-to-vertical spectral ratio (HVSR) using long-term power spectral density statistics of both ambient noise and earthquake signals at permanent and temporary seismic stations. We compare the HVSR results to surface observations of Vs30 and approximations using topographic slope in several different regions including the Eastern United States, St. Louis and the Los Angeles basin. In our comparison of the HVSR results to Vs30, we find that HVSR peak frequency can be used as a proxy for Vs30. Relationships between surface measured Vs30 and HVSR are less scattered than with Vs30 estimated using topographic approximations. In general, higher Vs30 is associated with higher HVSR peak frequency with variations in slope for different regions. We use these regional relationships to estimate NEHRP soil class at over 200 seismic stations in the US.
Deep UV Luminosity Functions at the Infall Region of the Coma Cluster
NASA Technical Reports Server (NTRS)
Hammer, D. M.; Hornschemeier, A. E.; Salim, S.; Smith, R.; Jenkins, L.; Mobasher, B.; Miller, N.; Ferguson, H.
2011-01-01
We have used deep GALEX observations at the infall region of the Coma cluster to measure the faintest UV luminosity functions (LFs) presented for a rich galaxy cluster thus far. The Coma UV LFs are measured to M(sub uv) = -10.5 in the GALEX FUV and NUV bands, or 3.5 mag fainter than previous studies, and reach the dwarf early-type galaxy population in Coma for the first time. The Schechter faint-end slopes (alpha approximately equal to -1.39 in both GALEX bands) are shallower than reported in previous Coma UV LF studies owing to a flatter LF at faint magnitudes. A Gaussian-plus-Schechter model provides a slightly better parametrization of the UV LFs resulting in a faint-end slope of alpha approximately equal to -1.15 in both GALEX bands. The two-component model gives faint-end slopes shallower than alpha = -1 (a turnover) for the LFs constructed separately for passive and star forming galaxies. The UV LFs for star forming galaxies show a turnover at M(sub UV) approximately equal to -14 owing to a deficit of dwarf star forming galaxies in Coma with stellar masses below M(sub *) = 10(sup 8) solar mass. A similar turnover is identified in recent UV LFs measured for the Virgo cluster suggesting this may be a common feature of local galaxy clusters, whereas the field UV LFs continue to rise at faint magnitudes. We did not identify an excess of passive galaxies as would be expected if the missing dwarf star forming galaxies were quenched inside the cluster. In fact, the LFs for both dwarf passive and star forming galaxies show the same turnover at faint magnitudes. We discuss the possible origin of the missing dwarf star forming galaxies in Coma and their expected properties based on comparisons to local field galaxies.
Controls on alluvial fan long-profiles
Stock, J.D.; Schmidt, K.M.; Miller, D.M.
2008-01-01
Water and debris flows exiting confined valleys have a tendency to deposit sediment on steep fans. On alluvial fans where water transport of gravel predominates, channel slopes tend to decrease downfan from ???0.10-0.04 to ???0.01 across wide ranges of climate and tectonism. Some have argued that this pattern reflects grain-size fining downfan such that higher threshold slopes are required just to entrain coarser particles in the waters of the upper fan, whereas lower slopes are required to entrain finer grains downfan (threshold hypothesis). An older hypothesis is that slope is adjusted to transport the supplied sediment load, which decreases downfan as deposition occurs (transport hypothesis). We have begun to test these hypotheses for alluvial fan long-profiles using detailed hydraulic and particle-size data in sediment transport models. On four alluvial fans in the western U.S., we find that channel hydraulic radiiare largely 0.5-0.9 m at fan heads, decreasing to 0.1-0.2 m at distal margins. We find that median gravel diameter does not change systematically along the upper 60%-80% of active fan channels as slope declines, so downstream gravel fining cannot explain most of the observed channel slope reduction. However, as slope declines, channel-bed sand cover increases systematically downfan from areal fractions of <20% above fan heads to distal fan values in excess of 70%. As a result, entrainment thresholds for bed material might decrease systematically downfan, leading to lower slopes. However, current models of this effect alone tend to underpredict downfan slope changes. This is likely due to off-channel gravel deposition. Calculations that match observed fan long-profiles require an exponential decline in gravel transport rate, so that on some fans approximately half of the load must be deposited off channel every -0.20-1.4 km downfan. This leads us to hypothesize that some alluvial fan long-proffies are statements about the rate of overbank deposition of coarse particles downfan, a process for which there is currently no mechanistic theory. ?? 2007 Geological Society of America.
The Problem of Alluvial Fan Slopes
NASA Astrophysics Data System (ADS)
Stock, J. D.; Schmidt, K.
2005-12-01
Water and debris flows exiting confined valleys have a tendency to deposit sediment on steep fans. On alluvial fans, where water transport predominates, channel slopes tend to decrease downfan from ~0.08 to ~0.01 across wide ranges of climate and tectonism. Some have argued that this pattern reflects downfan grainsize fining so that higher slopes are required just to entrain coarser particles in the waters of the upper fan, while entrainment of finer grains downfan requires lower slopes (threshold hypothesis). An older hypothesis is that slope is adjusted to transport the supplied sediment load, which decreases downfan as deposition occurs (transport hypothesis). We have begun to test these hypotheses using detailed field measurements of hydraulic and sediment variables in sediment transport models. On some fans in the western U.S. we find that alluvial fan channel bankfull depths are largely 0.5-1.5 m at fan heads, decreasing to 0.1-0.2 m at distal margins. Contrary to many previous studies, we find that median gravel diameter does not change systematically along the upper 60- 80% of active fan channels. So downstream gravel fining cannot explain most of the observed channel slope reduction. However, as slope declines, surface sand cover increases systematically downfan from values of <20% above fan heads to distal fan values in excess of 70%. As a result, the threshold for sediment motion might decrease systematically downfan, leading to lower slopes. However, current models of this effect alone tend to underpredict downfan slope changes. This is likely due to off- channel gravel deposition. Calculations that match observed fan long-profiles require an exponential decline in gravel transport rate, so that on some fans approximately half of the load must be deposited off-channel every ~0.25-1.25 km downfan. This leads us to hypothesize that alluvial fan long- profiles are largely statements about the rate of deposition downfan. If so, there may be climatic and tectonic information in the long-profile, but a mechanistic theory for downfan deposition rate will be needed.
Design Rules and Scaling for Solar Sails
NASA Technical Reports Server (NTRS)
Zeiders, Glenn W.
2005-01-01
Useful design rules and simple scaling models have been developed for solar sails. Chief among the conclusions are: 1. Sail distortions contribute to the thrust and moments primarily though the mean squared value of their derivatives (slopes), and the sail behaves like a flat sheet if the value is small. The RMS slope is therefore an important figure of merit, and sail distortion effects on the spacecraft can generally be disregarded if the RMS slope is less than about 10% or so. 2. The characteristic slope of the sail distortion varies inversely with the tension in the sail, and it is the tension that produces the principle loading on the support booms. The tension is not arbitrary, but rather is the value needed to maintain the allowable RMS slope. That corresponds to a halyard force about equal to three times the normal force on the supported sail area. 3. Both the AEC/SRS and L Garde concepts appear to be structurally capable of supporting sail sizes up to a kilometer or more with 1AU solar flux, but select transverse dimensions must be changed to do so. Operational issues such as fabrication, handling, storage and deployment will be the limiting factors.
Sedimentary evolution of the Pliocene and Pleistocene Ebro margin, northeastern Spain
Alonso, B.; Field, M.E.; Gardner, J.V.; Maldonado, A.
1990-01-01
The Pliocene and Pleistocene deposits of the Spanish Ebro margin overlie a regional unconformity and contain a major disconformity. These unconformities, named Reflector M and Reflector G, mark the bases of two seismic sequences. Except for close to the upper boundary where a few small channel deposits are recognized, the lower sequence lacks channels. The upper sequence contains nine channel-levee complexes as well as base-of-slope aprons that represent the proximal part of the Valencia turbidite system. Diverse geometries and variations in seismic units distinguish shelf, slope, base-of-slope and basin-floor facies. Four events characterize the late Miocene to Pleistocene evolution of the Ebro margin: (a) formation of a paleodrainage system and an extensive erosion-to-depositional surface during the latest Miocene (Messinian), (b) deposition of hemipelagic units during the early Pliocene, (c) development of canyons during the late Pliocene to early Pleistocene, and (d) deposition of slope wedges, channel-levee complexes, and base-of-slope aprons alternating with hemipelagic deposition during the Pleistocene. Sea-level fluctuations influenced the evolution of the sedimentary sequences of the Ebro margin, but the major control was the sediment supply from the Ebro River. ?? 1990.
Influence of Terraced area DEM Resolution on RUSLE LS Factor
NASA Astrophysics Data System (ADS)
Zhang, Hongming; Baartman, Jantiene E. M.; Yang, Xiaomei; Gai, Lingtong; Geissen, Viollette
2017-04-01
Topography has a large impact on the erosion of soil by water. Slope steepness and slope length are combined (the LS factor) in the universal soil-loss equation (USLE) and its revised version (RUSLE) for predicting soil erosion. The LS factor is usually extracted from a digital elevation model (DEM). The grid size of the DEM will thus influence the LS factor and the subsequent calculation of soil loss. Terracing is considered as a support practice factor (P) in the USLE/RUSLE equations, which is multiplied with the other USLE/RUSLE factors. However, as terraces change the slope length and steepness, they also affect the LS factor. The effect of DEM grid size on the LS factor has not been investigated for a terraced area. We obtained a high-resolution DEM by unmanned aerial vehicles (UAVs) photogrammetry, from which the slope steepness, slope length, and LS factor were extracted. The changes in these parameters at various DEM resolutions were then analysed. The DEM produced detailed LS-factor maps, particularly for low LS factors. High (small valleys, gullies, and terrace ridges) and low (flats and terrace fields) spatial frequencies were both sensitive to changes in resolution, so the areas of higher and lower slope steepness both decreased with increasing grid size. Average slope steepness decreased and average slope length increased with grid size. Slope length, however, had a larger effect than slope steepness on the LS factor as the grid size varied. The LS factor increased when the grid size increased from 0.5 to 30-m and increased significantly at grid sizes >5-m. The LS factor was increasingly overestimated as grid size decreased. The LS factor decreased from grid sizes of 30 to 100-m, because the details of the terraced terrain were gradually lost, but the factor was still overestimated.
Equatorial Density Irregularity Structures at Intermediate Scales and Their Temporal Evolution
NASA Technical Reports Server (NTRS)
Kil, Hyosub; Heelis, R. A.
1998-01-01
We examine high resolution measurements of ion density in the equatorial ionosphere from the AE-E satellite during the years 1977-1981. Structure over spatial scales from 18 km to 200 m is characterized by the spectrum of irregularities at larger and smaller scales and at altitudes above 350 km and below 300 km. In the low-altitude region, only small amplitude large-scale (lambda greater than 5 km) density modulations are often observed, and thus the power spectrum of these density structures exhibits a steep spectral slope at kilometer scales. In the high-altitude region, sinusoidal density fluctuations, characterized by enhanced power near 1-km scale, are frequently observed during 2000-0200 LT. However, such fluctuations are confined to regions at the edges of larger bubble structures where the average background density is high. Small amplitude irregularity structures, observed at early local time hours, grow rapidly to high-intensity structures in about 90 min. Fully developed structures, which are observed at late local time hours, decay very slowly producing only-small differences in spectral characteristics even 4 hours later. The local time evolution of irregularity structure is investigated by using average statistics for low-(1% less than sigma less than 5%) and high-intensity (sigma greater than 10%) structures. At lower altitudes, little chance in the spectral slope is seen as a function of local time, while at higher attitudes the growth and maintenance of structures near 1 km scales dramatically affects the spectral slope.
Pruett, A.L.; Boal, C.W.; Wallace, M.C.; Whitlaw, Heather A.; Ray, J.D.
2010-01-01
We compared diversity and abundance of small mammals at colonies of black-tailed prairie dogs (Cynomys ludovicianus) and paired non-colony sites. Of colonies of black-tailed prairie dogs in our study area, >80 were on slopes of playa lakes; thus, we used sites of colonies and non-colonies that were on slopes of playa lakes. We trapped small mammals on 29 pairs of sites. Overall abundance did not differ between types of sites, but some taxa exhibited associations with colonies (Onychomys leucogaster) or non-colonies (Chaetodipus hispidus, Reithrodontomys, Sigmodon hispidus). Diversity and evenness of small mammals did not differ between colonies and non-colonies in 2002, but were higher on non-colonies in 2003. Although we may not have detected some rare or infrequently occurring species, our data reveal differences in diversity and evenness of more common species among the types of sites. Prairie dogs are touted as a keystone species with their colonies associated with a greater faunal diversity than adjacent lands. Our findings contradict several studies reporting greater diversity and abundance of small mammals at colonies of prairie dogs. We suggest that additional research across a wider landscape and incorporating landscape variables beyond the immediate trapping plot may further elucidate interspecific associations between black-tailed prairie dogs and species of small rodents.
NASA Astrophysics Data System (ADS)
Endalamaw, A. M.; Bolton, W. R.; Young, J. M.; Morton, D.; Hinzman, L. D.
2013-12-01
The sub-arctic environment can be characterized as being located in the zone of discontinuous permafrost. Although the distribution of permafrost is site specific, it dominates many of the hydrologic and ecologic responses and functions including vegetation distribution, stream flow, soil moisture, and storage processes. In this region, the boundaries that separate the major ecosystem types (deciduous dominated and coniferous dominated ecosystems) as well as permafrost (permafrost verses non-permafrost) occur over very short spatial scales. One of the goals of this research project is to improve parameterizations of meso-scale hydrologic models in this environment. Using the Caribou-Poker Creeks Research Watershed (CPCRW) as the test area, simulations of the headwater catchments of varying permafrost and vegetation distributions were performed. CPCRW, located approximately 50 km northeast of Fairbanks, Alaska, is located within the zone of discontinuous permafrost and the boreal forest ecosystem. The Variable Infiltration Capacity (VIC) model was selected as the hydrologic model. In CPCRW, permafrost and coniferous vegetation is generally found on north facing slopes and valley bottoms. Permafrost free soils and deciduous vegetation is generally found on south facing slopes. In this study, hydrologic simulations using fine scale vegetation and soil parameterizations - based upon slope and aspect analysis at a 50 meter resolution - were conducted. Simulations were also conducted using downscaled vegetation from the Scenarios Network for Alaska and Arctic Planning (SNAP) (1 km resolution) and soil data sets from the Food and Agriculture Organization (FAO) (approximately 9 km resolution). Preliminary simulation results show that soil and vegetation parameterizations based upon fine scale slope/aspect analysis increases the R2 values (0.5 to 0.65 in the high permafrost (53%) basin; 0.43 to 0.56 in the low permafrost (2%) basin) relative to parameterization based on coarse scale data. These results suggest that using fine resolution parameterizations can be used to improve meso-scale hydrological modeling in this region.
Flutter Instability of a Fluid-Conveying Fluid-Immersed Pipe Affixed to a Rigid Body
2011-01-01
rigid body, denoted by y in Fig. 4, is small. This is in addition to the Euler– Bernoulli beam assumption that the slope of the tail is small everywhere...here. These include the efficiency with which the prime mover can generate fluid momentum , pipe losses, and external drag acting on both the hull and the
Cost and productivity of new technology for harvesting and in-woods processing small-diameter trees.
Michael B Lambert; James O. Howard
1990-01-01
A study was conducted on the productivity and cost of an integrated harvesting and processing system operating in small-diameter timber (western hemlock-type) on the Olympic Peninsula of western Washington. The system uses a new steep-slope fellerbuncher, a clam-bunk grapple-skidder (forwarder), a prototype chain-flail debarker delimber, a chipper, a conveyor system,...
The role of large-scale eddies in the climate equilibrium. Part 2: Variable static stability
NASA Technical Reports Server (NTRS)
Zhou, Shuntai; Stone, Peter H.
1993-01-01
Lorenz's two-level model on a sphere is used to investigate how the results of Part 1 are modified when the interaction of the vertical eddy heat flux and static stability is included. In general, the climate state does not depend very much on whether or not this interaction is included, because the poleward eddy heat transport dominates the eddy forcing of mean temperature and wind fields. However, the climatic sensitivity is significantly affected. Compared to two-level model results with fixed static stability, the poleward eddy heat flux is less sensitive to the meridional temperature gradient and the gradient is more sensitive to the forcing. For example, the logarithmic derivative of the eddy flux with respect to the gradient has a slope that is reduced from approximately 15 on a beta-plane with fixed static stability and approximately 6 on a sphere with fixed static stability, to approximately 3 to 4 in the present model. This last result is more in line with analyses from observations. The present model also has a stronger baroclinic adjustment than that in Part 1, more like that in two-level beta-plane models with fixed static stability, that is, the midlatitude isentropic slope is very insensitive to the forcing, the diabatic heating, and the friction, unless the forcing is very weak.
Effects of bedrock geology on source and flowpath of runoff water in steep unchanneled hollows
NASA Astrophysics Data System (ADS)
Uchida, T.; Asano, Y.; Kosugi, K.; Ohte, N.; Mizuyama, T.
2001-05-01
Simultaneous measurements of runoff, soil pore water pressure and soil temperature were taken to evaluate the spatial and temporal nature of flowpaths and flow sources in steep unchanneled hollows in central Japan. Two small hollows were monitored; one is underlain by granite and one is underlain by Paleozoic shale. In both catchments, tensiometers showed that a saturated area formed in the areas near a spring. The soil temperature suggests that in the small perennially saturated area near the spring, water percolating through the vadose zone mixed with water emerging from the bedrock. During rainstorms, the streamflow varied with the soil pore water pressure on the upper slope; the soil pore water pressure in the area near the spring remained nearly constant._@ Moreover, the spring water temperature was almost the same as the transient groundwater temperature on the upper slope. This indicates that the transient groundwater in the upper slope flowed to the spring via lateral preferential paths in both catchments. During summer rainstorms, the soil-bedrock interface temperature increased as the ground became saturated in the granite hollow, suggesting that both rainwater and shallow soil water had important effects on the formation of transient saturated groundwater on the upper slope. That is, it can be concluded that the contribution of the bedrock groundwater to the streamflow was relatively small in the granite hollow during storm runoff. The area where the bedrock groundwater seeped into the soil mantle did not grow in size as the contributing area for the streamflow extended to the upper hollow in the granite catchment. In contrast, the soil temperature indicated that after heavy rainfall (77.5 mm), bedrock groundwater played an important role in the formation of the transient groundwater in the Paleozoic shale hollow. Consequently, the contribution of the bedrock groundwater to the streamflow was relatively large in the shale hollow after heavy rainfall.
NASA Astrophysics Data System (ADS)
Baum, R. L.; Coe, J. A.; Godt, J.; Kean, J. W.
2014-12-01
Heavy rainfall during 9 - 13 September 2013 induced about 1100 debris flows in the foothills and mountains of the northern Colorado Front Range. Eye-witness accounts and fire-department records put the times of greatest landslide activity during the times of heaviest rainfall on September 12 - 13. Antecedent soil moisture was relatively low, particularly at elevations below 2250 m where many of the debris flows occurred, based on 45 - 125 mm of summer precipitation and absence of rainfall for about 2 weeks before the storm. Mapping from post-event imagery and field observations indicated that most debris flows initiated as small, shallow landslides. These landslides typically formed in colluvium that consisted of angular clasts in a sandy or silty matrix, depending on the nature of the parent bedrock. Weathered bedrock was partially exposed in the basal surfaces of many of the shallow source areas at depths ranging from 0.2 to 5 m, and source areas commonly occupied less than 500 m2. Although 49% of the source areas occurred in swales and 3 % in channels, where convergent flow might have contributed to pore-pressure build up during the rainfall, 48% of the source areas occurred on open slopes. Upslope contributing areas of most landslides (58%) were small (< 1000 m2) and 78% of the slides occurred on south-facing slopes (90°≤ aspect ≤270°). These observations pose challenges for modeling initiation of the debris flows. Effects of variable soil depth and properties, vegetation, and rainfall must be examined to explain the dominance of debris flows on south-facing slopes. Accounting for the small sizes and mixed swale and open-slope settings of source areas demands new approaches for resolving soil-depth and physical-properties variability. The low-moisture initial conditions require consideration of unsaturated zone effects. Ongoing fieldwork and computational modeling are aimed at addressing these challenges related to initiation of the September 2013 debris flows.
NASA Astrophysics Data System (ADS)
Patin, J.; Ribolzi, O.; Mugler, C.; Valentin, C.; Mouche, E.
2009-04-01
We study the surface and sub-surface hydrology of a small agricultural catchment (60ha) located in the Luang Prabang province of Lao PDR. This catchment is representative of the rural mountainous south east Asia. It exhibits steep slopes (up to 100% and more) under a monsoon climate. After years of traditional slash and burn cultures, it is now under high land pressures due to population resettling and environment preservation policies. This evolution leads to rapid land-use changes such as shifting cultivation reduction or growing of teak forest instead of classical crops. This catchment is a benchmark site of the Managing Soil Erosion Consortium since 1998. The international consortium aims to understand the effects of agricultural changes on the catchment hydrology and soil erosion in south east Asia. The Huay Pano catchment is subdivided into small sub-catchments that are gauged and monitored. Differ- ent agricultural practices where tested along the years. At a smaller scale, plot of 1m2 are instrumented to follow runoff and detachment of soil under natural rainfall along the monsoon season. Our modeling work aims to develop a distributed hydrological model integrating experimental data at the different scales. One of the objective is to understand the impact of land-use, soil properties (slope, crust, etc) and rainfall (dry and wet seasons) on surface and subsurface flows. We present here modeling results of the runoff plot experiments (1m2 scale) performed from 2002 to 2007. The plots distribution among the catchment and over the years gives a good representativity of the different runoff responses. The role of crust, slope and land-use on runoff is examined. Finally we discuss how this plot scale will be integrated in a sub-catchment model, with a particular attention on the observed paradox: how to explain that runoff coefficients at the catchment scale are much slower than at the plot scale ?
1993-02-19
some of the small elm trees that comprise the remains of an old shelterbelt. Access would be from School Road. Thirty-seven feet of access road would...low but very rugged cliffs known as the Pine Ridge Escarpment. This extends along the southern and eastern edges of the SSA, represented in Figure 1.1...sandstone occur on the steeper slopes just below the Pine Ridge Escarpment; silty soils derived from loess occur on the broad, gentle slopes between the
Erosion of the Edge of the South Polar Layered Deposits
2017-05-22
This image is an oblique view from NASA's Mars Reconnaissance Orbiter of the sloping edge of the stack of icy layers over the South Pole has some interesting morphologies. The slope appears to be eroding from a combination of landslides, block falls, and sublimation. The bright icy exposure in the larger landslide scar (upper right) suggests that this was a relatively recent event. Small-scale textures over the scene are due to both blowing wind and the thermal expansion and contraction of shallow ice. https://photojournal.jpl.nasa.gov/catalog/PIA21637
MOUNT SHASTA WILDERNESS STUDY AREA, CALIFORNIA.
