Sample records for small spatial extent

  1. A Spatial Method to Calculate Small-Scale Fisheries Extent

    NASA Astrophysics Data System (ADS)

    Johnson, A. F.; Moreno-Báez, M.; Giron-Nava, A.; Corominas, J.; Erisman, B.; Ezcurra, E.; Aburto-Oropeza, O.

    2016-02-01

    Despite global catch per unit effort having redoubled since the 1950's, the global fishing fleet is estimated to be twice the size that the oceans can sustainably support. In order to gauge the collateral impacts of fishing intensity, we must be able to estimate the spatial extent and amount of fishing vessels in the oceans. Methods that do currently exist are built around electronic tracking and log book systems and generally focus on industrial fisheries. Spatial extent for small-scale fisheries therefore remains elusive for many small-scale fishing fleets; even though these fisheries land the same biomass for human consumption as industrial fisheries. Current methods are data-intensive and require extensive extrapolation when estimated across large spatial scales. We present an accessible, spatial method of calculating the extent of small-scale fisheries based on two simple measures that are available, or at least easily estimable, in even the most data poor fisheries: the number of boats and the local coastal human population. We demonstrate this method is fishery-type independent and can be used to quantitatively evaluate the efficacy of growth in small-scale fisheries. This method provides an important first step towards estimating the fishing extent of the small-scale fleet, globally.

  2. The spatial extent of the effect of foreclosures on crime.

    PubMed

    Payton, Seth B; Stucky, Thomas D; Ottensmann, John R

    2015-01-01

    Although neighborhood stability has long been considered a substantial determinant of crime, foreclosures have not been the subject of concerted research among criminologists until recently. A number of recent studies have examined the linkage between home foreclosures and crime. Though generally finding a significant relationship, studies have used different approaches and units of analysis. This variation led us to examine the spatial extent to which foreclosures affect a relatively small surrounding area. In this paper, we consider the spatial extent of the foreclosure effect on crime by estimating fixed effect negative binomial models using geocoded UCR data for 2003-2008 and foreclosure data to predict crime counts using the number of foreclosures within various small area radii. Results show that, independently and jointly, foreclosures are a predictor of crime up to at least a distance of 2250 feet. Importantly, that effect declines with distance. We conclude with a discussion of the implications of those findings. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. LEVEL AND EXTENT OF MERCURY CONTAMINATION IN OREGON LOTIC FISH

    EPA Science Inventory

    As part of the U.S. EPA's EMAP Oregon Pilot project, we conducted a probability survey of 154 Oregon streams and rivers to assess the spatial extent of mercury (Hg) contamination in fish tissue across the state. Samples consisted of whole fish analyses of both small (< 120 mm) a...

  4. Geographic variation in patterns of nestedness among local stream fish assemblages in Virginia

    USGS Publications Warehouse

    Cook, R.R.; Angermeier, P.L.; Finn, D.S.; Poff, N.L.; Krueger, K.L.

    2004-01-01

    Nestedness of faunal assemblages is a multiscale phenomenon, potentially influenced by a variety of factors. Prior small-scale studies have found freshwater fish species assemblages to be nested along stream courses as a result of either selective colonization or extinction. However, within-stream gradients in temperature and other factors are correlated with the distributions of many fish species and may also contribute to nestedness. At a regional level, strongly nested patterns would require a consistent set of structuring mechanisms across streams, and correlation among species' tolerances of the environmental factors that influence distribution. Thus, nestedness should be negatively associated with the spatial extent of the region analyzed and positively associated with elevational gradients (a correlate of temperature and other environmental factors). We examined these relationships for the freshwater fishes of Virginia. Regions were defined within a spatial hierarchy and included whole river drainages, portions of drainages within physiographic provinces, and smaller subdrainages. In most cases, nestedness was significantly stronger in regions of smaller spatial extent and in regions characterized by greater topographic relief. Analysis of hydrologic variability and patterns of faunal turnover provided no evidence that interannual colonization/extinction dynamics contributed to elevational differences in nestedness. These results suggest that, at regional scales, nestedness is influenced by interactions between biotic and abiotic factors, and that the strongest nestedness is likely to occur where a small number of organizational processes predominate, i.e., over small spatial extents and regions exhibiting strong environmental gradients. ?? Springer-Verlag 2004.

  5. SIMULATED IMPACTS OF SMALL-SCALE SPATIAL DISTRIBUTION OF IMPERVIOUS AREA ON RUNOFF RESPONSE OF FIELD-SCALE CATCHMENTS

    EPA Science Inventory

    Impervious surface is known to negatively affect catchment hydrology through both its extent and spatial distribution. In this study, we empirically quantify via model simulations the impacts of different configurations of impervious surface on watershed response to rainfall. An ...

  6. Density of states and extent of wave function: two crucial factors for small polaron hopping conductivity in 1D

    NASA Astrophysics Data System (ADS)

    Dimakogianni, M.; Simserides, C.; Triberis, G. P.

    2013-07-01

    We introduce a theoretical model to scrutinize the conductivity of small polarons in 1D disordered systems, focusing on two crucial - as will be demonstrated - factors: the density of states and the spatial extent of the electronic wave function. The investigation is performed for any temperature up to 300 K and under electric field of arbitrary strength up to the polaron dissociation limit. To accomplish this task, we combine analytical work with numerical calculations.

  7. EFFECTS OF SPATIAL EXTENT ON LANDSCAPE STRUCTURE AND SEDIMENT METAL CONCENTRATION RELATIONSHIPS IN SMALL ESTUARINE SYSTEMS OF THE US MID-ATLANTIC COAST

    EPA Science Inventory

    Prior studies exploring the quantitative relationship between landscape structure metrics and the ecological condition of receiving waters have used a variety of sampling units (e.g. a watershed, or a buffer around a sampling station) at a variety of spatial scales to generate la...

  8. Impacts of the spatial extent of pollen-climate calibration-set on the absolute values, range and trends of reconstructed Holocene precipitation

    NASA Astrophysics Data System (ADS)

    Cao, X.; Tian, F.; Telford, R.; Ni, J.; Xu, Q.; Chen, F.; Liu, X.; Stebich, M.; Zhao, Y.; Herzschuh, U.

    2017-12-01

    Pollen-based quantitative reconstructions of past climate variables is a standard palaeoclimatic approach. Despite knowing that the spatial extent of the calibration-set affects the reconstruction result, guidance is lacking as to how to determine a suitable spatial extent of the pollen-climate calibration-set. In this study, past mean annual precipitation (Pann) during the Holocene (since 11.5 cal ka BP) is reconstructed repeatedly for pollen records from Qinghai Lake (36.7°N, 100.5°E; north-east Tibetan Plateau), Gonghai Lake (38.9°N, 112.2°E; north China) and Sihailongwan Lake (42.3°N, 126.6°E; north-east China) using calibration-sets of varying spatial extents extracted from the modern pollen dataset of China and Mongolia (2559 sampling sites and 168 pollen taxa in total). Results indicate that the spatial extent of the calibration-set has a strong impact on model performance, analogue quality and reconstruction diagnostics (absolute value, range, trend, optimum). Generally, these effects are stronger with the modern analogue technique (MAT) than with weighted averaging partial least squares (WA-PLS). With respect to fossil spectra from northern China, the spatial extent of calibration-sets should be restricted to ca. 1000 km in radius because small-scale calibration-sets (<800 km radius) will likely fail to include enough spatial variation in the modern pollen assemblages to reflect the temporal range shifts during the Holocene, while too broad a scale calibration-set (>1500 km radius) will include taxa with very different pollen-climate relationships. Based on our results we conclude that the optimal calibration-set should 1) cover a reasonably large spatial extent with an even distribution of modern pollen samples; 2) possess good model performance as indicated by cross-validation, high analogue quality, and excellent fit with the target fossil pollen spectra; 3) possess high taxonomic resolution, and 4) obey the modern and past distribution ranges of taxa inferred from palaeo-genetic and macrofossil studies.

  9. The spatial scaling of species interaction networks.

    PubMed

    Galiana, Nuria; Lurgi, Miguel; Claramunt-López, Bernat; Fortin, Marie-Josée; Leroux, Shawn; Cazelles, Kevin; Gravel, Dominique; Montoya, José M

    2018-05-01

    Species-area relationships (SARs) are pivotal to understand the distribution of biodiversity across spatial scales. We know little, however, about how the network of biotic interactions in which biodiversity is embedded changes with spatial extent. Here we develop a new theoretical framework that enables us to explore how different assembly mechanisms and theoretical models affect multiple properties of ecological networks across space. We present a number of testable predictions on network-area relationships (NARs) for multi-trophic communities. Network structure changes as area increases because of the existence of different SARs across trophic levels, the preferential selection of generalist species at small spatial extents and the effect of dispersal limitation promoting beta-diversity. Developing an understanding of NARs will complement the growing body of knowledge on SARs with potential applications in conservation ecology. Specifically, combined with further empirical evidence, NARs can generate predictions of potential effects on ecological communities of habitat loss and fragmentation in a changing world.

  10. Detecting spatial structures in throughfall data: the effect of extent, sample size, sampling design, and variogram estimation method

    NASA Astrophysics Data System (ADS)

    Voss, Sebastian; Zimmermann, Beate; Zimmermann, Alexander

    2016-04-01

    In the last three decades, an increasing number of studies analyzed spatial patterns in throughfall to investigate the consequences of rainfall redistribution for biogeochemical and hydrological processes in forests. In the majority of cases, variograms were used to characterize the spatial properties of the throughfall data. The estimation of the variogram from sample data requires an appropriate sampling scheme: most importantly, a large sample and an appropriate layout of sampling locations that often has to serve both variogram estimation and geostatistical prediction. While some recommendations on these aspects exist, they focus on Gaussian data and high ratios of the variogram range to the extent of the study area. However, many hydrological data, and throughfall data in particular, do not follow a Gaussian distribution. In this study, we examined the effect of extent, sample size, sampling design, and calculation methods on variogram estimation of throughfall data. For our investigation, we first generated non-Gaussian random fields based on throughfall data with heavy outliers. Subsequently, we sampled the fields with three extents (plots with edge lengths of 25 m, 50 m, and 100 m), four common sampling designs (two grid-based layouts, transect and random sampling), and five sample sizes (50, 100, 150, 200, 400). We then estimated the variogram parameters by method-of-moments and residual maximum likelihood. Our key findings are threefold. First, the choice of the extent has a substantial influence on the estimation of the variogram. A comparatively small ratio of the extent to the correlation length is beneficial for variogram estimation. Second, a combination of a minimum sample size of 150, a design that ensures the sampling of small distances and variogram estimation by residual maximum likelihood offers a good compromise between accuracy and efficiency. Third, studies relying on method-of-moments based variogram estimation may have to employ at least 200 sampling points for reliable variogram estimates. These suggested sample sizes exceed the numbers recommended by studies dealing with Gaussian data by up to 100 %. Given that most previous throughfall studies relied on method-of-moments variogram estimation and sample sizes << 200, our current knowledge about throughfall spatial variability stands on shaky ground.

  11. Spatio-Temporal Variability of Groundwater Storage in India

    NASA Technical Reports Server (NTRS)

    Bhanja, Soumendra; Rodell, Matthew; Li, Bailing; Mukherjee, Abhijit

    2016-01-01

    Groundwater level measurements from 3907 monitoring wells, distributed within 22 major river basins of India, are assessed to characterize their spatial and temporal variability. Ground water storage (GWS) anomalies (relative to the long-term mean) exhibit strong seasonality, with annual maxima observed during the monsoon season and minima during pre-monsoon season. Spatial variability of GWS anomalies increases with the extent of measurements, following the power law relationship, i.e., log-(spatial variability) is linearly dependent on log-(spatial extent).In addition, the impact of well spacing on spatial variability and the power law relationship is investigated. We found that the mean GWS anomaly sampled at a 0.25 degree grid scale closes to unweighted average over all wells. The absolute error corresponding to each basin grows with increasing scale, i.e., from 0.25 degree to 1 degree. It was observed that small changes in extent could create very large changes in spatial variability at large grid scales. Spatial variability of GWS anomaly has been found to vary with climatic conditions. To our knowledge, this is the first study of the effects of well spacing on groundwater spatial variability. The results may be useful for interpreting large scale groundwater variations from unevenly spaced or sparse groundwater well observations or for siting and prioritizing wells in a network for groundwater management. The output of this study could be used to maintain a cost effective groundwater monitoring network in the study region and the approach can also be used in other parts of the globe.

  12. Spatio-temporal variability of groundwater storage in India.

    PubMed

    Bhanja, Soumendra N; Rodell, Matthew; Li, Bailing; Mukherjee, Abhijit

    2017-01-01

    Groundwater level measurements from 3907 monitoring wells, distributed within 22 major river basins of India, are assessed to characterize their spatial and temporal variability. Groundwater storage (GWS) anomalies (relative to the long-term mean) exhibit strong seasonality, with annual maxima observed during the monsoon season and minima during pre-monsoon season. Spatial variability of GWS anomalies increases with the extent of measurements, following the power law relationship, i.e., log-(spatial variability) is linearly dependent on log-(spatial extent). In addition, the impact of well spacing on spatial variability and the power law relationship is investigated. We found that the mean GWS anomaly sampled at a 0.25 degree grid scale closes to unweighted average over all wells. The absolute error corresponding to each basin grows with increasing scale, i.e., from 0.25 degree to 1 degree. It was observed that small changes in extent could create very large changes in spatial variability at large grid scales. Spatial variability of GWS anomaly has been found to vary with climatic conditions. To our knowledge, this is the first study of the effects of well spacing on groundwater spatial variability. The results may be useful for interpreting large scale groundwater variations from unevenly spaced or sparse groundwater well observations or for siting and prioritizing wells in a network for groundwater management. The output of this study could be used to maintain a cost effective groundwater monitoring network in the study region and the approach can also be used in other parts of the globe.

  13. Scalable population estimates using spatial-stream-network (SSN) models, fish density surveys, and national geospatial database frameworks for streams

    Treesearch

    Daniel J. Isaak; Jay M. Ver Hoef; Erin E. Peterson; Dona L. Horan; David E. Nagel

    2017-01-01

    Population size estimates for stream fishes are important for conservation and management, but sampling costs limit the extent of most estimates to small portions of river networks that encompass 100s–10 000s of linear kilometres. However, the advent of large fish density data sets, spatial-stream-network (SSN) models that benefit from nonindependence among samples,...

  14. The rate and extent of deforestation in watersheds of the southwestern Amazon basin.

    PubMed

    Biggs, Trent W; Dunne, Thomas; Roberts, Dar A; Matricardi, E

    2008-01-01

    The rate and extent of deforestation determine the timing and magnitude of disturbance to both terrestrial and aquatic ecosystems. Rapid change can lead to transient impacts to hydrology and biogeochemistry, while complete and permanent conversion to other land uses can lead to chronic changes. A large population of watershed boundaries (N=4788) and a time series of Landsat TM imagery (1975-1999) in the southwestern Amazon Basin showed that even small watersheds (2.5-15 km2) were deforested relatively slowly over 7-21 years. Less than 1% of all small watersheds were more than 50% cleared in a single year, and clearing rates averaged 5.6%/yr during active clearing. A large proportion (26%) of the small watersheds had a cumulative deforestation extent of more than 75%. The cumulative deforestation extent was highly spatially autocorrelated up to a 100-150 km lag due to the geometry of the agricultural zone and road network, so watersheds as large as approximately 40000 km2 were more than 50% deforested by 1999. The rate of deforestation had minimal spatial autocorrelation beyond a lag of approximately 30 km, and the mean rate decreased rapidly with increasing area. Approximately 85% of the cleared area remained in pasture, so deforestation in watersheds of Rondônia was a relatively slow, permanent, and complete transition to pasture, rather than a rapid, transient, and partial cutting with regrowth. Given the observed landcover transitions, the regional stream biogeochemical response is likely to resemble the chronic changes observed in streams draining established pastures, rather than a temporary pulse from slash-and-burn.

  15. Cell-targetable DNA nanocapsules for spatiotemporal release of caged bioactive small molecules

    NASA Astrophysics Data System (ADS)

    Veetil, Aneesh T.; Chakraborty, Kasturi; Xiao, Kangni; Minter, Myles R.; Sisodia, Sangram S.; Krishnan, Yamuna

    2017-12-01

    Achieving triggered release of small molecules with spatial and temporal precision at designated cells within an organism remains a challenge. By combining a cell-targetable, icosahedral DNA-nanocapsule loaded with photoresponsive polymers, we show cytosolic delivery of small molecules with the spatial resolution of single endosomes in specific cells in Caenorhabditis elegans. Our technology can report on the extent of small molecules released after photoactivation as well as pinpoint the location at which uncaging of the molecules occurred. We apply this technology to release dehydroepiandrosterone (DHEA), a neurosteroid that promotes neurogenesis and neuron survival, and determined the timescale of neuronal activation by DHEA, using light-induced release of DHEA from targeted DNA nanocapsules. Importantly, sequestration inside the DNA capsule prevents photocaged DHEA from activating neurons prematurely. Our methodology can in principle be generalized to diverse neurostimulatory molecules.

  16. Integrating High-Resolution Datasets to Target Mitigation Efforts for Improving Air Quality and Public Health in Urban Neighborhoods

    PubMed Central

    Shandas, Vivek; Voelkel, Jackson; Rao, Meenakshi; George, Linda

    2016-01-01

    Reducing exposure to degraded air quality is essential for building healthy cities. Although air quality and population vary at fine spatial scales, current regulatory and public health frameworks assess human exposures using county- or city-scales. We build on a spatial analysis technique, dasymetric mapping, for allocating urban populations that, together with emerging fine-scale measurements of air pollution, addresses three objectives: (1) evaluate the role of spatial scale in estimating exposure; (2) identify urban communities that are disproportionately burdened by poor air quality; and (3) estimate reduction in mobile sources of pollutants due to local tree-planting efforts using nitrogen dioxide. Our results show a maximum value of 197% difference between cadastrally-informed dasymetric system (CIDS) and standard estimations of population exposure to degraded air quality for small spatial extent analyses, and a lack of substantial difference for large spatial extent analyses. These results provide the foundation for improving policies for managing air quality, and targeting mitigation efforts to address challenges of environmental justice. PMID:27527205

  17. Types of attention matter for awareness: a study with color afterimages.

    PubMed

    Baijal, Shruti; Srinivasan, Narayanan

    2009-12-01

    It has been argued that attention and awareness might oppose each other given that attending to an adapting stimulus weakens its afterimage. We argue instead that the type of attention guided by spatial extent and perceptual levels is critical and might result in differences in awareness using afterimages. Participants performed a central task with small, large, local, or global letters and a blue square as an adapting stimulus in three experiments and indicated the onset and offset of the afterimage. We found that increases in the spatial spread of attention resulted in the decrease of afterimage duration. In terms of levels of processing, global processing produced larger afterimage durations with stimuli controlled for spatial extent. The results suggest that focused or distributed attention produce different effects on awareness, possibly through their differential interactions with polarity dependent and independent processes involved in the formation of color afterimages.

  18. GIEMS-D3: A new long-term, dynamical, high-spatial resolution inundation extent dataset at global scale

    NASA Astrophysics Data System (ADS)

    Aires, Filipe; Miolane, Léo; Prigent, Catherine; Pham Duc, Binh; Papa, Fabrice; Fluet-Chouinard, Etienne; Lehner, Bernhard

    2017-04-01

    The Global Inundation Extent from Multi-Satellites (GIEMS) provides multi-year monthly variations of the global surface water extent at 25kmx25km resolution. It is derived from multiple satellite observations. Its spatial resolution is usually compatible with climate model outputs and with global land surface model grids but is clearly not adequate for local applications that require the characterization of small individual water bodies. There is today a strong demand for high-resolution inundation extent datasets, for a large variety of applications such as water management, regional hydrological modeling, or for the analysis of mosquitos-related diseases. A new procedure is introduced to downscale the GIEMS low spatial resolution inundations to a 3 arc second (90 m) dataset. The methodology is based on topography and hydrography information from the HydroSHEDS database. A new floodability index is adopted and an innovative smoothing procedure is developed to ensure the smooth transition, in the high-resolution maps, between the low-resolution boxes from GIEMS. Topography information is relevant for natural hydrology environments controlled by elevation, but is more limited in human-modified basins. However, the proposed downscaling approach is compatible with forthcoming fusion with other more pertinent satellite information in these difficult regions. The resulting GIEMS-D3 database is the only high spatial resolution inundation database available globally at the monthly time scale over the 1993-2007 period. GIEMS-D3 is assessed by analyzing its spatial and temporal variability, and evaluated by comparisons to other independent satellite observations from visible (Google Earth and Landsat), infrared (MODIS) and active microwave (SAR).

  19. Estimating the Spatial Extent of Unsaturated Zones in Heterogeneous River-Aquifer Systems

    NASA Astrophysics Data System (ADS)

    Schilling, Oliver S.; Irvine, Dylan J.; Hendricks Franssen, Harrie-Jan; Brunner, Philip

    2017-12-01

    The presence of unsaturated zones at the river-aquifer interface has large implications on numerous hydraulic and chemical processes. However, the hydrological and geological controls that influence the development of unsaturated zones have so far only been analyzed with simplified conceptualizations of flow processes, or homogeneous conceptualizations of the hydraulic conductivity in either the aquifer or the riverbed. We systematically investigated the influence of heterogeneous structures in both the riverbed and the aquifer on the development of unsaturated zones. A stochastic 1-D criterion that takes both riverbed and aquifer heterogeneity into account was developed using a Monte Carlo sampling technique. The approach allows the reliable estimation of the upper bound of the spatial extent of unsaturated areas underneath a riverbed. Through systematic numerical modeling experiments, we furthermore show that horizontal capillary forces can reduce the spatial extent of unsaturated zones under clogged areas. This analysis shows how the spatial structure of clogging layers and aquifers influence the propensity for unsaturated zones to develop: In riverbeds where clogged areas are made up of many small, spatially disconnected patches with a diameter in the order of 1 m, unsaturated areas are less likely to develop compared to riverbeds where large clogged areas exist adjacent to unclogged areas. A combination of the stochastic 1-D criterion with an analysis of the spatial structure of the clogging layers and the potential for resaturation can help develop an appropriate conceptual model and inform the choice of a suitable numerical simulator for river-aquifer systems.

  20. Micro-scale Spatial Clustering of Cholera Risk Factors in Urban Bangladesh.

    PubMed

    Bi, Qifang; Azman, Andrew S; Satter, Syed Moinuddin; Khan, Azharul Islam; Ahmed, Dilruba; Riaj, Altaf Ahmed; Gurley, Emily S; Lessler, Justin

    2016-02-01

    Close interpersonal contact likely drives spatial clustering of cases of cholera and diarrhea, but spatial clustering of risk factors may also drive this pattern. Few studies have focused specifically on how exposures for disease cluster at small spatial scales. Improving our understanding of the micro-scale clustering of risk factors for cholera may help to target interventions and power studies with cluster designs. We selected sets of spatially matched households (matched-sets) near cholera case households between April and October 2013 in a cholera endemic urban neighborhood of Tongi Township in Bangladesh. We collected data on exposures to suspected cholera risk factors at the household and individual level. We used intra-class correlation coefficients (ICCs) to characterize clustering of exposures within matched-sets and households, and assessed if clustering depended on the geographical extent of the matched-sets. Clustering over larger spatial scales was explored by assessing the relationship between matched-sets. We also explored whether different exposures tended to appear together in individuals, households, and matched-sets. Household level exposures, including: drinking municipal supplied water (ICC = 0.97, 95%CI = 0.96, 0.98), type of latrine (ICC = 0.88, 95%CI = 0.71, 1.00), and intermittent access to drinking water (ICC = 0.96, 95%CI = 0.87, 1.00) exhibited strong clustering within matched-sets. As the geographic extent of matched-sets increased, the concordance of exposures within matched-sets decreased. Concordance between matched-sets of exposures related to water supply was elevated at distances of up to approximately 400 meters. Household level hygiene practices were correlated with infrastructure shown to increase cholera risk. Co-occurrence of different individual level exposures appeared to mostly reflect the differing domestic roles of study participants. Strong spatial clustering of exposures at a small spatial scale in a cholera endemic population suggests a possible role for highly targeted interventions. Studies with cluster designs in areas with strong spatial clustering of exposures should increase sample size to account for the correlation of these exposures.

  1. Large-scale imaging in small brains

    PubMed Central

    Ahrens, Misha B.; Engert, Florian

    2016-01-01

    The dense connectivity in the brain and arrangements of cells into circuits means that one neuron’s activity can influence many others. To observe this interconnected system comprehensively, an aspiration within neuroscience is to record from as many neurons as possible at the same time. There are two useful routes toward this goal: one is to expand the spatial extent of functional imaging techniques, and the second is to use animals with small brains. Here we review recent progress toward imaging many neurons and complete populations of identified neurons in small vertebrates and invertebrates. PMID:25636154

  2. Large-scale imaging in small brains.

    PubMed

    Ahrens, Misha B; Engert, Florian

    2015-06-01

    The dense connectivity in the brain means that one neuron's activity can influence many others. To observe this interconnected system comprehensively, an aspiration within neuroscience is to record from as many neurons as possible at the same time. There are two useful routes toward this goal: one is to expand the spatial extent of functional imaging techniques, and the second is to use animals with small brains. Here we review recent progress toward imaging many neurons and complete populations of identified neurons in small vertebrates and invertebrates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Number-space associations without language: Evidence from preverbal human infants and non-human animal species.

    PubMed

    Rugani, Rosa; de Hevia, Maria-Dolores

    2017-04-01

    It is well known that humans describe and think of numbers as being represented in a spatial configuration, known as the 'mental number line'. The orientation of this representation appears to depend on the direction of writing and reading habits present in a given culture (e.g., left-to-right oriented in Western cultures), which makes this factor an ideal candidate to account for the origins of the spatial representation of numbers. However, a growing number of studies have demonstrated that non-verbal subjects (preverbal infants and non-human animals) spontaneously associate numbers and space. In this review, we discuss evidence showing that pre-verbal infants and non-human animals associate small numerical magnitudes with short spatial extents and left-sided space, and large numerical magnitudes with long spatial extents and right-sided space. Together this evidence supports the idea that a more biologically oriented view can account for the origins of the 'mental number line'. In this paper, we discuss this alternative view and elaborate on how culture can shape a core, fundamental, number-space association.

  4. Synchrony in small mammal community dynamics across a forested landscape

    Treesearch

    Ryan B. Stephens; Daniel J. Hocking; Mariko Yamasaki; Rebecca J. Rowe

    2016-01-01

    Long- term studies at local scales indicate that fluctuations in abundance among trophically similar species are often temporally synchronized. Complementary studies on synchrony across larger spatial extents are less common, as are studies that investigate the subsequent impacts on community dynamics across the landscape. We investigate the impact of species...

  5. Space and time scales in human-landscape systems.

    PubMed

    Kondolf, G Mathias; Podolak, Kristen

    2014-01-01

    Exploring spatial and temporal scales provides a way to understand human alteration of landscape processes and human responses to these processes. We address three topics relevant to human-landscape systems: (1) scales of human impacts on geomorphic processes, (2) spatial and temporal scales in river restoration, and (3) time scales of natural disasters and behavioral and institutional responses. Studies showing dramatic recent change in sediment yields from uplands to the ocean via rivers illustrate the increasingly vast spatial extent and quick rate of human landscape change in the last two millennia, but especially in the second half of the twentieth century. Recent river restoration efforts are typically small in spatial and temporal scale compared to the historical human changes to ecosystem processes, but the cumulative effectiveness of multiple small restoration projects in achieving large ecosystem goals has yet to be demonstrated. The mismatch between infrequent natural disasters and individual risk perception, media coverage, and institutional response to natural disasters results in un-preparedness and unsustainable land use and building practices.

  6. Temporal Changes in Forest Contexts at Multiple Extents: Three Decades of Fragmentation in the Gran Chaco (1979-2010), Central Argentina.

    PubMed

    Frate, Ludovico; Acosta, Alicia T R; Cabido, Marcelo; Hoyos, Laura; Carranza, Maria Laura

    2015-01-01

    The context in which a forest exists strongly influences its function and sustainability. Unveiling the multi-scale nature of forest fragmentation context is crucial to understand how human activities affect the spatial patterns of forests across a range of scales. However, this issue remains almost unexplored in subtropical ecosystems. In this study, we analyzed temporal changes (1979-2010) in forest contexts in the Argentinean dry Chaco at multiple extents. We classified forests over the last three decades based on forest context amount (Pf) and structural connectivity (Pff), which were measured using a moving window approach fixed at eight different extents (from local, ~ 6 ha, to regional, ~ 8300 ha). Specific multi-scale forest context profiles (for the years 1979 and 2010) were defined by projecting Pf vs. Pff mean values and were compared across spatial extents. The distributions of Pf across scales were described by scalograms and their shapes over time were compared. The amount of agricultural land and rangelands across the scales were also analyzed. The dry Chaco has undergone an intensive process of fragmentation, resulting in a shift from landscapes dominated by forests with gaps of rangelands to landscapes where small forest patches are embedded in agricultural lands. Multi-scale fragmentation analysis depicted landscapes in which local exploitation, which perforates forest cover, occurs alongside extensive forest clearings, reducing forests to small and isolated patches surrounded by agricultural lands. In addition, the temporal diminution of Pf's variability along with the increment of the mean slope of the Pf 's scalograms, indicate a simplification of the spatial pattern of forest over time. The observed changes have most likely been the result of the interplay between human activities and environmental constraints, which have shaped the spatial patterns of forests across scales. Based on our results, strategies for the conservation and sustainable management of the dry Chaco should take into account both the context of each habitat location and the scales over which a forest pattern might be preserved, altered or restored.

  7. Temporal Changes in Forest Contexts at Multiple Extents: Three Decades of Fragmentation in the Gran Chaco (1979-2010), Central Argentina

    PubMed Central

    Frate, Ludovico; Acosta, Alicia T. R.; Cabido, Marcelo; Hoyos, Laura; Carranza, Maria Laura

    2015-01-01

    The context in which a forest exists strongly influences its function and sustainability. Unveiling the multi-scale nature of forest fragmentation context is crucial to understand how human activities affect the spatial patterns of forests across a range of scales. However, this issue remains almost unexplored in subtropical ecosystems. In this study, we analyzed temporal changes (1979–2010) in forest contexts in the Argentinean dry Chaco at multiple extents. We classified forests over the last three decades based on forest context amount (P f) and structural connectivity (P ff), which were measured using a moving window approach fixed at eight different extents (from local, ~ 6 ha, to regional, ~ 8300 ha). Specific multi-scale forest context profiles (for the years 1979 and 2010) were defined by projecting P f vs. P ff mean values and were compared across spatial extents. The distributions of P f across scales were described by scalograms and their shapes over time were compared. The amount of agricultural land and rangelands across the scales were also analyzed. The dry Chaco has undergone an intensive process of fragmentation, resulting in a shift from landscapes dominated by forests with gaps of rangelands to landscapes where small forest patches are embedded in agricultural lands. Multi-scale fragmentation analysis depicted landscapes in which local exploitation, which perforates forest cover, occurs alongside extensive forest clearings, reducing forests to small and isolated patches surrounded by agricultural lands. In addition, the temporal diminution of P f’s variability along with the increment of the mean slope of the P f ‘s scalograms, indicate a simplification of the spatial pattern of forest over time. The observed changes have most likely been the result of the interplay between human activities and environmental constraints, which have shaped the spatial patterns of forests across scales. Based on our results, strategies for the conservation and sustainable management of the dry Chaco should take into account both the context of each habitat location and the scales over which a forest pattern might be preserved, altered or restored. PMID:26630387

  8. Landscape models of adult coho salmon density examined at four spatial extents

    Treesearch

    Julie C. Firman; E. Ashley Steel; David W. Jensen; Kelly M. Burnett; Kelly Christiansen; Blake E. Feist; David P. Larsen; Kara Anlauf

    2011-01-01

    Salmon occupy large areas over which comprehensive surveys are not feasible owing to the prohibitive expense of surveying thousands of kilometers of streams. Studies of these populations generally rely on sampling a small portion of the distribution of the species. However, managers often need information about areas that have not been visited. The availability of...

  9. Combining ground-based measurements and satellite-based spectral vegetation indices to track biomass accumulation in post-fire chaparral

    NASA Astrophysics Data System (ADS)

    Uyeda, K. A.; Stow, D. A.; Roberts, D. A.; Riggan, P. J.

    2015-12-01

    Multi-temporal satellite imagery can provide valuable information on patterns of vegetation growth over large spatial extents and long time periods, but corresponding ground-referenced biomass information is often difficult to acquire, especially at an annual scale. In this study, I test the relationship between annual biomass estimated using shrub growth rings and metrics of seasonal growth derived from Moderate Resolution Imaging Spectroradiometer (MODIS) spectral vegetation indices (SVIs) for a small area of southern California chaparral to evaluate the potential for mapping biomass at larger spatial extents. The site had most recently burned in 2002, and annual biomass accumulation measurements were available from years 5 - 11 post-fire. I tested metrics of seasonal growth using six SVIs (Normalized Difference Vegetation Index, Enhanced Vegetation Index, Soil Adjusted Vegetation Index, Normalized Difference Water Index, Normalized Difference Infrared Index 6, and Vegetation Atmospherically Resistant Index). While additional research would be required to determine which of these metrics and SVIs are most promising over larger spatial extents, several of the seasonal growth metrics/ SVI combinations have a very strong relationship with annual biomass, and all SVIs have a strong relationship with annual biomass for at least one of the seasonal growth metrics.

  10. A multi-scale spatial analysis of native and exotic plant species richness within a mixed-disturbance oak savanna landscape.

    PubMed

    Schetter, Timothy A; Walters, Timothy L; Root, Karen V

    2013-09-01

    Impacts of human land use pose an increasing threat to global biodiversity. Resource managers must respond rapidly to this threat by assessing existing natural areas and prioritizing conservation actions across multiple spatial scales. Plant species richness is a useful measure of biodiversity but typically can only be evaluated on small portions of a given landscape. Modeling relationships between spatial heterogeneity and species richness may allow conservation planners to make predictions of species richness patterns within unsampled areas. We utilized a combination of field data, remotely sensed data, and landscape pattern metrics to develop models of native and exotic plant species richness at two spatial extents (60- and 120-m windows) and at four ecological levels for northwestern Ohio's Oak Openings region. Multiple regression models explained 37-77 % of the variation in plant species richness. These models consistently explained more variation in exotic richness than in native richness. Exotic richness was better explained at the 120-m extent while native richness was better explained at the 60-m extent. Land cover composition of the surrounding landscape was an important component of all models. We found that percentage of human-modified land cover (negatively correlated with native richness and positively correlated with exotic richness) was a particularly useful predictor of plant species richness and that human-caused disturbances exert a strong influence on species richness patterns within a mixed-disturbance oak savanna landscape. Our results emphasize the importance of using a multi-scale approach to examine the complex relationships between spatial heterogeneity and plant species richness.

  11. Spatially extended polycyclic aromatic hydrocarbons in circumstellar disks around T Tauri and Herbig Ae stars

    NASA Astrophysics Data System (ADS)

    Geers, V. C.; van Dishoeck, E. F.; Visser, R.; Pontoppidan, K. M.; Augereau, J.-C.; Habart, E.; Lagrange, A. M.

    2007-12-01

    Aims:Our aim is to determine the presence and location of the emission from polycyclic aromatic hydrocarbons (PAHs) towards low and intermediate mass young stars with disks using large aperture telescopes. Methods: VLT-VISIR N-band spectra and VLT-ISAAC and VLT-NACO L-band spectra of 29 sources are presented, spectrally resolving the 3.3, 8.6, 11.2, and 12.6 μm PAH features. Spatial-extent profiles of the features and the continuum emission have been derived and used to associate the PAH emission with the disks. The results are discussed in the context of recent PAH-emission disk models. Results: The 3.3, 8.6, and 11.2 μm PAH features are detected toward a small fraction of the T Tauri stars, with typical upper limits between 1 × 10-15 and 5 × 10-17 W m-2. All 11.2 μm detections from a previous Spitzer survey are confirmed with (tentative) 3.3 μm detections, and both the 8.6 and the 11.2 μm features are detected in all PAH sources. For 6 detections, the spatial extent of the PAH features is confined to scales typically smaller than 0.12-0.34'', consistent with the radii of 12-60 AU disks at their distances (typically 150 pc). For 3 additional sources, WL 16, HD 100546, and TY CrA, one or more of the PAH features are more extended than the hot dust continuum of the disk, whereas for Oph IRS 48, the size of the resolved PAH emission is confirmed as smaller than for the large grains. For HD 100546, the 3.3 μm emission is confined to a small radial extent of 12±3 AU, most likely associated with the outer rim of the gap in this disk. Gaps with radii out to 10-30 AU may also affect the observed PAH extent for other sources. For both Herbig Ae and T Tauri stars, the small measured extents of the 8.6 and 11.2 μm features are consistent with larger (≥100 carbon atoms) PAHs. Based on observations obtained at the European Southern Observatory, Paranal, Chile, within the observing programs 164.I-0605 (ISAAC May 2002), 074.C-0413 (NACO, March/April 2005), 075.C-0420 (ISAAC August 2005), 077.C-0668 (VISIR/ISAAC April/May 2006). Appendix A is only available in electronic form at http://www.aanda.org

  12. Monitoring of Vegetation Impact Due to Trampling on Cadillac Mountain Summit Using High Spatial Resolution Remote Sensing Data Sets

    NASA Astrophysics Data System (ADS)

    Kim, Min-Kook; Daigle, John J.

    2012-11-01

    Cadillac Mountain—the highest peak along the eastern seaboard of the United States—is a major tourist destination in Acadia National Park, Maine. Managing vegetation impact due to trampling on the Cadillac Mountain summit is extremely challenging because of the large number of visitors and the general open nature of landscape in this fragile subalpine environmental setting. Since 2000, more intensive management strategies—based on placing physical barriers and educational messages for visitors—have been employed to protect threatened vegetation, decrease vegetation impact, and enhance vegetation recovery in the vicinity of the summit loop trail. The primary purpose of this study was to evaluate the effect of the management strategies employed. For this purpose, vegetation cover changes between 2001 and 2007 were detected using multispectral high spatial resolution remote sensing data sets. A normalized difference vegetation index was employed to identify the rates of increase and decrease in the vegetation areas. Three buffering distances (30, 60, and 90 m) from the edges of the trail were used to define multiple spatial extents of the site, and the same spatial extents were employed at a nearby control site that had no visitors. No significant differences were detected between the mean rates of vegetation increase and decrease at the experimental site compared with a nearby control site in the case of a small spatial scale (≤30 m) comparison (in all cases P > 0.05). However, in the medium (≤60 m) and large (≤90 m) spatial scales, the rates of increased vegetation were significantly greater and rates of decreased vegetation significantly lower at the experimental site compared with the control site (in all cases P < 0.001). Research implications are explored that relate to the spatial extent of the radial patterns of impact of trampling on vegetation at the site level. Management implications are explored in terms of the spatial strategies used to decrease the impact of trampling on vegetation.

  13. Monitoring of vegetation impact due to trampling on Cadillac Mountain summit using high spatial resolution remote sensing data sets.

    PubMed

    Kim, Min-Kook; Daigle, John J

    2012-11-01

    Cadillac Mountain--the highest peak along the eastern seaboard of the United States--is a major tourist destination in Acadia National Park, Maine. Managing vegetation impact due to trampling on the Cadillac Mountain summit is extremely challenging because of the large number of visitors and the general open nature of landscape in this fragile subalpine environmental setting. Since 2000, more intensive management strategies--based on placing physical barriers and educational messages for visitors--have been employed to protect threatened vegetation, decrease vegetation impact, and enhance vegetation recovery in the vicinity of the summit loop trail. The primary purpose of this study was to evaluate the effect of the management strategies employed. For this purpose, vegetation cover changes between 2001 and 2007 were detected using multispectral high spatial resolution remote sensing data sets. A normalized difference vegetation index was employed to identify the rates of increase and decrease in the vegetation areas. Three buffering distances (30, 60, and 90 m) from the edges of the trail were used to define multiple spatial extents of the site, and the same spatial extents were employed at a nearby control site that had no visitors. No significant differences were detected between the mean rates of vegetation increase and decrease at the experimental site compared with a nearby control site in the case of a small spatial scale (≤30 m) comparison (in all cases P > 0.05). However, in the medium (≤60 m) and large (≤90 m) spatial scales, the rates of increased vegetation were significantly greater and rates of decreased vegetation significantly lower at the experimental site compared with the control site (in all cases P < 0.001). Research implications are explored that relate to the spatial extent of the radial patterns of impact of trampling on vegetation at the site level. Management implications are explored in terms of the spatial strategies used to decrease the impact of trampling on vegetation.

  14. Spatial variation in attributable risks.

    PubMed

    Congdon, Peter

    2015-01-01

    The attributable risk (AR) measures the contribution of a particular risk factor to a disease, and allows estimation of disease rates specific to that risk. While previous studies consider variability in ARs over demographic categories, this paper considers the extent of spatial variability in ARs estimated from multilevel data with confounders both at individual and geographic levels. A case study considers the AR for diabetes in relation to elevated BMI, and area rates for diabetes attributable to excess weight. Contextual adjustment includes known area variables, and unobserved spatially clustered influences, while spatial heterogeneity (effect modification) is considered in terms of varying effects of elevated BMI by neighbourhood deprivation category. The application is to patient register data in London, with clear evidence of spatial variation in ARs, and in small area diabetes rates attributable to excess weight. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Human Activities on the Deep Seafloor in the North East Atlantic: An Assessment of Spatial Extent

    PubMed Central

    Benn, Angela R.; Weaver, Philip P.; Billet, David S. M.; van den Hove, Sybille; Murdock, Andrew P.; Doneghan, Gemma B.; Le Bas, Tim

    2010-01-01

    Background Environmental impacts of human activities on the deep seafloor are of increasing concern. While activities within waters shallower than 200 m have been the focus of previous assessments of anthropogenic impacts, no study has quantified the extent of individual activities or determined the relative severity of each type of impact in the deep sea. Methodology The OSPAR maritime area of the North East Atlantic was chosen for the study because it is considered to be one of the most heavily impacted by human activities. In addition, it was assumed data would be accessible and comprehensive. Using the available data we map and estimate the spatial extent of five major human activities in the North East Atlantic that impact the deep seafloor: submarine communication cables, marine scientific research, oil and gas industry, bottom trawling and the historical dumping of radioactive waste, munitions and chemical weapons. It was not possible to map military activities. The extent of each activity has been quantified for a single year, 2005. Principal Findings Human activities on the deep seafloor of the OSPAR area of the North Atlantic are significant but their footprints vary. Some activities have an immediate impact after which seafloor communities could re-establish, while others can continue to make an impact for many years and the impact could extend far beyond the physical disturbance. The spatial extent of waste disposal, telecommunication cables, the hydrocarbon industry and marine research activities is relatively small. The extent of bottom trawling is very significant and, even on the lowest possible estimates, is an order of magnitude greater than the total extent of all the other activities. Conclusions/Significance To meet future ecosystem-based management and governance objectives for the deep sea significant improvements are required in data collection and availability as well as a greater awareness of the relative impact of each human activity. PMID:20856885

  16. Human activities on the deep seafloor in the North East Atlantic: an assessment of spatial extent.

    PubMed

    Benn, Angela R; Weaver, Philip P; Billet, David S M; van den Hove, Sybille; Murdock, Andrew P; Doneghan, Gemma B; Le Bas, Tim

    2010-09-13

    Environmental impacts of human activities on the deep seafloor are of increasing concern. While activities within waters shallower than 200 m have been the focus of previous assessments of anthropogenic impacts, no study has quantified the extent of individual activities or determined the relative severity of each type of impact in the deep sea. The OSPAR maritime area of the North East Atlantic was chosen for the study because it is considered to be one of the most heavily impacted by human activities. In addition, it was assumed data would be accessible and comprehensive. Using the available data we map and estimate the spatial extent of five major human activities in the North East Atlantic that impact the deep seafloor: submarine communication cables, marine scientific research, oil and gas industry, bottom trawling and the historical dumping of radioactive waste, munitions and chemical weapons. It was not possible to map military activities. The extent of each activity has been quantified for a single year, 2005. Human activities on the deep seafloor of the OSPAR area of the North Atlantic are significant but their footprints vary. Some activities have an immediate impact after which seafloor communities could re-establish, while others can continue to make an impact for many years and the impact could extend far beyond the physical disturbance. The spatial extent of waste disposal, telecommunication cables, the hydrocarbon industry and marine research activities is relatively small. The extent of bottom trawling is very significant and, even on the lowest possible estimates, is an order of magnitude greater than the total extent of all the other activities. To meet future ecosystem-based management and governance objectives for the deep sea significant improvements are required in data collection and availability as well as a greater awareness of the relative impact of each human activity.

  17. Hierarchical spatial segregation of two Mediterranean vole species: the role of patch-network structure and matrix composition.

    PubMed

    Pita, Ricardo; Lambin, Xavier; Mira, António; Beja, Pedro

    2016-09-01

    According to ecological theory, the coexistence of competitors in patchy environments may be facilitated by hierarchical spatial segregation along axes of environmental variation, but empirical evidence is limited. Cabrera and water voles show a metapopulation-like structure in Mediterranean farmland, where they are known to segregate along space, habitat, and time axes within habitat patches. Here, we assess whether segregation also occurs among and within landscapes, and how this is influenced by patch-network and matrix composition. We surveyed 75 landscapes, each covering 78 ha, where we mapped all habitat patches potentially suitable for Cabrera and water voles, and the area effectively occupied by each species (extent of occupancy). The relatively large water vole tended to be the sole occupant of landscapes with high habitat amount but relatively low patch density (i.e., with a few large patches), and with a predominantly agricultural matrix, whereas landscapes with high patch density (i.e., many small patches) and low agricultural cover, tended to be occupied exclusively by the small Cabrera vole. The two species tended to co-occur in landscapes with intermediate patch-network and matrix characteristics, though their extents of occurrence were negatively correlated after controlling for environmental effects. In combination with our previous studies on the Cabrera-water vole system, these findings illustrated empirically the occurrence of hierarchical spatial segregation, ranging from within-patches to among-landscapes. Overall, our study suggests that recognizing the hierarchical nature of spatial segregation patterns and their major environmental drivers should enhance our understanding of species coexistence in patchy environments.

  18. Micro-scale Spatial Clustering of Cholera Risk Factors in Urban Bangladesh

    PubMed Central

    Bi, Qifang; Azman, Andrew S.; Satter, Syed Moinuddin; Khan, Azharul Islam; Ahmed, Dilruba; Riaj, Altaf Ahmed; Gurley, Emily S.; Lessler, Justin

    2016-01-01

    Close interpersonal contact likely drives spatial clustering of cases of cholera and diarrhea, but spatial clustering of risk factors may also drive this pattern. Few studies have focused specifically on how exposures for disease cluster at small spatial scales. Improving our understanding of the micro-scale clustering of risk factors for cholera may help to target interventions and power studies with cluster designs. We selected sets of spatially matched households (matched-sets) near cholera case households between April and October 2013 in a cholera endemic urban neighborhood of Tongi Township in Bangladesh. We collected data on exposures to suspected cholera risk factors at the household and individual level. We used intra-class correlation coefficients (ICCs) to characterize clustering of exposures within matched-sets and households, and assessed if clustering depended on the geographical extent of the matched-sets. Clustering over larger spatial scales was explored by assessing the relationship between matched-sets. We also explored whether different exposures tended to appear together in individuals, households, and matched-sets. Household level exposures, including: drinking municipal supplied water (ICC = 0.97, 95%CI = 0.96, 0.98), type of latrine (ICC = 0.88, 95%CI = 0.71, 1.00), and intermittent access to drinking water (ICC = 0.96, 95%CI = 0.87, 1.00) exhibited strong clustering within matched-sets. As the geographic extent of matched-sets increased, the concordance of exposures within matched-sets decreased. Concordance between matched-sets of exposures related to water supply was elevated at distances of up to approximately 400 meters. Household level hygiene practices were correlated with infrastructure shown to increase cholera risk. Co-occurrence of different individual level exposures appeared to mostly reflect the differing domestic roles of study participants. Strong spatial clustering of exposures at a small spatial scale in a cholera endemic population suggests a possible role for highly targeted interventions. Studies with cluster designs in areas with strong spatial clustering of exposures should increase sample size to account for the correlation of these exposures. PMID:26866926

  19. Ecohydrologic separation of water between trees and streams in a Mediterranean climate

    Treesearch

    J. Renee Brooks; Holly R. Barnard; Rob Coulombe; Jeffrey J. McDonnell

    2010-01-01

    Here, we directly explore links between hydrology and transpiration at the small watershed scale in a seasonally dry climate. Our central questions were: to what extent do trees and streams return the same water pool to the hydrosphere and how does this vary spatially within a watershed? These questions are fundamental to testing watershed hydrology models and coupled...

  20. Factors influencing the spatial extent of mobile source air pollution impacts: a meta-analysis

    PubMed Central

    Zhou, Ying; Levy, Jonathan I

    2007-01-01

    Background There has been growing interest among exposure assessors, epidemiologists, and policymakers in the concept of "hot spots", or more broadly, the "spatial extent" of impacts from traffic-related air pollutants. This review attempts to quantitatively synthesize findings about the spatial extent under various circumstances. Methods We include both the peer-reviewed literature and government reports, and focus on four significant air pollutants: carbon monoxide, benzene, nitrogen oxides, and particulate matter (including both ultrafine particle counts and fine particle mass). From the identified studies, we extracted information about significant factors that would be hypothesized to influence the spatial extent within the study, such as the study type (e.g., monitoring, air dispersion modeling, GIS-based epidemiological studies), focus on concentrations or health risks, pollutant under study, background concentration, emission rate, and meteorological factors, as well as the study's implicit or explicit definition of spatial extent. We supplement this meta-analysis with results from some illustrative atmospheric dispersion modeling. Results We found that pollutant characteristics and background concentrations best explained variability in previously published spatial extent estimates, with a modifying influence of local meteorology, once some extreme values based on health risk estimates were removed from the analysis. As hypothesized, inert pollutants with high background concentrations had the largest spatial extent (often demonstrating no significant gradient), and pollutants formed in near-source chemical reactions (e.g., nitrogen dioxide) had a larger spatial extent than pollutants depleted in near-source chemical reactions or removed through coagulation processes (e.g., nitrogen oxide and ultrafine particles). Our illustrative dispersion model illustrated the complex interplay of spatial extent definitions, emission rates, background concentrations, and meteorological conditions on spatial extent estimates even for non-reactive pollutants. Our findings indicate that, provided that a health risk threshold is not imposed, the spatial extent of impact for mobile sources reviewed in this study is on the order of 100–400 m for elemental carbon or particulate matter mass concentration (excluding background concentration), 200–500 m for nitrogen dioxide and 100–300 m for ultrafine particle counts. Conclusion First, to allow for meaningful comparisons across studies, it is important to state the definition of spatial extent explicitly, including the comparison method, threshold values, and whether background concentration is included. Second, the observation that the spatial extent is generally within a few hundred meters for highway or city roads demonstrates the need for high resolution modeling near the source. Finally, our findings emphasize that policymakers should be able to develop reasonable estimates of the "zone of influence" of mobile sources, provided that they can clarify the pollutant of concern, the general site characteristics, and the underlying definition of spatial extent that they wish to utilize. PMID:17519039

  1. Examining the Suitability of a Sparse In Situ Soil Moisture Monitoring Network for Assimilation into a Spatially Distributed Hydrologic Model

    NASA Astrophysics Data System (ADS)

    De Vleeschouwer, N.; Verhoest, N.; Pauwels, V. R. N.

    2015-12-01

    The continuous monitoring of soil moisture in a permanent network can yield an interesting data product for use in hydrological data assimilation. Major advantages of in situ observations compared to remote sensing products are the potential vertical extent of the measurements, the finer temporal resolution of the observation time series, the smaller impact of land cover variability on the observation bias, etc. However, two major disadvantages are the typical small integration volume of in situ measurements and the often large spacing between monitoring locations. This causes only a small part of the modelling domain to be directly observed. Furthermore, the spatial configuration of the monitoring network is typically temporally non-dynamic. Therefore two questions can be raised. Do spatially sparse in situ soil moisture observations contain a sufficient data representativeness to successfully assimilate them into the largely unobserved spatial extent of a distributed hydrological model? And if so, how is this assimilation best performed? Consequently two important factors that can influence the success of assimilating in situ monitored soil moisture are the spatial configuration of the monitoring network and the applied assimilation algorithm. In this research the influence of those factors is examined by means of synthetic data-assimilation experiments. The study area is the ± 100 km² catchment of the Bellebeek in Flanders, Belgium. The influence of the spatial configuration is examined by varying the amount of locations and their position in the landscape. The latter is performed using several techniques including temporal stability analysis and clustering. Furthermore the observation depth is considered by comparing assimilation of surface layer (5 cm) and deeper layer (50 cm) observations. The impact of the assimilation algorithm is assessed by comparing the performance obtained with two well-known algorithms: Newtonian nudging and the Ensemble Kalman Filter.

  2. Biomonitoring using invasive species in a large Lake: Dreissena distribution maps hypoxic zones

    USGS Publications Warehouse

    Karatayev, Alexander Y.; Burlakova, Lyubov E.; Mehler, Knut; Bocaniov, Serghei A.; Collingsworth, Paris D.; Warren, Glenn; Kraus, Richard T.; Hinchey, Elizabeth K.

    2017-01-01

    Due to cultural eutrophication and global climate change, an exponential increase in the number and extent of hypoxic zones in marine and freshwater ecosystems has been observed in the last few decades. Hypoxia, or low dissolved oxygen (DO) concentrations, can produce strong negative ecological impacts and, therefore, is a management concern. We measured biomass and densities of Dreissena in Lake Erie, as well as bottom DO in 2014 using 19 high frequency data loggers distributed throughout the central basin to validate a three-dimensional hydrodynamic-ecological lake model. We found that a deep, offshore hypoxic zone was formed by early August, restricting the Dreissena population to shallow areas of the central basin. Deeper than 20 m, where bottom hypoxia routinely develops, only young of the year mussels were found in small numbers, indicating restricted recruitment and survival of young Dreissena. We suggest that monitoring Dreissenadistribution can be an effective tool for mapping the extent and frequency of hypoxia in freshwater. In addition, our results suggest that an anticipated decrease in the spatial extent of hypoxia resulting from nutrient management has the potential to increase the spatial extent of profundal habitat in the central basin available for Dreissena expansion.

  3. Spatial heterogeneity in statistical power to detect changes in lake area in Alaskan National Wildlife Refuges

    USGS Publications Warehouse

    Nicol, Samuel; Roach, Jennifer K.; Griffith, Brad

    2013-01-01

    Over the past 50 years, the number and size of high-latitude lakes have decreased throughout many regions; however, individual lake trends have been variable in direction and magnitude. This spatial heterogeneity in lake change makes statistical detection of temporal trends challenging, particularly in small analysis areas where weak trends are difficult to separate from inter- and intra-annual variability. Factors affecting trend detection include inherent variability, trend magnitude, and sample size. In this paper, we investigated how the statistical power to detect average linear trends in lake size of 0.5, 1.0 and 2.0 %/year was affected by the size of the analysis area and the number of years of monitoring in National Wildlife Refuges in Alaska. We estimated power for large (930–4,560 sq km) study areas within refuges and for 2.6, 12.9, and 25.9 sq km cells nested within study areas over temporal extents of 4–50 years. We found that: (1) trends in study areas could be detected within 5–15 years, (2) trends smaller than 2.0 %/year would take >50 years to detect in cells within study areas, and (3) there was substantial spatial variation in the time required to detect change among cells. Power was particularly low in the smallest cells which typically had the fewest lakes. Because small but ecologically meaningful trends may take decades to detect, early establishment of long-term monitoring will enhance power to detect change. Our results have broad applicability and our method is useful for any study involving change detection among variable spatial and temporal extents.

  4. Detecting spatial structures in throughfall data: The effect of extent, sample size, sampling design, and variogram estimation method

    NASA Astrophysics Data System (ADS)

    Voss, Sebastian; Zimmermann, Beate; Zimmermann, Alexander

    2016-09-01

    In the last decades, an increasing number of studies analyzed spatial patterns in throughfall by means of variograms. The estimation of the variogram from sample data requires an appropriate sampling scheme: most importantly, a large sample and a layout of sampling locations that often has to serve both variogram estimation and geostatistical prediction. While some recommendations on these aspects exist, they focus on Gaussian data and high ratios of the variogram range to the extent of the study area. However, many hydrological data, and throughfall data in particular, do not follow a Gaussian distribution. In this study, we examined the effect of extent, sample size, sampling design, and calculation method on variogram estimation of throughfall data. For our investigation, we first generated non-Gaussian random fields based on throughfall data with large outliers. Subsequently, we sampled the fields with three extents (plots with edge lengths of 25 m, 50 m, and 100 m), four common sampling designs (two grid-based layouts, transect and random sampling) and five sample sizes (50, 100, 150, 200, 400). We then estimated the variogram parameters by method-of-moments (non-robust and robust estimators) and residual maximum likelihood. Our key findings are threefold. First, the choice of the extent has a substantial influence on the estimation of the variogram. A comparatively small ratio of the extent to the correlation length is beneficial for variogram estimation. Second, a combination of a minimum sample size of 150, a design that ensures the sampling of small distances and variogram estimation by residual maximum likelihood offers a good compromise between accuracy and efficiency. Third, studies relying on method-of-moments based variogram estimation may have to employ at least 200 sampling points for reliable variogram estimates. These suggested sample sizes exceed the number recommended by studies dealing with Gaussian data by up to 100 %. Given that most previous throughfall studies relied on method-of-moments variogram estimation and sample sizes ≪200, currently available data are prone to large uncertainties.

  5. Effects of spatial heterogeneity on butterfly species richness in Rocky Mountain National Park, CO, USA

    USGS Publications Warehouse

    Kumar, S.; Simonson, S.E.; Stohlgren, T.J.

    2009-01-01

    We investigated butterfly responses to plot-level characteristics (plant species richness, vegetation height, and range in NDVI [normalized difference vegetation index]) and spatial heterogeneity in topography and landscape patterns (composition and configuration) at multiple spatial scales. Stratified random sampling was used to collect data on butterfly species richness from seventy-six 20 ?? 50 m plots. The plant species richness and average vegetation height data were collected from 76 modified-Whittaker plots overlaid on 76 butterfly plots. Spatial heterogeneity around sample plots was quantified by measuring topographic variables and landscape metrics at eight spatial extents (radii of 300, 600 to 2,400 m). The number of butterfly species recorded was strongly positively correlated with plant species richness, proportion of shrubland and mean patch size of shrubland. Patterns in butterfly species richness were negatively correlated with other variables including mean patch size, average vegetation height, elevation, and range in NDVI. The best predictive model selected using Akaike's Information Criterion corrected for small sample size (AICc), explained 62% of the variation in butterfly species richness at the 2,100 m spatial extent. Average vegetation height and mean patch size were among the best predictors of butterfly species richness. The models that included plot-level information and topographic variables explained relatively less variation in butterfly species richness, and were improved significantly after including landscape metrics. Our results suggest that spatial heterogeneity greatly influences patterns in butterfly species richness, and that it should be explicitly considered in conservation and management actions. ?? 2008 Springer Science+Business Media B.V.

  6. Using spatial uncertainty to manipulate the size of the attention focus.

    PubMed

    Huang, Dan; Xue, Linyan; Wang, Xin; Chen, Yao

    2016-09-01

    Preferentially processing behaviorally relevant information is vital for primate survival. In visuospatial attention studies, manipulating the spatial extent of attention focus is an important question. Although many studies have claimed to successfully adjust attention field size by either varying the uncertainty about the target location (spatial uncertainty) or adjusting the size of the cue orienting the attention focus, no systematic studies have assessed and compared the effectiveness of these methods. We used a multiple cue paradigm with 2.5° and 7.5° rings centered around a target position to measure the cue size effect, while the spatial uncertainty levels were manipulated by changing the number of cueing positions. We found that spatial uncertainty had a significant impact on reaction time during target detection, while the cue size effect was less robust. We also carefully varied the spatial scope of potential target locations within a small or large region and found that this amount of variation in spatial uncertainty can also significantly influence target detection speed. Our results indicate that adjusting spatial uncertainty is more effective than varying cue size when manipulating attention field size.

  7. Assessing Landscape Change and Processes of Recurrence, Replacement, and Recovery in the Southeastern Coastal Plains, USA

    NASA Astrophysics Data System (ADS)

    Drummond, Mark A.; Stier, Michael P.; Auch, Roger F.; Taylor, Janis L.; Griffith, Glenn E.; Riegle, Jodi L.; Hester, David J.; Soulard, Christopher E.; McBeth, Jamie L.

    2015-11-01

    The processes of landscape change are complex, exhibiting spatial variability as well as linear, cyclical, and reversible characteristics. To better understand the various processes that cause transformation, a data aggregation, validation, and attribution approach was developed and applied to an analysis of the Southeastern Coastal Plains (SECP). The approach integrates information from available national land-use, natural disturbance, and land-cover data to efficiently assess spatially-specific changes and causes. Between 2001 and 2006, the processes of change affected 7.8 % of the SECP but varied across small-scale ecoregions. Processes were placed into a simple conceptual framework to explicitly identify the type and direction of change based on three general characteristics: replacement, recurrence, and recovery. Replacement processes, whereby a land use or cover is supplanted by a new land use, including urbanization and agricultural expansion, accounted for approximately 15 % of the extent of change. Recurrent processes that contribute to cyclical changes in land cover, including forest harvest/replanting and fire, accounted for 83 %. Most forest cover changes were recurrent, while the extents of recurrent silviculture and forest replacement processes such as urbanization far exceeded forest recovery processes. The total extent of landscape recovery, from prior land use to natural or semi-natural vegetation cover, accounted for less than 3 % of change. In a region of complex change, increases in transitory grassland and shrubland covers were caused by large-scale intensive plantation silviculture and small-scale activities including mining reclamation. Explicit identification of the process types and dynamics presented here may improve the understanding of land-cover change and landscape trajectory.

  8. Assessing landscape change and processes of recurrence, replacement, and recovery in the Southeastern Coastal Plains, USA

    USGS Publications Warehouse

    Drummond, Mark A.; Stier, Michael P.; Auch, Roger F.; Taylor, Janis L.; Griffith, Glenn E.; Hester, David J.; Riegle, Jodi L.; Soulard, Christopher E.; McBeth, Jamie L.

    2015-01-01

    The processes of landscape change are complex, exhibiting spatial variability as well as linear, cyclical, and reversible characteristics. To better understand the various processes that cause transformation, a data aggregation, validation, and attribution approach was developed and applied to an analysis of the Southeastern Coastal Plains (SECP). The approach integrates information from available national land-use, natural disturbance, and land-cover data to efficiently assess spatially-specific changes and causes. Between 2001 and 2006, the processes of change affected 7.8 % of the SECP but varied across small-scale ecoregions. Processes were placed into a simple conceptual framework to explicitly identify the type and direction of change based on three general characteristics: replacement, recurrence, and recovery. Replacement processes, whereby a land use or cover is supplanted by a new land use, including urbanization and agricultural expansion, accounted for approximately 15 % of the extent of change. Recurrent processes that contribute to cyclical changes in land cover, including forest harvest/replanting and fire, accounted for 83 %. Most forest cover changes were recurrent, while the extents of recurrent silviculture and forest replacement processes such as urbanization far exceeded forest recovery processes. The total extent of landscape recovery, from prior land use to natural or semi-natural vegetation cover, accounted for less than 3 % of change. In a region of complex change, increases in transitory grassland and shrubland covers were caused by large-scale intensive plantation silviculture and small-scale activities including mining reclamation. Explicit identification of the process types and dynamics presented here may improve the understanding of land-cover change and landscape trajectory.

  9. Assessing Landscape Change and Processes of Recurrence, Replacement, and Recovery in the Southeastern Coastal Plains, USA.

    PubMed

    Drummond, Mark A; Stier, Michael P; Auch, Roger F; Taylor, Janis L; Griffith, Glenn E; Riegle, Jodi L; Hester, David J; Soulard, Christopher E; McBeth, Jamie L

    2015-11-01

    The processes of landscape change are complex, exhibiting spatial variability as well as linear, cyclical, and reversible characteristics. To better understand the various processes that cause transformation, a data aggregation, validation, and attribution approach was developed and applied to an analysis of the Southeastern Coastal Plains (SECP). The approach integrates information from available national land-use, natural disturbance, and land-cover data to efficiently assess spatially-specific changes and causes. Between 2001 and 2006, the processes of change affected 7.8% of the SECP but varied across small-scale ecoregions. Processes were placed into a simple conceptual framework to explicitly identify the type and direction of change based on three general characteristics: replacement, recurrence, and recovery. Replacement processes, whereby a land use or cover is supplanted by a new land use, including urbanization and agricultural expansion, accounted for approximately 15% of the extent of change. Recurrent processes that contribute to cyclical changes in land cover, including forest harvest/replanting and fire, accounted for 83%. Most forest cover changes were recurrent, while the extents of recurrent silviculture and forest replacement processes such as urbanization far exceeded forest recovery processes. The total extent of landscape recovery, from prior land use to natural or semi-natural vegetation cover, accounted for less than 3% of change. In a region of complex change, increases in transitory grassland and shrubland covers were caused by large-scale intensive plantation silviculture and small-scale activities including mining reclamation. Explicit identification of the process types and dynamics presented here may improve the understanding of land-cover change and landscape trajectory.

  10. Spatial-temporal characteristics of lightning flash size in a supercell storm

    NASA Astrophysics Data System (ADS)

    Zhang, Zhixiao; Zheng, Dong; Zhang, Yijun; Lu, Gaopeng

    2017-11-01

    The flash sizes of a supercell storm, in New Mexico on October 5, 2004, are studied using the observations from the New Mexico Lightning Mapping Array and the Albuquerque, New Mexico, Doppler radar (KABX). First, during the temporal evolution of the supercell, the mean flash size is anti-correlated with the flash rate, following a unary power function, with a correlation coefficient of - 0.87. In addition, the mean flash size is linearly correlated with the area of reflectivity > 30 dBZ at 5 km normalized by the flash rate, with a correlation coefficient of 0.88. Second, in the horizontal, flash size increases along the direction from the region near the convection zone to the adjacent forward anvil. The region of minimum flash size usually corresponds to the region of maximum flash initiation and extent density. The horizontal correspondence between the mean flash size and the flash extent density can also be fitted by a unary power function, and the correlation coefficient is > 0.5 in 50% of the radar volume scans. Furthermore, the quality of fit is positively correlated to the convective intensity. Third, in the vertical direction, the height of the maximum flash initiation density is close to the height of maximum flash extent density, but corresponds to the height where the mean flash size is relatively small. In the discussion, the distribution of the small and dense charge regions when and where convection is vigorous in the storm, is deduced to be responsible for the relationship that flash size is temporally and spatially anti-correlated with flash rate and density, and the convective intensity.

  11. Rewards modulate saccade latency but not exogenous spatial attention.

    PubMed

    Dunne, Stephen; Ellison, Amanda; Smith, Daniel T

    2015-01-01

    The eye movement system is sensitive to reward. However, whilst the eye movement system is extremely flexible, the extent to which changes to oculomotor behavior induced by reward paradigms persist beyond the training period or transfer to other oculomotor tasks is unclear. To address these issues we examined the effects of presenting feedback that represented small monetary rewards to spatial locations on the latency of saccadic eye movements, the time-course of learning and extinction of the effects of rewarding saccades on exogenous spatial attention and oculomotor inhibition of return. Reward feedback produced a relative facilitation of saccadic latency in a stimulus driven saccade task which persisted for three blocks of extinction trials. However, this hemifield-specific effect failed to transfer to peripheral cueing tasks. We conclude that rewarding specific spatial locations is unlikely to induce long-term, systemic changes to the human oculomotor or attention systems.

  12. Blur adaptation: contrast sensitivity changes and stimulus extent.

    PubMed

    Venkataraman, Abinaya Priya; Winter, Simon; Unsbo, Peter; Lundström, Linda

    2015-05-01

    A prolonged exposure to foveal defocus is well known to affect the visual functions in the fovea. However, the effects of peripheral blur adaptation on foveal vision, or vice versa, are still unclear. In this study, we therefore examined the changes in contrast sensitivity function from baseline, following blur adaptation to small as well as laterally extended stimuli in four subjects. The small field stimulus (7.5° visual field) was a 30min video of forest scenery projected on a screen and the large field stimulus consisted of 7-tiles of the 7.5° stimulus stacked horizontally. Both stimuli were used for adaptation with optical blur (+2.00D trial lens) as well as for clear control conditions. After small field blur adaptation foveal contrast sensitivity improved in the mid spatial frequency region. However, these changes neither spread to the periphery nor occurred for the large field blur adaptation. To conclude, visual performance after adaptation is dependent on the lateral extent of the adaptation stimulus. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Joint Entropy for Space and Spatial Frequency Domains Estimated from Psychometric Functions of Achromatic Discrimination

    PubMed Central

    Silveira, Vladímir de Aquino; Souza, Givago da Silva; Gomes, Bruno Duarte; Rodrigues, Anderson Raiol; Silveira, Luiz Carlos de Lima

    2014-01-01

    We used psychometric functions to estimate the joint entropy for space discrimination and spatial frequency discrimination. Space discrimination was taken as discrimination of spatial extent. Seven subjects were tested. Gábor functions comprising unidimensionalsinusoidal gratings (0.4, 2, and 10 cpd) and bidimensionalGaussian envelopes (1°) were used as reference stimuli. The experiment comprised the comparison between reference and test stimulithat differed in grating's spatial frequency or envelope's standard deviation. We tested 21 different envelope's standard deviations around the reference standard deviation to study spatial extent discrimination and 19 different grating's spatial frequencies around the reference spatial frequency to study spatial frequency discrimination. Two series of psychometric functions were obtained for 2%, 5%, 10%, and 100% stimulus contrast. The psychometric function data points for spatial extent discrimination or spatial frequency discrimination were fitted with Gaussian functions using the least square method, and the spatial extent and spatial frequency entropies were estimated from the standard deviation of these Gaussian functions. Then, joint entropy was obtained by multiplying the square root of space extent entropy times the spatial frequency entropy. We compared our results to the theoretical minimum for unidimensional Gábor functions, 1/4π or 0.0796. At low and intermediate spatial frequencies and high contrasts, joint entropy reached levels below the theoretical minimum, suggesting non-linear interactions between two or more visual mechanisms. We concluded that non-linear interactions of visual pathways, such as the M and P pathways, could explain joint entropy values below the theoretical minimum at low and intermediate spatial frequencies and high contrasts. These non-linear interactions might be at work at intermediate and high contrasts at all spatial frequencies once there was a substantial decrease in joint entropy for these stimulus conditions when contrast was raised. PMID:24466158

  14. Joint entropy for space and spatial frequency domains estimated from psychometric functions of achromatic discrimination.

    PubMed

    Silveira, Vladímir de Aquino; Souza, Givago da Silva; Gomes, Bruno Duarte; Rodrigues, Anderson Raiol; Silveira, Luiz Carlos de Lima

    2014-01-01

    We used psychometric functions to estimate the joint entropy for space discrimination and spatial frequency discrimination. Space discrimination was taken as discrimination of spatial extent. Seven subjects were tested. Gábor functions comprising unidimensionalsinusoidal gratings (0.4, 2, and 10 cpd) and bidimensionalGaussian envelopes (1°) were used as reference stimuli. The experiment comprised the comparison between reference and test stimulithat differed in grating's spatial frequency or envelope's standard deviation. We tested 21 different envelope's standard deviations around the reference standard deviation to study spatial extent discrimination and 19 different grating's spatial frequencies around the reference spatial frequency to study spatial frequency discrimination. Two series of psychometric functions were obtained for 2%, 5%, 10%, and 100% stimulus contrast. The psychometric function data points for spatial extent discrimination or spatial frequency discrimination were fitted with Gaussian functions using the least square method, and the spatial extent and spatial frequency entropies were estimated from the standard deviation of these Gaussian functions. Then, joint entropy was obtained by multiplying the square root of space extent entropy times the spatial frequency entropy. We compared our results to the theoretical minimum for unidimensional Gábor functions, 1/4π or 0.0796. At low and intermediate spatial frequencies and high contrasts, joint entropy reached levels below the theoretical minimum, suggesting non-linear interactions between two or more visual mechanisms. We concluded that non-linear interactions of visual pathways, such as the M and P pathways, could explain joint entropy values below the theoretical minimum at low and intermediate spatial frequencies and high contrasts. These non-linear interactions might be at work at intermediate and high contrasts at all spatial frequencies once there was a substantial decrease in joint entropy for these stimulus conditions when contrast was raised.

  15. Diagnosing ion-beam targets, data acquisition, reactor conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendel, Jr., C. W.

    1982-01-01

    The final lecture will discuss diagnostics of the target. These are very difficult because of the short times, small spatial extent, and extreme values of temperature and pressure. Diagnostics for temperature, density profile, and neutron production will be discussed. A few minutes will be devoted to data acquisition needs. The lecture will end with a discussion of current areas where improvements are needed and future diagnostics that will be required for reactor conditions.

  16. Small Fire Detection Algorithm Development using VIIRS 375m Imagery: Application to Agricultural Fires in Eastern China

    NASA Astrophysics Data System (ADS)

    Zhang, Tianran; Wooster, Martin

    2016-04-01

    Until recently, crop residues have been the second largest industrial waste product produced in China and field-based burning of crop residues is considered to remain extremely widespread, with impacts on air quality and potential negative effects on health, public transportation. However, due to the small size and perhaps short-lived nature of the individual burns, the extent of the activity and its spatial variability remains somewhat unclear. Satellite EO data has been used to gauge the timing and magnitude of Chinese crop burning, but current approaches very likely miss significant amounts of the activity because the individual burned areas are either too small to detect with frequently acquired moderate spatial resolution data such as MODIS. The Visible Infrared Imaging Radiometer Suite (VIIRS) on-board Suomi-NPP (National Polar-orbiting Partnership) satellite launched on October, 2011 has one set of multi-spectral channels providing full global coverage at 375 m nadir spatial resolutions. It is expected that the 375 m spatial resolution "I-band" imagery provided by VIIRS will allow active fires to be detected that are ~ 10× smaller than those that can be detected by MODIS. In this study the new small fire detection algorithm is built based on VIIRS-I band global fire detection algorithm and hot spot detection algorithm for the BIRD satellite mission. VIIRS-I band imagery data will be used to identify agricultural fire activity across Eastern China. A 30 m spatial resolution global land cover data map is used for false alarm masking. The ground-based validation is performed using images taken from UAV. The fire detection result is been compared with active fire product from the long-standing MODIS sensor onboard the TERRA and AQUA satellites, which shows small fires missed from traditional MODIS fire product may count for over 1/3 of total fire energy in Eastern China.

  17. Assessing the influence of small fires on trends in fire regime features at mainland Spain

    NASA Astrophysics Data System (ADS)

    Jiménez-Ruano, Adrián; Rodrigues Mimbrero, Marcos; de la Riva Fernández, Juan

    2017-04-01

    Small fires, i.e. fires smaller than 1 Ha, represent a huge proportion of total wildfire occurrence in the Mediterranean region. In the case of Spain, around 53% of fires in the period 1988-2013 fall into this category according to the Spanish EGIF statistics. However, the proportion of small fires is not stationary over time. Small fires are usually excluded from most analysis, given the chance of introducing or falling into temporal bias, being almost mandatory in those assessments using data before the 90s. Inconsistences and inhomogeneity problems related to the diversity of criteria and/or registration procedures among Autonomous Regions are found before that date, although it is widely agreed that small fires are consistently registered starting from 1988. Nevertheless, in terms of fire regimen characterization it is important to know to what extent small fires contribute to the overall fire behaviour. The aim of this study is to analyse spatial-temporal trends of several fire features such as total number of fires and burned area, number and burned area of natural and human fires, and the proportion of natural/human cause in the period 1988-2013 at province level (NUTS3). The analysis is conducted at the mainland Spain at annual and seasonal time scales. We are mainly interested in exploring differences in spatial-temporal trends including or excluding small fires and dealing with them separately as well. This allows determining the extent to which small fires may affect fire regime characterization. We employed a Mann-Kendall test for trend detection and Sen's slope to evaluate the magnitude of the change. Both tests were applied for each fire feature aggregated at NUTS3 level for both autumn-winter and spring-summer seasons. Our results show significant changes in the evolution of annual wildfire frequency; especially strong when small fires are accounted for. A similar outcome was observed in natural and human number fires during the spring-summer season. The increase in number of fires seems to be reversed during autumn-winter. At seasonal scale, the inclusion of small fires allows to detect significant trends in all of fire frequency features, except natural fires. In turn, neither burned area features do not significantly affect the trends through incorporating small fires. Therefore, the inclusion/exclusion of small fires do influence observed trends mostly in terms of fire frequency.

  18. Shifting Patterns of Aedes aegypti Fine Scale Spatial Clustering in Iquitos, Peru

    PubMed Central

    LaCon, Genevieve; Morrison, Amy C.; Astete, Helvio; Stoddard, Steven T.; Paz-Soldan, Valerie A.; Elder, John P.; Halsey, Eric S.; Scott, Thomas W.; Kitron, Uriel; Vazquez-Prokopec, Gonzalo M.

    2014-01-01

    Background Empiric evidence shows that Aedes aegypti abundance is spatially heterogeneous and that some areas and larval habitats produce more mosquitoes than others. There is a knowledge gap, however, with regards to the temporal persistence of such Ae. aegypti abundance hotspots. In this study, we used a longitudinal entomologic dataset from the city of Iquitos, Peru, to (1) quantify the spatial clustering patterns of adult Ae. aegypti and pupae counts per house, (2) determine overlap between clusters, (3) quantify the temporal stability of clusters over nine entomologic surveys spaced four months apart, and (4) quantify the extent of clustering at the household and neighborhood levels. Methodologies/Principal Findings Data from 13,662 household entomological visits performed in two Iquitos neighborhoods differing in Ae. aegypti abundance and dengue virus transmission was analyzed using global and local spatial statistics. The location and extent of Ae. aegypti pupae and adult hotspots (i.e., small groups of houses with significantly [p<0.05] high mosquito abundance) were calculated for each of the 9 entomologic surveys. The extent of clustering was used to quantify the probability of finding spatially correlated populations. Our analyses indicate that Ae. aegypti distribution was highly focal (most clusters do not extend beyond 30 meters) and that hotspots of high vector abundance were common on every survey date, but they were temporally unstable over the period of study. Conclusions/Significance Our findings have implications for understanding Ae. aegypti distribution and for the design of surveillance and control activities relying on household-level data. In settings like Iquitos, where there is a relatively low percentage of Ae. aegypti in permanent water-holding containers, identifying and targeting key premises will be significantly challenged by shifting hotspots of Ae. aegypti infestation. Focusing efforts in large geographic areas with historically high levels of transmission may be more effective than targeting Ae. aegypti hotspots. PMID:25102062

  19. Shifting patterns of Aedes aegypti fine scale spatial clustering in Iquitos, Peru.

    PubMed

    LaCon, Genevieve; Morrison, Amy C; Astete, Helvio; Stoddard, Steven T; Paz-Soldan, Valerie A; Elder, John P; Halsey, Eric S; Scott, Thomas W; Kitron, Uriel; Vazquez-Prokopec, Gonzalo M

    2014-08-01

    Empiric evidence shows that Aedes aegypti abundance is spatially heterogeneous and that some areas and larval habitats produce more mosquitoes than others. There is a knowledge gap, however, with regards to the temporal persistence of such Ae. aegypti abundance hotspots. In this study, we used a longitudinal entomologic dataset from the city of Iquitos, Peru, to (1) quantify the spatial clustering patterns of adult Ae. aegypti and pupae counts per house, (2) determine overlap between clusters, (3) quantify the temporal stability of clusters over nine entomologic surveys spaced four months apart, and (4) quantify the extent of clustering at the household and neighborhood levels. Data from 13,662 household entomological visits performed in two Iquitos neighborhoods differing in Ae. aegypti abundance and dengue virus transmission was analyzed using global and local spatial statistics. The location and extent of Ae. aegypti pupae and adult hotspots (i.e., small groups of houses with significantly [p<0.05] high mosquito abundance) were calculated for each of the 9 entomologic surveys. The extent of clustering was used to quantify the probability of finding spatially correlated populations. Our analyses indicate that Ae. aegypti distribution was highly focal (most clusters do not extend beyond 30 meters) and that hotspots of high vector abundance were common on every survey date, but they were temporally unstable over the period of study. Our findings have implications for understanding Ae. aegypti distribution and for the design of surveillance and control activities relying on household-level data. In settings like Iquitos, where there is a relatively low percentage of Ae. aegypti in permanent water-holding containers, identifying and targeting key premises will be significantly challenged by shifting hotspots of Ae. aegypti infestation. Focusing efforts in large geographic areas with historically high levels of transmission may be more effective than targeting Ae. aegypti hotspots.