Christiansen, Robert L.; Tuchek, Ernest T.
1984-01-01
The Mount Shasta Wilderness lies wholly on the slopes and summit area of Mount Shasta and consists almost entirely of the products of geologically young volcanism. Small deposits of volcanic cinders and pumice are present. The volcanic system of Mount Shasta is judged to have probable resource potential for geothermal energy but that potential is least within the wilderness study area boundaries. Because any geothermal energy resource beneath the volcano would lie at considerable depths, exploration or development would be most likely at lower altitudes on the gentler slopes outside the study area.
O'Connell, S.; Ryan, William B. F.; Normark, W.R.
1987-01-01
Six submarine slope canyons in an area of the northwestern Mediterranean, offshore from the Ebro River and Delta, were surveyed with bathymetric swathmapping (SeaBeam) and mid-range side-looking sonar (SeaMARC I). All of the canyons have slightly winding paths with concave-upwards gradients that are relatively steep shallower than 1,200 m. Two major types of canyons are identified on the basis of their morphologic character at the base of the slope; Type-I canyons lead to an unchannelled base-of-slope deposit and Type-II canyons are continuous with channel-levee systems that cross the rise. Four Type-I canyons were surveyed in the area. Two of these are broad, U-shaped, steep (average gradients of 1:14), do not indent the shelf, and terminate downslope at debris-flow deposits. These two canyons, the most northern in the area, have rounded heads with extensive gullies separated by knife-edge ridges. Relief of the canyon walls is about equal on both sides of the canyons, although the right-hand walls (looking downslope) are generally steeper. The other two Type-I canyons in the area are similar in that they do not indent the shelf, but they are much smaller and shallower and coalesce before terminating in the base-of-slope region. The two Type-II canyons that feed leveed-channels are U-shaped with flatter floors, longer profiles and gentler gradients than Type-I canyons. They are closer to the Valencia Valley and have relatively small cross-sectional areas. We propose a four-stage evolutionary sequence to explain the development of the canyons observed in this section on the prograding Ebro margin. During the initial stage, slumping and erosion on the slope creates a network of small gullies. During the next stage, headward growth of one (or more) gully leads to a major indentation of the shelf. This is the critical factor for developing a channel that will incise the slope and provide a major conduit for moving sediment to the basin. Stage 3 is characterized by the development of a continuous channel accompanied by levee growth across the lobe. In the final stage, the channel-levee system becomes inactive either through destruction by mass wasting, infilling of the channel, or loss of the major sediment source. ?? 1987.
Neotectonic effects on sinuosity and channel migration, Belle Fourche River, Western South Dakota
Gomez, Basil; Marron, Donna C.
1991-01-01
Short-term instability in the behaviour of a small, meandering alluvial channel is identified from the relation between sinuosity and either floodplain slope or channel slope within 17 reaches along an 81-kilometre section of the Belle Fourche River in western South Dakota. In reaches 1 to 4 and 11 to 17 the channel is relatively stable and sinuosity varies inversely with channel slope. In reaches 5 to 10, sinuosity is positively related to floodplain slope. Sinuosity increases markedly in reaches 5, 6, and 7 (which are immediately downstream from a discontinuity in the long profile of the floodplain) in association with an increase in floodplain slope. Immediately upstream from the discontinuity, bankfull channel depth and sinuosity decrease and the area of the floodplain reworked by meander migration between 1939 and 1981 increases, in association with a decrease in floodplain slope. Channel behaviour in reaches 5 to 10 is best explained as a consequence of neotectonic activity, as indicated by changes in elevation recorded along geodetic survey lines that cross lineaments that may delimit the eastern boundary of the Black Hills uplift. Sinuosity acts as a barometer of the effects of neotectonic activity on alluvial channels. Initial indications of channel and floodplain instability due to neotectonic activity may be derived from evidence of anomalously active channel migration, as documented from photographic or topographic sources.
NASA Astrophysics Data System (ADS)
Huang, Mei-Jen; Chiang, Yi-Lin; Chang, Ho-Shyang; Chang, Kuo-Jen
2013-04-01
Taiwan, due to the high seismicity and high annual rainfall, numerous landslides triggered every year and severe impacts affect the island. Accordingly, if the new-built construction does not take into account this threaten, tremendous disasters will occur. On April 25th 2010, Formosa Freeway dip-slope failure caused four deaths, resulted from artificial slope cutting and rock-bot supporting system weakening. This research integrates high resolution Digital Terrain Model (DTM) and numerical simulation to evaluate the triggering mechanism and dynamic process of the landslide. First of all, to access the landslide geometry, the morphology of the event before and after landslide is constructed from high resolution DTM by means of aerial photos. The slid and the deposit volumes of the landslide are thus estimated accordingly. Only part of the surface of separation between slide block and slide slope is exposed. Based on the exposed planar strata/sliding surface, situated on the upper part of the slope, by means of extrapolating part of the plane to mimic the entire slide surface. From DTMs, the slide block is approximately 0.15 million cubic meters. The extrapolated planar surface serves as sliding surface for the numerical models. For numerical model preparation, the particle clusters produced by isotropic stress and the porosity are take into account. To ensure the production range should cover the entire slid mass from the source area, the particle clusters represent the slid block is been rotated, scaled and translated to the source area. Then, part of the particles are been eliminated if it is situated outside the upper and lower surface from the DTM before and after landslide. According to the geological map, the model of the particles to mimic the slide block can be divided into two parts: 1) the underneath interbedded sandstone and shale which may soften by water 2) the supposed upper layer composed of sandstone. Furthermore, set up a layer of particles to simulate ground anchor. The advantages of DTM collocate PFC3d are that real terrain can be represented on the model, and can be simulated the complete landslide process dynamically. Comparing with continuum mechanic analysis that only provides state of instability, but by using discrete element method it can provide the dynamical process of sliding include trajectory, velocity change, sliding distance and also accumulation patterns after landslide and know the affected areas from the disaster event. Results shows: 1) the peak and the residual frictional angle of the sliding surface should be small than 14 and 4 degree, respectively, in the condition of 30% effective resistance of rock-bolt remains. 2)The maximum sliding speed could be as high as 15.34 m/s, caused thus hazard event.
Frequency of effective wave activity and the recession of coastal bluffs: Calvert Cliffs, Maryland
Wilcock, P.R.; Miller, D.S.; Shea, R.H.; Kerkin, R.T.
1998-01-01
The Calvert Cliffs, Chesapeake Bay, Maryland, USA, erode by direct wave undercutting or by freeze/thaw erosion accompanied by wave removal of slope debris. Directly undercut slopes recede more rapidly, with long-term rates exceeding 1.0 m/yr; freeze/thaw slopes recede at rates approaching 0.5 m/yr. The frequency of wave height and water level at the shoreline is estimated for eleven sites based on a 37-year wind record, estimates of storm surge, offshore wave geometry, nearshore wave transformation, and breaking wave type. Locations experiencing the largest slope recession are not uniformly those with the largest cumulative wave energy; the resistance to erosion of the slope toe must also be accounted for. An index of relative wave strength is defined as the ratio of wave pressure T and the cohesive strength S of the slope material. For the Calvert Cliffs, a minimum relative wave strength for initiating erosion of intact material is 0.05 < T/S < 0.1. A cumulative duration of ???50 hours per year for T/S ??? 0.1 distinguishes undercut and nonundercut slopes and recession rates greater or lesser than 0.5 m/yr. The relative wave strength index may be used to identify sites at risk of increased erosion. At one site with a small historical erosion rate, the loss of a protective beach and associated decrease in toe elevation caused a positive shift in the frequency of large T/S. Direct wave undercutting and increased slope recession may be anticipated at this site, as indicated by the development of an undercut notch during the course of the study.
NASA Astrophysics Data System (ADS)
Sobol, N. V.; Gabbasova, I. M.; Komissarov, M. A.
2017-09-01
The effect of rainfall intensity on the erosion of residual calcareous agrogray soils and clay-illuvial agrochernozems in the Southern Cis-Ural region on slopes of different inclination and vegetation type has been studied by simulating with a small-size sprinkler. It has been shown that soil loss linearly depends on rainfall intensity (2, 4, and 6 mm/min) and slope inclination (3° and 7°). When the rainfall intensity and duration, and the slope inclination increase, soil loss by erosion from agrogray soils increases higher than from agrochernozems. On the plowland with a slope of 3°, runoff begins 12, 10, and 5 min, on the average, after the beginning of rains at these intensities. When the slope increases to 7°, runoff begins earlier by 7, 6, and 4 min, respectively. After the beginning of runoff and with its increase by 1 mm, the soil loss from slopes of 3° and 7° reaches 4.2 and 25.7 t/ha on agrogray soils and 1.4 and 4.7 t/ha on agrochernozems, respectively. Fallow soils have higher erosion resistance, and the soil loss little depends on the slope gradient: it gradually increases to 0.3-1.0 t/ha per 1 mm of runoff with increasing rainfall intensity and duration. The content of physical clay in eroded material is higher than in the original soils. Fine fractions prevail in this material, which increases their humus content. The increase in rainfall intensity and duration to 4 and 6 mm/min results in the entrapment of coarse silt and sand by runoff.
2010-02-11
This image taken NASA Lunar Reconnaissance Orbiter shows the wall of crater Van de Graaff C, where brighter material is exposed by more active processes associated with steeper slopes, recent small craters, and even individual rolling boulders.
Rockfall catchment area design guide : final report : metric edition.
DOT National Transportation Integrated Search
2001-12-01
The data gathered from an exhaustive research project consisting of rolling a total of approximately 11,250 rocks off vertical; 4V:1H;2V;1H;1.33V:1H;1.0V:1.0H slopes of three different heights (12.2, 18.3, and 24.4 meters) into three differently incl...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-07
..., would be approximately 197 acres (including relocated SDG&E transmission towers, see below) and would be... next landfill cell would occur simultaneously with acceptance of solid waste. Two borrow/stockpile... include the relocation of SDG&E transmission towers located on the slope of Gregory Mountain and an option...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-10
... Impact Statement (Final EIS) for alternatives designed to respond to coastal bluff erosion that threatens... the southeastern tip of San Juan Island, is threatened by coastal erosion at the base of the slope... (relative to coastal erosion) of each of the three action alternatives is estimated at approximately 100...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-07
... to coastal bluff erosion which threatens Cattle Point Road located in San Juan Island National... threatened by coastal erosion at the base of the slope traversed by the road. This road passes through the... unsafe in a few years-- life expectancy (relative to coastal erosion) is estimated at approximately 100...
10. General view of site showing south side of Shell ...
10. General view of site showing south side of Shell Interlocking Tower and slope of railroad bed. View to north from unpaved service road extending from Bartels Place. - New York, New Haven, & Hartford Railroad, Shell Interlocking Tower, New Haven Milepost 16, approximately 100 feel east of New Rochelle Junction, New Rochelle, Westchester County, NY
NASA Astrophysics Data System (ADS)
Jiang, Jing; Lin, Changsong; Zhang, Zhongtao; Tian, Hongxun; Tao, Ze; Liu, Hanyao
2016-04-01
The Upper Miocene in the Pearl River Mouth Basin of northwestern shelf-margin of South China Sea Basin contains a series of slope channel - fan systems. Their depositional architecture and evolution are documented in this investigation based on an integrated analysis of cores, logs, and seismic data. Four depositional-palaeogeomorphological elements have been identified in the slope channel-fan systems as follows: broad, shallow and unconfined or partly confined outer-shelf to shelf-break channels; deeply incised and confined unidirectionally migrating slope channels; broad or U-shaped, unconfined erosional-depositional channels; frontal splays-lobes and nonchannelized sheets. The slope channels are mostly oriented NW-SE, which migrated unidirectionally northeastwards and intensively eroded almost the whole shelf-slope zone. The channel infillings are mainly mudstones, interbedded with siltstones. They might be formed by gravity flow erosion as bypassing channels. They were filled with limited gravity flow sediments at the base and mostly filled with lateral accretionary packages of bottom current deposits. At the end of the channels, a series of small-scale slope fans developed and coalesced into fan aprons along the base of the slope. The unconfined erosional-depositional channels at the upper parts of the fan-apron-systems display compound infill patterns, and commonly have concave erosional bases and convex tops. The frontal splays-lobes representing middle to distal deposits of fan-apron-systems have flat-mounded or gull-wing geometries, and the internal architectures include bidirectional downlap, progradation, and chaotic infillings. The distal nonchannelized turbidite sheets are characterized by thin-bedded, parallel to sub-parallel sheet-like geometries. Three major unconformities or obvious erosional surfaces in the channel-fan systems of the Upper Miocene are recognized, and indicate the falling of sea-level. The depositional architecture of sequences varies from the upper slope to the slope base transitional to basin plain. The basal erosion and the unidirectionally migrating characters of the slope channels were supposed to be the result of the interaction of bottom currents and gravity flows. The intensive development of the channel-fan systems over the shelf slope might be related to the Dongsha Tectonic uplift which may resulted in stepped slope and concomitantly intensified gravity flow in the study area in Late Miocene.
NASA Astrophysics Data System (ADS)
Ranero, C. R.; Weinrebe, W.; Grevemeyer, I.; Phipps Morgan, J.; Vannucchi, P.; von Huene, R.
2003-12-01
A new multibeam bathymetry and magnetic survey with R/V SONNE in summer 2003 has mapped the continental margin and incoming plate of NW Nicaragua, El Salvador and Guatemala, extending existing coverage from offshore Costa Rica and part of Nicaragua to a full coverage map of about 1200 km long by 100 km wide area along the plate boundary. The incoming plate along Nicaragua, El Salvador and Guatemala is of similar age and was formed at superfast spreading rates; however, its morphology changes drastically along strike. The seafloor-spreading inherited morphology is very smooth along Nicaragua, but with ridges up to 800 m high in Guatemala, with a transition across El Salvador. The development and dimensions of the dominant inherited fabric seems to be related to discontinuities at the paleospreading center. A series of troughs oblique to the main fabric may indicate the location of pseudofaults and correspond to areas where the seafloor fabric is most prominent. Bending of the oceanic plate into the trench reactivates the inherited fabric forming a well pervasive faulting system along the oceanic trench slope. The continental slope displays three morphotectonic units that roughly correspond to the upper, middle and lower slope, although the across slope width of each unit is fairly variable. Small canyons and gullies that form at the sudden dip change across the shelf break carve the upper slope. The canyons coalesce and become shallower as the dip decreases downslope. Locally some large canyons continue into the slope toe. The middle slope is a rough terrain variable in width and dip sculptured by pervasive normal faulting and locally by mass wasting processes. The lower slope is formed by en echelon terraces striking similar to the rough terrain of the incoming plate and mimicking the half graben morphology of the underthusting plate. The three morphotectonic slope domains represent differences in tectonic activity, with more stable upper slope, a middle slope dominated by tectonic extension and the thin, highly fractured upper plate of the lower slope riffling over the incoming plate topography. The trench axis is largely empty, with local turbidite ponds at the mouth of a few large canyons transecting the entire slope.
NASA Astrophysics Data System (ADS)
Hazelton, A.; Rogers, R.; Hart, R. E.
2013-12-01
Recently, it has become apparent that typical methods for analyzing tropical cyclones (TCs), such as track and intensity, are insufficient for evaluating TC structural evolution and numerical model forecasts of that evolution. Many studies have analyzed different metrics related to TC inner-core structure in an attempt to better understand the processes that drive changes in core structure. One important metric related to vertical TC structure is the slope of the eyewall. Hazelton and Hart (2013) discussed azimuthal mean eyewall slope based on radar reflectivity data, and its relationship with TC intensity and core structure. That study also noted significant azimuthal variation in slopes, but did not significantly explore reasons for this variation. Accordingly, in this study, we attempt to quantify the role of vertical wind shear in causing azimuthal variance of slope, using research quality Doppler radar composites from the NOAA Hurricane Research Division (HRD). We analyze the slope of the 20 dBZ surface as in Hazelton and Hart (2013), and also look at azimuthal variation in other measures of eyewall slope, such as the slope of the radius of maximum winds (RMW), which has been analyzed in an azimuthal mean sense by Stern and Nolan (2009), and an angular momentum surface. The shear-relative slopes are quantified by separating the radar data into four quadrants relative to the vertical shear vector: Downshear Left (DSL), Upshear Left (USL), Upshear Right (USR), and Downshear Right (DSR). This follows the method employed in shear-relative analyses of other aspects of TC core structure, such as Rogers et al. (2013) and Reasor et al. (2013). The data suitable for use in this study consist of 36 flights into 15 different TCs (14 Atlantic, 1 Eastern Pacific) between 1997 and 2010. Preliminary results show apparent shear-induced asymmetries in eyewall slope. The slope of the RMW shows an asymmetry due to the tilt of the vortex approximately along the shear vector, with an average slope (in ° from vertical) in the two downshear quadrants of 36.5° and an average slope of 16.3° in the two upshear quadrants (p < 0.05). This result is consistent with a case-study analysis by Rogers and Uhlhorn (2008) of changes in RMW slope in the lower levels of Hurricane Rita. In addition, the slope of an angular momentum surface shows a similar pattern to the RMW. The slope of the 20 dBZ surface does not show as well-defined a signal. However, by separating the cases into TCs that were strengthening or weakening/steady, we found that the difference between dBZ slope and M slope is important in distinguishing between the sets. The 20 dBZ surface tended to be more upright than an M surface in the azimuthal mean and in two of the four quadrants for intensifying cases, and less upright than the M surface for weakening/steady-state cases (p < 0.05). This result is consistent with a conceptual model for intensifying vs. steady-state TCs described in Rogers et al. (2013). Further analysis will continue to explore methods to quantify the effects of vertical shear on the TC secondary circulation using the metric of eyewall slope.
Structure of the North American Atlantic Continental Margin
Schlee, J.S.; Klitgord, K.K.
1986-01-01
Off E N America, where the structure of the continental margin is essentially constructional, seismic profiles have approximated geologic cross sections up to 10-15km below the sea floor and revealed major structural and stratigraphic features that have regional hydrocarbon potential. These features include a) a block-faulted basement hinge zone; b) a deep, broad, rifted basement filled with clastic sediment and salt; and c) a buried paleoshelf-edge complex that has many forms. The mapping of seismostratigraphic units over the continental shelf, slope, and rise has shown that the margin's developmental state included infilling of a rifted margin, buildup of a carbonate platform, and construction of an onlapping continental-rise wedge that was accompanied by erosion of the slope. -from Authors
NASA Astrophysics Data System (ADS)
Richardson, J.; Graves, K.; Bowling, T.
2014-07-01
Previous studies of the combined effects of asteroid shape, spin, and self-gravity have focused primarily upon the failure limits for bodies with a variety of standard shapes, friction, and cohesion values [1,2,3]. In this study, we look in the opposite direction and utilize 22 asteroid shape-models derived from radar inversion [4] and 7 small body shape-models derived from spacecraft observations [5] to investigate the region in shape/spin space [1,2] wherein self-gravity and rotation combine to produce a stable minimum state with respect to surface potential differences, dynamic topography, slope magnitudes, and erosion rates. This erosional minimum state is self-correcting, such that changes in the body's rotation rate, either up or down, will increase slope magnitudes across the body, thereby driving up erosion rates non-linearly until the body has once again reached a stable, minimized surface state [5]. We investigated this phenomenon in a systematic fashion using a series of synthesized, increasingly prolate spheroid shape models. Adjusting the rotation rate of each synthetic shape to minimize surface potential differences, dynamic topography, and slope magnitudes results in the magenta curve of the figure (right side), defining the zone of maximum surface stability (MSS). This MSS zone is invariant both with respect to body size (gravitational potential and rotational potential scale together with radius), and density when the scaled-spin of [2] is used. Within our sample of observationally derived small-body shape models, slow rotators (Group A: blue points), that are not in the maximum surface stability (MSS) zone and where gravity dominates the slopes, will generally experience moderate erosion rates (left plot) and will tend to move up and to the right in shape/spin space as the body evolves (right plot). Fast rotators (Group C: red points), that are not in the MSS zone and where spin dominates the slopes, will generally experience high erosion rates (left plot) and will tend to move down and to the left in shape/spin space as the body evolves (right plot), barring other influences such as YORP spin-up [6]. Moderate rotators (Group B: green points) have slopes that are influenced equally by gravity and spin, lie in or near the self-correcting MSS zone (right plot), and will generally experience the lowest erosion rates (left plot). These objects comprise 12 (43%) of the 28 bodies studied, perhaps indicating some prevalence for the MSS zone. On the other hand, a sample of 1300 asteroid shape and spin parameters (small grey points), derived from asteroid lightcurve data [7], do not show this same degree of correlation, perhaps indicating the relative weakness of erosion-driven shape modification as compared to other influences. We will continue to investigate this phenomenon as the number of detailed shape models from ground-based radar and other observations continues to increase.
NASA Technical Reports Server (NTRS)
Mackinnon, David J.; Tanaka, Kenneth L.; Winchell, Philip J.
1987-01-01
Photoclinometric measurements were made of sidewall slopes in Nirgal and Auqakuh Valles and these results were interpreted in terms of the geologic setting and a simple geomorphic model to provide insights into the physical properties of crustal materials in these areas. Nirgal was interpreted to be a runoff channel and Auqakuh to be a fretted channel. Geomorphologic arguments for the sapping origin of Nirgal and Auqakuh Valles were presented. The morphologies of the channels, however, differ greatly: the tributaries of Nirgal end abruptly in theater-headed canyons, whereas the heads of tributaries of Auqakuh shallow gradually. The plateau surface surrounding both channels appears to be covered by smooth materials, presumably lava flows; they are continuous and uneroded in the Nirgal area, but at Auqakuh they are largely eroded and several layers are exposed that total about 200 m in thickness. For Nirgal Valles, the measurements show that sidewalls in the ralatively shallow upper reaches of the channel have average slopes near 30 degrees and, in the lower reaches, sidewall slopes exceed 50 degrees. Auqakuh, on the other hand, has maximum sidewall slopes of 14 degrees and an approximate maximum depth of 1000 m. Faint, horizontal layering in portions of the lower reaches of Nirgal may indicate inhomogeneity in either composition or topography.