  20. Multi-hadron spectroscopy in a large physical volume

    NASA Astrophysics Data System (ADS)

    Bulava, John; Hörz, Ben; Morningstar, Colin

    2018-03-01

    We demonstrate the effcacy of the stochastic LapH method to treat all-toall quark propagation on a Nf = 2 + 1 CLS ensemble with large linear spatial extent L = 5:5 fm, allowing us to obtain the benchmark elastic isovector p-wave pion-pion scattering amplitude to good precision already on a relatively small number of gauge configurations. These results hold promise for multi-hadron spectroscopy at close-to-physical pion mass with exponential finite-volume effects under control.

  1. Effects of harvesting flowers from shrubs on the persistence and abundance of wild shrub populations at multiple spatial extents.

    PubMed

    Cabral, Juliano Sarmento; Bond, William J; Midgley, Guy F; Rebelo, Anthony G; Thuiller, Wilfried; Schurr, Frank M

    2011-02-01

    Wildflower harvesting is an economically important activity of which the ecological effects are poorly understood. We assessed how harvesting of flowers affects shrub persistence and abundance at multiple spatial extents. To this end, we built a process-based model to examine the mean persistence and abundance of wild shrubs whose flowers are subject to harvest (serotinous Proteaceae in the South African Cape Floristic Region). First, we conducted a general sensitivity analysis of how harvesting affects persistence and abundance at nested spatial extents. For most spatial extents and combinations of demographic parameters, persistence and abundance of flowering shrubs decreased abruptly once harvesting rate exceeded a certain threshold. At larger extents, metapopulations supported higher harvesting rates before their persistence and abundance decreased, but persistence and abundance also decreased more abruptly due to harvesting than at smaller extents. This threshold rate of harvest varied with species' dispersal ability, maximum reproductive rate, adult mortality, probability of extirpation or local extinction, strength of Allee effects, and carrying capacity. Moreover, spatial extent interacted with Allee effects and probability of extirpation because both these demographic properties affected the response of local populations to harvesting more strongly than they affected the response of metapopulations. Subsequently, we simulated the effects of harvesting on three Cape Floristic Region Proteaceae species and found that these species reacted differently to harvesting, but their persistence and abundance decreased at low rates of harvest. Our estimates of harvesting rates at maximum sustainable yield differed from those of previous investigations, perhaps because researchers used different estimates of demographic parameters, models of population dynamics, and spatial extent than we did. Good demographic knowledge and careful identification of the spatial extent of interest increases confidence in assessments and monitoring of the effects of harvesting. Our general sensitivity analysis improved understanding of harvesting effects on metapopulation dynamics and allowed qualitative assessment of the probability of extirpation of poorly studied species. ©2010 Society for Conservation Biology.

  2. A program for handling map projections of small-scale geospatial raster data

    USGS Publications Warehouse

    Finn, Michael P.; Steinwand, Daniel R.; Trent, Jason R.; Buehler, Robert A.; Mattli, David M.; Yamamoto, Kristina H.

    2012-01-01

    Scientists routinely accomplish small-scale geospatial modeling using raster datasets of global extent. Such use often requires the projection of global raster datasets onto a map or the reprojection from a given map projection associated with a dataset. The distortion characteristics of these projection transformations can have significant effects on modeling results. Distortions associated with the reprojection of global data are generally greater than distortions associated with reprojections of larger-scale, localized areas. The accuracy of areas in projected raster datasets of global extent is dependent on spatial resolution. To address these problems of projection and the associated resampling that accompanies it, methods for framing the transformation space, direct point-to-point transformations rather than gridded transformation spaces, a solution to the wrap-around problem, and an approach to alternative resampling methods are presented. The implementations of these methods are provided in an open-source software package called MapImage (or mapIMG, for short), which is designed to function on a variety of computer architectures.

  3. How and Why Does Stream Water Temperature Vary at Small Spatial Scales in a Headwater Stream?

    NASA Astrophysics Data System (ADS)

    Morgan, J. C.; Gannon, J. P.; Kelleher, C.

    2017-12-01

    The temperature of stream water is controlled by climatic variables, runoff/baseflow generation, and hyporheic exchange. Hydrologic conditions such as gaining/losing reaches and sources of inflow can vary dramatically along a stream on a small spatial scale. In this work, we attempt to discern the extent that the factors of air temperature, groundwater inflow, and precipitation influence stream temperature at small spatial scales along the length of a stream. To address this question, we measured stream temperature along the perennial stream network in a 43 ha catchment with a complex land use history in Cullowhee, NC. Two water temperature sensors were placed along the stream network on opposite sides of the stream at 100-meter intervals and at several locations of interest (i.e. stream junctions). The forty total sensors recorded the temperature every 10 minutes for one month in the spring and one month in the summer. A subset of sampling locations where stream temperature was consistent or varied from one side of the stream to the other were explored with a thermal imaging camera to obtain a more detailed representation of the spatial variation in temperature at those sites. These thermal surveys were compared with descriptions of the contributing area at the sample sites in an effort to discern specific causes of differing flow paths. Preliminary results suggest that on some branches of the stream stormflow has less influence than regular hyporheic exchange, while other tributaries can change dramatically with stormflow conditions. We anticipate this work will lead to a better understanding of temperature patterns in stream water networks. A better understanding of the importance of small-scale differences in flow paths to water temperature may be able to inform watershed management decisions in the future.

  4. Bamboo-Dominated Forests of the Southwest Amazon: Detection, Spatial Extent, Life Cycle Length and Flowering Waves

    PubMed Central

    de Carvalho, Anelena L.; Nelson, Bruce W.; Bianchini, Milton C.; Plagnol, Daniela; Kuplich, Tatiana M.; Daly, Douglas C.

    2013-01-01

    We map the extent, infer the life-cycle length and describe spatial and temporal patterns of flowering of sarmentose bamboos (Guadua spp) in upland forests of the southwest Amazon. We first examine the spectra and the spectral separation of forests with different bamboo life stages. False-color composites from orbital sensors going back to 1975 are capable of distinguishing life stages. These woody bamboos flower produce massive quantities of seeds and then die. Life stage is synchronized, forming a single cohort within each population. Bamboo dominates at least 161,500 km2 of forest, coincident with an area of recent or ongoing tectonic uplift, rapid mechanical erosion and poorly drained soils rich in exchangeable cations. Each bamboo population is confined to a single spatially continuous patch or to a core patch with small outliers. Using spatial congruence between pairs of mature-stage maps from different years, we estimate an average life cycle of 27–28 y. It is now possible to predict exactly where and approximately when new bamboo mortality events will occur. We also map 74 bamboo populations that flowered between 2001 and 2008 over the entire domain of bamboo-dominated forest. Population size averaged 330 km2. Flowering events of these populations are temporally and/or spatially separated, restricting or preventing gene exchange. Nonetheless, adjacent populations flower closer in time than expected by chance, forming flowering waves. This may be a consequence of allochronic divergence from fewer ancestral populations and suggests a long history of widespread bamboo in the southwest Amazon. PMID:23359438

  5. Spatial distribution of dust in galaxies from the Integral field unit data

    NASA Astrophysics Data System (ADS)

    Zafar, Tayyaba; Sophie Dubber, Andrew Hopkins

    2018-01-01

    An important characteristic of the dust is it can be used as a tracer of stars (and gas) and tell us about the composition of galaxies. Sub-mm and infrared studies can accurately determine the total dust mass and its spatial distribution in massive, bright galaxies. However, faint and distant galaxies are hampered by resolution to dust spatial dust distribution. In the era of integral-field spectrographs (IFS), Balmer decrement is a useful quantity to infer the spatial extent of the dust in distant and low-mass galaxies. We conducted a study to estimate the spatial distribution of dust using the Sydney-Australian Astronomical Observatory (AAO) Multi-object Integral field spectrograph (SAMI) galaxies. Our methodology is unique to exploit the potential of IFS and using the spatial and spectral information together to study dust in galaxies of various morphological types. The spatial extent and content of dust are compared with the star-formation rate, reddening, and inclination of galaxies. We find a right correlation of dust spatial extent with the star-formation rate. The results also indicate a decrease in dust extent radius from Late Spirals to Early Spirals.

  6. Sensitivity of landscape metrics to changing scale of remote sensing data in spatial pattern analysis: effect, criticality and scaling.

    NASA Astrophysics Data System (ADS)

    Xu, C.; Zhao, S.; Zhao, B.

    2017-12-01

    Spatial heterogeneity is scale-dependent, that is, the quantification and representation of spatial pattern vary with the resolution and extent. Overwhelming practices focused on scale effect of landscape metrics, and predicable scaling relationships found among some of them are thought to be the most effective and precise way to quantify multi-scale characteristics. However, previous studies tended to consider a narrow range of scales, and few focused on the critical threshold of scaling function. Here we examine the scalograms of 38 widely-used landscape-level metrics in a more integral spectrum of grain size among 96 landscapes with various extent (i.e. from 25km2 up towards to 221 km2), which sampled randomly from NLCD product. Our goal is to explore the existence of scaling domain and whether the response of metrics to changing resolution would be influenced by spatial extent. Results clearly show the existence of scaling domain for 13 of them (Type II), while the behaviors of other 13 (Type I) exhibit simple scaling functions and the rest (Type III) demonstrate various forms like no obvious change or fluctuation across the integral spectrum of grain size. In addition, an invariant power law scaling relationship was found between critical resolution and spatial extent for metrics falling into Type II, as the critical resolution is proportional to Eρ (ρ is a constant, and E is the extent). All the scaling exponents (ρ) are positive, suggesting that the critical resolutions for these characteristics of landscape structure can be relaxed as the spatial extent expands. This agrees well with empirical perception that coarser grain size might be allowed for spatial data with larger extent. Furthermore, the parameters of scaling functions for metrics falling into Type I and Type II vary with spatial extent, and power law or logarithmic relationships could be identified between them for some metrics. Our finding support the existence of self-organized criticality for a hierarchically-structured landscape. Although the underlying mechanism driving the scaling relationship remains unclear, it could provide guidance toward general principles in spatial pattern analysis and on selecting the proper resolution to avoid the misrepresentation of spatial pattern and profound biases in further ecological progress research.

  7. Space can substitute for time in predicting climate-change effects on biodiversity

    USGS Publications Warehouse

    Blois, Jessica L.; Williams, John W.; Fitzpatrick, Matthew C.; Jackson, Stephen T.; Ferrier, Simon

    2013-01-01

    “Space-for-time” substitution is widely used in biodiversity modeling to infer past or future trajectories of ecological systems from contemporary spatial patterns. However, the foundational assumption—that drivers of spatial gradients of species composition also drive temporal changes in diversity—rarely is tested. Here, we empirically test the space-for-time assumption by constructing orthogonal datasets of compositional turnover of plant taxa and climatic dissimilarity through time and across space from Late Quaternary pollen records in eastern North America, then modeling climate-driven compositional turnover. Predictions relying on space-for-time substitution were ∼72% as accurate as “time-for-time” predictions. However, space-for-time substitution performed poorly during the Holocene when temporal variation in climate was small relative to spatial variation and required subsampling to match the extent of spatial and temporal climatic gradients. Despite this caution, our results generally support the judicious use of space-for-time substitution in modeling community responses to climate change.

  8. Space can substitute for time in predicting climate-change effects on biodiversity.

    PubMed

    Blois, Jessica L; Williams, John W; Fitzpatrick, Matthew C; Jackson, Stephen T; Ferrier, Simon

    2013-06-04

    "Space-for-time" substitution is widely used in biodiversity modeling to infer past or future trajectories of ecological systems from contemporary spatial patterns. However, the foundational assumption--that drivers of spatial gradients of species composition also drive temporal changes in diversity--rarely is tested. Here, we empirically test the space-for-time assumption by constructing orthogonal datasets of compositional turnover of plant taxa and climatic dissimilarity through time and across space from Late Quaternary pollen records in eastern North America, then modeling climate-driven compositional turnover. Predictions relying on space-for-time substitution were ∼72% as accurate as "time-for-time" predictions. However, space-for-time substitution performed poorly during the Holocene when temporal variation in climate was small relative to spatial variation and required subsampling to match the extent of spatial and temporal climatic gradients. Despite this caution, our results generally support the judicious use of space-for-time substitution in modeling community responses to climate change.

  9. Tools for automated acoustic monitoring within the R package monitoR

    USGS Publications Warehouse

    Katz, Jonathan; Hafner, Sasha D.; Donovan, Therese

    2016-01-01

    The R package monitoR contains tools for managing an acoustic-monitoring program including survey metadata, template creation and manipulation, automated detection and results management. These tools are scalable for use with small projects as well as larger long-term projects and those with expansive spatial extents. Here, we describe typical workflow when using the tools in monitoR. Typical workflow utilizes a generic sequence of functions, with the option for either binary point matching or spectrogram cross-correlation detectors.

  10. Nominal 30-M Cropland Extent Map of Continental Africa by Integrating Pixel-Based and Object-Based Algorithms Using Sentinel-2 and Landsat-8 Data on Google Earth Engine

    NASA Technical Reports Server (NTRS)

    Xiong, Jun; Thenkabail, Prasad S.; Tilton, James C.; Gumma, Murali K.; Teluguntla, Pardhasaradhi; Oliphant, Adam; Congalton, Russell G.; Yadav, Kamini; Gorelick, Noel

    2017-01-01

    A satellite-derived cropland extent map at high spatial resolution (30-m or better) is a must for food and water security analysis. Precise and accurate global cropland extent maps, indicating cropland and non-cropland areas, is a starting point to develop high-level products such as crop watering methods (irrigated or rainfed), cropping intensities (e.g., single, double, or continuous cropping), crop types, cropland fallows, as well as assessment of cropland productivity (productivity per unit of land), and crop water productivity (productivity per unit of water). Uncertainties associated with the cropland extent map have cascading effects on all higher-level cropland products. However, precise and accurate cropland extent maps at high spatial resolution over large areas (e.g., continents or the globe) are challenging to produce due to the small-holder dominant agricultural systems like those found in most of Africa and Asia. Cloud-based Geospatial computing platforms and multi-date, multi-sensor satellite image inventories on Google Earth Engine offer opportunities for mapping croplands with precision and accuracy over large areas that satisfy the requirements of broad range of applications. Such maps are expected to provide highly significant improvements compared to existing products, which tend to be coarser in resolution, and often fail to capture fragmented small-holder farms especially in regions with high dynamic change within and across years. To overcome these limitations, in this research we present an approach for cropland extent mapping at high spatial resolution (30-m or better) using the 10-day, 10 to 20-m, Sentinel-2 data in combination with 16-day, 30-m, Landsat-8 data on Google Earth Engine (GEE). First, nominal 30-m resolution satellite imagery composites were created from 36,924 scenes of Sentinel-2 and Landsat-8 images for the entire African continent in 2015-2016. These composites were generated using a median-mosaic of five bands (blue, green, red, near-infrared, NDVI) during each of the two periods (period 1: January-June 2016 and period 2: July-December 2015) plus a 30-m slope layer derived from the Shuttle Radar Topographic Mission (SRTM) elevation dataset. Second, we selected Cropland/Non-cropland training samples (sample size 9791) from various sources in GEE to create pixel-based classifications. As supervised classification algorithm, Random Forest (RF) was used as the primary classifier because of its efficiency, and when over-fitting issues of RF happened due to the noise of input training data, Support Vector Machine (SVM) was applied to compensate for such defects in specific areas. Third, the Recursive Hierarchical Segmentation (RHSeg) algorithm was employed to generate an object-oriented segmentation layer based on spectral and spatial properties from the same input data. This layer was merged with the pixel-based classification to improve segmentation accuracy. Accuracies of the merged 30-m crop extent product were computed using an error matrix approach in which 1754 independent validation samples were used. In addition, a comparison was performed with other available cropland maps as well as with LULC maps to show spatial similarity. Finally, the cropland area results derived from the map were compared with UN FAO statistics. The independent accuracy assessment showed a weighted overall accuracy of 94, with a producers accuracy of 85.9 (or omission error of 14.1), and users accuracy of 68.5 (commission error of 31.5) for the cropland class. The total net cropland area (TNCA) of Africa was estimated as 313 Mha for the nominal year 2015.

  11. Alzheimer Disease Biomarkers and Driving in Clinically Normal Older Adults: Role of Spatial Navigation Abilities.

    PubMed

    Allison, Samantha; Babulal, Ganesh M; Stout, Sarah H; Barco, Peggy P; Carr, David B; Fagan, Anne M; Morris, John C; Roe, Catherine M; Head, Denise

    2018-01-01

    Older adults experience impaired driving performance, and modify their driving habits, including limiting amount and spatial extent of travel. Alzheimer disease (AD)-related pathology, as well as spatial navigation difficulties, may influence driving performance and driving behaviors in clinically normal older adults. We examined whether AD biomarkers [cerebrospinal fluid (CSF) concentrations of Aβ42, tau, and ptau181] were associated with lower self-reported spatial navigation abilities, and whether navigation abilities mediated the relationship of AD biomarkers with driving performance and extent. Clinically normal older adults (n=112; aged 65+) completed an on-road driving test, the Santa Barbara Sense of Direction scale (self-report measure of spatial navigation ability), and the Driving Habits Questionnaire for an estimate of driving extent (composite of driving exposure and driving space). All participants had a lumbar puncture to obtain CSF. CSF Aβ42, but not tau or ptau181, was associated with self-reported navigation ability. Lower self-reported navigation was associated with reduced driving extent, but not driving errors. Self-reported navigation mediated the relationship between CSF Aβ42 and driving extent. Findings suggest that cerebral amyloid deposition is associated with lower perceived ability to navigate the environment, which may lead older adults with AD pathology to limit their driving extent.

  12. Polymorphic mountain whitefish (Prosopium williamsoni) in a coastal riverscape: size class assemblages, distribution, and habitat associations

    USGS Publications Warehouse

    Starr, James C.; Torgersen, Christian E.

    2015-01-01

    We compared the assemblage structure, spatial distributions, and habitat associations of mountain whitefish (Prosopium williamsoni) morphotypes and size classes. We hypothesised that morphotypes would have different spatial distributions and would be associated with different habitat features based on feeding behaviour and diet. Spatially continuous sampling was conducted over a broad extent (29 km) in the Calawah River, WA (USA). Whitefish were enumerated via snorkelling in three size classes: small (10–29 cm), medium (30–49 cm), and large (≥50 cm). We identified morphotypes based on head and snout morphology: a pinocchio form that had an elongated snout and a normal form with a blunted snout. Large size classes of both morphotypes were distributed downstream of small and medium size classes, and normal whitefish were distributed downstream of pinocchio whitefish. Ordination of whitefish assemblages with nonmetric multidimensional scaling revealed that normal whitefish size classes were associated with higher gradient and depth, whereas pinocchio whitefish size classes were positively associated with pool area, distance upstream, and depth. Reach-scale generalised additive models indicated that normal whitefish relative density was associated with larger substrate size in downstream reaches (R2 = 0.64), and pinocchio whitefish were associated with greater stream depth in the reaches farther upstream (R2 = 0.87). These results suggest broad-scale spatial segregation (1–10 km), particularly between larger and more phenotypically extreme individuals. These results provide the first perspective on spatial distributions and habitat relationships of polymorphic mountain whitefish.

  13. Source and Extent of Volcanic Ashes at the Permian-Triassic Boundary in South China and Its implications

    NASA Astrophysics Data System (ADS)

    Wang, M.; Zhong, Y. T.; Hou, Y. L.; He, B.

    2017-12-01

    Highly correlated with the Permian-Triassic Boundary (PTB) Mass Extinction in stratigraphic section, volcanic ashes around the P-T Boundary in South China have been suggested to be a likely cause of the PTB Mass Extinction. So the nature, source and extent of these volcanic ashes have great significance in figuring out the cause of the PTB Mass Extinction. In this study, we attempt to constrain the source and extent of the PTB volcanic ashes in South China by studying pyroclastic sedimentary rocks and the spatial distribution of tuffs and ashes in South China. The detrital zircons of tuffaceous sandstones from Penglaitan section yield an age spectrum peaked at 252Ma, with ɛHf(t) values varying from -20 to -5 ,and have Nb/Hf, Th/Nb and Hf/Th ratios similar to those from arc/orogenic-related settings. Coarse tuffaceous sandstones imply that their source is in limited distance. Those pyroclastic sedimentary rocks in Penglaitan are well correlated with the PTB volcanic ashes in Meishan GSSP section in stratigraphy. In the spatial distribution, pyroclastic sedimentary rocks and tuffs distribute only in southwest of South China, while finer volcanic ashes are mainly in the northern part. This spatial distribution suggests the source of tuffs and ashes was to the south or southwest of South China. Former studies especially that of Permian-Triassic magmatism in Hainan Island have supported the existence of a continental arc related to the subduction and closure of Palaeo-Tethys on the southwestern margin of South China during Permian to early Triassic. It is suggested that the PTB ashes possibly derived from this Paleo-Tethys continental arc. The fact that volcanic ashes haven't been reported or found in PTB stratum in North China or Northwest China implies a limited extent of the volcanism, which thus is too small to cause the PTB mass extinction.

  14. Monitoring the dynamics of surface water fraction from MODIS time series in a Mediterranean environment

    NASA Astrophysics Data System (ADS)

    Li, Linlin; Vrieling, Anton; Skidmore, Andrew; Wang, Tiejun; Turak, Eren

    2018-04-01

    Detailed spatial information of changes in surface water extent is needed for water management and biodiversity conservation, particularly in drier parts of the globe where small, temporally-variant wetlands prevail. Although global surface water histories are now generated from 30 m Landsat data, for many locations they contain large temporal gaps particularly for longer periods (>10 years) due to revisit intervals and cloud cover. Daily Moderate Resolution Imaging Spectrometer (MODIS) imagery has potential to fill such gaps, but its relatively coarse spatial resolution may not detect small water bodies, which can be of great ecological importance. To address this problem, this study proposes and tests options for estimating the surface water fraction from MODIS 16-day 500 m Bidirectional Reflectance Distribution Function (BRDF) corrected surface reflectance image composites. The spatial extent of two Landsat tiles over Spain were selected as test areas. We obtained a 500 m reference dataset on surface water fraction by spatially aggregating 30 m binary water masks obtained from the Landsat-derived C-version of Function of Mask (CFmask), which themselves were evaluated against high-resolution Google Earth imagery. Twelve regression tree models were developed with two approaches, Random Forest and Cubist, using spectral metrics derived from MODIS data and topographic parameters generated from a 30 m spatial resolution digital elevation model. Results showed that accuracies were higher when we included annual summary statistics of the spectral metrics as predictor variables. Models trained on a single Landsat tile were ineffective in mapping surface water in the other tile, but global models trained with environmental conditions from both tiles can provide accurate results for both study areas. We achieved the highest accuracy with Cubist global model (R2 = 0.91, RMSE = 11.05%, MAE = 7.67%). Our method was not only effective for mapping permanent water fraction, but also in accurately capturing temporal fluctuations of surface water. Based on this good performance, we produced surface water fraction maps at 16-day interval for the 2000-2015 MODIS archive. Our approach is promising for monitoring surface water fraction at high frequency time intervals over much larger regions provided that training data are collected across the spatial domain for which the model will be applied.

  15. sGD: software for estimating spatially explicit indices of genetic diversity.

    PubMed

    Shirk, A J; Cushman, S A

    2011-09-01

    Anthropogenic landscape changes have greatly reduced the population size, range and migration rates of many terrestrial species. The small local effective population size of remnant populations favours loss of genetic diversity leading to reduced fitness and adaptive potential, and thus ultimately greater extinction risk. Accurately quantifying genetic diversity is therefore crucial to assessing the viability of small populations. Diversity indices are typically calculated from the multilocus genotypes of all individuals sampled within discretely defined habitat patches or larger regional extents. Importantly, discrete population approaches do not capture the clinal nature of populations genetically isolated by distance or landscape resistance. Here, we introduce spatial Genetic Diversity (sGD), a new spatially explicit tool to estimate genetic diversity based on grouping individuals into potentially overlapping genetic neighbourhoods that match the population structure, whether discrete or clinal. We compared the estimates and patterns of genetic diversity using patch or regional sampling and sGD on both simulated and empirical populations. When the population did not meet the assumptions of an island model, we found that patch and regional sampling generally overestimated local heterozygosity, inbreeding and allelic diversity. Moreover, sGD revealed fine-scale spatial heterogeneity in genetic diversity that was not evident with patch or regional sampling. These advantages should provide a more robust means to evaluate the potential for genetic factors to influence the viability of clinal populations and guide appropriate conservation plans. © 2011 Blackwell Publishing Ltd.

  16. Fast ion transport at a gas-metal interface

    DOE PAGES

    McDevitt, Christopher J.; Tang, Xian-Zhu; Guo, Zehua

    2017-11-06

    Fast ion transport and the resulting fusion yield reduction are computed at a gas-metal interface. The extent of fusion yield reduction is observed to depend sensitively on the charge state of the surrounding pusher material and the width of the atomically mixed region. These sensitivities suggest that idealized boundary conditions often implemented at the gas-pusher interface for the purpose of estimating fast ion loss will likely overestimate fusion reactivity reduction in several important limits. Additionally, the impact of a spatially complex material interface is investigated by considering a collection of droplets of the pusher material immersed in a DT plasma.more » It is found that for small Knudsen numbers, the extent of fusion yield reduction scales with the surface area of the material interface. As the Knudsen number is increased, but, the simple surface area scaling is broken, suggesting that hydrodynamic mix has a nontrivial impact on the extent of fast ion losses.« less

  17. Assessment of changes in formations of non-forest woody vegetation in southern Denmark based on airborne LiDAR.

    PubMed

    Angelidis, Ioannis; Levin, Gregor; Díaz-Varela, Ramón Alberto; Malinowski, Radek

    2017-09-01

    LiDAR (Light Detection and Ranging) is a remote sensing technology that uses light in the form of pulses to measure the range between a sensor and the Earth's surface. Recent increase in availability of airborne LiDAR scanning (ALS) data providing national coverage with high point densities has opened a wide range of possibilities for monitoring landscape elements and their changes at broad geographical extent. We assessed the dynamics of the spatial extent of non-forest woody vegetation (NFW) in a study area of approx. 2500 km 2 in southern Jutland, Denmark, based on two acquisitions of ALS data for 2006 and 2014 in combination with other spatial data. Our results show a net-increase (4.8%) in the total area of NFW. Furthermore, this net change comprises of both areas with a decrease and areas with an increase of NFW. An accuracy assessment based on visual interpretation of aerial photos indicates high accuracy (>95%) in the delineation of NFW without changes during the study period. For NFW that changed between 2006 and 2014, accuracies were lower (90 and 82% in removed and new features, respectively), which is probably due to lower point densities of the 2006 ALS data (0.5 pts./m 2 ) compared to the 2014 data (4-5 pts./m 2 ). We conclude that ALS data, if combined with other spatial data, in principle are highly suitable for detailed assessment of changes in landscape features, such as formations of NFW at broad geographical extent. However, in change assessment based on multi-temporal ALS data with different point densities errors occur, particularly when examining small or narrow NFW objects.

  18. A time series of urban extent in China using DSMP/OLS nighttime light data

    PubMed Central

    Chen, Dongsheng; Chen, Le; Wang, Huan; Guan, Qingfeng

    2018-01-01

    Urban extent data play an important role in urban management and urban studies, such as monitoring the process of urbanization and changes in the spatial configuration of urban areas. Traditional methods of extracting urban-extent information are primarily based on manual investigations and classifications using remote sensing images, and these methods have such problems as large costs in labor and time and low precision. This study proposes an improved, simplified and flexible method for extracting urban extents over multiple scales and the construction of spatiotemporal models using DMSP/OLS nighttime light (NTL) for practical situations. This method eliminates the regional temporal and spatial inconsistency of thresholding NTL in large-scale and multi-temporal scenes. Using this method, we have extracted the urban extents and calculated the corresponding areas on the county, municipal and provincial scales in China from 2000 to 2012. In addition, validation with the data of reference data shows that the overall accuracy (OA), Kappa and F1 Scores were 0.996, 0.793, and 0.782, respectively. We increased the spatial resolution of the urban extent to 500 m (approximately four times finer than the results of previous studies). Based on the urban extent dataset proposed above, we analyzed changes in urban extents over time and observed that urban sprawl has grown in all of the counties of China. We also identified three patterns of urban sprawl: Early Urban Growth, Constant Urban Growth and Recent Urban Growth. In addition, these trends of urban sprawl are consistent with the western, eastern and central cities of China, respectively, in terms of their spatial distribution, socioeconomic characteristics and historical background. Additionally, the urban extents display the spatial configurations of urban areas intuitively. The proposed urban extent dataset is available for download and can provide reference data and support for future studies of urbanization and urban planning. PMID:29795685

  19. A phase coherence approach to estimating the spatial extent of earthquakes

    NASA Astrophysics Data System (ADS)

    Hawthorne, Jessica C.; Ampuero, Jean-Paul

    2016-04-01

    We present a new method for estimating the spatial extent of seismic sources. The approach takes advantage of an inter-station phase coherence computation that can identify co-located sources (Hawthorne and Ampuero, 2014). Here, however, we note that the phase coherence calculation can eliminate the Green's function and give high values only if both earthquakes are point sources---if their dimensions are much smaller than the wavelengths of the propagating seismic waves. By examining the decrease in coherence at higher frequencies (shorter wavelengths), we can estimate the spatial extents of the earthquake ruptures. The approach can to some extent be seen as a simple way of identifying directivity or variations in the apparent source time functions recorded at various stations. We apply this method to a set of well-recorded earthquakes near Parkfield, CA. We show that when the signal to noise ratio is high, the phase coherence remains high well above 50 Hz for closely spaced M<1.5 earthquake. The high-frequency phase coherence is smaller for larger earthquakes, suggesting larger spatial extents. The implied radii scale roughly as expected from typical magnitude-corner frequency scalings. We also examine a second source of high-frequency decoherence: spatial variation in the shape of the Green's functions. This spatial decoherence appears to occur on a similar wavelengths as the decoherence associated with the apparent source time functions. However, the variation in Green's functions can be normalized away to some extent by comparing observations at multiple components on a single station, which see the same apparent source time functions.

  20. [Spatial scale effect of land use landscape pattern in Yongdeng County, Gansu Province, China.

    PubMed

    Liu, Yuan Yuan; Liu, Xue Lu

    2016-04-22

    Based on "patch-corridor-matrix" pattern, spatial scale effect of landscape pattern was studied in Yongdeng County of Lanzhou City, Gansu Province, China. The results showed that the grassland was the matrix of landscape structure in the studied area, road and river played the corridor role, and the other landscape elements (cultivated land, forest land, garden land, residential land, industrial and mineral land, public management and service land, and the other land) acted as patches. The patch level index and the landscape level index all showed obvious dependence on spatial extent. The scale effect of patch index of different landscape elements existed differently in different extent intervals, so did the scale effect of the landscape level index. Within the extent of 1-20 km, the scale effect showed the most obvious difference between the element types and the index types, while it became smaller in 21-90 km, and disappeared beyond 90 km. 90 km×90 km might be the effective extent to study the dependence of spatial extent of landscape structure.

  1. Models of Small-Scale Patchiness

    NASA Technical Reports Server (NTRS)

    McGillicuddy Dennis J., Jr.

    2001-01-01

    Patchiness is perhaps the most salient characteristic of plankton populations in the ocean. The scale of this heterogeneity spans many orders of magnitude in its spatial extent, ranging from planetary down to microscale. It has been argued that patchiness plays a fundamental role in the functioning of marine ecosystems, insofar as the mean conditions may not reflect the environment to which organisms are adapted. For example, the fact that some abundant predators cannot thrive on the mean concentration of their prey in the ocean implies that they are somehow capable of exploiting small-scale patches of prey whose concentrations are much larger than the mean. Understanding the nature of this patchiness is thus one of the major challenges of oceanographic ecology. Additional information is contained in the original extended abstract.

  2. Coherence measurement with digital micromirror device.

    PubMed

    Partanen, Henri; Turunen, Jari; Tervo, Jani

    2014-02-15

    We measure the complex-valued spatial coherence function of a multimode broad-area laser diode using Young's classical double slit experiment realized with a digital micromirror device. We use this data to construct the coherent modes of the beam and to simulate its propagation before and after the measurement plane. When comparing the results to directly measured intensity profiles, we find excellent correspondence to the extent that even small details of the beam can be predicted. We also consider the number of measurement points required to model the beam with sufficient accuracy.

  3. Statistical comparison of coherent structures in fully developed turbulent pipe flow with and without drag reduction

    NASA Astrophysics Data System (ADS)

    Sogaro, Francesca; Poole, Robert; Dennis, David

    2014-11-01

    High-speed stereoscopic particle image velocimetry has been performed in fully developed turbulent pipe flow at moderate Reynolds numbers with and without a drag-reducing additive (an aqueous solution of high molecular weight polyacrylamide). Three-dimensional large and very large-scale motions (LSM and VLSM) are extracted from the flow fields by a detection algorithm and the characteristics for each case are statistically compared. The results show that the three-dimensional extent of VLSMs in drag reduced (DR) flow appears to increase significantly compared to their Newtonian counterparts. A statistical increase in azimuthal extent of DR VLSM is observed by means of two-point spatial autocorrelation of the streamwise velocity fluctuation in the radial-azimuthal plane. Furthermore, a remarkable increase in length of these structures is observed by three-dimensional two-point spatial autocorrelation. These results are accompanied by an analysis of the swirling strength in the flow field that shows a significant reduction in strength and number of the vortices for the DR flow. The findings suggest that the damping of the small scales due to polymer addition results in the undisturbed development of longer flow structures.

  4. Flooding Simulation of Extreme Event on Barnegat Bay by High-Resolution Two Dimensional Hydrodynamic Model

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Ramaswamy, V.; Saleh, F.

    2017-12-01

    Barnegat Bay located on the east coast of New Jersey, United States and is separated from the Atlantic Ocean by the narrow Barnegat Peninsula which acts as a barrier island. The bay is fed by several rivers which empty through small estuaries along the inner shore. In terms of vulnerability from flooding, the Barnegat Peninsula is under the influence of both coastal storm surge and riverine flooding. Barnegat Bay was hit by Hurricane Sandy causing flood damages with extensive cross-island flow at many streets perpendicular to the shoreline. The objective of this work is to identify and quantify the sources of flooding using a two dimensional inland hydrodynamic model. The hydrodynamic model was forced by three observed coastal boundary conditions, and one hydrologic boundary condition from United States Geological Survey (USGS). The model reliability was evaluated with both FEMA spatial flooding extend and USGS High water marks. Simulated flooding extent showed good agreement with the reanalysis spatial inundation extents. Results offered important perspectives on the flow of the water into the bay, the velocity and the depth of the inundated areas. Using such information can enable emergency managers and decision makers identify evacuation and deploy flood defenses.

  5. Untangling the relationships among regional occupancy, species traits, and niche characteristics in stream invertebrates

    PubMed Central

    Heino, Jani; Grönroos, Mira

    2014-01-01

    The regional occupancy and local abundance of species are affected by various species traits, but their relative effects are poorly understood. We studied the relationships between species traits and occupancy (i.e., proportion of sites occupied) or abundance (i.e., mean local abundance at occupied sites) of stream invertebrates using small-grained data (i.e., local stream sites) across a large spatial extent (i.e., three drainage basins). We found a significant, yet rather weak, linear relationship between occupancy and abundance. However, occupancy was strongly related to niche position (NP), but it showed a weaker relationship with niche breadth (NB). Abundance was at best weakly related to these explanatory niche-based variables. Biological traits, including feeding modes, habit traits, dispersal modes and body size classes, were generally less important in accounting for variation in occupancy and abundance. Our findings showed that the regional occupancy of stream invertebrate species is mostly related to niche characteristics, in particular, NP. However, the effects of NB on occupancy were affected by the measure itself. We conclude that niche characteristics determine the regional occupancy of species at relatively large spatial extents, suggesting that species distributions are determined by environmental variation among sites. PMID:24963387

  6. Ion-induced nuclear radiotherapy

    DOEpatents

    Horn, K.M.; Doyle, B.L.

    1996-08-20

    Ion-induced Nuclear Radiotherapy (INRT) is a technique for conducting radiosurgery and radiotherapy with a very high degree of control over the spatial extent of the irradiated volume and the delivered dose. Based upon the concept that low energy, ion induced atomic and nuclear reactions can be used to produce highly energetic reaction products at the site of a tumor, the INRT technique is implemented through the use of a conduit-needle or tube which conducts a low energy ion beam to a position above or within the intended treatment area. At the end of the conduit-needle or tube is a specially fabricated target which, only when struck by the ion beam, acts as a source of energetic radiation products. The inherent limitations in the energy, and therefore range, of the resulting reaction products limits the spatial extent of irradiation to a pre-defined volume about the point of reaction. Furthermore, since no damage is done to tissue outside this irradiated volume, the delivered dose may be made arbitrarily large. INRT may be used both as a point-source of radiation at the site of a small tumor, or as a topical bath of radiation to broad areas of diseased tissue. 25 figs.

  7. Ion-induced nuclear radiotherapy

    DOEpatents

    Horn, Kevin M.; Doyle, Barney L.

    1996-01-01

    Ion-induced Nuclear Radiotherapy (INRT) is a technique for conducting radiosurgery and radiotherapy with a very high degree of control over the spatial extent of the irradiated volume and the delivered dose. Based upon the concept that low energy, ion induced atomic and nuclear reactions can be used to produce highly energetic reaction products at the site of a tumor, the INRT technique is implemented through the use of a conduit-needle or tube which conducts a low energy ion beam to a position above or within the intended treatment area. At the end of the conduit-needle or tube is a specially fabricated target which, only when struck by the ion beam, acts as a source of energetic radiation products. The inherent limitations in the energy, and therefore range, of the resulting reaction products limits the spatial extent of irradiation to a pre-defined volume about the point of reaction. Furthermore, since no damage is done to tissue outside this irradiated volume, the delivered dose may be made arbitrarily large. INRT may be used both as a point-source of radiation at the site of a small tumor, or as a topical bath of radiation to broad areas of diseased tissue.

  8. Urbanisation impacts on storm runoff along a rural-urban gradient

    NASA Astrophysics Data System (ADS)

    Miller, James David; Hess, Tim

    2017-09-01

    Urbanisation alters the hydrological response of catchments to storm events and spatial measures of urban extent and imperviousness are routinely used in hydrological modelling and attribution of runoff response to land use changes. This study evaluates whether a measure of catchment urban extent can account for differences in runoff generation from storm events along an rural-urban gradient. We employed a high-resolution monitoring network across 8 catchments in the south of the UK - ranging from predominantly rural to heavily urbanised - over a four year period, and from this selected 336 storm events. Hydrological response was compared using volume- and scaled time-based hydrograph metrics within a statistical framework that considered the effect of antecedent soil moisture. Clear differences were found between rural and urban catchments, however above a certain threshold of urban extent runoff volume was relatively unaffected by changes and runoff response times were highly variable between catchments due to additional hydraulic controls. Results indicate a spatial measure of urbanisation can generally explain differences in the hydrological response between rural and urban catchments but is insufficient to explain differences between urban catchments along an urban gradient. Antecedent soil moisture alters the volume and timing of runoff generated in catchments with large rural areas, but was not found to affect the runoff response where developed areas are much greater. The results of this study suggest some generalised relationships between urbanisation and storm runoff are not represented in observed storm events and point to limitations in using a simplified representations of the urban environment for attribution of storm runoff in small urban catchments. The study points to the need for enhanced hydrologically relevant catchment descriptors specific to small urban catchments and more focused research on the role of urban soils and soil moisture in storm runoff generation in mixed land-use catchments.

  9. [Spatial scale effect of urban land use landscape pattern in Shanghai City].

    PubMed

    Xu, Li-Hua; Yue, Wen Ze; Cao, Yu

    2007-12-01

    Based on geographic information system (GIS) and remote sensing (RS) techniques, the landscape classes of urban land use in Shanghai City were extracted from SPOT images with 5 m spatial resolution in 2002, and then, the classified data were applied to quantitatively explore the change patterns of several basic landscape metrics at different scales. The results indicated that landscape metrics were sensitive to grain- and extent variance. Urban landscape pattern was spatially dependent. In other words, different landscape metrics showed different responses to scale. The resolution of 40 m was an intrinsic observing scale for urban landscape in Shanghai City since landscape metrics showed random characteristics while the grain was less than 40 m. The extent of 24 km was a symbol scale in a series of extents, which was consistent with the boundary between urban built-up area and suburban area in Shanghai City. As a result, the extent of 12 km away from urban center would be an intrinsic handle scale for urban landscape in Shanghai City. However, due to the complexity of urban structure and asymmetry of urban spatial expansion, the intrinsic handle scale was not regular extent, and the square with size of 24 km was just an approximate intrinsic extent for Shanghai City.

  10. Small-scale plasma irregularities in the nightside Venus ionosphere

    NASA Astrophysics Data System (ADS)

    Grebowsky, J. M.; Curtis, S. A.; Brace, L. H.

    1991-12-01

    The individual volt-ampere curves from the Pioneer Venus Orbiter electron temperature probe showed evidence for small-scale density irregularities, or short-period plasma waves, in regions of the nightside ionosphere where the Orbiter electric field detector observed waves in its 100-Hz channel. A survey of the nightside volt-ampere curves has revealed several hundred examples of such irregularities. The I-V structures correspond to plasma density structure with spatial scale sizes in the range of about 100-2000 m, or alternatively they could be viewed as waves having frequencies extending toward 100 Hz. They are often seen as isolated events, with spatial extent along the orbit frequently less than 80 km. The density irregularities or waves occur in or near prominent gradients in the ambient plasma concentrations both at low altitudes where molecular ions are dominant and at higher altitudes in regions of reduced plasma density where O(+) is the major ion. Electric field 100-Hz bursts occur simultaneously, with the majority of the structured I-V curves providing demonstrative evidence that at least some of the E field signals are produced within the ionosphere.

  11. Considerations for Achieving Cross-Platform Point Cloud Data Fusion across Different Dryland Ecosystem Structural States

    PubMed Central

    Swetnam, Tyson L.; Gillan, Jeffrey K.; Sankey, Temuulen T.; McClaran, Mitchel P.; Nichols, Mary H.; Heilman, Philip; McVay, Jason

    2018-01-01

    Remotely sensing recent growth, herbivory, or disturbance of herbaceous and woody vegetation in dryland ecosystems requires high spatial resolution and multi-temporal depth. Three dimensional (3D) remote sensing technologies like lidar, and techniques like structure from motion (SfM) photogrammetry, each have strengths and weaknesses at detecting vegetation volume and extent, given the instrument's ground sample distance and ease of acquisition. Yet, a combination of platforms and techniques might provide solutions that overcome the weakness of a single platform. To explore the potential for combining platforms, we compared detection bias amongst two 3D remote sensing techniques (lidar and SfM) using three different platforms [ground-based, small unmanned aerial systems (sUAS), and manned aircraft]. We found aerial lidar to be more accurate for characterizing the bare earth (ground) in dense herbaceous vegetation than either terrestrial lidar or aerial SfM photogrammetry. Conversely, the manned aerial lidar did not detect grass and fine woody vegetation while the terrestrial lidar and high resolution near-distance (ground and sUAS) SfM photogrammetry detected these and were accurate. UAS SfM photogrammetry at lower spatial resolution under-estimated maximum heights in grass and shrubs. UAS and handheld SfM photogrammetry in near-distance high resolution collections had similar accuracy to terrestrial lidar for vegetation, but difficulty at measuring bare earth elevation beneath dense herbaceous cover. Combining point cloud data and derivatives (i.e., meshes and rasters) from two or more platforms allowed for more accurate measurement of herbaceous and woody vegetation (height and canopy cover) than any single technique alone. Availability and costs of manned aircraft lidar collection preclude high frequency repeatability but this is less limiting for terrestrial lidar, sUAS and handheld SfM. The post-processing of SfM photogrammetry data became the limiting factor at larger spatial scale and temporal repetition. Despite the utility of sUAS and handheld SfM for monitoring vegetation phenology and structure, their spatial extents are small relative to manned aircraft. PMID:29379511

  12. Considerations for Achieving Cross-Platform Point Cloud Data Fusion across Different Dryland Ecosystem Structural States.

    PubMed

    Swetnam, Tyson L; Gillan, Jeffrey K; Sankey, Temuulen T; McClaran, Mitchel P; Nichols, Mary H; Heilman, Philip; McVay, Jason

    2017-01-01

    Remotely sensing recent growth, herbivory, or disturbance of herbaceous and woody vegetation in dryland ecosystems requires high spatial resolution and multi-temporal depth. Three dimensional (3D) remote sensing technologies like lidar, and techniques like structure from motion (SfM) photogrammetry, each have strengths and weaknesses at detecting vegetation volume and extent, given the instrument's ground sample distance and ease of acquisition. Yet, a combination of platforms and techniques might provide solutions that overcome the weakness of a single platform. To explore the potential for combining platforms, we compared detection bias amongst two 3D remote sensing techniques (lidar and SfM) using three different platforms [ground-based, small unmanned aerial systems (sUAS), and manned aircraft]. We found aerial lidar to be more accurate for characterizing the bare earth (ground) in dense herbaceous vegetation than either terrestrial lidar or aerial SfM photogrammetry. Conversely, the manned aerial lidar did not detect grass and fine woody vegetation while the terrestrial lidar and high resolution near-distance (ground and sUAS) SfM photogrammetry detected these and were accurate. UAS SfM photogrammetry at lower spatial resolution under-estimated maximum heights in grass and shrubs. UAS and handheld SfM photogrammetry in near-distance high resolution collections had similar accuracy to terrestrial lidar for vegetation, but difficulty at measuring bare earth elevation beneath dense herbaceous cover. Combining point cloud data and derivatives (i.e., meshes and rasters) from two or more platforms allowed for more accurate measurement of herbaceous and woody vegetation (height and canopy cover) than any single technique alone. Availability and costs of manned aircraft lidar collection preclude high frequency repeatability but this is less limiting for terrestrial lidar, sUAS and handheld SfM. The post-processing of SfM photogrammetry data became the limiting factor at larger spatial scale and temporal repetition. Despite the utility of sUAS and handheld SfM for monitoring vegetation phenology and structure, their spatial extents are small relative to manned aircraft.

  13. Ecosystem extent and fragmentation

    USGS Publications Warehouse

    Sayre, Roger; Hansen, Matt

    2017-01-01

    One of the candidate essential biodiversity variable (EBV) groups described in the seminal paper by Pereira et al. (2014) concerns Ecosystem Structure. This EBV group is distinguished from another EBV group which encompasses aspects of Ecosystem Function. While the Ecosystem Function EBV treats ecosystem processes like nutrient cycling, primary production, trophic interactions, etc., the Ecosystem Structure EBV relates to the set of biophysical properties of ecosystems that create biophysical environmental context, confer biophysical structure, and occur geographically. The Ecosystem Extent and Fragmentation EBV is one of the EBVs in the Ecosystem Structure EBV group.Ecosystems are understood to exist at multiple scales, from very large areas (macro-ecosystems) like the Arctic tundra, for example, to something as small as a tree in an Amazonian rain forest. As such, ecosystems occupy space and therefore can be mapped across any geography of interest, whether that area of interest be a site, a nation, a region, a continent, or the planet. One of the most obvious and seemingly straightforward EBVs is Ecosystem Extent and Fragmentation. Ecosystem extent refers to the location and geographic distribution of ecosystems across landscapes or in the oceans, while ecosystem fragmentation refers to the spatial pattern and connectivity of ecosystem occurrences on the landscape.

  14. Mapping the Philippines' mangrove forests using Landsat imagery

    USGS Publications Warehouse

    Long, Jordan; Giri, Chandra

    2011-01-01

    Current, accurate, and reliable information on the areal extent and spatial distribution of mangrove forests in the Philippines is limited. Previous estimates of mangrove extent do not illustrate the spatial distribution for the entire country. This study, part of a global assessment of mangrove dynamics, mapped the spatial distribution and areal extent of the Philippines’ mangroves circa 2000. We used publicly available Landsat data acquired primarily from the Global Land Survey to map the total extent and spatial distribution. ISODATA clustering, an unsupervised classification technique, was applied to 61 Landsat images. Statistical analysis indicates the total area of mangrove forest cover was approximately 256,185 hectares circa 2000 with overall classification accuracy of 96.6% and a kappa coefficient of 0.926. These results differ substantially from most recent estimates of mangrove area in the Philippines. The results of this study may assist the decision making processes for rehabilitation and conservation efforts that are currently needed to protect and restore the Philippines’ degraded mangrove forests.

  15. Coupled Spatiotemporal Dynamics of Microbial Community Ecology, Biogeochemistry, and Hydrologic Mixing

    NASA Astrophysics Data System (ADS)

    Stegen, J.; Johnson, T. C.; Fredrickson, J.; Wilkins, M.; Konopka, A.; Nelson, W.; Arntzen, E.; Chrisler, W.; Chu, R. K.; Fansler, S.; Kennedy, D.; Resch, T.; Tfaily, M. M.

    2015-12-01

    The hyporheic zone (HZ) is a critical ecosystem component that links terrestrial, surface water, and groundwater ecosystems. A dominant feature of the HZ is groundwater-surface water mixing and the input of terrestrially—as well as aquatically—derived organic carbon. In many systems the HZ has a relatively small spatial extent, but in larger riverine systems groundwater-surface water mixing can occur 100s of meters beyond the surface water shoreline; we consider these more distal locations to be within the 'subsurface interaction zone' (SIZ) as they are beyond the traditional HZ. Microbial communities in the HZ and SIZ drive biogeochemical processes in these system components, yet relatively little is known about the ecological processes that drive HZ and SIZ microbial communities. Here, we applied ecological theory, aqueous biogeochemistry, DNA sequencing, and ultra-high resolution organic carbon profiling to field samples collected through space (400m spatial extent) and time (7 month temporal extent) within the Hanford Site 300 Area. These data streams were integrated to evaluate how the influence of groundwater-surface water mixing on microbial communities changes when moving from the HZ to the broader SIZ. Our results indicate that groundwater-surface water mixing (i) consistently stimulated heterotrophic respiration, but only above a threshold of surface water intrusion, (ii) did not stimulate denitrification, (iii) caused deterministic shifts in HZ microbial communities due to changes in organic carbon composition, and (iv) did not cause shifts in SIZ microbial communities. These results suggest that microbial communities and the biogeochemical processes they drive are impacted by groundwater-surface water mixing primarily in the HZ and to a lesser extent in the SIZ.

  16. Mesoscale monitoring of the soil freeze/thaw boundary from orbital microwave radiometry

    NASA Technical Reports Server (NTRS)

    Dobson, Craig; Ulaby, Fawwaz T.; Zuerndorfer, Brian; England, Anthony W.

    1990-01-01

    A technique was developed for mapping the spatial extent of frozen soils from the spectral characteristics of the 10.7 to 37 GHz radiobrightness. Through computational models for the spectral radiobrightness of diurnally heated freesing soils, a distinctive radiobrightness signature was identified for frozen soils, and the signature was cast as a discriminant for unsupervised classification. In addition to large area images, local area spatial averages of radiobrightness were calculated for each radiobrightness channel at 7 meteorologic sites within the test region. Local area averages at the meteorologic sites were used to define the preliminary boundaries in the Freeze Indicator discriminate. Freeze Indicator images based upon Nimbus 7, Scanning Multichannel Microwave Radiometer (SMMR) data effectively map temporal variations in the freeze/thaw pattern for the northern Great Plains at the time scale of days. Diurnal thermal gradients have a small but measurable effect upon the SMMR spectral gradient. Scale-space filtering can be used to improve the spatial resolution of a freeze/thaw classified image.

  17. Using a filtering task to measure the spatial extent of selective attention

    PubMed Central

    Palmer, John; Moore, Cathleen M.

    2009-01-01

    The spatial extent of attention was investigated by measuring sensitivity to stimuli at to-be-ignored locations. Observers detected a stimulus at a cued location (target), while ignoring otherwise identical stimuli at nearby locations (foils). Only an attentional cue distinguished target from foil. Several experiments varied the contrast and separation of targets and foils. Two theories of selection were compared: contrast gain and a version of attention switching called an all-or-none mixture model. Results included large effects of separation, rejection of the contrast gain model, and the measurement of the size and profile of the spatial extent of attention. PMID:18405935

  18. Temperature distributions in tissues during local hyperthermia by stationary or steered beams of unfocused or focused ultrasound.

    PubMed Central

    Lele, P. P.; Parker, K. J.

    1982-01-01

    Temperature distributions resulting from insonation with stationary or steered beams of unfocused or focused ultrasound were measured in tissue-equivalent phantom, beef muscle in vitro, dog muscle mass, and transplanted murine tumours in vivo. Arrays of 4 to 6 thermocouples stepped through the volume of interest under computer control were used to measure the steady-state temperatures at 600 to 800 locations in both in vitro and in vivo experiments. The results were confirmed in spontaneous tumours in dog patients using fewer multi-thermocouple probes. Plane wave ultrasound was found to result in spatially non-uniform hyperthermia even in superficial tumours. The region of maximum temperature rise was small in extent and was situated at a depth which varied in the different models from 0.5 to 1.0 cm. Neither its location nor its extent could be varied by spatial manipulations of the transducer or by changing the insonation parameters except the ultrasonic frequency. A second region of hyperthermia was produced at depth by reflective heating if an ultrasonically reflective target, such as bone or air-containing tissue, was located below the target tissue. On the other hand, using available steered, focused ultrasound techniques, tumours (whether situated superficially or at depth) could be heated to a uniform, controllable temperature without undesirable temperature elevation in surrounding normal tissues. The use of steered, focused ultrasound permits deposition of energy to be tailored to the specific needs of each individual tumour. The small size of the focal region enables heating of tumours even when located near ultrasound reflecting targets. PMID:6950746

  19. Quantifying high resolution transitional breaks in plant and mammal distributions at regional extent and their association with climate, topography and geology.

    PubMed

    Di Virgilio, Giovanni; Laffan, Shawn W; Ebach, Malte C

    2013-01-01

    We quantify spatial turnover in communities of 1939 plant and 59 mammal species at 2.5 km resolution across a topographically heterogeneous region in south-eastern Australia to identify distributional breaks and low turnover zones where multiple species distributions overlap. Environmental turnover is measured to determine how climate, topography and geology influence biotic turnover differently across a variety of biogeographic breaks and overlaps. We identify the genera driving turnover and confirm the versatility of this approach across spatial scales and locations. Directional moving window analyses, rotated through 360°, were used to measure spatial turnover variation in different directions between gridded cells containing georeferenced plant and mammal occurrences and environmental variables. Generalised linear models were used to compare taxic turnover results with equivalent analyses for geology, regolith weathering, elevation, slope, solar radiation, annual precipitation and annual mean temperature, both uniformly across the entire study area and by stratifying it into zones of high and low turnover. Identified breaks and transitions were compared to a conservation bioregionalisation framework widely used in Australia. Detailed delineations of plant and mammal turnover zones with gradational boundaries denoted subtle variation in species assemblages. Turnover patterns often diverged from bioregion boundaries, though plant turnover adhered most closely. A prominent break zone contained either comparable or greater numbers of unique genera than adjacent overlaps, but these were concentrated in a small subsection relatively under-protected by conservation reserves. The environmental correlates of biotic turnover varied for different turnover zones in different subsections of the study area. Topography and temperature showed much stronger relationships with plant turnover in a topographically complex overlap, relative to a lowland overlap where weathering was most predictive. This method can quantify transitional turnover patterns from small to broad extents, at different resolutions for any location, and complements broad-scale bioregionalisation schemes in conservation planning.

  20. Residency and movement patterns of an apex predatory shark (Galeocerdo cuvier) at the Galapagos Marine Reserve.

    PubMed

    Acuña-Marrero, David; Smith, Adam N H; Hammerschlag, Neil; Hearn, Alex; Anderson, Marti J; Calich, Hannah; Pawley, Matthew D M; Fischer, Chris; Salinas-de-León, Pelayo

    2017-01-01

    The potential effectiveness of marine protected areas (MPAs) as a conservation tool for large sharks has been questioned due to the limited spatial extent of most MPAs in contrast to the complex life history and high mobility of many sharks. Here we evaluated the movement dynamics of a highly migratory apex predatory shark (tiger shark Galeocerdo cuvier) at the Galapagos Marine Reserve (GMR). Using data from satellite tracking passive acoustic telemetry, and stereo baited remote underwater video, we estimated residency, activity spaces, site fidelity, distributional abundances and migration patterns from the GMR and in relation to nesting beaches of green sea turtles (Chelonia mydas), a seasonally abundant and predictable prey source for large tiger sharks. Tiger sharks exhibited a high degree of philopatry, with 93% of the total satellite-tracked time across all individuals occurring within the GMR. Large sharks (> 200 cm TL) concentrated their movements in front of the two most important green sea turtle-nesting beaches in the GMR, visiting them on a daily basis during nocturnal hours. In contrast, small sharks (< 200 cm TL) rarely visited turtle-nesting areas and displayed diurnal presence at a third location where only immature sharks were found. Small and some large individuals remained in the three study areas even outside of the turtle-nesting season. Only two sharks were satellite-tracked outside of the GMR, and following long-distance migrations, both individuals returned to turtle-nesting beaches at the subsequent turtle-nesting season. The spatial patterns of residency and site fidelity of tiger sharks suggest that the presence of a predictable source of prey and suitable habitats might reduce the spatial extent of this large shark that is highly migratory in other parts of its range. This highly philopatric behaviour enhances the potential effectiveness of the GMR for their protection.

  1. Residency and movement patterns of an apex predatory shark (Galeocerdo cuvier) at the Galapagos Marine Reserve

    PubMed Central

    Smith, Adam N. H.; Hammerschlag, Neil; Hearn, Alex; Anderson, Marti J.; Calich, Hannah; Pawley, Matthew D. M.; Fischer, Chris; Salinas-de-León, Pelayo

    2017-01-01

    The potential effectiveness of marine protected areas (MPAs) as a conservation tool for large sharks has been questioned due to the limited spatial extent of most MPAs in contrast to the complex life history and high mobility of many sharks. Here we evaluated the movement dynamics of a highly migratory apex predatory shark (tiger shark Galeocerdo cuvier) at the Galapagos Marine Reserve (GMR). Using data from satellite tracking passive acoustic telemetry, and stereo baited remote underwater video, we estimated residency, activity spaces, site fidelity, distributional abundances and migration patterns from the GMR and in relation to nesting beaches of green sea turtles (Chelonia mydas), a seasonally abundant and predictable prey source for large tiger sharks. Tiger sharks exhibited a high degree of philopatry, with 93% of the total satellite-tracked time across all individuals occurring within the GMR. Large sharks (> 200 cm TL) concentrated their movements in front of the two most important green sea turtle-nesting beaches in the GMR, visiting them on a daily basis during nocturnal hours. In contrast, small sharks (< 200 cm TL) rarely visited turtle-nesting areas and displayed diurnal presence at a third location where only immature sharks were found. Small and some large individuals remained in the three study areas even outside of the turtle-nesting season. Only two sharks were satellite-tracked outside of the GMR, and following long-distance migrations, both individuals returned to turtle-nesting beaches at the subsequent turtle-nesting season. The spatial patterns of residency and site fidelity of tiger sharks suggest that the presence of a predictable source of prey and suitable habitats might reduce the spatial extent of this large shark that is highly migratory in other parts of its range. This highly philopatric behaviour enhances the potential effectiveness of the GMR for their protection. PMID:28829820

  2. ASSESSING THE ACCURACY OF NATIONAL LAND COVER DATASET AREA ESTIMATES AT MULTIPLE SPATIAL EXTENTS

    EPA Science Inventory

    Site specific accuracy assessments provide fine-scale evaluation of the thematic accuracy of land use/land cover (LULC) datasets; however, they provide little insight into LULC accuracy across varying spatial extents. Additionally, LULC data are typically used to describe lands...

  3. Downscaling of inundation extents

    NASA Astrophysics Data System (ADS)

    Aires, Filipe; Prigent, Catherine; Papa, Fabrice

    2014-05-01

    The Global Inundation Extent from Multi-Satellite (GIEMS) provides multi-year monthly variations of the global surface water extent at about 25 kmx25 km resolution, from 1993 to 2007. It is derived from multiple satellite observations. Its spatial resolution is usually compatible with climate model outputs and with global land surface model grids but is clearly not adequate for local applications that require the characterization of small individual water bodies. There is today a strong demand for high-resolution inundation extent datasets, for a large variety of applications such as water management, regional hydrological modeling, or for the analysis of mosquitos-related diseases. This paper present three approaches to do downscale GIEMS: The first one is based on a image-processing technique using neighborhood constraints. The third approach uses a PCA representation to perform an algebraic inversion. The PCA-representation is also very convenient to perform temporal and spatial interpolation of complexe inundation fields. The third downscaling method uses topography information from Hydroshed Digital Elevation Model (DEM). Information such as the elevation, distance to river and flow accumulation are used to define a ``flood ability index'' that is used by the downscaling. Three basins will be considered for illustrative purposes: Amazon, Niger and Mekong. Aires, F., F. Papa, C. Prigent, J.-F. Cretaux and M. Berge-Nguyen, Characterization and downscaling of the inundation extent over the Inner Niger delta using a multi-wavelength retrievals and Modis data, J. of Hydrometeorology, in press, 2014. Aires, F., F. Papa and C. Prigent, A long-term, high-resolution wetland dataset over the Amazon basin, downscaled from a multi-wavelength retrieval using SAR, J. of Hydrometeorology, 14, 594-6007, 2013. Prigent, C., F. Papa, F. Aires, C. Jimenez, W.B. Rossow, and E. Matthews. Changes in land surface water dynamics since the 1990s and relation to population pressure. Geophys. Res. Lett., 39(L08403), 2012.

  4. A method for examining temporal changes in cyanobacterial harmful algal bloom spatial extent using satellite remote sensing..

    EPA Science Inventory

    Cyanobacterial harmful algal blooms (CyanoHAB) are thought to be increasing globally over the past few decades, but relatively little quantitative information is available about the spatial extent of blooms. Satellite remote sensing provides a potential technology for identifying...

  5. Drivers and Spatio-Temporal Extent of Hyporheic Patch Variation: Implications for Sampling

    PubMed Central

    Braun, Alexander; Auerswald, Karl; Geist, Juergen

    2012-01-01

    The hyporheic zone in stream ecosystems is a heterogeneous key habitat for species across many taxa. Consequently, it attracts high attention among freshwater scientists, but generally applicable guidelines on sampling strategies are lacking. Thus, the objective of this study was to develop and validate such sampling guidelines. Applying geostatistical analysis, we quantified the spatio-temporal variability of parameters, which characterize the physico-chemical substratum conditions in the hyporheic zone. We investigated eight stream reaches in six small streams that are typical for the majority of temperate areas. Data was collected on two occasions in six stream reaches (development data), and once in two additional reaches, after one year (validation data). In this study, the term spatial variability refers to patch contrast (patch to patch variance) and patch size (spatial extent of a patch). Patch contrast of hyporheic parameters (specific conductance, pH and dissolved oxygen) increased with macrophyte cover (r2 = 0.95, p<0.001), while patch size of hyporheic parameters decreased from 6 to 2 m with increasing sinuosity of the stream course (r2 = 0.91, p<0.001), irrespective of the time of year. Since the spatial variability of hyporheic parameters varied between stream reaches, our results suggest that sampling design should be adapted to suit specific stream reaches. The distance between sampling sites should be inversely related to the sinuosity, while the number of samples should be related to macrophyte cover. PMID:22860053

  6. Monitoring Urbanization Processes from Space: Using Landsat Imagery to Detect Built-Up Areas at Scale

    NASA Astrophysics Data System (ADS)

    Goldblatt, R.; You, W.; Hanson, G.; Khandelwal, A. K.

    2016-12-01

    Urbanization is one of the most fundamental trends of the past two centuries and a key force shaping almost all dimensions of modern society. Monitoring the spatial extent of cities and their dynamics be means of remote sensing methods is crucial for many research domains, as well as to city and regional planning and to policy making. Yet the majority of urban research is being done in small scales, due, in part, to computational limitation. With the increasing availability of parallel computing platforms with large storage capacities, such as Google Earth Engine (GEE), researchers can scale up the spatial and the temporal units of analysis and investigate urbanization processes over larger areas and over longer periods of time. In this study we present a methodology that is designed to capture temporal changes in the spatial extent of urban areas at the national level. We utilize a large scale ground-truth dataset containing examples of "built-up" and "not built-up" areas from across India. This dataset, which was collected based on 2016 high-resolution imagery, is used for supervised pixel-based image classification in GEE. We assess different types of classifiers and inputs and demonstrate that with Landsat 8 as the classifier`s input, Random Forest achieves a high accuracy rate of around 87%. Although performance with Landsat 8 as the input exceeds that of Landsat 7, with the addition of several per-pixel computed indices to Landsat 7 - NDVI, NDBI, MNDWI and SAVI - the classifier`s sensitivity improves by around 10%. We use Landsat 7 to detect temporal changes in the extent of urban areas. The classifier is trained with 2016 imagery as the input - for which ground truth data is available - and is used the to detect urban areas over the historical imagery. We demonstrate that this classification produces high quality maps of urban extent over time. We compare the classification result with numerous datasets of urban areas (e.g. MODIS, DMSP-OLS and WorldPop) and show that our classification captures the fine boundaries between built-up areas and various types of land cover thus providing an accurate estimation of the extent of urban areas. The study demonstrates the potential of cloud-based platforms, such as GEE, for monitoring long-term and continuous urbanization processes at scale.

  7. Factors related to northern goshawk landscape use in the western Great Lakes region

    USGS Publications Warehouse

    Bruggeman, Jason E.; Andersen, David E.; Woodford, James E.

    2014-01-01

    Northern Goshawks (Accipiter gentilis) are a species of special conservation concern in the western Great Lakes bioregion and elsewhere in North America, and exhibit landscape-scale spatial use patterns. However, little information exists about Northern Goshawk habitat relations at broad spatial extents, as most existing published information comes from a few locations of relatively small spatial extent and, in some cases, short durations. We used an information-theoretic approach to evaluate competing hypotheses regarding factors (forest canopy cover, successional stage, and heights of the canopy top and base) related to odds of Northern Goshawk landscape use throughout the western Great Lakes bioregion based on an occupancy survey completed in 2008 (Bruggeman et al. 2011). We also combined these data with historical data of Northern Goshawk nest locations in the bioregion from 1979–2006 to evaluate the same competing hypotheses to elucidate long-term trends in use. The odds of Northern Goshawk use in 2008, and from 1979–2008, were positively correlated with average percent canopy cover. In the best-approximating models developed using 1979–2008 data, the odds of landscape use were positively correlated with the percentages of the landscape having canopy heights between 10 m and 25 m, and 25 m and 50 m, and the amount of variability in canopy base height. Also, the odds of landscape use were negatively correlated with the average height at the canopy base. Our results suggest multiple habitat factors were related to Northern Goshawk landscape-scale habitat use, similar to habitat use described at smaller spatial scales in the western Great Lakes bioregion and in western North America and Europe.

  8. Mapping lichen color-groups in western Arctic Alaska using seasonal Landsat composites

    NASA Astrophysics Data System (ADS)

    Nelson, P.; Macander, M. J.; Swingley, C. S.

    2016-12-01

    Mapping lichens at a landscape scale has received increased recent interest due to fears that terricolous lichen mats, primary winter caribou forage, may be decreasing across the arctic and boreal zones. However, previous efforts have produced taxonomically coarse, total lichen cover maps or have covered relatively small spatial extents. Here we attempt to map lichens of differing colors as species proxies across northwestern Alaska to produce the finest taxonomic and spatial- grained lichen maps covering the largest spatial extent to date. Lichen community sampling in five western Alaskan National Parks and Preserves from 2007-2012 generated 328 FIA-style 34.7 m radius plots on which species-level macrolichen community structure and abundance was estimated. Species were coded by color and plot lichen cover was aggregated by plot as the sum of the cover of each species in a color group. Ten different lichen color groupings were used for modeling to deduce which colors were most detectable. Reflectance signatures of each plot were extracted from a series of Landsat composites (circa 2000-2010) partitioned into two-week intervals from June 1 to Sept. 15. Median reflectance values for each band in each pixel were selected based on filtering criteria to reduce likelihood of snow cover. Lichen color group cover was regressed against plot reflectance plus additional abiotic predictors in two different data mining algorithms. Brown and grey lichens had the best models explaining approximately 40% of lichen cover in those color groups. Both data mining techniques produced similarly good fitting models. Spatial patterns of lichen color-group cover show distinctly different ecological patterns of these color-group species proxies.

  9. Spatial Autocorrelation Can Generate Stronger Correlations between Range Size and Climatic Niches Than the Biological Signal - A Demonstration Using Bird and Mammal Range Maps.

    PubMed

    Boucher-Lalonde, Véronique; Currie, David J

    2016-01-01

    Species' geographic ranges could primarily be physiological tolerances drawn in space. Alternatively, geographic ranges could be only broadly constrained by physiological climatic tolerances: there could generally be much more proximate constraints on species' ranges (dispersal limitation, biotic interactions, etc.) such that species often occupy a small and unpredictable subset of tolerable climates. In the literature, species' climatic tolerances are typically estimated from the set of conditions observed within their geographic range. Using this method, studies have concluded that broader climatic niches permit larger ranges. Similarly, other studies have investigated the biological causes of incomplete range filling. But, when climatic constraints are measured directly from species' ranges, are correlations between species' range size and climate necessarily consistent with a causal link? We evaluated the extent to which variation in range size among 3277 bird and 1659 mammal species occurring in the Americas is statistically related to characteristics of species' realized climatic niches. We then compared how these relationships differed from the ones expected in the absence of a causal link. We used a null model that randomizes the predictor variables (climate), while retaining their broad spatial autocorrelation structure, thereby removing any causal relationship between range size and climate. We found that, although range size is strongly positively related to climatic niche breadth, range filling and, to a lesser extent, niche position in nature, the observed relationships are not always stronger than expected from spatial autocorrelation alone. Thus, we conclude that equally strong relationships between range size and climate would result from any processes causing ranges to be highly spatially autocorrelated.

  10. Spatial Autocorrelation Can Generate Stronger Correlations between Range Size and Climatic Niches Than the Biological Signal — A Demonstration Using Bird and Mammal Range Maps

    PubMed Central

    Boucher-Lalonde, Véronique; Currie, David J.

    2016-01-01

    Species’ geographic ranges could primarily be physiological tolerances drawn in space. Alternatively, geographic ranges could be only broadly constrained by physiological climatic tolerances: there could generally be much more proximate constraints on species’ ranges (dispersal limitation, biotic interactions, etc.) such that species often occupy a small and unpredictable subset of tolerable climates. In the literature, species’ climatic tolerances are typically estimated from the set of conditions observed within their geographic range. Using this method, studies have concluded that broader climatic niches permit larger ranges. Similarly, other studies have investigated the biological causes of incomplete range filling. But, when climatic constraints are measured directly from species’ ranges, are correlations between species’ range size and climate necessarily consistent with a causal link? We evaluated the extent to which variation in range size among 3277 bird and 1659 mammal species occurring in the Americas is statistically related to characteristics of species’ realized climatic niches. We then compared how these relationships differed from the ones expected in the absence of a causal link. We used a null model that randomizes the predictor variables (climate), while retaining their broad spatial autocorrelation structure, thereby removing any causal relationship between range size and climate. We found that, although range size is strongly positively related to climatic niche breadth, range filling and, to a lesser extent, niche position in nature, the observed relationships are not always stronger than expected from spatial autocorrelation alone. Thus, we conclude that equally strong relationships between range size and climate would result from any processes causing ranges to be highly spatially autocorrelated. PMID:27855201

  11. Locally distributed ground deformation in an area of potential phreatic eruption, Midagahara volcano, Japan, detected by single-look-based InSAR time series analysis

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tomokazu

    2018-05-01

    Although it is difficult to monitor the spatial extent and temporal evolution of local and small-magnitude ground inflation, this information is vital to assess the potential for phreatic eruption. Herein, we demonstrate the detection of locally distributed ground deformation preceding the enhancement of geothermal activity in the Midagahara volcano, Japan, through the application of single-look-based interferometric synthetic aperture radar analysis. In the Jigoku-dani geothermal area, the ground deformation proceeded at a low speed of 4 cm/year at most with a spatial extent of 500 m in the east-west direction and 250 m in the north-south direction. The deformation can be recognized to progress from 2007, at the latest, to 2010, after which the geothermal activity increased, with the collapse of sulfur towers and the appearance of active fumaroles and boiling water on the ground surface. The most deformed area corresponds to the geothermal area with the highest activity observed on the ground surface. Assuming a sill opening model, the deformation source is estimated to be located at a depth of 50 m from the surface with a speed of 7 cm/year at most, which is consistent with the depth of the highly conductive medium inferred from magnetotelluric analyses. This may suggest that volcanic fluid and/or heat was injected into the fluid-rich medium from depth and caused the ground inflation. Our results demonstrate that high-spatial-resolution deformation data can be an effective tool to monitor subsurface pressure conditions with pinpoint spatial accuracy during the build-up to phreatic eruptions.

  12. Method for identifying anomalous terrestrial heat flows

    DOEpatents

    Del Grande, Nancy Kerr

    1977-01-25

    A method for locating and mapping the magnitude and extent of terrestrial heat-flow anomalies from 5 to 50 times average with a tenfold improved sensitivity over orthodox applications of aerial temperature-sensing surveys as used for geothermal reconnaissance. The method remotely senses surface temperature anomalies such as occur from geothermal resources or oxidizing ore bodies by: measuring the spectral, spatial, statistical, thermal, and temporal features characterizing infrared radiation emitted by natural terrestrial surfaces; deriving from these measurements the true surface temperature with uncertainties as small as 0.05 to 0.5 K; removing effects related to natural temperature variations of topographic, hydrologic, or meteoric origin, the surface composition, detector noise, and atmospheric conditions; factoring out the ambient normal-surface temperature for non-thermally enhanced areas surveyed under otherwise identical environmental conditions; distinguishing significant residual temperature enhancements characteristic of anomalous heat flows and mapping the extent and magnitude of anomalous heat flows where they occur.

  13. Investigation of the Spatiotemporal Responses of Nanoparticles in Tumor Tissues with a Small-Scale Mathematical Model

    PubMed Central

    Chou, Cheng-Ying; Huang, Chih-Kang; Lu, Kuo-Wei; Horng, Tzyy-Leng; Lin, Win-Li

    2013-01-01

    The transport and accumulation of anticancer nanodrugs in tumor tissues are affected by many factors including particle properties, vascular density and leakiness, and interstitial diffusivity. It is important to understand the effects of these factors on the detailed drug distribution in the entire tumor for an effective treatment. In this study, we developed a small-scale mathematical model to systematically study the spatiotemporal responses and accumulative exposures of macromolecular carriers in localized tumor tissues. We chose various dextrans as model carriers and studied the effects of vascular density, permeability, diffusivity, and half-life of dextrans on their spatiotemporal concentration responses and accumulative exposure distribution to tumor cells. The relevant biological parameters were obtained from experimental results previously reported by the Dreher group. The area under concentration-time response curve (AUC) quantified the extent of tissue exposure to a drug and therefore was considered more reliable in assessing the extent of the overall drug exposure than individual concentrations. The results showed that 1) a small macromolecule can penetrate deep into the tumor interstitium and produce a uniform but low spatial distribution of AUC; 2) large macromolecules produce high AUC in the perivascular region, but low AUC in the distal region away from vessels; 3) medium-sized macromolecules produce a relatively uniform and high AUC in the tumor interstitium between two vessels; 4) enhancement of permeability can elevate the level of AUC, but have little effect on its uniformity while enhancement of diffusivity is able to raise the level of AUC and improve its uniformity; 5) a longer half-life can produce a deeper penetration and a higher level of AUC distribution. The numerical results indicate that a long half-life carrier in plasma and a high interstitial diffusivity are the key factors to produce a high and relatively uniform spatial AUC distribution in the interstitium. PMID:23565142

  14. Variability of intertidal foraminferal assemblages in a salt marsh, Oregon, USA

    USGS Publications Warehouse

    Milker, Yvonne; Horton, Benjamin P.; Nelson, Alan R.; Engelhart, Simon E.; Witter, Robert C.

    2015-01-01

    We studied 18 sampling stations along a transect to investigate the similarity between live (rose Bengal stained) foraminiferal populations and dead assemblages, their small-scale spatial variations and the distribution of infaunal foraminifera in a salt marsh (Toms Creek marsh) at the upper end of the South Slough arm of the Coos Bay estuary, Oregon, USA. We aimed to test to what extent taphonomic processes, small-scale variability and infaunal distribution influence the accuracy of sea-level reconstructions based on intertidal foraminifera. Cluster analyses have shown that dead assemblages occur in distinct zones with respect to elevation, a prerequisite for using foraminifera as sea-level indicators. Our nonparametric multivariate analysis of variance showed that small-scale spatial variability has only a small influence on live (rose Bengal stained) populations and dead assemblages. The dissimilarity was higher, however, between live (rose Bengal stained) populations in the middle marsh. We observed early diagenetic dissolution of calcareous tests in the dead assemblages. If comparable post-depositional processes and similar minor spatial variability also characterize fossil assemblages, then dead assemblage are the best modern analogs for paleoenvironmental reconstructions. The Toms Creek tidal flat and low marsh vascular plant zones are dominated by Miliammina fusca, the middle marsh is dominated by Balticammina pseudomacrescens and Trochammina inflata, and the high marsh and upland–marsh transition zone are dominated by Trochamminita irregularis. Analysis of infaunal foraminifera showed that most living specimens are found in the surface sediments and the majority of live (rose Bengal stained) infaunal specimens are restricted to the upper 10 cm, but living individuals are found to depths of 50 cm. The dominant infaunal specimens are similar to those in the corresponding surface samples and no species have been found living solely infaunally. The total numbers of infaunal foraminifera are small compared to the total numbers of dead specimens in the surface samples. This suggests that surface samples adequately represent the modern intertidal environment in Toms Creek.

  15. Community- Weighted Mean Plant Traits Predict Small Scale Distribution of Insect Root Herbivore Abundance

    PubMed Central

    Jeltsch, Florian; Wurst, Susanne

    2015-01-01

    Small scale distribution of insect root herbivores may promote plant species diversity by creating patches of different herbivore pressure. However, determinants of small scale distribution of insect root herbivores, and impact of land use intensity on their small scale distribution are largely unknown. We sampled insect root herbivores and measured vegetation parameters and soil water content along transects in grasslands of different management intensity in three regions in Germany. We calculated community-weighted mean plant traits to test whether the functional plant community composition determines the small scale distribution of insect root herbivores. To analyze spatial patterns in plant species and trait composition and insect root herbivore abundance we computed Mantel correlograms. Insect root herbivores mainly comprised click beetle (Coleoptera, Elateridae) larvae (43%) in the investigated grasslands. Total insect root herbivore numbers were positively related to community-weighted mean traits indicating high plant growth rates and biomass (specific leaf area, reproductive- and vegetative plant height), and negatively related to plant traits indicating poor tissue quality (leaf C/N ratio). Generalist Elaterid larvae, when analyzed independently, were also positively related to high plant growth rates and furthermore to root dry mass, but were not related to tissue quality. Insect root herbivore numbers were not related to plant cover, plant species richness and soil water content. Plant species composition and to a lesser extent plant trait composition displayed spatial autocorrelation, which was not influenced by land use intensity. Insect root herbivore abundance was not spatially autocorrelated. We conclude that in semi-natural grasslands with a high share of generalist insect root herbivores, insect root herbivores affiliate with large, fast growing plants, presumably because of availability of high quantities of food. Affiliation of insect root herbivores with large, fast growing plants may counteract dominance of those species, thus promoting plant diversity. PMID:26517119

  16. Rapid mapping of hurricane damage to forests

    Treesearch

    Erik M. Nielsen

    2009-01-01

    The prospects for producing rapid, accurate delineations of the spatial extent of forest wind damage were evaluated using Hurricane Katrina as a test case. A damage map covering the full spatial extent of Katrina?s impact was produced from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery using higher resolution training data. Forest damage...

  17. Downscaling soil moisture over regions that include multiple coarse-resolution grid cells

    USDA-ARS?s Scientific Manuscript database

    Many applications require soil moisture estimates over large spatial extents (30-300 km) and at fine-resolutions (10-30 m). Remote-sensing methods can provide soil moisture estimates over very large spatial extents (continental to global) at coarse resolutions (10-40 km), but their output must be d...

  18. Importance of spatial autocorrelation in modeling bird distributions at a continental scale

    USGS Publications Warehouse

    Bahn, V.; O'Connor, R.J.; Krohn, W.B.

    2006-01-01

    Spatial autocorrelation in species' distributions has been recognized as inflating the probability of a type I error in hypotheses tests, causing biases in variable selection, and violating the assumption of independence of error terms in models such as correlation or regression. However, it remains unclear whether these problems occur at all spatial resolutions and extents, and under which conditions spatially explicit modeling techniques are superior. Our goal was to determine whether spatial models were superior at large extents and across many different species. In addition, we investigated the importance of purely spatial effects in distribution patterns relative to the variation that could be explained through environmental conditions. We studied distribution patterns of 108 bird species in the conterminous United States using ten years of data from the Breeding Bird Survey. We compared the performance of spatially explicit regression models with non-spatial regression models using Akaike's information criterion. In addition, we partitioned the variance in species distributions into an environmental, a pure spatial and a shared component. The spatially-explicit conditional autoregressive regression models strongly outperformed the ordinary least squares regression models. In addition, partialling out the spatial component underlying the species' distributions showed that an average of 17% of the explained variation could be attributed to purely spatial effects independent of the spatial autocorrelation induced by the underlying environmental variables. We concluded that location in the range and neighborhood play an important role in the distribution of species. Spatially explicit models are expected to yield better predictions especially for mobile species such as birds, even in coarse-grained models with a large extent. ?? Ecography.

  19. Investigating the Small-Scale Spatial Variabilty of Precipitable Water Vapor by Adding Single-Frequency Receivers into an Existing Dual-Frequency Receiver Network

    NASA Astrophysics Data System (ADS)

    Krietemeyer, Andreas; ten Veldhuis, Marie-claire; van de Giesen, Nick

    2017-04-01

    Exploiting GNSS signal delays is one possibility to obtain Precipitable Water Vapor (PWV) estimates in the atmosphere. The technique is well known since the early 1990s and by now an established method in the meteorological community. The data is crucial for weather forecasting and its assimilation into numerical weather forecasting models is a topic of ongoing research. However, the spatial resolution of ground based GNSS receivers is usually low, in the order of tens of kilometres. Since severe weather events such as convective storms can be concentrated in spatial extent, existing GNSS networks are often not sufficient to retrieve small scale PWV fluctuations and need to be densified. For economic reasons, the use of low-cost single-frequency receivers is a promising solution. In this study, we will deploy a network of single-frequency receivers to densify an existing dual-frequency network in order to investigate the spatial and temporal PWV variations. We demonstrate a test network consisting of four single-frequency receivers in the Rotterdam area (Netherlands). In order to eliminate the delay caused by the ionosphere, the Satellite-specific Epoch-differenced Ionospheric Delay model (SEID) is applied, using a surrounding dual-frequency network distributed over a radius of approximately 25 km. With the synthesized L2 frequency, the tropospheric delays are estimated using the Precise Point Positioning (PPP) strategy and International GNSS Service (IGS) final orbits. The PWV time series are validated by a comparison of a collocated single-frequency and a dual-frequency receiver. The time series themselves form the basis for potential further studies like data assimilation into numerical weather models and GNSS tomography to study the impact of the increased spatial resolution on local heavy rain forecast.

  20. Lightning Mapping Observations of Volume-Filling Small Discharges in Thunderstorms

    NASA Astrophysics Data System (ADS)

    Rison, W.; Krehbiel, P. R.; Thomas, R. J.; Rodeheffer, D.

    2013-12-01

    Lightning is usually considered to be a large-scale electrical discharge in the atmosphere. For example, the American Meteorological Society's Glossary of Meteorology defines lightning as "a transient, high-current electric discharge with pathlengths measured in kilometers" (http://glossary.ametsoc.org/wiki/Lightning). There have been several reported examples of short-duration discharges in thunderstorms, which have a duration of a few microseconds to less than a millisecond, and have a small spatial extent These short-duration discharges were located at high altitudes (> 14 km), altitudes consistent with being located between the upper positive charge and the negative screening layer. At these altitudes, the electric field needed to initiate an electrical discharge is much lower than it is at the altitudes of initiation for IC (~8 km) or CG (~5 km) flashes. We have recently reported on short-duration "precursor" discharges with durations of a few microseconds to a few milliseconds, which occur in the high-fields between the mid-level negative and upper positive charge regions. These "precursor" discharges are discrete in both time and space, being separated in time by hundreds of milliseconds to several seconds, and localized in space, usually very close to the initiation location of a subsequent IC discharge. We have recently observed nearly continuous, volume filling short-duration discharges in several thunderstorms. These discharges have durations of much less than a millisecond, spatial extents of less than a few hundred meters, and occur randomly in the volume between the mid-level negative and upper positive charge regions. During an active period, these discharges occur every few milliseconds. The rates of these discharges decreases dramatically to a few per second following an IC discharge, then increases to several hundred per second until the next discharge. In a storm just off the Florida coast, one cell was producing a large number of these small discharges, while a contemporaneous cell a few kilometers west produced no detectable small discharges. Short-duration discharges occur at altitudes between 10 km and 14 km in the intervals between lightning discharges. The rates of short-duration discharges decreases dramatically after a lightning discharge.

  1. Global patterns and predictors of fish species richness in estuaries.

    PubMed

    Vasconcelos, Rita P; Henriques, Sofia; França, Susana; Pasquaud, Stéphanie; Cardoso, Inês; Laborde, Marina; Cabral, Henrique N

    2015-09-01

    1. Knowledge of global patterns of biodiversity and regulating variables is indispensable to develop predictive models. 2. The present study used predictive modelling approaches to investigate hypotheses that explain the variation in fish species richness between estuaries over a worldwide spatial extent. Ultimately, such models will allow assessment of future changes in ecosystem structure and function as a result of environmental changes. 3. A comprehensive worldwide data base was compiled of the fish assemblage composition and environmental characteristics of estuaries. Generalized Linear Models were used to quantify how variation in species richness among estuaries is related to historical events, energy dynamics and ecosystem characteristics, while controlling for sampling effects. 4. At the global extent, species richness differed among marine biogeographic realms and continents and increased with mean sea surface temperature, terrestrial net primary productivity and the stability of connectivity with a marine ecosystem (open vs. temporarily open estuaries). At a smaller extent (within a marine biogeographic realm or continent), other characteristics were also important in predicting variation in species richness, with species richness increasing with estuary area and continental shelf width. 5. The results suggest that species richness in an estuary is defined by predictors that are spatially hierarchical. Over the largest spatial extents, species richness is influenced by the broader distributions and habitat use patterns of marine and freshwater species that can colonize estuaries, which are in turn governed by history contingency, energy dynamics and productivity variables. Species richness is also influenced by more regional and local parameters that can further affect the process of community colonization in an estuary including the connectivity of the estuary with the adjacent marine habitat, and, over smaller spatial extents, the size of these habitats. In summary, patterns of species richness in estuaries across large spatial extents seem to reflect from global to local processes acting on community colonization. The importance of considering spatial extent, sampling effects and of combining history and contemporary environmental characteristics when exploring biodiversity is highlighted. © 2015 The Authors. Journal of Animal Ecology published by John Wiley & Sons on behalf of the British Ecological Society.

  2. Can Regional Climate Modeling Capture the Observed Changes in Spatial Organization of Extreme Storms at Higher Temperatures?

    NASA Astrophysics Data System (ADS)

    Li, J.; Wasko, C.; Johnson, F.; Evans, J. P.; Sharma, A.

    2018-05-01

    The spatial extent and organization of extreme storm events has important practical implications for flood forecasting. Recently, conflicting evidence has been found on the observed changes of storm spatial extent with increasing temperatures. To further investigate this question, a regional climate model assessment is presented for the Greater Sydney region, in Australia. Two regional climate models were considered: the first a convection-resolving simulation at 2-km resolution, the second a resolution of 10 km with three different convection parameterizations. Both the 2- and the 10-km resolutions that used the Betts-Miller-Janjic convective scheme simulate decreasing storm spatial extent with increasing temperatures for 1-hr duration precipitation events, consistent with the observation-based study in Australia. However, other observed relationships of extreme rainfall with increasing temperature were not well represented by the models. Improved methods for considering storm organization are required to better understand potential future changes.

  3. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling

    PubMed Central

    Wisz, Mary Susanne; Pottier, Julien; Kissling, W Daniel; Pellissier, Loïc; Lenoir, Jonathan; Damgaard, Christian F; Dormann, Carsten F; Forchhammer, Mads C; Grytnes, John-Arvid; Guisan, Antoine; Heikkinen, Risto K; Høye, Toke T; Kühn, Ingolf; Luoto, Miska; Maiorano, Luigi; Nilsson, Marie-Charlotte; Normand, Signe; Öckinger, Erik; Schmidt, Niels M; Termansen, Mette; Timmermann, Allan; Wardle, David A; Aastrup, Peter; Svenning, Jens-Christian

    2013-01-01

    Predicting which species will occur together in the future, and where, remains one of the greatest challenges in ecology, and requires a sound understanding of how the abiotic and biotic environments interact with dispersal processes and history across scales. Biotic interactions and their dynamics influence species' relationships to climate, and this also has important implications for predicting future distributions of species. It is already well accepted that biotic interactions shape species' spatial distributions at local spatial extents, but the role of these interactions beyond local extents (e.g. 10 km2 to global extents) are usually dismissed as unimportant. In this review we consolidate evidence for how biotic interactions shape species distributions beyond local extents and review methods for integrating biotic interactions into species distribution modelling tools. Drawing upon evidence from contemporary and palaeoecological studies of individual species ranges, functional groups, and species richness patterns, we show that biotic interactions have clearly left their mark on species distributions and realised assemblages of species across all spatial extents. We demonstrate this with examples from within and across trophic groups. A range of species distribution modelling tools is available to quantify species environmental relationships and predict species occurrence, such as: (i) integrating pairwise dependencies, (ii) using integrative predictors, and (iii) hybridising species distribution models (SDMs) with dynamic models. These methods have typically only been applied to interacting pairs of species at a single time, require a priori ecological knowledge about which species interact, and due to data paucity must assume that biotic interactions are constant in space and time. To better inform the future development of these models across spatial scales, we call for accelerated collection of spatially and temporally explicit species data. Ideally, these data should be sampled to reflect variation in the underlying environment across large spatial extents, and at fine spatial resolution. Simplified ecosystems where there are relatively few interacting species and sometimes a wealth of existing ecosystem monitoring data (e.g. arctic, alpine or island habitats) offer settings where the development of modelling tools that account for biotic interactions may be less difficult than elsewhere. PMID:22686347

  4. Spatial occupancy models for large data sets

    USGS Publications Warehouse

    Johnson, Devin S.; Conn, Paul B.; Hooten, Mevin B.; Ray, Justina C.; Pond, Bruce A.

    2013-01-01

    Since its development, occupancy modeling has become a popular and useful tool for ecologists wishing to learn about the dynamics of species occurrence over time and space. Such models require presence–absence data to be collected at spatially indexed survey units. However, only recently have researchers recognized the need to correct for spatially induced overdisperison by explicitly accounting for spatial autocorrelation in occupancy probability. Previous efforts to incorporate such autocorrelation have largely focused on logit-normal formulations for occupancy, with spatial autocorrelation induced by a random effect within a hierarchical modeling framework. Although useful, computational time generally limits such an approach to relatively small data sets, and there are often problems with algorithm instability, yielding unsatisfactory results. Further, recent research has revealed a hidden form of multicollinearity in such applications, which may lead to parameter bias if not explicitly addressed. Combining several techniques, we present a unifying hierarchical spatial occupancy model specification that is particularly effective over large spatial extents. This approach employs a probit mixture framework for occupancy and can easily accommodate a reduced-dimensional spatial process to resolve issues with multicollinearity and spatial confounding while improving algorithm convergence. Using open-source software, we demonstrate this new model specification using a case study involving occupancy of caribou (Rangifer tarandus) over a set of 1080 survey units spanning a large contiguous region (108 000 km2) in northern Ontario, Canada. Overall, the combination of a more efficient specification and open-source software allows for a facile and stable implementation of spatial occupancy models for large data sets.

  5. Phylogenetic congruence of lichenised fungi and algae is affected by spatial scale and taxonomic diversity.

    PubMed

    Buckley, Hannah L; Rafat, Arash; Ridden, Johnathon D; Cruickshank, Robert H; Ridgway, Hayley J; Paterson, Adrian M

    2014-01-01

    The role of species' interactions in structuring biological communities remains unclear. Mutualistic symbioses, involving close positive interactions between two distinct organismal lineages, provide an excellent means to explore the roles of both evolutionary and ecological processes in determining how positive interactions affect community structure. In this study, we investigate patterns of co-diversification between fungi and algae for a range of New Zealand lichens at the community, genus, and species levels and explore explanations for possible patterns related to spatial scale and pattern, taxonomic diversity of the lichens considered, and the level sampling replication. We assembled six independent datasets to compare patterns in phylogenetic congruence with varied spatial extent of sampling, taxonomic diversity and level of specimen replication. For each dataset, we used the DNA sequences from the ITS regions of both the fungal and algal genomes from lichen specimens to produce genetic distance matrices. Phylogenetic congruence between fungi and algae was quantified using distance-based redundancy analysis and we used geographic distance matrices in Moran's eigenvector mapping and variance partitioning to evaluate the effects of spatial variation on the quantification of phylogenetic congruence. Phylogenetic congruence was highly significant for all datasets and a large proportion of variance in both algal and fungal genetic distances was explained by partner genetic variation. Spatial variables, primarily at large and intermediate scales, were also important for explaining genetic diversity patterns in all datasets. Interestingly, spatial structuring was stronger for fungal than algal genetic variation. As the spatial extent of the samples increased, so too did the proportion of explained variation that was shared between the spatial variables and the partners' genetic variation. Different lichen taxa showed some variation in their phylogenetic congruence and spatial genetic patterns and where greater sample replication was used, the amount of variation explained by partner genetic variation increased. Our results suggest that the phylogenetic congruence pattern, at least at small spatial scales, is likely due to reciprocal co-adaptation or co-dispersal. However, the detection of these patterns varies among different lichen taxa, across spatial scales and with different levels of sample replication. This work provides insight into the complexities faced in determining how evolutionary and ecological processes may interact to generate diversity in symbiotic association patterns at the population and community levels. Further, it highlights the critical importance of considering sample replication, taxonomic diversity and spatial scale in designing studies of co-diversification.

  6. Three-dimensional spatial patterns of soil carbon storage are altered by woody encroachment into grasslands

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Boutton, T. W.; Wu, X. B.

    2016-12-01

    Recent global trends of increasing woody plant abundance in grass-dominated ecosystems may substantially enhance soil organic carbon (SOC) storage and could represent an important carbon (C) sink in the terrestrial environment. However, most studies assessing SOC response to woody encroachment only consider surface soils, and have not explicitly assessed the extent to which deeper portions of the profile may be affected by this phenomenon. Consequently, little is known about the direction, magnitude, and spatial heterogeneity of SOC throughout the soil profile following woody encroachment. These factors were quantified via spatially-specific intensive soil sampling to a depth 1.2 m across a subtropical savanna landscape that has undergone woody proliferation during the past century in southern Texas, USA. Increased SOC sequestration following woody encroachment was observed throughout the profile, albeit at reduced magnitudes at deeper depths. Overall, soils beneath small woody clusters and larger groves accumulated 12.87 and 18.67 Mg C ha-1 more SOC, respectively, to a depth of 1. 2 m compared to grasslands. Recent woody encroachment during the past 100 y significantly altered the spatial pattern and amplified the spatial heterogeneity of SOC at the 0-5 cm depth, with marginal effects at 5-15 cm and no distinct impact on soils below 15 cm. Fine root density explained much of the variation in SOC in the upper 15 cm, while a combination of fine root density and soil clay content accounted for more of the variation in SOC in soils below 15 cm. These findings emphasize the existence of substantial SOC sequestration in deeper portions of the soil profile following woody encroachment. Given the geographical extent of woody encroachment on a global scale, this largely undocumented deep soil C sequestration suggests woody encroachment may play a more significant role in regional and global C sequestration than previously thought.

  7. Reconstructing spatial and temporal patterns of paleoglaciation across Central Asia

    NASA Astrophysics Data System (ADS)

    Stroeven, Arjen P.

    2014-05-01

    Understanding the behaviour of mountain glaciers and ice caps, the evolution of mountain landscapes, and testing global climate models all require well-constrained information on past spatial and temporal patterns of glacier change. Particularly important are transitional regions that have high spatial and temporal variation in glacier activity and that can provide a sensitive record of past climate change. Central Asia is an extreme continental location with glaciers that have responded sensitively to variations in major regional climate systems. As an international team, we are reconstructing glacial histories of several areas of the Tibetan Plateau as well as along the Tian Shan, Altai and Kunlun Mountains. Building on previous work, we are using remote sensing-based geomorphological mapping augmented with field observations to map out glacial landforms and the maximum distributions of erratics. We then use cosmogenic nuclide Be-10 and Al-26, optically stimulated luminescence, and electron spin resonance dating of moraines and other landforms to compare dating techniques and to constrain the ages of defined extents of paleo-glaciers and ice caps. Comparing consistently dated glacial histories across central Asia provides an opportunity to examine shifts in the dominance patterns of climate systems over time in the region. Results to date show significant variations in the timing and extent of glaciation, including areas in the southeast Tibetan Plateau and Tian Shan with extensive valley and small polythermal ice cap glaciation during the global last glacial maximum in contrast to areas in central and northeast Tibetan Plateau that had very limited valley glacier expansion then. Initial numerical modelling attempting to simulate mapped and dated paleoglacial extents indicates that relatively limited cooling is sufficient to produce observed past expansions of glaciers across the Tibetan Plateau, and predicts complex basal thermal regimes in some locations that match patterns of past glacial erosion inferred from landform patterns and ages. Future modelling will examine glacier behaviour along major mountain ranges across central Asia.

  8. Porosity and pore size distribution in a sedimentary rock: Implications for the distribution of chlorinated solvents

    NASA Astrophysics Data System (ADS)

    Shapiro, Allen M.; Evans, Christopher E.; Hayes, Erin C.

    2017-08-01

    Characterizing properties of the rock matrix that control retention and release of chlorinated solvents is essential in evaluating the extent of contamination and the application of remediation technologies in fractured rock. Core samples from seven closely spaced boreholes in a mudstone subject to trichloroethene (TCE) contamination were analyzed using Mercury Intrusion Porosimetry to investigate porosity and pore size distribution as a function of mudstone characteristics, and depth and lateral extent in the aquifer; organic carbon content was also evaluated to identify the potential for adsorption. Porosity and retardation factor varied over two orders of magnitude, with the largest porosities and largest retardation factors associated with carbon-rich mudstone layers. Larger porosities were also measured in the shallow rock that has been subject to enhanced groundwater flow. Porosity also varied over more than an order of magnitude in spatially continuous mudstone layers. The analyses of the rock cores indicated that the largest pore diameters may be accessible to entry of the nonaqueous form of TCE. Although the porosity associated with the largest pore diameters is small ( 0.1%), that volume of TCE can significantly affect the total TCE that is retained in the rock matrix. The dimensions of the largest pore diameters may also be accessible to microbes responsible for reductive dechlorination; however, the small percentage of the pore space that can accommodate microbes may limit the extent of reductive dechlorination in the rock matrix.

  9. Porosity and pore size distribution in a sedimentary rock: Implications for the distribution of chlorinated solvents

    USGS Publications Warehouse

    Shapiro, Allen M.; Evans, Chrsitopher E.; Hayes, Erin C.

    2017-01-01

    Characterizing properties of the rock matrix that control retention and release of chlorinated solvents is essential in evaluating the extent of contamination and the application of remediation technologies in fractured rock. Core samples from seven closely spaced boreholes in a mudstone subject to trichloroethene (TCE) contamination were analyzed using Mercury Intrusion Porosimetry to investigate porosity and pore size distribution as a function of mudstone characteristics, and depth and lateral extent in the aquifer; organic carbon content was also evaluated to identify the potential for adsorption. Porosity and retardation factor varied over two orders of magnitude, with the largest porosities and largest retardation factors associated with carbon-rich mudstone layers. Larger porosities were also measured in the shallow rock that has been subject to enhanced groundwater flow. Porosity also varied over more than an order of magnitude in spatially continuous mudstone layers. The analyses of the rock cores indicated that the largest pore diameters may be accessible to entry of the nonaqueous form of TCE. Although the porosity associated with the largest pore diameters is small (~ 0.1%), that volume of TCE can significantly affect the total TCE that is retained in the rock matrix. The dimensions of the largest pore diameters may also be accessible to microbes responsible for reductive dechlorination; however, the small percentage of the pore space that can accommodate microbes may limit the extent of reductive dechlorination in the rock matrix.

  10. How Infants Encode Spatial Extent

    ERIC Educational Resources Information Center

    Duffy, Sean; Huttenlocher, Janellen; Levine, Susan; Duffy, Renee

    2005-01-01

    This study explores how infants encode an object's spatial extent. We habituated 6.5-month-old infants to a dowel inside a container and then tested whether they dishabituate to a change in absolute size when the relation between dowel and container is held constant (by altering the size of both container and dowel) and when the relation changes…

  11. Global Night-Time Lights for Observing Human Activity

    NASA Technical Reports Server (NTRS)

    Hipskind, Stephen R.; Elvidge, Chris; Gurney, K.; Imhoff, Mark; Bounoua, Lahouari; Sheffner, Edwin; Nemani, Ramakrishna R.; Pettit, Donald R.; Fischer, Marc

    2011-01-01

    We present a concept for a small satellite mission to make systematic, global observations of night-time lights with spatial resolution suitable for discerning the extent, type and density of human settlements. The observations will also allow better understanding of fine scale fossil fuel CO2 emission distribution. The NASA Earth Science Decadal Survey recommends more focus on direct observations of human influence on the Earth system. The most dramatic and compelling observations of human presence on the Earth are the night light observations taken by the Defence Meteorological System Program (DMSP) Operational Linescan System (OLS). Beyond delineating the footprint of human presence, night light data, when assembled and evaluated with complementary data sets, can determine the fine scale spatial distribution of global fossil fuel CO2 emissions. Understanding fossil fuel carbon emissions is critical to understanding the entire carbon cycle, and especially the carbon exchange between terrestrial and oceanic systems.

  12. Damage in gamma titanium aluminides due to small particle impacts

    NASA Astrophysics Data System (ADS)

    Stief, P. S.; Rubal, M. P.; Gray, G. T., III; Pereiras, J. M.

    1998-10-01

    Initiation of cracking due to small particle impacts on low ductility intermetallics is investigated experimentally and theoretically. The gamma titanium aluminide alloys of interest which are being considered for elevated temperature structural applications in aircraft engines exhibit tensile ductilities on the order of 1-2%. Cracking due to any source, including small particle impacts, is of concern given the rapid growth of cracks in fatigue. This investigation focuses on a model geometry which reproduces the rear face cracking that is induced by a small particle impinging on an air foil leading edge. Small steel spheres are projected onto thin plates at velocities ranging from 76 to 305 ms ; cracking is thereby induced on the rear surface of the plates. Through finite element analyses of the dynamic impact event and some analytical estimates, we examine the hypothesis that crack initiation due to small particle impacts can be correlated with material ductility and with the severity and spatial extent of the straining during the impact event. In addition, with the use of static indentation tests in which similar strain distributions are present, some insight is gained into the difference in ductility between high and low strain rates. 1998 Elsevier Science Ltd.

  13. Defining habitat covariates in camera-trap based occupancy studies

    PubMed Central

    Niedballa, Jürgen; Sollmann, Rahel; Mohamed, Azlan bin; Bender, Johannes; Wilting, Andreas

    2015-01-01

    In species-habitat association studies, both the type and spatial scale of habitat covariates need to match the ecology of the focal species. We assessed the potential of high-resolution satellite imagery for generating habitat covariates using camera-trapping data from Sabah, Malaysian Borneo, within an occupancy framework. We tested the predictive power of covariates generated from satellite imagery at different resolutions and extents (focal patch sizes, 10–500 m around sample points) on estimates of occupancy patterns of six small to medium sized mammal species/species groups. High-resolution land cover information had considerably more model support for small, patchily distributed habitat features, whereas it had no advantage for large, homogeneous habitat features. A comparison of different focal patch sizes including remote sensing data and an in-situ measure showed that patches with a 50-m radius had most support for the target species. Thus, high-resolution satellite imagery proved to be particularly useful in heterogeneous landscapes, and can be used as a surrogate for certain in-situ measures, reducing field effort in logistically challenging environments. Additionally, remote sensed data provide more flexibility in defining appropriate spatial scales, which we show to impact estimates of wildlife-habitat associations. PMID:26596779

  14. High Resolution Eddy-Current Wire Testing Based on a Gmr Sensor-Array

    NASA Astrophysics Data System (ADS)

    Kreutzbruck, Marc; Allweins, Kai; Strackbein, Chris; Bernau, Hendrick

    2009-03-01

    Increasing demands in materials quality and cost effectiveness have led to advanced standards in manufacturing technology. Especially when dealing with high quality standards in conjunction with high throughput quantitative NDE techniques are vital to provide reliable and fast quality control systems. In this work we illuminate a modern electromagnetic NDE approach using a small GMR sensor array for testing superconducting wires. Four GMR sensors are positioned around the wire. Each GMR sensor provides a field sensitivity of 200 pT/√Hz and a spatial resolution of about 100 μm. This enables us to detect under surface defects of 100 μm in size in a depth of 200 μm with a signal-to-noise ratio of better than 400. Surface defects could be detected with a SNR of up to 10,000. Besides this remarkably SNR the small extent of GMR sensors results in a spatial resolution which offers new visualisation techniques for defect localisation, defect characterization and tomography-like mapping techniques. We also report on inverse algorithms based on either a Finite Element Method or an analytical approach. These allow for accurate defect localization on the urn scale and an estimation of the defect size.

  15. Linear Changes in the Spatial Extent of the Focus of Attention across Time

    ERIC Educational Resources Information Center

    Jefferies, Lisa N.; Di Lollo, Vincent

    2009-01-01

    This research examined changes in the spatial extent of focal attention over time. The Attentional Blink (impaired perception of the second of two targets) and Lag-1 sparing (the seemingly paradoxical finding that second-target accuracy is high when the second target immediately follows the first) were employed in a dual-stream paradigm to index…

  16. PBSM3D: A finite volume, scalar-transport blowing snow model for use with variable resolution meshes

    NASA Astrophysics Data System (ADS)

    Marsh, C.; Wayand, N. E.; Pomeroy, J. W.; Wheater, H. S.; Spiteri, R. J.

    2017-12-01

    Blowing snow redistribution results in heterogeneous snowcovers that are ubiquitous in cold, windswept environments. Capturing this spatial and temporal variability is important for melt and runoff simulations. Point scale blowing snow transport models are difficult to apply in fully distributed hydrological models due to landscape heterogeneity and complex wind fields. Many existing distributed snow transport models have empirical wind flow and/or simplified wind direction algorithms that perform poorly in calculating snow redistribution where there are divergent wind flows, sharp topography, and over large spatial extents. Herein, a steady-state scalar transport model is discretized using the finite volume method (FVM), using parameterizations from the Prairie Blowing Snow Model (PBSM). PBSM has been applied in hydrological response units and grids to prairie, arctic, glacier, and alpine terrain and shows a good capability to represent snow redistribution over complex terrain. The FVM discretization takes advantage of the variable resolution mesh in the Canadian Hydrological Model (CHM) to ensure efficient calculations over small and large spatial extents. Variable resolution unstructured meshes preserve surface heterogeneity but result in fewer computational elements versus high-resolution structured (raster) grids. Snowpack, soil moisture, and streamflow observations were used to evaluate CHM-modelled outputs in a sub-arctic and an alpine basin. Newly developed remotely sensed snowcover indices allowed for validation over large basins. CHM simulations of snow hydrology were improved by inclusion of the blowing snow model. The results demonstrate the key role of snow transport processes in creating pre-melt snowcover heterogeneity and therefore governing post-melt soil moisture and runoff generation dynamics.

  17. Spatiotemporal Filtering Using Principal Component Analysis and Karhunen-Loeve Expansion Approaches for Regional GPS Network Analysis

    NASA Technical Reports Server (NTRS)

    Dong, D.; Fang, P.; Bock, F.; Webb, F.; Prawirondirdjo, L.; Kedar, S.; Jamason, P.

    2006-01-01

    Spatial filtering is an effective way to improve the precision of coordinate time series for regional GPS networks by reducing so-called common mode errors, thereby providing better resolution for detecting weak or transient deformation signals. The commonly used approach to regional filtering assumes that the common mode error is spatially uniform, which is a good approximation for networks of hundreds of kilometers extent, but breaks down as the spatial extent increases. A more rigorous approach should remove the assumption of spatially uniform distribution and let the data themselves reveal the spatial distribution of the common mode error. The principal component analysis (PCA) and the Karhunen-Loeve expansion (KLE) both decompose network time series into a set of temporally varying modes and their spatial responses. Therefore they provide a mathematical framework to perform spatiotemporal filtering.We apply the combination of PCA and KLE to daily station coordinate time series of the Southern California Integrated GPS Network (SCIGN) for the period 2000 to 2004. We demonstrate that spatially and temporally correlated common mode errors are the dominant error source in daily GPS solutions. The spatial characteristics of the common mode errors are close to uniform for all east, north, and vertical components, which implies a very long wavelength source for the common mode errors, compared to the spatial extent of the GPS network in southern California. Furthermore, the common mode errors exhibit temporally nonrandom patterns.

  18. Simulating land-use changes by incorporating spatial autocorrelation and self-organization in CLUE-S modeling: a case study in Zengcheng District, Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Mei, Zhixiong; Wu, Hao; Li, Shiyun

    2018-06-01

    The Conversion of Land Use and its Effects at Small regional extent (CLUE-S), which is a widely used model for land-use simulation, utilizes logistic regression to estimate the relationships between land use and its drivers, and thus, predict land-use change probabilities. However, logistic regression disregards possible spatial autocorrelation and self-organization in land-use data. Autologistic regression can depict spatial autocorrelation but cannot address self-organization, while logistic regression by considering only self-organization (NElogistic regression) fails to capture spatial autocorrelation. Therefore, this study developed a regression (NE-autologistic regression) method, which incorporated both spatial autocorrelation and self-organization, to improve CLUE-S. The Zengcheng District of Guangzhou, China was selected as the study area. The land-use data of 2001, 2005, and 2009, as well as 10 typical driving factors, were used to validate the proposed regression method and the improved CLUE-S model. Then, three future land-use scenarios in 2020: the natural growth scenario, ecological protection scenario, and economic development scenario, were simulated using the improved model. Validation results showed that NE-autologistic regression performed better than logistic regression, autologistic regression, and NE-logistic regression in predicting land-use change probabilities. The spatial allocation accuracy and kappa values of NE-autologistic-CLUE-S were higher than those of logistic-CLUE-S, autologistic-CLUE-S, and NE-logistic-CLUE-S for the simulations of two periods, 2001-2009 and 2005-2009, which proved that the improved CLUE-S model achieved the best simulation and was thereby effective to a certain extent. The scenario simulation results indicated that under all three scenarios, traffic land and residential/industrial land would increase, whereas arable land and unused land would decrease during 2009-2020. Apparent differences also existed in the simulated change sizes and locations of each land-use type under different scenarios. The results not only demonstrate the validity of the improved model but also provide a valuable reference for relevant policy-makers.

  19. Effects of spatial extent on modeled relations between habitat and anadromous salmonid spawning success

    Treesearch

    Steven F. Railsback; Bret C. Harvey; Jason L. White

    2015-01-01

    We address the question of spatial extent: how model results depend on the amount and type of space represented. For models of how stream habitat affects fish populations, how do the amount and characteristics of habitat represented in the model affect its results and how well do those results represent the whole stream? Our analysis used inSalmo, an individual-based...

  20. The Influence of a Word's Number of Letters, Spatial Extent, and Initial Bigram Characteristics on Eye Movement Control during Reading: Evidence from Arabic

    ERIC Educational Resources Information Center

    Hermena, Ehab W.; Liversedge, Simon P.; Drieghe, Denis

    2017-01-01

    The authors conducted 2 eye movement experiments in which they used the typographical and linguistic properties of Arabic to disentangle the influences of words' number of letters and spatial extent on measures of fixation duration and saccade targeting (Experiment 1), and to investigate the influence of initial bigram characteristics on saccade…

  1. Comparisons of Spatial Predictions of Conductivity on a Stream Network in an Appalachian Watershed

    EPA Science Inventory

    We made spatial predictions of specific conductance based on spatial stream network (SSN) modeling to compare conductivity measurements of components of the network, such as headwaters, tributaries, and mainstem, which have different spatial extents in a study Appalachian watersh...

  2. Improvements in GRACE Gravity Fields Using Regularization

    NASA Astrophysics Data System (ADS)

    Save, H.; Bettadpur, S.; Tapley, B. D.

    2008-12-01

    The unconstrained global gravity field models derived from GRACE are susceptible to systematic errors that show up as broad "stripes" aligned in a North-South direction on the global maps of mass flux. These errors are believed to be a consequence of both systematic and random errors in the data that are amplified by the nature of the gravity field inverse problem. These errors impede scientific exploitation of the GRACE data products, and limit the realizable spatial resolution of the GRACE global gravity fields in certain regions. We use regularization techniques to reduce these "stripe" errors in the gravity field products. The regularization criteria are designed such that there is no attenuation of the signal and that the solutions fit the observations as well as an unconstrained solution. We have used a computationally inexpensive method, normally referred to as "L-ribbon", to find the regularization parameter. This paper discusses the characteristics and statistics of a 5-year time-series of regularized gravity field solutions. The solutions show markedly reduced stripes, are of uniformly good quality over time, and leave little or no systematic observation residuals, which is a frequent consequence of signal suppression from regularization. Up to degree 14, the signal in regularized solution shows correlation greater than 0.8 with the un-regularized CSR Release-04 solutions. Signals from large-amplitude and small-spatial extent events - such as the Great Sumatra Andaman Earthquake of 2004 - are visible in the global solutions without using special post-facto error reduction techniques employed previously in the literature. Hydrological signals as small as 5 cm water-layer equivalent in the small river basins, like Indus and Nile for example, are clearly evident, in contrast to noisy estimates from RL04. The residual variability over the oceans relative to a seasonal fit is small except at higher latitudes, and is evident without the need for de-striping or spatial smoothing.

  3. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling.

    PubMed

    Wisz, Mary Susanne; Pottier, Julien; Kissling, W Daniel; Pellissier, Loïc; Lenoir, Jonathan; Damgaard, Christian F; Dormann, Carsten F; Forchhammer, Mads C; Grytnes, John-Arvid; Guisan, Antoine; Heikkinen, Risto K; Høye, Toke T; Kühn, Ingolf; Luoto, Miska; Maiorano, Luigi; Nilsson, Marie-Charlotte; Normand, Signe; Öckinger, Erik; Schmidt, Niels M; Termansen, Mette; Timmermann, Allan; Wardle, David A; Aastrup, Peter; Svenning, Jens-Christian

    2013-02-01

    Predicting which species will occur together in the future, and where, remains one of the greatest challenges in ecology, and requires a sound understanding of how the abiotic and biotic environments interact with dispersal processes and history across scales. Biotic interactions and their dynamics influence species' relationships to climate, and this also has important implications for predicting future distributions of species. It is already well accepted that biotic interactions shape species' spatial distributions at local spatial extents, but the role of these interactions beyond local extents (e.g. 10 km(2) to global extents) are usually dismissed as unimportant. In this review we consolidate evidence for how biotic interactions shape species distributions beyond local extents and review methods for integrating biotic interactions into species distribution modelling tools. Drawing upon evidence from contemporary and palaeoecological studies of individual species ranges, functional groups, and species richness patterns, we show that biotic interactions have clearly left their mark on species distributions and realised assemblages of species across all spatial extents. We demonstrate this with examples from within and across trophic groups. A range of species distribution modelling tools is available to quantify species environmental relationships and predict species occurrence, such as: (i) integrating pairwise dependencies, (ii) using integrative predictors, and (iii) hybridising species distribution models (SDMs) with dynamic models. These methods have typically only been applied to interacting pairs of species at a single time, require a priori ecological knowledge about which species interact, and due to data paucity must assume that biotic interactions are constant in space and time. To better inform the future development of these models across spatial scales, we call for accelerated collection of spatially and temporally explicit species data. Ideally, these data should be sampled to reflect variation in the underlying environment across large spatial extents, and at fine spatial resolution. Simplified ecosystems where there are relatively few interacting species and sometimes a wealth of existing ecosystem monitoring data (e.g. arctic, alpine or island habitats) offer settings where the development of modelling tools that account for biotic interactions may be less difficult than elsewhere. © 2012 The Authors. Biological Reviews © 2012 Cambridge Philosophical Society.

  4. How spatial variation in areal extent and configuration of labile vegetation states affect the riparian bird community in Arctic tundra.

    PubMed

    Henden, John-André; Yoccoz, Nigel G; Ims, Rolf A; Langeland, Knut

    2013-01-01

    The Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by large herbivores and growing human activity. Thickets of tall shrubs represent a conspicuous vegetation state in northern and temperate ecosystems, where it serves important ecological functions, including habitat for wildlife. Thickets are however labile, as tall shrubs respond rapidly to both abiotic and biotic environmental drivers. Our aim was to assess how large-scale spatial variation in willow thicket areal extent, configuration and habitat structure affected bird abundance, occupancy rates and species richness so as to provide an empirical basis for predicting the outcome of environmental change for riparian tundra bird communities. Based on a 4-year count data series, obtained through a large-scale study design in low arctic tundra in northern Norway, statistical hierarchical community models were deployed to assess relations between habitat configuration and bird species occupancy and community richness. We found that species abundance, occupancy and richness were greatly affected by willow areal extent and configuration, habitat features likely to be affected by intense ungulate browsing as well as climate warming. In sum, total species richness was maximized in large and tall willow patches of small to intermediate degree of fragmentation. These community effects were mainly driven by responses in the occupancy rates of species depending on tall willows for foraging and breeding, while species favouring other vegetation states were not affected. In light of the predicted climate driven willow shrub encroachment in riparian tundra habitats, our study predicts that many bird species would increase in abundance, and that the bird community as a whole could become enriched. Conversely, in tundra regions where overabundance of large herbivores leads to decreased areal extent, reduced height and increased fragmentation of willow thickets, bird community richness and species-specific abundance are likely to be significantly reduced.

  5. How Spatial Variation in Areal Extent and Configuration of Labile Vegetation States Affect the Riparian Bird Community in Arctic Tundra

    PubMed Central

    Henden, John-André; Yoccoz, Nigel G.; Ims, Rolf A.; Langeland, Knut

    2013-01-01

    The Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by large herbivores and growing human activity. Thickets of tall shrubs represent a conspicuous vegetation state in northern and temperate ecosystems, where it serves important ecological functions, including habitat for wildlife. Thickets are however labile, as tall shrubs respond rapidly to both abiotic and biotic environmental drivers. Our aim was to assess how large-scale spatial variation in willow thicket areal extent, configuration and habitat structure affected bird abundance, occupancy rates and species richness so as to provide an empirical basis for predicting the outcome of environmental change for riparian tundra bird communities. Based on a 4-year count data series, obtained through a large-scale study design in low arctic tundra in northern Norway, statistical hierarchical community models were deployed to assess relations between habitat configuration and bird species occupancy and community richness. We found that species abundance, occupancy and richness were greatly affected by willow areal extent and configuration, habitat features likely to be affected by intense ungulate browsing as well as climate warming. In sum, total species richness was maximized in large and tall willow patches of small to intermediate degree of fragmentation. These community effects were mainly driven by responses in the occupancy rates of species depending on tall willows for foraging and breeding, while species favouring other vegetation states were not affected. In light of the predicted climate driven willow shrub encroachment in riparian tundra habitats, our study predicts that many bird species would increase in abundance, and that the bird community as a whole could become enriched. Conversely, in tundra regions where overabundance of large herbivores leads to decreased areal extent, reduced height and increased fragmentation of willow thickets, bird community richness and species-specific abundance are likely to be significantly reduced. PMID:23691020

  6. Competitive exclusion over broad spatial extents is a slow process: Evidence and implications for species distribution modeling

    USGS Publications Warehouse

    Yackulic, Charles B.

    2016-01-01

    There is considerable debate about the role of competition in shaping species distributions over broad spatial extents. This debate has practical implications because predicting changes in species' geographic ranges in response to ongoing environmental change would be simpler if competition could be ignored. While this debate has been the subject of many reviews, recent literature has not addressed the rates of relevant processes. This omission is surprising in that ecologists hypothesized decades ago that regional competitive exclusion is a slow process. The goal of this review is to reassess the debate under the hypothesis that competitive exclusion over broad spatial extents is a slow process.Available evidence, including simulations presented for the first time here, suggests that competitive exclusion over broad spatial extents occurs slowly over temporal extents of many decades to millennia. Ecologists arguing against an important role for competition frequently study modern patterns and/or range dynamics over periods of decades, while much of the evidence for competition shaping geographic ranges at broad spatial extents comes from paleoecological studies over time scales of centuries or longer. If competition is slow, as evidence suggests, the geographic distributions of some, perhaps many species, would continue to change over time scales of decades to millennia, even if environmental conditions did not continue to change. If the distributions of competing species are at equilibrium it is possible to predict species distributions based on observed species–environment relationships. However, disequilibrium is widespread as a result of competition and many other processes. Studies whose goal is accurate predictions over intermediate time scales (decades to centuries) should focus on factors associated with range expansion (colonization) and loss (local extinction), as opposed to current patterns. In general, understanding of modern range dynamics would be enhanced by considering the rates of relevant processes.

  7. Characterization of Nighttime Light Variability over the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Cole, T.; Molthan, A.; Schultz, L. A.

    2015-12-01

    Severe meteorological events such as thunderstorms, tropical cyclones and winter ice storms often produce prolonged, widespread power outages affecting large populations and regions. The spatial impact of these events can extend from relatively rural, small towns (i.e. November 17, 2013 Washington, IL EF-4 tornado) to a series of adjoined states (i.e. April 27, 2011 severe weather outbreak) to entire regions (i.e. 2012 Hurricane Sandy) during their lifespans. As such, affected populations can vary greatly, depending on the event's intensity, location and duration. Actions taken by disaster response agencies like FEMA, the American Red Cross and NOAA to provide support to communities during the recovery process need accurate and timely information on the extent and location(s) of power disruption. This information is often not readily available to these agencies given communication interruptions, independent storm damage reports and other response-inhibiting factors. VIIRS DNB observations which provide daily, nighttime measurements of light sources can be used to detect and monitor power outages caused by these meteorological disaster events. To generate such an outage product, normal nighttime light variability must be analyzed and understood at varying spatial scales (i.e individual pixels, clustered land uses/covers, entire city extents). The southeastern portion of the United States serves as the study area in which the mean, median and standard deviation of nighttime lights are examined over numerous temporal periods (i.e. monthly, seasonally, annually, inter-annually). It is expected that isolated pixels with low population density (rural) will have tremendous variability in which an outage "signal" is difficult to detect. Small towns may have more consistent lighting (over a few pixels), making it easier to identify outages and reductions. Finally, large metropolitan areas may be the most "stable" light source, but the entire area may rarely experience a complete outage. The goal is to determine the smallest spatial scale in which an outage can be detected. Presented work will highlight nighttime light variability over the southeastern U.S. which will serve as a baseline for the production of a near real-time power outage product.

  8. Simulation of space-based (GRACE) gravity variations caused by storage changes in large confined and unconfined aquifers

    NASA Astrophysics Data System (ADS)

    Pool, D. R.; Scanlon, B. R.

    2017-12-01

    There is uncertainty of how storage change in confined and unconfined aquifers would register from space-based platforms, such as the GRACE (Gravity Recovery and Climate Experiment) satellites. To address this concern, superposition groundwater models (MODFLOW) of equivalent storage change in simplified confined and unconfined aquifers of extent, 500 km2 or approximately 5X5 degrees at mid-latitudes, and uniform transmissivity were constructed. Gravity change resulting from the spatial distribution of aquifer storage change for each aquifer type was calculated at the initial GRACE satellite altitude ( 500 km). To approximate real-world conditions, the confined aquifer includes a small region of unconfined conditions at one margin. A uniform storage coefficient (specific yield) was distributed across the unconfined aquifer. For both cases, storage change was produced by 1 year of groundwater withdrawal from identical aquifer-centered well distributions followed by decades of no withdrawal and redistribution of the initial storage loss toward a new steady-state condition. The transient simulated storage loss includes equivalent volumes for both conceptualizations, but spatial distributions differ because of the contrasting aquifer diffusivity (Transmissivity/Storativity). Much higher diffusivity in the confined aquifer results in more rapid storage redistribution across a much larger area than for the unconfined aquifer. After the 1 year of withdrawals, the two simulated storage loss distributions are primarily limited to small regions within the model extent. Gravity change after 1 year observed at the satellite altitude is similar for both aquifers including maximum gravity reductions that are coincident with the aquifer center. With time, the maximum gravity reduction for the confined aquifer case shifts toward the aquifer margin as much as 200 km because of increased storage loss in the unconfined region. Results of the exercise indicate that GRACE observations are largely insensitive to confined or unconfined conditions for most aquifers. Lateral shifts in storage change with time in confined aquifers could be resolved by space-based gravity missions with durations of decades and improved spatial resolution, 1 degree or less ( 100 km), over the GRACE resolution of 3 degrees ( 300 km).

  9. Using a pseudo-thermal light source to teach spatial coherence

    NASA Astrophysics Data System (ADS)

    Pieper, K.; Bergmann, A.; Dengler, R.; Rockstuhl, C.

    2018-07-01

    Teaching students spatial coherence constitutes a challenge. On the one hand, discussing it theoretically requires a quite demanding mathematical breadth. On the other hand, discussing it experimentally is hardly possible as coherence usually cannot be directly observed. To solve this problem, we show, by studying the contrast of interference patterns of a double slit, that speckles of a pseudo-thermal light source, consisting of a laser and a rotating diffuser disc, are equivalent to the spatial extent of coherent areas of a thermal light source. Coherent areas are spatial regions within which light can be considered as coherent. The unique advantage of such pseudo-thermal light source is the opportunity to directly observe the spatial extent of the coherent areas. This renders the phenomena perceptible and accessible by various experiments, as described in this contribution. This opens modern paths to teach spatial coherence to students with a notably reduced order of abstraction.

  10. Spatial and temporal drivers of wildfire occurrence in the context of rural development in northern Wisconsin, USA

    Treesearch

    Brian R Miranda; Brian R Sturtevant; Susan I Stewart; Roger B. Hammer

    2012-01-01

    Most drivers underlying wildfire are dynamic, but at different spatial and temporal scales. We quantified temporal and spatial trends in wildfire patterns over two spatial extents in northern Wisconsin to identify drivers and their change through time. We used spatial point pattern analysis to quantify the spatial pattern of wildfire occurrences, and linear regression...

  11. Effects of scale and logging on landscape structure in a forest mosaic.

    PubMed

    Leimgruber, P; McShea, W J; Schnell, G D

    2002-03-01

    Landscape structure in a forest mosaic changes with spatial scale (i.e. spatial extent) and thresholds may occur where structure changes markedly. Forest management alters landscape structure and may affect the intensity and location of thresholds. Our purpose was to examine landscape structure at different scales to determine thresholds where landscape structure changes markedly in managed forest mosaics of the Appalachian Mountains in the eastern United States. We also investigated how logging influences landscape structure and whether these management activities change threshold values. Using threshold and autocorrelation analyses, we found that thresholds in landscape indices exist at 400, 500, and 800 m intervals from the outer edge of management units in our study region. For landscape indices that consider all landcover categories, such as dominance and contagion, landscape structure and thresholds did not change after logging occurred. Measurements for these overall landscape indices were strongly influenced by midsuccessional deciduous forest, the most common landcover category in the landscape. When restricting analyses for mean patch size and percent cover to individual forest types, thresholds for early-successional forests changed after logging. However, logging changed the landscape structure at small spatial scale, but did not alter the structure of the entire forest mosaic. Previous forest management may already have increased the heterogeneity of the landscape beyond the point where additional small cuts alter the overall structure of the forest. Because measurements for landscape indices yield very different results at different spatial scales, it is important first to identify thresholds in order to determine the appropriate scales for landscape ecological studies. We found that threshold and autocorrelation analyses were simple but powerful tools for the detection of appropriate scales in the managed forest mosaic under study.

  12. Using delimiting surveys to characterize the spatiotemporal dynamics facilitates the management of an invasive non-native insect

    Treesearch

    Patrick C. Tobin; Laura M. Blackburn; Rebecca H. Gray; Christopher T. Lettau; Andrew M. Liebhold; Kenneth F. Raffa

    2013-01-01

    The ability to ascertain abundance and spatial extent of a nascent population of a non-native species can inform management decisions. Following initial detection, delimiting surveys, which involve the use of a finer network of samples around the focal point of a newly detected colony, are often used to quantify colony size, spatial extent, and the location of the...

  13. Predictors of Clinical Pain in Fibromyalgia: Examining the Role of Sleep

    PubMed Central

    Anderson, Ryan J.; McCrae, Christina S.; Staud, Roland; Berry, Richard B.; Robinson, Michael E.

    2013-01-01

    Understanding individual differences in the variability of fibromyalgia pain can help elucidate etiological mechanisms and treatment targets. Past research has shown that spatial extent of pain, negative mood, and aftersensation (pain ratings taken after experimental induction of pain) accounts for 40 to 50% of the variance in clinical pain. Poor sleep is hypothesized to have a reciprocal relationship with pain, and over 75% of individuals with fibromyalgia report disturbed sleep. We hypothesized that measures of sleep would increase the predictive ability of the clinical pain model. Measures of usual pain, spatial extent of pain, negative mood, and pain aftersensation were taken from 74 adults with fibromyalgia. Objective (actigraph) and subjective (diary) measures of sleep duration and nightly wake time were also obtained from the participants over 14 days. Hierarchical regression indicated that greater spatial extent (R2 = .26), higher aftersensation ratings (R2 = .06), and higher negative mood (R2 = .04) accounted for 36% of the variance in clinical pain (average of 14 daily pain ratings). None of the sleep variables were significant predictors of clinical pain. Results replicate previous research and suggest that spatial extent of pain, pain aftersensation, and negative mood play important roles in clinical pain, but sleep disturbance did not aid in its prediction. PMID:22381437

  14. The effects of age and workload on 3D spatial attention in dual-task driving.

    PubMed

    Pierce, Russell S; Andersen, George J

    2014-06-01

    In the present study we assessed whether the limits in visual-spatial attention associated with aging affect the spatial extent of attention in depth during driving performance. Drivers in the present study performed a car-following and light-detection task. To assess the extent of visual-spatial attention, we compared reaction times and accuracy to light change targets that varied in horizontal position and depth location. In addition, because workload has been identified as a factor that can change the horizontal and vertical extent of attention, we tested whether variability of the lead car speed influenced the extent of spatial attention for younger or older drivers. For younger drivers, reaction time (RT) to light-change targets varied as a function of distance and horizontal position. For older drivers RT varied only as a function of distance. There was a distance by horizontal position interaction for younger drivers but not for older drivers. Specifically, there was no effect of horizontal position at any given level of depth for older drivers. However, for younger drivers there was an effect of horizontal position for targets further in depth but not for targets nearer in depth. With regards to workload, we found no statistically reliable evidence that variability of the lead car speed had an effect on the spatial extent of attention for younger or older drivers. In a control experiment, we examined the effects of depth on light detection when the projected size and position of the targets was constant. Consistent with our previous results, we found that drivers' reaction time to light-change targets varied as a function of distance even when 2D position and size were controlled. Given that depth is an important dimension in driving performance, an important issue for assessing driving safety is to consider the limits of attention in the depth dimension. Therefore, we suggest that future research should consider the importance of depth as a dimension of spatial attention in relation to the assessment of driving performance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Comparison of physical and semi-empirical hydraulic models for flood inundation mapping

    NASA Astrophysics Data System (ADS)

    Tavakoly, A. A.; Afshari, S.; Omranian, E.; Feng, D.; Rajib, A.; Snow, A.; Cohen, S.; Merwade, V.; Fekete, B. M.; Sharif, H. O.; Beighley, E.

    2016-12-01

    Various hydraulic/GIS-based tools can be used for illustrating spatial extent of flooding for first-responders, policy makers and the general public. The objective of this study is to compare four flood inundation modeling tools: HEC-RAS-2D, Gridded Surface Subsurface Hydrologic Analysis (GSSHA), AutoRoute and Height Above the Nearest Drainage (HAND). There is a trade-off among accuracy, workability and computational demand in detailed, physics-based flood inundation models (e.g. HEC-RAS-2D and GSSHA) in contrast with semi-empirical, topography-based, computationally less expensive approaches (e.g. AutoRoute and HAND). The motivation for this study is to evaluate this trade-off and offer guidance to potential large-scale application in an operational prediction system. The models were assessed and contrasted via comparability analysis (e.g. overlapping statistics) by using three case studies in the states of Alabama, Texas, and West Virginia. The sensitivity and accuracy of physical and semi-eimpirical models in producing inundation extent were evaluated for the following attributes: geophysical characteristics (e.g. high topographic variability vs. flat natural terrain, urbanized vs. rural zones, effect of surface roughness paratermer value), influence of hydraulic structures such as dams and levees compared to unobstructed flow condition, accuracy in large vs. small study domain, effect of spatial resolution in topographic data (e.g. 10m National Elevation Dataset vs. 0.3m LiDAR). Preliminary results suggest that semi-empericial models tend to underestimate in a flat, urbanized area with controlled/managed river channel around 40% of the inundation extent compared to the physical models, regardless of topographic resolution. However, in places where there are topographic undulations, semi-empericial models attain relatively higher level of accuracy than they do in flat non-urbanized terrain.

  16. The influence of data characteristics on detecting wetland/stream surface-water connections in the Delmarva Peninsula, Maryland and Delaware

    USGS Publications Warehouse

    Vanderhoof, Melanie; Distler, Hayley; Lang, Megan W.; Alexander, Laurie C.

    2018-01-01

    The dependence of downstream waters on upstream ecosystems necessitates an improved understanding of watershed-scale hydrological interactions including connections between wetlands and streams. An evaluation of such connections is challenging when, (1) accurate and complete datasets of wetland and stream locations are often not available and (2) natural variability in surface-water extent influences the frequency and duration of wetland/stream connectivity. The Upper Choptank River watershed on the Delmarva Peninsula in eastern Maryland and Delaware is dominated by a high density of small, forested wetlands. In this analysis, wetland/stream surface water connections were quantified using multiple wetland and stream datasets, including headwater streams and depressions mapped from a lidar-derived digital elevation model. Surface-water extent was mapped across the watershed for spring 2015 using Landsat-8, Radarsat-2 and Worldview-3 imagery. The frequency of wetland/stream connections increased as a more complete and accurate stream dataset was used and surface-water extent was included, in particular when the spatial resolution of the imagery was finer (i.e., <10 m). Depending on the datasets used, 12–60% of wetlands by count (21–93% of wetlands by area) experienced surface-water interactions with streams during spring 2015. This translated into a range of 50–94% of the watershed contributing direct surface water runoff to streamflow. This finding suggests that our interpretation of the frequency and duration of wetland/stream connections will be influenced not only by the spatial and temporal characteristics of wetlands, streams and potential flowpaths, but also by the completeness, accuracy and resolution of input datasets.

  17. 48 CFR 19.202-5 - Data collection and reporting requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... requirements. Agencies must measure the extent of small business participation in their acquisition programs by... business, small disadvantaged business, or women-owned small business concern (see the provision at 52.219-1, Small Business Program Representations). (b) Accurately measure the extent of participation by...

  18. Communicating and Evaluating the Causes of Seismicity in Oklahoma Using ArcGIS Online Story Map Web Applications

    NASA Astrophysics Data System (ADS)

    Justman, D.; Rose, K.; Bauer, J. R.; Miller, R., III; Vasylkivska, V.; Romeo, L.

    2016-12-01

    ArcGIS Online story maps allows users to communicate complex topics with geospatially enabled stories. This story map web application entitled "Evaluating the Mysteries of Seismicity in Oklahoma" has been employed as part of a broader research effort investigating the relationships between spatiotemporal systems and seismicity to understand the recent increase in seismicity by reviewing literature, exploring, and performing analyses on key datasets. It offers information about the unprecedented increase in seismic events since 2008, earthquake history, the risk to the population, physical mechanisms behind earthquakes, natural and anthropogenic earthquake factors, and individual & cumulative spatial extents of these factors. The cumulative spatial extents for natural, anthropogenic, and all combined earthquake factors were determined using the Cumulative Spatial Impact Layers (CSILs) tool developed at the National Energy Technology Laboratory (NETL). Results show positive correlations between the average number of influences (datasets related to individual factors) and the number of earthquakes for every 100 square mile grid cell in Oklahoma, along with interesting spatial correlations for the individual & cumulative spatial extents of these factors when overlaid with earthquake density and a hotspot analysis for earthquake magnitude from 2010 to 2015.

  19. Reducing fertilizer-nitrogen losses from rowcrop landscapes: Insights and implications from a spatially explicit watershed model

    USGS Publications Warehouse

    McLellan, Eileen; Schilling, Keith; Robertson, Dale M.

    2015-01-01

    We present conceptual and quantitative models that predict changes in fertilizer-derived nitrogen delivery from rowcrop landscapes caused by agricultural conservation efforts implemented to reduce nutrient inputs and transport and increase nutrient retention in the landscape. To evaluate the relative importance of changes in the sources, transport, and sinks of fertilizer-derived nitrogen across a region, we use the spatially explicit SPAtially Referenced Regression On Watershed attributes watershed model to map the distribution, at the small watershed scale within the Upper Mississippi-Ohio River Basin (UMORB), of: (1) fertilizer inputs; (2) nutrient attenuation during delivery of those inputs to the UMORB outlet; and (3) nitrogen export from the UMORB outlet. Comparing these spatial distributions suggests that the amount of fertilizer input and degree of nutrient attenuation are both important in determining the extent of nitrogen export. From a management perspective, this means that agricultural conservation efforts to reduce nitrogen export would benefit by: (1) expanding their focus to include activities that restore and enhance nutrient processing in these highly altered landscapes; and (2) targeting specific types of best management practices to watersheds where they will be most valuable. Doing so successfully may result in a shift in current approaches to conservation planning, outreach, and funding.

  20. Tracking fine-scale seasonal evolution of surface water extent in Central Alaska and the Canadian Shield

    NASA Astrophysics Data System (ADS)

    Cooley, S. W.; Smith, L. C.; Pitcher, L. H.; Pavelsky, T.; Topp, S.

    2017-12-01

    Quantifying spatial and temporal variability in surface water storage at high latitudes is critical for assessing environmental sensitivity to climate change. Traditionally the tradeoff between high spatial and high temporal resolution space-borne optical imagery has limited the ability to track fine-scale changes in surface water extent. However, the recent launch of hundreds of earth-imaging CubeSats by commercial satellite companies such as Planet opens up new possibilities for monitoring surface water from space. In this study we present a comparison of seasonal evolution of surface water extent in two study areas with differing geologic, hydrologic and permafrost regimes, namely, the Yukon Flats in Central Alaska and the Canadian Shield north of Yellowknife, N.W.T. Using near-daily 3m Planet CubeSat imagery, we track individual lake surface area from break-up to freeze-up during summer 2017 and quantify the spatial and temporal variability in inundation extent. We validate our water delineation method and inundation extent time series using WorldView imagery, coincident in situ lake shoreline mapping and pressure transducer data for 19 lakes in the Northwest Territories and Alaska collected during the NASA Arctic Boreal Vulnerability Experiment (ABoVE) 2017 field campaign. The results of this analysis demonstrate the value of CubeSat imagery for dynamic surface water research particularly at high latitudes and illuminate fine-scale drivers of cold regions surface water extent.

  1. Transition from traditional to modern forest management shaped the spatial extent of cattle pasturing in Białowieża Primeval Forest in the nineteenth and twentieth centuries.

    PubMed

    Samojlik, Tomasz; Fedotova, Anastasia; Kuijper, Dries P J

    2016-12-01

    Pasturing of livestock in forests has had profound consequences for Europe's landscapes. In Białowieża Primeval Forest (BPF), cattle pasturing was a part of traditional forest use that ceased only in the second half of the twentieth century. We collected information on the institutional changes governing forest cattle pasturing and the changes in spatial extent of cattle presence in BPF in last two centuries and information on cattle numbers and their impact on forest regeneration. The spatial extent of cattle pasturing was highly variable, with the distribution of grazing areas frequently changing. Forest near villages (constituting less than 10 % of the area) was most often used for cattle grazing during continued longer time periods. Historical data showed that cattle have had a clear impact on forest regeneration. However, the frequent changes that occurred in the extent of cattle grazing indicate that their impact occurred locally, was smaller in other less intensively used areas, and in the forest as a whole.

  2. Predicting the spatial extent of liquefaction from geospatial and earthquake specific parameters

    USGS Publications Warehouse

    Zhu, Jing; Baise, Laurie G.; Thompson, Eric M.; Wald, David J.; Knudsen, Keith L.; Deodatis, George; Ellingwood, Bruce R.; Frangopol, Dan M.

    2014-01-01

    The spatially extensive damage from the 2010-2011 Christchurch, New Zealand earthquake events are a reminder of the need for liquefaction hazard maps for anticipating damage from future earthquakes. Liquefaction hazard mapping as traditionally relied on detailed geologic mapping and expensive site studies. These traditional techniques are difficult to apply globally for rapid response or loss estimation. We have developed a logistic regression model to predict the probability of liquefaction occurrence in coastal sedimentary areas as a function of simple and globally available geospatial features (e.g., derived from digital elevation models) and standard earthquake-specific intensity data (e.g., peak ground acceleration). Some of the geospatial explanatory variables that we consider are taken from the hydrology community, which has a long tradition of using remotely sensed data as proxies for subsurface parameters. As a result of using high resolution, remotely-sensed, and spatially continuous data as a proxy for important subsurface parameters such as soil density and soil saturation, and by using a probabilistic modeling framework, our liquefaction model inherently includes the natural spatial variability of liquefaction occurrence and provides an estimate of spatial extent of liquefaction for a given earthquake. To provide a quantitative check on how the predicted probabilities relate to spatial extent of liquefaction, we report the frequency of observed liquefaction features within a range of predicted probabilities. The percentage of liquefaction is the areal extent of observed liquefaction within a given probability contour. The regional model and the results show that there is a strong relationship between the predicted probability and the observed percentage of liquefaction. Visual inspection of the probability contours for each event also indicates that the pattern of liquefaction is well represented by the model.

  3. SPATIALLY-BALANCED SAMPLING OF NATURAL RESOURCES

    EPA Science Inventory

    The spatial distribution of a natural resource is an important consideration in designing an efficient survey or monitoring program for the resource. Generally, sample sites that are spatially-balanced, that is, more or less evenly dispersed over the extent of the resource, will ...

  4. Spatial and object-based attention modulates broadband high-frequency responses across the human visual cortical hierarchy.

    PubMed

    Davidesco, Ido; Harel, Michal; Ramot, Michal; Kramer, Uri; Kipervasser, Svetlana; Andelman, Fani; Neufeld, Miri Y; Goelman, Gadi; Fried, Itzhak; Malach, Rafael

    2013-01-16

    One of the puzzling aspects in the visual attention literature is the discrepancy between electrophysiological and fMRI findings: whereas fMRI studies reveal strong attentional modulation in the earliest visual areas, single-unit and local field potential studies yielded mixed results. In addition, it is not clear to what extent spatial attention effects extend from early to high-order visual areas. Here we addressed these issues using electrocorticography recordings in epileptic patients. The patients performed a task that allowed simultaneous manipulation of both spatial and object-based attention. They were presented with composite stimuli, consisting of a small object (face or house) superimposed on a large one, and in separate blocks, were instructed to attend one of the objects. We found a consistent increase in broadband high-frequency (30-90 Hz) power, but not in visual evoked potentials, associated with spatial attention starting with V1/V2 and continuing throughout the visual hierarchy. The magnitude of the attentional modulation was correlated with the spatial selectivity of each electrode and its distance from the occipital pole. Interestingly, the latency of the attentional modulation showed a significant decrease along the visual hierarchy. In addition, electrodes placed over high-order visual areas (e.g., fusiform gyrus) showed both effects of spatial and object-based attention. Overall, our results help to reconcile previous observations of discrepancy between fMRI and electrophysiology. They also imply that spatial attention effects can be found both in early and high-order visual cortical areas, in parallel with their stimulus tuning properties.

  5. Population genetics of sporophytic self-incompatibility in Senecio squalidus L. (Asteraceae) II: a spatial autocorrelation approach to determining mating behaviour in the presence of low S allele diversity.

    PubMed

    Brennan, A C; Harris, S A; Hiscock, S J

    2003-11-01

    We recently estimated that as few as six S alleles represent the extent of S locus diversity in a British population of the self-incompatible (SI) coloniser Senecio squalidus (Oxford Ragwort). Despite the predicted constraints to mating imposed by such a low number of S alleles, S. squalidus maintains a strong sporophytic self-incompatibility (SSI) system and there is no evidence for a breakdown of SSI or any obvious negative reproductive consequences for this highly successful coloniser. The present paper assesses mating behaviour in an Oxford S. squalidus population through observations of its effect on spatial patterns of genetic diversity and thus the extent to which it is responsible for ameliorating the potentially detrimental reproductive consequences of low S allele diversity in British S. squalidus. A spatial autocorrelation (SA) treatment of S locus and allozyme polymorphism data for four loci indicates that mating events regularly occur at all the distance classes examined from 60 to 480 m throughout the entire sample population. Less SA is observed for S locus data than for allozyme data in accordance with the hypothesis that SSI and low diversity at the S locus are driving these large-scale mating events. The limited population structure at small distances of 60 m and less observed for SA analysis of the Me-2 locus and by F-statistics for all the allozyme data, is evidence of some local relatedness due to limited seed and pollen dispersal in S. squalidus. However, the overall impression of mating dynamics in this S. squalidus population is that of ample potential mating opportunities with many individuals at large population scales, indicating that reproductive success is not seriously affected by few S alleles available for mating interactions.

  6. Elucidating the interaction between light competition and herbivore feeding patterns using functional–structural plant modelling

    PubMed Central

    de Vries, Jorad; Poelman, Erik H; Anten, Niels; Evers, Jochem B

    2018-01-01

    Abstract Background and Aims Plants usually compete with neighbouring plants for resources such as light as well as defend themselves against herbivorous insects. This requires investment of limiting resources, resulting in optimal resource distribution patterns and trade-offs between growth- and defence-related traits. A plant’s competitive success is determined by the spatial distribution of its resources in the canopy. The spatial distribution of herbivory in the canopy in turn differs between herbivore species as the level of herbivore specialization determines their response to the distribution of resources and defences in the canopy. Here, we investigated to what extent competition for light affects plant susceptibility to herbivores with different feeding preferences. Methods To quantify interactions between herbivory and competition, we developed and evaluated a 3-D spatially explicit functional–structural plant model for Brassica nigra that mechanistically simulates competition in a dynamic light environment, and also explicitly models leaf area removal by herbivores with different feeding preferences. With this novel approach, we can quantitatively explore the extent to which herbivore feeding location and light competition interact in their effect on plant performance. Key Results Our results indicate that there is indeed a strong interaction between levels of plant–plant competition and herbivore feeding preference. When plants did not compete, herbivory had relatively small effects irrespective of feeding preference. Conversely, when plants competed, herbivores with a preference for young leaves had a strong negative effect on the competitiveness and subsequent performance of the plant, whereas herbivores with a preference for old leaves did not. Conclusions Our study predicts how plant susceptibility to herbivory depends on the composition of the herbivore community and the level of plant competition, and highlights the importance of considering the full range of dynamics in plant–plant–herbivore interactions. PMID:29373660

  7. The effect of local hydrodynamics on the spatial extent and morphology of cold-water coral habitats at Tisler Reef, Norway

    NASA Astrophysics Data System (ADS)

    De Clippele, L. H.; Huvenne, V. A. I.; Orejas, C.; Lundälv, T.; Fox, A.; Hennige, S. J.; Roberts, J. M.

    2018-03-01

    This study demonstrates how cold-water coral morphology and habitat distribution are shaped by local hydrodynamics, using high-definition video from Tisler Reef, an inshore reef in Norway. A total of 334 video frames collected on the north-west (NW) and south-east (SE) side of the reef were investigated for Lophelia pertusa coral cover and morphology and for the cover of the associated sponges Mycale lingua and Geodia sp. Our results showed that the SE side was a better habitat for L. pertusa (including live and dead colonies). Low cover of Geodia sp. was found on both sides of Tisler Reef. In contrast, Mycale lingua had higher percentage cover, especially on the NW side of the reef. Bush-shaped colonies of L. pertusa with elongated branches were the most abundant coral morphology on Tisler Reef. The highest abundance and density of this morphology were found on the SE side of the reef, while a higher proportion of cauliflower-shaped corals with short branches were found on the NW side. The proportion of very small L. pertusa colonies was also significantly higher on the SE side of the reef. The patterns in coral spatial distribution and morphology were related to local hydrodynamics—there were more frequent periods of downwelling currents on the SE side—and to the availability of suitable settling substrates. These factors make the SE region of Tisler Reef more suitable for coral growth. Understanding the impact of local hydrodynamics on the spatial extent and morphology of coral, and their relation to associated organisms such as sponges, is key to understanding the past and future development of the reef.

  8. Receptive fields for smooth pursuit eye movements and motion perception.

    PubMed

    Debono, Kurt; Schütz, Alexander C; Spering, Miriam; Gegenfurtner, Karl R

    2010-12-01

    Humans use smooth pursuit eye movements to track moving objects of interest. In order to track an object accurately, motion signals from the target have to be integrated and segmented from motion signals in the visual context. Most studies on pursuit eye movements used small visual targets against a featureless background, disregarding the requirements of our natural visual environment. Here, we tested the ability of the pursuit and the perceptual system to integrate motion signals across larger areas of the visual field. Stimuli were random-dot kinematograms containing a horizontal motion signal, which was perturbed by a spatially localized, peripheral motion signal. Perturbations appeared in a gaze-contingent coordinate system and had a different direction than the main motion including a vertical component. We measured pursuit and perceptual direction discrimination decisions and found that both steady-state pursuit and perception were influenced most by perturbation angles close to that of the main motion signal and only in regions close to the center of gaze. The narrow direction bandwidth (26 angular degrees full width at half height) and small spatial extent (8 degrees of visual angle standard deviation) correspond closely to tuning parameters of neurons in the middle temporal area (MT). Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. The use of regional advance mitigation planning (RAMP) to integrate transportation infrastructure impacts with sustainability; a perspective from the USA

    NASA Astrophysics Data System (ADS)

    Thorne, James H.; Huber, Patrick R.; O'Donoghue, Elizabeth; Santos, Maria J.

    2014-05-01

    Globally, urban areas are expanding, and their regional, spatially cumulative, environmental impacts from transportation projects are not typically assessed. However, incorporation of a Regional Advance Mitigation Planning (RAMP) framework can promote more effective, ecologically sound, and less expensive environmental mitigation. As a demonstration of the first phase of the RAMP framework, we assessed environmental impacts from 181 planned transportation projects in the 19 368 km2 San Francisco Bay Area. We found that 107 road and railroad projects will impact 2411-3490 ha of habitat supporting 30-43 threatened or endangered species. In addition, 1175 ha of impacts to agriculture and native vegetation are expected, as well as 125 crossings of waterways supporting anadromous fish species. The extent of these spatially cumulative impacts shows the need for a regional approach to associated environmental offsets. Many of the impacts were comprised of numerous small projects, where project-by-project mitigation would result in increased transaction costs, land costs, and lost project time. Ecological gains can be made if a regional approach is taken through the avoidance of small-sized reserves and the ability to target parcels for acquisition that fit within conservation planning designs. The methods are straightforward, and can be used in other metropolitan areas.

  10. Confidentiality Considerations for Use of Social-Spatial Data on the Social Determinants of Health: Sexual and Reproductive Health Case Study

    PubMed Central

    Haley, Danielle F.; Matthews, Stephen A.; Cooper, Hannah LF; Haardörfer, Regine; Adimora, Adaora A.; Wingood, Gina M.; Kramer, Michael R.

    2016-01-01

    Understanding whether and how the places where people live, work, and play are associated with health behaviors and health is essential to understanding the social determinants of health. However, social-spatial data which link a person and their attributes to a geographic location (e.g., home address) create potential confidentiality risks. Despite the growing body of literature describing approaches to protect individual confidentiality when utilizing social-spatial data, peer-reviewed manuscripts displaying identifiable individual point data or quasi-identifiers (attributes associated with the individual or disease that narrow identification) in maps persist, suggesting that knowledge has not been effectively translated into public health research practices. Using sexual and reproductive health as a case study, we explore the extent to which maps appearing in recent peer-reviewed publications risk participant confidentiality. Our scoping review of sexual and reproductive health literature published and indexed in PubMed between January 1, 2013 and September 1, 2015 identified 45 manuscripts displaying participant data in maps as points or small-population geographic units, spanning 26 journals and representing studies conducted in 20 countries. Notably, 56% (13/23) of publications presenting point data on maps either did not describe approaches used to mask data or masked data inadequately. Furthermore, 18% (4/22) of publications displaying data using small-population geographic units included at least two quasi-identifiers. These findings highlight the need for heightened education for researchers, reviewers, and editorial teams. We aim to provide readers with a primer on key confidentiality considerations when utilizing linked social-spatial data for visualizing results. Given the widespread availability of place-based data and the ease of creating maps, it is critically important to raise awareness on when social-spatial data constitute protected health information, best practices for masking geographic identifiers, and methods of balancing disclosure risk and scientific utility. We conclude with recommendations to support the preservation of confidentiality when disseminating results. PMID:27542102

  11. Confidentiality considerations for use of social-spatial data on the social determinants of health: Sexual and reproductive health case study.

    PubMed

    Haley, Danielle F; Matthews, Stephen A; Cooper, Hannah L F; Haardörfer, Regine; Adimora, Adaora A; Wingood, Gina M; Kramer, Michael R

    2016-10-01

    Understanding whether and how the places where people live, work, and play are associated with health behaviors and health is essential to understanding the social determinants of health. However, social-spatial data which link a person and their attributes to a geographic location (e.g., home address) create potential confidentiality risks. Despite the growing body of literature describing approaches to protect individual confidentiality when utilizing social-spatial data, peer-reviewed manuscripts displaying identifiable individual point data or quasi-identifiers (attributes associated with the individual or disease that narrow identification) in maps persist, suggesting that knowledge has not been effectively translated into public health research practices. Using sexual and reproductive health as a case study, we explore the extent to which maps appearing in recent peer-reviewed publications risk participant confidentiality. Our scoping review of sexual and reproductive health literature published and indexed in PubMed between January 1, 2013 and September 1, 2015 identified 45 manuscripts displaying participant data in maps as points or small-population geographic units, spanning 26 journals and representing studies conducted in 20 countries. Notably, 56% (13/23) of publications presenting point data on maps either did not describe approaches used to mask data or masked data inadequately. Furthermore, 18% (4/22) of publications displaying data using small-population geographic units included at least two quasi-identifiers. These findings highlight the need for heightened education for researchers, reviewers, and editorial teams. We aim to provide readers with a primer on key confidentiality considerations when utilizing linked social-spatial data for visualizing results. Given the widespread availability of place-based data and the ease of creating maps, it is critically important to raise awareness on when social-spatial data constitute protected health information, best practices for masking geographic identifiers, and methods of balancing disclosure risk and scientific utility. We conclude with recommendations to support the preservation of confidentiality when disseminating results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Historical Patterns and Drivers of Spatial Changes in Recreational Fishing Activity in Puget Sound, Washington

    PubMed Central

    Beaudreau, Anne H.; Whitney, Emily J.

    2016-01-01

    Small-scale fisheries are the primary users of many coastal fish stocks; yet, spatial and temporal patterns of recreational and subsistence fishing in coastal marine ecosystems are poorly documented. Knowledge about the spatial distribution of fishing activities can inform place-based management that balances species conservation with opportunities for recreation and subsistence. We used a participatory mapping approach to document changes in spatial fishing patterns of 80 boat-based recreational anglers from 1950 to 2010 in Puget Sound, Washington, USA. Hand-drawn fishing areas for salmon, rockfishes, flatfishes, and crabs were digitized and analyzed in a Geographic Information System. We found that recreational fishing has spanned the majority of Puget Sound since the 1950s, with the heaviest use limited to small areas of central and northern Puget Sound. People are still fishing in the same places they were decades ago, with relatively little change in specific locations despite widespread declines in salmon and bottomfish populations during the second half of the 20th century. While the location of core fishing areas remained consistent, the size of those areas and intensity of use changed over time. The size of fishing areas increased through the 2000s for salmon but declined after the 1970s and 1980s for rockfishes, flatfishes, and crabs. Our results suggest that the spatial extent of recreational bottomfishing increased after the 1960s, when the availability of motorized vessels and advanced fish-finding technologies allowed anglers to expand their scope beyond localized angling from piers and boathouses. Respondents offered a wide range of reasons for shifts in fishing areas over time, reflecting substantial individual variation in motivations and behaviors. Changes in fishing areas were most commonly attributed to changes in residence and declines in target species and least tied to fishery regulations, despite the implementation of at least 25 marine preserves since 1970. PMID:27054890

  13. Historical Patterns and Drivers of Spatial Changes in Recreational Fishing Activity in Puget Sound, Washington.

    PubMed

    Beaudreau, Anne H; Whitney, Emily J

    2016-01-01

    Small-scale fisheries are the primary users of many coastal fish stocks; yet, spatial and temporal patterns of recreational and subsistence fishing in coastal marine ecosystems are poorly documented. Knowledge about the spatial distribution of fishing activities can inform place-based management that balances species conservation with opportunities for recreation and subsistence. We used a participatory mapping approach to document changes in spatial fishing patterns of 80 boat-based recreational anglers from 1950 to 2010 in Puget Sound, Washington, USA. Hand-drawn fishing areas for salmon, rockfishes, flatfishes, and crabs were digitized and analyzed in a Geographic Information System. We found that recreational fishing has spanned the majority of Puget Sound since the 1950s, with the heaviest use limited to small areas of central and northern Puget Sound. People are still fishing in the same places they were decades ago, with relatively little change in specific locations despite widespread declines in salmon and bottomfish populations during the second half of the 20th century. While the location of core fishing areas remained consistent, the size of those areas and intensity of use changed over time. The size of fishing areas increased through the 2000s for salmon but declined after the 1970s and 1980s for rockfishes, flatfishes, and crabs. Our results suggest that the spatial extent of recreational bottomfishing increased after the 1960s, when the availability of motorized vessels and advanced fish-finding technologies allowed anglers to expand their scope beyond localized angling from piers and boathouses. Respondents offered a wide range of reasons for shifts in fishing areas over time, reflecting substantial individual variation in motivations and behaviors. Changes in fishing areas were most commonly attributed to changes in residence and declines in target species and least tied to fishery regulations, despite the implementation of at least 25 marine preserves since 1970.

  14. Extent of coterminous US rangelands: Quantifying implications of differing agency perspectives

    Treesearch

    Matthew Clark Reeves; John E. Mitchell

    2011-01-01

    Rangeland extent is an important factor for evaluating critical indicators of rangeland sustainability. Rangeland areal extent was determined for the coterminous United States in a geospatial framework by evaluating spatially explicit data from the Landscape Fire and Resource Management Planning Tools (LANDFIRE) project describing historic and current vegetative...

  15. Phase shift in atom interferometry due to spacetime curvature

    NASA Astrophysics Data System (ADS)

    Overstreet, Chris; Asenbaum, Peter; Kovachy, Tim; Brown, Daniel; Hogan, Jason; Kasevich, Mark

    2017-04-01

    In previous matter wave interferometers, the interferometer arm separation was small enough that gravitational tidal forces across the arms can be neglected. Gravitationally-induced phase shifts in such experiments arise from the acceleration of the interfering particles with respect to the interferometer beam splitters and mirrors. By increasing the interferometer arm separation, we enter a new regime in which the arms experience resolvably different gravitational forces. Using a single-source gravity gradiometer, we measure a phase shift associated with the tidal forces induced by a nearby test mass. This is the first observation of spacetime curvature across the spatial extent of a single quantum system. CO acknowledges funding from the Stanford Graduate Fellowship.

  16. [Spatial-temporal evolution characterization of land subsidence by multi-temporal InSAR method and GIS technology].

    PubMed

    Chen, Bei-Bei; Gong, Hui-Li; Li, Xiao-Juan; Lei, Kun-Chao; Duan, Guang-Yao; Xie, Jin-Rong

    2014-04-01

    Long-term over-exploitation of underground resources, and static and dynamic load increase year by year influence the occurrence and development of regional land subsidence to a certain extent. Choosing 29 scenes Envisat ASAR images covering plain area of Beijing, China, the present paper used the multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches, and obtained monitoring information of regional land subsidence. Under different situation of space development and utilization, the authors chose five typical settlement areas; With classified information of land-use, multi-spectral remote sensing image, and geological data, and adopting GIS spatial analysis methods, the authors analyzed the time series evolution characteristics of uneven settlement. The comprehensive analysis results suggests that the complex situations of space development and utilization affect the trend of uneven settlement; the easier the situation of space development and utilization, the smaller the settlement gradient, and the less the uneven settlement trend.

  17. Outputs of paired Gabor filters summed across the background frame of reference predict the direction of movement

    NASA Technical Reports Server (NTRS)

    Lawton, Teri B.

    1989-01-01

    A cortical neural network that computes the visibility of shifts in the direction of movement is proposed. The network computes: (1) the magnitude of the position difference between the test and background patterns, (2) localized contrast differences at different spatial scales analyzed by computing temporal gradients of the difference and sum of the outputs of paired even- and odd-symmetric bandpass filters convolved with the input pattern, and (3) using global processes that pool the output from paired even- and odd-symmetric simple and complex cells across the spatial extent of the background frame of reference the direction a test pattern moved relative to a textured background. Evidence that magnocellular pathways are used to discriminate the direction of movement is presented. Since magnocellular pathways are used to discriminate the direction of movement, this task is not affected by small pattern changes such as jitter, short presentations, blurring, and different background contrasts that result when the veiling illumination in a scene changes.