Transient Slope Lineae Formation in a Well-Preserved Crater
2017-11-20
This enhanced color image from NASA's Mars Reconnaissance Orbiter (MRO) shows what are called "recurring slope lineae"s in Tivat Crater. The narrow, dark flows descend downhill (towards the upper left). Analysis shows that the flows all end at approximately the same slope, which is similar to the angle of repose for sand. RSL are mostly found on steep rocky slopes in dark regions of Mars, such as the southern mid-latitudes, Valles Marineris near the equator, and in Acidalia Planitia on the northern plains. The appearance and growth of these features resemble seeping liquid water, but how they form remains unclear, and this research demonstrated that the RSL flows seen by HiRISE are likely moving granular material like sand and dust. These findings indicate that present-day Mars may not have a significant volume of liquid water. The water-restricted conditions that exist on Mars would make it difficult for Earth-like life to exist near the surface of the planet. The map is projected here at a scale of 25 centimeters (9.8 inches) per pixel. [The original image scale is 25.6 centimeters (10.8 inches) per pixel (with 1 x 1 binning); objects on the order of 77 centimeters (30.3 inches) across are resolved.] North is up. https://photojournal.jpl.nasa.gov/catalog/PIA22114
The role of shear and tensile failure in dynamically triggered landslides
Gipprich, T.L.; Snieder, R.K.; Jibson, R.W.; Kimman, W.
2008-01-01
Dynamic stresses generated by earthquakes can trigger landslides. Current methods of landslide analysis such as pseudo-static analysis and Newmark's method focus on the effects of earthquake accelerations on the landslide mass to characterize dynamic landslide behaviour. One limitation of these methods is their use Mohr-Coulomb failure criteria, which only accounts for shear failure, but the role of tensile failure is not accounted for. We develop a limit-equilibrium model to investigate the dynamic stresses generated by a given ground motion due to a plane wave and use this model to assess the role of shear and tensile failure in the initiation of slope instability. We do so by incorporating a modified Griffith failure envelope, which combines shear and tensile failure into a single criterion. Tests of dynamic stresses in both homogeneous and layered slopes demonstrate that two modes of failure exist, tensile failure in the uppermost meters of a slope and shear failure at greater depth. Further, we derive equations that express the dynamic stress in the near-surface in the acceleration measured at the surface. These equations are used to approximately define the depth range for each mechanism of failure. The depths at which these failure mechanisms occur suggest that shear and tensile failure might collaborate in generating slope failure. ?? 2007 The Authors Journal compilation ?? 2007 RAS.
NASA Astrophysics Data System (ADS)
Hill, Kimberly M.; Gaffney, John; Baumgardner, Sarah; Wilcock, Peter; Paola, Chris
2017-01-01
When fine sediment is added to a coarse-grained system, the mobility and composition of the bed can change dramatically. We conducted a series of flume experiments to determine how the size of fine particles introduced to an active gravel bed influences the mobility and composition of the bed. We initiated our experiments using a constant water discharge and feed rate of gravel. After the system reached steady state, we doubled the feed rate by supplying a second sediment of equal or lesser size, creating size ratios from 1:1 to 1:150. As we decreased the relative size of the fine particles, the system transitioned among three regimes: (1) For particle size ratios close to one, the bed slope increased to transport the additional load of similar-sized particles. The bed surface remained planar and unchanged. (2) For intermediate particle size ratios, the bed slope decreased with the additional fines. The bed surface became patchy with regions of fine and coarse grains. (3) For the largest particle size ratios (the smallest fines), the bed slope remained relatively unchanged. The subsurface became clogged with fine sediment, but fine particles were not present in the surface layer. This third regime constitutes washload, defined by those fractions that do not affect bed-material transport conditions. Our results indicate washload should be defined in terms of three conditions: small grain size relative to that of the bed material, full suspension based on the Rouse number, and a small rate of fine sediment supply relative to transport capacity.
Geomorphically based predictive mapping of soil thickness in upland watersheds
NASA Astrophysics Data System (ADS)
Pelletier, Jon D.; Rasmussen, Craig
2009-09-01
The hydrologic response of upland watersheds is strongly controlled by soil (regolith) thickness. Despite the need to quantify soil thickness for input into hydrologic models, there is currently no widely used, geomorphically based method for doing so. In this paper we describe and illustrate a new method for predictive mapping of soil thicknesses using high-resolution topographic data, numerical modeling, and field-based calibration. The model framework works directly with input digital elevation model data to predict soil thicknesses assuming a long-term balance between soil production and erosion. Erosion rates in the model are quantified using one of three geomorphically based sediment transport models: nonlinear slope-dependent transport, nonlinear area- and slope-dependent transport, and nonlinear depth- and slope-dependent transport. The model balances soil production and erosion locally to predict a family of solutions corresponding to a range of values of two unconstrained model parameters. A small number of field-based soil thickness measurements can then be used to calibrate the local value of those unconstrained parameters, thereby constraining which solution is applicable at a particular study site. As an illustration, the model is used to predictively map soil thicknesses in two small, ˜0.1 km2, drainage basins in the Marshall Gulch watershed, a semiarid drainage basin in the Santa Catalina Mountains of Pima County, Arizona. Field observations and calibration data indicate that the nonlinear depth- and slope-dependent sediment transport model is the most appropriate transport model for this site. The resulting framework provides a generally applicable, geomorphically based tool for predictive mapping of soil thickness using high-resolution topographic data sets.
Changes in Small Intestine Tissue Compressed by a Linear Stapler Based on Cole Y Model.
Zhou, Yu; Ren, Binbin; Li, Boting; Xu, Jingjing; Jin, Yiyun; Song, Chengli
2016-12-01
Clarifying changes in gastrointestinal tissue compressed by surgical stapler is a crucial prerequisite for stapler design optimization. For this study, a stapler was modified, and multifrequency bioimpedance of a porcine small intestine tissue compressed by the stapler was measured. The Cole Y model was fitted to the bioimpedance, and changes in tissue were analyzed using model parameters: G 0 , extracellular fluid conductance; ΔG, intracellular fluid conductance; C cpeF , equivalent capacitance of cell membrane. The changes could be divided into two stages: first, all parameters decreased sharply with slopes more than 15.70 ± 2.67, 4.25 ± 1.23 μS/s and 72.68 ± 6.99 pF/s respectively; and subsequently, with an increase in compression strength, G 0 decreased with slopes less than 2.54 ± 0.40 μS/s, ΔG decreased slightly with slope of 0.26 ± 0.04 μS/s after fluctuating mildly, and C cpeF remained nearly invariant after initially increasing with slope of -2.94 ± 0.64 pF/s. In conclusion, when the stapler is closed, a portion of tissue is squeezed out of the measurement space, causing all parameters' sharp decrease. Subsequently, the stapler continues compressing the tissue, leading to extracellular fluid expulsion. The changes in intracellular fluid are related to the compression strength and may be explained by cell restoration. This study could provide a basis for stapler design optimization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sartore, R.G.
1996-12-31
In the evaluation of GaAs devices from the MMIC (Monolithic Microwave Integrated Circuits) program for Army applications, there was a requirement to obtain accurate linewidth measurements on the nominal 0.5 micrometer gate lengths used to fabricate these devices. Preliminary measurements indicated a significant variation (typically 10% to 30% but could be more) in the critical dimensional measurements of the gate length, gate to source distance and gate to drain distance. Passivation introduced a margin of error, which was removed by plasma etching. Additionally, the high aspect ratio (4-5) of the thick gold (Au) conductors also introduced measurement difficulties. The finalmore » measurements were performed were performed after the thick gold conductor was removed and only the barrier metal remained, which was approximately 250 nanometer thick platinum on GaAs substrate. The thickness was measured using the penetration voltage method. Linescan of the secondary electron signal as it scans across the gate is shown in Figure 1. This linescan is an average of 5 linescans in the immediate vicinity to reduce noise levels. A SEM image of the area is shown in Figure 2. To obtain a rough estimate of the slopes of the gate lines at the edges, the sample was tilted to 75 degrees and the image in Figure 3 was obtained. From this figure a rough estimate of the sloped edges, using a protractor, was obtained, approximately 27 degrees, +/-5 degrees.« less
Laboratory Study of Water Surface Roughness Generation by Wave-Current Interaction
NASA Technical Reports Server (NTRS)
Klinke, Jochen
2000-01-01
Within the framework of this project, the blocking of waves by inhomogeneous currents was studied. A laboratory experiment was conducted in collaboration with Steven R. Long at the linear wave tank of the NASA Air-Sea Interaction Facility, Wallops Island, VA during May 1999. Mechanically-generated waves were blocked approximately 3m upstream from the wave paddle by an opposing current. A false bottom was used to obtain a spatially varying flow field in the measurement section of the wave tank. We used an imaging slope gauge, which was mounted directly underneath the sloping section of the false tank bottom to observe the wave field. For a given current speed, the amplitude and the frequency of the waves was adjusted so that the blocking occurred within the observed footprint. Image sequences of up to 600 images at up 100 Hz sampling rate were recorded for an area of approximately 25cm x 25cm. Unlike previous measurements with wave wire gauges, the captured image sequences show the generation of the capillary waves at the blocking point and give detailed insight into the spatial and temporal evolution of the blocking process. The image data were used to study the wave-current interaction for currents from 5 to 25 cm/s and waves with frequencies between 1 and 3 Hz. First the images were calibrated with regard to size and slope. Then standard Fourier techniques as well the empirical mode decomposition method developed by Dr. Norden Huang and Dr. Steven R. Long were employed to quantify the wave number downshift from the gravity to the capillary regime.
On the apparent power law in CDM halo pseudo-phase space density profiles
NASA Astrophysics Data System (ADS)
Nadler, Ethan O.; Oh, S. Peng; Ji, Suoqing
2017-09-01
We investigate the apparent power-law scaling of the pseudo-phase space density (PPSD) in cold dark matter (CDM) haloes. We study fluid collapse, using the close analogy between the gas entropy and the PPSD in the fluid approximation. Our hydrodynamic calculations allow for a precise evaluation of logarithmic derivatives. For scale-free initial conditions, entropy is a power law in Lagrangian (mass) coordinates, but not in Eulerian (radial) coordinates. The deviation from a radial power law arises from incomplete hydrostatic equilibrium (HSE), linked to bulk inflow and mass accretion, and the convergence to the asymptotic central power-law slope is very slow. For more realistic collapse, entropy is not a power law with either radius or mass due to deviations from HSE and scale-dependent initial conditions. Instead, it is a slowly rolling power law that appears approximately linear on a log-log plot. Our fluid calculations recover PPSD power-law slopes and residual amplitudes similar to N-body simulations, indicating that deviations from a power law are not numerical artefacts. In addition, we find that realistic collapse is not self-similar; scalelengths such as the shock radius and the turnaround radius are not power-law functions of time. We therefore argue that the apparent power-law PPSD cannot be used to make detailed dynamical inferences or extrapolate halo profiles inwards, and that it does not indicate any hidden integrals of motion. We also suggest that the apparent agreement between the PPSD and the asymptotic Bertschinger slope is purely coincidental.
A Dark Asteroid Family in the Phocaea Region
NASA Astrophysics Data System (ADS)
Novaković, Bojan; Tsirvoulis, Georgios; Granvik, Mikael; Todović, Ana
2017-06-01
We report the discovery of a new asteroid family among the dark asteroids residing in the Phocaea region the Tamara family. We make use of available physical data to separate asteroids in the region according to their surface reflectance properties, and establish the membership of the family. We determine the slope of the cumulative magnitude distribution of the family, and find it to be significantly steeper than the corresponding slope of all the asteroids in the Phocaea region. This implies that subkilometer dark Phocaeas are comparable in number to bright S-type objects, shedding light on an entirely new aspect of the composition of small Phocaea asteroids. We then use the Yarkovsky V-shape based method and estimate the age of the family to be 264 ± 43 Myr. Finally, we carry out numerical simulations of the dynamical evolution of the Tamara family. The results suggest that up to 50 Tamara members with absolute magnitude H< 19.4 may currently be found in the near-Earth region. Despite their relatively small number in the near-Earth space, the rate of Earth impacts by small, dark Phocaeas is non-negligible.
Photometric metallicity map of the Small Magellanic Cloud
NASA Astrophysics Data System (ADS)
Choudhury, S.; Subramaniam, A.; Cole, A. A.; Sohn, Y.-J.
2018-04-01
We have created an estimated metallicity map of the Small Magellanic Cloud (SMC) using the Magellanic Cloud Photometric Survey (MCPS) and Optical Gravitational Lensing Experiment (OGLE III) photometric data. This is a first of its kind map of metallicity up to a radius of ˜2.5°. We identify the Red Giant Branch (RGB) in the V, (V - I) colour-magnitude diagrams of small sub-regions of varying sizes in both data sets. We use the slope of the RGB as an indicator of the average metallicity of a sub-region and calibrate the RGB slope to metallicity using available spectroscopic data for selected sub-regions. The average metallicity of the SMC is found to be [Fe/H] = -0.94 dex (σ[Fe/H] = 0.09) from OGLE III and [Fe/H] = -0.95 dex (σ[Fe/H] = 0.08) from MCPS. We confirm a shallow but significant metallicity gradient within the inner SMC up to a radius of 2.5° (-0.045 ± 0.004 to -0.067 ± 0.006 dex deg-1).
Polychaete functional diversity in shallow habitats: Shelter from the storm
NASA Astrophysics Data System (ADS)
Wouters, Julia M.; Gusmao, Joao B.; Mattos, Gustavo; Lana, Paulo
2018-05-01
Innovative approaches are needed to help understanding how species diversity is related to the latitudinal gradient at large or small scales. We have applied a novel approach, by combining morphological and biological traits, to assess the relative importance of the large scale latitudinal gradient and regional morphodynamic drivers in shaping the functional diversity of polychaete assemblages in shallow water habitats, from exposed to estuarine sandy beaches. We used literature data on polychaetes from beaches along the southern and southeastern Brazilian coast together with data on beach types, slope, grain size, temperature, salinity, and chlorophyll a concentration. Generalized linear models on the FDis index for functional diversity calculated for each site and a combined RLQ and fourth-corner analysis were used to investigate relationships between functional traits and environmental variables. Functional diversity was not related to the latitudinal gradient but negatively correlated with grain size and beach slope. Functional diversity was highest in flat beaches with small grain size, little wave exposure and enhanced primary production, indicating that small scale morphodynamic conditions are the primary drivers of polychaete functional diversity.
Debby K. Frantz; Rochelle B. Renken
2002-01-01
We conducted a capture-recapture study on the northeast-facing slopes of the MOFEP sites in south central Missouri to determine the initial effects of even- and uneven-aged forest management on species composition, species richness, and relative abundance of the small mammal communities. We compared changes between pre-treatment (1994-1995) and post-treatment (1998-...
Wintertime slope winds and its turbulent characteristics in the Yeongdong region of Korea
NASA Astrophysics Data System (ADS)
Jeon, H. R.; Eun, S. H.; Kim, B. G.; Lee, Y. H.
2015-12-01
The Yeongdong region has various meteorological phenomenons by virtue of complicated geographical characteristics with high Taebaek Mountains running from the north to the south and an adjacent East Sea to the east. There are few studies on the slope winds and its turbulent characteristics over the complex terrain, which are critical information in mountain climbing, hiking, paragliding, even winter sports such as alpine skiing and ski jump etc. For the understanding of diverse mountain winds in the complex terrain in Yeongdong, hot-wire anemometers (Campbell Scientific) have been installed at a couple of sites since October 2014 and several automatic weather stations at several sites around the mountainous region in Yeongdong since November 2012.WRF model simulations have been also done with an ultra-fine horizontal resolution of 300 m for 10 years. Generally, model and observation show that the dominant wind is westerly, approximately more than 75%. It is quite consistent that wind fields from both model and observation agree with each other in the valley region and at the top of the mountain, but there is a significant disagreement in wind direction specifically in the slide slope. Probably this implies model's performance with even an ultra-fine resolution is still not enough for the slide slope domain of complex terrains. Despite that, the observation clearly showed up- and down slope winds for the weak synoptic conditions carefully selected such as strong insolation and a synoptic wind less than 5m/s in the 850 hPa. The up- and down slope flows are also demonstrated in the snow-covered condition as well as grass ground. Further, planar fit transformation algorithm against the coordinate tilt has been applied to raw wind data (10Hz) of the slope site for the analysis of turbulence properties. Turbulence also increases with synoptic wind strength. Detailed analysis of mechanical turbulence and buoyance will be discussed for different surface properties (grass or snow), and wind strength (weak and strong).
HIGH FIELD Q-SLOPE AND THE BAKING EFFECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciovati, Gianluigi
The performance of SRF cavities made of bulk Nb at high fields (peak surface magnetic field greater than about 90 mT) is characterized by exponentially increasing RF losses (high-field Q-slope), in the absence of field emission, which are often mitigated by a low temperature (100-140 °C, 12-48h) baking. In this contribution, recent experimental results and phenomenological models to explain this effect will be briefly reviewed. New experimental results on the high-field Q-slope will be presented for cavities that had been heat treated at high temperature in the presence of a small partial pressure of nitrogen. Improvement of the cavity performancesmore » have been obtained, while surface analysis measurements on Nb samples treated with the cavities revealed significantly lower hydrogen concentration than for samples that followed standard cavity treatments.« less
A Unified Treatment of the Acoustic and Elastic Scattered Waves from Fluid-Elastic Media
NASA Astrophysics Data System (ADS)
Denis, Max Fernand
In this thesis, contributions are made to the numerical modeling of the scattering fields from fluid-filled poroelastic materials. Of particular interest are highly porous materials that demonstrate strong contrast to the saturating fluid. A Biot's analysis of porous medium serves as the starting point of the elastic-solid and pore-fluid governing equations of motion. The longitudinal scattering waves of the elastic-solid mode and the pore-fluid mode are modeled by the Kirchhoff-Helmholtz integral equation. The integral equation is evaluated using a series approximation, describing the successive perturbation of the material contrasts. To extended the series' validity into larger domains, rational fraction extrapolation methods are employed. The local Pade□ approximant procedure is a technique that allows one to extrapolate from a scattered field of small contrast into larger values, using Pade□ approximants. To ensure the accuracy of the numerical model, comparisons are made with the exact solution of scattering from a fluid sphere. Mean absolute error analyses, yield convergent and accurate results. In addition, the numerical model correctly predicts the Bragg peaks for a periodic lattice of fluid spheres. In the case of trabecular bones, the far-field scattering pressure attenuation is a superposition of the elastic-solid mode and the pore-fluid mode generated waves from the surrounding fluid and poroelastic boundaries. The attenuation is linearly dependent with frequency between 0.2 and 0.6MHz. The slope of the attenuation is nonlinear with porosity, and does not reflect the mechanical properties of the trabecular bone. The attenuation shows the anisotropic effects of the trabeculae structure. Thus, ultrasound can possibly be employed to non-invasively predict the principal structural orientation of trabecular bones.
Tao, Shasha; Yang, Florent; Schuch, Jona; Jaegermann, Wolfram; Kaiser, Bernhard
2018-03-09
Ni nanoparticles (NPs) consisting of Ni, NiO, and Ni(OH) 2 were formed on Ti substrates by electrodeposition as electrocatalysts for the hydrogen evolution reaction (HER) in alkaline solution. Additionally, the deposition parameters including the potential range and the scan rate were varied, and the resulting NPs were investigated by scanning electron microscopy and X-ray photoelectron spectroscopy. The chemical composition of the NPs changed upon using different conditions, and it was found that the catalytic activity increased with an increase in the amount of NiO. From these data, optimized NPs were synthesized; the best sample showed an onset potential of approximately 0 V and an overpotential of 197 mV at a cathodic current density of 10 mA cm -2 as well as a small Tafel slope of 88 mV dec -1 in 1 m KOH, values that are comparable to those of Pt foil. These NPs consist of approximately 25 % Ni and Ni(OH) 2 each, as well as approximately 50 % NiO. This implies that to obtain a successful HER electrocatalyst, active sites with differing compositions have to be close to each other to promote the different reaction steps. Long-time measurements (30 h) showed almost complete transformation of the highly active catalyst compound consisting of Ni 0 , NiO, and Ni(OH) 2 into the less active Ni(OH) 2 phase. Nevertheless, the here-employed electrodeposition of nonprecious metal/metal-oxide combination compounds represents a promising alternative to Pt-based electrocatalysts for water reduction to hydrogen. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Ueda, Daiki; Takeuchi, Kiyoshi; Kobayashi, Masaharu; Hiramoto, Toshiro
2018-04-01
A new circuit model that provides a clear guide on designing a MOS-gated thyristor (MGT) is reported. MGT plays a significant role in achieving a steep subthreshold slope of a PN-body tied silicon-on-insulator (SOI) FET (PNBTFET), which is an SOI MOSFET merged with an MGT. The effects of design parameters on MGT and the proposed equivalent circuit model are examined to determine how to regulate the voltage response of MGT and how to suppress power dissipation. It is demonstrated that MGT with low threshold voltages, small hysteresis widths, and small power dissipation can be designed by tuning design parameters. The temperature dependence of MGT is also examined, and it is confirmed that hysteresis width decreases with the average threshold voltage kept nearly constant as temperature rises. The equivalent circuit model can be conveniently used to design low-power PNBTFET.
Scale effect on the water retention curve of a volcanic ash
NASA Astrophysics Data System (ADS)
Damiano, Emilia; Comegna, Luca; Greco, Roberto; Guida, Andrea; Olivares, Lucio; Picarelli, Luciano
2015-04-01
During the last decades, a number of flowslides and debris flows triggered by intense rainfall affected a wide mountainous area surrounding the "Campania Plain" (southern Italy). The involved slopes are constituted by shallow unsaturated air-fall deposits of pyroclastic nature, which stability is guaranteed by the contribution of suction on shear strength. To reliably predict the onset of slope failure triggered by critical precipitations, is essential to understand the infiltration process and the soil suction distribution in such granular deposits. The paper presents the results of a series of investigation performed at different scales to determine the soil water retention curve (SWRC) of a volcanic ash which is an es-sential element in the analysis of the infiltration processes. The soil, a silty sand, was taken at Cervinara hillslope, 30 km East of Naples, just aside an area which had been subjected to a catastrophic flowslide. The SWRC was obtained through: - standard tests in a suction-controlled triaxial apparatus (SCTX), in a pressure plate and by the Wind technique (1968) on small natural and reconstituted soil samples (sample dimensions in the order of the 1•10-6m3) ; - infiltration tests on small-scale model slopes reconstituted in an instrumented flume (sample dimensions in the order of 5•10-3m3); - suction and water content monitoring at the automatic station installed along the Cervinara hillslope. The experimental points generally were defined by coupling suction measurements through jet-fill tensiometers and water content through TDR probes installed close each others. The obtained data sets individuate three different curves characterized by different shapes in the transition zone: at larger volume element dimensions correspond curves which exhibit steeper slopes and lower values of the water content in the transition zone. This result confirms the great role of the volume element dimensions in the de-termination of hydraulic characteristics of the soil which cannot be neglected if a reli-able prediction of the slope behaviour has to be done.