  18. Fully Convolutional Network Based Shadow Extraction from GF-2 Imagery

    NASA Astrophysics Data System (ADS)

    Li, Z.; Cai, G.; Ren, H.

    2018-04-01

    There are many shadows on the high spatial resolution satellite images, especially in the urban areas. Although shadows on imagery severely affect the information extraction of land cover or land use, they provide auxiliary information for building extraction which is hard to achieve a satisfactory accuracy through image classification itself. This paper focused on the method of building shadow extraction by designing a fully convolutional network and training samples collected from GF-2 satellite imagery in the urban region of Changchun city. By means of spatial filtering and calculation of adjacent relationship along the sunlight direction, the small patches from vegetation or bridges have been eliminated from the preliminary extracted shadows. Finally, the building shadows were separated. The extracted building shadow information from the proposed method in this paper was compared with the results from the traditional object-oriented supervised classification algorihtms. It showed that the deep learning network approach can improve the accuracy to a large extent.

  19. Characterization of Thermal Refugia and Biogeochemical Hotspots at Sleepers River Watershed, VT

    NASA Astrophysics Data System (ADS)

    Hwang, K.; Chandler, D. G.; Kelleher, C.; Shanley, J. B.; Shaw, S. B.

    2017-12-01

    During low flow, changes in the extent of the channel network in headwater catchments depend on groundwater-surface water interactions, and dictate thermal and biogeochemical heterogeneities. Channel reaches with low temperature may act as refugia for valued species such as brook trout, and warmer reaches with high dissolved organic matter may act as biogeochemical hotspots. Prior studies have found uniform scaling of hydrologic and biogeochemical processes above certain spatial thresholds but sizable heterogeneities in these processes below the threshold. We utilize high resolution measurements of water quality parameters including stream temperature, conductivity and fluorescent dissolved organic matter (fDOM) at tributaries in two catchments of Sleepers River Watershed, Vermont to investigate seasonal and spatial variation of water quality and scaling of stream chemistry within the intensive study area and the larger Sleepers River Watershed. This study leverages findings from various small scale regional studies to identify differences in headwater channel reach behavior in a similar climate across some dissimilar geomorphic units, to inform the identification of thermal refugia and biogeochemical hotspots.

  20. Pesticide transport in the San Joaquin River Basin

    USGS Publications Warehouse

    Dubrovsky, N.M.; Kratzer, C.R.; Panshin, S.Y.; Gronberg, J.A.M.; Kuivila, K.M.

    2000-01-01

    Pesticide occurrence and concentrations were evaluated in the San Joaquin River Basin to determine potential sources and mode of transport. Land use in the basin is mainly agricultural. Spatial variations in pesticide occurrence were evaluated in relation to pesticide application and cropping patterns in three contrasting subbasins and at the mouth of the basin. Temporal variability in pesticide occurrence was evaluated by fixed interval sampling and by sampling across the Hydrograph during winter storms. Four herbicides (simazine, metolachlor, dacthal, and EPTC) and two insecticides (diazinon and chlorpyrifos) were detected in more than 50 percent of the samples. Temporal, and to a lesser extent spatial, variation in pesticide occurrence is usually consistent with pesticide application and cropping patterns. Diazinon concentrations changed rapidly during winter storms, and both eastern and western tributaries contributed diazinon to the San Joaquin River at concentrations toxic to the water flea Ceriodaphnia dubia at different times during the hydrograph. During these storms, toxic concentrations resulted from the transport of only a very small portion of the applied diazinon.

  1. Downscaling Global Land Cover Projections from an Integrated Assessment Model for Use in Regional Analyses: Results and Evaluation for the US from 2005 to 2095

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, Tristram O.; Le Page, Yannick LB; Huang, Maoyi

    2014-06-05

    Projections of land cover change generated from Integrated Assessment Models (IAM) and other economic-based models can be applied for analyses of environmental impacts at subregional and landscape scales. For those IAM and economic models that project land use at the sub-continental or regional scale, these projections must be downscaled and spatially distributed prior to use in climate or ecosystem models. Downscaling efforts to date have been conducted at the national extent with relatively high spatial resolution (30m) and at the global extent with relatively coarse spatial resolution (0.5 degree).

  2. Identification of the key ecological factors influencing vegetation degradation in semi-arid agro-pastoral ecotone considering spatial scales

    NASA Astrophysics Data System (ADS)

    Peng, Yu; Wang, Qinghui; Fan, Min

    2017-11-01

    When assessing re-vegetation project performance and optimizing land management, identification of the key ecological factors inducing vegetation degradation has crucial implications. Rainfall, temperature, elevation, slope, aspect, land use type, and human disturbance are ecological factors affecting the status of vegetation index. However, at different spatial scales, the key factors may vary. Using Helin County, Inner-Mongolia, China as the study site and combining remote sensing image interpretation, field surveying, and mathematical methods, this study assesses key ecological factors affecting vegetation degradation under different spatial scales in a semi-arid agro-pastoral ecotone. It indicates that the key factors are different at various spatial scales. Elevation, rainfall, and temperature are identified as crucial for all spatial extents. Elevation, rainfall and human disturbance are key factors for small-scale quadrats of 300 m × 300 m and 600 m × 600 m, temperature and land use type are key factors for a medium-scale quadrat of 1 km × 1 km, and rainfall, temperature, and land use are key factors for large-scale quadrats of 2 km × 2 km and 5 km × 5 km. For this region, human disturbance is not the key factor for vegetation degradation across spatial scales. It is necessary to consider spatial scale for the identification of key factors determining vegetation characteristics. The eco-restoration programs at various spatial scales should identify key influencing factors according their scales so as to take effective measurements. The new understanding obtained in this study may help to explore the forces which driving vegetation degradation in the degraded regions in the world.

  3. Spatial genetic structure and regional demography in the southern torrent salamander: Implications for conservation and management

    USGS Publications Warehouse

    Miller, Mark P.; Haig, Susan M.; Wagner, R.S.

    2006-01-01

    The Southern torrent salamander (Rhyacotriton variegatus) was recently found not warranted for listing under the US Endangered Species Act due to lack of information regarding population fragmentation and gene flow. Found in small-order streams associated with late-successional coniferous forests of the US Pacific Northwest, threats to their persistence include disturbance related to timber harvest activities. We conducted a study of genetic diversity throughout this species' range to 1) identify major phylogenetic lineages and phylogeographic barriers and 2) elucidate regional patterns of population genetic and spatial phylogeographic structure. Cytochrome b sequence variation was examined for 189 individuals from 72 localities. We identified 3 major lineages corresponding to nonoverlapping geographic regions: a northern California clade, a central Oregon clade, and a northern Oregon clade. The Yaquina River may be a phylogeographic barrier between the northern Oregon and central Oregon clades, whereas the Smith River in northern California appears to correspond to the discontinuity between the central Oregon and northern California clades. Spatial analyses of genetic variation within regions encompassing major clades indicated that the extent of genetic structure is comparable among regions. We discuss our results in the context of conservation efforts for Southern torrent salamanders.

  4. Visual Place Learning in Drosophila melanogaster

    PubMed Central

    Ofstad, Tyler A.; Zuker, Charles S.; Reiser, Michael B.

    2011-01-01

    The ability of insects to learn and navigate to specific locations in the environment has fascinated naturalists for decades. While the impressive navigation abilities of ants, bees, wasps, and other insects clearly demonstrate that insects are capable of visual place learning1–4, little is known about the underlying neural circuits that mediate these behaviors. Drosophila melanogaster is a powerful model organism for dissecting the neural circuitry underlying complex behaviors, from sensory perception to learning and memory. Flies can identify and remember visual features such as size, color, and contour orientation5, 6. However, the extent to which they use vision to recall specific locations remains unclear. Here we describe a visual place-learning platform and demonstrate that Drosophila are capable of forming and retaining visual place memories to guide selective navigation. By targeted genetic silencing of small subsets of cells in the Drosophila brain we show that neurons in the ellipsoid body, but not in the mushroom bodies, are necessary for visual place learning. Together, these studies reveal distinct neuroanatomical substrates for spatial versus non-spatial learning, and substantiate Drosophila as a powerful model for the study of spatial memories. PMID:21654803

  5. NASA Global Flood Mapping System

    NASA Technical Reports Server (NTRS)

    Policelli, Fritz; Slayback, Dan; Brakenridge, Bob; Nigro, Joe; Hubbard, Alfred

    2017-01-01

    Product utility key factors: Near real time, automated production; Flood spatial extent Cloudiness Pixel resolution: 250m; Flood temporal extent; Flash floods short duration on ground?; Landcover--Water under vegetation cover vs open water

  6. 48 CFR 1552.219-74 - Small disadvantaged business participation evaluation factor.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... based on the demonstrated extent of participation of small disadvantaged business (SDB) concerns in the... evaluation, offerors will be evaluated based on: (1) The extent to which SDB concerns are specifically identified to participate in the performance of the contract; (2) The extent of the commitment to use SDB...

  7. 48 CFR 1552.219-74 - Small disadvantaged business participation evaluation factor.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... based on the demonstrated extent of participation of small disadvantaged business (SDB) concerns in the... evaluation, offerors will be evaluated based on: (1) The extent to which SDB concerns are specifically identified to participate in the performance of the contract; (2) The extent of the commitment to use SDB...

  8. 48 CFR 1552.219-74 - Small disadvantaged business participation evaluation factor.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... based on the demonstrated extent of participation of small disadvantaged business (SDB) concerns in the... evaluation, offerors will be evaluated based on: (1) The extent to which SDB concerns are specifically identified to participate in the performance of the contract; (2) The extent of the commitment to use SDB...

  9. 48 CFR 1552.219-74 - Small disadvantaged business participation evaluation factor.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... based on the demonstrated extent of participation of small disadvantaged business (SDB) concerns in the... evaluation, offerors will be evaluated based on: (1) The extent to which SDB concerns are specifically identified to participate in the performance of the contract; (2) The extent of the commitment to use SDB...

  10. 48 CFR 1552.219-74 - Small disadvantaged business participation evaluation factor.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... based on the demonstrated extent of participation of small disadvantaged business (SDB) concerns in the... evaluation, offerors will be evaluated based on: (1) The extent to which SDB concerns are specifically identified to participate in the performance of the contract; (2) The extent of the commitment to use SDB...

  11. A trans-ecosystem fishery: Environmental effects on the small-scale gillnet fishery along the Río de la Plata boundary

    NASA Astrophysics Data System (ADS)

    Jaureguizar, Andrés Javier; Cortés, Federico; Milessi, Andrés Conrado; Cozzolino, Ezequiel; Allega, Lucrecia

    2015-12-01

    To improve the understanding of the environmental processes affecting small-scale gillnet fisheries along neighboring waters of estuaries, we analyzed the main climatic forcing and the environmental conditions, the fishery landing spatial and temporal variation, including the relative importance of site, distance to coast, temperature and salinity in the structuring of landed species profile. Data were collected monthly in two sites along the adjacent south coast of the Río de la Plata between October 2009 and September 2010. The gillnet fishery was dominated by four species (Cynoscion guatucupa, Micropogonias furnieri, Mustelus schmitti and Parona signata) from a total of 38 species landed, which accounted for 98.6% of total landings. The fishing effort and landings by the fishery were largely conditioned by the availability of fish species in the fishing grounds resulting from the combination of the species reproductive behavior and the predominant environmental conditions. The highest abundances for some species occurred before (M. furnieri, C. guatucupa, P. signata) or during the reproductive period (M. schmitti, Squatina guggenheim), while in other species it was associated with favorable environmental conditions during cold months (Squalus acanthias, Callorhinchus callorhynchus, Galeorhinus galeus) or warm months (Trichiurus lepturus). The predominant seasonal environmental conditions along the coast were mainly determined by the location of Río de la Plata boundary, whose spatial extent was forced by the wind patterns and freshwater discharge. The strong environmental dependence means that the small-scale fishery is in fact a seasonal trans-ecosystem fishery. This attribute, together that shared the resources with the industrial fishery and the overlap of the fishery ground with essential habitat of sharks, make this kind of small-scale gillnet fishery particularly relevant to be included in the development of a coastal ecosystem-based management approach.

  12. On the value of surface saturated area dynamics mapped with thermal infrared imagery for modeling the hillslope-riparian-stream continuum

    NASA Astrophysics Data System (ADS)

    Glaser, Barbara; Klaus, Julian; Frei, Sven; Frentress, Jay; Pfister, Laurent; Hopp, Luisa

    2016-10-01

    The highly dynamic processes within a hillslope-riparian-stream (HRS) continuum are known to affect streamflow generation, but are yet not fully understood. Within this study, we simulated a headwater HRS continuum in western Luxembourg with an integrated hydrologic surface subsurface model (HydroGeoSphere). The model was setup with thorough consideration of catchment-specific attributes and we performed a multicriteria model evaluation (4 years) with special focus on the temporally varying spatial patterns of surface saturation. We used a portable thermal infrared (TIR) camera to map surface saturation with a high spatial resolution and collected 20 panoramic snapshots of the riparian zone (approx. 10 m × 20 m) under different hydrologic conditions. Qualitative and quantitative comparison of the processed TIR panoramas and the corresponding model output panoramas revealed a good agreement between spatiotemporal dynamic model and field surface saturation patterns. A double logarithmic linear relationship between surface saturation extent and discharge was similar for modeled and observed data. This provided confidence in the capability of an integrated hydrologic surface subsurface model to represent temporal and spatial water flux dynamics at small (HRS continuum) scales. However, model scenarios with different parameterizations of the riparian zone showed that discharge and surface saturation were controlled by different parameters and hardly influenced each other. Surface saturation only affected very fast runoff responses with a small volumetric contribution to stream discharge, indicating that the dynamic surface saturation in the riparian zone does not necessarily imply a major control on runoff generation.

  13. Stochastic Downscaling of Digital Elevation Models

    NASA Astrophysics Data System (ADS)

    Rasera, Luiz Gustavo; Mariethoz, Gregoire; Lane, Stuart N.

    2016-04-01

    High-resolution digital elevation models (HR-DEMs) are extremely important for the understanding of small-scale geomorphic processes in Alpine environments. In the last decade, remote sensing techniques have experienced a major technological evolution, enabling fast and precise acquisition of HR-DEMs. However, sensors designed to measure elevation data still feature different spatial resolution and coverage capabilities. Terrestrial altimetry allows the acquisition of HR-DEMs with centimeter to millimeter-level precision, but only within small spatial extents and often with dead ground problems. Conversely, satellite radiometric sensors are able to gather elevation measurements over large areas but with limited spatial resolution. In the present study, we propose an algorithm to downscale low-resolution satellite-based DEMs using topographic patterns extracted from HR-DEMs derived for example from ground-based and airborne altimetry. The method consists of a multiple-point geostatistical simulation technique able to generate high-resolution elevation data from low-resolution digital elevation models (LR-DEMs). Initially, two collocated DEMs with different spatial resolutions serve as an input to construct a database of topographic patterns, which is also used to infer the statistical relationships between the two scales. High-resolution elevation patterns are then retrieved from the database to downscale a LR-DEM through a stochastic simulation process. The output of the simulations are multiple equally probable DEMs with higher spatial resolution that also depict the large-scale geomorphic structures present in the original LR-DEM. As these multiple models reflect the uncertainty related to the downscaling, they can be employed to quantify the uncertainty of phenomena that are dependent on fine topography, such as catchment hydrological processes. The proposed methodology is illustrated for a case study in the Swiss Alps. A swissALTI3D HR-DEM (with 5 m resolution) and a SRTM-derived LR-DEM from the Western Alps are used to downscale a SRTM-based LR-DEM from the eastern part of the Alps. The results show that the method is capable of generating multiple high-resolution synthetic DEMs that reproduce the spatial structure and statistics of the original DEM.

  14. [Analysis of Cr in soil by LIBS based on conical spatial confinement of plasma].

    PubMed

    Lin, Yong-Zeng; Yao, Ming-Yin; Chen, Tian-Bing; Li, Wen-Bing; Zheng, Mei-Lan; Xu, Xue-Hong; Tu, Jian-Ping; Liu, Mu-Hua

    2013-11-01

    The present study is to improve the sensitivity of detection and reduce the limit of detection in detecting heavy metal of soil by laser induced breakdown spectroscopy (LIBS). The Cr element of national standard soil was regarded as the research object. In the experiment, a conical cavity with small diameter end of 20 mm and large diameter end of 45 mm respectively was installed below the focusing lens near the experiment sample to mainly confine the signal transmitted by plasma and to some extent to confine the plasma itself in the LIBS setup. In detecting Cr I 425.44 nm, the beast delay time gained from experiment is 1.3 micros, and the relative standard deviation is below 10%. Compared with the setup of non-spatial confinement, the spectral intensity of Cr in the soil sample was enhanced more than 7%. Calibration curve was established in the Cr concentration range from 60 to 400 microg x g(-1). Under the condition of spatial confinement, the liner regression coefficient and the limit of detection were 0.997 71 and 18.85 microg x g(-1) respectively, however, the regression coefficient and the limit of detection were 0.991 22 and 36.99 microg x g(-1) without spatial confinement. So, this shows that conical spatial confinement can/improve the sensitivity of detection and enhance the spectral intensity. And it is a good auxiliary function in detecting Cr in the soil by laser induced breakdown spectroscopy.

  15. Spatio-temporal dynamics of a fish predator: Density-dependent and hydrographic effects on Baltic Sea cod population

    PubMed Central

    Bartolino, Valerio; Tian, Huidong; Bergström, Ulf; Jounela, Pekka; Aro, Eero; Dieterich, Christian; Meier, H. E. Markus; Cardinale, Massimiliano; Bland, Barbara

    2017-01-01

    Understanding the mechanisms of spatial population dynamics is crucial for the successful management of exploited species and ecosystems. However, the underlying mechanisms of spatial distribution are generally complex due to the concurrent forcing of both density-dependent species interactions and density-independent environmental factors. Despite the high economic value and central ecological importance of cod in the Baltic Sea, the drivers of its spatio-temporal population dynamics have not been analytically investigated so far. In this paper, we used an extensive trawl survey dataset in combination with environmental data to investigate the spatial dynamics of the distribution of the Eastern Baltic cod during the past three decades using Generalized Additive Models. The results showed that adult cod distribution was mainly affected by cod population size, and to a minor degree by small-scale hydrological factors and the extent of suitable reproductive areas. As population size decreases, the cod population concentrates to the southern part of the Baltic Sea, where the preferred more marine environment conditions are encountered. Using the fitted models, we predicted the Baltic cod distribution back to the 1970s and a temporal index of cod spatial occupation was developed. Our study will contribute to the management and conservation of this important resource and of the ecosystem where it occurs, by showing the forces shaping its spatial distribution and therefore the potential response of the population to future exploitation and environmental changes. PMID:28207804

  16. Spatial distribution of temporal dynamics in anthropogenic fires in miombo savanna woodlands of Tanzania.

    PubMed

    Tarimo, Beatrice; Dick, Øystein B; Gobakken, Terje; Totland, Ørjan

    2015-12-01

    Anthropogenic uses of fire play a key role in regulating fire regimes in African savannas. These fires contribute the highest proportion of the globally burned area, substantial biomass burning emissions and threaten maintenance and enhancement of carbon stocks. An understanding of fire regimes at local scales is required for the estimation and prediction of the contribution of these fires to the global carbon cycle and for fire management. We assessed the spatio-temporal distribution of fires in miombo woodlands of Tanzania, utilizing the MODIS active fire product and Landsat satellite images for the past ~40 years. Our results show that up to 50.6% of the woodland area is affected by fire each year. An early and a late dry season peak in wetter and drier miombo, respectively, characterize the annual fire season. Wetter miombo areas have higher fire activity within a shorter annual fire season and have shorter return intervals. The fire regime is characterized by small-sized fires, with a higher ratio of small than large burned areas in the frequency-size distribution (β = 2.16 ± 0.04). Large-sized fires are rare, and occur more frequently in drier than in wetter miombo. Both fire prevalence and burned extents have decreased in the past decade. At a large scale, more than half of the woodland area has less than 2 years of fire return intervals, which prevent the occurrence of large intense fires. The sizes of fires, season of burning and spatial extent of occurrence are generally consistent across time, at the scale of the current analysis. Where traditional use of fire is restricted, a reassessment of fire management strategies may be required, if sustainability of tree cover is a priority. In such cases, there is a need to combine traditional and contemporary fire management practices.

  17. Pattern detection in stream networks: Quantifying spatialvariability in fish distribution

    USGS Publications Warehouse

    Torgersen, Christian E.; Gresswell, Robert E.; Bateman, Douglas S.

    2004-01-01

    Biological and physical properties of rivers and streams are inherently difficult to sample and visualize at the resolution and extent necessary to detect fine-scale distributional patterns over large areas. Satellite imagery and broad-scale fish survey methods are effective for quantifying spatial variability in biological and physical variables over a range of scales in marine environments but are often too coarse in resolution to address conservation needs in inland fisheries management. We present methods for sampling and analyzing multiscale, spatially continuous patterns of stream fishes and physical habitat in small- to medium-size watersheds (500–1000 hectares). Geospatial tools, including geographic information system (GIS) software such as ArcInfo dynamic segmentation and ArcScene 3D analyst modules, were used to display complex biological and physical datasets. These tools also provided spatial referencing information (e.g. Cartesian and route-measure coordinates) necessary for conducting geostatistical analyses of spatial patterns (empirical semivariograms and wavelet analysis) in linear stream networks. Graphical depiction of fish distribution along a one-dimensional longitudinal profile and throughout the stream network (superimposed on a 10-metre digital elevation model) provided the spatial context necessary for describing and interpreting the relationship between landscape pattern and the distribution of coastal cutthroat trout (Oncorhynchus clarki clarki) in western Oregon, U.S.A. The distribution of coastal cutthroat trout was highly autocorrelated and exhibited a spherical semivariogram with a defined nugget, sill, and range. Wavelet analysis of the main-stem longitudinal profile revealed periodicity in trout distribution at three nested spatial scales corresponding ostensibly to landscape disturbances and the spacing of tributary junctions.

  18. Calibration and validation of a small-scale urban surface water flood event using crowdsourced images

    NASA Astrophysics Data System (ADS)

    Green, Daniel; Yu, Dapeng; Pattison, Ian

    2017-04-01

    Surface water flooding occurs when intense precipitation events overwhelm the drainage capacity of an area and excess overland flow is unable to infiltrate into the ground or drain via natural or artificial drainage channels, such as river channels, manholes or SuDS. In the UK, over 3 million properties are at risk from surface water flooding alone, accounting for approximately one third of the UK's flood risk. The risk of surface water flooding is projected to increase due to several factors, including population increases, land-use alterations and future climatic changes in precipitation resulting in an increased magnitude and frequency of intense precipitation events. Numerical inundation modelling is a well-established method of investigating surface water flood risk, allowing the researcher to gain a detailed understanding of the depth, velocity, discharge and extent of actual or hypothetical flood scenarios over a wide range of spatial scales. However, numerical models require calibration of key hydrological and hydraulic parameters (e.g. infiltration, evapotranspiration, drainage rate, roughness) to ensure model outputs adequately represent the flood event being studied. Furthermore, validation data such as crowdsourced images or spatially-referenced flood depth collected during a flood event may provide a useful validation of inundation depth and extent for actual flood events. In this study, a simplified two-dimensional inertial based flood inundation model requiring minimal pre-processing of data (FloodMap-HydroInundation) was used to model a short-duration, intense rainfall event (27.8 mm in 15 minutes) that occurred over the Loughborough University campus on the 28th June 2012. High resolution (1m horizontal, +/- 15cm vertical) DEM data, rasterised Ordnance Survey topographic structures data and precipitation data recorded at the University weather station were used to conduct numerical modelling over the small (< 2km2), contained urban catchment. To validate model outputs and allow a reconstruction of spatially referenced flood depth and extent during the flood event, crowdsourced images were obtained from social media (Twitter) and from individuals present during the flood event via the University noticeboards, as well as using dGPS flood depth data collected at one of the worst affected areas. An investigation into the sensitivity of key model parameters suggests that the numerical model code is highly sensitivity to changes within the recommended range of roughness and infiltration values, as well as changes in DEM and building mesh resolutions, but less sensitive to changes in evapotranspiration and drainage capacity parameters. The study also demonstrates the potential of using crowdsourced images to validate urban surface water flood models and inform parameterisation when calibrating numerical inundation models.

  19. A comparative analysis reveals weak relationships between ecological factors and beta diversity of stream insect metacommunities at two spatial levels.

    PubMed

    Heino, Jani; Melo, Adriano S; Bini, Luis Mauricio; Altermatt, Florian; Al-Shami, Salman A; Angeler, David G; Bonada, Núria; Brand, Cecilia; Callisto, Marcos; Cottenie, Karl; Dangles, Olivier; Dudgeon, David; Encalada, Andrea; Göthe, Emma; Grönroos, Mira; Hamada, Neusa; Jacobsen, Dean; Landeiro, Victor L; Ligeiro, Raphael; Martins, Renato T; Miserendino, María Laura; Md Rawi, Che Salmah; Rodrigues, Marciel E; Roque, Fabio de Oliveira; Sandin, Leonard; Schmera, Denes; Sgarbi, Luciano F; Simaika, John P; Siqueira, Tadeu; Thompson, Ross M; Townsend, Colin R

    2015-03-01

    The hypotheses that beta diversity should increase with decreasing latitude and increase with spatial extent of a region have rarely been tested based on a comparative analysis of multiple datasets, and no such study has focused on stream insects. We first assessed how well variability in beta diversity of stream insect metacommunities is predicted by insect group, latitude, spatial extent, altitudinal range, and dataset properties across multiple drainage basins throughout the world. Second, we assessed the relative roles of environmental and spatial factors in driving variation in assemblage composition within each drainage basin. Our analyses were based on a dataset of 95 stream insect metacommunities from 31 drainage basins distributed around the world. We used dissimilarity-based indices to quantify beta diversity for each metacommunity and, subsequently, regressed beta diversity on insect group, latitude, spatial extent, altitudinal range, and dataset properties (e.g., number of sites and percentage of presences). Within each metacommunity, we used a combination of spatial eigenfunction analyses and partial redundancy analysis to partition variation in assemblage structure into environmental, shared, spatial, and unexplained fractions. We found that dataset properties were more important predictors of beta diversity than ecological and geographical factors across multiple drainage basins. In the within-basin analyses, environmental and spatial variables were generally poor predictors of variation in assemblage composition. Our results revealed deviation from general biodiversity patterns because beta diversity did not show the expected decreasing trend with latitude. Our results also call for reconsideration of just how predictable stream assemblages are along ecological gradients, with implications for environmental assessment and conservation decisions. Our findings may also be applicable to other dynamic systems where predictability is low.

  20. Tree species exhibit complex patterns of distribution in bottomland hardwood forests

    Treesearch

    Luben D Dimov; Jim L Chambers; Brian R. Lockhart

    2013-01-01

    & Context Understanding tree interactions requires an insight into their spatial distribution. & Aims We looked for presence and extent of tree intraspecific spatial point pattern (random, aggregated, or overdispersed) and interspecific spatial point pattern (independent, aggregated, or segregated). & Methods We established twelve 0.64-ha plots in natural...

  1. The Malleability of Spatial Skills: A Meta-Analysis of Training Studies

    ERIC Educational Resources Information Center

    Uttal, David H.; Meadow, Nathaniel G.; Tipton, Elizabeth; Hand, Linda L.; Alden, Alison R.; Warren, Christopher; Newcombe, Nora S.

    2013-01-01

    Having good spatial skills strongly predicts achievement and attainment in science, technology, engineering, and mathematics fields (e.g., Shea, Lubinski, & Benbow, 2001; Wai, Lubinski, & Benbow, 2009). Improving spatial skills is therefore of both theoretical and practical importance. To determine whether and to what extent training and…

  2. Instantaneous field of view and spatial sampling of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

    NASA Technical Reports Server (NTRS)

    Chrien, Thomas G.; Green, Robert O.

    1993-01-01

    The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) measures the upwelling radiance in 224 spectral bands. These data are required as images of approximately 11 by up to 100 km in extent at nominally 20 by 20 meter spatial resolution. In this paper we describe the underlying spatial sampling and spatial response characteristics of AVIRIS.

  3. A Spatial Analysis of the Potato Cyst Nematode Globodera pallida in Idaho.

    PubMed

    Dandurand, Louise-Marie; Contina, Jean Bertrand; Knudsen, Guy R

    2018-03-13

    The potato cyst nematode (PCN), Globodera pallida, is a globally regulated and quarantine potato pest. It was detected for the first time in the U.S. in the state of Idaho in 2006. A spatial analysis was performed to: (i) understand the spatial arrangement of PCN infested fields in southern Idaho using spatial point pattern analysis; and (ii) evaluate the potential threat of PCN for entry to new areas using spatial interpolation techniques. Data point locations, cyst numbers and egg viability values for each infested field were collected by USDA-APHIS during 2006-2014. Results showed the presence of spatially clustered PCN infested fields (P = 0.003). We determined that the spread of PCN grew in diameter from the original center of infestation toward the southwest as an ellipsoidal-shaped cluster. Based on the aggregated spatial pattern of distribution and the low extent level of PCN infested fields in southern Idaho, we determined that PCN spread followed a contagion effect scenario, where nearby infested fields contributed to the infestation of new fields, probably through soil contaminated agricultural equipment or tubers. We determined that the recent PCN presence in southern Idaho is unlikely to be associated with new PCN entry from outside the state of Idaho. The relative aggregation of PCN infested fields, the low number of cysts recovered, and the low values in egg viability facilitate quarantine activities and confine this pest to a small area, which, in 2017, is estimated to be 1,233 hectares. The tools and methods provided in this study should facilitate comprehensive approaches to improve PCN control and eradication programs as well as to raise public awareness about this economically important potato pest.

  4. Assessment of Antarctic moss health from multi-sensor UAS imagery with Random Forest Modelling

    NASA Astrophysics Data System (ADS)

    Turner, Darren; Lucieer, Arko; Malenovský, Zbyněk; King, Diana; Robinson, Sharon A.

    2018-06-01

    Moss beds are one of very few terrestrial vegetation types that can be found on the Antarctic continent and as such mapping their extent and monitoring their health is important to environmental managers. Across Antarctica, moss beds are experiencing changes in health as their environment changes. As Antarctic moss beds are spatially fragmented with relatively small extent they require very high resolution remotely sensed imagery to monitor their distribution and dynamics. This study demonstrates that multi-sensor imagery collected by an Unmanned Aircraft System (UAS) provides a novel data source for assessment of moss health. In this study, we train a Random Forest Regression Model (RFM) with long-term field quadrats at a study site in the Windmill Islands, East Antarctica and apply it to UAS RGB and 6-band multispectral imagery, derived vegetation indices, 3D topographic data, and thermal imagery to predict moss health. Our results suggest that moss health, expressed as a percentage between 0 and 100% healthy, can be estimated with a root mean squared error (RMSE) between 7 and 12%. The RFM also quantifies the importance of input variables for moss health estimation showing the multispectral sensor data was important for accurate health prediction, such information being essential for planning future field investigations. The RFM was applied to the entire moss bed, providing an extrapolation of the health assessment across a larger spatial area. With further validation the resulting maps could be used for change detection of moss health across multiple sites and seasons.

  5. Forecasting climate change impacts on plant populations over large spatial extents

    DOE PAGES

    Tredennick, Andrew T.; Hooten, Mevin B.; Aldridge, Cameron L.; ...

    2016-10-24

    Plant population models are powerful tools for predicting climate change impacts in one location, but are difficult to apply at landscape scales. Here, we overcome this limitation by taking advantage of two recent advances: remotely sensed, species-specific estimates of plant cover and statistical models developed for spatiotemporal dynamics of animal populations. Using computationally efficient model reparameterizations, we fit a spatiotemporal population model to a 28-year time series of sagebrush (Artemisia spp.) percent cover over a 2.5 × 5 km landscape in southwestern Wyoming while formally accounting for spatial autocorrelation. We include interannual variation in precipitation and temperature as covariates inmore » the model to investigate how climate affects the cover of sagebrush. We then use the model to forecast the future abundance of sagebrush at the landscape scale under projected climate change, generating spatially explicit estimates of sagebrush population trajectories that have, until now, been impossible to produce at this scale. Our broadscale and long-term predictions are rooted in small-scale and short-term population dynamics and provide an alternative to predictions offered by species distribution models that do not include population dynamics. Finally, our approach, which combines several existing techniques in a novel way, demonstrates the use of remote sensing data to model population responses to environmental change that play out at spatial scales far greater than the traditional field study plot.« less

  6. Forecasting climate change impacts on plant populations over large spatial extents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tredennick, Andrew T.; Hooten, Mevin B.; Aldridge, Cameron L.

    Plant population models are powerful tools for predicting climate change impacts in one location, but are difficult to apply at landscape scales. Here, we overcome this limitation by taking advantage of two recent advances: remotely sensed, species-specific estimates of plant cover and statistical models developed for spatiotemporal dynamics of animal populations. Using computationally efficient model reparameterizations, we fit a spatiotemporal population model to a 28-year time series of sagebrush (Artemisia spp.) percent cover over a 2.5 × 5 km landscape in southwestern Wyoming while formally accounting for spatial autocorrelation. We include interannual variation in precipitation and temperature as covariates inmore » the model to investigate how climate affects the cover of sagebrush. We then use the model to forecast the future abundance of sagebrush at the landscape scale under projected climate change, generating spatially explicit estimates of sagebrush population trajectories that have, until now, been impossible to produce at this scale. Our broadscale and long-term predictions are rooted in small-scale and short-term population dynamics and provide an alternative to predictions offered by species distribution models that do not include population dynamics. Finally, our approach, which combines several existing techniques in a novel way, demonstrates the use of remote sensing data to model population responses to environmental change that play out at spatial scales far greater than the traditional field study plot.« less

  7. Forecasting climate change impacts on plant populations over large spatial extents

    USGS Publications Warehouse

    Tredennick, Andrew T.; Hooten, Mevin B.; Aldridge, Cameron L.; Homer, Collin G.; Kleinhesselink, Andrew R.; Adler, Peter B.

    2016-01-01

    Plant population models are powerful tools for predicting climate change impacts in one location, but are difficult to apply at landscape scales. We overcome this limitation by taking advantage of two recent advances: remotely sensed, species-specific estimates of plant cover and statistical models developed for spatiotemporal dynamics of animal populations. Using computationally efficient model reparameterizations, we fit a spatiotemporal population model to a 28-year time series of sagebrush (Artemisia spp.) percent cover over a 2.5 × 5 km landscape in southwestern Wyoming while formally accounting for spatial autocorrelation. We include interannual variation in precipitation and temperature as covariates in the model to investigate how climate affects the cover of sagebrush. We then use the model to forecast the future abundance of sagebrush at the landscape scale under projected climate change, generating spatially explicit estimates of sagebrush population trajectories that have, until now, been impossible to produce at this scale. Our broadscale and long-term predictions are rooted in small-scale and short-term population dynamics and provide an alternative to predictions offered by species distribution models that do not include population dynamics. Our approach, which combines several existing techniques in a novel way, demonstrates the use of remote sensing data to model population responses to environmental change that play out at spatial scales far greater than the traditional field study plot.

  8. Spatial and Temporal Extent of Ion Spectral Structures at the Inner Edge of the Plasma Sheet

    NASA Astrophysics Data System (ADS)

    Ferradas, C.; Reeves, G. D.; Zhang, J.; Spence, H. E.; Kistler, L. M.; Larsen, B.; Skoug, R. M.; Funsten, H. O.

    2017-12-01

    Several ion spectral structures are observed near the inner edge of the plasma sheet and constitute the signatures of ion drift and loss in the highly dynamic environment of the inner magnetosphere. Their study helps us understand ion access and losses in this region. Several studies have found that these structures vary with geomagnetic activity, local time, and ion species, but their spatial and temporal extent remain undetermined. We use data from the Helium, Oxygen, Proton, and Electron (HOPE) mass spectrometers onboard the Van Allen Probes to analyze the spectral structures in the energy range of 1- 50 keV. HOPE measurements on both Van Allen Probes spacecraft enable us to resolve the extent of these ion structures in space and time. As the structures respond to changes in the convection electric field on a variety of time scales, the lapping of the two spacecraft on time scales of minutes to hours helps determine their spatial and temporal evolution.

  9. Constraining the Spatial Extent of Marine Oil Snow Sedimentation and Flocculent Accumulation Following the Deepwater Horizon Event Using an Excess 210Pb Flux Approach.

    PubMed

    Schwing, P T; Brooks, G R; Larson, R A; Holmes, C W; O'Malley, B J; Hollander, D J

    2017-06-06

    Following the Deepwater Horizon (DWH) event in 2010, there were several lines of evidence indicating the presence of marine oil snow sedimentation and flocculent accumulation (MOSSFA). A significant amount of marine oil snow formed in the water column of the northern Gulf of Mexico (nGoM), settled rapidly, and ultimately accumulated in the sediments of the nGoM. This study utilized a commonly used radioisotope tracer (excess 210 Pb, 210 Pb xs ) from 32 sediment cores collected from 2010 to 2013 to characterize the spatial extent of MOSSFA on the seafloor. Relative to pre-DWH conditions, an increase in 210 Pb xs flux occurred in two distinct regions: (1) in the western portion of the study area on an east-northeast to west-southwest axis, stretching 230 km southwest and 140 km northeast of the DWH wellhead, and (2) in the eastern portion of the study area on a 70 km northeast to southwest axis near the DeSoto Canyon. The total sedimentary spatial extent of MOSSFA, as calculated by increased 210 Pb xs flux after 2010, ranged from 12 805 to 35 425 km 2 . 210 Pb xs flux provides a valuable tool for documenting the spatial extent of MOSSFA following DWH and will continue to aid in the determination of advective transport and ultimate depocenters of MOSSFA material.

  10. Optical tomography for flow visualization of the density field around a revolving helicopter rotor blade

    NASA Technical Reports Server (NTRS)

    Snyder, R.; Hesselink, L.

    1984-01-01

    In this paper, a tomographic procedure for reconstructing the density field around a helicopter rotor blade tip from remote optical line-of-sight measurements is discussed. Numerical model studies have been carried out to investigate the influence of the number of available views, limited width viewing, and ray bending on the reconstruction. Performance is measured in terms of the mean-square error. It is found that very good reconstructions can be obtained using only a small number of views even when the width of view is smaller than the spatial extent of the object. An iterative procedure is used to correct for ray bending due to refraction associated with the sharp density gradients (shocks).

  11. Homogenization via the strong-permittivity-fluctuation theory with nonzero depolarization volume

    NASA Astrophysics Data System (ADS)

    Mackay, Tom G.

    2004-08-01

    The depolarization dyadic provides the scattering response of a single inclusion particle embedded within a homogenous background medium. These dyadics play a central role in formalisms used to estimate the effective constitutive parameters of homogenized composite mediums (HCMs). Conventionally, the inclusion particle is taken to be vanishingly small; this allows the pointwise singularity of the dyadic Green function associated with the background medium to be employed as the depolarization dyadic. A more accurate approach is pursued in this communication by taking into account the nonzero spatial extent of inclusion particles. Depolarization dyadics corresponding to inclusion particles of nonzero volume are incorporated within the strong-permittivity-fluctuation theory (SPFT). The linear dimensions of inclusion particles are assumed to be small relative to the electromagnetic wavelength(s) and the SPFT correlation length. The influence of the size of inclusion particles upon SPFT estimates of the HCM constitutive parameters is investigated for anisotropic dielectric HCMs.In particular, the interplay between correlation length and inclusion size is explored.

  12. Determination of meteor parameters using laboratory simulation techniques

    NASA Technical Reports Server (NTRS)

    Friichtenicht, J. F.; Becker, D. G.

    1973-01-01

    Atmospheric entry of meteoritic bodies is conveniently and accurately simulated in the laboratory by techniques which employ the charging and electrostatic acceleration of macroscopic solid particles. Velocities from below 10 to above 50 km/s are achieved for particle materials which are elemental meteoroid constituents or mineral compounds with characteristics similar to those of meteoritic stone. The velocity, mass, and kinetic energy of each particle are measured nondestructively, after which the particle enters a target gas region. Because of the small particle size, free molecule flow is obtained. At typical operating pressures (0.1 to 0.5 torr), complete particle ablation occurs over distances of 25 to 50 cm; the spatial extent of the atmospheric interaction phenomena is correspondingly small. Procedures have been developed for measuring the spectrum of light from luminous trails and the values of fundamental quantities defined in meteor theory. It is shown that laboratory values for iron are in excellent agreement with those for 9 to 11 km/s artificial meteors produced by rocket injection of iron bodies into the atmosphere.

  13. Uav Photogrammetry for Mapping and Monitoring of Northern Permafrost Landscapes

    NASA Astrophysics Data System (ADS)

    Fraser, R. H.; Olthof, I.; Maloley, M.; Fernandes, R.; Prevost, C.; van der Sluijs, J.

    2015-08-01

    Northern environments are changing in response to recent climate warming, resource development, and natural disturbances. The Arctic climate has warmed by 2-3°C since the 1950's, causing a range of cryospheric changes including declines in sea ice extent, snow cover duration, and glacier mass, and warming permafrost. The terrestrial Arctic has also undergone significant temperature-driven changes in the form of increased thermokarst, larger tundra fires, and enhanced shrub growth. Monitoring these changes to inform land managers and decision makers is challenging due to the vast spatial extents involved and difficult access. Environmental monitoring in Canada's North is often based on local-scale measurements derived from aerial reconnaissance and photography, and ecological, hydrologic, and geologic sampling and surveying. Satellite remote sensing can provide a complementary tool for more spatially comprehensive monitoring but at coarser spatial resolutions. Satellite remote sensing has been used to map Arctic landscape changes related to vegetation productivity, lake expansion and drainage, glacier retreat, thermokarst, and wildfire activity. However, a current limitation with existing satellite-based techniques is the measurement gap between field measurements and high resolution satellite imagery. Bridging this gap is important for scaling up field measurements to landscape levels, and validating and calibrating satellite-based analyses. This gap can be filled to a certain extent using helicopter or fixed-wing aerial surveys, but at a cost that is often prohibitive. Unmanned aerial vehicle (UAV) technology has only recently progressed to the point where it can provide an inexpensive and efficient means of capturing imagery at this middle scale of measurement with detail that is adequate to interpret Arctic vegetation (i.e. 1-5 cm) and coverage that can be directly related to satellite imagery (1-10 km2). Unlike satellite measurements, UAVs permit frequent surveys (e.g. for monitoring vegetation phenology, fires, and hydrology), are not constrained by repeat cycle or cloud cover, can be rapidly deployed following a significant event, and are better suited than manned aircraft for mapping small areas. UAVs are becoming more common for agriculture, law enforcement, and marketing, but their use in the Arctic is still rare and represents untapped technology for northern mapping, monitoring, and environmental research. We are conducting surveys over a range of sensitive or changing northern landscapes using a variety of UAV multicopter platforms and small sensors. Survey targets include retrogressive thaw slumps, tundra shrub vegetation, recently burned vegetation, road infrastructure, and snow. Working with scientific partners involved in northern monitoring programs (NWT CIMP, CHARS, NASA ABOVE, NRCan-GSC) we are investigating the advantages, challenges, and best practices for acquiring high resolution imagery from multicopters to create detailed orthomosaics and co-registered 3D terrain models. Colour and multispectral orthomosaics are being integrated with field measurements and satellite imagery to conduct spatial scaling of environmental parameters. Highly detailed digital terrain models derived using structure from motion (SfM) photogrammetry are being applied to measure thaw slump morphology and change, snow depth, tundra vegetation structure, and surface condition of road infrastructure. These surveys and monitoring applications demonstrate that UAV-based photogrammetry is poised to make a rapid contribution to a wide range of northern monitoring and research applications.

  14. Exploring Spatiotemporal Trends in Commercial Fishing Effort of an Abalone Fishing Zone: A GIS-Based Hotspot Model

    PubMed Central

    Jalali, M. Ali; Ierodiaconou, Daniel; Gorfine, Harry; Monk, Jacquomo; Rattray, Alex

    2015-01-01

    Assessing patterns of fisheries activity at a scale related to resource exploitation has received particular attention in recent times. However, acquiring data about the distribution and spatiotemporal allocation of catch and fishing effort in small scale benthic fisheries remains challenging. Here, we used GIS-based spatio-statistical models to investigate the footprint of commercial diving events on blacklip abalone (Haliotis rubra) stocks along the south-west coast of Victoria, Australia from 2008 to 2011. Using abalone catch data matched with GPS location we found catch per unit of fishing effort (CPUE) was not uniformly spatially and temporally distributed across the study area. Spatial autocorrelation and hotspot analysis revealed significant spatiotemporal clusters of CPUE (with distance thresholds of 100’s of meters) among years, indicating the presence of CPUE hotspots focused on specific reefs. Cumulative hotspot maps indicated that certain reef complexes were consistently targeted across years but with varying intensity, however often a relatively small proportion of the full reef extent was targeted. Integrating CPUE with remotely-sensed light detection and ranging (LiDAR) derived bathymetry data using generalized additive mixed model corroborated that fishing pressure primarily coincided with shallow, rugose and complex components of reef structures. This study demonstrates that a geospatial approach is efficient in detecting patterns and trends in commercial fishing effort and its association with seafloor characteristics. PMID:25992800

  15. The importance of biodiversity and dominance for multiple ecosystem functions in a human-modified tropical landscape.

    PubMed

    Lohbeck, Madelon; Bongers, Frans; Martinez-Ramos, Miguel; Poorter, Lourens

    2016-10-01

    Many studies suggest that biodiversity may be particularly important for ecosystem multifunctionality, because different species with different traits can contribute to different functions. Support, however, comes mostly from experimental studies conducted at small spatial scales in low-diversity systems. Here, we test whether different species contribute to different ecosystem functions that are important for carbon cycling in a high-diversity human-modified tropical forest landscape in Southern Mexico. We quantified aboveground standing biomass, primary productivity, litter production, and wood decomposition at the landscape level, and evaluated the extent to which tree species contribute to these ecosystem functions. We used simulations to tease apart the effects of species richness, species dominance and species functional traits on ecosystem functions. We found that dominance was more important than species traits in determining a species' contribution to ecosystem functions. As a consequence of the high dominance in human-modified landscapes, the same small subset of species mattered across different functions. In human-modified landscapes in the tropics, biodiversity may play a limited role for ecosystem multifunctionality due to the potentially large effect of species dominance on biogeochemical functions. However, given the spatial and temporal turnover in species dominance, biodiversity may be critically important for the maintenance and resilience of ecosystem functions. © 2016 The Authors. Ecology, published by Wiley Periodicals, Inc., on behalf of the Ecological Society of America.

  16. The relationship between spatial configuration and functional connectivity of brain regions

    PubMed Central

    Woolrich, Mark W; Glasser, Matthew F; Robinson, Emma C; Beckmann, Christian F; Van Essen, David C

    2018-01-01

    Brain connectivity is often considered in terms of the communication between functionally distinct brain regions. Many studies have investigated the extent to which patterns of coupling strength between multiple neural populations relates to behaviour. For example, studies have used ‘functional connectivity fingerprints’ to characterise individuals' brain activity. Here, we investigate the extent to which the exact spatial arrangement of cortical regions interacts with measures of brain connectivity. We find that the shape and exact location of brain regions interact strongly with the modelling of brain connectivity, and present evidence that the spatial arrangement of functional regions is strongly predictive of non-imaging measures of behaviour and lifestyle. We believe that, in many cases, cross-subject variations in the spatial configuration of functional brain regions are being interpreted as changes in functional connectivity. Therefore, a better understanding of these effects is important when interpreting the relationship between functional imaging data and cognitive traits. PMID:29451491

  17. MEG source localization of spatially extended generators of epileptic activity: comparing entropic and hierarchical bayesian approaches.

    PubMed

    Chowdhury, Rasheda Arman; Lina, Jean Marc; Kobayashi, Eliane; Grova, Christophe

    2013-01-01

    Localizing the generators of epileptic activity in the brain using Electro-EncephaloGraphy (EEG) or Magneto-EncephaloGraphy (MEG) signals is of particular interest during the pre-surgical investigation of epilepsy. Epileptic discharges can be detectable from background brain activity, provided they are associated with spatially extended generators. Using realistic simulations of epileptic activity, this study evaluates the ability of distributed source localization methods to accurately estimate the location of the generators and their sensitivity to the spatial extent of such generators when using MEG data. Source localization methods based on two types of realistic models have been investigated: (i) brain activity may be modeled using cortical parcels and (ii) brain activity is assumed to be locally smooth within each parcel. A Data Driven Parcellization (DDP) method was used to segment the cortical surface into non-overlapping parcels and diffusion-based spatial priors were used to model local spatial smoothness within parcels. These models were implemented within the Maximum Entropy on the Mean (MEM) and the Hierarchical Bayesian (HB) source localization frameworks. We proposed new methods in this context and compared them with other standard ones using Monte Carlo simulations of realistic MEG data involving sources of several spatial extents and depths. Detection accuracy of each method was quantified using Receiver Operating Characteristic (ROC) analysis and localization error metrics. Our results showed that methods implemented within the MEM framework were sensitive to all spatial extents of the sources ranging from 3 cm(2) to 30 cm(2), whatever were the number and size of the parcels defining the model. To reach a similar level of accuracy within the HB framework, a model using parcels larger than the size of the sources should be considered.

  18. Visual Attention during Spatial Language Comprehension

    PubMed Central

    Burigo, Michele; Knoeferle, Pia

    2015-01-01

    Spatial terms such as “above”, “in front of”, and “on the left of” are all essential for describing the location of one object relative to another object in everyday communication. Apprehending such spatial relations involves relating linguistic to object representations by means of attention. This requires at least one attentional shift, and models such as the Attentional Vector Sum (AVS) predict the direction of that attention shift, from the sausage to the box for spatial utterances such as “The box is above the sausage”. To the extent that this prediction generalizes to overt gaze shifts, a listener’s visual attention should shift from the sausage to the box. However, listeners tend to rapidly look at referents in their order of mention and even anticipate them based on linguistic cues, a behavior that predicts a converse attentional shift from the box to the sausage. Four eye-tracking experiments assessed the role of overt attention in spatial language comprehension by examining to which extent visual attention is guided by words in the utterance and to which extent it also shifts “against the grain” of the unfolding sentence. The outcome suggests that comprehenders’ visual attention is predominantly guided by their interpretation of the spatial description. Visual shifts against the grain occurred only when comprehenders had some extra time, and their absence did not affect comprehension accuracy. However, the timing of this reverse gaze shift on a trial correlated with that trial’s verification time. Thus, while the timing of these gaze shifts is subtly related to the verification time, their presence is not necessary for successful verification of spatial relations. PMID:25607540

  19. MEG Source Localization of Spatially Extended Generators of Epileptic Activity: Comparing Entropic and Hierarchical Bayesian Approaches

    PubMed Central

    Chowdhury, Rasheda Arman; Lina, Jean Marc; Kobayashi, Eliane; Grova, Christophe

    2013-01-01

    Localizing the generators of epileptic activity in the brain using Electro-EncephaloGraphy (EEG) or Magneto-EncephaloGraphy (MEG) signals is of particular interest during the pre-surgical investigation of epilepsy. Epileptic discharges can be detectable from background brain activity, provided they are associated with spatially extended generators. Using realistic simulations of epileptic activity, this study evaluates the ability of distributed source localization methods to accurately estimate the location of the generators and their sensitivity to the spatial extent of such generators when using MEG data. Source localization methods based on two types of realistic models have been investigated: (i) brain activity may be modeled using cortical parcels and (ii) brain activity is assumed to be locally smooth within each parcel. A Data Driven Parcellization (DDP) method was used to segment the cortical surface into non-overlapping parcels and diffusion-based spatial priors were used to model local spatial smoothness within parcels. These models were implemented within the Maximum Entropy on the Mean (MEM) and the Hierarchical Bayesian (HB) source localization frameworks. We proposed new methods in this context and compared them with other standard ones using Monte Carlo simulations of realistic MEG data involving sources of several spatial extents and depths. Detection accuracy of each method was quantified using Receiver Operating Characteristic (ROC) analysis and localization error metrics. Our results showed that methods implemented within the MEM framework were sensitive to all spatial extents of the sources ranging from 3 cm2 to 30 cm2, whatever were the number and size of the parcels defining the model. To reach a similar level of accuracy within the HB framework, a model using parcels larger than the size of the sources should be considered. PMID:23418485

  20. Methods and spatial extent of geophysical Investigations, Mono Lake, California, 2009 to 2011

    USGS Publications Warehouse

    Jayko, A.S.; Hart, P.E.; Childs, J. R.; Cormier, M.-H.; Ponce, D.A.; Athens, N.D.; McClain, J.S.

    2013-01-01

    This report summarizes the methods and spatial extent of geophysical surveys conducted on Mono Lake and Paoha Island by U.S. Geological Survey during 2009 and 2011. The surveys include acquisition of new high resolution seismic reflection data, shipborne high resolution magnetic data, and ground magnetic and gravity data on Paoha Island. Several trials to acquire swath bathymetry and side scan sonar were conducted, but were largely unsuccessful likely due to physical properties of the water column and (or) physical properites of the highly organic bottom sediment.

  1. Electron Solvation in Two Dimensions

    NASA Astrophysics Data System (ADS)

    Miller, A. D.; Bezel, I.; Gaffney, K. J.; Garrett-Roe, S.; Liu, S. H.; Szymanski, P.; Harris, C. B.

    2002-08-01

    Ultrafast two-photon photoemission has been used to study electron solvation at two-dimensional metal/polar-adsorbate interfaces. The molecular motion that causes the excess electron solvation is manifested as a dynamic shift in the electronic energy. Although the initially excited electron is delocalized in the plane of the interface, interactions with the adsorbate can lead to its localization. A method for determining the spatial extent of the localized electron in the plane of the interface has been developed. This spatial extent was measured to be on the order of a single adsorbate molecule.

  2. Small-Scale Dissipation in Binary-Species Transitional Mixing Layers

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Okong'o, Nora

    2011-01-01

    Motivated by large eddy simulation (LES) modeling of supercritical turbulent flows, transitional states of databases obtained from direct numerical simulations (DNS) of binary-species supercritical temporal mixing layers were examined to understand the subgrid-scale dissipation, and its variation with filter size. Examination of the DSN-scale domain- averaged dissipation confirms previous findings that, out of the three modes of viscous, temperature and species-mass dissipation, the species-mass dissipation is the main contributor to the total dissipation. The results revealed that the percentage of species-mass by total dissipation is nearly invariant across species systems and initial conditions. This dominance of the species-mass dissipation is due to high-density-gradient magnitude (HDGM) regions populating the flow under the supercritical conditions of the simulations; such regions have also been observed in fully turbulent supercritical flows. The domain average being the result of both the local values and the extent of the HDGM regions, the expectations were that the response to filtering would vary with these flow characteristics. All filtering here is performed in the dissipation range of the Kolmogorov spectrum, at filter sizes from 4 to 16 times the DNS grid spacing. The small-scale (subgrid scale, SGS) dissipation was found by subtracting the filtered-field dissipation from the DNS-field dissipation. In contrast to the DNS dissipation, the SGS dissipation is not necessarily positive; negative values indicate backscatter. Backscatter was shown to be spatially widespread in all modes of dissipation and in the total dissipation (25 to 60 percent of the domain). The maximum magnitude of the negative subgrid- scale dissipation was as much as 17 percent of the maximum positive subgrid- scale dissipation, indicating that, not only is backscatter spatially widespread in these flows, but it is considerable in magnitude and cannot be ignored for the purposes of LES modeling. The Smagorinsky model, for example, is unsuited for modeling SGS fluxes in the LES because it cannot render backscatter. With increased filter size, there is only a modest decrease in the spatial extent of backscatter. The implication is that even at large LES grid spacing, the issue of backscatter and related SGS-flux modeling decisions are unavoidable. As a fraction of the total dissipation, the small-scale dissipation is between 10 and 30 percent of the total dissipation for a filter size that is four times the DNS grid spacing, with all OH cases bunched at 10 percent, and the HN cases spanning 24 30 percent. A scale similarity was found in that the domain-average proportion of each small-scale dissipation mode, with respect to the total small-scale dissipation, is very similar to equivalent results at the DNS scale. With increasing filter size, the proportion of the small-scale dissipation in the dissipation increases substantially, although not quite proportionally. When the filter size increases by four-fold, 52 percent for all OH runs, and 70 percent for HN runs, of the dissipation is contained in the subgrid-scale portion with virtually no dependence on the initial conditions of the DNS. The indications from the dissipation analysis are that modeling efforts in LES of thermodynamically supercritical flows should be focused primarily on mass-flux effects, with temperature and viscous effects being secondary. The analysis also reveals a physical justification for scale-similarity type models, although the suitability of these will need to be confirmed in a posteriori studies.

  3. Scales of Spatial Heterogeneity of Plastic Marine Debris in the Northeast Pacific Ocean

    PubMed Central

    Goldstein, Miriam C.; Titmus, Andrew J.; Ford, Michael

    2013-01-01

    Plastic debris has been documented in many marine ecosystems, including remote coastlines, the water column, the deep sea, and subtropical gyres. The North Pacific Subtropical Gyre (NPSG), colloquially called the “Great Pacific Garbage Patch,” has been an area of particular scientific and public concern. However, quantitative assessments of the extent and variability of plastic in the NPSG have been limited. Here, we quantify the distribution, abundance, and size of plastic in a subset of the eastern Pacific (approximately 20–40°N, 120–155°W) over multiple spatial scales. Samples were collected in Summer 2009 using surface and subsurface plankton net tows and quantitative visual observations, and Fall 2010 using surface net tows only. We documented widespread, though spatially variable, plastic pollution in this portion of the NPSG and adjacent waters. The overall median microplastic numerical concentration in Summer 2009 was 0.448 particles m−2 and in Fall 2010 was 0.021 particles m−2, but plastic concentrations were highly variable over the submesoscale (10 s of km). Size-frequency spectra were skewed towards small particles, with the most abundant particles having a cross-sectional area of approximately 0.01 cm2. Most microplastic was found on the sea surface, with the highest densities detected in low-wind conditions. The numerical majority of objects were small particles collected with nets, but the majority of debris surface area was found in large objects assessed visually. Our ability to detect high-plastic areas varied with methodology, as stations with substantial microplastic did not necessarily also contain large visually observable objects. A power analysis of our data suggests that high variability of surface microplastic will make future changes in abundance difficult to detect without substantial sampling effort. Our findings suggest that assessment and monitoring of oceanic plastic debris must account for high spatial variability, particularly in regards to the evaluation of initiatives designed to reduce marine debris. PMID:24278233

  4. Scales of spatial heterogeneity of plastic marine debris in the northeast pacific ocean.

    PubMed

    Goldstein, Miriam C; Titmus, Andrew J; Ford, Michael

    2013-01-01

    Plastic debris has been documented in many marine ecosystems, including remote coastlines, the water column, the deep sea, and subtropical gyres. The North Pacific Subtropical Gyre (NPSG), colloquially called the "Great Pacific Garbage Patch," has been an area of particular scientific and public concern. However, quantitative assessments of the extent and variability of plastic in the NPSG have been limited. Here, we quantify the distribution, abundance, and size of plastic in a subset of the eastern Pacific (approximately 20-40°N, 120-155°W) over multiple spatial scales. Samples were collected in Summer 2009 using surface and subsurface plankton net tows and quantitative visual observations, and Fall 2010 using surface net tows only. We documented widespread, though spatially variable, plastic pollution in this portion of the NPSG and adjacent waters. The overall median microplastic numerical concentration in Summer 2009 was 0.448 particles m(-2) and in Fall 2010 was 0.021 particles m(-2), but plastic concentrations were highly variable over the submesoscale (10 s of km). Size-frequency spectra were skewed towards small particles, with the most abundant particles having a cross-sectional area of approximately 0.01 cm(2). Most microplastic was found on the sea surface, with the highest densities detected in low-wind conditions. The numerical majority of objects were small particles collected with nets, but the majority of debris surface area was found in large objects assessed visually. Our ability to detect high-plastic areas varied with methodology, as stations with substantial microplastic did not necessarily also contain large visually observable objects. A power analysis of our data suggests that high variability of surface microplastic will make future changes in abundance difficult to detect without substantial sampling effort. Our findings suggest that assessment and monitoring of oceanic plastic debris must account for high spatial variability, particularly in regards to the evaluation of initiatives designed to reduce marine debris.

  5. Are numbers, size and brightness equally efficient in orienting visual attention? Evidence from an eye-tracking study.

    PubMed

    Bulf, Hermann; Macchi Cassia, Viola; de Hevia, Maria Dolores

    2014-01-01

    A number of studies have shown strong relations between numbers and oriented spatial codes. For example, perceiving numbers causes spatial shifts of attention depending upon numbers' magnitude, in a way suggestive of a spatially oriented, mental representation of numbers. Here, we investigated whether this phenomenon extends to non-symbolic numbers, as well as to the processing of the continuous dimensions of size and brightness, exploring whether different quantitative dimensions are equally mapped onto space. After a numerical (symbolic Arabic digits or non-symbolic arrays of dots; Experiment 1) or a non-numerical cue (shapes of different size or brightness level; Experiment 2) was presented, participants' saccadic response to a target that could appear either on the left or the right side of the screen was registered using an automated eye-tracker system. Experiment 1 showed that, both in the case of Arabic digits and dot arrays, right targets were detected faster when preceded by large numbers, and left targets were detected faster when preceded by small numbers. Participants in Experiment 2 were faster at detecting right targets when cued by large-sized shapes and left targets when cued by small-sized shapes, whereas brightness cues did not modulate the detection of peripheral targets. These findings indicate that looking at a symbolic or a non-symbolic number induces attentional shifts to a peripheral region of space that is congruent with the numbers' relative position on a mental number line, and that a similar shift in visual attention is induced by looking at shapes of different size. More specifically, results suggest that, while the dimensions of number and size spontaneously map onto an oriented space, the dimension of brightness seems to be independent at a certain level of magnitude elaboration from the dimensions of spatial extent and number, indicating that not all continuous dimensions are equally mapped onto space.

  6. Phylogeography and spatial genetic structure of the Southern torrent salamander: Implications for conservation and management

    USGS Publications Warehouse

    Miller, M.P.; Haig, S.M.; Wagner, R.S.

    2006-01-01

    The Southern torrent salamander (Rhyacotriton variegatus) was recently found not warranted for listing under the US Endangered Species Act due to lack of information regarding population fragmentation and gene flow. Found in small-order streams associated with late-successional coniferous forests of the US Pacific Northwest, threats to their persistence include disturbance related to timber harvest activities. We conducted a study of genetic diversity throughout this species' range to 1) identify major phylogenetic lineages and phylogeographic barriers and 2) elucidate regional patterns of population genetic and spatial phylogeographic structure. Cytochrome b sequence variation was examined for 189 individuals from 72 localities. We identified 3 major lineages corresponding to nonoverlapping geographic regions: a northern California clade, a central Oregon clade, and a northern Oregon clade. The Yaquina River may be a phylogeographic barrier between the northern Oregon and central Oregon clades, whereas the Smith River in northern California appears to correspond to the discontinuity between the central Oregon and northern California clades. Spatial analyses of genetic variation within regions encompassing major clades indicated that the extent of genetic structure is comparable among regions. We discuss our results in the context of conservation efforts for Southern torrent salamanders. ?? The American Genetic Association. 2006. All rights reserved.

  7. High-resolution infrared thermography for capturing wildland fire behaviour - RxCADRE 2012

    Treesearch

    Joseph J. O’Brien; E. Louise Loudermilk; Benjamin Hornsby; Andrew T. Hudak; Benjamin C. Bright; Matthew B. Dickinson; J. Kevin Hiers; Casey Teske; Roger D. Ottmar

    2016-01-01

    Wildland fire radiant energy emission is one of the only measurements of combustion that can be made at wide spatial extents and high temporal and spatial resolutions. Furthermore, spatially and temporally explicit measurements are critical for making inferences about fire effects and useful for examining patterns of fire spread. In this study we describe our...

  8. Forest defoliators and climatic change: potential changes in spatial distribution of outbreaks of western spruce budworm (Lepidoptera: Tortricidae) and gypsy moth (Lepidoptera Lymantriidae)

    Treesearch

    David W. ​Williams; Andrew M. Liebhold

    1995-01-01

    Changes in geographical ranges and spatial extent of outbreaks of pest species are likely consequences of climatic change. We investigated potential changes in spatial distribution of outbreaks of western spruce budworm, Choristoneura occidentalis Freeman, and gypsy moth, Lymantria dispar (L.), in Oregon and Pennsylvania,...

  9. Spatial synchrony of insect outbreaks

    Treesearch

    A.M. Liebhold; K.J. Haynes; O.N. Bjørnstad

    2012-01-01

    The concept of "spacial synchrony" refers to the tendency of tbe densities of spatially disjunct populations to be correlated in time (Bjornstad et al. 1999a, Liebhold et al. 2004). Oucbreaking forest insects offer many of the classic examples of this phenomenon (Figure 6.1). The spatial extent of synchrony of outbreaks is probably one of the most important...

  10. Effects of topoclimatic complexity on the composition of woody plant communities.

    PubMed

    Oldfather, Meagan F; Britton, Matthew N; Papper, Prahlad D; Koontz, Michael J; Halbur, Michelle M; Dodge, Celeste; Flint, Alan L; Flint, Lorriane E; Ackerly, David D

    2016-01-01

    Topography can create substantial environmental variation at fine spatial scales. Shaped by slope, aspect, hill-position and elevation, topoclimate heterogeneity may increase ecological diversity, and act as a spatial buffer for vegetation responding to climate change. Strong links have been observed between climate heterogeneity and species diversity at broader scales, but the importance of topoclimate for woody vegetation across small spatial extents merits closer examination. We established woody vegetation monitoring plots in mixed evergreen-deciduous woodlands that spanned topoclimate gradients of a topographically heterogeneous landscape in northern California. We investigated the association between the structure of adult and regenerating size classes of woody vegetation and multidimensional topoclimate at a fine scale. We found a significant effect of topoclimate on both single-species distributions and community composition. Effects of topoclimate were evident in the regenerating size class for all dominant species (four Quercus spp., Umbellularia californica and Pseudotsuga menziesii) but only in two dominant species (Quercus agrifolia and Quercus garryana) for the adult size class. Adult abundance was correlated with water balance parameters (e.g. climatic water deficit) and recruit abundance was correlated with an interaction between the topoclimate parameters and conspecific adult abundance (likely reflecting local seed dispersal). However, in all cases, the topoclimate signal was weak. The magnitude of environmental variation across our study site may be small relative to the tolerance of long-lived woody species. Dispersal limitations, management practices and patchy disturbance regimes also may interact with topoclimate, weakening its influence on woody vegetation distributions. Our study supports the biological relevance of multidimensional topoclimate for mixed woodland communities, but highlights that this relationship might be mediated by interacting factors at local scales. Published by Oxford University Press on behalf of the Annals of Botany Company.

  11. Effects of topoclimatic complexity on the composition of woody plant communities

    PubMed Central

    Oldfather, Meagan F.; Britton, Matthew N.; Papper, Prahlad D.; Koontz, Michael J.; Halbur, Michelle M.; Dodge, Celeste; Flint, Alan L.; Flint, Lorriane E.; Ackerly, David D.

    2016-01-01

    Topography can create substantial environmental variation at fine spatial scales. Shaped by slope, aspect, hill-position and elevation, topoclimate heterogeneity may increase ecological diversity, and act as a spatial buffer for vegetation responding to climate change. Strong links have been observed between climate heterogeneity and species diversity at broader scales, but the importance of topoclimate for woody vegetation across small spatial extents merits closer examination. We established woody vegetation monitoring plots in mixed evergreen-deciduous woodlands that spanned topoclimate gradients of a topographically heterogeneous landscape in northern California. We investigated the association between the structure of adult and regenerating size classes of woody vegetation and multidimensional topoclimate at a fine scale. We found a significant effect of topoclimate on both single-species distributions and community composition. Effects of topoclimate were evident in the regenerating size class for all dominant species (four Quercus spp., Umbellularia californica and Pseudotsuga menziesii) but only in two dominant species (Quercus agrifolia and Quercus garryana) for the adult size class. Adult abundance was correlated with water balance parameters (e.g. climatic water deficit) and recruit abundance was correlated with an interaction between the topoclimate parameters and conspecific adult abundance (likely reflecting local seed dispersal). However, in all cases, the topoclimate signal was weak. The magnitude of environmental variation across our study site may be small relative to the tolerance of long-lived woody species. Dispersal limitations, management practices and patchy disturbance regimes also may interact with topoclimate, weakening its influence on woody vegetation distributions. Our study supports the biological relevance of multidimensional topoclimate for mixed woodland communities, but highlights that this relationship might be mediated by interacting factors at local scales. PMID:27339048

  12. Forest defoliators and climatic change: Potential changes in spatial distribution of outbreaks of western spruce budworm (Lepidoptera: Tortricidae) and gypsy moth (Lepidoptera: Lymantriidae)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, D.W.; Liebhold, A.M.

    1995-02-01

    Changes in geographical ranges and spatial extent of outbreaks of pest species are likely consequences of climatic change. We investigated potential changes in spatial distribution of outbreaks of western spruce budworm, Choristoneura occidentalis Freeman, and gypsy moth, Lymantria dispar (L.), in Oregon and Pennsylvania, respectively using maps of historial defoliation, climate, and forest type in a geographic information system. Maps of defoliation frequency at a resolution of 2 x 2 km were assembled from historical aerial survey data. Weather maps for mean monthly temperature maxima and minima and precipitation over 30 yr were developed by interpolation. Relationships between defoliation statusmore » and environmental variables were estimated using linear discriminant analysis. Five climatic change scenarios were investigated: an increase of 2{degrees}C, a 2{degrees}C increase with a small increase and a small decrease in precipitation, and projections of two general circulation models (GCMs) after 100 yr at doubled carbon dioxide. With an increase in temperature alone, the projected defoliated area decreased relative to ambient conditions for budworm and increased slightly for gypsy moth. With an increase in temperature and precipitation, defoliated area increased for both species. Conversely, defoliated area decreased for both when temperature increased and precipitation decreased. Results for the GCM scenarios contrasted sharply. For one GCM, defoliation by budworm was projected to cover Oregon completely, whereas no defoliation was projected by gypsy moth in Pennsylvania. For the other, defoliation disappeared completely for budworm and slightly exceeded that under ambient conditions for gypsy moth. The results are discussed in terms of current forest composition and its potential changes. 36 refs., 5 figs., 4 tabs.« less

  13. Effects of ignition location models on the burn patterns of simulated wildfires

    USGS Publications Warehouse

    Bar-Massada, A.; Syphard, A.D.; Hawbaker, T.J.; Stewart, S.I.; Radeloff, V.C.

    2011-01-01

    Fire simulation studies that use models such as FARSITE often assume that ignition locations are distributed randomly, because spatially explicit information about actual ignition locations are difficult to obtain. However, many studies show that the spatial distribution of ignition locations, whether human-caused or natural, is non-random. Thus, predictions from fire simulations based on random ignitions may be unrealistic. However, the extent to which the assumption of ignition location affects the predictions of fire simulation models has never been systematically explored. Our goal was to assess the difference in fire simulations that are based on random versus non-random ignition location patterns. We conducted four sets of 6000 FARSITE simulations for the Santa Monica Mountains in California to quantify the influence of random and non-random ignition locations and normal and extreme weather conditions on fire size distributions and spatial patterns of burn probability. Under extreme weather conditions, fires were significantly larger for non-random ignitions compared to random ignitions (mean area of 344.5 ha and 230.1 ha, respectively), but burn probability maps were highly correlated (r = 0.83). Under normal weather, random ignitions produced significantly larger fires than non-random ignitions (17.5 ha and 13.3 ha, respectively), and the spatial correlations between burn probability maps were not high (r = 0.54), though the difference in the average burn probability was small. The results of the study suggest that the location of ignitions used in fire simulation models may substantially influence the spatial predictions of fire spread patterns. However, the spatial bias introduced by using a random ignition location model may be minimized if the fire simulations are conducted under extreme weather conditions when fire spread is greatest. ?? 2010 Elsevier Ltd.

  14. Imaging the Subsurface of the Thuringian Basin (Germany) on Different Spatial Scales

    NASA Astrophysics Data System (ADS)

    Goepel, A.; Krause, M.; Methe, P.; Kukowski, N.

    2014-12-01

    Understanding the coupled dynamics of near surface and deep fluid flow patterns is essential to characterize the properties of sedimentary basins, to identify the processes of compaction, diagenesis, and transport of mass and energy. The multidisciplinary project INFLUINS (Integrated FLUid dynamics IN Sedimentary basins) aims for investigating the behavior of fluids in the Thuringian Basin, a small intra-continental sedimentary basin in Germany, at different spatial scales, ranging from the pore scale to the extent of the entire basin. As hydraulic properties often significantly vary with spatial scales, e.g. seismic data using different frequencies are required to gain information about the spatial variability of elastic and hydraulic subsurface properties. For the Thuringian Basin, we use seismic and borehole data acquired in the framework of INFLUINS. Basin-wide structural imaging data are available from 2D reflection seismic profiles as well as 2.5D and 3D seismic travel time tomography. Further, core material from a 1,179 m deep drill hole completed in 2013 is available for laboratory seismic experiments on mm- to cm-scale. The data are complemented with logging data along the entire drill hole. This campaign yielded e.g. sonic and density logs allowing the estimation of in-situ P-velocity and acoustic impedance with a spatial resolution on the cm-scale and provides improved information about petrologic and stratigraphic variability at different scales. Joint interpretation of basin scale structural and elastic properties data with laboratory scale data from ultrasound experiments using core samples enables a detailed and realistic imaging of the subsurface properties on different spatial scales. Combining seismic travel time tomography with stratigraphic interpretation provides useful information of variations in the elastic properties for certain geological units and therefore gives indications for changes in hydraulic properties.

  15. Comparison of spatial association approaches for landscape mapping of soil organic carbon stocks

    NASA Astrophysics Data System (ADS)

    Miller, B. A.; Koszinski, S.; Wehrhan, M.; Sommer, M.

    2015-03-01

    The distribution of soil organic carbon (SOC) can be variable at small analysis scales, but consideration of its role in regional and global issues demands the mapping of large extents. There are many different strategies for mapping SOC, among which is to model the variables needed to calculate the SOC stock indirectly or to model the SOC stock directly. The purpose of this research is to compare direct and indirect approaches to mapping SOC stocks from rule-based, multiple linear regression models applied at the landscape scale via spatial association. The final products for both strategies are high-resolution maps of SOC stocks (kg m-2), covering an area of 122 km2, with accompanying maps of estimated error. For the direct modelling approach, the estimated error map was based on the internal error estimations from the model rules. For the indirect approach, the estimated error map was produced by spatially combining the error estimates of component models via standard error propagation equations. We compared these two strategies for mapping SOC stocks on the basis of the qualities of the resulting maps as well as the magnitude and distribution of the estimated error. The direct approach produced a map with less spatial variation than the map produced by the indirect approach. The increased spatial variation represented by the indirect approach improved R2 values for the topsoil and subsoil stocks. Although the indirect approach had a lower mean estimated error for the topsoil stock, the mean estimated error for the total SOC stock (topsoil + subsoil) was lower for the direct approach. For these reasons, we recommend the direct approach to modelling SOC stocks be considered a more conservative estimate of the SOC stocks' spatial distribution.

  16. Comparison of spatial association approaches for landscape mapping of soil organic carbon stocks

    NASA Astrophysics Data System (ADS)

    Miller, B. A.; Koszinski, S.; Wehrhan, M.; Sommer, M.

    2014-11-01

    The distribution of soil organic carbon (SOC) can be variable at small analysis scales, but consideration of its role in regional and global issues demands the mapping of large extents. There are many different strategies for mapping SOC, among which are to model the variables needed to calculate the SOC stock indirectly or to model the SOC stock directly. The purpose of this research is to compare direct and indirect approaches to mapping SOC stocks from rule-based, multiple linear regression models applied at the landscape scale via spatial association. The final products for both strategies are high-resolution maps of SOC stocks (kg m-2), covering an area of 122 km2, with accompanying maps of estimated error. For the direct modelling approach, the estimated error map was based on the internal error estimations from the model rules. For the indirect approach, the estimated error map was produced by spatially combining the error estimates of component models via standard error propagation equations. We compared these two strategies for mapping SOC stocks on the basis of the qualities of the resulting maps as well as the magnitude and distribution of the estimated error. The direct approach produced a map with less spatial variation than the map produced by the indirect approach. The increased spatial variation represented by the indirect approach improved R2 values for the topsoil and subsoil stocks. Although the indirect approach had a lower mean estimated error for the topsoil stock, the mean estimated error for the total SOC stock (topsoil + subsoil) was lower for the direct approach. For these reasons, we recommend the direct approach to modelling SOC stocks be considered a more conservative estimate of the SOC stocks' spatial distribution.

  17. High resolution tree-ring based spatial reconstructions of snow avalanche activity in Glacier National Park, Montana, USA

    USGS Publications Warehouse

    Pederson, Gregory T.; Reardon, Blase; Caruso, C.J.; Fagre, Daniel B.

    2006-01-01

    Effective design of avalanche hazard mitigation measures requires long-term records of natural avalanche frequency and extent. Such records are also vital for determining whether natural avalanche frequency and extent vary over time due to climatic or biophysical changes. Where historic records are lacking, an accepted substitute is a chronology developed from tree-ring responses to avalanche-induced damage. This study evaluates a method for using tree-ring chronologies to provide spatially explicit differentiations of avalanche frequency and temporally explicit records of avalanche extent that are often lacking. The study area - part of John F. Stevens Canyon on the southern border of Glacier National Park – is within a heavily used railroad and highway corridor with two dozen active avalanche paths. Using a spatially geo-referenced network of avalanche-damaged trees (n=109) from a single path, we reconstructed a 96-year tree-ring based chronology of avalanche extent and frequency. Comparison of the chronology with historic records revealed that trees recorded all known events as well as the same number of previously unidentified events. Kriging methods provided spatially explicit estimates of avalanche return periods. Estimated return periods for the entire avalanche path averaged 3.2 years. Within this path, return intervals ranged from ~2.3 yrs in the lower track, to ~9-11 yrs and ~12 to >25 yrs in the runout zone, where the railroad and highway are located. For avalanche professionals, engineers, and transportation managers this technique proves a powerful tool in landscape risk assessment and decision making.

  18. Assessing Greater Sage-Grouse Selection of Brood-Rearing Habitat Using Remotely-Sensed Imagery: Can Readily Available High-Resolution Imagery Be Used to Identify Brood-Rearing Habitat Across a Broad Landscape?

    PubMed

    Westover, Matthew; Baxter, Jared; Baxter, Rick; Day, Casey; Jensen, Ryan; Petersen, Steve; Larsen, Randy

    2016-01-01

    Greater sage-grouse populations have decreased steadily since European settlement in western North America. Reduced availability of brood-rearing habitat has been identified as a limiting factor for many populations. We used radio-telemetry to acquire locations of sage-grouse broods from 1998 to 2012 in Strawberry Valley, Utah. Using these locations and remotely-sensed NAIP (National Agricultural Imagery Program) imagery, we 1) determined which characteristics of brood-rearing habitat could be used in widely available, high resolution imagery 2) assessed the spatial extent at which sage-grouse selected brood-rearing habitat, and 3) created a predictive habitat model to identify areas of preferred brood-rearing habitat. We used AIC model selection to evaluate support for a list of variables derived from remotely-sensed imagery. We examined the relationship of these explanatory variables at three spatial extents (45, 200, and 795 meter radii). Our top model included 10 variables (percent shrub, percent grass, percent tree, percent paved road, percent riparian, meters of sage/tree edge, meters of riparian/tree edge, distance to tree, distance to transmission lines, and distance to permanent structures). Variables from each spatial extent were represented in our top model with the majority being associated with the larger (795 meter) spatial extent. When applied to our study area, our top model predicted 75% of naïve brood locations suggesting reasonable success using this method and widely available NAIP imagery. We encourage application of our methodology to other sage-grouse populations and species of conservation concern.