NASA Astrophysics Data System (ADS)
Giordano, Guido
1998-12-01
The distribution of lithic clasts within two trachytic, small volume, pumiceous ignimbrites are described from the Quaternary `White Trachytic Tuff Cupa' formation of Roccamonfina volcano, Italy. The ignimbrites show a downslope grading of lithics, with a maximum size where there is a major break in the volcano's slope, rather than at proximal locations. This is also the location where ignimbrites are thickest and most massive. The break in slope is interpreted to have reduced flow capacity and velocity, increasing the sedimentation rate, so that massive ignimbrite formed by hindered settling sedimentation. Ignimbrite Cc, exhibits no vertical grading of lithics, though it does show downslope grading with maximum size at the major break in slope and a rapid decrease further downslope. Ignimbrite Cc thins away from the break in slope, and shows an upward fining of the grain size within the topmost few decimeters of the unit. The ignimbrite is stratified proximally, and grades to massive facies at the break in slope, and distally to stratified facies with numerous inverse-graded beds. The simplest mechanism accounting for these downslope variations is progressive aggradation from a quasi-steady, nonuniform pyroclastic density current. The changes in deposit thickness and facies are interpreted to record downcurrent changes in sedimentation rate. The upward fining reflects waning flow. Inversely graded, bedded depositional facies in distal areas is interpreted to reflect flow unsteadiness and a decrease in suspended sediment load. Ignimbrite Cd shows vertical, as well as downslope grading of lithics. This characteristic, coupled with the widespread massive facies of the deposit and the tabular unit geometry are features that can be reconciled with both the debris flow/plug analogy for pyroclastic flows ( Sparks, 1976) and the progressive aggradation model ( Branney and Kokelaar, 1992). However, none of them appears to satisfy completely the field evidences, implying that when dealing with massive ignimbrites, other evidence than lithic grading needs to be presented to better understand the related transport and depositional processes.
Han, Qiang; Yu, Xing Xiu; Wang, Wei; Xu, Miao Miao; Ren, Rui; Zhang, Jia Peng
2017-04-18
Taking Hujiashan small watershed as the study area, based on the classified result of Landsat TM/ETM images of 2005, 2010 and 2015, combined with long-term field observation data, and used the export coefficient model, our study explored the effect of small watershed management project on temporal and spatial variation of total nitrogen (TN) load of non-point source pollution under the support of GIS technology. The results indicated that, due to the implementation of slope modification project, the area of cultivated land was significantly increased, while forest and bareland were decreased. The load of non-point source TN increased from 63208 kg in 2005 to 72778 kg in 2010, but reduced to 46876 kg in 2015. The contribution rate from residential areas was higher, the average contribution rate of the three periods was 53.5%, but it showed a decreasing trend year by year. The contribution rate of land use types was 45%, which showed an increasing trend year by year. The contribution rate of livestock was always low. From the spatial distribution, TN loading intensity was changed obviously after the terracing project. High load intensity zone was mainly concentrated on the slope of 5°-15° before terracing project. Nevertheless, high load intensity zone was concentrated on the slope of 15°-35° after terracing project, and 5°-8° had become a low load strength area. The TN load intensity changed little with time on the slope of 0°-8°, and it increased first and then decreased on the slope above 8°. With the treatment of sewage, garbage and livestock manure in rural areas, the output of nitrogen in the living and livestock breeding were significantly reduced. Due to the implementation of the project, the cultivated land area increased by 31%.
NASA Astrophysics Data System (ADS)
Wondzell, S. M.; Clifton, C. F.; Harris, R. M.; Ritchie, J. C.
2007-12-01
We examined present day rates of erosion in the Blue Mountains of eastern Oregon to quantify background erosion rates to provide standards for assessing possible accelerated rates of erosion resulting from wild fire or from land-management activities such as prescribed fire. The Skookum Creek watersheds, where stream discharge and sediment yield have been recorded continuously since the watersheds were gauged in 1992, provided a watershed-scale estimate of erosion rates. We installed hillslope erosion plots on north- and south- facing slopes within the watersheds in 2002 and collected data for three years to estimate short-term, hillslope- scale erosion rates. We also collected soil samples and analyzed them for 137Cs to get a 40-yr time- integrated estimate of hillslope erosion rates. Our results showed large differences between whole-watershed sediment yields and hillslope erosion rates measured from plots, suggesting that episodic processes dominated sediment production and transport and therefore controlled watershed-scale sediment budgets. At the hillslope-scale, short-term erosion resulted primarily from digging by small mammals and trampling by elk. Visual observations at the plots suggested that annual down-slope sediment movement was usually less than one meter. There were no significant difference among slope positions, but erosion rates were significantly higher on south-facing aspects and positively correlated to the amount of bare ground. In contrast, the 137Cs data suggested that erosion rates differed with slope position. Higher erosion rates were measured in toe- and mid-slope positions, with little erosion occurring on upper slopes and ridge tops. We examine these results in light of the present-day pattern of surface soils resulting from redistribution of volcanic ash from upper- slope to lower-slope positions and the effects of disturbance, including wildfire and the preferential grazing of riparian and lower-slope positions by domestic livestock.
Hippocampal place cell encoding of sloping terrain.
Porter, Blake S; Schmidt, Robert; Bilkey, David K
2018-05-21
Effective navigation relies on knowledge of one's environment. A challenge to effective navigation is accounting for the time and energy costs of routes. Irregular terrain in ecological environments poses a difficult navigational problem as organisms ought to avoid effortful slopes to minimize travel costs. Route planning and navigation have previously been shown to involve hippocampal place cells and their ability to encode and store information about an organism's environment. However, little is known about how place cells may encode the slope of space and associated energy costs as experiments are traditionally carried out in flat, horizontal environments. We set out to investigate how dorsal-CA1 place cells in rats encode systematic changes to the slope of an environment by tilting a shuttle box from flat to 15° and 25° while minimizing external cue change. Overall, place cell encoding of tilted space was as robust as their encoding of flat ground as measured by traditional place cell metrics such as firing rates, spatial information, coherence, and field size. A large majority of place cells did, however, respond to slope by undergoing partial, complex remapping when the environment was shifted from one tilt angle to another. The propensity for place cells to remap did not, however, depend on the vertical distance the field shifted. Changes in slope also altered the temporal coding of information as measured by the rate of theta phase precession of place cell spikes, which decreased with increasing tilt angles. Together these observations indicate that place cells are sensitive to relatively small changes in terrain slope and that terrain slope may be an important source of information for organizing place cell ensembles. The terrain slope information encoded by place cells could be utilized by efferent regions to determine energetically advantageous routes to goal locations. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.
Correlations between topography and intraflow width behavior in Martian and terrestrial lava flows
NASA Astrophysics Data System (ADS)
Peitersen, Matthew N.; Crown, David A.
2000-02-01
Local correlations between topography and width behavior within lava flows at Puu Oo, Mount Etna, Glass Mountain, Cerro Bayo, Alba Patera, Tyrrhena Patera, Elysium Mons, and Olympus Mons were investigated. For each flow, width and slope data were both referenced via downflow distance as a sequence of points; the data were then divided into collections of adjacent three-point features and two-point segments. Four discrete types of analyses were conducted: (1) Three-point analysis examined positional correlations between width and slope features, (2) two-point analysis did the same for flow segments, (3) mean slope analysis included segment slope comparisons, and (4) sudden width behavior analysis measured abruptness of width changes. The distribution of types of correlations compared to random combinations of features and segments does not suggest a significant correlation between flow widths and local underlying slopes and indicates that for these flows at least, other factors have more influence on changes in width than changes in underlying topography. Mean slopes underlying narrowing, widening, and constant flow width segments were calculated. An inverse correlation between slope and width was found only at Mount Etna, where slopes underlying narrowing segments were greater than those underlying widening in 62% of the examined flows. For the majority of flows at Mount Etna, Puu Oo, and Olympus Mons, slopes were actually greatest under constant width segments; this may imply a topographically dependent resistance to width changes. The rate of change of width was also examined. Sudden width changes are relatively common at Puu Oo, Mount Etna, Elysium Mons, and Tyrrhena Patera and relatively rare at Glass Mountain, Cerro Bayo, Olympus Mons, and Alba Patera. After correction for mapping scale, Puu Oo, Mount Etna, Olympus Mons, and Alba Patera appear to fall on the same trend; Glass Mount exhibits unusually small amounts of sudden width behavior, and Tyrrhena Patera exhibits a relatively large number of sudden width behavior occurrences.
Soil roughness, slope and surface storage relationship for impervious areas
NASA Astrophysics Data System (ADS)
Borselli, Lorenzo; Torri, Dino
2010-11-01
SummaryThe study of the relationships between surface roughness, local slope gradient and maximum volume of water storage in surface depressions is a fundamental element in the development of hydrological models to be used in soil and water conservation strategies. Good estimates of the maximum volume of water storage are important for runoff assessment during rainfall events. Some attempts to link surface storage to parameters such as indices of surface roughness and, more rarely, local gradient have been proposed by several authors with empirical equations often conflicting between them and usually based on a narrow range of slope gradients. This suggests care in selecting any of the proposed equations or models and invites one to verify the existence of more realistic experimental relationships, based on physical models of the surfaces and valid for a larger range of gradients. The aim of this study is to develop such a relation for predicting/estimating the maximum volume of water that a soil surface, with given roughness characteristics and local slope gradient, can store. Experimental work has been carried out in order to reproduce reliable rough surfaces able to maintain the following properties during the experimental activity: (a) impervious surface to avoid biased storage determination; (b) stable, un-erodible surfaces to avoid changes of retention volume during tests; (c) absence of hydrophobic behaviour. To meet the conditions a-c we generate physical surfaces with various roughness magnitude using plasticine (emulsion of non-expansible clay and oil). The plasticine surface, reproducing surfaces of arable soils, was then wetted and dirtied with a very fine timber sawdust. This reduced the natural hydrophobic behaviour of the plasticine to an undetectable value. Storage experiments were conducted with plasticine rough surfaces on top of large rigid polystyrene plates inclined at different slope gradient: 2%, 5%, 10%, 20%, 30%. Roughness data collected on the generated plasticine surfaces were successfully compared with roughness data collected on real soil surfaces for similar conditions. A set of roughness indices was computed for each surface using roughness profiles measured with a laser profile meter. Roughness indices included quantiles of the Abbot-Firestone curve, which is used in surface metrology for industrial application to characterize surface roughness in a non-parametric approach ( Whitehouse, 1994). Storage data were fitted with an empirical equation (double negative exponential of roughness and slope). Several roughness indices resulted well related to storage. The better results were obtained using the Abbot-Firestone curve parameter P100. Beside this storage empirical model (SEM) a geometrical model was also developed, trying to give a more physical basis to the result obtained so far. Depression geometry was approximated with spherical cups. A general physical model was derived (storage cup model - SCM). The cup approximation identifies where roughness elevation comes in and how it relates to slope gradient in defining depression volume. Moreover, the exponential decay used for assessing slope effect on storage volume in the empirical model of Eqs. (8) and (9) emerges as consistent with distribution of cup sizes.
NASA Technical Reports Server (NTRS)
Basu, A.; McKay, D. S.; Wentworth, S. J.
2003-01-01
Impacts on lunar soils produce melt and vapor in an approximate proportion of 7:1. The melt scavenges soil grains of diverse size, quenches and forms agglutinates, thereby converting surface correlated components of soil grains as volume correlated components; simultaneously, parts of the vapor may condense or escape. Cumulative small impacts increase the maturity of the soils, increase the abundance of agglutinates, and increase the concentration of vapor condensated material. Since the discovery of vapor deposited crystalline Fe-0 in vugs of regolith breccias and the theoretical anticipation of amorphous vapor deposits of diverse composition coating lunar soils grains, empirical evidence is gathering in support of such deposits, now commonly called vapor deposited patina (VDP). In addition, submicron globules of Fe-0 are seen to be ubiquitous in VDP. The amorphous VDP lowers the albedo of lunar soils, affects magnetic properties of soils, changes the slopes of uv-vis-ir reflectance spectra, and potentially also alters the gamma and x-ray spectra of lunar soils, compromising compositional inferences from remote sensing.
NASA Astrophysics Data System (ADS)
Donkov, Sava; Stefanov, Ivan Z.
2018-03-01
We have set ourselves the task of obtaining the probability distribution function of the mass density of a self-gravitating isothermal compressible turbulent fluid from its physics. We have done this in the context of a new notion: the molecular clouds ensemble. We have applied a new approach that takes into account the fractal nature of the fluid. Using the medium equations, under the assumption of steady state, we show that the total energy per unit mass is an invariant with respect to the fractal scales. As a next step we obtain a non-linear integral equation for the dimensionless scale Q which is the third root of the integral of the probability distribution function. It is solved approximately up to the leading-order term in the series expansion. We obtain two solutions. They are power-law distributions with different slopes: the first one is -1.5 at low densities, corresponding to an equilibrium between all energies at a given scale, and the second one is -2 at high densities, corresponding to a free fall at small scales.
NASA Astrophysics Data System (ADS)
Yang, Pengju; Guo, Lixin
2016-11-01
Based on the Lombardini et al. model that can predict the hydrodynamic damping of rough sea surfaces in the presence of monomolecular slicks and the "choppy wave" model (CWM) that can describe the nonlinear interactions between ocean waves, the modeling of time-varying nonlinear sea surfaces damped by natural or organic sea slicks is presented in this paper. The polarimetric scattering model of second-order small-slope approximation (SSA-II) with tapered wave incidence is utilized for evaluating co- and cross-polarized backscattered echoes from clean and contaminated CWM nonlinear sea surfaces. The influence of natural sea slicks on Doppler shift and spectral bandwidth of radar sea echoes is investigated in detail by comparing the polarimetric Doppler spectra of contaminated sea surfaces with those of clean sea surfaces. A narrowing of Doppler spectra in the presence of oil slicks is observed for both co- and cross-polarization, which is qualitatively consistent with wave-tank measurements. Simulation results also show that the Doppler shifts in slicks can increase or decrease, depending on incidence angles and polarizations.
Description of the Lofoten Basin Eddy using three years of Seaglider observations
NASA Astrophysics Data System (ADS)
Yu, Lusha; Bosse, Anthony; Fer, Ilker; Arild Orvik, Kjell; Magnus Bruvik, Erik; Hessevik, Idar; Kvalsund, Karsten
2017-04-01
The Lofoten Basin of the Norwegian Sea is an area where the warm Atlantic Water is subject to the greatest heat losses anywhere in the Nordic Seas. The region is recognized as an area of intense mesoscale activity, including eddies shed from the Norwegian slope current and a long-lived, deep, anticyclonic eddy residing in the central part of the basin (the Lofoten Basin Eddy, LBE). Here we use observations from Seagliders, collected in five missions between July 2012 and April 2015, to describe the LBE in unprecedented detail. The missions were concentrated to sample the LBE repeatedly, allowing for multiple realizations of radial sections across the eddy. The LBE has a mean radius of 18 ± 4 km, and propagates cyclonically with a mean speed of approximately 3-4 cm s-1. The anticyclonic azimuthal peak velocity varies between 0.5 and 0.7 m s-1, located between 680 and 860 m depth, and 16 and 25 km radial distance to the eddy center. The contribution of geostrophy in the cyclogeostrophic balance is approximately 50%, which indicates the importance of the non-linear effects. The relative vorticity representative of the core exhibits large values between -0.7f to -0.9f, where f is the local Coriolis parameter. The eddy core is long-lived (at least two years from May 2013 to March 2015), has characteristic values of Conservative Temperature of 4.8°C and Absolute Salinity of 35.34 g kg-1, and deepens to approximately 730 m in wintertime. A comparison of the eddy properties to those inferred from automated tracking of satellite altimeter observations shows that while the location of eddy center is detected accurately to within 5 km, the altimeter inferred vorticity is underestimated and the radius overestimated, each approximately by a factor of 2, because of excessive smoothing relative to the small eddy radius.
NASA Astrophysics Data System (ADS)
Griffiths, P. G.; Webb, W. H.; Magirl, C. S.; Pytlak, E.
2008-12-01
An extreme, multi-day rainfall event over southeastern Arizona during 27-31 July 2006 culminated in an historically unprecedented spate of 435 slope failures and associated debris flows in the Santa Catalina Mountains north of Tucson. Previous to this occurrence, only twenty small debris flows had been observed in this region over the past 100 years. Although intense orographic precipitation is routinely delivered by single- cell thunderstorms to the Santa Catalinas during the North American monsoon, in this case repeated nocturnal mesoscale convective systems were induced over southeastern Arizona by an upper-level low- pressure system centered over the Four Corners region for five continuous days, generating five-day rainfall totals up to 360 mm. Calibrating weather radar data with point rainfall data collected at 31 rain gages, mean-area storms totals for the southern Santa Catalina Mountains were calculated for 754 radar grid cells at a resolution of approximately 1 km2 to provide a detailed picture of the spatial and temporal distribution of rainfall during the event. Precipitation intensity for the 31 July storms was typical for monsoonal precipitation in this region, with peak 15-minute rainfall averaging 17 mm/hr for a recurrence interval (RI) < 1 yr. However, RI > 50 yrs for four-day rainfall totals overall, RI > 100 yrs where slope failures occurred, and RI > 1000 yrs for individual grid cells in the heart of the slope failure zone. A comparison of rainfall at locations where debris-flows did and did not occur suggests an intensity (I)-duration (D) threshold for debris flow occurrence for the Santa Catalina Mountains of I = 14.82D-0.39(I in mm/hr). This threshold falls slightly higher than the 1000-year rainfall predicted for this area. The relatively large exponent reflects the high frequency of short-duration, high-intensity rainfall and the relative rarity of the long-duration rainfall that triggered these debris flows. Analysis of the rainfall/runoff ratio in the drainage basin at the heart of the debris flows confirms that sediments were nearly saturated before debris flows were initiated on July 31.
NASA Astrophysics Data System (ADS)
Gude, M.; Hauck, C.; Kneisel, C.; Krause, S.; Molenda, R.; Ruzicka, V.; Zacharda, M.
2003-04-01
Many slope sections covered with blocky material situated in Central European highlands display special microclimatic conditions that resemble those of high latitude or high altitude periglacial areas. In some of these screes even permafrost-like conditions are detected although they are located on elevations fairly below 1000 m a.s.l. These conditions are accompanied by a circulation of air through the open void system, which effects a formation of an ice body during winter by re-sublimation of air humidity, supported by refreezing water from snow melt and precipitation. This ice body is assumed to prevail during the entire summer. Population genetic investigations on alpine and polar beetle species that inhabit the screes proof the continuous existence of the extraordinary cool conditions with probable permafrost throughout the Holocene - i.e. these periglacial-like condition are relatively stable despite all Holocene climatic variations. Observations of summer ice and numerous temperature measurements lead to the assumption of permafrost with enduring ice in the open voids as an integral factor of the microclimatic system. To evaluate its existence the underground was investigated in seven European screes by means of DC resistivity and refraction seismic in early summer. In order to solve the multi-phase subsurface structures, tomographic survey and inversion techniques are necessary, as 1-dimensional plane layer approximations are usually invalid. The results clearly reveal seismic and resistivity anomalies e.g. in the Klic scree (50°49'N, 14°04'E, base at 524 m a.s.l.) in Northern Bohemia. Within a blocky layer of about 10 m high thickness velocity anomalies (2000-3000 m/s) indicate the existence of a small ground ice body, which is confirmed by the synchronous detection of resistivity anomalies in the same place. These conditions are confined to steep scree slopes in regions with thin winter snow cover to enable air circulation. It is probable, that these effects are also found in alpine regions, where they cause a significant depression of the current lower permafrost limit.
Seasonal Dark Streaks in Tivat Crater, Mars
2017-11-20
This inner slope of a crater on southern Mars has several of the seasonal dark streaks called "recurrent slope lineae," or RSL, that a November 2017 report interprets as granular flows, rather than darkening due to flowing water. This 2011 view near the top of the southern rim of Tivat Crater comes from the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter. North is toward the top and the slope descends toward the northwest. The view spans an area about 1,000 feet (300 meters) wide. Figure 1 includes a scale bar of 50 meters (164 feet). HiRISE began viewing Mars in 2006. Multiple observations of some sites resulted in discovery of RSL in 2011 and has confirmed many thousands of them at more than 50 sites, from equatorial to mid-latitude north and south. These narrow, dark features appear in warm seasons, gradually extend downslope, fade away in winter and reappear the next year. On Earth, only seeping water is known to have these behaviors. Hydrated salts have been identified at RSL sites and RSL have previously been considered possible evidence of liquid water seeping down the slopes and darkening the ground. The Nov. 20, 2017, report in Nature Geosciences uses analysis of the steepness of slopes where RSL appear, including these RSL at Tivat Crater. The RSL all end, downhill, at approximately the same slope, which is similar to the angle of repose for sand. That is, the flows do not extend to slopes shallower than where dry grains of sand or dust could slip downhill, as on the face of a dune. Seeping water should readily extend to shallower slopes. This image is an excerpt from HiRISE observation ESP_023184_1335, taken on July 8, 2011, during Martian mid-afternoon at this site, at latitude 45.9 degrees south and longitude 9.5 degrees east. Tivat Crater is about 2.2 miles (3.6 kilometers) in diameter, and was named in 2011 for a town in Montenegro. https://photojournal.jpl.nasa.gov/catalog/PIA22070
IB-LBM simulation on blood cell sorting with a micro-fence structure.
Wei, Qiang; Xu, Yuan-Qing; Tian, Fang-bao; Gao, Tian-xin; Tang, Xiao-ying; Zu, Wen-Hong
2014-01-01
A size-based blood cell sorting model with a micro-fence structure is proposed in the frame of immersed boundary and lattice Boltzmann method (IB-LBM). The fluid dynamics is obtained by solving the discrete lattice Boltzmann equation, and the cells motion and deformation are handled by the immersed boundary method. A micro-fence consists of two parallel slope post rows which are adopted to separate red blood cells (RBCs) from white blood cells (WBCs), in which the cells to be separated are transported one after another by the flow into the passageway between the two post rows. Effected by the cross flow, RBCs are schemed to get through the pores of the nether post row since they are smaller and more deformable compared with WBCs. WBCs are required to move along the nether post row till they get out the micro-fence. Simulation results indicate that for a fix width of pores, the slope angle of the post row plays an important role in cell sorting. The cells mixture can not be separated properly in a small slope angle, while obvious blockages by WBCs will take place to disturb the continuous cell sorting in a big slope angle. As an optimal result, an adaptive slope angle is found to sort RBCs form WBCs correctly and continuously.
The indication of Martian gully formation processes by slope-area analysis
Conway, S.J.; Balme, M.R.; Murray, J.B.; Towner, M.C.; Okubo, C.H.; Grindrod, P.M.
2011-01-01
The formation process of recent gullies on Mars is currently under debate. This study aims to discriminate between the proposed formation processes - pure water flow, debris flow and dry mass wasting - through the application of geomorphological indices commonly used in terrestrial geomorphology. High-resolution digital elevation models (DEMs) of Earth and Mars were used to evaluate the drainage characteristics of small slope sections. Data from Earth were used to validate the hillslope, debris-flow and alluvial process domains previously found for large fluvial catchments on Earth, and these domains were applied to gullied and ungullied slopes on Mars. In accordance with other studies, our results indicate that debris flow is one of the main processes forming the Martian gullies that were being examined. The source of the water is predominantly distributed surface melting, not an underground aquifer. Evidence is also presented indicating that other processes may have shaped Martian crater slopes, such as ice-assisted creep and solifluction, in agreement with the proposed recent Martian glacial and periglacial climate. Our results suggest that, within impact craters, different processes are acting on differently oriented slopes, but further work is needed to investigate the potential link between these observations and changes in Martian climate. ?? The Geological Society of London 2011.
Observational study of surface wind along a sloping surface over mountainous terrain during winter
NASA Astrophysics Data System (ADS)
Lee, Young-Hee; Lee, Gyuwon; Joo, Sangwon; Ahn, Kwang-Deuk
2018-03-01
The 2018 Winter Olympic and Paralympic Games will be held in Pyeongchang, Korea, during February and March. We examined the near surface winds and wind gusts along the sloping surface at two outdoor venues in Pyeongchang during February and March using surface wind data. The outdoor venues are located in a complex, mountainous terrain, and hence the near-surface winds form intricate patterns due to the interplay between large-scale and locally forced winds. During February and March, the dominant wind at the ridge level is westerly; however, a significant wind direction change is observed along the sloping surface at the venues. The winds on the sloping surface are also influenced by thermal forcing, showing increased upslope flow during daytime. When neutral air flows over the hill, the windward and leeward flows show a significantly different behavior. A higher correlation of the wind speed between upper- and lower-level stations is shown in the windward region compared with the leeward region. The strong synoptic wind, small width of the ridge, and steep leeward ridge slope angle provide favorable conditions for flow separation at the leeward foot of the ridge. The gust factor increases with decreasing surface elevation and is larger during daytime than nighttime. A significantly large gust factor is also observed in the leeward region.
Iliadi, K; Iliadi, N; Rashkovetsky, E; Minkov, I; Nevo, E; Korol, A
2001-11-22
The strong microscale interslope environmental differences in "Evolution Canyon" provide an excellent natural model for sympatric speciation. Our previous studies revealed significant slope-specific differences for a fitness complex of Drosophila. This complex involved either adaptation traits (tolerance to high temperature, different viability and longevity pattern) or behavioural differentiation, manifested in habitat choice and non-random mating. This remarkable differentiation has evolved despite a very small interslope distance (a few hundred metres only). Our hypothesis is that strong interslope microclimatic contrast caused differential selection for fitness-related traits accompanied by behavioural differentiation and reinforced by some sexual isolation, which started incipient speciation. Here we describe the results of a systematic analysis of sexual behaviour in a non-choice situation and several reproductive parameters of D. melanogaster populations from the opposite slopes of "Evolution Canyon". The evidence indicates that: (i) mate choice derives from differences in mating propensity and discrimination; (ii) females from the milder north-facing slope discriminate strongly against males of the opposite slope; (iii) both sexes of the south-facing slope display distinct reproductive and behavioural patterns with females showing increased fecundity, shorter time before remating and relatively higher receptivity, and males showing higher mating propensity. These patterns represent adaptive life strategies contributing to higher fitness.
Aging and free surface flow of a thixotropic fluid
NASA Astrophysics Data System (ADS)
Huynh, H. T.; Roussel, N.; Coussot, P.
2005-03-01
Free surface flows of thixotropic fluids such as paints, self-compacting concrete, or natural mudflows are of noticeable practical interest. Here we study the basic characteristics of the uniform flow of a layer of thixotropic fluid under gravity. A theoretical approach relying on a simple thixotropy constitutive equation shows that after some time at rest over a small slope angle the fluid layer should start to flow rather abruptly beyond a new, larger, critical slope angle. The theory also predicts that the critical time at which the layer velocity should significantly increase is proportional to the duration of the preliminary rest and tends to infinity when the new slope approaches the critical slope. Experiments carried out with different suspensions show that the qualitative trends of the flows are in very good agreement with the theoretical predictions, except that the critical time for flow start appears to be proportional to a power 0.6 of the time of rest whereas the theory predicts a linear dependence. We show that this indicates a restructuration process at rest differing from the restructuration process under flow.
Westaway, K E; Sutikna, T; Saptomo, W E; Jatmiko; Morwood, M J; Roberts, R G; Hobbs, D R
2009-11-01
Liang Bua, in Flores, Indonesia, was formed as a subterranean chamber over 600ka. From this time to the present, a series of geomorphic events influenced the structure of the cave and cave deposits, creating a complex stratigraphy. Within these deposits, nine main sedimentary units have been identified. The stratigraphic relationships between these units provide the evidence needed to reconstruct the geomorphic history of the cave. This history was dominated by water action, including slope wash processes, channel formation, pooling of water, and flowstone precipitation, which created waterfalls, cut-and-fill stratigraphy, large pools of water, and extensive flowstone cappings. The reconstructed sequence of events over the last 190k.yr. has been summarized by a series of time slices that demonstrate the nature of the occupational environment in Liang Bua. The earliest artifacts at the site, dated to approximately 190ka, testify to hominin presence in the area, but the reconstructions suggest that occupation of the cave itself may not have been possible until after approximately 100ka. At approximately 95ka, channel erosion of a basal unit, which displays evidence of deposition in a pond environment, created a greater relief on the cave floor, and formed remanent areas of higher ground that later became a focus for hominin occupation from 74-61ka by the west wall and in the center of the cave, and from approximately 18-17ka by the east wall. These zones have been identified according to the sloping nature of the stratigraphy and the distribution of artifacts, and their locations have implications for the archaeological interpretation of the site.
Transpiration of oak trees in the oak savannas of the Southwestern Borderlands region
Peter F. Ffolliott; Cody L. Stropki; Aaron T. Kauffman; Gerald J. Gottfried
2008-01-01
Transpiration of oak trees on the Cascabel watersheds in the savannas on the eastern slope of the Peloncillo Mountains in southwestern New Mexico has been estimated by the sap-flow method. Transpiration represents the largest loss of gross precipitation falling on a watershed in approximations of water budgets for the more densely stocked oak woodlands of the...
Large Torque Variations in Two Soft Gamma Repeaters
NASA Technical Reports Server (NTRS)
Woods, Peter M.; Kouveliotou, Chryssa; Gogus, Ersin; Finger, Mark H.; Swank, Jean; Markwardt, Craig B.; Hurley, Kevin; vanderKlis, Michiel; Six, N. Frank (Technical Monitor)
2001-01-01
We have monitored the pulse frequencies of the two soft gamma repeaters SGR 1806-20 and SGR 1900+14 through the beginning of year 2001 using primarily Rossi X-ray Timing Explorer Proportional Counter Array observations. In both sources, we observe large changes in the spin-down torque up to a factor of approximately 4, which persist for several months. Using long baseline phase-connected timing solutions as well as the overall frequency histories, we construct torque noise power spectra for each SGR. The power spectrum of each source is very red (power-law slope approximately -3.5). These power spectra are consistent in normalization with some accreting systems, yet much steeper in slope than any known accreting source. To the best of our knowledge, torque noise power spectra with a comparably steep frequency dependence have only been seen in young, glitching radio pulsars (e.g. Vela). The observed changes in spin-down rate do not correlate with burst activity, therefore, the physical mechanisms behind each phenomenon are also likely unrelated. Within the context of the magnetar model, seismic activity cannot account for both the bursts and the long-term torque changes unless the seismically active regions are decoupled from one another.
Irregular Mare Patches (IMPs): 100 Ma or 3 Ga?
NASA Technical Reports Server (NTRS)
Stopar, Julie; Robinson, Mark Southwick; van der Bogert, Carolyn H.; Giguere, Thomas; Lawrence, Samuel J.; Ostrach, Lillian Rose; Clegg-Watkins, Ryan N.
2016-01-01
IMPs exhibit a perplexing combination of characteristics that are consistent with either an approximately 100 Ma or 3 Ga formation. Dozens of small-area IMPs have crisp morphologies and crater size-frequency distributions (SFDs) that denote relatively recent geologic activity (less than 100 Ma); however, the apparently well-developed regolith on portions of the IMPs are in conflict with such a young age [1]. To test possible formation hypotheses (e.g., [1-5]), which range from ancient volcanism to contemporary outgassing, we examined IMP morphology at the meter-scale with LROC NAC images and derived elevation models. We focused on the largest IMPs (Ina, Sosigenes, Cauchy, Maskelyne, and Nubium), where contacts between deposits are best developed. Most of our observations are consistent with multiple generations of inflation and breakouts (or squeeze-ups) of basaltic lavas that were affected by local slopes. Some of the extrusions coalesced into larger mounds or filled pre-existing craters. We did not observe evidence of large-scale void space (e.g., fissures, fractures, linear depressions, or pits) within or beneath the mounds or rougher deposits (e.g., [5]). But, small-scale voids may be signified by isolated pitted textures. We also did not detect evidence of the cooling fractures or lava plates expected in young lava flows and observed in lunar impact melt deposits. The smooth texture of the mounds is enigmatic. Block-less craters suggest at least 5 m of friable or poorly-cohesive material (such as regolith), yet mound margins exhibit slopes greater than 30 deg requiring significant material strength. Blocks are not common on the mounds, but are sometimes excavated by impacts (usually excavated from beneath the mounds). The uneven deposits are equally enigmatic and texturally varied (blocky, pitted, and crenulated). They are deficient in superposed craters compared to the mounds. If the mounds are indeed of similar age to the rougher units, then their different superposed crater morphologies and SFDs need to be explained by factors other than their ages. Any mounds originally composed of friable surface materials would evolve differently from more coherent deposits (e.g., [6-7]).
NASA Astrophysics Data System (ADS)
Gordon, R.; Lautz, L. K.; McKenzie, J. M.; Mark, B. G.; Chavez, D.
2013-12-01
Melting tropical glaciers supply approximately half of dry season stream discharge in glacierized valleys of the Cordillera Blanca, Peru. The remainder of streamflow originates as groundwater stored in alpine meadows, moraines and talus slopes. A better understanding of the dynamics of alpine groundwater, including sources and contributions to streamflow, is important for making accurate estimates of glacial inputs to the hydrologic budget, and for our ability to make predictions about future water resources as glaciers retreat. Our field study, conducted during the dry season in the Llanganuco valley, focused on a 0.5-km2 alpine meadow complex at 4400 m elevation, which includes talus slopes, terminal moraines, and a debris fan. Two glacial lakes and springs throughout the complex feed a network of stream channels that flow across the meadow (~2 km total length). We combined tracer measurements of stream and spring discharge and groundwater-surface water exchange with synoptic sampling of water isotopic and geochemical composition, in order to characterize and quantify contributions to streamflow from different geomorphic features. Surface water inputs to the stream channels totaled 58 l/s, while the stream gained an additional 57 l/s from groundwater inputs. Water chemistry is primarily controlled by flowpath type (surface/subsurface) and length, as well as bedrock lithology, while stable water isotopic composition appears to be controlled by water source (glacial lake, meadow or deep groundwater). Stream water chemistry is most similar to meadow groundwater springs, but isotopic composition suggests that the majority of stream water, which issues from springs at the meadow/fan interface, is from the same glacial source as the up-gradient lake. Groundwater sampled from piezometers in confined meadow aquifers is unique in both chemistry and isotopic composition, but does not contribute a large percentage of stream water exiting this small meadow, as quantified by discharge measurements and isotopic mixing. However, we expect that as streams flow down through extensive meadows and wetlands in many Cordillera Blanca valleys, meadow groundwater is a more significant contributor to streamflow. Results from this small, high meadow in Llanganuco will be compared to a larger and lower-elevation meadow system in the Quilcayhuanca valley.
A conceptual approach to approximate tree root architecture in infinite slope models
NASA Astrophysics Data System (ADS)
Schmaltz, Elmar; Glade, Thomas
2016-04-01
Vegetation-related properties - particularly tree root distribution and coherent hydrologic and mechanical effects on the underlying soil mantle - are commonly not considered in infinite slope models. Indeed, from a geotechnical point of view, these effects appear to be difficult to be reproduced reliably in a physically-based modelling approach. The growth of a tree and the expansion of its root architecture are directly connected with both intrinsic properties such as species and age, and extrinsic factors like topography, availability of nutrients, climate and soil type. These parameters control four main issues of the tree root architecture: 1) Type of rooting; 2) maximum growing distance to the tree stem (radius r); 3) maximum growing depth (height h); and 4) potential deformation of the root system. Geometric solids are able to approximate the distribution of a tree root system. The objective of this paper is to investigate whether it is possible to implement root systems and the connected hydrological and mechanical attributes sufficiently in a 3-dimensional slope stability model. Hereby, a spatio-dynamic vegetation module should cope with the demands of performance, computation time and significance. However, in this presentation, we focus only on the distribution of roots. The assumption is that the horizontal root distribution around a tree stem on a 2-dimensional plane can be described by a circle with the stem located at the centroid and a distinct radius r that is dependent on age and species. We classified three main types of tree root systems and reproduced the species-age-related root distribution with three respective mathematical solids in a synthetic 3-dimensional hillslope ambience. Thus, two solids in an Euclidian space were distinguished to represent the three root systems: i) cylinders with radius r and height h, whilst the dimension of latter defines the shape of a taproot-system or a shallow-root-system respectively; ii) elliptic paraboloids represent a cordate-root-system with radius r, height h and a constant, species-independent curvature. This procedure simplifies the classification of tree species into the three defined geometric solids. In this study we introduce a conceptual approach to estimate the 2- and 3-dimensional distribution of different tree root systems, and to implement it in a raster environment, as it is used in infinite slope models. Hereto we used the PCRaster extension in a python framework. The results show that root distribution and root growth are spatially reproducible in a simple raster framework. The outputs exhibit significant effects for a synthetically generated slope on local scale for equal time-steps. The preliminary results depict an initial step to develop a vegetation module that can be coupled with hydro-mechanical slope stability models. This approach is expected to yield a valuable contribution to the implementation of vegetation-related properties, in particular effects of root-reinforcement, into physically-based approaches using infinite slope models.
Characterization of Unstable Rock Slopes Through Passive Seismic Measurements
NASA Astrophysics Data System (ADS)
Kleinbrod, U.; Burjanek, J.; Fäh, D.
2014-12-01
Catastrophic rock slope failures have high social impact, causing significant damage to infrastructure and many casualties throughout the world each year. Both detection and characterization of rock instabilities are therefore of key importance. An analysis of ambient vibrations of unstable rock slopes might be a new alternative to the already existing methods, e.g. geotechnical displacement measurements. Systematic measurements have been performed recently in Switzerland to study the seismic response of potential rockslides concerning a broad class of slope failure mechanisms and material conditions. Small aperture seismic arrays were deployed at sites of interest for a short period of time (several hours) in order to record ambient vibrations. Each measurement setup included a reference station, which was installed on a stable part close to the instability. Recorded ground motion is highly directional in the unstable parts of the rock slope, and significantly amplified with respect to stable areas. These effects are strongest at certain frequencies, which were identified as eigenfrequencies of the unstable rock mass. In most cases the directions of maximum amplification are perpendicular to open cracks and in good agreement with the deformation directions obtained by geodetic measurements. Such unique signatures might improve our understanding of slope structure and stability. Thus we link observed vibration characteristics with available results of detailed geological characterization. This is supported by numerical modeling of seismic wave propagation in fractured media with complex topography.For example, a potential relation between eigenfrequencies and unstable rock mass volume is investigated.
Scholl, D. W.; Sainsbury, C.L.
1960-01-01
During July and August 1958 the U.S. Geological Survey conducted a study in behalf of the Atomic Energy Commission of the oceanography, bathymetry, and marine geology of the nearshore shelf of the Chukchi Sea off the Ogotoruk Creek area, northwest Alaska. Ogotoruk Creek enters the Chukchi Sea about 32 miles southeast of the large cuapate spit of Point Hope at long 165 degrees 4446 W. and lat 68 degrees 0551 N. The Ogotoruk Creek area extends approximately 10 miles west and 7 miles east of the creek mouth. Knowledge of the marine geology and oceanography is confined primarily to the nearshore shelf, which includes about 70 square miles of the shelf and is defined as the sea floor lying shoreward of the 50-foot submarine contour. The 50-foot contour generally lies from 2 to 4 miles from shore. Submarine topography was studied to a distance of 15 miles from shore over an area of approximately 340 square miles. A northwest coastal current flows past the Ogotoruk Creek area and during July and August averaged 0.5 mile per hour. Persistent northerly winds cause general upwelling near shore and at times of pronounced upwelling the coastal current was reversed or appreciably reduced in speed. Longshore currents shoreward of the breaker zone averaged 0.3 mile per hour and moved to the east for the greater part of the time of the study. The overall seaward slope of the inner 15 miles of the Chukchi shelf from a depth of 40 to 135 feet is approximately 0 degrees 04, or about 6 feet per mile. Slopes near shore to depths of 15-20 feet are steep and average 2 degrees 30. Beyond these depths they increase gradually out to a depth of 40-45 feet. Seaward of this point the shelf is flattest and slopes are as low as 0 degree 01. This terrace or flat part of the nearshore shelf is about 2 miles wide and descends to a depth of 50-55 feet beyond which the gradient increases to about 0 degree 06. At depths greater than 85 feet the submarine declivity gradually decreases to 0 degree 03 at a distance of 15 miles from shore. A flat-bottomed trough, Ogotoruk Seavalley, heads about a quarter of a mile from shore off the mouth of Ogotoruk Creek. The shallow seavalley averages only 6 feet in relief and extends 15 miles from shore to a depth of 135 feet. A number of smaller channels also indent the gentle sloping inner Chukchi shelf east of the seavalley and nearshore west of it. Many outcrops of Paleozoic and Mesozoic formations on the nearshore shelf indicate that it is a wave-planed platform. Wave planation is thought to have taken place primarily in Sangamon and rpre-Sangamon time (approximately 100,000 to 1,000,000 years ago). Ogotoruk Seavalley is believed to be a drowned subaerial valley which was excavated by Ogotoruk Creek during periods of glacially depressed sea level. Unconsolidated sediments overlying the nearshore shelf are chiefly slightly rounded residual gravel which have been derived from submerged outcrops. Detrital sand and silt, contributed from the nearby coastal area during Recent time, overlie the shelf near shore and at depth as much as 50 feet seaward of segments of the coast underlain by fine-grained clastic rocks of Mesozoic age. Owing to a small volume of detrital clasts contributed by the coastal area detrital sedimentation is not prominent over the nearshore shelf. Beaches fronting the Ogotoruk Creek area are 30-260 feet wide, range from less than 10 to about 25 feet thick, and are composed of sandy gravel having a median diameter of about 10 mm. Rounded clasts of greywacke, siltstone, limestone, and chert are the principal constituents of the gravel. Longshore currents accompanying moderate storms transport gravel and sand parallel to shore at rates of 5 cubic yards per hour. Sediment transported by longshore currents accumulates as spits at stream mouths and as areas of new beach below rocky headlands.
NASA Astrophysics Data System (ADS)
Morgan, Gareth A.; Head, James W.; Forget, François; Madeleine, Jean-Baptiste; Spiga, Aymeric
2010-08-01
The unusual 80 km diameter Noachian-aged Asimov crater in Noachis Terra (46°S, 5°E) is characterized by extensive Noachian-Hesperian crater fill and a younger superposed annulus of valleys encircling the margins of the crater floor. These valleys provide an opportunity to study the relationships of gully geomorphology as a function of changing slope orientation relative to solar insolation. We found that the level of development of gullies was highly correlated with slope orientation and solar insolation. The largest and most complex gully systems, with the most well-developed fluvial landforms, are restricted to pole-facing slopes. In contrast, gullies on equator-facing slopes are smaller, more poorly developed and integrated, more highly degraded, and contain more impact craters. We used a 1D version of the Laboratoire de Météorologie Dynamique GCM, and slope geometries (orientation and angle), driven by predicted spin-axis/orbital parameter history, to assess the distribution and history of surface temperatures in these valleys during recent geological history. Surface temperatures on pole-facing slopes preferential for water ice accumulation and subsequent melting are predicted to occur as recently as 0.5-2.1 Ma, which is consistent with age estimates of gully activity elsewhere on Mars. In contrast, the 1D model predicts that water ice cannot accumulate on equator-facing slopes until obliquities exceed 45°, suggesting they are unlikely to have been active over the last 5 Ma. The correlation of the temperature predictions and the geological evidence for age differences suggests that there were two phases of gully formation in the last few million years: an older phase in which top-down melting occurred on equator-facing slopes and a younger more robust phase on pole-facing slopes. The similarities of small-scale fluvial erosion features seen in the gullies on Mars and those observed in gullies cut by seasonal and perennial snowmelt in the Antarctic Dry Valleys supports a top-down melting origin for these gullies on Mars.
Sedimentary processes on the Atlantic Continental Slope of the United States
Knebel, H.J.
1984-01-01
Until recently, the sedimentary processes on the United States Atlantic Continental Slope were inferred mainly from descriptive studies based on the bathymetry and on widely spaced grab samples, bottom photographs, and seismic-reflection profiles. Over the past 6 years, however, much additional information has been collected on the bottom morphology, characteristics of shallow-subbottom strata, velocity of bottom currents, and transport of suspended and bottom sediments. A review of these new data provides a much clearer understanding of the kinds and relative importance of gravitational and hydrodynamic processes that affect the surface sediments. On the rugged slope between Georges Bank and Cape Lookout, N.C., these processes include: (1) small scale mass wasting within submarine canyons and peripheral gullies; (2) density flows within some submarine valleys; (3) sand spillover near the shelf break; (4) sediment creep on the upper slope; and (5) hemipelagic sedimentation on the middle and lower slope. The area between Georges Bank and Hudson Canyon is further distinguished by the relative abundance of large-scale slump scars and deposits on the open slope, the presence of ice-rafted debris, and the transport of sand within the heads of some submarine canyons. Between Cape Lookout and southern Florida, the slope divides into two physiographic units, and the topography is smooth and featureless. On the Florida-Hatteras Slope, offshelf sand spillover and sediment winnowing, related to Gulf Stream flow and possibly to storm-driven currents, are the major processes, whereas hemipelagic sedimentation is dominant over the offshore slope along the seaward edge of the Blake Plateau north of the Blake Spur. Slumping generally is absent south of Cape Lookout, although one large slump scarp (related to uplift over salt diapirs) has been identified east of Cape Romain. Future studies concerning sedimentary processes on the Atlantic slope need to resolve: (1) the ages and mechanisms of mass wasting; (2) the accumulation rates and thicknesses of hemipelagic sediments; and (3) the causes and variability of offshelf sand spillover, sediment winnowing, and canyon transport.