  19. No evidence for attenuated stress-induced extrastriatal dopamine signaling in psychotic disorder

    PubMed Central

    Hernaus, D; Collip, D; Kasanova, Z; Winz, O; Heinzel, A; van Amelsvoort, T; Shali, S M; Booij, J; Rong, Y; Piel, M; Pruessner, J; Mottaghy, F M; Myin-Germeys, I

    2015-01-01

    Stress is an important risk factor in the etiology of psychotic disorder. Preclinical work has shown that stress primarily increases dopamine (DA) transmission in the frontal cortex. Given that DA-mediated hypofrontality is hypothesized to be a cardinal feature of psychotic disorder, stress-related extrastriatal DA release may be altered in psychotic disorder. Here we quantified for the first time stress-induced extrastriatal DA release and the spatial extent of extrastriatal DA release in individuals with non-affective psychotic disorder (NAPD). Twelve healthy volunteers (HV) and 12 matched drug-free NAPD patients underwent a single infusion [18F]fallypride positron emission tomography scan during which they completed the control and stress condition of the Montreal Imaging Stress Task. HV and NAPD did not differ in stress-induced [18F]fallypride displacement and the spatial extent of stress-induced [18F]fallypride displacement in medial prefrontal cortex (mPFC) and temporal cortex (TC). In the whole sample, the spatial extent of stress-induced radioligand displacement in right ventro-mPFC, but not dorso-mPFC or TC, was positively associated with task-induced subjective stress. Psychotic symptoms during the scan or negative, positive and general subscales of the Positive and Negative Syndrome Scale were not associated with stress-induced [18F]fallypride displacement nor the spatial extent of stress-induced [18F]fallypride displacement in NAPD. Our results do not offer evidence for altered stress-induced extrastriatal DA signaling in NAPD, nor altered functional relevance. The implications of these findings for the role of the DA system in NAPD and stress processing are discussed. PMID:25871972

  20. How big of an effect do small dams have? Using geomorphological footprints to quantify spatial impact of low-head dams and identify patterns of across-dam variation

    USGS Publications Warehouse

    Fencl, Jane S.; Mather, Martha E.; Costigan, Katie H.; Daniels, Melinda D.

    2015-01-01

    Longitudinal connectivity is a fundamental characteristic of rivers that can be disrupted by natural and anthropogenic processes. Dams are significant disruptions to streams. Over 2,000,000 low-head dams (<7.6 m high) fragment United States rivers. Despite potential adverse impacts of these ubiquitous disturbances, the spatial impacts of low-head dams on geomorphology and ecology are largely untested. Progress for research and conservation is impaired by not knowing the magnitude of low-head dam impacts. Based on the geomorphic literature, we refined a methodology that allowed us to quantify the spatial extent of low-head dam impacts (herein dam footprint), assessed variation in dam footprints across low-head dams within a river network, and identified select aspects of the context of this variation. Wetted width, depth, and substrate size distributions upstream and downstream of six low-head dams within the Upper Neosho River, Kansas, United States of America were measured. Total dam footprints averaged 7.9 km (3.0–15.3 km) or 287 wetted widths (136–437 wetted widths). Estimates included both upstream (mean: 6.7 km or 243 wetted widths) and downstream footprints (mean: 1.2 km or 44 wetted widths). Altogether the six low-head dams impacted 47.3 km (about 17%) of the mainstem in the river network. Despite differences in age, size, location, and primary function, the sizes of geomorphic footprints of individual low-head dams in the Upper Neosho river network were relatively similar. The number of upstream dams and distance to upstream dams, but not dam height, affected the spatial extent of dam footprints. In summary, ubiquitous low-head dams individually and cumulatively altered lotic ecosystems. Both characteristics of individual dams and the context of neighboring dams affected low-head dam impacts within the river network. For these reasons, low-head dams require a different, more integrative, approach for research and management than the individualistic approach that has been applied to larger dams.

  1. How Big of an Effect Do Small Dams Have? Using Geomorphological Footprints to Quantify Spatial Impact of Low-Head Dams and Identify Patterns of Across-Dam Variation

    PubMed Central

    Costigan, Katie H.; Daniels, Melinda D.

    2015-01-01

    Longitudinal connectivity is a fundamental characteristic of rivers that can be disrupted by natural and anthropogenic processes. Dams are significant disruptions to streams. Over 2,000,000 low-head dams (<7.6 m high) fragment United States rivers. Despite potential adverse impacts of these ubiquitous disturbances, the spatial impacts of low-head dams on geomorphology and ecology are largely untested. Progress for research and conservation is impaired by not knowing the magnitude of low-head dam impacts. Based on the geomorphic literature, we refined a methodology that allowed us to quantify the spatial extent of low-head dam impacts (herein dam footprint), assessed variation in dam footprints across low-head dams within a river network, and identified select aspects of the context of this variation. Wetted width, depth, and substrate size distributions upstream and downstream of six low-head dams within the Upper Neosho River, Kansas, United States of America were measured. Total dam footprints averaged 7.9 km (3.0–15.3 km) or 287 wetted widths (136–437 wetted widths). Estimates included both upstream (mean: 6.7 km or 243 wetted widths) and downstream footprints (mean: 1.2 km or 44 wetted widths). Altogether the six low-head dams impacted 47.3 km (about 17%) of the mainstem in the river network. Despite differences in age, size, location, and primary function, the sizes of geomorphic footprints of individual low-head dams in the Upper Neosho river network were relatively similar. The number of upstream dams and distance to upstream dams, but not dam height, affected the spatial extent of dam footprints. In summary, ubiquitous low-head dams individually and cumulatively altered lotic ecosystems. Both characteristics of individual dams and the context of neighboring dams affected low-head dam impacts within the river network. For these reasons, low-head dams require a different, more integrative, approach for research and management than the individualistic approach that has been applied to larger dams. PMID:26540105

  2. Spatial Disorientation Training in the Rotor Wing Flight Simulator.

    PubMed

    Powell-Dunford, Nicole; Bushby, Alaistair; Leland, Richard A

    This study is intended to identify efficacy, evolving applications, best practices, and challenges of spatial disorientation (SD) training in flight simulators for rotor wing pilots. Queries of a UK Ministry of Defense research database and Pub Med were undertaken using the search terms 'spatial disorientation,' 'rotor wing,' and 'flight simulator.' Efficacy, evolving applications, best practices, and challenges of SD simulation for rotor wing pilots were also ascertained through discussion with subject matter experts and industrial partners. Expert opinions were solicited at the aeromedical physiologist, aeromedical psychologist, instructor pilot, aeromedical examiner, and corporate executive levels. Peer review literature search yielded 129 articles, with 5 relevant to the use of flight simulators for the spatial disorientation training of rotor wing pilots. Efficacy of such training was measured subjectively and objectively. A preponderance of anecdotal reports endorse the benefits of rotor wing simulator SD training, with a small trial substantiating performance improvement. Advancing technologies enable novel training applications. The mobile nature of flight students and concurrent anticollision technologies can make long-range assessment of SD training efficacy challenging. Costs of advanced technologies could limit the extent to which the most advanced simulators can be employed across the rotor wing community. Evidence suggests the excellent training value of rotor wing simulators for SD training. Objective data from further research, particularly with regards to evolving technologies, may justify further usage of advanced simulator platforms for SD training and research. Powell-Dunford N, Bushby A, Leland RA. Spatial disorientation training in the rotor wing flight simulator. Aerosp Med Hum Perform. 2016; 87(10):890-893.

  3. Bayesian Hierarchical Modeling for Big Data Fusion in Soil Hydrology

    NASA Astrophysics Data System (ADS)

    Mohanty, B.; Kathuria, D.; Katzfuss, M.

    2016-12-01

    Soil moisture datasets from remote sensing (RS) platforms (such as SMOS and SMAP) and reanalysis products from land surface models are typically available on a coarse spatial granularity of several square km. Ground based sensors on the other hand provide observations on a finer spatial scale (meter scale or less) but are sparsely available. Soil moisture is affected by high variability due to complex interactions between geologic, topographic, vegetation and atmospheric variables. Hydrologic processes usually occur at a scale of 1 km or less and therefore spatially ubiquitous and temporally periodic soil moisture products at this scale are required to aid local decision makers in agriculture, weather prediction and reservoir operations. Past literature has largely focused on downscaling RS soil moisture for a small extent of a field or a watershed and hence the applicability of such products has been limited. The present study employs a spatial Bayesian Hierarchical Model (BHM) to derive soil moisture products at a spatial scale of 1 km for the state of Oklahoma by fusing point scale Mesonet data and coarse scale RS data for soil moisture and its auxiliary covariates such as precipitation, topography, soil texture and vegetation. It is seen that the BHM model handles change of support problems easily while performing accurate uncertainty quantification arising from measurement errors and imperfect retrieval algorithms. The computational challenge arising due to the large number of measurements is tackled by utilizing basis function approaches and likelihood approximations. The BHM model can be considered as a complex Bayesian extension of traditional geostatistical prediction methods (such as Kriging) for large datasets in the presence of uncertainties.

  4. Air Pollution Measurements by Citizen Scientists and NASA Satellites: Data Integration and Analysis

    NASA Astrophysics Data System (ADS)

    Gupta, P.; Maibach, J.; Levy, R. C.; Doraiswamy, P.; Pikelnaya, O.; Feenstra, B.; Polidori, A.

    2017-12-01

    PM2.5, or fine particulate matter, is a category of air pollutant consisting of solid particles with effective aerodynamic diameter of less than 2.5 microns. These particles are hazardous to human health, as their small size allows them to penetrate deep into the lungs. Since the late 1990's, the US Environmental Protection Agency has been monitoring PM2.5 using a network of ground-level sensors. Due to cost and space restrictions, the EPA monitoring network remains spatially sparse. That is, while the network spans the extent of the US, the distance between sensors is large enough that significant spatial variation in PM concentration can go undetected. To increase the spatial resolution of monitoring, previous studies have used satellite data to estimate ground-level PM concentrations. From imagery, one can create a measure of haziness due to aerosols, called aerosol optical depth (AOD), which then can be used to estimate PM concentrations using statistical and physical modeling. Additionally, previous research has identified a number of meteorological variables, such as relative humidity and mixing height, which aide in estimating PM concentrations from AOD. Although the high spatial resolution of satellite data is valuable alone for forecasting air quality, higher resolution ground-level data is needed to effectively study the relationship between PM2.5 concentrations and AOD. To this end, we discuss a citizen-science PM monitoring network deployed in California. Using low-cost PM sensors, this network achieves higher spatial resolution. We additionally discuss a software pipeline for integrating resulting PM measurements with satellite data, as well as initial data analysis.

  5. GIS representation of coal-bearing areas in Antarctica

    USGS Publications Warehouse

    Merrill, Matthew D.

    2016-03-11

    Understanding the distribution of coal-bearing geologic units in Antarctica provides information that can be used in sedimentary, geomorphological, paleontological, and climatological studies. This report is a digital compilation of information on Antarctica’s coal-bearing geologic units found in the literature. It is intended to be used in small-scale spatial geographic information system (GIS) investigations and as a visual aid in the discussion of Antarctica’s coal resources or in other coal-based geologic investigations. Instead of using spatially insignificant point markers to represent large coal-bearing areas, this dataset uses polygons to represent actual coal-bearing lithologic units. Specific locations of coal deposits confirmed from the literature are provided in the attribution for the coal-bearing unit polygons. Coal-sample-location data were used to confirm some reported coal-bearing geology. The age and extent of the coal deposits indicated in the literature were checked against geologic maps ranging from local scale at 1:50,000 to Antarctic continental scale at 1:5,000,000; if satisfactory, the map boundaries were used to generate the polygons for the coal-bearing localities.

  6. Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters

    NASA Technical Reports Server (NTRS)

    Strangman, Gary; Franceschini, Maria Angela; Boas, David A.; Sutton, J. P. (Principal Investigator)

    2003-01-01

    Near-infrared spectroscopy (NIRS) can be used to noninvasively measure changes in the concentrations of oxy- and deoxyhemoglobin in tissue. We have previously shown that while global changes can be reliably measured, focal changes can produce erroneous estimates of concentration changes (NeuroImage 13 (2001), 76). Here, we describe four separate sources for systematic error in the calculation of focal hemoglobin changes from NIRS data and use experimental methods and Monte Carlo simulations to examine the importance and mitigation methods of each. The sources of error are: (1). the absolute magnitudes and relative differences in pathlength factors as a function of wavelength, (2). the location and spatial extent of the absorption change with respect to the optical probe, (3). possible differences in the spatial distribution of hemoglobin species, and (4). the potential for simultaneous monitoring of multiple regions of activation. We found wavelength selection and optode placement to be important variables in minimizing such errors, and our findings indicate that appropriate experimental procedures could reduce each of these errors to a small fraction (<10%) of the observed concentration changes.

  7. A Survey of Spatial and Seasonal Water Isotope Variability on the Juneau Icefield, Alaksa

    NASA Astrophysics Data System (ADS)

    Dennis, D.; Carter, A.; Clinger, A. E.; Eads, O. L.; Gotwals, S.; Gunderson, J.; Hollyday, A. E.; Klein, E. S.; Markle, B. R.; Timms, J. R.

    2015-12-01

    The depletion of stable oxygen-hydrogen isotopes (δ18O and δH) is well correlated with temperature change, which is driven by variation in topography, climate, and atmospheric circulation. This study presents a survey of the spatial and seasonal variability of isotopic signatures on the Juneau Icefield (JI), Alaska, USA which spans over 3,000 square-kilometers. To examine small scale variability in the previous year's accumulation, samples were taken at regular intervals from snow pits and a one square-kilometer surficial grid. Surface snow samples were collected across the icefield to evaluate large scale variability, ranging approximately 1,000 meters in elevation and 100 kilometers in distance. Individual precipitation events were also sampled to track percolation throughout the snowpack and temperature correlations. A survey of this extent has never been undertaken on the JI. Samples were analyzed in the field using a Los Gatos laser isotope analyzer. This survey helps us better understand isotope fractionation on temperate glaciers in coastal environments and provides preliminary information on the suitability of the JI for a future ice core drilling project.

  8. Transport of oxygen ions in Er doped La2Mo2O9 oxide ion conductors: Correlation with microscopic length scales

    NASA Astrophysics Data System (ADS)

    Paul, T.; Ghosh, A.

    2018-01-01

    We report oxygen ion transport in La2-xErxMo2O9 (0.05 ≤ x ≤ 0.25) oxide ion conductors. We have measured conductivity and dielectric spectra at different temperatures in a wide frequency range. The mean square displacement and spatial extent of non-random sub-diffusive regions are estimated from the conductivity spectra and dielectric spectra, respectively, using linear response theory. The composition dependence of the conductivity is observed to be similar to that of the spatial extent of non-random sub-diffusive regions. The behavior of the composition dependence of the mean square displacement of oxygen ions is opposite to that of the conductivity. The attempt frequency estimated from the analysis of the electric modulus agrees well with that obtained from the Raman spectra analysis. The full Rietveld refinement of X-ray diffraction data of the samples is performed to estimate the distance between different oxygen lattice sites. The results obtained from such analysis confirm the ion hopping within the spatial extent of non-random sub-diffusive regions.

  9. Variation in the Mississippi River Plume from Data Synthesis of Model Outputs and MODIS Imagery

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, C.; Kolker, A.; Chu, P. Y.

    2017-12-01

    Understanding the Mississippi River (MR) plume's interaction with the open ocean is crucial for understanding many processes in the Gulf of Mexico. Though the Mississippi River and its delta and plume have been studied extensively, recent archives of model products and satellite imagery have allowed us to highlight patterns in plume behavior over the last two decades through large scale data synthesis. Using 8 years of USGS discharge data and Landsat imagery, we identified the spatial extent, geographic patterns, depth, and freshwater concentration of the MR plume across seasons and years. Using 20 years of HYCOM (HYbrid Coordinate Ocean Model) analysis and reanalysis model output, and several years of NGOFS FVCOM model outputs, we mapped the minimum and maximum spatial area of the MR plume, and its varied extent east and west. From the synthesis and analysis of these data, the statistical probability of the MR plume's spatial area and geographical extent were computed. Measurements of the MR plume and its response to river discharge may predict future behavior and provide a path forward to understanding MR plume influence on nearby ecosystems.

  10. Collaborative adaptive landscape management (CALM) in rangelands: Discussion of general principles

    USDA-ARS?s Scientific Manuscript database

    The management of rangeland landscapes involves broad spatial extents, mixed land ownership, and multiple resource objectives. Management outcomes depend on biophysical heterogeneity, highly variable weather conditions, land use legacies, and spatial processes such as wildlife movement, hydrological...

  11. In-Situ and Remotely-Sensed Glacier Monitoring in the Rwenzori Mountains, Uganda/D.R. Congo

    NASA Astrophysics Data System (ADS)

    Samyn, D.; Uetake, J.; Kervyn, F.

    2017-12-01

    The tropics, often coined as the heat engine of the planet, are paramount for global climatology because they are the main driver of air and moisture circulation around the Earth. Despite the remarkable global homogeneity of the tropical atmosphere, both in time and in space, some regions in the tropics are characterized by high interannual variations in precipitation numbers, contributing to unstable response in high mountain regions with regard to glacier mass balance. East Africa, characterized in addition by a highly variable surface topography and spatially distinct climatic regimes, represents one of these sensitive regions. Despite the growing number in recent years of studies aiming at disentangling the complex interactions between the energetic conditions, the moisture circulation and the biogeosystems in the tropics, the response of tropical African climate, and more specifically of tropical African glaciers, to current global change remains poorly understood. In this context, the Rwenzori mountains, with their steep topography peaking above 5000m elevation, their glaciers straddling along the equator, and their location at the divide between Atlantic and Indian Ocean flow, represent a key region for gaining insight not only into tropical glacier sensitivity to past, present and future climatic variations, but also into the respective roles of temperature and moisture in modulating ice mass and energy budgets. In the Rwenzori mountains, direct measurements of glacier extent and mass balance are sparse due to the inaccessibility of glaciers and the logistical constrains associated with maintaining and downloading continuous records. In addition, quasi-permanent cloud cover associated with small glacier size severely hinder glacier monitoring from space. In this research, we rely on multi-year field mapping and multi-decadal, multi-sensor satellite and aerial imagery to discuss the recession trend of Rwenzori glaciers, with a view to provide an updated estimate of modern and recent-past ice budgets. Given the small to very small extent of tropical glaciers in general, a precise contour delimitation is of prime importance in order to be able to relate glacier extent data to other environmental proxies. Atmospheric correction and ice/snow detection algorithms are also discussed in this regard.

  12. Estimating floodwater depths from flood inundation maps and topography

    USGS Publications Warehouse

    Cohen, Sagy; Brakenridge, G. Robert; Kettner, Albert; Bates, Bradford; Nelson, Jonathan M.; McDonald, Richard R.; Huang, Yu-Fen; Munasinghe, Dinuke; Zhang, Jiaqi

    2018-01-01

    Information on flood inundation extent is important for understanding societal exposure, water storage volumes, flood wave attenuation, future flood hazard, and other variables. A number of organizations now provide flood inundation maps based on satellite remote sensing. These data products can efficiently and accurately provide the areal extent of a flood event, but do not provide floodwater depth, an important attribute for first responders and damage assessment. Here we present a new methodology and a GIS-based tool, the Floodwater Depth Estimation Tool (FwDET), for estimating floodwater depth based solely on an inundation map and a digital elevation model (DEM). We compare the FwDET results against water depth maps derived from hydraulic simulation of two flood events, a large-scale event for which we use medium resolution input layer (10 m) and a small-scale event for which we use a high-resolution (LiDAR; 1 m) input. Further testing is performed for two inundation maps with a number of challenging features that include a narrow valley, a large reservoir, and an urban setting. The results show FwDET can accurately calculate floodwater depth for diverse flooding scenarios but also leads to considerable bias in locations where the inundation extent does not align well with the DEM. In these locations, manual adjustment or higher spatial resolution input is required.

  13. Landscape assessment of side channel plugs and associated cumulative side channel attrition across a large river floodplain.

    PubMed

    Reinhold, Ann Marie; Poole, Geoffrey C; Bramblett, Robert G; Zale, Alexander V; Roberts, David W

    2018-04-24

    Determining the influences of anthropogenic perturbations on side channel dynamics in large rivers is important from both assessment and monitoring perspectives because side channels provide critical habitat to numerous aquatic species. Side channel extents are decreasing in large rivers worldwide. Although riprap and other linear structures have been shown to reduce side channel extents in large rivers, we hypothesized that small "anthropogenic plugs" (flow obstructions such as dikes or berms) across side channels modify whole-river geomorphology via accelerating side channel senescence. To test this hypothesis, we conducted a geospatial assessment, comparing digitized side channel areas from aerial photographs taken during the 1950s and 2001 along 512 km of the Yellowstone River floodplain. We identified longitudinal patterns of side channel recruitment (created/enlarged side channels) and side channel attrition (destroyed/senesced side channels) across n = 17 river sections within which channels were actively migrating. We related areal measures of recruitment and attrition to the density of anthropogenic side channel plugs across river sections. Consistent with our hypothesis, a positive spatial relationship existed between the density of anthropogenic plugs and side channel attrition, but no relationship existed between plug density and side channel recruitment. Our work highlights important linkages among side channel plugs and the persistence and restoration of side channels across floodplain landscapes. Specifically, management of small plugs represents a low-cost, high-benefit restoration opportunity to facilitate scouring flows in side channels to enable the persistence of these habitats over time.

  14. Sympathy for the Devil: Detailing the Effects of Planning-Unit Size, Thematic Resolution of Reef Classes, and Socioeconomic Costs on Spatial Priorities for Marine Conservation

    PubMed Central

    Pressey, Robert L.; Weeks, Rebecca; Andréfouët, Serge; Moloney, James

    2016-01-01

    Spatial data characteristics have the potential to influence various aspects of prioritising biodiversity areas for systematic conservation planning. There has been some exploration of the combined effects of size of planning units and level of classification of physical environments on the pattern and extent of priority areas. However, these data characteristics have yet to be explicitly investigated in terms of their interaction with different socioeconomic cost data during the spatial prioritisation process. We quantify the individual and interacting effects of three factors—planning-unit size, thematic resolution of reef classes, and spatial variability of socioeconomic costs—on spatial priorities for marine conservation, in typical marine planning exercises that use reef classification maps as a proxy for biodiversity. We assess these factors by creating 20 unique prioritisation scenarios involving combinations of different levels of each factor. Because output data from these scenarios are analogous to ecological data, we applied ecological statistics to determine spatial similarities between reserve designs. All three factors influenced prioritisations to different extents, with cost variability having the largest influence, followed by planning-unit size and thematic resolution of reef classes. The effect of thematic resolution on spatial design depended on the variability of cost data used. In terms of incidental representation of conservation objectives derived from finer-resolution data, scenarios prioritised with uniform cost outperformed those prioritised with variable cost. Following our analyses, we make recommendations to help maximise the spatial and cost efficiency and potential effectiveness of future marine conservation plans in similar planning scenarios. We recommend that planners: employ the smallest planning-unit size practical; invest in data at the highest possible resolution; and, when planning across regional extents with the intention of incidentally representing fine-resolution features, prioritise the whole region with uniform costs rather than using coarse-resolution data on variable costs. PMID:27829042

  15. Sympathy for the Devil: Detailing the Effects of Planning-Unit Size, Thematic Resolution of Reef Classes, and Socioeconomic Costs on Spatial Priorities for Marine Conservation.

    PubMed

    Cheok, Jessica; Pressey, Robert L; Weeks, Rebecca; Andréfouët, Serge; Moloney, James

    2016-01-01

    Spatial data characteristics have the potential to influence various aspects of prioritising biodiversity areas for systematic conservation planning. There has been some exploration of the combined effects of size of planning units and level of classification of physical environments on the pattern and extent of priority areas. However, these data characteristics have yet to be explicitly investigated in terms of their interaction with different socioeconomic cost data during the spatial prioritisation process. We quantify the individual and interacting effects of three factors-planning-unit size, thematic resolution of reef classes, and spatial variability of socioeconomic costs-on spatial priorities for marine conservation, in typical marine planning exercises that use reef classification maps as a proxy for biodiversity. We assess these factors by creating 20 unique prioritisation scenarios involving combinations of different levels of each factor. Because output data from these scenarios are analogous to ecological data, we applied ecological statistics to determine spatial similarities between reserve designs. All three factors influenced prioritisations to different extents, with cost variability having the largest influence, followed by planning-unit size and thematic resolution of reef classes. The effect of thematic resolution on spatial design depended on the variability of cost data used. In terms of incidental representation of conservation objectives derived from finer-resolution data, scenarios prioritised with uniform cost outperformed those prioritised with variable cost. Following our analyses, we make recommendations to help maximise the spatial and cost efficiency and potential effectiveness of future marine conservation plans in similar planning scenarios. We recommend that planners: employ the smallest planning-unit size practical; invest in data at the highest possible resolution; and, when planning across regional extents with the intention of incidentally representing fine-resolution features, prioritise the whole region with uniform costs rather than using coarse-resolution data on variable costs.

  16. Modeling the effects of fire severity and spatial complexity on Small Mammals in Yosemite National Park, California

    USGS Publications Warehouse

    Roberts, Susan L.; Van Wagtendonk, Jan W.; Miles, A. Keith; Kelt, Douglas A.; Lutz, James A.

    2008-01-01

    We evaluated the impact of fire severity and related spatial and vegetative parameters on small mammal populations in 2 yr- to 15 yr-old burns in Yosemite National Park, California, USA. We also developed habitat models that would predict small mammal responses to fires of differing severity. We hypothesized that fire severity would influence the abundances of small mammals through changes in vegetation composition, structure, and spatial habitat complexity. Deer mouse (Peromyscus maniculatus) abundance responded negatively to fire severity, and brush mouse (P. boylii) abundance increased with increasing oak tree (Quercus spp.) cover. Chipmunk (Neotamias spp.) abundance was best predicted through a combination of a negative response to oak tree cover and a positive response to spatial habitat complexity. California ground squirrel (Spermophilus beecheyi) abundance increased with increasing spatial habitat complexity. Our results suggest that fire severity, with subsequent changes in vegetation structure and habitat spatial complexity, can influence small mammal abundance patterns.

  17. Fires: Pushing the Reset Button or a Flash in the Pan?

    NASA Astrophysics Data System (ADS)

    MacDonald, L. H.; Wagenbrenner, J. W.; Robichaud, P. R.; Nelson, P. A.; Kampf, S. K.; Brogan, D. J.

    2016-12-01

    High and moderate severity wildfires can reduce infiltration rates to less than 10 mm/hr, and the resulting surface runoff can increase small-scale peak flows by one or more orders of magnitude. Fires can increase hillslope erosion rates by several orders of magnitude, but this increase is less linear with rainfall intensity because it also depends on sediment supply and detachment processes as well as transport capacity. These localized and shorter-term effects have been relatively well documented, but there is much more uncertainty in how these fire-induced changes can lead to larger-scale and/or longer-term effects. The goal of this presentation is to provide a process-based analysis of how, where, and when wildfires can cause either longer-term or larger-scale changes, effectively resetting the system as opposed to a more transient "flash in the pan". An understanding of vegetation, climatic, and geomorphic dynamics are are critical for predicting larger-scale and longer-term effects. First is the potential for the vegetation to return to pre-fire conditions, and this depends on vegetation type, spatial extent of the fire, and if the pre-fire vegetation is marginalized by climate change, land use, or other factors. The trajectory of post-fire regrowth controls the duration of increased runoff and erosion as well as the size and severity of future fires, which then sets the scene for longer-term hydrologic and geomorphic change. Climate defines the dominant storm type and how they match up with the spatial extent of a fire. Historic data help estimate the extent and magnitude of post-fire rainfall, but there is a strong stochastic component and the more extreme events are of greatest concern. Geomorphic controls on larger-scale effects include the valley and drainage network characteristics that help govern the storage and delivery of water and sediment. Assessing each component involves multiple site factors, but the biggest problem is understanding their complex interactions to predict resource impacts, landscape change over different temporal and spatial scales, and the potential to ameliorate adverse impacts. Data from multiple field studies are used to illustrate the range of post-fire effects, selected interactions of the different components, and identify key research needs.

  18. Influence of Fire Mosaics, Habitat Characteristics and Cattle Disturbance on Mammals in Fire-Prone Savanna Landscapes of the Northern Kimberley.

    PubMed

    Radford, Ian J; Gibson, Lesley A; Corey, Ben; Carnes, Karin; Fairman, Richard

    2015-01-01

    Patch mosaic burning, in which fire is used to produce a mosaic of habitat patches representative of a range of fire histories ('pyrodiversity'), has been widely advocated to promote greater biodiversity. However, the details of desired fire mosaics for prescribed burning programs are often unspecified. Threatened small to medium-sized mammals (35 g to 5.5 kg) in the fire-prone tropical savannas of Australia appear to be particularly fire-sensitive. Consequently, a clear understanding of which properties of fire mosaics are most instrumental in influencing savanna mammal populations is critical. Here we use mammal capture data, remotely sensed fire information (i.e. time since last fire, fire frequency, frequency of late dry season fires, diversity of post-fire ages in 3 km radius, and spatial extent of recently burnt, intermediate and long unburnt habitat) and structural habitat attributes (including an index of cattle disturbance) to examine which characteristics of fire mosaics most influence mammals in the north-west Kimberley. We used general linear models to examine the relationship between fire mosaic and habitat attributes on total mammal abundance and richness, and the abundance of the most commonly detected species. Strong negative associations of mammal abundance and richness with frequency of late dry season fires, the spatial extent of recently burnt habitat (post-fire age <1 year within 3 km radius) and level of cattle disturbance were observed. Shrub cover was positively related to both mammal abundance and richness, and availability of rock crevices, ground vegetation cover and spatial extent of ≥4 years unburnt habitat were all positively associated with at least some of the mammal species modelled. We found little support for diversity of post-fire age classes in the models. Our results indicate that both a high frequency of intense late dry season fires and extensive, recently burnt vegetation are likely to be detrimental to mammals in the north Kimberley. A managed fire mosaic that reduces large scale and intense fires, including the retention of ≥4 years unburnt patches, will clearly benefit savanna mammals. We also highlighted the importance of fire mosaics that retain sufficient shelter for mammals. Along with fire, it is clear that grazing by introduced herbivores also needs to be reduced so that habitat quality is maintained.

  19. Elucidating the interaction between light competition and herbivore feeding patterns using functional-structural plant modelling.

    PubMed

    de Vries, Jorad; Poelman, Erik H; Anten, Niels; Evers, Jochem B

    2018-01-24

    Plants usually compete with neighbouring plants for resources such as light as well as defend themselves against herbivorous insects. This requires investment of limiting resources, resulting in optimal resource distribution patterns and trade-offs between growth- and defence-related traits. A plant's competitive success is determined by the spatial distribution of its resources in the canopy. The spatial distribution of herbivory in the canopy in turn differs between herbivore species as the level of herbivore specialization determines their response to the distribution of resources and defences in the canopy. Here, we investigated to what extent competition for light affects plant susceptibility to herbivores with different feeding preferences. To quantify interactions between herbivory and competition, we developed and evaluated a 3-D spatially explicit functional-structural plant model for Brassica nigra that mechanistically simulates competition in a dynamic light environment, and also explicitly models leaf area removal by herbivores with different feeding preferences. With this novel approach, we can quantitatively explore the extent to which herbivore feeding location and light competition interact in their effect on plant performance. Our results indicate that there is indeed a strong interaction between levels of plant-plant competition and herbivore feeding preference. When plants did not compete, herbivory had relatively small effects irrespective of feeding preference. Conversely, when plants competed, herbivores with a preference for young leaves had a strong negative effect on the competitiveness and subsequent performance of the plant, whereas herbivores with a preference for old leaves did not. Our study predicts how plant susceptibility to herbivory depends on the composition of the herbivore community and the level of plant competition, and highlights the importance of considering the full range of dynamics in plant-plant-herbivore interactions. © The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company.

  20. The Effects of Spatial Contextual Familiarity on Remembered Scenes, Episodic Memories, and Imagined Future Events

    ERIC Educational Resources Information Center

    Robin, Jessica; Moscovitch, Morris

    2014-01-01

    Several recent studies have explored the effect of contextual familiarity on remembered and imagined events. The aim of this study was to examine the extent of this effect by comparing the effect of cuing spatial memories, episodic memories, and imagined future events with spatial contextual cues of varying levels of familiarity. We used…

  1. Spatial and Temporal Relationships of Old-Growth and Secondary Forests in Indiana, USA

    Treesearch

    Martin A. Spetich; George R. Parker; Eric J. Gustafson

    1997-01-01

    We examined the spatial pattern of forests in Indiana to: (1) determine the extent, connectivity and percent edge of all forests, (2) examine the change in connectivity among these forests if all riparian zones were replanted to forest or other native vegetation, (3) determine the location, spatial dispersion and percent edge of current old-growth forest remnants, (4)...

  2. Scale criticality in estimating ecosystem carbon dynamics

    USGS Publications Warehouse

    Zhao, Shuqing; Liu, Shuguang

    2014-01-01

    Scaling is central to ecology and Earth system sciences. However, the importance of scale (i.e. resolution and extent) for understanding carbon dynamics across scales is poorly understood and quantified. We simulated carbon dynamics under a wide range of combinations of resolution (nine spatial resolutions of 250 m, 500 m, 1 km, 2 km, 5 km, 10 km, 20 km, 50 km, and 100 km) and extent (57 geospatial extents ranging from 108 to 1 247 034 km2) in the southeastern United States to explore the existence of scale dependence of the simulated regional carbon balance. Results clearly show the existence of a critical threshold resolution for estimating carbon sequestration within a given extent and an error limit. Furthermore, an invariant power law scaling relationship was found between the critical resolution and the spatial extent as the critical resolution is proportional to An (n is a constant, and A is the extent). Scale criticality and the power law relationship might be driven by the power law probability distributions of land surface and ecological quantities including disturbances at landscape to regional scales. The current overwhelming practices without considering scale criticality might have largely contributed to difficulties in balancing carbon budgets at regional and global scales.

  3. MODIS Vegetative Cover Conversion and Vegetation Continuous Fields

    NASA Astrophysics Data System (ADS)

    Carroll, Mark; Townshend, John; Hansen, Matthew; DiMiceli, Charlene; Sohlberg, Robert; Wurster, Karl

    Land cover change occurs at various spatial and temporal scales. For example, large-scale mechanical removal of forests for agro-industrial activities contrasts with the small-scale clearing of subsistence farmers. Such dynamics vary in spatial extent and rate of land conversion. Such changes are attributable to both natural and anthropogenic factors. For example, lightning- or human-ignited fires burn millions of acres of land surface each year. Further, land cover conversion requires ­contrasting with the land cover modification. In the first instance, the dynamic represents extensive categorical change between two land cover types. Land cover modification mechanisms such as selective logging and woody encroachment depict changes within a given land cover type rather than a conversion from one land cover type to another. This chapter describes the production of two standard MODIS land products used to document changes in global land cover. The Vegetative Cover Conversion (VCC) product is designed primarily to serve as a global alarm for areas where land cover change occurs rapidly (Zhan et al. 2000). The Vegetation Continuous Fields (VCF) product is designed to continuously ­represent ground cover as a proportion of basic vegetation traits. Terra's launch in December 1999 afforded a new opportunity to observe the entire Earth every 1.2 days at 250-m spatial resolution. The MODIS instrument's appropriate spatial and ­temporal resolutions provide the opportunity to substantially improve the characterization of the land surface and changes occurring thereupon (Townshend et al. 1991).

  4. Spatial distribution of heavy metals in the surface soil of source-control stormwater infiltration devices - Inter-site comparison.

    PubMed

    Tedoldi, Damien; Chebbo, Ghassan; Pierlot, Daniel; Branchu, Philippe; Kovacs, Yves; Gromaire, Marie-Christine

    2017-02-01

    Stormwater runoff infiltration brings about some concerns regarding its potential impact on both soil and groundwater quality; besides, the fate of contaminants in source-control devices somewhat suffers from a lack of documentation. The present study was dedicated to assessing the spatial distribution of three heavy metals (copper, lead, zinc) in the surface soil of ten small-scale infiltration facilities, along with several physical parameters (soil moisture, volatile matter, variable thickness of the upper horizon). High-resolution samplings and in-situ measurements were undertaken, followed by X-ray fluorescence analyses and spatial interpolation. Highest metal accumulation was found in a relatively narrow area near the water inflow zone, from which concentrations markedly decreased with increasing distance. Maximum enrichment ratios amounted to >20 in the most contaminated sites. Heavy metal patterns give a time-integrated vision of the non-uniform infiltration fluxes, sedimentation processes and surface flow pathways within the devices. This element indicates that the lateral extent of contamination is mainly controlled by hydraulics. The evidenced spatial structure of soil concentrations restricts the area where remediation measures would be necessary in these systems, and suggests possible optimization of their hydraulic functioning towards an easier maintenance. Heterogeneous upper boundary conditions should be taken into account when studying the fate of micropollutants in infiltration facilities with either mathematical modeling or soil coring field surveys. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Quantifying the extent of river fragmentation by hydropower dams in the Sarapiquí River Basin, Costa Rica

    USGS Publications Warehouse

    Anderson, Elizabeth P.; Pringle, Catherine M.; Freeman, Mary C.

    2008-01-01

    Costa Rica has recently experienced a rapid proliferation of dams for hydropower on rivers draining its northern Caribbean slope. In the Sarapiquí River Basin, eight hydropower plants were built between 1990 and 1999 and more projects are either under construction or proposed. The majority of these dams are small (<15 m tall) and operate as water diversion projects.While the potential environmental effects of individual projects are evaluated prior to dam construction, there is a need for consideration of the basin-scale ecological consequences of hydropower development. This study was a first attempt to quantify the extent of river fragmentation by dams in the Sarapiquí River Basin.Using simple spatial analyses, the length of river upstream from dams and the length of de-watered reaches downstream from dams was measured. Results indicated that there are currently 306.8 km of river (9.4% of the network) upstream from eight existing dams in the Sarapiquí River Basin and 30.6 km of rivers (0.9% of the network) with significantly reduced flow downstream from dams. Rivers upstream from dams primarily drain two life zones: Premontane Rain Forest (107.9 km) and Lower Montane Rain Forest (168.2 km).Simple spatial analyses can be used as a predictive or planning tool for considering the effects of future dams in a basin-scale context. In the Sarapiquí River Basin, we recommend that future dam projects be constructed on already dammed rivers to minimize additional river fragmentation and to protect remaining riverine connectivity.

  6. Spectrally resolved hyperfine interactions between polaron and nuclear spins in organic light emitting diodes: Magneto-electroluminescence studies

    NASA Astrophysics Data System (ADS)

    Crooker, S. A.; Liu, F.; Kelley, M. R.; Martinez, N. J. D.; Nie, W.; Mohite, A.; Nayyar, I. H.; Tretiak, S.; Smith, D. L.; Ruden, P. P.

    2014-10-01

    We use spectrally resolved magneto-electroluminescence (EL) measurements to study the energy dependence of hyperfine interactions between polaron and nuclear spins in organic light-emitting diodes. Using layered devices that generate bright exciplex emission, we show that the increase in EL emission intensity I due to small applied magnetic fields of order 100 mT is markedly larger at the high-energy blue end of the EL spectrum (ΔI/I ˜ 11%) than at the low-energy red end (˜4%). Concurrently, the widths of the magneto-EL curves increase monotonically from blue to red, revealing an increasing hyperfine coupling between polarons and nuclei and directly providing insight into the energy-dependent spatial extent and localization of polarons.

  7. Does scale matter? A systematic review of incorporating biological realism when predicting changes in species distributions.

    PubMed

    Record, Sydne; Strecker, Angela; Tuanmu, Mao-Ning; Beaudrot, Lydia; Zarnetske, Phoebe; Belmaker, Jonathan; Gerstner, Beth

    2018-01-01

    There is ample evidence that biotic factors, such as biotic interactions and dispersal capacity, can affect species distributions and influence species' responses to climate change. However, little is known about how these factors affect predictions from species distribution models (SDMs) with respect to spatial grain and extent of the models. Understanding how spatial scale influences the effects of biological processes in SDMs is important because SDMs are one of the primary tools used by conservation biologists to assess biodiversity impacts of climate change. We systematically reviewed SDM studies published from 2003-2015 using ISI Web of Science searches to: (1) determine the current state and key knowledge gaps of SDMs that incorporate biotic interactions and dispersal; and (2) understand how choice of spatial scale may alter the influence of biological processes on SDM predictions. We used linear mixed effects models to examine how predictions from SDMs changed in response to the effects of spatial scale, dispersal, and biotic interactions. There were important biases in studies including an emphasis on terrestrial ecosystems in northern latitudes and little representation of aquatic ecosystems. Our results suggest that neither spatial extent nor grain influence projected climate-induced changes in species ranges when SDMs include dispersal or biotic interactions. We identified several knowledge gaps and suggest that SDM studies forecasting the effects of climate change should: 1) address broader ranges of taxa and locations; and 1) report the grain size, extent, and results with and without biological complexity. The spatial scale of analysis in SDMs did not affect estimates of projected range shifts with dispersal and biotic interactions. However, the lack of reporting on results with and without biological complexity precluded many studies from our analysis.

  8. Temporal and spatial patterns of wetland extent influence variability of surface water connectivity in the Prairie Pothole Region, United States

    USGS Publications Warehouse

    Vanderhoof, Melanie; Alexander, Laurie C.; Todd, Jason

    2016-01-01

    Context. Quantifying variability in landscape-scale surface water connectivity can help improve our understanding of the multiple effects of wetlands on downstream waterways. Objectives. We examined how wetland merging and the coalescence of wetlands with streams varied both spatially (among ecoregions) and interannually (from drought to deluge) across parts of the Prairie Pothole Region. Methods. Wetland extent was derived over a time series (1990-2011) using Landsat imagery. Changes in landscape-scale connectivity, generated by the physical coalescence of wetlands with other surface water features, were quantified by fusing static wetland and stream datasets with Landsat-derived wetland extent maps, and related to multiple wetness indices. The usage of Landsat allows for decadal-scale analysis, but limits the types of surface water connections that can be detected. Results. Wetland extent correlated positively with the merging of wetlands and wetlands with streams. Wetness conditions, as defined by drought indices and runoff, were positively correlated with wetland extent, but less consistently correlated with measures of surface water connectivity. The degree of wetland-wetland merging was found to depend less on total wetland area or density, and more on climate conditions, as well as the threshold for how wetland/upland was defined. In contrast, the merging of wetlands with streams was positively correlated with stream density, and inversely related to wetland density. Conclusions. Characterizing the degree of surface water connectivity within the Prairie Pothole Region in North America requires consideration of 1) climate-driven variation in wetness conditions and 2) within-region variation in wetland and stream spatial arrangements.

  9. Restoration of motion blurred image with Lucy-Richardson algorithm

    NASA Astrophysics Data System (ADS)

    Li, Jing; Liu, Zhao Hui; Zhou, Liang

    2015-10-01

    Images will be blurred by relative motion between the camera and the object of interest. In this paper, we analyzed the process of motion-blurred image, and demonstrated a restoration method based on Lucy-Richardson algorithm. The blur extent and angle can be estimated by Radon transform algorithm and auto-correlation function, respectively, and then the point spread function (PSF) of the motion-blurred image can be obtained. Thus with the help of the obtained PSF, the Lucy-Richardson restoration algorithm is used for experimental analysis on the motion-blurred images that have different blur extents, spatial resolutions and signal-to-noise ratios (SNR's). Further, its effectiveness is also evaluated by structural similarity (SSIM). Further studies show that, at first, for the image with a spatial frequency of 0.2 per pixel, the modulation transfer function (MTF) of the restored images can maintains above 0.7 when the blur extent is no bigger than 13 pixels. That means the method compensates low frequency information of the image, while attenuates high frequency information. At second, we fund that the method is more effective on condition that the product of the blur extent and spatial frequency is smaller than 3.75. Finally, the Lucy-Richardson algorithm is found insensitive to the Gaussian noise (of which the variance is not bigger than 0.1) by calculating the MTF of the restored image.

  10. Stand-level forest structure and avian habitat: Scale dependencies in predicting occurrence in a heterogeneous forest

    USGS Publications Warehouse

    Smith, K.M.; Keeton, W.S.; Donovan, T.M.; Mitchell, B.

    2008-01-01

    We explored the role of stand-level forest structure and spatial extent of forest sampling in models of avian occurrence in northern hardwood-conifer forests for two species: black-throated blue warbler (Dendroica caerulescens) and ovenbird (Seiurus aurocapillus). We estimated site occupancy from point counts at 20 sites and characterized the forest structure at these sites at three spatial extents (0.2, 3.0, and 12.0 ha). Weight of evidence was greatest for habitat models using forest stand structure at the 12.0-ha extent and diminished only slightly at the 3.0-ha extent, a scale that was slightly larger than the average territory size of both species. Habitat models characterized at the 0.2-ha extent had low support, yet are the closest in design to those used in many of the habitat studies we reviewed. These results suggest that the role of stand-level vegetation may have been underestimated in the past, which will be of interest to land managers who use habitat models to assess the suitability of habitat for species of concern. Copyright ?? 2008 by the Society of American Foresters.

  11. Comparative efficacy of multimodal digital methods in assessing trail/resource degradation

    Treesearch

    Logan O. Park

    2014-01-01

    Outdoor recreation can cause both positive and negative impacts on associated forest ecosystems. Forest recreation trails localize negative impacts to a controlled spatial extent while providing recreation access beyond developed areas and transportation networks. Current methods for assessing extent and severity of trail and proximal resource degradation require...

  12. Spatially explicit rangeland erosion monitoring using high-resolution digital aerial imagery

    USDA-ARS?s Scientific Manuscript database

    Nearly all of the ecosystem services supported by rangelands, including production of livestock forage, carbon sequestration, and provisioning of clean water, are negatively impacted by soil erosion. Accordingly, monitoring the severity, spatial extent, and rate of soil erosion is essential for long...

  13. The relationship between spatial configuration and functional connectivity of brain regions.

    PubMed

    Bijsterbosch, Janine Diane; Woolrich, Mark W; Glasser, Matthew F; Robinson, Emma C; Beckmann, Christian F; Van Essen, David C; Harrison, Samuel J; Smith, Stephen M

    2018-02-16

    Brain connectivity is often considered in terms of the communication between functionally distinct brain regions. Many studies have investigated the extent to which patterns of coupling strength between multiple neural populations relates to behaviour. For example, studies have used 'functional connectivity fingerprints' to characterise individuals' brain activity. Here, we investigate the extent to which the exact spatial arrangement of cortical regions interacts with measures of brain connectivity. We find that the shape and exact location of brain regions interact strongly with the modelling of brain connectivity, and present evidence that the spatial arrangement of functional regions is strongly predictive of non-imaging measures of behaviour and lifestyle. We believe that, in many cases, cross-subject variations in the spatial configuration of functional brain regions are being interpreted as changes in functional connectivity. Therefore, a better understanding of these effects is important when interpreting the relationship between functional imaging data and cognitive traits. © 2018, Bijsterbosch et al.

  14. [Prediction and spatial distribution of recruitment trees of natural secondary forest based on geographically weighted Poisson model].

    PubMed

    Zhang, Ling Yu; Liu, Zhao Gang

    2017-12-01

    Based on the data collected from 108 permanent plots of the forest resources survey in Maoershan Experimental Forest Farm during 2004-2016, this study investigated the spatial distribution of recruitment trees in natural secondary forest by global Poisson regression and geographically weighted Poisson regression (GWPR) with four bandwidths of 2.5, 5, 10 and 15 km. The simulation effects of the 5 regressions and the factors influencing the recruitment trees in stands were analyzed, a description was given to the spatial autocorrelation of the regression residuals on global and local levels using Moran's I. The results showed that the spatial distribution of the number of natural secondary forest recruitment was significantly influenced by stands and topographic factors, especially average DBH. The GWPR model with small scale (2.5 km) had high accuracy of model fitting, a large range of model parameter estimates was generated, and the localized spatial distribution effect of the model parameters was obtained. The GWPR model at small scale (2.5 and 5 km) had produced a small range of model residuals, and the stability of the model was improved. The global spatial auto-correlation of the GWPR model residual at the small scale (2.5 km) was the lowe-st, and the local spatial auto-correlation was significantly reduced, in which an ideal spatial distribution pattern of small clusters with different observations was formed. The local model at small scale (2.5 km) was much better than the global model in the simulation effect on the spatial distribution of recruitment tree number.

  15. Spatial distribution and occurrence probability of regional new particle formation events in eastern China

    NASA Astrophysics Data System (ADS)

    Shen, Xiaojing; Sun, Junying; Kivekäs, Niku; Kristensson, Adam; Zhang, Xiaoye; Zhang, Yangmei; Zhang, Lu; Fan, Ruxia; Qi, Xuefei; Ma, Qianli; Zhou, Huaigang

    2018-01-01

    In this work, the spatial extent of new particle formation (NPF) events and the relative probability of observing particles originating from different spatial origins around three rural sites in eastern China were investigated using the NanoMap method, using particle number size distribution (PNSD) data and air mass back trajectories. The length of the datasets used were 7, 1.5, and 3 years at rural sites Shangdianzi (SDZ) in the North China Plain (NCP), Mt. Tai (TS) in central eastern China, and Lin'an (LAN) in the Yangtze River Delta region in eastern China, respectively. Regional NPF events were observed to occur with the horizontal extent larger than 500 km at SDZ and TS, favoured by the fast transport of northwesterly air masses. At LAN, however, the spatial footprint of NPF events was mostly observed around the site within 100-200 km. Difference in the horizontal spatial distribution of new particle source areas at different sites was connected to typical meteorological conditions at the sites. Consecutive large-scale regional NPF events were observed at SDZ and TS simultaneously and were associated with a high surface pressure system dominating over this area. Simultaneous NPF events at SDZ and LAN were seldom observed. At SDZ the polluted air masses arriving over the NCP were associated with higher particle growth rate (GR) and new particle formation rate (J) than air masses from Inner Mongolia (IM). At TS the same phenomenon was observed for J, but GR was somewhat lower in air masses arriving over the NCP compared to those arriving from IM. The capability of NanoMap to capture the NPF occurrence probability depends on the length of the dataset of PNSD measurement but also on topography around the measurement site and typical air mass advection speed during NPF events. Thus the long-term measurements of PNSD in the planetary boundary layer are necessary in the further study of spatial extent and the probability of NPF events. The spatial extent, relative probability of occurrence, and typical evolution of PNSD during NPF events presented in this study provide valuable information to further understand the climate and air quality effects of new particle formation.

  16. Effects of land use on lake nutrients: The importance of scale, hydrologic connectivity, and region

    USGS Publications Warehouse

    Soranno, Patricia A.; Cheruvelil, Kendra Spence; Wagner, Tyler; Webster, Katherine E.; Bremigan, Mary Tate

    2015-01-01

    Catchment land uses, particularly agriculture and urban uses, have long been recognized as major drivers of nutrient concentrations in surface waters. However, few simple models have been developed that relate the amount of catchment land use to downstream freshwater nutrients. Nor are existing models applicable to large numbers of freshwaters across broad spatial extents such as regions or continents. This research aims to increase model performance by exploring three factors that affect the relationship between land use and downstream nutrients in freshwater: the spatial extent for measuring land use, hydrologic connectivity, and the regional differences in both the amount of nutrients and effects of land use on them. We quantified the effects of these three factors that relate land use to lake total phosphorus (TP) and total nitrogen (TN) in 346 north temperate lakes in 7 regions in Michigan, USA. We used a linear mixed modeling framework to examine the importance of spatial extent, lake hydrologic class, and region on models with individual lake nutrients as the response variable, and individual land use types as the predictor variables. Our modeling approach was chosen to avoid problems of multi-collinearity among predictor variables and a lack of independence of lakes within regions, both of which are common problems in broad-scale analyses of freshwaters. We found that all three factors influence land use-lake nutrient relationships. The strongest evidence was for the effect of lake hydrologic connectivity, followed by region, and finally, the spatial extent of land use measurements. Incorporating these three factors into relatively simple models of land use effects on lake nutrients should help to improve predictions and understanding of land use-lake nutrient interactions at broad scales.

  17. Study of the Relationships between the Spatial Extent of Surface Urban Heat Islands and Urban Characteristic Factors Based on Landsat ETM+ Data

    PubMed Central

    Zhang, Jinqu; Wang, Yunpeng

    2008-01-01

    Ten cities with different population and urban sizes located in the Pearl River Delta, Guangdong Province, P.R. China were selected to study the relationships between the spatial extent of surface urban heat islands (SUHI) and five urban characteristic factors such as urban size, development area, water proportion, mean NDVI (Normalized Vegetation Index) and population density, etc. The spatial extent of SUHI was quantified by using the hot island area (HIA). All the cities are almost at the same latitude, showing similar climate and solar radiation, the influence of which could thus be eliminated during our computation and comparative study. The land surface temperatures (LST) were retrieved from the data of Landsat 7 Enhanced Thematic Mapper Plus (ETM+) band 6 using a mono-window algorithm. A variance-segmenting method was proposed to compute HIA for each city from the retrieved LST. Factors like urban size, development area and water proportion were extracted directly from the classification images of the same ETM+ data and the population density factor is from the official census. Correlation and regression analyses were performed to study the relationships between the HIA and the related factors, and the results show that HIA is highly correlated to urban size (r=0.95), population density (r=0.97) and development area (r=0.83) in this area. It was also proved that a weak negative correlation existed between HIA and both mean NDVI and water proportion for each city. Linear functions between HIA and its related factors were established, respectively. The HIA can reflect the spatial extent and magnitude of the surface urban heat island effect, and can be used as reference in the urban planning. PMID:27873939

  18. Effects of Land Use on Lake Nutrients: The Importance of Scale, Hydrologic Connectivity, and Region

    PubMed Central

    Soranno, Patricia A.; Cheruvelil, Kendra Spence; Wagner, Tyler; Webster, Katherine E.; Bremigan, Mary Tate

    2015-01-01

    Catchment land uses, particularly agriculture and urban uses, have long been recognized as major drivers of nutrient concentrations in surface waters. However, few simple models have been developed that relate the amount of catchment land use to downstream freshwater nutrients. Nor are existing models applicable to large numbers of freshwaters across broad spatial extents such as regions or continents. This research aims to increase model performance by exploring three factors that affect the relationship between land use and downstream nutrients in freshwater: the spatial extent for measuring land use, hydrologic connectivity, and the regional differences in both the amount of nutrients and effects of land use on them. We quantified the effects of these three factors that relate land use to lake total phosphorus (TP) and total nitrogen (TN) in 346 north temperate lakes in 7 regions in Michigan, USA. We used a linear mixed modeling framework to examine the importance of spatial extent, lake hydrologic class, and region on models with individual lake nutrients as the response variable, and individual land use types as the predictor variables. Our modeling approach was chosen to avoid problems of multi-collinearity among predictor variables and a lack of independence of lakes within regions, both of which are common problems in broad-scale analyses of freshwaters. We found that all three factors influence land use-lake nutrient relationships. The strongest evidence was for the effect of lake hydrologic connectivity, followed by region, and finally, the spatial extent of land use measurements. Incorporating these three factors into relatively simple models of land use effects on lake nutrients should help to improve predictions and understanding of land use-lake nutrient interactions at broad scales. PMID:26267813

  19. Expading fluvial remote sensing to the riverscape: Mapping depth and grain size on the Merced River, California

    NASA Astrophysics Data System (ADS)

    Richardson, Ryan T.

    This study builds upon recent research in the field of fluvial remote sensing by applying techniques for mapping physical attributes of rivers. Depth, velocity, and grain size are primary controls on the types of habitat present in fluvial ecosystems. This thesis focuses on expanding fluvial remote sensing to larger spatial extents and sub-meter resolutions, which will increase our ability to capture the spatial heterogeneity of habitat at a resolution relevant to individual salmonids and an extent relevant to species. This thesis consists of two chapters, one focusing on expanding the spatial extent over which depth can be mapped using Optimal Band Ratio Analysis (OBRA) and the other developing general relations for mapping grain size from three-dimensional topographic point clouds. The two chapters are independent but connected by the overarching goal of providing scientists and managers more useful tools for quantifying the amount and quality of salmonid habitat via remote sensing. The OBRA chapter highlights the true power of remote sensing to map depths from hyperspectral images as a central component of watershed scale analysis, while also acknowledging the great challenges involved with increasing spatial extent. The grain size mapping chapter establishes the first general relations for mapping grain size from roughness using point clouds. These relations will significantly reduce the time needed in the field by eliminating the need for independent measurements of grain size for calibrating the roughness-grain size relationship and thus making grain size mapping with SFM more cost effective for river restoration and monitoring. More data from future studies are needed to refine these relations and establish their validity and generality. In conclusion, this study adds to the rapidly growing field of fluvial remote sensing and could facilitate river research and restoration.

  20. Are Gender Differences in Spatial Ability Real or an Artifact? Evaluation of Measurement Invariance on the Revised PSVT:R

    ERIC Educational Resources Information Center

    Maeda, Yukiko; Yoon, So Yoon

    2016-01-01

    We investigated the extent to which the observed gender differences in mental rotation ability among the 2,468 freshmen studying engineering at a Midwest public university attributed to the gender bias of a test. The Revised Purdue Spatial Visualization Tests: Visualization of Rotations (Revised PSVT:R) is a spatial test frequently used to measure…

  1. Sex differences in spatial ability: a lateralization of function approach.

    PubMed

    Rilea, Stacy L; Roskos-Ewoldsen, Beverly; Boles, David

    2004-12-01

    The current study was designed to examine whether the extent of the male advantage in performance on a spatial task was determined by the extent to which the task was right-hemisphere dependent. Participants included 108 right-handed men and women who completed the mental rotation, waterlevel, and paperfolding tasks, all of which were presented bilaterally. The results partially supported the hypothesis. On the mental rotation task, men showed a right-hemisphere advantage, whereas women showed no hemispheric differences; however, no overall sex differences were observed. On the waterlevel task, men outperformed women, and both men and women showed a right-hemisphere advantage. On the paperfolding task, no sex or hemispheric differences were observed. Although the findings of the current study were mixed, the study provides a framework for examining sex differences across different types of spatial ability.

  2. Visuospatial Training Improves Elementary Students' Mathematics Performance

    ERIC Educational Resources Information Center

    Lowrie, Tom; Logan, Tracy; Ramful, Ajay

    2017-01-01

    Background: Although spatial ability and mathematics performance are highly correlated, there is scant research on the extent to which spatial ability training can improve mathematics performance. Aims: This study evaluated the efficacy of a visuospatial intervention programme within classrooms to determine the effect on students' (1) spatial…

  3. Developing Accurate Spatial Maps of Cotton Fiber Quality Parameters

    USDA-ARS?s Scientific Manuscript database

    Awareness of the importance of cotton fiber quality (Gossypium, L. sps.) has increased as advances in spinning technology require better quality cotton fiber. Recent advances in geospatial information sciences allow an improved ability to study the extent and causes of spatial variability in fiber p...

  4. RIPARIAN SHADE CONTROLS ON STREAM TEMPERATURE NOW AND IN THE FUTURE ACROSS TRIBUTARIES OF THE COLUMBIA RIVER, USA

    EPA Science Inventory

    Future climates may warm stream temperatures altering aquatic communities and threatening socioeconomically-important species. These impacts will vary across large spatial extents and require special evaluation tools. Statistical stream network models (SSNs) account for spatial a...

  5. Insights and challenges to Intergrating data from diverse ecological networks

    USDA-ARS?s Scientific Manuscript database

    Many of the most dramatic and surprising effects of global change occur across large spatial extents, from regions to continents, that impact multiple ecosystem types across a range of interacting spatial and temporal scales. The ability of ecologists and interdisciplinary scientists to understand a...

  6. The Dynamical Structure of HR 8799's Inner Debris Disk

    NASA Astrophysics Data System (ADS)

    Contro, B.; Wittenmyer, Robert A.; Horner, J.; Marshall, Jonathan P.

    2015-06-01

    The HR 8799 system, with its four giant planets and two debris belts, has an architecture closely mirroring that of our Solar system where the inner, warm asteroid belt and outer, cool Edgeworth-Kuiper belt bracket the giant planets. As such, it is a valuable laboratory for examining exoplanetary dynamics and debris disk-exoplanet interactions. Whilst the outer debris belt of HR 8799 has been well resolved by previous observations, the spatial extent of the inner disk remains unknown. This leaves a significant question mark over both the location of the planetesimals responsible for producing the belt's visible dust and the physical properties of those grains. We have performed the most extensive simulations to date of the inner, unresolved debris belt around HR 8799, using UNSW Australia's Katana supercomputing facility to follow the dynamical evolution of a model inner disk comprising 300,298 particles for a period of 60 Ma. These simulations have enabled the characterisation of the extent and structure of the inner disk in detail, and will in future allow us to provide a first estimate of the small-body impact rate and water delivery prospects for possible (as-yet undetected) terrestrial planet (s) in the inner system.

  7. The dynamical structure of the HR8799 inner debris disk

    NASA Astrophysics Data System (ADS)

    Wittenmyer, Robert A.; Contro de Godoy, Bruna; Horner, Jonathan; Marshall, Jonathan P.

    2014-11-01

    The HR 8799 system, with its four giant planets and two debris belts, has an architecture closely mirroring that of our Solar System where the inner, warm asteroid belt and outer, cool Edgeworth-Kuiper belt bracket the giant planets. As such, it is a valuable laboratory for examining exoplanet dynamics and debris disc-exoplanet interactions. Whilst the outer debris belt of HR 8799 has been well resolved by previous observations, the spatial extent of the inner disc remains unknown, leaving a question mark over both the location of the planetesimals responsible for producing the belt's visible dust and the physical properties of those grains. We have performed the most extensive simulations to date of the inner, unresolved debris belt around HR 8799, using University of New South Wales's Katana supercomputing facility to follow the dynamical evolution of a model inner disc comprising 250,000 particles for a period of 100 million years. These simulations will (1) characterise the extent and structure of the inner disk in detail and (2) provide the first estimate of the small-body impact rate and water delivery prospects for possible (as-yet undetected) terrestrial planet(s) in the inner system.

  8. Multi-Decadal Surface Water Dynamics in North American Tundra

    NASA Technical Reports Server (NTRS)

    Carroll, Mark L.; Loboda, Tatiana V.

    2017-01-01

    Over the last several decades, warming in the Arctic has outpaced the already impressive increases in global mean temperatures. The impact of these increases in temperature has been observed in a multitude of ecological changes in North American tundra including changes in vegetative cover, depth of active layer, and surface water extent. The low topographic relief and continuous permafrost create an ideal environment for the formation of small water bodies - a definitive feature of tundra surface. In this study, water bodies in Nunavut territory in northern Canada were mapped using a long-term record of remotely sensed observations at 30 meters spatial resolution from the Landsat suite of instruments. The temporal trajectories of water extent between 1985 and 2015 were assessed. Over 675,000 water bodies have been identified over the 31-year study period with over 168,000 showing a significant (probability is less than 0.05) trend in surface area. Approximately 55 percent of water bodies with a significant trend were increasing in size while the remaining 45 percent were decreasing in size. The overall net trend for water bodies with a significant trend is 0.009 hectares per year per water body.

  9. The Dynamical Structure of HR 8799's Inner Debris Disk.

    PubMed

    Contro, B; Wittenmyer, Robert A; Horner, J; Marshall, Jonathan P

    2015-06-01

    The HR 8799 system, with its four giant planets and two debris belts, has an architecture closely mirroring that of our Solar system where the inner, warm asteroid belt and outer, cool Edgeworth-Kuiper belt bracket the giant planets. As such, it is a valuable laboratory for examining exoplanetary dynamics and debris disk-exoplanet interactions. Whilst the outer debris belt of HR 8799 has been well resolved by previous observations, the spatial extent of the inner disk remains unknown. This leaves a significant question mark over both the location of the planetesimals responsible for producing the belt's visible dust and the physical properties of those grains. We have performed the most extensive simulations to date of the inner, unresolved debris belt around HR 8799, using UNSW Australia's Katana supercomputing facility to follow the dynamical evolution of a model inner disk comprising 300,298 particles for a period of 60 Ma. These simulations have enabled the characterisation of the extent and structure of the inner disk in detail, and will in future allow us to provide a first estimate of the small-body impact rate and water delivery prospects for possible (as-yet undetected) terrestrial planet (s) in the inner system.

  10. Linking macroecology and community ecology: refining predictions of species distributions using biotic interaction networks.

    PubMed

    Staniczenko, Phillip P A; Sivasubramaniam, Prabu; Suttle, K Blake; Pearson, Richard G

    2017-06-01

    Macroecological models for predicting species distributions usually only include abiotic environmental conditions as explanatory variables, despite knowledge from community ecology that all species are linked to other species through biotic interactions. This disconnect is largely due to the different spatial scales considered by the two sub-disciplines: macroecologists study patterns at large extents and coarse resolutions, while community ecologists focus on small extents and fine resolutions. A general framework for including biotic interactions in macroecological models would help bridge this divide, as it would allow for rigorous testing of the role that biotic interactions play in determining species ranges. Here, we present an approach that combines species distribution models with Bayesian networks, which enables the direct and indirect effects of biotic interactions to be modelled as propagating conditional dependencies among species' presences. We show that including biotic interactions in distribution models for species from a California grassland community results in better range predictions across the western USA. This new approach will be important for improving estimates of species distributions and their dynamics under environmental change. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  11. Identifying, characterizing and predicting spatial patterns of lacustrine groundwater discharge

    NASA Astrophysics Data System (ADS)

    Tecklenburg, Christina; Blume, Theresa

    2017-10-01

    Lacustrine groundwater discharge (LGD) can significantly affect lake water balances and lake water quality. However, quantifying LGD and its spatial patterns is challenging because of the large spatial extent of the aquifer-lake interface and pronounced spatial variability. This is the first experimental study to specifically study these larger-scale patterns with sufficient spatial resolution to systematically investigate how landscape and local characteristics affect the spatial variability in LGD. We measured vertical temperature profiles around a 0.49 km2 lake in northeastern Germany with a needle thermistor, which has the advantage of allowing for rapid (manual) measurements and thus, when used in a survey, high spatial coverage and resolution. Groundwater inflow rates were then estimated using the heat transport equation. These near-shore temperature profiles were complemented with sediment temperature measurements with a fibre-optic cable along six transects from shoreline to shoreline and radon measurements of lake water samples to qualitatively identify LGD patterns in the offshore part of the lake. As the hydrogeology of the catchment is sufficiently homogeneous (sandy sediments of a glacial outwash plain; no bedrock control) to avoid patterns being dominated by geological discontinuities, we were able to test the common assumptions that spatial patterns of LGD are mainly controlled by sediment characteristics and the groundwater flow field. We also tested the assumption that topographic gradients can be used as a proxy for gradients of the groundwater flow field. Thanks to the extensive data set, these tests could be carried out in a nested design, considering both small- and large-scale variability in LGD. We found that LGD was concentrated in the near-shore area, but alongshore variability was high, with specific regions of higher rates and higher spatial variability. Median inflow rates were 44 L m-2 d-1 with maximum rates in certain locations going up to 169 L m-2 d-1. Offshore LGD was negligible except for two local hotspots on steep steps in the lake bed topography. Large-scale groundwater inflow patterns were correlated with topography and the groundwater flow field, whereas small-scale patterns correlated with grain size distributions of the lake sediment. These findings confirm results and assumptions of theoretical and modelling studies more systematically than was previously possible with coarser sampling designs. However, we also found that a significant fraction of the variance in LGD could not be explained by these controls alone and that additional processes need to be considered. While regression models using these controls as explanatory variables had limited power to predict LGD rates, the results nevertheless encourage the use of topographic indices and sediment heterogeneity as an aid for targeted campaigns in future studies of groundwater discharge to lakes.

  12. Spatial Shifts in Tidal-Fluvial Environments

    NASA Astrophysics Data System (ADS)

    Dykstra, S. L.; Dzwonkowski, B.

    2017-12-01

    Fresh water discharge damps tidal propagation and increases the phase lag, which has important impacts on system-wide sediment transport process and ecological structure. Here, the role of discharge on spatial variability in the dynamics of tidal rivers is investigated in Mobile Bay and Delta, a microtidal diurnal system where discharge ranges multiple orders of magnitude. Long-term observations at 7 velocity stations and 20 water level stations, ranging over 260km along the system, were analyzed. Observations of the tidal extinguishing point in both velocity and water level were highly variable with significant shifts in location covering a distance over 140km. The velocity stations also allowed for measuring the extent of flood (i.e. point where tidal flow is arrested by discharge) shifting 100km. With increased discharge, flow characteristics at station locations can transition from an estuary (i.e. bidirectional tidal flow) to a tidal river to a traditional fluvial environment. This revealed systematic discharge induced damping and an increase in phase lag. Interestingly, before damping occurs, the tide amplifies ( 15%) seaward of the extent of flood. Another consistent pattern is the higher sensitivity of the velocity signal to discharge than water level. This causes the velocity to lag more and create progressive tides. In a microtidal diurnal system, the signal propagates further inland than a semidiurnal tide due to its lower frequency but is easily damped due to the small amplitude, creating large shifts. Previous research has focused on environments dominated by semidiurnal tides with similar magnitudes to discharge using water level observations. For example, the well studied Columbia and the St. Lawrence rivers have small shifts in their tidal extinguishing point O(10km) (Jay 2016, Matte 2014). These shifts are not large enough to observe process like discharge-induced amplification and damping at the same site like in the Mobile system, but they may indicate a decoupling of the water level and velocity signal by discharge. Throughout the world, shifts in tidal rivers are created by seasonal discharge patterns, but large storms can quickly disrupt a system and move it over 140km in a few days.

  13. Contrasts in the Behavior of Tremor Episodes in Cascadia and Japan

    NASA Astrophysics Data System (ADS)

    Armbruster, J. G.

    2016-12-01

    Tectonic tremor is observed in episodes with varying duration, intensity and spatial extent. In Cascadia the POLARIS broadband deployment, 2003-2006, provides good coverage of the southern Vancouver Island region with strong, widely distributed tremor sources extending 100 km along the plate interface. There the tremor can be classified into major episodes occurring at 14 month intervals with duration 20-30 days and minor episodes lasting hours to 10 days. Within that shorter duration minor episodes can produce strong signals. There is a clear pattern that minor episodes are located at the deeper part of the plate interface, 43-50 km deep. Major episodes are mostly generated from the shallower, 33-43 km deep, portion of the plate interface with some activation of the deeper sources. This suggests a simple mechanism of stress loading from below, transmitted upward by the tremor/slow-slip episodes. We compare this to the northern Kii Peninsula region of southwest Japan which has strong tremor sources extending 100 km along strike covered by HINET stations and find differences. The spectrum of episode durations in Japan, from less than an hour to 13 days, are not easily classified into major and minor. The range in depth observed in Japan is narrower than in Cascadia, 34-45 km for 98% of the clustered events. Here we divide the episodes into three groups based on their spatial extent. Large episodes occur at intervals of 6 months and occupy the southern 2/3, northern 2/3 or whole of the 100 km long zone. The small episodes are predominately seen from paired sources at the top and bottom of the active zone located where large episodes terminate. Intermediate episodes are the fewest in number and extend from the bottom to the top, often encompassing pairs of small sources. The observations in Japan will require a more complex model of stress loading. These results were achieved with the cross-station location method. The envelope location method might not have sufficient resolution to resolve these patterns in Japan.

  14. The spatial range of protein hydration

    NASA Astrophysics Data System (ADS)

    Persson, Filip; Söderhjelm, Pär; Halle, Bertil

    2018-06-01

    Proteins interact with their aqueous surroundings, thereby modifying the physical properties of the solvent. The extent of this perturbation has been investigated by numerous methods in the past half-century, but a consensus has still not emerged regarding the spatial range of the perturbation. To a large extent, the disparate views found in the current literature can be traced to the lack of a rigorous definition of the perturbation range. Stating that a particular solvent property differs from its bulk value at a certain distance from the protein is not particularly helpful since such findings depend on the sensitivity and precision of the technique used to probe the system. What is needed is a well-defined decay length, an intrinsic property of the protein in a dilute aqueous solution, that specifies the length scale on which a given physical property approaches its bulk-water value. Based on molecular dynamics simulations of four small globular proteins, we present such an analysis of the structural and dynamic properties of the hydrogen-bonded solvent network. The results demonstrate unequivocally that the solvent perturbation is short-ranged, with all investigated properties having exponential decay lengths of less than one hydration shell. The short range of the perturbation is a consequence of the high energy density of bulk water, rendering this solvent highly resistant to structural perturbations. The electric field from the protein, which under certain conditions can be long-ranged, induces a weak alignment of water dipoles, which, however, is merely the linear dielectric response of bulk water and, therefore, should not be thought of as a structural perturbation. By decomposing the first hydration shell into polarity-based subsets, we find that the hydration structure of the nonpolar parts of the protein surface is similar to that of small nonpolar solutes. For all four examined proteins, the mean number of water-water hydrogen bonds in the nonpolar subset is within 1% of the value in bulk water, suggesting that the fragmentation and topography of the nonpolar protein-water interface has evolved to minimize the propensity for protein aggregation by reducing the unfavorable free energy of hydrophobic hydration.

  15. Variability of Antarctic Sea Ice 1979-1998

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Comiso, Josefino C.; Parkinson, Claire L.; Cavalieri, Donald J.; Gloersen, Per; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    The principal characteristics of the variability of Antarctic sea ice cover as previously described from satellite passive-microwave observations are also evident in a systematically-calibrated and analyzed data set for 20.2 years (1979-1998). The total Antarctic sea ice extent (concentration > 15 %) increased by 13,440 +/- 4180 sq km/year (+1.18 +/- 0.37%/decade). The area of sea ice within the extent boundary increased by 16,960 +/- 3,840 sq km/year (+1.96 +/- 0.44%/decade). Regionally, the trends in extent are positive in the Weddell Sea (1.5 +/- 0.9%/decade), Pacific Ocean (2.4 +/- 1.4%/decade), and Ross (6.9 +/- 1.1 %/decade) sectors, slightly negative in the Indian Ocean (-1.5 +/- 1.8%/decade, and strongly negative in the Bellingshausen-Amundsen Seas sector (-9.5 +/- 1.5%/decade). For the entire ice pack, small ice increases occur in all seasons with the largest increase during autumn. On a regional basis, the trends differ season to season. During summer and fall, the trends are positive or near zero in all sectors except the Bellingshausen-Amundsen Seas sector. During winter and spring, the trends are negative or near zero in all sectors except the Ross Sea, which has positive trends in all seasons. Components of interannual variability with periods of about 3 to 5 years are regionally large, but tend to counterbalance each other in the total ice pack. The interannual variability of the annual mean sea-ice extent is only 1.6% overall, compared to 5% to 9% in each of five regional sectors. Analysis of the relation between regional sea ice extents and spatially-averaged surface temperatures over the ice pack gives an overall sensitivity between winter ice cover and temperature of -0.7% change in sea ice extent per K. For summer, some regional ice extents vary positively with temperature and others negatively. The observed increase in Antarctic sea ice cover is counter to the observed decreases in the Arctic. It is also qualitatively consistent with the counterintuitive prediction of a global atmospheric-ocean model of increasing sea ice around Antarctica with climate warming due to the stabilizing effects of increased snowfall on the Southern Ocean.

  16. Combining Monitoring Data Spanning Multiple Temporal and Spatial Scales To Evaluate Water Quality Affecting Seagrass Habitat Extent in northwest Florida Estuaries

    EPA Science Inventory

    The ability to understand and manage ecological changes caused by anthropogenic stressors is often impeded by a lack of sufficient information to resolve pattern and change with sufficient resolution and extent. Increasingly, different types of environmental data are available t...

  17. SPATIALLY-BALANCED SAMPLING OF NATURAL RESOURCES IN THE PRESENCE OF FRAME IMPERFECTIONS

    EPA Science Inventory

    The spatial distribution of a natural resource is an important consideration in designing an efficient survey or monitoring program for the resource. Generally, samples that are more or less evenly dispersed over the extent of the resource will be more efficient than simple rando...

  18. Language, Perception, and the Schematic Representation of Spatial Relations

    ERIC Educational Resources Information Center

    Amorapanth, Prin; Kranjec, Alexander; Bromberger, Bianca; Lehet, Matthew; Widick, Page; Woods, Adam J.; Kimberg, Daniel Y.; Chatterjee, Anjan

    2012-01-01

    Schemas are abstract nonverbal representations that parsimoniously depict spatial relations. Despite their ubiquitous use in maps and diagrams, little is known about their neural instantiation. We sought to determine the extent to which schematic representations are neurally distinguished from language on the one hand, and from rich perceptual…

  19. Aggregating pixel-level basal area predictions derived from LiDAR data to industrial forest stands in North-Central Idaho

    Treesearch

    Andrew T. Hudak; Jeffrey S. Evans; Nicholas L. Crookston; Michael J. Falkowski; Brant K. Steigers; Rob Taylor; Halli Hemingway

    2008-01-01

    Stand exams are the principal means by which timber companies monitor and manage their forested lands. Airborne LiDAR surveys sample forest stands at much finer spatial resolution and broader spatial extent than is practical on the ground. In this paper, we developed models that leverage spatially intensive and extensive LiDAR data and a stratified random sample of...

  20. Habitat fragmentation effects on the orchid bee communities in remnant forests of southeastern Brazil.

    PubMed

    Knoll, Fátima do Rosário Naschenveng; Penatti, N C

    2012-10-01

    The effect of habitat fragmentation on the structure of orchid bee communities was analyzed by the investigation of the existence of a spatial structure in the richness and abundance of Euglossini species and by determining the relationship between these data and environmental factors. The surveys were carried out in four different forest fragments and one university campus. Richness, abundance, and diversity of species were analyzed in relation to abiotic (size of the area, extent of the perimeter, perimeter/area ratio, and shape index) and biotic characteristics (vegetation index of the fragment and of the matrix of each of the locations studied). We observed a highly significant positive correlation between the diversity index and the vegetation index of the fragment, landscape and shape index. Our analysis demonstrated that the observed variation could be explained mainly by the vegetation index and the size of the fragment. Variations in relative abundance showed a tendency toward an aggregated spatial distribution between the fragments studied, as well as between the sampling stations within the same habitat, demonstrating the existence of a spatial structure on a small scale in the populations of Euglossini. This distribution will determine the composition of species that coexist in the area after fragmentation. These data help in understanding the differences and similarities in the structure of communities of Euglossini resulting from forest fragmentation.

  1. Disconnect of microbial structure and function: enzyme activities and bacterial communities in nascent stream corridors.

    PubMed

    Frossard, Aline; Gerull, Linda; Mutz, Michael; Gessner, Mark O

    2012-03-01

    A fundamental issue in microbial and general ecology is the question to what extent environmental conditions dictate the structure of communities and the linkages with functional properties of ecosystems (that is, ecosystem function). We approached this question by taking advantage of environmental gradients established in soil and sediments of small stream corridors in a recently created, early successional catchment. Specifically, we determined spatial and temporal patterns of bacterial community structure and their linkages with potential microbial enzyme activities along the hydrological flow paths of the catchment. Soil and sediments were sampled in a total of 15 sites on four occasions spread throughout a year. Denaturing gradient gel electrophoresis (DGGE) was used to characterize bacterial communities, and substrate analogs linked to fluorescent molecules served to track 10 different enzymes as specific measures of ecosystem function. Potential enzyme activities varied little among sites, despite contrasting environmental conditions, especially in terms of water availability. Temporal changes, in contrast, were pronounced and remarkably variable among the enzymes tested. This suggests much greater importance of temporal dynamics than spatial heterogeneity in affecting specific ecosystem functions. Most strikingly, bacterial community structure revealed neither temporal nor spatial patterns. The resulting disconnect between bacterial community structure and potential enzyme activities indicates high functional redundancy within microbial communities even in the physically and biologically simplified stream corridors of early successional landscapes.

  2. Ghost reefs: Nautical charts document large spatial scale of coral reef loss over 240 years

    PubMed Central

    McClenachan, Loren; O’Connor, Grace; Neal, Benjamin P.; Pandolfi, John M.; Jackson, Jeremy B. C.

    2017-01-01

    Massive declines in population abundances of marine animals have been documented over century-long time scales. However, analogous loss of spatial extent of habitat-forming organisms is less well known because georeferenced data are rare over long time scales, particularly in subtidal, tropical marine regions. We use high-resolution historical nautical charts to quantify changes to benthic structure over 240 years in the Florida Keys, finding an overall loss of 52% (SE, 6.4%) of the area of the seafloor occupied by corals. We find a strong spatial dimension to this decline; the spatial extent of coral in Florida Bay and nearshore declined by 87.5% (SE, 7.2%) and 68.8% (SE, 7.5%), respectively, whereas that of offshore areas of coral remained largely intact. These estimates add to finer-scale loss in live coral cover exceeding 90% in some locations in recent decades. The near-complete elimination of the spatial coverage of nearshore coral represents an underappreciated spatial component of the shifting baseline syndrome, with important lessons for other species and ecosystems. That is, modern surveys are typically designed to assess change only within the species’ known, extant range. For species ranging from corals to sea turtles, this approach may overlook spatial loss over longer time frames, resulting in both overly optimistic views of their current conservation status and underestimates of their restoration potential. PMID:28913420

  3. Comparison of in-situ and optical current-meter estimates of rip-current circulation

    NASA Astrophysics Data System (ADS)

    Moulton, M.; Chickadel, C. C.; Elgar, S.; Raubenheimer, B.

    2016-12-01

    Rip currents are fast, narrow, seaward flows that transport material from the shoreline to the shelf. Spatially and temporally complex rip current circulation patterns are difficult to resolve with in-situ instrument arrays. Here, high spatial-resolution estimates of rip current circulation from remotely sensed optical images of the sea surface are compared with in-situ estimates of currents in and near channels ( 1- to 2-m deep and 30-m wide) dredged across the surf zone. Alongshore flows are estimated using the optical current-meter method, and cross-shore flows are derived with the assumption of continuity. The observations span a range of wave conditions, tidal elevations, and flow patterns, including meandering alongshore currents near and in the channel, and 0.5 m/s alongshore flows converging at a 0.8 m/s rip jet in the channel. In addition, the remotely sensed velocities are used to investigate features of the spatially complex flow patterns not resolved by the spatially sparse in-situ sensors, including the spatial extent of feeder current zones and the width, alongshore position, and cross-shore extent of rip current jets. Funded by ASD(R&E) and NSF.

  4. Spatial characterization of long-term hydrological change in the Arkavathy watershed adjacent to Bangalore, India

    NASA Astrophysics Data System (ADS)

    Penny, Gopal; Srinivasan, Veena; Dronova, Iryna; Lele, Sharachchandra; Thompson, Sally

    2018-01-01

    The complexity and heterogeneity of human water use over large spatial areas and decadal timescales can impede the understanding of hydrological change, particularly in regions with sparse monitoring of the water cycle. In the Arkavathy watershed in southern India, surface water inflows to major reservoirs decreased over a 40-year period during which urbanization, groundwater depletion, modification of the river network, and changes in agricultural practices also occurred. These multiple, interacting drivers combined with limited hydrological monitoring make attribution of the causes of diminishing water resources in the watershed challenging and impede effective policy responses. To mitigate these challenges, we developed a novel, spatially distributed dataset to understand hydrological change by characterizing the residual trends in surface water extent that remain after controlling for precipitation variations and comparing the trends with historical land use maps to assess human drivers of change. Using an automated classification approach with subpixel unmixing, we classified water extent in nearly 1700 man-made lakes, or tanks, in Landsat images from 1973 to 2010. The classification results compared well with a reference dataset of water extent of tanks (R2 = 0.95). We modeled the water extent of 42 clusters of tanks in a multiple regression on simple hydrological covariates (including precipitation) and time. Inter-annual variability in precipitation accounted for 63 % of the predicted variability in water extent. However, precipitation did not exhibit statistically significant trends in any part of the watershed. After controlling for precipitation variability, we found statistically significant temporal trends in water extent, both positive and negative, in 13 of the clusters. Based on a water balance argument, we inferred that these trends likely reflect a non-stationary relationship between precipitation and watershed runoff. Independently of precipitation, water extent increased in a region downstream of Bangalore, likely due to increased urban effluents, and declined in the northern portion of the Arkavathy. Comparison of the drying trends with land use indicated that they were most strongly associated with irrigated agriculture, sourced almost exclusively by groundwater. This suggests that groundwater abstraction was a major driver of hydrological change in this watershed. Disaggregating the watershed-scale hydrological response via remote sensing of surface water bodies over multiple decades yielded a spatially resolved characterization of hydrological change in an otherwise poorly monitored watershed. This approach presents an opportunity to understand hydrological change in heavily managed watersheds where surface water bodies integrate upstream runoff and can be delineated using satellite imagery.

  5. Satellite and Surface Perspectives of Snow Extent in the Southern Appalachian Mountains

    NASA Technical Reports Server (NTRS)

    Sugg, Johnathan W.; Perry, Baker L.; Hall, Dorothy K.

    2012-01-01

    Assessing snow cover patterns in mountain regions remains a challenge for a variety of reasons. Topography (e.g., elevation, exposure, aspect, and slope) strongly influences snowfall accumulation and subsequent ablation processes, leading to pronounced spatial variability of snow cover. In-situ observations are typically limited to open areas at lower elevations (<1000 m). In this paper, we use several products from the Moderate Resolution Imaging Spectroradiometer (MODIS) to assess snow cover extent in the Southern Appalachian Mountains (SAM). MODIS daily snow cover maps and true color imagery are analyzed after selected snow events (e.g., Gulf/Atlantic Lows, Alberta Clippers, and Northwest Upslope Flow) from 2006 to 2012 to assess the spatial patterns of snowfall across the SAM. For each event, we calculate snow cover area across the SAM using MODIS data and compare with the Interactive Multi-sensor Snow and ice mapping system (IMS) and available in-situ observations. Results indicate that Gulf/Atlantic Lows are typically responsible for greater snow extent across the entire SAM region due to intensified cyclogenesis associated with these events. Northwest Upslope Flow events result in snow cover extent that is limited to higher elevations (>1000 m) across the SAM, but also more pronounced along NW aspects. Despite some limitations related to the presence of ephemeral snow or cloud cover immediately after each event, we conclude that MODIS products are useful for assessing the spatial variability of snow cover in heavily forested mountain regions such as the SAM.

  6. Satellite Image Atlas of Glaciers of the World

    USGS Publications Warehouse

    Williams, Richard S.; Ferrigno, Jane G.

    2005-01-01

    In 1978, the USGS began the preparation of the 11-chapter USGS Professional Paper 1386, 'Satellite Image Atlas of Glaciers of the World'. Between 1979 and 1981, optimum satellite images were distributed to a team of 70 scientists, representing 25 nations and 45 institutions, who agreed to author sections of the Professional Paper concerning either a geographic area (chapters B-K) or a glaciological topic (included in Chapter A). The scientists used Landsat 1, 2, and 3 multispectral scanner (MSS) images and Landsat 2 and 3 return beam vidicon (RBV) images to inventory the areal occurrence of glacier ice on our planet within the boundaries of the spacecrafts' coverage (between about 82? north and south latitudes). Some later contributors also used Landsat 4 and 5 MSS and Thematic Mapper, Landsat 7 Enhanced Thematic Mapper-Plus (ETM+), and other satellite images. In addition to analyzing images of a specific geographic area, each author was asked to summarize up-to-date information about the glaciers within each area and compare their present-day areal distribution with reliable historical information (from published maps, reports, and photographs) about their past extent. Because of the limitations of Landsat images for delineating or monitoring small glaciers in some geographic areas (the result of inadequate spatial resolution, lack of suitable seasonal coverage, or absence of coverage), some information on the areal distribution of small glaciers was derived from ancillary sources, including other satellite images. Completion of the atlas will provide an accurate regional inventory of the areal extent of glaciers on our planet during a relatively narrow time interval (1972-1981).

  7. Landscape assessment of side channel plugs and associated cumulative side channel attrition across a large river floodplain

    USGS Publications Warehouse

    Reinhold, Ann Marie; Poole, Geoffrey C.; Bramblett, Robert G.; Zale, Alexander V.; Roberts, David W.

    2018-01-01

    Determining the influences of anthropogenic perturbations on side channel dynamics in large rivers is important from both assessment and monitoring perspectives because side channels provide critical habitat to numerous aquatic species. Side channel extents are decreasing in large rivers worldwide. Although riprap and other linear structures have been shown to reduce side channel extents in large rivers, we hypothesized that small “anthropogenic plugs” (flow obstructions such as dikes or berms) across side channels modify whole-river geomorphology via accelerating side channel senescence. To test this hypothesis, we conducted a geospatial assessment, comparing digitized side channel areas from aerial photographs taken during the 1950s and 2001 along 512 km of the Yellowstone River floodplain. We identified longitudinal patterns of side channel recruitment (created/enlarged side channels) and side channel attrition (destroyed/senesced side channels) across n = 17 river sections within which channels were actively migrating. We related areal measures of recruitment and attrition to the density of anthropogenic side channel plugs across river sections. Consistent with our hypothesis, a positive spatial relationship existed between the density of anthropogenic plugs and side channel attrition, but no relationship existed between plug density and side channel recruitment. Our work highlights important linkages among side channel plugs and the persistence and restoration of side channels across floodplain landscapes. Specifically, management of small plugs represents a low-cost, high-benefit restoration opportunity to facilitate scouring flows in side channels to enable the persistence of these habitats over time.

  8. Family income, parental education and brain structure in children and adolescents.

    PubMed

    Noble, Kimberly G; Houston, Suzanne M; Brito, Natalie H; Bartsch, Hauke; Kan, Eric; Kuperman, Joshua M; Akshoomoff, Natacha; Amaral, David G; Bloss, Cinnamon S; Libiger, Ondrej; Schork, Nicholas J; Murray, Sarah S; Casey, B J; Chang, Linda; Ernst, Thomas M; Frazier, Jean A; Gruen, Jeffrey R; Kennedy, David N; Van Zijl, Peter; Mostofsky, Stewart; Kaufmann, Walter E; Kenet, Tal; Dale, Anders M; Jernigan, Terry L; Sowell, Elizabeth R

    2015-05-01

    Socioeconomic disparities are associated with differences in cognitive development. The extent to which this translates to disparities in brain structure is unclear. We investigated relationships between socioeconomic factors and brain morphometry, independently of genetic ancestry, among a cohort of 1,099 typically developing individuals between 3 and 20 years of age. Income was logarithmically associated with brain surface area. Among children from lower income families, small differences in income were associated with relatively large differences in surface area, whereas, among children from higher income families, similar income increments were associated with smaller differences in surface area. These relationships were most prominent in regions supporting language, reading, executive functions and spatial skills; surface area mediated socioeconomic differences in certain neurocognitive abilities. These data imply that income relates most strongly to brain structure among the most disadvantaged children.

  9. Temporal characterization of the wave-breaking flash in a laser plasma accelerator

    NASA Astrophysics Data System (ADS)

    Miao, Bo; Feder, Linus; Goers, Andrew; Hine, George; Salehi, Fatholah; Wahlstrand, Jared; Woodbury, Daniel; Milchberg, Howard

    2017-10-01

    Wave-breaking injection of electrons into a relativistic plasma wake generated in near-critical density plasma by sub-terawatt laser pulses generates an intense ( 1 μJ) and ultra-broadband (Δλ 300 nm) radiation flash. In this work we demonstrate the spectral coherence of this radiation and measure its temporal width using single-shot supercontinuum spectral interferometry (SSSI). The measured temporal width is limited by measurement resolution to 50 fs. Spectral coherence is corroborated by PIC simulations which show that the spatial extent of the acceleration trajectory at the trapping region is small compared to the radiation center wavelength. To our knowledge, this is the first temporal and coherence characterization of wave-breaking radiation. This work is supported by the US Department of Energy, the National Science Foundation, and the Air Force Office of Scientific Research.

  10. Slow Spatial Recruitment of Neocortex during Secondarily Generalized Seizures and Its Relation to Surgical Outcome

    PubMed Central

    Martinet, Louis-Emmanuel; Ahmed, Omar J.; Lepage, Kyle Q.; Cash, Sydney S.

    2015-01-01

    Understanding the spatiotemporal dynamics of brain activity is crucial for inferring the underlying synaptic and nonsynaptic mechanisms of brain dysfunction. Focal seizures with secondary generalization are traditionally considered to begin in a limited spatial region and spread to connected areas, which can include both pathological and normal brain tissue. The mechanisms underlying this spread are important to our understanding of seizures and to improve therapies for surgical intervention. Here we study the properties of seizure recruitment—how electrical brain activity transitions to large voltage fluctuations characteristic of spike-and-wave seizures. We do so using invasive subdural electrode arrays from a population of 16 patients with pharmacoresistant epilepsy. We find an average delay of ∼30 s for a broad area of cortex (8 × 8 cm) to be recruited into the seizure, at an estimated speed of ∼4 mm/s. The spatiotemporal characteristics of recruitment reveal two categories of patients: one in which seizure recruitment of neighboring cortical regions follows a spatially organized pattern consistent from seizure to seizure, and a second group without consistent spatial organization of activity during recruitment. The consistent, organized recruitment correlates with a more regular, compared with small-world, connectivity pattern in simulation and successful surgical treatment of epilepsy. We propose that an improved understanding of how the seizure recruits brain regions into large amplitude voltage fluctuations provides novel information to improve surgical treatment of epilepsy and highlights the slow spread of massive local activity across a vast extent of cortex during seizure. PMID:26109670

  11. Combining eddy-covariance and chamber measurements to determine the methane budget from a small, heterogeneous urban floodplain wetland park

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morin, T. H.; Bohrer, G.; Stefanik, K. C.

    Methane (CH 4) emissions and carbon uptake in temperate freshwater wetlands act in opposing directions in the context of global radiative forcing. Large uncertainties exist for the rates of CH 4 emissions making it difficult to determine the extent that CH 4 emissions counteract the carbon sequestration of wetlands. Urban temperate wetlands are typically small and feature highly heterogeneous land cover, posing an additional challenge to determining their CH 4 budget. The data analysis approach we introduce here combines two different CH 4 flux measurement techniques to overcome scale and heterogeneity problems and determine the overall CH 4 budget ofmore » a small, heterogeneous, urban wetland landscape. Temporally intermittent point measurements from non-steady-state chambers provided information about patch-level heterogeneity of fluxes, while continuous, high temporal resolution flux measurements using the eddy-covariance (EC) technique provided information about the temporal dynamics of the fluxes. Patch-level scaling parameterization was developed from the chamber data to scale eddy covariance data to a ‘fixed-frame’, which corrects for variability in the spatial coverage of the eddy covariance observation footprint at any single point in time. Finally, by combining two measurement techniques at different scales, we addressed shortcomings of both techniques with respect to heterogeneous wetland sites.« less

  12. Implications of nonadventitious rhizome spread on reproduction, inbreeding, and conservation for a rare grassland legume.

    PubMed

    Severns, Paul M; Liston, Aaron; Wilson, Mark V

    2011-01-01

    Small population size, genetic diversity, and spatial patterns of vegetative spread are important aspects to consider when managing populations of rare clonal plant species. We used 5 variable nuclear simple sequence repeat nDNA loci to determine the extent of genet rhizome spread, examine the possibility of very small population sizes, and project how Bombus spp. (bumblebee) foraging may impact selfing (through geitonogamy) for a threatened lupine (Lupinus oreganus Heller) that sprawls through nonadventitious rhizomes. Genotyping identified 1 genet (27 × 13 m) that dominated about 30% of a study site, whereas 15 genets spread a maximum average distance of about 5.5 m (range 1.6 -27.1 m) and appeared to be well integrated with intervening genets. We found unexpectedly high genotype diversity, no evidence of a recent genetic bottleneck, and 5 of 6 patches had mean fixation index values that were near Hardy-Weinberg Equilibrium expectations. If the median maximum Bombus foraging distance observed in lupine patches (1.2 m) occurred within genotyped populations, a typical foraging flight would have >80% chance of occurring between different genets. Our study demonstrates that inferences associated with clonality, small population size, and inbreeding depression should be directly evaluated for rare vegetatively spreading plants.

  13. Combining eddy-covariance and chamber measurements to determine the methane budget from a small, heterogeneous urban floodplain wetland park

    DOE PAGES

    Morin, T. H.; Bohrer, G.; Stefanik, K. C.; ...

    2017-02-17

    Methane (CH 4) emissions and carbon uptake in temperate freshwater wetlands act in opposing directions in the context of global radiative forcing. Large uncertainties exist for the rates of CH 4 emissions making it difficult to determine the extent that CH 4 emissions counteract the carbon sequestration of wetlands. Urban temperate wetlands are typically small and feature highly heterogeneous land cover, posing an additional challenge to determining their CH 4 budget. The data analysis approach we introduce here combines two different CH 4 flux measurement techniques to overcome scale and heterogeneity problems and determine the overall CH 4 budget ofmore » a small, heterogeneous, urban wetland landscape. Temporally intermittent point measurements from non-steady-state chambers provided information about patch-level heterogeneity of fluxes, while continuous, high temporal resolution flux measurements using the eddy-covariance (EC) technique provided information about the temporal dynamics of the fluxes. Patch-level scaling parameterization was developed from the chamber data to scale eddy covariance data to a ‘fixed-frame’, which corrects for variability in the spatial coverage of the eddy covariance observation footprint at any single point in time. Finally, by combining two measurement techniques at different scales, we addressed shortcomings of both techniques with respect to heterogeneous wetland sites.« less

  14. The plastic ear and perceptual relearning in auditory spatial perception

    PubMed Central

    Carlile, Simon

    2014-01-01

    The auditory system of adult listeners has been shown to accommodate to altered spectral cues to sound location which presumably provides the basis for recalibration to changes in the shape of the ear over a life time. Here we review the role of auditory and non-auditory inputs to the perception of sound location and consider a range of recent experiments looking at the role of non-auditory inputs in the process of accommodation to these altered spectral cues. A number of studies have used small ear molds to modify the spectral cues that result in significant degradation in localization performance. Following chronic exposure (10–60 days) performance recovers to some extent and recent work has demonstrated that this occurs for both audio-visual and audio-only regions of space. This begs the questions as to the teacher signal for this remarkable functional plasticity in the adult nervous system. Following a brief review of influence of the motor state in auditory localization, we consider the potential role of auditory-motor learning in the perceptual recalibration of the spectral cues. Several recent studies have considered how multi-modal and sensory-motor feedback might influence accommodation to altered spectral cues produced by ear molds or through virtual auditory space stimulation using non-individualized spectral cues. The work with ear molds demonstrates that a relatively short period of training involving audio-motor feedback (5–10 days) significantly improved both the rate and extent of accommodation to altered spectral cues. This has significant implications not only for the mechanisms by which this complex sensory information is encoded to provide spatial cues but also for adaptive training to altered auditory inputs. The review concludes by considering the implications for rehabilitative training with hearing aids and cochlear prosthesis. PMID:25147497

  15. Tracing Altiplano-Puna plateau surface uplift via radiogenic isotope composition of Andean arc lavas

    NASA Astrophysics Data System (ADS)

    Scott, E. M.; Allen, M. B.; Macpherson, C.; McCaffrey, K. J. W.; Davidson, J.; Saville, C.

    2016-12-01

    We have compiled published geochemical data for Jurassic to Holocene Andean arc lavas from 5oN to 47oS, covering the current extent of the northern, central and southern volcanic zones. Using this dataset we evaluate the spatial and temporal evolution of age corrected Sr- and Nd-radiogenic isotopes in arc lavas at a continental-scale, in order to understand the tectonic and surface uplift histories of the Andean margin. It has long been noted that baseline 87Sr/86Sr and 143Nd/144Nd ratios of Quaternary lavas from the central volcanic zone, located within the Altiplano-Puna plateau, are distinct from volcanic rocks to the north and south. This is commonly attributed to greater crustal thickness, which increases to roughly twice that of the average continental crust within the Altiplano-Puna plateau. By comparing 87Sr/86Sr and 143Nd/144Nd ratios in Quaternary lavas to published crustal thickness models, present day topography and the compositions of basement terranes, we note that Sr- and Nd-isotope values of Quaternary lavas are an effective proxy for present day regional elevation. In contrast, variation in basement terranes has only a small, second order effect on isotopic composition at the scale of our study. Using this isotopic proxy, we infer the spatial extent of the plateau and its surface uplift history from the Jurassic to the present. Our results concur with a crustal thickening model of continued surface uplift, which initiated in the Altiplano, with deformation propagating southwards into the Puna throughout the Neogene and then continuing in central Chile and Argentina up to the present day.

  16. Robustness of spatial micronetworks

    NASA Astrophysics Data System (ADS)

    McAndrew, Thomas C.; Danforth, Christopher M.; Bagrow, James P.

    2015-04-01

    Power lines, roadways, pipelines, and other physical infrastructure are critical to modern society. These structures may be viewed as spatial networks where geographic distances play a role in the functionality and construction cost of links. Traditionally, studies of network robustness have primarily considered the connectedness of large, random networks. Yet for spatial infrastructure, physical distances must also play a role in network robustness. Understanding the robustness of small spatial networks is particularly important with the increasing interest in microgrids, i.e., small-area distributed power grids that are well suited to using renewable energy resources. We study the random failures of links in small networks where functionality depends on both spatial distance and topological connectedness. By introducing a percolation model where the failure of each link is proportional to its spatial length, we find that when failures depend on spatial distances, networks are more fragile than expected. Accounting for spatial effects in both construction and robustness is important for designing efficient microgrids and other network infrastructure.

  17. Spatial Distribution of Surface Soil Moisture in a Small Forested Catchment

    EPA Science Inventory

    Predicting the spatial distribution of soil moisture is an important hydrological question. We measured the spatial distribution of surface soil moisture (upper 6 cm) using an Amplitude Domain Reflectometry sensor at the plot scale (2 × 2 m) and small catchment scale (0.84 ha) in...

  18. Predicting above-ground density and distribution of small mammal prey species at large spatial scales

    Treesearch

    Lucretia E. Olson; John R. Squires; Robert J. Oakleaf; Zachary P. Wallace; Patricia L. Kennedy

    2017-01-01

    Grassland and shrub-steppe ecosystems are increasingly threatened by anthropogenic activities. Loss of native habitats may negatively impact important small mammal prey species. Little information, however, is available on the impact of habitat variability on density of small mammal prey species at broad spatial scales. We examined the relationship between small mammal...

  19. Nucleon Structure from 2+1 Flavor Domain Wall QCD at Nearly Physical Pion Mass

    NASA Astrophysics Data System (ADS)

    Ohta, Shigemi

    2011-05-01

    The RBC and UKQCD collaborations have been investigating hadron physics in numerical lattice quantum chromodynamics (QCD) with (2+1) flavors of dynamical domain wall fermions (DWF) quarks that preserves continuum-like chiral and flavor symmetries. The strange quark mass is adjusted to physical value via reweighting and degenerate up and down quark masses are set as light as possible. In a recent study of nucleon structure we found a strong dependence on pion mass and lattice spatial extent in isovector axialvector-current form factors. This is likely the first credible evidence for the pion cloud surrounding nucleon. Here we report the status of nucleon structure calculations with a new (2+1)-flavor dynamical DWF ensembles with much lighter pion mass of 180 and 250 MeV and a much larger lattice spatial exent of 4.6 fm. A combination of the Iwasaki and dislocation-suppressing-determinant-ratio (I+DSDR) gauge action and DWF fermion action allows us to generate these ensembles at cutoff of about 1.4 GeV while keeping the residual breaking of chiral symmetry sufficiently small. Nucleon source Gaussian smearing has been optimized. Preliminary nucleon mass estimates are 0.98 and 1.05 GeV.

  20. Building Regional Threat-Based Networks for Estuaries in the Western United States

    PubMed Central

    Merrifield, Matthew S.; Hines, Ellen; Liu, Xiaohang; Beck, Michael W.

    2011-01-01

    Estuaries are ecologically and economically valuable and have been highly degraded from both land and sea. Estuarine habitats in the coastal zone are under pressure from a range of human activities. In the United States and elsewhere, very few conservation plans focused on estuaries are regional in scope; fewer still address threats to estuary long term viability.We have compiled basic information about the spatial extent of threats to identify commonalities. To do this we classify estuaries into hierarchical networks that share similar threat characteristics using a spatial database (geodatabase) of threats to estuaries from land and sea in the western U.S.Our results show that very few estuaries in this region (16%) have no or minimal stresses from anthropogenic activity. Additionally, one quarter (25%) of all estuaries in this study have moderate levels of all threats. The small number of un-threatened estuaries is likely not representative of the ecological variability in the region and will require working to abate threats at others. We think the identification of these estuary groups can foster sharing best practices and coordination of conservation activities amongst estuaries in any geography. PMID:21387006

  1. Sea snakes rarely venture far from home

    PubMed Central

    Lukoschek, Vimoksalehi; Shine, Richard

    2012-01-01

    The extent to which populations are connected by dispersal influences all aspects of their biology and informs the spatial scale of optimal conservation strategies. Obtaining direct estimates of dispersal is challenging, particularly in marine systems, with studies typically relying on indirect approaches to evaluate connectivity. To overcome this challenge, we combine information from an eight-year mark-recapture study with high-resolution genetic data to demonstrate extremely low dispersal and restricted gene flow at small spatial scales for a large, potentially mobile marine vertebrate, the turtleheaded sea snake (Emydocephalus annulatus). Our mark-recapture study indicated that adjacent bays in New Caledonia (<1.15 km apart) contain virtually separate sea snake populations. Sea snakes could easily swim between bays but rarely do so. Of 817 recaptures of marked snakes, only two snakes had moved between bays. We genotyped 136 snakes for 11 polymorphic microsatellite loci and found statistically significant genetic divergence between the two bays (FST= 0.008, P < 0.01). Bayesian clustering analyses detected low mixed ancestry within bays and genetic relatedness coefficients were higher, on average, within than between bays. Our results indicate that turtleheaded sea snakes rarely venture far from home, which has strong implications for their ecology, evolution, and conservation. PMID:22833788

  2. Modeling household and community transmission of Ebola virus disease: Epidemic growth, spatial dynamics and insights for epidemic control

    PubMed Central

    Kiskowski, Maria; Chowell, Gerardo

    2016-01-01

    The mechanisms behind the sub-exponential growth dynamics of the West Africa Ebola virus disease epidemic could be related to improved control of the epidemic and the result of reduced disease transmission in spatially constrained contact structures. An individual-based, stochastic network model is used to model immediate and delayed epidemic control in the context of social contact networks and investigate the extent to which the relative role of these factors may be determined during an outbreak. We find that in general, epidemics quickly establish a dynamic equilibrium of infections in the form of a wave of fixed size and speed traveling through the contact network. Both greater epidemic control and limited community mixing decrease the size of an infectious wave. However, for a fixed wave size, epidemic control (in contrast with limited community mixing) results in lower community saturation and a wave that moves more quickly through the contact network. We also found that the level of epidemic control has a disproportionately greater reductive effect on larger waves, so that a small wave requires nearly as much epidemic control as a larger wave to end an epidemic. PMID:26399855

  3. Modeling household and community transmission of Ebola virus disease: Epidemic growth, spatial dynamics and insights for epidemic control.

    PubMed

    Kiskowski, Maria; Chowell, Gerardo

    2016-01-01

    The mechanisms behind the sub-exponential growth dynamics of the West Africa Ebola virus disease epidemic could be related to improved control of the epidemic and the result of reduced disease transmission in spatially constrained contact structures. An individual-based, stochastic network model is used to model immediate and delayed epidemic control in the context of social contact networks and investigate the extent to which the relative role of these factors may be determined during an outbreak. We find that in general, epidemics quickly establish a dynamic equilibrium of infections in the form of a wave of fixed size and speed traveling through the contact network. Both greater epidemic control and limited community mixing decrease the size of an infectious wave. However, for a fixed wave size, epidemic control (in contrast with limited community mixing) results in lower community saturation and a wave that moves more quickly through the contact network. We also found that the level of epidemic control has a disproportionately greater reductive effect on larger waves, so that a small wave requires nearly as much epidemic control as a larger wave to end an epidemic.

  4. On factors structuring the flatfish assemblage in the southern North Sea

    NASA Astrophysics Data System (ADS)

    Piet, G. J.; Pfisterer, A. B.; Rijnsdorp, A. D.

    1998-09-01

    Ten species of flatfish were studied to see to what extent interspecific competition influences their diet or spatial distribution and whether the potential of these flatfish species to avoid interspecific competition through resource partitioning is constrained by specific morphological characteristics. For this, seven morphological characteristics were measured, diet composition was determined from gut content analyses and overlap in distribution was determined from the co-occurrence in trawl hauls. Canonical correspondence analysis revealed the morphological characteristics that were most strongly correlated with the diet composition. Based on these findings the mouth gape was considered to be the most important morphological constraint affecting the choice of food. Two resource dimensions were distinguished along which interspecific competition can act on the flatfish assemblage: the trophic dimension (diet composition) and the spatial dimension (distribution). Resource partitioning was observed along both dimensions separately and, more importantly, the degree of resource partitioning along the two dimensions was negatively correlated. Especially the latter was considered strong circumstantial evidence that interspecific competition is a major factor structuring the flatfish assemblage. Resource partitioning along the two resource dimensions increased with decreasing mouth gape, suggesting that interspecific competition mainly acts on the small-mouthed fish, i.e. juveniles.

  5. Mapping turbidity patterns in the Po river prodelta using multi-temporal Landsat 8 imagery

    NASA Astrophysics Data System (ADS)

    Braga, Federica; Zaggia, Luca; Bellafiore, Debora; Bresciani, Mariano; Giardino, Claudia; Lorenzetti, Giuliano; Maicu, Francesco; Manzo, Ciro; Riminucci, Francesco; Ravaioli, Mariangela; Brando, Vittorio Ernesto

    2017-11-01

    Thirty-meters resolution turbidity maps derived from Landsat 8 (L8) images were used to investigate spatial and temporal variations of suspended matter patterns and distribution in the area of Po River prodelta (Italy) in the period from April 2013 to October 2015. The main focus of the work was the study of small and sub-mesoscale structures, linking them to the main forcings that control the fate of suspended sediments in the northern Adriatic Sea. A number of hydrologic and meteorological events of different extent and duration was captured by L8 data, quantifying how river discharge and meteo-marine conditions modulate the distribution of turbidity on- and off-shore. At sub-mesoscale, peculiar patterns and smaller structures, as multiple plumes and sand bars, were identified thanks to the unprecedented spatial and radiometric resolution of L8 sensor. The use of these satellite-derived products provides interesting information, particularly on turbidity distribution among the different delta distributaries in specific fluvial regimes that fills the knowledge gap of traditional studies based only on in situ data. A novel approach using satellite data within model implementation is then suggested.

  6. Temporal Statistics of Natural Image Sequences Generated by Movements with Insect Flight Characteristics

    PubMed Central

    Schwegmann, Alexander; Lindemann, Jens Peter; Egelhaaf, Martin

    2014-01-01

    Many flying insects, such as flies, wasps and bees, pursue a saccadic flight and gaze strategy. This behavioral strategy is thought to separate the translational and rotational components of self-motion and, thereby, to reduce the computational efforts to extract information about the environment from the retinal image flow. Because of the distinguishing dynamic features of this active flight and gaze strategy of insects, the present study analyzes systematically the spatiotemporal statistics of image sequences generated during saccades and intersaccadic intervals in cluttered natural environments. We show that, in general, rotational movements with saccade-like dynamics elicit fluctuations and overall changes in brightness, contrast and spatial frequency of up to two orders of magnitude larger than translational movements at velocities that are characteristic of insects. Distinct changes in image parameters during translations are only caused by nearby objects. Image analysis based on larger patches in the visual field reveals smaller fluctuations in brightness and spatial frequency composition compared to small patches. The temporal structure and extent of these changes in image parameters define the temporal constraints imposed on signal processing performed by the insect visual system under behavioral conditions in natural environments. PMID:25340761

  7. Sea snakes rarely venture far from home.

    PubMed

    Lukoschek, Vimoksalehi; Shine, Richard

    2012-06-01

    The extent to which populations are connected by dispersal influences all aspects of their biology and informs the spatial scale of optimal conservation strategies. Obtaining direct estimates of dispersal is challenging, particularly in marine systems, with studies typically relying on indirect approaches to evaluate connectivity. To overcome this challenge, we combine information from an eight-year mark-recapture study with high-resolution genetic data to demonstrate extremely low dispersal and restricted gene flow at small spatial scales for a large, potentially mobile marine vertebrate, the turtleheaded sea snake (Emydocephalus annulatus). Our mark-recapture study indicated that adjacent bays in New Caledonia (<1.15 km apart) contain virtually separate sea snake populations. Sea snakes could easily swim between bays but rarely do so. Of 817 recaptures of marked snakes, only two snakes had moved between bays. We genotyped 136 snakes for 11 polymorphic microsatellite loci and found statistically significant genetic divergence between the two bays (F(ST)= 0.008, P < 0.01). Bayesian clustering analyses detected low mixed ancestry within bays and genetic relatedness coefficients were higher, on average, within than between bays. Our results indicate that turtleheaded sea snakes rarely venture far from home, which has strong implications for their ecology, evolution, and conservation.

  8. Exploring the Linkage between Urban Flood Risk and Spatial Patterns in Small Urbanized Catchments of Beijing, China

    PubMed Central

    Yao, Lei; Chen, Liding; Wei, Wei

    2017-01-01

    In the context of global urbanization, urban flood risk in many cities has become a serious environmental issue, threatening the health of residents and the environment. A number of hydrological studies have linked urban flooding issues closely to the spectrum of spatial patterns of urbanization, but relatively little attention has been given to small-scale catchments within the realm of urban systems. This study aims to explore the hydrological effects of small-scaled urbanized catchments assigned with various landscape patterns. Twelve typical residential catchments in Beijing were selected as the study areas. Total Impervious Area (TIA), Directly Connected Impervious Area (DCIA), and a drainage index were used as the catchment spatial metrics. Three scenarios were designed as different spatial arrangement of catchment imperviousness. Runoff variables including total and peak runoff depth (Qt and Qp) were simulated by using Strom Water Management Model (SWMM). The relationship between catchment spatial patterns and runoff variables were determined, and the results demonstrated that, spatial patterns have inherent influences on flood risks in small urbanized catchments. Specifically: (1) imperviousness acts as an effective indicator in affecting both Qt and Qp; (2) reducing the number of rainwater inlets appropriately will benefit the catchment peak flow mitigation; (3) different spatial concentrations of impervious surfaces have inherent influences on Qp. These findings provide insights into the role of urban spatial patterns in driving rainfall-runoff processes in small urbanized catchments, which is essential for urban planning and flood management. PMID:28264521

  9. Exploring the Linkage between Urban Flood Risk and Spatial Patterns in Small Urbanized Catchments of Beijing, China.

    PubMed

    Yao, Lei; Chen, Liding; Wei, Wei

    2017-02-28

    In the context of global urbanization, urban flood risk in many cities has become a serious environmental issue, threatening the health of residents and the environment. A number of hydrological studies have linked urban flooding issues closely to the spectrum of spatial patterns of urbanization, but relatively little attention has been given to small-scale catchments within the realm of urban systems. This study aims to explore the hydrological effects of small-scaled urbanized catchments assigned with various landscape patterns. Twelve typical residential catchments in Beijing were selected as the study areas. Total Impervious Area ( TIA ), Directly Connected Impervious Area ( DCIA ), and a drainage index were used as the catchment spatial metrics. Three scenarios were designed as different spatial arrangement of catchment imperviousness. Runoff variables including total and peak runoff depth ( Q t and Q p ) were simulated by using Strom Water Management Model (SWMM). The relationship between catchment spatial patterns and runoff variables were determined, and the results demonstrated that, spatial patterns have inherent influences on flood risks in small urbanized catchments. Specifically: (1) imperviousness acts as an effective indicator in affecting both Q t and Q p ; (2) reducing the number of rainwater inlets appropriately will benefit the catchment peak flow mitigation; (3) different spatial concentrations of impervious surfaces have inherent influences on Q p . These findings provide insights into the role of urban spatial patterns in driving rainfall-runoff processes in small urbanized catchments, which is essential for urban planning and flood management.

  10. Scale considerations for ecosystem management

    Treesearch

    Jonathan B. Haufler; Thomas R. Crow; David Wilcove

    1999-01-01

    One of the difficult challenges facing ecosystem management is the determination of appropriate spatial and temporal scales to use. Scale in spatial sence includes considerations of both the size area or extent of an ecosystem management activity, as well as thedegree of resolution of mapped or measured data. In the temporal sense, scale concerns the duration of both...

  11. Evaluation of an index of biotic integrity approach to assess fish assemblage condition in Western USA streams and rivers at varying spatial scales

    EPA Science Inventory

    Consistent assessments of biological condition are needed across multiple ecoregions to provide a greater understanding of the spatial extent of environmental degradation. However, consistent assessments at large geographic scales are often hampered by lack of uniformity in data ...

  12. Modeling streams and hydrogeomorphic attributes in Oregon from digital and field data

    Treesearch

    Sharon E. Clarke; Kelly M. Burnett; Daniel J. Miller

    2008-01-01

    Managers, regulators, and researchers of aquatic ecosystems are increasingly pressed to consider large areas. However, accurate stream maps with geo-referenced attributes are uncommon over relevant spatial extents. Field inventories provide high-quality data, particularly for habitat characteristics at fine spatial resolutions (e.g., large wood), but are costly and so...

  13. Taking the pulse of a continent: Expanding site-based research infrastructure for regional- to continental-scale ecology

    USDA-ARS?s Scientific Manuscript database

    Many of the most dramatic and surprising effects of global change on ecological systems will occur across large spatial extents, from regions to continents. Multiple ecosystem types will be impacted across a range of interacting spatial and temporal scales. The ability of ecologists to understand an...

  14. SPATIAL VISUALIZATION ABILITIES OF CENTRAL WASHINGTON STATE COLLEGE PROSPECTIVE ELEMENTARY AND SECONDARY TEACHERS OF MATHEMATICS.

    ERIC Educational Resources Information Center

    MARTIN, BERNARD LOYAL

    INVESTIGATED WAS THE EXTENT TO WHICH STUDENTS COMPLETING PLANNED MATHEMATICS EDUCATION PROGRAMS (1) WERE PROFICIENT IN SPATIAL VISUALIZATION ABILITIES, AND (2) HAD DEVELOPED MATHEMATICAL UNDERSTANDINGS. THE EFFECTS OF THE MATHEMATICS CURRICULA UPON SUCH DEVELOPMENT WERE INVESTIGATED BY COMPARING GROUP MEAN TEST SCORES OF PROSPECTIVE ELEMENTARY AND…

  15. Estimating prevalence of coronary heart disease for small areas using collateral indicators of morbidity.

    PubMed

    Congdon, Peter

    2010-01-01

    Different indicators of morbidity for chronic disease may not necessarily be available at a disaggregated spatial scale (e.g., for small areas with populations under 10 thousand). Instead certain indicators may only be available at a more highly aggregated spatial scale; for example, deaths may be recorded for small areas, but disease prevalence only at a considerably higher spatial scale. Nevertheless prevalence estimates at small area level are important for assessing health need. An instance is provided by England where deaths and hospital admissions for coronary heart disease are available for small areas known as wards, but prevalence is only available for relatively large health authority areas. To estimate CHD prevalence at small area level in such a situation, a shared random effect method is proposed that pools information regarding spatial morbidity contrasts over different indicators (deaths, hospitalizations, prevalence). The shared random effect approach also incorporates differences between small areas in known risk factors (e.g., income, ethnic structure). A Poisson-multinomial equivalence may be used to ensure small area prevalence estimates sum to the known higher area total. An illustration is provided by data for London using hospital admissions and CHD deaths at ward level, together with CHD prevalence totals for considerably larger local health authority areas. The shared random effect involved a spatially correlated common factor, that accounts for clustering in latent risk factors, and also provides a summary measure of small area CHD morbidity.

  16. Estimating Prevalence of Coronary Heart Disease for Small Areas Using Collateral Indicators of Morbidity

    PubMed Central

    Congdon, Peter

    2010-01-01

    Different indicators of morbidity for chronic disease may not necessarily be available at a disaggregated spatial scale (e.g., for small areas with populations under 10 thousand). Instead certain indicators may only be available at a more highly aggregated spatial scale; for example, deaths may be recorded for small areas, but disease prevalence only at a considerably higher spatial scale. Nevertheless prevalence estimates at small area level are important for assessing health need. An instance is provided by England where deaths and hospital admissions for coronary heart disease are available for small areas known as wards, but prevalence is only available for relatively large health authority areas. To estimate CHD prevalence at small area level in such a situation, a shared random effect method is proposed that pools information regarding spatial morbidity contrasts over different indicators (deaths, hospitalizations, prevalence). The shared random effect approach also incorporates differences between small areas in known risk factors (e.g., income, ethnic structure). A Poisson-multinomial equivalence may be used to ensure small area prevalence estimates sum to the known higher area total. An illustration is provided by data for London using hospital admissions and CHD deaths at ward level, together with CHD prevalence totals for considerably larger local health authority areas. The shared random effect involved a spatially correlated common factor, that accounts for clustering in latent risk factors, and also provides a summary measure of small area CHD morbidity. PMID:20195439

  17. Circulation controls of the spatial structure of maximum daily precipitation over Poland

    NASA Astrophysics Data System (ADS)

    Stach, Alfred

    2015-04-01

    Among forecasts made on the basis of global and regional climatic models is one of a high probability of an increase in the frequency and intensity of extreme precipitation events. Learning the regularities underlying the recurrence and spatial extent of extreme precipitation is obviously of great importance, both economic and social. The main goal of the study was to analyse regularities underlying spatial and temporal variations in monthly Maximum Daily Precipitation Totals (MDPTs) observed in Poland over the years 1956-1980. These data are specific because apart from being spatially discontinuous, which is typical of precipitation, they are also non-synchronic. The main aim of the study was accomplished via several detailed goals: • identification and typology of the spatial structure of monthly MDPTs, • determination of the character and probable origin of events generating MDPTs, and • quantitative assessment of the contribution of the particular events to the overall MDPT figures. The analysis of the spatial structure of MDPTs was based on 300 models of spatial structure, one for each of the analysed sets of monthly MDPTs. The models were built on the basis of empirical anisotropic semivariograms of normalised data. In spite of their spatial discontinuity and asynchronicity, the MDPT data from Poland display marked regularities in their spatial pattern that yield readily to mathematical modelling. The MDPT field in Poland is usually the sum of the outcomes of three types of processes operating at various spatial scales: local (<10-20 km), regional (50-150 km), and supra-regional (>200 km). The spatial scales are probably connected with a convective/ orographic, a frontal and a 'planetary waves' genesis of high precipitation. Their contributions are highly variable. Generally predominant, however, are high daily precipitation totals with a spatial extent of 50 to 150 km connected with mesoscale phenomena and the migration of atmospheric fronts (35-38%). The spatial extent of areas of high local-scale precipitation usually varies at random, especially in the warm season. At supra-local scales, structures of repetitive size predominate. Eight types of anisotropic structures of monthly MDPTs were distinguished. To identify them, an analysis was made of semivariance surface similarities. The types differ not only in the level and direction of anisotropy, but also in the number and type of elementary components, which is evidence of genetic differences in precipitation. Their appearance shows a significant seasonal variability, so the most probable supposition was that temporal variations in the MDPT pattern were connected with circulation conditions: the type and direction of inflow of air masses. This hypothesis was validated by testing differences in the frequency of occurrence of Grosswetterlagen circulation situations in the months belonging to the distinguished types of the spatial MDPT pattern.

  18. Damage spreading in spatial and small-world random Boolean networks

    NASA Astrophysics Data System (ADS)

    Lu, Qiming; Teuscher, Christof

    2014-02-01

    The study of the response of complex dynamical social, biological, or technological networks to external perturbations has numerous applications. Random Boolean networks (RBNs) are commonly used as a simple generic model for certain dynamics of complex systems. Traditionally, RBNs are interconnected randomly and without considering any spatial extension and arrangement of the links and nodes. However, most real-world networks are spatially extended and arranged with regular, power-law, small-world, or other nonrandom connections. Here we explore the RBN network topology between extreme local connections, random small-world, and pure random networks, and study the damage spreading with small perturbations. We find that spatially local connections change the scaling of the Hamming distance at very low connectivities (K¯≪1) and that the critical connectivity of stability Ks changes compared to random networks. At higher K¯, this scaling remains unchanged. We also show that the Hamming distance of spatially local networks scales with a power law as the system size N increases, but with a different exponent for local and small-world networks. The scaling arguments for small-world networks are obtained with respect to the system sizes and strength of spatially local connections. We further investigate the wiring cost of the networks. From an engineering perspective, our new findings provide the key design trade-offs between damage spreading (robustness), the network's wiring cost, and the network's communication characteristics.

  19. A methodology to estimate the future extent of dryland salinity in the southwest of Western Australia.

    PubMed

    Caccetta, Peter; Dunne, Robert; George, Richard; McFarlane, Don

    2010-01-01

    In the southwestern agricultural region of Western Australia, the clearing of the original perennial vegetation for annual vegetation-based dryland agriculture has lead to rising saline groundwater levels. This has had effects such as reduced productivity of agricultural land, death of native vegetation, reduced stream water quality and infrastructure damage. These effects have been observed at many locations within the 18 million ha of cleared land. This has lead to efforts to quantify, in a spatially explicit way, the historical and likely future extent of the area affected, with the view to informing management decisions. This study was conducted to determine whether the likely future extent of the area affected by dryland salinity could be estimated by means of developing spatially explicit maps for use in management and planning. We derived catchment-related variables from digital elevation models and perennial vegetation presence/absence maps. We then used these variables to predict the salinity hazard extent by applying a combination of decision tree classification and morphological image processing algorithms. Sufficient objective data such as groundwater depth, its rate of rise, and its concentration of dissolved salts were generally not available, so we used regional expert opinion (derived from the limited existing studies on salinity hazard extent) as training and validation data. We obtained an 87% agreement in the salinity hazard extent estimated by this method compared with the validation data, and conclude that the maps are sufficient for planning. We estimate that the salinity hazard extent is 29.7% of the agricultural land.

  20. Influences of roads and development on bird communities in protected Chihuahuan Desert landscapes

    USGS Publications Warehouse

    Gutzwiller, K.J.; Barrow, W.C.

    2003-01-01

    Our objective was to improve knowledge about effects of broad-scale road and development variables on bird communities in protected desert landscapes. Bird species richness and the relative abundance or probability of occurrence of many species were significantly associated with total length of roads within each of two spatial extents (1- and 2-km radii), distance to the nearest road, distance to the nearest development, or the two-way interactions of these variables. Regression models reflected non-linear relations, interaction effects, spatial-extent effects, and interannual variation. Road and development effects warrant special attention in protected areas because such places may be important sources of indigenous bird communities in a region.

  1. Multi-century cool- and warm-season rainfall reconstructions for Australia's major climatic regions

    NASA Astrophysics Data System (ADS)

    Freund, Mandy; Henley, Benjamin J.; Karoly, David J.; Allen, Kathryn J.; Baker, Patrick J.

    2017-11-01

    Australian seasonal rainfall is strongly affected by large-scale ocean-atmosphere climate influences. In this study, we exploit the links between these precipitation influences, regional rainfall variations, and palaeoclimate proxies in the region to reconstruct Australian regional rainfall between four and eight centuries into the past. We use an extensive network of palaeoclimate records from the Southern Hemisphere to reconstruct cool (April-September) and warm (October-March) season rainfall in eight natural resource management (NRM) regions spanning the Australian continent. Our bi-seasonal rainfall reconstruction aligns well with independent early documentary sources and existing reconstructions. Critically, this reconstruction allows us, for the first time, to place recent observations at a bi-seasonal temporal resolution into a pre-instrumental context, across the entire continent of Australia. We find that recent 30- and 50-year trends towards wetter conditions in tropical northern Australia are highly unusual in the multi-century context of our reconstruction. Recent cool-season drying trends in parts of southern Australia are very unusual, although not unprecedented, across the multi-century context. We also use our reconstruction to investigate the spatial and temporal extent of historical drought events. Our reconstruction reveals that the spatial extent and duration of the Millennium Drought (1997-2009) appears either very much below average or unprecedented in southern Australia over at least the last 400 years. Our reconstruction identifies a number of severe droughts over the past several centuries that vary widely in their spatial footprint, highlighting the high degree of diversity in historical droughts across the Australian continent. We document distinct characteristics of major droughts in terms of their spatial extent, duration, intensity, and seasonality. Compared to the three largest droughts in the instrumental period (Federation Drought, 1895-1903; World War II Drought, 1939-1945; and the Millennium Drought, 1997-2005), we find that the historically documented Settlement Drought (1790-1793), Sturt's Drought (1809-1830) and the Goyder Line Drought (1861-1866) actually had more regionalised patterns and reduced spatial extents. This seasonal rainfall reconstruction provides a new opportunity to understand Australian rainfall variability by contextualising severe droughts and recent trends in Australia.

  2. Study of Structure and Small-Scale Fragmentation in TMC-1

    NASA Technical Reports Server (NTRS)

    Langer, W. D.; Velusamy, T.; Kuiper, T. B.; Levin, S.; Olsen, E.; Migenes, V.

    1995-01-01

    Large-scale C(sup 18)O maps show that the Taurus molecular cloud 1 (TMC-1) has numerous cores located along a ridge which extends about 12 minutes by at least 35 minutes. The cores traced by C(sup 18)O are about a few arcminutes (0.1-0.2 pc) in extent, typically contain about 0.5-3 solar mass, and are probably gravitationally bound. We present a detailed study of the small-scale fragmentary structure of one of these cores, called core D, within TMC-1 using very high spectral and spatial resolution maps of CCS and CS. The CCS lines are excellent tracers for investigating the density, temperature, and velocity structure in dense cores. The high spectral resolution, 0.008 km /s, data consist mainly of single-dish, Nyquist-sampled maps of CCS at 22 GHz with 45 sec spatial resolution taken with NASA's 70 m DSN antenna at Goldstone. The high spatial resolution spectral line maps were made with the Very Large Array (9 sec resolution) at 22 GHz and with the OVRO millimeter array in CCS and CS at 93 GHz and 98 GHz, respectively, with 6 sec resolution. These maps are supplemented with single-dish observations of CCS and CC(sup 34)S spectra at 33 GHz using a NASA 34 m DSN antenna, CCS 93 GHz, C(sup 34)S (2-1), and C(sup 18)O (1-0) single-dish observations made with the AT&T Bell Laboratories 7 m antenna. Our high spectral and spatial CCS and CS maps show that core D is highly fragmented. The single-dish CCS observations map out several clumps which range in size from approx. 45 sec to 90 sec (0.03-0.06 pc). These clumps have very narrow intrinsic line widths, 0.11-0.25 km/s, slightly larger than the thermal line width for CCS at 10 K, and masses about 0.03-0.2 solar mass. Interferometer observations of some of these clumps show that they have considerable additional internal structure, consisting of several condensations ranging in size from approx. 10 sec- 30 sec (0.007-0.021 pc), also with narrow line widths. The mass of these smallest fragments is of order 0.01 solar mass. These small-scale structures traced by CCS appear to be gravitationally unbound by a large factor. Most of these objects have masses that fall below those of the putative proto-brown dwarfs (approx. less than 0.1 solar mass). The presence of many small gravitationally unbound clumps suggests that fragmentation mechanisms other than a purely Jeans gravitational instability may be important for the dynamics of these cold dense cores.

  3. Diversity in spatial scope of contrast adaptation among mouse retinal ganglion cells.

    PubMed

    Khani, Mohammad Hossein; Gollisch, Tim

    2017-12-01

    Retinal ganglion cells adapt to changes in visual contrast by adjusting their response kinetics and sensitivity. While much work has focused on the time scales of these adaptation processes, less is known about the spatial scale of contrast adaptation. For example, do small, localized contrast changes affect a cell's signal processing across its entire receptive field? Previous investigations have provided conflicting evidence, suggesting that contrast adaptation occurs either locally within subregions of a ganglion cell's receptive field or globally over the receptive field in its entirety. Here, we investigated the spatial extent of contrast adaptation in ganglion cells of the isolated mouse retina through multielectrode-array recordings. We applied visual stimuli so that ganglion cell receptive fields contained regions where the average contrast level changed periodically as well as regions with constant average contrast level. This allowed us to analyze temporal stimulus integration and sensitivity separately for stimulus regions with and without contrast changes. We found that the spatial scope of contrast adaptation depends strongly on cell identity, with some ganglion cells displaying clear local adaptation, whereas others, in particular large transient ganglion cells, adapted globally to contrast changes. Thus, the spatial scope of contrast adaptation in mouse retinal ganglion cells appears to be cell-type specific. This could reflect differences in mechanisms of contrast adaptation and may contribute to the functional diversity of different ganglion cell types. NEW & NOTEWORTHY Understanding whether adaptation of a neuron in a sensory system can occur locally inside the receptive field or whether it always globally affects the entire receptive field is important for understanding how the neuron processes complex sensory stimuli. For mouse retinal ganglion cells, we here show that both local and global contrast adaptation exist and that this diversity in spatial scope can contribute to the functional diversity of retinal ganglion cell types. Copyright © 2017 the American Physiological Society.

  4. Diversity in spatial scope of contrast adaptation among mouse retinal ganglion cells

    PubMed Central

    Khani, Mohammad Hossein

    2017-01-01

    Retinal ganglion cells adapt to changes in visual contrast by adjusting their response kinetics and sensitivity. While much work has focused on the time scales of these adaptation processes, less is known about the spatial scale of contrast adaptation. For example, do small, localized contrast changes affect a cell’s signal processing across its entire receptive field? Previous investigations have provided conflicting evidence, suggesting that contrast adaptation occurs either locally within subregions of a ganglion cell’s receptive field or globally over the receptive field in its entirety. Here, we investigated the spatial extent of contrast adaptation in ganglion cells of the isolated mouse retina through multielectrode-array recordings. We applied visual stimuli so that ganglion cell receptive fields contained regions where the average contrast level changed periodically as well as regions with constant average contrast level. This allowed us to analyze temporal stimulus integration and sensitivity separately for stimulus regions with and without contrast changes. We found that the spatial scope of contrast adaptation depends strongly on cell identity, with some ganglion cells displaying clear local adaptation, whereas others, in particular large transient ganglion cells, adapted globally to contrast changes. Thus, the spatial scope of contrast adaptation in mouse retinal ganglion cells appears to be cell-type specific. This could reflect differences in mechanisms of contrast adaptation and may contribute to the functional diversity of different ganglion cell types. NEW & NOTEWORTHY Understanding whether adaptation of a neuron in a sensory system can occur locally inside the receptive field or whether it always globally affects the entire receptive field is important for understanding how the neuron processes complex sensory stimuli. For mouse retinal ganglion cells, we here show that both local and global contrast adaptation exist and that this diversity in spatial scope can contribute to the functional diversity of retinal ganglion cell types. PMID:28904106

  5. Influence of Wiring Cost on the Large-Scale Architecture of Human Cortical Connectivity

    PubMed Central

    Samu, David; Seth, Anil K.; Nowotny, Thomas

    2014-01-01

    In the past two decades some fundamental properties of cortical connectivity have been discovered: small-world structure, pronounced hierarchical and modular organisation, and strong core and rich-club structures. A common assumption when interpreting results of this kind is that the observed structural properties are present to enable the brain's function. However, the brain is also embedded into the limited space of the skull and its wiring has associated developmental and metabolic costs. These basic physical and economic aspects place separate, often conflicting, constraints on the brain's connectivity, which must be characterized in order to understand the true relationship between brain structure and function. To address this challenge, here we ask which, and to what extent, aspects of the structural organisation of the brain are conserved if we preserve specific spatial and topological properties of the brain but otherwise randomise its connectivity. We perform a comparative analysis of a connectivity map of the cortical connectome both on high- and low-resolutions utilising three different types of surrogate networks: spatially unconstrained (‘random’), connection length preserving (‘spatial’), and connection length optimised (‘reduced’) surrogates. We find that unconstrained randomisation markedly diminishes all investigated architectural properties of cortical connectivity. By contrast, spatial and reduced surrogates largely preserve most properties and, interestingly, often more so in the reduced surrogates. Specifically, our results suggest that the cortical network is less tightly integrated than its spatial constraints would allow, but more strongly segregated than its spatial constraints would necessitate. We additionally find that hierarchical organisation and rich-club structure of the cortical connectivity are largely preserved in spatial and reduced surrogates and hence may be partially attributable to cortical wiring constraints. In contrast, the high modularity and strong s-core of the high-resolution cortical network are significantly stronger than in the surrogates, underlining their potential functional relevance in the brain. PMID:24699277

  6. Big assumptions for small samples in crop insurance

    Treesearch

    Ashley Elaine Hungerford; Barry Goodwin

    2014-01-01

    The purpose of this paper is to investigate the effects of crop insurance premiums being determined by small samples of yields that are spatially correlated. If spatial autocorrelation and small sample size are not properly accounted for in premium ratings, the premium rates may inaccurately reflect the risk of a loss.

  7. The spatial and temporal domains of modern ecology.

    PubMed

    Estes, Lyndon; Elsen, Paul R; Treuer, Timothy; Ahmed, Labeeb; Caylor, Kelly; Chang, Jason; Choi, Jonathan J; Ellis, Erle C

    2018-05-01

    To understand ecological phenomena, it is necessary to observe their behaviour across multiple spatial and temporal scales. Since this need was first highlighted in the 1980s, technology has opened previously inaccessible scales to observation. To help to determine whether there have been corresponding changes in the scales observed by modern ecologists, we analysed the resolution, extent, interval and duration of observations (excluding experiments) in 348 studies that have been published between 2004 and 2014. We found that observational scales were generally narrow, because ecologists still primarily use conventional field techniques. In the spatial domain, most observations had resolutions ≤1 m 2 and extents ≤10,000 ha. In the temporal domain, most observations were either unreplicated or infrequently repeated (>1 month interval) and ≤1 year in duration. Compared with studies conducted before 2004, observational durations and resolutions appear largely unchanged, but intervals have become finer and extents larger. We also found a large gulf between the scales at which phenomena are actually observed and the scales those observations ostensibly represent, raising concerns about observational comprehensiveness. Furthermore, most studies did not clearly report scale, suggesting that it remains a minor concern. Ecologists can better understand the scales represented by observations by incorporating autocorrelation measures, while journals can promote attentiveness to scale by implementing scale-reporting standards.

  8. Modeling short duration extreme precipitation patterns using copula and generalized maximum pseudo-likelihood estimation with censoring

    NASA Astrophysics Data System (ADS)

    Bargaoui, Zoubeida Kebaili; Bardossy, Andràs

    2015-10-01

    The paper aims to develop researches on the spatial variability of heavy rainfall events estimation using spatial copula analysis. To demonstrate the methodology, short time resolution rainfall time series from Stuttgart region are analyzed. They are constituted by rainfall observations on continuous 30 min time scale recorded over a network composed by 17 raingages for the period July 1989-July 2004. The analysis is performed aggregating the observations from 30 min up to 24 h. Two parametric bivariate extreme copula models, the Husler-Reiss model and the Gumbel model are investigated. Both involve a single parameter to be estimated. Thus, model fitting is operated for every pair of stations for a giving time resolution. A rainfall threshold value representing a fixed rainfall quantile is adopted for model inference. Generalized maximum pseudo-likelihood estimation is adopted with censoring by analogy with methods of univariate estimation combining historical and paleoflood information with systematic data. Only pairs of observations greater than the threshold are assumed as systematic data. Using the estimated copula parameter, a synthetic copula field is randomly generated and helps evaluating model adequacy which is achieved using Kolmogorov Smirnov distance test. In order to assess dependence or independence in the upper tail, the extremal coefficient which characterises the tail of the joint bivariate distribution is adopted. Hence, the extremal coefficient is reported as a function of the interdistance between stations. If it is less than 1.7, stations are interpreted as dependent in the extremes. The analysis of the fitted extremal coefficients with respect to stations inter distance highlights two regimes with different dependence structures: a short spatial extent regime linked to short duration intervals (from 30 min to 6 h) with an extent of about 8 km and a large spatial extent regime related to longer rainfall intervals (from 12 h to 24 h) with an extent of 34 to 38 km.

  9. Geomorphic Controls on Floodplain Soil Organic Carbon in the Yukon Flats, Interior Alaska, From Reach to River Basin Scales

    NASA Astrophysics Data System (ADS)

    Lininger, K. B.; Wohl, E.; Rose, J. R.

    2018-03-01

    Floodplains accumulate and store organic carbon (OC) and release OC to rivers, but studies of floodplain soil OC come from small rivers or small spatial extents on larger rivers in temperate latitudes. Warming climate is causing substantial change in geomorphic process and OC fluxes in high latitude rivers. We investigate geomorphic controls on floodplain soil OC concentrations in active-layer mineral sediment in the Yukon Flats, interior Alaska. We characterize OC along the Yukon River and four tributaries in relation to geomorphic controls at the river basin, segment, and reach scales. Average OC concentration within floodplain soil is 2.8% (median = 2.2%). Statistical analyses indicate that OC varies among river basins, among planform types along a river depending on the geomorphic unit, and among geomorphic units. OC decreases with sample depth, suggesting that most OC accumulates via autochthonous inputs from floodplain vegetation. Floodplain and river characteristics, such as grain size, soil moisture, planform, migration rate, and riverine DOC concentrations, likely influence differences among rivers. Grain size, soil moisture, and age of surface likely influence differences among geomorphic units. Mean OC concentrations vary more among geomorphic units (wetlands = 5.1% versus bars = 2.0%) than among study rivers (Dall River = 3.8% versus Teedrinjik River = 2.3%), suggesting that reach-scale geomorphic processes more strongly control the spatial distribution of OC than basin-scale processes. Investigating differences at the basin and reach scale is necessary to accurately assess the amount and distribution of floodplain soil OC, as well as the geomorphic controls on OC.

  10. The effects of orientation and attention during surround suppression of small image features: A 7 Tesla fMRI study.

    PubMed

    Schallmo, Michael-Paul; Grant, Andrea N; Burton, Philip C; Olman, Cheryl A

    2016-08-01

    Although V1 responses are driven primarily by elements within a neuron's receptive field, which subtends about 1° visual angle in parafoveal regions, previous work has shown that localized fMRI responses to visual elements reflect not only local feature encoding but also long-range pattern attributes. However, separating the response to an image feature from the response to the surrounding stimulus and studying the interactions between these two responses demands both spatial precision and signal independence, which may be challenging to attain with fMRI. The present study used 7 Tesla fMRI with 1.2-mm resolution to measure the interactions between small sinusoidal grating patches (targets) at 3° eccentricity and surrounds of various sizes and orientations to test the conditions under which localized, context-dependent fMRI responses could be predicted from either psychophysical or electrophysiological data. Targets were presented at 8%, 16%, and 32% contrast while manipulating (a) spatial extent of parallel (strongly suppressive) or orthogonal (weakly suppressive) surrounds, (b) locus of attention, (c) stimulus onset asynchrony between target and surround, and (d) blocked versus event-related design. In all experiments, the V1 fMRI signal was lower when target stimuli were flanked by parallel versus orthogonal context. Attention amplified fMRI responses to all stimuli but did not show a selective effect on central target responses or a measurable effect on orientation-dependent surround suppression. Suppression of the V1 fMRI response by parallel surrounds was stronger than predicted from psychophysics but showed a better match to previous electrophysiological reports.

  11. Empirical spatial econometric modelling of small scale neighbourhood

    NASA Astrophysics Data System (ADS)

    Gerkman, Linda

    2012-07-01

    The aim of the paper is to model small scale neighbourhood in a house price model by implementing the newest methodology in spatial econometrics. A common problem when modelling house prices is that in practice it is seldom possible to obtain all the desired variables. Especially variables capturing the small scale neighbourhood conditions are hard to find. If there are important explanatory variables missing from the model, the omitted variables are spatially autocorrelated and they are correlated with the explanatory variables included in the model, it can be shown that a spatial Durbin model is motivated. In the empirical application on new house price data from Helsinki in Finland, we find the motivation for a spatial Durbin model, we estimate the model and interpret the estimates for the summary measures of impacts. By the analysis we show that the model structure makes it possible to model and find small scale neighbourhood effects, when we know that they exist, but we are lacking proper variables to measure them.

  12. Effects of landscape features on the distribution and sustainability of ungulate hunting in northern Congo

    Treesearch

    Miranda H. Mockrin; Robert F. Rockwell; Kent H. Redford; Nicholas S. Keuler

    2011-01-01

    Understanding the spatial dimensions of hunting and prey population dynamics is important in order to estimate the sustainability of hunting in tropical forests. We investigated how hunting offtake of vertebrates differed in mixed forest and monodominant forest (composed of Gilbertiodendron dewevrei) and over different spatial extents within the hunting catchment...

  13. Role Of Spatial Scale In Sub-Area Prioritization To Reduce Impact Of Planned Land Use/Cover Alternations Of Watershed Responses

    EPA Science Inventory

    An index based methodology is presented that rank the sub-areas in a watershed based on their relative impacts on watershed response to anticipated land developments. We argue in this paper that the spatial locations of such critical areas are dependent on the extent of watershed...

  14. Landsat continuity: issues and opportunities for land cover monitoring

    Treesearch

    Michael A. Wulder; Joanne C. White; Samuel N. Goward; Jeffrey G. Masek; James R. Irons; Martin Herold; Warren B. Cohen; Thomas R. Loveland; Curtis E. Woodcock

    2008-01-01

    Initiated in 1972, the Landsat program has provided a continuous record of Earth observation for 35 years. The assemblage of Landsat spatial, spectral, and temporal resolutions, over a reasonably sized image extent, results in imagery that can be processed to represent land cover over large areas with an amount of spatial detail that is absolutely unique and...

  15. Building the Forest Inventory and Analysis Tree-Ring Data set

    Treesearch

    Robert J. DeRose; John D. Shaw; James N. Long

    2017-01-01

    The Interior West Forest Inventory and Analysis (IW-FIA) program measures forestland conditions at great extent with relatively high spatial resolution, including the collection of tree-ring data. We describe the development of an unprecedented spatial tree-ring data set for the IW-FIA that enhances the baseline plot data by incorporating ring-width increment measured...

  16. A method for examining temporal changes in cyanobacterial harmful algal bloom spatial extent using satellite remote sensing.

    PubMed

    Urquhart, Erin A; Schaeffer, Blake A; Stumpf, Richard P; Loftin, Keith A; Werdell, P Jeremy

    2017-07-01

    Cyanobacterial harmful algal blooms (CyanoHAB) are thought to be increasing globally over the past few decades, but relatively little quantitative information is available about the spatial extent of blooms. Satellite remote sensing provides a potential technology for identifying cyanoHABs in multiple water bodies and across geo-political boundaries. An assessment method was developed using MEdium Resolution Imaging Spectrometer (MERIS) imagery to quantify cyanoHAB surface area extent, transferable to different spatial areas, in Florida, Ohio, and California for the test period of 2008 to 2012. Temporal assessment was used to evaluate changes in satellite resolvable inland waterbodies for each state of interest. To further assess cyanoHAB risk within the states, the World Health Organization's (WHO) recreational guidance level thresholds were used to categorize surface area of cyanoHABs into three risk categories: low, moderate, and high-risk bloom area. Results showed that in Florida, the area of cyanoHABs increased largely due to observed increases in high-risk bloom area. California exhibited a slight decrease in cyanoHAB extent, primarily attributed to decreases in Northern California. In Ohio (excluding Lake Erie), little change in cyanoHAB surface area was observed. This study uses satellite remote sensing to quantify changes in inland cyanoHAB surface area across numerous water bodies within an entire state. The temporal assessment method developed here will be relevant into the future as it is transferable to the Ocean Land Colour Instrument (OLCI) on Sentinel-3A/3B missions. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  17. A method for examining temporal changes in cyanobacterial harmful algal bloom spatial extent using satellite remote sensing

    USGS Publications Warehouse

    Urquhart, Erin A.; Schaeffer, Blake A.; Stumpf, Richard P.; Loftin, Keith A.; Werdell, P. Jeremy

    2017-01-01

    Cyanobacterial harmful algal blooms (CyanoHAB) are thought to be increasing globally over the past few decades, but relatively little quantitative information is available about the spatial extent of blooms. Satellite remote sensing provides a potential technology for identifying cyanoHABs in multiple water bodies and across geo-political boundaries. An assessment method was developed using MEdium Resolution Imaging Spectrometer (MERIS) imagery to quantify cyanoHAB surface area extent, transferable to different spatial areas, in Florida, Ohio, and California for the test period of 2008 to 2012. Temporal assessment was used to evaluate changes in satellite resolvable inland waterbodies for each state of interest. To further assess cyanoHAB risk within the states, the World Health Organization’s (WHO) recreational guidance level thresholds were used to categorize surface area of cyanoHABs into three risk categories: low, moderate, and high-risk bloom area. Results showed that in Florida, the area of cyanoHABs increased largely due to observed increases in high-risk bloom area. California exhibited a slight decrease in cyanoHAB extent, primarily attributed to decreases in Northern California. In Ohio (excluding Lake Erie), little change in cyanoHAB surface area was observed. This study uses satellite remote sensing to quantify changes in inland cyanoHAB surface area across numerous water bodies within an entire state. The temporal assessment method developed here will be relevant into the future as it is transferable to the Ocean Land Colour Instrument (OLCI) on Sentinel-3A/3B missions.

  18. Development of an Asset Value Map for Disaster Risk Assessment in China by Spatial Disaggregation Using Ancillary Remote Sensing Data.

    PubMed

    Wu, Jidong; Li, Ying; Li, Ning; Shi, Peijun

    2018-01-01

    The extent of economic losses due to a natural hazard and disaster depends largely on the spatial distribution of asset values in relation to the hazard intensity distribution within the affected area. Given that statistical data on asset value are collected by administrative units in China, generating spatially explicit asset exposure maps remains a key challenge for rapid postdisaster economic loss assessment. The goal of this study is to introduce a top-down (or downscaling) approach to disaggregate administrative-unit level asset value to grid-cell level. To do so, finding the highly correlated "surrogate" indicators is the key. A combination of three data sets-nighttime light grid, LandScan population grid, and road density grid, is used as ancillary asset density distribution information for spatializing the asset value. As a result, a high spatial resolution asset value map of China for 2015 is generated. The spatial data set contains aggregated economic value at risk at 30 arc-second spatial resolution. Accuracy of the spatial disaggregation reflects redistribution errors introduced by the disaggregation process as well as errors from the original ancillary data sets. The overall accuracy of the results proves to be promising. The example of using the developed disaggregated asset value map in exposure assessment of watersheds demonstrates that the data set offers immense analytical flexibility for overlay analysis according to the hazard extent. This product will help current efforts to analyze spatial characteristics of exposure and to uncover the contributions of both physical and social drivers of natural hazard and disaster across space and time. © 2017 Society for Risk Analysis.

  19. Electron confinement at diffuse ZnMgO/ZnO interfaces

    NASA Astrophysics Data System (ADS)

    Coke, Maddison L.; Kennedy, Oscar W.; Sagar, James T.; Warburton, Paul A.

    2017-01-01

    Abrupt interfaces between ZnMgO and ZnO are strained due to lattice mismatch. This strain is relaxed if there is a gradual incorporation of Mg during growth, resulting in a diffuse interface. This strain relaxation is however accompanied by reduced confinement and enhanced Mg-ion scattering of the confined electrons at the interface. Here we experimentally study the electronic transport properties of the diffuse heteroepitaxial interface between single-crystal ZnO and ZnMgO films grown by molecular-beam epitaxy. The spatial extent of the interface region is controlled during growth by varying the zinc flux. We show that, as the spatial extent of the graded interface is reduced, the enhancement of electron mobility due to electron confinement more than compensates for any suppression of mobility due to increased strain. Furthermore, we determine the extent to which scattering of impurities in the ZnO substrate limits the electron mobility in diffuse ZnMgO-ZnO interfaces.

  20. Stability of Major Geogenic Cations in Drinking Water-An Issue of Public Health Importance: A Danish Study, 1980⁻2017.

    PubMed

    Wodschow, Kirstine; Hansen, Birgitte; Schullehner, Jörg; Ersbøll, Annette Kjær

    2018-06-08

    Concentrations and spatial variations of the four cations Na, K, Mg and Ca are known to some extent for groundwater and to a lesser extent for drinking water. Using Denmark as case, the purpose of this study was to analyze the spatial and temporal variations in the major cations in drinking water. The results will contribute to a better exposure estimation in future studies of the association between cations and diseases. Spatial and temporal variations and the association with aquifer types, were analyzed with spatial scan statistics, linear regression and a multilevel mixed-effects linear regression model. About 65,000 water samples of each cation (1980⁻2017) were included in the study. Results of mean concentrations were 31.4 mg/L, 3.5 mg/L, 12.1 mg/L and 84.5 mg/L for 1980⁻2017 for Na, K, Mg and Ca, respectively. An expected west-east trend in concentrations were confirmed, mainly explained by variations in aquifer types. The trend in concentration was stable for about 31⁻45% of the public water supply areas. It is therefore recommended that the exposure estimate in future health related studies not only be based on a single mean value, but that temporal and spatial variations should also be included.

  1. A Spatial Perspective of Droughts and Pluvials in the Tropics and their Relationships to ENSO in CMIP5 Model Simulations

    NASA Astrophysics Data System (ADS)

    Perez Arango, J. D.; Lintner, B. R.; Lyon, B.

    2016-12-01

    Although many aspects of the tropical response to ENSO are well-known, the spatial characteristics of the rainfall response to ENSO remain relatively unexplored. Moreover, in current generation climate models, the spatial signatures of the ENSO tropical teleconnection are more uncertain than other aspects of ENSO variability, such as the amplitude of rainfall anomalies. Following the approach of Lyon (2004) and Lyon and Barnston (2005), we analyze here integrated measures of the spatial extent of drought and pluvial conditions in the tropics and their relationship to ENSO in observations as well as simulations of Phase 5 of the Coupled Model Intercomparison Project (CMIP5) with prescribed SST forcing. We compute diagnostics including the model ensemble-means and standard deviations of moderate, intermediate, and severe droughts and pluvials and the lagged correlations with respect to ENSO-based SST indices like NINO3. Overall, in a tropics-wide sense, the models generally capture the areal extent of observed droughts and pluvials and their phasing with respect to ENSO. However, at more local scales, e.g., tropical South America, the simulated metrics agree less strongly with observations, underscoring the role of errors in the spatial patterns of ENSO-induced rainfall anomalies.

  2. Challenges on Java’s small city spatial planning

    NASA Astrophysics Data System (ADS)

    Wirawan, B.; Tambunan, J. R.

    2018-05-01

    Most Indonesians nowadays live in the urban area, due to urbanization. 60 percent of the inhabitants of Java, the most populous island in Indonesia, will live in the urban area by 2010, a figure that is higher than the national average of 55 percent. Urbanization has brought a large influx of newcomers not only into the metropolitan or large cities, but also into small and medium cities. One of urbanization’s most concerning impacts is urban sprawl that harms sustainability. There is a dearth of academic literature studying the phenomenon of urban sprawl in Indonesian small cities. Urban sprawl in small cities is commonly ignored, considered as a contained problem the solution for which is a simple use of local spatial plan. Unfortunately, for Indonesia, this solution is difficult to implement because city spatial plans works only within administrative jurisdictions, whilst the urban sprawls themselves generally occur across the borders of different administrative jurisdictions. This study studies urban sprawls occurring in several small cities in Java. While those cities already have spatial plan, most were the general spatial plan (Rencana Tata Ruang Wilayah Kota/Kabupaten) that operates only within the city’s administrative jurisdiction. We are unable to find detailed strategies in these cities to deal with urban sprawl. We also found that all spatial plans are unable to come up with urban growth boundary strategy. Finally, we are also unable to find integrated detailed spatial plan among those cities to answer the urban sprawl situation.

  3. [Spatial patterns of dominant tree species in sub-alpine Betula-Abies forest in West Sichuan of China].

    PubMed

    Miao, Ning; Liu, Shi-Rong; Shi, Zuo-Min; Yu, Hong; Liu, Xing-Liang

    2009-06-01

    Based on the investigation in a 4 hm2 Betula-Abies forest plot in sub-alpine area in West Sichuan of China, and by using point pattern analysis method in terms of O-ring statistics, the spatial patterns of dominant species Betula albo-sinensis and Abies faxoniana in different age classes in study area were analyzed, and the intra- and inter-species associations between these age classes were studied. B. albo-sinensis had a unimodal distribution of its DBH frequency, indicating a declining population, while A. faxoniana had a reverse J-shaped pattern, showing an increasing population. All the big trees of B. albo-sinensis and A. faxoniana were spatially in random at all scales, while the medium age and small trees were spatially clumped at small scales and tended to be randomly or evenly distributed with increasing spatial scale. The maximum aggregation degree decreased with increasing age class. Spatial association mainly occurred at small scales. A. faxoniana generally showed positive intra-specific association, while B. albo-sinensis generally showed negative intra-specific association. For the two populations, big and small trees had no significant spatial association, but middle age trees had negative spatial association. Negative inter-specific associations of the two populations were commonly found in different age classes. The larger the difference of age class, the stronger the negative inter-specific association.

  4. The accuracy of the National Equine Database in relation to vector-borne disease risk modelling of horses in Great Britain.

    PubMed

    Robin, C A; Lo Iacono, G; Gubbins, S; Wood, J L N; Newton, J R

    2013-05-01

    The National Equine Database (NED) contains information on the size and distribution of the horse population, but the data quality remains unknown. These data could assist with surveillance, research and contingency planning for equine infectious disease outbreaks. 1) To assess the extent of obsolete and missing data from NED, 2) evaluate the extent of spatial separation between horse and owner location and 3) identify relationships between spatial separation and land use. Two questionnaires were used to assess data accuracy in NED utilising local authority passport inspections and distribution of questionnaires to 11,000 horse owners. A subset of 1010 questionnaires was used to assess horse-owner geographic separation. During 2005-2010, 17,048 passports were checked through local authority inspections. Of these, 1558 passports (9.1%; 95% confidence interval [CI] 8.7-9.5%) were noncompliant, with 963 (5.6%; 95% CI 5.3-6.0%) containing inaccurate information and 595 (3.5%; 95% CI 3.2-3.8%) classified as missing. Of 1382 questionnaires completed by horse owners, 380 passports were obsolete (27.5%; 95% CI 25.2-29.9%), with 162 (11.7%; 95% CI 10.0-13.4%) being retained for deceased horses and 218 (15.8%; 95% CI 13.9-17.7%) having incorrect ownership details. Fifty-three per cent (95% CI 49.9-56.1%) of owners kept their horse(s) at home and 92% (95% CI 90.3-93.7%) of horses resided within 10 km of their owners. Data from a small sample survey suggest the majority of data on NED are accurate but a proportion of inaccuracies exist that may cause delay in locating horses and contacting owners during a disease outbreak. The probability that horses are located in the same postcode sector as the owner's home address is larger in rural areas. Appropriate adjustment for population size, horse-owner spatial separation and land usage would facilitate meaningful use of the national horse population derived from NED for risk modelling of incursions of equine diseases into Great Britain. © 2012 EVJ Ltd.

  5. Exploring the Specifications of Spatial Adjacencies and Weights in Bayesian Spatial Modeling with Intrinsic Conditional Autoregressive Priors in a Small-area Study of Fall Injuries

    PubMed Central

    Law, Jane

    2016-01-01

    Intrinsic conditional autoregressive modeling in a Bayeisan hierarchical framework has been increasingly applied in small-area ecological studies. This study explores the specifications of spatial structure in this Bayesian framework in two aspects: adjacency, i.e., the set of neighbor(s) for each area; and (spatial) weight for each pair of neighbors. Our analysis was based on a small-area study of falling injuries among people age 65 and older in Ontario, Canada, that was aimed to estimate risks and identify risk factors of such falls. In the case study, we observed incorrect adjacencies information caused by deficiencies in the digital map itself. Further, when equal weights was replaced by weights based on a variable of expected count, the range of estimated risks increased, the number of areas with probability of estimated risk greater than one at different probability thresholds increased, and model fit improved. More importantly, significance of a risk factor diminished. Further research to thoroughly investigate different methods of variable weights; quantify the influence of specifications of spatial weights; and develop strategies for better defining spatial structure of a map in small-area analysis in Bayesian hierarchical spatial modeling is recommended. PMID:29546147

  6. Hazard Analysis and Safety Requirements for Small Drone Operations: To What Extent Do Popular Drones Embed Safety?

    PubMed

    Plioutsias, Anastasios; Karanikas, Nektarios; Chatzimihailidou, Maria Mikela

    2018-03-01

    Currently, published risk analyses for drones refer mainly to commercial systems, use data from civil aviation, and are based on probabilistic approaches without suggesting an inclusive list of hazards and respective requirements. Within this context, this article presents: (1) a set of safety requirements generated from the application of the systems theoretic process analysis (STPA) technique on a generic small drone system; (2) a gap analysis between the set of safety requirements and the ones met by 19 popular drone models; (3) the extent of the differences between those models, their manufacturers, and the countries of origin; and (4) the association of drone prices with the extent they meet the requirements derived by STPA. The application of STPA resulted in 70 safety requirements distributed across the authority, manufacturer, end user, or drone automation levels. A gap analysis showed high dissimilarities regarding the extent to which the 19 drones meet the same safety requirements. Statistical results suggested a positive correlation between drone prices and the extent that the 19 drones studied herein met the safety requirements generated by STPA, and significant differences were identified among the manufacturers. This work complements the existing risk assessment frameworks for small drones, and contributes to the establishment of a commonly endorsed international risk analysis framework. Such a framework will support the development of a holistic and methodologically justified standardization scheme for small drone flights. © 2017 Society for Risk Analysis.

  7. 48 CFR 19.202-2 - Locating small business sources.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Locating small business... SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Policies 19.202-2 Locating small business sources. The contracting officer must, to the extent practicable, encourage maximum participation by small business...

  8. 48 CFR 19.202-2 - Locating small business sources.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Locating small business... SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Policies 19.202-2 Locating small business sources. The contracting officer must, to the extent practicable, encourage maximum participation by small business...

  9. 48 CFR 19.202-2 - Locating small business sources.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Locating small business... SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Policies 19.202-2 Locating small business sources. The contracting officer must, to the extent practicable, encourage maximum participation by small business...

  10. 48 CFR 19.202-2 - Locating small business sources.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Locating small business... SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Policies 19.202-2 Locating small business sources. The contracting officer must, to the extent practicable, encourage maximum participation by small business...

  11. 48 CFR 19.202-2 - Locating small business sources.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Locating small business... SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Policies 19.202-2 Locating small business sources. The contracting officer must, to the extent practicable, encourage maximum participation by small business...

  12. 48 CFR 19.202-5 - Data collection and reporting requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... REGULATION SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Policies 19.202-5 Data collection and reporting requirements. Agencies must measure the extent of small business participation in their acquisition programs by... business, veteran-owned small business, service-disabled veteran-owned small business, HUBZone small...

  13. 48 CFR 19.202-5 - Data collection and reporting requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... REGULATION SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Policies 19.202-5 Data collection and reporting requirements. Agencies must measure the extent of small business participation in their acquisition programs by... business, veteran-owned small business, service-disabled veteran-owned small business, HUBZone small...