NASA Astrophysics Data System (ADS)
Ortuño, María; Guinau, Marta; Calvet, Jaume; Furdada, Glòria; Bordonau, Jaume; Ruiz, Antonio; Camafort, Miquel
2017-10-01
Slope failures have been traditionally detected by field inspection and aerial-photo interpretation. These approaches are generally insufficient to identify subtle landforms, especially those generated during the early stages of failures, and particularly where the site is located in forested and remote terrains. We present the identification and characterization of several large and medium size slope failures previously undetected within the Orri massif, Central Pyrenees. Around 130 scarps were interpreted as being part of Rock Slope Failures (RSFs), while other smaller and more superficial failures were interpreted as complex movements combining colluvium slow flow/slope creep and RSFs. Except for one of them, these slope failures had not been previously detected, albeit they extend across a 15% of the studied region. The failures were identified through the analysis of a high-resolution (1 m) LIDAR-derived bare earth Digital Elevation Model (DEM). Most of the scarps are undetectable either by fieldwork, photo interpretation or 5 m resolution topography analysis owing to their small heights (0.5 to 2 m) and their location within forest areas. In many cases, these landforms are not evident in the field due to the presence of other minor irregularities in the slope and the lack of open views due to the forest. 2D and 3D visualization of hillshade maps with different sun azimuths provided an overall picture of the scarp assemblage and permitted a more complete analysis of the geometry of the scarps with respect to the slope and the structural fabric. The sharpness of some of the landforms suggests ongoing activity, which should be explored in future detailed studies in order to assess potential hazards affecting the Portainé ski resort. Our results reveal that close analysis of the 1 m LIDAR-derived DEM can significantly help to detect early-stage slope deformations in high mountain regions, and that expert judgment of the DEM is essential when dealing with subtle landforms. The incorporation of this approach in regional mapping represents a great advance in completing the catalogue of slope failures and will eventually contribute to a better understanding of the spatial factors controlling them.
NASA Astrophysics Data System (ADS)
Hashimoto, Y.; Tobin, H. J.; Knuth, M.
2010-12-01
In this study, we focused on the porosity and compressional wave velocity of marine sediments to examine the physical properties of the slope apron and the accreted sediments. This approach allows us to identify characteristic variations between sediments being deposited onto the active prism and those deposited on the oceanic plate and then carried into the prism during subduction. For this purpose we conducted ultrasonic compressional wave velocity measurements on the obtained core samples with pore pressure control. Site C0001 in the Nankai Trough Seismogenic Zone Experiment transect of the Integrated Ocean Drilling Program is located in the hanging wall of the midslope megasplay thrust fault in the Nankai subduction zone offshore of the Kii peninsula (SW Japan), penetrating an unconformity at ˜200 m depth between slope apron sediments and the underlying accreted sediments. We used samples from Site C0001. Compressional wave velocity from laboratory measurements ranges from ˜1.6 to ˜2.0 km/s at hydrostatic pore pressure conditions estimated from sample depth. The compressional wave velocity-porosity relationship for the slope apron sediments shows a slope almost parallel to the slope for global empirical relationships. In contrast, the velocity-porosity relationship for the accreted sediments shows a slightly steeper slope than that of the slope apron sediments at 0.55 of porosity. This higher slope in the velocity-porosity relationship is found to be characteristic of the accreted sediments. Textural analysis was also conducted to examine the relationship between microstructural texture and acoustic properties. Images from micro-X-ray CT indicated a homogeneous and well-sorted distribution of small pores both in shallow and in deeper sections. Other mechanisms such as lithology, clay fraction, and abnormal fluid pressure were found to be insufficient to explain the higher velocity for accreted sediments. The higher slope in velocity-porosity relationship for accreted sediments can be explained by weak cementation, critical porosity or differences in loading history.
Hill, Jenna C.; Brothers, Daniel S.; Craig, Bradley K.; ten Brink, Uri S.; Chaytor, Jason D.; Flores, Claudia
2017-01-01
Multiple styles of failure, ranging from densely spaced, mass transport driven canyons to the large, slab-type slope failure of the Currituck Slide, characterize adjacent sections of the central U.S. Atlantic margin that appear to be defined by variations in geologic framework. Here we use regionally extensive, deep penetration multichannel seismic (MCS) profiles to reconstruct the influence of the antecedent margin physiography on sediment accumulation along the central U.S. Atlantic continental shelf-edge, slope, and uppermost rise from the Miocene to Present. These data are combined with high-resolution sparker MCS reflection profiles and multibeam bathymetry data across the Currituck Slide Complex. Pre-Neogene allostratigraphic horizons beneath the slope are generally characterized by low gradients and convex downslope profiles. This is followed by the development of thick, prograded deltaic clinoforms during the middle Miocene. Along-strike variations in morphology of a regional unconformity at the top of this middle Miocene unit appear to have set the stage for differing styles of mass transport along the margin. Areas north and south of the Currituck Slide are characterized by oblique margin morphology, defined by an angular shelf-edge and a relatively steep (> 8°), concave slope profile. Upper slope sediment bypass, closely spaced submarine canyons, and small, localized landslides confined to canyon heads and sidewalls characterize these sectors of the margin. In contrast, the Currituck region is defined by a sigmoidal geometry, with a rounded shelf-edge rollover and gentler slope gradient (< 6°). Thick (> 800 m), regionally continuous stratified slope deposits suggest the low gradient Currituck region was a primary depocenter for fluvial inputs during multiple sea level lowstands. These results imply that the rounded, gentle slope physiography developed during the middle Miocene allowed for a relatively high rate of subsequent sediment accumulation, thus providing a mechanism for compaction–induced overpressure that preconditioned the Currituck region for failure. Detailed examination of the regional geological framework illustrates the importance of both sediment supply and antecedent slope physiography in the development of large, potentially unstable depocenters along passive margins.
NASA Astrophysics Data System (ADS)
Naumenko, Mikhail; Guzivaty, Vadim; Sapelko, Tatiana
2016-04-01
Lake morphometry refers to physical factors (shape, size, structure, etc) that determine the lake depression. Morphology has a great influence on lake ecological characteristics especially on water thermal conditions and mixing depth. Depth analyses, including sediment measurement at various depths, volumes of strata and shoreline characteristics are often critical to the investigation of biological, chemical and physical properties of fresh waters as well as theoretical retention time. Management techniques such as loading capacity for effluents and selective removal of undesirable components of the biota are also dependent on detailed knowledge of the morphometry and flow characteristics. During the recent years a lake bathymetric surveys were carried out by using echo sounder with a high bottom depth resolution and GPS coordinate determination. Few digital bathymetric models have been created with 10*10 m spatial grid for some small lakes of Russian Plain which the areas not exceed 1-2 sq. km. The statistical characteristics of the depth and slopes distribution of these lakes calculated on an equidistant grid. It will provide the level-surface-volume variations of small lakes and reservoirs, calculated through combination of various satellite images. We discuss the methodological aspects of creating of morphometric models of depths and slopes of small lakes as well as the advantages of digital models over traditional methods.
Ionic Dependence of Reversal Voltage of the Light Response in Limulus Ventral Photoreceptors
Brown, J. E.; Mote, M. I.
1974-01-01
The light-induced current as measured using a voltage clamp (holding voltage at resting potential) is attenuated when sodium ions in the bathing solution, Nao, are replaced by Tris, choline, or Li or when NaCl is replaced by sucrose. After replacement of NaCl by sucrose, the reversal voltage, V rev, for the light response becomes more negative. In this case, the slope of the V rev vs. log Nao near Nao = 425 mM is approximately 55 mV/decade increase of Nao (mean for 13 cells). The slope decreases at lower values of Nao. Choline is not impermeant and partially substitutes for Na; the slope of V rev vs. log Nao is 20 mV/decade (mean for three cells). V rev does not change when Na is replaced by Li. Decreases in the bath concentrations of Ca, Mg, Cl, or K do not affect V rev. When Nao = 212 mM, V rev becomes more positive when Ko is increased. Thus, light induces a change in membrane permeability to Na and probably also to K. PMID:4817353
The Munson-Nygren slide: A major lower-slope slide off Georges Bank
O'Leary, Dennis W.
1986-01-01
The Munson-Nygren slide is a large compound slide located between Munson and Nygren Canyons below 1900 m depth on the Continental Slope off Georges Bank. Its structural and morphological features are recognized in high-resolution seismic-reflection profiles. The slide comprises an axial trough which has a relief as great as 325 m and a width of 6-10 km. The trough is flanked by displaced and disrupted strata for a total lateral extent of approximately 20 km and a downslope extent of at least 35 km. The slide is unrelated genetically to the adjacent canyons and may postdate Munson Canyon. There is evidence of plastic deformation at the base of the section subjected to sliding. Certain features of the slide complex resemble those seen in landforms on the Laurentian Rise and attributed by Emery et al.* * Emery et al. (1970). to the 1929 Grand Banks earthquake. The Munson-Nygren slide may have been triggered by a large earthquake in late Pleistocene time or later. Destructional landforms associated with the slide are similar to those widely present along the lower slope off Georges Bank. ?? 1986.
Modeling of Small Martian Volcanoes: A Changing View of Volcanic Shield and Cone Fields
NASA Astrophysics Data System (ADS)
Sakimoto, S. E.; Bradley, B. A.; Garvin, J. B.
2001-05-01
The small volcanic features on Mars (channels, flows, shields, and cratered cones) are key to understanding eruption styles, rates, and volumes because they are ubiquitous and simple enough to attempt modeling. Several of these small features have been suggested to be geologically recent [1,2,3]. This study measures and models small (3-50 km) volcanic edifices. Recent Mars Global Surveyor data reveal that these small features are more common that we had previously thought from the lower resolution Viking mission data (e.g., [3,4]). Furthermore, there are clear geometric differences in the Mars Orbiter Laser Altimeter (MOLA) data between regions suggesting local and regional eruption styles may vary with latitude. While a few of the pre-MGS construction models predict the martian mid-latitude volcanic shield shapes fairly well, the small explosive volcanic edifice shapes were not well predicted by existing models (see[5]), and there are a host of types-mostly polar-that are not well described by prior modeling. We compare small edifice construction model results for a percolation style model of effusive and mixed effusive and explosive edifices to prior model results for several martian volcanic regions. While mid-latitude edifices match well to predicted cross-section shapes, steeper flank slopes (See [6]; Glaze and Sakimoto, this volume) for the polar edifices suggest that the magma supply rate or the edifice permeability may be higher in the polar regions for some edifices types. However, polar edifice flank slopes do not commonly reach the greater than 10 degree flanks expected from prior explosive edifice models. Additionally, we do not observe shallow flank slope shields in the polar regions. This suggests that simple shield building may be significantly influenced or modified by volatile involvement near the martian poles, while a range of poorly understood explosive activity may be active in both regions. [1] Keszthelyi et al. JGR 105, 15027-15049, 2000. [2] Hartmann and Berman, JGR, 105, 15011-15025, 2000. [3] Garvin, et al., Icarus, 145, 648-652, 2000. [4] Sakimoto, et al., LPSC XXXII, CDROM, abstract #1808, 2001. [5] Glaze and Baloga LPSC XXXII, CDROM, abstract #1209, 2001. [6] Wong, et al., LPSC XXXII, CDROM, abstract #1563, 2001.
Fuchs, G; Drechsler, S-L; Kozlova, N; Behr, G; Köhler, A; Werner, J; Nenkov, K; Klingeler, R; Hamann-Borrero, J; Hess, C; Kondrat, A; Grobosch, M; Narduzzo, A; Knupfer, M; Freudenberger, J; Büchner, B; Schultz, L
2008-12-05
We report upper critical field Bc2(T) data for disordered (arsenic-deficient) LaO0.9F0.1FeAs1-delta in a wide temperature and magnetic field range up to 47 T. Because of the large linear slope of Bc2 approximately -5.4 to -6.6 T/K near Tc approximately 28.5 K, the T dependence of the in-plane Bc2(T) shows a flattening near 23 K above 30 T which points to Pauli-limited behavior with Bc2(0) approximately 63-68 T. Our results are discussed in terms of disorder effects within [corrected] unconventional superconducting pairings.
NASA Technical Reports Server (NTRS)
2004-01-01
[figure removed for brevity, see original site]
Released 17 June 2004 This pair of images shows part of a small channel. Day/Night Infrared Pairs The image pairs presented focus on a single surface feature as seen in both the daytime and nighttime by the infrared THEMIS camera. The nighttime image (right) has been rotated 180 degrees to place north at the top. Infrared image interpretation Daytime: Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark. Nighttime: Infrared images taken during the nighttime exhibit only the thermophysical properties of the surface of Mars. The effect of sun-facing versus non-sun-facing energy dissipates quickly at night. Thermophysical effects dominate as different surfaces cool at different rates through the nighttime hours. Rocks cool slowly, and are therefore relatively bright at night (remember that rocks are dark during the day). Dust and other fine grained materials cool very quickly and are dark in nighttime infrared images. Image information: IR instrument. Latitude 19.8, Longitude 141.5 East (218.5 West). 100 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.First results from the IllustrisTNG simulations: matter and galaxy clustering
NASA Astrophysics Data System (ADS)
Springel, Volker; Pakmor, Rüdiger; Pillepich, Annalisa; Weinberger, Rainer; Nelson, Dylan; Hernquist, Lars; Vogelsberger, Mark; Genel, Shy; Torrey, Paul; Marinacci, Federico; Naiman, Jill
2018-03-01
Hydrodynamical simulations of galaxy formation have now reached sufficient volume to make precision predictions for clustering on cosmologically relevant scales. Here, we use our new IllustrisTNG simulations to study the non-linear correlation functions and power spectra of baryons, dark matter, galaxies, and haloes over an exceptionally large range of scales. We find that baryonic effects increase the clustering of dark matter on small scales and damp the total matter power spectrum on scales up to k ˜ 10 h Mpc-1 by 20 per cent. The non-linear two-point correlation function of the stellar mass is close to a power-law over a wide range of scales and approximately invariant in time from very high redshift to the present. The two-point correlation function of the simulated galaxies agrees well with Sloan Digital Sky Survey at its mean redshift z ≃ 0.1, both as a function of stellar mass and when split according to galaxy colour, apart from a mild excess in the clustering of red galaxies in the stellar mass range of109-1010 h-2 M⊙. Given this agreement, the TNG simulations can make valuable theoretical predictions for the clustering bias of different galaxy samples. We find that the clustering length of the galaxy autocorrelation function depends strongly on stellar mass and redshift. Its power-law slope γ is nearly invariant with stellar mass, but declines from γ ˜ 1.8 at redshift z = 0 to γ ˜ 1.6 at redshift z ˜ 1, beyond which the slope steepens again. We detect significant scale dependences in the bias of different observational tracers of large-scale structure, extending well into the range of the baryonic acoustic oscillations and causing nominal (yet fortunately correctable) shifts of the acoustic peaks of around ˜ 5 per cent.
Modeling elastic anisotropy in strained heteroepitaxy
NASA Astrophysics Data System (ADS)
Krishna Dixit, Gopal; Ranganathan, Madhav
2017-09-01
Using a continuum evolution equation, we model the growth and evolution of quantum dots in the heteroepitaxial Ge on Si(0 0 1) system in a molecular beam epitaxy unit. We formulate our model in terms of evolution due to deposition, and due to surface diffusion which is governed by a free energy. This free energy has contributions from surface energy, curvature, wetting effects and elastic energy due to lattice mismatch between the film and the substrate. In addition to anisotropy due to surface energy which favors facet formation, we also incorporate elastic anisotropy due to an underlying crystal lattice. The complicated elastic problem of the film-substrate system subjected to boundary conditions at the free surface, interface and the bulk substrate is solved by perturbation analysis using a small slope approximation. This permits an analysis of effects at different orders in the slope and sheds new light on the observed behavior. Linear stability analysis shows the early evolution of the instability towards dot formation. The elastic anisotropy causes a change in the alignment of dots in the linear regime, whereas the surface energy anisotropy changes the dot shapes at the nonlinear regime. Numerical simulation of the full nonlinear equations shows the evolution of the surface morphology. In particular, we show, for parameters of the Ge0.25 Si0.75 on Si(0 0 1), the surface energy anisotropy dominates the shapes of the quantum dots, whereas their alignment is influenced by the elastic energy anisotropy. The anisotropy in elasticity causes a further elongation of the islands whose coarsening is interrupted due to < 1 0 5 > facets on the surface.
NASA Astrophysics Data System (ADS)
Cobin, P. F.; Oommen, T.; Gierke, J. S.
2013-12-01
The Lake Atitlán watershed is home to approximately 200,000 people and is located in the western highlands of Guatemala. Steep slopes, highly susceptible to landslides during the rainy season, characterize the region. Typically these landslides occur during high-intensity precipitation events. Hurricane Stan hit Guatemala in October 2005; the resulting flooding and landslides devastated the region. Locations of landslide and non-landslide points were obtained from field observations and orthophotos taken following Hurricane Stan. Different datasets of landslide and non-landslide points across the watershed were used to compare model success at a small scale and regional scale. This study used data from multiple attributes: geology, geomorphology, distance to faults and streams, land use, slope, aspect, curvature, plan curvature, profile curvature and topographic wetness index. The open source software Weka was used for the data mining. Several attribute selection methods were applied to the data to predetermine the potential landslide causative influence. Different multivariate algorithms were then evaluated for their ability to predict landslide occurrence. The following statistical parameters were used to evaluate model accuracy: precision, recall, F measure and area under the receiver operating characteristic (ROC) curve. The attribute combinations of the most successful models were compared to the attribute evaluator results. The algorithm BayesNet yielded the most accurate model and was used to build a probability map of landslide initiation points for the regions selected in the watershed. The ultimate aim of this study is to share the methodology and results with municipal contacts from the author's time as a U.S. Peace Corps volunteer, to facilitate more effective future landslide hazard planning and mitigation.
Minimalist model of ice microphysics in mixed-phase stratiform clouds
NASA Astrophysics Data System (ADS)
Yang, F.; Ovchinnikov, M.; Shaw, R. A.
2013-12-01
The question of whether persistent ice crystal precipitation from supercooled layer clouds can be explained by time-dependent, stochastic ice nucleation is explored using an approximate, analytical model and a large-eddy simulation (LES) cloud model. The updraft velocity in the cloud defines an accumulation zone, where small ice particles cannot fall out until they are large enough, which will increase the residence time of ice particles in the cloud. Ice particles reach a quasi-steady state between growth by vapor deposition and fall speed at cloud base. The analytical model predicts that ice water content (wi) has a 2.5 power-law relationship with ice number concentration (ni). wi and ni from a LES cloud model with stochastic ice nucleation confirm the 2.5 power-law relationship, and initial indications of the scaling law are observed in data from the Indirect and Semi-Direct Aerosol Campaign. The prefactor of the power law is proportional to the ice nucleation rate and therefore provides a quantitative link to observations of ice microphysical properties. Ice water content (wi) and ice number concentration (ni) relationship from LES. a and c: Accumulation zone region; b and d: Selective accumulation zone region. Black lines in c and d are best fitted 2.5 slope lines. Colors in Figures a and b represent updraft velocity, while colors in c and d represent altitude. The cloud base and top are at about 600 m and 800 m, respectively. Ice water content (wi) and ice number concentration (ni) relationship for two ice nucleation rates. Blue points are from LES with low ice nucleation rate and red points with high ice nucleation rate. Solid and dashed lines are best fitted 2.5 slope lines.
Modeling elastic anisotropy in strained heteroepitaxy.
Dixit, Gopal Krishna; Ranganathan, Madhav
2017-09-20
Using a continuum evolution equation, we model the growth and evolution of quantum dots in the heteroepitaxial Ge on Si(0 0 1) system in a molecular beam epitaxy unit. We formulate our model in terms of evolution due to deposition, and due to surface diffusion which is governed by a free energy. This free energy has contributions from surface energy, curvature, wetting effects and elastic energy due to lattice mismatch between the film and the substrate. In addition to anisotropy due to surface energy which favors facet formation, we also incorporate elastic anisotropy due to an underlying crystal lattice. The complicated elastic problem of the film-substrate system subjected to boundary conditions at the free surface, interface and the bulk substrate is solved by perturbation analysis using a small slope approximation. This permits an analysis of effects at different orders in the slope and sheds new light on the observed behavior. Linear stability analysis shows the early evolution of the instability towards dot formation. The elastic anisotropy causes a change in the alignment of dots in the linear regime, whereas the surface energy anisotropy changes the dot shapes at the nonlinear regime. Numerical simulation of the full nonlinear equations shows the evolution of the surface morphology. In particular, we show, for parameters of the [Formula: see text] [Formula: see text] on Si(0 0 1), the surface energy anisotropy dominates the shapes of the quantum dots, whereas their alignment is influenced by the elastic energy anisotropy. The anisotropy in elasticity causes a further elongation of the islands whose coarsening is interrupted due to [Formula: see text] facets on the surface.
NASA Technical Reports Server (NTRS)
Morgan, Julia K.; McGovern, Patrick J.
2005-01-01
We have carried out two-dimensional particle dynamics simulations of granular piles subject to frictional Coulomb failure criteria to gain a first-order understanding of different modes of gravitational deformation within volcanoes. Under uniform basal and internal strength conditions, granular piles grow self-similarly, developing distinctive stratigraphies, morphologies, and structures. Piles constructed upon cohesive substrates exhibit particle avalanching, forming outward dipping strata and angle of repose slopes. Systematic decreases in basal strength lead to progressively deeper and steeper internal detachment faults and slip along a basal decollement; landslide forms grade from shallow slumps to deep-seated landslide and, finally, to axial subsidence and outward flank displacements, or volcanic spreading. Surface slopes decrease and develop concave up morphologies with decreasing decollement strength; depositional layers tilt progressively inward. Spatial variations in basal strength cause lateral transitions in pile structure, stratigraphy, and morphology. This approximation of volcanoes as Coulomb granular piles reproduces the richness of deformational structures and surface morphologies in many volcanic settings. The gentle slopes of Hawaiian volcanoes and Olympus Mons on Mars suggest weak basal decollements that enable volcanic spreading. High-angle normal faults, favored above weak decollements, are interpreted in both settings and may explain catastrophic sector collapse in Hawaii and broad aureole deposits surrounding Olympus Mons. In contrast, steeper slopes and shallow detachment faults predominate in the Canary Islands, thought to lack a weak decollement, favoring smaller, more frequent slope failures than predicted for Hawaii. The numerical results provide a useful predictive tool for interpreting dynamic behavior and associated geologic hazards of active volcanoes.