  14. 48 CFR 19.202-5 - Data collection and reporting requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... REGULATION SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Policies 19.202-5 Data collection and reporting requirements. Agencies must measure the extent of small business participation in their acquisition programs by... business, veteran-owned small business, service-disabled veteran-owned small business, HUBZone small...

  15. 48 CFR 19.202-5 - Data collection and reporting requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... REGULATION SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Policies 19.202-5 Data collection and reporting requirements. Agencies must measure the extent of small business participation in their acquisition programs by... business, veteran-owned small business, service-disabled veteran-owned small business, HUBZone small...

  16. Analysis of extent and spatial pattern change of mangrove ecosystem in Mangunharjo Sub-district from 2007 to 2017

    NASA Astrophysics Data System (ADS)

    Nugraha, S. B.; Sidiq, W. A. B. N.; Setyowati, D. L.; Martuti, N. K. T.

    2018-03-01

    This study aims to determine changes in the extent and spatial patterns of mangrove ecosystems in Mangunharjo Sub-district from 2007, 2012 and 2017. The main data source of this research is Digital Globe Imagery of Mangunharjo Sub-district and surrounding area. The extent and spatial pattern of the mangrove ecosystem were obtained from visual interpretation result of the time series image and accuracy tested with field survey data, and then the analysis was conducted quantitatively and qualitatively. The result of time series data analysis shows that there is an enhancement of mangrove forest area in Mangunharjo Sub-district from 2007-2017. In the first five years (2007-2012), the area of mangrove ecosystem increased from 9.01 Ha to 19.78 Ha, and then in the next five years (2012-2017), it was increased significantly from 19.78 Ha to 68.47 Ha. If analyzed from the spatial pattern, in 2007-2012 the mangrove ecosystems were distributed extends along the river border ponds, while in 2012-2017 it already clustered to form a certain area located at the estuary. The increasing of mangrove area in Mangunharjo Sub-district is a result of hard work with various parties, from the government institution, individual and company which launched mangrove ecosystem recovery program especially in the coastal area of Semarang City. With the better mangrove ecosystem is expected to help restore and prevent the occurrence of environmental damage in the coastal area of Semarang City due to abrasion, seawater intrusion, and tidal flood.

  17. The global abundance and size distribution of lakes, ponds, and impoundments

    USGS Publications Warehouse

    Downing, J.A.; Prairie, Y.T.; Cole, J.J.; Duarte, C.M.; Tranvik, L.J.; Striegl, Robert G.; McDowell, W.H.; Kortelainen, Pirkko; Caraco, N.F.; Melack, J.M.; Middelburg, J.J.

    2006-01-01

    One of the major impediments to the integration of lentic ecosystems into global environmental analyses has been fragmentary data on the extent and size distribution of lakes, ponds, and impoundments. We use new data sources, enhanced spatial resolution, and new analytical approaches to provide new estimates of the global abundance of surface-water bodies. A global model based on the Pareto distribution shows that the global extent of natural lakes is twice as large as previously known (304 million lakes; 4.2 million km 2 in area) and is dominated in area by millions of water bodies smaller than 1 km2. Similar analyses of impoundments based on inventories of large, engineered dams show that impounded waters cover approximately 0.26 million km2. However, construction of low-tech farm impoundments is estimated to be between 0.1 % and 6% of farm area worldwide, dependent upon precipitation, and represents >77,000 km 2 globally, at present. Overall, about 4.6 million km2 of the earth's continental "land" surface (>3%) is covered by water. These analyses underscore the importance of explicitly considering lakes, ponds, and impoundments, especially small ones, in global analyses of rates and processes. ?? 2006, by the American Society of Limnology and Oceanography, Inc.

  18. An investigation of student understanding of classical ideas related to quantum mechanics: Potential energy diagrams and spatial probability density

    NASA Astrophysics Data System (ADS)

    Stephanik, Brian Michael

    This dissertation describes the results of two related investigations into introductory student understanding of ideas from classical physics that are key elements of quantum mechanics. One investigation probes the extent to which students are able to interpret and apply potential energy diagrams (i.e., graphs of potential energy versus position). The other probes the extent to which students are able to reason classically about probability and spatial probability density. The results of these investigations revealed significant conceptual and reasoning difficulties that students encounter with these topics. The findings guided the design of instructional materials to address the major problems. Results from post-instructional assessments are presented that illustrate the impact of the curricula on student learning.

  19. The performance of cleaner wrasse, Labroides dimidiatus, in a reversal learning task varies across experimental paradigms.

    PubMed

    Gingins, Simon; Marcadier, Fanny; Wismer, Sharon; Krattinger, Océane; Quattrini, Fausto; Bshary, Redouan; Binning, Sandra A

    2018-01-01

    Testing performance in controlled laboratory experiments is a powerful tool for understanding the extent and evolution of cognitive abilities in non-human animals. However, cognitive testing is prone to a number of potential biases, which, if unnoticed or unaccounted for, may affect the conclusions drawn. We examined whether slight modifications to the experimental procedure and apparatus used in a spatial task and reversal learning task affected performance outcomes in the bluestreak cleaner wrasse, Labroides dimidiatus (hereafter "cleaners"). Using two-alternative forced-choice tests, fish had to learn to associate a food reward with a side (left or right) in their holding aquarium. Individuals were tested in one of four experimental treatments that differed slightly in procedure and/or physical set-up. Cleaners from all four treatment groups were equally able to solve the initial spatial task. However, groups differed in their ability to solve the reversal learning task: no individuals solved the reversal task when tested in small tanks with a transparent partition separating the two options, whereas over 50% of individuals solved the task when performed in a larger tank, or with an opaque partition. These results clearly show that seemingly insignificant details to the experimental set-up matter when testing performance in a spatial task and might significantly influence the outcome of experiments. These results echo previous calls for researchers to exercise caution when designing methodologies for cognition tasks to avoid misinterpretations.

  20. The importance of regional models in assessing canine cancer incidences in Switzerland

    PubMed Central

    Leyk, Stefan; Brunsdon, Christopher; Graf, Ramona; Pospischil, Andreas; Fabrikant, Sara Irina

    2018-01-01

    Fitting canine cancer incidences through a conventional regression model assumes constant statistical relationships across the study area in estimating the model coefficients. However, it is often more realistic to consider that these relationships may vary over space. Such a condition, known as spatial non-stationarity, implies that the model coefficients need to be estimated locally. In these kinds of local models, the geographic scale, or spatial extent, employed for coefficient estimation may also have a pervasive influence. This is because important variations in the local model coefficients across geographic scales may impact the understanding of local relationships. In this study, we fitted canine cancer incidences across Swiss municipal units through multiple regional models. We computed diagnostic summaries across the different regional models, and contrasted them with the diagnostics of the conventional regression model, using value-by-alpha maps and scalograms. The results of this comparative assessment enabled us to identify variations in the goodness-of-fit and coefficient estimates. We detected spatially non-stationary relationships, in particular, for the variables related to biological risk factors. These variations in the model coefficients were more important at small geographic scales, making a case for the need to model canine cancer incidences locally in contrast to more conventional global approaches. However, we contend that prior to undertaking local modeling efforts, a deeper understanding of the effects of geographic scale is needed to better characterize and identify local model relationships. PMID:29652921

  1. The importance of regional models in assessing canine cancer incidences in Switzerland.

    PubMed

    Boo, Gianluca; Leyk, Stefan; Brunsdon, Christopher; Graf, Ramona; Pospischil, Andreas; Fabrikant, Sara Irina

    2018-01-01

    Fitting canine cancer incidences through a conventional regression model assumes constant statistical relationships across the study area in estimating the model coefficients. However, it is often more realistic to consider that these relationships may vary over space. Such a condition, known as spatial non-stationarity, implies that the model coefficients need to be estimated locally. In these kinds of local models, the geographic scale, or spatial extent, employed for coefficient estimation may also have a pervasive influence. This is because important variations in the local model coefficients across geographic scales may impact the understanding of local relationships. In this study, we fitted canine cancer incidences across Swiss municipal units through multiple regional models. We computed diagnostic summaries across the different regional models, and contrasted them with the diagnostics of the conventional regression model, using value-by-alpha maps and scalograms. The results of this comparative assessment enabled us to identify variations in the goodness-of-fit and coefficient estimates. We detected spatially non-stationary relationships, in particular, for the variables related to biological risk factors. These variations in the model coefficients were more important at small geographic scales, making a case for the need to model canine cancer incidences locally in contrast to more conventional global approaches. However, we contend that prior to undertaking local modeling efforts, a deeper understanding of the effects of geographic scale is needed to better characterize and identify local model relationships.

  2. Reconstructing recent volcanic histories from high-resolution AUV sidescan sonar imagery

    NASA Astrophysics Data System (ADS)

    Yeo, I. A.

    2016-12-01

    Detecting high-resolution differences in age between young basaltic lava flows on the seafloor is notoriously difficult. However, using sediment thickness as a proxy for age it is possible to derive information on spatial extents, surface morphologies and lava flow age simultaneously using high-resolution sidescan sonar imagery. Ground truthing of this new method on cruise POS502 (July 2016) using photogrammetry from ROV cameras has provided constraints on the method allowing the detailed morphological changes and sediment cover thicknesses to be calibrated to produce reliable, quantitative ages for individual flow units. Sediment thickness is shown to be the primary controlling factor in backscatter intensity in most cases, although sediment redistribution by different flow morphologies can also affect the recorded reflection amplitudes. Seafloor lava flows were found to be very morphologically complicated on small scales, which may explain their relative unimportance when amplitude values are averaged over several tens of meters.

  3. Family Income, Parental Education and Brain Structure in Children and Adolescents

    PubMed Central

    Noble, Kimberly G.; Houston, Suzanne M.; Brito, Natalie H.; Bartsch, Hauke; Kan, Eric; Kuperman, Joshua M.; Akshoomoff, Natacha; Amaral, David G.; Bloss, Cinnamon S.; Libiger, Ondrej; Schork, Nicholas J.; Murray, Sarah S.; Casey, B. J.; Chang, Linda; Ernst, Thomas M.; Frazier, Jean A.; Gruen, Jeffrey R.; Kennedy, David N.; Zijl, Peter Van; Mostofsky, Stewart; Kaufmann, Walter E.; Kenet, Tal; Dale, Anders M.; Jernigan, Terry L.; Sowell, Elizabeth R.

    2015-01-01

    Socioeconomic disparities are associated with differences in cognitive development. The extent to which this translates to disparities in brain structure is unclear. Here, we investigated relationships between socioeconomic factors and brain morphometry, independently of genetic ancestry, among a cohort of 1099 typically developing individuals between 3 and 20 years. Income was logarithmically associated with brain surface area. Specifically, among children from lower income families, small differences in income were associated with relatively large differences in surface area, whereas, among children from higher income families, similar income increments were associated with smaller differences in surface area. These relationships were most prominent in regions supporting language, reading, executive functions and spatial skills; surface area mediated socioeconomic differences in certain neurocognitive abilities. These data indicate that income relates most strongly to brain structure among the most disadvantaged children. Potential implications are discussed. PMID:25821911

  4. Neutrality and Robustness in Evo-Devo: Emergence of Lateral Inhibition

    PubMed Central

    Munteanu, Andreea; Solé, Ricard V.

    2008-01-01

    Embryonic development is defined by the hierarchical dynamical process that translates genetic information (genotype) into a spatial gene expression pattern (phenotype) providing the positional information for the correct unfolding of the organism. The nature and evolutionary implications of genotype–phenotype mapping still remain key topics in evolutionary developmental biology (evo-devo). We have explored here issues of neutrality, robustness, and diversity in evo-devo by means of a simple model of gene regulatory networks. The small size of the system allowed an exhaustive analysis of the entire fitness landscape and the extent of its neutrality. This analysis shows that evolution leads to a class of robust genetic networks with an expression pattern characteristic of lateral inhibition. This class is a repertoire of distinct implementations of this key developmental process, the diversity of which provides valuable clues about its underlying causal principles. PMID:19023404

  5. Precursory slow-slip loaded the 2009 L'Aquila earthquake sequence

    NASA Astrophysics Data System (ADS)

    Borghi, A.; Aoudia, A.; Javed, F.; Barzaghi, R.

    2016-05-01

    Slow-slip events (SSEs) are common at subduction zone faults where large mega earthquakes occur. We report here that one of the best-recorded moderate size continental earthquake, the 2009 April 6 moment magnitude (Mw) 6.3 L'Aquila (Italy) earthquake, was preceded by a 5.9 Mw SSE that originated from the decollement beneath the reactivated normal faulting system. The SSE is identified from a rigorous analysis of continuous GPS stations and occurred on the 12 February and lasted for almost two weeks. It coincided with a burst in the foreshock activity with small repeating earthquakes migrating towards the main-shock hypocentre as well as with a change in the elastic properties of rocks in the fault region. The SSE has caused substantial stress loading at seismogenic depths where the magnitude 4.0 foreshock and Mw 6.3 main shock nucleated. This stress loading is also spatially correlated with the lateral extent of the aftershock sequence.

  6. Reconciling multiple data sources to improve accuracy of large-scale prediction of forest disease incidence

    USGS Publications Warehouse

    Hanks, E.M.; Hooten, M.B.; Baker, F.A.

    2011-01-01

    Ecological spatial data often come from multiple sources, varying in extent and accuracy. We describe a general approach to reconciling such data sets through the use of the Bayesian hierarchical framework. This approach provides a way for the data sets to borrow strength from one another while allowing for inference on the underlying ecological process. We apply this approach to study the incidence of eastern spruce dwarf mistletoe (Arceuthobium pusillum) in Minnesota black spruce (Picea mariana). A Minnesota Department of Natural Resources operational inventory of black spruce stands in northern Minnesota found mistletoe in 11% of surveyed stands, while a small, specific-pest survey found mistletoe in 56% of the surveyed stands. We reconcile these two surveys within a Bayesian hierarchical framework and predict that 35-59% of black spruce stands in northern Minnesota are infested with dwarf mistletoe. ?? 2011 by the Ecological Society of America.

  7. The extent of forest in dryland biomes

    Treesearch

    Jean-Francois Bastin; Nora Berrahmouni; Alan Grainger; Danae Maniatis; Danilo Mollicone; Rebecca Moore; Chiara Patriarca; Nicolas Picard; Ben Sparrow; Elena Maria Abraham; Kamel Aloui; Ayhan Atesoglu; Fabio Attore; Caglar Bassullu; Adia Bey; Monica Garzuglia; Luis G. GarcÌa-Montero; Nikee Groot; Greg Guerin; Lars Laestadius; Andrew J. Lowe; Bako Mamane; Giulio Marchi; Paul Patterson; Marcelo Rezende; Stefano Ricci; Ignacio Salcedo; Alfonso Sanchez-Paus Diaz; Fred Stolle; Venera Surappaeva; Rene Castro

    2017-01-01

    Dryland biomes cover two-fifths of Earth’s land surface, but their forest area is poorly known. Here, we report an estimate of global forest extent in dryland biomes, based on analyzing more than 210,000 0.5-hectare sample plots through a photo-interpretation approach using large databases of satellite imagery at (i) very high spatial resolution and (ii) very high...

  8. 40 CFR 194.42 - Monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., including porosity, permeability, and degree of compaction and reconsolidation; (2) Stresses and extent of..., composition, and spatial distribution; (6) Gas quantity and composition; and (7) Temperature distribution. (b...

  9. 40 CFR 194.42 - Monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., including porosity, permeability, and degree of compaction and reconsolidation; (2) Stresses and extent of..., composition, and spatial distribution; (6) Gas quantity and composition; and (7) Temperature distribution. (b...

  10. 40 CFR 194.42 - Monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., including porosity, permeability, and degree of compaction and reconsolidation; (2) Stresses and extent of..., composition, and spatial distribution; (6) Gas quantity and composition; and (7) Temperature distribution. (b...

  11. 40 CFR 194.42 - Monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., including porosity, permeability, and degree of compaction and reconsolidation; (2) Stresses and extent of..., composition, and spatial distribution; (6) Gas quantity and composition; and (7) Temperature distribution. (b...

  12. 40 CFR 194.42 - Monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., including porosity, permeability, and degree of compaction and reconsolidation; (2) Stresses and extent of..., composition, and spatial distribution; (6) Gas quantity and composition; and (7) Temperature distribution. (b...

  13. 48 CFR 319.202-2 - Locating small business sources.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Locating small business... SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Policies 319.202-2 Locating small business sources. (a) OPDIVs shall foster, to the extent practicable, maximum participation by small businesses in HHS acquisitions...

  14. 48 CFR 19.705-4 - Reviewing the subcontracting plan.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... disadvantaged business, and women-owned small business subcontractors to the maximum practicable extent. The..., service-disabled veteran-owned small business, HUBZone small business, or women-owned small business... women-owned small business concerns. If information is not available on a specific type of product or...

  15. 48 CFR 19.705-4 - Reviewing the subcontracting plan.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... disadvantaged business, and women-owned small business subcontractors to the maximum practicable extent. The..., service-disabled veteran-owned small business, HUBZone small business, or women-owned small business... women-owned small business concerns. If information is not available on a specific type of product or...

  16. 48 CFR 319.202-2 - Locating small business sources.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 4 2013-10-01 2013-10-01 false Locating small business... SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Policies 319.202-2 Locating small business sources. (a) OPDIVs shall foster, to the extent practicable, maximum participation by small businesses in HHS acquisitions...

  17. 48 CFR 319.202-2 - Locating small business sources.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 4 2011-10-01 2011-10-01 false Locating small business... SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Policies 319.202-2 Locating small business sources. (a) OPDIVs shall foster, to the extent practicable, maximum participation by small businesses in HHS acquisitions...

  18. 48 CFR 319.202-2 - Locating small business sources.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 4 2012-10-01 2012-10-01 false Locating small business... SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Policies 319.202-2 Locating small business sources. (a) OPDIVs shall foster, to the extent practicable, maximum participation by small businesses in HHS acquisitions...

  19. 48 CFR 319.202-2 - Locating small business sources.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 4 2014-10-01 2014-10-01 false Locating small business... SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Policies 319.202-2 Locating small business sources. (a) OPDIVs shall foster, to the extent practicable, maximum participation by small businesses in HHS acquisitions...

  20. 48 CFR 42.502 - Selecting contracts for postaward orientation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the product or service to critical programs; (f) Length of the planned production cycle; (g) Extent of... status, if any, as a small business, small disadvantaged, women-owned, veteran-owned, HUBZone, or service-disabled veteran-owned small business concern; (j) Contractor's performance history with small, small...

  1. Reconstruction of past equilibrium line altitude using ice extent data

    NASA Astrophysics Data System (ADS)

    Visnjevic, Vjeran; Herman, Frederic; Podladchikov, Yuri

    2017-04-01

    With the end of the Last Glacial Maximum (LGM), about 20 000 years ago, ended the most recent long-lasting cold phase in Earth's history. This last glacial advance left a strong observable imprint on the landscape, such as abandoned moraines, trimlines and other glacial geomorphic features. These features provide a valuable record of past continental climate. In particular, terminal moraines reflect the extent of glaciers and ice-caps, which itself reflects past temperature and precipitation conditions. Here we present an inverse approach, based on a Tikhonov regularization, we have recently developed to reconstruct the LGM mass balance from observed ice extent data. The ice flow model is developed using the shallow ice approximation and solved explicitly using Graphical Processing Units (GPU). The mass balance field, b, is the constrained variable defined by the ice surface S, balance rate β and the spatially variable equilibrium line altitude field (ELA): b = min (β ṡ(S(x,y)- ELA (x,y)),c). (1) where c is a maximum accumulation rate. We show that such a mass balance, and thus the spatially variable ELA field, can be inferred from the observed past ice extent and ice thickness at high resolution and very efficiently. The GPU implementation allows us solve one 1024x1024 grid points forward model run under 0.5s, which significantly reduces the time needed for our inverse method to converge. We start with synthetic test to demonstrate the method. We then apply the method to LGM ice extents of South Island of New Zealand, the Patagonian Andes, where we can see a clear influence of Westerlies on the ELA, and the European Alps. These examples show that the method is capable of constraining spatial variations in mass balance at the scale of a mountain range, and provide us with information on past continental climate.

  2. Species effects on ecosystem processes are modified by faunal responses to habitat composition.

    PubMed

    Bulling, Mark T; Solan, Martin; Dyson, Kirstie E; Hernandez-Milian, Gema; Luque, Patricia; Pierce, Graham J; Raffaelli, Dave; Paterson, David M; White, Piran C L

    2008-12-01

    Heterogeneity is a well-recognized feature of natural environments, and the spatial distribution and movement of individual species is primarily driven by resource requirements. In laboratory experiments designed to explore how different species drive ecosystem processes, such as nutrient release, habitat heterogeneity is often seen as something which must be rigorously controlled for. Most small experimental systems are therefore spatially homogeneous, and the link between environmental heterogeneity and its effects on the redistribution of individuals and species, and on ecosystem processes, has not been fully explored. In this paper, we used a mesocosm system to investigate the relationship between habitat composition, species movement and sediment nutrient release for each of four functionally contrasting species of marine benthic invertebrate macrofauna. For each species, various habitat configurations were generated by selectively enriching patches of sediment with macroalgae, a natural source of spatial variability in intertidal mudflats. We found that the direction and extent of faunal movement between patches differs with species identity, density and habitat composition. Combinations of these factors lead to concomitant changes in nutrient release, such that habitat composition effects are modified by species identity (in the case of NH4-N) and by species density (in the case of PO4-P). It is clear that failure to accommodate natural patterns of spatial heterogeneity in such studies may result in an incomplete understanding of system behaviour. This will be particularly important for future experiments designed to explore the effects of species richness on ecosystem processes, where the complex interactions reported here for single species may be compounded when species are brought together in multi-species combinations.

  3. Exploring seascape genetics and kinship in the reef sponge Stylissa carteri in the Red Sea

    PubMed Central

    Giles, Emily C; Saenz-Agudelo, Pablo; Hussey, Nigel E; Ravasi, Timothy; Berumen, Michael L

    2015-01-01

    A main goal of population geneticists is to study patterns of gene flow to gain a better understanding of the population structure in a given organism. To date most efforts have been focused on studying gene flow at either broad scales to identify barriers to gene flow and isolation by distance or at fine spatial scales in order to gain inferences regarding reproduction and local dispersal. Few studies have measured connectivity at multiple spatial scales and have utilized novel tools to test the influence of both environment and geography on shaping gene flow in an organism. Here a seascape genetics approach was used to gain insight regarding geographic and ecological barriers to gene flow of a common reef sponge, Stylissa carteri in the Red Sea. Furthermore, a small-scale (<1 km) analysis was also conducted to infer reproductive potential in this organism. At the broad scale, we found that sponge connectivity is not structured by geography alone, but rather, genetic isolation in the southern Red Sea correlates strongly with environmental heterogeneity. At the scale of a 50-m transect, spatial autocorrelation analyses and estimates of full-siblings revealed that there is no deviation from random mating. However, at slightly larger scales (100–200 m) encompassing multiple transects at a given site, a greater proportion of full-siblings was found within sites versus among sites in a given location suggesting that mating and/or dispersal are constrained to some extent at this spatial scale. This study adds to the growing body of literature suggesting that environmental and ecological variables play a major role in the genetic structure of marine invertebrate populations. PMID:26257865

  4. Towards Improving Sea Ice Predictabiity: Evaluating Climate Models Against Satellite Sea Ice Observations

    NASA Astrophysics Data System (ADS)

    Stroeve, J. C.

    2014-12-01

    The last four decades have seen a remarkable decline in the spatial extent of the Arctic sea ice cover, presenting both challenges and opportunities to Arctic residents, government agencies and industry. After the record low extent in September 2007 effort has increased to improve seasonal, decadal-scale and longer-term predictions of the sea ice cover. Coupled global climate models (GCMs) consistently project that if greenhouse gas concentrations continue to rise, the eventual outcome will be a complete loss of the multiyear ice cover. However, confidence in these projections depends o HoHoweon the models ability to reproduce features of the present-day climate. Comparison between models participating in the World Climate Research Programme Coupled Model Intercomparison Project Phase 5 (CMIP5) and observations of sea ice extent and thickness show that (1) historical trends from 85% of the model ensemble members remain smaller than observed, and (2) spatial patterns of sea ice thickness are poorly represented in most models. Part of the explanation lies with a failure of models to represent details of the mean atmospheric circulation pattern that governs the transport and spatial distribution of sea ice. These results raise concerns regarding the ability of CMIP5 models to realistically represent the processes driving the decline of Arctic sea ice and to project the timing of when a seasonally ice-free Arctic may be realized. On shorter time-scales, seasonal sea ice prediction has been challenged to predict the sea ice extent from Arctic conditions a few months to a year in advance. Efforts such as the Sea Ice Outlook (SIO) project, originally organized through the Study of Environmental Change (SEARCH) and now managed by the Sea Ice Prediction Network project (SIPN) synthesize predictions of the September sea ice extent based on a variety of approaches, including heuristic, statistical and dynamical modeling. Analysis of SIO contributions reveals that when the September sea ice extent is near the long-term trend, contributions tend to be accurate. Years when the observed extent departs from the trend have proven harder to predict. Predictability skill does not appear to be more accurate for dynamical models over statistical ones, nor is there a measurable improvement in skill as the summer progresses.

  5. The Extent of Working Memory Deficits Associated with Williams Syndrome: Exploration of Verbal and Spatial Domains and Executively Controlled Processes

    ERIC Educational Resources Information Center

    Rhodes, Sinead M.; Riby, Deborah M.; Fraser, Emma; Campbell, Lorna Elise

    2011-01-01

    The present study investigated verbal and spatial working memory (WM) functioning in individuals with the neuro-developmental disorder Williams syndrome (WS) using WM component tasks. While there is strong evidence of WM impairments in WS, previous research has focused on short-term memory and has neglected assessment of executive components of…

  6. Animal movement data: GPS telemetry, autocorrelation and the need for path-level analysis [chapter 7

    Treesearch

    Samuel A. Cushman

    2010-01-01

    In the previous chapter we presented the idea of a multi-layer, multi-scale, spatially referenced data-cube as the foundation for monitoring and for implementing flexible modeling of ecological pattern-process relationships in particulate, in context and to integrate these across large spatial extents at the grain of the strongest linkage between response and driving...

  7. Reserve selection with minimum contiguous area restrictions: An application to open space protection planning in suburban Chicago

    Treesearch

    Sandor F. Toth; Robert Haight; Stephanie A. Snyder; Sonney George; James R. Miller; Mark S. Gregory; Adam M. Skibbe

    2009-01-01

    Conservation efforts often require site or parcel selection strategies that lead to spatially cohesive reserves. Although habitat contiguity is thought to be conducive to the persistence of many sensitive species, availability of funding and suitable land may restrict the extent to which this spatial attribute can be pursued in land management or conservation. Using...

  8. Consistency of forest presence and biomass predictions modeled across overlapping spatial and temporal extents

    Treesearch

    Mark D. Nelson; Sean Healey; W. Keith Moser; J.G. Masek; Warren Cohen

    2011-01-01

    We assessed the consistency across space and time of spatially explicit models of forest presence and biomass in southern Missouri, USA, for adjacent, partially overlapping satellite image Path/Rows, and for coincident satellite images from the same Path/Row acquired in different years. Such consistency in satellite image-based classification and estimation is critical...

  9. Learning about Spatial and Temporal Scale: Current Research, Psychological Processes, and Classroom Implications

    ERIC Educational Resources Information Center

    Cheek, Kim A.; LaDue, Nicole D.; Shipley, Thomas F.

    2017-01-01

    Geoscientists analyze and integrate spatial and temporal information at a range of scales to understand Earth processes. Despite this, the concept of scale is ill defined and taught unevenly across the K-16 continuum. This literature review focuses on two meanings of scale: one as the magnitude of the extent of a dimension and the other as a…

  10. Climatic variation modulates the indirect effects of large herbivores on small-mammal habitat use.

    PubMed

    Long, Ryan A; Wambua, Alois; Goheen, Jacob R; Palmer, Todd M; Pringle, Robert M

    2017-07-01

    Large mammalian herbivores (LMH) strongly shape the composition and architecture of plant communities. A growing literature shows that negative direct effects of LMH on vegetation frequently propagate to suppress the abundance of smaller consumers. Indirect effects of LMH on the behaviour of these consumers, however, have received comparatively little attention despite their potential ecological significance. We sought to understand (i) how LMH indirectly shape small-mammal habitat use by altering the density and distribution of understorey plants; (ii) how these effects vary with climatic context (here, seasonality in rainfall); and (iii) the extent to which behavioural responses of small mammals are contingent upon small-mammal density. We tested the effects of a diverse LMH community on small-mammal habitat use using 4 years of spatially explicit small-mammal trapping and vegetation data from the UHURU Experiment, a replicated set of LMH exclosures in semi-arid Kenyan savanna. Small-mammal habitat use was positively associated with tree density and negatively associated with bare (unvegetated) patches in all plots and seasons. In the presence of LMH, and especially during the dry season, small mammals consistently selected tree cover and avoided bare patches. In contrast, when LMH were excluded, small mammals were weakly associated with tree cover and did not avoid bare patches as strongly. These behavioural responses of small mammals were largely unaffected by changes in small-mammal density associated with LMH exclusion. Our results show that LMH indirectly affect small-mammal behaviour, and that these effects are influenced by climate and can arise via density-independent mechanisms. This raises the possibility that anthropogenic LMH declines might interact with changing patterns of rainfall to alter small-mammal distribution and behaviour, independent of numerical responses by small mammals to these perturbations. For example, increased rainfall in East Africa (as predicted in many recent climate-model simulations) may relax constraints on small-mammal distribution where LMH are rare or absent, whereas increased aridity and/or drought frequency may tighten them. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  11. Characterizing 2-D snow stratigraphy in forests based on high-resolution snow penetrometry

    NASA Astrophysics Data System (ADS)

    Teich, M.; Loewe, H.; Jenkins, M. J.; Schneebeli, M.

    2016-12-01

    Snow stratigraphy, the characteristic layering within a seasonal snowpack, has important implications for snow remote sensing, hydrology and avalanches. Forests modify snowpack properties through interception of falling snow by tree crowns, the reduction of near-surface wind speeds, and changes to the energy balance beneath and around trees leading to a highly variable stratigraphy in space and time. The lack of snowpack observations in forests limits our ability to understand the spatio-temporal evolution of snow stratigraphy as a function of forest structure and to observe snowpack response to changes in forest cover. We examined the snowpack in field campaigns using the SnowMicroPen (SMP) under tree canopies in an Engelmann spruce forest in the central Rocky Mountains in Utah, USA. Data were collected in plots beneath canopies of undisturbed, bark beetle-disturbed and salvage logged forest stands, and a non-forested meadow. In 2015 weekly-repeated SMP penetration measurements were taken along 10 m transects at 0.3 m intervals. In the winter of 2016 bi-weekly measurements were collected along 20 m transects every 0.5 m. Using a statistical model, we derived 2-D snow density profiles as a measure of stratigraphy. The small-scale patterns in snow density revealed a more heterogeneous stratigraphy in undisturbed dense stands and also beneath bark beetle-disturbed forest. In contrast, snow stratigraphy was more homogeneous in the harvested plot despite standing small diameter trees and woody debris with effective heights up to 95 cm. As expected, snow depth and layering in non-forested plots varied only slightly over the small spatial extent sampled. Observed patterns changed throughout the snow season dependent upon snow and meteorological conditions. The results contribute to the general understanding of forest-snowpack interactions at high spatial resolution, and can be used to validate snowpack and microwave models for avalanche formation processes and SWE retrieval in forests.

  12. Habitat-specific AMF symbioses enhance drought tolerance of a native Kenyan grass

    NASA Astrophysics Data System (ADS)

    Petipas, Renee H.; González, Jonathan B.; Palmer, Todd M.; Brody, Alison K.

    2017-01-01

    The role of arbuscular mycorrhizal fungi (AMF) in enhancing plant tolerance to drought is well known. However, the degree to which AMF-plant symbioses are locally adapted has been suggested but is less well understood, especially at small spatial scales. Here, we examined the effects of two arbuscular mycorrhizal fungal communities on drought tolerance of Themeda triandra, a native African perennial bunchgrass. In our study area, mound building activities of Odontotermes sp. termites produce heterogeneous habitat, particularly with respect to water availability, and do so over small spatial scales (<50 m). Thus, plants and their AMF symbionts may experience identical climatic conditions but very different edaphic conditions. We hypothesized that AMF from off-mound areas, where plants experience drought more intensely than on termite mounds, would confer greater protection from drought conditions than AMF from termite mound soils. To test this, we conducted a greenhouse experiment in which we grew plants in soils that we inoculated with fungi from on or off termite mounds, or with a sterilized control inoculum. Our results reveal habitat-specific AMF effects on host stomatal functioning and growth. Contrary to our expectations, drought stressed grasses inoculated with AMF from termite mounds closed stomata less, and produced 60% more leaves than those inoculated with off-mound AMF, thus exhibiting higher levels of tolerance. Mound-inoculated plants that were drought stressed also produced more than twice as many leaves as non-inoculated plants. Longer-term productivity measurements indicate both on- and off-mound inoculated plants were able to recover to a greater extent than non-inoculated plants, indicating that AMF associations in general help plants recover from drought. These findings highlight the important role that AMF play in mitigating drought stress and indicate that AMF affect how plants experience drought in a small scale, habitat-specific manner.

  13. Predicting Species Distributions Using Record Centre Data: Multi-Scale Modelling of Habitat Suitability for Bat Roosts.

    PubMed

    Bellamy, Chloe; Altringham, John

    2015-01-01

    Conservation increasingly operates at the landscape scale. For this to be effective, we need landscape scale information on species distributions and the environmental factors that underpin them. Species records are becoming increasingly available via data centres and online portals, but they are often patchy and biased. We demonstrate how such data can yield useful habitat suitability models, using bat roost records as an example. We analysed the effects of environmental variables at eight spatial scales (500 m - 6 km) on roost selection by eight bat species (Pipistrellus pipistrellus, P. pygmaeus, Nyctalus noctula, Myotis mystacinus, M. brandtii, M. nattereri, M. daubentonii, and Plecotus auritus) using the presence-only modelling software MaxEnt. Modelling was carried out on a selection of 418 data centre roost records from the Lake District National Park, UK. Target group pseudoabsences were selected to reduce the impact of sampling bias. Multi-scale models, combining variables measured at their best performing spatial scales, were used to predict roosting habitat suitability, yielding models with useful predictive abilities. Small areas of deciduous woodland consistently increased roosting habitat suitability, but other habitat associations varied between species and scales. Pipistrellus were positively related to built environments at small scales, and depended on large-scale woodland availability. The other, more specialist, species were highly sensitive to human-altered landscapes, avoiding even small rural towns. The strength of many relationships at large scales suggests that bats are sensitive to habitat modifications far from the roost itself. The fine resolution, large extent maps will aid targeted decision-making by conservationists and planners. We have made available an ArcGIS toolbox that automates the production of multi-scale variables, to facilitate the application of our methods to other taxa and locations. Habitat suitability modelling has the potential to become a standard tool for supporting landscape-scale decision-making as relevant data and open source, user-friendly, and peer-reviewed software become widely available.

  14. Almost 20 years of Neanderthal palaeogenetics: adaptation, admixture, diversity, demography and extinction

    PubMed Central

    Sánchez-Quinto, Federico; Lalueza-Fox, Carles

    2015-01-01

    Nearly two decades since the first retrieval of Neanderthal DNA, recent advances in next-generation sequencing technologies have allowed the generation of high-coverage genomes from two archaic hominins, a Neanderthal and a Denisovan, as well as a complete mitochondrial genome from remains which probably represent early members of the Neanderthal lineage. This genomic information, coupled with diversity exome data from several Neanderthal specimens is shedding new light on evolutionary processes such as the genetic basis of Neanderthal and modern human-specific adaptations—including morphological and behavioural traits—as well as the extent and nature of the admixture events between them. An emerging picture is that Neanderthals had a long-term small population size, lived in small and isolated groups and probably practised inbreeding at times. Deleterious genetic effects associated with these demographic factors could have played a role in their extinction. The analysis of DNA from further remains making use of new large-scale hybridization-capture-based methods as well as of new approaches to discriminate contaminant DNA sequences will provide genetic information in spatial and temporal scales that could help clarify the Neanderthal's—and our very own—evolutionary history. PMID:25487326

  15. Adaptation, migration or extirpation: climate change outcomes for tree populations

    PubMed Central

    Aitken, Sally N; Yeaman, Sam; Holliday, Jason A; Wang, Tongli; Curtis-McLane, Sierra

    2008-01-01

    Abstract Species distribution models predict a wholesale redistribution of trees in the next century, yet migratory responses necessary to spatially track climates far exceed maximum post-glacial rates. The extent to which populations will adapt will depend upon phenotypic variation, strength of selection, fecundity, interspecific competition, and biotic interactions. Populations of temperate and boreal trees show moderate to strong clines in phenology and growth along temperature gradients, indicating substantial local adaptation. Traits involved in local adaptation appear to be the product of small effects of many genes, and the resulting genotypic redundancy combined with high fecundity may facilitate rapid local adaptation despite high gene flow. Gene flow with preadapted alleles from warmer climates may promote adaptation and migration at the leading edge, while populations at the rear will likely face extirpation. Widespread species with large populations and high fecundity are likely to persist and adapt, but will likely suffer adaptational lag for a few generations. As all tree species will be suffering lags, interspecific competition may weaken, facilitating persistence under suboptimal conditions. Species with small populations, fragmented ranges, low fecundity, or suffering declines due to introduced insects or diseases should be candidates for facilitated migration. PMID:25567494

  16. Modeling and Measuring Charge-Sharing in Hard X-ray Imagers Using HEXITEC CdTe Detectors

    NASA Technical Reports Server (NTRS)

    Ryan, Daniel F.; Christe, Steven D.; Shih, Albert Y.; Baumgartner, Wayne H.; Wilson, Matthew D.; Seller, Paul; Gaskin, Jessica A.; Inglis, Andrew

    2017-01-01

    The Rutherford Appleton Laboratory's HEXITEC ASIC has been designed to provide fine pixelated X-ray spectroscopic imaging in combination with a CdTe or CZT detector layer. Although HEXITEC's small pixels enable higher spatial resolution as well as higher spectral resolution via the small-pixel effect, they also increase the probability of charge sharing, a process which degrades spectral performance by dividing the charge induced by a single photon among multiple pixels. In this paper, we investigate the effect of this process on a continuum X-ray spectrum below the Cd and Te fluorescence energies (23 keV). This is done by comparing laboratory measurements with simulations performed with a custom designed model of the HEXITEC ASIC. We find that the simulations closely match the observations implying that we have an adequate understanding of both charge sharing and the HEXITEC ASIC itself. These results can be used to predict the distortion of a spectrum measured with HEXITEC and will help determine to what extent it can be corrected. They also show that models like this one are important tools in developing and interpreting observations from ASICs like HEXITEC.

  17. Results of the WHAM Hα survey of the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Smart, Brianna Marie; Haffner, Lawrence Matthew; Barger, Kat; Madsen, Greg

    2018-01-01

    We present the results of an Hα survey of the Small Magellanic Cloud (SMC) using the Wisconsin H-Alpha Mapper (WHAM) as the initial component of our WHAM Magellanic System Survey (SMC/LMC/Stream). Previous surveys of the SMC have focused on the bright H II regions (supernovae remnants/ HII bubbles, etc) centered around the stellar component of the galaxy. These surveys were not sensitive to the fainter Diffuse Ionized Gas (DIG) within and surrounding the galaxy. With WHAM, we detect a halo of diffuse Hα emission extending to radii well beyond the bright H II regions and comparable to extents of observed HI. Using WHAM's unprecedented sensitivity to trace diffuse emission (~ tens of mR) with a velocity resolution of 12 km/s, we have compiled the first comprehensive spatial and kinematic map of the extended Hα emission. With these new data in hand, we are able to delineate the considerable warm ionized component associated with the SMC, leading to better calculations of its present-day mass and providing new constraints for dynamical evolution simulations of the Magellanic System. Similar WHAM surveys of the diffuse ionized content of the LMC and Stream are also underway.

  18. Cholinergic, But Not Dopaminergic or Noradrenergic, Enhancement Sharpens Visual Spatial Perception in Humans

    PubMed Central

    Wallace, Deanna L.

    2017-01-01

    The neuromodulator acetylcholine modulates spatial integration in visual cortex by altering the balance of inputs that generate neuronal receptive fields. These cholinergic effects may provide a neurobiological mechanism underlying the modulation of visual representations by visual spatial attention. However, the consequences of cholinergic enhancement on visuospatial perception in humans are unknown. We conducted two experiments to test whether enhancing cholinergic signaling selectively alters perceptual measures of visuospatial interactions in human subjects. In Experiment 1, a double-blind placebo-controlled pharmacology study, we measured how flanking distractors influenced detection of a small contrast decrement of a peripheral target, as a function of target-flanker distance. We found that cholinergic enhancement with the cholinesterase inhibitor donepezil improved target detection, and modeling suggested that this was mainly due to a narrowing of the extent of facilitatory perceptual spatial interactions. In Experiment 2, we tested whether these effects were selective to the cholinergic system or would also be observed following enhancements of related neuromodulators dopamine or norepinephrine. Unlike cholinergic enhancement, dopamine (bromocriptine) and norepinephrine (guanfacine) manipulations did not improve performance or systematically alter the spatial profile of perceptual interactions between targets and distractors. These findings reveal mechanisms by which cholinergic signaling influences visual spatial interactions in perception and improves processing of a visual target among distractors, effects that are notably similar to those of spatial selective attention. SIGNIFICANCE STATEMENT Acetylcholine influences how visual cortical neurons integrate signals across space, perhaps providing a neurobiological mechanism for the effects of visual selective attention. However, the influence of cholinergic enhancement on visuospatial perception remains unknown. Here we demonstrate that cholinergic enhancement improves detection of a target flanked by distractors, consistent with sharpened visuospatial perceptual representations. Furthermore, whereas most pharmacological studies focus on a single neurotransmitter, many neuromodulators can have related effects on cognition and perception. Thus, we also demonstrate that enhancing noradrenergic and dopaminergic systems does not systematically improve visuospatial perception or alter its tuning. Our results link visuospatial tuning effects of acetylcholine at the neuronal and perceptual levels and provide insights into the connection between cholinergic signaling and visual attention. PMID:28336568

  19. Evaluating the influence of spatial resolution of Landsat predictors on the accuracy of biomass models for large-area estimation across the eastern USA

    NASA Astrophysics Data System (ADS)

    Deo, Ram K.; Domke, Grant M.; Russell, Matthew B.; Woodall, Christopher W.; Andersen, Hans-Erik

    2018-05-01

    Aboveground biomass (AGB) estimates for regional-scale forest planning have become cost-effective with the free access to satellite data from sensors such as Landsat and MODIS. However, the accuracy of AGB predictions based on passive optical data depends on spatial resolution and spatial extent of target area as fine resolution (small pixels) data are associated with smaller coverage and longer repeat cycles compared to coarse resolution data. This study evaluated various spatial resolutions of Landsat-derived predictors on the accuracy of regional AGB models at three different sites in the eastern USA: Maine, Pennsylvania-New Jersey, and South Carolina. We combined national forest inventory data with Landsat-derived predictors at spatial resolutions ranging from 30–1000 m to understand the optimal spatial resolution of optical data for large-area (regional) AGB estimation. Ten generic models were developed using the data collected in 2014, 2015 and 2016, and the predictions were evaluated (i) at the county-level against the estimates of the USFS Forest Inventory and Analysis Program which relied on EVALIDator tool and national forest inventory data from the 2009–2013 cycle and (ii) within a large number of strips (~1 km wide) predicted via LiDAR metrics at 30 m spatial resolution. The county-level estimates by the EVALIDator and Landsat models were highly related (R 2 > 0.66), although the R 2 varied significantly across sites and resolution of predictors. The mean and standard deviation of county-level estimates followed increasing and decreasing trends, respectively, with models of coarser resolution. The Landsat-based total AGB estimates were larger than the LiDAR-based total estimates within the strips, however the mean of AGB predictions by LiDAR were mostly within one-standard deviations of the mean predictions obtained from the Landsat-based model at any of the resolutions. We conclude that satellite data at resolutions up to 1000 m provide acceptable accuracy for continental scale analysis of AGB.

  20. Detecting high spatial variability of ice shelf basal mass balance, Roi Baudouin Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Berger, Sophie; Drews, Reinhard; Helm, Veit; Sun, Sainan; Pattyn, Frank

    2017-11-01

    Ice shelves control the dynamic mass loss of ice sheets through buttressing and their integrity depends on the spatial variability of their basal mass balance (BMB), i.e. the difference between refreezing and melting. Here, we present an improved technique - based on satellite observations - to capture the small-scale variability in the BMB of ice shelves. As a case study, we apply the methodology to the Roi Baudouin Ice Shelf, Dronning Maud Land, East Antarctica, and derive its yearly averaged BMB at 10 m horizontal gridding. We use mass conservation in a Lagrangian framework based on high-resolution surface velocities, atmospheric-model surface mass balance and hydrostatic ice-thickness fields (derived from TanDEM-X surface elevation). Spatial derivatives are implemented using the total-variation differentiation, which preserves abrupt changes in flow velocities and their spatial gradients. Such changes may reflect a dynamic response to localized basal melting and should be included in the mass budget. Our BMB field exhibits much spatial detail and ranges from -14.7 to 8.6 m a-1 ice equivalent. Highest melt rates are found close to the grounding line where the pressure melting point is high, and the ice shelf slope is steep. The BMB field agrees well with on-site measurements from phase-sensitive radar, although independent radar profiling indicates unresolved spatial variations in firn density. We show that an elliptical surface depression (10 m deep and with an extent of 0.7 km × 1.3 km) lowers by 0.5 to 1.4 m a-1, which we tentatively attribute to a transient adaptation to hydrostatic equilibrium. We find evidence for elevated melting beneath ice shelf channels (with melting being concentrated on the channel's flanks). However, farther downstream from the grounding line, the majority of ice shelf channels advect passively (i.e. no melting nor refreezing) toward the ice shelf front. Although the absolute, satellite-based BMB values remain uncertain, we have high confidence in the spatial variability on sub-kilometre scales. This study highlights expected challenges for a full coupling between ice and ocean models.

  1. GIS Representation of Coal-Bearing Areas in Africa

    USGS Publications Warehouse

    Merrill, Matthew D.; Tewalt, Susan J.

    2008-01-01

    The African continent contains approximately 5 percent of the world's proven recoverable reserves of coal (World Energy Council, 2007). Energy consumption in Africa is projected to grow at an annual rate of 2.3 percent from 2004 through 2030, while average consumption in first-world nations is expected to rise at 1.4 percent annually (Energy Information Administration, 2007). Coal reserves will undoubtedly continue to be part of Africa's energy portfolio as it grows in the future. A review of academic and industrial literature indicates that 27 nations in Africa contain coal-bearing rock. South Africa accounts for 96 percent of Africa's total proven recoverable coal reserves, ranking it sixth in the world. This report is a digital compilation of information on Africa's coal-bearing geology found in the literature and is intended to be used in small scale spatial investigations in a Geographic Information System (GIS) and as a visual aid for the discussion of Africa's coal resources. Many maps of African coal resources often include points for mine locations or regional scale polygons with generalized borders depicting basin edges. Point locations are detailed but provide no information regarding extent, and generalized polygons do not have sufficient detail. In this dataset, the polygons are representative of the actual coal-bearing lithology both in location and regional extent. Existing U.S. Geological Survey (USGS) digital geology datasets provide the majority of the base geologic polygons. Polygons for the coal-bearing localities were clipped from the base geology that represented the age and extent of the coal deposit as indicated in the literature. Where the 1:5,000,000-scale geology base layer's ages conflicted with those in the publications, polygons were generated directly from the regional African coal maps (1:500,000 scale, approximately) in the published material. In these cases, coal-bearing polygons were clipped to the literature's indicated coal extent, without regard to the underlying geology base or topographic constraints. Indication of the presence of African coal is based on multiple sources. However, the quality of the sources varies and there is often disagreement in the literature. This dataset includes the rank, age, and location of coal in Africa as well as the detailed source information responsible for each coal-bearing polygon. The dataset is not appropriate for use in resource assessments of any kind. Attributes necessary for tasks, such as number of coal seams, thickness of seams, and depth to coal are rarely provided in the literature and accordingly not represented in this data set. Small-scale investigations, representations and display uses are most appropriate for this product. This product is the first to show coal distribution as bounded by actual geologic contacts for the entire African continent. In addition to the spatial component of this dataset, complete references to source material are provided for each polygon, making this product a useful first step resource in African coal research. Greater detail regarding the creation of this dataset as well as the sources used is provided in the metadata file for the Africa_coal.shp file.

  2. Small worlds in space: Synchronization, spatial and relational modularity

    NASA Astrophysics Data System (ADS)

    Brede, M.

    2010-06-01

    In this letter we investigate networks that have been optimized to realize a trade-off between enhanced synchronization and cost of wire to connect the nodes in space. Analyzing the evolved arrangement of nodes in space and their corresponding network topology, a class of small-world networks characterized by spatial and network modularity is found. More precisely, for low cost of wire optimal configurations are characterized by a division of nodes into two spatial groups with maximum distance from each other, whereas network modularity is low. For high cost of wire, the nodes organize into several distinct groups in space that correspond to network modules connected on a ring. In between, spatially and relationally modular small-world networks are found.

  3. High spatial correspondence at a columnar level between activation and resting state fMRI signals and local field potentials.

    PubMed

    Shi, Zhaoyue; Wu, Ruiqi; Yang, Pai-Feng; Wang, Feng; Wu, Tung-Lin; Mishra, Arabinda; Chen, Li Min; Gore, John C

    2017-05-16

    Although blood oxygenation level-dependent (BOLD) fMRI has been widely used to map brain responses to external stimuli and to delineate functional circuits at rest, the extent to which BOLD signals correlate spatially with underlying neuronal activity, the spatial relationships between stimulus-evoked BOLD activations and local correlations of BOLD signals in a resting state, and whether these spatial relationships vary across functionally distinct cortical areas are not known. To address these critical questions, we directly compared the spatial extents of stimulated activations and the local profiles of intervoxel resting state correlations for both high-resolution BOLD at 9.4 T and local field potentials (LFPs), using 98-channel microelectrode arrays, in functionally distinct primary somatosensory areas 3b and 1 in nonhuman primates. Anatomic images of LFP and BOLD were coregistered within 0.10 mm accuracy. We found that the point spread functions (PSFs) of BOLD and LFP responses were comparable in the stimulus condition, and both estimates of activations were slightly more spatially constrained than local correlations at rest. The magnitudes of stimulus responses in area 3b were stronger than those in area 1 and extended in a medial to lateral direction. In addition, the reproducibility and stability of stimulus-evoked activation locations within and across both modalities were robust. Our work suggests that the intrinsic resolution of BOLD is not a limiting feature in practice and approaches the intrinsic precision achievable by multielectrode electrophysiology.

  4. High spatial correspondence at a columnar level between activation and resting state fMRI signals and local field potentials

    PubMed Central

    Shi, Zhaoyue; Wu, Ruiqi; Yang, Pai-Feng; Wang, Feng; Wu, Tung-Lin; Mishra, Arabinda; Chen, Li Min; Gore, John C.

    2017-01-01

    Although blood oxygenation level-dependent (BOLD) fMRI has been widely used to map brain responses to external stimuli and to delineate functional circuits at rest, the extent to which BOLD signals correlate spatially with underlying neuronal activity, the spatial relationships between stimulus-evoked BOLD activations and local correlations of BOLD signals in a resting state, and whether these spatial relationships vary across functionally distinct cortical areas are not known. To address these critical questions, we directly compared the spatial extents of stimulated activations and the local profiles of intervoxel resting state correlations for both high-resolution BOLD at 9.4 T and local field potentials (LFPs), using 98-channel microelectrode arrays, in functionally distinct primary somatosensory areas 3b and 1 in nonhuman primates. Anatomic images of LFP and BOLD were coregistered within 0.10 mm accuracy. We found that the point spread functions (PSFs) of BOLD and LFP responses were comparable in the stimulus condition, and both estimates of activations were slightly more spatially constrained than local correlations at rest. The magnitudes of stimulus responses in area 3b were stronger than those in area 1 and extended in a medial to lateral direction. In addition, the reproducibility and stability of stimulus-evoked activation locations within and across both modalities were robust. Our work suggests that the intrinsic resolution of BOLD is not a limiting feature in practice and approaches the intrinsic precision achievable by multielectrode electrophysiology. PMID:28461461

  5. More than A to B: Understanding and managing visitor spatial behaviour in urban forests using public participation GIS.

    PubMed

    Korpilo, Silviya; Virtanen, Tarmo; Saukkonen, Tiina; Lehvävirta, Susanna

    2018-02-01

    Planning and management needs up-to-date, easily-obtainable and accurate information on the spatial and social aspects of visitor behaviour in order to balance human use and impacts, and protection of natural resources in public parks. We used a web-based public participation GIS (PPGIS) approach to gather citizen data on visitor behaviour in Helsinki's Central Park in order to aid collaborative spatial decision-making. The study combined smartphone GPS tracking, route drawing and a questionnaire to examine differences between user groups in their use of formal trails, off-trail behaviour and the motivations that affect it. In our sample (n = 233), different activity types were associated with distinctive spatial patterns and potential extent of impacts. The density mapping and statistical analyses indicated three types of behaviour: predominantly on or close to formal trails (runners and cyclists), spatially concentrated off-trail behaviour confined to a few informal paths (mountain bikers), and dispersed off-trail use pattern (walkers and dog walkers). Across all user groups, off-trail behaviour was mainly motivated by positive attraction towards the environment such as scenic view, exploration, and viewing flora and fauna. Study findings lead to several management recommendations that were presented to city officials. These include reducing dispersion and the spatial extent of trampling impacts by encouraging use of a limited number of well-established informal paths away from sensitive vegetation and protected habitats. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Hurricane Mitch: Landscape Analysis of Damaged Forest Resources of the Bay Islands and Caribbean Coast of Honduras

    USGS Publications Warehouse

    Doyle, Thomas W.; Michot, Thomas C.; Roetker, Fred; Sullivan, Jason; Melder, Marcus; Handley, Benjamin; Balmat, Jeff

    2002-01-01

    The advent of analog and digital video has provided amateur photographers with professional-like technology to capture dynamic images with ease and clarity. Videography is also rapidly changing traditional business and scientific applications. In the natural sciences, camcorders are being used largely to record timely observations of plant and animal behavior or consequence of some catastrophic event. Spectacular video of dynamic events such as hurricanes, volcanic eruptions and wildfire document the active process and aftermath. Scientists can analyze video images to quantify aspects of a given event, behavior, or response, temporally and spatially. In this study we demonstrate the simple use of an aerial application of videography to record the spatial extent and damage expression of mangrove forest in the Bay Islands and mainland coast of northern Honduras from wind damage following Hurricane Mitch (1998). In this study, we conducted a video overflight of coastal forests of the Bay Islands and mainland coast of northern Honduras 14 months after impact by Hurricane Mitch (1998). Coastal areas were identified where damage was evident and described relative to damage extent to forest cover, windfall orientation, and height of downed trees. The variability and spatial extent of impact on coastal forest resources is related to reconstructed wind profiles based on model simulations of Mitch's path, strength, and circulation during landfall.

  7. Long-term change in eelgrass distribution at Bahía San Quintín, Baja California, Mexico, using satellite imagery

    USGS Publications Warehouse

    Ward, David H.; Morton, Alexandra; Tibbitts, T. Lee; Douglas, David C.; Carrera-Gonzalez, Eduardo

    2003-01-01

    Seagrasses are critically important components of many marine coastal and estuarine ecosystems, but are declining worldwide. Spatial change in distribution of eelgrass, Zostera marina L., was assessed at Bahía San Quintín, Baja California, Mexico, using a map to map comparison of data interpreted from a 1987 Satellite Pour l'Observation de la Terre multispectral satellite image and a 2000 Landsat Enhanced Thematic Mapping image. Eelgrass comprised 49% and 43% of the areal extent of the bay in 1987 and 2000, respectively. Spatial extent of eelgrass was 13% less (-321 ha) in 2000 than in 1987 with most losses occurring in subtidal areas. Over the 13-yr study period, there was a 34% loss of submerged eelgrass (-457 ha) and a 13% (+136 ha) gain of intertidal eelgrass. Within the two types of intertidal eelgrass, the patchy cover class (<85% cover) expanded (+250 ha) and continuous cover class (≥85% cover) declined (-114 ha). Most eelgrass losses were likely the result of sediment loading and turbidity caused by a single flooding event in winter of 1992-1993. Recent large-scale agricultural development of adjacent uplands may have exacerbated the effects of the flood. Oyster farming was not associated with any detectable losses in eelgrass spatial extent, despite the increase in number of oyster racks from 57 to 484 over the study period.

  8. Measuring Radiant Emissions from Entire Prescribed Fires with Ground, Airborne and Satellite Sensors RxCADRE 2012

    NASA Technical Reports Server (NTRS)

    Dickinson, Matthew B.; Hudak, Andrew T.; Zajkowski, Thomas; Loudermilk, E. Louise; Schroeder, Wilfrid; Ellison, Luke; Kremens, Robert L.; Holley, William; Martinez, Otto; Paxton, Alexander; hide

    2015-01-01

    Characterising radiation from wildland fires is an important focus of fire science because radiation relates directly to the combustion process and can be measured across a wide range of spatial extents and resolutions. As part of a more comprehensive set of measurements collected during the 2012 Prescribed Fire Combustion and Atmospheric Dynamics Research (RxCADRE) field campaign, we used ground, airborne and spaceborne sensors to measure fire radiative power (FRP) from whole fires, applying different methods to small (2 ha) and large (.100 ha) burn blocks. For small blocks (n1/46), FRP estimated from an obliquely oriented long-wave infrared (LWIR) camera mounted on a boom lift were compared with FRP derived from combined data from tower-mounted radiometers and remotely piloted aircraft systems (RPAS). For large burn blocks (n1/43), satellite FRP measurements from the Moderate-resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) sensors were compared with near-coincident FRP measurements derived from a LWIR imaging system aboard a piloted aircraft. We describe measurements and consider their strengths and weaknesses. Until quantitative sensors exist for small RPAS, their use in fire research will remain limited. For oblique, airborne and satellite sensors, further FRP measurement development is needed along with greater replication of coincident measurements, which we show to be feasible.

  9. Location, timing and extent of wildfire vary by cause of ignition

    USGS Publications Warehouse

    Syphard, Alexandra D.; Keeley, Jon E.

    2015-01-01

    The increasing extent of wildfires has prompted investigation into alternative fire management approaches to complement the traditional strategies of fire suppression and fuels manipulation. Wildfire prevention through ignition reduction is an approach with potential for success, but ignitions result from a variety of causes. If some ignition sources result in higher levels of area burned, then ignition prevention programmes could be optimised to target these distributions in space and time. We investigated the most common ignition causes in two southern California sub-regions, where humans are responsible for more than 95% of all fires, and asked whether these causes exhibited distinct spatial or intra-annual temporal patterns, or resulted in different extents of fire in 10-29-year periods, depending on sub-region. Different ignition causes had distinct spatial patterns and those that burned the most area tended to occur in autumn months. Both the number of fires and area burned varied according to cause of ignition, but the cause of the most numerous fires was not always the cause of the greatest area burned. In both sub-regions, power line ignitions were one of the top two causes of area burned: the other major causes were arson in one sub-region and power equipment in the other. Equipment use also caused the largest number of fires in both sub-regions. These results have important implications for understanding why, where and how ignitions are caused, and in turn, how to develop strategies to prioritise and focus fire prevention efforts. Fire extent has increased tremendously in southern California, and because most fires are caused by humans, ignition reduction offers a potentially powerful management strategy, especially if optimised to reflect the distinct spatial and temporal distributions in different ignition causes.

  10. Filling the gap: Using fishers' knowledge to map the extent and intensity of fishing activity.

    PubMed

    Szostek, Claire L; Murray, Lee G; Bell, Ewen; Kaiser, Michel J

    2017-08-01

    Knowledge of the extent and intensity of fishing activities is critical to inform management in relation to fishing impacts on marine conservation features. Such information can also provide insight into the potential socio-economic impacts of closures (or other restrictions) of fishing grounds that could occur through the future designation of Marine Conservation Zones (MCZs). We assessed the accuracy and validity of fishing effort data (spatial extent and relative effort) obtained from Fishers' Local Knowledge (LK) data compared to that derived from Vessel Monitoring System (VMS) data for a high-value shellfish fishery, the king scallop (Pecten maximus L.) dredge fishery in the English Channel. The spatial distribution of fishing effort from LK significantly correlated with VMS data and the correlation increased with increasing grid cell resolution. Using a larger grid cell size for data aggregation increases the estimation of the total area of seabed impacted by the fishery. In the absence of historical VMS data for vessels ≤15 m LOA (Length Overall), LK data for the inshore fleet provided important insights into the relative effort of the inshore (<6 NM from land) king scallop fishing fleet in the English Channel. The LK data provided a good representation of the spatial extent of inshore fishing activity, whereas representation of the offshore fishery was more precautionary in terms of defining total impact. Significantly, the data highlighted frequently fished areas of particular importance to the inshore fleet. In the absence of independent sources of geospatial information, the use of LK can inform the development of marine planning in relation to both sustainable fishing and conservation objectives, and has application in both developed and developing countries where VMS technology is not utilised in fisheries management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A Global Geospatial Database of 5000+ Historic Flood Event Extents

    NASA Astrophysics Data System (ADS)

    Tellman, B.; Sullivan, J.; Doyle, C.; Kettner, A.; Brakenridge, G. R.; Erickson, T.; Slayback, D. A.

    2017-12-01

    A key dataset that is missing for global flood model validation and understanding historic spatial flood vulnerability is a global historical geo-database of flood event extents. Decades of earth observing satellites and cloud computing now make it possible to not only detect floods in near real time, but to run these water detection algorithms back in time to capture the spatial extent of large numbers of specific events. This talk will show results from the largest global historical flood database developed to date. We use the Dartmouth Flood Observatory flood catalogue to map over 5000 floods (from 1985-2017) using MODIS, Landsat, and Sentinel-1 Satellites. All events are available for public download via the Earth Engine Catalogue and via a website that allows the user to query floods by area or date, assess population exposure trends over time, and download flood extents in geospatial format.In this talk, we will highlight major trends in global flood exposure per continent, land use type, and eco-region. We will also make suggestions how to use this dataset in conjunction with other global sets to i) validate global flood models, ii) assess the potential role of climatic change in flood exposure iii) understand how urbanization and other land change processes may influence spatial flood exposure iv) assess how innovative flood interventions (e.g. wetland restoration) influence flood patterns v) control for event magnitude to assess the role of social vulnerability and damage assessment vi) aid in rapid probabilistic risk assessment to enable microinsurance markets. Authors on this paper are already using the database for the later three applications and will show examples of wetland intervention analysis in Argentina, social vulnerability analysis in the USA, and micro insurance in India.

  12. Automating the selection of standard parallels for conic map projections

    NASA Astrophysics Data System (ADS)

    Šavriǒ, Bojan; Jenny, Bernhard

    2016-05-01

    Conic map projections are appropriate for mapping regions at medium and large scales with east-west extents at intermediate latitudes. Conic projections are appropriate for these cases because they show the mapped area with less distortion than other projections. In order to minimize the distortion of the mapped area, the two standard parallels of conic projections need to be selected carefully. Rules of thumb exist for placing the standard parallels based on the width-to-height ratio of the map. These rules of thumb are simple to apply, but do not result in maps with minimum distortion. There also exist more sophisticated methods that determine standard parallels such that distortion in the mapped area is minimized. These methods are computationally expensive and cannot be used for real-time web mapping and GIS applications where the projection is adjusted automatically to the displayed area. This article presents a polynomial model that quickly provides the standard parallels for the three most common conic map projections: the Albers equal-area, the Lambert conformal, and the equidistant conic projection. The model defines the standard parallels with polynomial expressions based on the spatial extent of the mapped area. The spatial extent is defined by the length of the mapped central meridian segment, the central latitude of the displayed area, and the width-to-height ratio of the map. The polynomial model was derived from 3825 maps-each with a different spatial extent and computationally determined standard parallels that minimize the mean scale distortion index. The resulting model is computationally simple and can be used for the automatic selection of the standard parallels of conic map projections in GIS software and web mapping applications.

  13. Towards more accurate isoscapes encouraging results from wine, water and marijuana data/model and model/model comparisons.

    NASA Astrophysics Data System (ADS)

    West, J. B.; Ehleringer, J. R.; Cerling, T.

    2006-12-01

    Understanding how the biosphere responds to change it at the heart of biogeochemistry, ecology, and other Earth sciences. The dramatic increase in human population and technological capacity over the past 200 years or so has resulted in numerous, simultaneous changes to biosphere structure and function. This, then, has lead to increased urgency in the scientific community to try to understand how systems have already responded to these changes, and how they might do so in the future. Since all biospheric processes exhibit some patchiness or patterns over space, as well as time, we believe that understanding the dynamic interactions between natural systems and human technological manipulations can be improved if these systems are studied in an explicitly spatial context. We present here results of some of our efforts to model the spatial variation in the stable isotope ratios (δ2H and δ18O) of plants over large spatial extents, and how these spatial model predictions compare to spatially explicit data. Stable isotopes trace and record ecological processes and as such, if modeled correctly over Earth's surface allow us insights into changes in biosphere states and processes across spatial scales. The data-model comparisons show good agreement, in spite of the remaining uncertainties (e.g., plant source water isotopic composition). For example, inter-annual changes in climate are recorded in wine stable isotope ratios. Also, a much simpler model of leaf water enrichment driven with spatially continuous global rasters of precipitation and climate normals largely agrees with complex GCM modeling that includes leaf water δ18O. Our results suggest that modeling plant stable isotope ratios across large spatial extents may be done with reasonable accuracy, including over time. These spatial maps, or isoscapes, can now be utilized to help understand spatially distributed data, as well as to help guide future studies designed to understand ecological change across landscapes.

  14. Spatial Distribution of Small Water Body Types in Indiana Ecoregions

    EPA Science Inventory

    Due to their large numbers and biogeochemical activity, small water bodies (SWBs), such as ponds and wetlands, can have substantial cumulative effects on hydrologic and biogeochemical processes. Using updated National Wetland Inventory data, we describe the spatial distribution o...

  15. Monitoring the Extent of Forests on National to Global Scales

    NASA Astrophysics Data System (ADS)

    Townshend, J.; Townshend, J.; Hansen, M.; DeFries, R.; DeFries, R.; Sohlberg, R.; Desch, A.; White, B.

    2001-05-01

    Information on forest extent and change is important for many purposes, including understanding the global carbon cycle and managing natural resources. International statistics on forest extent are generated using many different sources often producing inconsistent results spatially and through time. Results will be presented comparing forest extent derived from the recent global Food and Agricultural Organization's (FAO) FRA 2000 report with products derived using wall-to-wall Landsat, AVHRR and MODIS data sets. The remotely sensed data sets provide consistent results in terms of total area despite considerable differences in spatial resolution. Although the location of change can be satisfactorily detected with all three remotely sensed data sets, reliable measurement of change can only be achieved through use of Landsat-resolution data. Contrary to the FRA 2000 results we find evidence of an increase in deforestation rates in the late 1990s in several countries. Also we have found evidence of considerable changes in some countries for which little or no change is reported by FAO. The results indicate the benefits of globally consistent analyses of forest cover based on multiscale remotely sensed data sets rather than a reliance on statistics generated by individual countries with very different definitions of forest and methods used to derive them.

  16. Synergetic use of Sentinel-1 and 2 to improve agro-hydrological modeling. Results of groundwater pumping estimates in south-India and nitrogen excess in south-west of France

    NASA Astrophysics Data System (ADS)

    Ferrant, S.; Le Page, M.; Kerr, Y. H.; Selles, A.; Mermoz, S.; Al-Bitar, A.; Muddu, S.; Gascoin, S.; Marechal, J. C.; Durand, P.; Salmon-Monviola, J.; Ceschia, E.; Bustillo, V.

    2016-12-01

    Nitrogen transfers at agricultural catchment level are intricately linked to water transfers. Agro-hydrological modeling approaches aim at integrating spatial heterogeneity of catchment physical properties together with agricultural practices to spatially estimate the water and nitrogen cycles. As in hydrology, the calibration schemes are designed to optimize the performance of the temporal dynamics and biases in model simulations, while ignoring the simulated spatial pattern. Yet, crop uses, i.e. transpiration and nitrogen exported by harvest, are the main fluxes at the catchment scale, highly variable in space and time. Geo-information time-series of vegetation and water index with multi-spectral optical detection S2 together with surface roughness time series with C-band radar detection S1 are used to reset soil water holding capacity parameters (depth, porosity) and agricultural practices (sowing date, irrigated area extent) of a crop model coupled with a hydrological model. This study takes two agro-hydrological contexts as demonstrators: 1-spatial nitrogen excess estimation in south-west of France, and 2-groundwater extraction for rice irrigation in south-India. Spatio-temporal patterns are involved in respectively surface water contamination due to over-fertilization and local groundwater shortages due to over-pumping for above rice inundation. Optimized Leaf Area Index profiles are simulated at the satellite images pixel level using an agro-hydrological model to reproduce spatial and temporal crop growth dynamics in south-west of France, improving the in-stream nitrogen fluxes by 12%. Accurate detection of irrigated area extents are obtained with the thresholding method based on optical indices, with a kappa of 0.81 for the dry season 2016. The actual monsoon season is monitored and will be presented. These extents drive the groundwater pumping and are highly variable in time (from 2 to 8% of the total area).

  17. Primitive Auditory Memory Is Correlated with Spatial Unmasking That Is Based on Direct-Reflection Integration

    PubMed Central

    Li, Huahui; Kong, Lingzhi; Wu, Xihong; Li, Liang

    2013-01-01

    In reverberant rooms with multiple-people talking, spatial separation between speech sources improves recognition of attended speech, even though both the head-shadowing and interaural-interaction unmasking cues are limited by numerous reflections. It is the perceptual integration between the direct wave and its reflections that bridges the direct-reflection temporal gaps and results in the spatial unmasking under reverberant conditions. This study further investigated (1) the temporal dynamic of the direct-reflection-integration-based spatial unmasking as a function of the reflection delay, and (2) whether this temporal dynamic is correlated with the listeners’ auditory ability to temporally retain raw acoustic signals (i.e., the fast decaying primitive auditory memory, PAM). The results showed that recognition of the target speech against the speech-masker background is a descending exponential function of the delay of the simulated target reflection. In addition, the temporal extent of PAM is frequency dependent and markedly longer than that for perceptual fusion. More importantly, the temporal dynamic of the speech-recognition function is significantly correlated with the temporal extent of the PAM of low-frequency raw signals. Thus, we propose that a chain process, which links the earlier-stage PAM with the later-stage correlation computation, perceptual integration, and attention facilitation, plays a role in spatially unmasking target speech under reverberant conditions. PMID:23658664

  18. Salmon Mapper

    EPA Pesticide Factsheets

    Information about the web application to assist pesticide users' with an understanding of the spatial extent of certain pesticide use limitations to protect endangered or threatened salmon and steelhead in California, Oregon and Washington.

  19. Spatio-Temporal Variability of Dissolved Metals in the Surface Waters of an Agroforestry Catchment with Low Levels of Anthropogenic Activity

    NASA Astrophysics Data System (ADS)

    Soto-Varela, Fátima; Rodríguez-Blanco, M. Luz; Mercedes Taboada-Castro, M.; Taboada-Castro, M. Teresa

    2017-12-01

    Evaluation of levels and spatial variations of metals in surface waters within a catchment are critical to understanding the extent of land-use impact on the river system. The aims of this study were to investigate the spatial and temporal variations of five dissolved metals (Al, Fe, Mn, Cu and Zn) in surface waters of a small agroforestry catchment (16 km2) in NW Spain. The land uses include mainly forests (65%) and agriculture (pastures: 26%, cultivation: 4%). Stream water samples were collected at four sampling sites distributed along the main course of the Corbeira stream (Galicia, NW Spain) between the headwaters and the catchment outlet. The headwater point can be considered as pristine environment with natural metal concentrations in waters because of the absence of any agricultural activity and limited accessibility. Metal concentrations were determined by ICP-MS. The results showed that metal concentrations were relatively low (Fe > Al > Mn > Zn > Cu), suggesting little influence from agricultural activities in the area. Mn and Zn did not show significant differences between sampling points along main stream, while for Fe and Cu significant differences were found between the headwaters and all other points. Al tended to decrease from the headwaters to the catchment outlet.

  20. Measurement of Circumstellar Disk Sizes in the Upper Scorpius OB Association with ALMA

    NASA Astrophysics Data System (ADS)

    Barenfeld, Scott A.; Carpenter, John M.; Sargent, Anneila I.; Isella, Andrea; Ricci, Luca

    2017-12-01

    We present detailed modeling of the spatial distributions of gas and dust in 57 circumstellar disks in the Upper Scorpius OB Association observed with ALMA at submillimeter wavelengths. We fit power-law models to the dust surface density and CO J = 3–2 surface brightness to measure the radial extent of dust and gas in these disks. We found that these disks are extremely compact: the 25 highest signal-to-noise disks have a median dust outer radius of 21 au, assuming an {R}-1 dust surface density profile. Our lack of CO detections in the majority of our sample is consistent with these small disk sizes assuming the dust and CO share the same spatial distribution. Of seven disks in our sample with well-constrained dust and CO radii, four appear to be more extended in CO, although this may simply be due to the higher optical depth of the CO. Comparison of the Upper Sco results with recent analyses of disks in Taurus, Ophiuchus, and Lupus suggests that the dust disks in Upper Sco may be approximately three times smaller in size than their younger counterparts, although we caution that a more uniform analysis of the data across all regions is needed. We discuss the implications of these results for disk evolution.

  1. Manipulation of small particles at solid liquid interface: light driven diffusioosmosis.

    PubMed

    Feldmann, David; Maduar, Salim R; Santer, Mark; Lomadze, Nino; Vinogradova, Olga I; Santer, Svetlana

    2016-11-03

    The strong adhesion of sub-micron sized particles to surfaces is a nuisance, both for removing contaminating colloids from surfaces and for conscious manipulation of particles to create and test novel micro/nano-scale assemblies. The obvious idea of using detergents to ease these processes suffers from a lack of control: the action of any conventional surface-modifying agent is immediate and global. With photosensitive azobenzene containing surfactants we overcome these limitations. Such photo-soaps contain optical switches (azobenzene molecules), which upon illumination with light of appropriate wavelength undergo reversible trans-cis photo-isomerization resulting in a subsequent change of the physico-chemical molecular properties. In this work we show that when a spatial gradient in the composition of trans- and cis- isomers is created near a solid-liquid interface, a substantial hydrodynamic flow can be initiated, the spatial extent of which can be set, e.g., by the shape of a laser spot. We propose the concept of light induced diffusioosmosis driving the flow, which can remove, gather or pattern a particle assembly at a solid-liquid interface. In other words, in addition to providing a soap we implement selectivity: particles are mobilized and moved at the time of illumination, and only across the illuminated area.

  2. Infrared absorption spectroscopy and sensing of protein monolayers using high performance enhancing substrates and a mobile phone (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dana, Aykutlu; Ayas, Sencer; Bakan, Gokhan; Ozgur, Erol; Guner, Hasan; Celebi, Kemal

    2016-09-01

    Infrared absorption spectroscopy has greatly benefited from the electromagnetic field enhancement offered by plasmonic surfaces. However, because of the localized nature of plasmonic fields, such field enhancements are limited to nm-scale volumes. Here, we demonstrate that a relatively small, but spatially-uniform field enhancement can yield a superior infrared detection performance compared to the plasmonic field enhancement exhibited by optimized infrared nanoantennas. A specifically designed CaF2/Al thin film surface is shown to enable observation of stronger vibrational signals from the probe material, with wider bandwidth and a deeper spatial extent of the field enhancement as compared to optimized plasmonic surfaces. It is demonstrated that the surface structure presented here can enable chemically specific and label-free detection of organic monolayers using surface enhanced infrared spectroscopy. Also, a low cost hand held infrared absorption measurement setup is demonstrated using a miniature bolometric sensor and a mobile phone. A specifically designed grating in combination with an IR light source yields an IR spectrometer covering 7-12 um range, with about 100 cm-1 resolution. Combining the enhancing substrates with the spectroscopy setup, low cost, high sensitivity mobile infrared sensing is enabled. The results have implications in homeland security and environmental monitoring as well as chemical analysis.

  3. Temporal and Spatial Dynamics of Carbon Storage in California Coastal Salt Marshes

    NASA Astrophysics Data System (ADS)

    Brown, L. N.; MacDonald, G. M.

    2016-12-01

    Coastal salt marshes rank as one of the ecosystems which sequester the most carbon (C) in the world (Chmura, 2003; Mcleod et al., 2011). California hosts multiple small marsh ecosystems outside of the San Francisco Bay that are limited in geographic extent but still contribute significantly to global soil C. We have collected over 100 sediment cores from 11 coastal marsh sites from Humboldt Bay to Tijuana River Estuary on the coast of California. Our 100 cm depth cores cover high, mid, and low elevations in the coastal salt marsh ecosystem, which are known to sequester carbon with varying rates. Approximately 40 cores of the 100 collected cores have been selected for detailed chronologic and stratigraphic analysis, 3 cores at each site minimum. Chronologies are established using 14C, 137Cs, and 210Pb. Our study estimates a carbon sequestration rate of 49 g C m-2 yr-1 for California over the past 100 years. These results are consistent with other long term estimates of soil C, which generally are lower because of natural decomposition of organic C, but also reinforces long-term persistence of soil C in salt marshes over time. These estimates provide valuable proof of the long-term capacity and spatial variability of C sequestration in coastal salt marshes of California.

  4. Manipulation of small particles at solid liquid interface: light driven diffusioosmosis

    NASA Astrophysics Data System (ADS)

    Feldmann, David; Maduar, Salim R.; Santer, Mark; Lomadze, Nino; Vinogradova, Olga I.; Santer, Svetlana

    2016-11-01

    The strong adhesion of sub-micron sized particles to surfaces is a nuisance, both for removing contaminating colloids from surfaces and for conscious manipulation of particles to create and test novel micro/nano-scale assemblies. The obvious idea of using detergents to ease these processes suffers from a lack of control: the action of any conventional surface-modifying agent is immediate and global. With photosensitive azobenzene containing surfactants we overcome these limitations. Such photo-soaps contain optical switches (azobenzene molecules), which upon illumination with light of appropriate wavelength undergo reversible trans-cis photo-isomerization resulting in a subsequent change of the physico-chemical molecular properties. In this work we show that when a spatial gradient in the composition of trans- and cis- isomers is created near a solid-liquid interface, a substantial hydrodynamic flow can be initiated, the spatial extent of which can be set, e.g., by the shape of a laser spot. We propose the concept of light induced diffusioosmosis driving the flow, which can remove, gather or pattern a particle assembly at a solid-liquid interface. In other words, in addition to providing a soap we implement selectivity: particles are mobilized and moved at the time of illumination, and only across the illuminated area.

  5. Pathways of PFOA to the Arctic: variabilities and contributions of oceanic currents and atmospheric transport and chemistry sources

    NASA Astrophysics Data System (ADS)

    Stemmler, I.; Lammel, G.

    2010-10-01

    Perfluorooctanoic acid (PFOA) and other perfluorinated compounds are industrial chemicals in use for decades which resist degradation in the environment and seem to accumulate in polar regions. Transport of PFOA was modeled using a spatially resolved global multicompartment model including fully coupled three-dimensional ocean and atmosphere general circulation models, and two-dimensional top soil, vegetation surfaces, and sea ice compartments. In addition to primary emissions, the formation of PFOA in the atmosphere from degradation of 8:2 fluorotelomer alcohol was included as a PFOA source. Oceanic transport, delivered 14.8±5.0 (8-23) t a-1 to the Arctic, strongly influenced by changes in water transport, which determined its interannual variability. This pathway constituted the dominant source of PFOA to the Arctic. Formation of PFOA in the atmosphere led to episodic transport events (timescale of days) into the Arctic with small spatial extent. Deposition in the polar region was found to be dominated by wet deposition over land, and shows maxima in boreal winter. The total atmospheric deposition of PFOA in the Arctic in the 1990s was ≈1 t a-1, much higher than previously estimated, and is dominated by primary emissions rather than secondary formation.

  6. Pathways of PFOA to the Arctic: variabilities and contributions of oceanic currents and atmospheric transport and chemistry sources

    NASA Astrophysics Data System (ADS)

    Stemmler, I.; Lammel, G.

    2010-05-01

    Perfluorooctanoic acid (PFOA) and other perfluorinated compounds are industrial chemicals in use since decades which resist degradation in the environment and seem to accumulate in polar regions. Transport of PFOA was modeled using a spatially resolved global multicompartment model including fully coupled three-dimensional ocean and atmosphere general circulation models, and two-dimensional top soil, vegetation surfaces, and sea ice compartments. In addition to primary emissions, the formation of PFOA in the atmosphere from degradation of 8:2 fluorotelomer alcohol was included as a PFOA source. Oceanic transport, delivered 14.8±5.0 (8-23) t a-1 to the Arctic, strongly influenced by changes in water transport, which determined its interannual variability. This pathway constituted the dominant source of PFOA to the Arctic. Formation of PFOA in the atmosphere lead to episodic transport events (timescale of days) into the Arctic with small spatial extent. Deposition in the polar region was found to be dominated by wet deposition over land, and shows maxima in boreal winter. The total atmospheric deposition of PFOA in the Arctic in the 1990s was ≍1 t a-1, much higher than previously estimated, and is dominated by primary emissions rather than secondarily formed.

  7. Turn around to have a look? Spatial referencing in dorsal vs. frontal settings in cross-linguistic comparison

    PubMed Central

    Beller, Sieghard; Singmann, Henrik; Hüther, Lisa; Bender, Andrea

    2015-01-01

    When referring to an object in relation to another, speakers of many languages can adopt a relative frame of reference (FoR). Following Levinson (2003), this kind of FoR can be established by projecting an observer's perspective onto the ground object either by translation, reflection, or rotation. So far, research on spatial FoRs has largely ignored the extent of variation in which of these projections are preferred generally, and specifically what kind of FoR is established for spatial arrays in one's back. This may seem justified by assumptions on “natural” preferences: for reflection in frontal settings (Canonical Encounter Hypothesis), and for converting dorsal into frontal situations by a turn of the observer before a reference is made (Turn Hypothesis). We scrutinize these assumptions by comparing the FoRs adopted for small-scale, static spatial arrays by speakers of four languages (German, US-English, Mandarin Chinese, and Tongan). Addressing the problem of inherent ambiguities on the item level when assessing FoRs from spatial prepositions, we use a multinomial processing tree (MPT) model for estimating probabilities of referencing strategies across sets of items. Substantial differences in frontal settings, both between and within languages, disprove the Canonical Encounter Hypothesis—translation occurs as frequently as reflection across samples. In dorsal settings, in contrast, the same type of response dominates in all samples. We suggest that this response is produced by a backward projection of the observer's coordinate system in correspondence with the two main FoR preferences for frontal settings. However, none of these strategies involves a turn of the observer, thus also disproving the Turn Hypothesis. In conclusion, we discuss possible causes of the observed variability, explore links between the domains of space and time, and reflect the relation between language, communication, and culture. PMID:26388802

  8. Small Drinking Water System Variances

    EPA Pesticide Factsheets

    Small system variances allow a small system to install and maintain technology that can remove a contaminant to the maximum extent that is affordable and protective of public health in lieu of technology that can achieve compliance with the regulation.

  9. Oak decline in the Boston Mountains, Arkansas, USA: Spatial and temporal patterns under two fire regimes

    Treesearch

    Martin A. Spetich; Hong S. He

    2008-01-01

    A spatially explicit forest succession and disturbance model is used to delineate the extent and dispersion of oak decline under two fire regimes over a 150-year period. The objectives of this study are to delineate potential current and future oak decline areas using species composition and age structure data in combination with ecological land types, and to...

  10. Spatial and temporal corroboration of a fire-scar-based fire history in a frequently burned ponderosa pine forest

    Treesearch

    Calvin A. Farris; Christopher H. Baisan; Donald A. Falk; Stephen R. Yool; Thomas W. Swetnam

    2010-01-01

    Fire scars are used widely to reconstruct historical fire regime parameters in forests around the world. Because fire scars provide incomplete records of past fire occurrence at discrete points in space, inferences must be made to reconstruct fire frequency and extent across landscapes using spatial networks of fire-scar samples. Assessing the relative accuracy of fire...

  11. Influences of land use on leaf breakdown in Southern Appalachian headwater streams: a multiple-scale analysis

    Treesearch

    R.A. Sponseller; E.F. Benfield

    2001-01-01

    Stream ecosystems can be strongly influenced by land use within watersheds. The extent of this influence may depend on the spatial distribution of developed land and the scale at which it is evaluated. Effects of land-cover patterns on leaf breakdown were studied in 8 Southern Appalachian headwater streams. Using a GIS, land cover was evaluated at several spatial...

  12. Small-scale spatial heterogeneity of ecosystem properties, microbial community composition and microbial activities in a temperate mountain forest soil.

    PubMed

    Štursová, Martina; Bárta, Jiří; Šantrůčková, Hana; Baldrian, Petr

    2016-12-01

    Forests are recognised as spatially heterogeneous ecosystems. However, knowledge of the small-scale spatial variation in microbial abundance, community composition and activity is limited. Here, we aimed to describe the heterogeneity of environmental properties, namely vegetation, soil chemical composition, fungal and bacterial abundance and community composition, and enzymatic activity, in the topsoil in a small area (36 m 2 ) of a highly heterogeneous regenerating temperate natural forest, and to explore the relationships among these variables. The results demonstrated a high level of spatial heterogeneity in all properties and revealed differences between litter and soil. Fungal communities had substantially higher beta-diversity than bacterial communities, which were more uniform and less spatially autocorrelated. In litter, fungal communities were affected by vegetation and appeared to be more involved in decomposition. In the soil, chemical composition affected both microbial abundance and the rates of decomposition, whereas the effect of vegetation was small. Importantly, decomposition appeared to be concentrated in hotspots with increased activity of multiple enzymes. Overall, forest topsoil should be considered a spatially heterogeneous environment in which the mean estimates of ecosystem-level processes and microbial community composition may confound the existence of highly specific microenvironments. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Recent vegetation phenology variability and wild reindeer migration in Hardangervidda plateau (Norway)

    NASA Astrophysics Data System (ADS)

    Courault, Romain; Franclet, Alexiane; Bourrand, Kévin; Bilodeau, Clélia; Saïd, Sonia; Cohen, Marianne

    2018-05-01

    More than others, arctic ecosystems are affected by consequences of global climate changes. The herbivorous plays numerous roles both in Scandinavian natural and cultural landscapes (Forbes et al., 2007). Wild reindeer (Rangifer tarandus L.) herds in Hardangervidda plateau (Norway) constitute one of the isolated populations along Fennoscandia mountain range. The study aims to understand temporal and spatial variability of intra- and inter-annual home ranges extent and geophysical properties. We then characterize phenological variability with Corine Land Cover ecological habitat assessment and bi-monthly NDVI index (MODIS 13Q1, 250 m). Thirdly, we test relationships between reindeer's estimated densities and geophysical factors. All along the study, a Python toolbox ("GRiD") has been mounted and refined to fit with biogeographical expectancies. The toolbox let user's choice of inputs and facilitate then the gathering of raster datasets with given spatial extent of clipping and resolution. The grid generation and cells extraction gives one tabular output, allowing then to easily compute complex geostatistical analysis with regular spreadsheets. Results are based on reindeer's home ranges, associated extent (MODIS tile) and spatial resolution (250 m). Spatial mismatch of 0.6 % has been found between ecological habitat when comparing raw (100 m2) and new dataset (250 m2). Inter-annual home ranges analysis describes differences between inter-seasonal migrations (early spring, end of the summer) and calving or capitalizing times. For intra-annual home ranges, significant correlations have been found between reindeer's estimated densities and both altitudes and phenology. GRiD performance and biogeographical results suggests 1) to enhance geometric accuracy 2) better examine links between estimated densities and NDVI.

  14. Toxicity of sediment pore water in Puget Sound (Washington, USA): a review of spatial status and temporal trends

    USGS Publications Warehouse

    Long, Edward R.; Carr, R. Scott; Biedenbach, James M.; Weakland, Sandra; Partridge, Valerie; Dutch, Margaret

    2013-01-01

    Data from toxicity tests of the pore water extracted from Puget Sound sediments were compiled from surveys conducted from 1997 to 2009. Tests were performed on 664 samples collected throughout all of the eight monitoring regions in the Sound, an area encompassing 2,294.1 km2. Tests were performed with the gametes of the Pacific purple sea urchin, Strongylocentrotus purpuratus, to measure percent fertilization success as an indicator of relative sediment quality. Data were evaluated to determine the incidence, degree of response, geographic patterns, spatial extent, and temporal changes in toxicity. This is the first survey of this kind and magnitude in Puget Sound. In the initial round of surveys of the eight regions, 40 of 381 samples were toxic for an incidence of 10.5 %. Stations classified as toxic represented an estimated total of 107.1 km2, equivalent to 4.7 % of the total area. Percent sea urchin fertilization ranged from >100 % of the nontoxic, negative controls to 0 %. Toxicity was most prevalent and pervasive in the industrialized harbors and lowest in the deep basins. Conditions were intermediate in deep-water passages, urban bays, and rural bays. A second round of testing in four regions and three selected urban bays was completed 5–10 years following the first round. The incidence and spatial extent of toxicity decreased in two of the regions and two of the bays and increased in the other two regions and the third bay; however, only the latter change was statistically significant. Both the incidence and spatial extent of toxicity were lower in the Sound than in most other US estuaries and marine bays.

  15. Spatial Distribution of Small Water Body Types across Indiana Ecoregions

    EPA Science Inventory

    Due to their large numbers and biogeochemical activity, small water bodies (SWB), such as ponds and wetlands, can have substantial cumulative effects on hydrologic, biogeochemical, and biological processes; yet the spatial distributions of various SWB types are often unknown. Usi...

  16. Casein polymorphism heterogeneity influences casein micelle size in milk of individual cows.

    PubMed

    Day, L; Williams, R P W; Otter, D; Augustin, M A

    2015-06-01

    Milk samples from individual cows producing small (148-155 nm) or large (177-222 nm) casein micelles were selected to investigate the relationship between the individual casein proteins, specifically κ- and β-casein phenotypes, and casein micelle size. Only κ-casein AA and β-casein A1A1, A1A2 and A2A2 phenotypes were found in the large casein micelle group. Among the small micelle group, both κ-casein and β-casein phenotypes were more diverse. κ-Casein AB was the dominant phenotype, and 3 combinations (AA, AB, and BB) were present in the small casein micelle group. A considerable mix of β-casein phenotypes was found, including B and I variants, which were only found in the small casein micelle group. The relative amount of κ-casein to total casein was significantly higher in the small micelle group, and the nonglycosylated and glycosylated κ-casein contents were higher in the milks with small casein micelles (primarily with κ-casein AB and BB variants) compared with the large micelle group. The ratio of glycosylated to nonglycosylated κ-casein was higher in the milks with small casein micelles compared with the milks with large casein micelles. This suggests that although the amount of κ-casein (both glycosylated and nonglycosylated) is associated with micelle size, an increased proportion of glycosylated κ-casein could be a more important and favorable factor for small micelle size. This suggests that the increased spatial requirement due to addition of the glycosyl group with increasing extent of glycosylation of κ-casein is one mechanism that controls casein micelle assembly and growth. In addition, increased electrostatic repulsion due to the sialyl residues on the glycosyl group could be a contributory factor. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Antarctic Sea Ice-Atmosphere Interactions: A Self-organizing Map-based Perspective

    NASA Astrophysics Data System (ADS)

    Reusch, D. B.

    2005-12-01

    Interactions between the ocean, sea ice and the atmosphere are a significant component of the dynamic nature of the Earth's climate system. Self-organizing maps (SOMs), an analysis tool from the field of artificial neural networks, have been used to study variability in Antarctic sea ice extent and the West Antarctic atmospheric circulation, plus the relationship and interactions between these two systems. Self-organizing maps enable unsupervised classification of large, multivariate/multidimensional data sets, e.g., time series of the atmospheric circulation or sea-ice extent, into a fixed number of distinct generalized states or modes, organized spatially as a two-dimensional grid, that are representative of the input data. When applied to atmospheric data, the analysis yields a nonlinear classification of the continuum of atmospheric conditions. In contrast to principal component analysis, SOMs do not force orthogonality or require subjective rotations to produce interpretable patterns. Twenty four years (1973-96) of monthly sea ice extent data (10 deg longitude bands; Simmonds and Jacka, 1995) were analyzed with a 30-node SOM. The resulting set of generalized patterns concisely captures the spatial and temporal variability in this data. An example of the former is variability in the longitudinal region of greatest extent. The SOM patterns readily show that there are multiple spatial patterns corresponding to "greatest extent conditions". Temporal variability is examined by creating frequency maps (i.e., which patterns occur most often) by month. With the annual cycle still in the data, the monthly frequency maps show a cycle moving from least extent, through expansion to greatest extent and back through retreat. When plotted in "SOM space", month-to-month transitions occur at different rates of change, suggesting that there is variability in the rate of change in extent at different times of the year, e.g., retreat in January is faster than November. Twenty five years (1977-2001) of monthly 500 mb temperature and pressure data (from the ECMWF 40-year reanalysis, ERA-40) from a region centered on the Antarctic Peninsula were analyzed independently for a separate SOMs-based study. Dominant SOM temperature patterns include the expected summer warmth and winter cold, plus "dipoles" of warm Atlantic (Pacific) and cold Pacific (Atlantic) sectors (with corresponding pressure patterns). Temporally, there is the expected annual progression from warmth, through cooling and back to warmth, with no particularly predominant patterns in many of the monthly frequency maps when the full record is used. Stratifying by high/low values of the Southern Oscillation Index (SOI) suggests that the spatial patterns of cooling and warming may be related to conditions in the tropical Pacific: in a low SOI year (1987), cooling and warming both begin in the Atlantic sector, with the opposite true in a high SOI year (1989). Further study of this aspect is planned. In addition to direct comparisons of the SOM analysis results from each study, a joint SOM analysis will be done on the combined data sets, exploiting the flexibility and power of this technique. We anticipate additional useful insights into the joint variability and relationships between Antarctic sea ice and the overlying atmosphere through this expanded analysis.

  18. Spatial Variability of Snowpack Properties On Small Slopes

    NASA Astrophysics Data System (ADS)

    Pielmeier, C.; Kronholm, K.; Schneebeli, M.; Schweizer, J.

    The spatial variability of alpine snowpacks is created by a variety of parameters like deposition, wind erosion, sublimation, melting, temperature, radiation and metamor- phism of the snow. Spatial variability is thought to strongly control the avalanche initi- ation and failure propagation processes. Local snowpack measurements are currently the basis for avalanche warning services and there exist contradicting hypotheses about the spatial continuity of avalanche active snow layers and interfaces. Very little about the spatial variability of the snowpack is known so far, therefore we have devel- oped a systematic and objective method to measure the spatial variability of snowpack properties, layering and its relation to stability. For a complete coverage, the analysis of the spatial variability has to entail all scales from mm to km. In this study the small to medium scale spatial variability is investigated, i.e. the range from centimeters to tenths of meters. During the winter 2000/2001 we took systematic measurements in lines and grids on a flat snow test field with grid distances from 5 cm to 0.5 m. Fur- thermore, we measured systematic grids with grid distances between 0.5 m and 2 m in undisturbed flat fields and on small slopes above the tree line at the Choerbschhorn, in the region of Davos, Switzerland. On 13 days we measured the spatial pattern of the snowpack stratigraphy with more than 110 snow micro penetrometer measure- ments at slopes and flat fields. Within this measuring grid we placed 1 rutschblock and 12 stuffblock tests to measure the stability of the snowpack. With the large num- ber of measurements we are able to use geostatistical methods to analyse the spatial variability of the snowpack. Typical correlation lengths are calculated from semivari- ograms. Discerning the systematic trends from random spatial variability is analysed using statistical models. Scale dependencies are shown and recurring scaling patterns are outlined. The importance of the small and medium scale spatial variability for the larger (kilometer) scale spatial variability as well as for the avalanche formation are discussed. Finally, an outlook on spatial models for the snowpack variability is given.

  19. High resolution climate scenarios for snowmelt modelling in small alpine catchments

    NASA Astrophysics Data System (ADS)

    Schirmer, M.; Peleg, N.; Burlando, P.; Jonas, T.

    2017-12-01

    Snow in the Alps is affected by climate change with regard to duration, timing and amount. This has implications with respect to important societal issues as drinking water supply or hydropower generation. In Switzerland, the latter received a lot of attention following the political decision to phase out of nuclear electricity production. An increasing number of authorization requests for small hydropower plants located in small alpine catchments was observed in the recent years. This situation generates ecological conflicts, while the expected climate change poses a threat to water availability thus putting at risk investments in such hydropower plants. Reliable high-resolution climate scenarios are thus required, which account for small-scale processes to achieve realistic predictions of snowmelt runoff and its variability in small alpine catchments. We therefore used a novel model chain by coupling a stochastic 2-dimensional weather generator (AWE-GEN-2d) with a state-of-the-art energy balance snow cover model (FSM). AWE-GEN-2d was applied to generate ensembles of climate variables at very fine temporal and spatial resolution, thus providing all climatic input variables required for the energy balance modelling. The land-surface model FSM was used to describe spatially variable snow cover accumulation and melt processes. The FSM was refined to allow applications at very high spatial resolution by specifically accounting for small-scale processes, such as a subgrid-parametrization of snow covered area or an improved representation of forest-snow processes. For the present study, the model chain was tested for current climate conditions using extensive observational dataset of different spatial and temporal coverage. Small-scale spatial processes such as elevation gradients or aspect differences in the snow distribution were evaluated using airborne LiDAR data. 40-year of monitoring data for snow water equivalent, snowmelt and snow-covered area for entire Switzerland was used to verify snow distribution patterns at coarser spatial and temporal scale. The ability of the model chain to reproduce current climate conditions in small alpine catchments makes this model combination an outstanding candidate to produce high resolution climate scenarios of snowmelt in small alpine catchments.

  20. Extent, Causes, and Consequences of Small RNA Expression Variation in Human Adipose Tissue

    PubMed Central

    Knights, Andrew J.; Abreu-Goodger, Cei; van de Bunt, Martijn; Guerra-Assunção, José Afonso; Bartonicek, Nenad; van Dongen, Stijn; Mägi, Reedik; Nisbet, James; Barrett, Amy; Rantalainen, Mattias; Nica, Alexandra C.; Quail, Michael A.; Small, Kerrin S.; Glass, Daniel; Enright, Anton J.; Winn, John; Deloukas, Panos; Dermitzakis, Emmanouil T.; McCarthy, Mark I.; Spector, Timothy D.; Durbin, Richard; Lindgren, Cecilia M.

    2012-01-01

    Small RNAs are functional molecules that modulate mRNA transcripts and have been implicated in the aetiology of several common diseases. However, little is known about the extent of their variability within the human population. Here, we characterise the extent, causes, and effects of naturally occurring variation in expression and sequence of small RNAs from adipose tissue in relation to genotype, gene expression, and metabolic traits in the MuTHER reference cohort. We profiled the expression of 15 to 30 base pair RNA molecules in subcutaneous adipose tissue from 131 individuals using high-throughput sequencing, and quantified levels of 591 microRNAs and small nucleolar RNAs. We identified three genetic variants and three RNA editing events. Highly expressed small RNAs are more conserved within mammals than average, as are those with highly variable expression. We identified 14 genetic loci significantly associated with nearby small RNA expression levels, seven of which also regulate an mRNA transcript level in the same region. In addition, these loci are enriched for variants significant in genome-wide association studies for body mass index. Contrary to expectation, we found no evidence for negative correlation between expression level of a microRNA and its target mRNAs. Trunk fat mass, body mass index, and fasting insulin were associated with more than twenty small RNA expression levels each, while fasting glucose had no significant associations. This study highlights the similar genetic complexity and shared genetic control of small RNA and mRNA transcripts, and gives a quantitative picture of small RNA expression variation in the human population. PMID:22589741

  1. Early development of spatial-numeric associations: evidence from spatial and quantitative performance of preschoolers.

    PubMed

    Opfer, John E; Thompson, Clarissa A; Furlong, Ellen E

    2010-09-01

    Numeric magnitudes often bias adults' spatial performance. Partly because the direction of this bias (left-to-right versus right-to-left) is culture-specific, it has been assumed that the orientation of spatial-numeric associations is a late development, tied to reading practice or schooling. Challenging this assumption, we found that preschoolers expected numbers to be ordered from left-to-right when they searched for objects in numbered containers, when they counted, and (to a lesser extent) when they added and subtracted. Further, preschoolers who lacked these biases demonstrated more immature, logarithmic representations of numeric value than preschoolers who exhibited the directional bias, suggesting that spatial-numeric associations aid magnitude representations for symbols denoting increasingly large numbers.

  2. Detecting peatland drains with Object Based Image Analysis and Geoeye-1 imagery.

    PubMed

    Connolly, J; Holden, N M

    2017-12-01

    Peatlands play an important role in the global carbon cycle. They provide important ecosystem services including carbon sequestration and storage. Drainage disturbs peatland ecosystem services. Mapping drains is difficult and expensive and their spatial extent is, in many cases, unknown. An object based image analysis (OBIA) was performed on a very high resolution satellite image (Geoeye-1) to extract information about drain location and extent on a blanket peatland in Ireland. Two accuracy assessment methods: Error matrix and the completeness, correctness and quality (CCQ) were used to assess the extracted data across the peatland and at several sub sites. The cost of the OBIA method was compared with manual digitisation and field survey. The drain maps were also used to assess the costs relating to blocking drains vs. a business-as-usual scenario and estimating the impact of each on carbon fluxes at the study site. The OBIA method performed well at almost all sites. Almost 500 km of drains were detected within the peatland. In the error matrix method, overall accuracy (OA) of detecting the drains was 94% and the kappa statistic was 0.66. The OA for all sub-areas, except one, was 95-97%. The CCQ was 85%, 85% and 71% respectively. The OBIA method was the most cost effective way to map peatland drains and was at least 55% cheaper than either field survey or manual digitisation, respectively. The extracted drain maps were used constrain the study area CO 2 flux which was 19% smaller than the prescribed Peatland Code value for drained peatlands. The OBIA method used in this study showed that it is possible to accurately extract maps of fine scale peatland drains over large areas in a cost effective manner. The development of methods to map the spatial extent of drains is important as they play a critical role in peatland carbon dynamics. The objective of this study was to extract data on the spatial extent of drains on a blanket bog in the west of Ireland. The results show that information on drain extent and location can be extracted from high resolution imagery and mapped with a high degree of accuracy. Under Article 3.4 of the Kyoto Protocol Annex 1 parties can account for greenhouse gas emission by sources and removals by sinks resulting from "wetlands drainage and rewetting". The ability to map the spatial extent, density and location of peatlands drains means that Annex 1 parties can develop strategies for drain blocking to aid reduction of CO 2 emissions, DOC runoff and water discoloration. This paper highlights some uncertainty around using one-size-fits-all emission factors for GHG in drained peatlands and re-wetting scenarios. However, the OBIA method is robust and accurate and could be used to assess the extent of drains in peatlands across the globe aiding the refinement of peatland carbon dynamics .

  3. Detecting peatland drains with Object Based Image Analysis and Geoeye-1 imagery.

    PubMed

    Connolly, J; Holden, N M

    2017-12-01

    Peatlands play an important role in the global carbon cycle. They provide important ecosystem services including carbon sequestration and storage. Drainage disturbs peatland ecosystem services. Mapping drains is difficult and expensive and their spatial extent is, in many cases, unknown. An object based image analysis (OBIA) was performed on a very high resolution satellite image (Geoeye-1) to extract information about drain location and extent on a blanket peatland in Ireland. Two accuracy assessment methods: Error matrix and the completeness, correctness and quality ( CCQ ) were used to assess the extracted data across the peatland and at several sub sites. The cost of the OBIA method was compared with manual digitisation and field survey. The drain maps were also used to assess the costs relating to blocking drains vs. a business-as-usual scenario and estimating the impact of each on carbon fluxes at the study site. The OBIA method performed well at almost all sites. Almost 500 km of drains were detected within the peatland. In the error matrix method, overall accuracy (OA) of detecting the drains was 94% and the kappa statistic was 0.66. The OA for all sub-areas, except one, was 95-97%. The CCQ was 85%, 85% and 71% respectively. The OBIA method was the most cost effective way to map peatland drains and was at least 55% cheaper than either field survey or manual digitisation, respectively. The extracted drain maps were used constrain the study area CO 2 flux which was 19% smaller than the prescribed Peatland Code value for drained peatlands. The OBIA method used in this study showed that it is possible to accurately extract maps of fine scale peatland drains over large areas in a cost effective manner. The development of methods to map the spatial extent of drains is important as they play a critical role in peatland carbon dynamics. The objective of this study was to extract data on the spatial extent of drains on a blanket bog in the west of Ireland. The results show that information on drain extent and location can be extracted from high resolution imagery and mapped with a high degree of accuracy. Under Article 3.4 of the Kyoto Protocol Annex 1 parties can account for greenhouse gas emission by sources and removals by sinks resulting from "wetlands drainage and rewetting". The ability to map the spatial extent, density and location of peatlands drains means that Annex 1 parties can develop strategies for drain blocking to aid reduction of CO 2 emissions, DOC runoff and water discoloration. This paper highlights some uncertainty around using one-size-fits-all emission factors for GHG in drained peatlands and re-wetting scenarios. However, the OBIA method is robust and accurate and could be used to assess the extent of drains in peatlands across the globe aiding the refinement of peatland carbon dynamics .

  4. The underlying processes of a soil mite metacommunity on a small scale.

    PubMed

    Dong, Chengxu; Gao, Meixiang; Guo, Chuanwei; Lin, Lin; Wu, Donghui; Zhang, Limin

    2017-01-01

    Metacommunity theory provides an understanding of how ecological processes regulate local community assemblies. However, few field studies have evaluated the underlying mechanisms of a metacommunity on a small scale through revealing the relative roles of spatial and environmental filtering in structuring local community composition. Based on a spatially explicit sampling design in 2012 and 2013, this study aims to evaluate the underlying processes of a soil mite metacommunity on a small spatial scale (50 m) in a temperate deciduous forest located at the Maoershan Ecosystem Research Station, Northeast China. Moran's eigenvector maps (MEMs) were used to model independent spatial variables. The relative importance of spatial (including trend variables, i.e., geographical coordinates, and broad- and fine-scale spatial variables) and environmental factors in driving the soil mite metacommunity was determined by variation partitioning. Mantel and partial Mantel tests and a redundancy analysis (RDA) were also used to identify the relative contributions of spatial and environmental variables. The results of variation partitioning suggested that the relatively large and significant variance was a result of spatial variables (including broad- and fine-scale spatial variables and trend), indicating the importance of dispersal limitation and autocorrelation processes. The significant contribution of environmental variables was detected in 2012 based on a partial Mantel test, and soil moisture and soil organic matter were especially important for the soil mite metacommunity composition in both years. The study suggested that the soil mite metacommunity was primarily regulated by dispersal limitation due to broad-scale and neutral biotic processes at a fine-scale and that environmental filtering might be of subordinate importance. In conclusion, a combination of metacommunity perspectives between neutral and species sorting theories was suggested to be important in the observed structure of the soil mite metacommunity at the studied small scale.

  5. The underlying processes of a soil mite metacommunity on a small scale

    PubMed Central

    Guo, Chuanwei; Lin, Lin; Wu, Donghui; Zhang, Limin

    2017-01-01

    Metacommunity theory provides an understanding of how ecological processes regulate local community assemblies. However, few field studies have evaluated the underlying mechanisms of a metacommunity on a small scale through revealing the relative roles of spatial and environmental filtering in structuring local community composition. Based on a spatially explicit sampling design in 2012 and 2013, this study aims to evaluate the underlying processes of a soil mite metacommunity on a small spatial scale (50 m) in a temperate deciduous forest located at the Maoershan Ecosystem Research Station, Northeast China. Moran’s eigenvector maps (MEMs) were used to model independent spatial variables. The relative importance of spatial (including trend variables, i.e., geographical coordinates, and broad- and fine-scale spatial variables) and environmental factors in driving the soil mite metacommunity was determined by variation partitioning. Mantel and partial Mantel tests and a redundancy analysis (RDA) were also used to identify the relative contributions of spatial and environmental variables. The results of variation partitioning suggested that the relatively large and significant variance was a result of spatial variables (including broad- and fine-scale spatial variables and trend), indicating the importance of dispersal limitation and autocorrelation processes. The significant contribution of environmental variables was detected in 2012 based on a partial Mantel test, and soil moisture and soil organic matter were especially important for the soil mite metacommunity composition in both years. The study suggested that the soil mite metacommunity was primarily regulated by dispersal limitation due to broad-scale and neutral biotic processes at a fine-scale and that environmental filtering might be of subordinate importance. In conclusion, a combination of metacommunity perspectives between neutral and species sorting theories was suggested to be important in the observed structure of the soil mite metacommunity at the studied small scale. PMID:28481906

  6. General practitioner (family physician) workforce in Australia: comparing geographic data from surveys, a mailing list and medicare

    PubMed Central

    2013-01-01

    Background Good quality spatial data on Family Physicians or General Practitioners (GPs) are key to accurately measuring geographic access to primary health care. The validity of computed associations between health outcomes and measures of GP access such as GP density is contingent on geographical data quality. This is especially true in rural and remote areas, where GPs are often small in number and geographically dispersed. However, there has been limited effort in assessing the quality of nationally comprehensive, geographically explicit, GP datasets in Australia or elsewhere. Our objective is to assess the extent of association or agreement between different spatially explicit nationwide GP workforce datasets in Australia. This is important since disagreement would imply differential relationships with primary healthcare relevant outcomes with different datasets. We also seek to enumerate these associations across categories of rurality or remoteness. Method We compute correlations of GP headcounts and workload contributions between four different datasets at two different geographical scales, across varying levels of rurality and remoteness. Results The datasets are in general agreement with each other at two different scales. Small numbers of absolute headcounts, with relatively larger fractions of locum GPs in rural areas cause unstable statistical estimates and divergences between datasets. Conclusion In the Australian context, many of the available geographic GP workforce datasets may be used for evaluating valid associations with health outcomes. However, caution must be exercised in interpreting associations between GP headcounts or workloads and outcomes in rural and remote areas. The methods used in these analyses may be replicated in other locales with multiple GP or physician datasets. PMID:24005003

  7. Effects of distribution density and cell dimension of 3D vegetation model on canopy NDVI simulation base on DART

    NASA Astrophysics Data System (ADS)

    Tao, Zhu; Shi, Runhe; Zeng, Yuyan; Gao, Wei

    2017-09-01

    The 3D model is an important part of simulated remote sensing for earth observation. Regarding the small-scale spatial extent of DART software, both the details of the model itself and the number of models of the distribution have an important impact on the scene canopy Normalized Difference Vegetation Index (NDVI).Taking the phragmitesaustralis in the Yangtze Estuary as an example, this paper studied the effect of the P.australias model on the canopy NDVI, based on the previous studies of the model precision, mainly from the cell dimension of the DART software and the density distribution of the P.australias model in the scene, As well as the choice of the density of the P.australiass model under the cost of computer running time in the actual simulation. The DART Cell dimensions and the density of the scene model were set by using the optimal precision model from the existing research results. The simulation results of NDVI with different model densities under different cell dimensions were analyzed by error analysis. By studying the relationship between relative error, absolute error and time costs, we have mastered the density selection method of P.australias model in the simulation of small-scale spatial scale scene. Experiments showed that the number of P.australias in the simulated scene need not be the same as those in the real environment due to the difference between the 3D model and the real scenarios. The best simulation results could be obtained by keeping the density ratio of about 40 trees per square meter, simultaneously, of the visual effects.

  8. UAS Developments Supporting Wildfire Observations

    NASA Astrophysics Data System (ADS)

    Ambrosia, V. G.; Dahlgren, R. P.; Watts, A.; Reynolds, K. W.; Ball, T.

    2014-12-01

    Wildfires are regularly occurring emergency events that threaten life, property, and natural resources in every U.S. State and many countries around the world. Despite projections that $1.8 billion will be spent by U.S. Federal agencies alone on wildfires in 2014, the decades-long trend of increasing fire size, severity, and cost is expected to continue. Furthermore, the enormous potential for UAS (and concomitant sensor systems) to serve as geospatial intelligence tools to improve the safety and effectiveness of fire management, and our ability to forecast fire and smoke movements, remains barely tapped. Although orbital sensor assets are can provide the geospatial extent of wildfires, generally those resources are limited in use due to their spatial and temporal resolution limitations. These two critical elements make orbital assets of limited utility for tactical, real-time wildfire management, or for continuous scientific analysis of the temporal dynamics related to fire energy release rates and plume concentrations that vary significantly thru a fire's progression. Large UAS platforms and sensors can and have been used to monitor wildfire events at improved temporal, spatial and radiometric scales, but more focus is being placed on the use of small UAS (sUAS) and sensors to support wildfire observation strategies. The use of sUAS is therefore more critical for TACTICAL management purposes, rather than strategic observations, where small-scale fire developments are critical to understand. This paper will highlight the historical development and use of UAS for fire observations, as well as the current shift in focus to smaller, more affordable UAS for more rapid integration into operational use on wildfire events to support tactical observation strategies, and support wildfire science measurement inprovements.

  9. Restricted mating dispersal and strong breeding group structure in a mid-sized marsupial mammal (Petrogale penicillata).

    PubMed

    Hazlitt, S L; Sigg, D P; Eldridge, M D B; Goldizen, A W

    2006-09-01

    Ecological genetic studies have demonstrated that spatial patterns of mating dispersal, the dispersal of gametes through mating behaviour, can facilitate inbreeding avoidance and strongly influence the structure of populations, particularly in highly philopatric species. Elements of breeding group dynamics, such as strong structuring and sex-biased dispersal among groups, can also minimize inbreeding and positively influence levels of genetic diversity within populations. Rock-wallabies are highly philopatric mid-sized mammals whose strong dependence on rocky terrain has resulted in series of discreet, small colonies in the landscape. Populations show no signs of inbreeding and maintain high levels of genetic diversity despite strong patterns of limited gene flow within and among colonies. We used this species to investigate the importance of mating dispersal and breeding group structure to inbreeding avoidance within a 'small' population. We examined the spatial patterns of mating dispersal, the extent of kinship within breeding groups, and the degree of relatedness among brush-tailed rock-wallaby breeding pairs within a colony in southeast Queensland. Parentage data revealed remarkably restricted mating dispersal and strong breeding group structuring for a mid-sized mammal. Breeding groups showed significant levels of female kinship with evidence of male dispersal among groups. We found no evidence for inbreeding avoidance through mate choice; however, anecdotal data suggest the importance of life history traits to inbreeding avoidance between first-degree relatives. We suggest that the restricted pattern of mating dispersal and strong breeding group structuring facilitates inbreeding avoidance within colonies. These results provide insight into the population structure and maintenance of genetic diversity within colonies of the threatened brush-tailed rock-wallaby.

  10. Spatial Acuity and Prey Detection in Weakly Electric Fish

    PubMed Central

    Babineau, David; Lewis, John E; Longtin, André

    2007-01-01

    It is well-known that weakly electric fish can exhibit extreme temporal acuity at the behavioral level, discriminating time intervals in the submicrosecond range. However, relatively little is known about the spatial acuity of the electrosense. Here we use a recently developed model of the electric field generated by Apteronotus leptorhynchus to study spatial acuity and small signal extraction. We show that the quality of sensory information available on the lateral body surface is highest for objects close to the fish's midbody, suggesting that spatial acuity should be highest at this location. Overall, however, this information is relatively blurry and the electrosense exhibits relatively poor acuity. Despite this apparent limitation, weakly electric fish are able to extract the minute signals generated by small prey, even in the presence of large background signals. In fact, we show that the fish's poor spatial acuity may actually enhance prey detection under some conditions. This occurs because the electric image produced by a spatially dense background is relatively “blurred” or spatially uniform. Hence, the small spatially localized prey signal “pops out” when fish motion is simulated. This shows explicitly how the back-and-forth swimming, characteristic of these fish, can be used to generate motion cues that, as in other animals, assist in the extraction of sensory information when signal-to-noise ratios are low. Our study also reveals the importance of the structure of complex electrosensory backgrounds. Whereas large-object spacing is favorable for discriminating the individual elements of a scene, small spacing can increase the fish's ability to resolve a single target object against this background. PMID:17335346

  11. [Hierarchical regionalization for spatial epidemiology: a case study of thyroid cancer incidence in Yiwu, Zhejiang].

    PubMed

    Teng, Shizhu; Jia, Qiaojuan; Huang, Yijian; Chen, Liangcao; Fei, Xufeng; Wu, Jiaping

    2015-10-01

    Sporadic cases occurring in mall geographic unit could lead to extreme value of incidence due to the small population bases, which would influence the analysis of actual incidence. This study introduced a method of hierarchy clustering and partitioning regionalization, which integrates areas with small population into larger areas with enough population by using Geographic Information System (GIS) based on the principles of spatial continuity and geographical similarity (homogeneity test). This method was applied in spatial epidemiology by using a data set of thyroid cancer incidence in Yiwu, Zhejiang province, between 2010 and 2013. Thyroid cancer incidence data were more reliable and stable in the new regionalized areas. Hotspot analysis (Getis-Ord) on the incidence in new areas indicated that there was obvious case clustering in the central area of Yiwu. This method can effectively solve the problem of small population base in small geographic units in spatial epidemiological analysis of thyroid cancer incidence and can be used for other diseases and in other areas.

  12. Spatial strategies for managing visitor impacts in National Parks

    USGS Publications Warehouse

    Leung, Y.-F.; Marion, J.L.

    1999-01-01

    Resource and social impacts caused by recreationists and tourists have become a management concern in national parks and equivalent protected areas. The need to contain visitor impacts within acceptable limits has prompted park and protected area managers to implement a wide variety of strategies and actions, many of which are spatial in nature. This paper classifies and illustrates the basic spatial strategies for managing visitor impacts in parks and protected areas. A typology of four spatial strategies was proposed based on the recreation and park management literature. Spatial segregation is a common strategy for shielding sensitive resources from visitor impacts or for separating potentially conflicting types of use. Two forms of spatial segregation are zoning and closure. A spatial containment strategy is intended to minimize the aggregate extent of visitor impacts by confining use to limited designated or established Iocations. In contrast, a spatial dispersal strategy seeks to spread visitor use, reducing the frequency of use to levels that avoid or minimize permanent resource impacts or visitor crowding and conflict. Finally, a spatial configuration strategy minimizes impacting visitor behavior though the judicious spatial arrangement of facilities. These four spatial strategics can be implemented separately or in combination at varying spatial scales within a single park. A survey of national park managers provides an empirical example of the diversity of implemented spatial strategies in managing visitor impacts. Spatial segregation is frequently applied in the form of camping restrictions or closures to protect sensitive natural or cultural resources and to separate incompatible visitor activities. Spatial containment is the most widely applied strategy for minimizing the areal extent of resource impacts. Spatial dispersal is commonly applied to reduce visitor crowding or conflicts in popular destination areas but is less frequently applied or effective in minimizing resource impacts. Spatial configuration was only minimally evaluated, as it was not included in the survey. The proposed typology of spatial strategies offers a useful means of organizing and understanding the wide variety of management strategies and actions applied in managing visitor impacts in parks and protected areas. Examples from U.S. national parks demonstrate the diversity of these basic strategies and their flexibility in implementation at various spatial scales. Documentation of these examples helps illustrate their application and inform managers of the multitude of options. Further analysis from the spatial perspective is needed Io extend the applicability of this typology to other recreational activities and management issues.

  13. Modeling Culex tarsalis abundance on the northern Colorado front range using a landscape-level approach.

    PubMed

    Schurich, Jessica A; Kumar, Sunil; Eisen, Lars; Moore, Chester G

    2014-03-01

    Remote sensing and Geographic Information System (GIS) data can be used to identify larval mosquito habitats and predict species distribution and abundance across a landscape. An understanding of the landscape features that impact abundance and dispersal can then be applied operationally in mosquito control efforts to reduce the transmission of mosquito-borne pathogens. In an effort to better understand the effects of landscape heterogeneity on the abundance of the West Nile virus (WNV) vector Culex tarsalis, we determined associations between GIS-based environmental data at multiple spatial extents and monthly abundance of adult Cx. tarsalis in Larimer County and Weld County, CO. Mosquito data were collected from Centers for Disease Control and Prevention miniature light traps operated as part of local WNV surveillance efforts. Multiple regression models were developed for prediction of monthly Cx. tarsalis abundance for June, July, and August using 4 years of data collected over 2007-10. The models explained monthly adult mosquito abundance with accuracies ranging from 51-61% in Fort Collins and 57-88% in Loveland-Johnstown. Models derived using landscape-level predictors indicated that adult Cx. tarsalis abundance is negatively correlated with elevation. In this case, low-elevation areas likely more abundantly include habitats for Cx. tarsalis. Model output indicated that the perimeter of larval sites is a significant predictor of Cx. tarsalis abundance at a spatial extent of 500 m in Loveland-Johnstown in all months examined. The contribution of irrigated crops at a spatial extent of 500 m improved model fit in August in both Fort Collins and Loveland-Johnstown. These results emphasize the significance of irrigation and the manual control of water across the landscape to provide viable larval habitats for Cx. tarsalis in the study area. Results from multiple regression models can be applied operationally to identify areas of larval Cx. tarsalis production (irrigated crops lands and standing water) and assign priority in larval treatments to areas with a high density of larval sites at relevant spatial extents around urban locations.

  14. Multi-Point Measurements to Characterize Radiation Belt Electron Precipitation Loss

    NASA Astrophysics Data System (ADS)

    Blum, L. W.

    2017-12-01

    Multipoint measurements in the inner magnetosphere allow the spatial and temporal evolution of various particle populations and wave modes to be disentangled. To better characterize and quantify radiation belt precipitation loss, we utilize multi-point measurements both to study precipitating electrons directly as well as the potential drivers of this loss process. Magnetically conjugate CubeSat and balloon measurements are combined to estimate of the temporal and spatial characteristics of dusk-side precipitation features and quantify loss due to these events. To then understand the drivers of precipitation events, and what determines their spatial structure, we utilize measurements from the dual Van Allen Probes to estimate spatial and temporal scales of various wave modes in the inner magnetosphere, and compare these to precipitation characteristics. The structure, timing, and spatial extent of waves are compared to those of MeV electron precipitation during a few individual events to determine when and where EMIC waves cause radiation belt electron precipitation. Magnetically conjugate measurements provide observational support of the theoretical picture of duskside interaction of EMIC waves and MeV electrons leading to radiation belt loss. Finally, understanding the drivers controlling the spatial scales of wave activity in the inner magnetosphere is critical for uncovering the underlying physics behind the wave generation as well as for better predicting where and when waves will be present. Again using multipoint measurements from the Van Allen Probes, we estimate the spatial and temporal extents and evolution of plasma structures and their gradients in the inner magnetosphere, to better understand the drivers of magnetospheric wave characteristic scales. In particular, we focus on EMIC waves and the plasma parameters important for their growth, namely cold plasma density and cool and warm ion density, anisotropy, and composition.

  15. 48 CFR 2452.215-72 - Evaluation of small business participation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... of Provisions and Clauses 2452.215-72 Evaluation of small business participation. As prescribed in 2415.370, insert the following provision: Evaluation Of Small Business Participation (DEC 2012) (a) In... will evaluate the extent to which all offerors identify and commit to using small businesses in the...

  16. 48 CFR 2452.215-72 - Evaluation of small business participation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... of Provisions and Clauses 2452.215-72 Evaluation of small business participation. As prescribed in 2415.370, insert the following provision: Evaluation Of Small Business Participation (DEC 2012) (a) In... will evaluate the extent to which all offerors identify and commit to using small businesses in the...

  17. Detecting small-scale spatial heterogeneity and temporal dynamics of soil organic carbon (SOC) stocks: a comparison between automatic chamber-derived C budgets and repeated soil inventories

    NASA Astrophysics Data System (ADS)

    Hoffmann, Mathias; Jurisch, Nicole; Garcia Alba, Juana; Albiac Borraz, Elisa; Schmidt, Marten; Huth, Vytas; Rogasik, Helmut; Rieckh, Helene; Verch, Gernot; Sommer, Michael; Augustin, Jürgen

    2017-03-01

    Carbon (C) sequestration in soils plays a key role in the global C cycle. It is therefore crucial to adequately monitor dynamics in soil organic carbon (ΔSOC) stocks when aiming to reveal underlying processes and potential drivers. However, small-scale spatial (10-30 m) and temporal changes in SOC stocks, particularly pronounced in arable lands, are hard to assess. The main reasons for this are limitations of the well-established methods. On the one hand, repeated soil inventories, often used in long-term field trials, reveal spatial patterns and trends in ΔSOC but require a longer observation period and a sufficient number of repetitions. On the other hand, eddy covariance measurements of C fluxes towards a complete C budget of the soil-plant-atmosphere system may help to obtain temporal ΔSOC patterns but lack small-scale spatial resolution. To overcome these limitations, this study presents a reliable method to detect both short-term temporal dynamics as well as small-scale spatial differences of ΔSOC using measurements of the net ecosystem carbon balance (NECB) as a proxy. To estimate the NECB, a combination of automatic chamber (AC) measurements of CO2 exchange and empirically modeled aboveground biomass development (NPPshoot) were used. To verify our method, results were compared with ΔSOC observed by soil resampling. Soil resampling and AC measurements were performed from 2010 to 2014 at a colluvial depression located in the hummocky ground moraine landscape of northeastern Germany. The measurement site is characterized by a variable groundwater level (GWL) and pronounced small-scale spatial heterogeneity regarding SOC and nitrogen (Nt) stocks. Tendencies and magnitude of ΔSOC values derived by AC measurements and repeated soil inventories corresponded well. The period of maximum plant growth was identified as being most important for the development of spatial differences in annual ΔSOC. Hence, we were able to confirm that AC-based C budgets are able to reveal small-scale spatial differences and short-term temporal dynamics of ΔSOC.

  18. SimAlba: A Spatial Microsimulation Approach to the Analysis of Health Inequalities

    PubMed Central

    Campbell, Malcolm; Ballas, Dimitris

    2016-01-01

    This paper presents applied geographical research based on a spatial microsimulation model, SimAlba, aimed at estimating geographically sensitive health variables in Scotland. SimAlba has been developed in order to answer a variety of “what-if” policy questions pertaining to health policy in Scotland. Using the SimAlba model, it is possible to simulate the distributions of previously unknown variables at the small area level such as smoking, alcohol consumption, mental well-being, and obesity. The SimAlba microdataset has been created by combining Scottish Health Survey and Census data using a deterministic reweighting spatial microsimulation algorithm developed for this purpose. The paper presents SimAlba outputs for Scotland’s largest city, Glasgow, and examines the spatial distribution of the simulated variables for small geographical areas in Glasgow as well as the effects on individuals of different policy scenario outcomes. In simulating previously unknown spatial data, a wealth of new perspectives can be examined and explored. This paper explores a small set of those potential avenues of research and shows the power of spatial microsimulation modeling in an urban context. PMID:27818989

  19. Low, slow, small target recognition based on spatial vision network

    NASA Astrophysics Data System (ADS)

    Cheng, Zhao; Guo, Pei; Qi, Xin

    2018-03-01

    Traditional photoelectric monitoring is monitored using a large number of identical cameras. In order to ensure the full coverage of the monitoring area, this monitoring method uses more cameras, which leads to more monitoring and repetition areas, and higher costs, resulting in more waste. In order to reduce the monitoring cost and solve the difficult problem of finding, identifying and tracking a low altitude, slow speed and small target, this paper presents spatial vision network for low-slow-small targets recognition. Based on camera imaging principle and monitoring model, spatial vision network is modeled and optimized. Simulation experiment results demonstrate that the proposed method has good performance.

  20. Contributions of GRACE to Understanding of Spatial Distribution of Spring Flooding in Snow-dominated Afghan Watersheds

    NASA Astrophysics Data System (ADS)

    Roningen, J. M.; Daly, S. F.; Vuyovich, C.

    2012-12-01

    In Afghanistan, where both historical and current in situ hydrologic records are extremely limited, the development and stability operations communities require guidance as to how to best utilize capabilities in remote sensing of the water cycle to understand and predict seasonal flooding. In this study, three versions of Level 3 GRACE datasets (CSR, CSR 4.1 and GRGS) are compared to TRMM 3B42 products, SSM/I-derived snow water equivalent products (SWE), and MODIS-derived flooding extents to assess their potential for contributing to an understanding of the spatial and temporal patterns of spring flooding in Afghanistan from the period 2002-2012. GRACE, which allows for assessment of correlations between small-scale temporal changes in the gravitational field of the earth with changes in the total water storage in the hydrosphere, opens the possibility for incorporation of subsurface components of the hydrologic cycle into remote monitoring and modeling of water resources. GRACE data exhibit clear seasonal fluctuations in many areas of Afghanistan, but an assessment is required of the extent to which this data can be disaggregated spatially and related to geographic patterns of precipitation, snowmelt and flooding. In this study, TRMM 3B42 and SSM/I-derived SWE datasets were used as proxies for measured precipitation. These datasets were convolved with a Gaussian filter with a 300 km half-radius at each reported GRACE data point in order to compensate for spatial correlation ('leakage' effects) in the GRACE data. In mountainous and snowmelt-dominated basins such as the majority of those in this study, GRACE analyses that make use of land surface model (LSM) derived estimates may not provide adequate characterization of snow water equivalent and soil moisture in this region. Therefore, soil and subsurface moisture were evaluated as a single storage component using the GRACE data, and flooding occurrence was evaluated as a qualitative surface expression of this storage component. Initial results show that cumulative Gaussian-smoothed TRMM data correlate positively with GRACE CSR during the periods between yearly GRACE minima and maxima at points throughout most watersheds. The timing of peaks in GRACE data in central Afghanistan following the onset of the seasonal SWE decline also corresponds to seasonal rises in the nearby Kajakai Reservoir as measured by Jason-2 satellite altimetry and validated by manual records. Differences between datasets also appear to confirm the irregularities introduced in this region by the CSR 4.1 product that used a land surface model in the signal restoration process.

  1. Surface water classification and monitoring using polarimetric synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Irwin, Katherine Elizabeth

    Surface water classification using synthetic aperture radar (SAR) is an established practice for monitoring flood hazards due to the high temporal and spatial resolution it provides. Surface water change is a dynamic process that varies both spatially and temporally, and can occur on various scales resulting in significant impacts on affected areas. Small-scale flooding hazards, caused by beaver dam failure, is an example of surface water change, which can impact nearby infrastructure and ecosystems. Assessing these hazards is essential to transportation and infrastructure maintenance. With current satellite missions operating in multiple polarizations, spatio-temporal resolutions, and frequencies, a comprehensive comparison between SAR products for surface water monitoring is necessary. In this thesis, surface water extent models derived from high resolution single-polarization TerraSAR-X (TSX) data, medium resolution dual-polarization TSX data and low resolution quad-polarization RADARSAT-2 (RS-2) data are compared. There exists a compromise between acquiring SAR data with a high resolution or high information content. Multi-polarization data provides additional phase and intensity information, which makes it possible to better classify areas of flooded vegetation and wetlands. These locations are often where fluctuations in surface water occur and are essential for understanding dynamic underlying processes. However, often multi-polarized data is acquired at a low resolution, which cannot image these zones effectively. High spatial resolution, single-polarization TSX data provides the best model of open water. However, these single-polarization observations have limited information content and are affected by shadow and layover errors. This often hinders the classification of other land cover types. The dual-polarization TSX data allows for the classification of flooded vegetation, but classification is less accurate compared to the quad-polarization RS-2 data. The RS-2 data allows for the discrimination of open water, marshes/fields and forested areas. However, the RS-2 data is less applicable to small scale surface water monitoring (e.g. beaver dam failure), due to its low spatial resolution. By understanding the strengths and weaknesses of available SAR technology, an appropriate product can be chosen for a specific target application involving surface water change. This research benefits the eventual development of a space-based monitoring strategy over longer periods.

  2. Reduced-complexity multi-site rainfall generation: one million years over night using the model TripleM

    NASA Astrophysics Data System (ADS)

    Breinl, Korbinian; Di Baldassarre, Giuliano; Girons Lopez, Marc

    2017-04-01

    We assess uncertainties of multi-site rainfall generation across spatial scales and different climatic conditions. Many research subjects in earth sciences such as floods, droughts or water balance simulations require the generation of long rainfall time series. In large study areas the simulation at multiple sites becomes indispensable to account for the spatial rainfall variability, but becomes more complex compared to a single site due to the intermittent nature of rainfall. Weather generators can be used for extrapolating rainfall time series, and various models have been presented in the literature. Even though the large majority of multi-site rainfall generators is based on similar methods, such as resampling techniques or Markovian processes, they often become too complex. We think that this complexity has been a limit for the application of such tools. Furthermore, the majority of multi-site rainfall generators found in the literature are either not publicly available or intended for being applied at small geographical scales, often only in temperate climates. Here we present a revised, and now publicly available, version of a multi-site rainfall generation code first applied in 2014 in Austria and France, which we call TripleM (Multisite Markov Model). We test this fast and robust code with daily rainfall observations from the United States, in a subtropical, tropical and temperate climate, using rain gauge networks with a maximum site distance above 1,000km, thereby generating one million years of synthetic time series. The modelling of these one million years takes one night on a recent desktop computer. In this research, we first start the simulations with a small station network of three sites and progressively increase the number of sites and the spatial extent, and analyze the changing uncertainties for multiple statistical metrics such as dry and wet spells, rainfall autocorrelation, lagged cross correlations and the inter-annual rainfall variability. Our study contributes to the scientific community of earth sciences and the ongoing debate on extreme precipitation in a changing climate by making a stable, and very easily applicable, multi-site rainfall generation code available to the research community and providing a better understanding of the performance of multi-site rainfall generation depending on spatial scales and climatic conditions.

  3. Spatial-temporal patterns in Mediterranean carnivore road casualties: Consequences for mitigation

    USGS Publications Warehouse

    Grilo, C.; Bissonette, J.A.; Santos-Reis, M.

    2009-01-01

    Many carnivores have been seriously impacted by the expansion of transportation systems and networks; however we know little about carnivore response to the extent and magnitude of road mortality, or which age classes may be disproportionately impacted. Recent research has demonstrated that wildlife-vehicle-collisions (WVC) involving carnivores are modulated by temporal and spatial factors. Thus, we investigated road mortality on a guild of small and medium-sized carnivores in southern Portugal using road-kill data obtained from a systematic 36 months monitoring period along highways (260 km) and national roads (314 km) by addressing the following questions: (a) which species and age class are most vulnerable to WVC? (b) are there temporal and/or spatial patterns in road-kill? and (c) which life-history and/or spatial factors influence the likelihood of collisions? We recorded a total of 806 carnivore casualties, which represented an average of 47 ind./100 km/year. Red fox and stone marten had the highest mortality rates. Our findings highlight three key messages: (1) the majority of road-killed individuals were adults of common species; (2) all carnivores, except genets, were more vulnerable during specific life-history phenological periods: higher casualties were observed when red fox and stone marten were provisioning young, Eurasian badger casualties occurred more frequently during dispersal, and higher Egyptian mongoose mortality occurred during the breeding period; and (3) modeling demonstrated that favorable habitat, curves in the road, and low human disturbance were major contributors to the deadliest road segments. Red fox carcasses were more likely to be found on road sections with passages distant from urban areas. Conversely, stone marten mortalities were found more often on national roads with high of cork oak woodland cover; Egyptian mongoose and genet road-kills were found more often on road segments close to curves. Based on our results, two key mitigation measures should help to reduce WVC in Portugal. The first involves the improvement of existing crossings with buried and small mesh size fence to guide the individuals towards to the passages, in road segments with high traffic volume (>1200 vehicles/night) and located in preferred carnivore habitats. The second mitigation involves cutting or removal of dense vegetation in verges of road segments with curves to aid motorists in seeing animals about to cross. ?? 2008 Elsevier Ltd.

  4. Pattern-based, multi-scale segmentation and regionalization of EOSD land cover

    NASA Astrophysics Data System (ADS)

    Niesterowicz, Jacek; Stepinski, Tomasz F.

    2017-10-01

    The Earth Observation for Sustainable Development of Forests (EOSD) map is a 25 m resolution thematic map of Canadian forests. Because of its large spatial extent and relatively high resolution the EOSD is difficult to analyze using standard GIS methods. In this paper we propose multi-scale segmentation and regionalization of EOSD as new methods for analyzing EOSD on large spatial scales. Segments, which we refer to as forest land units (FLUs), are delineated as tracts of forest characterized by cohesive patterns of EOSD categories; we delineated from 727 to 91,885 FLUs within the spatial extent of EOSD depending on the selected scale of a pattern. Pattern of EOSD's categories within each FLU is described by 1037 landscape metrics. A shapefile containing boundaries of all FLUs together with an attribute table listing landscape metrics make up an SQL-searchable spatial database providing detailed information on composition and pattern of land cover types in Canadian forest. Shapefile format and extensive attribute table pertaining to the entire legend of EOSD are designed to facilitate broad range of investigations in which assessment of composition and pattern of forest over large areas is needed. We calculated four such databases using different spatial scales of pattern. We illustrate the use of FLU database for producing forest regionalization maps of two Canadian provinces, Quebec and Ontario. Such maps capture the broad scale variability of forest at the spatial scale of the entire province. We also demonstrate how FLU database can be used to map variability of landscape metrics, and thus the character of landscape, over the entire Canada.

  5. Geographical Network Analysis and Spatial Econometrics as Tools to Enhance Our Understanding of Student Migration Patterns and Benefits in the U.S. Higher Education Network

    ERIC Educational Resources Information Center

    González Canché, Manuel S.

    2018-01-01

    This study measures the extent to which student outmigration outside the 4-year sector takes place and posits that the benefits from attracting non-resident students exist regardless of sector of enrollment. The study also provides empirical evidence about the relevance of employing geographical network analysis (GNA) and spatial econometrics in…

  6. Practical guidance on characterizing availability in resource selection functions under a use-availability design

    USGS Publications Warehouse

    Northrup, Joseph M.; Hooten, Mevin B.; Anderson, Charles R.; Wittemyer, George

    2013-01-01

    Habitat selection is a fundamental aspect of animal ecology, the understanding of which is critical to management and conservation. Global positioning system data from animals allow fine-scale assessments of habitat selection and typically are analyzed in a use-availability framework, whereby animal locations are contrasted with random locations (the availability sample). Although most use-availability methods are in fact spatial point process models, they often are fit using logistic regression. This framework offers numerous methodological challenges, for which the literature provides little guidance. Specifically, the size and spatial extent of the availability sample influences coefficient estimates potentially causing interpretational bias. We examined the influence of availability on statistical inference through simulations and analysis of serially correlated mule deer GPS data. Bias in estimates arose from incorrectly assessing and sampling the spatial extent of availability. Spatial autocorrelation in covariates, which is common for landscape characteristics, exacerbated the error in availability sampling leading to increased bias. These results have strong implications for habitat selection analyses using GPS data, which are increasingly prevalent in the literature. We recommend researchers assess the sensitivity of their results to their availability sample and, where bias is likely, take care with interpretations and use cross validation to assess robustness.

  7. Estimating occupancy probability of moose using hunter survey data

    USGS Publications Warehouse

    Crum, Nathan J.; Fuller, Angela K.; Sutherland, Christopher S.; Cooch, Evan G.; Hurst, Jeremy E.

    2017-01-01

    Monitoring rare species can be difficult, especially across large spatial extents, making conventional methods of population monitoring costly and logistically challenging. Citizen science has the potential to produce observational data across large areas that can be used to monitor wildlife distributions using occupancy models. We used citizen science (i.e., hunter surveys) to facilitate monitoring of moose (Alces alces) populations, an especially important endeavor because of their recent apparent declines in the northeastern and upper midwestern regions of the United States. To better understand patterns of occurrence of moose in New York, we used data collected through an annual survey of approximately 11,000 hunters between 2012 and 2014 that recorded detection–non-detection data of moose and other species. We estimated patterns of occurrence of moose in relation to land cover characteristics, climate effects, and interspecific interactions using occupancy models to analyze spatially referenced moose observations. Coniferous and deciduous forest with low prevalence of white-tailed deer (Odocoileus virginianus) had the highest probability of moose occurrence. This study highlights the potential of data collected using citizen science for understanding the spatial distribution of low-density species across large spatial extents and providing key information regarding where and when future research and management activities should be focused.

  8. Combining a Spatial Model and Demand Forecasts to Map Future Surface Coal Mining in Appalachia

    PubMed Central

    Strager, Michael P.; Strager, Jacquelyn M.; Evans, Jeffrey S.; Dunscomb, Judy K.; Kreps, Brad J.; Maxwell, Aaron E.

    2015-01-01

    Predicting the locations of future surface coal mining in Appalachia is challenging for a number of reasons. Economic and regulatory factors impact the coal mining industry and forecasts of future coal production do not specifically predict changes in location of future coal production. With the potential environmental impacts from surface coal mining, prediction of the location of future activity would be valuable to decision makers. The goal of this study was to provide a method for predicting future surface coal mining extents under changing economic and regulatory forecasts through the year 2035. This was accomplished by integrating a spatial model with production demand forecasts to predict (1 km2) gridded cell size land cover change. Combining these two inputs was possible with a ratio which linked coal extraction quantities to a unit area extent. The result was a spatial distribution of probabilities allocated over forecasted demand for the Appalachian region including northern, central, southern, and eastern Illinois coal regions. The results can be used to better plan for land use alterations and potential cumulative impacts. PMID:26090883

  9. Satellite remotely-sensed land surface parameters and their climatic effects for three metropolitan regions

    USGS Publications Warehouse

    Xian, George

    2008-01-01

    By using both high-resolution orthoimagery and medium-resolution Landsat satellite imagery with other geospatial information, several land surface parameters including impervious surfaces and land surface temperatures for three geographically distinct urban areas in the United States – Seattle, Washington, Tampa Bay, Florida, and Las Vegas, Nevada, are obtained. Percent impervious surface is used to quantitatively define the spatial extent and development density of urban land use. Land surface temperatures were retrieved by using a single band algorithm that processes both thermal infrared satellite data and total atmospheric water vapor content. Land surface temperatures were analyzed for different land use and land cover categories in the three regions. The heterogeneity of urban land surface and associated spatial extents were shown to influence surface thermal conditions because of the removal of vegetative cover, the introduction of non-transpiring surfaces, and the reduction in evaporation over urban impervious surfaces. Fifty years of in situ climate data were integrated to assess regional climatic conditions. The spatial structure of surface heating influenced by landscape characteristics has a profound influence on regional climate conditions, especially through urban heat island effects.

  10. Galaxy And Mass Assembly (GAMA): the signatures of galaxy interactions as viewed from small scale galaxy clustering

    NASA Astrophysics Data System (ADS)

    Gunawardhana, M. L. P.; Norberg, P.; Zehavi, I.; Farrow, D. J.; Loveday, J.; Hopkins, A. M.; Davies, L. J. M.; Wang, L.; Alpaslan, M.; Bland-Hawthorn, J.; Brough, S.; Holwerda, B. W.; Owers, M. S.; Wright, A. H.

    2018-06-01

    Statistical studies of galaxy-galaxy interactions often utilise net change in physical properties of progenitors as a function of the separation between their nuclei to trace both the strength and the observable timescale of their interaction. In this study, we use two-point auto, cross and mark correlation functions to investigate the extent to which small-scale clustering properties of star forming galaxies can be used to gain physical insight into galaxy-galaxy interactions between galaxies of similar optical brightness and stellar mass. The Hα star formers, drawn from the highly spatially complete Galaxy And Mass Assembly (GAMA) survey, show an increase in clustering on small separations. Moreover, the clustering strength shows a strong dependence on optical brightness and stellar mass, where (1) the clustering amplitude of optically brighter galaxies at a given separation is larger than that of optically fainter systems, (2) the small scale clustering properties (e.g. the strength, the scale at which the signal relative to the fiducial power law plateaus) of star forming galaxies appear to differ as a function of increasing optical brightness of galaxies. According to cross and mark correlation analyses, the former result is largely driven by the increased dust content in optically bright star forming galaxies. The latter could be interpreted as evidence of a correlation between interaction-scale and optical brightness of galaxies, where physical evidence of interactions between optically bright star formers, likely hosted within relatively massive halos, persist over larger separations than those between optically faint star formers.

  11. DNA sequence variation of wild barley Hordeum spontaneum (L.) across environmental gradients in Israel

    PubMed Central

    Bedada, G; Westerbergh, A; Nevo, E; Korol, A; Schmid, K J

    2014-01-01

    Wild barley Hordeum spontaneum (L.) shows a wide geographic distribution and ecological diversity. A key question concerns the spatial scale at which genetic differentiation occurs and to what extent it is driven by natural selection. The Levant region exhibits a strong ecological gradient along the North–South axis, with numerous small canyons in an East–West direction and with small-scale environmental gradients on the opposing North- and South-facing slopes. We sequenced 34 short genomic regions in 54 accessions of wild barley collected throughout Israel and from the opposing slopes of two canyons. The nucleotide diversity of the total sample is 0.0042, which is about two-thirds of a sample from the whole species range (0.0060). Thirty accessions collected at ‘Evolution Canyon' (EC) at Nahal Oren, close to Haifa, have a nucleotide diversity of 0.0036, and therefore harbor a large proportion of the genetic diversity. There is a high level of genetic clustering throughout Israel and within EC, which roughly differentiates the slopes. Accessions from the hot and dry South-facing slope have significantly reduced genetic diversity and are genetically more distinct from accessions from the North-facing slope, which are more similar to accessions from other regions in Northern Israel. Statistical population models indicate that wild barley within the EC consist of three separate genetic clusters with substantial gene flow. The data indicate a high level of population structure at large and small geographic scales that shows isolation-by-distance, and is also consistent with ongoing natural selection contributing to genetic differentiation at a small geographic scale. PMID:24619177

  12. Effects of large Saduria entomon (Isopoda) on spatial distribution of their small S. entomon and Monoporeia affinis (Amphipoda) prey.

    PubMed

    Sparrevik, Erik; Leonardsson, Kjell

    1995-02-01

    We performed laboratory experiments to investigate the effects of predator avoidance and numerical effects of predation on spatial distribution of small Saduria entomon (Isopoda) and Monoporeia affinis (Amphipoda), with large S. entomon as predators. The horizontal distribution and mortality of the prey species, separately and together, were studied in aquaria with a spatial horizontal refuge. We also estimated effects of refuge on mortality of small S. entomon and M. affinis by experiments without the refuge net. In addition, we investigated whether predation risk from large S. entomon influenced the swimming activity of M. affinis, to clarify the mechanisms behind the spatial distribution. Both small S. entomon and M. affinis avoided large S. entomon. The avoidance behaviour of M. fffinis contributed about 10 times more to the high proportion in the refuge than numerical effects of predation. Due to the low mortality of small S. entomon the avoidance behaviour of this species was even more important for the spatial distribution. The combined effect of avoidance behaviour and predation in both species was aggregation, producting a positive correlation between the species in density. M. affinis showed two types of avoidance behaviour. In the activity experiments they reduced activity by 36% and buried themselves in the sediment. In the refuge experiments we also observed avoidance behaviour with the emigration rate from the predator compartment being twice the immigration rate. The refuge did not lower predation mortality in M. affinis, probably due to the small scale of the experimental units in relation to the mobility of the species. Predation mortality in small S. entomon was higher in absence of a refuge and especially high in absence of M. affinis.

  13. The steady-state mosaic of disturbance and succession across an old-growth Central Amazon forest landscape.

    PubMed

    Chambers, Jeffrey Q; Negron-Juarez, Robinson I; Marra, Daniel Magnabosco; Di Vittorio, Alan; Tews, Joerg; Roberts, Dar; Ribeiro, Gabriel H P M; Trumbore, Susan E; Higuchi, Niro

    2013-03-05

    Old-growth forest ecosystems comprise a mosaic of patches in different successional stages, with the fraction of the landscape in any particular state relatively constant over large temporal and spatial scales. The size distribution and return frequency of disturbance events, and subsequent recovery processes, determine to a large extent the spatial scale over which this old-growth steady state develops. Here, we characterize this mosaic for a Central Amazon forest by integrating field plot data, remote sensing disturbance probability distribution functions, and individual-based simulation modeling. Results demonstrate that a steady state of patches of varying successional age occurs over a relatively large spatial scale, with important implications for detecting temporal trends on plots that sample a small fraction of the landscape. Long highly significant stochastic runs averaging 1.0 Mg biomass⋅ha(-1)⋅y(-1) were often punctuated by episodic disturbance events, resulting in a sawtooth time series of hectare-scale tree biomass. To maximize the detection of temporal trends for this Central Amazon site (e.g., driven by CO2 fertilization), plots larger than 10 ha would provide the greatest sensitivity. A model-based analysis of fractional mortality across all gap sizes demonstrated that 9.1-16.9% of tree mortality was missing from plot-based approaches, underscoring the need to combine plot and remote-sensing methods for estimating net landscape carbon balance. Old-growth tropical forests can exhibit complex large-scale structure driven by disturbance and recovery cycles, with ecosystem and community attributes of hectare-scale plots exhibiting continuous dynamic departures from a steady-state condition.

  14. Spatial Release From Masking in 2-Year-Olds With Normal Hearing and With Bilateral Cochlear Implants

    PubMed Central

    Hess, Christi L.; Misurelli, Sara M.; Litovsky, Ruth Y.

    2018-01-01

    This study evaluated spatial release from masking (SRM) in 2- to 3-year-old children who are deaf and were implanted with bilateral cochlear implants (BiCIs), and in age-matched normal-hearing (NH) toddlers. Here, we examined whether early activation of bilateral hearing has the potential to promote SRM that is similar to age-matched NH children. Listeners were 13 NH toddlers and 13 toddlers with BiCIs, ages 27 to 36 months. Speech reception thresholds (SRTs) were measured for target speech in front (0°) and for competitors that were either Colocated in front (0°) or Separated toward the right (+90°). SRM was computed as the difference between SRTs in the front versus in the asymmetrical condition. Results show that SRTs were higher in the BiCI than NH group in all conditions. Both groups had higher SRTs in the Colocated and Separated conditions compared with Quiet, indicating masking. SRM was significant only in the NH group. In the BiCI group, the group effect of SRM was not significant, likely limited by the small sample size; however, all but two children had SRM values within the NH range. This work shows that to some extent, the ability to use spatial cues for source segregation develops by age 2 to 3 in NH children and is attainable in most of the children in the BiCI group. There is potential for the paradigm used here to be used in clinical settings to evaluate outcomes of bilateral hearing in very young children. PMID:29761735

  15. Virtual water maze learning in human increases functional connectivity between posterior hippocampus and dorsal caudate.

    PubMed

    Woolley, Daniel G; Mantini, Dante; Coxon, James P; D'Hooge, Rudi; Swinnen, Stephan P; Wenderoth, Nicole

    2015-04-01

    Recent work has demonstrated that functional connectivity between remote brain regions can be modulated by task learning or the performance of an already well-learned task. Here, we investigated the extent to which initial learning and stable performance of a spatial navigation task modulates functional connectivity between subregions of hippocampus and striatum. Subjects actively navigated through a virtual water maze environment and used visual cues to learn the position of a fixed spatial location. Resting-state functional magnetic resonance imaging scans were collected before and after virtual water maze navigation in two scan sessions conducted 1 week apart, with a behavior-only training session in between. There was a large significant reduction in the time taken to intercept the target location during scan session 1 and a small significant reduction during the behavior-only training session. No further reduction was observed during scan session 2. This indicates that scan session 1 represented initial learning and scan session 2 represented stable performance. We observed an increase in functional connectivity between left posterior hippocampus and left dorsal caudate that was specific to scan session 1. Importantly, the magnitude of the increase in functional connectivity was correlated with offline gains in task performance. Our findings suggest cooperative interaction occurs between posterior hippocampus and dorsal caudate during awake rest following the initial phase of spatial navigation learning. Furthermore, we speculate that the increase in functional connectivity observed during awake rest after initial learning might reflect consolidation-related processing. © 2014 Wiley Periodicals, Inc.

  16. Feedback and feedforward control of frequency tuning to naturalistic stimuli.

    PubMed

    Chacron, Maurice J; Maler, Leonard; Bastian, Joseph

    2005-06-08

    Sensory neurons must respond to a wide variety of natural stimuli that can have very different spatiotemporal characteristics. Optimal responsiveness to subsets of these stimuli can be achieved by devoting specialized neural circuitry to different stimulus categories, or, alternatively, this circuitry can be modulated or tuned to optimize responsiveness to current stimulus conditions. This study explores the mechanisms that enable neurons within the initial processing station of the electrosensory system of weakly electric fish to shift their tuning properties based on the spatial extent of the stimulus. These neurons are tuned to low frequencies when the stimulus is restricted to a small region within the receptive field center but are tuned to higher frequencies when the stimulus impinges on large regions of the sensory epithelium. Through a combination of modeling and in vivo electrophysiology, we reveal the respective contributions of the filtering characteristics of extended dendritic structures and feedback circuitry to this shift in tuning. Our results show that low-frequency tuning can result from the cable properties of an extended dendrite that conveys receptor-afferent information to the cell body. The shift from low- to high-frequency tuning, seen in response to spatially extensive stimuli, results from increased wide-band input attributable to activation of larger populations of receptor afferents, as well as the activation of parallel fiber feedback from the cerebellum. This feedback provides a cancellation signal with low-pass characteristics that selectively attenuates low-frequency responsiveness. Thus, with spatially extensive stimuli, these cells preferentially respond to the higher-frequency components of the receptor-afferent input.

  17. Estimates of spatial and temporal variation of energy crops biomass yields in the US

    NASA Astrophysics Data System (ADS)

    Song, Y.; Jain, A. K.; Landuyt, W.; Kheshgi, H. S.

    2013-12-01

    Perennial grasses, such as switchgrass (Panicum viragatum) and Miscanthus (Miscanthus x giganteus) have been identified for potential use as biomass feedstocks in the US. Current research on perennial grass biomass production has been evaluated on small-scale plots. However, the extent to which this potential can be realized at a landscape-scale will depend on the biophysical potential to grow these grasses with minimum possible amount of land that needs to be diverted from food to fuel production. To assess this potential three questions about the biomass yield for these grasses need to be answered: (1) how the yields for different grasses are varied spatially and temporally across the US; (2) whether the yields are temporally stable or not; and (3) how the spatial and temporal trends in yields of these perennial grasses are controlled by limiting factors, including soil type, water availability, climate, and crop varieties. To answer these questions, the growth processes of the perennial grasses are implemented into a coupled biophysical, physiological and biogeochemical model (ISAM). The model has been applied to quantitatively investigate the spatial and temporal trends in biomass yields for over the period 1980 -2010 in the US. The bioenergy grasses considered in this study include Miscanthus, Cave-in-Rock switchgrass and Alamo switchgrass. The effects of climate, soil and topography on the spatial and temporal trends of biomass yields are quantitatively analyzed using principal component analysis and GIS based geographically weighted regression. The spatial temporal trend results are evaluated further to classify each part of the US into four homogeneous potential yield zones: high and stable yield zone (HS), high but unstable yield zone (HU), low and stable yield zone (LS) and low but unstable yield zone (LU). Our preliminary results indicate that the yields for perennial grasses among different zones are strongly related to the different controlling factors. For example, the yield in HS zone is depended on soil and topography factors. However, the yields in HU zone are more controlled by climate factors, leading to a large uncertainty in yield potential of bioenergy grasses under future climate change.

  18. Spatial and temporal corroboration of a fire-scar-based fire history in a frequently burned ponderosa pine forest.

    PubMed

    Farris, Calvin A; Baisan, Christopher H; Falk, Donald A; Yool, Stephen R; Swetnam, Thomas W

    2010-09-01

    Fire scars are used widely to reconstruct historical fire regime parameters in forests around the world. Because fire scars provide incomplete records of past fire occurrence at discrete points in space, inferences must be made to reconstruct fire frequency and extent across landscapes using spatial networks of fire-scar samples. Assessing the relative accuracy of fire-scar fire history reconstructions has been hampered due to a lack of empirical comparisons with independent fire history data sources. We carried out such a comparison in a 2780-ha ponderosa pine forest on Mica Mountain in southern Arizona (USA) for the time period 1937-2000. Using documentary records of fire perimeter maps and ignition locations, we compared reconstructions of key spatial and temporal fire regime parameters developed from documentary fire maps and independently collected fire-scar data (n = 60 plots). We found that fire-scar data provided spatially representative and complete inventories of all major fire years (> 100 ha) in the study area but failed to detect most small fires. There was a strong linear relationship between the percentage of samples recording fire scars in a given year (i.e., fire-scar synchrony) and total area burned for that year (y = 0.0003x + 0.0087, r2 = 0.96). There was also strong spatial coherence between cumulative fire frequency maps interpolated from fire-scar data and ground-mapped fire perimeters. Widely reported fire frequency summary statistics varied little between fire history data sets: fire-scar natural fire rotations (NFR) differed by < 3 yr from documentary records (29.6 yr); mean fire return intervals (MFI) for large-fire years (i.e., > or = 25% of study area burned) were identical between data sets (25.5 yr); fire-scar MFIs for all fire years differed by 1.2 yr from documentary records. The known seasonal timing of past fires based on documentary records was furthermore reconstructed accurately by observing intra-annual ring position of fire scars and using knowledge of tree-ring growth phenology in the Southwest. Our results demonstrate clearly that representative landscape-scale fire histories can be reconstructed accurately from spatially distributed fire-scar samples.

  19. Spatial Covariability of Temperature and Hydroclimate as a Function of Timescale During the Common Era

    NASA Astrophysics Data System (ADS)

    McKay, N.

    2017-12-01

    As timescale increases from years to centuries, the spatial scale of covariability in the climate system is hypothesized to increase as well. Covarying spatial scales are larger for temperature than for hydroclimate, however, both aspects of the climate system show systematic changes on large-spatial scales on orbital to tectonic timescales. The extent to which this phenomenon is evident in temperature and hydroclimate at centennial timescales is largely unknown. Recent syntheses of multidecadal to century-scale variability in hydroclimate during the past 2k in the Arctic, North America, and Australasia show little spatial covariability in hydroclimate during the Common Era. To determine 1) the evidence for systematic relationships between the spatial scale of climate covariability as a function of timescale, and 2) whether century-scale hydroclimate variability deviates from the relationship between spatial covariability and timescale, we quantify this phenomenon during the Common Era by calculating the e-folding distance in large instrumental and paleoclimate datasets. We calculate this metric of spatial covariability, at different timescales (1, 10 and 100-yr), for a large network of temperature and precipitation observations from the Global Historical Climatology Network (n=2447), from v2.0.0 of the PAGES2k temperature database (n=692), and from moisture-sensitive paleoclimate records North America, the Arctic, and the Iso2k project (n = 328). Initial results support the hypothesis that the spatial scale of covariability is larger for temperature, than for precipitation or paleoclimate hydroclimate indicators. Spatially, e-folding distances for temperature are largest at low latitudes and over the ocean. Both instrumental and proxy temperature data show clear evidence for increasing spatial extent as a function of timescale, but this phenomenon is very weak in the hydroclimate data analyzed here. In the proxy hydroclimate data, which are predominantly indicators of effective moisture, e-folding distance increases from annual to decadal timescales, but does not continue to increase to centennial timescales. Future work includes examining additional instrumental and proxy datasets of moisture variability, and extending the analysis to millennial timescales of variability.

  20. a Spiral-Based Downscaling Method for Generating 30 M Time Series Image Data

    NASA Astrophysics Data System (ADS)

    Liu, B.; Chen, J.; Xing, H.; Wu, H.; Zhang, J.

    2017-09-01

    The spatial detail and updating frequency of land cover data are important factors influencing land surface dynamic monitoring applications in high spatial resolution scale. However, the fragmentized patches and seasonal variable of some land cover types (e. g. small crop field, wetland) make it labor-intensive and difficult in the generation of land cover data. Utilizing the high spatial resolution multi-temporal image data is a possible solution. Unfortunately, the spatial and temporal resolution of available remote sensing data like Landsat or MODIS datasets can hardly satisfy the minimum mapping unit and frequency of current land cover mapping / updating at the same time. The generation of high resolution time series may be a compromise to cover the shortage in land cover updating process. One of popular way is to downscale multi-temporal MODIS data with other high spatial resolution auxiliary data like Landsat. But the usual manner of downscaling pixel based on a window may lead to the underdetermined problem in heterogeneous area, result in the uncertainty of some high spatial resolution pixels. Therefore, the downscaled multi-temporal data can hardly reach high spatial resolution as Landsat data. A spiral based method was introduced to downscale low spatial and high temporal resolution image data to high spatial and high temporal resolution image data. By the way of searching the similar pixels around the adjacent region based on the spiral, the pixel set was made up in the adjacent region pixel by pixel. The underdetermined problem is prevented to a large extent from solving the linear system when adopting the pixel set constructed. With the help of ordinary least squares, the method inverted the endmember values of linear system. The high spatial resolution image was reconstructed on the basis of high spatial resolution class map and the endmember values band by band. Then, the high spatial resolution time series was formed with these high spatial resolution images image by image. Simulated experiment and remote sensing image downscaling experiment were conducted. In simulated experiment, the 30 meters class map dataset Globeland30 was adopted to investigate the effect on avoid the underdetermined problem in downscaling procedure and a comparison between spiral and window was conducted. Further, the MODIS NDVI and Landsat image data was adopted to generate the 30m time series NDVI in remote sensing image downscaling experiment. Simulated experiment results showed that the proposed method had a robust performance in downscaling pixel in heterogeneous region and indicated that it was superior to the traditional window-based methods. The high resolution time series generated may be a benefit to the mapping and updating of land cover data.

Top