Landslide susceptibility revealed by LIDAR imagery and historical records, Seattle, Washington
Schulz, W.H.
2007-01-01
Light detection and ranging (LIDAR) data were used to visually map landslides, headscarps, and denuded slopes in Seattle, Washington. Four times more landslides were mapped than by previous efforts that used aerial photographs. The mapped landforms (landslides, headscarps, and denuded slopes) were created by many individual landslides. The spatial distribution of mapped landforms and 1308 historical landslides show that historical landslide activity has been concentrated on the mapped landforms, and that most of the landslide activity that created the landforms was prehistoric. Thus, the spatial densities of historical landslides on the landforms provide approximations of the landforms' relative susceptibilities to future landsliding. Historical landslide characteristics appear to be closely related to landform type so relative susceptibilities were determined for landslides with various characteristics. No strong relations were identified between stratigraphy and landslide occurrence; however, landslide characteristics and slope morphology appear to be related to stratigraphic conditions. Human activity is responsible for causing about 80% of historical Seattle landslides. The distribution of mapped landforms and human-caused landslides suggests the probable characteristics of future human-caused landslides on each of the landforms. The distribution of mapped landforms and historical landslides suggests that erosion of slope-toes by surface water has been a necessary condition for causing Seattle landslides. Human activity has largely arrested this erosion, which implies that landslide activity will decrease with time as hillsides naturally stabilize. However, evaluation of glacial-age analogs of areas of recent slope-toe erosion suggests that landslide activity in Seattle will continue for the foreseeable future. ?? 2006 Elsevier B.V. All rights reserved.
Constraining Depositional Slope From Sedimentary Structures in Sandy Braided Streams
NASA Astrophysics Data System (ADS)
Lynds, R. M.; Mohrig, D.; Heller, P. L.
2003-12-01
Determination of paleoslopes in ancient fluvial systems has potentially broad application to quantitatively constraining the history of tectonics and paleoclimate in continental sequences. Our method for calculating paleoslopes for sandy braided streams is based upon a simple physical model that establishes depositional skin-frictional shear stresses from assemblages of sedimentary structures and their associated grain size distributions. The addition of a skin-frictional shear stress, with a geometrically determined form-drag shear stress results in a total boundary shear stress which is directly related to water-surface slope averaged over an appropriate spatial scale. In order to apply this model to ancient fluvial systems, it is necessary to measure the following: coarsest suspended sediment size, finest grain size carried in bed load, flow depth, dune height, and dune length. In the rock record, suspended load and bed load can be accurately assessed by well-preserved suspended load deposits ("low-energy" ripples) and bed load deposits (dune foresets). This model predicts an average slope for the North Loup River near Taylor, Nebraska (modern case study) of 2.7 x 10-3. The measured reach-averaged water surface slope for the same reach of the river is 1.37 x 10-3. We suggest that it is possible to calculate the depositional slope of a sandy fluvial system by a factor of approximately two. Additionally, preliminary application of this model to the Lower Jurassic Kayenta Formation throughout the Colorado Plateau provides a promising and consistent evaluation of paleoslope in an ancient and well-preserved, sandy braided stream deposit.
Sekine, Hiroshi; Kobayashi, Masahiro; Onuki, Yusuke; Kawabata, Kazunari; Tsuboi, Toshiki; Matsuno, Yasushi; Takahashi, Hidekazu; Inoue, Shunsuke; Ichikawa, Takeshi
2017-12-09
CMOS image sensors (CISs) with global shutter (GS) function are strongly required in order to avoid image degradation. However, CISs with GS function have generally been inferior to the rolling shutter (RS) CIS in performance, because they have more components. This problem is remarkable in small pixel pitch. The newly developed 3.4 µm pitch GS CIS solves this problem by using multiple accumulation shutter technology and the gentle slope light guide structure. As a result, the developed GS pixel achieves 1.8 e - temporal noise and 16,200 e - full well capacity with charge domain memory in 120 fps operation. The sensitivity and parasitic light sensitivity are 28,000 e - /lx·s and -89 dB, respectively. Moreover, the incident light angle dependence of sensitivity and parasitic light sensitivity are improved by the gentle slope light guide structure.
Hydro turbine governor’s power control of hydroelectric unit with sloping ceiling tailrace tunnel
NASA Astrophysics Data System (ADS)
Fu, Liang; Wu, Changli; Tang, Weiping
2018-02-01
The primary frequency regulation and load regulation transient process when the hydro turbine governor is under the power mode of hydropower unit with sloping ceiling tailrace are analysed by field test and numerical simulation in this paper. A simulation method based on “three-zone model” to simulate small fluctuation transient process of the sloping ceiling tailrace is proposed. The simulation model of hydraulic turbine governor power mode is established by governor’s PLC program identification and parameter measurement, and the simulation model is verified by the test. The slow-fast-slow “three-stage regulation” method which can improve the dynamic quality of hydro turbine governor power mode is proposed. The power regulation strategy and parameters are optimized by numerical simulation, the performance of primary frequency regulation and load regulation transient process when the hydro turbine governor is under power mode are improved significantly.
MOLA-Based Landing Site Characterization
NASA Technical Reports Server (NTRS)
Duxbury, T. C.; Ivanov, A. B.
2001-01-01
The Mars Global Surveyor (MGS) Mars Orbiter Laser Altimeter (MOLA) data provide the basis for site characterization and selection never before possible. The basic MOLA information includes absolute radii, elevation and 1 micrometer albedo with derived datasets including digital image models (DIM's illuminated elevation data), slopes maps and slope statistics and small scale surface roughness maps and statistics. These quantities are useful in downsizing potential sites from descent engineering constraints and landing/roving hazard and mobility assessments. Slope baselines at the few hundred meter level and surface roughness at the 10 meter level are possible. Additionally, the MOLA-derived Mars surface offers the possibility to precisely register and map project other instrument datasets (images, ultraviolet, infrared, radar, etc.) taken at different resolution, viewing and lighting geometry, building multiple layers of an information cube for site characterization and selection. Examples of direct MOLA data, data derived from MOLA and other instruments data registered to MOLA arc given for the Hematite area.
Rockfall activity of cliff inferred from deposit and cone method
NASA Astrophysics Data System (ADS)
Jaboyedoff, M.; Baillifard, F.; Rouiller, J.-D.
2003-04-01
Assuming that fresh scree slopes are significant indicators of recent rockfall activity, they can be used as activity indicators for a given rockfall source area. Using simple geometric rules and a DTM (digital elevation model), the propagation zone can be estimated by considering that each potential rockfall source cell (corresponding to the entire cliff) can generate a scree slope within a cone with a slope ranging from 27° to 37°. Thus, the count of pixels representing rockfall deposits that are contained in this cone represents a relative scale of recent rockfall activity. According to Evans and Hungr (1993), the source cell can be chosen at the bottom of the cliff, with lower angles. Choosing the entire cliff or the bottom of the cliff as source area depends on the morphology of the slope situated below the cliff. The cone can also be laterally limited in order to avoid the counting of illogical rock slope trajectories (+-20°). In Switzerland, the vectorized 1:25,000 topographic map (vector25) can provide scree slope and cliff area data sets. Results obtained using this method show good agreement with field observations, although it is evident that the highest topographic reliefs are favored by this method, as verified in the Alps. Compared to the method of Menendéz Duarte and Marquínez (2002), which uses GIS-calculated watersheds as propagation areas, the present method does not take small changes of topography into account. References Evans, S.G. and Hungr, O. The assessment of rockfall hazard at the base of talus slopes. Canadian Geotechnical Journal, 30/4, 620-636, 1993. Menendéz Duarte, R. and Marquínez, J. The influence of environmental and lithologic factors on rockfall at a regional scale: an evaluation using GIS. Geomorphology, 43, 117-136, 2002.
NASA Astrophysics Data System (ADS)
Salim, Samir; Boquien, Médéric; Lee, Janice C.
2018-05-01
We study the dust attenuation curves of 230,000 individual galaxies in the local universe, ranging from quiescent to intensely star-forming systems, using GALEX, SDSS, and WISE photometry calibrated on the Herschel ATLAS. We use a new method of constraining SED fits with infrared luminosity (SED+LIR fitting), and parameterized attenuation curves determined with the CIGALE SED-fitting code. Attenuation curve slopes and UV bump strengths are reasonably well constrained independently from one another. We find that {A}λ /{A}V attenuation curves exhibit a very wide range of slopes that are on average as steep as the curve slope of the Small Magellanic Cloud (SMC). The slope is a strong function of optical opacity. Opaque galaxies have shallower curves—in agreement with recent radiative transfer models. The dependence of slopes on the opacity produces an apparent dependence on stellar mass: more massive galaxies have shallower slopes. Attenuation curves exhibit a wide range of UV bump amplitudes, from none to Milky Way (MW)-like, with an average strength one-third that of the MW bump. Notably, local analogs of high-redshift galaxies have an average curve that is somewhat steeper than the SMC curve, with a modest UV bump that can be, to first order, ignored, as its effect on the near-UV magnitude is 0.1 mag. Neither the slopes nor the strengths of the UV bump depend on gas-phase metallicity. Functional forms for attenuation laws are presented for normal star-forming galaxies, high-z analogs, and quiescent galaxies. We release the catalog of associated star formation rates and stellar masses (GALEX–SDSS–WISE Legacy Catalog 2).
Observation of Snow cover glide on Sub-Alpine Coniferous Forests in Mount Zao, Northeastern Japan
NASA Astrophysics Data System (ADS)
Sasaki, A.; Suzuki, K.
2017-12-01
This is the study to clarify the snow cover glide behavior in the sub-alpine coniferous forests on Mount Zao, Northeastern Japan, in the winter of 2014-2015. We installed the glide-meter which is sled type, and measured the glide motion on the slope of Abies mariesii forest and its surrounding slope. In addition, we observed the air temperature, snow depth, density of snow, and snow temperature to discuss relationship between weather conditions and glide occurrence. The snow cover of the 2014-15 winter started on November 13th and disappeared on April 21st. The maximum snow depth was 242 cm thick, it was recorded at February 1st. The snow cover glide in the surrounding slope was occurred first at February 10th, although maximum snow depth recorded on February 1st. The glide motion in the surrounding slope is continuing and its velocity was 0.4 cm per day. The glide in the surrounding slope stopped at March 16th. The cumulative amount of the glide was 21.1 cm. The snow cover glide in the A. mariesii forest was even later occurred first at February 21st. The glide motion of it was intermittent and extremely small. On sub-alpine zone of Mount Zao, snow cover glide intensity is estimated to be 289 kg/m2 on March when snow water equivalent is maximum. At same period, maximum snow cover glide intensity is estimated to be about 1000 kg/m2 at very steep slopes where the slope angle is about 35 degree. Although potential of snow cover glide is enough high, the snow cover glide is suppressed by stem of A. mariesii trees, in the sub-alpine coniferous forest.
Measurement and correlation of jet fuel viscosities at low temperatures
NASA Technical Reports Server (NTRS)
Schruben, D. L.
1985-01-01
Apparatus and procedures were developed to measure jet fuel viscosity for eight current and future jet fuels at temperatures from ambient to near -60 C by shear viscometry. Viscosity data showed good reproducibility even at temperatures a few degrees below the measured freezing point. The viscosity-temperature relationship could be correlated by two linear segments when plotted as a standard log-log type representation (ASTM D 341). At high temperatures, the viscosity-temperature slope is low. At low temperatures, where wax precipitation is significant, the slope is higher. The breakpoint between temperature regions is the filter flow temperature, a fuel characteristic approximated by the freezing point. A generalization of the representation for the eight experimental fuels provided a predictive correlation for low-temperature viscosity, considered sufficiently accurate for many design or performance calculations.
Size and Placement of Metal Culverts Critical on Peatland Woods Roads
J.H. Stoeckeler
1967-01-01
Culverts too small in diameter or poorly placed were major causes of timber flooding and tree damage. Placement problems were poor culvert slope, poor hydraulic approach, lack of gravel bedding, and too little soil covering the culverts.
NASA Astrophysics Data System (ADS)
Jeong, Min-Woo; Na, Sekwon; Shin, Haishan; Park, Hong-Bum; Lee, Hoo-Jeong; Joo, Young-Chang
2018-07-01
Performance enhancement has been studied for thin-film thermoelectric materials for small-scale energy applications. The microstructural evolution of bismuth telluride (Bi2Te3) was investigated with respect to performance enhancement via in situ thermomechanical analysis due to the post-annealing process. The thermomechanical behavior of Bi2Te3 changes gradually at approximately 200 °C with the formation of a quintuple-layer structure, which was confirmed by X-ray diffraction, transmission electron microscopy and Raman spectroscopy. It was found that highly oriented (006), (0015) was formed with a quintuple-layer structure parallel to the substrate, and the E g 2 Raman vibration mode of Bi2Te3 significantly increased after forming the layer structure with decreased defects. Therefore, the slope of the stress curve was affected by the longer atomic distance of the van der Waals bonds with the formation of (00 l) oriented layered-structure grain. The decreased number of defects in the layer structure affects the electrical and thermal properties of the Bi2Te3 thin film. Due to the microstructural evolution, the power factor of Bi2Te3 was enhanced by approximately 14.8 times by the quintuple-layer structure of Bi2Te3 formed during the annealing process, which contributed to a better understanding of the performance enhancement via post-annealing and to research on other highly oriented layer structure materials.
NASA Astrophysics Data System (ADS)
Jeong, Min-Woo; Na, Sekwon; Shin, Haishan; Park, Hong-Bum; Lee, Hoo-Jeong; Joo, Young-Chang
2018-04-01
Performance enhancement has been studied for thin-film thermoelectric materials for small-scale energy applications. The microstructural evolution of bismuth telluride (Bi2Te3) was investigated with respect to performance enhancement via in situ thermomechanical analysis due to the post-annealing process. The thermomechanical behavior of Bi2Te3 changes gradually at approximately 200 °C with the formation of a quintuple-layer structure, which was confirmed by X-ray diffraction, transmission electron microscopy and Raman spectroscopy. It was found that highly oriented (006), (0015) was formed with a quintuple-layer structure parallel to the substrate, and the Eg 2Raman vibration mode of Bi2Te3 significantly increased after forming the layer structure with decreased defects. Therefore, the slope of the stress curve was affected by the longer atomic distance of the van der Waals bonds with the formation of (00l) oriented layered-structure grain. The decreased number of defects in the layer structure affects the electrical and thermal properties of the Bi2Te3 thin film. Due to the microstructural evolution, the power factor of Bi2Te3 was enhanced by approximately 14.8 times by the quintuple-layer structure of Bi2Te3 formed during the annealing process, which contributed to a better understanding of the performance enhancement via post-annealing and to research on other highly oriented layer structure materials.
Recent Movements: New Landslides in Less than 1 Martian Year
NASA Technical Reports Server (NTRS)
2000-01-01
Changes between 1 February 1998 and 18 November 1999
Crater at 6oS, 184oW on 01 FEB 1998 [figure removed for brevity, see original site] 3-D Anaglyph View--PIA02380 [figure removed for brevity, see original site] What is happening on Mars right now? Pictures that show changes occurring from time to time give some clues as to what processes are shaping the modern martian landscape. Dust devils, dust storms, and polar frosts are all known to cause change sin the surface every martian year. But what about other geologic processes? How 'active' is Mars today? The Mars Orbiter Camera (MOC) onboard the Mars Global Surveyor (MGS) has been in orbit long enough that it is starting to provide some answers. MGS began orbiting Mars in September 1997. Since that time, it has seen the planet cycle through more than 1 of its 687-Earth-days-long years. The pictures shown here document changes observed by the MOC caused by small landslides.The picture at the lower left (above) shows a shallow crater located near Apollinaris Patera at 6oS, 184oW, that was photographed by MOC in February 1998. The walls of this crater exhibit approximately 100 dark streaks running down its slopes. These streaks have formed as small landslides or avalanches and are probably composed of sand and/or silt. The image is illuminated by sunlight from the lower left, and the crater is about 5 kilometers (3 miles) across. The white box shows the location of a section of the crater that was photographed again in mid-November 1999, about 92% of a Martian Year later.The top picture shows a comparison of the southeastern crater wall as it appeared on February 1, 1998, and again on November 18, 1999. (Note that the picture has been rotated relative to the context image at lower left). During the time between the two images, three new dark slope streaks formed (arrows, top right). The older streaks are lighter and fainter than these new, dark ones, suggesting that streaks fade with time. This means that, at least for the crater walls shown here, any streak that is dark is younger than any streak that is pale. The stereo anaglyph (requires red-blue '3-d glasses') at the lower right uses the two images of the crater rim to provide a 3-dimensional view. The anaglyph is helpful to see that the dark streaks really do occur on a slope. In addition, by viewing the anaglyph without 3-d glasses, one can easily identify the three new streaks because they appear as blue and have no red counterpart.These three new slope streaks formed sometime between February 1998 and November 1999. Similar streaks were observed in the highest-resolution images from the Viking orbiters in the late 1970s, but for more than 20 years no one has known how recent these features might be, or how often they might form. Now, MOC is providing some exciting answers.Muñoz Maniega, Susana; Chappell, Francesca M; Valdés Hernández, Maria C; Armitage, Paul A; Makin, Stephen D; Heye, Anna K; Thrippleton, Michael J; Sakka, Eleni; Shuler, Kirsten; Dennis, Martin S; Wardlaw, Joanna M
2017-02-01
White matter hyperintensities accumulate with age and occur in patients with stroke, but their pathogenesis is poorly understood. We measured multiple magnetic resonance imaging biomarkers of tissue integrity in normal-appearing white matter and white matter hyperintensities in patients with mild stroke, to improve understanding of white matter hyperintensities origins. We classified white matter into white matter hyperintensities and normal-appearing white matter and measured fractional anisotropy, mean diffusivity, water content (T1-relaxation time) and blood-brain barrier leakage (signal enhancement slope from dynamic contrast-enhanced magnetic resonance imaging). We studied the effects of age, white matter hyperintensities burden (Fazekas score) and vascular risk factors on each biomarker, in normal-appearing white matter and white matter hyperintensities, and performed receiver-operator characteristic curve analysis. Amongst 204 patients (34.3-90.9 years), all biomarkers differed between normal-appearing white matter and white matter hyperintensities ( P < 0.001). In normal-appearing white matter and white matter hyperintensities, mean diffusivity and T1 increased with age ( P < 0.001), all biomarkers varied with white matter hyperintensities burden ( P < 0.001; P = 0.02 signal enhancement slope), but only signal enhancement slope increased with hypertension ( P = 0.028). Fractional anisotropy showed complex age-white matter hyperintensities-tissue interactions; enhancement slope showed white matter hyperintensities-tissue interactions. Mean diffusivity distinguished white matter hyperintensities from normal-appearing white matter best at all ages. Blood-brain barrier leakage increases with hypertension and white matter hyperintensities burden at all ages in normal-appearing white matter and white matter hyperintensities, whereas water mobility and content increase as tissue damage accrues, suggesting that blood-brain barrier leakage mediates small vessel disease-related brain damage.
Driver for solar cell I-V characteristic plots
NASA Technical Reports Server (NTRS)
Turner, G. B. (Inventor)
1980-01-01
A bipolar voltage ramp generator which applies a linear voltage through a resistor to a solar cell for plotting its current versus voltage (I-V) characteristic between short circuit and open circuit conditions is disclosed. The generator has automatic stops at the end points. The resistor serves the multiple purpose of providing a current sensing resistor, setting the full-scale current value, and providing a load line with a slope approximately equal to one, such that it will pass through the origin and the approximate center of the I-V curve with about equal distance from that center to each of the end points.
Stock, Greg M.; Luco, Nicolas; Collins, Brian D.; Harp, Edwin L.; Reichenbach, Paola; Frankel, Kurt L.
2014-01-01
Rock falls are common in Yosemite Valley, California, posing substantial hazard and risk to the approximately four million annual visitors to Yosemite National Park. Rock falls in Yosemite Valley over the past few decades have damaged structures and caused injuries within developed regions located on or adjacent to talus slopes highlighting the need for additional investigations into rock-fall hazard and risk. This assessment builds upon previous investigations of rock-fall hazard and risk in Yosemite Valley and focuses on hazard and risk to structures posed by relatively frequent fragmental-type rock falls as large as approximately 100,000 (cubic meters) in volume.
Jacobson, Robert B.; McGeehin, John P.; Cron, Elizabeth D.; Carr, Carolyn E.; Harper, John M.; Howard, Alan D.
1993-01-01
More than 3,000 landslides were triggered by heavy rainfall in the central Appalachian Mountains of West Virginia and Virginia, November 3-5, 1985. These landslides provided the opportunity to study spatial controls on landslides, magnitude and frequency of triggering events, and the effects of landslides on flood-induced geomorphic change. The study area consists of parts of the Wills Mountain anticline, a major NE-trending structure in the central Appalachians, and a portion of the adjacent Appalachian Plateau. Across the anticline and adjacent plateau, bedrock lithologies vary markedly and include pure marine limestone, marine shale, deltaic mudstone/sandstone sequences, and orthoquartzites. Because of the geologic structure, bedrock lithology varies little along strike. The spatial distribution of landslides triggered by the storm was controlled primarily by rainfall, bedrock lithology, surficial lithology, land cover, and slope morphology. The triggering rainfall was of moderate intensity and long duration. Two-day storm totals varied from 170 mm to more than 240 mm in the study area. Most landslides occurred at the northeast end of the study area, where 48-h rainfall totals were in excess of 200 mm. Different rainfall thresholds are apparent for triggering landslides on different bedrock lithologies. The highest density of landslides occurred in shallow colluvium and residuum of the Reedsville Shale (Ordovician), followed by regolith of the Greenbriar and Mauch Chunk Groups (Mississippian). Most of the landslides in these fine-grained regoliths were shallow slides and slumps, many of which transformed to mudflows and delivered sediment directly to streams; a smaller number of debris avalanches were triggered high on quartzite ridges.Instability of colluvium and residuum derived from the Reedsville Shale, compared with regolith from four other fine-grained bedrock lithologies, is attributable to its low strength combined with moderate infiltration rates that allowed soil moisture to accumulate under the moderate intensities of the rainfall. Slopes covered by coarse, cobbly debris flow and alluvial deposits, mostly of Pleistocene age, were very stable due to their low slope angles and high frictional strength. For a particular bedrock lithology, the spatial distribution of landslides appears controlled by interdependent influences of slope morphology and land cover. On the Reedsville Shale, most landslides occurred on north- to northeast-facing slopes, which might have had higher antecedent levels of soil moisture; these slopes have also been preferentially cleared because they produce better pasture forage for livestock. A secondary concentration of landslides on south- to southwest-facing slopes cannot be explained by conventional soil-moisture models. Landslide density was 100--200 percent higher on cleared land than on forested land. On pastured land, most landslides occurred on laterally planar slopes, but on forested land, most landslides occurred in slope positions that were laterally concave (hillslope hollows). Compared with other documented Appalachian storms that have triggered landslides, the November 1985 storm had lower rainfall intensities over longer durations. Comparison with these other storms suggests that the anomalously high degree of slope instability in 1985 is due to the long duration of low-intensity rainfall on fine-grained regolith derived from shale; the triggering rainfall can be approximated by the 48-h storm total. Landslide density in Reedsville Shale regolith is linearly related to the varying 48-h rainfall along the anticline. These data define a probabilistic model that estimates return intervals of 43 to 300 yr for landslide densities ranging from 1 to 70 landslides/km2. Analysis of flood-induced geomorphic changes in 79 small drainage basins that received 210-240 mm of rainfall showed a clear local association between landslides and channel erosion or deposition adjacent to where the landslides delivered sediment to the stream. When channel change was quantified using an index evaluated at each basin mouth, most of the channel change was attributable to the influence of basin morphology on flood discharge. Landslide density in the basins was of secondary, although measurable, importance in explaining flood-induced channel changes at the basin scale.
NASA Astrophysics Data System (ADS)
Richard, G. A.; Hammond, J. C.; Kampf, S. K.; Moore, C. D.; Eurich, A.
2017-12-01
Snowpack trend analyses and modeling studies suggest that lower elevation snowpacks in mountain regions are most sensitive to drought and warming temperatures, however, in Colorado, most snow monitoring occurs in the high elevations where snow lasts throughout the winter and most streamflow monitoring occurs at lower elevations. The lack of combined snow and streamflow monitoring in watersheds along the transition from intermittent to persistent snow creates a gap in our understanding of snowmelt and runoff within the intermittent-persistent snow transition. Expanded hydrologic monitoring that spans the gradient of snow conditions in Colorado can help improve streamflow prediction and inform land and water managers. This study established hydrologic monitoring watersheds in intermittent, transitional, and persistent snow zones on the east slope and west slope of the Rocky Mountains in Colorado, and uses this monitoring network to improve understanding of how snow accumulation and melt affect soil moisture and streamflow generation under different snow conditions. We monitored six small watersheds (three west slope, three east slope) (0.8 to 3.9 km2) that drain intermittent, transitional, and persistent snow zones. At each site, we measured: streamflow, snow depth, soil moisture, precipitation, air temperature, and snow water equivalent (SWE). In our first season of monitoring, the west slope persistent and transitional sites had more mid-winter melt and infiltration, shorter snowpack duration, and lower peak SWE than the east slope sites. Snow cover remained at the east slope persistent site into June, whereas much of the snow at the persistent site on the west slope had already melted by early June. The difference in soil water input likely has consequences for streamflow response that we will continue to examine in future years. At the west slope intermittent site, the stream did not flow during the entire first year of monitoring, while at the east slope intermittent site, the streams flowed intermittently during winter and spring, likely a result of different subsurface geology. With our ongoing watershed monitoring across a broad range of snow conditions in Colorado, we continue to learn about the factors that increase or decrease streamflow in the headwater streams that supply the state's major rivers.
Forecasting slope failures from space-based synthetic aperture radar (SAR) measurements
NASA Astrophysics Data System (ADS)
Wasowski, J.; Bovenga, F.; Nutricato, R.; Nitti, D. O.; Chiaradia, M. T.; Tijani, K.; Morea, A.
2017-12-01
New space-borne radar sensors enable multi-scale monitoring of potentially unstable slopes thanks to wide-area coverage (tens of thousands km2), regular long-term image acquisition schedule with increasing re-visit frequency (weekly to daily), and high measurement precision (mm). In particular, the recent radar satellite missions e.g., COSMO-SkyMed (CSK), Sentinel-1 (S-1) and improved multi-temporal interferometry (MTI) processing techniques allow timely delivery of information on slow ground surface displacements. Here we use two case study examples to show that it is possible to capture pre-failure slope strains through long-term MTI-based monitoring. The first case is a retrospective investigation of a huge 500ML m3 landslide, which occurred in Sept. 2016 in a large, active open-cast coal mine in central Europe. We processed over 100 S-1 images acquired since Fall 2014. The MTI results showed that the slope that failed had been unstable at least since 2014. Importantly, we detected consistent displacement trends and trend changes, which can be used for slope failure forecasting. Specifically, we documented significant acceleration in slope surface displacement in the two months preceding the catastrophic failure. The second case of retrospectively captured pre-failure slope strains regards our earlier study of a small 50 m long landslide, which occurred on Jan. 2014 and caused the derailment of a train on the railway line connecting NW Italy to France. We processed 56 CSK images acquired from Fall 2008 to Spring 2014. The MTI results revealed pre-failure displacements of the engineering structures on the slope subsequently affected by the 2014 slide. The analysis of the MTI time series further showed that the displacements had been occurring since 2009. This information could have been used to forewarn the railway authority about the slope instability hazard. The above examples indicate that more frequent and consistent image acquisitions by the new radar satellites represent the key improvement for MTI-based slope monitoring. The forecasting of potential slope failures from space is now more feasible. ACKNOWLEDGEMENTS We thank European (ESA) and Italian (ASI) space agencies for S-1 and CSK® Products. We also acknowledge the IT resources made available by ReCaS, a project financed by the MIUR.
NASA Astrophysics Data System (ADS)
Phrampus, B.; Harris, R. N.; Trehu, A. M.; Embley, R. W.; Merle, S. G.
2017-12-01
Gas hydrates are found globally on continental margins and due to the large amount of sequestered carbon in hydrate reservoirs, whether these deposits are dynamic or stable has significant implications for slope stability, ocean/atmosphere carbon budget, and deep-water energy exploration. Recent studies indicate that upper slope hydrate degradation may be relatively widespread on passive margins due to recent ocean temperature warming between 0.012 and 0.033 °C/yr (e.g. Svalbard, North Alaska, and US Atlantic margin). However, the potential and breadth of warming induced hydrate instability remains contentious based on multiple observations including: 1) seep locations not consistent with locations of hydrate dissociation, 2) a lack of hydrate in regions of warming, and 3) evidence for long-lived seepage in regions associated with contemporary warming-induced hydrate dissociation. At the Cascadia margin, a recent study suggests that contemporary warming of intermediate water intersects the hydrate stability zone leading to hydrate dissociation that feeds upper slope seeps. Here, we provide a systematic analysis of along-strike variations in hydrate distribution along the Cascadia margin combined with a multivariable regression of ocean temperatures to characterize the potential of upper slope hydrate instability. Preliminary seep locations reveal upper slope seeps and observed regions of hydrate are correlated spatially between 42.5 and 48.0 °N, outside this region there is a dearth of identified upper slope hydrate and seeps. Between 44.5 and 48.0 °N a contemporary warming trend is as large as 0.006 °C/yr and is collocated with upper slope hydrate and gas seepage. This warming rate is relatively small, 2-5x smaller than warming trends identified in the Arctic where temperature induced hydrate instability remains uncertain. Additionally, we identify a region between 42.5 and 44.5 °N with collocated upper slope seepage and hydrate but no evidence of ocean warming, suggesting upper slope seepage is not driven by temperature induced hydrate instability, but maybe driven by tectonic uplift. These results highlight the absence of temperature driven seepage and slope instability on the Cascadia margin and deemphasize the impact of lower latitude warming on global hydrate dynamics and carbon budget.
The Three-Dimensional (3D) Numerical Stability Analysis of Hyttemalmen Open-Pit
NASA Astrophysics Data System (ADS)
Cała, Marek; Kowalski, Michał; Stopkowicz, Agnieszka
2014-10-01
The purpose of this paper was to perform the 3D numerical calculations allowing slope stability analysis of Hyttemalmen open pit (location Kirkenes, Finnmark Province, Norway). After a ramp rock slide, which took place in December 2010, as well as some other small-scale rock slope stability problems, it proved necessary to perform a serious stability analyses. The Hyttemalmen open pit was designed with a depth up to 100 m, a bench height of 24 m and a ramp width of 10 m. The rock formation in the iron mining district of Kirkenes is called the Bjornevaten Group. This is the most structurally complicated area connected with tectonic process such as folding, faults and metamorphosis. The Bjornevaten Group is a volcano-sedimentary sequence. Rock slope stability depends on the mechanical properties of the rock, hydro-geological conditions, slope topography, joint set systems and seismic activity. However, rock slope stability is mainly connected with joint sets. Joints, or general discontinuities, are regarded as weak planes within rock which have strength reducing consequences with regard to rock strength. Discontinuities within the rock mass lead to very low tensile strength. Several simulations were performed utilising the RocLab (2007) software to estimate the gneiss cohesion for slopes of different height. The RocLab code is dedicated to estimate rock mass strength using the Hoek-Brown failure criterion. Utilising both the GSI index and the Hoek-Brown strength criterion the equivalent Mohr-Coulomb parameters (cohesion and angle of internal friction) can be calculated. The results of 3D numerical calculations (with FLA3D code) show that it is necessary to redesign the slope-bench system in the Hyttemalmen open pit. Changing slope inclination for lower stages is recommended. The minimum factor of safety should be equal 1.3. At the final planned stage of excavation, the factor of safety drops to 1.06 with failure surface ranging through all of the slopes. In the case of a slope angle 70° for lower stages, FS = 1.26, which is not enough to provide slope stability. Another series of calculations were therefore performed taking water table lowering into consideration, which increases the global safety factor. It was finally evaluated, that for a water table level of 72 m the factor of safety equals 1.3, which is enough to assure global open-pit stability.
Vojtkó, András; Farkas, Tünde; Szabó, Anna; Havadtői, Krisztina; Vojtkó, Anna E.; Tölgyesi, Csaba; Cseh, Viktória; Erdős, László; Maák, István Elek; Keppel, Gunnar
2017-01-01
Background and aims Dolines are small- to large-sized bowl-shaped depressions of karst surfaces. They may constitute important microrefugia, as thermal inversion often maintains cooler conditions within them. This study aimed to identify the effects of large- (macroclimate) and small-scale (slope aspect and vegetation type) environmental factors on cool-adapted plants in karst dolines of East-Central Europe. We also evaluated the potential of these dolines to be microrefugia that mitigate the effects of climate change on cool-adapted plants in both forest and grassland ecosystems. Methods We compared surveys of plant species composition that were made between 2007 and 2015 in 21 dolines distributed across four mountain ranges (sites) in Hungary and Romania. We examined the effects of environmental factors on the distribution and number of cool-adapted plants on three scales: (1) regional (all sites); (2) within sites and; (3) within dolines. Generalized linear models and non-parametric tests were used for the analyses. Key Results Macroclimate, vegetation type and aspect were all significant predictors of the diversity of cool-adapted plants. More cool-adapted plants were recorded in the coolest site, with only few found in the warmest site. At the warmest site, the distribution of cool-adapted plants was restricted to the deepest parts of dolines. Within sites of intermediate temperature and humidity, the effect of vegetation type and aspect on the diversity of cool-adapted plants was often significant, with more taxa being found in grasslands (versus forests) and on north-facing slopes (versus south-facing slopes). Conclusions There is large variation in the number and spatial distribution of cool-adapted plants in karst dolines, which is related to large- and small-scale environmental factors. Both macro- and microrefugia are therefore likely to play important roles in facilitating the persistence of cool-adapted plants under global warming. PMID:28025290
Bátori, Zoltán; Vojtkó, András; Farkas, Tünde; Szabó, Anna; Havadtői, Krisztina; Vojtkó, Anna E; Tölgyesi, Csaba; Cseh, Viktória; Erdős, László; Maák, István Elek; Keppel, Gunnar
2017-01-01
Dolines are small- to large-sized bowl-shaped depressions of karst surfaces. They may constitute important microrefugia, as thermal inversion often maintains cooler conditions within them. This study aimed to identify the effects of large- (macroclimate) and small-scale (slope aspect and vegetation type) environmental factors on cool-adapted plants in karst dolines of East-Central Europe. We also evaluated the potential of these dolines to be microrefugia that mitigate the effects of climate change on cool-adapted plants in both forest and grassland ecosystems. We compared surveys of plant species composition that were made between 2007 and 2015 in 21 dolines distributed across four mountain ranges (sites) in Hungary and Romania. We examined the effects of environmental factors on the distribution and number of cool-adapted plants on three scales: (1) regional (all sites); (2) within sites and; (3) within dolines. Generalized linear models and non-parametric tests were used for the analyses. Macroclimate, vegetation type and aspect were all significant predictors of the diversity of cool-adapted plants. More cool-adapted plants were recorded in the coolest site, with only few found in the warmest site. At the warmest site, the distribution of cool-adapted plants was restricted to the deepest parts of dolines. Within sites of intermediate temperature and humidity, the effect of vegetation type and aspect on the diversity of cool-adapted plants was often significant, with more taxa being found in grasslands (versus forests) and on north-facing slopes (versus south-facing slopes). There is large variation in the number and spatial distribution of cool-adapted plants in karst dolines, which is related to large- and small-scale environmental factors. Both macro- and microrefugia are therefore likely to play important roles in facilitating the persistence of cool-adapted plants under global warming. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Devil's Slide: An evolving feature of California's coastal landscape
NASA Astrophysics Data System (ADS)
Thomas, M.; Loague, K.
2013-12-01
Coastal landslides in the United States remain a persistent threat to human life and urban development. The focus of this study is a landslide-prone section of the central California coastline, approximately 20 km south of San Francisco, known as Devil's Slide. This investigation employs an extensive aerial image inventory, digital elevation models (DEMs), and a water balance / limit-equilibrium approach to better understand the spatial and temporal characteristics of deep-seated bedrock slides at the site. Photographic surveys of the area reveal nearly three kilometers of headscarp and a complex network of slope failures that respond to hydrologic, seismic, and anthropogenic perturbations. DEM analysis suggests that, for a 145-year period (1866 to 2010), the study area experienced an average coastal retreat rate of 0.14 m yr-1 and an average volumetric loss of 11,216 m3 yr-1. At least 38% of the landscape evolution in the steep coastal terrain has been driven by slope failure events. A loosely coupled water balance / limit-equilibrium analysis quantitatively illustrates the precarious nature of the active landslide zone at the site. The slope is shown to be unstable for a large suite of equally-likely scenarios. The analyses presented herein suggest that future work should include a rigorous characterization of pore-water pressure development, driven by comprehensive simulations of subsurface hydrologic response, to improve our understanding of slope failure initiation at the Devil's Slide site.
Mapping Soil pH Buffering Capacity of Selected Fields
NASA Technical Reports Server (NTRS)
Weaver, A. R.; Kissel, D. E.; Chen, F.; West, L. T.; Adkins, W.; Rickman, D.; Luvall, J. C.
2003-01-01
Soil pH buffering capacity, since it varies spatially within crop production fields, may be used to define sampling zones to assess lime requirement, or for modeling changes in soil pH when acid forming fertilizers or manures are added to a field. Our objective was to develop a procedure to map this soil property. One hundred thirty six soil samples (0 to 15 cm depth) from three Georgia Coastal Plain fields were titrated with calcium hydroxide to characterize differences in pH buffering capacity of the soils. Since the relationship between soil pH and added calcium hydroxide was approximately linear for all samples up to pH 6.5, the slope values of these linear relationships for all soils were regressed on the organic C and clay contents of the 136 soil samples using multiple linear regression. The equation that fit the data best was b (slope of pH vs. lime added) = 0.00029 - 0.00003 * % clay + 0.00135 * % O/C, r(exp 2) = 0.68. This equation was applied within geographic information system (GIS) software to create maps of soil pH buffering capacity for the three fields. When the mapped values of the pH buffering capacity were compared with measured values for a total of 18 locations in the three fields, there was good general agreement. A regression of directly measured pH buffering capacities on mapped pH buffering capacities at the field locations for these samples gave an r(exp 2) of 0.88 with a slope of 1.04 for a group of soils that varied approximately tenfold in their pH buffering capacities.
Walton, A W
2008-08-01
Elongate, fine tubes, approximately 1 microm wide and up to 200 microm long, extend from fractured surfaces, vesicle walls, and internal fractures into fragments of basalt glass in samples from the Hawaii Scientific Drilling Project #2 phase 1 (HSDP #2(1)) core and the Hilina slope, Hawaii. Several features indicate that these tubes are microbial endolithic microborings: the tubes resemble many described microborings from oceanic basalt glass, their formation is postdepositional but restricted to certain but different ranges of time in the two sets of samples, and they are not uniformly distributed throughout glass fragments. Microtubules record several characteristic behaviors including boring into glass, mining, seeking olivine, and avoiding plagioclase. They also are highly associated with a particular form of glass-replacing smectite. Evidence of behavior should join morphological and geochemical criteria in indicating microbial alteration of basalt glass. In some samples, steeply conical tubes, approximately 10-20 microm in diameter tapering to 1 microm and commonly filled with smectite, appear to be modifications or elaborations of the microtubules. These also curve toward olivine and are associated with replacement smectite. In HSDP #2(1) samples, microtubules initiated at margins of shards before palagonite replaced those margins and are preserved during palagonitization. In fact, microtubules appear to have provided routes that enhanced the efficiency of water's reaching of unaltered glass. In Hilina Slope samples, the microtubules appear to postdate palagonitization because they initiate at the boundary between palagonite and unaltered sideromelane. Preservation of microtubules during palagonitization in samples together with recognition of other associated characteristics representing behavior suggests that such features may be recognizable in more heavily altered ancient rocks.
Miniaturized redox potential probe for in situ environmental monitoring.
Jang, Am; Lee, Jin-Hwan; Bhadri, Prashant R; Kumar, Suresh A; Timmons, William; Beyette, Fred R; Papautsky, Ian; Bishop, Paul L
2005-08-15
The need for accurate, robust in situ microscale monitoring of oxidation-reduction potentials (ORP) is required for continuous soil pore water quality monitoring. We are developing a suite of self-contained microelectrodes that can be used in the environment, such as at Superfund sites, to monitor ORP in contaminated soils and sediments. This paper presents details on our development of microelectrode sensor arrays for ORP measurements. The electrochemical performance of these ORP electrodes was fully characterized by measuring redox potentials in standard solutions. It found that the newly developed integrated ORP microelectrodes produced a very stable voltage response (the corresponding rate of the integrated microelectrode potential change was in the range of 0.6-1.1 mV/min), even when the measurement was carried out outside of a Faraday cage where signals from most conventional microelectrodes are usually inhibited by external electrical nose. These new microelectrodes were easier to fabricate and were more robust than conventional microelectrodes. The tip size of the integrated ORP microelectrode was approximately 200 nm square, with a taper angle of approximately 20 degrees and a length of 57 microm. The integrated ORP microelectrode exhibited better signal stability and substantially shorter response times (from less than a few milliseconds to 30 s, depending on the standard solution used) than the commercial millielectrode (a few minutes). Compared with the slope of the commercial millelectrode, the slope of the integrated microelectrode (61.5 mV/pH) was closerto the ideal slope against quinhydrone calibration solutions. Therefore, it is to be expected that the newly developed ORP microelectrode may have wider applications in contaminated soils, biofilms, and sediments.
Topographic and Stochastic Influences on Pahoehoe Lava Lobe Emplacement
NASA Technical Reports Server (NTRS)
Hamilton, Christopher W.; Glaze, Lori S.; James, Mike R.; Baloga, Stephen M.
2013-01-01
A detailed understanding of pahoehoe emplacement is necessary for developing accurate models of flow field development, assessing hazards, and interpreting the significance of lava morphology on Earth and other planetary surfaces. Active pahoehoe lobes on Kilauea Volcano, Hawaii, were examined on 21-26 February 2006 using oblique time-series stereo-photogrammetry and differential global positioning system (DGPS) measurements. During this time, the local discharge rate for peripheral lava lobes was generally constant at 0.0061 +/- 0.0019 m3/s, but the areal coverage rate of the lobes exhibited a periodic increase every 4.13 +/- 0.64 minutes. This periodicity is attributed to the time required for the pressure within the liquid lava core to exceed the cooling induced strength of its margins. The pahoehoe flow advanced through a series of down slope and cross-slope breakouts, which began as approximately 0.2 m-thick units (i.e., toes) that coalesced and inflated to become approximately meter-thick lobes. The lobes were thickest above the lowest points of the initial topography and above shallow to reverse facing slopes, defined relative to the local flow direction. The flow path was typically controlled by high-standing topography, with the zone directly adjacent to the final lobe margin having an average relief that was a few centimeters higher than the lava inundated region. This suggests that toe-scale topography can, at least temporarily, exert strong controls on pahoehoe flow paths by impeding the lateral spreading of the lobe. Observed cycles of enhanced areal spreading and inflated lobe morphology are also explored using a model that considers the statistical likelihood of sequential breakouts from active flow margins and the effects of topographic barriers.
Sub-microradian Surface Slope Metrology with the ALS Developmental Long Trace Profiler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yashchuk, Valeriy V.; Barber, Samuel; Domning, Edward E.
2009-06-15
Development of X-ray optics for 3rd and 4th generation X-ray light sources with a level of surface slope precision of 0.1-0.2 {micro}rad requires the development of adequate fabrication technologies and dedicated metrology instrumentation and methods. Currently, the best performance of surface slope measurement has been achieved with the NOM (Nanometer Optical Component Measuring Machine) slope profiler at BESSY (Germany) [1] and the ESAD (Extended Shear Angle Difference) profiler at the PTB (Germany) [2]. Both instruments are based on electronic autocollimators (AC) precisely calibrated for the specific application [3] with small apertures of 2.5-5 mm in diameter. In the present work,more » we describe the design, initial alignment and calibration procedures, the instrumental control and data acquisition system, as well as the measurement performance of the Developmental Long Trace Profiler (DLTP) slope measuring instrument recently brought into operation at the Advanced Light Source (ALS) Optical Metrology Laboratory (OML). Similar to the NOM and ESAD, the DLTP is based on a precisely calibrated autocollimator. However, this is a reasonably low budget instrument used at the ALS OML for the development and testing of new measuring techniques and methods. Some of the developed methods have been implemented into the ALS LTP-II (slope measuring long trace profiler [4]) which was recently upgraded and has demonstrated a capability for 0.25 {micro}rad surface metrology [5]. Performance of the DLTP was verified via a number of measurements with high quality reference mirrors. A comparison with the corresponding results obtained with the world's best slope measuring instrument, the BESSY NOM, proves the accuracy of the DLTP measurements on the level of 0.1-0.2 {micro}rad depending on the curvature of a surface under test. The directions of future work to develop a surface slope measuring profiler with nano-radian performance are also discussed.« less